
Computational Design for the Next Manufacturing

Revolution

by

Adriana Schulz

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science

May 22, 2018

Certified by. .

Wojciech Matusik

Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .

Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students

2

To my great-grandmother, who dreamt about an academic life.
To my parents, who empowered me to live it.

4

Computational Design for the Next Manufacturing Revolution

by

Adriana Schulz

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

Over the next few decades, we are going to transition to a new economy where highly com-
plex, customizable products are manufactured on demand by flexible robotic systems. In
many fields, this shift has already begun. 3D printers are revolutionizing production of
metal parts in the aerospace, automotive, and medical industries. Whole-garment knitting
machines allow automated production of complex apparel and shoes. Manufacturing elec-
tronics on flexible substrates makes it possible to build a whole new range of products for
consumer electronics and medical diagnostics. Collaborative robots, such as Baxter from
Rethink Robotics, allow flexible and automated assembly of complex objects. Overall, these
new machines enable batch-one manufacturing of products that have unprecedented com-
plexity.

In this thesis, I argue that the field of computational design is essential for the next revo-
lution in manufacturing. To build increasingly functional, complex and integrated products,
we need to create design tools that allow their users to efficiently explore high-dimensional
design spaces by optimizing over a set of performance objectives that can be measured
only by expensive computations. In this work discuss how to overcome these challenges
by 1) developing data-driven methods for efficient exploration of these large spaces and 2)
performance-driven algorithms for automated design optimization based on high-level func-
tional specifications. I showcase how these two concepts are applied by developing new
systems for designing robots, drones, and furniture.

Thesis Supervisor: Wojciech Matusik
Title: Associate Professor of Electrical Engineering and Computer Science

5

6

Acknowledgments

First and foremost, I would like to thank my PhD advisor, Wojciech Matusik, for his many
teachings on conducting research: from picking good problems to framing and presenting
ideas, and all that takes place in between. Wojciech always ensured I was granted exposure
to the important tools and means that would help me grow into a successful researcher. Most
of all, I thank him for encouraging me to dare to do things I would never have known I was
capable of. This was only possible because he challenged me and made it safe for me to try.

I would also like to thank my other committee members, Daniela Rus and Eitan Grinspun,
for their teachings and mentoring. I thank Eitan for nurturing my interest in geometry, for
teaching me how to defend my ideas so that I could better understand what makes a research
problem interesting, and for all the wonderful advice over hummus at Columbia Hillel. I
thank Daniela for introducing me to the amazing field of robotics, for showing me how to
bring together ideas from different fields, and for always encouraging me to âĂĲkeep the
gradient!”.

I would also like to thank the wonderful collaborators without whom this work would not
be possible: Ariel Shamir, Justin Solomon, Ilya Baran, David Levin, Pitchaya Sitthi-amorn,
Changxi Zheng, Bo Zhu, Andrew Spielberg, Tao Du, Jie Xu, Jeffrey Lipton, and Bernd
Bickel. I am extremely grateful not only for the ideas and work they have contributed to
this thesis, but also for the fun memories we created—especially during the weeks leading up
to the Siggraph deadlines! I also thank the brilliant students I had the pleasure to supervise
and who greatly contributed to this work: Wei Zhao, Harrison Wang, Robin Cheng, Baker
Logan, Keneth Pinera, Luis Trueba, Katie Bartel, Nilu Zhao, Saul Lopez, Jackson Wirekoh,
Molly Donalson, Helena Wang, Kendall Helbert, Alexxis Isaac, Isaque Dutra, Megan Chao,
Diane Rosales, Marie Moudio, Brian Saavedra, and Emily Salvador.

I would like to thank the rest of the MIT faculty, students, and staff who provided
great feedback, support, and friendship during this process. I thank David Karger, Fredo
Durand, Solar-Lezama, Sylvain Paris, Boris Katz, and Charles K. Smart for the helpful
ideas and discussions. I thank all the students from the MIT Graphics Group—especially
Valentina Shin, James Minor, Desai Chen, Abe Davis, Javier Ramos, Michael Foshey, and
Nick Bandeira—as well as the students at MIT DRL and Columbia Computer Graphics
Group. I thank Bryt Bradley for being an incredible supporter over all these years.

I also want to thank the wonderful friends I made during the last few years as I was
pursuing this degree. They made this process fun, made the hard moments better, and
inspired me and changed me in more ways than I can describe. It would be impossible to
name them all, but I’d like to especially thank Josh Pfeffer (without whose support I cannot
imagine having submitted half of my papers), Natalie Mashian Fisher, and Luis Voloch.

Next, I would like to acknowledge and thank my mentors from my undergraduate and
Masters studies in Brazil, Luiz Velho and Eduardo da Silva. Though they were not directly
involved with the work in this thesis, they were fundamental in preparing me for it. I am
very grateful for their teaching, mentorship, and support during my initial ventures in the
academic world.

Last but not least, I want to thank my family. I thank my parents, Sonia and Mauro
Schulz, who always nurtured my curiosity, who empowered me to come to MIT, and who
supported me in every step of the way. I thank them for their constant love, closeness,

7

and for sending me far away so that I could pursue my own dreams. I know how hard
that was and still is. I thank them for their contagious passion for academia, for being
amazing role models, and for always pushing me to go a step beyond. I thank my mom for
the long philosophical conversations, for introducing me to art and design, and for always
challenging me to think deeply and outside the box. I thank my dad for inspiring my love
for mathematics and for encouraging me to study Engineering, all the while pointing out to
me how limited logic actually is. Finally, I thank my sister, Lilian Schulz, my lifelong best
friend. My sister was always there to help me out—from my homework in grade school to
my faculty applications—and none of my achievements would have been half as fun if she
had not been there to celebrate them with me!

8

A Story Before We Start

In contrast to the rest of this thesis, where I have verified all the finding to the best of
my abilities, this story may not be entirely true. But I will take the liberty to share it,
because there is something personal about a thesis that makes it different from my list of
published papers. If this work is supposed to summarize what I have discovered during my
PhD, then this story, however accurate or inaccurate it may be, is essential to making this
work complete.

They say Rousseau loved the opera so much that he would visit this specific opera house
once every week. And he would sit in the back listening to the women’s voices—such mar-
velous, enchanting voices, that he would imagine them to be the most beautiful women in the
world. One day, a friend, aware of his adoration, agreed to arrange for him to have dinner
with the singers one evening after the show.

On the day the dinner was scheduled, Rousseau came to the opera house delighted. He
sat that night in his usual seat in the back, completely captivated by the singers and waiting
in anticipation to meet the women to whom such voices belonged. But as he joined the
dinner party he was surprised to see women who were very far from the beauty standards he
envisioned. Most of the women had birth deformities or had suffered physical traumas that
had left them disfigured. Because of their unattractive exterior, they had been taken care of
by an orphanage that sheltered them and educated them to pursue a career where only their
voices could be heard. Rousseau was so surprised, it took him a moment to gather himself
and join the party. But the women were sweet and cheerful, so the dinner was pleasant and
Rousseau came home content.

A week passed by and once again Rousseau made his way to the opera house. From his
usual seat in the back he heard the women’s voices. They were as graceful and dazzling as
they has always been. He closed his eyes and imaged how women who possessed such voices
looked. He quickly realized he had seen their faces a week before. But as he sat and heard
their voices, their angelic, bewitching voices, he imaged them to be the most beautiful women
in the world.

The person who started this PhD, imagined academia to be “the most beautiful place
in the world.” An open invitation to push even if ever so slightly the invisible wall that
surrounds us—the frontier of human knowledge. The one who writes this thesis has seen
academia in a much brighter light. There were surprises that were not particularly pleasant.
There were times I needed a few moments to “gather myself.” But I can still see that invisible
wall and now I am surrounded by incredible friends and mentors who are actively pushing
it. It has been a privilege to witness their work, their intellectual integrity, their passion,
their bad hair days. Academia enchants me today even more than it ever did.

The main discovery of my PhD was this imperfect yet amazing world, which I hope to
always be a part of.

9

10

Contents

1 Introduction 29

1.1 The Next-Manufacturing Revolution . 29
1.2 Abstraction of Design for Manufacturing . 30
1.3 Approach and Contributions . 32

1.3.1 Data-Driven Methods . 32
1.3.2 Performance-Driven Search Methods 33
1.3.3 End-to-End Systems . 34

1.4 Thesis Overview . 35
1.5 Contributions . 35

2 Related Work 37

2.1 Data-Driven Methods . 37
2.1.1 Parametric Modeling . 38
2.1.2 Parametric CAD . 38

2.2 Performance-Driven Methods . 40
2.2.1 Interactive Exploration . 40
2.2.2 Optimization . 40

3 A Collection of Manufacturable Designs 43

3.1 Introduction . 43
3.2 Manufacturable Designs . 43

3.2.1 Items Catalog . 43
3.2.2 Set of Designs . 44

3.3 Parametric Manufacturable Designs . 45
3.4 Automatic Hierarchical Parametrization . 45
3.5 Defining the mapping function 𝐹 . 46

3.5.1 Geosemantic Relationships . 47
3.6 Connections . 49
3.7 Discussion . 50

4 Retrieval on Collections of Manufacturable Designs 51

4.1 Introduction . 51
4.2 Related Work . 53
4.3 Representation of Parametric Shapes . 55

4.3.1 Manifold Approximation . 56

11

4.4 Algorithm . 57
4.4.1 Unbounded Manifolds . 58
4.4.2 Bounded Manifolds . 60

4.5 Retrieval . 62
4.6 Experimental Setup . 63

4.6.1 Database . 63
4.6.2 Descriptors . 64

4.7 Evaluation . 65
4.7.1 Manifold Representation . 65
4.7.2 Retrieval . 69
4.7.3 Limitations . 73

4.8 Discussion . 75

5 Assembly-Based Design for Manufacturing 77

5.1 Introduction . 77
5.2 Design Workflow . 78
5.3 Parametric Manipulations . 79
5.4 Composition . 81
5.5 Snapping . 81
5.6 Connecting . 83

5.6.1 Searching for Connections . 83
5.6.2 Final Composition . 84

5.7 Results . 85
5.7.1 Modeling . 85
5.7.2 Fabrication . 86

5.8 Discussion . 86

6 Interactive Design-Space Exploration 89

6.1 Introduction . 89
6.2 Related Work . 90
6.3 Workflow . 91
6.4 Precomputation Overview and Notations . 91

6.4.1 Refinement Relations . 93
6.4.2 Adaptive Sampling . 94
6.4.3 Refinement Notations . 94

6.5 Adaptive Refinement Strategy . 95
6.5.1 Motivation . 95
6.5.2 Algorithm . 98
6.5.3 Extension to Cubic B-splines . 101

6.6 Homeomorphic Mapping . 103
6.6.1 Motivation . 103
6.6.2 Algorithm . 104

6.7 Results . 107
6.7.1 Application in Shape Optimization 110
6.7.2 Limitations . 111

12

6.8 Discussion . 112

7 Interactive Performance-Space Exploration 113

7.1 Introduction . 113
7.2 Related Work . 114
7.3 Mathematical Preliminaries . 115

7.3.1 Definitions . 115
7.3.2 KKT Conditions . 116

7.4 First-Order Approximation . 117
7.5 Pareto Front Discovery . 118

7.5.1 Data Structure . 118
7.5.2 Discovery Algorithm . 119
7.5.3 First-Order Approximation . 121
7.5.4 Sparse Approximation . 122
7.5.5 Visualization . 123

7.6 Results . 123
7.6.1 Experiments . 124
7.6.2 Design Applications . 128

7.7 Discussion . 131

8 Applications 133

8.1 Introduction . 133
8.2 Interactive Design of Ground Robots . 134

8.2.1 System Overview . 134
8.2.2 Methods Overview . 136
8.2.3 Results . 138

8.3 Interactive Multicopter Design . 142
8.3.1 System Overview . 142
8.3.2 Methods Overview . 142
8.3.3 Results . 143

8.4 Robot-Assisted Carpentry . 145
8.4.1 Systems Overview . 146
8.4.2 Methods Overview . 146
8.4.3 Results . 148

9 Conclusion 151

9.1 Future Work . 151
9.1.1 Data-Driven Methods . 152
9.1.2 Performance-Driven Methods . 153
9.1.3 End-to-End Systems . 155

9.2 Lessons Learned . 156

13

A Proofs of Interpolation Algorithm 157

A.1 Notation . 157
A.2 Properties of Step 2 . 157
A.3 Local Point Lemma . 158
A.4 Locality proof with Linear Precision . 159

A.4.1 Preservation over Basis Refinement 159
A.4.2 Preservation over Element Refinement 160

A.5 Example . 164

B Proof of the First-Order Approximation of the Pareto Front 167

14

List of Figures

1-1 The next manufacturing revolution. In a very near future, we will have work-
shops where automated manufacturing machines will make customized, com-
plex, multi-material parts and collaborative robots will allow flexible and au-
tomatic assembly of objects that have multiple functionalities. 30

1-2 Designing a robot means selecting a point in a high-dimensional design space
that includes specification of the robot’s geometry, electronic components,
and control software. Users select this point based on how it is mapped to a
performance space, which defines important metrics that designers take into
account when optimizing the models (e.g., the trajectory, fabrication cost, and
reaction to an external force). 31

1-3 An example of a parametric design. The original design is shown in gray, and
the new designs generated by varying the parameters are shown in yellow. . 33

1-4 We apply data-driven and performance-driven algorithms to develop inter-
active systems for design of complex functional mechanisms. From left to
right: a data-driven method that automatically handles manufacturing de-
tails and guarantees [Schulz et al., 2014]; real-time performance exploration
and optimization for functionality-driven design [Schulz et al., 2017c]; end-
to-end system for design and manufacturing of ground robots that allows for
concurrent design of both geometry and motion [Schulz et al., 2017b]. . . . 34

2-1 When engineers design shapes, they embed their experience and knowledge
in carefully selected, fabrication-aware parameters such as this fillet radius,
which encapsulates a curved transition along an edge, and this chamfer dis-
tance, which describes the slope transition between two surfaces. These in-
clude fabrication limitations that take into account the different processes.
This example includes minimum radius constraints on internal cuts for com-
patibility with milling machines. 39

2-2 Regeneration times for parameter changes using Onshape for models with
increasing level of complexity. 40

3-1 An example of a fabricable object from our collection (left). Each design is
detailed down to the level of individual screws, and each part maintains a
reference to the items used from the items catalog (right). 44

15

3-2 From left to right: a design example of a toy wagon, the hierarchical tree, and
a visualization of the connections. The arrow on the handle indicates that this
part has an articulation, namely that it can rotate along the depicted axis.
The tree includes the geosemantic relationships that are stored at each level
of the hierarchy, 𝐶0 to 𝐶4 (shown in blue), as well as connections (depicted in
red). The visualization on the right illustrates the information contained in
each connection node. 46

3-3 A parametric model with pattern elements. Upon resizing, both the number
of floor planks and the number of rungs in the monkey bars change. 47

3-4 We show a simple 2D table consisting of three parts, a top and two legs (Leg1
and Leg2). Each part is contained within a single element for which the q𝑖

are the positions (𝑥, 𝑦) and sizes (∆𝑥,∆𝑦) of the bounding box of the part. . 48

4-1 We propose a method for shape retrieval from parametric shape collections
that uses a descriptor space representation. While shape descriptors map sin-
gle shapes to points in a descriptor space, smooth descriptors map parametric
shapes to low dimensional manifolds in this space. Our method efficiently
represents these manifolds in order to allow for accurate and fast retrieval of
the closest parametric model to a given query shape. 52

4-2 The function ℳ(𝑞) = (𝒟 ∘ ℱ)(𝑞) is a composition of the mapping function
ℱ from parameter values to a geometry with the signature function 𝒟 which
generates a descriptor for a given geometry. 56

4-3 The coverage of a point (left) and of a tangent line (right) are defined by the
region of the manifold (here illustrated as a curve 𝑐(𝑡)) that is well approxi-
mated by this primitive given the allowed approximation error 𝛿. While the
coverage of the point 𝑐(0) is directly proportional to 𝛿, the coverage of the
tangent line 𝑙(𝑡) is proportional to 𝑑, which depends on the curvature. 58

4-4 Computation of the bounding radius for a tangent space primitive 𝑙(𝑡) on
the manifold 𝑐(𝑡). In the illustration, the dotted line represents the part
outside the boundary of the manifold and 𝛿 is the allowed approximation
error. Left: when we do not take the boundary into account the bounding
radius is determined uniquely by the curvature constraint 𝑟𝑐. Right: when we
are close to the boundary, the radius is computed as 𝑟𝑏 + 𝑟𝛿, where 𝑟𝑏 is the
distance to the boundary and 𝑟𝛿 is the amount by which we can expand the
radius preserving tightness constraints. We can compute 𝑟𝛿 from 𝛿 and 𝑑𝑏,
which is the distance from the boundary point 𝑝𝑏 on 𝑙(𝑡) to the manifold. . . 60

4-5 From left to right: covering the manifold with tangent spaces bounded by
hyperspheres, non-oriented ellipsoids, and oriented ellipsoids. This example
illustrates that the number of primitives needed to represent the manifold for
the same value of 𝛿 is reduced when we use better primitives. We notice that
even in this example with a 2-dimensional parameter space there is a signifi-
cant improvement when oriented primitives are used. The blue dots represent
the underlying manifold represented via super sampling. (Please note that
these are high dimensional primitives projected to 2D for visualization and
therefore appear slightly distorted.) . 62

16

4-6 Approximating the distance 𝑑𝑒 from the projected point 𝑝 to the hyperellipse.
Let 𝑆 be a scaling function that maps the hyperellipse to the unit hypersphere
centered at the origin. The point on the hypersphere that is the closest to 𝑆(𝑝)

is given by 𝑝𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝑆(𝑝)
‖𝑆(𝑝)‖ . We use the inverse mapping and approximate the

distance from 𝑝 to the hyperellipse as 𝑑𝑒 ≈ ‖𝑝− 𝑆−1(𝑝𝑐𝑜𝑛𝑡𝑎𝑐𝑡)‖. 63

4-7 Comparison between adaptive sampling and rejection sampling on a simple
paraboloid example. Our rejection sampling scheme was done for both point
and planes for a fixed approximation error 𝛿. The number of samples for the
adaptive sampling schemes was chosen to be the same as the result of the
rejection sampling for both points and planes. The top row shows the results
for point samples. Though both methods return a uniform distribution, in the
adaptive sampling scheme points tend to clump together and leave gaps. The
bottom row results for approximating with tangent spaces (we only display
the center of the tangent space for simplification). Once again both methods
display the desired distribution (based on curvature) and rejection sampling
covers the space more effectively. 66

4-8 Measuring fitting and coverage errors as a function of the target parameter
𝛿 for the implemented descriptors. we observe that both measured errors are
within the bounds of 𝛿. For large values of 𝛿 we observe that the fitting error
drops to zero. This is because for very coarse approximations, our algorithm
prefers points to tangents – the coverage of points become larger with 𝛿,
while plane coverage is still limited by the curvature and the boundary of the
manifold. Since absolute distance values depend on descriptors (and are much
larger for the Light Field descriptor), the ranges of the target errors for this
experiment were chosen so that the number of samples were similar for all
descriptors. 67

4-9 Comparison between our hybrid method and using a single primitive. Top row:
shows the storage cost of each representation across different target parameters
𝛿 in log scale. Bottom row: the relative cost of the single primitive methods
while compared to our method. 68

4-10 Demonstration of query failures when representation only consists of the mean
shape. From left to right: the mean shape of some parametric models in the
database, query shape given by a random parameter setting of each parametric
model, and the closest mean shape retrieved from the database. Since changes
in parameter settings significantly alter the geometry, the closest mean shapes
are usually not from the parametric models that originate the queries. . . . 70

4-11 Comparison between our approach and the naive one. We measure the dif-
ference between the distance to the closest primitive in the collection and the
distance to the correct manifold and show the worst case for both approaches
for querying points sampled on the full database and on individual categories.
From these results we verify that our method has a better performance across
all categories. 71

17

4-12 Results of retrieval. From left to right: query shape, result for D2 descriptor
(for increasing target errors), and result for Voxel descriptor (for increasing
target errors) and results for the Light Fied descriptor (for increasing target
errors). 71

4-13 Precision-recall plots evaluating classification accuracy for our method com-
pared to using only mean shapes for different descriptors. 73

4-14 Comparison of retrieval with mean shapes only and manifold representation
for the Light Field descriptor. From left to right: query shape (green), closest
mean shape retrieved (gray), closest parametric shape retrieved with param-
eter fitting (blue) with its corresponding mean shape (gray). We observe
that using the parametric shapes we retrieve models that are more similar in
geometry but may lie on a different class. 74

5-1 The design and fabrication by example pipeline: casual users design new
models by composing parts from a database of parametric manufacturable
designs. The system assists the users in this task by automatically aligning
parts and assigning appropriate connectors. The output of the system is a
detailed model that includes all components necessary for fabrication. 77

5-2 The user interface. Icons that link to components of the database are displayed
on the left, and the modeling canvas is on the right. 79

5-3 An illustration of how parametric variations can be explored in our tool. The
arrows control translation, while spheres control scaling. On the left, we show
the controls on a leaf node of the hierarchy; on the right, we show the controls
on an internal node. During manipulation, elements on the selected node are
represented in full color, while the others become semi-transparent. Notice
that constrained degrees of freedom are hidden. For example, the user is
unable to change the thickness of the shelf, since the items catalog states that
planks of wood can be cut only in two directions. 80

5-4 An example of snapping to constraints. We add a tabletop 𝑇𝐴 to the working
model 𝑇𝑊 containing eight legs (right). The coplanarity constraints on the
original design 𝑇𝐷 that contained 𝑇𝐴 are represented by the normals of the
corresponding planes (left; we show only the vertical ones). The feasible
snapping configurations for q𝐴 are shown on the right. The system will choose
one of these configurations: its choice will depend on the scale parameters and
the position on which the user places the tabletop. 82

5-5 An illustration of snapping for functional objects. When a door is added to
the side of a cabinet, it automaticaly rescales so that, when shut, it will align
with the oposite side. At left, a door is added to the working model. From
left to right: the added door before snapping, the snapped configuration, and
a visualization of the snapped configuration when the door is closed. The
rotation axis of the articulations is depicted by the arrows. 83

18

5-6 An example of changing parameters to fit connectors. From left to right: the
bottom shelf snapped to the bottom of the table, the resulting configuration
of the model after the connecting step, and the vizualization of the connec-
tors (principal elements are made semi-transparent). Notice that, in order to
connect the bottom shelf to the table legs, the system raises the shelf above
the ground to leave room for l-brackets. 85

5-7 Examples of models designed using our system and the number of individual
parts they comprise. Different colors indicate the different parts that were
added to the model. 85

5-8 An example of different manipulations of a working model after it has been
composed from multiple parametric designs. 86

5-9 From left to right: input designs, models created using the system, and fab-
ricated results. We highlight the connecting elements on the first model by
making all principal elements semi-transparent. 87

6-1 Our method takes as input a CAD model with a set of exposed parameters
which define the design space. We sample the parametric space in an adaptive
grid and propose techniques to smoothly interpolate this data. We show how
this can be used to drive interactive exploration tools that allow designers to
visualize the shape space while geometry and physical properties are updated
in real time. 90

6-2 The neighborhood of an element, denoted ℬ(𝑒𝑙), is defined as the set of adja-
cent samples (left). The neighborhood of a sample, denoted 𝒩 (𝑥𝑘), is defined
as the set of adjacent elements (middle). We also extend the definition of
𝒩 (𝑥𝑘) to any point 𝑝 ∈ 𝒜 as the set of adjacent elements (right). 92

6-3 When locality is enforced, the number of consistent representations 𝑝𝑙𝑘 that
are needed at each sample 𝑥𝑘 depends on the cardinality of 𝒩 (𝑥𝑘). 93

6-4 Refinement of linear B-splines. 93
6-5 A linear B-spline 𝜑𝑗𝑖 is illustrated in blue: the blue "‘x"’ is the center and

the region where it assumes non-zero values is shaded in light blue. The local
sample set of this linear B-spline ℒ(𝜑𝑗𝑖), is defined as the set of samples 𝑥𝑘
such that 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑥𝑘) and is illustrated in black. 95

6-6 Comparison between multi-linear interpolation (left), where discontinuities
appear along T-junctions, and our method (right), where the interpolation is
continuous. 96

6-7 Our method of combining element refinement with basis refinement: interpo-
lated values inside each element only depend on the samples that lie on the
boundary of that element. 96

6-8 Hierarchical and quasi-hierarchical basis refinement strategies. Both of these
schemes violate locality on element 𝑒1𝐴 since the basis function 𝜑0

1 does not
vanish on this element. The sample outside ℬ(𝑒1𝐴) affecting this element is
highlighted in red. 97

6-9 Example of samples added for a given split in 2D and 3D. Split element, split
plane and added samples are shown in blue. 98

19

6-10 Illustration of refinement in two dimensions. Letters are used to index 𝑥𝑘 for
clarity. When the element is split, new samples are added, the B-splines 𝜑𝑗𝑖
are refined and the new basis functions 𝜓𝑗𝑖 are recomputed to ensure locality. 100

6-11 The neighborhood 𝒩 (𝑥𝑘) of a sample 𝑥𝑘 (left) and the neighborhood ℬ(𝑒𝑙) of
an element 𝑒𝑙 (right) for cubic B-splines. 101

6-12 Refinement of cubic B-splines. 102
6-13 The mapping 𝐹 : 𝑝𝑙

𝑘
→ 𝑝𝑙

𝑘
is used to obtain 𝑝𝑙𝑘 for 𝑥𝑘 ∈ ℬ(𝑒𝑙) ∖ ℬ(𝑒𝑙). 103

6-14 Example of referencing in Onshape. The user applies a feature to a given face
which is highlighted (left), and then changes parameter making other faces
and edges of the model merge or split (right). Onshape’s referencing scheme
guarantees that the feature will still be applied to the correct face even after
these changes are made. 104

6-15 Two examples of a fillet feature applied to edges. After this feature is defined,
parameter changes on earlier features in the feature list split the edges into
two parts. The way the edge references are handled in order to re-generate
the fillet depends on the feature history, not the geometry. On the model on
the left, the CAD system applies the fillet to both edges generated by the
split; on the model on the right, the fillet is applied to only one of the edges. 105

6-16 Common patch layout given a source and target geometry. Top to bottom: B-
rep with highlighted topological changes, paths extracted from CAD, complete
patch layout. 106

6-17 Mapping result. Given a source geometry and a target mesh topology the
mapping outputs a mesh with the source geometry and target topology. . . . 106

6-18 Examples of interactive visualization. On the left we show each model in red
boxes and the regions with fixed boundary conditions and forces with red
arrows. On the right we show results from our visualization interface. As the
user varying the parameters, geometry is updated is real time. The top four
rows show pre-computed stress analysis. On the forth row the force direction
also varies and is illustrated with a red arrow. The fifth row shows a result with
fluid simulation. The last row shows a results with thermoelastic simulation
where the colors display (from left to right) heat distribution, deformation
and stress. 108

6-19 Result of shape optimization. Stress is minimized on an arbor press for two
different use cases, a tall one is shown on the right and a short one on the left. 111

7-1 Our method allows users to optimize designs based on a set of performance
metrics. Given a design space and a set of performance evaluation functions,
our method automatically extracts the Pareto set—those design points with
optimal trade-offs. We represent Pareto points in design and performance
space with a set of corresponding manifolds (left). The Pareto-optimal so-
lutions are then embedded to allow interactive exploration of performance
trade-offs (right). The mapping from manifolds in performance space back to
design space allows designers to explore performance trade-offs interactively
while visualizing the corresponding geometry and gaining an understanding
of a model’s underlying properties. 114

20

7-2 The Pareto set represents the points in design space with optimal performance
trade-offs that get mapped to the Pareto front in performance space. Different
colors indicate different manifolds in design and performance space with a one-
to-one mapping. Any ray from the origin (blue line) can only intersect the
Pareto front once. 115

7-3 The performance buffer: since a ray from the origin can only intersect one
point in the Pareto front, we use a buffer discretized by (hyper)spherical co-
ordinates for storage. 119

7-4 A single iteration of the discovery algorithm: random samples x𝑖𝑠 are generated
from the current data on the buffer (illustrated in gray) and optimized for a
search direction s(x𝑖𝑠) (blue arrow). A first-order approximation around the
result of this optimization, x𝑖𝑜, generates the corresponding manifolds in both
design and performance space (red lines) and the buffer is updated based on
this new data. 120

7-5 Search directions for buffer cells for 𝑑 = 2. For diversity, different regions of
the performance space get assigned different search directions. We use the
buffer discretization to define these directions as illustrated in the figure. . . 121

7-6 Nondominated solutions for various well-established benchmark problems us-
ing our proposed approach. Top two rows: Solutions for the five real-valued
ZDT problems. Bottom row: Solutions for the first three DTLZ problems
with three objectives. Our approach was able to converge to the ground truth
Pareto front in all cases. 124

7-7 Results for Pareto front discovery on Fourier benchmark. The figure illustrates
how the Pareto front can be covered by a set of individually smooth regions
which are mapped via 𝐹 from affine subspaces in the design space. Each
corresponding pair in design and performance space is illustrated in a different
color. In high-dimensional cases in design space, dimensionality-reduction via
principal component analysis is applied for visualization purposes. 126

7-8 A direct piecewise-linear interpolation result of the example shown on the first
row of Figure 7-7. The optimal solution is chosen from the list of points at
each buffer cell (blue points) and a denser sampling is generated by linearly
interpolating the preimage of neighboring points in performance space (red
points). Since the Pareto front is comprised of distinct manifolds, the linearly
interpolated points have no guarantee of Pareto optimality. For illustrative
purposes, the interpolation is performed on a sparse set of the discovered
solutions. 127

7-9 Performance Space Assessment of the approximation error associated with
our first-order expansion method on the example shown on the first row of
Figure 7-7. Left: plot in performance space of the discovered Pareto front
(grey) and results of the same points after performing an additional local
optimization (maroon). Right: histogram showing the approximation error
for points on the discovered Pareto front. 127

21

7-10 First-order approximation for a point x on the Pareto front of the bi-objective
Kursawe problem Kursawe [1991] (true front shown in black). The first-order
approximation defined by our method (red) is compared to the mapping of
affine spaces around x generated using directions chosen uniformly at random
(gray). 128

7-11 Examples of CAD models processed using our proposed technique. From
left to right: Pareto-optimal points in design space (illustrated with multi-
dimensional scaling via principal component analysis for models with more
than three design parameters); Pareto-optimal points in performance space;
the resulting embedding and illustrations of geometric results for some sam-
pled points. Across all figures, the different colors correspond to different
regions resulting from local expansion in design space. 129

7-12 Example of two variations of the brake hub that have similar performance
metrics but very different design parameters. Our system can expose these re-
lationships providing intuition to designers about the structural nature of the
model. The metrics are shown under a normalization for easy comparison—
the Pareto front is rescaled to lie between zero and one. 130

7-13 Example of two different lamps (front and side view) that have the same
performance across all metrics. Due to the large dimensionality of the design
space, these two configurations have the same stability, mass, and distance to
the focal point. 131

8-1 A robot design that topples while walking (a) can be modified to follow a gait
that only wobbles slightly (b), but changing the geometry (c) allows the robot
to move much faster and more steadily. 134

8-2 System diagram. Users interact with geometry and gait design tools. The
designed models are simulated to provide feedback to the user. The user may
iterate over the design before fabricating and assembling the model. 135

8-3 User interface. Icons that link to geometry components are displayed on the
left and the gait design tool is on the bottom. Users design models by dragging
components into the center canvas and editing them. Performance metrics for
the design are shown on the right. 135

8-4 Geometry components by category. Our system’s database contains 45 com-
ponents: 12 bodies, 23 limbs, and 10 peripherals. 136

8-5 Joint controllers for each joint type. Controllers for every joint are separated
into a step phase (shown in green) and a reset phase (shown in red). Users
modify gaits by changing the 𝜃𝑖 values for each joint and defining the step
sequence. 137

22

8-6 One of the geometry components in the database, with both its 3D shape and
2D unfolding. The component has parameter values of diameter 𝑞𝑑 and width
𝑞𝑤. The 3D and 2D representations are coupled so that they are simultane-
ously updated as parameters are changed. In order to allow the assembly-
based modeling to work with our fabrication method, each component is also
annotated with a set of connecting patches that indicate where components
are allowed to be connected together. The green line indicates a patch for
functional connections, and the blue lines are patches for static connections. 137

8-7 Our system automatically generates a 3D mesh for a foldable design. (a) The
original design, with blue edges indicating static connections and green dots
indicating functional connections. (b) Connections are processed by shrinking
faces to make room for hinges and adding holes for servo mounts. (c) Hinges
are added and the result is a complete mesh that is 3D printed. 138

8-8 The system provides guidance arrows for users who want to make local ge-
ometry optimizations. The up and down arrows indicate that the user should
lengthen and shorten the leg, respectively. No arrow indicates that the part
dimension is already at a local optimum. 138

8-9 Optimization results for a four-legged fish robot for different metrics. Max-
imizing speed increases the overall size of the robot (b). Minimizing wobble
makes the robot shorter (c). 139

8-10 Cars designed by eight different novice users after a 20 min. training session
with the tool. Users were given 10 min. to design their car. 139

8-11 Gallery of designs created by a novice user after a 20 min. training session.
Each of the models took between three and 25 min. to design and contains
multiple components from the database. 140

8-12 Trajectories designed by users during the second task. Users who were allowed
to make changes to the robot geometry were able to make the robot navigate
the course about 40% faster on average. 140

8-13 Six robots designed and fabricated using the system. 141

8-14 The electronics (servomotors, microcontroller, and battery) inside the Monkey
example (Figure 8-13(d)). 141

8-15 Comparison of monkey gait in simulation and from physical robot. The robot
motion matches those from the simulations. 142

8-16 An overview of our system. The pipeline consists of multicopter design, opti-
mization, simulation, fabrication, and flight tests. 143

8-17 Example of composition. Left: parts with highlighted patches (circular patch
with an annotated main axis and a diameter in blue and flat patch with an
annotated normal in orange). Right: composed design. 143

8-18 Pentacopter pairs. Left: original pentacopter design. Right: optimized pen-
tacopter for larger payload. 144

23

8-19 Left: motor outputs of the unoptimized pentacopter with 1047g payload. Mo-
tor 1 and 3 reach saturation point (PWM=1800) at 23s. Increasing the pay-
load will cause them to saturate constantly and therefore fail to balance the
torques from other motors. Note that motor 5 is not fully exploited in this
copter. Right: motor outputs of the optimized pentacopter with 1392g pay-
load. Motor 2 and 4 reach saturation during the flight. Compared with the
unoptimized pentacopter, all five motors are now well balanced, making it
possible to take over 30% more payload. 144

8-20 Optimizing a quadcopter with flight time metric and geometry constraints.
Left: a standard quadcopter. Right: optimized rectangular quadcopter. . . . 145

8-21 Battery change when a quadcopter hovers. Left: battery voltage. Given
the same amount of time the optimized quadcopter ends up having a larger
voltage. Right: battery current. In steady state the optimized copter requires
less current. 145

8-22 System workflow. Experts design parametric models in a commercial CAD
system. End users customize and verify the designs using our interactive in-
terface. Once the users are satisfied with the model, the system outputs a
complete fabrication plan which includes instructions for robot assisted cut-
ting processes and rules for user assembly. 146

8-23 Expert input using CAD software. Experts create a model in a standard CAD
system which is parametric from construction and exposes the parameters
for user customization using the system’s variables (top). For defining the
assembly, experts use a custom connection feature which takes in two parts, a
face for connection and the priority of the connection for assembly (bottom).
The experts use this feature to define all of the connections on the model and
those are used by our algorithm to automatically generate assembly instructions.147

8-24 User customization: the design tab (top) and the stimulation tab that display
the stress distribution (middle) and elastic deformations (bottom). 147

8-25 Chop saw process from left to right: Robots team lift the lumber, transport
it, place it on the chop saw to re-grasp, slide the lumber to the proper length,
and the chop saw cuts the lumber. 148

8-26 Sequence of assembly steps shown in the composition interface. The user can
traverse the list of steps, select parts to view additional information, and use
the 3D window to view the connections from different viewpoints. 148

8-27 Stress distribution on different variations of the chair model (top) and elastic
deformation on variations on the shed model (bottom). 149

8-28 Variations of the deck model. From left to right: input terrain, deck model
instance visualized on the terrain, stress distribution, elastic deformation. . . 150

8-29 Fabrication of the table model. From left to right: eight pieces of stock 1x3
lumber, the cutting of the pieces, the final parts, and the assembled table
result. 150

24

A-1 Centers of linear B-splines at different levels. The set ℐ0 consists only of the
centers denoted by circles, the set ℐ1 includes the centers denoted by circles
and those marked by diamonds, and ℐ2 includes all the centers denoted in the
figure. 158

A-2 Contrasting the interpolation solution from our method with the interpolation
solution adding virtual nodes. Top row: the interpolation solution from our
method. The resulting interpolation is equivalent to a uniform basis function
at the coarsest level 𝑗 such that every sample on the element boundary belongs
to ℐ𝑗 (in this case 𝑗 = 1). The values 𝑞𝑗𝑖 can be computed hierarchically at
points for which samples 𝑝𝑗𝑖 do not exist. In this example, 𝑞13 is based on
the average of the adjacent samples 𝑥0, 𝑥6 ∈ ℐ0, and 𝑞14 is the average of
the four corner samples, also contained in ℐ0. Bottom row: interpolation
solution adding virtual nodes. The color display on the right illustrates how
our method restricts the impact of a sample in ℐ𝑗 to s𝑗. 164

25

26

List of Tables

4.1 Parametric designs in our collection. 64
4.2 Comparison between coverage regions in descriptor space. 72

6.1 The number of parameters (K), levels of the K-d tree, total sampled nodes,
average mesh size (in number of tetrahedrons), and total storage (in number
of stored meshes) for each model. 109

6.2 Relative approximation error on geometry and elastic FEM for all example
models. 110

8.1 Pentacopter specifications. Motor angle is the angle between motor orienta-
tion and up direction. 145

8.2 Fabrication information for the models in Figure 8-27: number of parts that
will be processed with the jig saw and chop saw, total number of used pegs,
and number of assembly steps. 149

27

28

Chapter 1

Introduction

1.1 The Next-Manufacturing Revolution

Novel technologies indicate that manufacturing is about to undergo an unprecedented and
radical shift. The key revolutionary aspects of new fabrication devices are:

∙ Complete Automation. New manufacturing devices can handle end-to-end fabri-
cation of complete products. This is in contrast to prior automation of short and
repetitive tasks that could only handle part of the manufacturing process, making it
necessary to have long production lines to incrementally build a single product.

∙ Versatility. New fabrication devices can execute not only a single task, but can be
used to produce a variety of different results depending on the input instructions. This
allows for the fast and inexpensive fabrication of products that are customized to meet
specific needs.

∙ High Product Complexity. New technologies have significantly increased the com-
plexity, performance, and functionality of final products. For example, by allowing
materials to be specified at incredibly high precision and resolution, novel manufactur-
ing platforms enable the production of new objects with unseen mechanical properties.

Overall, these new technologies indicate that over the next few decades we are going to
transition to a new economy where highly complex, customizable products are manufactured
on demand. In many fields, this shift has already begun. 3D printers are revolutionizing pro-
duction of metal parts in the aerospace, automotive, and medical industries. Whole-garment
knitting machines allow automated production of complex apparel and shoes. Manufacturing
electronics on flexible substrates makes it possible to build a whole new range of consumer
electronics and medical diagnostic devices. Collaborative robots, such as Baxter from Re-
think Robotics, allow flexible and automated assembly of complex objects.

From the perspective of designers and engineers, these advances can enable: 1) increased
freedom in defining the form and material properties of objects, 2) the possibility of integrat-
ing multiple functional components into a single product, and 3) easy access to manufacturing

29

Figure 1-1: The next manufacturing revolution. In a very near future, we will have workshops
where automated manufacturing machines will make customized, complex, multi-material
parts and collaborative robots will allow flexible and automatic assembly of objects that
have multiple functionalities.

devices, even if they have little expertise. Therefore, while past revolutions in manufactur-
ing have been mostly focused on productivity, these new advances have the potential to
fundamentally change what can be manufactured and by whom.

Figure 1-1 shows what these future workshops may look like. These "‘mini-factories"’
will include a whole range of automated manufacturing machines, from laser cutters to 3D
printers and knitting machines. These devices will allow fast fabrication of high performing
parts, which will then be assembled by collaborative robots into complex functional objects.
The easy integration of multiple complex parts into single objects will allow for products with
multiple functionalities. In addition, the versatility allowed by these machines will enable
on-demand manufacturing, bringing about a new age of personalization and customization.

This shift, however, cannot happen through innovations in hardware alone. To build
increasingly functional, complex, and integrated products, we also need to create design
software that allows users to efficiently explore a design space that incorporates geometry,
materials, electronics, and fabrication processes. Such design tools must be equipped to
simultaneously optimize many different objectives, from the aesthetics of the product to its
durability and motion. Further, to empower more people to create their own personalized
objects, we also need to develop tools that are more accessible to users with little design
experience.

The central question that drives this thesis is: what should the future design tools for
manufacturing be?

1.2 Abstraction of Design for Manufacturing

In this work, we will address this question using the abstraction shown in Figure 1-2 to de-
fine design from manufacturing. This figure illustrates the problem of designing a robot for

30

ground locomotion, which involves specifying the robots geometry, the materials, the elec-
tronics, and the control software. Together, these attributes define a very high dimensional
design space. Under this abstraction, to design means to select a point in this space.

Figure 1-2: Designing a robot means selecting a point in a high-dimensional design space that
includes specification of the robot’s geometry, electronic components, and control software.
Users select this point based on how it is mapped to a performance space, which defines
important metrics that designers take into account when optimizing the models (e.g., the
trajectory, fabrication cost, and reaction to an external force).

But how do we select this point? Design of functional objects depends on a set of
performance metrics that determine how these objects will behave once they are physically
realized. In the case of the ground robot, examples of relevant performance metrics are:
locomotion speed, reactions to external forces, and the overall fabrication cost. As shown in
Figure 1-2, the set of performance metrics define the performance space.

Under this abstraction, design means to select a point in design space based on how
it maps to the performance space. This can be done by directly exploring the design space
driven by performance feedback (forward problem), or by solving an inverse problem: finding
the point in design space that optimizes user-specified performance objectives.

In this thesis, we will discuss algorithms and interactive systems that guide users in
solving both the forward and the inverse problem. The main challenges in devising such
tools are twofold:

∙ Complex Design Spaces. Typical design spaces are not only high dimensional,
they are also sparse—many combinations of materials and geometry are impossible
to manufacture, and many combinations of electronic components are useless. The
complexity of this domain makes search and optimization a challenge.

∙ Complex Performance Evaluations. Typical performance evaluations can only be
measured by expensive computations since they require predicting physical behavior.
In addition, performance metrics are often conflicting—increasing one will decrease
the other. Algorithms should guide designers and engineers in navigating a complex
landscape of compromises, generating objects that perhaps do not optimize any single
quality measure, but rather are considered optimal under a given performance trade-off.

31

In this work, we address these challenges to propose methods for efficient exploration of
high-dimensional design spaces and algorithms for automated design optimization based on
functional specifications.

1.3 Approach and Contributions

Our approach is to combine data-driven strategies with efficient search methods. Data-driven
strategies attempt to discover certain attributes of the underlying design space in order to
estimate performance. While fast, they provide limited insight into a model’s underlying
structure and can be difficult to debug. On the other hand, search-based strategies attempt
to fully explore the design space with combinatorial search or continuous optimization al-
gorithms. While these methods tend to be more robust and effective in finding solutions
that achieve a desired performance, they are prohibitively slow in typical high-dimensional
designs spaces.

In this work, we combine these two strategies to develop new techniques that can effec-
tively discover optimized designs and are also fast enough to be used in interactive tools.
Our approach is to first to constrain the design spaces in meaningful ways using data-driven
methods. This can be done either using hand-crafted rules or deriving these rules from data
(machine learning). We then propose new performance-driven search methods in these re-
duced spaces. These methods allow users to either explore the design space with real-time
performance feedback or to solve inverse design problems.

In summary, the central thesis of this dissertation can be expressed in the following
statement:

Efficient design tools for functional mechanisms can be developed by constraining design
spaces using data-driven methods and then defining efficient performance-driven search al-
gorithms on these reduced spaces.

1.3.1 Data-Driven Methods

The data-driven methods we present constrain the design spaces to regions with manu-
facturability guarantees. By automatically handling manufacturing details, this approach
ensures that every model designed with the tool can be physically realized. It also allows
users to more intuitively and efficiently explore the design space by allowing them to focus
on high-level conceptual design. Finally, this approach can make design more accessible to
users who do not have the expertise to specify manufacturing details.

To define such data-driven strategies, our work leverages collections of manufacturable
parametric designs: consistent families of manufacturable models, each of which is described
by a particular point in parameter space. The parametric model makes computations more
efficient by both reducing the search space and constraining manipulations to structure-
preserving and manufacturing-aware variations (see Figure 1-3 for an example of a parametric
design).

An important problem that arises in data-driven design is how to enable efficient searching
in these types of collections. This is challenging because these collections are partially discrete

32

Figure 1-3: An example of a parametric design. The original design is shown in gray, and
the new designs generated by varying the parameters are shown in yellow.

(number of shapes) and partially continuous (parameter values). To address this, we have
proposed a descriptor-based approach for accurate shape-based matching and retrieval on
parametric shape collections [Schulz et al., 2017c].

We have also used these collections in an interactive design system to create new func-
tional manufacturable models in a design-by-example manner [Schulz et al., 2014]. In this
system, a simple interface allows novice users to create new designs by combining parts from
the database. Data-driven algorithms automatically handle connections and manufactura-
bility constraints (see Figure 1-4).

1.3.2 Performance-Driven Search Methods

With the data-driven methods we propose, users can focus on high-level design without
worrying whether the results can be physically realized. However, users need to consider
not only whether an object can be manufactured, but also how an object will perform once
built. Performance-driven design techniques are crucial for typical applications in which the
design goals are dictated by how the finished products will function in the physical world.
However, it can be quite difficult to incorporate such techniques into interactive design tools.

