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Abstract

The usage of image processing in automotive active safety systems has increased
dramatically in the recent decades. Main interest of the digital signal processing
has been in the area of communications or networks, but with various advancements
in the digital image processing, new type of applications has become possible. The
advancement of digital camera technology along with the fast pace of development
of faster microprocessors, it has become possible to implement more advanced image
processing tasks for high-speed applications. The availability of image processing
results in a timely fashion opens up new possibilities. In this project, sponsored by
Ford, we will look at the use of machine vision system to build a standalone system
capable of providing real-time depth map for automated emergency brake systems in
cars.
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Chapter 1

Introduction

Focus of our reasearch is to use active lens to a build depth map for application of

emergency brake system. Depth mapping is a technic that builds distance map of the

3-dimensional environment from various sensors. Depending on the type of sensor,

many kinds of applications are possible. In this thesis, we will focus on the vision

system, especially on the Depth from Focus algorithm.

Chapter one describes various kinds of depth mapping system, introduce what active

lens is, and breifly explain different vision systems.

Chapter two describes more in-depth detail about depth from focus and focus mea-

sure, including it's limitation and choice of the system to be implemented.

Chapter three describes system design process of depth mapping system with active

lens, and how one can build such system.

Chapter four describes the performance optimization of the algorithm, and show how

parallelizaton can speed up the system. Performance analysis of current system are

also discussed.

1.1 Motivaton of Research

Since its invention, automotive has been the major means of transportation for

mankind. Automotive industry is among the largest here in the United States and

elsewhere in the word, producing more than 87 million unit per day [261. There has
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been a number of major renovations in the car industry, but one thing that has not

changed much is the way how cars are operated by drivers. In 19th century and still

in 21st century, human takes the full responsibility for navigating the car in a more

or less similar fashion. During the past decade there has been an increased interest

in the development of fully automated systems that control the car, and a lot of

research is conducted in this area. Development of cars with more complex active

safety systems is one step along this path. There are various forms of active safety in

the cars ranging from lane detection to obstacle avoidance or emergency braking.

Regardless of the methodology all these functionalities require a reliable map of the

surrounding. For example, Emergency brake system refers to a set of sensors and sys-

tem that could activate a brake so that the automotive can be stopped soon enough

to avoid a possible life threatening accident. Such systems are widely studied because

of their importance in controlling the automotive and the safety of the passengers.

There are great number of distractions on the road, and these distractions tends to

cause a harmful result. In an attempt to prevent such situation, many automotive

manufacturers are focusing on the development of reliable system to stop the car in

case of obstacle in front. Sensors that have been studied include laser, stereo-vision

system, and radar. Each of the technologies available today benefit from certain ad-

vantages and suffer from other disadvantages. In this project, I will further study

the potentials of vision systems for collision avoidance and emergency braking in the

cars. More specifically I will investigate the development of mono-vision system for

reliable depth mapping with application to active safety systems.

1.2 What is Depth Mapping

Depth mapping is a technic of mapping surrounding three dimensional environment

to obtain information about the structure of the scenery. Informations about the

distance and three dimensional structure of the environment has a wide range of

applications. At early stage, the depth map has been widely studied in computer

graphics and photography. Nowadays, the interest in the mapping of the distance has

16



increased rapidly in robotics, motion planning, and autonomous driving cars.

1.2.1 Various Approaches to Depth Mapping

To obtain informations of surrounding environment, several different sensors are

widely used. The most popular sensors include laser, radar, sonar and vision sys-

tem. These systems have different advantages and disadvantages. Laser systems use

laser to measure the distance to objects in the surrounding environment. It uses the

time of flight of the coherent light reflected from objects[8. Laser systems, sometimes

also called Lidar, are usually most accurate in the measurement of the distance and

has the most wide range of coverage in terms of the distance. However, laser sensor

systems are usually expensive and is not easy to integrate into existing hardwares

systems. Radar and sonar, similar to Lidar, makes the measurement of objects us-

ing reflection travel time, and they are somewhat cheaper than laser sensor systems.

However, their coverage is usually much shorter than the laser system due to the fact

that radio wave or ultrasonic waves are less coherent than lasers and more prone to

diffraction and obstacles[6]. These systems are also hard to integrate into the existing

devices.

1.2.2 Vision System

Among the various approaches to the three dimensional environment reconstruction

systems, the most widely studied systems are vision system. Vision systems, which

relies on the commercial cameras, compared to other sensor based systems, are the

most cost effective and most easy to integrate into existing hardware systems, such

as automobiles.

Structure from Motion

Vision systems can be classied into two sub-groups, based on the approach, which

are Structure from Motion and Depth from Focus/Defocus. Structure from motion,

sometimes also called SLAM(Simultaneous localization and mapping), is a process of

17



estimating three-dimensional structure of environment from two-dimensional image
sequence obtained from motion of the camera. It couples the local motion of camera
to different images, and estimates the motion by matching the charateristic points,
like SIFT or SURF, which are pixels that can be robustly matched[21. Using the
characteristic pixel correspondances, one can make estimation about how other pixels
would have transformed between motion, and from which one can build the distance
map of those pixels. Typical process of depth mapping procedure for structure from
motion is given in figure 1-1.

Figure 1-1: Sub-procedures in structure from motion algorithm. Ego-motion estimate
refers to estimating the motion of camera and optical-flow refers to pixel matching
problem.

Most of the structure from motion algorithms use stereo-vision, because the pixel
matching problem becomes easier compared to mono-vision systems. In addition,
the distance between the camera can be used as the reference distance that could be
used to convert the pixel distance into actual physical distance. Mono-vision systems
usually suffers from the lack of such reference distance, problem also known as scale
drift[23j. Due to these advantages, stereo-vision systems are most widely studied, but
to make the system more cost effective, mono-vision systems are gaining more and
more interest.

Structure from motion has already been widely applied in robotics[151, motion planning201,
and autonomous driving[51, and couples well with these application due to the fact
that these applications inheritently involve motion. However, due to the fact that al-
gorithm relies on the motion of the camera, structure from motion algorithm cannot

18



Figure 1-2: Depth map obtained using structure from motion for mono-vision system.
KITTI dataset has been used for testing the implementation.

give any information about surrounding environment when the camera is stationary

or slowly moving. In addition, structure from motion algorithms usually suffers from

the long runtime, because most of the structure from motion algorithms are optimiza-

tion problem, which are known to take long time and hard to scale to solve larger

problem[111.

Depth from Focus/Defocus

Depth from Focus refers to the class of algorithms that measures the degree of focus to

estimate the distance to individual pixels. By measuring the degree of focus, one can

determine at which optical setup the pixel is best focused, and use that information to

estimate distances. The advantage of depth from focus/defocus algorithm compared

to structure from motion, is that it does not require the camera motion, therefore can

be used for stationary environment. In addition, the depth from focus algorithms are

usually easy to scale and are eay to reduce the runtime. In our work, we will utilize

the depth from focus algorithm to build the depth map. More detailed analysis of

depth from focus/defocus will be discussed in Chapter 2.

1.3 Active Lens

In this thesis, we will use depth from focus to build a depth mapping system. Depth

from focus algorithms require images taken from different lens parameters, i.e. focal
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length. Active lens provides effective method to change the optical parameters of our

system. In this section, we will look at how active lens operates, and how it can be

controlled.

1.3.1 What is Active Lens

Lens is an optical device that affects the focus of light. It is composed of material

with various index of refraction. Lens is defined by its focal length, which character-

izes how much the light is refracted. Lens is an integral part of any modern optical

system and is used everywhere from everyday camera device to complicated optical

system.

Most of the lens are usually built from glass or solid material with refractive proper-

ties. Therefore, once it is built, it's optical characteristics cannot change. Therefore,

to change the focal length of optical systems, either combinations of different lens are

used, or has to be replaced by other lens with desired focal legnth. Thus, it becomes

hard to change the focal length in a high speed applications due to these issues.

Active lens is a lens that has a variable focal length. It is consisted with a liquid

material that has refractive properties. The liquid material is sealed inside the elas-

tic polymer membrane. Around this polymer membrane, there is an electromagnetic

actuator with coil that is used to exert pressure on the membrane, which changes the

curvature of the membrane and liquid material inside. Therefore, the amount of the

current applied will dictate the focal length of the lens[17]. More detailed design of

the active lens EL-10-30-C series by optotune is shown in figure 1-3.

For the active lens system EL-10-30-C, the focal power is calibrated such that it is

proportional to the amount of current that is applied to the coil in the electromagnetic

actuator.

1.3.2 Controlling Active Lens

The active lens can be controlled manually to have different focal length, and op-

totune provides a communication protocol for developers to build custom software.
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EL-10-30-C

Wd 2c 2b

Figure 1-3: Structure of Active lens EL-10-30-C from optotune manual[17].

Communication with the active lens is done over a USB cable, and one can send

proper set of signals to change the focal length or the driving mode of the signal.

Optotune lens provides various different driving mode as well as lens calibration with

fast response time, which allows the developers to build high-speed applications with

active lens[161. For our application, we will use the focal power mode to control the

active lens so that our overall focal plane is located at specific location.

Highest Temperature
maowest Temperature

Diopter,.

06apter Rawg

Drut..

DIopter.
Currcnte Current (mA) Curent.

Figure 1-4: Relation of focal power of the lens with amount of current applied. Fo-
cal power mode of optotune lens provides drift compensation from the temperature
change[16].

More detailed explanation of the communication protocal can be found at the opto-

tune Lens Driver 4 manual[16 and the code for driving the lens can be found in the

appendix A.
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Chapter 2

Depth from Focus and Focus Measure

Algorithm

Depth estimation has been an important problem in the computer vision, as a dimen-

sion is lost in the image acquisition process of projecting three dimensional world to

two dimensional image. However, by varying the camera parameters, we can acquire

different set of images that has different information about the scenery. Depth from

Focus/Defocus referes to the set of algorithms that measure the distance to various

objects of the scenery from the images obtained using different focal setting.

