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Abstract 
 
Unconventional computation is a paradigm of computation that uses novel information tokens 
from natural systems to perform information processing. Using the complexity of physical 
systems, unconventional computing systems can efficiently solve problems that are difficult to 
solve classically. In this thesis, we use block copolymer self-assembly, a well-studied phenomenon 
in polymer science, to develop a new approach to computing by applying directed self-assembly 
to implement Ising-model-based computing systems in materials. 
 
In the first part of the thesis, we investigate directed self-assembly of block copolymer thin films 
within templates of different polygonal shapes. We define a two-state system based on the two 
degenerate alignment orientations of the ladder-shaped block copolymer structures formed inside 
square confinements, and study properties of the two-state system. 
 
In the second part of the thesis, we demonstrate an Ising lattice setup for directed self-assembly of 
block copolymers defined on two-dimensional arrays of posts. We develop an Ising-model-based 
simulation method that can perform block copolymer pattern prediction and template design. 
Finally, we design simple Boolean logic gates as a proof-of-concept demonstration of computation. 
 
Thesis Supervisor: Karl K. Berggren 
Title: Professor of Electrical Engineering 
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Chapter 1 

 

Introduction 

 

 
1.1 Overview 

Unconventional computation is a paradigm of computation that uses natural systems, physical or 

biological, to process information. Using the complexity of physical systems, unconventional 

computing systems can efficiently solve problems that are difficult to solve with classical von 

Neumann architecture.[1] One such alternative architecture is based on the Ising spin system where 

a large number of binary states give rise to long-range correlations through strong local 

interactions.[2] It has been previously shown that Ising-model-based computing systems can 

perform universal Boolean operations[3] and solve combinatorial optimization problems.[4] In this 

thesis, we use block copolymer self-assembly, a well-studied phenomenon in polymer science, to 

develop a new approach to computing by applying directed self-assembly (DSA) of block 

copolymers to implement Ising-model-based computing systems in materials. 

 Implementing Ising-model-based computing systems using block copolymer self-assembly 

is of interest not only from a computational point of view, but also from a materials point of view 

since block copolymers naturally act as a lithography material. By understanding the interactions 

between the Ising states defined using block copolymers, we can apply the Ising model to calculate 

the equilibrium block copolymer morphology given a specific template. Ising model simulations 
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can complement self-consistent field theory (SCFT) simulations to assist rule-based and inverse 

template design. 

 This thesis investigates block-copolymer-based computation using arrays of square 

confinements and arrays of square lattice posts to define a two-state system. Chapter 1 introduces 

the basics of block copolymer DSA and the concept of unconventional computation. Chapter 2 

and Chapter 3 focus on DSA of block copolymer thin films within templates of different polygonal 

shapes. Chapter 4, Chapter 5, and Chapter 6 focus on Ising lattice design in block copolymer DSA, 

Ising-model-based simulation, and Ising-model-based computation. Chapter 7 suggests ideas for 

future work. 

 

1.2 Block copolymer directed self-assembly 

Block copolymers are self-assembling macromolecules composed of two distinct repeating 

monomer units that are connected to each other by a covalent bond. Since the two blocks are 

chemically immiscible, but are covalently bonded together at the same time, block copolymers 

microphase separate into periodic arrays of microdomains upon annealing. For thin film 

applications, one of the blocks is used for pattern transfer while the other block is removed after 

the self-assembly process is completed. For example, the block copolymer used in this thesis is 

poly(styrene-block-dimethylsiloxane) (PS-b-PDMS). Here, the PDMS block has high etch 

resistance due to its silica backbone whereas the PS block has low etch resistance so that it can be 

easily removed by performing an O2 plasma treatment. 

 The phase behavior of block copolymers is governed by the segregation strength χN and 

volume fraction of one block f, where χ is the Flory-Huggins interaction parameter describing the 

chemical incompatibility between the two blocks and N is the degree of polymerization.[5] 

Depending on these parameters, bulk block copolymers can microphase separate into diverse 
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morphologies including hexagonal arrays of spheres, parallel in-plane or out-of-plane cylinders, 

gyroid, and parallel in-plane or out-of-plane lamellae, where the equilibrium periodicity L0 (~ 

χ1/6N2/3) and feature size are on the order of the size of the macromolecules.[6] Figure 1.1 shows 

the bulk morphologies and phase diagrams for block copolymers. Due to their ability to form 

periodic and complex nanostructures, block copolymers have been used in high-resolution 

lithography to fabricate field-effect transistors,[7-9] photovoltaic devices,[10-12] and plasmonic 

nanostructures.[13-15] However, achieving block copolymer patterns with low defect density and 

good long-range order has been a challenge. 

 

 

Figure 1.1 Schematic diagram showing diverse bulk morphologies and phase diagrams of block 

copolymers.[5] χN is the segregation strength and fA is the volume fraction of block A. (a) 

Equilibrium block copolymer morphologies: spheres (S), cylinders (C), gyroid (G), and lamellae 

(L). (b) A theoretical phase diagram calculated by SCFT. Close-packed sphere (CPS) morphology 

is also predicted. (c) An experimental phase diagram of poly(isoprene-block-styrene) (PIP-b-PS). 

Perforated lamellae (PL) morphology is also observed. Redrawn from reference 5.  
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To provide pattern registration, reduce defectivity, and improve long-range order, 

topographic[16-19] or chemical[20-24] templates have been commonly used to guide the self-assembly 

of block copolymers. In graphoepitaxy, topographic features are patterned by conventional 

lithography methods and chemically functionalized to be attractive to one block. In chemoepitaxy, 

regions of the substrate are chemically patterned to be preferential to one block. Structural 

frustration and interfacial interactions induced by the template guide the self-assembly of block 

copolymers. Pattern registration and density multiplication have been demonstrated using both 

templating strategies. Figure 1.2 shows examples of complex patterns self-assembled by 

graphoepitaxy of PS-b-PDMS. In this thesis, we focus on the graphoepitaxy of a cylindrical 

morphology PS-b-PDMS using polygonal confinement and post lattice templates. 

 

 

Figure 1.2 Examples of ordered block copolymer patterns using graphoepitaxy of PS-b-PDMS. 

(a) Hexagonal array of self-assembled spheres.[25] (b) Nested-elbow structures with a center cross-

point junction.[18] (c) Hexagonal symmetry nanohole array using a sacrificial template.[26] (d) 

Three-dimensional bilayer mesh structure.[27] Scale bars, 100 nm. Figures were redrawn from 

references. 

 

1.3 Block copolymer as a material for computation 

Unconventional computation is a model of computation that uses novel information tokens to 

perform computation. Unlike traditional silicon-based computers which electronically implement 

logic gates, unconventional computers exploit various physical phenomena to perform 
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computation. A key advantage of unconventional computers is their ability to efficiently solve 

problems that are difficult to solve classically. For a number of applications, the material properties 

of the physical system may be utilized for efficient computation. For example, Reyes et al. have 

demonstrated an analog computing approach for solving a wide class of shortest path problems by 

using glow discharge inside microfluidic channel systems to explore potential pathway choices in 

parallel.[28] In another example, deoxyribonucleic acid (DNA) has been used to solve the directed 

Hamiltonian path problem by trying all possible paths via polymerase chain reactions and agarose 

gel electrophoresis separations.[29] 

 Over recent decades, the scientific and engineering community has been pioneering new 

and unconventional approaches to computing based on novel architectures such as quantum 

computing,[30-32] and novel information tokens such as photons,[33-35] materials,[36-39] DNA 

molecules,[40-45] and even biological organisms.[46-49] Figure 1.3 shows examples of such 

unconventional computing systems. In these examples, Boolean logic gates have been built and 

combinatorial optimization problems such as the travelling salesman problem have been solved 

using physical systems. 

One approach to designing a novel unconventional computing systems is to create Ising 

machines based on the well-known spin-spin system. Ising machines are physical systems capable 

of finding the ground states of Ising lattices. It has been previously shown that ground states of 

Ising lattices can encode universal computation,[3] and solving for the ground states of Ising lattices 

can map to various useful combinatorial optimization problems.[4] As such, Ising machines may 

be enlisted to serve as an efficient coprocessor for conventional computers faced with particularly 

challenging computational tasks. 
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Figure 1.3 Examples of unconventional computing systems. (a) Microfluidic bubble AND/OR 

gate.[50] Scale bar, 100 μm. (b) Maze solving using the Marangoni flow generated by the pH 

gradient in a channel network.[51] Scale bar, 2 mm. (c) Voronoi diagram approximated by a slime 

mould physarum polycephalum.[48] (d) AND gate implemented using carbon monoxide molecules 

arranged on a copper (111) surface.[39] (e) Magnetic nanowire loop containing a NOT gate, fan-

out junction, and cross-over junction.[37] (f) Algorithmic self-assembly of DNA Sierpinski 

triangles.[44] Scale bar, 50 nm. Figures were redrawn from references. 

 

Recent research has focused intensively on demonstrating these Ising machines, and some 

have been successful in building, for example, classical Ising machines using optical parametric 

oscillators[52-54] and CMOS circuits,[55,56] and quantum Ising machines using qubits.[57,58] In this 

thesis, we develop a classical Ising-model-based computing system by using a totally new high-

density approach—self-assembling block copolymers. During the self-assembly process, block 

copolymers arrange themselves into a minimum free energy configuration given the boundary 

conditions defined by the guiding templates. In essence, block copolymers are finding a solution 
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to an energy optimization problem through self-assembly. Ising-model-based computing can thus 

be implemented with block copolymers. 

In addition to solving interesting and useful computation problems, block-copolymer-

based computing systems may enable energy-efficient computing. Block copolymers find their 

ground-state configuration with minimal required energy input. With sufficient annealing time 

available, arbitrarily low energy consumption is possible. Using the Ising lattice presented in this 

thesis, an Ising state occupies at most a volume of 𝐿0
3 /2 with a monolayer of PS-b-PDMS (as-spun 

film thickness ≤ L0). Assuming PS-b-PDMS has similar specific heat capacity and density as the 

majority PS block and the sample is thermally annealed at 150°C, we can estimate the upper bound 

for the energy cost of annealing an Ising state to be in the order of 10−15 J. The energy cost of a 

few fJ per operation is already comparable to gate dissipation in digital logic.[59-61] This energy can 

be provided in the form of waste heat, harvested during cooling of conventional industrial 

processes (e.g. as cooling components in power plants), and further optimized by controlling 

annealing times and materials. Indeed, annealing-based architectures can trade-off computing 

speed and energy costs so that with appropriate materials science and engineering, the energy costs 

of a self-assembly-based approach to computing could be made arbitrarily small. 

Moreover, from a material science perspective, we may be able to study properties of block 

copolymers by implementing a block-copolymer-based computing system. Many physical systems 

consist of a large number of simple components. For instance, a block copolymer film spin coated 

onto a 12-inch silicon wafer contains approximately 1014 Ising states with nearest-neighbor 

interactions. By investigating the local interactions between the simple components and studying 

the resulting complex emergent behavior, we can better understand the self-assembly process. 

Results from the thesis will have applications in block copolymer pattern prediction as well as 
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template design. Block-copolymer-based computing systems may even be able to simulate 

material science, such as phase transition behaviors of block copolymers. 

Finally, we expect that the techniques used in this thesis can be extended to other materials. 

In designing the Ising lattice setup for block copolymers, we did not rely on the specific properties 

of the self-assembling material other than the antiferromagnetic nearest-neighbor interactions. 

Therefore, the same designing principles could be applied to different self-assembling materials 

such as charged colloidal particles or DNA. Ultimately, results of our work will impact fields 

beyond unconventional computation. For example, a sensing platform could be built by 

positioning nanoparticles inside the post lattice template which can dynamically change the input 

bits in the presence of specific chemical or biomolecules. Furthermore, a computing system could 

perhaps be designed using charged colloidal particles that can dynamically reset their charges 

subject to the pH of the solution.[62] 
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Chapter 2 

 

Directed self-assembly of a two-state 

block copolymer system 

 

 
In this chapter, we study directed self-assembly of block copolymer thin films within templates of 

different polygonal shapes. Ladder-shaped block copolymer structures consisting of parallel bars, 

bends, and T-junctions are formed inside square confinement. We define binary states by the two 

degenerate alignment orientations, and study properties of the two-state system such as distribution 

of the states, nearest-neighbor correlation, and defect tolerance. We control the binary states by 

changing the confinement geometry or placing lithographic guiding patterns inside the 

confinement. The resulting block copolymer patterns could potentially act as a physical read-only 

memory in addition to functioning as a lithography mask. 

 

2.1 Introduction 

Block copolymer self-assembly in thin films can spontaneously generate periodic nanoscale 

patterns such as hexagonal arrays of dots or parallel lines, which have been proposed for 

applications such as nanoporous filtration membranes,[1,2] plasmonic structures,[3,4] integrated 

circuit fabrication,[5-7] and magnetic storage media.[8-10] Many of these applications require the 

nanoscale features to have long-range order or to form specific non-periodic structures with low 
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defect density. Directed self-assembly (DSA) addresses these issues by using graphoepitaxial[11-14] 

and/or chemoepitaxial[15-19] templates, fabricated by conventional lithography techniques, to guide 

the self-assembly of thin films of block copolymers. Various microelectronic device-oriented 

features such as concentric rings, bends, jogs, terminations, and T-junctions have been made, and 

these patterns have subsequently been transferred into functional materials to fabricate structures 

such as metal nanowire ring arrays[20-22] or parallel fins for field-effect transistors.[7,23,24] 

Common templates used for DSA include one-dimensional features (trenches or chemical 

stripe patterns), or two-dimensional features (pits or chemically patterned regions). Although the 

templating effect from trench confinement has been well studied,[25-27] two-dimensional templates 

provide a wider set of geometries to guide block copolymer self-assembly, and can lead to 

formation of multiple degenerate structures. For example, concentric ring structures have been 

self-assembled inside symmetric confinements,[20,21] and we recently demonstrated nanoscale 

Archimedean spirals with specific chirality formed inside circular pits.[28] By studying such block 

copolymer systems that have energetic degeneracy, graphoepitaxial pattern control inside two-

dimensional templates can be better understood. Moreover, by assigning different states or bits to 

the two degenerate morphologies, the resulting block copolymer patterns could act as a physical 

read-only memory. 

This chapter describes DSA of block copolymer films within templates of different 

polygonal shapes. In square templates, two degenerate morphologies can form, and the presence 

of asymmetry inside the templates breaks the degeneracy. We describe the properties of the binary 

states including distribution, correlation, and defect tolerance, and present methods for controlling 

the binary state orientations. 

  



 29 

2.2 Experimental methods 

To control the self-assembly in block copolymer thin films, we used electron-beam lithography to 

fabricate templates of different polygonal shapes, and solvent annealing to facilitate the block 

copolymer self-assembly process. In this section, we describe the experimental methods for 

template fabrication, block copolymer self-assembly, reactive-ion etching, and metrology. 

 

2.2.1 Template fabrication 

The topographic templates were fabricated using electron-beam lithography with a hydrogen 

silsesquioxane (HSQ) resist. A silicon substrate was spin coated with 42-nm-thick HSQ film (XR-

1541 2% solids, Dow Corning). The thickness was determined by ellipsometry. A Raith 150 

electron-beam lithography system operated at 30 kV acceleration voltage was used to expose 

topographic features with various geometries. After exposure, the samples were developed in a 

24°C high contrast salty developer (1% NaOH and 4% NaCl in de-ionized water) for 4 min, rinsed 

in de-ionized water for 3 min, and blow dried with N2 gas.[29] Template dimensions were inspected 

by scanning electron microscope (SEM) imaging. Templates for 16 kg/mol poly(styrene-block-

dimethylsiloxane) (PS-b-PDMS) were fabricated using 30-nm-thick HSQ film. 

 

2.2.2 Block copolymer self-assembly 

To make the templates attractive to the majority PS block, the templates were chemically 

functionalized with a PS brush (11 kg/mol, Polymer Source Inc.) by spin coating 1% brush solution 

in propylene glycol monomethyl ether acetate (PGMEA) and annealing the samples in a vacuum 

oven at 170°C for 14 h. The samples were rinsed with toluene for 1 min after annealing to remove 

excess PS brush. The resulting thickness of the PS brush bonded to the substrate was 5 nm. Next, 



 30 

2% PS-b-PDMS (Mw = 45.5 kg/mol, fPDMS = 32%, PDI = 1.08, Polymer Source Inc.) solution in 

PGMEA was spin coated onto the templated substrate. The resulting film thickness was 27 nm. 