As discussed above, the first main challenge is that evaluating performance typically re-
quires time-consuming simulations. We address this challenge by proposing an algorithm that
allows real-time performance evaluation and optimization over reduced design spaces defined
by parametric models (see Figure 1-4). To achieve interactive rates, we use precomputation
on an adaptively sampled grid and propose a scheme for interpolating in this domain, where
each sample is a mesh with different combinatorics. Our solution defines a novel interpola-
tion algorithm for adaptive grids that is both continuous/smooth and local [Schulz et al.,
2017c]. This allows interactive exploration of combined design and performance space.

The other main challenge is that design for manufacturing applications typically requires
simultaneous optimization of conflicting performance objectives: design variations that im-
prove one performance metric may decrease another performance metric. In these scenarios
there is no unique optimal design, but rather a set of designs that are optimal for differ-
ent trade-offs (called Pareto-optimal). Using the fact that the set of solutions with optimal
performance trade-offs lie on the boundary of the projection of the design space onto the
performance space (the Pareto front), we propose a new method to efficiently represent this

33

domain for real-time exploration. Our approach is based on a first-order approximation of
the Pareto front derived from duality theory in multi-objective optimization [Schulz et al.,
2018]. This allows real-time exploration of joint performance and design space for different
trade-offs.

1.3.3 End-to-End Systems

We show the capabilities of our approach by applying data-driven and performance-driven
algorithms to develop interactive end-to-end systems for designing complex functional mech-
anisms. One of the important considerations in building such systems is handling concurrent
design across multiple domains (e.g., geometry, materials, electronics, software, and fabrica-
tion processes), which must all be considered when designing complex functional mechanisms.

We have proposed an end-to-end tool for designing and manufacturing robots with ground
locomotion [Schulz et al., 2017b]. To enable the concurrent design of a robotâĂŹs shape and
motion, we leverage a data collection that includes parametric gaits and geometric robot
parts, and we couple it with algorithms for interactive simulation feedback. The system
outputs a complete fabrication plan and assembly instructions for the robotâĂŹs mechanical
body, electronic components, and control software (see Figure 1-4). We also extend these
ideas to the design of multicopters, simultaneously designing their geometry and control to
optimize their flying capabilities [Du et al., 2016].

Finally, we develop a system for mass customization of carpentry items for robot-assisted
manufacturing [Lipton et al., 2018]. This system uses parametric expert data to define a
space of customizable designs that can be fabricated with a proposed robotics system. A
simple interface allows casual users to explore the defined design space with performance
feedback.

Figure 1-4: We apply data-driven and performance-driven algorithms to develop interac-
tive systems for design of complex functional mechanisms. From left to right: a data-
driven method that automatically handles manufacturing details and guarantees [Schulz
et al., 2014]; real-time performance exploration and optimization for functionality-driven de-
sign [Schulz et al., 2017c]; end-to-end system for design and manufacturing of ground robots
that allows for concurrent design of both geometry and motion [Schulz et al., 2017b].

34

1.4 Thesis Overview

The rest of this thesis is organized as follows.
In the second chapter we present background material and describe the most significant

previous work in computational design for manufacturing.
Chapters 3-5 are dedicated to data-driven design techniques which allow constraining

the design space in meaningful ways based on parametrization. In Chapter 3, we describe
a parametric collection of manufacturable designs which we have made publicly available
at http://fabbyexample.csail.mit.edu. In Chapter 4, we present an algorithm for efficient
shape-based matching and retrieval in such parametric shape collections. In Chapter 5, we
outline a fabrication-aware composition algorithm which allows users to create new designs
by mixing and matching database components.

We then proceed to describe performance-driven techniques. The sixth chapter is ded-
icated to forward methods, where we propose an algorithm for interactive exploration of
the design space with real-time performance feedback. Inverse methods are discussed in the
seventh chapter, where we describe a multi-objective optimization approach for exploration
of the performance space with real-time feedback on the corresponding design.

In the final technical chapter of this thesis, we present end-to-end design systems which
incorporate both data-driven and performance-driven algorithms. We first present a tool
for design of robots with ground locomotion that allows simultaneous design and analysis of
geometry and motion. We then describe a system for design of multicopters, which require
concurrent optimization of geometry and control. Finally, we show a system for carpentry
design and mass customization with robotic-assisted manufacturing.

We conclude the thesis in Chapter 9, summarizing the results and discussing directions
for future work.

1.5 Contributions

In summary, this thesis makes the following contributions:

∙ A database of parametric manufacturable designs that can be used for computational
fabrication (Chapter 3, [Schulz et al., 2014]).

∙ An algorithm for retrieval on parametric shape collections (Chapter 4, [Schulz et al.,
2017a]).

∙ A data-driven method for design-by-composition that ensures manufacturability (Chap-
ter 5,[Schulz et al., 2014]).

∙ A method for interactive performance-driven design space exploration (Chapter 6,
[Schulz et al., 2017c]).

∙ A general method for interpolation on K-d trees that guarantees locality and continuity
(Chapter 6, [Schulz et al., 2017c]).

∙ A method for interactive exploration of performance trade-offs (Chapter 7, [Schulz
et al., 2018]).

35

∙ A Pareto front discovery algorithm based on a first order approximation derived from
duality theory in multi-objective optimization (Chapter 7„ [Schulz et al., 2018]).

∙ An interactive system for design of ground robots that allows for concurrent design of
shape and motion. (Chapter 8, [Schulz et al., 2017b]).

∙ An interactive system for design of multicopters that allows for concurrent optimization
of shape and motion (Chapter 8, [Du et al., 2016]).

∙ An interactive system for design of carpentry items for robot-assisted manufacturing
(Chapter 8, [Lipton et al., 2018]).

36

Chapter 2

Related Work

Manufacturability has long been a concern in engineering design Currier [1980], Gupta and
Nau [1995], Khardekar et al. [2006], Patel and Campbell [2010], Wang and Sturges [1996]
and more recently has become an area of interest in the computer graphics community.
Proposed fabrication-oriented systems include tools for plush toys Mori and Igarashi [2007],
furniture Lau et al. [2011], Saul et al. [2011], Umetani et al. [2012], clothes McCann et al.
[2016], Umetani et al. [2011], inflatable structures Skouras et al. [2014], wire meshes Garg
et al. [2014], model airplanes Umetani et al. [2014], twisty puzzles Sun and Zheng [2015],
architecture-scale objects Yoshida et al. [2015], mechanical objects Coros et al. [2013], Koo
et al. [2014], Thomaszewski et al. [2014], Zhu et al. [2012], and electromechanical sys-
tems Bezzo et al. [2015], Megaro et al. [2015b], Mehta et al. [2015], Song et al. [2015].

In this work, we approach computational design from the abstraction described in Fig-
ure 1-2—computational tools should guide users in searching the design space to find a
solution that best satisfies performance specifications. To address the challenges highlighted
in the previous chapter, we proposed methods that combine data-driven approaches and
performance-driven algorithms. In what follows we will discuss relevant related work in each
of these areas.

2.1 Data-Driven Methods

Shape collections have been widely used to allow data-driven geometric modeling. Modeling
by example [Funkhouser et al., 2004] enables the design of new models by combining parts of
different shapes from a large database. More recent work focuses on data-driven suggestions
for adding details [Chaudhuri and Koltun, 2010] and modeling [Chaudhuri et al., 2011].
Similarly, recombination of model parts has been used to expand databases [Jain et al.,
2012, Kalogerakis et al., 2012] and repair low-quality 3D models [Shen et al., 2012b]. In
data-driven methods, production rules are implied by the dataset and they do not have to
be explicitly distilled.

Nevertheless, none of these works explore the fabrication aspect of data-driven modeling.
Creating models that can be physically realized adds a number of challenges to the modeling
pipeline that are addressed in this work. We propose using collections of manufacturable
design—models that have all the information necessary for fabrication. In order to ensure

37

manufacturability is preserved during manipulation and composition, we take advantage of
parametric modeling.

2.1.1 Parametric Modeling

Parametric models are consistent families of geometries, each described by a given point in
parameter space. Parametric shapes are advantageous because they constrain the manipula-
tions to structure-preserving (and potentially fabrication-aware) variations and also reduce
the search space, making computations more efficient. These techniques have been applied
to many types of parametric shapes, from mechanical objects to garments, and masonry.
Recent usage of parametric shapes for modeling includes reconstruction of 3D shapes from
images Xu et al. [2011] or point-set scans [Nan et al., 2012, Shen et al., 2012a]. Talton et
al. [2011] use a parametric grammar for procedural modeling.

Previous work in computational design has exploited different techniques for parametric
representations. A common approach is to convert a single input mesh into a parametric
model using methods such as cages [Zheng et al., 2011b], linear blend skinning [Jacobson
et al., 2011] or manifold harmonics [Musialski et al., 2015]. These methods generate smooth
deformations which have been shown to work on shapes that are more organic and for fab-
rication methods such as 3D printing [Prévost et al., 2013] or water-jet cutting of smooth
2D parametric curves [Bharaj et al., 2015]. For more mechanical structures, cages tech-
niques have been applied together with algebraic techniques to preserve discrete regular
patterns [Bokeloh et al., 2012b].

These, however, have been limited to very small datasets with highly constrained varia-
tions (such as dimensions of wooden plates or carbon tubes) that require laborious annota-
tions from mechanical engineers. Because of these limitations, some recent work looked at
CAD as a means to incorporate meaningful, fabrication-aware, parametric variations [Koyama
et al., 2015, Shugrina et al., 2015]

2.1.2 Parametric CAD

Practically every man-made shape that exists has once been designed by a mechanical engi-
neer using a parametric CAD tool (e.g., SolidWorks, OpenScad, Creo, Onshape), and these
models are available on extensive repositories (e.g., GrabCAD and Thingiverse, Onshape’s
public database). CAD shapes have the advantage of being parametric from construction,
and the parameters exposed by expert engineers contain specific design intent, including
manufacturing constraints (see Figure 2-1). Parametric CAD allows for many independent
variables, but these are typically constrained for structure preserving consideration, the need
to interface with other parts, and manufacturing limitations. In this context, engineers typ-
ically expose a small number of variables which can be used to optimize the shape.

Early CAD systems were based on constructive solid geometry (CSG), which defines hier-
archical boolean operations on solid primitives. Modern professional CAD systems, however,
use B-rep methods that start from 2D sketches and model solids with operations such as
extruding, sweeping, and revolving [Stroud, 2006]. A B-rep is a collection of surface ele-
ments in the boundary of the solid and is composed of a topology (faces, edges, vertices) and
a geometry (surfaces, curves, points). Each topological entity has an associated geometry

38

Figure 2-1: When engineers design shapes, they embed their experience and knowledge in
carefully selected, fabrication-aware parameters such as this fillet radius, which encapsulates
a curved transition along an edge, and this chamfer distance, which describes the slope
transition between two surfaces. These include fabrication limitations that take into account
the different processes. This example includes minimum radius constraints on internal cuts
for compatibility with milling machines.

(e.g., a face is a bounded portion of a surface). Modern CAD systems use the feature-based
modeling paradigm [Bidarra and Bronsvoort, 2000], in which solids are expressed as a list
of features that define instructions on how the shape is created. These systems are also
parametric: each feature depends on a set of numerical values or geometric relationships
that control the shape of the models [Farin et al., 2002].

The geometric operations in each feature (e.g., sweeping, booleans, filleting, drafting,
offsetting) are executed by geometric kernels (such as ACIS or Parasolid) that are often
licensed from other companies. An important aspect of feature execution that is handled
internally by CAD systems is the referencing scheme. This scheme uniquely identifies the
parts of the geometry to which each feature is applied. This mechanism is what allows
models to re-generate appropriately as users make changes in parameters in the feature
history [Baba-Ali et al., 2009, Bidarra et al., 2005].

Historically, however, it has not been a relevant concern of CAD systems to perform
real-time exploration on a set of exposed parameters. In CAD systems, shape generation
from a parameter configuration is done by recomputing the list of operations that construct
the geometry. This involves computationally expensive operations (e.g., sweeping, booleans,
filleting, drafting, offsetting). This means that every time a designer tunes CAD parameters
of a complex model, it can take on the order of minutes for the system to recompute the
geometry (see Figure 2-2).

In this work we use parametrization to constrain this design space ensuring manufac-
turability (Chapters 3). In order to harness collections of CAD desins, we propose a novel
algorithm from real-time evaluation of CAD geometry from user input parameters (Chap-
ter 6).

39

Figure 2-2: Regeneration times for parameter changes using Onshape for models with in-
creasing level of complexity.

2.2 Performance-Driven Methods

2.2.1 Interactive Exploration

After using data-driven methods to constrain the design space in meaningful ways, we search
the space driven by performance objectives. Search methods aim at guiding users in finding
shape variations that meet certain design goals. There are two main approaches for this
task. The first is to use interactive systems that allow users to manually explore the design
space. These techniques are chosen in order to give more control to the users or because
design objectives depend on multiple considerations. Recent works in this space include
furniture design [Umetani et al., 2012], interlocking structures [Skouras et al., 2015], model
airplanes [Umetani et al., 2014], garment design [Umetani et al., 2011], and robots [Megaro
et al., 2015a], to name a few.

In our work, we extend these ideas to the space of parametric CAD models with perfor-
mance objectives that can only be measured by expensive computations. To allow interac-
tive exploration with real-time performance feedback in these generic domains, we describe
a precomputation-based approach driven by a novel interpolation scheme (Chapter 6).

2.2.2 Optimization

An alternative to interactive exploration is direct shape optimization. This technique requires
less user input and is preferred when objective functions can be easily exposed. Example
of recent work on optimization include structural stability of masonry buildings [Whiting
et al., 2012] or 3D printed shapes [Prévost et al., 2013], frequency spectra [Bharaj et al.,
2015], structure and motion of linkages [Bächer et al., 2015], and buoyancy [Musialski et al.,
2015, 2016]. Optimization has the advantage of being automatic while user exploration can
be time-consuming.

A fundamental limitation of typical design optimization techniques is that they require

40

a single objective function for evaluating performance. In most applications, however, mul-
tiple criteria are used to evaluate the quality of a design. Structures must be stable and
lightweight. Vehicles must be aerodynamic, durable, and inexpensive to produce. In most
cases, the performance objectives are not only multiple but also conflicting : Improving a
design on one axis often decreases its quality on another axis. In reality, designers and en-
gineers navigate a complex landscape of compromises, generating objects that perhaps do
not optimize any single quality measure but rather are considered optimal under a given
performance trade-off.

In such scenarios, it is challenging, if not impossible, to determine a single objective
function for direct optimization. Therefore, an exploration interface can more effectively
guide users to solutions with desired performance trade-offs. Our approach is to use offline
optimization to reduce the search space to solutions that achieve optimal performance trade-
offs. We then define an exploration interface that allows users to search in this subset of
the performance space. This approach lets us handle problems with multiple performance
objectives while reducing the amount of user effort during exploration (Chapter 7).

The set of solutions with optimal performance trade-off are called Pareto-optimal in
multi-objective optimization literature. Pareto-optimal points correspond to solutions where
it is impossible to improve on one performance metric without making at least one other
metric worse. While multi-objective optimization approaches that discover a set of Pareto-
optimal points have become increasingly common in engineering practice [Agrawal and
van de Panne, 2013, Bandaru and Deb, 2015, Deb and Srinivasan, 2006], in this work we
propose a novel technique that finds a sparse representation of the full Pareto front, allowing
for interactive exploration of design trade-offs.

Our approach is also related to works on material design which use pre-computation to
find the gamut of achievable material properties [Bickel et al., 2010, Dong et al., 2010, Zhu
et al., 2017]. In these works, the design space is the set of materials that can be output by
a given device and the performance metrics are the material properties that are evaluated.
The fundamental difference is that instead of a gamut which defines all the possible material
combinations in a 𝑑-dimensional material property space, our application requires defining
a combination of (𝑑 − 1)-dimensional manifolds that represents the optimal performance
trade-offs.

41

42

Chapter 3

A Collection of Manufacturable Designs

3.1 Introduction

Creating a collection of manufacturable designs is the first step in proposing data-driven
design for manufacturing techniques. While many collections of man-made shapes are pub-
licly available (e.g. GrabCAD), such repositories of 3D models do not contain the necessary
information for fabrication. We have therefore created a new collection of fabricable models
with the help of design experts—in this case, a group of mechanical engineers. Each design
is modeled using a commercial CAD software and is composed of a collection of standard
parts that can be purchased from suppliers. It also includes all assembly details, such as
connectors and support structures, ensuring the object is manufacturable.

To build a database that can be leveraged for data-driven design tools, we propose a
hierarchical parametric representation that includes connectivity constraints between parts.
We automatically convert these specific designs to parameterized models by extracting con-
straints and parameters from the models. This allows us to perform structure-preserving
manipulations using both discrete and continuous parameters of the parts. The data is
available at http://fabbyexample.csail.mit.edu.

3.2 Manufacturable Designs

The data is divided into two sections: an items catalog containing a list of commercial items,
and a set of designs constructed by domain experts. Each part used in a design references a
corresponding item in the catalog. This imbues the data with the unique property that all
the designs can actually be manufactured.

3.2.1 Items Catalog

An item is a physical part that can be purchased from a variety of suppliers or manufacturers.
The items catalog lists the available items along with all information required for their use
during the design and fabrication process: their corresponding material type (e.g., wood,
metal, glass), their price, their dimensions, and a 3D mesh representing their geometry.

43

Ref# 1789A25
 $5.69

Ref# 1057A51
 $25.61

Ref# 90198A105
 $7.38/100

Items Catalog

Ref# 90198A105
 12”X12”: $7.38

12”X24”: $13:54
24”x24”: $24.62

Figure 3-1: An example of a fabricable object from our collection (left). Each design is
detailed down to the level of individual screws, and each part maintains a reference to the
items used from the items catalog (right).

The items within the catalog incorporate two additional pieces of information that are
used in later stages of our method. First, each dimension of an item is labelled as either
fixed or resizable. We only allow resizing of items if a corresponding physical process is
possible. For example, we allow resizing of wooden components because they may be cut
using available tools. This information is used during the design parameterization process.
Second, each item maintains links to external suppliers (e.g., McMaster-Carr), allowing for
easy sourcing during fabrication.

3.2.2 Set of Designs

The design set contains a large number of manufacturable models (henceforth called designs)
created using commercial CAD software (Solidworks). Each design is an assembly of parts,
and the parts all contain links to the corresponding items in the items catalog (Figure 3-
1). The parts are grouped into subassemblies in a hierarchical fashion, as is common in
standard CAD tools. Once a design has been finalized, we build an associated connectivity
graph where nodes represent parts and edges indicate physical connectivity between them.
We create this graph automatically based on the proximity of parts.

Designs often feature complex moving parts connected by mechanical joints. Such con-
nections are used in various doors and drawers, and in complex moving objects like swings,
wheels, and steering assemblies. We rely on the experts to annotate their designs with this
functionality if it exists. We store moving components in the standard way: as a hierarchy
of joint transforms along with their respective joint types (prismatic, ball joint, hinge joint)
and joint limits.

Domain experts also annotate parts that are purely structural (e.g. screws, hinges, and
brackets), henceforth called connecting parts. The connecting parts are separated from the
principal parts of the design (e.g. shelves, legs, wheels) since the connecting parts will not
be used explicitly in the design-by-example process. Instead, we relieve the user from the

44

tedious task of specifying them by inferring and adding them automatically during the design
process (see Section 5.6).

3.3 Parametric Manufacturable Designs

From the input collection of manufacturable models created by experts, we automatically
generate a parametric representation and then augment this representation by incorporating
information on how elements connect to each other in the physical space.

The parametrization we propose is inspired by two classes of methods. The first class
preserves global relationships [Gal et al., 2009, Kraevoy et al., 2008, Zheng et al., 2011a],
but only considers continuous variations in the shape. The second class allows discrete
variations [Bokeloh et al., 2012a], but only accounts for local relationships. We combine
these two ideas to construct models that both preserve global relationships such as symmetry
and perform topological changes to preserve discrete regular patterns. Like Bokeloh et
al. [2012a], we construct a linear model that allows expressing the space spanned by all
possible manipulations as a parameterized model. The parametric models in this collection
possess two additional qualities that are essential for data-driven design for manufacturing
applications. First, they follow a hierarchical tree structure that allows assembly of new
models by composing substructures at different levels of the tree. Second, they encode
information that guarantees fabricability—for example, we represent how parts connect to
each other in the physical world, and we allow parts to be resized only if a corresponding
physical process is possible.

An example of a parametric model is depicted in Figure 1-3. The figure illustrates the
large amount of geometric variety that a single parametric design can encode: in the figure,
a cabinet becomes everything from a workbench to a nightstand.

More formally, a parametric design 𝑇 𝑖 at the 𝑖𝑡ℎ level of the hierarchy can be written as

𝑇 𝑖 =
{︀
ℱ 𝑖,𝒜𝑖

}︀
(3.1)

where 𝒜𝑖 is the feasible set that constrains the parameter values to ensure manufacturability,
and ℱ 𝑖 is a function from parameter values q𝑖 ∈ 𝒜𝑖 to a geometry (e.g., a mesh).

Our method converts each design to a parametric tree, following the hierarchical repre-
sentation determined by the experts. For each leaf node, we explicitly define q𝑖 and ℱ 𝑖, and
we define 𝒜𝑖 based on the set of constraints that act on q𝑖. For the internal nodes, we specify
q𝑖 and ℱ 𝑖 as the composition of the children nodes. The feasible set on an internal node
can be defined as the intersection of the feasible sets of its children restricted by additional
“coupling constraints” that bind multiple parametric designs together.

3.4 Automatic Hierarchical Parametrization

Our method for automatically converting a design from the collection to a parametric design
comprises two steps. First, we select the leaf nodes and assign their degrees of freedom q𝑖 and
deformation functions 𝐹 𝑖. Second, we analyze the geometric-semantic (geosemantic Shtof

45

C0 wagon

conn 1 C1 handle C2 body

conn 2 C3 wheel C4 bucket
conn 2 conn 1

Figure 3-2: From left to right: a design example of a toy wagon, the hierarchical tree, and
a visualization of the connections. The arrow on the handle indicates that this part has
an articulation, namely that it can rotate along the depicted axis. The tree includes the
geosemantic relationships that are stored at each level of the hierarchy, 𝐶0 to 𝐶4 (shown in
blue), as well as connections (depicted in red). The visualization on the right illustrates the
information contained in each connection node.

et al. [2013]) relationships between parts of our model in order to define structure-preserving
constraints at each level of the hierarchy, thus determining 𝒜𝑖 (see example in Figure 3-2).

We use the hierarchical structure of a design to guide the construction of the parametric
tree. In our representation, a leaf-node in the tree serves as a “least-fabricable-unit”, the
simplest single entity that can be constructed. Leaf-nodes play a crucial role in the remainder
of our algorithm, and are therefore referred to as elements to clearly distinguish them from
the internal nodes of the hierarchy. Elements that correspond to principal parts are called
principal elements, while elements that correspond to connecting parts are called connecting
elements.

3.5 Defining the mapping function 𝐹

In most cases, each part 𝑃 𝑖 in the design is assigned to be a leaf-node. We then choose
q𝑖 to be the 6-vector composed of the 3-dimensional position of the center of the part and
the three axis-aligned scaling parameters. The deformation function ℱ 𝑖 simply applies the
prescribed scale and translation to 𝑃 𝑖.

We also allow leaf nodes to represent repeating patterns of parts, such as an array of
screws or a row of wooden planks (see Figure 3-3). The algorithm selects regular patterns
by searching for identical parts that have uniform inter-component spacing in one or two
dimensions. Parts are said to be identical if they have the same corresponding item and
the same dimensions. The search is performed by first grouping all identical parts and then
extracting all the non-intersecting subsets of that group which form a regular pattern. The
algorithm selects the subsets in order of number of parts (highest first) to guarantee that
the non-intersecting rule does not prevent us from extracting the larger sets.

Following the notation of Bokeloh et al. [2012a], we consider only translational patterns.
One-dimensional patterns are parameterized by (o, 𝑙,p), where o is the center of the first
part (with respect to the bounding box of the element), 𝑙 is the number of parts, and p is
the generator translation. Two-dimensional rectangular patterns can be represented in the
same manner.

46

Figure 3-3: A parametric model with pattern elements. Upon resizing, both the number of
floor planks and the number of rungs in the monkey bars change.

Given q𝑖, the deformation function ℱ𝑖 calculates the new optimal values of 𝑙 and p,
which we call �̄� and p̄, respectively. We choose p̄ to be as close to p as possible. In the
case of connecting elements, the algorithm is conservative when computing �̄� in order to
guarantee manufacturability. However, it ensures that p̄ does not shrink to the point that
parts intersect. Finally, if the parts have resizable dimensions in the directions of p, the are
scales according to p̄.

3.5.1 Geosemantic Relationships

To define 𝒜𝑖, we constrain the space of parameter variations by extracting geosemantic
relationships from the design and ensuring that they are preserved when the parameters q𝑖

are manipulated. Following the ideas described in Chen et al. [2013], Gal et al. [2009], Zheng
et al. [2011a], we take into account the following types of relationships between elements:
concentricity, coplanarity, and symmetry. In addition, we consider relationships in the order
of the elements. Preserving order relationships guarantees that elements do not penetrate
each other or exchange position when the parameters are modified.

Extraction of geosemantic relationships is guided by experts’ annotations. First, the
method takes into account the articulation information to ensure that all geosemantic re-
lationships hold for all design configurations. Specifically, it considers the poses in which
articulated parts reach their joint limits. Second, it takes into account the physical proper-
ties of elements in the design using information from the corresponding items in the items
catalog. For example, it constrains the scaling parameters of elements that are linked to
items that cannot be resized in a certain dimension.

The geosemantic relations are stored in the hierarchy at the lowest internal node that
is a parent of all the related elements. This allows the use of any sub-tree in the hierarchy
by itself since its defining relations are self-contained. Consider, for example, the toy wagon
in Figure 3-2. The leaf-nodes store scaling constraints on each element (𝐶1, 𝐶3, and 𝐶4).
The body assembly stores the coplanarity and concentricity relationships between the wheel
and the bucket (𝐶2). Finally, the root node stores the coplanarity relationships between
the handle and the bucket (𝐶0). Notice that the handle has an articulation; therefore, we

47

compute relationships in both the horizontal and vertical rest configurations.
We characterize geosemantic relationships as functions that act on the bounding box or

prominent planes of each element. In most cases, the six planes that define the bounding box
to be the prominent planes are chosen. Since both the box and the planes are determined
by q𝑖, each geosemantic relationship can be expressed as a linear equality or inequality that
constrains q. Since the method stores the geosemantic relationships hierarchically, we can
construct a linear system at each node 𝑇 𝑖 by aggregating the constraints of all its children.
The feasible set 𝒜𝑖 is then the set of all solutions to that linear system. Note that all of
these relationships are computed automatically based on the geometry of the original design
and the annotations on the input data.

For an illustration on how to extract geosemantic relationships and represent them as
linear constraints, consider the table in Figure 3-4 (in 2D for simplification). It consists
of three elements, namely, the tabletop and two legs. The parameters of each element are
q𝑖 = [𝑝𝑖𝑥, 𝑝

𝑖
𝑦,∆

𝑖
𝑥,∆

𝑖
𝑦], which correspond to positions and sizes in each dimension. Rules for

coplanarity will stipulate that the bottom of the tabletop must coincide with the top of the

legs, i.e., 𝑝𝑇𝑜𝑝𝑦 − Δ𝑇𝑜𝑝
𝑦

2
= 𝑝𝐿𝑒𝑔1𝑦 +

Δ𝐿𝑒𝑔1
𝑦

2
= 𝑝𝐿𝑒𝑔2𝑦 +

Δ𝐿𝑒𝑔2
𝑦

2
. Rules for concentricity constrain the

center of the bounding boxes in each dimension. In rules for order, we simply replace the
equality by an inequality.

Figure 3-4: We show a simple 2D table consisting of three parts, a top and two legs (Leg1
and Leg2). Each part is contained within a single element for which the q𝑖 are the positions
(𝑥, 𝑦) and sizes (∆𝑥,∆𝑦) of the bounding box of the part.

Notice that the legs have a reflective symmetry. To write this relationship as a function
of q, we need to find a third element that has a center on the symmetry plane. In this case,
we observe that this is true for the tabletop. Hence, if n is the normal of the symmetry plane
(in the example, 𝑛 = [1 0]𝑇), we can write down symmetry relationships as (𝑝𝐿𝑒𝑔1+𝑝𝐿𝑒𝑔2)𝑇n

2
=

(𝑝𝑇𝑜𝑝)𝑇n. (In the example, 𝑝𝐿𝑒𝑔1𝑥 − 𝑝𝑇𝑜𝑝𝑥 = 𝑝𝑇𝑜𝑝𝑥 − 𝑝𝐿𝑒𝑔2𝑥 .)
While concentricity and symmetry constraints are written directly as functions on the

bounding box, coplanarity relationships are defined on the prominent planes of the model.
In most cases, we use the six bounding planes as the prominent planes. However, in elements
with more complex geometry, such as the go kart frames, we extract additional planes to
describe relationships (for example, the plane on the axle that connects to the wheel). In
this implementation we have manually annotated such prominent planes, but one could use
simple geometry processing tools to infer them automatically.

We also create additional prominent planes in the case in which we have functional

48

elements that assume multiple rest configurations. In this case, we create planes for every
rest pose. We consider the centers of the joints q𝑐. For every resting pose 𝑗, we can write
the variables of the transformed element as linear combinations of q𝑖 and q𝑐. By adding q𝑐
to the q vector, we can write q𝑗𝑖 = Vq and proceed to add constraints in the standard linear
notation described above.

3.6 Connections

Fabrication requires not only tracking abstract geometric constraints, but also understand-
ing where and how elements connect to each other in the physical world. To accomplish
this, we augment the representation with nodes that keep track of the physical contact and
connections between the principal elements. We represent these relationships as connection
nodes. Connections include references to the data that will be manipulated and carried over
when combining elements to compose a new model. These include:

∙ the set of principal elements that are in contact (usually two but sometimes more),

∙ the set of connecting elements that are responsible for holding the principal elements
together,

∙ the set of geosemantic relationships between the connecting elements and the principal
elements, and

∙ a set of “soft” geosemantic relationships for placement of connecting elements (discussed
below).

Grouping the elements into such structures is straightforward and can be achieved by
directly analyzing the connectivity graph of the design described in Section 3.2. The set
of “soft” relationships encode additional constraints on the connecting elements. At each
connection, we compute the contact of the principal elements (the contact patch), and add
linear constraints to ensure that the dimensions and position of the connecting elements are
preserved with respect to this contact patch. When the designer manipulates the models
by changing the parameters of the principal elements, the parameters of the connecting
elements are optimized using these additional relationships as soft constraints. This relieves
the designer from the tedious task of manipulating each connecting element individually.

Like geosemantic relationships, connections are stored on the lowest internal node that is
a parent of all the principal elements they reference. In the example of Figure 3-2, we have
two connections. One connects the handle to the bucket and is stored in the root node of
the toy wagon; the other connects the bucket to the wheel and is stored in the internal node
that groups the body assembly.

Constructing the hierarchy in this manner ensures that each node in the hierarchy is a
complete representation that depends only on its children. Therefore, the database includes
not only full models of the original design (root nodes), but also all the other nodes in each
hierarchy, representing parts and sub-structures. The result is a much richer database that
supports the design-by-example mechanism of assembling new models by composition of
parametric designs representing parts at various levels.

49

3.7 Discussion

With the help of domain experts, we have built what we believe to be the first open collection
of manufacturable designs. It typically takes experts many hours to design a complete
model using a commercial CAD software package. The simplest model in our database took
approximately one hour to design, and the most complex (the go-kart) took three months.
In this context, the time that is required to add the few annotations described in Section
3.2 (between 10 to 20 minutes) is almost negligible. More time is needed to create the items
catalog: most of that time is spent finding suppliers for each of the items. But designers
always need to find suppliers if they want to manufacture their models. Also, creating the
items catalog can be viewed as a preprocessing step, because, once completed, the items
catalog can be reused for subsequent designs.

We have proposed a representation that is parametric in addition to being hierarchical
and fabrication-aware. By allowing only shape manipulations that correspond to parameter
variations, we ensure that any model created by manipulating or mixing and matching
component of this database can be directly manufacturable—we can automatically generate
a bill of materials for fabrication. In the next chapter we will discuss the fundamental
problem of retrieval in such parametric collection.

Another important aspect of this representation is that it handles the connecting elements
differently from principal parts. While principal parts have degrees of freedom that have to
be specified by the user, the parameters for the positioning and scaling of connecting parts
are completely determined by the hard and soft constraints on the connections. We will
use this representation to propose a new system for assembly-based design that ensures
manufacturing and relieves the users from the tedious task of dealing with connecting parts
(Chapter 5).

In this database, the parametrization was automatically generated for single CAD models
from geometric-semantic relationships. An advantage of this approach is that it allows an
explicit representation of the mapping function 𝐹 from parameter values to a geometry—we
can describe each shape as a 3D mesh where the vertices of each triangle can be expressed
as a function of the shape parameters. This approach, however has two limitations. First,
we use a linear representation of our templates, because this allows for solving for parameter
constraints using simple linear and quadratic programs, which can be efficiently computed.
Though this computational efficiency is essential in an interactive system, the linearity con-
dition constrains our manipulations to scaling and translation of parts, since rotations are
non-linear. Second, we base most of our computations on coplanarity relationships between
prominent planes. This works well for many man-made models, but would present difficulties
with models that have a more curved or complex geometry.

An alternative approach would be to use CAD parameters directly, which can represent
more complex shape variations. CAD models are parametric from construction, allowing
engineers to specify fabrication-aware constraints manually. The challenge in using such
models in interactive tools is that the mapping function from parameter values to a geome-
try requires making an external call to CAD systems, which is computationally expensive.
In Chapter 6 we describe a method that allows real-time evaluation of models that are
parametrized directly using commercial CAD tools.

50

Chapter 4

Retrieval on Collections of

Manufacturable Designs

4.1 Introduction

As previously discussed, data-driven design requires partial shape deformation for constraint
satisfaction and part composition. In the context of manufacturing, these shape manipula-
tions need to preserve structure and a variety of feasibility constraints. By explicitly defining
a feasible set in parametric space, the parametric representation allows for a large variability
while guaranteeing validity. This is especially important to support customization by users.
Different users in different circumstances may require different designs of the same object, or
may want to explore different variations of a similar design. In many cases it is impractical
to explicitly design a new model for each variation, and this is where parametric designs are
most useful.

A fundamental problem in data-driven design is the retrieval of shapes from a large
collection. While shape-based matching and retrieval have been widely addressed for simple
(non-parametric) shape databases, little progress has been made in efficient retrieval on
collections of parametric shapes. In this chapter, we propose a strategy for searching through
a database of parametric models in which the input query is expressed as a single 3D shape.

Retrieval on parametric shape collections is challenging because the search space is both
discrete (number of shapes) and continuous (parameters values). In all previous work, when
matching a given query model to a parametric model, one first has to fit the parameters to
best match the query and then compute the distance from the query to the fitted shape. We
call this the fit-first scheme. This scheme has several disadvantages. First, the process of
fitting is time-consuming and has to be done for every shape in the database. It therefore
does not scale well as the size of the database increases. Second, this scheme does not
allow the use of descriptor space representations that have been shown to be effective for
retrieval in a single (non-parametric) shape collection. The typical approach for efficient
search does not rely on directly comparing a query element with every element in a database,
but rather on pre-computing descriptors for each shape and then performing fast retrieval by
computing distances in this high-dimensional descriptor space. Because the actual geometry
of each parametric shape is known only after fitting, it is not possible to perform the time-

51

Parametric Shape

Descriptor Space

Parametric Shape

Parametric Shape

Query Shape

Figure 4-1: We propose a method for shape retrieval from parametric shape collections
that uses a descriptor space representation. While shape descriptors map single shapes to
points in a descriptor space, smooth descriptors map parametric shapes to low dimensional
manifolds in this space. Our method efficiently represents these manifolds in order to allow
for accurate and fast retrieval of the closest parametric model to a given query shape.

consuming task of computing descriptors a priori using the fit-first scheme. Descriptors must
be extracted just before comparing or a direct comparison of the geometry must be used.

We propose a method for performing matching and retrieval from a collection of para-
metric shapes that does not follow the fit-first scheme. The key idea is to represent the full
parametric shape, including continuous variations, in descriptor space. While single shapes
can be described as points in a descriptor space, parametric shapes occupy larger “regions”.
To find the closest parametric shape given a query model (single point in descriptor space) we
need to efficiently compute the distance from this point to each shape “region” and retrieve
the closest one. We address this problem by creating a compact representation for these
regions that allows minimal storage and fast evaluations, all the while guaranteeing accurate
distance measurements. We observe that, for smooth descriptors, these regions are bounded
low-dimensional manifolds embedded in high-dimensional space. The dimensionality of these
manifolds is given by the number of parameters and the bounds are given by the feasible set
of parameter values. We also have access to the actual function that defines the manifold,
given by the composition of the parametric shape function and the signature function of the
descriptor (see Figure 4-2).

We propose an algorithm for covering each manifold with a set of primitives that can be
efficiently used for retrieval. We use two types of primitives: points and bounded tangent
spaces. We discuss methods for creating these primitives (specifically, defining the bounds for
the tangent spaces) and selecting between them to guarantee efficient storage and retrieval.

52

The general idea is that flatter regions should be covered by tangent spaces while more curvy
ones should be covered by points. However, since different primitives have different storage
and retrieval costs, the optimal cover depends not only on the geometry of the manifold, but
also on the desired amount of accuracy. We therefore define an approximation error for our
classification application and propose a method for primitive selection based on curvature,
boundary evaluation, and allowed approximation error. The theoretical analysis allows me
to compute threshold values with no need for empirical parameter adjustments and provides
guarantees on retrieval accuracy.

4.2 Related Work

Shape Retrieval Efficient retrieval of 3D shapes has drawn the attention of the graphics
community for many years. For a survey of shape retrieval methods we refer the reader
to [Tangelder and Veltkamp, 2008]. For more recent advances on the field we refer the
reader to [SHREC, 2014]. One of the most common approaches for fast retrieval is the use of
descriptors that represent geometric models as points in a high dimensional feature space. In
this approach the main computational cost is performed in preprocessing by evaluating the
descriptors for each shape. Retrieval at run-time is reduced to a high dimensional nearest
neighbor search in descriptor space that can be performed quite efficiently. There is a vast
literature on descriptors for 3D shapes, ranging from simple histogram methods [Osada
et al., 2001] to light transport functions [Chen et al., 2003]. Benchmarks for comparing
these descriptors have also been proposed [Shilane et al., 2004] and the choice of descriptor
is usually done based on the tradeoff between accuracy and computational cost. Some
approaches also propose descriptors that are independent of certain shape transformations,
such as articulations [Bronstein et al., 2011, Gal et al., 2007]. However, none of these methods
can capture the variability of parametric shapes. Parametric models that return a different
geometry for different parameter settings cannot be represented as points since they cover
large regions of the descriptor space. We propose a method to efficiently represent these
regions.

Template-driven Shape Exploration This problem is also related to works that repre-
sent a category of discrete designs using a parametric 3D template. In this case, the template
is not a parametric design, but a description that generalizes a set of models. Ovsjanikov
et al. [2011] construct a single template to generalize a particular shape category and use it
to explore the variability of the collection. Kim et al. [2013] produce a set of probabilistic
templates that group large shape collections into clusters that capture the shape variations.
These exploration tools have also been used for shape synthesis [Averkiou et al., 2014]. Fi-
nally, Yang et al. [2011] propose a method for exploring meshes with similar connectivity
while preserving constraints. Although these works do not directly address the retrieval prob-
lem, some of the proposed techniques relate to our problem. A key observation of Ovsjanikov
et al. [2011] is that since templates have a low dimensional set of parameters, they lie near a
low dimensional manifold in a descriptor space. Following this observation, they use PCA to
extract the variability of the shape collection in this space and use optimization to convert
it into the variability of the template deformation. Similarly, Yang et al. [2011], define the

53

shape space as a manifold which is navigated by local planar and quadratic approximations.
In line with these works, we represent our parametric shapes as low dimensional manifolds in
descriptor space. However, in our approach each manifold is defined by a single parametric
shape and not a set of non-parametric shapes. Moreover, we aim to represent a collection of
such manifolds, defined by a collection of parametric shapes, and support distance queries
from all of them to allow efficient retrieval.

Point Clouds in High Dimensions Since we represent parametric shapes as low di-
mensional manifolds in a descriptor space, this work is related to compact representations
of low dimensional data in high dimensions. Manifold learning is a strategy that aims at
finding meaningful low dimensional structures in high dimensional data using non-linear di-
mensionality reduction methods such as ISOMAP [Tenenbaum et al., 2000] and LLE [Roweis
and Saul, 2000]. In these approaches, we assume that the 𝐾-dimensional manifold is repre-
sented as a point cloud in an 𝑁 -dimensional space (𝐾 ≪ 𝑁) and no additional information
is known. The result of such techniques is a map 𝐴 : R𝑁 ↦→ R𝐾 that allows projecting
points into this low dimensional space. This representation however cannot be used for re-
trieval since distances to query points must be computed in R𝑁 allowing comparisons across
manifolds.

By creating a point cloud representation of each parametric shape using sampling in pa-
rameter space, our problem is closely related to a classification problem in high dimensional
data, where each parametric shape defines a class. Among the most common approaches for
this problem are Gaussian mixture models [Bishop, 2006] which can be computed using EM
algorithms. Since parametric shapes are low dimensional, Gaussians in R𝑁 cannot compactly
cover each shape space and additional dimensionality reduction would be necessary to guar-
antee minimal overlap between class representations. Alternatively, one can use a method
such as mixtures of factor analyzers [Ghahramani et al., 1996], which concurrently performs
clustering and local dimensionality reduction within each cluster. In this application, how-
ever, instead of starting with a point cloud, we have access to the actual function that defines
the manifold, namely, the parametric model composed with the descriptor evaluation. We
also know the underlying dimensionality which is defined by the number of parameters. We
take advantage of this in our algorithm, measuring geometric properties such as derivatives
and curvatures on sampled points, which are not present in a point cloud representation.

Distances to Manifolds Our approach relies on an estimate of distances from points to
manifolds with a known parametrization map, a problem that has also been addressed in
several research areas. Pottmann and Hofer [2003] propose a method for constructing smooth
functions that approximate the distance from a a point 𝑥 ∈ R𝑁 (variable) to a given manifold
(fixed). These functions have second order accuracy with respect to 𝑥 and can therefore be
used in optimization tools which have the position 𝑥 as a variable and the distance to the
manifold as part of the cost function. This has been applied, for example, in the context
of registration [Mitra et al., 2004, Pottmann et al., 2004] and surface approximation [Wang
et al., 2006]. In this work however, since in any retrieval experiment the 𝑥 position is given
by a query shape (fixed), second order accuracy with respect to 𝑥 adds no information
to our measurement. Instead we prefer simpler functions that approximate the first order

54

distance metric and allow for fast estimation of the closest manifold to the query point.
This involves efficient representation of the manifold to allow for fast distance estimation
given a fixed query point. Vural and Fossard [2011] have proposed a method for discretizing
manifolds to allow for distance estimation and classification. Their algorithm has similar
goals: they sample each manifold, all the while attempting to determine the number of
samples that should be retained to maximize classification accuracy. Their work, however,
is restricted to point sampling. Tangent approximations have also been widely used to
approximate manifold distances [Srivastava et al., 2005, Vasconcelos and Lippman, 2005].
These are known to provide a more compact representation, but only work locally since
they are equivalent to the first order Taylor approximation. In our approach we combine
these two ideas by proposing a hybrid approach where the manifold is represented by a set
of primitives that can be either point samples or bounded tangent spaces. In our method
we address the question of how to select between the primitive types in order to optimally
allocate resources and discuss theoretical and empirical bounds on retrieval accuracy.

4.3 Representation of Parametric Shapes

As in Chaper 3, we define a parametric shape as 𝑇 = {ℱ ,𝒜}, where 𝒜 ⊂ R𝐾 is the feasible
set that constrains the parameter values, and ℱ is a function from parameter values 𝑞 ∈ 𝒜
to a geometry (e.g., a mesh).

Given a query shape 𝑠, we would like to compute the distance from 𝑠 to 𝑇 . Formally,
this distance is defined by:

dist(𝑠, 𝑇) = min
𝑞∈𝒜

(dist(𝑠,ℱ(𝑞))) ,

where the distance between two fixed shapes dist(𝑠,ℱ(𝑞)) can be defined by a given shape
descriptor. However, instead of finding the optimal value of 𝑞 and computing the distance
for this parameter (i.e., fit-first), we will find this distance by defining a representation in
a descriptor space of the whole parametric shape. Similar to the previous work Chen et al.
[2003], Osada et al. [2001], we represent a geometry using a descriptor that takes a 3D mesh
and computes a signature vector (typically signature vectors are high dimensional). This
signature vector compactly represents a single geometry as a high-dimensional point in a
descriptor space. However, this approach is not obviously applicable to parametric shapes
because parametric shapes span a large set of possible geometries and therefore occupy a
larger region of the descriptor space.