2.1 Depth from Focus

2.1.1 Depth from Focus Algorithms

Depth from Focus refers to the class of technics that uses the degree of focus to

estimate the distance to individual pixels. By measuring the degree of focus, one can

determine which optical parameters give the best focus for each pixel, and use that

information to estimate the distance.

It is known for decades, that the optical system can be modelled as a linear system as

the lens itself can be understood as a linear operator[12]. As a result, when image of

point is formed on the sensor, one can understand the optical system to be a transfer
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function that is radially symmetric, called point-spread function(PSF). The point-

spread function depends on a distance from a point to lens, focal length of the lens

and the aperture of the optical system. Therefore, when one can make estimation

about the structure of point-spread function of camera system, one can also estimate

the distance to the point when other optical parameters are known.

Figure 2-1: Two dimensional gaussian model of Point Spread Function.

Because we can model the optical lens system as a linear system, frequency analysis

can be used to understand the process of imaging from scenery. Essentially, one can

understand the process of defocusing as a low-pass filter in the frequency domain.

Thus, by analyzing the degree of the spread using fourier transform, we can study

the effect of various camera parameter on the resulting image.

At the earliest development of the depth mapping algorithms, many of the literatures

focused on the passive depth mapping system. Early work done by Petland[181 showed

that using images from different camera settup can provide the informations about

the distance to each pixels. In his paper, he showed that by using a two different

camera with one long depth of field lens, and the other with short depth of field

lens one can extract the depth information of individual pixels. In the analysis of

degree of focus, Petland used focal gradient or Laplacian operator to measure how

well individual pixels are focused. Other approaches include informational entropy

analysis of two different images from different optical setup[1] and etc. Some of the

more recent researches also showed that additional structure to the lens allows one to

recover the depth information with mono-vision system, with one image as well[10.

24



2.1.2 Limitation of Depth from Focus: Depth of Field

Many of the depth from focus algorithm relies on the fact that the degree of focus

will change depending on the relative distance between focal plane and location of the

object. In idealized thin lens model, we assume that the image will only be perfectly

focused when focal plane and distance to scenery is exactly same. In such model, the

underlying assumption is that the pixel size of the image sensor in camera system has

infinitly small radius, and therefore, image will only be focused when the image of

the point source on camera sensor is also an infinitely small point. However, in real

camera, image sensor has a finite size and cannot be infinitely small. Due to finite

size of the pixel on the image sensor, there is a region in space where object in various

distances are all focused. Such region is called a depth of field, and will depend on

the intrinsic camera parameters.

Asue hi en oel it fnt pixe sie-o. aeasnsr h aea

-- - - - - - - -- - - - - - - - - - - - - - ---- - - - -

I0 2

Figure 2-2: Thin Lens model with aperture R, sensor diameter d.

Assume a thin lens model, with a finite pixel size d on camera sensor. The camera is

settup with focal distance f, F-Number N(= f/R). Using thin lens model, we can

write the relation between distance of an object from lens o and distance of an image

from lens i.
1 1 1(21
- + (2.1)Z 0 f
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By varying the distance of the object around o, the image of the point source at

distance 01 will at a location i 1 . However, if the image that is formed at different

distance is within the radius of pixel, resulting image will still be percieved as a

point. Sometimes the radius of this permissible circle is called the circle of confuision.

Geometrically, we can determine the range of image location i1 and i 2 that is still

percieved as a point at the camera sensor.

i2 - d i=2 d -- zi (2.2)
i2 R 1 + d/R (2
z-i1 d i

= - R 1-= d/(2.3)
i1 R I - dI R

Again, using thin lens equation, the object distance o and 02 satisfies following.

1 1 1 (2.4)

Zi 01 f
1 1 1 (2.5)

Z2 02 f

Combining above equations, we can write o, 02 as,

of 2
01 = of2(2.6)

f2+ dN(o - f)

02 = of2  (2.7)
- dN(o - f)

One can write depth of field DOF as the difference between oi and 02.

DOF =2Ndo2 o-f 1 (2.8)
D2 o =dN(o-f)2

For the limit where f < o, we can simplify the euqation.

DOF 2Ndo2  2d 02 (2.9)
f 2  Rf

Therefore, every object in the region DOF around o will be in focus all together.

The concept of depth of field is widely used in photography as well. In the field of
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photograpy, it is known that increasing F-Number N, therefore decreasing R, the

aperture of the lens, depth of field increases, and entire image will be focused.

However, for the depth from focus systems, depth of field degrades the depth resolu-

tion of depth mapping system. Many of those system rely on the fact that at different

distance, degree of focus will change. Since all objects in the region of depth of field

will be focused all together, every system that relies on the degree of focus will suffer

from the effect of depth of field and it imposes a limit on the accuracy of the distance

measurement on such systems.

From above equation, one can observe that DOF oc o2 , i.e. further objects suffer

more from the effect of depth of field compared to the closer object, thus putting a

limit on the coverage of depth mapping system. We can optimize the set up of the

camera to minmize the effect of depth of field as much as possible, by increasing the

aperture size R, or by decreasing pixel size d, to increase the coverage as much as

possible.

2.2 Focus Measure Algorithms

In previous section, we have looked at various depth from focus algorithms and ana-

lyzed the limits on such systems. In this section, we will focus our attention on the

depth from focus algorithms with focus measures, and compare their performances.

Lastly, we will look more closely at the particular choice of focus measure algorithm,

Variance of Wavelet Coefficient, that has been used for the implementation of our

depth mapping system.

2.2.1 Focus Measure

Many of depth from focus algorithms can also be catagorized in a broader categroy

of an algorithms called focus measure. Focus measure refers to the set of algorithms

that measures the degree of the focus, which can be used to measure the degree of

focus for either each pixel or entire image. These algorithms can be understood as

an operator that takes the image, and returns a degree of focus for an individual
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pixels or for an entire image. Figure 2-3 is an example of applying the focus measure

operator.

Figure 2-3: Example of Focus Measure operator for object at 2m distance. We have
used Variance of Wavelet Coefficients.

Many of focus measure algorithms relies on the basic idea that well focused images

typically have high spatial frequency component compared to blurry images. Images

that are in focus represent sharper edges and contain more detailed texture compared

to a blurry image. Using well known frequency analysis technic we can extract the

amount of information contained in the high frequency domain and by comparing the

high frequency content in the images with different focal length, we can make decision

on at which focal length, the image is in focus.

This concept of focus measure algorithms make the procedure of depth estimation to

be a simple search task, as now we can quantize the degree of focus, which allows one

to find the depth by finding the best focused image and its optical setup.

2.2.2 Comparing Different Focus Measure Algorithms

For years, many focus measure operators has been introduced and analyzed. Several

researchers have evaluated and compared different focus measure algorithmsf9, 24, 141.

What most of the literature agree is that ideal focus measure algorithm is unimodal,

monotonic, and reaches maximum only when the image or pixel is all focused[28].

The focus measure operators that have been introduced showed different performances
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in different settings. The paper by S. Petruz et al[22], attempted to make a thorough

comparison of various focus measure algorithms in different settings and compared the

performance of each focus measure operators. They grouped 36 different focus mea-

sure algorithms into a smaller categories, and showed Laplacian based and Wavelet

based operator perform the best in various settings[22]. Based on their research, we

were able to reduce the choice of which focus measure algorithm to use for our depth

mapping system, and with in-house comparion of these measures, we decided to use

the variance of wavelet coefficient as our focus measure. The result of such compari-

son is give in figure 2-4.

1.

0.8

06-

LL.

0 10 20 30 40 50 60 70 80 90 100
Image Number

Figure 2-4: In-house comparison of 36 focus measures from S. Petruz. Experiment
performed by I. Soltani. Variance of Wavelet coefficients shows the most distinct peak
for the test sceneryj7].

In the remainder of this chapter, we will look at what wavelet tranform is and how

variance of wavelet coefficient is defined as a focus measure operator.

2.2.3 Discrete Wavelet Transform

Wavelet transform is an analysis of signal by representing it with a certain orthonor-

mal series generated by wavelet. These wavelets, similar to sinusodial waves in fourier

transform, constitutes the basis functions that compose the signal, and they are de-

fined to be orthonormal to each other, similar to the sinusoidals. However, different

to the sinusodial signals, the wavelets are defined to be a finite signal, with different
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length. Being finite length signal, decomposition by wavelets indicates decomposition

by transient signals.

These orthogonal basis can be constructed by a scaled and shifted version of the

mother wavelet O(x).

S2/20(2'x - j) (2.10)

Because the basis for the decompositions are transient signals, wavelet decomposition

often capture the transient behavior of the signal better than short-time fourier tran-

form. Especially, when the signal that one wish to capture from longer sequence of

signal is known, it shows superior performance compared to other types of frequency

analysis technics. There have been several literatures on different wavelets, and one

of the most widely used wavelets are Daubechies wavelets, family of wavelets found

by I. Daubechies in 1988. Daubechies wavelets have maximal number of vanishing

moments and has finite length[3].

For discrete signals, wavelet transform can also be understood as an octave-band

filter banks. The filter bank refers to an array of band pass filters that separates

the signal into frequency sub-band. Short-time fourier transform, which sometimes

is also refered to as time-dependent discrete fourier transform, is type of filter bank

that separates the signal into equally sized frequency sub-bands. However, for the

discrete wavelet transform, the sub-bands do not have equal size, but rather changes

depending on the frequency. To be more specific, at each stage of analysis, the low-

pass band is splited in half, resulting in octave-band decomposition. In addition, the

set of wavelet filters can be built to satisfy perfect reconstruction condition, which

indicates that information is not lost in the process of decomposition and therefore

has equal amount of information as the origianl signal.

