
Matrix Estimation with Latent Permutations

by

Cheng Mao

B.S., M.A., University of California, Los Angeles (2013)

Submitted to the Department of Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

Massachusetts Institute of Technology 2018. All rights reserved.

Signature redacted
A u th o r ................................................................

Department of Mathematics
April 19, 2018

Signature redacted
C ertified by ... ....................

Philippe Rigollet
Associate Professor of Mathematics

Thesis Supervisor

Signature redacted
Accepted by .......... . .. .. .

~-W 4 44~m P. Minicozzi II
Chairman, Department Committee on Graduate Theses

MASSACHUSETNT INSTITUTE
OF TECHNOLOGY

MAY 3 0 2018

LIBRARIES

ARCHIVES

.-M



2

IM9 WIRMA



Matrix Estimation with Latent Permutations
by

Cheng Mao

Submitted to the Department of Mathematics
on April 19, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Motivated by various applications such as seriation, network alignment and ranking

from pairwise comparisons, we study the problem of estimating a structured matrix

with rows and columns shuffled by latent permutations, given noisy and incomplete

observations of its entries. This problem is at the intersection of shape constrained es-
timation which has a long history in statistics, and latent permutation learning which

has driven a recent surge of interest in the machine learning community. Shape con-

straints on matrices, such as monotonicity and smoothness, are generally more robust

than parametric assumptions, and often allow for adaptive and efficient estimation in

high dimensions. On the other hand, latent permutations underlie many graph match-

ing and assignment problems that are computationally intractable in the worst-case

and not yet well-understood in the average-case. Therefore, it is of significant inter-

est to both develop statistical approaches and design efficient algorithms for problems

where shape constraints meet latent permutations.

In this work, we consider three specific models: the statistical seriation model,
the noisy sorting model and the strong stochastic transitivity model. First, statistical

seriation consists in permuting the rows of a noisy matrix in such a way that all its

columns are approximately monotone, or more generally, unimodal. We study both

global and adaptive rates of estimation for this model, and introduce an efficient

algorithm for the monotone case.
Next, we move on to ranking from pairwise comparisons, and consider the noisy

sorting model. We establish the minimax rates of estimation for noisy sorting, and

propose a near-linear time multistage algorithm that achieves a near-optimal rate.

Finally, we study the strong stochastic transitivity model that significantly gener-

alizes the noisy sorting model for estimation from pairwise comparisons. Our efficient

algorithm achieves the rate (n- 3 /4 ), narrowing a gap between the statistically op-

timal rate 0(n-1 ) and the state-of-the-art computationally efficient rate O(n- 1/ 2 ).
In addition, we consider the scenario where a fixed subset of pairwise comparisons is

given. A dichotomy exists between the worst-case design, where consistent estimation

is often impossible, and an average-case design, where we show that the optimal rate

of estimation depends on the degree sequence of the comparison topology.

Thesis Supervisor: Philippe Rigollet
Title: Associate Professor of Mathematics
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Chapter 1

Introduction

The problem of matrix estimation and matrix completion has long been studied in
mathematical statistics and machine learning [Faz02, AM07, RV07, CR09, KMO10,
MHT10, RT11, Cha15]. Structural constraints, such as low-rankness [CP11, Kol1l,
KLT11, NW11, JNS13] and smoothness [GLZ15, HR16, KTV17, CGS18], allow for
statistical inference of a high-dimensional matrix given noisy and incomplete obser-

vations of its entries. On the other hand, the past decade has witnessed a burgeoning

literature on the problem of graph estimation and network reconstruction from noisy

data [ACN08, BC09, GZFA10, Lov12, ACC13, GLZ15, KTV17, CLR17b]. Central
tasks include, for example, clustering [AS15, LR15, ABH, BRS16, HWX16, MPW16,
CLR17a], ranking [FV93, DKNS01, Alo06, Liu09, NOS12, RA14, SBB+16 and align-
ment [CFSV04, LJTKJ06, SXBO8, ZBV09, Bur13, FQRM+16, ESDS16. The current
work lies at the intersection of the above two areas. More specifically, given noisy

observations of entries of a structured matrix with rows and columns shuffled by la-

tent permutations, we concern ourselves with the task of recovering the permutations
and estimating the matrix. If the matrix in consideration is the adjacency matrix

of a graph, then the task can be restated as reordering the nodes of the graph and

estimating interactions between pairs of nodes. We study both statistical and com-

putational aspects of the problem, by establishing minimax rates of estimation and
designing provable polynomial-time algorithms, for several concrete models.

In slightly more formal terms, we consider the general model

Y = MET+Z, (1.1)

where M is an unknown ni x n2 real matrix with certain shape constraints (e.g.
bivariate monotonicity), H and E are unknown permutation matrices acting on the

rows and columns of M respectively, and Z is a noise matrix which is assumed to be

sub-Gaussian throughout this work. Given partial observations of the entries of Y, we

aim to estimate the permutations H and E, as well as the underlying matrix M. In the

following chapters, we study three models-the statistical seriation model [FMR16],
the noisy sorting model [BM08I and the strongly stochastic transitivity model [Cha15,
SBGW17]-all of which can be written in the form (1.1).

9



Seriation. The first problem of interest is seriation, which finds its root in archae-
ology [Pet99, Rob5l, Ken63, Ken69, OL99]. As the name suggests, the problem of
seriation consists in ordering items in a series, so that adjacent items are more similar
than distant items. In the setting of sequence dating in archaeology, the rows of the
matrix M represent sepultures in chronologically order, and the columns represent
artifacts. The sepultures are not ordered when they are discovered, which corre-
sponds to that the rows of M are shuffled by an unknown permutation H. We do
not aim to order the artifacts, so E is assumed to be the identity. Moreover, entry
Yij takes a binary value, indicating whether artifact j is present in sepulture i. It
is a basic hypothesis [Pet99, Rob5l] that the sets of artifacts in two chronologically
close sepultures are similar, so we expect to see artifacts appearing consecutively if
the sepultures are reordered chronologically. Equivalently, this says that reordering
the rows of Y appropriately should bring it to having nearly consecutive ones along
each column.

More generally, in Chapter 2, we consider a matrix M whose columns are unimodal
(i.e., when we move down along a column, the entries first increase and then decrease).
We refer to the model Y = HM + Z as the statistical seriation model, and study
the corresponding minimax rates of estimation of the pair (H, M). Specifically, we
demonstrate that the least squares estimator is optimal up to logarithmic factors and
adapts to matrices whose columns have block structure. In addition, we propose and
study a computationally efficient estimator in the case where the columns of M are
monotone.

Noisy sorting. Next, we consider pairwise comparison data which arises naturally
in various applications, such as social choice [CN911, tournament rankings [HMG06I,
web search [DKNSO1I and recommender systems [BMR1OJ. Given noisy comparisons
between pairs of items, the task is to recover the underlying ranks of the items (hence
the name "noisy sorting"). Therefore, it is of importance to design and analyze robust
models for ranking from pairwise comparisons.

More formally, suppose that items 1,... , n are associated with unknown ranks
r (1), ... ,7r(n) according to their strength, where 7r : [n] -+ [n] is a permutation. Let
M be an n x n matrix, whose entry Mk,e E [0, 1] denote the probability with which the
k-th strongest item beats the f-th strongest item in a comparison between them. The
binary outcome of a comparison between items i and j is thus Yiu = Ber(M,(i),(j)),
where Yj = 1 if item i beats item j and YJ = 0 if the opposite occurs. Therefore,
the comparison model can be succinctly written as Y = Ber(HMH T ), where H is the
row permutation matrix corresponding to 7r, and the Bernoulli random variables are
independent across the entries. Note that the model can be rewritten in the linearized
form Y = HMHT + Z, which is a special case of (1.1).

A prototype of so-called permutation-based ranking models is the noisy sorting
model [BM08, BM09]. In this model, a stronger item is assumed to beat a weaker
item with probability 1 + A for a constant A E [0, 1]. Thus all the upper triangular
entries of M are equal to 1 + A, while all the lower triangular entries are equal to

-A. It is easy to estimate the single parameter A in this model, so the difficulty

10



entirely lies in recovering the unknown permutation r. In Chapter 3, we establish
the minimax rates of learning the model, and provide a near-linear time algorithm to
achieve near-optimal rates.

Stochastically transitive models. The noisy sorting model captures the discrete
nature of ranking problems, yet falls short of properly modeling comparison proba-
bilities in many situations, because it is unlikely that the outcomes of comparisons
between two similar items and between two vastly different items follow the same
distribution. Taking one step back, parametric models have been the mainstream
in the statistics and machine learning literature for years [HunO4, NOS12, RA14,
HOX14, SBB+16, NOS16, NOTX17]. In a parametric model, it is assumed that
Mig = F(wi - wj), where F : R - [0,11 an increasing link function known to the
learner, and w is a decreasing vector whose entries represent the strength of the
items. Modulo the nonlinearity F, the parametric model is essentially a rank-one
model; therefore, while it allows polynomial-time rate-optimal estimation, the model
again possesses weakness in modeling comparisons in certain scenarios [SBGW17].

Recently, a structurally richer permutation-based model, the strong stochastic
transitivity (SST) model, has been proposed and shown to contain both the noisy
sorting model and the parametric model as special cases [Cha15, SBGW17. More
precisely, the probability matrix M is assumed to be bivariate isotonic, i.e., to have
nondecreasing rows and nonincreasing columns. Perhaps surprisingly, the minimax
rate of estimation for the SST model is no slower than that for the noisy sorting
or parametric model up to a logarithmic factor. However, this statistical advantage
comes with a price: the parameter space of the SST model is highly non-convex, mak-
ing efficient optimization unlikely. As a result, the statistically optimal rate for the
SST model has not been achieved by efficient learning algorithms yet. In Chapter 4,
we design and analyze polynomial-time algorithms that improve upon the state of
the art. In particular, our results imply that for the SST model, a computationally
efficient algorithm achieves the rate of estimation O(n- 3/ 4 ), narrowing the gap be-
tween 6(n-1 ) and O(n-1/ 2 ), which were hitherto the rates of the most statistically
and computationally efficient methods respectively.

Fixed comparison topology The results discussed above for permutation-based
models are achieved only when we have full or uniformly random observations of the
entries of Y in equation (1.1). However, this is not necessarily a valid assumption for
certain applications [HOX14, K016, SBB+16], where we may observe comparisons of
a fixed subset of pairs of items. The set of comparisons that we observe is referred to as
the comparison topology. It is therefore of significant interest to study the dependence
of the rate of estimation on the comparison topology for permutation-based models.
In Chapter 5, we pursue this topic for both the noisy sorting model and the more
general SST model.

More specifically, we show that when the assignment of items to the topology is
arbitrary, these permutation-based models, unlike their parametric counterparts, do
not admit consistent estimation for most comparison topologies used in practice. We

11



then demonstrate that consistent estimation is possible when the assignment of items
to the topology is randomized, thus establishing a dichotomy between worst-case and
average-case designs. We propose two estimators in the average-case setting and
analyze their risk, showing that it depends on the comparison topology through the
degree sequence of the topology. The rates achieved by these estimators are shown
to be optimal for a large class of graphs.

Chapter 2 is based on joint work with Nicolas Flammarion and Philippe Rigol-
let [FMR16}. Chapter 3 is based on joint work with Jonathan Weed and Philippe
Rigollet [MWR17. Chapter 4 is based on joint work with Ashwin Pananjady and Mar-
tin J. Wainwright [MPW18]. Chapter 5 is based on joint work with Ashwin Panan-
jady, Vidya Muthukumar, Martin J. Wainwright and Thomas Courtade 1PMM+17a}.

12

, _ "TP17,'M 0 IM PROOF q -PR , IV 5 MR RM



Chapter 2

Optimal Rates of Statistical Seriation

Seriation has been a central technique for data analysis for over a century. It has

roots in archaeology and especially sequence dating where the goal is to recover the

chronological order of sepultures based on artifacts found in them [Pet99. Since then
seriation has found applications in a variety of disciplines ranging from anthropol-

ogy [Cze09] to sociology [FK46], biology [Sok63 and marketing [ASDH88]. More
recently, it was proposed as a method in computational biology for de novo DNA
assembly [AS98]. See [Lii10J for a detailed account of seriation in data analysis. In

modern language, seriation belongs to the class of unsupervised learning problems.