As shown in Figure 4-2, we defineℳ(𝑞) = (𝒟 ∘ℱ)(𝑞), where 𝒟 is the signature function
that generates a descriptor for a given geometry. We can interpretℳ(𝑞) as a parametrization
from 𝒜 ⊂ R𝐾 to R𝑁 , where the number of shape parameters 𝐾 is much smaller than
the dimensionality of the descriptor space 𝑁 . Our method assumes that ℱ is smooth.
This holds for the models that are automatically converted from single geometries and for
most CAD models since these shapes are typically designed such that parameter variations
smoothly deform geometries. As a result, for smooth descriptors we can assume that the
image ℳ(𝒜) =

⋃︀
𝑞∈𝒜ℳ(𝑞) lies on a manifold. Therefore, given a query shape 𝑠, we can

apply the signature function to compute its value in descriptor space 𝑥 = 𝒟(𝑠) and define

55

Parameter Space Geometry Descriptor Space

M

M(q)

A

F D

RM R
N

q

Figure 4-2: The function ℳ(𝑞) = (𝒟 ∘ ℱ)(𝑞) is a composition of the mapping function
ℱ from parameter values to a geometry with the signature function 𝒟 which generates a
descriptor for a given geometry.

dist(𝑠, 𝑇) = d2(𝑥,ℳ(𝒜)), where d2 is the euclidean distance in R𝑁 .
Our goal is to efficiently evaluate the distance from 𝑥 to a collection of manifolds that

represent each parametric shape in our database in order to retrieve the closest one (see
Figure 4-1). Our approach is to construct a compact representation of each manifold that
is an approximation with a certain allowed error. We aim at finding an approximation that
has minimal storage requirements and allows for distance evaluations which are both fast
and accurate.

4.3.1 Manifold Approximation

We approximate each manifold ℳ(𝒜) as a set of 𝐼 primitives that locally describe the
manifold: ℳ̄(𝒜) = {𝑃1, ..., 𝑃𝐼}. For convenience, we will drop the parenthetical (𝒜) in the
notation ofℳ and ℳ̄.

Our goal is to find the closest parametric shape in a collection given a query shape, i.e.,
find the closest manifoldℳ given a query point 𝑥. Accordingly, we have a good approxima-
tion ℳ̄ if the distance from 𝑥 toℳ and the distance from 𝑥 to ℳ̄ are approximately the
same. We therefore say the approximation error of the manifold is 𝛿, if

∀𝑥 ∈ R𝑁 , |d2(𝑥,ℳ)− d2(𝑥,ℳ̄)| ≤ 𝛿.

We can write this as:

d2(𝑥,ℳ)− 𝛿 ≤ d2(𝑥,ℳ̄) ≤ d2(𝑥,ℳ) + 𝛿.

The inequality on the right is satisfied if:

d2(𝑦,ℳ̄) ≤ 𝛿 ∀𝑦 ∈ℳ, (Coverage Lemma)

while the inequality on the left is satisfied if:

d2(𝑦,ℳ) ≤ 𝛿 ∀𝑦 ∈ ℳ̄. (Tightness Lemma)

56

of the Coverage Lemma. Given 𝑥 ∈ R𝑁 , ∃𝑦 ∈ ℳ such that d2(𝑥,ℳ) = d2(𝑥, 𝑦). If the
Coverage Lemma holds then there ∃𝑦 ∈ ℳ̄ such that d2(𝑦, 𝑦) ≤ 𝛿. By the triangle inequality
we get d2(𝑥, 𝑦) ≤ d2(𝑥, 𝑦)+d2(𝑦, 𝑦). Since, d2(𝑥,ℳ̄) ≤ d2(𝑥, 𝑦) we conclude that d2(𝑥,ℳ̄) ≤
d2(𝑥, 𝑦) + d2(𝑦, 𝑦), which, in turn, gives us d2(𝑥,ℳ̄) ≤ d2(𝑥,ℳ) + 𝛿.

of the Tightness Lemma . Analogous to the proof of the Coverage Lemma.

The Coverage Lemma states that every point onℳ is sufficiently close to ℳ̄. This means
that every point on the original manifold can be represented by a point on our approximation.
This guarantees that if 𝑥 ∈ R𝑁 is close to ℳ, then it will be close to ℳ̄. The Tightness
Lemma states that every point on ℳ̄ is sufficiently close toℳ, which means that there is
no point on the approximation that is far from the manifold. This guarantees that if 𝑥 ∈ R𝑁

is far fromℳ, then it will be far from ℳ̄. Together, the coverage and tightness mean that
the Hausdorff distance between ℳ̄ andℳ is bounded by 𝛿.

4.4 Algorithm

Each primitive 𝑃𝑖 of the approximation ℳ̄ = {𝑃1, ..., 𝑃𝐼} is defined as either a point or a
bounded tangent space, which is formed by the intersection of a tangent space at a given
point with an ellipsoid ℰ𝑖 ⊂ R𝑁 centered at that point. We write:

𝑃𝑖 =

{︂
𝑝𝑖 or
{𝑥 ∈ ℰ𝑖|𝑥 = 𝑝𝑖 +

∑︀
𝑗 𝑎

𝑖
𝑗t
𝑖
𝑗},

(4.1)

where 𝑝𝑖 is a point onℳ, {t𝑖1, . . . , t𝑖𝐾} are the normalized directional derivatives which form
a basis to the tangent space ofℳ at 𝑝𝑖, and 𝑎𝑖𝑗 ∈ R are weights.

To define ℳ̄, we propose an algorithm that samples points 𝑦 on ℳ at random and
then adds a primitive to ℳ̄ if 𝐷(𝑦,ℳ̄) > 𝛿. Random sampling of points on ℳ is done
by randomly selecting points 𝑞 ∈ 𝒜 and computing 𝑦 = ℳ(𝑞). The added primitive could
either be a single point or a bounded tangent space as defined in Eq. 4.1. We argue that in
the limit, this sampling algorithm assures that we get a complete coverage of the manifold.
In our experiments we terminate sampling after 2000 rejections. This does not provide a
technical guarantee of complete coverage, but it is a good approximation as shown in Figure
4-8. This is because the rejection sampling scheme we use will keep all points that are not
covered by the approximation. Tightness is always satisfied when 𝑃𝑖 is a point, but not when
𝑃𝑖 is a tangent space. In this case, we use the Tightness Lemma to define a rule on how to
determine the bounding ellipsoid ℰ𝑖 for 𝑃𝑖, as will be discussed below.

When our rejection sampling scheme chooses to add a primitive to ℳ̄, the primary
decision is to determine whether it should be represented as a single point primitive or
a bounded tangent space with the point as its center. This choice is done to maximize
efficiency. A bounded tangent primitive requires storing 𝐾 tangent vectors in addition to
the center point; we therefore say that its cost is 𝐾+1 times the cost of the point primitives.
This also roughly corresponds to the increase in query computation time (see Section 4.5).
Hence, if the bounds of a tangent primitive are tight enough such that the region it covers
is smaller than the region that can be covered by 𝐾 + 1 points, then it is not worthwhile

57

to use this primitive. To make this decision we need to define and measure the coverage
of both point and tangent primitives. We will first consider the case where the manifold is
unbounded (i.e., 𝒜 ≡ R𝐾) and later we will take into account the additional bounds imposed
by the feasible set 𝒜.

4.4.1 Unbounded Manifolds

If a manifold does not have bounds, the only aspect that determines how well it can be locally
represented by tangent spaces is how much it deviates from being flat. We will measure how
well a tangent space can locally approximate a manifold based on the Coverage Lemma.
Then, we will discuss how we define the bounding hyperellipse ℰ𝑖 based on the Tightness
Lemma.

Coverage First, let us consider the 1-dimensional case where ℳ = 𝑐(𝑡) is a curve in R2

and assume without loss of generality that the sample point is 𝑝 = 𝑐(0). In this case, the
tangent approximation is then given by the line:

𝑙(𝑡) = 𝑐(0) + 𝑡𝑐′(0),

Since we allow an error of size 𝛿, then once a point is sampled, any point on the circle
of radius 𝛿 centered at that point is well represented by the sampled point according to the
Coverage Lemma. On the other hand, if we take the tangent line on that point, then any
point on the curve that is within distance 𝛿 of this line is covered by the line representation.
So while the coverage of a point is proportional to 𝛿, the coverage of the tangent line is
proportional to 𝑑, where 𝑑 is the distance from the point 𝑝 to the furthest point on the curve
𝑐(𝑡) that is sufficiently close to the tangent line (see Figure 4-3).

Figure 4-3: The coverage of a point (left) and of a tangent line (right) are defined by the
region of the manifold (here illustrated as a curve 𝑐(𝑡)) that is well approximated by this
primitive given the allowed approximation error 𝛿. While the coverage of the point 𝑐(0) is
directly proportional to 𝛿, the coverage of the tangent line 𝑙(𝑡) is proportional to 𝑑, which
depends on the curvature.

We can approximate 𝑑 using the Taylor expansion. If 𝑐(𝑡) = 𝑐(0) + 𝑡𝑐′(0) + 1
2
𝑡2𝑐′′(0), then

the distance from a point 𝑐(𝑡) to the line 𝑙 is given by:

𝐷(𝑐(𝑡), 𝑙) =
1

2
𝑡2
⃦⃦⃦⃦
𝑐′′(0)− 𝑐′(0)

⟨𝑐′′(0), 𝑐′(0)⟩
‖𝑐′(0)‖2

⃦⃦⃦⃦
.

58

We can make this distance smaller than 𝛿 by bounding 𝑡 as follows:

𝑡 ≤

√︃
2𝛿/

⃦⃦⃦⃦
𝑐′′(0)− 𝑐′(0)

⟨𝑐′′(0), 𝑐′(0)⟩
‖𝑐′(0)‖2

⃦⃦⃦⃦
.

The distance 𝑑 can then be approximated by 𝑇max‖𝑐′(0)‖ from which we get:

𝑑 =

√︃
2𝛿/
‖𝑐′′(0)⟨𝑐′(0), 𝑐′(0)⟩ − 𝑐′(0)⟨𝑐′′(0), 𝑐′(0)⟩‖

‖𝑐′(0)‖4
. (4.2)

We observe that the denominator inside the square root of this expression is precisely the
definition of curvature 𝜅 for the curve 𝑐(𝑡) at 𝑡 = 0 Do Carmo [1976]. From this we can write

𝑑 =
√︁

2𝛿
𝜅
.

A lower bound on the number of points needed to cover the same region as the tangent
line is given by the ratio of the two coverages, 𝑑/𝛿. Hence, we should store a tangent primitive
if this ratio is larger than the extra storage requirement, 𝐾 + 1. That is, we should store a
tangent primitive if:

𝑘 ≤ 2

𝛿(𝐾 + 1)2
. (4.3)

This result is quite intuitive, since the curvature measures the amount by which the curve
deviates from being flat. In our algorithm, we therefore measure the curvature at the point
and if the curvature is small then we store the bounded tangent primitive, if it is too big we
store the point primitive. The equation above defines how we determine this threshold based
our the original parameter 𝛿 and the dimension of the parametric shape, so no additional
empirical parameter estimation is needed.

This curvature interpretation can be easily expanded to ℳ : R𝐾 → R𝑁 . In the multi-
dimensional case, we use the maximal principal curvature Do Carmo [1976], which measures
the curvature at the direction where it is maximized. Since the coverage ratio is now given
by (𝑑/𝛿)𝐾 , we get:

1

𝑘𝑚𝑎𝑥
≥ 𝛿

2
(𝐾 + 1)2/𝐾 . (4.4)

In our implementation, we approximate the maximal principal curvature 𝑘𝑚𝑎𝑥 by the
largest curvature in the 𝐾 derivative directions. The curvature in each direction is computed
using the expression for 𝜅 inside Equation 4.2, replacing the derivatives of curve 𝑐 with the
partial derivatives of the manifoldℳ.

Tightness To bound the tangent space we have to ensure that the Tightness Lemma is
satisfied. As we did in the previous section, we will first look at the 1-dimensional case and
will use the Taylor approximation. Then, the distance from a point 𝑙(𝑡) to the curve 𝑐 can
be bounded by the distance from a point 𝑙(𝑡) to the point 𝑐(𝑡) (see Figure 4-4a):

𝐷(𝑙(𝑡), 𝑐) ≤ 𝐷(𝑙(𝑡), 𝑐(𝑡)) =
1

2
𝑡2‖𝑐′′(0)‖.

59

To ensure that this is smaller than 𝛿 we bound 𝑡, such that:

𝑡 ≤
√︀

2𝛿/‖𝑐′′(0)‖,

from which we get that the tangent space should be bounded by a circle of radius:

𝑟𝑐 =
√︀

2𝛿‖𝑐′(0)‖2/‖𝑐′′(0)‖.

Again, in the multidimensional case, we use a hypersphere and take the first and second
derivatives in the direction of the maximal principal curvature.

4.4.2 Bounded Manifolds

Next, we discuss how to incorporate the feasible set 𝒜 into our representation. Because
the feasible set induces boundaries on the manifold in descriptor space R𝑁 , we need to
incorporate this effect into ℰ𝑖 in order to guarantee tightness. This, in turn, affects the
coverage of the tangent primitives and should also be taken into account when choosing
which primitive to store.

Tightness Constraints Once again, we will start by looking at the one-dimensional case.
As previously discussed, the curvature of the manifold defines a bound 𝑟𝑐 to the tangent
primitive, as shown in Figure 4-4a. We define boundary constraint 𝑟𝑏, as the largest radius
that guarantees that the projection of the bounded tangent line onto the curve falls on points
𝑐(𝑡), such that 𝑡 ∈ 𝒜 (see Figure 4-4b).

(a) Unbounded case (b) Bounded case

Figure 4-4: Computation of the bounding radius for a tangent space primitive 𝑙(𝑡) on the
manifold 𝑐(𝑡). In the illustration, the dotted line represents the part outside the boundary
of the manifold and 𝛿 is the allowed approximation error. Left: when we do not take
the boundary into account the bounding radius is determined uniquely by the curvature
constraint 𝑟𝑐. Right: when we are close to the boundary, the radius is computed as 𝑟𝑏 + 𝑟𝛿,
where 𝑟𝑏 is the distance to the boundary and 𝑟𝛿 is the amount by which we can expand
the radius preserving tightness constraints. We can compute 𝑟𝛿 from 𝛿 and 𝑑𝑏, which is the
distance from the boundary point 𝑝𝑏 on 𝑙(𝑡) to the manifold.

If the point 𝑦 = 𝑐(0) is close to the boundary, then 𝑟𝑐 could be larger than 𝑟𝑏. To
guarantee tightness in this case, the tangent line has to be bounded by 𝑟𝑏 + 𝑟𝛿, where 𝑟𝛿 is

60

the amount by which we can expand the curve to guarantee that the distance from it to the
bounded manifold is smaller than the allowed approximation error 𝛿.

In the multi-dimensional case, we consider a direction v in descriptor space in which to
compute the distance from a sample point 𝑦 =ℳ(𝑞) to the boundary. We assume that we
have a set of analytic expressions that represent the boundary constraints in the parameter
space and then map them to the descriptor space using the Jacobian Jq at the sampled point
q. Then, if a boundary constraint in the parameter space is written as a function 𝑔(x), in
the descriptor space it becomes Jq𝑔(x) +ℳ(q). We can find the distance to the boundary
𝑔(x) in the direction v by solving:

min
𝛼,x
‖Jq𝑔(x)− 𝛼v‖. (4.5)

If the ray along the direction v intersects the boundary constraint 𝑔(x), then the value of
this minimization will be zero and the resulting 𝛼 will return the distance from ℳ(q) to
this boundary constraint. The distance to the boundary, 𝑟𝑏, along v is then determined by
computing this for every constraint 𝑔(x) and taking the minimum.

To compute 𝑟𝛿 we first need to evaluate the distance 𝑑𝑏 from the point 𝑝𝑏 =ℳ(q)+𝑟𝑏v to
the manifold. Then, as illustrated in Figure 4-4b, we can compute 𝑟𝛿 so that 𝛿2 = 𝑑2𝑏 +𝑟2𝛿 . To
compute 𝑑𝑏 we use the second order Taylor approximation in a similar manner as explained
above.

The computed distance to the boundary depends on the direction v. Shooting rays in
multiple directions and taking the minimum radius would determine a bounding hypersphere.
This, however, is very restrictive, since a point can be close to the boundary in one direction
and not in others. Therefore, we have chosen to bound the tangent spaces using ellipsoids
instead of hyperspheres.

Naturally, the area covered by the ellipsoid depends on its orientation. Choosing optimal
orientations for the ellipsoids can reduce the number of primitives needed to represent the
manifold (see Figure 4-5). To determine a good basis for the orientation of the ellipsoids, we
aim at aligning it with the least constrained directions of the manifold. We do this using a
greedy approach. We start with a set of directions on the tangent space. First, we compute
the distance from each of them to the boundary (using the method described above). Second,
we take the direction that has the minimum distance to the boundary and set it as a basis
vector. We then restrict our search to the orthogonal space of the current basis and repeat
the first step. The algorithm ends after we complete a full basis.

Coverage To choose between points and tangent primitives, we first verify Equation 4.4
and then compare coverage taking into account the constraints imposed by the boundary.
For each direction we set the coverage radius to be 𝑟𝑖 = min(𝑟𝑖𝑏 + 𝑟𝑖𝛿, 𝑟

𝑖
𝑐). Then, following

Equation 4.3, we choose to add a bounded tangent instead of a point if:

𝐾∏︁
𝑖=1

𝑟𝑖

𝛿
≥ (𝐾 + 1). (4.6)

61

91 primitives 59 primitives 48 primitives

Figure 4-5: From left to right: covering the manifold with tangent spaces bounded by
hyperspheres, non-oriented ellipsoids, and oriented ellipsoids. This example illustrates that
the number of primitives needed to represent the manifold for the same value of 𝛿 is reduced
when we use better primitives. We notice that even in this example with a 2-dimensional
parameter space there is a significant improvement when oriented primitives are used. The
blue dots represent the underlying manifold represented via super sampling. (Please note
that these are high dimensional primitives projected to 2D for visualization and therefore
appear slightly distorted.)

4.5 Retrieval

Our retrieval method determines the closest parametric shape by finding the closest primitive
to the query shape. Distances to points are measured using standard euclidean norms and
distances to bounded planes are measured by first projecting the query point 𝑥 onto the
tangent space and then computing the distance from the projection 𝑝 to the ellipsoid. This
distance is approximated using a scaling function 𝑆 that maps the ellipsoid to the unit
hypersphere centered at the origin. If 𝑆(𝑝) < 1 then the distance is given by the projection
error 𝑑𝑝 = ‖𝑥 − 𝑝‖. Otherwise, we approximate the distance from 𝑝 to the ellipsoid as

𝑑𝑒 ≈
⃦⃦⃦
𝑝− 𝑆−1

(︁
𝑆(𝑝)

‖𝑆(𝑝)‖

)︁⃦⃦⃦
and thus the final error is given by

√︀
𝑑2𝑝 + 𝑑2𝑒 (see Figure 4-6).

While computing the distance from a query point to a point primitive in 𝑅𝑁 is Θ(𝑁),
computing the distance to a tangent space primitive involves additional computation for
evaluating the projection onto the tangent space 𝑝 and its distance from the ellipsoid 𝑑𝑒. We
can precompute the 𝑁x𝐾 projection matrix for each tangent primitive and store it as part
of our data structure. This does not affect our previous storage discussion since the ratio
of the storage cost for tangent primitives as compared to points remains on the order of 𝐾.
With this, computing the projection of the query point onto the tangent space is Θ(𝐾𝑁).
Using the simplification discussed above, the computation of 𝑑𝑒 is Θ(𝐾). Therefore, while
the distance to a point primitive is Θ(𝑁), the distance to a tangent primitive is Θ(𝐾𝑁).
From this, we conclude that, similar to storage requirement, the additional retrieval time for
tangent primitives when compared to points is proportional to the number of parameters,
𝐾.

Though our method finds the closest parametric model to the query, finding the closest
match still involves the final step of fitting parameters. Since we find the closest primitive, we

62

Figure 4-6: Approximating the distance 𝑑𝑒 from the projected point 𝑝 to the hyperellipse.
Let 𝑆 be a scaling function that maps the hyperellipse to the unit hypersphere centered at the
origin. The point on the hypersphere that is the closest to 𝑆(𝑝) is given by 𝑝𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝑆(𝑝)

‖𝑆(𝑝)‖ .
We use the inverse mapping and approximate the distance from 𝑝 to the hyperellipse as
𝑑𝑒 ≈ ‖𝑝− 𝑆−1(𝑝𝑐𝑜𝑛𝑡𝑎𝑐𝑡)‖.

can use the parameters of this primitive as an initial guess and use existing search methods
to refine it. This problem has been addressed in previous work with an iterative closest point
(ICP) method Nan et al. [2012].

4.6 Experimental Setup

We tested my algorithm on a collection of models from multiple categories using three dif-
ferent descriptors.

4.6.1 Database

To run experiments with our retrieval method, we created a collection of parametric shapes
using two procedures. First, we used a free CAD software (OpenSCAD) to model objects
and expose designs parameters. Second, we used an automatic method to convert single
geometries into parameterized objects (see Chapter refchap:3).

This collection of parametric shapes spans multiple categories, as shown in Table 4.1.
We use 2 CAD designs and 74 automatically converted models. Figure 4-1 illustrates some
of the models in the collection and their variations. The number of parameters for each
design ranges from 2 to 9. We argue that this is a descriptive range, even considering
complex parametric CAD designs. Although parametric CAD software allows for many
independent variables, these are often constrained by manufacturing considerations and the
need to interface with other models. Therefore, in practice, most CAD designs only have a
small set of meaningful parameters that can be directly exported by designers to allow for
further user-driven customization (typically less than ten).

For the parametric CAD models, the ranges for the exposed parameters were hand an-
notated by the designer. While generating the manifold representations in descriptor space,
we call the CAD software to compute a 3D mesh for each parameter configuration. For
models defined by our automatic conversion procedure, we represented each vertex of the
mesh explicitly as a linear function of the parameters. This makes geometry evaluations very

63

Table 4.1: Parametric designs in our collection.

Category Number of Models

lamps 17
boats 11
chairs 15
planes 9
carts 10
tables 15

fast, especially when compared to the CAD models where each evaluation involves several
non-trivial operations.

In our designs, the feasible set of parameter values are linear: we defined ranges for
exposed parameters of CAD designs and our automatic method defines the boundary of the
feasible set using a set of linear constraints. With this assumption, the optimization shown in
Equation 4.5 is a least squares problem that can be solved efficiently. We stress, however, that
the mathematical model discussed in this paper does not depend on the linearity assumption.
In addition, the implementation speedups given by the linearity assumption are only relevant
during the pre-computation step that generates the manifold approximations and they do
not affect retrieval time.

4.6.2 Descriptors

The algorithm we propose is independent of the choice of descriptor. The only assumption we
make is that a descriptor should be quite smooth, so that the image of the parametric space
lies close to a manifold in the descriptor space. We use three different descriptors for our
experiments. The first one is the D2 Shape Distribution, which is defined by a histogram
of distances between pairs of points on the surface of the model Osada et al. [2001]. The
second is the VOXEL Shape Histogram, which is a shape histogram descriptor Ankerst
et al. [1999] and describes the distribution of a model area as a function of the distances from
voxel centers. Since these descriptors are not necessarily smooth, we interpolate the feature
signal with a Gaussian kernel, following the approach of Ovsjanikov et al. [2011]. The third
descriptor is the Light Field Descriptor Chen et al. [2003], which captures geometry detail
from rendered images of the shape and is known to have good retrieval precision Shilane et al.
[2004].

For the D2 descriptor, we sample 3, 000 points on the surface of the model and express
them as a function of the shape parameters. For a given parameter setting, we measure
the pair-wise distances (normalized by the average distance) between all sampled points
and convolve this distribution with a set of Gaussian kernels of a fixed width 𝜎 and means
distributed uniformly between 0 and 3. Since in our collection each sampled point can be
written as a linear expression of the parameters, derivatives can be computed analytically. We
have also experimented with finite differences, which are faster to compute and comparable
in terms of accuracy. In our experiments we set 𝜎 = 0.1 and use 300 Gaussian means. We
have also used PCA on our dataset to reduce the descriptor space to 24 dimensions.

64

For the VOXEL descriptor, we sample one million points on the surface for the model.
We take the difference from each sample point to the center of mass and normalize them by
maximal distance. We convolve this distribution with a set of isotropic 3D-Gaussian kernels
that have variance 𝜎 and means distributed uniformly on a 3D grid. For this experiment,
we made sure to resample all the points for each parameter configuration and use finite
differences to compute first and second derivatives. We have used 𝜎 = 0.2 and 1000 Gaussians
distributed on a 10x10x10 grid. As with the D2 descriptor, we use PCA on the dataset to
reduce the descriptor to 64 dimensions. Though this descriptor is not rotation invariant,
we exploit the fact that our models are CAD designs that have upright orientation and are
aligned with one of the four principal axes. Therefore, we perform retrieval on four rotated
versions of the query and keep the best one.

Construction of the Light Field descriptor involves transforming a model to be centered
at the origin and inside of a unit sphere. The model is then rendered from a number of
viewpoints, sampled from the vertices of a dodecahedron. Image features are computed as
in Chen et al. [2003], combining Zernike moments with Fourier coefficients. Again, in this
setting, we handle rotation invariance by performing retrieval on four rotated versions of the
query and keeping the best one. We use PCA on the dataset to reduce the descriptor to 280
dimensions.

4.7 Evaluation

We present results on evaluating the accuracy and efficiency of our manifold representation
for individual parametric shapes, as well as on the overall retrieval method from a shape
collection.

4.7.1 Manifold Representation

Sampling Scheme Alternatives to our rejection sampling approach are adaptive sampling
schemes based either on curvature or on surface areas. While a method based on curvature
is suitable for approximating the manifold with tangent planes, adaptive sampling based
on surface area approximates a uniform distribution of points in descriptor space. We have
implemented both of these approaches using a Metropolis–Hastings algorithm, where the
probability density function given a current sample is given by a Gaussian centered at that
point with variance proportional to the curvature or surface area measured at that point.
We compare the results from these approaches to our rejection sampling scheme using only
point or tangent plane primitives and illustrate the results in Figure 4-7. We observe that we
get similar distributions for curvature based adaptive sampling and rejection sampling for
tangent primitives, and similar distributions for surface area adaptive sampling and rejection
sampling using only point primitives.

However, while the adaptive sampling approaches are good at approximating the desired
distributions, the randomness in the algorithm makes it unsuitable for minimal coverage, es-
pecially when the number of primitives is small. Figure 4-7 shows how points tend to clump
together and leave gaps. On the other hand, the rejection sampling scheme guarantees that
only points that contribute to coverage are added. In addition, our method determines the

65

Figure 4-7: Comparison between adaptive sampling and rejection sampling on a simple
paraboloid example. Our rejection sampling scheme was done for both point and planes for
a fixed approximation error 𝛿. The number of samples for the adaptive sampling schemes
was chosen to be the same as the result of the rejection sampling for both points and
planes. The top row shows the results for point samples. Though both methods return
a uniform distribution, in the adaptive sampling scheme points tend to clump together
and leave gaps. The bottom row results for approximating with tangent spaces (we only
display the center of the tangent space for simplification). Once again both methods display
the desired distribution (based on curvature) and rejection sampling covers the space more
effectively.

number of samples based on a unique user-specified parameter that reflects the retrieval er-
ror. Although the parameters of the adapting sampling schemes may be tweaked to vary how
densely the sampling covers the space, these cannot be easily mapped to a global approxi-
mation error. Since sampling is part of a pre-processing step, this justifies a more expensive
approach (rejection sampling) that results in lower storage, more controlled approximation
error and faster run-time. Another important aspect is that the criteria for adaptive sam-
pling depends on the primitive type while the rejection sampling method we propose can
handle a hybrid representation. Finally, we can incorporate the boundary information to the
rejection sampling algorithm, which allows me to create a compact representation for the
bounded manifolds.

Accuracy We evaluate the accuracy of our manifold representation by measuring the ac-
tual fitting and coverage error for different values of the target parameter 𝛿. We measure
coverage error by sampling points from the ground truth manifold ℳ and computing the
distances to the representation ℳ̄. We measure fitting error by sampling points on ℳ̄
and computing distances to the ground truth ℳ. As ground truth we use a dense super
sampling of the manifold ℳ, namely, a point-only (no tangent approximations) rejection
sampling with very small 𝛿 = 0.005. Figure 4-8 shows results of an experiment on a para-

66

0

0.5

1

1.5

0 0.5 1 1.5M
e
a
su

re
d
 E

rr
o
r

(9
9
 p

e
rc

e
n
ti
le

)

Target Error ()

fitting coverage

0

0.05

0.1

0.15

0 0.05 0.1 0.15M
e
a
su

re
d
 E

rr
o
r

(9
9
 p

e
rc

e
n
ti

le
)

Target Error ()

D2 Descriptor Voxel Descriptor

0

0.05

0.1

0.15

0 0.05 0.1 0.15M
e
a
su

re
d
 E

rr
o
r

(9
9
 p

e
rc

e
n
ti

le
)

Target Error ()

fitting coverage

Light Field Descriptor

0

0.5

1

1.5

0 0.5 1 1.5M
e
a
su

re
d
 E

rr
o
r

(9
9
 p

e
rc

e
n
ti

le
)

Target Error ()

fitting coverage

Figure 4-8: Measuring fitting and coverage errors as a function of the target parameter 𝛿 for
the implemented descriptors. we observe that both measured errors are within the bounds
of 𝛿. For large values of 𝛿 we observe that the fitting error drops to zero. This is because
for very coarse approximations, our algorithm prefers points to tangents – the coverage of
points become larger with 𝛿, while plane coverage is still limited by the curvature and the
boundary of the manifold. Since absolute distance values depend on descriptors (and are
much larger for the Light Field descriptor), the ranges of the target errors for this experiment
were chosen so that the number of samples were similar for all descriptors.

metric chair with 2 parameters for all three descriptors. We plot across different values of 𝛿
the 99 percentile error (the worst error discarding the worst 1%).

Efficiency To evaluate the efficiency of our representation we compare our method with
a rejection sampling scheme that uses just point primitives and one that uses just tangent
primitives. Figure 4-11 shows the storage cost of each representation across different values of
the target parameter 𝛿 (that defines the accuracy of the approximation). The cost depends on
the number of stored primitives and their storage costs. We set the cost for point primitives to
1 and the cost of tangent primitives to 𝐾 + 1, where 𝐾 is the number of parameters (DOF)
of the shape. Note that counting ellipsoids as 𝐾 + 1 times more expensive also roughly
corresponds to the increase in query computation time. We present evaluation results on
three different shapes: a table with 3 DOF, a cart with 5 DOF and a chair with 7 DOF.

The top row in Figure 4-11 shows the cost verses 𝛿 on a log scale. We observe the trend
of preferring tangents for small values of 𝛿 and points for large values of 𝛿. As shown in
the graphs, our hybrid representation can optimally select the transition between points and

67

Table Model – 3DOF Cart Model – 5DOF Chair Model – 7DOF

1

10

100

1000

10000

-1.9 -1.7 -1.5 -1.3 -1.1 -0.9 -0.7 -0.5

C
o
st

 (
lo

g
 s

ca
le

)

approximation parameter (log of)

Points

Tangents

Hybrid

1

10

100

1000

10000

100000

1000000

-2.05 -1.55 -1.05 -0.55 -0.05

C
o
st

 (
lo

g
 s

ca
le

)

approximation parameter (log of)

Points

Tangents

Hybrid

1

10

100

1000

10000

100000

-2.05 -1.55 -1.05 -0.55 -0.05

C
o
st

 (
lo

g
 s

ca
le

)

approximation parameter (log of)

Points

Tangents

Hybrid

0

1

2

3

4

5

6

-1.9 -1.7 -1.5 -1.3 -1.1 -0.9 -0.7 -0.5

C
o
st

 R
a
ti
o
 (

M
e
th

o
d
/
H

y
b
ri

d
)

approximation parameter (log of)

Points

Tangents

Hybrid

0

1

2

3

4

5

6

-1.9 -1.7 -1.5 -1.3 -1.1 -0.9 -0.7 -0.5

C
o
st

 R
a
ti
o
 (

M
e
th

o
d
/
H

y
b
ri

d
)

approximation parameter (log of)

Points

Tangents

Hybrid

0

1

2

3

4

5

6

-1.9 -1.7 -1.5 -1.3 -1.1 -0.9 -0.7 -0.5

C
o
st

 R
a
ti
o
 (

M
e
th

o
d
/
H

y
b
ri

d
)

approximation parameter (log of)

Points

Tangents

Hybrid

Figure 4-9: Comparison between our hybrid method and using a single primitive. Top row:
shows the storage cost of each representation across different target parameters 𝛿 in log scale.
Bottom row: the relative cost of the single primitive methods while compared to our method.

planes so that its cost is constantly bellow the other two alternatives. The second row shows
the relative cost of using a single primitive compared to our method. As shown in the graphs,
the relative cost of our hybrid method is close to one of the two at a certain 𝛿 range, while
the other methods have a cost up to 5 times larger, depending on the shape and primitive
type. The small oscillations in this graph are mostly due to the randomness in the sampling
algorithm, but are also related to some approximations in our implementation.

Note that our representation uses both primitives and does not change between them
at a specific point. It has a higher percentage of points for larger values of 𝛿, and a higher
percentage of ellipsoids for smaller values of 𝛿. Note also that the cross-over value where
point primitives start to outperform tangents varies depending on the shape. This happens
because different shapes have different numbers of parameters and also because the sizes of
the feasible sets vary. These parameters influence the coverage of a tangent approximation.
Therefore, using a representation that picks one primitive type depending on the target
parameter 𝛿 is not feasible as the transition value depends on the shape. Given a specific 𝛿,
some shapes may be better represented with points while others with planes. In contrast, our
hybrid representation can adapt to the specific shape and choice of 𝛿, automatically choosing
the right combination of the two primitives. This is especially important while representing
a collection of shapes, as only a hybrid scheme can optimize across all the different models
in the database.

68

4.7.2 Retrieval

Next, we evaluate how well our representation works for retrieving models in a collection
of parametrized shapes. First, we motivate the importance of taking into account the
parametrized model. We evaluate what happens when we do not represent the full manifold
but instead, use a shape with the default template parameters (we will call this the mean
shape). For the query, we use random parameter configurations and search the database for
the closest mean shape. We have used the D2 descriptor for this experiment. Figure 4-10
illustrates a few of the retrieved results. In this figure we show the query shape, the mean
shape of the models that originates the query and the closest mean shape retrieved. We
observe that the changes on the parameters significantly affect the geometry. For example,
when we flatten a cart it resembles a coffee table; if we shrink the feet of a stool it resembles
a lamp. We ran the mean shape retrieval test on 20 random parameter samples for each
model in the database. In this experiment, we managed to retrieve the correct mean shape
only 29% of the time.

We also compare our sampling scheme with the naive approach that represents the mani-
fold by randomly sampling a fixed number of points from the parameter space of each model.
The advantages of our approach are threefold. First, distributing samples uniformly over
the descriptor space rather than over the parameter space provides better coverage of the
manifold. Second, fixing the value of 𝛿 for each shape allows the number of samples per
shape to vary according to the size of the corresponding manifold in the descriptor space.
Third, by storing both points and tangent primitives we reduce the storage cost.

To compare the two methods we evaluate their performance on retrieval of points sampled
from our parametric shape collection. Naturally, if we sample these points randomly over
parameter space the naive approach will have a better performance on average since it
matches the distribution. Alternatively, if we sample uniformly over descriptor space, our
approach does much better on average. For a fair comparison, we sample uniformly over
the parametric space, but evaluate the worst-case, rather than the average error, measured
as the distance to the closest primitive on the correct manifold minus the distance to the
closest primitive on a wrong manifold. As a result, the error does not depend on the query
distribution, but on how well our samples cover the space. Since the error is measured in
descriptor space and needs a reference to interpret, we plot it against the target error 𝛿 (also
in descriptor space) for our method in Figure 4-11. For an “equal cost” comparison, we plot
the error of the naive method using the same amount of storage as our method. We plot the
results sampling both over the full database and over individual categories.

The results show that the error for our method is not only smaller (close to 𝛿), but
is also consistent. For example, airplane models present very small variations in the D2
descriptor space and can therefore be well represented with only a few samples. On the
other hand, chair and lamp variations are much more dramatic, and therefore need more
samples. Our method automatically handles this difference and allocates more storage to
represent larger manifolds. We therefore notice that our method performs consistently better
across all categories.

Finally, we show retrieved results for models in each category that were collected from
online shape repositories. In these experiments, retrieval times for each model were in the
order of 10 milliseconds. Figure 4-12 shows the top result for both descriptors for varying

69

Figure 4-10: Demonstration of query failures when representation only consists of the mean
shape. From left to right: the mean shape of some parametric models in the database, query
shape given by a random parameter setting of each parametric model, and the closest mean
shape retrieved from the database. Since changes in parameter settings significantly alter the
geometry, the closest mean shapes are usually not from the parametric models that originate
the queries.

targeted errors, 𝛿. Results for additional query shapes are included in the supplemental ma-
terial. The retrieved results are shown with the parameters settings of the closest primitive.
In the case of tangent primitives we simply use the center of the ellipsoids and no additional
projection. As discussed in Section 4.5, an additional fitting step would be required to select
the optimal parameter configuration.

The quality of our retrieval results is obviously heavily dependent on the descriptor
(Figure 4-12). For example, while the Voxel descriptor visually outperforms the D2 descriptor
with chairs, the D2 descriptor appears to do better at retrieving lamps. As expected, the
Light Field descriptor retrieves better results in every category. The figure also illustrates
results for different target errors. Using measurements based on the descriptor space metric,
we confirm that with smaller target errors the retrieved shapes are closer to the query.
However, the relationship between the visual similarity and proximity in descriptor space
highly depends on the quality of the descriptors. For example, using the D2 and Voxel

70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5

W
o
rs

t
C

a
se

 E
rr

o
r

Target Error for Our Method

Full Database

Our Method Naïve Method

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6

W
o
rs

t
C

a
se

 E
rr

o
r

Target Error for Our Method

Chairs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6

W
o
rs

t
C

a
se

 E
rr

o
r

Target Error for Our Method

Planes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6

W
o
rs

t
C

a
se

 E
rr

o
r

Target Error for Our Method

Boats

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6

W
o
rs

t
C

a
se

 E
rr

o
r

Target Error for Our Method

Lamps

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6

W
o
rs

t
C

a
se

 E
rr

o
r

Target Error for Our Method

Carts

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6

W
o
rs

t
C

a
se

 E
rr

o
r

Target Error for Our Method

Tables

Figure 4-11: Comparison between our approach and the naive one. We measure the difference
between the distance to the closest primitive in the collection and the distance to the correct
manifold and show the worst case for both approaches for querying points sampled on the
full database and on individual categories. From these results we verify that our method has
a better performance across all categories.

Figure 4-12: Results of retrieval. From left to right: query shape, result for D2 descriptor
(for increasing target errors), and result for Voxel descriptor (for increasing target errors)
and results for the Light Fied descriptor (for increasing target errors).

descriptors, smaller 𝛿’s result in shapes that are visually less similar for the airplane query
example. Nevertheless, we argue that since the retrieved results are actually closer according
to the descriptor metric, better descriptors will retrieve more visually accurate results. In

71

fact, this is what happens with the Light Field descriptor.

Classification Searching in the space of parametric shapes allows capturing structure
preserving variations during retrieval. When parametric variations are taken into account
using our manifold representation, each shape covers a much larger area on the search space.
This change of the search space can affect classification in non-trivial ways and is also very
dependent on the choice of descriptor. We analyse the effects in classification using Table
4.2 and Figure 4-13.

Table 4.2 compares the search space for different descriptors when single mean shapes
are used and when the full manifolds are represented. The distance between categories is
measured as the average of the pair-wise minimal distance between categories. The category
size is measured by the maximal distance between two shapes in a category and the average
across all categories is shown. This result shows that when parametric representations are
used the classes become closer to each other and the space covered by each class becomes
larger. This is expected since parametric shapes include structure preserving variations.
There are however, significant variations depending on the descriptor. While the average
distance between categories is reduced by 93% for the D2 descriptor, the reduction is only
31% for the Light Field descriptor.

Table 4.2: Comparison between coverage regions in descriptor space.

Descriptor
Distance Between Categories Average Category Size
Mean Shape Manifold Mean Shape Manifold

D2 0.16 0.02 0.98 1.83
Voxel 0.40 0.16 1.17 1.54

Light Field 1.75 1.12 3.61 5.37

Figure 4-13 shows the standard precision recall plot, which measures classification accu-
racy. Curves closer to the horizontal line at precision = 1.0 indicate superior retrieval results.
Since classification depends on the descriptor, we notice a clear improvement in performance
in the Light Field descriptor when compared to the D2 and Voxel descriptor. This result is
consistent with mean shapes and the manifold representation. We notice however that while
the manifold representation outperforms the mean shape on the Light Field descriptor, the
results are equivalent (or slightly worse) for the other 2 descriptors.

From Figure 4-13 and Table 4.2 we conclude that when low quality descriptors are used,
classifiers have poor predictive performance and the additional complexity added by the
deformation parameters cannot be captured. Therefore they do not help performance and
can even act as noise, increasing the error. However, when high quality descriptors are used,
the variations of the parametric representations allow better coverage of the space, improving
classification performance.

We emphasize however, that the application of retrieval in parametric shape collections
goes beyond classification. This is illustrated in Figure 4-14, which uses the Light Field
descriptor and compares the mean shapes and the manifold approximation. Results show
that the increased variability in the search allows closer matches to be found. In some cases
the retrieved results remain in the same category (see the boat, lamp and cart examples). For

72

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

P
re

c
is

io
n

Recall

D2 (Mean Shapes) Voxel (MeanShapes) Light Field (Mean Shapes)

D2 (Manifold) Voxel (Manifold) Light Field (Manifold)

Figure 4-13: Precision-recall plots evaluating classification accuracy for our method com-
pared to using only mean shapes for different descriptors.

the table example, however, the parametric shape space search returns a stool that although
belongs to different category (chairs), can be deformed to resemble a table. Though in
terms of classification this is an inaccurate result, we notice an improvement in geometric
proximity when comparing it to the table retrieved by querying the collection of mean shapes.
In the case of a bench query, since we have no database models in this category, the mean
shape search finds a boat that has similar dimensions. Our approach, on the other hand,
can represent variations of the chair category that make it resemble a bench. This added
capability of our technique is not captured by simply using precision-recall classification
metrics.

4.7.3 Limitations

Although the main focus of this work is a method to represent a manifold created by para-
metric shapes in descriptor space, the results of retrieval will always rely on the quality of the
actual descriptor. We have tested the retrieval on three different descriptors and observed
a large variation in performance. Other descriptors could be tested in our approach as long
as they are smooth, i.e., that the region covered by the parameters in descriptor space is
close to a manifold.

Another important limitation to discuss is scalability. In our algorithm, storage size
is not directly determined by the number of parameters (i.e., dimensionality) but by the
volume of descriptor space relative to the tolerance. This volume indicates the variability
of valid shapes for a given parametric model, which depends not only on the number of
dimensions but also on the ranges of the parameters. For example, one of our airplane
models with 8 parameters needs less than a third of the storage of a lamp model with only 3
parameters. Nevertheless, in theory, the volume can increase exponentially with the number
of parameters and therefore, our method, like most dimension-dependent representations,

73

Figure 4-14: Comparison of retrieval with mean shapes only and manifold representation
for the Light Field descriptor. From left to right: query shape (green), closest mean shape
retrieved (gray), closest parametric shape retrieved with parameter fitting (blue) with its
corresponding mean shape (gray). We observe that using the parametric shapes we retrieve
models that are more similar in geometry but may lie on a different class.

would not scale. We argue however that, in practice, models with a large number (and
volume) of meaningful parameters are not frequently encountered. This is true because
although parametric CAD allows for many independent variables, these are often constrained
by manufacturing considerations and the need to interface with other models. Therefore the
volume of useful variations of a single design tends to be relatively small.

Another assumption that we make is that the feasible set 𝒜 is connected. This is mostly
relevant for approximating regions of the manifold using tangent spaces and computing
boundaries of the ellipsoids. An extension of our work can represent𝒜 as a union of connected
sets. It would also be interesting to handle complex boundaries (originated by an arbitrary

74

number of non-linear constraints) as well as a mixture of continuous and discrete parameters.
These cases would require more primitives since tangent approximations can only be used
on the continuous regions.

Lastly, another limitation of our method is that the time for computing queries scales
linearly with the size of the database since we currently use a naive search approach. In high-
dimensional descriptor spaces, algorithms based on locality sensitive hashing (LSH) Datar
et al. [2004] can solve the nearest neighbor problem in sublinear time. While LSH algorithms
typically work with points, one can imagine using ellipsoid centers with LSH to prune obvi-
ously far-away regions of the descriptor space and take advantage of such search structures.
The effectiveness and feasibility of such methods would need to be tested by experiments.

4.8 Discussion

In this chapter, we present the first approach for efficient retrieval on a collection of para-
metric shapes that improves upon the standard scheme of first fitting parameters and subse-
quently computing the distance to the query shape. We address this problem by using shape
descriptors and representing parametric shapes as manifolds in this space.

Using a metric for manifold approximation error based on retrieval performance, we
propose an algorithm for approximating a parametric shape given a target error. Our ap-
proximation consists of a mixture of points and bounded tangent primitives. We discuss how
to bound the tangent primitives based on curvature and distance to the boundary. We also
define a strategy for optimally selecting primitive types to minimize storage.

Our experiments validate the accuracy of our representation and show that our proposed
hybrid representation consistently outperforms approximations that use a single primitive
type. Finally, we demonstrate the performance of our method using three different types of
descriptors for retrieval on a database of parametric shapes of multiple categories. We observe
that the method efficiently retrieves the closest geometry according to the descriptor metric.
These may lie outside the original shape categories because of the significant variations
imposed by the parametric changes. We envision this approach being particularly useful
when shape variations are constrained by manufacturing and for systems that query for
parametric parts and then assemble such as the one we will describe in the next chapter of
this thesis.

75

76

Chapter 5

Assembly-Based Design for

Manufacturing

5.1 Introduction

In this chapter, we will describe a composition algorithm that uses the collection of paramet-
ric manufacturer designs described in Chapter 3 to create new manufacturable models in a
design-by-example manner. This method ensures that the created models can be fabricated,
saves the user from many tedious but necessary tasks, and makes it possible for non-experts
to design and create actual physical objects (see Figure 5-1).

…

Figure 5-1: The design and fabrication by example pipeline: casual users design new models
by composing parts from a database of parametric manufacturable designs. The system
assists the users in this task by automatically aligning parts and assigning appropriate con-
nectors. The output of the system is a detailed model that includes all components necessary
for fabrication.