The advantage of the wavelet transform over fourier transform becomes evident when

we compare their sub-band structure. As in figure 2-5 fourier transform has equal res-

olution for every frequency band, therefore, does not contain any information about

the time locality. However, wavelet tranform's resolution in frequency domain in-

creases for low frequency band, and decreases for high frequency band. The change
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Figure 2-5: Octave band decomposition in discrete wavelet transform compared with
short-time fourier transform. Frequency resolution increases for lower frequency band.

in the resolution depending on the frequency band provides information about the

time locality of the discrete time signal, thus capturing transient behaviors in the

signal better than fourier transform. Discrete wavelet transform can be implemented

using a cascade of filters as in figure 2-6. Similarly, for two-dimensional signal, one

can decompose the signal as in figure 2-7.

H(g) 2: yn.

Figure 2-6: Discrete wavelet transform as a cascade of convolution.
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Convolve with filber X the rows of the entry
columnsW Convolve with filter X the columns of the entry

InItialization CAO = s for the decomposition initialization

Figure 2-7: Two dimensional discrete wavelet transform as a cascade of
convolution[251.

2.2.4 Variance of Wavelet Coefficients

Variance of Wavelet Coefficient is a focus measure operator that reflects the strength

of high-frequency detail in the image. It computes the variance of the wavelet trans-

form coefficient in high frequency sub-band, and therefore can be understood as sum-

mation over the window of high frequency energy[4].

For a given image I(x, y), consider the window E of size w by 1. Then, one can

consider it's window in corresponding wavelet decomposition in two dimension for

1st-level LH, HL, and HH. Denoting each decomposed image as WLH, WHL, and

WHH, one can write variance of wavelet coefficients as follows.

FM=+ ( (WLH(ij)-iLH)2  (2.11)
(ij,)E ELH

+ 5 (WHL(i,j) - IHL) (2.12)
(i,j)EEHL

+ 5 (WHH(ij) -HH)2 (2.13)
(i,j)EEHH
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Figure 2-8: Variance of Wavelet Coefficients.

One can generalize this to further level of decomposition by applying smaller window

at every level. At nth-level decomposition, the effective window size is given by [g, ].

As the degree of focus increase in individual pixel window, variance of the wavelet

coefficients will increase as the high frequency content in each window will increase

and reach maximum when the pixel is all-focused. One can also change the window

size to control the resolution of the resulting depth map.

33



34



Chapter 3

Depth Mapping Algorithm and

Active Lens

In previous section, we have showed that variance of wavelet coefficients can be used

to measure the degree of focus for individual pixels, and how it is computed. Using

this focus measure operator, one can show at which focal distance, each pixel becomes

in focused, and determine the distance to the object where that pixel belongs. In this

section, we will study how one can build depth mapping system using focus measure

operator and active lens. In addition, we will investigate what noise filtering criteria

can be used to eliminate the noisy data points to acquire reliable depth map of the

scenery.

3.1 Focus Measure and Depth Mapping

3.1.1 System Design

Basic setup of our system consist of basic camera system attached with normal optical

lens and active lens attached in front of the lens. Entire optics system is mounted

on a tripod to acquire images of the scenery. We have used Basler camera acAC640-

750um, which allows upto 751fps capturing, and normal lens with focal length of

25.2mm. We can calibrate the settings of our optical system to minimize the effect of
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depth of field. In this section we will generalize the depth of field that was discussed

in Section 2.1.2 to our optics setup of one lens system with active lens attached. We

can model our system as two thin lens system as given in figure 3-1. Assume that the

R
d

Figure 3-1: Modelling the active lens system. The distance between camera sensor
and ordinary lens is D1 and distance between two lenses are D2 .

object is at distance i from the active lens and, and active lens is calibrated such that

it is perfectly focused. From the calibration of the active lens, we get the following

equation.

1 1 1
ib 1 f 2

1 1 1
+ --- =(3.1)

D 2 - b1  D, fi

Above equation tells us that if active lens is calibrated such that the focal plane is

located at i, the image of point source at the distance i from the optics system, will

be a point on the image sensor as well. The variable b1 is a dummy variable in the

intermediate step where the image from first lens(i.e. the active lens) is formed.

Now let's move our object to distance o such that image will not be perfectly focused.

We can write similar relation between the new location of object, and the location
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where the image of an object is formed.

1 1 1
o b2  f2

1 1 1
+ -(3.2)D2- b2 a fi

The difference of the equation 3.1 and equation 3.2, is that because in general the

distance to the current focal plane i and the distance to object o is different, image

of the object will not be formed on the image sensor (i.e. D 1) but will be at some

location a. In theory, object in new distance will not be perfectly focused and it's

energy will be spread over a circular radius r. However, due to the finite size of pixel

on the image sensor, if r is smaller than the size of pixel d, image on the sensor would

still be perceived as a point, and therefore will seemed to have been all focused.

R
- -- --------------

D,

Figure 3-2: Triangle similarity relation.

We can derive the allowed distance a in relation to pixel size d using simple geometry.

Di-a D11 1 d
d = R ID -a = RJ( - 1) 1 -+ - = 1(1 -) (3.3)a a a D, R

Now, let's write the radius of the point spread function d in terms of camera param-

eters (fi, D 1, D2) and new object distance o and original object distance i. We start
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by eliminating the dummy variable bl, b2 .

1 1 1 i-f 2  b if 2
b1  f2 i if 2  - f2

1 1 1 D1 - f2 Dif2
D 2 - bi f D Dif2  D -f2(3.4)

Adding the two equations, we get the following relationship between f2, i.

D if2  Difi_ 1 1 1D2 = . f + - ---i = -- + I ii(3-5)- f2 DI - f, f2 z D 2 - Difi (

We can write a similar relation for the object distance o and its image location a by
eliminating the dummy variable b2 -

1 1 1 o-f2 of2
b2  f2 o of2 0 - f2

D 2 b2  I af 2  +D 2 - b2 = af2  (3.6)
D2- b f2 af2a -f2

Again, adding above two equations,

of2 afi 1 1 1D2 =+ - -- =(3.7)
o - f2 a -f 1  o f2 D 2 - afi (3,

a--fi

Now replacing - and from above, we get the following result for the distance o.

1 1 1a f2 D l

afi0of2D
2 - a-fi

1 1 1
D - Dif, D af1Dl-fi 2 a-fi

1 1 1
+ D2 - Dif D2 Dif dD,--fi Dl-fitfi

Df fi d
1 D1 -fi D 1 fIR

(D2 - Dif )(D2 Difi 1 RDi--fi Di-fi 1 D f
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The relation given in above equation seems quite complicated, however, we can make

a guess that the difference 1 - itself is independent of object's distance i or the new

distance o. In addition, the D2 dependence of j -- is simply inversely quadratic.

Therefore, we can get smallest difference between i and o, i.e. depth of field when D 2

is very large.

The dependence of depth of field on D1 however, is very complicated. Finding a

closed form solution of D1 that maximizes the difference between i and o can be done

by differentiating the difference by D1. Setting the derivative to be 0, we get the

following value of D1.

D2f 1  d
Di = 2fl (3.9)

D2 - fl

Thus, to minimize the effect of depth of field, we can set lens to sensor distance to

be 49mm and lens to active lens distance to be as far as it can be.

3.1.2 Depth Mapping with Active Lens

After optimizing the optical setup, we can now use active lens to construct the depth

map of the scenery. Basic idea of depth mapping with active lens is by changing the

focal power of the active lens, each pixel points wii be in focus at different instance and

from which we can determine the distance to the object where that pixel belongs.

The active lens allows us to change its focal power by communicating over USB

connection. By sending proper signal to the active lens, we can change it's focal

length, and change the overall focal power of entire optical system. To build a depth

map, we would like to capture images with focal plane at equally spaced distances.

Again, using the thin lens model, from figure 3-1, we see that following expression

holds.

11 1

i b f2

1 1 1
+--- = (3.10)

D2-- b Di f,
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We can eliminiate b, and get following formula.

1 1 1

f2 D 2 - Difi

7 + (3.11)

i.e. required focal power of the active lens is inversely proportional to the distance of

required focal plane plus some constant that is dependent on the camera calibration.

Therefore, to obtain images with focal plane at equal distances, we need to set the

focal power to change inversely proportional to distances. We have calibrated the

parameter 7 from equation 3.11 of the system so that every image we obtain has a

focal plane located at every 5 cm starting from 50 cm to 10 m.

Figure 3-3: Images of three objects with different focal plane location. Image on the
left is focused at im, where as the image on the right is focused at 2m

To test our depth mapping system, we have placed 3 MIT logos at 1m, 2m and

4m away from the lens. The set of images captured will be defocused based on the

location of focal plane as in figure 3-3.

After capturing these images, we apply variance of wavelet coefficient operator for

each images, which will measure the degree of focus for each pixel. Typical signal we

find will show well localized maximum as in figure 3-4. At the image index where the

pixel is in focus will show maximum degree of focus, and we can find the distance to

pixel based on the image index. We can perform this operation for every pixel, and
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get prilimiary depth map as in figure 3-5.

The basic idea of finding the maximum among focus measures of different focal setting

was studied here at Mechatronics Research Laboratory at MIT, and to show the proof

of concept, depth mapping system was built using kurtosis and smoothness index as

an error criteria using Labview[7].

Focus Measure for Object at 1m

0.9-

0.8-
0.7

0.-

0.4-

03-

0.2-

0.1-

0 'J 
-L 1 10 10 20 30 40 50 60 70 80 90 100

image index

Figure 3-4: Change in energy in high frequency band. Object is located im away
from the lens.

Figure 3-5: Prilimary Depth Map from finding the maximum of Focus Measure.
Colorbar on the right indicates the coverage of Depth from 50 cm to 10m. Edges
which has relatively high frequency energy show clear depth information.
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3.2 Improving Depth Mapping Algorithm

In previous section, we showed how the active lens is used in our depth mapping

system, and the process of building depth map. In this section, we will discuss

some of the methods that could improve our system; Heisenberg Uncertainty criteria,
Second level decomposition and variable threshold.