The samples were solvent annealed using a 5:1 mixture of toluene and heptane at room temperature 

for 5 h. We placed the samples on a glass slide stack (0.8 cm in height) inside a crystallization dish 

(1.5 cm in height, 5 cm in diameter) and added 1.5 ml of the 5:1 toluene and heptane mixture. The 

chamber was covered with a petri dish (10 cm in diameter). During the 5 h annealing, leakage of 

solvent vapor occurred at a rate of 585 µg/min. 16 kg/mol PS-b-PDMS (fPDMS = 31%, PDI = 1.08, 

Polymer Source Inc.) was spin coated to a thickness of 25 nm and thermally annealed in a vacuum 

oven at 150°C for 14 h. 

 

2.2.3 Reactive-ion etching 

Reactive-ion etching of the annealed block copolymer film was performed in two steps. First, the 

top PDMS wetting layer was removed using a 5 s CF4 plasma treatment with a power of 50 W and 

pressure of 15 mTorr. Next, the PS matrix was removed using a 22 s O2 plasma treatment with a 

power of 90 W and pressure of 6 mTorr. This step also oxidized the PDMS cylinders. For 16 

kg/mol PS-b-PDMS, the CF4 plasma was applied for 3 s and O2 plasma was applied for 12 s. 

 

2.2.4 Metrology 

Metrology was performed by examining the HSQ templates and the reactive-ion etched block 

copolymer films using a SEM. Top down SEM images were obtained using a Raith 150 SEM 

operated at 10 kV acceleration voltage and 6 mm working distance, and Zeiss Sigma SEM operated 

at 3 kV acceleration voltage and 4 mm working distance. 
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2.3 Results and discussion 

In this section, we describe our approach for defining the basis states inside lithographic 

confinement, and discuss different methods for controlling the binary states. 

 

2.3.1 Defining the basis states inside lithographic confinement 

We first demonstrate the morphologies of a block copolymer film within polygonal templates. The 

block copolymer is a 45.5 kg/mol cylindrical morphology PS-b-PDMS (SD45). Thin films of 

SD45 microphase separate into a layer of PDMS cylinders with in-plane orientation surrounded 

by a PS matrix, and a wetting layer of PDMS at the air interface. Electron-beam lithography was 

performed using an HSQ resist on silicon substrates to fabricate topographic features of various 

geometries. The topographic templates were chemically functionalized with a hydroxyl-terminated 

PS brush. SD45 block copolymer was spin coated onto the substrate to a thickness of 27 nm, 

solvent annealed in a vapor of toluene and heptane, and reactive-ion etched to reveal a pattern 

consisting of oxidized PDMS cylinders. 

Figure 2.1 shows an example of oxidized PDMS patterns without any template (Figure 

2.1a) and within polygonal confinement (Figures 2.1b-2.1f). On an untemplated substrate, the 

periodicity of the PDMS cylinders (L0) was ~36 nm. As shown in Figures 2.1b-2.1d, the PDMS 

cylinders formed a one-state system of concentric rings inside circular, hexagonal, and pentagonal 

confinement. However, the PDMS cylinders formed a two-state system inside square confinement 

and a three-state system inside triangular confinement (Figure 2.1e and Figure 2.1f). For both 

confinements, bars parallel to one of the sides were formed inside an outer ring, creating 90° T-

junctions for square confinement and 60° Y-junctions for triangular confinement. As the interior 

angle is decreased, high deformation is imposed on the microdomains at the corners,[15,17] which 
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is relieved by transitioning to a pattern of parallel bars instead of concentric rings. For square 

confinement, orientation of the parallel bars was restricted to either the horizontal or vertical 

direction, and these degenerate states are defined as the basis states of the system. 

 

 

Figure 2.1 SEM images of untemplated and templated block copolymer patterns. The HSQ 

templates were functionalized with the majority PS block. (a) Untemplated PDMS cylinders with 

L0 = ~36 nm. (b) One-state system with concentric rings inside circular confinement. Radius was 

2.4L0. (c) One-state system inside hexagonal confinement. Apothem was 3.5L0. (d) One-state 

system inside pentagonal confinement. Apothem was 2.5L0. (e) Two-state system with degenerate 

ladder-shaped structures inside square confinement. Apothem was 2.4L0. (f) Three-state system 

inside triangular confinement. Apothem was 1.8L0. The radius and apothem were measured by 

subtracting brush thickness from confinement dimensions. Scale bars, 200 nm. 

 

Inside circular, hexagonal, and pentagonal confinement, we observed random formation of 

defective structures consisting of Archimedean spiral patterns instead of concentric rings (Figure 

2.2). Choi et al. have reported experimental and simulation work on formation of the spiral 

structures within a circular template, and demonstrated chirality control using notched features.[28] 
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Investigation of a two-state system which uses chirality of the spiral structures as the basis states 

may be of interest for future research. 

 

 

Figure 2.2 SEM image of block copolymer patterns formed inside pentagonal confinement. As 

indicated by the red dashed lines, partial (left) and complete (right) Archimedean spiral patterns 

were observed at random locations. Similar spiral patterns were also observed in circular and 

hexagonal confinement. Scale bar, 200 nm. 

 

We focus our study on the square confinement since it resulted in a well-defined two-state 

system with 90° bends and T-junctions. Commensurability is achieved when the width of the 

confinement minus the brush thickness is equivalent to an integer multiple of L0. Figure 2.3 shows 

the ladder-shaped block copolymer patterns formed inside square templates, with the number of 

parallel bars increasing with confinement dimensions. The smallest templates produced a one-state 

system consisting of a single ring (Figure 2.3a), then a PDMS sphere was formed inside the outer 

ring as the confinement dimension was increased between 2L0 and 3L0 (Figure 2.3b). In this 

regime, both ladder-shaped structures (two-state system) and concentric ring structures (one-state 

system) were observed. With increasing dimensions the interior spheres were either horizontally 

or vertically connected to the outer ring resulting in a two-state system, then an additional bar was 
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formed inside the outer ring (Figures 2.3c-2.3h). For larger incommensurate templates, ladder-

shaped structures were still produced, but the number of parallel bars varied by one from structure 

to structure. 

 

 

Figure 2.3 SEM images of ladder-shaped block copolymer patterns inside square confinement. 

Figure 2.3a and Figures 2.3c-2.3h show commensurate conditions while Figure 2.3b shows 

transition between a one-state system (Figure 2.3a) and a two-state system (Figure 2.3c) inside 

incommensurate confinement dimensions. Width of the square confinement was (a) 2.2L0, (b) 

2.8L0, (c) 3.0L0, (d) 4.1L0, (e) 5.1L0, (f) 6.1L0, (g) 7.1L0, and (h) 8.1L0 (L0 = 36 nm). Depending on 

the confinement width, 0 to 6 parallel bars were formed inside an outer ring. Scale bars, 200 nm. 

 

2.3.2 Properties of the two-state system 

To show that the two basis states are degenerate, we created arrays of 10 by 10 square templates 

and measured the distribution of horizontally aligned and vertically aligned ladder-shaped 

structures. For simplicity, we defined horizontal alignment as the ‘0’ state and vertical alignment 

as the ‘1’ state. Among 600 examined structures, 51.5% were in 0 state and 48.5% were in 1 state, 
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forming with essentially equal probability. For a null hypothesis H0: p = 0.5 and alternative 

hypothesis H1: p ≠ 0.5 where p denotes ratio of 1 state, the Z-test statistic was 0.735. The 

corresponding p-value was 0.462, and we failed to reject the null hypothesis at 5% level of 

significance. In addition, the binary states had tolerance to defects in the sense that even with 

defects present the patterns could be assigned as 0 or 1 (Figure 2.4a). 

 

 

Figure 2.4 SEM images of ladder-shaped block copolymer patterns inside square confinement for 

measuring distribution and correlation. (a) The two binary states were equally probable in a large 

array of square confinements. (b) The two states were uncorrelated in pairs of adjacent square 

confinements. For both figures, width of the square confinement was 5.1L0, resulting in PDMS 

patterns with 3 parallel bars inside an outer ring. Scale bars, 200 nm. 

 

Next, we investigated whether the binary state of the four neighbors was correlated with 

the binary state of the surrounded square. For each square not positioned on the boundary of the 

square array, there were four adjacent squares as indicated by the red dashed line (Figure 2.4a). 

The normalized mean state-state correlation is 

 

𝜌 =
∑ 𝑠𝑖𝑠𝑗𝑖~𝑗

∑ |𝑠𝑖𝑠𝑗|𝑖~𝑗
= 0.00078 
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where 𝑠𝑘 = +1 for 1 state, 𝑠𝑘 = −1 for 0 state, and the sum was taken over every pair of adjacent 

states. The negligible value of correlation suggests that there is no nearest-neighbor influence. 

To investigate the correlation between isolated pairs of adjacent square confinements in 

samples shown in Figure 2.4b, we define nXY as the number of cases where the left binary state is 

X (0 or 1) and the right binary state is Y (0 or 1). For 576 structures, the resulting counts were n00 

= 144 (25.0%), n01 = 137 (23.8%), n10 = 143 (24.8%), and n11 = 149 (25.9%) with 3 (0.5%) defects. 

The ϕ coefficient calculated as 

 

𝜙 =
𝑛00𝑛11 − 𝑛01𝑛10

√(𝑛00 + 𝑛01)(𝑛00 + 𝑛10)(𝑛01 + 𝑛11)(𝑛10+𝑛11)
= 0.023 

 

was close to zero, indicating negligible association between two adjacent states in isolated pairs of 

square confinements. A similar set of samples made with a template wall height of 30 nm instead 

of 42 nm yielded ϕ = −0.03, again indicating negligible association. For wall height below 30 nm, 

the PDMS cylinders crossed the walls leading to poorly defined block copolymer structures within 

the templates. 

 

2.3.3 Methods for controlling the binary states 

Having established the non-interacting binary-state system described above, we now discuss 

methods to control the alignment of the states. A simple method for controlling the orientation of 

the binary states is by changing the confinement to a rectangular shape. Figure 2.5 shows ladder-

shaped block copolymer patterns formed inside rectangular confinements with an aspect ratio of 

2:1. Similar to the square confinement, we were able to accurately control the number of parallel 

bars using confinement dimensions. When the vertical confinement width was commensurate with 

L0, the horizontal confinement width was also commensurate with L0 since the aspect ratio was an 
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integer. However, we observed only 0 state at these conditions. 

 

 

Figure 2.5 SEM images of aligned ladder-shaped block copolymer patterns inside rectangular 

confinement. Aspect ratio was 2:1. Vertical width of the rectangular confinement was (a) 2.0L0, 

(b) 3.1L0, (c) 4.1L0, (d) 5.1L0, (e) 6.1L0, (f) 7.0L0, and (g) 7.9L0 for SD45 (L0 = 36 nm). For Figure 

2.5h, 16 kg/mol PS-b-PDMS with L0 = 18 nm was used. Parallel bars were formed in the horizontal 

direction (0 state) to minimize the number of T-junctions. Scale bars, 200 nm. 

 

 

Figure 2.6 Illustration of horizontally (left) and vertically (right) aligned ladder-shaped structure 

inside rectangular confinement with confinement dimensions equal to 2nL0 and nL0 (n is an 

integer). Only parts of the ladder-shaped structure that are parallel to the alignment orientation are 

shown. When n = 4, four T-junctions are formed inside a horizontally aligned ladder-shaped 

structure, whereas twelve T-junctions are formed inside a vertically aligned ladder-shaped 

structure. To minimize the number of T-junctions, alignment orientation parallel to the longer 

sidewall is favored. 

 

Figure 2.6 illustrates the number of T-junctions formed inside a ladder-shaped structure in 
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horizontal and vertical alignment. When the horizontal and vertical confinement widths are equal 

to 2nL0 and nL0, respectively, a ladder-shaped structure in the 0 state results in 2n − 4 T-junctions 

(n is an integer). On the other hand, a ladder-shaped structure in the 1 state results in 4n − 4 T-

junctions. Since T-junctions are energetically unfavorable,[30-32] the 0 state was favored over the 1 

state to minimize the number of T-junctions. The preferential alignment can also be understood as 

the longer sidewall having a stronger templating effect compared to the shorter sidewall, analogous 

to the perpendicular orientation of lamellar morphology PS-b-PDMS observed within deep 

trenches functionalized with a preferential sidewall brush and a neutral bottom surface.[33] 

In Figure 2.7, the horizontal and vertical dimensions of the confinement were 

approximately commensurate, 4.1L0 and 2.9L0, respectively, and the structure formed two T-

junctions instead of four T-junctions. Non-integer aspect ratios in which only the shorter 

dimension satisfies the commensurability condition can also be used to further promote alignment 

(Figure 2.7b). As the aspect ratio increases, the confinement approximates a trench leading to 

well-ordered microdomains parallel to the sidewalls. 

 

 

Figure 2.7 SEM images of aligned ladder-shaped block copolymer patterns inside rectangular 

confinement with a non-integer aspect ratio (AR). Vertical width of the rectangular confinement 

was (a) 2.9L0 and (b) 4.1L0, approximately commensurate with the equilibrium periodicity. 

Horizontal width of the confinement was (a) 4.1L0 and (b) 6.6L0. Aspect ratio was (a) 1.4:1 and 

(b) 1.6:1. Scale bars, 200 nm. 
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This approach was extended to fabricate aligned T-junctions with sub-10-nm spacing using 

a 16 kg/mol cylindrical morphology PS-b-PDMS with L0 = 18 nm, thermally annealed on a 

functionalized patterned substrate. As shown in Figure 2.5h, sub-10-nm half-pitch ladder-shaped 

structures were formed inside rectangular confinement with the microdomains primarily parallel 

to the longer side. Unlike SD45, the ladder-shaped structures were influenced by the curvature of 

the corners of the template due to the smaller L0, and a complete ring was formed between the 

confinement and the ladder-shaped structure. 

Preferential alignment is observed in non-rectangular geometries such as trapezoids and 

isosceles triangles, as shown in Figure 2.8. For trapezoidal confinement, T-junctions formed with 

desired bending angles because the microdomains aligned parallel to the longer side. Isosceles 

triangles typically showed preferential alignment parallel to either of the two longer sides. This 

produced two T-junctions whereas alignment parallel to the shorter side resulted in four T-

junctions. Thus the confinement geometry determines the number of states, i.e. a three-state system 

in equilateral triangles (Figure 2.1f), a two-state system in acute isosceles triangles or possibly a 

one-state system in obtuse isosceles triangles. 

 

 

Figure 2.8 SEM images of aligned ladder-shaped block copolymer patterns inside trapezoidal 

(red) and isosceles triangular (blue) confinement. The ladder-shaped structures were typically 

aligned parallel to the longer side to minimize T-junction formations. Vertical width of the 

confinement was 5.8L0. Scale bar, 200 nm. 
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An alternative method for controlling the orientation of the binary states is by placing 

lithographically defined guiding patterns inside the confinement. The effect of posts, dashes, or 

walls has been previously studied in detail.[13,14,34] Figure 2.9 shows square confinements, each 

with two horizontal HSQ walls where the walls were positioned a distance L0 away from the edges. 

Because two PDMS bars in the ladder-shaped block copolymer structures were replaced with the 

horizontal HSQ walls functionalized with the majority PS block, all block copolymer patterns were 

also horizontally aligned and set to the 0 state. 

 

 

Figure 2.9 SEM image of aligned ladder-shaped block copolymer patterns inside square 

confinement with horizontal guiding patterns. Without the guiding patterns, ladder-shaped 

structures with four horizontally or vertically aligned PDMS bars were formed with equal 

probability. However, by placing functionalized HSQ walls where the PDMS bars should form, 

alignment orientation was controlled. Scale bar, 200 nm. 
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2.4 Conclusion 

The self-assembly of block copolymers inside discrete and interacting polygonal templates is 

investigated. Square and triangular confinement with dimensions of a few L0 produced ladder-

shaped structures instead of the concentric rings seen in smaller confinements or in circular pits. 