Data-driven methods have previously been used to make geometric design easier and
therefore more accessible to non-experts. In the “modeling by example” approach, first pre-
sented by Funkhouser et al. [2004], new objects are constructed by assembling components of
existing objects in a database. This allows even novice users to model complex 3D geometry.
However, in creating manufacturable designs, several challenges arise that have not been
addressed in the previous research. First, all the components in the example database must

77

be manufacturable. Second, any manipulation applied to these components must preserve
structure and manufacturability. Third, standard computer graphics techniques such as
mesh blending cannot be applied to connect and assemble components. In order to combine
parts, these parts must be accurately positioned, and real connectors (e.g., screws or hinges)
must be used. The best choice of connectors will depend on the geometric, functional, and
material properties of the object. Finally, the resulting model must be structurally sound,
so that once it is built it will not topple or collapse.

Using the dataset of parametric designs from Chapter 3 and information extracted from
them, we created an assembly-based modeling system for novice users. The user can pick
and drag substructures from different designs and add them to a working model. The
system guides the user through the snapping and connecting stages. Snapping involves
automatically positioning the parts relative to each other, and selecting parameters of the
new parts to allow connectivity and alignment. Connecting involves automatically selecting
the appropriate components and connectors that should be added to hold the parts together.
This relieves users from many tedious and complex tasks that are nevertheless necessary for
feasible fabrication of the models, allowing them to concentrate on the creative process.

5.2 Design Workflow

Our solution is based on the design-by-example workflow [Chaudhuri and Koltun, 2010,
Funkhouser et al., 2004]. Figure 8-3 illustrates our user interface. Icons that link to compo-
nents of the database are displayed on the left; and the canvas on the right is used to design
a new model, henceforth called the working model. Users compose parts by dragging them
onto the scene, and they can also remove selected parts at any level of the hierarchy.

As we explained in Chapter 3, the components of the database have a hierarchical repre-
sentation. This allows users to compose models from different designs at different levels, i.e.,
they can add and remove small components (e.g., a single shelf), medium components (e.g.,
a drawer), and large complex ones (e.g., an entire cabinet). When creating a new model,
they can either start from scratch or work from an existing design.

Users can vary the shape of any component in the database by manipulating its param-
eters (see Section 5.3). Our system handles composition to ensure that the working model,
like the components of the database, is a hierarchical, manufacturable, parametric design.
Therefore, users can continue to manipulate parameters after components are assembled.

Composition in a fabrication-aware system is difficult because one cannot merely apply
simple geometric operations to merge parts. To combine two substructures, the substructures
must be perfectly fitted and aligned, and appropriate connecting elements (e.g., screws and
hinges) need to be added between them. This process is not only tedious, but sometimes
impossible for users who lack the necessary expertise.

Our system addresses these difficulties with two crucial operational features. First, when
a user drags in a new component and drops it onto the scene, the system automatically uses
information stored in the database to adjust the component’s position and size so that it fits
and aligns with the working model. We call this procedure snapping. The snapping operation
optimizes the component’s position and size based on the position in which the user dropped
the component and the component’s current dimensions. If the user is not satisfied with the

78

Figure 5-2: The user interface. Icons that link to components of the database are displayed
on the left, and the modeling canvas is on the right.

snapped configuration, the user can edit the component (through parameter manipulations)
and drag it around the scene, and the snapping procedure will then automatically compute
the component’s new optimal position and size.

Second, our algorithm automatically retrieves new connecting elements that attach the
added component to the working model. This is achieved by searching the database for
similar examples of connections. During this process, the system computes new geosemantic
relationships between the added parametric part and the working model. Both the new
connecting elements and the new geosemantic relationshops are added to the hierarchy of
the working model together with the added component. We call this process connecting.

5.3 Parametric Manipulations

Allowing users to manipulate parameters adds variety to the designs (see Figure 1-3) and
allows fitting parts of different sizes. Adjusting parameters modifies a design’s shape and di-
mensions, but preserves its overall structure. This method of design manipulation guarantees
that the composed models are manufacturable.

The system allows parameters to be manipulated at all levels of the hierarchical structure.
The user can select elements (leaf nodes) by clicking on them, and then traverse up the hier-
archy to select internal nodes. When a node is selected, controls for scaling and translation
are revealed (see Figure 5-3). At each level of the hierarchy, the controls act on the bounding
box of the selected parametric design 𝑇 𝑖. Therefore, the user can make higher-level changes
by selecting internal nodes and make more detailed adjustments by selecting leaf nodes.

79

Figure 5-3: An illustration of how parametric variations can be explored in our tool. The
arrows control translation, while spheres control scaling. On the left, we show the controls
on a leaf node of the hierarchy; on the right, we show the controls on an internal node.
During manipulation, elements on the selected node are represented in full color, while the
others become semi-transparent. Notice that constrained degrees of freedom are hidden. For
example, the user is unable to change the thickness of the shelf, since the items catalog states
that planks of wood can be cut only in two directions.

Parameter manipulation is not an unconstrained procedure. A given design is restricted
to the feasible space 𝒜 stored at the root node of the hierarchy. As outlined in Chapter 3, we
define the parameters of the root node q as the stacked vector of all the children q𝑖. We can
then represent all linear, geosemantic constraints (bilateral and unilateral) in the standard
form: Aq = b,Gq ≤ 0. We augment A with constraints that fix the center of the model in
order to prevent translation of the edited parametric model.

To create the controls we use six functions c𝑗, such that the c𝑇𝑗 q correspond to the center
and dimensions of the axis-aligned bounding box. When manipulating leaf nodes, the c𝑗
are standard basis vectors, since q𝑖 defines the axis-aligned bounding box of the element.
For larger substructures represented by internal nodes, we first compare the bounds of the
children elements to determine which ones constrain the bounding box of the substructure
in each dimension. We can then use these elements to explicitly determine the functions c𝑗.

As the user drags a control 𝑗, we calculate the new parametric configuration by solving
the simple quadratic program

q* = argmin
q
‖c𝑇𝑗 q− (c𝑇𝑗 qcurrent + 𝛿)‖2 + 𝛼‖q− qcurrent‖2

s. t. Aq = b,Gq ≤ 0
(5.1)

where qcurrent are the parameters in the current state and 𝛿 determines the amount of drag-
ging. The second term penalizes large changes in parameter value. Accordingly, 𝛼 is chosen
to be less than one to give more importance to the first term. To reduce cluttering, we hide
controls that manipulate a completely constrained scaling direction. We determine whether
the 𝑗𝑡ℎ control is constrained by checking if c𝑗 and A are linearly dependent.

80

5.4 Composition

We compose new designs by removing and adding components to the working model. To
remove a part, the user explores the working model’s hierarchy and selects a substructure of
the model. The corresponding node is excised from the tree. The hierarchical nature of our
representation is leveraged to quickly remove all connections and geosemantic relationships
incident on the deleted structure. This frees the working model of unnecessary constraints
and connecting elements that serve no purpose in the new design.

As mentioned earlier, adding new parts is more difficult; therefore, our method assist the
user in two ways. First, when a user chooses a parametric part 𝑇𝐴, we adjust the dimensions
and placement of 𝑇𝐴 to snap it to its position. Second, we automatically compute new
constraints and find the elements that connect 𝑇𝐴 to 𝑇𝑊 .

To define both snapping and connecting, our algorithm first examines the original design
𝑇𝐷 from which the part 𝑇𝐴 originated. It examines where and how 𝑇𝐴 connected to 𝑇𝐷,
and tries to use that information to align and connect 𝑇𝐴 to 𝑇𝑊 . If the information it has
is not sufficient, it searches the rest of the database for similar connections. In the following
two subsections, we explain the snapping and connecting operations more fully.

5.5 Snapping

Snapping the additional part 𝑇𝐴 to the working model involves computing a new parametric
configuration q𝐴, which is optimized based on the user’s current positioning and dimensions
of the part (i.e., the current state of the parameters q𝐴

current
). If the user is not satisfied with

the solution, she can continue to change 𝑇𝐴’s position or its parameters to bring them closer
to the desired configuration, and the system re-optimizes q𝐴 given the new current state.

To find an optimal parametric configuration, our algorithm tries to identify constraints
that q𝐴 will have to satisfy when 𝑇𝐴 is added to the working model. We do this in two steps.
First, we analyze how 𝑇𝐴 connects to the original design 𝑇𝐷 and try to find constraints on q𝐴

that would allow 𝑇𝐴 to connect to 𝑇𝑊 in a similar manner. Second, we search for prominent
planes on 𝑇𝐴 that are sufficiently close to planes in 𝑇𝑊 and try to align them. In what
follows we discuss each of these steps in detail.

Constraints Based on Original Design. To create constraints based on the original
design, our algorithm looks at the elements (leaf nodes) of 𝑇𝐷 that are connected to 𝑇𝐴

and extract the coplanarity relationships between these elements and 𝑇𝐴. As mentioned in
Chapter 3, coplanarity relationships constrain prominent planes—in this case a plane of 𝑇𝐴

with respect to a plane of 𝑇𝐷. To create an analogous constraint between 𝑇𝐴 and 𝑇𝑊 , we
need to find a plane on 𝑇𝑊 that has the same normal as the one in 𝑇𝐷. Since there might
be many planes in 𝑇𝑊 that satisfy this requirement, we take the 𝐾 ones that are closest to
𝑇𝐴 in the current configuration.

Using the parametric representation, we can write each connectivity relationship as a
linear constraint aq𝐴 = 𝑏, where 𝑏 depends on the selected plane in 𝑇𝑊 . We then extract
a subset of the linearly independent constraints a that is also not restricted by the feasible
set 𝒜𝐴 of 𝑇𝐴. Notice that the number 𝑅 of constraints in this subset cannot exceed the

81

Figure 5-4: An example of snapping to constraints. We add a tabletop 𝑇𝐴 to the working
model 𝑇𝑊 containing eight legs (right). The coplanarity constraints on the original design
𝑇𝐷 that contained 𝑇𝐴 are represented by the normals of the corresponding planes (left; we
show only the vertical ones). The feasible snapping configurations for q𝐴 are shown on the
right. The system will choose one of these configurations: its choice will depend on the scale
parameters and the position on which the user places the tabletop.

number of degrees of freedom of 𝑇𝐴, which tends to be small (usually six). Since 𝑏 can be
chosen in 𝐾 different ways, we end up with a set of 𝑁 = 𝐾𝑅 possible constraints AqA = b𝑛
that restrict the parameters of 𝑇𝐴. For each of these possible constraints, we compute the
optimal q𝐴 by solving the following least squares problem:

min
q𝐴
‖q𝐴 − q𝐴

current
‖2 s. t. Aq𝐴 = b𝑛, q𝐴 ∈ 𝒜𝐴 (5.2)

We then select the constraint matrix Aq𝐴 = b�̄� whose optimal solution has the smallest
cost. The value of 𝐾 is chosen depending on 𝑅 to guarantee that 𝑁 = 𝐾𝑅 does not become
too large. Typically, we set 𝐾 = 4.

Alignment of Prominent Planes In many cases, the constraints of the original design
are not enough to position the part in the working model. For example, in the working model
shown in Figure 5-4, the table legs were created by composing and snapping two sets of four
legs, which are aligned even though they are not connecting and there is no resemblance
to such a combination in the original design of either set. To find additional alignment
constraints, we select the set of planes in T𝐴 that are not restricted by Aq𝐴 = b�̄�. For
each of these planes, we find the closest parallel plane in the working model, and we align
them if the distance between them is smaller then a certain threshold. This gives us a new
q𝐴 that will be used to connect the additional part to the working model. For objects with
functionality (i.e., several configurations), we construct prominent planes corresponding to
all main rest configurations (see Appendix 3.5.1). This guarantees that functional objects
snap so that they align to the working model in all rest configurations (see Figure 5-5).

82

Figure 5-5: An illustration of snapping for functional objects. When a door is added to the
side of a cabinet, it automaticaly rescales so that, when shut, it will align with the oposite
side. At left, a door is added to the working model. From left to right: the added door
before snapping, the snapped configuration, and a visualization of the snapped configuration
when the door is closed. The rotation axis of the articulations is depicted by the arrows.

5.6 Connecting

Once the user is satisfied with the fitted part, they invoke the connecting method. Connecting
automatically places 𝑇𝐴 in the hierarchy of the working model and adds the appropriate
connections and geosemantic relationships. Although the parameters q𝐴 may still vary, the
snapping result returns an approximate configuration of 𝑇𝐴. We use this information to find
the elements in the working model 𝑇𝑊 that should be connected to elements 𝑇𝐴 based on
proximity. We call these linked elements. We then search the database for a connection that
can be used to connect each pair of linked elements. After these connections are selected,
a final composition step is performed to create a new working model that preserves the
hierarchical structure and is correctly parametrized. We discuss each of these steps in the
following paragraphs.

5.6.1 Searching for Connections

As in our snapping algorithm, we first search for connections in the original design 𝑇𝐷. We
consider all the connections in 𝑇𝐷 that connect 𝑇𝐴 to elements in 𝑇𝐷 ∖ 𝑇𝐴, and we try to
transfer these connections to the working model. Transferring involves matching principal
elements in 𝑇𝐷 ∖ 𝑇𝐴 to elements in 𝑇𝑊 . Since we have the q𝐴 that resulted from the
snapping algorithm, we can first fit 𝑇𝐷 by finding q𝐷 that minimizes ‖Sq𝐷 − q𝐴‖, where S
is a matrix whose columns are the standard basis vectors that correspond to the indices of
q𝐷 that refer to q𝐴. Once the fitting is done, we can use a standard distance function on
the bounding boxes of each element to retrieve the closest matches. Finding the matches
creates a candidate connection that acts on 𝑇𝑊 ∪ 𝑇𝐴.

Once we have candidate connections, we need to determine if they can be used in the
composed design. A connection contains the set of relationships between the elements it
references (see Section 3.6), which can be represented by the feasible set 𝒜𝐶 . We cannot
add a connection if the feasible set 𝒜𝐶 ∩𝒜𝐴 ∩𝒜𝑊 is empty. If the feasible set is nonempty,
the algorithm finds the configuration of the composed model 𝑇𝑊 ∪ 𝑇𝐴 in this set that is as

83

close as possible to the snapped configuration. It does this by solving a quadratic program:

min
q𝐴,q𝑊

‖q𝐴 − q𝐴
current

‖2 + ‖q𝑊 − q𝑊
current

‖2

s. t. q𝐴 ∈ 𝒜𝐶 ∩ 𝒜𝐴, q𝑊 ∈ 𝒜𝐶 ∩ 𝒜𝑊
(5.3)

We allow the error to be larger than zero because, in many cases, principal elements need to be
slightly shifted or scaled in order to insert connecting elements (see Figure 5-6). Nevertheless,
in order to guarantee that we do not drift too much from the user’s design, we use a connection
only if the error of this minimization is smaller then a fixed threshold.

When not all connections are found in 𝑇𝐷, the algorithm extends the search to all designs
in the database. We use a priority based on a similarity metric that compares connections by
evaluating: 1) similarity of principal components, and 2) the relative distance between them.
We compare principal components by first making sure that the materials match and then
measuring the distance between the sizes of the bounding boxes. Since the dimensions of
the components can vary according to parameter manipulations, we would like the similarity
metric to encode a weighted average of the amount of parameter manipulation necessary and
the final distance between the two components. We accomplish this by giving extra weight
to dimensions that are constrained, which naturally encode the distance between the models
after fitting.

We compare relative distances between elements using the distance between the bounding
planes of the axis-aligned bounding boxes of each element. For each dimension, we compare
both bounding planes against each other—a total of four evaluations. By doing so, we encode
not only coplanarity relationships but also order. This is important because parts often need
to have an intersecting area in order to be connected.

We pre-compute the descriptors for all the connections in the database, so that a simple
weighted distance function efficiently retrieves the closest candidate connections at runtime.
After the candidate connections are retrieved, we evaluate them using the method described
above. We try only the 𝐾 closest connections: if none of them pass the evaluation, we refrain
from adding a connection and warn the user that no connection was found. Typically, we
set 𝐾 = 5.

5.6.2 Final Composition

Once we retrieve the set of edges, we am ready to generate the new working model 𝑇 �̄�

that incorporates 𝑇𝐴 into 𝑇𝑊 . We place 𝑇𝐴 into the hierarchy of 𝑇𝑊 by adding it as a
sibling to the lowest node that groups the elements that connect to 𝑇𝐴. We add all the
connections found by transferring the connecting elements to the working model and adding
the relationships between them and the elements of 𝑇 �̄� . These relations constrain q𝐴. Once
these constraints are built, we optimize q�̄� so that it is as close as possible to the current
snapped configuration (solving a least squares problem). This may effect minor changes in
the parameters of 𝑇𝐴. For instance, the parameters may change to allow connecting elements
to fit between parts, as in Figure 5-6. Finally, we find and add geosemantic relationships
between elements of 𝑇𝐴 and 𝑇𝑊 automatically in the same manner in which we built the
original parametric designs (see Section 3.4).

84

Figure 5-6: An example of changing parameters to fit connectors. From left to right: the
bottom shelf snapped to the bottom of the table, the resulting configuration of the model
after the connecting step, and the vizualization of the connectors (principal elements are
made semi-transparent). Notice that, in order to connect the bottom shelf to the table legs,
the system raises the shelf above the ground to leave room for l-brackets.

5.7 Results

5.7.1 Modeling

156 parts
(140 connectors)

128 parts
(99 connectors)

139 parts
(122 connectors)

217 parts
(197 connectors)

139 parts
(121 connectors)

179 parts
(163 connectors)

147 parts
(124 connectors)

101 parts
(90 connectors)

Figure 5-7: Examples of models designed using our system and the number of individual
parts they comprise. Different colors indicate the different parts that were added to the
model.

Figure 8-11 depicts a few results built using our tool. We indicate in the figure the
number of individual parts in each design. Observe that even models that appear to be
simple are composed by over one hundred parts. It would take an expert from one to four
hours to build each of these models with commercial CAD software. However, using our
system, users with no expertise in mechanical engineering were able to create these designs
in less than twenty minutes.

In Figure 8-11, we highlight the different parametric designs that were added to the model
using different colors. Notice how the number of elements in each color-coded design varies.

85

This illustrates how the users can explore the hierarchy by composing parts using smaller or
larger substructures.

While the snapping and connecting steps of our system are responsible for the speed in
which users can create such complex objects, the parametric manipulation feature helps to
add diversity to the models. By adding new geosemantic relationships each time parts are
added to the working model, we guarantee that the working model maintains the parametric
representation which allows structure–preserving manipulations. Figure 5-8 shows an exam-
ple of how the user can continue to explore the space of parameter variations of a composed
model.

Figure 5-8: An example of different manipulations of a working model after it has been
composed from multiple parametric designs.

5.7.2 Fabrication

We tested the full data-driven fabrication pipeline to build four designs, illustrated in Figures
4-1 and 5-9. These models were created by combining parts from multiple designs, also
shown in the figures. The output of the system is a comprehensive bill of materials that
is generated by looking up the items for each part in the items catalog. Then, using the
information provided by the external supplier, users easily order the items and then assemble
them. It is also possible to minimize the total cost of materials by grouping together and
combining items – for instance, by cutting many wood elements from a few pieces of stock
material.

5.8 Discussion

In this chapter we presented what we believe to be the first complete data-driven system
for digital fabrication. Our algorithm successfully leverages a database of parameterized
fabricable designs, allowing casual users to design models that can be physically realized. The
output of our algorithm is comprehensive in that it provides a list of all parts necessary for
construction, as well as a detailed bill of materials that lists where parts can be purchased and
the total cost of construction. We have demonstrated the power of our method by fabricating

86

Figure 5-9: From left to right: input designs, models created using the system, and fabricated
results. We highlight the connecting elements on the first model by making all principal
elements semi-transparent.

different models. We have shown the scope of the data-driven method by applying the same
algorithm to fabricate furniture and go karts.

In this chapter, however, we only show results on geometric composition. Although
we can handle some functionality like drawers, cabinet doors, and wheels, the composition
algorithm cannot handle more complex dynamic components such as electronics. In the
go kart examples shown in the teaser, the algorithm was able to compose wheels (adding
bearings), the seat (adding connecting planks with bolts) and the steering (adding in tierods).
However, it could not interchange motors and controls, and so we considered them as part of
the frame assembly of the go kart. Systems that can simultaneously design both geometry
and motion/control are covered in Chapter 8.

In order to build such systems, we need further analysis on how the objects will behave
once manufactured. While the data-driven algorithms we have discussed so far can be used
to constrain the design space to ensure manufacturability—every model created with this
method has a corresponding bill of materials—, nothing can be said about how well the
resulting designs will perform once they are part of the physical world. Performance-driven
design algorithms which allow efficient exploration and optimization of the design space
driven by performance metrics is the topic of the next two chapters of this thesis.

87

88

Chapter 6

Interactive Design-Space Exploration

6.1 Introduction

In the previous three chapters, we discussed data-driven methods that allow constraining the
design space in meaningful ways—we use parametrization to define degrees of freedom for
design variability preserving manufacturability. As shown in Figure 1-2, the next question
we should address is, how can we optimize this (now, constrained) design space driven my
performance evaluations?

In this chapter we will focus on the forward problem of mapping design space to per-
formance space. We will use generic CAD models for defining the design space, since CAD
systems are used by almost every mechanical engineer in the world to create practically every
existing manufactured shape. CAD models are parametric from construction and capture
the engineer’s design intent, including manufacturability. In a typical engineering design
application, designers will expose a small set of CAD parameters over which they optimize
for performance. However, since they need to evaluate a large number of points in design
space, it typically takes up to a day for a mechanical engineer to select parameters for a
complex shape.

To address this problem, we propose a new algorithm that allows interactive exploration
of the design space defined by CAD parameters. As shown in Figure 6-1, the output of
our method is a simple interface where users can explore the parameter space with real-time
feedback on performance. Computing this feedback in interactive rates is challenging because
evaluation of geometry for CAD parameter variations is inherently slow (see Section 2.1.2).
In addition, performance evaluations typically involve time-consuming physics simulations—
e.g., FEA methods for stress analysis, which can take 5-10 minutes for a high resolution
model).

We address these challenges by offloading to a precomputation stage the mapping from
parameters to geometry. Because different parameters can influence the geometry in dif-
ferent ways and to different extents, we sample the parametric domain using an adaptive
grid. Interpolating in this space is challenging because each sample is a mesh with differ-
ent combinatorics— parameter changes result in different B-reps (Boundary Representation)
with incomplete correspondence and generate meshes with different number of triangles/te-
trahedra. Moreover, interactive exploration applications require continuity across the inter-

89

Smooth interpolations

Interactive Exploration

Optimization

min stress

Precomputed Samples

CAD System

Parametric
Space

Figure 6-1: Our method takes as input a CAD model with a set of exposed parameters
which define the design space. We sample the parametric space in an adaptive grid and
propose techniques to smoothly interpolate this data. We show how this can be used to
drive interactive exploration tools that allow designers to visualize the shape space while
geometry and physical properties are updated in real time.

polated domain.
To address these problems, we propose a method that takes advantage of the underlying

CAD representation (B-reps) to compute correspondences between shapes that are close
enough in parameter space. This makes our interpolation possible, but with the caveat that,
to keep the computations tractable, we must restrict the influence of each sample to local
regions. But constructing an interpolation that both satisfies this locality property on a
non-uniform domain and is continuous/smooth is a real challenge.

The main technical contribution of our work is a novel interpolation algorithm on adaptive
grids that overcomes this difficulty, allowing for approximations across the entire parameter
space that are both smooth and local. The proposed method is a generic interpolation scheme
that can be applied independently of the dimensionality of the domain and can be combined
with different types of basis functions (e.g. linear and cubic B-splines).

6.2 Related Work

Adaptive grids have been extensively used to efficiently store non-uniform data. The chal-
lenge for interpolating in these domains comes from the hanging nodes (also called T-
junctions) at the boundary between elements at different levels. Approaches to handle
discontinuities around the hanging nodes include temporarily subdividing elements [Benson
and Davis, 2002, Kobbelt et al., 1997], constraining T-junction nodes on edges to be linearly
interpolated from their neighbors on that edge [Agarwala, 2007, Losasso et al., 2004, Xu
et al., 2009], using penalty functions to minimize discontinuities [Setaluri et al., 2014], or
introducing generalized barycentric coordinates [Floater, 2015, Sukumar and Malsch, 2006].
T-Splines generalize NURBS surfaces to accommodate T-vertices [Sederberg et al., 2003].
All of these approaches have their drawbacks: they either come at the expense of generating
many virtual nodes and further subdivision, lose data samples, do not guarantee continuity,
are hard to extend to high dimensions, or are not easily extended to smooth interpolations.

90

The solution for smooth interpolations is the use of hierarchical basis functions [Lee
et al., 1997]. But this comes at the price of locality: the value of a point at a given cell
depends on samples that lie outside the boundary of that cell. The particular nature of our
problem stems from the fact that, though we require continuous interpolations for exploration
applications and smooth interpolations for derivatives in optimization problems, we also have
a strong restriction of locality because averaging between samples involves morphing between
meshes. Our method addresses these challenges using refinable basis functions to construct
interpolants in each sampled node. We describe a refinement algorithm that updates these
interpolants as elements of the K-d are refined, thereby guaranteeing locality. This algorithm
is simple and easy to implement in K-d trees of any dimension or grading. Most importantly,
it can be implemented with multiple basis functions, allowing not just continuous, but smooth
approximations.

6.3 Workflow

The workflow of our system is shown in Figure 4-1. In an offline phase, CAD shapes are
precomputed by adaptively sampling the parametric domain. Interpolating basis functions
for each sample (Section 6.5) and compatible meshes for interpolation (Section 6.6) are
computed during this phase. For some applications, in addition to storing the geometry at
each sample, we also precompute and store different simulation results.

For exploration, we use the typical user interface with sliders for interactively modifying
shape parameters (see top-right corner of Figure 4-1). Both geometry and precomputed
physical properties are interpolated in real time and displayed. For this application, we use
a continuous interpolation function to avoid flickering when switching between regions of the
adaptive grid.

6.4 Precomputation Overview and Notations

A parametric shape is defined as a function that returns a geometry for each parameter
configuration 𝑥 ∈ 𝒜, where 𝒜 is the feasible parameter set. Here and henceforth we assume
that a sample value 𝑝𝑘 at 𝑥𝑘 ∈ 𝒜 can be evaluated by interfacing with a CAD system
and consists of a tetrahedral mesh. Our method computes an approximation 𝑃 (𝑥) of the
parametric shape by interpolating these samples.

We use a K-d tree in parameter space for sampling and interpolation (see Figure 4-1). We
use the term element to refer to the cells of the K-d tree. The parametric shape is sampled
at every corner of every element. To each sample 𝑥𝑘 we associate a basis function 𝜓𝑘 and
approximate the shape by interpolating the samples:

𝑃 (𝑥) =
∑︁
𝑘

𝑝𝑘𝜓𝑘(𝑥). (6.1)

Definition 1 (Support). The support of each basis function 𝑆(𝜓𝑘) is defined as region on
which it assumes non-zero values.

91

The challenge with computing the above sum is that 𝑝𝑘 are meshes with varying combi-
natorics. To address this, let us assume a canonical mesh 𝑝𝑙 for each element 𝑒𝑙. Then, if
𝑥 ∈ 𝑒𝑙, we can compute 𝑃 𝑙(𝑥) by converting each sample 𝑥𝑘 whose support contains 𝑒𝑙 to
this canonical mesh 𝑝𝑙𝑘:

𝑃 𝑙(𝑥) =
∑︁

𝑘,𝑒𝑙∈𝑆(𝜓𝑘)

𝑝𝑙𝑘𝜓𝑘(𝑥). (6.2)

To keep this problem tractable, we would like to limit the support of the basis functions. To
this end, we make the following definitions.

x

Figure 6-2: The neighborhood of an element, denoted ℬ(𝑒𝑙), is defined as the set of adjacent
samples (left). The neighborhood of a sample, denoted 𝒩 (𝑥𝑘), is defined as the set of
adjacent elements (middle). We also extend the definition of 𝒩 (𝑥𝑘) to any point 𝑝 ∈ 𝒜 as
the set of adjacent elements (right).

Definition 2 (Element Neighborhood). The neighborhood of an element ℬ(𝑒𝑙), is defined as
the set of samples on its boundary (Figure 6-2).

Definition 3 (Sample Neighborhood). The neighborhood of a sample 𝒩 (𝑥𝑘) is defined as
the set of elements incident to the sample 𝑥𝑘. This definition can be extended to any point
𝑝 ∈ 𝒜, where 𝒩 (𝑝) is the set of elements that contain or are incident to 𝑝. (Figure 6-2).

Definition 4 (Locality). We say that an approximation preserves locality if 𝑆(𝜓𝑘) ⊂ 𝑁(𝑥𝑘), ∀𝑘.
Analogously, if an approximation preserves locality, then for any sample 𝑥𝑘 and element 𝑒𝑙,
then 𝑒𝑙 ⊂ 𝑆(𝜓𝑘) only if 𝑥𝑘 ∈ ℬ(𝑒𝑙)

From these definitions, when an approximation preserves locality, we can rewrite equation
6.2 as:

𝑃 𝑙(𝑥) =
∑︁

𝑘,𝑥𝑘∈ℬ(𝑒𝑙)

𝑝𝑙𝑘𝜓𝑘(𝑥). (6.3)

This implies that only samples 𝑥𝑘 ∈ ℬ(𝑒𝑙) need a mesh 𝑝𝑙𝑘 that is consistent with this
element (Figure 6-3).

In order to guarantee that there are no discontinuities when crossing between elements,
we would like 𝑃 (𝑥) to be continuous. From Equation 6.1, we see that it is enough to ensure
that 𝜓𝑘 is continuous for all samples 𝑥𝑘.

92

Ce

Be

Ae Ap7

Bp7

Cp7

Bp2

Cp5

Cp3
Cp6

Ap2
Ap0

Ap3

Ap1

Bp4

Bp5

0x

1x

2x
4x

5x

3x

7x

6x

Figure 6-3: When locality is enforced, the number of consistent representations 𝑝𝑙𝑘 that are
needed at each sample 𝑥𝑘 depends on the cardinality of 𝒩 (𝑥𝑘).

6.4.1 Refinement Relations

To propose a scheme that guarantees locality and continuity on an adaptive grid, we take
advantage of basis functions that observe a refinement relation which we define now for
notation purposes. A refinement relation allows for expressing a basis function as the sum
of dilated translated versions Zorin and Schroder [2000]. In our algorithm we use linear
B-splines, illustrated in Figure 6-4. A basis function from a coarser level can be written as
a linear combination of basis functions from the next finer level:

𝜑𝑗𝑖 (𝑥) =
∑︁
𝑛

𝑎
(𝑗+1)
𝑖𝑛 𝜑(𝑗+1)

𝑛 (𝑥), (6.4)

where the superscript 𝑗 indicates the level of refinement (𝑗 = 0 corresponding to the original,
coarsest grid), and the subscripts 𝑖 and 𝑛 index the basis functions at the respective levels.
In the case of linear B-splines, the coefficient 𝑎𝑖𝑛 do not depend on 𝑗 and are given by

𝜑
(𝑗)
𝑖 (𝑥) =

1

2
𝜑
(𝑗+1)
(2𝑖−1)(𝑥) + 𝜑

(𝑗+1)
(2𝑖) (𝑥) +

1

2
𝜑
(𝑗+1)
(2𝑖+1)(𝑥). (6.5)

0

0
0

1
1

0
1

2
1

1
1

3
1

1

Figure 6-4: Refinement of linear B-splines.

93

6.4.2 Adaptive Sampling

We build the K-d tree as follows. The parametric domain defines an element 𝑒0 at the
coarsest level where every corner vertex is sampled. We associate to each sample 𝑥𝑘 a single
B-spline at the coarsest level, 𝜓𝑘 = 𝜑0

𝑘.
We establish a canonical mesh 𝑝𝑙 for each element by evaluating the geometry at the

center of the element and using the mapping algorithm (Section 6.6) to establish a consistent
meshing inside each element. We store the consistent meshes for each of the samples on the
cell boundary 𝑝𝑙𝑘 (see Figure 6-3).

We initially refine all samples once in each direction and then continue to refine adaptively.
At this stage, to decide whether an element 𝑒𝑙 needs refinement, we evaluate the application-
specific approximation error at the center of 𝑒𝑙 and refine it if this value is above a given
threshold. Since we have consistent meshes, the error above can easily be computed with
application-specific metrics (see Section 6.7). To decide the refinement direction on a high-
dimensional K-d tree, we compute the distance in each direction and use the maximum, again
taking advantage of the consistent meshes. This process is similar to the work of Shugrina
et al. [2015].

Our method iterates over the leaf nodes of the K-d tree checking which need to be refined.
We use a priority queue with the size of the element as priority. When an element 𝑒𝑙 is split,
its children are added to this queue. Also, since this refinement also affects the interpolated
result on the elements adjacent to the split element 𝑒𝑙, these are also added to the queue.

6.4.3 Refinement Notations

When an element is refined, new samples are added along the split and the basis functions
𝜓𝑘 associated to both the new samples and the original samples on the boundary of 𝑒𝑙
are recomputed to ensure that locality is preserved. In our refinement method, each basis
function is written as a sum of linear B-splines:

𝜓𝑘(𝑥) =
∑︁
𝑖,𝑗

𝛼𝑖,𝑗𝑘 𝜑
𝑗
𝑖 (𝑥). (6.6)

Then, our approximation can be expressed as:

𝑃 (𝑥) =
∑︁
𝑖,𝑗

(︃∑︁
𝑘

𝛼𝑖,𝑗𝑘 𝑝𝑘

)︃
𝜑𝑗𝑖 (𝑥). (6.7)

We can extend the definitions above to this alternative expression. We extend the defi-
nition of support to 𝜑𝑗𝑖 , where 𝑆(𝜑𝑗𝑖) is the region where it assumes non-zero values. Since
locality was defined as 𝑆(𝜓𝑘) ⊂ 𝑁(𝑥𝑘),∀𝑘, an approximation preserves locality if and only
if 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑥𝑘),∀𝑘 such that 𝑎𝑖,𝑗𝑘 ̸= 0. We can therefore make the following definition and
remark:

Definition 5 (Local Point). We say that a point 𝑦𝑖𝑗 ∈ 𝒜 is a local point of a B-spline 𝜑𝑗𝑖 if

𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑦𝑖𝑗).

94

Definition 6 (Local Sample Set). We define the local sample set ℒ𝑖𝑗 of a B-spline 𝜑𝑗𝑖 as the

set of samples 𝑥𝑘 that are local points of 𝜑
𝑗
𝑖 , i.e, such that 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑥𝑘).

x

Figure 6-5: A linear B-spline 𝜑𝑗𝑖 is illustrated in blue: the blue "‘x"’ is the center and the
region where it assumes non-zero values is shaded in light blue. The local sample set of this
linear B-spline ℒ(𝜑𝑗𝑖), is defined as the set of samples 𝑥𝑘 such that 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑥𝑘) and is
illustrated in black.

Remark 1 (Locality). An approximation preserves locality if 𝛼𝑖,𝑗𝑘 = 0, ∀𝑘 /∈ ℒ𝑖𝑗.

These defintions are useful when defining the algorithm that ensures locality and to prove
that our algorithm also ensures linear precision (linear functions are recovered exactly) and
the partition of unity property (the sum of all basis functions is one).

6.5 Adaptive Refinement Strategy

We discuss our method for refining elements in a K-d tree, which guarantees both locality
and continuity.

6.5.1 Motivation

As discussed in previous work, an approximation over a discretized domain can be described
from two perspectives: elements and basis functions. From the element perspective, the
approximation is defined over each element by an interpolation of the samples on the bound-
ary. From the basis function perspective, the approximation is described as a sum of basis
functions weighted by sampled values.

Though element representations drive refinement operations that ensure locality, they
introduce discontinuities along T-junctions on high-dimensional adaptive grids. Consider
for example the standard scheme, where multi-linear interpolation is done on each element.
Figure 6-6 illustrates the discontinuities at the boundary between elements at different levels
that results from this approach and are not present in our method.

Refinement of basis functions, on the other hand, can be used to add detail while preserv-
ing continuity. Two approaches of basis refinement have been discussed in previous work:

95

Figure 6-6: Comparison between multi-linear interpolation (left), where discontinuities ap-
pear along T-junctions, and our method (right), where the interpolation is continuous.

0

0
0

1

2e0e

element
refinement

0

00

0e
1e 2e

0

11

1

0
1

2

2

1

1

22

1

1

1

1

2

1

3

Ae1 2e0e

1

0

1

1
0

2

2e0e

1

11
2

1

31

22

basis
refinement

combination

0x
rx 1x

Be1

1x 2x

0x
rx 1x1x 2x

0x
rx 1x1x 2x

Ae1 Be1

Ae1 Be1

0x 1x1x 2x

Figure 6-7: Our method of combining element refinement with basis refinement: interpolated
values inside each element only depend on the samples that lie on the boundary of that
element.

hierarchical refinement, in which dilated basis functions are added in the center of an ele-
ment Forsey and Bartels [1988]; and quasi-hierarchical refinement, which takes advantage of
refinement relations and has the advantage of restricting the disparity between levels Grin-
spun et al. [2002]. Both of these basis refinement methods, however, have the disadvantage
of not preserving locality (see Figure 6-8).

We propose an alternative method that combines the element and basis functions per-
spectives. Our algorithm does refinement based on elements to guarantee locality but uses
basis functions to guarantee continuity. Drawing ideas from the quasi-hierarchical scheme
for basis refinement, our algorithm takes advantage of refinement relations. Figure 6-7 illus-
trates our algorithm on a simple one-dimensional example. Initially, the approximation on

96

0

0
0

1

0

0
0

1
1

1
1

0
0

1
1

1
1

1

0e
1e 2e

Ae1 2eBe1Ae0 Be0Ae1 2eBe10e

hierarchical
refinement

quasi-hierarchical
refinement

Figure 6-8: Hierarchical and quasi-hierarchical basis refinement strategies. Both of these
schemes violate locality on element 𝑒1𝐴 since the basis function 𝜑0

1 does not vanish on this
element. The sample outside ℬ(𝑒1𝐴) affecting this element is highlighted in red.

element 𝑒1 is given by:
𝑃 1(𝑥) = 𝑝10 𝜑

0
0(𝑥)⏟ ⏞
𝜓0(𝑥)

+𝑝11 𝜑
0
1(𝑥)⏟ ⏞
𝜓1(𝑥)

.

In the first step of our method, we refine the element 𝑒1 by adding a sample 𝑥𝑟 in center
of 𝑒1 and splitting 𝑒1 into two new elements: 𝑒1𝐴 and 𝑒1𝐵. In the second step, we refine all
basis functions that overlap 𝑒1; we can therefore express the approximation as

𝑃 1(𝑥) = 𝑝10

(︂
1

2
𝜑1
−1(𝑥) + 𝜑1

0(𝑥) +
1

2
𝜑1
1(𝑥)

)︂
⏟ ⏞

𝜓0(𝑥)

+𝑝11

(︂
1

2
𝜑1
1(𝑥) + 𝜑1

2(𝑥) +
1

2
𝜑1
3(𝑥)

)︂
⏟ ⏞

𝜓1(𝑥)

.

Finally, we define the new basis function by associating the B-splines that break locality—in
this case, 𝜑1

1—to the sample 𝑥𝑟. The resulting approximation is

𝑃 1(𝑥) = 𝑝10

(︂
1

2
𝜑1
−1(𝑥) + 𝜑1

0(𝑥)+

)︂
⏟ ⏞

𝜓0(𝑥)

+𝑝11

(︂
𝜑1
2(𝑥) +

1

2
𝜑1
3(𝑥)

)︂
⏟ ⏞

𝜓1(𝑥)

+𝑝1𝑟
(︀
𝜑1
1(𝑥)

)︀⏟ ⏞
𝜓𝑟(𝑥)

.

97

From this, we can write 𝑃 1𝐴(𝑥) = 𝑝1𝐴0 𝜓0(𝑥) + 𝑝1𝐴𝑟 𝜓𝑟(𝑥) and 𝑃 1𝐵(𝑥) = 𝑝1𝐵1 𝜓1(𝑥) + 𝑝1𝐵𝑟 𝜓𝑟(𝑥),
guaranteeing locality on the new elements. Since our refinement strategy only involves re-
fining B-spline functions using the refinement relations and regrouping them into composed
basis functions, partition of unity is preserved. Moreover, we observe from the two equa-
tions above that, if 𝑝1𝑟 = (𝑝10 + 𝑝11)/2, then the refinement operation does not alter the
solution, which indicates that linear precision is preserved. From Figure 6-7 we observe that
this strategy is equivalent to standard element refinement in the one-dimensional case, in
which the hanging nodes issue does not arise. However, this strategy can be generalized to
high dimensions, allowing continuous interpolation on adaptive grids that preserve locality.
Furthermore, this method can be extended to higher-order basis functions, such as cubic
B-splines that allow smooth interpolations (Section 6.5.3).

6.5.2 Algorithm

The general algorithm in high dimensions for refining an element 𝑒𝑙 given a split direction 𝑑
is described by the following steps:

step 1: Refine the element 𝑒𝑙.
step 2: Refine the basis functions overlapping 𝑒𝑙.
step 3: Redefine 𝜓𝑘 to ensure locality.

Definition 7 (Common Cuboid). Given any set of elements 𝑒𝑙 with non-empty intersection,
we define the common cuboid as the region 𝑅 = ∩𝑒𝑙. Since each element is a K-dimensional
cuboid, 𝑅 is a (possibly lower dimensional) cuboid.

In step 1, the element 𝑒𝑙 is refined, creating two child elements 𝑒𝑙𝐴 and 𝑒𝑙𝐵 and new
samples are added to guarantee that there exists a sample on the corners of every common
cuboid (see Figure 6-9). Only intersections of 𝑒𝑙𝐴 and 𝑒𝑙𝐵 need to be checked and samples
are added only if they do not previously exist and are generated by evaluating the CAD
shape.

Parametric Space
Parametric Space

Figure 6-9: Example of samples added for a given split in 2D and 3D. Split element, split
plane and added samples are shown in blue.

In step 2, we use the refinement relations to refine all the B-splines 𝜑𝑗𝑖 overlapping 𝑒𝑙 where
the size of their support 𝑆(𝜑𝑗𝑖) is larger than the size of the element 𝑒𝑙 in direction 𝑑. Since
locality is preserved in every iteration, only the B-splines 𝜑𝑗𝑖 in the terms of 𝜓𝑘, 𝑥𝑘 ∈ ℬ(𝑒𝑙)

98

(Equation 6.6) can overlap 𝑒𝑙 and therefore need to be checked. We can show that at
each iteration, step 2 needs to perform at most one level of refinement (see Section S2 of
supplemental material). This step updates the values of 𝛼𝑖,𝑗𝑘 . By substituting Equation 6.4
into Equation 6.6, the updated values, �̄�𝑖,𝑗𝑘 , are:{︃

�̄�𝑛,𝑗+1
𝑘 = 𝛼𝑛,𝑗+1

𝑘 + 𝑎
(𝑗+1)
𝑖𝑛 𝛼𝑖,𝑗𝑘 ,∀𝑛, 𝑘

�̄�𝑖,𝑗𝑘 = 0, ∀𝑘
(6.8)

From the properties of refinement relations, this does not alter the summed value in
Equation 6.7 and, therefore, the properties of partition of unity and linear precision are
preserved after this step.

Finally, in step 3, we redefine the basis functions 𝜓𝑘 to enforce locality, which is done
by updating the values 𝛼𝑖,𝑗𝑘 (see Equation 6.6). There are multiple assignments of these
values that guarantee locality. From Remark 1, locality can be guaranteed simply by setting
the coefficients that violate locality to zero (𝛼𝑖,𝑗𝑘 = 0, ∀𝑥𝑘 /∈ ℒ𝑗𝑖). Simply zeroing out these
coefficients, however, would make the resulting approximation function 𝑃 (𝑥) break important
interpolation properties. We therefore propose a refinement strategy that guarantees locality
but also enforces a partition of unity and linear precision.

Enforcing a Partition of Unity From Equation 6.7, a partition of unity is guaranteed
if the updated values of 𝛼𝑖,𝑗𝑘 , �̄�𝑖,𝑗𝑘 , satisfy the following property for every 𝜑𝑗𝑖 :∑︁

𝑘

�̄�𝑖,𝑗𝑘 =
∑︁
𝑘

𝛼𝑖,𝑗𝑘 (6.9)

Therefore, in order to ensure both locality and a partition of unity, we first select all of the
B-splines 𝜑𝑗𝑖 that violate locality (according to Remark 1) with the refinement of 𝑒𝑙. Since we
assume that locality was preserved in previous iterations, only the B-splines 𝜑𝑗𝑖 in the terms
of 𝜓𝑘, 𝑥𝑘 ∈ ℬ(𝑒𝑙) (Equation 6.6) can overlap 𝑒𝑙 and therefore need to be checked. Then,
for each of these B-splines, we must zero out the coefficients 𝛼𝑖,𝑗𝑘 , 𝑥𝑘 /∈ ℒ𝑗𝑖 and distribute
their added value amongst other coefficients 𝛼𝑖,𝑗𝑘 , 𝑥𝑘 ∈ ℒ

𝑗
𝑖 to enforce that the sum above is

preserved.
To achieve this, we must show that the set ℒ𝑗𝑖 is not empty and define a method for

finding samples in this set and using them to update 𝛼𝑖,𝑗𝑘 .

Local Point Lemma. For every 𝜑𝑗𝑖 there exists a local point 𝑦𝑗𝑖 .

The proof is given in the supplemental material.
Given a local point 𝑦𝑗𝑖 , we propose the following reallocation procedure. Let 𝑅𝑗

𝑖 be the
common cuboid defined by the intersection of the elements 𝑒𝑙 ∈ 𝒩 (𝑦𝑗𝑖). In Figure 6-5, 𝑅𝑗

𝑖

is the line segment between the two black samples. The samples 𝑥𝑟 on the corners of this
cuboid are guaranteed to exist by step 1.

Claim. The corner samples 𝑥𝑟 ∈ 𝑅𝑗
𝑖 are in ℒ

𝑗
𝑖 .