3.2.1 Filtering Noise

Prilimary depth map shows a good performance for finding depth informations, but

also contain various noisy pixels. These pixels are the points that don't have enough

texture so that the defocusing does not change the underlying energy content of pixel.

To build a reliable depth map, we need to filter these points and label them to be

unknown.

Noise Criteria

To distinguish noise to signal, one could use well-known statistical measures, such

as Kurtosis, Standard deviation, or Signal-to-Noise ratio. In house experiment on

these measures has been tested using Kurtosis, Standard deviation and smoothness

indexf7]. However, due to the fact that these measures are statistical measures, it

ignores the structure or the shape of the signal, and usually does not perform well as

in figure 3-6. Therefore we need a better error criteria to filter out the noisy points.

Figure 3-6: Depth Maps from using other criterias. From left, noise criteria used are
Standard Deviation, SNR, Kurtosis. Calibration and resolution is different.

Key idea to find a better criteria is to observe that signal and noise show very different
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behavior over image index. From figure 3-7, one can observe that the signal, compared

to the noise are usually well localized. In other word, focus measure over the image

index shows very trasient behavior, such that it will show sharp transition around the

peak, whereas the noise is more spread out over the image index.

0

0

0 20 a0 a so 100

Image Index

Figure 3-7: Typical change of energy in high frequency band. Signal shows clear
localization compared to noise.

Therefore, one can use a criteria that measures how well localized the signal is to

distinguish signals from noise. To measure the locality of the signal, we can borrow the

idea of locality from Quantum Mechanics, and Heisenberg Uncertainty principle[4].

o2 = (X-xo)2 f(x)2  (3.12)
f_0 f(x)2

Heisenberg Uncertainty principle defines how one can measure 'locality' of the signal

around the point x0 . One can also understand above equation as a quadratic cost

function around x0 , i.e. the more spread out the function is around xo, higher the

uncertainty is. When the function is all focused at one point, for example a dirac

delta function f(x) = 6(x - xo), uncertainty measure is 0. Also using functional

analysis, one can show that uncertainty measure is maximized for the case when the

function f(x) is maximally flat.

Therefore, one can understand that above definition of uncertainty will measure the

locallity of the signal well, and can be used as an error criteria to distinguish signal
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Figure 3-8: Different signals and their locality.

to noise for our system.

Utilizing Heisenberg Depth Resolution

In order to use depth uncertainty criteria for our system, one must convey the fact

that integration will be done in discretized finite space instead of continuous infinite

space. Due to the fact that the integration space is finite, the cost function (x - XO)2

becomes asymmetric, and cause a bias for the values that are close to the boundary.

One could mitigate such problem by normalizing the cost function as well. Therefore,

the discretized version of uncertainty measure for the focus measure FMj can be

written as follows.

2 _ (i -- o) 2FM/
= FM2 E(i - io)2 (3.13)

Applying this criteria for our depth mapping system, we get the depth map as in

figure 3-9.

We can observe that Heisenberg Uncertainty criteria performs much better compared

to the statistical measures, such as Kurtosis, Signal-to-Noise ratio, in both coverage,

and false positive ratios. From now on, we will refer to the system with Heisen-

berg Uncertainty criteria combined with finding maximum location, as Heisenberg

Uncertainty system, and the error measure as Heisenberg Depth Uncertainty.
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I 6m

___ * W50cm

Figure 3-9: Resulting Depth Map of applying Heisenberg Depth Uncertainty. Depth
scale has been reduced to 6m so it is easier to compare the different objects visually.

3.2.2 Second Level Decomposition

First level wavelet decomposition is equivalent to have a high pass filter with cutoff

frequency around 7r/2. We can therefore, think about improving the system by ex-

tending the cutoff so that low textured pixels will contribute to the energy, which

may allow us to find depth information for some of the pixels that were unknown.

4 2

Figure 3-10: Octave band decomposition in discrete wavelet transform.

In wavelet decomposition, it is quite simple to extend the filter to have a lower fre-

quency cutoff. In frequency domain, wavelet decomposition is an octave band filter

bank, and we can easily decrease the frequency cutoff by extending to lower levels of

decomposition. In addition, because the wavelet filters are orthogonal to each other,
any information we gain from lower level decomposition will not overlap with the

information that is currently known, and therefore will only improve the system in

terms of the number of pixels that we can recover the depth information.

Thus, to improve the detection rate of our system, we can extend the frequency cutoff
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by including second level wavelet decomposition. Extending the filter to lower levels

can be implemented quite simply by applying the first level decomposition recursively

to lower levels. Resulting depth map from including second level decomposition is

given in figure 3-11.

6m

50cm

Figure 3-11: Depth map including second level decomposition. One can observe that
more pixel depth are recovered.

From figure 3-11, one can easily observe that the detection rate of pixels vastly im-

proved from single level decomposition. Considering same error threshold for Heisen-

berg Uncertainty criteria, the detection rates improves from 7.8% to 15%.

We can also draw a histogram of depth distribution for both single level decompo-

sition and second level decomposition. The histogram, of the depth map we obtain,

where x-axis corresponds to the depth of each pixel, and y-axis corresponds to the

number of pixels within that depth bucket is given in figure 3-12.

Histogram analysis shows that the number of pixels that we recover from second level

decomposition almost doubles compared to the single level decomposition. In addi-

tion, one can also see that the peaks in the histogram, which corresponds to the three

objects in the system, have become more distinct for the second level decomposition

compared to single level decomposition.
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Histogram of Distance Count for First Level and Second Level Decomposition

Distance

Figure 3-12: Histogram of pixel depths recovered from first level and second level
decomposition. The number of pixels that are recovered doubles by incorporating the
second level decompositions.

3.2.3 Variable Threshold for Heisenberg Uncertainty Depth

Resolution

In previous section, we have seen that adding second level decomposition enhances

our depth mapping system, by increasing the detection rate for the pixels, and pro-

ducing depth information for more pixels. We can further improve this system by

applying variable threshold for Heisenberg Depth Uncertainty.

To test how focus measure changes as the object is located further from the lens, we

have placed an object at several distances and measured the change in focus measure.

From the figure 3-13, the experiments on same objects on different distances, one may

find that the locality of the energy distribution over the image index degrades as the

object is futher from the camera. This is natural result of the depth of field; further

objects become harder to distinguish. This fact natrually leads to the idea of variable

threshold for Heisenberg Uncertainty criteria. Further objects would naturally have

a worse localization compared to closer objects, and thus will be more likely to be

classified as a noise. One can test this effect by looking at the maximum/minimum

error that we find for each depth. Figure 3-14 shows the maximum and minimum
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Figure 3-13: Change in energy distribution for same objects in different distances.
One could observe the locality degrades as the object is at further distance.

Heisenberg Depth Uncertainty for each depth. The figure is obtained by finding for

each depth, maximum and minimum Heisenberg Depth Uncertainty.

Maidmum/Minimum HeIsenberg Uncertainty for each Depth
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Figure 3-14: Maximum/Minimum Heisenberg Uncertainty for different distances.
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From the above analysis, we can find two properties. First, the maximum error for

each plot is almost uniform regardless of the depth, and is close to the Heisenberg

Depth Uncertainty for maximally flat signal. For our experiment setup, of 200 image

frames, maximally flat signal(i.e. f(x) = 1) gives Heisenberg Depth Uncertainty of

4000, which is very close to the average maximum uncertainty we obtain from the

experiment. Second, we observe that the minimum value of Heisenberg Uncertainty

Depth Resolution, increases as the depth increase. That is, the best signal we find

at further distance shows larger Heisenberg Depth Uncertainty than the best signal

at closer distance. This precisely conveys the fact we have found from the previ-

ous experiment; Energy distribution of further objects are less localized than energy

distribution of the closer objects. From this fact, it is obvious that we must apply

different threshold to filter the depth information with Heisenberg Depth Uncertainty.

Using the minimum values of the Heisenberg Depth Uncertainty, we can come up with

a linear model that explains the behavior of minimum Heisenberg Depth Uncertainty,

and use that relation to find a threshold for filtering the noise by adding a constant

shift to the linear model.

Below is the resulting depth map from applying variable threshold which improves

our detection rate from 15% to 16.1%.

10M

150cm

Figure 3-15: Depth Map using variable threshold for Heisenberg Depth Uncertainty.
The number of pixels we recover increases, with some noise.

Looking at the resulting depth map, we could observe that some of the missing points
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at further distances are now recovered. However, the points that were classified as

error are now classified to be at further distance because the error criteria for further

points has been eased.

3.3 Modeling the Energy Distribution

In previous sections, we have seen how we can increase the detection rate by including

second level decomposition as well as by applying the variable threshold for Heisenberg

Depth Uncertainty. In this section, we will discuss the improvement in somewhat

different direction, that is to use less number of images to find depth map with

similar performance.

3.3.1 Energy Distribution of Variance of Wavelet Coefficient

Current depth mapping system uses 200 images with different focal plane that is sep-

arated by 5cms. This gives us a depth resolution of 5cm, which is better or on par

with other depth mapping systems that have been studied. Our system shows high

depth resolution, because the energy distribution over image index is well localized

for our methodology, especially for closer objects.

The variance of wavelet coefficient shows clear and distinct peak at the location where

the pixel is in focus. Therefore, our system requires well localized signal, and needs

many images acquired for different focal plane. For a passive mapping system, re-

quiring many images is not a big issue. However, to build a depth mapping system

for moving vehicle, we need to reduce the number of images captured and processing

time as minimal as possible. In our current system, we were able to mitigate such

problem with a camera that can capture 751 fps, but such device is both expensive

and sensitive to lighting condition.

Therefore, in this section, we will look at how we can use less number of images to

build a depth map and still get a similar performance with the previous approach, by

modeling the energy density itself, and fitting our experiment to the model.