In square confinement, the two degenerate orientations of the ladder-shaped structures could be 

considered as independently controlled binary states with tolerance to defects. The binary states 

were selected by either changing the confinement aspect ratio or placing additional lithographic 

features inside the confinement. The resulting line segments, bends, and T-junctions composing 

the ladder-shaped structures may be useful as circuit-relevant geometries or binary information 

storage. Although the multi-state composite structures used in our work are less than 1 μm in 

dimension, we expect larger sizes to yield similar result. If the binary states could be read out 

optically or electrically in a very large array, the block copolymer patterns could be used to 

physically store information. In the next chapter, we use the two-state system designed in this 

chapter and place openings on the square confinement walls to allow neighboring states to be 

connected. We investigate the effect of wall openings on the two-state system. 
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Chapter 3 

 

Nearest-neighbor interactions via 

confinement wall opening 

 

 
In this chapter, we study directed self-assembly of block copolymer thin films within square 

confinements with different number of openings placed around the confinement walls. We 

investigate templating effect of the wall openings on binary states defined inside the confinement. 

Self-consistent field theory simulations show the templating effect from the openings and 

reproduce the experimental results. We demonstrate scaling of a single binary state into a larger 

binary state array with individual binary state control. We discuss the effect of opening size 

variation on the nearest-neighbor interactions. 

 

3.1 Introduction 

In the previous chapter, we designed a two-state system using directed self-assembly (DSA) of 

block copolymer thin films within square confinements. Inside each confinement, a binary state 

was defined based on the two degenerate alignment orientations of the ladder-shaped structures. 

We measured properties of the two-state system such as distribution of the states and nearest-

neighbor correlation, and demonstrated defect tolerance of the system. By studying the effect of 

changing the confinement geometry and placing lithographic guiding patterns inside the 
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confinement, we controlled the alignment orientation and formation of parallel bars, bends, and T-

junctions. The resulting circuit-relevant geometries may be useful for fabrication of FinFETs.[1-8] 

In addition, if the binary states could be read out optically[9-13] or electrically[13-17] in a very large 

array after pattern transfer, the block copolymer patterns may be used to physically store and read 

out information. 

 Having established a defect-tolerant and non-interacting two-state system, we now study 

the effect of placing openings on the confinement walls. An opening placed on the wall separating 

two adjacent states allows the two states to be physically connected to each other. Then, a block 

copolymer pattern formed inside one confinement may influence the block copolymer morphology 

inside its adjacent confinement via interactions through the opening. At the same time, the opening 

itself is a narrow topographic feature that may introduce a strong templating effect, thereby 

dominating any effect caused by the nearest-neighbor interactions. Therefore, the templating effect 

of the openings on the binary states must be investigated to better understand graphoepitaxial 

pattern control inside templates of various geometries, and to ultimately design an interacting two-

state system. 

This chapter describes the effect of placing different number of openings around the square 

confinement walls. Both experimental and self-consistent field theory (SCFT) simulation results 

show strong templating effect from the wall openings. Using the openings as a new method for 

controlling the binary state orientations, we demonstrate the propagation of a single binary state 

into a larger array with orientation control. Finally, we discuss the effect of opening size variation 

on the nearest-neighbor interactions. 
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3.2 Experimental methods 

For template fabrication, block copolymer self-assembly, reactive-ion etching, and metrology, the 

same experimental methods as described in Chapter 2 were used. A 45.5 kg/mol cylindrical 

morphology poly(styrene-block-dimethylsiloxane) (PS-b-PDMS) was used for all experiments in 

this chapter. 

 

3.3 Simulation methods 

The SCFT simulations were performed in collaboration with Karim R. Gadelrab and Prof. Alfredo 

Alexander-Katz at MIT. 

We consider a monodispersed melt of n A-B diblock copolymer of volume V, with each 

diblock molecule composed of N segments. The A and B blocks consist of fN and (1 − f)N chain 

segments, respectively. The interaction between the dissimilar blocks is controlled by a Flory-

Huggins parameter χ. Within the mean-field approximation, the free energy of the system F is 

expressed in terms of field variables 

 

𝐹

𝑛𝑉𝑘B𝑇
=

1

𝑉
∫ 𝑑𝑟(𝜒𝜙𝐴(𝑟)𝜙𝐵(𝑟) − 𝑤𝐴(𝑟)𝜙𝐴(𝑟) − 𝑤𝐵(𝑟)𝜙𝐵(𝑟) − 𝑝(𝑟)[1 − 𝜙𝐴(𝑟) − 𝜙𝐵(𝑟)])

− ln 𝑄[𝑤𝐴, 𝑤𝐵] 

 

where ϕα(r) is the volume fraction of species α at position r. Q[wA, wB] is the partition function of 

a non-interacting polymer in external fields wα(r). The polymer is assumed to be incompressible, 

so the constraint ϕA(r) + ϕB(r) = 1 is enforced through a pressure field p(r). The free energy F is 

compared to the thermal energy kBT. 

The single chain partition function can be evaluated as follows 
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𝑄 =
1

𝑉
∫ 𝑑𝑟𝑞(𝑟, 1)

 

 

where q(r, s) is a restricted chain partition function (propagator) that could be calculated by solving 

a modified diffusion equation 

 

𝜕𝑞

𝜕𝑠
= ∇2𝑞(𝑟, 𝑠) − 𝑤𝐴(𝑟)𝑞(𝑟, 𝑠), 0 ≤ 𝑠 < 𝑓 

𝜕𝑞

𝜕𝑠
= ∇2𝑞(𝑟, 𝑠) − 𝑤𝐵(𝑟)𝑞(𝑟, 𝑠), 𝑓 ≤ 𝑠 < 1 

 

subjected to the initial condition q(r, 0) = 1. Since the two ends of the polymer are distinct, a 

complementary partition function q*(r, s) is defined similarly and satisfies the same modified 

diffusion equation with an initial condition q(r, 1) = 1. Here, we utilize s as a chain contour variable 

in units of N. All lengths are expressed in units of the unperturbed radius-of-gyration of a polymer, 

Rg = (Nb2/6)1/2, where b is the statistical segment length. The solution to the modified diffusion 

equation is conducted following the pseudo-spectral method.[18,19] An iterative relaxation of the 

fields towards their saddle-point values is implemented following the method by Sides et al.[20,21] 

By evaluating q(r, s) and its complementary, the segments’ volume fractions can be 

determined as follows 

 

𝜙𝐴(𝑟) =
1

𝑄
∫ 𝑑𝑠𝑞(𝑟, 𝑠)𝑞∗(𝑟, 𝑠)

𝑓

0

 

𝜙𝐵(𝑟) =
1

𝑄
∫ 𝑑𝑠𝑞(𝑟, 𝑠)𝑞∗(𝑟, 𝑠)

1

𝑓

 

 

The numerical implementation of the SCFT for the entire template is performed on a 2D 

square grid of size Nx = Ny = 240 pixels (pixel size is 0.2Rg) with periodic boundary conditions in 
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both directions. The volume fraction f and degree of incompatibility χN are chosen such that striped 

domains (projection of in-plane cylinders in 2D) are generated. Hence, for the purpose of this 

work, we chose f = 0.5 and χN = 12. 

The role of the DSA of the polymer domains is depicted through a masking method. A 

pressure potential w+ = (wB + wA)/2 is imposed as a mask on the location of the walls to create 

excluded areas for the polymer. A magnitude of w+ = 10 is applied on walls of thickness of six 

pixels. To incorporate the effect of surface preferentiality towards the majority block in 

experiments, an exchange potential w- = (wB − wA)/2 = 3.5 is applied surrounding the walls with a 

thickness of four pixels to attract block B. The confining template is displaced from the boundaries 

of the computational domain by 70 pixels to minimize the effect of the mirror image (periodic 

boundary conditions) on the polymer domains near the walls. 

 

3.4 Results and discussion 

In this section, we describe experimental and SCFT simulation results showing the templating 

effect from confinement wall openings, and demonstrate scaling into a larger binary state array. 

We discuss the effect of opening size variation on the resulting block copolymer patterns. 

 

3.4.1 Templating effect from confinement wall openings 

We first demonstrate that the wall openings have a strong templating effect, and the orientation of 

the binary states can be successfully controlled by creating different number of openings in the 

confinement. Figure 3.1 shows five possible types of 5L0 wide square confinements with one to 

four 1L0 wide openings on the sides of the confinement. We created arrays of square confinements 

with varying number of openings and measured the fraction of 0 (horizontal cylinders) states for 
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each type of confinement. 

 

 

Figure 3.1 Scanning electron microscope (SEM) images of square confinement with openings and 

the resulting block copolymer patterns. Ratio of 0 state (denoted by p0) for each type was measured 

in a large array. Binary states were determined based on the number of horizontal and vertical 

openings. (a,f) Square confinement with one horizontal opening. Preferential horizontal alignment 

(0 state) was observed. (b,g) Square confinement with two horizontal openings on non-adjacent 

sides. Stronger preferential horizontal alignment was observed. (c,h) Square confinement with two 

openings on adjacent sides. Alignment in both directions was observed with equal probability. (d,i) 

Square confinement with three openings. Preferential horizontal alignment was observed. (e,j) 

Square confinement with four openings. Alignment in both directions was observed with equal 

probability. These results demonstrate the templating effect from openings. Scale bars, 200 nm. 

 

When there were equal numbers of openings on the top and bottom sides and left and right 

sides as in type 3 and 5 configurations (Figure 3.1c and Figure 3.1e), there were equal numbers 

of 1 and 0 states. However, when there were more openings on the left/right sides than top/bottom 

sides as in type 1, 2, and 4 configurations (Figure 3.1a, Figure 3.1b, and Figure 3.1d), the 0 state 

was favored. The highest yield of a preferential alignment was achieved in the type 2 configuration 

where both openings were in the same direction. When there was one less opening in the same 

direction (type 1) or one more opening in the other direction (type 4), the yield was decreased by 
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~10%. As the number of openings around the square template was increased, there was less 

templating effect from the confinement and more defects were formed, but the binary state was 

still evident (Figure 3.2). For arrays of square confinements with four openings, the normalized 

mean state-state correlation was ρ = −0.00207, suggesting no nearest-neighbor influence even with 

openings present between states. 

 

 

Figure 3.2 SEM image of a 10 by 10 array of square confinements with four openings. Due to the 

defect tolerance of the system, the binary state inside each confinement can be uniquely determined 

even in the presence of defects. Scale bar, 200 nm. 

 

SCFT was used to model the effect of a wall opening as a templating method on the final 

state of the system. We focused on the type 2 template that had the highest preference for one 

binary state. Although SCFT does not calculate dynamics directly, after several steps order 

emerges and the model is expected to resemble the evolution of the physical system. Figure 3.3 
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shows the evolution of the SCFT model starting from a random state. The high attraction at the 

walls initiated a uniform wetting layer (Figure 3.3a) from which an ordering front propagated 

away from the walls resulting in concentric squares surrounding the template. Two symmetric 

junctions were formed at the openings in the template walls (Figure 3.3b) connecting the inner 

and outer wetting layers of the template; however, the 1L0 wide openings became blocked isolating 

the inner polymer domains. In addition, the small outward curve of the wetting layer at the 

openings caused two horizontally aligned polymer domains to form which eventually bridge to 

create a horizontally disconnected polymer stripe, in remarkable agreement with experiment 

(Figure 3.3c). The presence of this stripe biases the system into the 0 state (Figure 3.3d). 

 

 

Figure 3.3 SCFT simulations showing the evolution of the polymer self-assembled pattern. (a) 

Early stages of the simulation show a wetting layer is formed of the inner and outer surface of the 

walls while the polymer is still disordered in the region surrounding the template. A junction is 

formed at every opening in the template wall, connecting the inner and outer wetting layers. (b) 

An ordering front is propagating away from the walls creating a series of concentric squares. 

Polymer microdomains are nucleated adjacent to the bends in the inner wetting layer caused by 

the opening in the walls. (c) Bridging of the polymer domains creates a horizontal stripe between 

the two openings. (d) Final polymer self-assembled pattern reaches 0 state as shown 

experimentally. 

 

Figure 3.4 shows that the templating effect of the junctions was observed for various 

simulation conditions (χN and strength of wall preferentiality) where the alignment of polymer 

domains was consistently parallel to the wall openings. On the other hand, the junction connecting 
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the inner and outer wetting layers was only stable for low χN and strong wall attraction. This 

suggests the robustness of this templating approach to direct the system into a particular state. 

 

 

Figure 3.4 SCFT simulations showing the density distribution of block A for different wetting 

conditions w-. The higher the magnitude of w-, the stronger the attraction to A at the walls. (a) w- 

= 1.5, (b) w- = 2.5, (c) w- = 4.5, and (d) w- = 5.5. The wetting at the walls does not affect the final 

state of the self-assembled polymer, indicating the effectiveness of having two opposite openings 

in directing the self-assembly of block copolymer. The experimental results are reproduced for 2.5 

< w- < 5.5. 

 

3.4.2 Scaling into a larger binary state array with individual state control 

We have so far demonstrated binary state control by creating openings around the confinement 

(Chapter 3), changing the confinement geometry, or placing lithographic guiding patterns inside 

the confinement (Chapter 2). The three approaches for controlling the binary state orientations can 

be simultaneously used to fabricate desired binary state arrays. 

We first show that the templating effect from confinement geometry is stronger than the 

templating effect from wall openings. We fabricated an array of vertical and horizontal rectangular 

confinements adjacent to square confinements with an opening placed in between (Figure 3.5). 

Aspect ratio of the rectangular confinement was 2:1. When the opening was placed on a longer 

side of the rectangular confinement as shown in Figure 3.5a, there were two competing templating 

effects. The rectangular confinement’s vertical geometry induces vertical alignment, whereas the 

horizontal opening induces horizontal alignment. However, only 1 states were observed inside the 
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rectangular confinements, indicating that the templating effect from confinement geometry was 

more significant. Even when a local horizontal alignment was induced near the opening (red 

dashed box), overall vertical alignment was still observed inside the rectangular confinement. 

When the opening was placed on a shorter side of the rectangular confinement as shown in Figure 

3.5b, 0 state was achieved since the two templating effects both induced horizontal alignment. 

Since lithographic guiding patterns in general have the strongest templating effect,[22-24] it was 

sufficient to just compare the relative templating strength from the confinement geometry and wall 

openings. Therefore, the three templating approaches can be used simultaneously to form a larger 

array without the templating effects influencing each other. 

 

 

Figure 3.5 SEM images of rectangular confinements with a horizontal opening. (a) Vertical 

rectangular confinements adjacent to square confinements with an opening placed in between. 

There were two completing templating effects from the confinement geometry and opening, but 

the templating effect from confinement geometry was more significant. (b) Horizontal rectangular 

confinements adjacent to square confinements with an opening in between. The two templating 

effects both induced horizontal alignment. Scale bars, 200 nm. 

 

Using the three approaches for controlling the binary state orientation, we show how the 

orientation can be propagated within a larger template array. We showed in the previous chapter 

that neighboring binary states were uncorrelated with each other in square confinements separated 

by walls. However, by creating openings in the walls, specific orientations can be programmed by 

selecting cells from the five types of square confinement. Figure 3.6 demonstrates two examples 
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of 4 × 4 binary patterns each composed of 16 independently controlled binary states. The target 

patterns are shown in Figure 3.6a and Figure 3.6d, the templates in Figure 3.6b and Figure 3.6e, 

and the successfully produced self-assembled pattern in Figure 3.6c and Figure 3.6f. For a given 

target pattern of binary states, in general more than one template can be chosen. 

 

 

Figure 3.6 Fabrication of binary state arrays. (a,d) Diagram of desired 4 × 4 binary state arrays. 

(b,e) Templates fabricated by electron-beam lithography. (c,f) Resulting block copolymer patterns 

matching the desired binary states. Red indicates 1 state and blue indicates 0 state. Scale bars, 200 

nm. 

 

Figure 3.7 shows examples of different target patterns and corresponding template designs 

determined by trial and error. The target patterns shown in Figure 3.7a and Figure 3.7c are the 

same as the target patterns shown in Figure 3.6a and Figure 3.6d. New templates shown in Figure 

3.7b and Figure 3.7d were designed by changing the location of certain openings and verifying 

the result. However, not all target patterns are obtainable by creating openings in the walls, since 

the opening locations determined by the four neighbors may conflict with the opening locations 
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required for the surrounded square. For example, a target pattern consisting of alternating states 

(Figure 3.7k) cannot be obtained from creating openings. By placing guiding patterns inside the 

confinement where such conflict may occur, we are able to design a template that will produce the 

target pattern (Figure 3.7l). In general, a template for arbitrary binary state pattern can be designed 

by combining the three templating approaches. 