Akin to clustering, it aims at rearranging heterogeneous data into a simple structure

that is amenable to better interpretation and understanding. Actually, in his seminal

work on clustering, Hartigan [Har72 advocates for a post-processing of direct cluster-

ing with seriation for better data visualization. However, unlike clustering methods

that quantize the data into a pre-specified number of clusters, seriation methods

are truly nonparametric and "non-destructive", a term coined by Murtagh [Mur89j,
meaning that it does not discard information from the data. Perhaps one of the most

spectacular successes of seriation was achieved in bioinformatics where it was used to

display genome-wide expression patterns [ESBB98]. Despite its widespread use, seri-

ation has not been the subject of statistical analysis. The main goal of this chapter

is to propose a new model that is amenable to a statistical analysis of seriation.

To describe seriation in further details, we begin with a canonical problem, the

consecutive 1's problem (CIP) [FG641 that is defined as follows. Given a binary matrix

A the goal is to permute its rows in such a way that the resulting matrix enjoys the

consecutive 1's property: each of its columns is a vector v = (v,... , vn)T where
v = 1 if and only if a < j < b for two integers a, b between 1 and n. This problem

arises in the archaeology where the entry Aij of matrix A indicates the presence

of an artifact of type j in sepulture i. In his seminal work, egyptologist Flinders

Petrie [Pet99 formulated the hypothesis that two sepultures should be close in the

time domain if they present similar sets of artifacts, which indicate that the matrix

A should be close to a matrix having the consecutive I's property. In an influential

follow-up work, Robinson tRob5l] generalized this problem to the case where Aij
counts the number of artifacts of type j in sepulture i. Robinson argues that "types

come into and get out of general use" so that it is reasonable to assume that the

13



columns of A are, in fact unimodal: the count of a certain type of artifact increases
as it comes into general use and decreases as it gets out. Note that matrices that
satisfy the consecutive 1's property have, in particular, unimodal columns. More
generally, seriation is used to rearrange matrices whose rows are permuted and whose
columns satisfy a nonparametric shape constraint. For example the case where A has
monotone columns arises in bipartite ranking under the strong stochastic transitivity
assumption (see subsection 2.1.2). In the rest of this chapter we consider both the
unimodal and the monotone setting.

Because of the presence of a latent permutation, the ClP exhibits interesting algo-
rithmic challenges already in the noiseless case and that have motivated much of its
study. In particular, it is reducible to the famous Traveling Salesman Problem [GG12]
as observed by statistician David Kendall [Ken63, Ken69, Ken70, Ken7l] who em-
ployed early tools from multidimensional scaling as a heuristic to solve it. The CIP
belongs to a more general class of problems that consist in optimizing various criteria
over the discrete set of permutations and that can be recast as examples of the no-
toriously hard quadratic assignment problem [LdABN+07. While such problems are
NP-hard in general, some examples, including C1P, may be solved efficiently using
either combinatorial optimization [FG641, spectral methods [ABH98 or convex opti-
mization [FJBd13, LW14I. However, little is known about the robustness to statistical
noise of such methods.

In order to set the benchmark for the noisy case, we propose a statistical seriation
model and study optimal rates of estimation for this model. Assume that we observe
an n x m matrix Y = HA + Z, where H is an unknown n x n permutation matrix, Z
is an n x m noise matrix and A E Rnx" is assumed to have columns that satisfy a
certain shape constraint. Our goal is to give estimators h and A so that HA is close
to HA. The shape constraint can be the consecutive 1's property, but more generally,
we consider the class of matrices that have unimodal columns, which also include
monotone columns as a special case. These terms will be formally defined at the end
of this section.

The rest of the chapter is organized as follows. In Section 2.1 we formulate the
model and discuss related work. Section 2.2 collects our main results, including uni-
form and adaptive upper bounds for the least squares estimator together with corre-
sponding minimax lower bounds in the general unimodal case. In Section 2.3, for the
special case of monotone columns, we propose a computationally efficient alternative
to the least squares estimator and study its rates of convergence both theoretically
and numerically. Section 2.4 presents new bounds for unimodal regression implied
by our analysis, which are minimax optimal up to logarithmic factors. Section 2.5 is
devoted to the proofs of the results. We conclude with a discussion in Section 2.6.

Notation. For a positive integer n, define [n] = {1, . . , n}. For a matrix A E R"
let |IA IF denote its Frobenius norm, and let Ai,. be its i-th row and A., be its j-th
column. Let B"(a, t) denote the Euclidean ball of radius t centered at a in Rn. We
use C and c to denote positive constants that may change from line to line. For any
two sequences (Un), and (Vn)., we write u, ,< Vn if there exists an absolute constant

14
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C > 0 such that uan < Cvn for all n. We define un > v, analogously. Given two real
numbers a, b, define a A b = min(a, b) and a V b = max(a, b).

Denote the closed convex cone of increasing1 sequences in R" by Sn= {a E Rn
a1 K ... < an}. We define Sm to be the Cartesian product of m copies of Sn and we
identify S' to the set of n x m matrices with increasing columns.

For any 1 E [n], define the closed convex cone C, = {a E Rn : a, < a,}n{a E
R" : a, > ... > an}, which consists of vectors in R' that increase up to the l-th entry
and then decrease. Define the set U of unimodal sequences in Rn by 1= U"-1 C1. We
define U' to be the Cartesian product of m copies of U and we identify U'" to the set
of n x m matrices with unimodal columns. It is also convenient to write U' as a union
of closed convex cones as follows. For 1 = (l, . . . , [m) E [n]m, let C1 = C 1 x ... x Clm-

Then U' is the union of the nri closed convex cones Cl",1 E [n]".

Finally, let &r, be the set of n x n permutation matrices and define the set M =

U rIt- mU' where U' = {HA : A E Um }, so that M is the union of the n!n'
closed convex cones HCm, H C Gn, 1 E [n]ru.

2.1 Problem setup and related work

In this section, we formally state the problem of interest and discuss several lines of
related work.

2.1.1 The seriation model

Suppose that we observe a matrix Y E Rnxm, n ;> 2 such that

Y = H*A* + Z, (2.1)

where A* E U', H E 6 n and Z is a centered sub-Gaussian noise matrix with variance
proxy a2 > 0. Specifically, Z is a matrix such that E[Z] = 0 and, for any M E Rn

E [exp (Tr(ZT M))] exp 2'f

where Tr(-) is the trace operator. We write Z ~ subGn,m(rU 2 ) or simply Z - subG (, 2 )
when dimensions are clear from the context.

Given the observation Y, our goal is to estimate the unknown pair (H*, A*). The
performance of an estimator (H, A) E 6n x Umn, is measured by the quadratic loss:

11

1|A - H*A*||F.

In particular, its expectation is the mean squared error. Since we are interested in
estimating H*A* E M, we can also view M as the parameter space.

'Throughout the chapter, we loosely use the terms "increasing" and "decreasing" to mean "mono-
tonically non-decreasing" and "monotonically non-increasing" respectively.
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In the general unimodal case, upper bounds on the above quadratic loss do not
imply individual upper bounds on estimation of the matrix f* or the matrix A* due
to lack of identifiability. Nevertheless, if we further assume that the columns of A*
are monotone increasing, that is A* E Sm, then the following lemma holds.

Lemma 2.1.1. If A*,A E S, then for any H*,H G 6, we have that

IA - A*II < IIA - H*A*|112

and that

IIHA* - l*A* 1F < 4||HA -H*A*||F .

Proof. Let a, b E Sn, and b7 = (br(1), -. -, b,) where ir :[n -+ [n] is a permutation.
It is easy to check that E" aibi ; Z" asbr(s), so Ia - bll Ia - bII . Applying
this inequality to columns of matrices, we see that

IA - A*II IA - Hfl-U*A* = mA - fl*A* 11,

since A*, A E sm. Moreover, IIA* - AIIF IIA* - AIIF, So

IIHA* - H*A*IIF F IA* - AIF + mA - H*A*II < 211lA - Fl*A*II

by the triangle inequality and the previous display. L

Lemma 2.1.1 guarantees that ||UA - H*A*IIF is a pertinent measure of the per-
formance of both fI and A. Note further that IIHA* - fl*A*IIF is large if H misplaces
rows of A* that have large differences, and is small if f only misplaces rows of A*
that are close to each other. We argue that, in the seriation context, this measure of
distance between permutations is more natural than ad hoc choices such as the trivial
0/1 distance or popular choices such as Kendall's T or Spearman's p.

Apart from Section 2.3 (and Section 2.5.4), the rest of this chapter focuses on the
least squares (LS) estimator defined by

(E, A) c argmin IIY-flAI . (2.2)
(H,A)E6. xUm

Taking MI = HA, we see that it is equivalent to define the LS estimator by

fl c argmin IIY - M|11. (2.3)
MEM

Note that in our case, the set of parameters .M is a union of n!nrm closed convex cones
but is not convex itself. Thus it is not clear how to compute the LS estimator effi-
ciently. We discuss this aspect in further details in the context of monotone columns
in Section 2.3. Nevertheless, the main focus of this chapter is the least squares esti-
mator which, as we shall see, is near-optimal in a minimax sense and therefore serves
as a benchmark for the statistical seriation model.
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2.1.2 Related work

Our work falls broadly in the scope of statistical inference under shape constraints
but presents a major twist: the unknown latent permutation 11*.

Shape constrained regression

To set our goals, we first consider the case where the permutation is known and assume
without loss of generality that H* = I. In this case, we can estimate individually
each column A*3 by an estimator A.,3 and then obtain an estimator A for the whole

matrix by concatenating the columns A.,. Thus the task is reduced to estimation of
a vector 0* which satisfies a certain shape constraint from an observation y = 9* + z
where z - subG,,1(o 2).

When 0* is assumed to be increasing we speak of isotonic regression [BBBB72].
The LS estimator defined by 0 argmin0 s8 , 110- yI| can be computed in closed form
in 0(n) using the Pool-Adjacent-Violators algorithm (PAVA) [ABE+55, BBBB72,
RWD88] and its statistical performance has been studied by Zhang [Zha02J (see also

INPT85, Don90, vdG90, Mam9l, vdG93] for similar bounds using empirical process
theory) who showed in the Gaussian case z ~ N(O, a2 J) that the mean squared error
behaves like

2 ( 2 V(0*))2/3 (2.4)
-E1|0 -0*112x ,n24

where V(0) = maxiE[,] 0, - miniE[l] 0, is the variation of 0 e Rn. Note that 2/3 -
2/(23 + 1) for # = 1 so that this is the minimax rate of estimation of Lipschitz

functions (see, e.g., fTsy09j).

The rate in (2.4) is said to be global as it holds uniformly over the set of monotone

vectors with variation V(0*). Recently, [CGS151 have initiated the study of adaptive

bounds that may be better if 0* has a simpler structure in some sense. To define this
structure, let k(0) = card({01, -- - ,0,}) denote the cardinality of entries of 0 E R'.
In this context, [CGS15] showed that the LS estimator satisfies the adaptive bound

1 i 110-0*1|2 72k(0) en .-E110 -0* 1 C inf + u (0)log . (2.5)
n - OS n n k(0)

This result was extended in [Bel15] to a sharp oracle inequality where C = 1. This

bound was also shown to be optimal in a minimax sense [CGS15, BT151.

Unlike its monotone counterpart, unimodal regression where 9* E U has received

sporadic attention ISZ01, KBI14, CL15I. This state of affairs is all the more surprising
given that unimodal density estimation has been the subject of much more research

[BF96, Bir97, ELOO, DDS12, DDS+13, TG14. It was recently shown in [CL15] that
the LS estimator also adapts to V(0*) and k(0*) for unimodal regression:

1 V(0*) + 01 2/3 g2

<min ( 4/3(, -k(*)3/2(log 3/2 (2.6)n p at n n

with probability at least I - n-' for some a' > 0. The exponent 3/2 in the second
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term was improved to 1 in the new version of [CL15 after the first version of our
work [FMR16] was posted. Note that the exponents in (2.6) are different from the
isotonic case. Our results will imply that they are not optimal and in fact the LS es-
timator achieves the same rate as in isotonic regression. See Corollary 2.4.1 for more
details. The algorithmic aspect of unimodal regression has received more attention
[Fri86, GS90, BS98, BMI06] and [StoO8] showed that the LS estimator can be com-
puted with time complexity 0(n) using a modified version of PAVA. Hence there is
little difference between isotonic and unimodal regressions from both computational
and statistical points of views.