50



3.3.2 Point Spread Function of Active Lens System

The process of defocusing in the digital image can be understood with the concept of

the point-spread function as discussed in section 2.11. In this section, we will derive

the structure of point spread function using geometrical optics. Consider the two-thin

lens model that we have considered in the section 3.3.1. We have used the thin lens

equation to model how the point source in the world is spreaded out on the image

sensor, and showed, if the spread of the point ousrce is within the size of the pixel,

the resulting image would still be in focus, and therefore result in the effect of depth

of field.

Rd

------ --------- 
------ ,----

-- -- D21

Figure 3-16: Modelling the active lens system. The distance between camera sensor
and ordinary lens is D1 and distance between two lenses are D2.

Extending the anaylsis from Section 3.1.1, we can derive how the spread of light

intensitiy will change, by varying the focal length of active lens. Following analysis is

comparable with the analysis from Section 3.1.1. Consider the same setup of two thin

lens system, where the camera parameters are set exactly the same as before. Then

let's assume that the object is at distance o from the active lens, and active lens is

calibrated such that it's focal plane is located at distance i. From the calibration of
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the active lens, we get the following equation.

1 1 1
bi f 2

1 1 1
+ -(3.14)

D2-- bi DI fi

Above equation tells us that if active lens is calibrated such that the focal plane is

located at i, the image of point source at the distance i from the optics system, will

be a point on the image sensor as well. The variable b is a dummy variable in the

intermediate step where the image from first lens(i.e. the active lens) is formed.

We can write similar relation between the location of actual object, and the location

where the that object is formed.

1 1 _ 1

o b2  f2
1 1 1+ -- = - 1(3.15)

D2- b2  a fi

The difference of the equation 3.14 and equation 3.15, is that because in general the

distance to focal plane i and the distance to object o is different, image of the object

will not be formed on the image sensor (i.e. D1 ) but will be at some location a.

Therefore, the image that will formed on the image sensor, will not be a point, but

will be spreaded to some radius r.

We can derive the radius of the spread r using simple geometry.

r RI D a I = RI(D - 1)J (3.16)
a a

Now, lets write the radius of the spread r of point source in terms of camera param-

eters (fi, D1, D2) and object distance o and image index i. We start by eliminating
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d

DI

Figure 3-17: Triangle similarity relation.

the dummy variable bl, b 2.

I 1
bi f 2

1 _ 1

1 _i -- f 2

if 2

DI - f2
Dif2

i- f 2

Z - f2

Di f2SD2- b2 = f2
D1 -- f2 (3.17)

Adding two equations, we get following relationship between f2, i.

if2  DIf1  1 1 1
D2 = -. 2+ -- = --i +i - f2 D1 - fi f2 D2 -Di-fi

(3.18)

This relation shows the required focal power of the active lens to have a focal plane

located at distance i from the active lens.

We can write similar relation for the object distance o and its image location a by

eliminating dummy variable b 2 .

1 1 1 o - f2 2 Of2

b2 f2 0 of2 0 - f2
1 1 la-f 2  af2= f2 a -- a -D2- b2 = -D2 - b2 f2 a af2 a - f2
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Again, adding above two equations,

of2 afi 1 1 1D2 =af + -+ -= (3.20)
o - f2 a - fi a i D2 - 0-f

This relation shows the location of the image of an object at distance o from the lens,

when the active lens is calibrated to have a focal power of f2.

Now to find the radius r, let's write the image location a in terms of object distance

o and image index i by eliminating the focal power of active lens f2.

1 1 1
a fi D2 - 1T

f2 0
1 1

fi D 2 -1 +
D2-D 1

1 1 (3.21)
fi D 2 - 1

7 0+ D2--

Radius of the spread can be written as following.

r=RI(S -- 1)Ia
D1 1

=RJ( D _ )1 (3.22)

D2-D1

To write a simler expression, we will introduce three parameters A, B and A that has

following relationships.

A =D - 1
fi

B D2

fi

1 1 (3.23)
1 0

Parameter A and B entails the relations between camera's calibration and A encodes

the relation between focal plane i and object distance o.
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Now the radius r can be written as follows.

r = RJ(A - A 1) (3.24)
B + I -

Now as a final step, to get the spread over the image sensor(i.e. the radius of point

spread function), we can just divide r by the pixel size d. Therefore, the radius of

point spread function can be written,

R A + 1R 

= (A -) + (3.25)

d B +- -

As a check on the validity of the model, we can check that setting i o, i.e. A = 0,

we get a = 0, therefore, all-focused image. To model the point spread function, we

will use a Gaussian Filter with variance a as a model of defocusing.

3.3.3 Energy Distribution over Image Index

Point Spread Function and Energy Distribution

With the model of the point spread function, we can now consider how the energy

distribution would change over the image index. One simple test that we can perform

is to have a test image, and apply Gaussian Kernel with variance a that we have

obtained and measure its energy. Following is the result of such testing.

From this test, one can observe some key factors that we have seen from the actual

experiment with active lens. First, we can observe that as in real world experiment,

the energy distribution shows asymetric distribution. From the experiment, we have

seen that the energy distribution shows sharper transition before it reaches maximum,

and decays more slowly after it reaches the maximum point. We can observe similar

characteristic in our model as well. Second, we can obviously see that the depth of

field, which can be measured in our toy model as the number of image indicies that is

saturated at maximum, increases as the target object distance becomes further. For

the camera calibration, we can actually calculate the depth of field from our model,
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Focus Measure of Objects and Model from Point Spread Function
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Figure 3-18: Energy Distribution obtained from point spread function model. Objects
were placed at 1m, 2m, 3m, and 4m from the lens.

and get a result that matches our experiment on depth of field. From this result, we

can conclude that our model explains the general structure of the energy distribution

over image index.

However, if we compare the model with our actual experiment, we could see that two

does not match as well as we have expected. Key difference between the experimental

result and the model is that the transition from in focus image to defocus image is

rather smooth for the experimental result, whereas for the model, transition is very

sharp. Such behavior happens for every model energy distribution for various object

distance, and therefore we can conclude that this model is not suitable to fit our

measurements to find the distance to object.

Finding Point Spread Function from Experiment

We can investigate what the problem is by analyzing the difference between the radius

of point-spread function from model and experiment. To compare them in parallel,

let's first consider how to find the radius of point-spread function itself from the

experimental data.
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Consider a two dimensional discrete Gaussian Kernel, of variance a in time domain.

f In,m] C (n 2+m2 )/202 (3.26)

Its discrete time fourier transform pair is also a gaussian, but with variance 1/0.

F(n, wm) = e-( +W )02/2 (3.27)

Now, consider the integration over a fourier domain. Variance of wavelet coefficient

will be the high frequency band component of this integration squared.

JJ dwndwmF(i n, Wm) = dWndwme-(w +n 2 /2 (3.28)

which is a gauss integral. From the gaussian integral, we know that above integra-

tion will be proportional to I/, and therefore, the energy transfer function will be

proportional to 1/o 2

Because the transfer function reduces by 1/ 2 as a function of variance of gaussian

filter, we can imagine that high frequency band will also decrease by same rate. Al-

though such approximation is dependent on the type of band pass filter and as well as

the structure of underlying image, we could believe that it will generally show similar

relationship with some constant factor. Therefore, we can think that the radius of

point-spread function from our experimental data will have a relation as equation

3.26 upto a constant factor. For focus measure FMexp(i) measured in experiment, we

can write the radius of point-spread function as,

aeXp(i) 1 (3.29)
/FMexp(i)

Using above relation, we can compare the radius of PSF from experiment and model,

to analyze the discrepency between two energy distribution over the image index.

Following is the plot of comparing the radius of PSF for model and experiment of an

object at distance 2m away from the lens.
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Figure 3-19: Comparison of PSF model and experiment PSF.

Figure 3-19, it becomes evident what the difference is in the model and the exper-

iment. Both model and experiment behaves similarly at the image index that is far

away from the location of object. However, as we move closer to the image index

where object is located, our model decreases rapidly reaching 0, and makes a sharp

turn and starts to increase, where as in the experiment, the transition around the

minimum value is more smooth. Especially the fact that the model shows a sharp

turn at the minimum value causes the model to have discontinuous first derivative

(i.e. non-differentiable) and results in the rapid change in the energy distribution

around the image index where energy becomes maximum.

Applying Kernel around Local minima

To mitigate this issue, one can introduce artificial smoothing around the local mini-

mum of the model point-spread function radius. One of the possible choice is to use

reciprocal gaussian kernel around the local minimum. Multiplying reciprocal gaussian

function around the local minimum would make the function differentiable at local

minima, and we can expect that would soften our transition from out of focus index

number to in focus.

Another option is to use reciprocal of log normal distribution, which shows similar
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Figure 3-20: Reciprocal Normal
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effect of more smooth transition of energy distribution, and also can enhance asym-

metric structure of the energy distribution. Result of imposing reciprocal log-normal

around local minima is plotted on figure 3-21. In order to get a good fit, we need to

scale and add some constant shift to the original model.
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Figure 3-21: Normal Kernel and LogNormal Kernel compared with experiment PSF.

Introducing arbitrary kernel into the function may seem implaussible, because it seems

to be a pure mathematical trick. However, we can think more carefully about the

model and can be convinced that such choice can be interpreted to have a physical

interpretation. At the local minima, our point spread function will have zero radius.

That means at an image index where focal plane perfectly matches the distance to an

object, point source will also be a point on the image sensor, and no energy will be
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lost. In other word, we can think of the transfer function from light source to image

sensor to be a dirac-delta function. However, in more realistic setup, we know that

such perfect transfer is impossible due the diffraction and other anomallies rising from

wave-like behavior of the light. That is, the geometrical optics and thin lens model

that we have used to model our point spread function is highly idealized model of the

real world. Therefore, we can be convinced that introducing artificial kernel can be

understood as a compensation for the effect of fourier optics.