 

 

Figure 3.7 Examples of target patterns and corresponding template designs. (a,c,e,g,i,k) Diagram 

of desired 4 × 4 binary state arrays. (b,d,f,h,j,l) Template designs that will produce the target 

patterns. Figure 3.7b and Figure 3.7d show alternative template designs for the same target patterns 

from Figure 3.6. Figure 3.7k shows a target pattern unobtainable from creating openings in the 

walls. Figure 3.7l shows a template design consisting of both openings guiding patterns. 
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3.4.3 Effect of opening size variation 

Finally, we studied the effect of opening size variation on the nearest-neighbor interactions. As 

discussed in the previous section, no nearest-neighbor influence was observed with 1L0 wide 

openings present between the two states. An outer ring formed inside each confinement blocked 

any possible interactions between adjacent states. To prevent formation of the outer ring in the 

ladder-shaped structures, we decreased the templating effect from the confinement walls by 

increasing the opening size beyond 1L0. 

 

 

Figure 3.8 SEM images of two horizontally adjacent square confinements with an opening placed 

in between. The opening sizes were (a) 1L0, (b) 2L0, and (c) 3L0. Templating effect from the 

opening was observed for all opening sizes, but the outer ring formation was prevented for larger 

opening sizes. Scale bars, 200 nm. 

 

Figure 3.8 shows the block copolymer patterns formed inside two horizontally adjacent 

square confinements with an opening placed in between. Width of the square confinement was 5L0 

and the opening size was varied between 1L0 and 3L0. With an opening size of 1L0, both binary 

states were set to the 0 state (Figure 3.8a). When the opening size was increased beyond 1L0, both 

binary states were still set to the 0 state without any defects (Figure 3.8b and Figure 3.8c). 

However, the outer ring of the ladder-shaped structures was not fully formed when the opening 

size was greater than 2L0 due to the decreased templating effect from the confinement walls. As 

the opening size is increased, the confinement approximates a rectangular confinement where the 
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opening size is equal to the confinement width. By increasing the opening size, we were able to 

prevent the outer ring formation and allow parallel bars inside adjacent states to be directly 

connected to each other. 

 We now show that the block copolymer morphology at the opening can be controlled based 

on the two adjacent binary states separated by the opening. We fabricated a square confinement 

with multiple openings where width of the square confinement was 6L0 and the opening size was 

varied between 2L0 and 4L0. The four adjacent states were set to the 0 state using horizontal 

rectangular confinements. Wider openings (≥ 2L0) allowed parallel bars inside one state to pass 

through the opening and influence its adjacent state. As shown in Figure 3.9, the two adjacent 

states can be either separated or connected depending on the morphology at the opening. When 

two 0 states were vertically adjacent (red dashed box), the two states were separated by a horizontal 

block copolymer structure at the opening. When two 0 states were horizontally adjacent (blue 

dashed box), the two states were connected to each other through the opening. 

 

 

Figure 3.9 SEM images of block copolymer morphology at the opening. Opening sizes were (a-

c) 2L0 and (d) 4L0. A horizontal line structure blocked the opening when two 0 states were 

vertically adjacent (red dashed box). Line structures were connected through the opening when 

two 0 states were horizontally adjacent (blue dashed box). Scale bars, 100 nm. 
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We wanted to further study the opening morphology control, but placing wider openings 

around the confinement resulted in decreased overall templating effect from the confinement walls. 

As a result, defect tolerance of the two-state system was lost and defective structures such as 

diagonally aligned ladder-shaped structures and disordered patterns were formed inside more than 

50% of the confinements. If the nearest-neighbor interactions through the opening can be better 

understood and defect tolerance of the system can be maintained for larger opening sizes, it may 

even be possible to build a four-input majority gate as proposed in Figure 3.10. 

 

 

Figure 3.10 Proposed design for a four-input majority gate. (a) Output state is defined inside a 

center square confinement with four openings. Four input states are defined inside the adjacent 

confinements using lithographic guiding patterns. (b) SEM image of a template where the four 

input states were set to the 0 state. (c) SEM image of the resulting block copolymer pattern. Top 

and bottom openings were blocked due to input 1 and input 3 being set to the 0 state. Therefore, 

the two remaining horizontal openings determined the output state. The output state was set to the 

0 state even though the center confinement had four openings. Other input combinations were not 

investigated due to formation of defective structures. Scale bars, 200 nm. 

 

3.5 Conclusion 

The self-assembly of block copolymers inside square confinements with different number of wall 

openings is studied. Both experimental results and SCFT simulations showed templating effect 

due to a junction formed at the opening. We demonstrated larger binary state arrays where 

individual binary states were independently controlled. Nearest-neighbor interactions for larger 
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opening sizes were observed, although defect tolerance of the system was lost. With further 

research on the nearest-neighbor interactions through the opening, self-assembly based computation 

using the two-state system might be possible. In the following three chapters, we study a simpler 

two-state system defined on two-dimensional arrays of posts, where the binary states can directly 

interact with its nearest neighboring states. 
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Chapter 4 

 

Ising lattice design in two-dimensional 

post array 

 

 
In this chapter, we demonstrate an Ising lattice setup for directed self-assembly of block 

copolymers defined on two-dimensional arrays of posts. Using a square lattice post template with 

pitch set to the equilibrium block copolymer periodicity, we map a square lattice Ising model with 

nearest-neighbor interactions. We study properties of the Ising lattice such as distribution of the 

states and nearest-neighbor correlation. We compare the two Ising model parameters J and h 

required for simulated annealing, and discuss the effect of placing incommensurate double posts 

inside the post template. 

 

4.1 Introduction 

Block copolymers are self-assembling polymer materials composed of two covalently bonded 

macromolecular blocks. Due to their chemical functionalities, tunability, and low cost, block 

copolymers have been used in directed self-assembly (DSA) for various applications in 

nanofabrication.[1-8] To calculate the equilibrium morphology inside a given DSA template, self-

consistent field theory (SCFT) methods have been previously developed. In SCFT simulations, a 

set of nonlinear and nonlocal equations associated with the free energy functional are numerically 
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solved to find the equilibrium morphology with minimum free energy.[9-13] Equilibrium block 

copolymer morphology has been calculated and experimentally reproduced for various template 

geometries with high accuracy.[14-18] SCFT simulations have also been used to solve the inverse 

design problem of finding the optimal template design required to achieve a desired block 

copolymer morphology.[19-20] 

Here, we consider the possibility of using block copolymers as a material for computation 

instead of lithography by applying the Ising model to explain DSA of block copolymers. During 

the self-assembly process, block copolymers arrange themselves into a minimum free energy 

configuration given some boundary conditions defined by the guiding templates. Intrinsically, 

block copolymers are solving an energy optimization problem through self-assembly. In SCFT 

simulations, the energy optimization problem is numerically solved from a series of modified 

diffusion equations. By using a simpler Ising Hamiltonian to model the energy optimization 

problem, simulation time can be greatly reduced. Moreover, it has been previously shown that 

ground states of Ising lattices can encode various computation problems.[21,22] If an Ising lattice 

setup for DSA of block copolymers can be developed, block copolymers may be used to perform 

Ising-model-based computation. 

This chapter describes an Ising lattice setup for DSA of block copolymers defined on two-

dimensional arrays of posts. We demonstrate that block copolymer self-assembly maps rigorously 

onto the Ising model. We measure relative magnitude of the two Ising model parameters J and h, 

and discuss how to interpret the effect of placing incommensurate double posts inside the post 

arrays to define specific boundary conditions. 
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4.2 Experimental methods 

In this section, we describe the experimental methods for post lattice template fabrication, block 

copolymer solvent annealing, reactive-ion etching, and metrology. 

 

4.2.1 Template fabrication 

The post lattice templates were fabricated using electron-beam lithography with a hydrogen 

silsesquioxane (HSQ) resist. A silicon substrate was first treated with O2/He plasma (50 W, 10 s) 

to remove possible organic residues and make the substrate surface hydrophilic. The substrate was 

spin coated with 35-nm-thick HSQ film (XR-1541 2% solids, Dow Corning). The thickness was 

determined by ellipsometry. A Raith 150 electron-beam lithography system operated at 30 kV 

acceleration voltage was used to expose two dimensional arrays of posts with various diameters 

and pitches. After exposure, the samples were developed in a 24°C high contrast salty developer 

(1% NaOH and 4% NaCl in de-ionized water) for 4 min and rinsed in de-ionized water for 3 

min.[23] A thin layer of water was maintained on the hydrophilic surface of the substrate during 

development, which prevented capillary force-induced collapse of the post structures. The final 

structure was rinsed with a low surface tension liquid, isopropanol prior to blow drying with N2 

gas to prevent pattern collapse.[24-26] The samples were further treated with O2/He plasma (50 W, 

10 s) to convert the HSQ structures into silicon oxide. Template dimensions were inspected by 

scanning electron microscope (SEM) imaging. 

 

4.2.2 Block copolymer self-assembly 

To make the templates attractive to the minority polydimethylsiloxane (PDMS) block, the 

templates were chemically functionalized with a hydroxyl-terminated PDMS brush (0.8 kg/mol, 
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Polymer Source Inc.) by spin coating 2% brush solution in toluene and annealing the samples in a 

vacuum oven at 170°C for 14 h. After annealing, the samples were first rinsed with toluene and 

then submerged in a toluene bath at room temperature for 10 min to remove excess PDMS brush. 

The resulting thickness of the PDMS brush bonded to the substrate was 1 nm. Next, 2% 

poly(styrene-block-dimethylsiloxane) (PS-b-PDMS, Mw = 53 kg/mol, fPDMS = 30%, PDI = 1.05, 

synthesized in Avgeropoulos group, University of Ioannina)[27-30] solution in propylene glycol 

monomethyl ether acetate (PGMEA) was spin coated onto the templated substrate. The resulting 

film thickness was 33 nm. The samples were solvent annealed using a 5:1 mixture of toluene and 

heptane at room temperature for 3 h. We placed the samples on a glass slide stack (0.8 cm in 

height) inside a crystallization dish (1.5 cm in height, 5 cm in diameter) and added 1.5 ml of the 

5:1 toluene and heptane mixture. The chamber was covered with a petri dish (10 cm in diameter) 

to allow slow evaporation of the solvent mixture. 

 

4.2.3 Reactive-ion etching 

Reactive-ion etching of the annealed block copolymer film was performed in two steps. First, the 

top PDMS wetting layer was removed using a 5 s CF4 plasma treatment with a power of 50 W and 

pressure of 15 mTorr. Next, the PS matrix was removed using a 22 s O2 plasma treatment with a 

power of 90 W and pressure of 6 mTorr. This step also oxidized the PDMS cylinders. 

 

4.2.4 Metrology 

Metrology was performed by examining the HSQ templates and the reactive-ion etched block 

copolymer films using a SEM. After developing the HSQ, several post structures collapsed 

depending on the HSQ quality as well as the post height and diameter. To avoid further processing 
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of defective templates, the HSQ templates were examined before chemically functionalizing the 

surface. The etched block copolymer films were sputter coated with a thin layer of gold/palladium 

to reduce charging and enhance image contrast. Top down SEM images were obtained using a 

Raith 150 SEM operated at 10 kV acceleration voltage and 6 mm working distance, and Zeiss 

Sigma SEM operated at 3 kV acceleration voltage and 4 mm working distance. 

 

4.3 Results and discussion 

In this section, we present an Ising lattice setup using two-dimensional arrays of posts for 

implementing the Ising model in block copolymer systems.  

 

4.3.1 Ising model and block copolymer self-assembly 

The Ising model is a mathematical model of interacting magnetic spins originally invented to 

explain ferromagnetism and phase transitions in statistical mechanics.[31] However, universal 

computation as well as combinatorial optimization problems can be encoded into the ground states 

of Ising lattices by designing specific Hamiltonians that embed such operations.[21,22] The Ising 

states can take values +1 for spin up, −1 for spin down, and can interact only with their nearest-

neighboring states (Figure 4.1). The Hamiltonian of a state configuration σ can be expressed as 

 

𝐻(𝜎) = − ∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗

⟨𝑖 𝑗⟩

− ∑ ℎ𝑗𝜎𝑗

𝑗

 

 

where the first sum corresponds to energy due to each nearest-neighbor interaction and the second 

sum corresponds to energy due to individual states. An analytic solution for the general two-
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dimensional square lattice Ising model has yet to be found, but one can use the simulated annealing 

algorithm to find an approximate minimum Hamiltonian configuration. 

 

 

Figure 4.1 Diagram of a square Ising lattice. The model consists of spins that can be in either up 

state (σj = +1) or down state (σj = −1). Each state can interact with its four nearest-neighboring 

states. Behavior of the system is governed by the Ising model parameters Jij and hj. 

 

 

Figure 4.2 Comparison of block copolymer morphologies and Ising states. (a-d) Morphology and 

correlation length ξ of poly(styrene-block-methylmethacrylate) (PS-b-PMMA) annealed at 190°C 

for (a) 10 s, (b) 1 min, (c) 10 min, and (d) 32 h. [32] Scale bars, 100 nm. Redrawn from reference 

32. (e-h) Phase transition behavior of a 100 × 100 array of ferromagnetic Ising states after (e) 0 

(random initial array) (f) 1,000 (g) 10,000, and (h) 100,000 simulated annealing steps. Simulation 

details are discussed in the next chapter. 
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We were particularly interested in applying the square lattice Ising model to DSA of block 

copolymers. In addition to its simplicity and applicability in encoding computation, the Ising 

model exhibits a similar phase transition behavior shown in block copolymer self-assembly. 

Figure 4.2 demonstrates phase transition behavior in block copolymer systems (Figure 4.2a-4.2d) 

and Ising states with ferromagnetic interactions (Jij > 0) and hj = 0 (Figure 4.2e-4.2h). In block 

copolymer self-assembly, it has been shown that correlation length and grain size are increased as 

annealing time is increased.[32] In a simulated annealing of ferromagnetic Ising states, we observed 

similar phase transition behaviors as the number of simulation steps was increased. Therefore, it 

may be possible use the Ising model to explain self-assembly of block copolymers, at least when 

templates are used. 

 

4.3.2 Designing an Ising lattice in block copolymer systems 

To apply the Ising model to DSA of block copolymers, an Ising lattice setup must be constructed 

first such that desired Ising Hamiltonians can be measured. As shown in Figure 4.3, block 

copolymer self-assembly maps onto an Ising model of a square lattice of binary states with nearest-

neighbor interactions. On a silicon substrate chemically functionalized with a hydroxyl-terminated 

PDMS brush, 53 kg/mol cylindrical morphology PS-b-PDMS (SD53) naturally formed complex 

fingerprint patterns (Figure 4.3a). To define the Ising lattice, we fabricated a square lattice post 

template using electron-beam lithography with an HSQ resist. SD53 block copolymer was spin 

coated onto the functionalized template to a thickness of 33 nm and solvent annealed using a 

mixture of toluene and heptane. Previous work have shown that that two-dimensional arrays of 

posts can facilitate well-ordered block copolymer patterns with low defect rates.[6,14,18,20] For this 

work, the horizontal and vertical pitch between the posts was set to the equilibrium block 

copolymer periodicity, L0 = 39 nm (Figure 4.3b). Since both horizontal and vertical directions 
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were commensurate with L0, the block copolymer grains were degenerately aligned parallel to the 

x-axis or the y-axis (Figure 4.3c). 

 

 

Figure 4.3 Ising lattice design in DSA of block copolymers. (a) SEM image of untemplated PDMS 

cylinders with L0 = 39 nm. Scale bar, 200 nm. (b) Square lattice post template fabricated by 

electron-beam lithography. The horizontal and vertical pitch was set equal to L0. (c) Block 

copolymer pattern formed on the post lattice template showing two degenerate alignment 

orientations. When two adjacent posts were connected by a PDMS cylinder, the Ising state was 

defined as +1. Otherwise, the Ising state was defined as −1. (d) Diagram showing the designed 

Ising lattice in the post lattice template. The axes are rotated by 45°. The posts (grey dot), Ising 

states (blue cross), and nearest-neighbor interactions (red dashed line) are indicated. 