Latent permutation learning

When the permutation H* is unknown the estimation problem is more involved. Noisy
permutation learning was explicitly addressed in [CD16 where the problem of match-
ing two sets of noisy vectors was studied from a statistical point of view. Given n x m
matrices Y = A + Z and Y = *A + Z, where A E R is an unknown matrix
and 1* E R" "f is an unknown permutation matrix, the goal is to recover fl*. It
was shown in [CD16] that if minjoj IIAj,. - Aj,.112 > ca((logn)1/ 2 V (m log n)1/ 4 ), then
the LS estimator defined by = argminfa |HY - Y1I' recovers the true permu-
tation with high probability. However they did not directly study the behavior of

||EA - H*A.12
In his celebrated paper on matrix estimation [Cha15], Sourav Chatterjee describes

several noisy matrix models involving unknown latent permutations. One is the
nonparametric Bradley- Terry-Luce (NP-BTL) model where we observe a matrix Y E
R"xf" with independent entries Yj, - Ber(P,j) for some unknown parameters P =

{Pj}1<ij3 n where Pj E [0, 1] is equal to the probability that item i is preferred
over item j and P,i = 1 - Pj. Crucially, the NP-BTL model assumes the so-
called strong stochastic transitivity (SST) [DM59, Fis73 assumption: there exists an
unknown permutation matrix H E R" " such that the ordered matrix A = HTPH
satisfies A 1,k < ... < An,k for all k C [n]. Note that the NP-BTL model is a special
case of our model (2.1) where m = n and Z - subG(1/4) is taken to be Bernoulli.
Chatterjee proposed an estimator P that leverages the fact that any matrix P in
the NP-BTL model can be approximated by a low rank matrix and proved [Cha15,
Theorem 2.111 that n2 IP-P2I' < n-1 /4 , which was improved to n-1/2 by [SBGW17]
for a variation of this estimator. This method does not yield individual estimators
of H or A. Instead [CM16 proposed estimators f and A so that HZET estimates P
with the same rate n-1/ 2 up to a logarithmic factor. The non-optimality of this rate
has been observed in [SBGW17 who showed that the correct rate should be of order
n-1 up to a possible log n factor. However, it is not known whether a computationally
efficient estimator could achieve the fast rate. A recent work [SBW16b] explored a
new notion of adaptivity for which the authors proved a computational lower bound,
and also proposed an efficient estimator whose rate of estimation matches that lower
bound.

Also mentioned in Chatterjee's paper is the so-called stochastic block model that
has since received such extensive attention in various communities that it is futile
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to attempt to establish a comprehensive list of references. Instead, we refer the
reader to [GLZ15 and references therein. This paper establishes the minimax rates
for this problem and its continuous limit, the graphon estimation problem and, as
such, constitutes the state-of-the-art in the statistical literature. In the stochastic
block model with k > 2 blocks, we assume that we observe a matrix Y = P + Z
where P = HAT T , H E R"' is an unknown permutation matrix and A has a block
structure, namely, there exist positive integers ni < ... < nk < nk+1 := n, and k 2

real numbers a,,, (s, t) E [k]2 such that A has entries

Ai = as I{n. i ns+ 1 ,+n j < nt+1}, ij E [n].

(st)E[k]
2

While traditionally, the stochastic block model is a network model and therefore
pertains only to Bernoulli observations, the more general case of sub-Gaussian ad-
ditive error is also explicitly handled in [GLZ15]. For this problem, Gao, Lu and
Zhou have established that the least squares estimator P satisfies n- P I
k2 /n 2 + (log k)/n together with a matching lower bound. Using piecewise constant
approximation to bivariate H6lder functions, they also establish that this estimator
with a correct choice of k leads to minimax optimal estimation of smooth graphons.
Both results exploit extensively the fact that the matrix P is equal to or can be well
approximated by a piecewise constant matrix and our results below take a similar
route by observing that monotone and unimodal vectors are also well approximated
by piecewise constant ones. In addition, we allow for rectangular matrices.

In fact, our result can be also formulated as a network estimation problem but on
a bipartite graph, thus falling at the intersection of the above two examples. Assume
that n left nodes represent items and that m right nodes represent users. Assume
further that we observe the n x m adjacency matrix Y of a random graph where
the presence of edge (i, j) indicates that user j has purchased or liked item i. Define
P = E[Y] and assume SST across items in the sense that there exists an unknown n x n
permutation matrix H* such that P = H*A* and A* is such that A* < ... A*,j for
all users j E [m]. This model of bipartite ranking falls into the scope of the statistical
seriation model (2.1).

2.2 Main results

2.2.1 Adaptive oracle inequalities

For a matrix A E Ui', let k(A.73 ) = card({Ai,.... ,Anj}) be the number of values
taken by the J-th column of A and define K(A) = 'l1 k(A.,j). Observe that K(A) >
m. The first theorem shows that the LS estimator adapts to the complexity K.

Theorem 2.2.1. For A* c Rn x' and Y = H*A* + Z, let (b, A) be the LS estimator
defined in (2.2). Then the following oracle inequality holds

1 A - 111 A AMn12 U 2K(A) logenm 2 logn (2.7)
||11 A - n*mA*|| , n I-|A -rA*| F + anm AEU- nm nm K (A) ) m
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with probability at least 1 - ec(+m), c > 0. Moreover,

1 i 1 2 2 K(A) enm +,log r -
EI|b -l* A*||I ,< min~ k -| A-A*|I+U K(A)+o . ( 2.8)nm E 1HA-HA1IFr AE-u- nmn nm K{ A)) I

Note that while we assume that A* E Utm in (2.1), the above oracle inequalities
hold in fact for any A* E R" ' even if its columns are not assumed to be unimodal.
The oracle inequalities indicate that the LS estimator automatically trades off the ap-
proximation error IA - A*I11 for the stochastic error U2 K(A) log(enm/K(A)). More-
over, 3 is the best constant we can achieve before the oracle approximation term when
the error is expressed in the Frobenius norm, i.e.,

111A - H*A*IF < (311A -A*I F + stochastic error terms).AEU-

This is the content of (2.21) in the proof of Theorem 2.2.1. Making (2.7) and (2.8)
into sharp oracle inequalities remains an interesting open problem.

If A* is assumed to have unimodal columns, then we can take A A* in (2.7)
and (2.8) to get the following corollary.

Corollary 2.2.2. For A* E U' and Y = f*A* + Z, the LS estimator (H, A) satisfies

1 g - 2 < .2 K(A*) enm login
nm - F ~ nm K(A*) m

with probability at least 1 - e-c(n+),c > 0. Moreover, the corresponding bound with
the same rate holds in expectation.

The two terms in the adaptive bound can be understood as follows. The first
term corresponds to the estimation of the matrix A* with unimodal columns if the
permutation f* is known. It can be viewed as a matrix version of the adaptive bound
(2.5) for the vector case. The LS estimator adapts to the cardinality of entries of A*
as it achieves a provably better rate if K(A*) is smaller while not requiring knowledge
of K(A*). The second term corresponds to the error due to the unknown permutation
H*. As m grows to infinity this second term vanishes, because we have more samples
to estimate I* better. If m > n, it is easy to check that the permutation term is
dominated by the first term, so the rate of estimation is the same as if the permutation
is known.

2.2.2 Global oracle inequalities

The bounds in Theorem 2.2.1 adapt to the cardinality of the oracle. In this subsection,
we state another type of upper bounds for the LS estimator (H, A). They are called
global bounds because they hold uniformly over the class of matrices whose columns
are unimodal and that have bounded variation. Recall that we call variation of a
vector a E R" the scalar V(a) > 0 defined by

V(a) = max ai - min aj.
1<i<n 1<i<n
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We extend this notion to a matrix A (E R"n by defining

1 m )233/2
V(A) = ( V(A.,)2/3

j=1

While this 2/3-norm may seem odd at first sight, it turns out to be the correct
extrapolation from vectors to matrices, at least in the context under consideration
here. Indeed, the following upper bound, in which this quantity naturally appears, is
matched by the lower bound of Theorem 2.2.6 up to logarithmic terms.

Theorem 2.2.3. For A* G Rxrn and Y = 1*A* + Z, let (b, A) be the LS estimator
defined in (2.2). Then it holds that

1 r1 .*2 ( 2 V(A) log n 2/3] 2 log n
nm A11111A - H *A*II F < Au Am F n n A m

(2.9)

with probability at least 1 - e-c(n+m),c > 0. Moreover, the corresponding bound with
the same rate holds in expectation.

If A* E Um, then taking A = A* in Theorem 2.2.3 leads to the following corollary
that indicates that the LS estimator is adaptive to the quantity V(A*).

Corollary 2.2.4. For A* E Um and Y =fl*A* + Z, the LS estimator (1, A) satisfies

1 JA * 2  (a 2V(A*) log n) 2/3 + 2 og n
||b1 - H* A*||, ,< +

nm r0 n nAm

with probability at least 1 - e-c(+")c > 0. Moreover, the corresponding bound with
the same rate holds in expectation.

Akin to the adaptive bound, the above inequality can be viewed as a sum of a
matrix version of (2.4) and an error due to estimation of the unknown permutation.
Observe that if o- = 1, m > n2/3 and all the entries are bounded by a universal
constant, then the rate of estimation simplifies to O(n- 2 / 3). Since every monotone
vector is unimodal, the rate O(n- 2 / 3 ) also holds for the case where columns of A* are
monotone, which will be discussed in detail in Section 2.3. Recently, rates of O(n- 1)
have been established for bi-isotonic matrices with latent permutations [SBGW17,
CM16], where bi-isotonicity means that the columns and the rows of the underlying
matrix are both monotone. We emphasize that our rate is slower because only the
columns of the matrix are assumed to be unimodal or monotone, while no constraints
are imposed on the rows. The minimax lower bounds below in fact suggest that the
rate O(n- 2 / 3 ) is optimal up to a logarithmic factor.

Having stated the main upper bounds, we digress a little to remark that the proofs
of Theorem 2.2.1 and Theorem 2.2.3 also yield a minimax optimal rate of estimation
(up to logarithmic factors) for unimodal regression, which improves the bound (2.6).
We discuss the details in Section 2.4.
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2.2.3 Minimax lower bounds

Given the model Y = H*A* + Z where entries of Z are i.i.d. N(O, o.2 ) random
variables, let (EA) denote any estimator of (11*, A*), i.e., any pair in 6, x WR"n
that is measurable with respect to the observation Y. We will prove lower bounds that
match the rates of estimation in Corollary 2.2.2 and Corollary 2.2.4 up to logarithmic
factors. The combination of upper and lower bounds, implies simultaneous near
optimality of the least squares estimator over a large scale of matrix classes.

For m < KO < nm and V > 0, define Ugo = {A c U m : K(A) Ko} and

Um (Vo) = {A e U m : V(A) < Vo}. We present below two lower bounds, one for the
adaptive rate uniformly over UWI and one for the global rate uniformly over Um(Vo).
This splitting into two cases is solely justified by better readability but it is worth
noting that a stronger lower bound that holds on the intersection Uf n U"(V) can
also be proved and is presented as Proposition 2.5.9.

Theorem 2.2.5. There exists a constant c E (0,1) such that for any KO > m, and
any estimator (H, A), it holds that

sup PHA [-IA - HA I 2> 2 o + log'] C
(H,A)e6G nm F nm m

where 1 = min(Ko - m, m) + 1 and PHA is the probability distribution of Y = HA + Z.
It follows that the lower bound with the same rate holds in expectation.

In fact, the lower bound holds for any estimator of the matrix H*A*, not only
those of the form hA with A E U'. The above lower bound matches the upper
bound in Corollary 2.2.2 up to logarithmic factors.