Now we could use our model to fit our data and make comparison. Using the relation

of equation 3.29, we get following relationship for the energy distribution.

FMtheory() 2 (3.30)
model

Comparison with the experimental data is shown in figure 3-22. Model has been

optimized with the proper parameters to have minimum error.

FoFigum 3-22 sf Otfpm e t Owg Dftbibufttg frm LogNorga Iamkaleeadh
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Figure 3-22: Result of optimized fitting to experiment. LogNormal kernel around the
minimum smoothes the transition at maximum value.

As we can see from above figure, our model matches the experiment result very well.

It maintains the both characteristics that we have seen from previous attempt, which

is to have asymmetric structure, and worsening of resolution of depth for further dis-

tances. In addition, by introducing LogNormal kernel around the local minima, we

now have more smooth transition, which matches the experiment result very well.
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3.3.4 Depth Map from Model Fitting

Now with the model, we can use it to find the depth of individual pixels. Given the

measurements of energy distribution for some number of image indicies, we can try

to match it with our model. Model has three parameters, which are distance to ob-

ject, variance of LogNormal kernel, and constant multiplied to match overall fit. We

can use optimization algorithms to find a set of parameters that minimize the error,

which can be calculated as a sum of difference of squares for each measurement and

expected energy distribution. We can perform such optimization process for every

pixel points, and use the optimal value of depth we found as our expectation of the

distance to that pixel point. In addition, we can use the error of the fit itself as a

criteria for the noise to signal comparison. High noise would indicate less likeliness

of the pixel being a signal.

Below is the resulting depth estimation of the pixels from fitting the model compared

with the depth map from Heisenberg depth uncertainty using same energy measure-

ment as before; 5cm resolution upto 10m.

We can observe that the resulting depth map from model fitting is comparable to the

Heisenberg depth uncertainty method. It successfully capture the distance to each

pixel well, and shows similar error characteristics as in Heisenberg depth uncertainty.

Using less frames with fixed interval

The strength of modelling the energy distribution comes from the fact that we now

may estimate the depth with fewer measurements. For Heisenberg depth uncertainty

method, we had to have images at high depth resolution, due to the fact that the

signal we find will be highly transient. Therefore, if we decrease the sampling rate,

i.e. acquire images at longer distances in between, we won't be able to make accurate

estimation of the depths. However, with the model of energy distribution over image
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10m

150cm

Figure 3-23: Resulting depth map from model fitting and Heisenberg Depth Un-
certainty. Both maps have threshold value such they have equal number of known
pixels.

index, we can now try to make an estimate of each pixel depth with fewer points.

depth parameter will be determined from the overall shape of the measurement, and

therefore will not depend only on maximum location of the measurement. We can

test whether this argument is true by sampling our original measurement. In order

to use 100 frames, which corresponds to 10cm depth resolution, we just need to use

our data at every even numbered index. Similarly we can test the resulting depth

map for 25, 10, 5 frames.

From the figure 3-24, we can observe few important characteristics. First, the result-

ing depth map is on par with Heisenberg depth uncertainty even with 25 frames of

images. Now we are using 1/8th of the image number compared to Heisenberg depth

uncertainty method, and getting similar depth map. Therefore, we can see that our

argument that modelling will help to use less number of images is correct. Second, as

we decrease the number of images, for example using 10 images, performance of the

depth estimation degrades more severely for closer objects. This is an obvious result

as we have discussed previously. For closer objects, the signal will be more localized

compared to further objects, and as a result, will have highly transient signal. That

means, if we decrease the number of the frames objects at closer distance will more

likely to be not focused, and therefore our method will fail to find distance to those

objects.
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Figure 3-24: Depth Map using less number of images with fixed interval. From left
to right, top to bottom, algorithm uses 200, 25, 10, and 5 frames.

Using less frames with variable interval

There is a simple remedy for such issue. That is to vary our sampling rate depending

on the distance. Simply speaking, we could take more images at closer focal plane,

and take fewer images at further focal plane and we can determine how one should

vary the sampling rate based on the depth of field. Starting from image index 1,

which has focal plane located at 50cm, we add amount of depth of field from that

point. Then, we iterate this process until we reach 10m point.

Above is the result of using 40 frames for a distance from 50cm to 10m wtih variable

sampling rate, where distance between each image index's focal plane is determined

based on depth of field, and sub-sampled version of using 40 frames, which uses 20,

10 frames individually. As we could observe, comparing with the depth map we have

obtained from using fixed sampling rate, the performance is enhanced dramatically

for closer pixels and many pixels that were missing is now restored.
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Figure 3-25: Depth Map using less number of images with variable interval. From
left to right, top to bottom, algorithm uses 200, 40, 20, and 10 frames.

Depth of Fild at Depth of Field at
Image index I Image index 3

Image Index 1 Image Index 2 Image Index 3 Image Index I Image Index 200

Figure 3-26: Algorithm to obtain variable sampling distance. Starting from image
index 1, we add amout of depth of field and move to next image index. This process
is iterated until we arrive 10m away from lens. To use fewer frames, we sub-sample
this sequence. e.g. to use 20 frames, use every other image of this sequence.

We can compare the performance of two methods by looking at the distribution of

the distance for each objects. The pixels that belongs to the same object will have a

same distance, and by looking at the distribution of depth for those pixels, we can see

the performance of our system. Below are the analysis of two methodologies using 40

frames using the histogram of the depth for the pixels that belong to objects at lm

and 2m distance.
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Figure 3-27: Comparison of the distribution of distance for object at im and 2m away
from lens for model fitting with 10 frames, and Heisenberg Depth Uncertainty with
10 frames.

As we can observe, the performace for two methods are similar for the closer objects,

due to the high sampling rate at the closer distance. However, as the objects becomes

further, the distance between each image index becomes further, and therefore results

in an inaccurate estimation for the Heisenberg Depth Uncertainty method. For the

model fitting, the estimation is more centered around a truth distance, and shows

better estimation of the distance to object.

Histogram of Distance count for Object at Im

I-

Histogram of Distance count for Object at 2m

Distance

Figure 3-28: Comparison of the distribution of distance for object at im and 2m away
from lens for model fitting with 10 frames, and Heisenberg Depth Uncertainty with
200 frames.

As a final comparison, figure 3-28 is the same analysis of histogram for model fitting

using 10 frames and Heisenberg Depth Uncertainty using 200 frames of images. From

the histogram, we can observe that two methods show very similar distribution near
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the ground truth distance. Therefore, we can conclude that the model fitting allows us

to build a depth map with similar performace using much less number of images. Table

3-1, is the measurement of coverage, average distance of pixels and standard deviation

of distance for object at distance im, 2m and 4m. One could see the performance

of model fitting with LogNormal Kernel using 10 Frames, compared to Heisenberg

Depth Uncertainty with 200 Frames shows on par or even better performance.

Heisenberg Uncertainty (200 Frames) Model with LogNormal Kernel (10 Frames)
Coverage Avg Distance StanDev Error Coverage Avg Distance StanDev Error

Object im 13.65% 103.13 cm 22.84 cm 3.13% 15.66% 97.88 cm 14.06 cm 2.12%
Object 2m 28.73% 208.65 cm 43.93 cm 4.33% 23.80% 202.75 cm 34.86 cm 1.38%
Object 4m 37.12% 418.21 cm 125.57 cm 4.55% 41.41% 408.05 cm 99.07 cm 2.01%

Table 3.1: Depth Map statistics for objects in scene. Coverage, average distance,
standard deviation, and error in prediction are calculated.

3.4 Performance Measurement of Depth Mapping

System

3.4.1 Experimental setup for testing performance

As a final remark, we have measured the performance of Heisenberg Depth Uncer-

tainty system and model fitting for various distances. We made a measurement for

an object at various distances. For model fitting, we have used 40 variable interval

images. For each experiment, we have measured coverage, average distance of pixels,

standard deviation of distances and error in depth estimate against the ground truth.

Figure 3-30, shows the setup for the experiment. We have used Basler camera

acA2000-165um, to get a better field of view. The target object is 30cm x 30cm

checker board, and the object was placed starting from im to 8m at every 10cm

apart at the beginning and at every 20cm.
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10m

Figure 3-29: Experiment setup with field of view. Field of view of the camera at 10m
distance is 4.2m wide. Black line on the floor indicates the limit on the field of view.

Figure 3-30: Checker board with 30 x 30 is placed at 4m distance from the lens, and
camera is calibrated such that the target is at the center of the field of view.

3.4.2 Analysis of the Performance

For each set of experiment, we have obtained depth estimation using both Heisenberg
depth uncertainty and model with LogNormal kernel. Then for each region of interest,
we have. averaged the distance and obtained standard deviation of the distribution.
Detailed results are given in Appendix B, and the result of the analysis are given in
the figure, 3-31, 3-32.

Figure 3-31 shows the estimated distance to the object as well as the standard de-
viation around the estimated average. Blue line indicates the ground truth, and red
points with error-bar indicates the average distance and standard deviation. Black
line indicates the expected depth of field from the camera calibration. The result
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Figure 3-31: Analysis of the depth estimation using Heisenberg Depth Uncertainty.
Black lines indicate the expected depth of field.

shows that the estimation falls well within the depth of field limit, and the standard

deviation in the estimate becomes larger as the object is further from the lens. Error

compared to the ground true distance, is below 15% for every measurements.
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Figure 3-32: Analysis of the depth estimation using model fitting with LogNormal
kernel. Black lines indicate the expected depth of field.

Similar analysis is done for model fitting with LogNormal kernel. Figure 3-32 shows

the estimated distance to the object as well as the standard deviation around the esti-

mated average for depth estimation with model fitting. Model fitting with LogNormal
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kernel shows very similar result the Heisenberg Uncertainty system. It shows that

the estimation falls well within the depth of field limit, and the standard deviation in

the estimate becomes larger, as the object is further from the lens. Again, the error

compared to the ground true distance is below 15% for every measurements.