 

Here, we defined a binary state, +1 or −1, between each adjacent pair of posts. As indicated 

by the red dashed boxes in Figure 4.3c, we assigned +1 (“spin up”) to a state when two adjacent 

posts were connected by a block copolymer structure, and −1 (“spin down”) otherwise. Such 

assignment ensured a one-to-one mapping between a block copolymer pattern and the 

corresponding binary state array. Establishing a one-to-one mapping was especially important for 

defining the Ising lattice. For example, consider an alternative Ising lattice where the states are 

defined at the posts based on alignment orientation of the block copolymer structure formed at 

each post. In such system, a one-to-one mapping cannot be achieved due to formation of bends 

which do not show a particular horizontal or vertical alignment orientation. Even if the four types 
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of bends are interpreted as new states, it is still very challenging to fully understand the interactions 

between all possible state pair combinations. 

Figure 4.3d shows the corresponding Ising lattice setup, where the square lattice posts 

(grey dot), Ising states defined between each adjacent pair of posts (blue cross), and nearest-

neighbor interactions between the Ising states (red dashed line) are indicated. Using this Ising 

lattice setup, any block copolymer pattern can be uniquely mapped to a binary state array, and vice 

versa. An example of a block copolymer pattern and its corresponding binary state array is shown 

in Figure 4.4. In this setup, we assumed that only the nearest-neighbor interactions are allowed, 

since the nearest neighbors in this setup directly interact via block copolymer chains. The Ising 

Hamiltonian is given by 

 

𝐻(𝜎) = −𝐽 ∑ 𝜎𝑖𝜎𝑗

⟨𝑖 𝑗⟩

− ℎ ∑ 𝜎𝑗

𝑗

 

 

where Jij and hj from the original Ising Hamiltonian were assumed to be independent of lattice 

location for simplicity. 

 

 

Figure 4.4 Sample block copolymer pattern and its associated binary state array. The posts (black 

dot), Ising states (blue cross), and nearest-neighbor interactions (red dashed line) are indicated. (a) 

SEM image of a block copolymer pattern formed on the post lattice template. (b) Associated binary 

state array. Antiferromagnetic interactions make intuitive sense since high density of one domain 

(PDMS or PS) is disfavored.  
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Next, to show that the two Ising states were truly degenerate, we measured the distribution 

of +1 and −1 states. As shown in Figure 4.5, we created large arrays of periodic posts and 

measured the distribution of +1 and −1 states in the resulting block copolymer pattern. We 

expected the two Ising states to form with essentially equal probability since parallel arrays of 

PDMS cylinders correspond to alternating Ising states. The distribution of +1 state was 47.3% and 

the distribution of −1 state was 52.7%, agreeing with our prediction. 

 

 

Figure 4.5 SEM image of a block copolymer pattern formed on the post lattice template. The 

pattern consisted of several regions of parallel PDMS cylinders which were degenerately aligned 

either horizontally or vertically. +1 and −1 states were formed with essentially equal probability. 

Scale bar, 100 nm. 

 

In addition, we calculated the normalized mean state-state correlation to determine the sign 

of J. The measured correlation is 

 

𝜌 =
∑ 𝜎𝑖𝜎𝑗𝑖~𝑗

∑ |𝜎𝑖𝜎𝑗|𝑖~𝑗
= −0.822 
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where the sum was taken over every pair of adjacent states. The negative value of ρ close to −1 

indicates that the neighboring binary states experienced antiferromagnetic interactions (J < 0 in 

the Ising Hamiltonian). For a +1 state, it is energetically favorable for its four nearest neighbors to 

have a −1 state, since adjacent +1 states indicate formation of bends or T-junctions which are 

energetically costly.[33,34] For a −1 state, it is energetically favorable for its four nearest neighbors 

to have a +1 state, since adjacent −1 states indicate formation of a region with only PS domains. 

On the other hand, alternating +1 and −1 states result in parallel PDMS cylinders which are 

energetically favorable. Hence, the antiferromagnetic interaction agrees with our previous 

understanding of block copolymer self-assembly. 

 

4.3.3 Determining relative magnitude of J and h 

To perform simulated annealing and calculate the minimum Hamiltonian configuration, we must 

know the relative magnitude of J and h in the Ising Hamiltonian. We compared the two parameters 

by measuring the distribution of the center state given the four nearest-neighbor configurations. 

The four nearest neighbors of a given state can have four to zero +1 states and zero to four −1 

states. For example, Figure 4.6 shows the case where the four nearest neighbors have three +1 

states and one −1 state. The center state is −1 in Figure 4.6a and +1 in Figure 4.6c. For both 

configurations, we can calculate the Ising Hamiltonian by converting the block copolymer pattern 

into a corresponding binary state array as shown in Figure 4.6b and Figure 4.6d. When the center 

state is −1, the resulting Hamiltonian is H1(σ) = 2J − h. When the center state is +1, the resulting 

Hamiltonian is H2(σ) = −2J − 3h. In such nearest-neighbor configuration, 98.7% of the center state 

was −1 as shown in Figure 4.6e. From this distribution data, we can conclude that the Hamiltonian 

of the configuration where the center state is −1 is less than the Hamiltonian of the configuration 
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where the center state is +1. The inequality comparing the two Hamiltonians, H1(σ) < H2(σ), 

reduces to h < −2J. 

 

 

Figure 4.6 Sample configurations where the four nearest neighbors have three +1 states and one 

−1 state. The posts (black dot), four nearest-neighboring states and center state (blue cross), and 

nearest-neighbor interactions (red dashed line) are indicated. (a) Diagram of the configuration 

where the center state is −1. (b) Associated binary state array where the center state is −1. The 

Ising Hamiltonian is H1(σ) = 2J − h. (c) Diagram of the configuration where the center state is +1. 

(d) Associated binary state array where the center state is +1. The Ising Hamiltonian is H2(σ) = 

−2J − 3h. (e) SEM image of the center state observed with higher probability. A majority of the 

center state was −1 given this specific four nearest-neighbor configuration. 

 

We can obtain a similar inequality involving J and h for different configurations. The five 

possible configurations of the four nearest neighbors are shown in Figure 4.7. Figures 4.7a-4.7e 

show diagrams representing the block copolymer connections formed in the center state and four 

nearest-neighboring states. Since we were interested in calculating the Hamiltonian for these five 

states, other block copolymer connections (formed between the top two posts or the bottom two 

posts) were omitted for simplicity. Figures 4.7f-4.7j show the associated binary state arrays that 

were used for calculating the Hamiltonian of a given configuration. In Figures 4.7k-4.7o, the 

center state with higher observed probability is shown for each nearest-neighbor configuration. 

We can obtain h < −4J from Figure 4.7k, h < −2J from Figure 4.7l, h < 0 from Figure 4.7m, h > 

2J from Figure 4.7n, and h > 4J from Figure 4.7o. Combined with the antiferromagnetic 
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interactions (J < 0), these inequalities simplify to 2J < h < 0. For simplicity, we set J = h < 0 for 

our simulated annealing algorithm which is discussed in the next chapter. 

 

 

Figure 4.7 The minimum Hamiltonian configuration when the four nearest neighbors have (a,f,k) 

four, (b,g,l) three, (c,h,m) two, (d,i,n) one, and (e,j,o) zero +1 states. The posts (black dot), four 

nearest-neighboring states and center state (blue cross), and nearest-neighbor interactions (red 

dashed line) are indicated. (a-e) Diagrams of the configurations representing the block copolymer 

connections. (f-j) Associated binary state arrays. (k-o) SEM images of the minimum Hamiltonian 

configuration observed with higher probability. The observation probabilities of the center state 

set as shown in the SEM images were (k) 100%, (l) 98.7%, (m) 98.5% (n) 96.7%, and (o) 99.8%. 

 

Next, we investigated the effect of placing incommensurate double posts, which can be 

used to define input states and boundary conditions. A double post was defined as a set of two 

posts separated by a distance less than L0, which forces formation of a PDMS cylinder between 
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the posts. As shown in Figure 4.8a and Figure 4.8b, placing an additional post inside a square 

lattice post array alters the Ising lattice as well as the associated J and h. First, the binary states 

defined between the double posts (black cross) are fixed to +1 by incommensurability. 

Furthermore, analysis of previous experimental results[18] showed that in the minimum 

Hamiltonian configuration, the six adjacent states (red cross) were always fixed as shown in 

Figure 4.8c. The corresponding block copolymer pattern is a straight line around the double posts 

meaning that bends, terminations, and T-junctions cannot be formed at the double posts (Figure 

4.8d). Although we were not able to measure the exact values of J and h in the altered Ising lattice, 

we were able to determine the effect of placing double posts on the final block copolymer 

morphology. 

 

 

Figure 4.8 Diagrams showing the Ising lattice in the post lattice template with double posts. The 

posts (grey/black dot), Ising states (cross), and nearest-neighbor interactions (dashed line) are 

indicated. (a) The original Ising lattice before placing a double post. (b) Placing a double post at 

the center directly affects the two states (black cross), the seven nearest-neighbor interactions 

(black dashed line), and the six adjacent states (red cross). (b) The eight affected states were fixed 

due to strong templating effect from the double posts. (c) The corresponding block copolymer 

pattern is a straight line formed around the double posts. 
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4.4 Conclusion 

We demonstrated an Ising lattice setup for DSA of block copolymers using a square lattice post 

template. The Ising states were defined based on block copolymer connections formed between 

each pair of adjacent posts. By measuring the distribution and nearest-neighbor correlation of the 

Ising states, we measured the sign of J as well as the relative magnitude of J and h. Based on these 

results, simulated annealing algorithm can be applied to calculate the minimum Hamiltonian 

configuration. We also discussed the effect of placing incommensurate double posts. By using 

double posts, input states can be initialized to desired values, and specific boundary conditions can 

be designed. In the next chapter, we apply the simulated annealing algorithm to calculate the 

minimum Hamiltonian configuration given specific boundary conditions. We validate our Ising 

lattice setup by comparing the Ising model simulation results with previously reported 

experimental and SCFT simulation results. 
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Chapter 5 

 

Ising-model-based simulation in 

two-dimensional post lattice 

 

 
In this chapter, we demonstrate an Ising-model-based simulation method for calculating the 

minimum Hamiltonian configuration using the simulated annealing algorithm. We discuss the 

effect of changing the two simulated annealing parameters n and α. We validate our Ising lattice 

setup in two-dimensional post array by comparing the Ising model simulation results with 

previously reported experimental and simulation results. The Ising model simulation method could 

have potential applications in template design as well as block copolymer pattern prediction. 

 

5.1 Introduction 

In the previous chapter, we implemented an Ising lattice setup in directed self-assembly (DSA) of 

block copolymers using a square lattice post template. The Ising states, +1 or −1, were defined 

between each pair of adjacent posts based on whether the posts were connected by a polydimethyl 

siloxane (PDMS) cylinder (σj = +1) or not (σj = −1). We measured properties of the two-state 

system such as distribution of the states and nearest-neighbor correlation, and determined the two 

Ising model parameters J and h required for performing simulated annealing. We also discussed 

how to define input states and boundary conditions by placing incommensurate double posts to fix 
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specific states. The next step is to validate our Ising lattice setup by building an Ising-model-based 

simulation for calculating the minimum Hamiltonian configuration given some boundary 

conditions, and comparing the Ising model simulation results with experimental and self-consistent 

field theory (SCFT) simulation results. We used the simulated annealing algorithm to perform 

Ising model simulations. 

 The Ising model simulation method can act as a valuable tool for block copolymer DSA in 

addition to Ising-model-based computation since block copolymers naturally act as a lithography 

material.[1-8] The simplicity of the Ising model allows fast simulation of block copolymer 

morphology that can complement SCFT simulations and further enhance the potential of block 

copolymer lithography. The Ising model simulations may be used to design new templates for 

DSA and predict the resulting block copolymer morphology on a given template, impacting 

various self-assembly applications such as rule-based template design[9-11] and inverse design of 

complex circuit-relevant patterns.[12,13] Moreover, verifying that the Ising model simulations can 

correctly calculate the equilibrium block copolymer morphology predicted by SCFT simulations 

suggests the possibility of performing Ising-model-based computation.[14,15] 

 This chapter describes an Ising model simulation method for the Ising lattice setup defined 

on a two-dimensional post lattice template. We discuss parameter choices for the simulated 

annealing algorithm, and compare the Ising model simulation results with previously reported 

experimental and SCFT simulation results on tile-based design rules.[9] 

 

5.2 Simulation methods 

Simulated annealing is a probabilistic technique used to approximate the global optimum of a 

given function in a large search space.[16-18] Starting from a random initial solution, a neighbor 
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solution is selected by inverting one random state in the initial solution. The Ising Hamiltonian of 

the initial solution and the neighbor solution are calculated. If the Hamiltonian of the neighbor 

solution is lower, the initial solution is updated to the neighbor solution with probability of 1. 

Otherwise, the initial solution is still updated to the neighbor solution with an acceptance 

probability which is a function of the two Hamiltonians and a parameter called annealing 

temperature. This step is necessary to escape from a local minimum. Then, the process is repeated 

as the annealing temperature decreases until a threshold value is reached. The acceptance 

probability is decreased as the annealing temperature is decreased so that the evolution of the 

solution eventually becomes more sensitive to finer energy variations. After sufficient iteration 

steps, the global minimum of the Ising Hamiltonian can be approximated. 

 Figure 5.1 shows a flowchart of the simulated annealing algorithm we implemented. Given 

a boundary condition consisting of fixed states at specific locations, a random initial solution σ 

was generated where the boundary states were fixed while the remaining states were randomly 

chosen between +1 and −1. For each iteration, we generated a neighbor solution σ′ by randomly 

selecting a non-boundary state and inverting it. The two Ising Hamiltonians H(σ) and H(σ′) were 

calculated from the equation 

 

𝐻(𝜎) = −𝐽 ∑ 𝜎𝑖𝜎𝑗

⟨𝑖 𝑗⟩

− ℎ ∑ 𝜎𝑗

𝑗

 

 

where J = h < 0 based on results from the previous chapter. Moreover, we set J = h = −1 since only 

the relative magnitude of J and h was needed to determine the inequality between H(σ) and H(σ′). 

If H(σ′) < H(σ), σ was updated to σ′ for the next iteration. Otherwise, σ was still updated to σ′ with 

an acceptance probability given by  
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𝑃(𝐻(𝜎), 𝐻(𝜎′), 𝑇𝑘) = 𝑒𝑥𝑝 (−
𝐻(𝜎′) − 𝐻(𝜎)

𝑇𝑘
) 

 

where Tk is the annealing temperature. For the first iteration, Tk = T1 = 1. We performed n iterations 

for each annealing temperature Tk, and then decreased the annealing temperature using an 

annealing schedule Tk+1 = αTk where α is a scaling factor (0 ≤ α < 1). The simulated annealing 

algorithm reduces to the greedy algorithm for α = 0. Iterations were continued until Tk reached a 

threshold value, Tthreshold = 0.01T1 = 0.01. In our simulations, iterations were performed n times 

each at ⌊log𝛼
𝑇threshold

𝑇1
⌋ + 1 different annealing temperatures. The effect of changing iterations per 

annealing temperature n and scaling factor α is discussed in the next section. 

 

 

Figure 5.1 Flowchart of the simulated annealing algorithm implemented in this chapter. 
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5.3 Results and discussion 

In this section, we describe Ising-model-based simulation results for different boundary conditions. 

We compare the Ising model simulation results with previously reported experimental and SCFT 

simulation results. 

 

5.3.1 Effect of changing simulated annealing parameters n and α 

For the simulated annealing algorithm to find an approximate minimum Hamiltonian configuration 

that is sufficiently close or equal to the global minimum Hamiltonian configuration, we have to 

select an appropriate annealing schedule. In our implementation, the number of iterations per 

annealing temperature n and scaling factor α determine how fast the annealing temperature Tk is 

decreased. Although the probability of finding a global optimal solution approaches 1 as n is 

increased and α approaches 1,[19] it is not desirable to excessively extend the annealing schedule 

since we must also consider the allotted time budget. 

 Figure 5.2 demonstrates the effect of increasing n on the final minimum Hamiltonian 

configuration. We created a 100 × 100 array of ferromagnetic Ising states with J = 1, h = 0, and 

continuous boundaries. α was fixed to 0.9, resulting in 44 different annealing temperatures between 

T1 = 1 and T44 = 0.0108. Starting from a random initial solution in Figure 5.2a, the minimum 

Hamiltonian configuration was calculated for different values of n ranging from 100 to 1,000,000. 