Proof. Let 𝑒𝑙 ∈ 𝒩 (𝑦𝑗𝑖). Then 𝑥𝑟 ∈ ∩𝑒𝑙 implies 𝑥𝑟 ∈ ℬ(𝑒𝑙) and therefore 𝑒𝑙 ∈ 𝒩 (𝑥𝑟). From
this we conclude that 𝒩 (𝑦𝑗𝑖) ⊂ 𝒩 (𝑥𝑟), ∀𝑥𝑟 ∈ 𝑅𝑗

𝑖 . Since we assume 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑦𝑗𝑖), from the
definition of ℒ it follows that 𝑥𝑟 ∈ ℒ𝑗𝑖 , ∀𝑥𝑟 ∈ 𝑅

𝑗
𝑖 .

99

Since 𝑦𝑗𝑖 ∈ 𝑅𝑗
𝑖 , we can express it as the convex combination 𝑦𝑗𝑖 =

∑︀
𝛽𝑖,𝑗𝑟 𝑥𝑟,

∑︀
𝛽𝑖,𝑗𝑟 = 1

using multi-linear weights 𝛽𝑖,𝑗𝑟 where 𝑥𝑟 are the samples in 𝑅𝑗
𝑖 . Let 𝛼

𝑗
𝑖 =

∑︀
𝑘 𝛼

𝑖,𝑗
𝑘 . We then

set

�̄�𝑖,𝑗𝑟 =

{︃
𝛼𝑗𝑖𝛽

𝑖,𝑗
𝑟 , 𝑥𝑟 ∈ 𝑅𝑗

𝑖

0, otherwise.
(6.10)

Partition of unity is preserved since
∑︀

𝑟 𝛽
𝑖,𝑗 = 1. This completes the realocation proce-

dure.
It can be shown that if 𝑐𝑗𝑖 is the center of the B-splines 𝜑𝑗𝑖 , then 𝑐𝑗𝑖 is a local point of

𝜑𝑗𝑖 . We can therefore use the realocation procedure with 𝑦𝑗𝑖 = 𝑐𝑗𝑖 to find a solution that
guarantees locality and a partition of unity.

0

1 B

0

2 C

0

0 A

0

3 D

Ax

DxCx

Bx

1

1
1

2
1

0

1

3
1

5

1

7

1

4

1

81

6

Ex

Fx

Ax

DxCx

Bx
B

F DC

EA

Figure 6-10: Illustration of refinement in two dimensions. Letters are used to index 𝑥𝑘 for
clarity. When the element is split, new samples are added, the B-splines 𝜑𝑗𝑖 are refined and
the new basis functions 𝜓𝑗𝑖 are recomputed to ensure locality.

A 2D example of this is shown in Figure 6-10. In the first step, we split the element
generating samples at 𝑥𝐸 and 𝑥𝐹 . In the second step, we refine all the basis function
shown since they all overlap the element. In the third step we find the B-splines that
violate locality (according to Remark 1). For example, the B-spline 𝜑1

4 violates locality since
𝛼4,1
𝐴 = 𝛼4,1

𝐵 = 𝛼4,1
𝐶 = 𝛼4,1

𝐷 = 1/4 and the samples 𝑥𝐴, 𝑥𝐵, 𝑥𝐶 and 𝑋𝐷 are not in ℒ1
4. As

discussed above, we compute 𝑅1
4,which is the line segment between 𝑥𝐸 and 𝑥𝐹 . We express

𝑐14 as a function of samples at 𝑅1
4, 𝑐

1
4 = (𝑥𝐸 + 𝑥𝐹)/2. We therefore we update the values of

𝛼 setting �̄�4,1
𝐸 = �̄�4,1

𝐹 = 1/2 and zero elsewhere. Similarly, we update the coefficients of 𝜑1
1

and 𝜑1
7, which violates locality. From this we can redefine 𝜓𝐸 = 𝜑1

1 + 𝜑1
4/2, 𝜓𝐹 = 𝜑1

7 + 𝜑1
4/2,

𝜓𝐴 = 𝜑1
0+𝜑1

3/2, 𝜓𝐵 = 𝜑1
2+𝜑1

5/2, 𝜓𝐶 = 𝜑6
0+𝜑1

3/2, and 𝜓𝐷 = 𝜑1
8+𝜑1

5/2. The colors on the right
in Figure 6-10 indicate the influence of each sample, which are local after this redefinition.

Enforcing Linear Precision In addition to locality and partition of unity, we would
like our interpolation to exactly reproduce linear functions. We will propose a method for
defining the �̄�𝑖,𝑗𝑘 such that if the evaluations function 𝑥𝑘 ↦−→ 𝑝𝑘 is linear and linear precision
was enforced in all previous iterations, then∑︁

𝑘

�̄�𝑖,𝑗𝑘 𝑝𝑘 =
∑︁
𝑘

𝛼𝑖,𝑗𝑘 𝑝𝑘 (6.11)

100

From Equation 6.7, this implies that, in the linear case, the approximation does not change
with refinement and therefore continues to exactly reproduces linear functions after each
iteration.

For intuition, let us first consider the special case when 𝛼𝑗𝑖 =
∑︀

𝑘 𝛼
𝑖,𝑗
𝑘 = 1. Under

this assumption, the realocation procedure with 𝑦𝑗𝑖 = 𝑐𝑗𝑖 results in 𝑐𝑗𝑖 =
∑︀

𝑘 �̄�
𝑖,𝑗
𝑘 𝑥𝑘, since

�̄�𝑖,𝑗𝑟 = 𝛽𝑖,𝑗𝑟 , ∀𝑥𝑟 ∈ 𝑅
𝑗
𝑖 . Let 𝑝𝑐𝑗𝑖 be the evaluation at 𝑐𝑗𝑖 . If the evaluation function is linear,

then above expression yields 𝑝𝑐𝑗𝑖 =
∑︀

𝑘 �̄�
𝑖,𝑗
𝑘 𝑝𝑘. On the other hand, If linear precision was

guaranteed in all previous iterations, then 𝑝𝑐𝑗𝑖 = 𝑃 (𝑐𝑗𝑖). Since every B-spline evaluates to 1

on its center and partition of unity is guaranteed, Equation 6.7 yields 𝑃 (𝑐𝑗𝑖) =
∑︀

𝑘 𝛼
𝑖,𝑗
𝑘 𝑝𝑘.

From this we conclude that Equation 6.11 holds and therefore linear precision is preserved.
Unfortunately, in general, we cannot guarantee that 𝛼𝑗𝑖 = 1. While this was true in the

example in Figure 6-10, this is usually not the case in high dimensions and after multiple
iterations. Our solution therefore is to use the realocation procedure with 𝑦𝑗𝑖 =

∑︀
𝑘 𝛼

𝑖,𝑗
𝑘 𝑥𝑘/𝛼

𝑗
𝑖

(notice that when
∑︀

𝑘 𝛼
𝑖,𝑗
𝑘 = 1, 𝑦𝑗𝑖 = 𝑐𝑗𝑖). This is possible because we can prove that for this

definition of 𝑦𝑗𝑖 , 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑦𝑗𝑖) (supplemental material). By directly following the sequence
of arguments above, we can show that, for this definition of 𝑦𝑗𝑖 , linear precision is guaranteed
in the general case.

6.5.3 Extension to Cubic B-splines

To extend our method to cubic B-splines, we first redefine locality. On a uniform grid, cubic
B-splines generate smooth interpolations by introducing dependencies on adjacent samples.
We therefore define the neighborhood 𝒩 (𝑥𝑘) of a sample 𝑥𝑘 as the set of elements that
either contain the sample 𝑥𝑘 or are adjacent to some element that contains the sample 𝑥𝑘.
Analogously, we define the neighborhood ℬ(𝑒𝑙) of an element 𝑒𝑙 as the set of samples on its
boundary and on the boundaries of its adjacent elements (see Figure 6-11).

Figure 6-11: The neighborhood 𝒩 (𝑥𝑘) of a sample 𝑥𝑘 (left) and the neighborhood ℬ(𝑒𝑙) of
an element 𝑒𝑙 (right) for cubic B-splines.

As in the linear case, we say that an approximation preserves locality if ∀𝑘, 𝑆(𝜓𝑘) ∈
𝑁(𝑥𝑘); or, equivalently, if, for each element 𝑒𝑙, any sample 𝑥𝑘 whose associated basis function
𝜓𝑘 does not vanish on 𝑒𝑙 is contained in the neighborhood ℬ(𝑒𝑙) of that element. We use the
same method described in Algorithm 1, refining cubic B-splies in step 2 if their support is
larger than twice the size of the refined element 𝑒𝑙 in direction 𝑑. We use following refinement
relation for cubic B-splines (see Figure 6-12):

101

ALGORITHM 1: Refine (𝑒𝑙) along direction 𝑑

// Step 1 (Element Refinement)

create child nodes 𝑒𝑖𝐴 and 𝑒𝑖𝐵;
create new samples on corners of every common cuboid;
// Step 2 (Basis Refinement)

forall 𝜑𝑗𝑖 which overlaps 𝑒𝑙 do

if 𝑆(𝜑𝑗𝑖 (𝑥)) larger than 𝑒𝑙 along direction 𝑑 then

// refine 𝜑𝑗𝑖
forall 𝑘, 𝑥𝑘 ∈ ℒ𝑗𝑖 do

�̄�𝑛,𝑗+1
𝑘 = 𝛼𝑛,𝑗+1

𝑘 + 𝑎
(𝑗+1)
𝑖𝑛 𝛼𝑖,𝑗𝑘 , ∀𝑛;

�̄�𝑖,𝑗𝑘 = 0;
end

end

end

// Step 3 (Combination)

forall 𝜑𝑗𝑖 which overlaps 𝑒𝑙 do

if 𝜑𝑗𝑖 violates locality then

set 𝑦𝑗𝑖 =
∑︀

𝑘 𝛼
𝑖,𝑗
𝑘 𝑥𝑘/(

∑︀
𝑘 𝛼

𝑖,𝑗
𝑘);

set 𝑅𝑗
𝑖 = ∩𝑒𝑙,∀𝑒𝑙 ∈ 𝒩 (𝑦𝑗𝑖);

compute 𝛽𝑖,𝑗𝑟 such that 𝑦𝑗𝑖 =
∑︀
𝛽𝑖,𝑗𝑟 𝑥𝑟, 𝑥𝑟 ∈ 𝑅

𝑗
𝑖 ;

compute the updated values of 𝛼, �̄�:
�̄�𝑖,𝑗𝑟 =

(︀∑︀
𝑘 𝛼

𝑖,𝑗
𝑘

)︀
𝛽𝑖,𝑗𝑟 , 𝑥𝑟 ∈ 𝑅𝑗

𝑖

�̄�𝑖,𝑗𝑟 = 0, otherwise
end

end

𝜑
(𝑗)
𝑖 (𝑥) = 1

8
𝜑
(𝑗+1)
(2𝑖−2)(𝑥) + 1

2
𝜑
(𝑗+1)
(2𝑖−1)(𝑥) + 6

8
𝜑
(𝑗+1)
(2𝑖) (𝑥)

+1
2
𝜑
(𝑗+1)
(2𝑖+1)(𝑥) + 1

8
𝜑
(𝑗+1)
(2𝑖+2)(𝑥).

(6.12)

0

0
0

1
1

0
1

2
1

1
1

4
1

2
1

1
1

3

Figure 6-12: Refinement of cubic B-splines.

To compute the approximation 𝑃 𝑙(𝑥) at 𝑥 ∈ 𝑒𝑙, we need the meshes from all samples
𝑥𝑘 ∈ ℬ(𝑒𝑙) to be represented in the canonical format of 𝑒𝑙. If 𝑥𝑘 ∈ ℬ(𝑒𝑙) ∖ ℬ(𝑒𝑙), then

102

𝑥𝑘 ∈ ℬ(𝑒𝑙), where 𝑒𝑙 is adjacent to 𝑒𝑙. Let 𝑥𝑘 be a sample in ℬ(𝑒𝑙)∩ℬ(𝑒𝑙) (see Figure 6-13).
Since 𝑝𝑙

𝑘
and 𝑝𝑙

𝑘
are stored during our pre-computational phase and have the same geometry,

we can compute a mapping 𝐹 : 𝑝𝑙
𝑘
→ 𝑝𝑙

𝑘
using barycentric coordinates and then apply it to

𝑝𝑙𝑘 to obtain 𝑝
𝑙
𝑘. Locality ensures that this mapping only has to be done once for each sample

guaranteeing that errors do not accumulate.

l
e le

l

k
p

l

k
p

kx
k

x

Figure 6-13: The mapping 𝐹 : 𝑝𝑙
𝑘
→ 𝑝𝑙

𝑘
is used to obtain 𝑝𝑙𝑘 for 𝑥𝑘 ∈ ℬ(𝑒𝑙) ∖ ℬ(𝑒𝑙).

6.6 Homeomorphic Mapping

In this section we discuss how we define a homeomorphic map that allows for representing
a mesh 𝑝𝐴 in the canonical format of a given element, 𝑝𝑙. The resulting mesh 𝑝𝑙𝐴 should
have the same geometry as 𝑝𝐴 and the same combinatorics as the canonical reference 𝑝𝑙 (see
Figure 6-17). To this end, we need to establish a dense correspondence between two meshes.
Surface correspondence on meshes has been extensively studied in previous work Van Kaick
et al. [2011]. Our problem is distinct because we can take advantage of the CAD refer-
encing methods to establish partial correspondence. As we will show in this section, this
correspondence is not necessarily complete since the topology of the internal CAD represen-
tations (B-rep) may differ even if the geometry varies smoothly. We therefore propose an
algorithm that combines CAD data analysis with mesh surface correspondence algorithms
from previous work.

6.6.1 Motivation

As previously discussed, CAD systems use B-reps to represent solid models, which are gen-
erated by computing a list of features. A referencing scheme is used to determine the parts
of the model to which features are applied, allowing these to be correctly re-generated if
the model is modified. It is very common that parameter changes affect the topology of the
B-rep, even in cases in which the geometry varies smoothly. Because references depend on
the feature history, not the B-rep itself, they are robust to topological changes that do not
affect the referenced element. An example of this is shown in Figure 6-14.

The CAD system’s API can be used to index each topological entity of the B-rep (faces,
edges and vertices) from their internal referencing scheme. However, because faces can
merge or split, we cannot generate a mapping simply from the correspondence between each
face. In order to ensure that our method is robust to topological changes on the B-rep, we
propose using the information from the CAD system to establish sparse correspondences on
the surface of the shapes. This is then used to establish a dense correspondence map on the

103

Figure 6-14: Example of referencing in Onshape. The user applies a feature to a given face
which is highlighted (left), and then changes parameter making other faces and edges of the
model merge or split (right). Onshape’s referencing scheme guarantees that the feature will
still be applied to the correct face even after these changes are made.

shape boundaries. Following the approach of previous work ([Aigerman et al., 2014, 2015b,
Kraevoy and Sheffer, 2004, Lee et al., 1999, Praun et al., 2001, Schreiner et al., 2004] to
name a few) we use this sparse correspondence to split both source and target meshes into a
common patch layout and compute the parameterization for each patch. Finally, we compute
the volumetric mesh, 𝑝𝑙𝐴, by propagating the boundary distortion map to all tetrahedrons in
the interior.

6.6.2 Algorithm

CAD Referencing When sampling a point in the parametric domain 𝑥𝑘, we use a CAD
system’s API to update the parameters 𝑥𝑘, evaluate the model (i.e., recompute the feature
list) and export the mesh 𝑝𝑘. Further, we use the API to query for a set of control variables
that we define on the surface of the model in order to establish correspondences. Our
control variables are a set of points with identifiers (IDs) and a set of paths between points.
These control variables are set individually for each parameter configuration. We establish
correspondences only when control variables with the same ID exist in both source and target
meshes, addressing the case of varying B-rep topologies.

To generate these control variables, we designed a feature that references all of the vertices
and edges of the solid model and tags each of these entities with a unique index. We add this
feature to the end of the feature history. The reason we cannot simply use this index as the
ID for each vertex and edge is that, though some references will break when entities vanish,
others will be preserved even if the entities undergo topological changes. The referencing
in CAD systems is designed this way in order to conserve certain operations even when the
entities to which they are applied merge or split (see Figure 6-15). Though this is very
powerful for CAD design, it is problematic for our application, since using these indices
directly would allow us to create correspondences between vertices that collapse to a point
or between two edges that are adjacent in one model and edges that are not adjacent in the
other. To ensure a smooth surface mapping, these correspondences must be avoided since
they will lead to shrinking the triangles in between to zero.

To address this problem, we establish correspondences only between elements of the B-
rep which undergo no topological changes. To this end, we define the ID for each vertex as
the vertex index and a (sorted) vector of indices of adjacent edges. Analogously, we define
the ID for each edge as the edge index and a (sorted) vector of indices of adjacent vertices.
This simple scheme is sufficient to ensure that matching IDs exist only between elements

104

Figure 6-15: Two examples of a fillet feature applied to edges. After this feature is defined,
parameter changes on earlier features in the feature list split the edges into two parts. The
way the edge references are handled in order to re-generate the fillet depends on the feature
history, not the geometry. On the model on the left, the CAD system applies the fillet to
both edges generated by the split; on the model on the right, the fillet is applied to only one
of the edges.

with matching topologies.
Once IDs are established for every vertex and edge, control points are then set by com-

puting the position of each referenced vertex and sampling each referenced edge. Sampling
on edges is easily performed by the geometric kernel using the API. Though we would like
the number of samples per edge to be proportional to the edge length, we require similar
sampling on source and target meshes in order to establish correspondences. Since edge
sizes can vary significantly when parameters are changed, we sample each edge by hierar-
chical subdivision until the length of each segment is smaller than a given threshold, and
generate IDs for each sample according to this subdivision. In addition to the control points,
our API call also returns a list of paths that connect pairs of points that are consecutive
along an edge.

Surface Mapping The common patch layout defines graphs on both source and target
meshes. We use the set of control points with matching IDs to define the nodes on this
graph. Edges on this graph define paths on the source and target meshes connecting these
vertices. In the first stage, we use the paths extracted from the CAD system to create edges
in this graph (see second row of Figure 6-16).

We then add edges to the patch layout, following the approach of previous work Kraevoy
and Sheffer [2004]. To this end, we first compute a list of candidate edges by computing
shortest paths between every pair of control points in both source and target meshes and
sorting this candidate list by the sum of the lengths of the source and target paths. These
paths are constrained to (a) not intersect each other, (b) maintain the cyclical order, and (c)
not place corresponding control points in two different patches. We use the candidate list to
incrementally add edges to the patch layout. Every time a new edge is added, the candidate
list is updated to ensure the constraints are satisfied.

Edges are selected first to ensure the graph is connected and then to ensure that every
patch is simple. Finally, more edges are added to further subdivide large patches for better
parametrization. In this step, however, we add an edge only if the shortest path length
is significantly smaller than the path that connects these two points on the patch layout.
Adding this restriction is necessary for our application because details such as small fillets or
holes can generate a large number of control points that are very close to each other. Finally,

105

Figure 6-16: Common patch layout given a source and target geometry. Top to bottom: B-
rep with highlighted topological changes, paths extracted from CAD, complete patch layout.

we refine paths to geodesic paths. Using geodesic paths smooths the boundary, making the
paths on the target and source meshes more consistent. This is done only after the paths are
selected because it is a time-consuming step. Finally, we construct a mapping between each
path pair using a mean-value parametrization technique Floater [2003] to map each patch
onto a disk and then composing the two maps to establish a mapping from the source to
target patches.

Figure 6-17: Mapping result. Given a source geometry and a target mesh topology the
mapping outputs a mesh with the source geometry and target topology.

106

Interior mapping Since, in our problem, meshes are reasonably similar, we can map
the surface mapping to the interior by solving a linear elastic FEM problem. We use the
surface map as the Dirichlet boundary conditions for the FEM simulation, and compute the
volumetric deformation for the interior map.

Boundary Conditions In addition to mapping the shapes, we also need to establish
consistent boundary conditions for our simulations. Consider, for example, a chair model
in which the force is applied to the seat, which can vary in length and width. In order to
simulate this result, we need to know which mesh vertices correspond to the seat as the
mesh varies. We address this problem by developing a boundary condition feature to be
added at the end of a solid model’s feature list. These features take as inputs the faces of
the model and the information of the boundary condition type (forces, temperature, etc).
Similar to the discussion above, we use the CAD referencing scheme to find the mesh regions
that correspond to the selected faces. This allows us to establish consistent boundary regions
during interpolation.

6.7 Results

While our method can be applied to any CAD system, we have implemented the discussed
techniques using Onshape’s API.

Our precomputed data and interpolation scheme allow visualization of geometry varia-
tions in real time. Our tool can further display to the user physical properties that depend
on the geometry and can be computed at interactive rates. In our experiments, we evaluate
mass, surface area, drag, and moment of inertia. Other physical properties that are defined
over the mesh and require expensive computations can be precomputed for every sample and
interpolated with our scheme. Different applications require analysis of different properties.
When constructing the K-d tree, we define the error metric for determining if an element
should be refined by either comparing the geometry (with Hausdorff distances) or the error
on the precomputed simulation in applications where these properties are added.

Figure 4-1 and the first four rows of Figure 6-18 show examples with precomputed stress
analysis. Figure 4-1 shows a wrench that is constrained to be fixed in the faces which are in
contact with a bolt head and has a force pulling down on the handle. The result displays the
moment of inertia, mass and stress distribution as three parameters vary: the head radius,
the handle length and the fillet connecting this two parts.

The first row of Figure 6-18 shows a rocker arm on a bike that is fixed to the suspension
component and has a force from the rear wheel. The four parameters include directions and
length of the inner holes, thickness of the part and fillet radius on the border. Typically, an
engineer will try to minimize the weight and drag of a model like this while keeping stress
below a certain threshold. Our interface displays all properties in real time. This model
highlights an advantage of this visualization tool over a direct optimization since both the
thickness and the hole size affect all variables and this tool allows users to choose from the
multiple configurations that meet the design criteria.

The second row shows a chair with precomputed stress analysis which results from a force
on the seat. Our mapping of boundary conditions allows the force to be uniformly applied

107

Figure 6-18: Examples of interactive visualization. On the left we show each model in red
boxes and the regions with fixed boundary conditions and forces with red arrows. On the
right we show results from our visualization interface. As the user varying the parameters,
geometry is updated is real time. The top four rows show pre-computed stress analysis. On
the forth row the force direction also varies and is illustrated with a red arrow. The fifth
row shows a result with fluid simulation. The last row shows a results with thermoelastic
simulation where the colors display (from left to right) heat distribution, deformation and
stress.

on the surface of the seat across parameter variations which affect its dimensions. In this
example a total of six parameters can be exposed since a chair does not need to interface
with other models in an assembly, allowing greater variability.

The third row is a camera mount, which has fixed sizes and a downwards force from the

108

weight of the camera. The engineer aimed at minimizing both the mass and the deformation
while making the stress distribution as even as possible. Using our tool to view all these
properties at interactive rates, the engineer can find an optimal solution without needing to
come up with reasonable weights for a composed objective function to be used in optimiza-
tion. The holes were designed as circular patches with varying radii which can be fabricated
with punching, which is far less expensive than milling, illustrating how CAD data can be
applied for optimization with fabrication constraints.

The fourth row is a swing castle where the dimensions of the door and windows are
parametrized. Since this model requires expensive coating, surface area is displayed along
with the pre-computed stress analysis. In this example, the direction of the force on the bar
varies as the child swings. This direction is treated as a third parameter in our interface
allowing users to visualize the stress distribution as both the geometry and the force vary.

The fifth row shows an example of a toy airplane for which the air pressure distribution
was precomputed using a compressible flow solver. Our interactive tool displays this property
together with moment of inertia and drag from a frontal wind which are directly computed
from the geometry at interactive rates.

Finally, the sixth row shows an example where thermal expansion is coupled with the
stress from the brake hub. The heat source is uniform on the inner walls while the forces
from the brake are directional. We measure the stress that results from both the directional
forces and the heat deformations. We store the pre-computed heat distribution, stress, and
deformation. The engineer can explore the shape and size of the inner holes to normalize
the stress distribution and also vary the thickness of the rim. We observe that as the latter
increases, the deformation on the rim becomes more uniform since the impact of the heat
outweighs the directional forces.

Table 6.1 describes the number of parameters, levels of the K-d tree, total sampled nodes,
average mesh size for each model, and overall number of meshes stored. For precomputation,
the time to evaluate each instance (specific parameter values) is the latency of the CAD
evaluation and physical simulation. In the examples, geometry evaluation for each instance
took about one minute, including B-rep regeneration from Onshape and tetrahedralization.
Simulation times range from 5 to 10 minutes for stress analysis, and 2 to 3 minutes for
thermoelastic and air pressure distribution. Our interactive viewer updates all examples in
real time.

Table 6.1: The number of parameters (K), levels of the K-d tree, total sampled nodes, average
mesh size (in number of tetrahedrons), and total storage (in number of stored meshes) for
each model.

model K levels samples mesh size storage

wrench 3 5 49 386k 112
chair 6 7 777 61k 4224

bike frame 4 6 103 288k 304
camera mount 5 6 259 291k 1056

swing 3 5 58 211k 144
plane 4 5 148 429k 432

drum brake 3 6 72 356k 208

109

Table 6.2 shows the approximation error for both geometry and elastic FEM simulation
for each model. This is measured by sampling 10 random points in the domain and comparing
the evaluated shapes and physical properties with our approximation. We observe that while
geometry reconstruction is quite accurate, physical properties do not interpolate as well since
they are highly non-linear. Still, we argue that it is accurate enough for a visualization
cycle of gaining intuition since it clearly highlights how each parameter affects the physical
properties of the model and which ones are the most relevant. When high accuracy is crucial,
designers can use this tool to select optimal configurations and then run simulations at a
second stage for a small number of selected parameters. We argue, however, that in most
practical scenarios this second stage is not necessary because the approximation error is
reasonable given engineering safety factors.

Table 6.2: Relative approximation error on geometry and elastic FEM for all example models.

model
geometry geometry FEM FEM
max 99% max 99%

wrench 0.0028 0.0004 0.2138 0.0393
chair 0.0243 0.0022 0.3756 0.1130

bike frame 0.0112 0.0003 0.1403 0.0281
camera mount 0.0009 0.0002 0.4107 0.1861

swing 0.0013 0.0002 0.4750 0.2042
plane 0.0162 0.0055 - -

drum brake 0.0016 0.0006 0.3095 0.0490

When engineers design a part, they typically use simulation at multiple configurations
in order to optimize physical properties. Since each simulation takes a long time, they use
their training and expertize to pick certain configurations for testing and then to tweak the
parameters based on these results. This process requires expert knowledge because each
simulation takes a very long time and the more experience they have the fewer iterations are
required Foshey et al. [2017]. For these reasons, interactive tools such as this one have the
potential to not only facilitate the design process for engineers but also lower the barrier for
novice users. In addition, it can be used to help less experienced engineers gain this intuition
since it is a very informative way of illustrating how geometry impacts physical properties.

6.7.1 Application in Shape Optimization

Our method can also be used for automatic shape optimization. For this application we use
cubic B-splines, which guarantee smooth interpolations. Using Equation 6.1, we can define
the derivatives of our approximation as

𝑃 ′(𝑥) =
∑︁
𝑘

𝑝𝑘𝜓
′
𝑘(𝑥), (6.13)

which can be expressed analytically since 𝜓𝑘(𝑥) is a sum of weighted B-splines. We use this
to drive a gradient-based algorithm for optimization over objective functions defined on the
mesh. We use an interior point method and IpOpt for implementation.

110

Figure 6-19 shows an example of an optimization result where the objective function is
defined as the integral of the stress over the volume. This arbor press has five parameters,
two that define the dimensions and three that are structural (fillet radius, side thickness and
hole size). Since different applications require different dimensions, companies will typically
sell a range of similar shapes with varying heights and widths. This shows a typical use case
for our method when a shape can be pre-computed once and then optimized for different
use cases. The figure shows results for two configurations where heights and widths are fixed
and the structural variables are optimized.

Figure 6-19: Result of shape optimization. Stress is minimized on an arbor press for two
different use cases, a tall one is shown on the right and a short one on the left.

6.7.2 Limitations

While the main technical contributions of this approach is the novel interpolation algorithm,
this cannot be applied for discrete parameters or topological changes. In such scenarios, our
method can still be used to interpolate the continuous variations between discrete changes
of parameters or topology. In the future it would be interesting to explore this technique in
tools that combine discrete and continuous exploration such as the one proposed by Bao at
el. [2013].

Another limitation of our precomputation scheme is that it does not scale well with the
number of parameters. For CAD applications this is not a problem because the number of
parameters that can be exposed tend to be small due to large number of constraints driven
by manufacturing considerations or the need to interface with other models [Baran, 2017,
Shugrina et al., 2015].

Storing 2𝐾 meshes for every sample is arguably another limitation of our approach. In
our implementation, this was not a problem even in the case of high resolution meshes.
In the future, however, it could be interesting to incorporate compression schemes on the
meshes Alliez and Gotsman [2005]. Additionally the physical properties computed can also
be compressed, as is done in this work for corner vibration modes Langlois et al. [2014].

Since the interface with the CAD system allows detailed control variables that highlight
the sharp features of the model and since shape variations from parameter changes are rela-
tively small, we were able to extract satisfactory results with simple surface correspondence
algorithms. In the future, it would be interesting to combine our method for extracting

111

control variables from CAD with more recent approaches such as Aigerman et al. [2015a],
which would guarantee more smoothness on patch boarders. It would also be interesting to
experiment with mesh morphing algorithms that are not linear Alexa et al. [2000].

6.8 Discussion

In this chapter we propose a precomputation approach that allows interactive exploration of
a design space with real-time performance feedback. Our main technical contributions is an
interpolation scheme for adaptive grids that simultaneously guarantees continuity/smooth-
ness and locality. This is a general interpolation algorithm that we hope will find many
applications

We show examples of how our method can be coupled with different physics simulations
to allow designers to interactively or automatically optimize shapes for different objectives.
Since shape regeneration from CAD parameters and accurate evaluations of their physical
properties are inherently slow, the existing workflow for optimizing parameters is not only
time consuming, but also requires expertise since only a small set of variations can be tested
in a reasonable amount of time. In this context, our tool not only helps experts to efficiently
search the design space, but also helps bring down the design barrier to casual users.

The main limitation of this approach is that by sampling in the design space it suffers from
the curse of dimensionality. While CAD design parameters are typically low dimensional, this
ends up being an important limitation to applying this technique to explore more complex
design spaces. In the next chapter, we argue that in designing for functionality it is not
necessary to represent the full design space, since only a subset of solutions correspond to
optimal design trade-offs. By representing only this subset, which lies in a much lower
dimensional performance space, our approach not only scales to large design spaces, but also
allows for a more meaningful exploration based on performance trade-offs.

112

Chapter 7

Interactive Performance-Space

Exploration

7.1 Introduction

The previous chapter discusses a technique for exploring the design space with real-time
feedback on performance. This chapter will be dedicated to solving the inverse problem:
given a set of performance objectives, find the optimal design. This can be posed as an
optimization problem over the design space for a given performance objective. As previously
discussed, the fundamental challenge with such optimization techniques is that design for
manufacturing typically involves multiple conflicting objectives.

Since it is impossible to optimize more than one criterion at a time, standard optimization
approaches require expressing a set of performance criteria in a combined objective function
that balances incompatible features. The typical approach is to use weighted combinations
of different performance metrics. For example, in the case where there are two performance
metrics, an objective could be expressed as 𝛼𝑓1(𝑥) + (1 − 𝛼)𝑓2(𝑥), where the 𝑓𝑖’s are per-
formance functions defined on the design space and 0 ≤ 𝛼 ≤ 1 is a proxy for the trade-off
between 𝑓1 and 𝑓2.

Unfortunately, such a proxy fails to capture the full space of optimal design trade-offs,
called the Pareto set. A design point is Pareto-optimal if an adjustment to the design
cannot simultaneously improve all performance metrics; any improvement to one metric
necessarily worsens another. If 𝐹 (𝑥) = (𝑓1(𝑥), 𝑓2(𝑥)) is a function that maps the design
space onto the performance space, then 𝐹 maps the Pareto set onto the Pareto front. While
the main task of a designer might be considered navigation of the Pareto front, its shape
is typically nonlinear and even disconnected. Linear changes in 𝛼 do not correspond to
linear, or even continuous, changes on the Pareto front (see Figure 7-4). For this reason,
guessing a reasonable 𝛼, or sampling over 𝛼, can be imprecise, unstable, or even intractable.
Furthermore, the introduction of new performance metrics renders any previous choice of 𝛼
obsolete.

Instead of using proxy objectives, we seek to discover, represent, parameterize, and ex-
plore the Pareto front directly. In our approach, the Pareto front discovery is done in a
pre-computation step, and the resulting representation is used to define an interactive tool

113

Design Space Performance Space

mass stability

focal distance

focal distance

Figure 7-1: Our method allows users to optimize designs based on a set of performance
metrics. Given a design space and a set of performance evaluation functions, our method
automatically extracts the Pareto set—those design points with optimal trade-offs. We rep-
resent Pareto points in design and performance space with a set of corresponding manifolds
(left). The Pareto-optimal solutions are then embedded to allow interactive exploration of
performance trade-offs (right). The mapping from manifolds in performance space back to
design space allows designers to explore performance trade-offs interactively while visual-
izing the corresponding geometry and gaining an understanding of a model’s underlying
properties.

that allows users to navigate the complex trade-offs between multiple performance metrics
and instantaneously find corresponding designs. The main challenge in creating this rep-
resentation is that finding all Pareto points requires on the one hand exploring the diverse
solutions that correspond to different trade-offs and on the other hand converging to solutions
in each particular direction to find points that are optimal in the Pareto sense.

From a technical perspective, our algorithm is built upon a first-order approximation of
the Pareto front derived from duality theory in multi-objective optimization. This approxi-
mation serves two roles. First, it enables exploration of the Pareto front near a single point
once it has been discovered. Second, it efficiently captures a region of the Pareto front, al-
lowing us to approximate the entire front with just a few continuum pieces instead of a dense
set of sample points. Each continuum piece also stores a mapping to the Pareto set in the
design space. The end result is a technique that discovers the Pareto front and represents it
as a union of relatively few manifold pieces that can be stored and queried efficiently within
an interactive design tool that presents the designer with only the relevant (Pareto optimal)
set of designs. Our representation is well-suited for the nonlinear and possibly disconnected
nature of the Pareto front.

7.2 Related Work

The task of finding the set of optimal design trade-offs amounts to solving a multi-objective
optimization problem, where the objectives are the performance metrics. Numerous meth-
ods have been proposed for solving multi-objective optimization problems. The Normal
Boundary Intersection Das and Dennis [1998] and Normalized Normal Constraint Messac
et al. [2003] methods aim to produce a well-distributed set of solutions, which can accurately

114

approximate the shape of the Pareto front but can produce false positive solutions when the
problem is non-smooth and/or contains local minima. Evolutionary algorithms often are
applied to address this issue by iteratively modifying a population of candidate solutions
that undergoes reproduction and removal similar to natural evolution; see Zhang and Xing
[2017] for a survey.

The main difference between these methods and our approach is that instead of searching
for a diverse set of discrete points, our proposed method provides a compact representation
covering contiguous regions within the space of solutions. Our approach leverages the fact
that while discovering individual points on the Pareto front can be difficult, locally searching
around known solutions is easier. Using our method we obtain a relatively small set of
manifolds whose union approximates the Pareto front. This representation provides an
easily-navigable set of solutions in both design space and objective space, which can be
applied to visualization and analysis.

7.3 Mathematical Preliminaries

In this section, we introduce the mathematical toolbox that formalizes the idea of trade-offs
in an engineering context. This quick summary establishes the notation we need in our
paper; for a broader discussion we refer the reader to Deb and Deb [2014].

Design Space Performance Space

𝐹(𝑥)

ℝ𝐷
ℝ𝑑

𝒳

Pareto FrontPareto Set

𝐹(𝒳)

Figure 7-2: The Pareto set represents the points in design space with optimal performance
trade-offs that get mapped to the Pareto front in performance space. Different colors indicate
different manifolds in design and performance space with a one-to-one mapping. Any ray
from the origin (blue line) can only intersect the Pareto front once.

7.3.1 Definitions

The set of exposed parameters for an engineering model is known as the design space:

Definition (Design space and constraint). The design space 𝒳 for a multi-objective problem
is defined as a subset of R𝐷 of feasible points:

𝒳 := {x = (𝑥1, . . . , 𝑥𝐷) ∈ R𝐷 : 𝑔𝑗(x) ≤ 0 ∀𝑗 ∈ {1, . . . , 𝐾}}.

115

Here, each function 𝑔𝑗 represents a single constraint on x. We use 𝐺(x) : R𝐷 → R𝐾 to
denote the concatenation (𝑔1(x), . . . , 𝑔𝑘(x)).

Intuitively, 𝒳 is the set of all manufacturable objects. Constraints 𝑔𝑗 might capture
hard constraints identified by the engineer, such as a limit on the total material available to
manufacture an object.

Next, we need a notion of an objective function for optimization:

Definition (Performance metric and space). A set of performance metric functions 𝑓𝑖 :
R𝐷 → R assign real-values to each design vector x; we use 𝐹 (x) : R𝐷 → R𝑑 to denote the
concatenation (𝑓1(x), . . . , 𝑓𝑑(x)). We choose the convention that small values of 𝑓𝑖(x) are
desirable for metric 𝑓𝑖. The performance space 𝒮 is the image of the design space 𝒳 under
the performance metrics:

𝒮 := 𝐹 (𝒳) ⊆ R𝑑.

The performance metric functions are often complex and computationally intensive.
Multi-objective problems typically involve multiple performance metrics (𝑑 ≥ 2), e.g. weight,
torque, and other measures; typically 𝑑≪ 𝐷.

Our algorithm reveals only those points in design and performance space that are not
out-performed on every axis by some other design:

Definition (Pareto optimality). A point x ∈ 𝒳 is Pareto optimal if there does not exist any
x′ ∈ 𝒳 so that 𝑓𝑖(x) ≥ 𝑓𝑖(x

′) for all 𝑖 and 𝑓𝑖(x) > 𝑓𝑖(x
′) for at least one 𝑖. The set of all

Pareto-optimal points is the Pareto set 𝒫 ⊆ R𝐷; the image 𝐹 (𝒫) ⊆ R𝑑 is the Pareto front.

7.3.2 KKT Conditions

Our algorithm pre-computes 𝐹 (𝒫) and represents it compactly to allow for fast exploration
and optimization. We represent 𝐹 (𝒫) as a union of (𝑑 − 1)-dimensional manifolds. As
we will show, for (almost) any point x ∈ 𝒫 , there is a local neighborhood ℬ(x) such that
𝐹 (𝒫)∩ℬ(x) is a (𝑑− 1)-dimensional manifold in R𝑑; we store 𝐹 (𝒫) as the union of a sparse
set of simple manifold approximations.

Intuitively, this approximation is justified as follows. From the definition of Pareto opti-
mality, if a point 𝑥 ∈ 𝒳 is Pareto optimal, then there is no other point whose performance
is not worse than 𝑥 in every metric and better than 𝑥 in at least one metric. Hence, we can
draw a ray in performance space along which there can be at most one Pareto optimal point,
illustrated in Figure 7-2. This effectively extracts just points on the boundary of the Pareto
front, a lower-dimensional set and justifies the following proposition:

Proposition 1. For every nonnegative 𝛼 ∈ R𝑑, there exists at most one 𝑡 > 0 such that
𝑡𝛼 ∈ 𝒫.

We parameterize this set using a “performance buffer,” defined in §7.5.1.
This lower-dimensional observation is justified by the theory of KKT conditions from

multi-objective optimization. Following Deb and Deb [2014], we denote Pareto-optimal
points as solution of the primal problem notated

min𝑥 {𝑓𝑖(𝑥)}
s.t. 𝑥 ∈ 𝒳 . (7.1)

116

Standard approaches to multi-objective optimization aim at finding solutions to this
primal problem. The main challenge is that the space of solutions that are Pareto-optimal is
large, disconnected, and prone to local minima. Typical approaches use genetic algorithms to
find solutions that are diverse and optimal Zhou et al. [2011]. On a high level, these methods
try to reach the Pareto front by searching in different directions and using randomization to
avoid local minima.

Inspired by primal-dual algorithms in optimization, the key insight in our approach is
that while discovering a single point on the Pareto set is challenging, once a point has been
found it can be used to uncover a large Pareto region on its neighborhood. Our approach is
to consider a dual problem, defined by the so-called KKT conditions:

Proposition 2 (KKT conditions Hillermeier [2001]). Assuming that 𝑓𝑖 and 𝑔𝑘 are continu-
ously differentiable and that the vectors {∇𝑔𝑘′(x*) | 𝑘′is an index of an active constraint}
are linearly independent, then for any solution x* to Equation 7.1 there exist dual variables
𝛼 ∈ R𝑑 and 𝛽 ∈ R𝐾 such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x* ∈ 𝒳
𝛼𝑖 ≥ 0 ∀𝑖 ∈ {1, . . . , 𝑑}
𝛽𝑘 ≥ 0 ∀𝑘 ∈ {1, . . . , 𝐾}
𝛽𝑘𝑔𝑘(x

*) = 0 ∀𝑘 ∈ {1, . . . , 𝐾}∑︀𝑑
𝑖=1 𝛼𝑖 = 1∑︀𝑑
𝑖=1 𝛼𝑖∇𝑓𝑖(x*) +

∑︀𝐾
𝑘=1 𝛽𝑘∇𝑔𝑘(x*) = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(7.2)

It is worth noting that KKT conditions are necessary but not sufficient, so we must a
posteriori check that candidate points satisfying these conditions are indeed Pareto-optimal.
This check is extremely efficient thanks to our performance buffer. The KKT conditions
verify that at least locally the Pareto front is (𝑑− 1)-dimensional, thanks to the constraint
on the sum of 𝛼.

7.4 First-Order Approximation

We begin our technical discussion by motivating a first-order approximation of the Pareto
front. This formula is a straightforward corollary of the KKT conditions in Proposition 2;
conceptually, it characterizes the proper directions to walk in design and performance space
to maintain Pareto optimality after a single Pareto point is found. This formula can be
understood as a source of efficiency for our algorithm relative to other sampling algorithms,
since entire neighborhoods rather than individual points on the Pareto front are captured.

We state our condition as follows:

Proposition 3 (KKT Perturbation). Suppose x(𝑡) : (−𝜀, 𝜀)→ R𝐷 is in the Pareto set in a
neighborhood of 𝑡 = 0, that is, x(𝑡) ∈ 𝒫 for all 𝑡 ∈ (−𝜀, 𝜀). Taking 𝛼 and 𝛽 to be the KKT
dual variables corresponding to x* := x(0), under the assumptions from Proposition 2 we
have

𝐻x′(0) ∈ Im(𝐷𝐹⊤(x*))⊕ Im(𝐷𝐺⊤
𝐾′(x*)). (7.3)

117

where

H :=
𝑑∑︁
𝑖=1

𝛼𝑖𝐻𝑓𝑖(x
*) +

𝐾′∑︁
𝑘=1

𝛽𝑘𝐻𝑔𝑘(x*).

Furthermore,
𝐷𝐺𝐾′(x*)x′(0) = 0. (7.4)

Here 𝐻𝑢 and 𝐷𝑢 represent the Hessian and Jacobian of a function 𝑢, respectively; 𝐷𝐺𝐾′

indicates the part of the Jacobian 𝐷𝐺 corresponding to the 𝐾 ′ ≤ 𝐾 active constraints. We
prove this proposition in Appendix B.

Generically, these define a (𝑑−1)-directional space of local exploration directions around
x*. In particular, assuming 𝐻 is invertible, (7.3) shows that x′(0) is in a (𝑑 + 𝐾 ′ − 1)-
dimensional space; the −1 comes from the last line of (7.2), which effectively shows that the
row spaces of 𝐷𝐹 and 𝐷𝐺𝐾′ are linearly dependent. Equation (7.4) reduces the dimension-
ality by 𝐾 ′, as needed.

7.5 Pareto Front Discovery

We now define an iterative algorithm for exploring the Pareto front, constructed from the
above perturbation formula. Typical iterative approaches seek a diverse, dense set of so-
lutions (points) that together approximate the Pareto front. In contrast, our algorithm
represents the front piecewise-continuously as a set of manifolds. Our algorithm is therefore
less sensitive to the uniformity of discovered points, so long as the manifolds expanded from
these points completely cover the Pareto front. Instead, the distribution of points in our dis-
covery algorithm will depend on the varying sizes and locations of the generated manifolds
in objective space.

7.5.1 Data Structure

Assuming that performance metrics are positive, any point in the Pareto front will intersect
a positive ray traced from the origin. From Proposition 1, any such ray will intersect at most
one point in the Pareto front. Further, a Pareto point that intersects a given ray will have
minimal distance to the origin when compared to all other points in performance space 𝒮
that intersect this ray.

We therefore define the performance buffer as a (𝑑−1)-dimensional array discretized using
(hyper)spherical coordinates (see Figure 7-3). Inspired by the z-buffer used in rendering, a
basic implementation of the performance buffer stores at each cell the point with minimum
distance to the origin that intersects its corresponding ray. The performance buffer is updated
at each iteration of the discovery algorithm, as new regions of the performance space are
found.

To reduce stochasticity of our final result, in practice we extend the basic implementation
by storing a list of candidate solutions at each buffer cell 𝐵(𝑗), instead of storing only the
single solution that has minimal distance to the origin. These solutions are included if
their distance to the origin is within an allowed tolerance 𝛿𝐵 of the minimal distance over
all solutions in 𝐵(𝑗). Maintaining this set of solutions is useful for extracting a sparse

118

Performance Space

ℝ𝑑

Figure 7-3: The performance buffer: since a ray from the origin can only intersect one point
in the Pareto front, we use a buffer discretized by (hyper)spherical coordinates for storage.

approximation of the Pareto front (§7.5.4), which may forego choosing the closest sample
to the origin at some buffer cells in favor of a simpler set of manifolds covering the front.
For performance, we bound the number of stored solutions per cell, keeping only the top 𝐾
(𝐾 = 50 for all experiments).