To compare the performance of two methods, we can compare the standard deviation

in the measurement. Smaller standard deviation refers to more precise estimation of

the distance. Figure 3-33, shows the standard deviation of two methods compared

with expected depth of field from our experiment.
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Figure 3-33: Comparing the standard deviation of two method. Model fitting shows
smaller standard deviation compared to Heisenberg Depth Uncertainty.

UI0I

Comparing two modesl, both model clearly shows that the standard deviation of the

measurement increases as the object is further from the lens. In addition, model fit-

ting with LogNormal kernel shows smaller standard deviation compared to Heisenberg

Uncertainty system, and is closer to the depth of field limit imposed by the optical

setup. Therefore, we can expect the model fitting approach to give more accurate

result than the Heisenberg Uncertainty system.

As a conclusion, both method gives a depth map that is realiable upto 8m distance,

with 15% accuracy at worst, and fits well with the theoretical expectation of the effect

of depth of field.
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Chapter 4

Performance Optimization and

Conclusion

To build a depth map for active safety system for automobile, the runtime is a crucial

factor that must be considered. Many of the depth from focus algorithms that has

been studied focuses on the passive depth mapping systehm and therefore was free of

concerns with regard to runtime. However, as our target is to build a depth mapping

system for a moving vehicle, consideration of the runtime is essential.

In the final chapter, we will look at how system can be made to run in real time using

basic parallelizaition, and conclude the paper with final remarks on the performace

of the system.

4.1 Parallelization of Depth Mapping System

Parallelization is a design procedure that makes the algorithm to utilize multiple pro-

cessors in parallel. When the given tasks are indepdent of each other, one can process

these in parallel using multiple cores in the computer system. In modern computer

architecture, parallel structure is an integral part of CPUs and other hardware sys-

tem, and therefore careful consideration of parallelization is essential.

The depth mapping system we have built has many sub-procedures that are not de-

pendent on each other, and therefore can be parallelized. In this section, we will
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look at what parallelization is and how we can minimze the runtime of our system by
designing the system to be parallel compatible.

4.1.1 Parallelization and Parallelism

Since its development in 1958, the size of integrated circuits has decreased exponen-

tially. The modern integrated circuit's width between the conducting line is near tens

of nanometers of scale[27]. The famous Moore's law predicted the performance of

integrated circuit doubles every two years[131, which well predicted the advance of

performance of integrated circuits. However, as the width between the conducting

line has decreased to nano scale, the problem of heat dissipation, as well as funda-

mental limits imposed by quantum mechanics, hinders further reduction of the size

of integrated circuit[19I.

10,000,000

1,000,000 * Clock frequency (MHz)

100,000

10,000

1,000
1m0100

1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 4-1: Moore's law of showing the number of transistor increase for integrated
circuits. However, since early 2000, clock frequency started to asymptotically ap-
proach it's limit[2].

As an althernative to making smaller and smaller chip, set of researchers suggested

using parallel system. In essence, the idea behind parallel system is to use multi-

ple integrated circuits to process several tasks at once. Such idea has been studied

for decades, and now many modern computer languages nowadays support different

packages so that even students can develop their own parallel system. The idea of
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parallel computing has evolved into a cloud computing technology and development

of super computers as well.

4.1.2 Designing Parallel System

Designing the parallel system requires a careful consideration of work distribution

as well as race condition. However, for our depth mapping system, we have highly

indepdent sub-procedures, and therefore can think of simple implementation of par-

allelized system. In this section, we will discuss how we can implement parallelized

depth mapping system using Cilk extension to c++ system. Our code base uses

Opencv algorithms for image processing, and the cpu is Intel(R) Xeon(R) CPU E5-
2609 v3 with 12 cores of 1.90GHz each.

Let's look at the procedure of our depth mapping system in series. We sub-group our

entire procedure to three smaller procedures as in figure 4-2.

* Wavelet * Post Processing
* Drive Lens Decomposition * Filtering Noise
* Capture Image * Update Max * Build Depth

Energy LoatIon Map

Figure 4-2: Sub-procedures that consist the depth mapping system.

First sub-procedure is the image capturing process. To acquire different images with

different focal plane, we must send out a signal to the active lens, wait so that the

actuation of active lens is saturated, and then capture the image. These images has

to be stored somewhere in the memory so that they can be processed.

Second sub-procedure is to process the captured images. These captured images are

passed to variance of wavelet operators, and the degree of focus for individual pixels

are measured for each image. This information will be used to build a depth map, as

well as for post processing for the noise.

Third and final step is the building depth map and post processing of the noise. With

73



the wavelet decomposed images from previous step, now we must find the maximum

location of the energy distribution to find the distance to pixel, and process the pos-

sible noisy points to create realiable depth map.

We can think of the most simple procedure that builds depth map as follows. For

every captured image, we will process it with wavelet decomposition, and update the

maximum information on the run. After all images are processed, we will process

the noise with Heisenberg depth uncertainty crieteria, to build the final depth map.

Below is the runtime analysis of such system.

" Activate and Initialize lens driver
" Initialize camera
" Image grab thread (200 images)

i. Send proper current signal to lens driver (from 50cm to 10m) 5 ms
ii. Grab image, and save it as opencv Mat format lOms
iii. Compute Wavelet decomposition 16ms

Total Runtime 6 see

Table 4.1: Runtime analysis of the serial procedure of depth mapping system.

As we can observe, the total runtime of the system is 6 sec, which cannot be run in

realtime for moving vehicle. In addition, such procedure cannot be parallelized as

each step (image acquisition, image processing) is dependent on each other. Lastly,

the image capturing process of the camera is not able to utilize the high-speed frame

rate due to the fact that camera must wait for the image processing is done.

From such analysis, we can think of following system; Split the process of image cap-

turing, image processing, and post processing step. By spliting the capturing and

processing step, we are able to acheive three optimizations. First, by not waiting for

the processing of the image is to be done, we can let the camera to capture the image

continuously, which allows one to utilize the high-speed frame rate of the camera. Sec-

ond, by saving each images individually, each processing step is now independent of

each other, and therefore can be parallelized. Lastly, we can parallelize the capturing

and processing steps itself, by processing the previous set of images while capturing

next set of images. Such procedure can be drawn as in figure 4-3.
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Depth Mapping

Acquired Images Image Buffer

Image Image
Acquisition Processing

Post Processing Noise

Figure 4-3: Parallel procedure of depth mapping system. Image acquisition and image
processing are done in parallel. Acquired images are stored, and image processing
thread processes images from previous run which is stored in image buffer.

4.1.3 Performance Measurement

By spliting the image capturing process with image processing, we now can let the

camera run as fast as it can to capture images. The Basler Camera acA640-750um,

has a frame rate of 751 fps, which allows us to capture 200 images in 0.26sec. How-

ever, to mitigate the problem of exposure time for the camera, we will let the camera

to run at 300 fps so that we can capture 200 images in 0.67sec.

For the image processing, we can easily imagine that in theory the image processing

can all be done in parallel, and therefore get O(n) linear performance optimization.

We can test the performance optimization using multiple cores, by using cilkview

which measures the performance improvements with different number of cores. Test

has been performed on Heisenberg Depth Uncertainty method with 200 images from

50cm to 10 m.

From the analysis of cilkview, we can see that the performance improvement is almost

linear. Using 12 cores, we were able to achieve 9x performace improvement compared

to previous system where the runtime was 6 sec, and now the image processing pro-
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Trial results for Cilk Parallel Region(s)
16 , = I I

Parallelism
Burdened Parallelism
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0
0 2 4 6 8 10 12 14 16
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Figure 4-4: Result of analysis of the cilkview on the depth mapping system. Perfor-
mance are measured from I cores to 12 cores.

cedure can be ran in 0.61 secs on average.

Now combining two procedures in parallel, we can run the whole procedure in 0.70
sec on average, which can be used for real time applications for depth mapping.

4.2 Conclusion

This thesis was first attempt to utilize the active lens and depth from focus to build

a depth map for longer range than indoor environment. In this thesis, we have
considered various approaches to building a depth map of the scenary using active
lens. Starting from basic focus measure algorithms, we have considered different

approaches to filter the noise in the depth information, and how to use less number
of images using model fitting. Lastly, we have seen how parallelization of our system
can speed up our system such that it can also be used in real time applications such
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as active safety system.

Through our analysis, we showed that the depth map we have built using focus

measure algorithms combined with other criteria is comparable with other vision

systems, and can easily be expanded to have better accuary and speed, and therefore

can be used for various high speed applications involving dense depth mapping of the

environment.
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Appendix A

C++ Code for Driving Lens

uintl6_t crc16_update(uintI6_t crc, uint8_t a) {
crc ^= a;
for (int I = 0; 1 < 8; 1++ )1

if (crc & 1) crc = (crc >: 1) ^ OxA@01;
else crc = (crc >> 1);

I
return crc;

}
uirtBt* crcCoding(int fp) {

uintBt data[] = {0x50, Ox77, 8x44, 6x41, fp 8. B, fp & Gxff, 6.06, OxoOG;

uintl6_t crc = 6;
for (int i = 6; 1 < sizeof(data)/sizeof(data[0]); I- ) 4

crc = crcllupdate(crc, data[il);
}

uint8-t data-crc[] = {data[61, data[11, data[2j, data[3), data[41. data[5), data[61, data[7l, crc & Oxff, crc 8= S};
return datacrc;

}
void writecrc(uintl6_t dopt) {

uint8_tx data-crc - crcCoding(dopt);

write(fd, datacrc, 10);
usleep (10*160);

Figure A-1: C++ code for driving the active lens. Crc code must be added at the end
of the signal to prevent the corruption in the communication via USB connection.
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Appendix B