Note the presence of a log 1 factor in the second term. If 1 = 1 then KO = m
which means that each column of A is simply a constant block, so HA = A for any
H C en. In this case, the second term vanishes because the permutation does not
play a role. More generally, the number 1 - 1 can be understood as the maximal
number of columns of A on which the permutation does have an effect. The larger
1, the harder the estimation. It is easy to check that if I > n the second term in the
lower bound will be dominated by the first term in the upper bound.

A lower bound corresponding to Corollary 2.2.4 also holds:

Theorem 2.2.6. There exists a constant c E (0,1) such that for any Vo > 0, and
any estimator (H, A), it holds that

u2Vo /
sup PrA[ 1 |O - HAI n + 2 A 2 >C

(rI,A)E6n XU(V) nm n n m 0

where PnA is the probability distribution of Y = HA + Z. The lower bound with the
same rate also holds in expectation.

There is a slight mismatch between the upper bound of Corollary 2.2.4 and the
lower bound of Theorem 2.2.6 above. Indeed the lower bound features a term 2 Arn
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m2 Vj instead of just 2. In the regime m 2 V < =, where A has very small variation,
the LS estimator may not be optimal. Proposition 2.2.7 below, whose proof can
be found in Section 2.7, indicates that a matrix with constant columns obtained by
averaging achieves optimality in this extreme regime.

Proposition 2.2.7. For Y = I*A* + Z where Z ~ subG(a2 ), let I = i. and A be

defined by Ai = - E'1Ykj for all (i,j) E [In] x [m]. Then,

nm n

with probability at least 1 - exp(-m) and the corresponding bound with the same rate
holds in expectation.

2.3 Further results in the monotone case

A particularly interesting subset of unimodal matrices is Sm, the set of n x m matrices
with monotonically increasing columns. While it does not amount to the seriation
problem in its full generality, this special case is of prime importance in the context
of shape constrained estimation as illustrated by the discussion and references in
Section 2.1.2. In fact, it covers the example of bipartite ranking discussed at the end
of Section 2.1.2. In the rest of this section, we devote further investigation to this
important case. To that end, consider the model (2.1) where we further assume that
A* E Sm. We refer to this model as the monotone seriation model. In this context,
define the LS estimator by

(11, Z) (E argmin ||Y - IIAlI.
(H,A)EE, xSm

Since Sm is a convex subset of Um, it is easily seen that the upper bounds in The-
orem 2.2.1 and 2.2.3 remain valid in this case. The lower bounds of Theorem 2.2.5

(with log 1 replaced by 1) and Theorem 2.2.6 also extend to this case; see Section 2.5.3.
Although for unimodal matrices the established error bounds do not imply any

bounds on estimation of A* or 11* in general, for the monotonic case, however,
Lemma 2.1.1 yields that

IA - A*I11 V -II(n - FI*)A* < IHA - f*A*I.

so that the LS estimator (U, A) also leads to good. individual estimators of 11* and

A* respectively.

2.3.1 RankScore: An efficient estimator and its performance

Because it requires optimizing over a union of n! cones HS', no efficient way of
computing the LS estimator is known since. As an alternative, we describe a simple
and efficient algorithm to estimate (JJ*, A*) and study its rate of estimation.
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The main difficulty of the problem lies in providing an efficient estimator H of 1*,
because after determining 1l we may project Y onto the convex cone fS' efficiently
to estimate A*. Recovering the permutation P* is equivalent to sorting the rows of
17*A* from their noisy version Y. One simple method to aggregate information across
columns, which we call RankSum, is to sort the rows of Y so that they have increasing
row sums. However, it is easy to observe that this method fails if

0 0 ... 0'

A* ... 0 (2.10)
V/ i 0 ... 0

L 0 ... .

where the last LJ entries in the first column of A* are equal to V/mY and the entries
of Z are i.i.d. standard Gaussian variables. Because the sum of noise in each row is of
order V/ni which is no less than the gaps between row sums of A*, RankSum will place
a nonzero row before a zero row with a constant probability. Therefore, if H is the
permutation given by RankSum, then IInA - H*A*I12I will be of order nm regardless
of the matrix A c Sm, so we have no hope of consistent estimation in general.

In fact, it is easy to distinguish the two types of rows of A* even when noise is
present, for example, by looking at the first entry of a row. To circumvent the issue
raised by this A*, we would like to combine the information from rows sums with that
from each individual column. This motivates us to consider the following method
called RankScore, which outperforms RankSum and yields consistent estimation.

For A* E W 7nm and i,i' E [n], define

AA(i Z") =max(Aif - )V 1A*~,

and define Ay(i, i') analogously. The quantity AA* (i, i') measures the difference be-
tween row i and row i' of A* by either the largest difference between two correspond-
ing entries, or the difference between the row sums scaled by the effective noise level
m- 1/ 2 , whichever is larger. If the noisy version Ay(i, i') is larger than some threshold
T, then with high probability row i of Y should be placed after row i' in the original
order. The procedure RankScore aggregates the comparison results between all pairs
of rows of Y as follows:

1. For each i C [n], define the score si of the i-th row of Y by

n

si = (Ay (1, 0) ;> 2T) (2.11)

where T := C-V/log(nrm) for some tuning constant C (see Section 2.5.4 for
details).
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2. Order the rows of Y so that their scores are increasing, with ties broken arbi-
trarily.

The score si is just the number of comparisons row i wins. Intuitively, rows
with larger entries will win more comparisons and thus be placed after rows with
smaller entries. Hence RankScore can be viewed as a variant of the classical counting-
based method for ranking, Copeland's method [Cop51], with a counting rule designed
specifically for the model under consideration.

The RankScore procedure recovers an order of the rows of Y, which leads to an
estimator 17 of the permutation. Then we define A E Sm so that HA is the projection
of Y onto the convex cone flS'.

To quantify the rate of estimation for the RankScore estimator (n, A), we define
a new quantity R(A) for A E Sm as follows:

1 || Ai,. - A,. |2 m||Ai,. - As,. ||.
R(A) = - max ( ' 1 2, (2.12)

n EC[,] 2Ai,. - Aj, 2 IAAi,. - Aj,.II? '

where the summand is understood to be 1 if the rows Ai,. and A,. are identical.
To understand what properties of A the quantity R(A) captures, consider the

difference between the rows Ai,. and Aj,., denoted by u G Rm . First, the quantity

1uI2 /Ilu112 is small when u is sparse. We have Ilu 1i2 UI2 > 1 with equality achieved
when |ullo = 1. Second, the quantity m1 u12/|ull2 is small when u is dense. We have
mIlu||2/|u|I > 1 with equality achieved when all entries of u are the same. In
particular, it holds that R(A) > 1, and R(A) is small when the differences between
rows of A are either very sparse or very dense. For example, if A is the matrix
in (2.10), then the difference between any two distinct rows is 1-sparse, so we have
R(A) = 1. Another example is

A = [0] (2.13)

where the lower [n/2J rows of A are all ones while the remaining entries are all zeros.
For this matrix, the difference between any two distinct rows is the all ones vector,
so again we have R(A) = 1.

Moreover, ||UlI2 < llullillull, by Hblder's inequality, so 2 A MlIU112 <s
00u 1

the product of the two terms is no larger than m. The equality is achieved by
U = (1, ... ,1,0, , 0) where the first V entries are equal to one. Therefore we
have

R(A) c [1, . (2.14)

Roughly speaking, the quantity R(A) is large if there exist 6(n) pairs of rows for
which the differences are 5'mi-sparse. An example of such an A is the lower triangular
matrix with all ones on the lower triangle. We can take pairs of rows that are V
positions apart, and their differences are exactly V/7-sparse binary vectors. Thus we
have R(A) := /.

Since RankScore makes use of entrywise differences between rows, together with the

difference between row sums, we expect a better performance of RankScore when the
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differences between rows of A* are either very sparse or very dense, which is exactly
what captured by the quantity R(A*). Therefore, it is natural that the estimator

(H, A) enjoys the following rate of estimation, characterized by R(A*) together with

K(A) defined in the previous section.

Theorem 2.3.1. For A* E Srn and Y = H*A* + Z, let (17, A) be the estimator defined

above using the RankScore procedure with threshold T = 3u /(C + 1) log(nm), C > 0.
Then it holds that

1 - ,2_1 2 K(A) enm

nm A-n*A*IIF ~<I AI ASm nm nm K(A)

2 R(A*) log(nm)
+ (C +1)o-

with probability at least 1 - ec(n+m) - (nm-C for some constant c > 0.

The quantity R(A*) only depends on the matrix A*. If R(A*) is bounded loga-

rithmically, the estimator (H, A) achieves the minimax rate up to logarithmic factors.

In any case, R(A*) < Vx/dY, so the estimator is still consistent with the permutation

error (i.e. the last term) decaying at a rate O(-). Furthermore, it is worth not-

ing that R(A*) is not needed to construct (n, A), so the estimator adapts to R(A*)

automatically.

Remark 2.3.2. In the same way that Theorem 2.2.3 follows from Theorem 2.2.1, we

can deduce from Theorem 2.3.1 a global bound for the estimator (U, A) which has rate

(o.2 V(A*) log n 2/3 + o g 2 (logn+ R(A*)

2.3.2 Simulations

We corroborate the theoretical results above with a numerical comparison between
the RankSum and RankScore procedures.

Consider the model (2.1) with A* E S'm and assume without loss of generality that
rI* = In. For various n x m matrices A*, we generate observations Y = A* + Z where

entries of Z are i.i.d. standard Gaussian variables. The performance of the estimators

given by RankScore and RankSum defined above is compared to the performance of

the oracle Aorace defined by the projection of Y onto the cone S'm. Note that we are
not able to compute the LS estimator efficiently, so instead the oracle estimator is

used as the benchmark. For the RankScore estimator we take T 6. The curves are

generated based on 30 equally spaced points on the base-10 logarithmic scale, and all

results are averaged over 10 replications. The vertical axis represents the estimation

error of an estimator HA, measured by the sample mean of log 0 (LIlhA - A*I11)
unless otherwise specified.

We begin with a simple example for which we set n = m. For each a E [0, 1],
define a matrix A* = A*(a) E Rfxf by A*'J = m(-a)/2 for n/2 < i < n, 1 j < m
and A> = 0 otherwise. Note that A* is an interpolation between the matrix in (2.10)
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Figure 2-1: Estimation errors of the three estimators for A* = A*(a) where a ranges
from 0 to 1. Left: the oracle estimator; Middle: the RankScore estimator; Right: the
RankSum estimator.

(where a = 0) and the matrix in (2.13) (where a = 1). The nonzero rows of A* have

e2-norm equal to V/ i for any a E [0, 1].
In Figure 2-1, we plot the estimation errors of the oracle, RankScore and RankSum

estimators for this A* in the three plots respectively. As expected, RankSum has poor
performance in estimating the true permutation when a is close to zero, because it
fails to exploit the differences between rows along individual columns. When a is close
to one, the weight of a nonzero row of A* is distributed evenly across the columns,
so it is appropriate to only consider row sums and thus RankSum behaves well. On
the other hand, RankScore outperforms RankSum in recovering the permutation for
any a E [0, 1] when n is large, and it has roughly the same performance as the
oracle. According to the discussion after (2.12), we have R(A*) = 1 for a = 0 or
1. Thus Theorem 2.3.1 predicts the fast rate, which is verified by the experiment.
For a close to 1/2, however, Theorem 2.3.1 only guarantees a rate 6(m-1/ 2 ) while
the experiment suggests that RankScore still behaves as well as the oracle. Hence
improving the adaptive bound in Theorem 2.3.1 remains an interesting problem for
future research.

Note that the performance of each estimator for a = 0.6 is slightly better than
that for a = 1. This is not inconsistent with our theoretical guarantees as the bounds
we proved are up to logarithmic factors. Achieving sharper bounds to explain such a
phenomenon also remains an interesting open question out of the scope of the present
work.

In Figure 2-2, we compare the performance of RankScore to that of the oracle in
three regimes of (n, m). The matrices A* are randomly generated for different values
of n and m as follows. For the right plot, A* is generated so that V(A*) < 1, by
sorting the columns of a matrix with i.i.d. U(0, 1) entries. For the left plot, we further
require that K(A*) = 5m by uniformly partitioning each column of A* into five blocks
and assigning each block the corresponding value from a sorted sample of five i.i.d.
U(0, 1) variables.