7.5.2 Discovery Algorithm

Overview We address diversity and convergence with an iterative procedure to discover the
Pareto front. The algorithm is composed of three main steps (see Algorithm 2 and Figure 7-
4). The first step is a stochastic sampling scheme that selects samples x𝑖𝑠, 𝑖 = 1, . . . , 𝑁𝑆 in
the design space 𝒳 (§7.5.2). The second step is a local optimization procedure that tries
to push each sample x𝑖𝑠 to a solution x𝑖𝑜 on the Pareto set (§7.5.2). For each sample x𝑖𝑠,
a search direction s(x𝑖𝑠) ∈ R𝑑 is selected to drive the local optimization scheme. Diverse
directions are used to find a set of solutions that cover the different regions of the Pareto
front. Finally, a first-order approximation of the Pareto front is extracted around x𝑖𝑜 (§7.5.3).
The perturbative formula in §7.4 is used to generate the 𝐷× (𝑑− 1) matrix 𝑀 𝑖 that defines
an affine subspace 𝒜𝑖 in design space that goes though x𝑖𝑜 .

The resulting manifold 𝐹 (𝒜𝑖) in performance space is then projected onto the buffer. If
a point on 𝐹 (𝑥𝑖) ∈ 𝐹 (𝒜𝑖) is projected onto the buffer cell 𝐵(𝑗) and this point is considered a
candidate according to the tolerance 𝛿𝐵, then the buffer is updated. Each cell 𝑗 on the buffer
stores a list of solutions, each of which contains the point in design space, the corresponding
map to performance space, and the corresponding affine subspace {(x𝑖, 𝐹 (x𝑖),𝒜𝑖)}𝑖. The
algorithm terminates if the buffer cells’ average distance to the origin is not improved by 𝛿𝐼
after 𝑁𝑇 iterations.

Stochastic Sampling We use stochastic sampling to initialize each iteration of the algo-
rithm to avoid local minima. Since the performance buffer stores the current approximation
of the Pareto front, we use these points as initial guesses. We uniformly sample buffer cells
at random. For each selected cell 𝑗, we take the point x𝑗 with minimal distance to the origin
and perturb it as follows:

x𝑠 = x𝑗 +
1

2𝛿𝑝
d𝑝

119

Design Space Performance Space

𝐹(𝑥)

ℝ𝐷
ℝ𝑑

𝐱𝑠
𝑖

𝐱𝑜
𝑖

F(𝐱𝑠
𝑖)

F(𝐱𝑜
𝑖)

𝐬(𝐱𝑠
𝑖)

Figure 7-4: A single iteration of the discovery algorithm: random samples x𝑖𝑠 are generated
from the current data on the buffer (illustrated in gray) and optimized for a search direction
s(x𝑖𝑠) (blue arrow). A first-order approximation around the result of this optimization, x𝑖𝑜,
generates the corresponding manifolds in both design and performance space (red lines) and
the buffer is updated based on this new data.

where d𝑝 is a uniform random unit vector that defines a stochastic direction and 𝛿𝑝 is a
uniform random number in [0, 𝛿𝑃] used for scaling. The exponential factor trades off between
exploration and exploitation—small scaling factors are typically preferred to explore local
neighborhoods, but occasional larger values are desired to diversify the solutions. We clamp
the result to ensure x𝑝 ∈ 𝒳 . In the first iteration, points are sampled uniformly from 𝒳 .

Local Optimization Each of the sampled points x𝑠 is then optimized for Pareto opti-
mality. A scalarization scheme is used to convert this multi-objective optimization problem
into a single-objective problem which can be solved for each point. Previous work on multi-
objective optimization proposes assorted scalarization functions that diversify the solutions
across the Pareto front Das and Dennis [1998]; diversification is essential to avoid having
solutions cluster in certain areas, failing to provide a good representation for the shape.

We find that the following scalarization function is most effective in our applications:

x𝑜 = arg min
x∈𝒳
‖𝐹 (x)− z(x𝑠)‖2 (7.5)

where z(x𝑠) ∈ R𝑑 is a reference point defined for each sample. This quadratic expression is
inspired by previous work Zeleny [1973] and allows for discovery of solutions on non-convex
regions of the Pareto front.

We use the performance buffer discretization to specify a unit-length search direction
s(x𝑝) for pushing x𝑠 towards the Pareto front (see Figure 7-5). This suggests choosing the
reference point z(x𝑝) as:

z(x𝑠) = x𝑠 + s(x𝑠)𝐶(x𝑠), (7.6)

where 𝐶(x𝑠) = 𝛿𝑠‖x𝑠‖ is a scaling factor depending on the distance to the origin. This
scaling factor is important for diversity since setting the reference point too far from the
Pareto front will make results cluster around specific solutions.

As shown in Figure 7-5, the buffer discretization defines a search direction for each buffer
cell 𝑗. For further diversity, instead of setting s(x𝑠) as the search direction for the buffer cell 𝑗

120

ALGORITHM 2: Pareto set discovery given performance metrics 𝐹 and design con-
straints that define 𝒳 .
𝐵: performance buffer array;
𝐵(𝑖)← ∅,∀𝑖;
do

x0
𝑠, . . . ,x

𝑁𝑠
𝑠 ← stochasticSampling(𝐵, 𝐹 , 𝒳);

forall x𝑖𝑠 do
𝐷(x𝑖𝑠)← selectDirection(𝐵, x𝑖𝑠);
x𝑖𝑜 ← localOptimization(𝐷(x𝑖𝑠), 𝐹 , 𝒳);
𝑀 𝑖 ← firstOrderApproximation(x𝑖𝑜, 𝐹 , 𝒳);
updateBuffer(𝐵, 𝐹 (𝑀 𝑖));

end

if buffer not updated on past 𝑁𝑖 iterations then
break;

end

while within computation budget ;
Return 𝐵;

where x𝑠 get projected, we select the search direction assigned to a cell on the neighborhood
of cell 𝑗 selected uniformly at random. The neighborhood of a cell is defined by all the cells
that are within distance 𝛿𝑁 .

Performance Space

ℝ𝑑

Figure 7-5: Search directions for buffer cells for 𝑑 = 2. For diversity, different regions of the
performance space get assigned different search directions. We use the buffer discretization
to define these directions as illustrated in the figure.

7.5.3 First-Order Approximation

For each point x𝑖𝑜, we use the result in Proposition 3 to find 𝑑 − 1 directions for local
exploration stored in a matrix 𝑀 𝑖.

As discussed in §7.4, equations (7.3) and (7.4) generically define a 𝑑 − 1 dimensional
space. In practice, however, one must consider two special cases: (1) when Im(𝐷𝐹⊤(x*))⊕
Im(𝐷𝐺⊤

𝐾′(x*)) is low rank and (2) when H is low rank.

121

The first special case occurs when two performance objectives agree. In this case, the
Pareto front locally will be represented by a manifold with dimensionality smaller than 𝑑−1.
Consider, for example, a two-objective problem where the performance metrics are the weight
and material cost of a single-material model. Since these objectives are not conflicting, the
Pareto front is defined by a single point where the volume is minimized. Typically this is
not the case for interesting problems in multiobjective optimization where the challenge is
due to conflicting objectives. Therefore, in our implementation, we assume that this does
not happen.

The second special case is more common, since it results from having design variables that
do not affect the performance. While design variables that do not affect the performance at
any configuration can be easily discarded in a pre-processing step, it is common to have design
variables that have overall impact but locally are ineffective. In such cases, equations (7.3)
and (7.4) define a space with dimensionality higher than 𝑑− 1. This means that locally the
Pareto set (design space) has higher dimensionality. Since the Pareto front (performance
space) can never have dimensionality greater than 𝑑 − 1 (see Proposition 1), however, this
means that there are multiple affine subspaces that locally map to the Pareto front. In our
implementation, we deal with these cases by selecting 𝑑− 1 directions uniformly at random.

Storage Given 𝑀 𝑖, which defines an affine subspace around x𝑖𝑜, we find an orthonormal
frame and uniformly sample on a grid defined by this frame in design space. We set the grid
size to be large enough to reach the boundaries of 𝒳 and discard points that are not in 𝒳 .
We then map all valid points to performance space using 𝐹 and project the results onto the
buffer. For 𝑑 = 2, this projection is done by interpolating line segments, and for 𝑑 = 3, we
define a triangle mesh and use barycentric coordinates for interpolation.

As previously discussed, the buffer stores all of the solutions that are within a given
tolerance. For each solution (x, 𝐹 (x),𝒜) mapped to a cell 𝑗 in the buffer we compare its
distance to the origin with the minimal distance stored in the solutions for cell 𝑗. If the
result is within 𝛿𝐵, we append it to the solution list for that cell; otherwise it is rejected. If
the solution is closer to the origin than any other solution on the buffer, we traverse the list
rejecting all candidate solutions that are no longer within tolerance.

7.5.4 Sparse Approximation

After the Pareto front has been discovered, the final step is to select for each cell on the
buffer a single solution from the list of candidate points. Our goal is to assign a unique value
to each buffer cell to minimize discontinuities in design space while maintaining optimality
within tolerance. In cases with many design variables, it is possible to have more than one
solution in design space that maps to the same point in the Pareto front. We aim at selecting
between these solutions so that adjacent buffer cells map to solutions that are close in design
space. Further, we want a sparse set of first-order approximations that accurately represents
the Pareto front.

Since points that are represented by the same first-order approximation are close in design
space, we can optimize for both of these objectives by solving a labeling problem. Each label
𝑙𝑖 corresponds to a linear subspace 𝒜𝑖 on the set of spaces found by the discovery algorithm.
Our goal is to choose a label for each buffer cell 𝑗 so that: (1) the label of a cells is similar

122

to the label of its neighbors and (2) the assigned label for a given cell is on the list of
solutions 𝐵(𝑗), with priority given to solutions with smaller distance to the origin. This can
be expressed and solved as a graph-cut problem.

Compared to an approach that takes the best value in each buffer cell, our graph-cut
algorithm finds a sparse set of first-order approximations, providing local continuity at the
expense of additional approximation error. We define the approximation error 𝑒𝐴(𝑗, 𝑖) asso-
ciated to assigning label 𝑙𝑖 to cell 𝐵(𝑗) as the difference between the distance to the origin of
the candidate solution on 𝒜𝑖 and the minimal distance to the origin of all solutions in 𝐵(𝑗).
The graph-cut formulation aims at segmenting the buffer into large continuous regions while
minimizing this error. From the buffer construction, the error is bounded by a user-defined
tolerance, 𝛿𝐵. In typical applications, engineering safety factors should be used to determine
this tolerance.

We use the technique described in Boykov et al. [2001] and the provided implementation.
The unary term 𝐸𝑈(𝑗, 𝑖) is set to 𝑒𝐴(𝑗, 𝑖)/𝛿𝐵 if 𝒜𝑖 is on the list of candidate solutions for
𝐵(𝑗) and 𝐶inf otherwise. The binary term 𝐸𝐵(𝑗, 𝑘) is set to 1 for every point if 𝑗 and 𝑘
are within a 𝛿𝑅 neighborhood from each other. In our experiments, we set 𝐶inf = 10 and
𝛿𝑅𝑛 = 2. A post-processing step is performed to filter out outliers.

7.5.5 Visualization

The performance buffer provides a discretization of the points on the Pareto front but may
also contain points that are not Pareto-optimal. The final step of the algorithm is to remove
all buffer cells that fall into this latter category. This can be done by simply checking for
dominance based on Definition 7.3.1.

For visualization, we embed the buffer in a (𝑑 − 1)-dimensional space to allow for easy
exploration (see Figure 4-1). For 𝑑 = 2, the embedding is a line, and for 𝑑 = 3 the embedding
is a triangle. In both cases, the extreme points correspond to maximizing a given performance
metric. Since we handle minimization problems, each metric is optimized at the opposite
vertex for 𝑑 = 2 or edge for 𝑑 = 3. We define a color map for the embedding to highlight
different affine subspaces. We color the embedded shape assigned to each point as a hue based
on the corresponding affine subspace and a value based on the distance between neighbors.
This allows us to see the transitions in the design space.

The pre-computed one-to-one mapping between piecewise linear regions in design space
and their corresponding manifolds in performance space allows us to generate the geom-
etry that corresponds to each performance trade-off in real time, allowing for interactive
navigation of this embedded space.

7.6 Results

We have implemented the algorithm above and run experiments for 𝑑 = 2 and 𝑑 = 3 with
design parameters varying from 𝐷 = 3 to 𝐷 = 21 depending on the problem. For all of the
experiments, we rescale the problems so that both 𝒳 ∈ [0, 1]𝐷 and 𝐹 (𝒳) ∈ [0, 1]𝑑 and use
the same parameter settings for all experiments: 𝛿𝐵 = 10−2, 𝛿𝐼 = 10−4, 𝛿𝑆 = 0.3, 𝛿𝑃 = 10,
and 𝛿𝑁 = 0.2|𝐵|, where |𝐵| is the buffer size.

123

7.6.1 Experiments

We test the proposed algorithm against a set of well-established benchmark problems for
multi-objective optimization, each of which covers a number of criteria for discovering the
Pareto front.

Figure 7-6: Nondominated solutions for various well-established benchmark problems using
our proposed approach. Top two rows: Solutions for the five real-valued ZDT problems. Bot-
tom row: Solutions for the first three DTLZ problems with three objectives. Our approach
was able to converge to the ground truth Pareto front in all cases.

The ZDT test suite Zitzler et al. [2000] is perhaps the most widely-applied test suite for
multi-objective optimization. This is due largely to the fact that the five real-valued tests
in the set cover a broad range of geometric forms in both the Pareto front and Pareto set
(concave, convex, disconnected). Additionally, these tests highlight the difficulties of mul-
timodality (presence of multiple local minima) and, because they have well-defined optimal
solutions, they are easily verifiable. The DTLZ test suite Deb et al. [2002] offers little new
in the way of geometric complexity, but it does provide the option to optimize for more than
two objectives. This is an especially rare attribute for well-established test suites and is a
crucial requirement for the scope of our project. In particular, the reference point mapping
and manifold generation become less intuitive for higher dimensional problems. For this
reason, we use the DTLZ suite to validate and visualize the results of our method in three
dimensions.

Figure 7-6 shows the results of the points stored in the performance buffer over the true
front which is known for these test functions, validating that our proposed method manages

124

to converge to the correct solution for these examples.

These test functions provide an empirical validation that our method can avoid local
minima, discovering the true front even for multi-objective optimization problems that are
designed to be challenging. Compared to state of the art methods for Pareto front discovery
(according to a recent survey Zhang and Xing [2017]), our method generates a collection of
manifolds, as opposed to point samples on the front (see Figure 7 of Zhang and Li [2007],
which contains an identical experiment to our Figure 7-6). The computation time, measured
by the number of function evaluations, is at least comparable to the state of the art. For
example, Zhang and Li report ∼ 10000 function evaluations for ZDT1 with 15 parameters,
while our method uses only 6100 function evaluations. In addition, our final representation is
more compact—since all ZDT benchmark examples can be represented by a single manifold—
and is amenable to parallelization.

Since the Pareto set for each of the ZDT and DTLZ functions lies on a single affine
subspace, our method recovers the entire front after finding a single solution that is Pareto-
optimal. Therefore, to stress-test our approach and demonstrate that it can generically
approximate the Pareto front by piecewise linear regions in design space, we test our method
on a “Fourier benchmark”: functions defined by linear combinations of sines. We define each
performance metric 𝑓𝑗 as

𝑓𝑗(x) =
𝐷∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝛼𝑖,𝑘 sin(𝑘𝑥𝑖 +𝐵𝑖,𝑘), (7.7)

where 𝛼𝑖,𝑘, 𝛽𝑖,𝑘 ∈ [0, 1] are selected uniformly at random. We ran experiments for varying
numbers of design and performance parameters. The results in Figure 7-7 illustrate the
different affine subspaces that are used to construct the Pareto fronts, denoted in different
colors.

Figure 7-8 compares our solution to a method that first discovers Pareto-optimal points
and then uses a piecewise-linear interpolation in design space. Our approach, in addition to
discovering points on the front more efficiently, has the critical advantage of being faithful to
the topology of the front and its relationship to the preimage in design space (the Pareto set).
As shown in the figure, there is no guarantee that interpolating the preimages of two solutions
adjacent in objective space (blue points) will produce another Pareto-optimal solution (red
points). Our method for generating space approximations (Section 7.5.4) automatically
detects these discontinuities in the Pareto set.

The buffer construction and graph-cut algorithm guarantee that the results of this sparse
approximation are optimal within a tolerance (𝛿𝐵) if each candidate point on 𝐵(𝑗) that has
minimal distance to the origin is on the true Pareto front. This result, however, depends not
only on our ability to avoid local minima, which was empirically validated on the ZDT and
DTLZ benchmarks, but also on the first-order approximation. The quality of the first-order
approximation depends on how well the Pareto set can be approximated by a linear function.
Since the Pareto sets of the ZDT and DTLZ benchmarks are linear, we quantitatively evaluate
the proposed local linear approximation on the Fourier benchmark. The result is shown in
Figure 7-9, which, illustrates how far away the optimal candidate point x*

𝑗 on each buffer
cell is from the actual Pareto front.

125

Design Space Performance Space

ℝ3

ℝ20

ℝ3

ℝ3

ℝ2

ℝ2

ℝ3

ℝ20

Figure 7-7: Results for Pareto front discovery on Fourier benchmark. The figure illustrates
how the Pareto front can be covered by a set of individually smooth regions which are
mapped via 𝐹 from affine subspaces in the design space. Each corresponding pair in design
and performance space is illustrated in a different color. In high-dimensional cases in design
space, dimensionality-reduction via principal component analysis is applied for visualization
purposes.

To measure this distance, we ran an additional local optimization that tries to push each
point x*

𝑗 the direction d𝑗𝑁 normal to the front at 𝐹 (x*
𝑗):

min
x∈𝒳

⃦⃦
𝐹 (x)−

(︀
𝐹 (x*

𝑗) + 𝛿𝑁d
𝑗
𝑁

)︀⃦⃦
, (7.8)

where we set 𝛿𝑁 = 𝛿𝐵 = 10−2. Figure 7-9 shows that the approximation error (distance
in performance space) for the problem showed in the the first row of Figure 7-7 is below

126

Design Space Performance Space

ℝ3 ℝ2

Figure 7-8: A direct piecewise-linear interpolation result of the example shown on the first
row of Figure 7-7. The optimal solution is chosen from the list of points at each buffer cell
(blue points) and a denser sampling is generated by linearly interpolating the preimage of
neighboring points in performance space (red points). Since the Pareto front is comprised of
distinct manifolds, the linearly interpolated points have no guarantee of Pareto optimality.
For illustrative purposes, the interpolation is performed on a sparse set of the discovered
solutions.

4.0× 10−4 in the worst case and below 10−5 for over 97% of points. This result shows that
for general functions defined by Fourier series, our method can robustly approximate the
front. This is done by iteratively adding more local manifolds until the improvement on
an average cell is bellow 𝛿𝐼 = 10−4 (stopping parameter). For the example in Figure 7-9
each buffer cell has, on average, 10.42 candidate points, which correspond to first order
approximations that are within error 𝛿𝐵 = 10−2 of each other.

Performance Space

Figure 7-9: Performance Space Assessment of the approximation error associated with our
first-order expansion method on the example shown on the first row of Figure 7-7. Left: plot
in performance space of the discovered Pareto front (grey) and results of the same points
after performing an additional local optimization (maroon). Right: histogram showing the
approximation error for points on the discovered Pareto front.

Finally, we show the behavior of our first-order approximation on the bi-objective Kur-
sawe problem Kursawe [1991], which has a disconnected, asymmetric Pareto front. Figure

127

7-10 shows the expanded curve using our algorithm (red) alongside a number of curves
expanded in random directions (gray). Our generated direction in design space (black) ap-
proximates the shape of the true Pareto front in objective space better than its randomized
counterparts that are not obtained using the perturbative formula.

Performance Space

𝐹(𝐱)

Figure 7-10: First-order approximation for a point x on the Pareto front of the bi-objective
Kursawe problem Kursawe [1991] (true front shown in black). The first-order approximation
defined by our method (red) is compared to the mapping of affine spaces around x generated
using directions chosen uniformly at random (gray).

7.6.2 Design Applications

We additionally run experiments on several CAD models, each with a specified set of de-
sign and performance metrics. We use three models from Schulz et al. [2017c] that are
assessed using a combination of pre-computed physical simulations and geometric analysis.
We also experiment with higher-dimensional design spaces using a twelve-parameter boat
parametrized by cage-based deformation Ju et al. [2005] and a twenty-one-parameter lamp
designed in CAD. Figures 4-1 and 7-11 show the resulting solutions for each of these experi-
ments in both design space and performance space, along with the corresponding embedding
and (selected) mesh samples. We also implement a simple interface that provides an in-
teractive visualization of geometries corresponding to each point in the embedding (see the
supplemental video).

The top row of Figure 7-11 shows a wrench example with three design parameters: handle
length, head thickness, and fillet radius (the rounding along the edges that connects the head
to the handle). The measured performance metrics are stress for a given torque (maximum
von Mises stress computed with FEA, implementation from Schulz et al. [2017c]), mass, and
force required to generate a given torque. In this example, most of the front can be expressed
as a single affine space where the fillet radius and the length are maximized. This result is
due to the fact that these parameters have a large impact on minimizing the stress and force
for a given torque, while the negative impact on the mass is largely negligible. Only in a very
small region of the Pareto front do solutions corresponding to a small fillet radius appear.
For these regions, the head and fillet radii are minimized and the optimal trade-offs between
mass and force/torque are achieved by varying the length of the handle. While the design
space for this model is low-dimensional (only three variables), it highlights the strength of
our method in exposing relationships between design parameters and performance metrics

128

mass stress

force/torque

heat

drag

force/torque

Design Space Performance Space

mass stress

heat

Design Space Performance Space

Design Space Performance Space

mass stress

drag

Design Space Performance Space

mass

drag massdrag

Figure 7-11: Examples of CAD models processed using our proposed technique. From left to
right: Pareto-optimal points in design space (illustrated with multi-dimensional scaling via
principal component analysis for models with more than three design parameters); Pareto-
optimal points in performance space; the resulting embedding and illustrations of geometric
results for some sampled points. Across all figures, the different colors correspond to different
regions resulting from local expansion in design space.

that are not evident without analysis. Furthermore, it allows us to simplify the solution
space by understanding that there are only two affine regions in design space which yield
Pareto-optimal performance trade-offs.

The second row of Figure 7-11 shows a brake hub with three design variables: the angle
of the inner hole, spoke thickness, and the thickness of the rim. The performance metrics for
this model are stress (calculated by simulating the impact of directional forces and heat distri-
bution), mass, and heat dissipation (approximated by the thickness of the rim). Our method
highlights a strong discontinuity in design space represented by the black line that divides
the green patch. Figure 7-12 shows two models on opposite sides of this divide. We observe
that, while the performance parameters vary smoothly across this gap, the spoke thickness
almost doubles. This result exposes a property of the measured stress which depends on
both the heat distribution and directional forces from the brake; the reason why two very
different designs can be so close in performance space is that the spoke thickness affects the

129

heat distribution and the force-imposed object deformation in opposite ways. Our method
exposes these different design configurations which, in fact, yield comparable performance
results, providing engineers with a better understanding of the model’s properties.

Figure 7-12: Example of two variations of the brake hub that have similar performance
metrics but very different design parameters. Our system can expose these relationships
providing intuition to designers about the structural nature of the model. The metrics are
shown under a normalization for easy comparison—the Pareto front is rescaled to lie between
zero and one.

The third row of Figure 7-11 illustrates a bike frame with four design variables that has
been engineered to minimize mass, drag, and stress. What is interesting about this result is
that the embedding is composed of a set of disconnected regions. This happens because of
the geometry of the envelope of 𝐹 (𝒳). Assuming that 𝐹 is continuous and 𝒳 is connected,
the projection of 𝐹 (𝒳) onto the buffer is also always connected. As previously discussed,
however, not all points represented by the buffer are Pareto-optimal. For this example in
particular, after we remove the suboptimal point from the buffer, we are left with a large
empty region in the center of the embedding. These discontinuities in performance space
reveal regions of trade-off where a small variation in design space will only slightly worsen
one metric but significantly improve another. Such exposed properties can be very useful in
aiding designers to decide between certain success metrics and define trade-offs.

The fourth row of Figure 7-11 illustrates a toy boat parameterized by a cage with twelve
design variables and two performance metrics. The performance metrics are buoyancy (ap-
proximated by volumetric maximization) and drag from a frontal wind. This example shows
how our method can find a locally smooth approximation of the Pareto front for high-
dimensional design space. The resulting boats all have maximal length but the shape of the
projection onto a frontal plane varies between solutions that represent different trade-offs
between mass and drag.

Finally, Figure 4-1 illustrates a lamp with 21 parameters that was designed using a CAD
package. Three parameters are used to define the position and orientation of each of the
lamp’s seven beams. The performance metrics for this model are: stability (measured by
the distance of the projection of the center of mass to the center of the base), mass, and
average distance between the lamp beams and a predetermined focal point that should be
illuminated. As shown in the figure, our method returns an approximation of the Pareto front

130

with many disconnected regions in the design space. This behavior arises due to the presence
of many points in the design space that are mapped to the same regions on the Pareto
front (i.e., there are many points in the Pareto front which can be locally approximated by
manifolds of higher dimension than 𝑑 − 1). An example of this is shown in Figure 7-13.
This example highlights the utility of creating a sparse representation of the Pareto front
with local manifolds. Since multiple points map to the same point on the Pareto front, a
discrete approach would result in an approximation containing many disparate points across
the design space. This discontinuous representation, however, provides little in the way
of performance trade-off insights. Our method, on the other hand, creates locally smooth
regions around areas of similar geometry. This configuration in turn allows designers to
directly observe which parameters have a significant effect on local performance and which
ones do not, a particularly useful feature in higher-dimensional cases.

Figure 7-13: Example of two different lamps (front and side view) that have the same
performance across all metrics. Due to the large dimensionality of the design space, these
two configurations have the same stability, mass, and distance to the focal point.

7.7 Discussion

Real-world design problems can rarely be squeezed into one dimension. Instead, the process
of engineering a physical object requires navigating a complex and potentially even discon-
nected space of candidate configurations. The algorithm and accompanying interactive tool
presented in this paper represent a significant effort toward the larger goal of efficiently es-
timating and navigating the space of relevant designs for a given problem. Our technique
efficiently reveals this space in a wide variety of scenarios, from benchmarks in multi-objective
optimization to parameterized CAD models paired with expensive physical simulation tools.
Its versatility indicates broad applicability across use cases in computational fabrication and
beyond.

While our algorithm as-is can be plugged into many existing engineering pipelines, we
also anticipate several avenues of research that can extend the basic model proposed here.

131

One important consideration comes from the human-computer interaction. Now that we can
efficiently uncover and parameterize the Pareto front, what is the best way to display it to an
engineer who must digest the space of candidate designs? Such a study can use our tool as a
starting point, adjusting e.g. the embedding of the performance buffer to best reflect intuitive
notions of proximity in performance space. On the opposite side of the spectrum between
human interaction and automation, we also anticipate that our differentiable representation
of the Pareto front can be incorporated into “hyperparameter” selection techniques that use
a secondary function to choose between different points on the Pareto front.

Our study also suggests several intriguing mathematical and algorithmic challenges.
While our benchmark study indicates that our algorithm yields a smooth and complete
picture of the Pareto front—at least in realistic scenarios where the front is representable
computationally—additional theoretical analysis could reveal convergence rates and/or the
likelihood that our strategy will reveal the entire Pareto front. Of course, such theoretical
analysis will probably require stronger assumptions on the performance metrics than are
needed in practice, e.g. convexity or Lipschitz bounds, to rule out pathological cases; the
challenge will be to select a theoretical model that is reflective of the scenarios we observe
in our examples from CAD and engineering design. Further analysis could also extend the
first-order approximation to handle cases in which the derivatives of the active constraints
at a given point are themselves linearly dependent. Algorithmically, a clear next-step will
be to extend our methodology to the regime where parameters are discrete or performance
measures are not twice differentiable.

An additional challenge for the future spanning both technical and human-oriented as-
pects is to cope with higher dimensionalities for performance space. Currently our technique
is designed for the 𝑑 = 2 and 𝑑 = 3 cases, for which the Pareto front is readily embedded
in a display tool. Considering larger values of 𝑑 will require several technical developments.
For the sampling algorithm, the “curse of dimensionality” implies that sampling may take
more iterations to converge; we anticipate that our manifold-based strategy will serve as a
key component reducing computational burden in this regime by exploiting local structure
to discover larger pieces of the front at a time. After uncovering the higher-dimensional
Pareto front, we will also need to design a means of displaying the result in a fashion similar
to Figure 7-11. While MDS embedding of the Pareto front may suffice, a more careful pa-
rameterization that preserves relevant relationships between the performance metrics may
be desirable.

Even in the absence of these improvements, we anticipate incorporation of our exploration
algorithm and visualization tool into software for CAD and 3D modeling. By helping engi-
neers and designers understand the possible ways to trade off between performance metrics,
we hope to alleviate the dependence on unintuitive and often brittle parameters currently
permeating design software.

132

Chapter 8

Applications

8.1 Introduction

In this chapter we will discuss how the data-driven and performance-driven techniques we
introduced in this thesis can be applied to develop new design tools. Such tools can be used
by experts to design and manufacture products with increased performance in less time.
As the advances in manufacturing increase the space of what can be made, such tools are
essential to allow designers to efficiently navigate this complex space to create objects with
integrated functionality. In addition, by increasing the capabilities of the design tools, these
applications can bring down the barriers to entry for casual designers. By making it easier
to compose designs and optimize them to meet specific needs, we can build systems that will
hopefully pave the way to a new age of personal manufacturing and DIY design.

In what follows we will describe three efforts in building design tools for fabrications.
We will first describe an end-to-end system for design and fabrication of robots with ground
locomotion. We will then extend these ideas to optimization of multicopters. Finally, we
will discuss a method for customization of carpentered items which can be fabricated with
mobile robots.

It is important to highlight that these end-to-end systems not only validate the general
approaches of this thesis, but they were also instrumental in inspiring the ideas presented in
the previous chapters. While this thesis is organized by discussing first the general algorithms
and techniques and then applications, the research was done concurrently—as evidenced by
the publication date of the related publications. We have chosen application domains that
can have direct impact and expose challenges and open problems. For example, in designing
complex functional mechanisms such as robots and drones, we need to concurrently optimize
both the geometry and also motion/control. In developing a carpentry design systems that
have to interface with mobile robots fabrication process, we have to define new ways to
constrain the design space appropriately and bring down the barriers to entry for casual
designers.

133

8.2 Interactive Design of Ground Robots

This system aims to democratize the design and fabrication of robots, enabling people of
all skill levels to make robots without needing expert domain knowledge. Existing work in
computational design and rapid fabrication has explored this question of customization for
physical objects but so far has not been able to conquer the complexity of robot designs.
We have developed Interactive Robogami, a tool for composition-based design of ground
robots that can be fabricated as flat sheets and then folded into 3D structures. This rapid
prototyping process enables users to create lightweight, affordable, and materially versatile
robots with short turnaround time. Using Interactive Robogami, designers can compose new
robot designs from a database of print and fold parts. The designs are tested for the users’
functional specifications via simulation and fabricated upon user satisfaction.

8.2.1 System Overview

One of the main challenges in robot design is the interdependence of the geometry and
motion. A typical design process for a robot starts with geometry design, followed by actuator
selection, then controller design [Megaro et al., 2015b, Song et al., 2015]. However, minor
changes in geometry can drastically simplify actuator or control design. Take for example
the robot in Figure 8-1. This four-legged robot was designed by a user to deliver ice cream.
In this task, speed is essential to ensure the ice cream does not melt. In addition, the robot
must be steady enough that the ice cream does not spill on the way to its destination.

In general, the fastest way for a statically stable four-legged robot to move is for all the
legs to move simultaneously, resulting in a scooting motion. With the user’s initial design
(Figure 8-1(a)), though, this gait is unstable and the robot topples backwards. The user can
find a gait with the left and right pairs of legs moving sequentially that allows the robot to
move forward with only a slight wobble (Figure 8-1(b)). However, changing the geometry
slightly allows the robot to succeed with the original gait and maintain its high speed without
falling over (Figure 8-1(c)), resulting in a robot that is almost 50% faster.

(a) Original (b) Modified gait (c) Modified geometry
speed: 32.59 mm/s speed: 69.29 mm/s speed: 99.76 mm/s

Figure 8-1: A robot design that topples while walking (a) can be modified to follow a gait
that only wobbles slightly (b), but changing the geometry (c) allows the robot to move much
faster and more steadily.

134

We present an interactive system that allows designers to explore how both geometry
and motion affect robot performance, enabling them to make these types of design choices.
Our system contains tools for geometry and gait design, as well simulations for evaluating
the model (ref. Figure 8-2). Users interact with the tool through a graphical user interface
(Figure 8-3) in which they can visualize the models they create and receive real-time feedback
as to how changes to the design affect the robot’s performance. The system keeps track of
the geometry and motion in order to output a full fabrication plan once the user is ready to
build the design.

Geometry Design Fabrication
and

Assembly

SYSTEM

Gait Design

User
Interface

Simulation

Figure 8-2: System diagram. Users interact with geometry and gait design tools. The
designed models are simulated to provide feedback to the user. The user may iterate over
the design before fabricating and assembling the model.

Figure 8-3: User interface. Icons that link to geometry components are displayed on the left
and the gait design tool is on the bottom. Users design models by dragging components into
the center canvas and editing them. Performance metrics for the design are shown on the
right.

Our design choices were driven by three main objectives: 1) facilitate user creativity while
maintaining wide range of accessibility, 2) enable concurrent design of motion and geometry,
3) guarantee fabricability, and 4) provide real time feedback for ground locomotion design.

Since the design space of robots is too large to be explored interactively by casual users,
we use data-driven design techniques to make the design space manageable. As discussed in
Chapter 5, we introduce a component library and an assembly-based modeling tool to allow
users to combine components in the database to create new robots. This library contains

135

both geometry and gait component to allow concurrent design of motion and geometry.
Because all components in the database have associated fabrication rules, the system can
automatically output a full fabrication plan for the resulting robots.

In order to optimize for geometry and motion to meet desired design goals, users must be
able to quickly compute relevant performance metrics such as speed or cost. Following the
ideas discussed in Chapter 6, our system incorporates simulations and interactive feedback
to aid users in making these evaluations.

8.2.2 Methods Overview

In what follows, we outline the main methods in our tool. For further details on the algo-
rithms we refer the reader to [Schulz et al., 2017b].

Assembly-based Modeling Following the ideas discussed in Chapter 5, our assembly-
based modeling tool allows users to create new designs by composing both geometric parts
and motions from a collection of parametric components and manipulating their shape pa-
rameters.

Figure 8-4: Geometry components by category. Our system’s database contains 45 compo-
nents: 12 bodies, 23 limbs, and 10 peripherals.

For this application, we use a linear parameterization that simplifies the data repre-
sentation and speeds up computation without compromising expressiveness. Modeling is
supported by a grammar that dictates composition rules To this end we drew many insights
from the experience of robotics engineers. We categorized parts into bodies, legs, and pe-
ripherals based on the functionality of components in existing robot designs (see Figure 8-4).
The joint controllers were chosen based on the physiology literature and parameterized ac-
cording to when legs were expected to make contact with the ground [Ayyappa, 1997] (see
Figure 8-5).

All the geometric components can be fabricated using our 3D print and fold method and
the parametrization is designed so that this is preserved at any configuration (see Figure 8-
6). The composition tool uses the parametric representation to snap geometric components
together, constraining the composed models to a fabricable set of geometries. The composi-
tion rules are used to determine the electronic components needed in the assembly and the

136

θiθi
θi

θi

(a) Single leg (b) Shoulder/Elbow (c) Wheel

Figure 8-5: Joint controllers for each joint type. Controllers for every joint are separated
into a step phase (shown in green) and a reset phase (shown in red). Users modify gaits by
changing the 𝜃𝑖 values for each joint and defining the step sequence.

parametric motion representation is used for automatic generation of the control software.
This allows the system to automatically generate a full fabrication plan for every composed
model (see Figure 8-7).

Figure 8-6: One of the geometry components in the database, with both its 3D shape and
2D unfolding. The component has parameter values of diameter 𝑞𝑑 and width 𝑞𝑤. The 3D
and 2D representations are coupled so that they are simultaneously updated as parameters
are changed. In order to allow the assembly-based modeling to work with our fabrication
method, each component is also annotated with a set of connecting patches that indicate
where components are allowed to be connected together. The green line indicates a patch
for functional connections, and the blue lines are patches for static connections.

Interactive Feedback Optimization and simulation tools are used to guide users in real-
izing a stable ground robot. Motion is simulated using forward kinematics under the user
specified giants. The simulations are used to compute metrics that provide the user with
information about the robot’s expected performance. We chose metrics that are commonly
of interest to roboticists designing ground behavior. These objectives allow inexperienced
users to make more intelligent design tradeoffs than when using single-metric systems often
found in the literature. In addition to fabrication cost, the system evaluates the following
metrics, which tell users about the robot’s overall performance: average speed, wobbliness
(amount of orientation variation), average slip, angle of rotation (change in heading in one
gait cycle), average curvature of each gait, and variance. All metrics on designed gaits are

137

(a) Input design (b) Process connections (c) Final print

Figure 8-7: Our system automatically generates a 3D mesh for a foldable design. (a) The
original design, with blue edges indicating static connections and green dots indicating func-
tional connections. (b) Connections are processed by shrinking faces to make room for hinges
and adding holes for servo mounts. (c) Hinges are added and the result is a complete mesh
that is 3D printed.

computed for the robot’s steady-state behavior.
The performance and fabrication metrics are computed in real time when a user creates

or modifies a robot and are displayed to the user (see Figure 8-3). Our system also provides
guidance to the user on how to manipulate model dimensions. To activate this feature,
users select a metric value to improve (i.e., increasing speed, decreasing wobble, decreasing
slip, etc.) and turn guidance on. When they next choose a face on the model to scale or
translate, the system displays arrows on the control axes indicating which direction to change
the dimensions to improve that value (Figure 8-8).

Figure 8-8: The system provides guidance arrows for users who want to make local geometry
optimizations. The up and down arrows indicate that the user should lengthen and shorten
the leg, respectively. No arrow indicates that the part dimension is already at a local
optimum.

Finally, our system contains an automatic optimization method that will search for metric
improvements in the full geometry space. The parametric representation defines the design
space for a fixed topology over which optimization can occur. Users can only optimize one
metric at a time (see Figure 8-9).

8.2.3 Results

To test the usability of our system and the effectiveness of the combined geometry and gait
design approach, we introduced our system to eight users with no previous experience in
robot design. The users were all engineering graduate students (three female, five male)
between the ages of 22 and 31. Four of the students had previous experience with CAD and

138

(a) Original (b) Maximize speed (c) Minimize wobble
𝑉 = 25.59 mm/s 𝑉 = 52.28 mm/s 𝑉 = 15.25 mm/s
𝑊 = 0.46 rad 𝑊 = 0.75 rad 𝑊 = 0.06 rad

Figure 8-9: Optimization results for a four-legged fish robot for different metrics. Maximizing
speed increases the overall size of the robot (b). Minimizing wobble makes the robot shorter
(c).

modeling tools (SolidWorks, Blender, Maya, etc.). The users were given 20 min. of training
in the system’s features and were then asked to perform two tasks designed to evaluate the
expressiveness of the geometry and gait design frameworks. In addition to these tests, we
also fabricated six robot models designed in the system.

Geometry Design Figure 8-10 shows the models that the users created with the geometry
composition tool. All of the models were functional vehicles that rolled forward without
toppling. The results demonstrate a wide range of geometries that are achievable using
our system. An enthusiastic user designed an additional 18 robots with different levels of
complexity (Figure 8-11).

Figure 8-10: Cars designed by eight different novice users after a 20 min. training session
with the tool. Users were given 10 min. to design their car.

Gait Design In the second task, users were given a robot design and asked to design a
trajectory to navigate the robot through an obstacle course in the least amount of travel
time. The users were given 15 min. to complete the task. Half of the users were allowed
both to design gaits and to change the geometry parameters of the design, while the other
half were restricted to gait design. Figure 8-12 shows the trajectories designed by each user
and the total time of each gait sequence.

The robot geometry provided was similar to the one described in Figure 8-1, which topples
during forward gaits where all legs have equal values for 𝜃𝑖’s. Users who were not allowed

139

Figure 8-11: Gallery of designs created by a novice user after a 20 min. training session. Each
of the models took between three and 25 min. to design and contains multiple components
from the database.

Figure 8-12: Trajectories designed by users during the second task. Users who were allowed
to make changes to the robot geometry were able to make the robot navigate the course
about 40% faster on average.

to manipulate the geometry were able to explore the gait design tool creatively to reach the
goal. Solutions included a combination of right and left rotation gaits (user 1), fixing the
back legs and moving forward stably with only the front legs (users 2 and 6), and performing
an 180 degree rotation before moving with a backwards gait towards the goal. To reach these
solutions, users made extensive use of the interactive feedback during manipulation of gait
parameters and gait sequence composition. The users reported that the most useful features
were the animations and the trajectory visualization.

On the other hand, users who were not restricted to gait design edited the robot dimen-
sions so that it would be stable during a forward gait with all legs moving simultaneously.
The resulting gait sequences were significantly faster (40% time reduction on average) than
the ones designed without geometry modification. These users referenced the metrics tab
on the user interface when manipulating the shape to find more stable configurations. One
user used the guide arrows to minimize the wobbliness metric.

140

Fabrication Examples We tested the full design pipeline by composing and fabricating
six robot models, shown in Figure 8-13. Figure 8-14 shows the electronics inside one of
the models. They each took 10-15 min. to design, 3-7 hr. to print, and 30-90 min. to
assemble. Each robot was fabricated and assembled successfully and was able to execute the
gait designed in the system.

Figure 8-13: Six robots designed and fabricated using the system.

Figure 8-14: The electronics (servomotors, microcontroller, and battery) inside the Monkey
example (Figure 8-13(d)).

The resulting robot trajectories were similar to those predicted by the system. Figure 8-
15 shows frames from the simulation of the monkey compared with the physical robot at
the same time. Each of the legs moves at the expected times and in the correct order. In
addition, the robot dips forward when the third leg moves (𝑡 = 3.0 s) in both the simulation
and in the physical model. Both models have turned slightly to the right by the end of one
gait cycle.

141

𝑡 = 0.0 s 𝑡 = 1.0 s 𝑡 = 2.0 s 𝑡 = 3.0 s 𝑡 = 4.0 s 𝑡 = 5.0 s 𝑡 = 6.0 s

Figure 8-15: Comparison of monkey gait in simulation and from physical robot. The robot
motion matches those from the simulations.

8.3 Interactive Multicopter Design

Multicopters are aerial vehicles that are mechanically simple and can be controlled manually
or automatically to have a stable and accurate motion. While these vehicles are increasingly
being used in many settings—including photography, disaster response, search and rescue
operations, hazard mitigation, and geographical 3D mappings—most current multicopter
designs are fairly standard (e.g., symmetric quadcopters or hexacopters).

Designing a non-standard multicopter that is optimized for a specific application is chal-
lenging since it requires expert knowledge in aerodynamics and control theory. However, we
argue that expanding this design space can help create objects that are more adequate for
some specific tasks. We therefore propose a design process that allows non-expert users to
build custom multicopters that are optimized for specific design goals.

8.3.1 System Overview

Figure 8-16 shows the overview of our system. Users specify the geometry of the multicopter
with our composition-based design tool. This tool allows the design of a parametric mul-
ticopter with geometric constraints on shape parameters and manufacturability guarantees.
Our system automatically computes an LQR controller [Bouabdallah et al., 2004, Hoffmann
et al., 2004] for the model.

Next, the user can optimize the vehicle by selecting a performance metric from a list of
options or defining a weighted combination of these metrics. The optimization algorithm
optimizes over both the shape and controller and returns results within seconds. A flight
simulation is shown to allow users to validate the optimization results and tweak models
appropriately. Once the user is satisfied with the design, the system outputs a complete
fabrication plan for the geometry and controller. The users can then build and fly the
designs.

8.3.2 Methods Overview

The central idea in this work in to parametrize both the geometry and the controllers. The
geometry parametrization is done in the same way as the ground robots—following the ideas
discussed in Chapter 3 and using composition rules for assembly-based modeling (see Fig-

142

Figure 8-16: An overview of our system. The pipeline consists of multicopter design, opti-
mization, simulation, fabrication, and flight tests.

ure 8-17). The parametric component database includes standard parts and parameterized
free-form body frames.

Figure 8-17: Example of composition. Left: parts with highlighted patches (circular patch
with an annotated main axis and a diameter in blue and flat patch with an annotated normal
in orange). Right: composed design.

The controller is designed by linearizing the state-space model at a fixed point and then
finding a controller for that fixed point. We define the fixed point as the parameters of the
controller that we will use to optimize the multicopter for flying capability. We define the
following metrics over which to optimize the shape: cost, mass, payload, max amperage,
size, and flight time. Since we used a linear model for parametrization of the geometry, we
can show that these metrics can be expressed as bi-convex functions of the geometry and
control parameters. This allows us to solve the optimization problem in seconds (see [Du
et al., 2016]).

8.3.3 Results

Pentacopter optimized for payload Figure 8-18 shows a multicopter with five rotors
all pointing upright that was designed in our tool. Our system can automatically compute
the controller for this model.

Given the initial unoptimized pentacopter, our optimization improves its payload by
changing its geometry and tilting motors to balance thrust from all motors. Figure 8-19
shows the real-time output of all five motors when this pentacopter carries maximal payload
from one place to another.