The global minimum Hamiltonian configuration is an array of only +1’s (white) or −1’s (black), 

which was achieved for n = 1,000,000. Evident grains were observed starting from n = 10,000, 

and we chose n equal to the total number of states for subsequent simulations where we also 

increased α to achieve finer temperature steps. 
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Figure 5.2 Effect of increasing n on the final minimum Hamiltonian configuration. A 100 × 100 

array of ferromagnetic Ising states after the simulated annealing was completed. (a) Random initial 

array. (b-f) α was fixed to 0.9 while n was set to (b) 100, (c) 1,000, (d) 10,000, (e) 100,000, and (f) 

1,000,000. 

 

Figure 5.3 demonstrates the effect of increasing α on the final minimum Hamiltonian 

configuration using the same 100 × 100 array of ferromagnetic Ising states. n was fixed to 10,000, 

the total number of states, while α was varied between 0.2 and 0.999. The global minimum 

Hamiltonian configuration was achieved for α = 0.999, where 10,000 iterations were performed 

for each of the 4,603 different annealing temperatures. For subsequent simulations, we chose α 

equal to 0.99 to reduce simulation time. These parameters were sufficient to achieve the global 

optimum for most simulations. When the global optimal solution was not found, we increased n 

beyond the total number of states, and increased α closer to 1. 

 

 

Figure 5.3 Effect of increasing α on the final minimum Hamiltonian configuration. A 100 × 100 

array of ferromagnetic Ising states after the simulated annealing was completed. (a) Random initial 

array. (b-f) n was fixed to 10,000, the total number of states, while α was set to (b) 0.2 (three 

different Tk’s), (c) 0.8 (21 different Tk’s), (d) 0.9 (44 different Tk’s), (e) 0.99 (459 different Tk’s) 

and (f) 0.999 (4,603 different Tk’s). 
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5.3.2 Reproducing simple boundary conditions 

We validate our Ising lattice setup by reproducing experimental and SCFT simulation results for 

various boundary conditions using Ising model simulations. Before introducing any boundary 

conditions, simulated annealing of the Ising states already produced patterns that are similar to the 

block copolymer patterns formed on two-dimensional post lattice templates. Figure 5.4 illustrates 

how the Ising model simulation results compare with experimental results. Figure 5.4a shows a 

sample pattern resulting from simulated annealing of 800 antiferromagnetic Ising states with J = 

h = −1 and continuous boundaries. The two simulated annealing parameters were chosen to 

intentionally avoid finding the global optimum solution for better comparison with the block 

copolymer pattern shown in Figure 5.4b. Close similarity between the two patterns suggests that 

our Ising lattice design is reasonable and the Ising model can be applied to DSA of block 

copolymers. 

 

 

Figure 5.4 Comparison between a sample pattern resulting from the Ising model simulations and 

from DSA of block copolymers. (a) Simulated annealing result of 800 antiferromagnetic Ising 

states defined between a 20 × 20 array of posts. The pattern was colored based on alignment 

orientation for easier visualization. (b) SEM image of a block copolymer pattern formed on the 

post lattice template. Scale bar, 100 nm. 
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 Next, we reproduced the four template design rules reported by Chang et al.[9] using the 

Ising model simulations with specific boundary conditions. In the work by Chang et al., four types 

of template design rules were developed by placing periodic double posts in the post lattice 

template. The double post arrangements for the four design rules are shown in Figures 5.5a-5.5d. 

To determine the boundary conditions imposed by a specific template, we interpreted the double 

posts as having the same effect as fixing their adjacent states to +1’s or −1’s as described in the 

previous chapter. Figures 5.5e-5.5h show the minimum Hamiltonian configuration calculated for 

each boundary condition. The Ising model simulation results agreed with the reported experimental 

results as well as the minimum free energy morphology calculated from SCFT simulations. 

 

 

Figure 5.5 Ising model simulation results for the four template design rules. (a-d) Four different 

arrangements of four horizontally and vertically oriented double posts (red dot). (e-h) Possible 

minimum Hamiltonian configurations resulting from the double post templates. The Ising model 

simulation results agreed with previously reported results.[9] Different minimum Hamiltonian 

configurations may be achieved depending on how the top, bottom, left, and right boundary states 

are initially defined. 
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Figure 5.6 shows the minimum Hamiltonian configurations calculated for the second 

template design rule (Figure 5.5b) assuming h < 0 (Figure 5.6a) and h = 0 (Figures 5.6b-5.6d). 

In the previous chapter, we concluded 2J < h < 0 by measuring the distribution of the center state 

given its four nearest-neighbor configurations. The Ising model simulation results also suggest h 

< 0 since the minimum Hamiltonian configuration with h = 0 result in formation of energetically 

unfavorable bends[20,21] and T-junctions.[22-24] When the four nearest neighbors have two +1 states 

and two −1 states, setting h < 0 prevents the center state from remaining in +1 state, turning bends 

and T-junctions into terminations. 

 

 

Figure 5.6 Ising model simulation results for the second template design rule. (a) Minimum 

Hamiltonian configuration assuming h < 0. (b-d) Different minimum Hamiltonian configurations 

assuming h = 0, showing formation of bends and T-junctions. 

 

 Figure 5.7 shows the minimum Hamiltonian configurations calculated for the fourth 

template design rule (Figure 5.5d). For the fourth double post arrangement, Chang et al. have 

reported several frequently observed block copolymer patterns, and the most frequent pattern was 

formed in only 20% of the templates.[9] Similar to these experimental results, the Ising model 

simulation produced two minimum Hamiltonian configurations with the same top, bottom, left, 

and right boundary states. 
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Figure 5.7 Ising model simulation results for the fourth template design rule. (a) One possible 

minimum Hamiltonian configuration. (b) Another possible minimum Hamiltonian configuration 

with the same boundary states. 

 

5.3.3 Reproducing complex boundary conditions 

Using the Ising model simulations, we were able to reproduce more complex patterns consisting 

of dense bends and terminations. A target post lattice template with periodic double posts is shown 

in Figure 5.8a. A boundary condition was derived from the positions and orientations of the double 

posts. As the number of iteration steps in simulated annealing was increased starting from a random 

initial binary state array (Figure 5.8b), the minimum Hamiltonian configuration (Figure 5.8g) 

eventually reached the reported experimental result except for minor defect formations (Figure 

5.8h), and agreed with the minimum free energy morphology calculated from SCFT simulations.[9] 

A similar set of Ising model simulations was performed to reproduce a different complex pattern 

as shown in Figure 5.9. The Ising model simulations took less than 10 seconds to perform more 

than 200,000 iteration steps on a computer with a 2.2 GHz processor and 8 GB of random access 

memory, which is orders of magnitude faster than typical SCFT simulation methods. The global 

optimum solution was reached only after a few tens of thousands of iteration steps. 
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Figure 5.8 Ising model simulation results for the first complex pattern. (a) Target post lattice 

template. (b) Random initial array. (c-g) Simulation result after (c) 100, (d) 500, (e) 1,000, (f) 

5,000, and (g) 50,000 iteration steps. The minimum Hamiltonian configuration was found after 

50,000 iteration steps. (h) Actual block copolymer pattern.[9] Scale bar, 100nm. Redrawn from 

reference 9.  
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Figure 5.9 Ising model simulation results for the second complex pattern. (a) Target post lattice 

template. (b) Random initial array. (c-g) Simulation result after (c) 100, (d) 500, (e) 1,000, (f) 

5,000, and (g) 50,000 iteration steps. The minimum Hamiltonian configuration was found after 

50,000 iteration steps. (h) Actual block copolymer pattern.[9] Scale bar, 100nm. Redrawn from 

reference 9.  
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5.4 Conclusion 

We developed an Ising-model-based simulation method to calculate the minimum Hamiltonian 

configuration given specific boundary conditions. We studied the effect of changing the simulated 

annealing parameters to determine reasonable parameter values for simulation. Ising model 

simulation results were compared with previously reported results to validate our Ising lattice setup. 

We expect the Ising model simulations to broadly impact the use of block copolymer DSA as a 

viable method for lithography. The simulations can complement SCFT simulations to perform fast 

template design, and assist rule-based and inverse design. In the next chapter, we use the Ising 

model simulations to design templates with specific boundary conditions that encode desired 

Boolean operations. We demonstrate several types of Boolean logic gates based on our Ising lattice 

setup, and discuss theoretical strategies for mapping combinatorial optimization problems into the 

Ising Hamiltonian. 
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Chapter 6 

 

Ising-model-based computation by 

block copolymer self-assembly 

 

 
In this chapter, we discuss methods for achieving Ising-model-based computation using block 

copolymer self-assembly. We use the previously developed Ising-model-based simulation method 

to prototype template designs that can encode specific Boolean operations into the ground states 

of the Ising lattice. We implement simple Boolean logic gates as a proof-of-concept demonstration 

of computation. We also discuss potential challenges of mapping complex optimization problems 

to the Ising lattice, and study theoretical strategies for addressing these issues. 

 

6.1 Introduction 

Previously, we showed that block copolymer self-assembly maps rigorously onto the Ising model, 

and the free energy minimization problem in directed self-assembly (DSA) can be cast into the 

language of Ising-model-based optimization. Our next challenge is to use this new platform for 

Ising lattices to implement interesting and useful computational functions such as universal 

Boolean logic operations and combinatorial optimization problems. To map arbitrary Boolean 

logic to the Ising lattice, specific Hamiltonians that encode the desired Boolean operation must be 

designed first. To map combinatorial optimization problems to the Ising lattice, we must be able 
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to control the two Ising model parameters J and h so that desired weights from the optimization 

problem can be assigned to the parameters of the Ising lattice. 

Although it has been previously proven that universal computation can be encoded into the 

ground states of Ising lattices,[1-8] it is not a trivial task to design the specific Hamiltonians that can 

embed desired Boolean operations. Furthermore, material properties of the block copolymer 

impose additional restrictions on the Ising lattice. For example, the number of nearest-neighbor 

states must be exactly four due to the square lattice geometry of the post lattice template. The two 

Ising model parameters J and h are fixed to a negative value independent of lattice locations. The 

input states are inherently static since they are already patterned on the substrate by electron-beam 

lithography. Since the block copolymer structures are continuously formed across the whole 

substrate, a boundary must be placed to isolate the templated regions from untemplated regions. 

This complicates the design of desired Hamiltonians because the outer boundaries will also interact 

with the inner Ising lattice. These issues must be addressed before we can build a practical 

computing system using block copolymers. 

In this chapter, we use the Ising lattice setup from the previous chapters and demonstrate 

Ising-model-based computation by designing Boolean logic gates such as a buffer, inverter, wire 

(cascaded buffer), fan-out gate, and three-input majority gate. The logic gates are defined on a post 

lattice template with double posts acting as boundaries. Input and output states are chosen inside 

the boundary, and double posts are used to define static inputs. Yield of the designed logic gates 

are measured. We also discuss theoretical strategies to map combinatorial optimization problems 

to the Ising lattice. 
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6.2 Experimental and simulation methods 

For template fabrication, block copolymer self-assembly, reactive-ion etching, and metrology, the 

same experimental methods as described in Chapter 4 were used. For Ising-model-based 

simulations, the same simulated annealing method described in Chapter 5 was used. 

 

6.3 Results and discussion 

In this section, we describe both experimental and Ising-model-based simulation results for various 

Boolean logic gate designs to demonstrate Ising-model-based computation. We discuss theoretical 

approaches for mapping complex optimization problems to the Ising lattice. 

 

6.3.1 Designing a buffer/inverter 

Ising Hamiltonian designs for various Boolean operations have been previously developed for 

other types of Ising machines.[9-14] With antiferromagnetic interactions in magnetic logic for 

example, a buffer can be built using three states and a three-input majority gate can be built using 

five states.[13,14] However, these existing designs for Ising Hamiltonians that encode specific 

Boolean operations are not applicable to our Ising lattice due to the constraints discussed in the 

previous section. Here, we show that computation can be encoded into the ground states of our 

Ising lattices by demonstrating designs for simple Boolean logic gates. 

 The first pair of logic gates we design is a buffer and inverter. The same boundary 

conditions result in two different Boolean functions depending on our definition of input and 

output state. We fabricated a post array consisting of a box-shaped boundary defined by 

incommensurate double posts as shown in Figure 6.1. Before placing additional double posts 

inside the boundary to define an input state, two minimum Hamiltonian configurations exist given 
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the boundary conditions. In the ground state, the block copolymer structures can either be 

vertically aligned as shown in Figure 6.1a, or horizontally aligned by symmetry as shown in 

Figure 6.1d. After block copolymer self-assembly, the experimental results (Figure 6.1b and 

Figure 6.1e) and the minimum Hamiltonian configurations calculated from the Ising model 

simulation (Figure 6.1c and Figure 6.1f) agreed with our prediction. 

 

 

Figure 6.1 Block copolymer morphology inside a double post boundary for designing a buffer and 

inverter. Input state has not been defined yet. (a,d) Scanning electron microscope (SEM) image of 

the post array with a boundary consisting of double posts. The block copolymer structures (blue 

line) can be aligned either vertically or horizontally in the minimum free energy morphology. (b,e) 

SEM image of the resulting block copolymer pattern inside the boundary. (c,f) Two minimum 

Hamiltonian configurations calculated from the Ising model simulation. Scale bars, 100 nm. 

 

Next, we chose an input state and an output state inside the post array. We defined the input 

state by placing a double post as shown in Figure 6.2. The input state can be set to +1 (interpreted 

as a 1 bit) by placing a double post in the input state (Figure 6.2a) or set to −1 (interpreted as a 0 
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bit) by placing a double post in the state adjacent to the input state (Figure 6.2d). After block 

copolymer self-assembly, the output state was set equal to the input state since the overall block 

copolymer alignment orientation inside the boundary was determined by the orientation of the 

double post at the input state (Figure 6.2b and Figure 6.2e). The Ising model simulation results 

agreed with the experimental results (Figure 6.2c and Figure 6.2f). If we define the output state 

to be inside the red dashed box, the design acts as a buffer, as the input and output states have the 

same parity. We can simply convert the design into an inverter by defining the output state to be 

inside the blue dashed box. Since the output state for buffer and inverter are defined adjacent to 

each other, they must have different ground state parity due to antiferromagnetic interactions. The 

yield for the buffer and inverter was 86.6%. 

 

 

Figure 6.2 Design for a buffer and inverter. Input state (yellow dashed box), output state for buffer 

(red dashed box), and output state for inverter (blue dashed box) are indicated. (a,d) SEM image 

of the post array where the input state was defined using a double post. (b,e) SEM image of the 

resulting block copolymer pattern. The input state determined the overall block copolymer 
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alignment orientation, also setting the output state to its desired parity. (c,f) Ising model simulation 

results. Scale bars, 100 nm. 

 

 For non-ground state block copolymer morphologies that resulted in the output state being 

incorrect, we were able to calculate the difference in the Ising Hamiltonian relative to the minimum 

Hamiltonian configuration. Figure 6.3 shows the minimum Hamiltonian configuration with 

vertically aligned block copolymer structures (Figure 6.3a) and a non-ground state configuration 

with formation of an additional bend and terminations (Figure 6.3b). The input state was set to +1 

for both cases. For the non-ground state configuration, formation of an undesired bend changed 

the alignment orientation, setting the output state to −1 instead of +1. For the 96 states inside the 

double post boundary, the Ising Hamiltonian was H1 = 92J + 32h for the left configuration and H2 

= 80J + 34h for the right configuration. The difference in the Ising Hamiltonian, H2 − H1 = −12J 

+ 2h, was greater than 0 since we concluded 2J < h < 0 from Chapter 4. 

 

 

Figure 6.3 SEM images of the block copolymer pattern formed inside a buffer. Input state (yellow 

dashed box) and output state (red dashed box) are indicated. (a) In the minimum Hamiltonian 

configuration, the block copolymer structures were vertically aligned. For the states inside the 

boundary, the Ising Hamiltonian was H1 = 92J + 32h. (b) With formation of an additional bend 

and terminations, the non-ground state configuration resulted in an increased Ising Hamiltonian 

H2 = 80J + 34h > H1. Scale bars, 100 nm.  
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6.3.2 Designing complex logic gates 

We can apply our design approach using boundaries consisting of square boxes to implement other 

types of Boolean logic gates. Although the logic gate designs must be developed through trial and 

error by simulating the minimum Hamiltonian configuration inside each design for different input 

combinations, the Ising model simulation allowed fast pattern prediction. Figure 6.4 shows a 

design for a wire composed of two cascaded buffers. We simply extended the box-shaped 

boundary to implement a larger-sized buffer. The yield was 75.4%. Another example of a modified 

buffer design is a one-input two-output fan-out gate shown in Figure 6.5. The yield was 70.8%. 