Since the oracle knows the true permutation, its behavior is independent of m,
and its rates of estimation are bounded by 1o92 for K(A*) = 5m and (1Ofl)l for

V(A*) = 1 respectively by Theorem 2.2.1 and 2.2.3. (The difference is minor in the
plots as n is not sufficiently large). For RankScore, the permutation term dominates

27



..

0
t
C
0
Ca
E
uw

-1.4

-1.6

-1.8

-m = i/2
-m = n

-m =3/2

0

C

0-

-

0.6

0.8

-1

1.2

1.4

1.6

1.8

1 1.5 2 2.5 3 1 1.5 2
logio n logio n

2.5 3

Figure 2-2: Estimation errors of the oracle (dashed lines) and RankScore (solid lines)
for different regimes of (n, m) and randomly generated A* of size n x m. Left: K(A*) =

5m; Right: V(A*) < 1.

the estimation term when m = n1 /2 by Theorem 2.3.1. From the plots, the rates
of estimation are better than 6(n-1/4) predicted by the worst-case analysis in both
examples. For m = n, we also observe rates of estimation faster than the worst-case
rate 0(ni/ 2 ) and close to the oracle rates. We could explain this phenomenon by
R(A*) < V , but such an interpretation may not be optimal since our analysis is
based on worst-case deterministic A*. Potential study of random designs of A* is left
open. Finally, for m = n3 / 2 , the permutation term is of order 6(n- 3/ 4 ) theoretically,
in between of the oracle rates for the two cases. Indeed RankScore has almost the
same performance as the oracle experimentally. Overall Figure 2-2 illustrates the
good behavior of RankScore in these random scenarios.
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To conclude our numerical experiments, we consider the n x n lower triangular
matrix A* defined by A' = 1(i > j). For this matrix, it is easy to check that
K(A*) = 2n - 1 and R(A*) ~ v/n. We plot in Figure 2-3 the estimation errors of
HA, HA* and A given by RankScore, in addition to the oracle. By Theorem 2.3.1, the
rate of estimation achieved by HA is of order O(n- 1/ 2 ), while that achieved by the
oracle is of order O(n-1 ) since there is no permutation term. The plot confirms this
discrepancy. Moreover, |HnA* - A* Fis an appropriate measure of the performance

of h by Lemma 2.5.13 and 2.1.1, and the plot suggests that the rates of estimation
achieved by HA* and HA are about the same order. Finally A seems to have a
slightly faster rate of estimation than HA, so in practice A could be used to estimate
A. However we refrain from making an explicit conjecture about the rate.

2.4 Unimodal regression

If the permutation in the main model (2.1) is known, then the estimation problem
simply becomes a concatenation of m unimodal regressions. In fact, our proofs imply
new oracle inequalities for unimodal regression. Recall that U denotes the cone of
unimodal vectors in R'. Suppose that we observe

y = 0* + z,

where 0* c R"n and z is a sub-Gaussian vector with variance proxy a2 . Define the LS
estimator 0 by

0 c argmin 1|0 -y11.
OEH

Moreover let k(0) = card({0i, .. . 0,4) and V(0) = maxiE[n] Oi - mini[n] Oj.

Corollary 2.4.1. There exists a constant c > 0 such that with probability at least
1 n-', a > 1,

1 1 2 k(0) en 2 log n-|$ 6||3 i |I0-0*II|I+o log k(0) c2 (2.15)n Ocu ( nn k(O) n

and
1 , Mi ( 2 V(0) logn 2 /3 + 2 log
-1|0 - 0*j || 1-mi ||0- 6 |++ on 2 rn n

The corresponding bounds in expectation also hold.

The proof of Corollary 2.4.1 can be found in Section 2.7. Note that the bounds
above match the minimax lower bounds for isotonic regression in [BT15] up to loga-
rithmic factors. Since every monotone vector is unimodal, lower bounds for isotonic
regression automatically hold for unimodal regression. Therefore, we have proved
that the LS estimator is minimax optimal up to logarithmic factors for unimodal
regression.

A result similar to (2.15) was obtained by Pierre C. Bellec in the revision of [Bel15]
that was prepared independently and contemporaneously to our work [FMR16]. In
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addition, Sabyasachi Chatterjee and John Lafferty also improved their bounds to
having optimal exponents [CL15 after the first version of our work [FMR16] was

posted. Interestingly Bellec employs bounds on the statistical dimension by leveraging
results from IDA14}, and Chatterjee and Lafferty use both the variational formula and
the statistical dimension. Moreover, their results are presented in the well-specified
case where 9* E U and 0 = 0*.

2.5 Proofs

In this section, we provide the proofs of the main results.

2.5.1 Proof of the upper bounds

Before proving the main theorems, we discuss two methods adopted in recent works
to bound the error of the LS estimator in shape constrained regression, in a general
setting. Consider the least squares estimator 0 of the model y = 0* + z, where 9* lies
in a parameter space E and z is Gaussian noise. One way to study EIIO - j * is to
use the statistical dimension [DA14] of a convex cone E defined by

E[ sup (0, Z) .2OEE), 110112<

This has been successfully applied to isotonic and more general shape constrained
regression [CGS15, Bel15].

Another prominent approach is to express the error of the LS estimator via what
is known as Chatterjee's variational formula, proved in [Cha14] and given by

t2
110 - 0*1|2 = argmax sup ( -- *, z) - -. (2.16)

t>o OEe,1|0-0*I25t 2)

Note that the first term is related to the Gaussian width (see, e.g., [CRPW12]) of E
defined by E[supo0 e(0, z)], whose connection to the statistical dimension was studied
in [DA141. The variational formula was first proposed for convex regression [Cha14],
and later exploited in several different settings, including matrix estimation with
shape constraints [CGS181 and -unimodal regression [CL15]. Similar ideas have ap-
peared in other works, for example, analysis of empirical risk minimization [Menl5,
ranking from pairwise comparison [SBGW17] and isotonic regression [Bel15]. In this
latter work, Bellec has used the statistical dimension approach to prove spectacularly
sharp oracle inequalities that seem to be currently out of reach for methods based on

Chatterjee's variational formula (2.16). On the other hand, Chatterjee's variational
formula seems more flexible as computations of the statistical dimension based on
[DA14I are currently limited to convex sets E with a polyhedral structure. In this
chapter, we use exclusively Chatterjee's variational formula.
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A variational formula for the error of the LS estimator

We begin the proof by stating an extension of Chatterjee's variational formula. While
we only need this lemma to hold for a union of closed convex sets we present a version
that holds for all closed sets. The latter extension was suggested to us by Pierre C.
Bellec in a private communication [Bell6].

Lemma 2.5.1. Let C be a closed subset of R . Suppose that y = a* + z where a* E C
and z E R'. Let & E argminaEC I| - a||1 be a projection of y onto C. Define the
function fa. :R+ -+ R by

t2

fa.(t) sup (a -a*, z) - -.
aECnSd(a*,t) 2

Then we have

IIh - a*11 2 E argmax fa*(t). (2.17)
t>o

Moreover, if there exists t* > 0 such that fa*(t) < 0 for all t > t* , then Ih-a*|2 *

Proof. By definition,

h E argmin (Ia - a*12 - 2(a - a*, z) + |Z2 = argmax ((a - a*, z) Ia - a*112
aEC aEC 2 2

Together with the definition of fa*, this implies that

1
fa*(115 - a* 112) > (h - a*, z) - 1|I - a*112

> sup ((a - a*, 7z) - -Ila - a * 11
aECnsd(a*,t) 2

2t

> sup (at a*, z)- =fa(t) .
aECnd(a*,t) 2

Therefore (2.17) follows.
Furthermore, suppose that there is t* > 0 such that fa* (t) < 0 for all t > t*. Since

fa*(|Id - a*112) > fa*(0) = 0, we have II& - a*112 t*. El

Note that this structural result holds for any error vector z c Rd and any closed
set C which is not necessarily convex. In particular, this extends the results in [Cha14]
and [CL15] which hold for convex sets and finite unions of convex sets respectively.

Proof of Theorem 2.2.1

For our purpose, we need a standard chaining bound on the supremum of a sub-
Gaussian process that holds in high probability. The interested readers can find the
proof, for example, in [vH14, Theorem 5.29], and refer to ILT91] for a more detailed
account of the technique.
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Lemma 2.5.2 (Chaining tail inequality). Let 0 C Rd and z - subG(U 2 ) in Rd. For

any 00 E 0, it holds that

sup(0 - 0,z) < C-
GOe J diam(E)0

,log N(, II - 112, E) d + s

with probability at least 1- C exp( 2 dia(e)2) where C and c are positive constants.

Let A E U m . To ligthen the notation, we define two rates of estimation:

R1 = R(,Kn)=A)l enm

R2= R2 (A, n) = a2 (K(A) log enm
K(A)

+ gn log n)

+ n log n).

Note that R2 < Ri 2 2R2 .

Lemma 2.5.3. Suppose Y = A* + Z where A* G R""n and Z - subG(u2 ).

A t Um and all t > 0, define

fA(t) =
t 2

sup (A - A,Y - A) - -.
2

Then for any s > 0, it holds simultaneously for all t > 0 that

fA(t) 2 CR~t +t||A* - ||F - + St (2.20)

with probability at least 1 - C exp(-2), where C and c are positive constants.

Proof. Define 0 = OM(A, 1) = UA>O{B - AA : B E M n Bn'(AA, 1)} (see also
Definition (2.24)). In particular, 0 c Bnm (0, 1) and 0 E 0. Since M is a finite union

of convex cones and thus is star-shaped, by scaling invariance,

sup (A - A, Z) = t
AEMnB m (At)

sup (B - t-'A, Z) < t sup (M, Z).
BEMnB"n"(t 1,1) MEE)

By Lemma 2.5.2, with probability at least 1 - C exp(-2),

sup (M, Z) < Co j
ME) 10

Vlog N(0,I - ||F, E) dE + S.

Moreover, it follows from Lemma 2.5.8 that

log N(0, 11 - JIF, E) < CE-<K(A) log "' + nlogn.
K(A)
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Combining the previous three displays, we see that

sup (A-A,Z) < Cu-t C Agnlogn de + st
AEMnBm ,(At) 0K(A

< Cut K(A) log enm +Cut /nlogn+st

- CR1 t + st

with probability at least 1 - C exp(-). Therefore

fA(t) = sup (A- A,Y- A)-
AEMnnm(A,t) 2

sup (A - A, Z)+
AMfnSBm(A,t)

t2
sup (A -A, A* -A) - -

AEMnBnm(A,t)

t2

< CRit + st + t||A* - ||1F - ~~
2

with probability at least 1 - C exp(-2) simultaneously for all t > 0. l

We are now in a position to prove the adaptive oracle inequalities in Theorem 2.2.1.
Recall that (H, A) denotes the LS estimator defined in (2.2). Without loss of gener-
ality, assume that 11* = I., and Y = A* + Z.

Fix A E U' and define fA as in Lemma 2.5.3. We can apply Lemma 2.5.1 with
a* = , z Y - , y = Y and & = A to achieve an error bound on 11HA - A||F,
since HA E argminguA jY -- M112f. To be more precise, for any s > 0 we define
t* = 3C1 R1 + 211A* - A1|F + 2s where C1 is the constant in (2.20). Then it follows
from Lemma 2.5.3 that with probability at least 1- C exp(- ), it holds for all t > t*
that

t2
fUt) < C1 R1 t + t||A* - ||F - -+St < 0

2

Therefore by Lemma 2.5.1,

||I - AIIF 1+ 3Cij + 211A* - A|F + 2s,

and thus
HA - A*||F CR1 + 311A* - A|F + 2s

with probability at least 1 - C exp(- ).

In particular, if s = R1, then s > o n + m as K(A) > m.
probability at least 1 - C exp(-) > 1 --

(2.21)

We see that with

|bA - A*IIF< R1 +| |A* -AF
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and thus

liA - A*||% < IIA* - A| + .2K(A) log eim +a 2nlog .
K(A)

Finally, (2.7) follows by taking the infimum over A E U m on the right-hand side and
dividing both sides by nm.