Figure 8-19 compares the real-time output of all five motors when both pentacopters
carry maximal payload from one place to another. Table 8.1 compares their specifications.
Our optimization result predicts the new pentacopter is able to take off with a 15.8% increase

143

Figure 8-18: Pentacopter pairs. Left: original pentacopter design. Right: optimized penta-
copter for larger payload.

in the overall weight. Note that in theory the maximal possible increase in the overall weight
is less than 25% because even the unoptimized pentacopter outperforms a quadcopter whose
maximal overall weight is 4𝑢max, and the maximal possible overall weight of a pentacopter is
not greater than 5𝑢max. Table 8.1 shows that we get 11.1% actual gain in our experiments.
The main reason for this loss is that we did not take into account the interference between
propellers, which we leave as future work.

time(s)
0 5 10 15 20 25 30 35 40

pw
m

1000

1100

1200

1300

1400

1500

1600

1700

1800

motor 1
motor 2
motor 3
motor 4
motor 5

time(s)
0 5 10 15 20 25 30 35 40

pw
m

1000

1100

1200

1300

1400

1500

1600

1700

1800

motor 1
motor 2
motor 3
motor 4
motor 5

Figure 8-19: Left: motor outputs of the unoptimized pentacopter with 1047g payload. Motor
1 and 3 reach saturation point (PWM=1800) at 23s. Increasing the payload will cause them
to saturate constantly and therefore fail to balance the torques from other motors. Note
that motor 5 is not fully exploited in this copter. Right: motor outputs of the optimized
pentacopter with 1392g payload. Motor 2 and 4 reach saturation during the flight. Compared
with the unoptimized pentacopter, all five motors are now well balanced, making it possible
to take over 30% more payload.

Quadcopter optimized for flight time Figure 8-20 shows a standard quadcopter and
its optimized version which has longer flight time. Our optimization tries to increase the
total length of rods so that it makes room for larger propellers. In this example we add an
upper bound constraint on the copter width so it only scales in the other direction, allowing
us to replace the propellers in the longer rod with larger ones. This geometry constraint is
useful when a quadcopter is designed to fly into a tunnel. Both copters are controlled by
LQR controllers computed with our system. In our experiments, we let both copters hover
for 5 minutes and record the battery voltage and current, shown in Figure 8-21.

144

Unoptimized Optimized

Size (mm×mm×mm) 750×420×210 650×670×210
Weight (g) 2322 2353

Max payload (g) 1047 1392
Max overall weight (g) 3369 3745

Max motor angle (degree) 0 10.6

Table 8.1: Pentacopter specifications. Motor angle is the angle between motor orientation
and up direction.

Figure 8-20: Optimizing a quadcopter with flight time metric and geometry constraints.
Left: a standard quadcopter. Right: optimized rectangular quadcopter.

8.4 Robot-Assisted Carpentry

Despite the ubiquity of carpentered items, the customization of carpentered items remains
labor intensive. The generation of laymen editable parametric databases for carpentry is
difficult. Current design tools rely heavily on CNC fabrication, limiting applicability. We
develop a design system for carpentry and a robotic fabrication system using mobile robots
and standard carpentry tools. Our end-to-end design and fabrication tool democratizes
design and fabrication of carpentered items. Our method combines expert knowledge for
parametric design, allows laymen users to customize and verify specific designs, and uses a
robotic system to fabricate parts.

time(s)
0 50 100 150 200 250 300 350

vo
lta

ge
(m

V
)

1040

1060

1080

1100

1120

1140

1160

1180

1200

1220

1240

unoptimized
optimized

time(s)
0 50 100 150 200 250 300 350

cu
rr

en
t(

m
A

)

0

200

400

600

800

1000

1200

1400

1600

1800

unoptimized
optimized

Figure 8-21: Battery change when a quadcopter hovers. Left: battery voltage. Given the
same amount of time the optimized quadcopter ends up having a larger voltage. Right:
battery current. In steady state the optimized copter requires less current.

145

Figure 8-22: System workflow. Experts design parametric models in a commercial CAD
system. End users customize and verify the designs using our interactive interface. Once
the users are satisfied with the model, the system outputs a complete fabrication plan which
includes instructions for robot assisted cutting processes and rules for user assembly.

8.4.1 Systems Overview

Our workflow allows collaborations between expert designers and layman users. The experts
are responsible for creating designs with a set of exposed parameters which define different
possible configurations for the models. The end users can vary these parameters to customize
the parametric models to meet desired specifications and then fabricate the results assisted
by a team of robots (see Figure 8-22).

When engineers design they should consider the available fabrication processes. In our
system, experts are instructed to design parametric models based on a pre-specified set of
carpentry tools. We choose to use a standard CAD software for modeling so engineers do not
have to learn new tools to use our system. CAD systems are parametric from construction,
allowing the engineer to expose a set of parameters with ranges to define a feasible design
space for the layman user [Farin et al., 2002]. The engineer then annotates the connections
between parts with priority tags. Our algorithm uses these tags to automatically compute
assembly instructions.

We expose a simple interface for the end users where the designs can be customized by
varying the parameters using sliders (see Figure 8-22). In addition to exploring the parameter
space, our interface allows the user to visualize the stress distribution and deformation under
certain loading conditions. This enables verification of designs before fabrication.

Once the users are satisfied with a design configuration, the system outputs a complete
fabrication plan. The fabrication plan includes cut patterns and assembly instructions. We
use two robot assisted cutting processes: a robotic team using chop saws, and mobile robotic
jigsaws. After the robots finish cutting all the parts, the users assemble them guided by an
interactive interface with assembly instructions.

8.4.2 Methods Overview

We use CAD systems to define parametric models that manufactured as a set of parts that
can be cut with the set of predefined processes and then assembled. By exposing a set of
parameters and selecting valid ranges, expert users specify variations to part shape that
preserve structural integrity and manufacturability (see top row of Figure 8-23). In addition
to the set of parts, the expert users also need to specify the connectors in order. To speed up

146

this process, we used dowel peg connectors and defined a custom CAD feature that takes in
two parts and a connecting face and automatically outputs a set of pegs. The custom feature
also takes in priority tags. By adding these features to the design for all connections (see
Figure 8-23(bottom)) the expert automatically defines the connection and assembly. Finally,
the expert defines the boundary conditions for the simulation using a custom feature we
designed. The feature takes in a face and the type of boundary condition: fixed boundary,
or a boundary with an incident force to a given direction (see Figure 8-23(middle)).

Figure 8-23: Expert input using CAD software. Experts create a model in a standard
CAD system which is parametric from construction and exposes the parameters for user
customization using the system’s variables (top). For defining the assembly, experts use a
custom connection feature which takes in two parts, a face for connection and the priority
of the connection for assembly (bottom). The experts use this feature to define all of the
connections on the model and those are used by our algorithm to automatically generate
assembly instructions.

Users can customize the templates by exploring the parameter space. We use the CAD
system’s API to evaluate and display the model for each parameter configuration. We also
extract the parametric boundary conditions and run FEM analysis on the model and display
to the users the stress distribution and elastic deformation (see Figure 8-24).

Figure 8-24: User customization: the design tab (top) and the stimulation tab that display
the stress distribution (middle) and elastic deformations (bottom).

We use two fabrication processes: chop saw and jigsaw, both automated by robotic
systems. This jigsaw robot is a modified Roomba Create with a jigsaw installed in the

147

center. It uses a Vicon positioning system for state estimation and a previously developed
MPC and planning algorithm to perform the cuts [Lipton et al., 2017]. The chop saw process
requires multiple robots to automate. Two Kuka Youbots lift lumber and place it on the
chop saw. Each Youbot was outfitted with special compliant grippers. The grippers allow
the robots to clamp onto material, to drive the material along a direction, and are compliant
perpendicular to the major axis of the lumber. The chop saw is automated by attaching a
relay to the 120V line and a linear actuator is attached to the saw. Both are connected to a
ROS node via a micro-controller (see Figure 8-25 and [Lipton et al., 2018] for details).

Figure 8-25: Chop saw process from left to right: Robots team lift the lumber, transport it,
place it on the chop saw to re-grasp, slide the lumber to the proper length, and the chop saw
cuts the lumber.

In order to guide the layman user through the process of assembly, we automatically
generate a visual guide based on the parts and the set of connections for a given model
instance (see Figure 8-26).

Figure 8-26: Sequence of assembly steps shown in the composition interface. The user can
traverse the list of steps, select parts to view additional information, and use the 3D window
to view the connections from different viewpoints.

8.4.3 Results

We show in Figure 8-27 a wide variety of geometry variation that resulted from customization
of single parametric models. The figure displays the stress distribution for the chair model
and elastic deformation for the shed model for different parameter configurations. As shown
in this figure, the physical properties of the models vary significantly with geometry changes.
Using our tools users can quickly explore this space of variations and verify that the designs
meet the necessary physical requirements. While the variations allow for a diversity of
models, the ranges imposed by the engineer limit the space so that all variations are structure
preserving.

Our method automatically generated a fabrication plan for each of these variations,
with results shown in Table 8.2. The table displays the number of parts that need to be

148

Figure 8-27: Stress distribution on different variations of the chair model (top) and elastic
deformation on variations on the shed model (bottom).

manufactured with each of the cut processes (jigsaw and chop saw), the total number of pegs
used, and the number of assembly steps. Our method is robust to discrete variations of the
shape. In the chair example, a parameter determines the presence or absence of armrests.
When these are absent the assembly requires one less step. In the shed example, we see how
variations in size affect the number of pegs and variation in the number of back slabs affects
the number of chop saw parts.

Table 8.2: Fabrication information for the models in Figure 8-27: number of parts that will
be processed with the jig saw and chop saw, total number of used pegs, and number of
assembly steps.

Jigsaw Parts Chop Saw Parts Pegs Assembly Steps

Chair A 4 10 86 5
Chair B 4 8 62 4
Chair C 4 10 66 5
Chair D 4 10 114 5
Shed A 16 37 1050 9
Shed B 16 25 563 9
Shed C 16 25 1333 9
Shed D 16 25 1121 9

One of the main applications for customization is the need to adapt to the surrounding
environment. We show how our system can be adapted to terrain using the deck model
shown in Figure 8-28. In this example, the terrain acts as a parameter in the system and
the parametric deck is designed to accommodate the terrain variations. Figure 8-28 shows
the input terrains and how the shape and physical properties of the deck change with the
terrain variations.

As a test of the end to end system, an instance of the table design was made. The table
design has eight components that need to be fabricated using the chop saw, and one using
the jigsaw. The fully fabricated parts can be seen in Figure 8-29. Holes for the pegs were
added in a manual step. A human user followed the step-by-step instructions from the user
interface to assemble the table. The use of pegs, and tool-less nature of the assembly along

149

Figure 8-28: Variations of the deck model. From left to right: input terrain, deck model
instance visualized on the terrain, stress distribution, elastic deformation.

with the user instructions provided a simple assembly experience.

Figure 8-29: Fabrication of the table model. From left to right: eight pieces of stock 1x3
lumber, the cutting of the pieces, the final parts, and the assembled table result.

150

Chapter 9

Conclusion

In this work, we proposed the first complete data-driven design tool for manufacturing. In
doing so, we created and released a dataset for computational fabrication, defined a new
algorithm for shape-based matching and retrieval on a dataset of parametric designs, and
defined a novel algorithm for composition that ensures manufacturability.

We also defined new performance-driven computational methods that guide users in ef-
ficiently exploring design spaces while optimizing for given performance objectives. We
proposed a method for interactive design space exploration, which is based on a novel inter-
polation algorithm on k-d trees that guarantees locality and continuity. We also proposed a
method for interactive exploration of performance trade-offs, which is built upon a first-order
approximation of the Pareto front derived from duality theory in multi-objective optimiza-
tion.

Finally, we presented end-to-end systems for design and manufacturing that combine
data-driven and performance-driven approaches. We described a design tool for robots with
ground locomotion that can handle concurrent specification of motion and geometry, as well
as a design tool for multicopters that can handle concurrent optimization of geometry and
control. We also presented a method for customization of carpentered items that can be
fabricated with mobile robots.

9.1 Future Work

The work described in this thesis demonstrates how to create innovative and powerful man-
ufacturing design tools that use data-driven methods to reduce the design space to manu-
facturable regions and then employ performance-driven methods to find optimal designs in
these reduced spaces. However, our results so far are only first steps toward applying these
concepts to computational design for manufacturing. Since the advances in manufacturing
hardware are quite recent, the field of developing the necessary design tools is still relatively
new, with many interesting challenges and open research problems. Below we outline several
important open problems that we think are crucial to pushing the field forward.

151

9.1.1 Data-Driven Methods

With such a large and complex design space, using datasets to extract expert knowledge is
essential to reduce the search space in interactive tools. Some of the main avenues for future
work in the context of data-driven methods are: 1) creating and maintaining databases,
2) extracting additional properties besides manufacturability from existing datasets, and 3)
defining algorithms that are not limited by the dataset and can allow for greater design
diversity.

Data Collections Large, publicly-available design collections with complete manufactur-
ing detail do not currently exist. In this thesis, we have worked with mechanical engineering
students to build a database of manufacturable models that we have made public. In the
future, it will be valuable to extend these efforts and work on creating, keeping, and growing
such databases. This would involve building a strong community of engineers and designers,
along with verification systems that would allow inputs to the databases to be efficiently
crowd-sourced. The developed datasets will further promote the field of computational
methods for manufacturing, as well as provide evaluation benchmarks for new algorithms
and systems. Most importantly, as advanced manufacturing platforms become ubiquitous,
they will become an invaluable resource for the entire population, enabling people from all
walks of life to control the creation and customization process of their possessions.

Design Capabilities In this work, we discussed how databases can be used to constrain
design spaces based on manufacturing considerations. In the future, it will be exciting to
use data-driven methods to enable other design capabilities.

First, we could use data-driven methods to predict physical behavior. Extending the
database to include usage data such as the typical forces an object encounters in the course
of use would allow us to more rigorously validate a design’s durability. Such information,
in aggregate, can also be used to learn efficient ways to prioritize between objectives to
meet higher level goals, or even how to suggest new performance metrics. Additionally,
because the items in our database are continually reused, there are opportunities to leverage
preprocessing to dramatically accelerate our physics computations.

Second, we can learn from data collections how to predict or simplify the design pro-
cess. For example, it would be interesting to present relevant components to the user during
the modeling session. Chaudhuri et al. [2011] propose a probabilistic model that suggests
components based on style and geometrical semantics. In the context of fabrication, such
suggestions should also include metrics such as construction time, required tools, and cur-
rently available materials.

Third, we can use this dataset and composition method to automatically synthesize new
fabricable models by finding plausible combinations of components, as accomplished for
virtual shapes by Kalogerakis et al. [2012]. An interesting opportunity is to use ideas from
the Program Synthesis community to design automatic programming algorithms for inverse
design of geometry, which can be represented as code using CAD-inspired abstractions. Next,
we can extend these ideas for functional design of complex mechanisms that require inverse
design on multiple domains by defining domain-specific languages based on the parametric
abstractions—for example, the grammar for ground robots discussed in Section 8.2.

152

Finally, we can output assembly instructions along with the bill of materials. Though
the output of our system could be used as input to the automatic algorithm proposed by
Agrawala et al. [2003], it would be interesting in the future to add assembly information
to the catalog and use this data to automatically generate instructions. A relevant open
problem for outputting valid assembly instructions is ensuring that the relevant parts of the
shape can be accessed with the necessary hand tools in the construction process.

Result Diversification One of the main limitations of data-driven methods is that design
variations are constrained by expert specifications. In the tools we have developed so far, the
only significant shape variety that can be achieved is driven by composition. An important
avenue of future work is to define solutions for discovering designs that significantly differ
from the dataset beyond modular combinations of designs. It would be interesting to learn
design rules from the data collection and generalize them to discover solutions that lie outside
the scope of the dataset and are currently unknown to experts.

A possible approach is to learn engineering design bias from data collections. Bias is
common in engineering design because engineers tend to replicate styles they have seen work
in practice, because the engineering education is typically based on systematic methodologies,
and because CAD systems encourage a certain style of designing. Large datasets of designs
made with the same engineering intent can be used to extract common features. We can then
expose bias from these features by analyzing how they affect performance. Understanding
this bias can drive design algorithms that optimize performance by suggesting feature edits
that are uncommon and perhaps unintuitive to engineers.

9.1.2 Performance-Driven Methods

In this work, we show efficient ways to map between design and performance spaces. Future
work on performance-driven methods can further exploit this mapping to extract high-level
information of design capabilities and analyze how design parameters affect performance.
We can also extend the discussed ideas to handle more complex domains and more complex
objectives.

Design Space Analysis The mapping onto performance space reveals important aspects
of the design space that can be analyzed to give engineers a better understanding

of the design space’s capabilities and limitations. For example, it can be used to expose
design features that are more (or less) relevant for performance optimization, or to highlight
the extent to which performance metrics are conflicting, allowing engineers to more effectively
select between possible trade-offs. An interesting result of our first-order approximation
algorithm (Chapter 7) that should be further explored is how variations in design space
can locally affect performance trade-offs. Such information on the design behavior on the
boundary of the performance space can be used to discover interesting directions of expansion
in design space, defining ways in which a model can deviate from expert specifications to
improve performance.

153

Extensions to Complex Domains An important limitation of the performance-driven
methods we discuss in this work is the restriction to continuous domains. In the future, it
would be useful to develop techniques for interactive exploration and optimization of design
spaces that combine discrete and continuous parameters. It would also be interesting to
develop algorithms to handle high dimensional problems. In this work, we proposed interac-
tive design exploration techniques that handle high dimensional performance spaces but are
restricted to low dimensional design spaces (Chapter 6). On the other hand, the algorithms
for interactive exploration of performance trade-offs is subject to the curse of dimensional-
ity in performance space, but can handle high dimensional design spaces (Chapter 7). In
the future, it would be useful to investigate solutions that can handle problems where both
spaces are high dimensional.

Handling Complex Objectives Future work should also consider design problems that
involve more complex performance objectives.

First, it would be interesting to handle performance objectives that cannot be evaluated
computationally. While physical simulation is available in many practical design applica-
tions, this is not always the case. Consider for example the design of a solar panel, where
the thickness of each composite material is a design parameter. In such example, there
is no simulation method that can accurately compare the performance of each design (e.g.
closed current amperage). An alternative to simulation is to physically produce and measure
samples of solar panels and then approximate the mapping function from design space to
performance using machine learning algorithms. In such context, an important technical
problem is defining a strategy that minimizes the number of needed samples. This would be
done by developing new sampling strategies based on the application domain—for example,
a strategy for finding the Pareto frontier with the minimal number of samples. Another
possibility is to incorporate priors derived from physics rules.

Second, in many practical applications, designers care about higher-level performance
metrics that are not easily mapped to physical measurements. For example, the design of
a shoe is typically optimized for “comfort” and not a specific deformation function under
external forces. A related open question is aesthetics. While aesthetic objectives are hard
to express as performance metrics, they are in practice an important aspect of design that is
typically considered and optimized in the design process. Mapping from high-level objectives
to low-level objectives that can be measured directly is an interesting avenue for future work.

Third, it is important to handle uncertainty when evaluating performance objectives.
Uncertainty is common not only because of inaccuracies in simulation, but also because
for many manufacturing processes the physical realizations deviate from the design speci-
fications due to fabrication errors. Such errors have been shown to highly impact design
performance Kim et al. [2017].

Finally, performance objectives may depend on design parameters. Consider, for example,
a bench with varying thickness. As the thickness increases, the number of people that can sit
on the bench varies, and, consequently, the boundary conditions for a deformation analysis
also vary. In the future, it would be useful to investigate coupled design and performance
spaces.

154

9.1.3 End-to-End Systems

We argue that building end-to-end systems is a fundamental aspect of research in compu-
tational design for manufacturing not only because they allow proposed methodologies to
impact real-world applications, but also because they expose fundamental technical chal-
lenges in the field. Some important aspects of system design that need further investigation
are: 1) hardware abstractions, 2) domain-specific systems, and 3) interfacing with and be-
tween users.

Hardware Abstractions One of the big open problems in end-to-end computational de-
sign systems for manufacturing is to define proper abstractions for the diverse array of man-
ufacturing hardware that is becoming available (3D printers, CNC, knitting machines, laser
cutters, robots, etc.). Hardware abstractions have been successfully applied to computers,
abstracting machine language into assembly languages and then to high-level languages. This
allows programmers to write high-performance applications that are device-independent. On
the other hand, most of the manufacturing hardware that exists today allows only for a very
rudimentary level of control, similar to assembly-level instructions. To advance computa-
tional design it is fundamental to develop guidelines for defining domain-specific languages
for single devices and to then extend those guidelines to a set of devices that operate to-
gether. We can take advantage of the resulting compact and dense representation of search
spaces for inverse design problems. On the compiler front, we can use these abstractions to
optimize fabrication through scheduling and execution of parallel processes.

Domain-Specific Systems Another important avenue for future work is to expand these
systems to other domains. It would be interesting to handle more complex, integrated cyber-
physical systems. This would require incorporating dynamic simulations and verification, as
well as environmental or task constraints such as load, dynamic forces, and robustness. In
designing systems that are accessible to users with less expertise, however, being domain-
specific is useful since expanding the capabilities of a tool also increases the learning curve.
In this work, we have developed different tools for different problems (e.g. ground robots
and multicopters). Ultimately, it would be interesting to allow automatic generation of
domain-specific computational tools—a tool for designing design tools.

Interfacing with Users From a human-computer interaction perspective, there are two
key problems to address. The first is to understand ways to interface between a single user
and the computation. In this work, we use designer expertise either directly or through data
to constrain design spaces and define performance objectives. We then develop computa-
tional tools to automatically explore design and performance. However, as both of these
spaces increase in dimensionality and complexity, we will need tools that allow smooth col-
laborations between human and computation to iteratively constrain and define these spaces.
This will allow us to find solutions that are better than what a designer alone or a computer
alone would find.

The second important aspect is to allow collaborations between users. One important
question is how designers with different areas of expertise can co-design an object with mul-
tiple functionality. Another interesting area to explore is collaboration between experts and

155

casual designers. The systems we discuss in this thesis are based on a linear workflow: ex-
perts create a dataset that casual designers then explore for customization and composition.
In the future, closed-loop collaborations can be developed to improve experts’ understanding
of end-users needs, which is fundamental for human-centered design.

9.2 Lessons Learned

Throughout the course of this thesis and beyond the technical contributions, we have learned
a great deal about the design process and important considerations that affect design tools
for manufacturing.

The first important lesson is the need to develop complete end-to-end systems and use
them to build physical prototypes that can validate design algorithms and techniques. De-
veloping and having users test these systems is essential to understanding the capabilities
and limitations of the proposed approaches and to provide insight into fundamental design
problems.

Second, we have learned that there is a need to balance between automation and user
input. In addition to the well-known conflict between ease of use and design freedom, such
balance is important to develop efficient design tools. This is because there are tasks where
computers tend to outperform humans and vice-versa. Multiple times in this work, we have
found that offloading small tasks to users helped us define algorithms that achieved better
results in less time.

Third, we have learned that good representations are key. Having compact representa-
tions of shape spaces and relationships between assembled parts allowed us to define simpler
algorithms that can run in real-time. One important example of this is the use of parametric
shapes, which allowed us to express many complex operations (e.g. snapping components)
as an optimization over a small set of parameters that can be solved at interactive rates.

Finally, we have learned that it is essential to interface with different research commu-
nities. The work discussed in this thesis draws ideas from a variety of different fields, and
therefore lies at the intersection of computer graphics, geometry processing, data analytics,
programming languages, robotics, mechanical engineering, and human-computer interaction.

156

Appendix A

Proofs of Interpolation Algorithm

Our approach takes advantage of how the centers of odd B-splines at different levels are
distributed across the domain. In this supplemental material, we first describe this distri-
bution making the necessary notations, then prove properties of the basis refinement step.
Finally, we use the above results to prove the local point lemma and that locality is preserved
when we define 𝑦 as in Section 5.2 to ensure linear precision. We conclude this supplemental
material with an example that illustrates the effects of the proposed refinement method in
the resulting approximation function.

A.1 Notation

As discussed in Section 5.2, we denote as 𝑐𝑗𝑖 the center of the linear B-splines 𝜑
𝑗
𝑖 . Let ℐ𝑗 be

the lattice of centers 𝑐𝑗𝑖 of linear B-splines at the refinement level 𝑗. Observe that, if 𝑡 > 𝑗,
then ℐ𝑗 ⊂ ℐ𝑡. Crucially, linear B-splines at refinement level 𝑗 can be centered only at the
lattice points ℐ𝑗; at each successive level of refinement, this lattice becomes twice as fine
(i.e., the distance between adjacent points in the lattice is halved). This is illustrated in
Figure A-1.

The size of the support of a linear B-spline at level 𝑗 is denoted by s𝑗 (Figure A-1). We
let ‖ · ‖𝑑 denote the length of an element in direction 𝑑.

Using the expression in Section 5.3, we say that 𝜑𝑗𝑖 is active if ∃𝑘 such that 𝛼𝑖,𝑗𝑘 ̸= 0.
Using the refinement relations, we say that a B-spline 𝜑𝑗+1

𝑛 is a child of 𝜑𝑗𝑖 (equivalently,
that 𝜑𝑗𝑖 is a parent of 𝜑𝑗+1

𝑛) if 𝜑𝑗+1
𝑛 results from the refinement of 𝜑𝑗𝑖 , i.e., if the refinement

coefficient 𝑎𝑗+1
𝑖𝑛 (Equation 4) is not zero. From Figure 6, it is clear that one function can

have multiple children and multiple parents and a function will have a single parent if and
only if they have the same center.

A.2 Properties of Step 2

Remark 1. For every active linear B-spline 𝜑𝑗𝑖 :

s𝑗 ≤ 2‖𝑒𝑙‖𝑑 ∀𝑒𝑙, 𝑒𝑙 ∪ 𝑆(𝜑𝑗𝑖) ̸= ∅. (A.1)

157

s1

s2

s0

Figure A-1: Centers of linear B-splines at different levels. The set ℐ0 consists only of the
centers denoted by circles, the set ℐ1 includes the centers denoted by circles and those marked
by diamonds, and ℐ2 includes all the centers denoted in the figure.

Proof. In the initial configuration, defined in Section 4.2, we have a single element 𝑒0 and a
set of linear B-splines 𝜑0

𝑖 at the coarsest level centered at corners of this element such that
s0 = 2‖𝑒0‖𝑑 in all directions 𝑑.

In each iteration, when an element 𝑒𝑙 is split, we refine all linear B-splines 𝜑𝑗𝑖 which
overlap that split element and have s𝑗 > ‖𝑒𝑙‖𝑑. Therefore the above statement follows from
an inductive argument.

Remark 2. If 𝜑𝑗𝑖 is refined, then it has no active ancestors

Proof. In step 2, a linear B-spline 𝜑𝑗𝑖 is refined if s𝑗 > ‖𝑒𝑙‖𝑑. If it had an active parent,
𝜑𝑗−1
𝑛 , then its support would be twice as large and therefore s𝑗−1 > 2‖𝑒𝑙‖𝑑, violating the

property proved in Remark 1. Any previous ancestor would have an even larger support,
which concludes the proof.

These remarks will be used in the following proofs of locality and we can also conclude
from them that at each iteration step 2 needs to perform at most one level of refinement.

A.3 Local Point Lemma

In this section we will prove that if 𝑐𝑗𝑖 is the center of an active linear B-spline 𝜑𝑗𝑖 , then 𝑐𝑗𝑖
is a local point of 𝜑𝑗𝑖 .

Remark 3. 𝑆(𝜑𝑗𝑖) overlaps with at most two elements in a given direction and if it overlap
with two elements then 𝑐𝑗𝑖 is at the boundary between these elements.

158

Proof. Since the locations of the centers of the linear B-splines 𝑐𝑗𝑖 are fixed and given by ℐ𝑗,
it is clear from Figure A-1 that 𝜑𝑗𝑖 that overlaps 𝑒𝑙 will overlap another element 𝑒𝑘 if and
only if 𝑒𝑙 and 𝑒𝑘 are adjacent and the center 𝑐𝑗𝑖 lies on the boundary between 𝑒𝑙 and 𝑒𝑘.

Since element refinement involves splitting an element halfway and basis functions are
refined to guarantee ‖𝑒𝑙‖𝑑 ≤ 2s𝑗 for all active 𝜑

𝑗
𝑖 which overlaps 𝑒𝑙, this property is preserved

after every iteration of our algorithm.
This remark implies that if 𝑆(𝜑𝑗𝑖) overlaps with 𝑒𝑙, then 𝑒𝑙 ∈ 𝒩 (𝑐𝑗𝑖). From this we conclude

that 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑐𝑗𝑖), and therefore 𝑐𝑗𝑖 is a local point of 𝜑
𝑗
𝑖 from the definition (recall Section

4).
Since we have shown that the center 𝑐𝑗𝑖 is a local point, this concludes the proof of the

local point lemma.

A.4 Locality proof with Linear Precision

If 𝜑𝑗𝑖 is active, let 𝑦
𝑗
𝑖 be, as defined as in Section 5.2,

𝑦𝑗𝑖 =
∑︁
𝑘

𝛼𝑖,𝑗𝑘 𝑥𝑘/𝛼
𝑗
𝑖 , where 𝛼𝑗𝑖 =

∑︁
𝑘

𝛼𝑖,𝑗𝑘 (A.2)

In this section we will show that if 𝜑𝑗𝑖 is active, then then 𝑦𝑗𝑖 is a local point of 𝜑𝑗𝑖 .
We will use an inductive argument. From the proof given in the previous section, in the

initial configuration when 𝑦0𝑖 = 𝑐0𝑖 , 𝑦
0
𝑖 is a local point. We will show that this property is

preserved at every iteration of our algorithm, i.e., it is preserved when basis functions are
refined when elements are split.

A.4.1 Preservation over Basis Refinement

When a B-spline 𝜑𝑗𝑖 is refined it becomes inactive and the the coefficients 𝛼𝑗+1,𝑛
𝑘 of its children

𝜑𝑗+1
𝑛 are updated. This results in updating the positions 𝑦𝑗+1

𝑛 to 𝑦𝑗+1
𝑛 . To show that the

above property is preserved over basis refinement, it is sufficient to prove that 𝑦𝑗+1
𝑛 is a local

point of 𝜑𝑗+1
𝑛 .

Let us first consider the case when the 𝜑𝑗+1
𝑛 was inactive before refinement of 𝜑𝑗𝑖 . Let

𝑎𝑗+1
𝑖𝑛 be the refinement coefficient given by Equation 4. In this scenario, the refinement of 𝜑𝑗𝑖
updates the coefficients 𝛼𝑛,𝑗+1

𝑘 as follows (Equation 8):

�̄�𝑛,𝑗+1
𝑘 = 𝑎𝑗+1

𝑖𝑛 𝛼𝑖,𝑗𝑘 , ∀𝑘. (A.3)

From the definition of 𝑦 (Equation A.2) that

𝑦𝑗+1
𝑛 = �

��𝑎𝑗+1
𝑖𝑛

∑︀
𝑘 𝛼

𝑖,𝑗
𝑘 𝑥𝑘

�
��𝑎𝑗+1
𝑖𝑛

∑︀
𝑘 𝛼

𝑖,𝑗
𝑘

= 𝑦𝑗𝑖 . (A.4)

From the refinement property 𝑆(𝜑𝑗+1
𝑛) ⊂ 𝑆(𝜑𝑗𝑖), the induction assumption 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑦𝑗𝑖),

and the above result 𝑦𝑗+1
𝑛 = 𝑦𝑗𝑖 it follows that 𝑆(𝜑𝑗+1

𝑛) ⊂ 𝒩 (𝑦𝑗+1
𝑛). Therfore 𝑦𝑗+1

𝑛 is a local
point of 𝜑𝑗+1

𝑛 .

159

Let us now consider the case when 𝜑𝑗+1
𝑛 was active before refinement of 𝜑𝑗𝑖 . We make the

flowing remarks:

Remark 4. If 𝜑𝑗+1
𝑛 is an active child of 𝜑𝑗𝑖 , then the updated position of 𝑦𝑗+1

𝑛 , given by 𝑦𝑗+1
𝑛 ,

can be expressed as a convex combination of 𝑦𝑗𝑖 and 𝑦
𝑗+1
𝑛 .

Proof. Let 𝑎𝑗+1
𝑖𝑛 be the refinement coefficient given by Equation 4. The refinement of 𝜑𝑗𝑖

updates the coefficients 𝛼𝑛,𝑗+1
𝑘 as follows (Equation 8):

�̄�𝑛,𝑗+1
𝑘 = 𝛼𝑛,𝑗+1

𝑘 + 𝑎𝑗+1
𝑖𝑛 𝛼𝑖,𝑗𝑘 , ∀𝑘. (A.5)

Therefore, if 𝑦 is defined as in Equation A.2, then

𝑦𝑗+1
𝑛 =

𝛼𝑗+1
𝑛 𝑦𝑗+1

𝑛 + 𝑎𝑗+1
𝑖𝑛 𝛼𝑗𝑖𝑦

𝑗
𝑖

𝛼𝑗+1
𝑛 + 𝑎𝑗+1

𝑖𝑛 𝛼𝑗𝑖
. (A.6)

Remark 5. If 𝜑𝑗+1
𝑛 is active, 𝒩 (𝑦𝑗𝑖) ∩𝒩 (𝑦𝑗+1

𝑛) ⊂ 𝒩 (𝑦𝑗+1
𝑛)

Proof. If 𝑒𝑙 ∈ 𝒩 (𝑦𝑗𝑖) ∩ 𝒩 (𝑦𝑗+1
𝑛), then 𝑦𝑗𝑖 , 𝑦

𝑗+1
𝑛 ∈ 𝑒𝑙. Since 𝑦𝑗+1

𝑛 is a convex combination of 𝑦𝑗𝑖
and 𝑦𝑗+1

𝑛 , 𝑦𝑗+1
𝑛 ∈ 𝑒𝑙 and therefore 𝑒𝑙 ∈ 𝒩 (𝑦𝑗+1

𝑛).

From the induction assumption 𝑆(𝜑𝑗+1
𝑛) ⊂ 𝒩 (𝑦𝑗+1

𝑛) and 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑦𝑗𝑖)). Since 𝜑𝑗+1
𝑛

results from the refinement of 𝜑𝑗𝑖 , 𝑆(𝜑𝑗+1
𝑛) ⊂ 𝑆(𝜑𝑗𝑖) and therefore 𝑆(𝜑𝑗+1

𝑛) ⊂ 𝒩 (𝑦𝑗𝑖)∩𝒩 (𝑦𝑗+1
𝑛).

From Remark 5 we conclude that 𝑆(𝜑𝑗+1
𝑛) ⊂ 𝒩 (𝑦𝑗+1

𝑛), showing that the property is preserved
during basis refinement.

A.4.2 Preservation over Element Refinement

Finally we will show that 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑦𝑗𝑖) is preserved when an element are split. We start
by making the following remarks.

Remark 6. Let 𝜑𝑗𝑖 be an active linear B-spline, 𝑗 > 0. If 𝜑𝑗−1
𝑛 are the parents of 𝜑𝑗𝑖 which

have been refined, then

𝛼𝑗𝑖 =
∑︁
𝑛

𝑎𝑗𝑛𝑖

𝑦𝑗𝑖 =
∑︁
𝑛

𝑎𝑗𝑛𝑖𝑐
𝑗−1
𝑛 /(

∑︁
𝑛

𝑎𝑗𝑛𝑖) (A.7)

where the coefficients 𝑎 are given by Equation 4.

Before we prove this Remark, we prove the following Remark that stems directly from it.

Remark 7. If 𝜑𝑗𝑖 is active and has no active ancestors, then 𝛼𝑗𝑖 = 1 and 𝑦𝑗𝑖 = 𝑐𝑗𝑖 .

160

Proof. For 𝑗 = 0, this results directly from the initial configuration when all linear B-splines
are at the coarsest level and 𝑐0𝑖 = 𝑦0𝑖 and 𝛼

0
𝑖 = 1.

For 𝑗 > 0 we will use the result from Remark 6:
On the one dimensional case for linear B-splines, using the values of 𝑎 from Equation 5,

we can write Equation A.7 when all parents are refined as{︃
𝑦𝑗2𝑖 = 𝑐𝑗−1

𝑖

𝑦𝑗2𝑖+1 = 1
2
𝑐𝑗−1
𝑖 + 1

2
𝑐𝑗−1
𝑖+1 .

From the lattice structure and the symmetry of the 𝑎 terms around the center, we see that
𝑦𝑗𝑖 = 𝑐𝑗𝑖 when all parents are refined. From Equation 5, 𝛼𝑗𝑖 =

∑︀
𝑛 𝑎

𝑗
𝑛𝑖 = 1, which is a result

from the partition of unity property of refinement relations. This result is directly extended
in the multi-dimensional case.

Proof. [Remark 6] We will prove this property by induction. At the initial configuration
when all linear B-splines are at the coarsest level, 𝑐0𝑖 = 𝑦0𝑖 and 𝛼

0
𝑖 = 1. At this level, there

are no active linear B-splines with 𝑗 > 0 and therefore the Remark 6 holds.
We assume that Remark 6 holds and will show that after an iteration of the refinement

algorithm it still holds.
We first show that it still holds after step 2. Let 𝜑𝑗𝑖 be a linear B-spline which whill be

refined in this step. Only linear B-splines with no active ancestors can be refined (Remark 2)
and therefore 𝜑𝑗𝑖 has no active ancestors. Since we assume that Remark 6 holds, Remark 7
also holds and therefore 𝑦𝑗𝑖 = 𝑐𝑗𝑖 and 𝛼

𝑗
𝑖 = 1. Let 𝜑𝑗+1

𝑛 be a child of 𝜑𝑗𝑖 .
If 𝜑𝑗+1

𝑛 is inactive, then

�̄�𝑗+1
𝑛 = 𝑎𝑗+1

𝑖𝑛 𝛼𝑗𝑖 = 𝑎𝑗+1
𝑖𝑛 (from Equation A.3)

𝑦𝑗+1
𝑛 = 𝑦𝑗𝑖 = 𝑐𝑗𝑖 (from Equation A.4)

(A.8)

and Remark 6 holds.
Otherwise, if 𝜑𝑗+1

𝑛 is not inactive, then

�̄�𝑗+1
𝑛 = 𝛼𝑗+1

𝑛 + 𝑎𝑗+1
𝑖𝑛 (from Equation A.5)

𝑦𝑗+1
𝑛 =

𝛼𝑗+1
𝑛 𝑦𝑗+1

𝑛 + 𝑎𝑗+1
𝑖𝑛 𝑐𝑗𝑖

𝛼𝑗+1
𝑛 + 𝑎𝑗+1

𝑖𝑛

(from Equation A.6).
(A.9)

From the induction assumption 𝛼𝑗+1
𝑛 𝑦𝑗+1

𝑛 =
∑︀

𝑚 𝑎
𝑖+1
𝑖𝑚 𝑐𝑗𝑚 and 𝛼𝑗+1

𝑛 =
∑︀

𝑚 𝑎
𝑖
𝑖𝑚, for 𝑚 indexing

all parents 𝜑𝑗+1
𝑚 other than 𝜑𝑗+1

𝑛 that have been refined. Therefore

�̄�1
𝑛 =

∑︁
𝑚

𝑎𝑖𝑖𝑚 + 𝑎𝑗+1
𝑖𝑛

𝑦𝑗+1
𝑛 =

∑︀
𝑚 𝑎

𝑖+1
𝑖𝑚 𝑐𝑗𝑚 + 𝑎𝑗+1

𝑖𝑛 𝑐𝑗𝑡∑︀
𝑚 𝑎

𝑖
𝑖𝑚 + 𝑎𝑗+1

𝑖𝑛

and Remark 6 holds. From this we conclude that the property is preserved after step 2.

161

In step 3, though the values 𝛼𝑖,𝑗𝑘 are updated, the values 𝛼𝑗𝑖 do not change (Equation 10),
concluding the proof.

We will now show that 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑦𝑗𝑖) is preserved when 𝑒𝑙 is split into 𝑒𝑙𝐴 and 𝑒𝑙𝐵 across
direction 𝑑. It is sufficient to validate the statement on the active linear B-splines 𝜑𝑗𝑖 that
overlap 𝑒𝑙. From the induction assumption 𝑦𝑗𝑖 is a local point of 𝑒𝑙. We must then prove
that if 𝑆(𝜑𝑗𝑖) overlaps with 𝑒𝑙𝐴 (and/or 𝑒𝑙𝐵), then 𝑦

𝑗
𝑖 is a local point of 𝑒𝑙𝐴 (and/or 𝑒𝑙𝐵). We

will proceed to prove this considering the two possible cases: 𝑆(𝜑𝑗𝑖) overlaps with only one
element (𝑒𝑙𝐴 or 𝑒𝑙𝐵) and 𝑆(𝜑𝑗𝑖) overlaps with both elements (𝑒𝑙𝐴 and 𝑒𝑙𝐵).

Case 1: 𝜑𝑗𝑖 overlaps one element Consider a linear B-spline 𝜑𝑗𝑖 that overlaps with 𝑒𝑙.
From the induction assumption (𝑆(𝜑𝑗𝑖) ∈ 𝒩 (𝑦𝑗𝑖)) 𝑦

𝑗
𝑖 ∈ 𝑒𝑙. First, let us consider the case when

𝜑𝑗𝑖 overlaps only one of the elements that result from the split. Without loss of generality, we
assume 𝑆(𝜑𝑗𝑖)∩ 𝑒𝑙𝐵 = ∅. If 𝑦𝑗𝑖 /∈ 𝑒𝑙𝐴, then this element refinement would make 𝑦𝑗𝑖 no longer a
local point. In what follows we will show that this is never the case, i.e., if 𝑆(𝜑𝑗𝑖) ∩ 𝑒𝑙𝐵 = ∅,
then 𝑦𝑗𝑖 ∈ 𝑒𝑙𝐴, from which we can conclude that 𝑆(𝜑𝑗𝑖) ∈ 𝒩 (𝑦𝑗𝑖).

Remark 8. If 𝜑𝑗𝑖 is active, then 𝑦
𝑗
𝑖 ∈ 𝑆(𝜑𝑗𝑖), where 𝑆(𝜑𝑗𝑖) is the closure of 𝑆(𝜑𝑗𝑖).

Proof. This property holds in the initial configuration when 𝑦0𝑖 = 𝑐0𝑖 . We will show that this
property is preserved during basis refinement (step 2) and conclude the proof by induction.
As in the previous paragraph, we will look at the updated positions 𝑦𝑗+1

𝑛 when 𝜑𝑗+1
𝑛 results

from the refinement of 𝜑𝑗𝑖 .
From Remark 2 and Remark 7, if 𝜑𝑗𝑖 is refined, then 𝑦

𝑗
𝑖 = 𝑐𝑗𝑖 . The refinement relations

guarantee that for linear B-splines 𝑐𝑗𝑖 ∈ 𝑆(𝜑𝑗+1
𝑛) (see Figure 6) from which we conclude

𝑦𝑗𝑖 ∈ 𝑆(𝜑𝑗+1
𝑛).

If 𝑦𝑗+1
𝑛 is not active 𝑦𝑗+1

𝑛 = 𝑦𝑗𝑖 (Equation A.4) and therefore 𝑦𝑗+1
𝑛 ∈ 𝑆(𝜑𝑗+1

𝑛).

Otherwise, if 𝑦𝑗+1
𝑛 is active, 𝑦𝑗+1

𝑛 ∈ 𝑆(𝜑𝑗+1
𝑛) from the induction assumption. Remark 4

allows us to express 𝑦𝑗+1
𝑛 and a convex combination of 𝑦𝑗+1

𝑛 and 𝑦𝑗𝑖 (both in 𝑆(𝜑𝑗+1
𝑛)) from

which we conclude that 𝑦𝑗+1
𝑛 ∈ 𝑆(𝜑𝑗+1

𝑛).

From the induction assumptions (𝑦𝑗𝑖 ∈ 𝑒𝑙) and Remark 8, 𝑦𝑗𝑖 ∈ 𝑒𝑙 ∩ 𝑆(𝜑𝑗𝑖). From the

assumption 𝑆(𝜑𝑗𝑖)∩𝑒𝑙𝐵 = ∅, 𝑆(𝜑𝑗𝑖)∩𝑒𝑙𝐵 ⊂ 𝜕𝑒𝑙𝐵, where 𝜕𝑒𝑙𝐵 is the boundary of 𝑒𝑙𝐵. From this
we conclude that 𝑦𝑗𝑖 ∈ 𝑒𝑙𝐴∪𝜕𝑒𝑙𝐵. Since 𝑆(𝜑𝑗𝑖) is a 𝐾-dimensional cuboid and 𝑒𝑙𝐴 and 𝑒𝑙𝐵 are

adjacent 𝐾-dimensional cuboids we conclude from 𝑆(𝜑𝑗𝑖)∪𝑒𝑙𝐴 ̸= ∅ that 𝑆(𝜑𝑗𝑖)∪𝜕𝑒𝑙𝑏 ∖𝑒𝑙𝐴 = ∅.
Therefore, 𝑦𝑗𝑖 ∈ 𝑒𝑙𝐴 and therefore 𝑆(𝜑𝑗𝑖) ⊂ 𝒩 (𝑦𝑗𝑖) after element refinement.

Case 2: 𝜑𝑗𝑖 overlaps both elements Now let us consider the case when 𝜑𝑗𝑖 overlaps both
elements that result from the split, i.e., 𝑆(𝜑𝑗𝑖) ∩ 𝑒𝑙𝐴 ̸= ∅ and 𝑆(𝜑𝑗𝑖) ∩ 𝑒𝑙𝐵 ̸= ∅. As previously
discussed, 𝑦𝑗𝑖 ∈ 𝑒𝑙. In what follows we will prove that 𝑦𝑗𝑖 is also on the boundary between 𝑒𝑙𝐴
and 𝑒𝑙𝐵, which will allow us to conclude that after the split the property 𝑆(𝜑𝑗𝑖) ∈ 𝒩 (𝑦𝑗𝑖) is
preserved.

162

Let us first consider the case when there are no active ancestors and therefore
∑︀

𝑘 𝛼
𝑖,𝑗
𝑘 = 1

and 𝑦𝑗𝑖 = 𝑐𝑗𝑖 (Remark 7). From Remark 3, if 𝜑𝑗𝑖 overlaps both elements, then 𝑐𝑗𝑖 is on the
boundary between 𝑒𝑙𝐴 and 𝑒𝑙𝐵 and therefore 𝑆(𝜑𝑗𝑖) ∈ 𝒩 (𝑐𝑗𝑖). Since in this case 𝑦𝑗𝑖 = 𝑐𝑗𝑖 , the
property is preserved.