Tables for Performance Measurement

B.1 Heisenberg Depth Uncertainty

B.2 Model Fitting with LogNormal Kernel
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Object Coverage Avg Dist Std Dist Error Object Coverage Avg Dist Std Dist Error
100 cm 3.40 % 102.03 cm 31.81 cm 2.03 % 410 cm 41.05 % 391.03 cm 72.38 cm 4.63 %
110 cm 7.71 % 110.87 cm 34.95 cm 0.79 % 420 cm 40.58 % 411.80 cm 76.51 cm 1.95 %
120 cm 8.78 % 124.69 cm 34.69 cm 3.91 % 430 cm 40.94 % 410.95 cm 77.36 cm 4.43 %
130 cm 12.44 % 137.38 cm 35.86 cm 5.68 % 440 cm 39.02 % 432.57 cm 84.88 cm 1.69 %
140 cm 14.92 % 141.04 cm 35.84 cm 0.74 % 450 cm 39.09 % 438.82 cm 83.08 cm 2.48 %
150 cm 18.34 % 150.75 cm 38.22 cm 0.50 % 460 cm 36.61 % 432.67 cm 81.04 cm 5.94 %
160 cm 18.86 % 158.92 cm 37.64 cm 0.67 % 470 cm 38.91 % 429.04 cm 81.90 cm 8.71 %
170 cm 15.39 % 165.92 cm 36.67 cm 2.40 % 480 cm 36.71 % 431.83 cm 83.39 cm 10.04 %
180 cm 14.85 % 177.32 cm 37.06 cm 1.49 % 490 cm 36.98 % 458.92 cm 87.13 cm 6.34 %
190 cm 17.19 % 187.36 cm 38.54 cm 1.39 % 500 cm 35.91 % 498.69 cm 96.58 cm 0.26 %
200 cm 20.50 % 185.15 cm 41.79 cm 7.42 % 510 cm 35.33 % 473.82 cm 90.92 cm 7.09 %
210 cm 20.54 % 205.65 cm 41.36 cm 2.07 % 520 cm 37.43 % 483.49 cm 94.43 cm 7.02 %
220 cm 23.39 % 209.06 cm 42.69 cm 4.97 % 530 cm 36.81 % 489.79 cm 93.25 cm 7.59 %
230 cm 25.59 % 217.32 cm 45.75 cm 5.51 % 540 cm 39.39 % 504.46 cm 95.93 cm 6.58 %
240 cm 31.79 % 234.44 cm 51.77 cm 2.32 % 550 cm 39.83 % 505.86 cm 100.71 cm 8.03 %
250 cm 34.35 % 233.71 cm 53.02 cm 6.52 % 560 cm 41.13 % 506.93 cm 105.54 cm 9.48 %
260 cm 34.72 % 250.31 cm 56.54 cm 3.73 % 570 cm 41.60 % 535.24 cm 110.91 cm 6.10 %
270 cm 40.87 % 269.16 cm 54.19 cm 0.31 % 580 cm 41.70 % 548.63 cm 99.73 cm 5.41 %
280 cm 40.79 % 285.64 cm 51.90 cm 2.01 % 590 cm 38.41 % 536.38 cm 134.25 cm 9.09 %
290 cm 40.32 % 287.86 cm 53.65 cm 0.74 % 600 cm 43.13 % 573.11 cm 174.25 cm 4.48 %
300 cm 40.00 % 312.54 cm 58.76 cm 4.18 % 620 cm 43.52 % 561.49 cm 141.75 cm 9.44 %
310 cm 39.67 % 298.90 cm 53.73 cm 3.58 % 640 cm 43.73 % 597.01 cm 161.94 cm 6.72 %
320 cm 37.86 % 308.62 cm 57.33 cm 3.55 % 660 cm 45.67 % 615.57 cm 156.74 cm 6.73 %
330 cm 39.05 % 331.60 cm 60.63 cm 0.49 % 680 cm 45.05 % 634.83 cm 165.99 cm 6.64 %
340 cm 39.29 % 333.07 cm 62.97 cm 2.04 % 700 cm 45.98 % 653.08 cm 178.27 cm 6.70 %
350 cm 39.98 % 343.66 cm 61.75 cm 1.81 % 720 cm 45.89 % 668.17 cm 180.59 cm 7.20 %
360 cm 40.85 % 355.01 cm 66.94 cm 1.39 % 740 cm 44.07 % 707.18 cm 208.09 cm 4.44 %
370 cm 40.65 % 352.79 cm 64.24 cm 4.65 % 760 cm 42.02 % 733.16 cm 219.21 cm 3.53 %
380 cm 41.61 % 371.76 cm 68.08 cm 2.17 % 780 cm 36.31 % 743.69 cm 275.69 cm 4.66 %
390 cm 39.99 % 380.69 cm 70.47 cm 2.39 % 800 cm 37.55 % 775.35 cm 240.59 cm 3.08 %
400 cm 40.87 % 388.11 cm 71.84 cm 2.97 %

Table B.1: Experiment result of estimated distance to an object, using Heisenberg
Depth Uncertainty. Distance has been estimated by averaging over the region of
interest, and the standard deviation has been computed. Error has been calculated
against the ground true distance.
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Object Coverage Avg Dist Std Dist Error
100 cm
110 cm
120 cm
130 cm
140 cm
150 cm
160 cm
170 cm
180 cm
190 cm
200 cm
210 cm
220 cm
230 cm
240 cm
250 cm
260 cm
270 cm
280 cm
290 cm
300 cm
310 cm
320 cm
330 cm
340 cm
350 cm
360 cm
370 cm
380 cm
390 cm
400 cm

5.87 %
8.70 %
9.33 %
12.38 %
13.94 %
14.82 %
14.62 %
12.51 %
12.31 %
13.17 %
15.26 %
14.29 %
15.73 %
16.91 %
20.04 %
23.44 %
24.58 %
28.44 %
27.52 %
24.93 %
23.06 %
22.33 %
19.36 %
20.24 %
19.97 %
23.24 %
23.00 %
23.60 %
22.88 %
22.00 %
21.35 %

91.98 cm
99.13 cm
116.63 cm
130.96 cm
136.39 cm
145.73 cm
156.68 cm
164.28 cm
176.57 cm
187.65 cm
184.10 cm
205.13 cm
207.81 cm
218.50 cm
239.17 cm
243.92 cm
265.08 cm
286.78 cm
307.43 cm
305.45 cm
328.07 cm
315.74 cm
323.20 cm
348.93 cm
348.87 cm
364.31 cm
374.68 cm
372.43 cm
393.93 cm
402.66 cm
409.53 cm

14.50 cm
15.82 cm
19.30 cm
22.78 cm
23.45 cm
24.19 cm
24.58 cm
26.36 cm
29.12 cm
32.82 cm
38.62 cm
41.00 cm
44.29 cm
47.38 cm
50.17 cm
49.55 cm
38.24 cm
38.43 cm
38.53 cm
41.18 cm
45.12 cm
41.10 cm
44.59 cm
46.12 cm
48.35 cm
47.64 cm
54.18 cm
51.56 cm
54.65 cm
55.23 cm
58.86 cm

8.02
9.88
2.81
0.74
2.58
2.84
2.08
3.36
1.91
1.24
7.95
2.32
5.54
5.00
0.35
2.43
1.95
6.21
9.80
5.33
9.36
1.85
1.00
5.74
2.61
4.09
4.08
0.66
3.67
3.25
2.38

410 cm
420 cm
430 cm
440 cm
450 cm
460 cm
470 cm
480 cm
490 cm
500 cm
510 cm
520 cm
530 cm
540 cm
550 cm
560 cm
570 cm
580 cm
590 cm
600 cm
620 cm
640 cm
660 cm
680 cm
700 cm
720 cm
740 cm
760 cm
780 cm
800 cm

20.96 %
20.32 %
19.07 %
15.30 %
14.91 %
12.16 %
12.25 %
11.12 %
10.56 %
7.99 %
9.01 %
9.23 %
11.31 %
12.04 %
14.33 %
15.81 %
15.28 %
16.02 %
16.03 %
17.40 %
19.40 %
17.98 %
21.46 %
23.00 %
22.42 %
22.07 %
20.24 %
13.01 %
10.47 %
14.94 %

413.13 cm
432.95 cm
429.63 cm
442.97 cm
449.82 cm
432.56 cm
428.14 cm
427.36 cm
452.64 cm
495.59 cm
466.25 cm
453.99 cm
475.30 cm
497.97 cm
499.43 cm
510.36 cm
533.81 cm
560.71 cm
547.54 cm
577.84 cm
557.35 cm
591.46 cm
610.98 cm
624.83 cm
648.78 cm
655.96 cm
702.27 cm
715.09 cm
721.15 cm
771.50 cm

Table B.2: Experiment result of estimated distance to an object, using model fitting
with LogNormal kernel. Distance has been estimated by averaging over the region of
interest, and the standard deviation has been computed. Error has been calculated
against the ground true distance.
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58.55 cm
61.43 cm
65.51 cm
73.43 cm
69.72 cm
69.27 cm
72.75 cm
68.43 cm
73.24 cm
83.65 cm
77.48 cm
84.00 cm
83.35 cm
92.87 cm
88.35 cm
83.98 cm
90.81 cm
83.37 cm
81.86 cm
103.01 cm
101.08 cm
117.46 cm
117.23 cm
127.32 cm
133.02 cm
138.22 cm
158.51 cm
161.67 cm
166.08 cm
190.24 cm

0.76 %
3.08 %
0.09 %
0.67 %
0.04 %
5.96 %
8.91 %
10.97 %
7.62 %
0.88 %
8.58 %
12.69 %
10.32 %
7.78 %
9.19 %
8.86 %
6.35 %
3.33 %
7.20 %
3.69 %
10.10 %
7.58 %
7.43 %
8.11 %
7.32 %
8.89 %
5.10 %
5.91 %
7.54 %
3.56 %

Object Coverage Avg Dist Std Dist Error
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