Next, to prove the bound in expectation, observe that (2.21) yields

P [11fA - A*JII - C(R2 + |IA* - AFI) ; sJ Cexp(- U),

where R 2 is defined in (2.19). Integrating the tail probability, we get that

EIHA - A*|11 - C(R2 + IIA* - || ) 6 exp(-2 )ds =

and therefore

EIIi - A*||% < R2 + 1|A* - A||.
Dividing both sides by nm and minimizing over A E U m yields (2.8).

Proof of Theorem 2.2.3

In the setting of isotonic regression, [BT15 derived global bounds from adaptive
bounds by a block approximation method, which also applies to our setting. The
lemma below is a generalization of [BT15, Lemma 2] to the case of unimodal matrices.

For k E [n], let
Uk = {a E U : card({a 1,..., an}) < k}.

Define k* = [( V(a)fl) 1/31. More generally, for k E [nr]tm, we write k = (ki, . , km)
and let

U17 = {A E U' : card({Aij,... , Anj}) = k. for 1 j < m}.

Then K(A) =',K 1 kj for A E U. Define k* by

k*-E(V(A.,j)2n 1/3

I0 \ 2 log(en)

Lemma 2.5.4. For A c Un, there exists A c U" such that

1 ~ 1 02 V(A) log(en) 2/3 +- 2
A - Al -- -log(e)nm 4 n 4n

and
a2K(A) .2(lg(en)2/3 2o.2

log(en) < 2 (
2 V(A)log en) + -- log(en).

nm n n

The proof of the lemma is provided in Section 2.7. To prove the theorem, for
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A E Um, choose A E U " according to Lemma 2.5.4. Then

1 - 12 22 2 - 2
| 1A - A*||F < -1-A - A*|F + -||A - A||Fnm nm nm

2 51u2 V(A)logn\2/3 ___

< 2-11A - A*2 + - ( ) + log n (2.22)
nm F 4 n 4n

by noting that log(en) < 2.5 log n for n > 2, and similarly

u2 K(A) ,u2 V(A)logn2/ o
m 2 log(en) l + -- 2log n. (2.23)

nm n n

Plugging (2.22) and (2.23) into the right-hand side of (2.7) and (2.8), and then min-
imizing over A E Un, we complete the proof.

2.5.2 Metric entropy

This section is devoted to studying various covering numbers or metric entropy related
to the parameter space of the model (2.1). The proofs of the lemmas in this section
are provided in Section 2.7.

Recall that an E-net of a subset G c Rn with respect to a norm || is a set

{W 1 , - - - , WN} C G such that for any w E G, there exists i E [N] for which ||w-wil| <
E. The covering number N(G, 1 - 11, E) is the cardinality of the smallest E-net with
respect to the norm || - 11. Metric entropy is defined as the logarithm of a covering
number. In the following, we will consider the Euclidean norm unless otherwise
specified.

We start with a lemma bounding the metric entropy of a Cartesian product of
convex cones. It is useful in later proofs and has its own interest. Let {i}gi1 be a
partition of [n] with IliI = ni and J:' 1 ni = n. For a E R', the restriction of a to
the coordinates in Ii is denoted by ali E Rni. Let Ci be a convex cone in R"i and
C=C1 X .. -X Cm.

Lemma 2.5.5. With the notation above, suppose that a1 , E Ci n (-Ci). Then for any
t > 0 andc E (0,t],

log N(C n B(a, t), 2, E) < m log -+ log N (Ci n Bi(a,, t), -||2,)

for some constant C > 0.

Recall that Sn denotes the closed convex cone of increasing vectors in R"n{. First,
we give a result on the metric entropy of Sn intersecting with a ball.

Lemma 2.5.6. Let b C R be such that b1 = ... = bn. Then for any t > 0 and E > 0,

log N(S, n B'(b, t), 11 - 112, E) < GE t log(en).
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Next, we study the metric entropy of the set of matrices with unimodal columns.
Recall that Ci= {a E R" : a, < ... aj}{aF :a, > - -. >an} forl E [n]. For
1= (11, ... , 1m) E [n]", define Cm = C11 x x Cm*. Moreover, for A E R" , t > 0
and C C R "nX, define

Ec(A, t) U{B - AA: B E C n B' m(AA, t)} (2.24)
A>O

=U (C n B3nm(AA, t)- AA).
A>eO

Note that in particular Ec(A, t) c B""'(0, t).

Lemma 2.5.7. Given A E Rnx"m and 1 = (11,. .. , lm) E [n]m, we define the quantities
k(A.,j) = card({A1,,... , A,}) and K(A) = >j" 1 k(A.,j). Then for any t > 0 and
g> 0,

enm
log N(Oc- (A, t), I -IF, E) < CE 1 t K(A) log K(A)

Finally, we consider the metric entropy of OM (A, t) for A E Rnx", t > 0 and

M = Unen nU"m. The above analysis culminates in the following lemma which we
use to prove the main upper bounds.

Lemma 2.5.8. Let A G Rxm and K(A) be defined as in the previous lemma. Then
for any E > 0 and t > 0,

ernm
log N(Em (A, t),1 - |IF, E) < CE-'t K(A) log + n log n.

K(A)

2.5.3 Proof of the lower bounds

For minimax lower bounds, we consider the model Y = H*A* + Z where entries of Z
are i.i.d. N(0, a2 ). Define U.14 (Vo) = U. nUl"(Vo) and M K, (Vo) = Una HUZ0 (V).
Define the subset of MK(V) containing permutations of monotone matrices by
M1 (Vo) = {HA E MK(V) : H E 6, A E S'm }. Since each estimator pair (I, A)
gives an estimator M = HA of M = HA, it suffices to prove a lower bound on

M - M|j. In fact, we prove a lower bound stronger than the one in Theorem 2.2.5.
The proofs of the lemmas below can be found in Section 2.7.

Proposition 2.5.9. Suppose that KO < m(L)1/3V2/ 3 - m. Then

rr 2 K

inf sup PM[ -$I - M112 > co2 K
M MEMOQ(VO) nm nm

+ C max min -log l, m2-3v0 ) > c' (2.25)
1<1<min(Ko-m,n)+1 (m

for some c,c' > 0, where PM is the probability with respect to Y = M + Z. This
bound remains valid for the parameter subset Mk0 (Vo) if I = 1 or 2.
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Note that the bound also holds for the larger parameter set M K= UnEs H'ugo.
By taking I = min(Ko - m, m) + 1 and V large enough, we see that the assumption
in Proposition 2.5.9 is satisfied and the second term becomes simply 2 log l, so The-
orem 2.2.5 follows. In the monotonic case, by the last statement of the proposition,
if Ko > m + 1 then taking I = 2 and V large enough yields a lower bound of rate
02(2 +o + ) for the set of matrices A with increasing columns and K(A) < Ko.

The proof of Proposition 2.5.9 has two parts which correspond to the two terms
respectively. First, the term o. is derived from the proof of lower bounds for

isotonic regression in [BT15I. Then we derive the other term 2 log 1 for any 1 < 1 <
min(Ko - m, m) + 1, which is due to the unknown permutation.

Lemma 2.5.10. Suppose that KO < m(16 )1/3y 2/ 3 - m. For some c, c' > 0,

inf sup PA'[IIM - MII- cu2 Ko] >
M MEMKO(Vo)

where PM is the probability with respect to Y = M + Z.

For the second term in (2.25), we first note that the bound is trivial for 1 1
since log I = 0. The next lemma deals with the case 1 = 2.

Lemma 2.5.11. There exist constants c, c' > 0 such that for any KO > m + 1 and
VO > 0,

inf sup PM[IIM - M I cnmin (um02) > c',
M MeMi (Vo)

where PM is the probability with respect to Y = M + Z.

For the previous two lemmas, we have only used matrices with increasing columns.
However, to achieve the second term in (2.25) for 1 > 3, we need matrices with
unimodal columns.

Lemma 2.5.12. There exist constants c, c' > 0 such that for any KO > m, V > 0
and 3 < I < min(Ko - m,m) + 1,

inf sup PM [IM-MIIF > cnmin (o.2 3L3V 02 C ,
M MEMK 0 (VO)

where PM is the probability with respect to Y = M + Z.

Proof of Proposition 2.5.9. Combining Lemma 2.5.10, 2.5.11 and 2.5.12, and then
dividing the bound by nm, we get (2.25) because the max of two terms is lower
bounded by a half of their sum. The last statement in Proposition 2.5.9 holds since
Lemma 2.5.10 and 2.5.11 are proved for matrices with increasing columns. E

Furthermore, the proof of Theorem 2.2.6, provided in Section 2.7, only uses
Lemma 2.5.10 and 2.5.11, so the lower bound of rate (V)2/3 + + min(1,m2y02)
holds even if the matrices are required to have increasing columns.
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2.5.4 Matrices with increasing columns

For the model Y = H*A* + Z where A* E Sm and Z - subG(u 2 ), a computationally
efficient estimator (l, A) has been constructed in Section 2.3 using the RankScore
procedure. We will bound its rate of estimation in this section. Recall that the
definition of (H, A) consists of two steps. First, we recover an order (or a ranking) of
the rows of Y, which leads to an estimator H of the permutation. Then define A E Sm
so that HA is the projection of Y onto the convex cone fl5ST. For the analysis of
the algorithm, we deal with the projection step first, and then turn to learning the
permutation. The proofs of the results in the section can be found in Section 2.7.

In fact, for any estimator H, if A is defined as above by the projection correspond-
ing to H, then the error JIIA - H*A*II' can be split into two parts: the permutation
error II(H - H*)A* 11 and the estimation error of order O(o.2 K(A*)).

Lemma 2.5.13. Consider the model Y = H*A* + Z where A* E Sm and Z
subG(O 2 ). For any H E 6n, define A E S' so that HA is the projection of Y
onto HSm . Then with probability at least 1 - e-c(n+m), it holds simultaneously for all

H E 6, that

nIIH-H*A*I|I,< min (IIA-A*|| +.2K(A) log k7)) +o2n log n+ I(f-U*)A*||2.
AES- \ K( A) F

The idea of splitting the error into two terms as in Lemma 2.5.13 has appeared in
[SBGW17, CM16].

By virtue of Lemma 2.5.13, it remains to control the permutation error IInA* -
H*A*I11 where H is given by the RankScore procedure defined in Section 2.3. Recall
that

A Z*') =ma(Ai*/,j - A~j V j. E (A>l A
jE~m V/Mj=1

for i, i' c [n] and Ay(i, i') is defined analogously. Since columns of A* are increasing,

1Z A.ii) = |A*, .-A*.Ilo V ||Ai*,.- A*.|1 .(.6

Recall that the RankScore procedure is defined as follows. First, for i E [n], we
associate with the i-th row of Y a score si defined by si = Z"_1(Ay(l, i) ; 2T) for
the threshold r := 3o /log(nm6- 1) where 8 is the probability of failure. Then we
order the rows of Y so that the scores are increasing with ties broken arbitrarily. This
is equivalent to requiring that the corresponding permutation -k : [n] -+ [n] satisfies
that if si < si, then r-'(i) < ir-(i'). Define H to be the n x n permutation matrix
corresponding to r so that 1iq),i = 1 for i E [n] and all other entries of H are zero.
Moreover, let -r* : [n] -+ [n] be the permutation corresponding to H*.

To control the permutation error, we first state a lemma which asserts that if the
gap between two rows of A* is sufficiently large, then the permutation defined above
will recover their relative order with high probability.
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Lemma 2.5.14. There is an event S of probability at least 1-6 on which the following
holds. For any i,i' c [n], if AA*(i,i') > 4T, then r-' o7*(i) < -r-1 o7*(i').

Equipped with the above lemma, we are able to bound the permutation error in
terms of the quantity R(A*) defined in (2.12).

Lemma 2.5.15. There is an event E of probability at least 1 - 6 on which

|IIA* - fl*A*I F raR(A*) n log(nm6-1).

Finally, the bound of Theorem 2.3.1 is an immediate consequence of Lemma 2.5.13
and Lemma 2.5.15 with 6 = (nm)- 0 for C > 0.

2.6 Discussion

While computational aspects of the seriation problem have received significant atten-
tion, the robustness of this problem to noise was still unknown to date. To overcome
this limitation, we have introduced in this chapter the statistical seriation model and
studied optimal rates of estimation by showing, in particular, that the least squares
estimator enjoys several desirable statistical properties such as adaptivity and mini-
max optimality (up to logarithmic terms).