Let us now consider the case when there are active ancestors. Let ℬ𝑗𝑖 be the set of active
ancestors.

Remark 9. ℬ𝑗𝑖 describes the set of active linear B-splines 𝜑𝑚𝑛 ̸= 𝜑𝑗𝑖 that do not vanish at 𝑐𝑗𝑖

Proof. The B-splines 𝜑𝑚𝑛 ̸= 𝜑𝑗𝑖 that do not vanish at 𝑐𝑗𝑖 are its ancestors (all of them) or
descendents that are centered at 𝑐𝑗𝑖 (see Figure 6). All of the active ancestors are in ℬ𝑗𝑖 .
Since 𝜑𝑗𝑖 is active, there can be no active linear B-spline whose only ancestor is 𝜑𝑗𝑖 . Since
the descendents that do not vanish at 𝑐𝑗𝑖 have 𝜑

𝑗
𝑖 as a unique ancestor, none of them are

active.

From Remark 9 and the assumption that a partition of unity is guaranteed in all previous
iterations, we conclude ∑︁

𝑘

𝛼𝑖,𝑗𝑘 +
∑︁

𝑛,𝑚∈ℬ𝑗
𝑖

∑︁
𝑘

𝛼𝑛,𝑚𝑘 𝜑𝑚𝑛 (𝑐𝑗𝑖) = 1. (A.10)

If 𝑆(𝜑𝑗𝑖) overlaps 𝑒𝑙𝐴 and 𝑒𝑙𝐵 the same is true for all of its ancestors. Therefore, from
Remark 3, they must all be centered on the boundary between 𝑒𝑙𝐴 and 𝑒𝑙𝐵 . We conclude
that 𝑐𝑚𝑛 is equal to 𝑐𝑗𝑖 in direction 𝑑, 𝑐𝑚𝑛 |𝑑 = 𝑐𝑗𝑖 |𝑑. We will use this to show that 𝑦𝑗𝑖 |𝑑 = 𝑐𝑗𝑖 |𝑑.

Let 𝑚0 be the coarsest level in ℬ𝑗𝑖 . Any function 𝜑𝑚0
𝑛 must have no active ancestors since

those would also be on ℬ𝑗𝑖 . From Remark 7, 𝑦𝑚0
𝑛 = 𝑐𝑚0

𝑛 and therefore, 𝑦𝑚0
𝑛 |𝑑 = 𝑐𝑗𝑖 |𝑑.

Next, we take the next coarsest level on ℬ𝑗𝑖 , 𝑚1, and let 𝜑𝑚1
𝑛1

be any linear B-spline at
this level. ℬ𝑚1

𝑛1
only contains the linear B-splines in ℬ𝑗𝑖 at level 𝑚0. As in Equation A.10, we

can use Remark 9 and the partition of unity assumption to conclude∑︁
𝑘

𝛼𝑛1,𝑚1

𝑘 +
∑︁
𝑛

∑︁
𝑘

𝛼𝑚0,𝑛
𝑘 𝜑𝑚0

𝑛 (𝑐𝑚1
𝑛1

) = 1

Using the assumption of linear precision on all previous iterations and letting the evaluation
function 𝑥𝑘 ↦→ 𝑝𝑘 be the identity, we conclude (Equation 7) that

𝑐𝑚1
𝑛1

=
∑︁
𝑘

𝛼𝑛1,𝑚1

𝑘 𝑥𝑘 +
∑︁
𝑛

∑︁
𝑘

𝛼𝑚0,𝑛
𝑘 𝑥𝑘𝜑

𝑚0
𝑛 (𝑐𝑚1

𝑛1
).

From this we can express 𝑐𝑚1
𝑛1

as a convex combination of 𝑦𝑚1
𝑛1

and 𝑦𝑚0
𝑛 .

𝑐𝑚1
𝑛1

= 𝛼𝑚1
𝑛1
𝑦𝑚1
𝑛1

+
∑︁
𝑛

𝜑𝑚0
𝑛 (𝑐𝑚1

𝑛1
)𝛼𝑛𝑚0

𝑦𝑛𝑚0
.

Since 𝑐𝑚1
𝑛1
|𝑑 = 𝑦𝑚0

𝑛 |𝑑 = 𝑐𝑗𝑖 |𝑑, it follows that 𝑦𝑚1
𝑛1
|𝑑 = 𝑐𝑗𝑖 |𝑑. We can continue this process to

the finer levels to achieve that 𝑦𝑗𝑖 |𝑑 = 𝑐𝑗𝑖 |𝑑.
From this we conclude that 𝑦𝑗𝑖 is a local point after an element is split which concludes

the proof that 𝑦𝑗𝑖 is a local point.

163

A.5 Example

Let 𝑞𝑗𝑖 =
∑︀
𝛼𝑖,𝑗𝑘 𝑝𝑘, where the coefficients 𝛼𝑖,𝑗𝑘 are given by Equation 6. Then, Equation 7 can

be expressed as:
𝑃 (𝑥) =

∑︁
𝑖,𝑗

𝑞𝑗𝑖𝜑
𝑗
𝑖 (𝑥). (A.11)

q
7
1

q
2
1q

0
1

q
4
1

q
8
1

q
3
1

q
6
1

q
1
1

q
5
1

p
2

p
0

p
8

p
0
+p

6

p
6

p
5

2

Our	Method

Adding	virtual	nodes

Figure A-2: Contrasting the interpolation solution from our method with the interpolation
solution adding virtual nodes. Top row: the interpolation solution from our method. The
resulting interpolation is equivalent to a uniform basis function at the coarsest level 𝑗 such
that every sample on the element boundary belongs to ℐ𝑗 (in this case 𝑗 = 1). The values 𝑞𝑗𝑖
can be computed hierarchically at points for which samples 𝑝𝑗𝑖 do not exist. In this example,
𝑞13 is based on the average of the adjacent samples 𝑥0, 𝑥6 ∈ ℐ0, and 𝑞14 is the average of the
four corner samples, also contained in ℐ0. Bottom row: interpolation solution adding virtual
nodes. The color display on the right illustrates how our method restricts the impact of a
sample in ℐ𝑗 to s𝑗.

To further illustrate the result of our refinement strategy for high dimensions, we show a
two-dimensional example on the top row of Figure A-2. Given an element and the samples 𝑥𝑘
on its boundary, we can determine the solution of our approximation. We use Equation A.11
with uniform basis functions at the coarsest level 𝑗 at which 𝑥𝑘 ∈ ℐ𝑗,∀𝑘. The coefficients 𝑞𝑗𝑖
can be determined at each successive level 𝑗 as follows. At 𝑗 = 0, since there are guaranteed
to be samples at 𝑥𝑘 = 𝑥0𝑖 , we set 𝑞

0
𝑖 = 𝑝𝑘. At level 𝑗 > 0, the coefficient 𝑞𝑖𝑗 at a point 𝑥𝑘 = 𝑦𝑗𝑖

for which a sample does not exist is given by a multi-linear combination of coefficients 𝑞(𝑗−1)
𝑖

at the coarser level 𝑗 − 1.
Figure A-2 compares our method (depicted in the top row) with the approach of creating

164

virtual nodes and then using bilinear interpolation on each sub-element (shown in the bottom
row). The figure highlights the difference in the effect of 𝑝5. In our technique, if 𝑗 is the
coarsest level such that 𝑥𝑘 ∈ ℐ𝑗, then the influence of the sample 𝑥𝑘 is limited to the support
of basis functions at level 𝑗. As we have shown in this supplemental material, this property
is used to prove locality. Therefore, this property gives us the advantage of being able to
define a simple refinement algorithm that updates the approximation while constructing a
k-d tree.

Notice that the same result on the top row of Figure A-2 can be achieved by the following
steps: first, use a set of basis functions at the coarsest level, setting 𝑃 (𝑥) =

∑︀
𝑖=0,2,6,8 𝜑

0
𝑖 𝑝𝑖;

then, use the refinement relations to rewrite this expression as
∑︀8

𝑖=0 𝜑
1
𝑖 𝑞

1
𝑖 ; finally, replace

𝑞15 in this expression, which was originally (𝑝2 + 𝑝8)/2, with 𝑝5. The second advantage of
expressing this interpolation as basis functions with refinement relations is that this method
can be extended to higher-order basis functions, such as cubic B-splines.

165

166

Appendix B

Proof of the First-Order Approximation

of the Pareto Front

Since x(𝑡) ∈ 𝒫 for all 𝑡 ∈ (−𝜀, 𝜀), each point x(𝑡) must satisfy the KKT conditions (7.2).
Hence, we can assume the existence of time-varying dual variables 𝛼(𝑡) : (−𝜀, 𝜀) → R𝑑 and
𝛽(𝑡) : (−𝜀, 𝜀)→ R𝐾 . Generically these functions are differentiable in 𝑡.

For a given critical point x* = x(0), without loss of generality permute the constraints
so that the first 𝐾 ′ inequality constraints are active, i.e. 𝑔𝑘(x*) = 0 for all 𝑘 ≤ 𝐾 ′, and that
the remaining constraints are inactive, i.e. 𝑔𝑘(x*) < 0 for all 𝑘 > 𝐾 ′.

Applying the complementary slackness condition in (7.2), we must have 𝛽𝑘(0) = 0 for all
inactive constraints 𝑔𝑘(x*). By continuity, if a constraint is inactive at 𝑡 = 0 it must remain
inactive in a nonempty open interval surrounding 𝑡 = 0. After possibly restricting 𝜀, we can
assume 𝛽𝑘(𝑡) ≡ 0 for all 𝑘 > 𝐾 ′ and 𝑡 ∈ (−𝜀, 𝜀).

Collecting our observations so far, we rewrite the KKT conditions (7.2) as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼𝑖(𝑡) ≥ 0 ∀𝑖 ∈ {1, . . . , 𝑑}, 𝑡 ∈ (−𝜀, 𝜀)
𝛽𝑗(𝑡) ≥ 0 ∀𝑗 ∈ {1, . . . , 𝐾 ′}, 𝑡 ∈ (−𝜀, 𝜀)
𝛽𝑗𝑔𝑗(x(𝑡)) = 0 ∀𝑗 ∈ {1, . . . , 𝑘}, 𝑡 ∈ (−𝜀, 𝜀)∑︀𝑑

𝑖=1 𝛼𝑖(𝑡) = 1, 𝑡 ∈ (−𝜀, 𝜀)∑︀𝑑
𝑖=1 𝛼𝑖(𝑡)∇𝑓𝑖(x(𝑡)) +

∑︀𝐾′

𝑗=1 𝛽𝑗(𝑡)∇𝑔𝑗(x(𝑡)) = 0 ∀𝑡 ∈ (−𝜀, 𝜀)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (B.1)

Note this form effectively ignores the inactive constraints since they do not figure into the
problem near 𝑡 = 0.

Our next task is to differentiate the final condition in (B.1) with respect to 𝑡 at 𝑡 = 0.
Define:

ℎ(𝑡) :=
𝑑∑︁
𝑖=1

𝛼𝑖(𝑡)∇𝑓𝑖(x(𝑡)) +
𝐾′∑︁
𝑗=1

𝛽𝑗(𝑡)∇𝑔𝑗(x(𝑡))

167

Then,

ℎ′(𝑡) = 𝐷𝐹⊤(x(𝑡))𝛼′(𝑡) +

(︃
𝑑∑︁
𝑖=1

𝛼𝑖(𝑡)𝐻𝑓𝑖(x(𝑡))

)︃
x′(𝑡)

+𝐷𝐺⊤(x(𝑡))𝛽′(𝑡) +

(︃
𝐾′∑︁
𝑘=1

𝛽𝑘(𝑡)𝐻𝑔𝑘(x(𝑡))

)︃
x′(𝑡)

Here, 𝐷𝑢 indicates the Jacobian and 𝐻𝑢 indicates the Hessian of a function 𝑢(x).
Evaluating at 𝑡 = 0 and recalling x(0) = x* shows

ℎ′(0) = 𝐷𝐹⊤(x*)𝛼′(0) +

(︃
𝑑∑︁
𝑖=1

𝛼𝑖(0)𝐻𝑓𝑖(x
*)

)︃
x′(0)

+𝐷𝐺⊤
𝐾′(x*)𝛽′(0) +

(︃
𝐾′∑︁
𝑘=1

𝛽𝑘(0)𝐻𝑔𝑘(x*)

)︃
x′(0)

We use 𝐷𝐺𝐾′ to denote the part of the Jacobian of 𝐺 corresponding to active constraints.
Defining H :=

∑︀
𝛼𝑖(0)𝐻𝑓𝑖(x

*) +
∑︀
𝛽𝑘(0)𝐻𝑔𝑘(x*) allows us to simplify our expression to

ℎ′(0) = 𝐷𝐹⊤(𝑥*)𝛼′(0) +𝐷𝐺⊤
𝐾′(𝑥*)𝛽′(0) + Hx′(0). (B.2)

From the KKT conditions, we know ℎ(𝑡) ≡ 0—and hence ℎ′(𝑡) ≡ 0—for all 𝑡 ∈ (−𝜀, 𝜀).
Rearranging slightly shows

𝐻x′(0) ∈ Im(𝐷𝐹⊤(x*))⊕ Im(𝐷𝐺⊤
𝐾′(x*)). (B.3)

We obtain an additional property of x′(0) by revisiting the complementary slackness
condition in (B.1), which shows 𝛽𝑘(𝑡)𝑔𝑘(x(𝑡)) ≡ 0 for 𝑡 ∈ (−𝜀, 𝜀) and 𝑘 ∈ {1, . . . , 𝐾 ′}. Again
differentiating both sides with respect to 𝑡 shows

0 = 𝛽′
𝑘(𝑡)𝑔𝑘(x(𝑡)) + 𝛽𝑘(𝑡)∇𝑔𝑘(x(𝑡))⊤x′(𝑡).

Recall 𝑔𝑘(x*) = 0 since constraint 𝑘 is active; we furthermore can assume 𝛽𝑘(0) ̸= 0 since
the constraint is active. Hence the first term vanishes and at 𝑡 = 0 we are left with

∇𝑔𝑘(x*)⊤x′(0) = 0 ∀𝑘 ∈ {1, . . . , 𝐾 ′}, (B.4)

Combining different 𝑘’s shows
𝐷𝐺𝐾′(x*)x′(0) = 0,

as desired.

168

Bibliography

Aseem Agarwala. Efficient gradient-domain compositing using quadtrees. In Siggraph 2007.
ACM, 2007.

Shailen Agrawal and Michiel van de Panne. Pareto optimal control for natural and super-
natural motions. 2013.

Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Jeff Klingner, Pat Hanra-
han, and Barbara Tversky. Designing effective step-by-step assembly instructions. ACM
Transactions on Graphics, 22(3):828–837, 2003.

Noam Aigerman, Roi Poranne, and Yaron Lipman. Lifted bijections for low distortion surface
mappings. ACM Trans. Graph., 33(4):69, 2014.

Noam Aigerman, Roi Poranne, and Yaron Lipman. Seamless surface mappings. ACM Trans.
Graph., 34(4):72:1–72:13, July 2015a. ISSN 0730-0301.

Noam Aigerman, Roi Poranne, and Yaron Lipman. Seamless surface mappings. ACM Trans.
on Graph. (TOG), 34(4):72, 2015b.

Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-as-possible shape interpolation.
In Siggraph 2000, pages 157–164. ACM, 2000.

Pierre Alliez and Craig Gotsman. Recent advances in compression of 3d meshes. In Advances
in multiresolution for geometric modelling, pages 3–26. Springer, 2005.

Mihael Ankerst, Gabi KastenmÃĳller, Hans-Peter Kriegel, and Thomas Seidl. Nearest neigh-
bor classification in 3d protein databases. In Proc. ISMB, pages 34–43, 1999.

Melinos Averkiou, Vladimir Kim, Youyi Zheng, and Niloy J. Mitra. Shapesynth: Parameter-
izing model collections for coupled shape exploration and synthesis. Computer Graphics
Forum (Special issue of Eurographics 2014), 2014.

Ed Ayyappa. Normal human locomotion, part 1: Basic concepts and terminology. Journal
of Prosthetics and Orthotics, 9(1):10–17, 1997.

Mehdi Baba-Ali, David Marcheix, and Xavier Skapin. A method to improve matching process
by shape characteristics in parametric systems. Computer-Aided Design and Applications,
6(3):341–350, 2009.

169

Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. Linkedit: Interactive linkage
editing using symbolic kinematics. ACM Trans. Graph., 34(4):99:1–99:8, July 2015. ISSN
0730-0301.

Sunith Bandaru and Kalyanmoy Deb. Temporal innovization: Evolution of design princi-
ples using multi-objective optimization. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 9018 of Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), pages 79–93. Springer Verlag,
2015. ISBN 9783319159331. doi: 10.1007/978-3-319-15934-8_6.

Fan Bao, Dong-Ming Yan, Niloy J. Mitra, and Peter Wonka. Generating and exploring good
building layouts. ACM Trans. Graph., 32(4):122:1–122:10, July 2013. ISSN 0730-0301.

Ilya Baran. Onshape inc. Personal Communication, 2017.

David Benson and Joel Davis. Octree textures. ACM Transactions on Graphics, 21(3):
785–790, 2002.

Nicola Bezzo, Peter Gebhard, Insup Lee, Matthew Piccoli, Vijay Kumar, and Mark Yim.
Rapid co-design of electro-mechanical specifications for robotic systems. In ASME 2015
International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, pages V009T07A009–V009T07A009. American Society of Me-
chanical Engineers, 2015.

Gaurav Bharaj, David I. W. Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech
Matusik, and Changxi Zheng. Computational design of metallophone contact sounds.
ACM Trans. Graph., 34(6):223:1–223:13, October 2015. ISSN 0730-0301.

Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister,
Markus Gross, and Wojciech Matusik. Design and fabrication of materials with desired
deformation behavior. ACM Trans. Graph., 29(4):63:1–63:10, July 2010. ISSN 0730-0301.
doi: 10.1145/1778765.1778800. URL http://doi.acm.org/10.1145/1778765.1778800.

Rafael Bidarra and Willem F Bronsvoort. Semantic feature modelling. Computer-Aided
Design, 32(3):201–225, 2000.

Rafael Bidarra, Paulos J Nyirenda, and Willem F Bronsvoort. A feature-based solution to
the persistent naming problem. Computer-Aided Design and Applications, 2(1-4):517–526,
2005.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN 0387310738.

Martin Bokeloh, Michael Wand, Hans-Peter Seidel, , and Vladlen Koltun. An algebraic
model for parameterized shape editing. ACM Transactions on Graphics, 31(4), 2012a.

170

http://doi.acm.org/10.1145/1778765.1778800

Martin Bokeloh, Michael Wand, Hans-Peter Seidel, and Vladlen Koltun. An algebraic model
for parameterized shape editing. ACM Trans. Graph., 31(4):78:1–78:10, July 2012b. ISSN
0730-0301.

Samir Bouabdallah, Andre Noth, and Roland Siegwart. PID vs LQ control techniques applied
to an indoor micro quadrotor. In Intelligent Robots and Systems (IROS) 2004, 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(11):1222–
1239, 2001.

Alexander M. Bronstein, Michael M. Bronstein, Leonidas J. Guibas, and Maks Ovsjanikov.
Shape google: Geometric words and expressions for invariant shape retrieval. ACM Trans.
Graph., 30(1):1:1–1:20, 2011.

Siddhartha Chaudhuri and Vladlen Koltun. Data-driven suggestions for creativity support
in 3d modeling. ACM Transactions on Graphics, 29(6):183:1–183:10, 2010.

Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas J. Guibas, and Vladlen Koltun.
Probabilistic reasoning for assembly-based 3d modeling. ACM Transactions on Graphics,
30(4):35, 2011.

Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual similarity based
3d model retrieval. Computer Graphics Forum, 22(3):223–232, 2003.

Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-Or. 3sweep: Extracting
editable objects from a single photo. ACM Trans. Graph., 32(6):195:1–195:10, 2013.

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira Forberg,
Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. Computational design of me-
chanical characters. ACM Trans. Graph., 32(4):83:1–83:12, July 2013. ISSN 0730-0301.
doi: 10.1145/2461912.2461953. URL http://doi.acm.org/10.1145/2461912.2461953.

David W Currier. Automation of sheet metal design and manufacturing. In 17th Conference
on Design Automation, pages 134–138. IEEE, 1980.

Indraneel Das and J. E. Dennis. Normal-boundary intersection: A new method for generating
the pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on
Optimization, 8(3):631–657, 1998.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual
symposium on Computational geometry, pages 253–262. ACM, 2004.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Multi-Objective Optimization
Test Problems. In Congress on Evolutionary Computation (CEC 2002), pages 825–830.
IEEE Press, 2002.

171

http://doi.acm.org/10.1145/2461912.2461953

Kalyanmoy Deb and Kalyanmoy Deb. Multi-objective Optimization. In Search Methodolo-
gies, pages 403–449. Springer US, Boston, MA, 2014. doi: 10.1007/978-1-4614-6940-7_15.
URL http://link.springer.com/10.1007/978-1-4614-6940-7{_}15.

Kalyanmoy Deb and Aravind Srinivasan. Innovization: Innovating design principles through
optimization. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’06, pages 1629–1636, New York, NY, USA, 2006. ACM. ISBN
1-59593-186-4. doi: 10.1145/1143997.1144266. URL http://doi.acm.org/10.1145/

1143997.1144266.

Manfredo Perdigao Do Carmo. Differential geometry of curves and surfaces, volume 2.
Prentice-hall Englewood Cliffs, 1976.

Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo. Fabricating
spatially-varying subsurface scattering. ACM Trans. Graph., 29(4):62:1–62:10, July 2010.
ISSN 0730-0301. doi: 10.1145/1778765.1778799. URL http://doi.acm.org/10.1145/

1778765.1778799.

Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. Computational
multicopter design. ACM Transactions on Graphics, 35(6), 2016.

Gerald E Farin, Josef Hoschek, and Myung-Soo Kim. Handbook of computer aided geometric
design. Elsevier, 2002.

Michael S Floater. Mean value coordinates. Computer aided geometric design, 20(1):19–27,
2003.

Michael S Floater. Generalized barycentric coordinates and applications. Acta Numerica,
24:161–214, 2015.

David R. Forsey and Richard H. Bartels. Hierarchical b-spline refinement. In Siggraph 1988,
pages 205–212. ACM, 1988. ISBN 0-89791-275-6.

Michael Foshey, Nicholas Bandiera, and Javier Ramos. Mechanical engineers at mit. Personal
Communication, 2017.

Thomas A. Funkhouser, Michael M. Kazhdan, Philip Shilane, Patrick Min, William Kiefer,
Ayellet Tal, Szymon Rusinkiewicz, and David P. Dobkin. Modeling by example. ACM
Transactions on Graphics, 23(3):652–663, 2004.

Ran Gal, Ariel Shamir, and Daniel Cohen-Or. Pose oblivious shape signature. IEEE Trans-
actions of Visualization and Computer Graphics, 13(2):261âĂŞ–271, 2007.

Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. Iwires: an analyze-and-edit
approach to shape manipulation. ACM Transactions on Graphics, 28(3), 2009.

Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun, Mark
Pauly, and Max Wardetzky. Wire mesh design. ACM Trans. Graph., 33(4):66:1–66:12,
July 2014. ISSN 0730-0301. doi: 10.1145/2601097.2601106. URL http://doi.acm.org/

10.1145/2601097.2601106.

172

http://link.springer.com/10.1007/978-1-4614-6940-7{_}15
http://doi.acm.org/10.1145/1143997.1144266
http://doi.acm.org/10.1145/1143997.1144266
http://doi.acm.org/10.1145/1778765.1778799
http://doi.acm.org/10.1145/1778765.1778799
http://doi.acm.org/10.1145/2601097.2601106
http://doi.acm.org/10.1145/2601097.2601106

Zoubin Ghahramani, Geoffrey E Hinton, et al. The em algorithm for mixtures of factor
analyzers. Technical report, Technical Report CRG-TR-96-1, University of Toronto, 1996.

Eitan Grinspun, Petr Krysl, and Peter Schröder. Charms: A simple framework for adaptive
simulation. ACM Trans. Graph., 21(3):281–290, July 2002. ISSN 0730-0301.

Satyandra K Gupta and Dana S Nau. Systematic approach to analysing the manufactura-
bility of machined parts. Computer-Aided Design, 27(5):323–342, 1995.

Claus Hillermeier. Nonlinear multiobjective optimization: a generalized homotopy approach,
volume 135. Springer Science & Business Media, 2001.

Gabe Hoffmann, Dev Gorur Rajnarayan, Steven L Waslander, David Dostal, Jung Soon
Jang, and Claire J Tomlin. The Stanford testbed of autonomous rotorcraft for multi agent
control (STARMAC). In Digital Avionics Systems Conference (DASC) 2004, 2004.

Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. Bounded biharmonic weights
for real-time deformation. ACM Trans. Graph., 30(4):78, 2011.

Arjun Jain, Thorsten Thormählen, Tobias Ritschel, and Hans-Peter Seidel. Exploring shape
variations by 3d-model decomposition and part-based recombination. Comp. Graph. Fo-
rum (Proc. Eurographics 2012), 31(2), 2012.

Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for closed triangular meshes.
In ACM Transactions on Graphics (TOG), volume 24, pages 561–566. ACM, 2005.

Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen Koltun. A prob-
abilistic model for component-based shape synthesis. ACM Transactions on Graphics, 31
(4), 2012.

Rahul Khardekar, Greg Burton, and Sara McMains. Finding feasible mold parting directions
using graphics hardware. Computer-Aided Design, 38(4):327–341, 2006.

Jeeeun Kim, Anhong Guo, Tom Yeh, Scott E Hudson, and Jennifer Mankoff. Understanding
uncertainty in measurement and accommodating its impact in 3d modeling and printing.
In Proceedings of the 2017 Conference on Designing Interactive Systems, pages 1067–1078.
ACM, 2017.

Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen DiVerdi, and
Thomas Funkhouser. Learning part-based templates from large collections of 3d shapes.
ACM Transactions on Graphics, 2013.

Leif Kobbelt, Marc Stamminger, and Hans-Peter Seidel. Using Subdivision on Hierarchical
Data to Reconstruct Radiosity Distribution. Computer Graphics Forum, 1997. ISSN
1467-8659.

Bongjin Koo, Wilmot Li, JiaXian Yao, Maneesh Agrawala, and Niloy J. Mitra. Cre-
ating works-like prototypes of mechanical objects. ACM Trans. Graph., 33(6):217:1–
217:9, November 2014. ISSN 0730-0301. doi: 10.1145/2661229.2661289. URL http:

//doi.acm.org/10.1145/2661229.2661289.

173

http://doi.acm.org/10.1145/2661229.2661289
http://doi.acm.org/10.1145/2661229.2661289

Yuki Koyama, Shinjiro Sueda, Emma Steinhardt, Takeo Igarashi, Ariel Shamir, and Wojciech
Matusik. Autoconnect: Computational design of 3d-printable connectors. ACM Trans.
Graph., 34(6):231:1–231:11, October 2015. ISSN 0730-0301.

Vladislav Kraevoy and Alla Sheffer. Cross-parameterization and compatible remeshing of 3d
models. In Siggraph 2004, pages 861–869. ACM, 2004.

Vladislav Kraevoy, Alla Sheffer, Ariel Shamir, and Daniel Cohen-Or. Non-homogeneous
resizing of complex models. ACM Transactions on Graphics, 27(5):111:1–111:9, 2008.

Frank Kursawe. A variant of evolution strategies for vector optimization. In Proceedings
of the 1st Workshop on Parallel Problem Solving from Nature, PPSN I, pages 193–197,
London, UK, UK, 1991. Springer-Verlag. ISBN 3-540-54148-9. URL http://dl.acm.org/

citation.cfm?id=645821.670214.

Timothy R Langlois, Steven S An, Kelvin K Jin, and Doug L James. Eigenmode compression
for modal sound models. ACM Trans. Graph., 33(4):40, 2014.

Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo Igarashi. Converting 3d furniture
models to fabricatable parts and connectors. ACM Transactions on Graphics, 30(4):85,
2011.

Aaron WF Lee, David Dobkin, Wim Sweldens, and Peter Schröder. Multiresolution mesh
morphing. In Siggraph 1999, pages 343–350. ACM, 1999.

Seungyong Lee, George Wolberg, and Sung Yong Shin. Scattered data interpolation with
multilevel b-splines. IEEE transactions on visualization and computer graphics, 3(3):228–
244, 1997.

Jeffrey I Lipton, Zachary Manchester, and Daniela Rus. Planning cuts for mobile robots with
bladed tools. In Robotics and Automation (ICRA), 2017 IEEE International Conference
on, pages 572–579. IEEE, 2017.

Jeffrey I Lipton, Adriana Schulz, Andrew Spielberg, Luis Trueba, Wojciech Matusik, and
Daniela Rus. Robot assisted carpentry for mass customization. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating water and smoke with an octree
data structure. ACM Trans. Graph., 23(3):457–462, August 2004. ISSN 0730-0301.

James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer
Mankoff, and Jessica Hodgins. A compiler for 3d machine knitting. ACM Trans. Graph.,
35(4):49:1–49:11, July 2016. ISSN 0730-0301. doi: 10.1145/2897824.2925940. URL http:

//doi.acm.org/10.1145/2897824.2925940.

Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus Gross,
and Stelian Coros. Interactive design of 3d-printable robotic creatures. ACM Trans.
Graph., 34(6), October 2015a. ISSN 0730-0301.

174

http://dl.acm.org/citation.cfm?id=645821.670214
http://dl.acm.org/citation.cfm?id=645821.670214
http://doi.acm.org/10.1145/2897824.2925940
http://doi.acm.org/10.1145/2897824.2925940

Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus Gross,
and Stelian Coros. Interactive design of 3D-printable robotic creatures. ACM Transactions
on Graphics (TOG), 34(6):216, 2015b.

Ankur Mehta, Joseph DelPreto, and Daniela Rus. Integrated codesign of printable robots.
Journal of Mechanisms and Robotics, 7:021015, 2015.

A. Messac, A. Ismail-Yahaya, and C.A. Mattson. The normalized normal constraint method
for generating the pareto frontier. Structural and Multidisciplinary Optimization, 25(2):
86–98, Jul 2003. ISSN 1615-1488. doi: 10.1007/s00158-002-0276-1. URL https://doi.

org/10.1007/s00158-002-0276-1.

Niloy J Mitra, Natasha Gelfand, Helmut Pottmann, and Leonidas Guibas. Registration of
point cloud data from a geometric optimization perspective. In Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 22–31. ACM,
2004.

Yuki Mori and Takeo Igarashi. Plushie: An interactive design system for plush toys. ACM
Transactions on Graphics, 26(3):45:1–45:8, 2007.

Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif
Kobbelt. Reduced-order shape optimization using offset surfaces. ACM Trans. Graph., 34
(4), July 2015. ISSN 0730-0301.

Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wimmer,
and Leif Kobbelt. Non-linear shape optimization using local subspace projections. ACM
Trans. Graph., 35(4), July 2016. ISSN 0730-0301.

Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify approach for cluttered indoor
scene understanding. ACM Trans. Graph., 31(6):137:1–137:10, November 2012. ISSN
0730-0301.

Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. Matching 3d
models with shape distributions. In Proceedings of the International Conference on
Shape Modeling & Applications, SMI ’01, pages 154–, Washington, DC, USA, 2001. IEEE
Computer Society. ISBN 0-7695-0853-7. URL http://dl.acm.org/citation.cfm?id=

882486.884103.

Maks Ovsjanikov, Wilmot Li, Leonidas J. Guibas, and Niloy J. Mitra. Exploration of con-
tinuous variability in collections of 3d shapes. ACM Transactions on Graphics, 30(4):33,
2011.

Jay Patel and Matthew I Campbell. An approach to automate and optimize concept genera-
tion of sheet metal parts by topological and parametric decoupling. Journal of Mechanical
Design, 132(5):051001, 2010.

Helmut Pottmann and Michael Hofer. Geometry of the squared distance function to curves
and surfaces. Springer, 2003.

175

https://doi.org/10.1007/s00158-002-0276-1
https://doi.org/10.1007/s00158-002-0276-1
http://dl.acm.org/citation.cfm?id=882486.884103
http://dl.acm.org/citation.cfm?id=882486.884103

Helmut Pottmann, Stefan Leopoldseder, and Michael Hofer. Registration without icp. Com-
puter Vision and Image Understanding, 95(1):54–71, 2004.

Emil Praun, Wim Sweldens, and Peter Schröder. Consistent mesh parameterizations. In
Siggraph 2001, pages 179–184. ACM, 2001.

Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. Make it
stand: Balancing shapes for 3d fabrication. ACM Trans. Graph., 32(4):81:1–81:10, July
2013. ISSN 0730-0301.

Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, December 2000. doi: 10.1126/science.290.5500.
2323.

Greg Saul, Manfred Lau, Jun Mitani, and Takeo Igarashi. Sketchchair: an all-in-one chair
design system for end users. In Proceedings of the fifth international conference on tangible,
embedded, and embodied interaction, TEI ’11, pages 73–80, 2011.

John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. Inter-surface mapping.
In ACM Trans. Graph., volume 23. ACM, 2004.

Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-amorn, and Wojciech
Matusik. Design and fabrication by example. ACM Transactions on Graphics, 33(4),
2014.

Adriana Schulz, Ariel Shamir, Ilya Baran, David I. W. Levin, Pitchaya Sitthi-Amorn, and
Wojciech Matusik. Retrieval on parametric shape collections. ACM Transactions on
Graphics, 36(1), 2017a.

Adriana Schulz, Cynthia Sung, Andrew Spielberg, Wei Zhao, Yu Cheng, Eitan Grinspun,
Daniela Rus, and Wojciech Matusik. Interactive robogami : An end-to-end system for
design of robots with ground locomotion. The International Journal of Robotics Research
(IJRR), 2017b.

Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinpun, and Wojciech Matusik.
Interactive design space exploration and optimization for cad models. ACM Transactions
on Graphics, 36(4), 2017c.

Adriana Schulz, Harrison Wang, Eitan Grinpun, Justin Solomon, and Wojciech Matusik.
Interactive exploration of design trade-offs. ACM Transactions on Graphics, 37(4), 2018.

Thomas W. Sederberg, Jianmin Zheng, Almaz Bakenov, and Ahmad Nasri. T-splines and
t-nurccs. ACM Trans. Graph., 22(3), July 2003. ISSN 0730-0301.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. Spgrid: A sparse
paged grid structure applied to adaptive smoke simulation. ACM Trans. Graph., 33(6),
November 2014. ISSN 0730-0301.

176

Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu. Structure recovery by part
assembly. ACM Trans. Graph., 31(6):180:1–180:11, November 2012a. ISSN 0730-0301.

Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu. Structure recovery by part
assembly. ACM Transactions on Graphics, 31(6), 2012b.

Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. The princeton
shape benchmark. In Proceedings of the Shape Modeling International 2004, pages 167–
178, 2004.

SHREC. 3d shape retrieval contest at eurographics. http://3dor2014.ensea.fr/

SHREC2014.html, 2014. Accessed: 2015-06-02.

Alex Shtof, Alexander Agathos, Yotam Gingold, Ariel Shamir, and Daniel Cohen-Or. Geose-
mantic snapping for sketch-based modeling. Computer Graphics Forum, 32(2):245–253,
2013. ISSN 1467-8659. doi: 10.1111/cgf.12044. URL http://dx.doi.org/10.1111/cgf.

12044. Proceedings of Eurographics 2013.

Maria Shugrina, Ariel Shamir, and Wojciech Matusik. Fab forms: Customizable objects for
fabrication with validity and geometry caching. ACM Trans. Graph., 34(4):100:1–100:12,
July 2015. ISSN 0730-0301.

Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan
Grinspun, and Markus Gross. Designing inflatable structures. ACM Trans. Graph., 33
(4):63:1–63:10, July 2014. ISSN 0730-0301. doi: 10.1145/2601097.2601166. URL http:

//doi.acm.org/10.1145/2601097.2601166.

Mélina Skouras, Stelian Coros, Eitan Grinspun, and Bernhard Thomaszewski. Interactive
surface design with interlocking elements. ACM Trans. Graph., 34(6), October 2015. ISSN
0730-0301.

Seungmoon Song, Joohyung Kim, and Katsu Yamane. Development of a bipedal robot that
walks like an animation character. In 2015 IEEE International Conference on Robotics
and Automation, pages 3596–3602. IEEE, 2015.

Anuj Srivastava, Shantanu H Joshi, Washington Mio, and Xiuwen Liu. Statistical shape
analysis: Clustering, learning, and testing. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 27(4):590–602, 2005.

Ian Stroud. Boundary representation modelling techniques. Springer Science & Business
Media, 2006.

N Sukumar and EA Malsch. Recent advances in the construction of polygonal finite element
interpolants. Archives of Computational Methods in Engineering, 13(1):129–163, 2006.

Timothy Sun and Changxi Zheng. Computational design of twisty joints and puzzles. ACM
Trans. Graph., 34(4):101:1–101:11, July 2015. ISSN 0730-0301. doi: 10.1145/2766961.
URL http://doi.acm.org/10.1145/2766961.

177

http://3dor2014.ensea.fr/SHREC2014.html
http://3dor2014.ensea.fr/SHREC2014.html
http://dx.doi.org/10.1111/cgf.12044
http://dx.doi.org/10.1111/cgf.12044
http://doi.acm.org/10.1145/2601097.2601166
http://doi.acm.org/10.1145/2601097.2601166
http://doi.acm.org/10.1145/2766961

Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen Koltun.
Metropolis procedural modeling. ACM Trans. Graph., 30(2):11:1–11:14, April 2011.
ISSN 0730-0301. doi: 10.1145/1944846.1944851. URL http://doi.acm.org/10.1145/

1944846.1944851.

Johan W. Tangelder and Remco C. Veltkamp. A survey of content based 3d shape retrieval
methods. Multimedia Tools Appl., 39(3):441–471, 2008.

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319, 2000.

Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grinspun,
and Markus Gross. Computational design of linkage-based characters. ACM Transactions
on Graphics, 33(4):64, 2014.

Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun. Sensitive
couture for interactive garment modeling and editing. ACM Trans. Graph., 30(4):90:1–
90:12, July 2011. ISSN 0730-0301.

Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. Guided exploration of physically
valid shapes for furniture design. ACM Trans. Graph., 31(4), 2012.

Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. Pteromys: Interactive
design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph.,
33(4):65:1–65:10, July 2014. ISSN 0730-0301.

Oliver Van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. A survey on shape
correspondence. In Computer Graphics Forum, volume 30, pages 1681–1707. Wiley Online
Library, 2011.

Nuno Vasconcelos and Andrew Lippman. A multiresolution manifold distance for invariant
image similarity. Multimedia, IEEE Transactions on, 7(1):127–142, 2005.

Elif Vural and Pascal Frossard. Discretization of parametrizable signal manifolds. Image
Processing, IEEE Transactions on, 20(12):3621–3633, 2011.

Cheng-Hua Wang and Robert H Sturges. Bendcad: a design system for concurrent multiple
representations of parts. Journal of Intelligent Manufacturing, 7(2):133–144, 1996.

Wenping Wang, Helmut Pottmann, and Yang Liu. Fitting b-spline curves to point clouds by
curvature-based squared distance minimization. ACM Transactions on Graphics (ToG),
25(2):214–238, 2006.

Emily Whiting, Hijung Shin, Robert Wang, John Ochsendorf, and Frédo Durand. Structural
optimization of 3d masonry buildings. ACM Trans. Graph., 31(6):159:1–159:11, 2012.

Kai Xu, Hanlin Zheng, Hao Zhang, Daniel Cohen-Or, Ligang Liu, and Yueshan Xiong.
Photo-inspired model-driven 3d object modeling. ACM Transactions on Graphics, 30(4):
80, 2011.

178

http://doi.acm.org/10.1145/1944846.1944851
http://doi.acm.org/10.1145/1944846.1944851

Kun Xu, Yong Li, Tao Ju, Shi-Min Hu, and Tian-Qiang Liu. Efficient affinity-based edit
propagation using k-d tree. In Siggraph Asia 2009, pages 118:1–118:6. ACM, 2009. ISBN
978-1-60558-858-2.

Yong-Liang Yang, Yi-Jun Yang, Helmut Pottmann, and Niloy J. Mitra. Shape space explo-
ration of constrained meshes. ACM Trans. Graph., 30(6):124:1–124:12, December 2011.
ISSN 0730-0301. doi: 10.1145/2070781.2024158. URL http://doi.acm.org/10.1145/

2070781.2024158.

Hironori Yoshida, Takeo Igarashi, Yusuke Obuchi, Yosuke Takami, Jun Sato, Mika Araki,
Masaaki Miki, Kosuke Nagata, Kazuhide Sakai, and Syunsuke Igarashi. Architecture-scale
human-assisted additive manufacturing. ACM Trans. Graph., 34(4):88:1–88:8, July 2015.
ISSN 0730-0301. doi: 10.1145/2766951. URL http://doi.acm.org/10.1145/2766951.

M. Zeleny. Compromise programming. In J. Cochrane and M. Zeleny, editors, Multiple
Criteria Decision Making, pages 262–301. University of South Carolina Press, Columbia,
1973.

J. Zhang and L. Xing. A survey of multiobjective evolutionary algorithms. In 2017 IEEE
International Conference on Computational Science and Engineering (CSE) and IEEE
International Conference on Embedded and Ubiquitous Computing (EUC), volume 1, pages
93–100, July 2017. doi: 10.1109/CSE-EUC.2017.27.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on evolutionary computation, 11(6):712–731, 2007.

Youyi Zheng, Hongbo Fu, Daniel Cohen-Or, Oscar Kin-Chung Au, and Chiew-Lan Tai.
Component-wise controllers for structure-preserving shape manipulation. Computer
Graphics Forum, 30(2):563–572, 2011a.

Youyi Zheng, Hongbo Fu, Daniel Cohen-Or, Oscar Kin-Chung Au, and Chiew-Lan Tai.
Component-wise controllers for structure-preserving shape manipulation. In Computer
Graphics Forum, volume 30, pages 563–572. Wiley Online Library, 2011b.

Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam Suganthan,
and Qingfu Zhang. Multiobjective evolutionary algorithms: A survey of the state of the
art. Swarm and Evolutionary Computation, 1(1):32–49, 2011.

Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. Two-scale topology optimiza-
tion with microstructures. ACM Trans. Graph., 36(5):164:1–164:16, July 2017. ISSN
0730-0301. doi: 10.1145/3095815. URL http://doi.acm.org/10.1145/3095815.

Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining Guo. Motion-
guided mechanical toy modeling. ACM Trans. Graph., 31(6):127:1–127:10, November
2012. ISSN 0730-0301. doi: 10.1145/2366145.2366146. URL http://doi.acm.org/10.

1145/2366145.2366146.

E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms:
Empirical Results. Evolutionary Computation, 8(2):173–195, 2000.

179

http://doi.acm.org/10.1145/2070781.2024158
http://doi.acm.org/10.1145/2070781.2024158
http://doi.acm.org/10.1145/2766951
http://doi.acm.org/10.1145/3095815
http://doi.acm.org/10.1145/2366145.2366146
http://doi.acm.org/10.1145/2366145.2366146

Denis Zorin and Peter Schroder. Subdivision for modeling and animation. In Siggraph 2000
Courses. ACM, 2000.

180

	Introduction
	The Next-Manufacturing Revolution
	Abstraction of Design for Manufacturing
	Approach and Contributions
	Data-Driven Methods
	Performance-Driven Search Methods
	End-to-End Systems

	Thesis Overview
	Contributions

	Related Work
	Data-Driven Methods
	Parametric Modeling
	Parametric CAD

	Performance-Driven Methods
	Interactive Exploration
	Optimization

	A Collection of Manufacturable Designs
	Introduction
	Manufacturable Designs
	Items Catalog
	Set of Designs

	Parametric Manufacturable Designs
	Automatic Hierarchical Parametrization
	Defining the mapping function F
	Geosemantic Relationships

	Connections
	Discussion

	Retrieval on Collections of Manufacturable Designs
	Introduction
	Related Work
	Representation of Parametric Shapes
	Manifold Approximation

	Algorithm
	Unbounded Manifolds
	Bounded Manifolds

	Retrieval
	Experimental Setup
	Database
	Descriptors

	Evaluation
	Manifold Representation
	Retrieval
	Limitations

	Discussion

	Assembly-Based Design for Manufacturing
	Introduction
	Design Workflow
	Parametric Manipulations
	Composition
	Snapping
	Connecting
	Searching for Connections
	Final Composition

	Results
	Modeling
	Fabrication

	Discussion

	Interactive Design-Space Exploration
	Introduction
	Related Work
	Workflow
	Precomputation Overview and Notations
	Refinement Relations
	Adaptive Sampling
	Refinement Notations

	Adaptive Refinement Strategy
	Motivation
	Algorithm
	Extension to Cubic B-splines

	Homeomorphic Mapping
	Motivation
	Algorithm

	Results
	Application in Shape Optimization
	Limitations

	Discussion

	Interactive Performance-Space Exploration
	Introduction
	Related Work
	Mathematical Preliminaries
	Definitions
	KKT Conditions

	First-Order Approximation
	Pareto Front Discovery
	Data Structure
	Discovery Algorithm
	First-Order Approximation
	Sparse Approximation
	Visualization

	Results
	Experiments
	Design Applications

	Discussion

	Applications
	Introduction
	Interactive Design of Ground Robots
	System Overview
	Methods Overview
	Results

	Interactive Multicopter Design
	System Overview
	Methods Overview
	Results

	Robot-Assisted Carpentry
	Systems Overview
	Methods Overview
	Results

	Conclusion
	Future Work
	Data-Driven Methods
	Performance-Driven Methods
	End-to-End Systems

	Lessons Learned

	Proofs of Interpolation Algorithm
	Notation
	Properties of Step 2
	Local Point Lemma
	Locality proof with Linear Precision
	Preservation over Basis Refinement
	Preservation over Element Refinement

	Example

	Proof of the First-Order Approximation of the Pareto Front