 

 

Figure 6.4 Design for a wire (cascaded buffer). Input state (yellow dashed box) and output state 

(red dashed box) are indicated. (a) SEM image of the post array. (b) SEM image of the resulting 

block copolymer pattern. (c) Ising model simulation result. Scale bars, 100 nm. 

 

 

Figure 6.5 Design for a one-input two-output fan-out gate. Input state (yellow dashed box) and 

two output states (red dashed box) are indicated. (a) SEM image of the post array. (b) SEM image 

of the resulting block copolymer pattern. (c) Ising model simulation result. Scale bars, 100 nm.  
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Figure 6.6 Design for a three-input majority gate. Input states (yellow dashed box) and output 

state (red dashed box) are indicated. (a,d) SEM image of the post array with (a) three equal inputs 

and (d) two equal inputs. (b,e) SEM image of the resulting block copolymer pattern. The output 

state was set equal to the majority input state. (c,f) Ising model simulation results. Scale bars, 100 

nm. 

 

By modifying the design for a buffer and inverter, a three-input majority gate can be built 

as shown in Figure 6.6. Similar to the buffer, the block copolymer structures can be horizontally 

or vertically aligned in the ground state configuration without any input states. When all three 

input states were set to the same bit as shown in Figure 6.6a, the output state also had the same 

alignment orientation and bit as the three input states. When only two input states had the same bit 

as shown in Figure 6.6d, a bend and/or terminations were formed at the boundary between the 

two same input states and the differing input state. However, the overall alignment orientation was 

determined by the two majority input states, and the output state still had the same bit as the two 

majority input states. In this majority gate design, any of the input or output states can be inverted 
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by defining an adjacent state as the new input or output. Also, AND gate and OR gate can be 

implemented by fixing one of the three input states. The yield for the majority gate was 70.0%. 

For the logic gates we designed, incorrect outputs were caused by the block copolymer 

morphology being trapped in the non-ground state configuration, as well as defective structures 

induced by the double post boundary. The non-ground state configurations were associated with 

formation of undesired bends and terminations. Such structures can be healed and eventually 

removed by further optimization of the annealing time and temperature, block copolymer film 

thickness, and solvent vapor pressure during the annealing process. Other block copolymer 

materials may be used to improve long-range order. Another source of incorrect outputs was the 

double post boundary itself. Due to the box-shaped boundary design, several concave corners were 

formed. At these concave corners, block copolymer structures formed at the boundary were 

randomly connected to the inner Ising lattice forming a straight line instead of a 90° bend, and 

resulted in incorrect outputs. We may be able to avoid concave corners by choosing a different 

boundary shape. 

We used the Ising model simulation to design and verify other types of logic gates. Figure 

6.7 shows an alternative design for an AND/OR gate. As with the buffer/inverter and the majority 

gate, the two input states and the output state can be inverted as desired, converting an AND gate 

into an OR, NAND, or NOR gate. In the ground state configuration without any input states, the 

block copolymer structures are horizontally aligned due to the rectangular-shaped center region. 

If the block copolymer structures are vertically aligned, two additional terminations are formed 

because of the horizontally long center region, resulting in higher free energy. Therefore, when the 

two input states are both set to −1 as shown in Figure 6.7a, the ground state configuration remains 

unchanged. Even if one of the input states are set to +1 as shown in Figure 6.7b, the templating 
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effect from the single vertically oriented double post is insufficient to overcome the overall 

horizontal alignment generated by the rectangular center region. However, if both input states are 

set to +1 as shown in Figure 6.7c, the templating effect from both vertically oriented double posts 

can shift the overall alignment orientation and change the output state from −1 to +1. Hence, this 

design acts as an AND gate. Figure 6.8 shows a design for a more complex logic gate, a three-

input OR gate. 

 

 

Figure 6.7 Design for an AND gate. Two input states (yellow dashed box) and an output state (red 

dashed box) are indicated. (a-c) Ising model simulation results showing the minimum Hamiltonian 

configuration when the two input states are (a) both −1, (b) +1 and −1, and (c) both +1. The output 

state is set to +1 only when both input states are set to +1. 

 

 

Figure 6.8 Design for a three-input OR gate. Three input states (yellow dashed box) and an output 

state (red dashed box) are indicated. (a) The output state is set to −1 only when all inputs states are 

set to −1. (b) The output state is set to +1 when one or more input states are set to +1.  
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6.3.3 Mapping optimization problems 

In the previous sections, we introduced designs for simple Boolean logic gates as a proof-of-

concept demonstration of computation. The next step is to think about the possibility of mapping 

useful optimization problems to this new platform for Ising lattices. A class of problems that 

naturally maps to the Ising model is combinatorial optimization problems, as solving for the 

equilibrium states is equivalent to calculating the minimizer of the Ising Hamiltonian function.[1,15-

18] Ising formulation has been demonstrated for various combinatorial optimization problems 

including the Hamiltonian path/cycle problem and the travelling salesman problem.[19] To map 

such optimization problems, we must investigate how the Ising model parameters J and h can be 

controlled so that correct weights can be assigned to the Ising lattice. In this section, we discuss 

the key issues that must be addressed before we can map specific optimization problems to the 

Ising lattice and ultimately build a practical computing system. 

 To map specific optimization problems to the Ising lattice, we must first be able to control 

the two Ising model parameters J and h in some finite range by carefully adjusting the template 

design. We can slightly alter the post positions without breaking the commensurability since block 

copolymers can alter their periodicity by ~10% from L0 depending on the periodicity of the 

template.[20] We have qualitatively demonstrated in previous chapters that J’s and h’s can be 

altered by placing a double post, although exact values of J’s and h’s were not calculated. In Figure 

6.9, we can see that altering position of a post (yellow dot) or removing a post affects several h’s 

(red cross) associated with the moved post and J’s (black dashed line) associated with the affected 

states. The effect on J’s and h’s as a function of horizontal and vertical post displacement may be 

studied by measuring the distribution of the affect states. It may even be possible to directly 

approximate J’s and h’s using self-consistent field theory simulations.  
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Figure 6.9 Diagrams of different Ising lattice setups. The posts (grey dot), Ising states (blue cross), 

and nearest-neighbor interactions (red dashed line) are indicated. (a) Original Ising lattice setup in 

the square lattice post array. (b) Ising lattice setup after the center post (yellow dot) is slightly 

moved. (c) Ising lattice setup after the center post is deleted. J’s (black dashed line) and h’s (red 

cross) are affected by the change in template design. 

 

  Once J’s and h’s can be controlled by changing the template design, we must develop a 

neutral boundary, i.e. a boundary with near zero interaction strength (J ≈ 0). When a computing 

system is defined on the post lattice template, a boundary must be defined using double posts to 

isolate the inner Ising states from untemplated block copolymer structures outside the boundary. 

However, double posts have a strong templating effect which affects the adjacent binary states. By 

using different geometries such as a cross or T-shape instead of double posts to define the boundary 

conditions, we may be able to create a boundary that has minimum interaction with its adjacent 

states. Once neutral boundaries can be achieved, Ising Hamiltonians can be designed with fewer 

restrictions. 

 If we can control the J’s and h’s, we can also resolve the nearest-neighbor restriction caused 

by the square lattice geometry. The square lattice geometry of the post lattice template restricts the 

number of nearest-neighbor states to be exactly four. If a specific state has less than four nearest 

neighbors, we can increase the number of nearest neighbors to four by adding neutral boundaries 

with J ≈ 0 adjacent to the state. If the state has more than four nearest neighbors, we can decrease 

the number of nearest neighbors by dividing the state σj into two separate states. We can alter the 
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Ising lattice such that the state σj is split into two states σj′ and σj″ with Jj′j″ ≫ 0 and hj = hj′ + hj″. 

The first condition Jj′j″ ≫ 0 forces the two split states σj′ and σj″ to have the same state value, and 

the second condition hj = hj′ + hj″ ensures that the new state energies sum up to the original state 

energy. 

 Furthermore, we can also implement N-body interactions (N > 2) using arbitrary J’s and 

h’s. For example, consider the following Ising Hamiltonian encoding a two-input XOR logic  

 

𝐻1(𝜎) = 𝜎1𝜎2𝜎3 

 

where σ1 and σ2 are the two input states and σ3 is the output state. In a square lattice geometry 

which only allows nearest-neighbor interactions, the above Hamiltonian cannot be directly 

implemented using the post lattice template. However, we can introduce an ancillary state σ* to 

design a new Hamiltonian 

 

𝐻2(𝜎) = (𝜎1𝜎2 + 𝜎1𝜎3 + 𝜎2𝜎3) + 2𝜎∗(𝜎1 + 𝜎2 + 𝜎3) + (𝜎1 + 𝜎2 + 𝜎3 + 2𝜎∗) 

 

where σ1 and σ2 are the two input states and σ3 is the output state. We can verify that the minimum 

Hamiltonian configuration of σ1, σ2, and σ3 for H2(σ) also corresponds to a two-input XOR logic. 

In general, an N-body interaction can be reduced to k-body interactions using N − k ancillary 

states.[21,22] 

 However, not all Hamiltonians can be implemented due to the square lattice geometry 

restrictions. From Wagner’s theorem in graph theory, a finite graph is planar if and only if its 

minors include neither a complete graph K5 nor a bipartite graph K3,3.
[23] Equivalently, from 

Kuratowski’s theorem, a finite graph is planar if and only if it does not contain a subgraph that is 

a subdivision of K5 or of K3,3.
[24] Since all Ising Hamiltonians defined on a square lattice can be 
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expressed as a planar graph with states as vertices and interactions as edges, arbitrary Hamiltonians 

that contain K5 or K3,3 cannot be implemented on a square lattice post template. 

 Now, we introduce an example of a combinatorial optimization problem that can be 

mapped to the Ising lattice, assuming the aforementioned restrictions are resolved. In the number 

partitioning problem, we are given a set of N positive numbers S = {n1, …, nN}. The goal of this 

problem is to find a partition of this set of numbers into two disjoint subsets S1 and S2 = S − S1 

such that the sum of elements in both sets is the same. The corresponding Ising Hamiltonian is  

 

𝐻(𝜎) = (∑ 𝑛𝑗𝜎𝑗

𝑁

𝑗=1

)

2

= ∑ 2𝑛𝑖𝑛𝑗𝜎𝑖𝜎𝑗

𝑖≠𝑗

+ ∑ 𝑛𝑗
2

𝑗

 

 

and we partition the nj’s into S1 and S2 based on the sign of σj’s in the minimum Hamiltonian 

configuration.[19] It is clear that if H(σ) = 0, the sum of elements in S1 and S2 are the same. 

Therefore, the ground state configuration is a solution to the number partitioning problem. 

Moreover, in the ground state configuration, the difference between the sum of elements in S1 and 

S2 is minimized. Since ∑ 𝑛𝑗
2

𝑗  is a constant term that does not influence the minimum Hamiltonian 

configuration, we can implement the above Hamiltonian using N states with Jij = −2ninj and hj = 0 

where the interactions between states form a complete graph KN. 

 

6.4 Conclusion 

We implemented simple Boolean logic gates using block copolymers to demonstrate Ising-model-

based computation. The logic gates were designed through trial and error using the Ising-model 

simulation method. We also discussed challenges and theoretical solutions for achieving systems 

capable of solving combinatorial optimization problems such as the travelling salesman problem. 
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However, even if complex optimization problems can be mapped to the Ising lattice, there are still 

several remaining limitations to this computation approach. For example, time-sensitive inputs, 

dynamic inputs, and reusable templates are difficult to achieve due to the process flow of block 

copolymer DSA. In the next chapter, we discuss ideas for future work on solving these issues. 

  



 110 

References 

1. F. Barahona, J. Phys. A: Math. Gen. 1982, 15, 10. 

2. C. Moore, J. Stat. Phys. 1997, 88, 3-4. 

3. M. Van den Nest, W. Dür, H. J. Briegel, Phys. Rev. Lett. 2008, 100, 11. 

4. G. De las Cuevas, W. Dür, M. Van den Nest, H. J. Briegel, J. Stat. Mech. 2009, 2009, 

P07001. 

5. M. Gu, A. Perales, Phys. Rev. E 2012, 86, 1. 

6. J. D. Whitfield, M. Faccin, J. D. Biamonte, Europhys. Lett. 2012, 99, 5. 

7. S. Lloyd, B. M. Terhal, New. J. Phys. 2016, 18, 023042. 

8. G. De las Cuevas, T. S. Cubitt, Science 2016, 351, 6278. 

9. S. Bandyopadhyay, B. Das, A. E. Miller, Nanotechnology 1994, 5, 2. 

10. Y. Wang, M. Lieberman, IEEE Trans. Nanotechnol. 2004, 3, 3. 

11. P. Delaney, J. C. Greer, Proc. Royal Soc. A 2006, 462, 2065. 

12. M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, 

A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, 

E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, 

C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Nature 2011, 473. 

13. S. A. Haque, M. Yamamoto, R. Nakatani, Y. Endo, Sci. Technol. Adv. Mater. 2004, 5, 1-

2. 

14. A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, W. Porod, Science 2006, 311, 5758. 

15. S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Science 1983, 220, 4598. 

16. J. C. Angles d'Auriac, M. Preissmann, R. Rammal, J. Physique Lett. 1985, 46, 5. 

17. Y. Fu, P. W. Anderson, J. Phys. A: Math. Gen. 1986, 19, 9. 

18. F. Barahona, M. Grötschel, M Jünger, G. Reinelt, Oper. Res. 1988, 36, 3. 

19. A. Lucas, Front. Phys. 2014, 2, 5. 

20. J.-B. Chang, H. K. Choi, A. F. Hannon, A. Alexander-Katz, C. A. Ross, K. K. Berggren, 

Nat. Commun. 2014, 5, 3305. 

21. J. D. Biamonte, Phys. Rev. A 2008, 77, 5. 

22. R. Babbush, B. O’Gorman, A. Aspuru-Guzi, Ann. Phys. 2013, 525, 10-11. 

23. K. Wagner, Math. Ann. 1937, 114, 1. 

24. K. Kuratowski, Fund. Math. 1930, 15, 1. 

  



 111 

 

 

Chapter 7 

 

Summary and future work 

 

 
7.1 Summary 

In this thesis, we investigated two major approaches to achieve computation using directed self-

assembly (DSA) of block copolymers. In the first approach, we used arrays of square confinements 

to define a two-state system, and studied interactions between neighboring states. In the second 

approach, we used arrays of square lattice posts to design an Ising lattice for DSA of block 

copolymers, and demonstrated Ising-model-based computation. In addition to performing 

computation in self-assembling materials, the results from this work can be applied to fabricate 

circuit-relevant nanoscale patterns for lithography applications since block copolymers naturally 

act as a lithography material. 

 In Chapter 2 and Chapter 3, we studied DSA of block copolymer thin films within 

templates of different polygonal shapes. We observed formation of ladder-shaped block copolymer 

structures with two degenerate alignment orientations formed inside square confinement. We 

studied properties of the two-state system such as distribution, nearest-neighbor correlation, and 

defect tolerance. We controlled the binary states by changing the confinement geometry, placing 

lithographic guiding patterns inside the confinement, and placing openings around the 

confinement, and reproduced the experimental results using self-consistent fiend theory (SCFT) 
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simulations. Using the binary state control methods, we fabricated a larger binary state array with 

individual state control. The resulting line segments, bends, and T-junctions formed inside the 

ladder-shaped structures may be useful as circuit-relevant geometries. Also, arrays of binary states 

could potentially act as a physical read-only memory. Although we tried to induce nearest-

neighbor interactions by increasing the opening size, we were not able to maintain the defect 

tolerance of the two-state system for larger opening sizes. 

 In Chapter 4 and Chapter 5, we designed a different two-state system using a square lattice 

post template. We defined the two binary states based on whether two adjacent posts were 

connected by a block copolymer structure or not, and mapped a square lattice Ising model with 

nearest-neighbor interactions. We measured properties of the two-state system such as distribution 

and nearest-neighbor correlation. Relative magnitude between the two Ising model parameters J 

and h were determined based on the distribution of the states given their nearest-neighbor 

configuration. We developed a simulated annealing algorithm to calculate the minimum 

Hamiltonian configuration given a boundary condition, and validated our Ising lattice setup by 

comparing the Ising model simulation results with previously reported experimental and SCFT 

simulation results. The Ising model simulation method may have potential applications in template 

design as well as block copolymer pattern prediction. Moreover, useful computational functions 

can be mapped to the Ising lattice, allowing Ising-model-based computation in block copolymer 

systems. 