While this work paints a fairly complete statistical picture of the statistical seri-
ation model, it also leaves many unanswered questions. There are several logarithmic
gaps in the bounds. In the case of adaptive bounds, some logarithmic terms are
unavoidable as illustrated by Theorem 2.2.5 (for the permutation term) and also by
statistical dimension consideration explained in [Bel15] (for the estimation term).
However, a more refined argument for the uniform bound, namely one that uses cov-
ering in f2-norm rather than co-norm, would allow us to remove the log n factor from
the estimation term in the upper bound of Corollary 2.2.4. Such an argument can be
found in [BS67, ABG+79, vdG91] for the larger class of vectors with bounded total
variation (see [MvdG97]) but we do not pursue sharp logarithmic terms in this work.
For the permutation term, log n in the upper bound of Corollary 2.2.2 and log 1 in
the lower bound of Theorem 2.2.5 do not match if 1 < n. We do not seek answers to
these questions in this chapter but note that their answers may be different for the
unimodal and the monotone case.

Perhaps the most pressing question is that of computationally efficient estima-
tors. Indeed, while statistically optimal, the least squares estimator requires search-
ing through n! permutations, which is not realistic even for problems of moderate
size, let alone genomics applications. We gave a partial answer to this question in

the specific context of monotone columns by proposing and studying the performance

of a simple and efficient estimator called RankScore. This study reveals the exis-

tence of a potentially intrinsic gap between the statistical performance achievable
by efficient estimators and that achievable by estimators with access to unbounded
computation. A similar gap is also observed in the SST model for pairwise compar-

isons [SBGW17]. We conjecture that achieving optimal rates of estimation in the
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seriation model is computationally hard in general but argue that the planted clique
assumption that has been successfully used to establish statistical vs. computational
gaps in [BR13, MW15, SBW16b] for example, is not the correct primitive. Instead,
one has to seek for a primitive where hardness comes from searching through permu-

tations rather than subsets.

2.7 Additional proofs

2.7.1 Proof of Proposition 2.2.7

Recall that V(A) = (1 _ V(A) 2/ 3 )3/ 2 . Since the 2-norm of a vector is no larger
than the f2-norm,

3

Z( VgA) 2 < (,( A)2/3 = m3 V( A) 2.
j=1 j=1

On the other hand,

Ai~j EA*j + ! ZZj
k=1 k=1

so we have that

||A - fI*A*11F

A+ Zkj - A,S
iE[n], E[m] k=1 k=1

<2 A( u - A* Zk,j
iE[n],jE[mr] k=1 -iE[n],JE[m] k=1

<2nZ V(A) 3  Zkj
j C[mr] jE[m] k=1

< 2nm 3V(A) 2 +2 E ,
jE[m]

where gj = E _ Zkj for j E [m] so that gi,. . . , g are centered sub-Gaussian

variables with variance proxy o.2 . It is well-known that Egj j 0.2, so

EII - fl*A* < nm3V(A) 2 + ma.

Moreover, since (gi, .. . g.) is a sub-Gaussian vector with variance proxy o2, it

follows from [HKZ12, Theorem 2.11 that E7L 1 g? < .2m with probability at least
1 - exp(-m). On this event,

bi - H*A*|11 2 nm 3 V(A) 2 +-I mo 2.
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Dividing the previous two displays by nm completes the proof.

2.7.2 Proof of Lemma 2.5.4

Lemma 2 of [BT15 and its proof extend to the unimodal case with minor modifica-
tions. We provide the proof here for completeness.

Lemma 2.7.1. For a e U and k E [n], there exists U k ln such that

1
-Iia-a|12

V(a)

2k
(2.27)

In particular, there exists & E Uk. such that

1 2 1
-|a - al2 <- max
n 4

S2V(a) log(en) 2/3 U2 log(en)

n ' n

log(en) < 2 max
SV(a) log(en) 2/3

n

a2 log(en)
n

Proof. Let a = min(ai, an), a maxic{.j ai and io E argmaxiE ., a . For j E [k - 11,
consider the intervals

, = j V(a), a+ IV(a),

and Ik = k + 1V(a), a. Also forj [k], let Jj ={iE [n] : ai E I}. We define the

vector d E Rn by di= a -+ - 1/2 V(a) for i E [n], where j is uniquely determined by
i E Ij. Since a is increasing on {1,..., io} and decreasing {io,... , n},

E E Uk. Moreover, |5i -ail < _ for i E [n, which implies (2.27).

Next we prove the latter two assertions. Since k* = ( )1/3],
k* = 1 then

IIl - a V(a)2 <,2log(en)
n 2 4 4n

and
0o2k*a2

-- log (en) - log (en).
n n

On the other hand, if k* > 1, then

1 -
n 2-

V(a) 

k* log(en) <
n

so is d. Thus

if & E Uk. and

1 uoV(a) log(en) 2/3

4 )

2 (02V(a) log(en) )2/3
n

41
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o.2 k*
n

and



Lemma 2.5.4 is then an easy generalization of the previous lemma to the matrix
case. Applying Lemma 2.7.1 to columns of A, we see that there exists A (E &4 such

that
1 1 o 2 V(A.,j)log(en) 2/3 

2

-IIA.,j - A.II2 < - max((1), -log (en)
n 4 n n

and
a 2k! a2V(A.,j) log(en) 2/3 02

log(en) < 2 max ( ()) - log(en))
n n n

Summing over 1 < j < m, we get that

1 IA- A 12< 1 a2 log(en) 2/3 2 / 3 a log(en)
nm 4m n / 4n

1 a2 V(A) log(en) 2/3 a2
(\IC~\/)+ -log(en) ,

4 n 4n

and similarly

en)(A) aV(A) log~n 2/ l og n
log( a 2V (A)(en) ) + 2 2 log(en) .

nm n n

2.7.3 Proofs of lemmas in Section 2.5.2

We start with a result on the metric entropy of a ball in one norm in R' with respect

to another norm. This result is well-known for certain pairs of norms (e.g. [Mas07,
Lemma 7.14J), and we use the general version from [Wai17, Lemma 5.21.

Lemma 2.7.2. Let | and | -' be a pair of norms on R"m. Let B and B' denote

the unit balls in and | |' respectively. Then for any E > 0, it holds that

Vol (AB + 8')
N(B,| - ||,E) < 6

vol(B')

where vol(.) denotes the volume of the argument. In particular, for any E E (0,1],

N(B"'(0, 1), 11 - 112 < (C/E)" ,

where B"'(0, 1) is the unit ball in the 2 -norm and C is a positive constant.

Proof. The proof for the general bound is a standard volume argument and can be
found in [Wail7j. To prove the second bound, note that the o unit ball is contained

in the f2 ball of radius v\/i/E. Hence the general bound with 11 - 11 = 11 - 112 and

-1 I1 ... implies that

___ vol( B~1)N(13n(0, 1), 11 E ~) <vo(3') (/)'2N (B"'01,||2 <5 5 (C/t)",
V/ns /Vol (B')
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where the second inequality follows from the asymptotic formula for the volume of
an Euclidean ball in R': vol(rB) ~ (- )m/ 2 ,m for r > 0. l

Proof of Lemma 2.5.5. Since a product of balls B"(0, ') x ... x B'm(0, ') is con-

tained in B'(0, e), one could try to cover C n 3'(a, t) by such products of balls. It
turns out that this yields an upper bound of order m3/ 2 , which is too loose for our
purpose. Fortunately, the following argument corrects this dependency.

Without loss of generality, we assume that t = 1. We construct a 3e-net of
C n B(a, 1) as follows. First, let NX be a minimal -net of Bm (0, 1) with respect
to the uo-norm. Define 2 V 7i

{ 1AfD p E A3: mnin i > -_1__
iE[rm 2n/

Note that pi + > 0 for p E ND, and let Ar be a minimal (pi + 1)E-net of

Ci n B,(a,,, pi +$). Define A,, V, x -. x A"m, i.e.,

N, ={w EIR": w= (w,- -,wim), wiCEf,, }.

We claim that Ur j,, is a 3E-net of C n B(a, 1).

Fix v E C n B'(a, 1). Let ve (E Rri be the restriction of v to the component space
R i. Then v, e Ci. Let A E Rm be defined by Ai= IlvI -a,,I12, so I|AL12 = Ilv-a1 2 < 1.
Hence we can findu EANB such that |lp - All . $. In particular, for all i E [m],

pi > Ai - > so p E ME. Moreover, |vi,- a,11 2 = Ai < pi + and v1, E Ci,
so by definition of AV,, there exists wi, E AI such that ||w1 - v1.|12 < (pi + .

Let w = (w11, ... , WIm) E N>, Since

m m m 2

i=1 i=1 i=1

we conclude that

|| 2 - Pi + e

Therefore U,.N-1, ,.A, is a 3E-net of C n B'(a, 1).

It remains to bound the cardinality of this net. By Lemma 2.7.2, I|V-I |jF <
(C/e)n. Moreover, recall that A,, is a (/,i + 1)E-net of Ci n Bi(a,, j + 9). Since

a,, E C, n (-C,), for any t > 0, C i n (a,,, t) {x + a,, : c C, i S "(0, t)}. Hence
we can choose the net so that

INt| = N C1 n (,+ ), | -112, (ft +

= N(Ci n Bn"(0, 1), II .1|2,6)
N(Ci n B t'(aji, 1), 11 11 2, E) -
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As I f 1 JI2"% 1MI, therefore

rin

U Al, -C m N (Ci n B ni(a,, 1), 11 - 112, E).

EE i=1

Taking the logarithm completes the proof. i

Proof of Lemma 2.5.6. Part of this proof is due to Lemma 5.1 in an old version of
[CL15J, but we improve their result by a factor V/log n and provide the whole proof
for completeness. The technique we employ here is similar to that in the proof of
Lemma 2.5.5. Roughly speaking, we shall construct a net of the original set by
carefully combining nets of sub-blocks of vectors in the original set.

The bound holds trivially if E > t, since the left-hand side is zero. Hence we can
assume that E < t. We also assume that b = 0 since the set of interest is translation
invariant. Moreover, we assume that t = 1 and n is an even integer for simplicity, as
the proof extends easily to the case where t > 0 or n is odd. First, let n' = n/2 and
I = [n']. Define S' = {(ai, . . ., a,) c Rn' : a E Sn n B"(0, 1)}. Note that by splitting
the vectors into two halves and using symmetry we have

log N(Sn n B" (0, 1), - |2, E) < 2 log N(S', | - 112, E/V ) . (2.28)

To construct a net of S', we introduce some notation. Let k be the smallest integer
for which 2 k > n', so that in particular k < log 2 n Clog(en). We partition I into k
blocks Ij = I n [231, 23) for j E [k] and let mj = I 31. Define a norm | on R' by

IIpLI = 2  (2.29)
j=1

for R E Rk. Let Bk.(pr) denote a ball in the norm in Rk with radius r > 0
centered at p. Note that 11 - 11 is simply a weighted e2-norm, and a ball in is an
ellipsoid (or more precisely, the set bounded by an ellipsoid).

Let MN, be a minimal E-net of B'.(0, viO) n R>0 with respect to the norm ,
where R>O is the nonnegative orthant of R'. For each p = (Pi,... , ) E le, let
Af,,, be a minimal '-net of S, n [-pj, pj]mi with respect to the Euclidean distance.
Then we define A, =N x - x j'k, and claim that U1k~ Af is a 2E-net of S'
with respect to the Euclidean distance.