 In Chapter 6, we implemented simple Boolean logic gates as a proof-of-concept 

demonstration of computation. Ising model simulation method was used to prototype and test 

various logic gate designs since it is not a trivial task to design the specific Hamiltonians that can 

embed desired Boolean operations. The ultimate goal of Ising-model-based computation is to map 
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and solve complex optimization problems through the process of self-assembly. We discussed 

potential challenges and remedies for achieving this goal such as controlling the Ising model 

parameters by changing template design, implementing neutral boundaries, and introducing 

ancillary states. 

 

7.2 Future work 

In this section, we describe ideas for future work to address limitations of our computation 

approach and ultimately build a practical computing system using block copolymer self-assembly. 

 

7.2.1 Improving error rate 

One key issue that must be addressed before implementing practical computing systems with block 

copolymers is the error rate, since naturally occurring thermodynamic defects will always form in 

the final pattern. Based on the previous graphoepitaxy results using functionalized templates,[1-3] 

we expect a sufficiently high yield after rigorous optimization of the annealing conditions. If the 

measured yield of poly(styrene-block-dimethylsiloxane) (PS-b-PDMS) is still too low, we can 

investigate other block copolymers with good long-range order such as poly(styrene-block-4-

vinylpyridine) (PS-b-P4VP).[4-7] Ultimately, error-correcting strategies[8] will have to be devised 

for block copolymer computing systems. But if we are simulating physical systems, the errors may 

perhaps become a feature rather than a bug. 

 

7.2.2 Reducing fabrication cost and increasing throughput 

To reduce fabrication cost and increase throughput, roll-to-roll nanoimprint lithography may be 

employed in the fabrication process. An example of roll-to-roll-based in-line information 
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processing might include a pre-patterned tape of nanostructures, customized to provide 

computational inputs at Gbit/sec data rates by using multiple parallel electron- or optical “input” 

beams. Figure 7.1 illustrates a schematic for the proposed fabrication process. By creating periodic 

square lattice posts by nanoimprint while only writing the aperiodic double posts representing the 

boundary conditions and inputs by electron-beam lithography, fabrication steps can be greatly 

reduced. The continuous tape could move through a roll-to-roll materials processing system as 

new templates are fabricated. Such roll-to-roll system could be integrated with a block copolymer 

coating/annealing unit and an output readout unit to further enhance throughput. 

 

 

Figure 7.1 Schematic illustration of the proposed fabrication process to reduce cost and increase 

throughput. (a) Periodic square lattice posts are fabricated by roll-to-roll nanoimprint lithography. 

(b) Aperiodic double posts which represent the boundary conditions and input states are fabricated 

by electron-beam or optical lithography. (c) After block copolymer processing, output states are 

read out. Once computation is performed, block copolymer film and aperiodic double posts can be 

removed by solvent rinsing and selective etching, respectively. 

 

7.2.3 Implementing programmable inputs and input resetting 

Our Ising-model-based computing systems are inherently static since the boundary conditions and 

inputs are lithographically patterned on a substrate. However, we believe that programmable inputs 

and input resetting will not be a significant issue as there are strategies for rapid fabrication of new 
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templates. As discussed in the previous section, both the boundary conditions and inputs may be 

lithographically programmed into a blank post lattice template. After computation is performed, 

block copolymer film can be easily rinsed off. We can then use etch selectivity between the single 

posts (fabricated by nanoimprint) and double posts (fabricated by electron-beam or optical 

lithography) to selectively remove the double posts and reset the template back to the initial 

periodic square lattice post array. 

 

 

Figure 7.2 Schematic illustration of the laser zone annealing process for achieving programmable 

inputs. (a) Template consisting of periodic single posts and aperiodic double posts is coated with 

block copolymer film. Here, only the boundary conditions are defined by the double posts. (b) 

When laser is scanned vertically, a zone heat moves across the scanned region and highly-ordered 

block copolymer structures are formed (red line). (c) Vertically aligned block copolymer structures 

act as a guiding pattern or “input” for the remaining region (blue line). The input can be changed 

simply by scanning the laser in horizontal direction. 

 

Alternatively, programmable inputs might be implemented by using directional annealing 

methods such as laser zone annealing[9-12] or electric-field assisted annealing.[13-16] As shown in 

Figure 7.2, lateral laser scanning across specific regions of the template will create a moving zone 

heat that will anneal the block copolymer within the area to be highly ordered. The resulting 

aligned block copolymer structures will induce local preferential alignment, having similar 

templating effect as aperiodic double post structures. After programming the “inputs” by lateral 
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laser scanning, the whole substrate can be thermally annealed to compute the output states. By 

changing the laser scanning direction, input states can be effectively controlled. Directional or 

sequential annealing will have to be implemented for large scale Boolean logic gates. 

 

7.2.4 Strategies for output readout 

For readout of the output states, we can initially visually inspect the final block copolymer pattern 

with an integrated scanning electron microscope. Atomic force microscope may be used for 

minimum sample damage. Future electronic or optical readout modalities can be envisaged for 

integration with other devices. For materials or manufacturing applications, we can transfer the 

block copolymer pattern to metal by various methods such as etching, vapor deposition, ion 

loading, or particle decoration.[17-20] Since different bits in the output states correspond to 

horizontal or vertical alignment orientations, electrical or optical properties of ordered metal 

nanowire patterns can be measured to read out the output states.[21-24] To make the output readout 

easier, we can enlarge the region containing the output state using cascaded buffers as shown in 

Figure 7.3. 

For example, I-V characteristics of aligned metal nanowire arrays will display large 

resistance anisotropy depending on measurement direction. Contact pads could be patterned along 

one axis of the template to determine whether the nanowire alignment orientation is along (low 

resistance) or orthogonal (high resistance) to the measurement direction. If a transparent substrate 

is used instead for optical measurement, light transmission will show optical anisotropy depending 

on incident direction of light. Alternatively, pattern transfer could be performed onto metal 

nanoparticles using selective particle decoration, and plasmonic properties of ordered 

nanoparticles could be measured to read out the output states.  
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Figure 7.3 Design for a buffer that can be used to enlarge the region containing the output state. 

Input and output states (black dashed box) are indicated. To make the output readout process 

easier, we can cascade multiple buffers with increasing boundary dimensions without affecting the 

output state. 

 

7.3 Future vision of self-assembly-based computation 

The Ising-model-based architecture for computing differs radically from the conventional 

electronics-based model, but we envisage this new paradigm to be scalable and to be compatible 

with the server- and cloud-based computing systems that are increasingly relevant today. Examples 

of a scalable self-assembling paradigm may use directed self-assembly of alternative nanoscale 

materials, and/or roll-to-roll in-line processing. Readout could be accomplished by multi-beam 

electron and optical microscopes. 

The self-assembly architecture may also enable novel materials-based computing 

applications, where “smart” materials must sense and respond (by modifying their structure and 

function) to various environmental inputs. Computation in material systems such as block 

copolymers thus has promise not only for improving, but also expanding on existing computing 
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architectures. As such, we are not discouraged by the apparent differences between self-assembly-

based computing and the current dominant computational paradigm. Rather, we view investing 

our effort in novel forms of computation as key to maintaining a vibrant range of future 

possibilities for computing as well as for material patterning. 
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Appendix 

 

 
Here, we present our MATLAB program for performing simulated annealing. To encode boundary 

conditions for an m × n array of posts, we defined a (2m + 1) × (2n + 1) array called template. Odd 

row index and even column index, or even row index and odd column index, correspond to location 

of the Ising states. The template array was first initialized to zero. When a double post was placed 

between two posts, the template element located between the two posts was set to 2. The six 

template elements located adjacent to the double post were set to 1’s or −1’s as described in 

Chapter 4. All elements of the template array located outside the double post boundary were set to 

−9, and were ignored after simulated annealing. Figure A.1 shows an example of a sample post 

array and its corresponding template array encoding. 

 

 

Figure A.1 Sample post array and its corresponding template array encoding.  
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Next, a random initial solution was generated. Boundary states specified as 1 or 2 in the 

template array were fixed to +1, and boundary states specified as −1 were fixed to −1 in the random 

initial solution. The remaining states were randomly chosen between +1 and −1. After the 

minimum Hamiltonian configuration is calculated, the resulting binary state array is converted into 

a corresponding block copolymer pattern by determining the block copolymer morphology at each 

post based on the four states located adjacent to the post. Single posts were drawn, and double 

posts were drawn at locations where the template array element is specified as 2. The MATLAB 

code is presented below. 

 

%% Simulated annealing algorithm 
clear; clc; close all; tic; 

 
% Simulated annealing parameters 
J = -1;             % Ising model J 
h = -1;             % Ising model h 
T =  1;             % Initial temperature 
T_min = 0.01;       % Temperature threshold 
alpha = 0.99;       % Scaling factor (Ti+1 = alpha*Ti) 

 
% Template definition 
template = [];      % Enter template design here 
[row,col] = size(template); 
n = (row*col-1)/2;  % Iterations per annealing temperature 

 
% Generate random initial solution 
state = 2*randi([0 1],row,col)-1; 
for i = 1:row 
    for j = 1:col 
        if template(i,j) > 0 
            state(i,j) = 1; 
        elseif template(i,j) < 0 
            state(i,j) = -1; 
        end 
    end 
end 

 
% Perform simulated annealing 
step = 0; 
while T > T_min 
    step = step + 1; 

 
    for i = 1:n 
        chosen = 0;                             % Choose a random state 
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        while chosen == 0 
            row_rnd = randi([1 row]); 
            if mod(row_rnd,2) == 1 
                col_rnd = 2*randi([1 floor(col/2)]); 
            else 
                col_rnd = 2*randi([1 ceil(col/2)])-1; 
            end 

 
            if template(row_rnd,col_rnd) == 0 
                chosen = 1; end 
        end 

 
        state_ct = state(row_rnd,col_rnd);      % Center state 
        state_tl = state(row_rnd-1,col_rnd-1);  % Top left neighbor 
        state_bl = state(row_rnd+1,col_rnd-1);  % Bottom left neighbor 
        state_tr = state(row_rnd-1,col_rnd+1);  % Top right neighbor 
        state_br = state(row_rnd+1,col_rnd+1);  % Bottom right neighbor 

 
        H1 = -state_ct*((state_tl+state_bl+state_tr+state_br)*J + h); 
        H2 = -H1;                               % Calculate Hamiltonians 

 
        if exp(-(H2-H1)/T) > rand()             % Update chosen state 
            state(row_rnd,col_rnd) = -state_ct; end 
    end 

 
    T = alpha*T;                                % Update temperature 
end 

 
% Determine block copolymer morphology at each post 
morphology = zeros(floor(row/2),floor(col/2)); 
for i = 2:2:row 
    for j= 2:2:col 
        neighbor = [state(i-1,j) state(i,j+1) state(i+1,j) state(i,j-1)]; 
        if isequal(neighbor,[1 -1 1 -1]) == 1   % Vertical line 
            morphology(i/2,j/2) = 1; end 
        if isequal(neighbor,[-1 1 -1 1]) == 1   % Horizontal line 
            morphology(i/2,j/2) = 2; end 
        if isequal(neighbor,[1 -1 -1 -1]) == 1  % Top termination 
            morphology(i/2,j/2) = 3; end 
        if isequal(neighbor,[-1 1 -1 -1]) == 1  % Right termination 
            morphology(i/2,j/2) = 4; end 
        if isequal(neighbor,[-1 -1 1 -1]) == 1  % Bottom termination 
            morphology(i/2,j/2) = 5; end 
        if isequal(neighbor,[-1 -1 -1 1]) == 1  % Left termination 
            morphology(i/2,j/2) = 6; end 
        if isequal(neighbor,[1 1 -1 1]) == 1    % Top T-junction 
            morphology(i/2,j/2) = 7; end 
        if isequal(neighbor,[1 1 1 -1]) == 1    % Right T-junction 
            morphology(i/2,j/2) = 8; end 
        if isequal(neighbor,[-1 1 1 1]) == 1    % Bottom T-junction 
            morphology(i/2,j/2) = 9; end 
        if isequal(neighbor,[1 -1 1 1]) == 1    % Left T-junction 
            morphology(i/2,j/2) = 10; end 
        if isequal(neighbor,[1 1 -1 -1]) == 1   % Top Right bend 
            morphology(i/2,j/2) = 11; end 
        if isequal(neighbor,[-1 1 1 -1]) == 1   % Bottom Right bend 
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            morphology(i/2,j/2) = 12; end 
        if isequal(neighbor,[-1 -1 1 1]) == 1   % Bottom Left bend 
            morphology(i/2,j/2) = 13; end 
        if isequal(neighbor,[1 -1 -1 1]) == 1   % Top Left bend 
            morphology(i/2,j/2) = 14; end 
        if isequal(neighbor,[1 1 1 1]) == 1     % Cross 
            morphology(i/2,j/2) = 15; end 
        if isequal(neighbor,[-1 -1 -1 -1]) == 1 % No connection 
            morphology(i/2,j/2) = 16; end 
        if template(i,j) == -9                  % Do not care 
            morphology(i/2,j/2) = 0; end 
    end 
end 
[row,col] = size(morphology); 

 
% Draw block copolymer morphology 
grid on; axis equal; axis([0 col+1 0 row+1]); 
w = 0.25; l = 0.5; opacity = 0.4; 

 
for i = 1:row 
    for j = 1:col 
        if morphology(i,j) == 1                 % Draw vertical line 
            p = patch((j)+[-w w w -w],(row+1-i)+[l l -l -l],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 2                 % Draw horizontal line 
            p = patch((j)+[-l l l -l],(row+1-i)+[w w -w -w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 3                 % Draw top termination 
            p = patch((j)+[-w w w -w],(row+1-i)+[l l -w -w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 4                 % Draw right termination 
            p = patch((j)+[-w l l -w],(row+1-i)+[w w -w -w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 5                 % Draw bottom termination 
            p = patch((j)+[-w w w -w],(row+1-i)+[w w -l -l],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 6                 % Draw left termination 
            p = patch((j)+[-l w w -l],(row+1-i)+[w w -w -w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 7                 % Draw top T-junction 
            p = patch((j)+[-w w w l l -l -l -w],... 
                (row+1-i)+[l l w w -w -w w w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 8                 % Draw right T-junction 
            p = patch((j)+[-w w w l l w w -w],... 
                (row+1-i)+[l l w w -w -w -l -l],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 9                 % Draw bottom T-junction 
            p = patch((j)+[l l w w -w -w -l -l],... 
                (row+1-i)+[w -w -w -l -l -w -w w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 10                % Draw left T-junction 
            p = patch((j)+[-w w w -w -w -l -l -w],... 
                (row+1-i)+[l l -l -l -w -w w w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 11                % Draw top right bend 
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            p = patch((j)+[-w w w l l -w],(row+1-i)+[l l w w -w -w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 12                % Draw bottom right bend 
            p = patch((j)+[-w l l w w -w],(row+1-i)+[w w -w -w -l -l],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 13                % Draw bottom left bend 
            p = patch((j)+[-l w w -w -w -l],(row+1-i)+[w w -l -l -w -w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 14                % Draw top left bend 
            p = patch((j)+[-w w w -l -l -w],(row+1-i)+[l l -w -w w w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 15                % Draw cross 
            p = patch((j)+[-w w w l l w w -w -w -l -l -w],... 
                (row+1-i)+[l l w w -w -w -l -l -w -w w w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 
        if morphology(i,j) == 16                % Draw no connection 
            p = patch((j)+[-w w w -w],(row+1-i)+[w w -w -w],'b'); 
            set(p,'EdgeColor','none'); set(p,'FaceAlpha',opacity); end 

 
        h = rectangle('Position',[j-w/2 (row+1-i)-w/2 w w],... 
            'Curvature',[1,1],'FaceColor','k'); % Draw single post 
        if template(2*i+1,2*j) == 2             % Draw vertical double post 
            h = rectangle('Position',[j-w/2 (row+1-(i+1/2))-w/2 w w],... 
                'Curvature',[1,1],'FaceColor','r'); end 
        if template(2*i,2*j+1) == 2             % Draw horizontal double post 
            h = rectangle('Position',[(j+1/2)-w/2 (row+1-i)-w/2 w w],... 
                'Curvature',[1,1],'FaceColor','r'); end 
    end 
end 

 
toc; 

 