Fix a E S' so that a = di for some d E S,, n B'(0,1). For j E [k], let vj =

maxiEI, jail. For each block Ij where j > 2, the maximum vj is achieved either at
the left boundary i1 = 23-1 or the right boundary i 2 = (23 - 1) A n'. If we have
ail < 0 and JaiI = vj, then lail > vj for all i < i 1 as a is increasing. Otherwise, we
must have ai2 > 0, and so ai2 = uj. In this case, di > vj for all i > i 2 , and thus
v3 < 1/ rn - i2 + 1 V1/n' since ||&il 2 < 1 and i2 < n' = n/2. Combining the two
cases, we obtain that a2 + 1/n'> v for any i E Ij_1. Summing over all i E [n'] yields
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that
k k

2j-2vj2 Z (a2 + 1/n') 2.
j=2 j=2 iEIj-1

Together with the trivial bound v, 1, this implies ZQ 2jvj K 10, so we have

that 1 B (0, v/-o) n R>0. By the definition of Ke, there exists p E K6 such that

|lp - v|l < E. Moreover, define a' E S' by a' = (a A pj) V (-pij) for any i G Ij where

j E [k]. Recall that vj = maxiElj jail, so it holds that

k k k

Ila't-a| =12 (a's- ai )2 < ( E(p j -Vj2 < 2 2j-'( pj -_ I/)2 < ||p - V||2 < 2

j=1 iE Ij j=1 iE Ij j=1

Note that a' c Sm, n [-pj, pj]mi. By the definition of N,,, there exists a vector

XI, EK, such that |lx|, - a'.l1 2 < E/Vk. If we define x E Rn by concatenating xr
for j E [k], then we have x E K, and fjx - a'11 2 < E. Finally, the triangle inequality
gives that lix - all 2 < 2E, so U11EV K is indeed a 2E-net of S'.

It remains to bound the cardinality of U. ,. By the definition of Kg, its

cardinality is bounded by N(B 1 (0, V/T6), |-|, E). Taking both norms in Lemma 2.7.2
to be the norm defined in (2.29), we obtain that

Vol(B (L 0, 9/E)) 9
log |le l log N (B. (0,<v'Y),lI iK,) log (ILI0('/ = - k, (2.30)

vol(B 11 (0, 1)) E

because if we scale an ellipsoid in Rk by ratio r > 0 then its volume scales as rk.
Next, we know from [Cha14, Lemma 4.201 that for any d > c > 0 and n > 1,

log N(S n [c, d]", 1I 11 2, E) < CJv (d - c) .

It follows that for any p E Kg and j E [k],

log I,,I = log N(S, n [-p, j", 11 - 112,E/EVk) C<vEv'2J/2.

Summing over j C [k] and applying the Cauchy-Schwarz inequality, we get that

E lINogj | k< v E2/2 pj <lE k 2/'0 < k (2.31)
j=1 j=1 j=1

where the last inequality holds because Il|p < v/i0 by definition. Since k < C log(en),
(2.30) and (2.31) imply that log I Ugl, K,| < CE-1 log(en). We complete the proof
by combining this bound with (2.28). l

Proof of Lemma 2.5.7. Assume that E < t since otherwise the left-hand side is zero
and the bound holds trivially. For j c [in], define ji' = [1j] and Ij,2 [n] \ [1j].
Define kj,1 = k(A1 j,ij) and kj,2 = k(Aj, 2 j). Let ; = '_1 (kj,1 + kj,2 ) and observe
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that K(A) < x 2K(A). Moreover, let {1, , I'1 } be the partition of Ii,1 such

that A,, j, is a constant vector for i E [kj,1]. Note that elements of I i' need not to

be consecutive. Define the partition for Ij,2 analogously.
For j E [m] and i c [kj,1 ] (resp. [kj, 2]), let 31i3, (resp. Si,2,) denote the set of

increasing (resp. decreasing) vectors in the component space Rli'"I (resp. RI'$1)
Lemma 2.5.6 implies that

log N(s1 , ,, n1 Bi!' (Ajir , t), F lip, ) < CE t log(e I 'j).

As a matrix in R" "' can be viewed as a concatenation of x = _1 (k3 ,1 + k3 ,2 )
vectors of length I II, r C [2], j E [m], we define the cone S* in Rfx" by, S*

H7 = 1 ri Sjirj, which is clearly a superset of C'. It also follows that A E

s* n (-S*), and thus by Lemma 2.5.5 and the previous display,

C m 2 kj,,

log N(S*n B" ",(A, t), II- IIF, E) xlog + EE tlog(e

<CE-it x + CE71t xlog e ''''
x

enin
< CE-1 t K(A) log en 7

K(A)

where we used the concavity of the logarithm and Jensen's inequality in the second
step, and that K(A) < x 2K(A) in the last step.

Since A c S* n (-S*) (the cone S* is pointed at A) we have that s* nB" (AA, t) -
AA = s* n B"l(0, t) for any A > 0. In view of the definition of e, it holds

E8s(A,t) =US*nBnn(AAt) -AA=S*nBnr"(AA,t) -AA, VA >0.
A>O

In particular, taking A = 1, we get E8 s(A, t) = S* n B" m (A,t) - A. Moreover,
C" C S* , so that ecr(A, t) c Es(A, t) = S* n 3 "(A, t) - A. Thus the metric
entropy of c, (A, t) is subject to the above bound as well.

Proof of Lemma 2.5.8. Assume that E < t since otherwise the left-hand side is zero
and the bound holds trivially. Note that U' = UIEr C,, and M = Un lu 7 .
Thus M is the union of n"n! cones of the form IIC'. By definition, Om(A, t) is also
the union of n'n! sets Oc, (A, t), each having metric entropy subject to the bound
in Lemma 2.5.7. Therefore, a union bound implies that

log N(0M(A, t), -|F, E) < log N(EC,(A, t),II - IIF, E) + log(nm n!)
enm

< CE 1 t K(A)log + mlog n + n log n
K( A)
enm

< CE-6 t K(A) log + n log n,
K( A)
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where the last step follows from that K log(enm/K) > m log n for m < K < nm and
that E < t. El

2.7.4 Proofs of lemmas in Section 2.5.3

The Varshamov-Gilbert lemma [Mas07, Lemma 4.7 is a standard tool for proving
lower bounds.

Lemma 2.7.3 (Varshamov-Gilbert). Let 6 denote the Hamming distance on {0, 1 }d

where d > 2. Then there exists a subset Q C {0, i}d such that log IQ I d/8 and
6(w, W') > d/4 for distinct w, w' E Q.

We also need the following useful lemma.

Lemma 2.7.4. Consider the model y = 0+ z where 0 E 0 C Rd and z - N(0, O2 Id)

Suppose that 101 > 3 and for distinct 0, 0' E O, 4$ < 110 - 0'112 < a2 log |0i where
0 > 0. Then there exists c > 0 such that

inf sup Po [|-i 0||12 > ] > c.
o Oee

Proof. Let PO denote the probability with respect to O+z. Then the Kullback-Leibler
divergence between PO and PO, satisfies that

KL(Po, 1P 1) =110 - 0'I11 log Ii log(jOj - 1)
2-2 16 - 10

10since 10i 3. Applying [Tsy09, Theorem 2.51 with a = n gives the conclusion. LI

Proof of Lemma 2.5.10. We adapt the proof of [BT15, Theorem 41 to the case of
matrices. Let Vj = Vo for all j E [m]. Since

Kom 1 6 n) 1/3 2/3 16n[\)j /
Ko < m( )2 V" - =E [( )0V1 / _

j=1

we can choose k E [n] so that kj < (L6'n)1/3V/3 and K, =7' 1 kj. According to

Lemma 2.7.3, there exists Q C {0, 1}^KO such that log IQ I Ko/8 and 6(w, w') > Ko/4
for distinct w, W' E Q. Consider the partition [Ko] = U-, _11 with 'II = kj. For
each w E Q, let wj E {0, 1 }k be the restriction of w to coordinates in Ij. Define
Mw E Rn 'm by

[(i - 1)kj/n]V + 7/jWL(i1)kj/nJ+1,
2k +

where yj = Zk 3/2n. It is straightforward to check that k(M.,j) < kj, V(M.,j) 1 V
and M.,j is increasing, so M is in the parameter space. Moreover, for distinct W, W' E

||Mw - Mw' I c L f (wi, (L')i) > cU2 E 6(wj, (w')j) = co 2KO.
j=1 3 j=1
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On the other hand,

11M 2 MW n 2 , a u2 K o 0  2 Mw - Mw' < 2 S(wE, (w')i) -6(w, W') < - log QA.
j=1 64 8

Applying Lemma 2.7.4 completes the proof.

Proof of Lemma 2.5.11. By Lemma 2.7.3, there exists Q C {0, 1}" such that log IQI >
n/8 and 6(w, w') n/4 for distinct w, w' E Q. For each w E Q, define MW E IV

by setting the first column of Mw to be aw and all other entries to be zero, where

a min (, m3 / 2 Vo). Then

1. MW E MkS(V) since K(M) = m +1 < Ko, V(M) < Vo and we can permutate

the rows of MW so that its first column is increasing;

2. 1WM W' ' > min(!, mVO2) 6(w, w') > min(L,2m3 02) for distinct w, w' E

3. M MW'lI 2 < 26(w, w') < 0n < logQJ for w, w' E Q.3-JMF -64 -64 - 8

Applying Lemma 2.7.4 completes the proof.

The following packing lemma is the key to the proof of Lemma 2.5.12.

Lemma 2.7.5. For 1 C [m], consider the set 9N? of n x m matrices of the form

M = for exactly one j, C [1] for each i E [n],
0 otherwise.

For e > 0, define k [+J. Then there exists an Eb/i-packing P of 9A1 such that

P| l"--k(-)k if k > 1 and |PI = ln if k = 0.

Proof. There are 1 choices of entries to put the one in each row of M, so 19J1 = ln.

Fix Mo E 9)?. If JIM - MoIIF < EV' where M E 9J?, then M differs from Mo in at

most k rows. If k = 0, taking P = 9)? gives the result. If k > 1 then

|9)m n m B"'(M0,/)| I <

Moreover, let P be a maximal ef -packing of 9J1. Then P is also an E/'i-net, so

9R1 c U MoE B"m (MO, E V'). It follows that

1n = 19)I < E3 9nDB"nm(MO,E.V ) <I -_ (+)klk.
MoW1

We conclude that IPI >- 1"-e)n
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Proof of Lemma 2.5.12. For notational simplicity, we consider 2 < 1 < min(Ko -
m, m) instead of 3 < I < min(Ko - m, m) + 1.

Set e = 1/2 and let P be the Vn /2-packing given by Lemma 2.7.5. If k =[J 0,
then log P I = n log l. Now assume that k > 1. Since (f)X is decreasing on [1, n], we
have that |P1 17n/8 )n/8. Hence for 1 > 2,

log P logl - nlog(8e) > n log l. (2.32)
8 8-4

Moreover, for each Mo c P, consider the rescaled matrix

M = min logl (M)3/2V)M

1. We can permute the rows of Mo so that each column has consecutive ones (or
all zeros), so M E M. Moreover,

K(M) = 21+ m - 1 < min(m, Ko - m) + m < Ko

and

V(M) ( ((m/l)3/2V 2/3) 3/2
j=1

so M G MK(V) for Mo C P.

2. For Mo, Mo ', Mo - M1 | F n/4, so

JI _M112a2 log 1 7(m/ l)32~ rM N 2
|| -M'|}=min (128 , (mM3 /J V2 F|o- j

> min ( 5 1 2n log l, (1 )3

3. For Mo, M E 7, liMo - M6IIl 21 Mo11 + 2|I|A/1I' 4n, so by (2.32),

||M- M|| 12 |M0 _ MOIJ1 n log l <- log IPl .F-128 F-32 8

Since log I > - log(l + 1) for 1 > 2, applying Lemma 2.7.4 completes the proof. D

Proof of Theorem 2.2.6. The last term min(9, m2 7 0
2 ) is achieved by Lemma 2.5.11,

so we focus on the trade-off between the first two terms. Suppose that (2)1/3 0
2 /3

3, in which case the first term (j 2 V0 )2/3 dominates the second term. Then we have

m()1/30
2 /3 - m > 2m. Setting

Ko = [m( 0) 1 /3V2 /3 m
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we see that Ko > 2 2()1/32/3 J. Lemma 2.5.10 can be applied with this choice of

K0 . Then the term coa is lower bounded by c( V)2/3
rimn

On the other hand, if ( 6<)1/3V2/3  3, then the second term dominates the

first up to a constant. To deduce a lower bound of this rate, we apply Lemma 2.7.3

to get Q C {0, 1}m such that log |I m/8 and 6(w, w') > m/4 for distinct w, w' E Q.
For each wC Q, define MW E Rn m by setting every row of MW equal to 'wT.
Then

1. MW U'(Vo) since V(MW) = 0;

2. |Mo - mwl'11 = a J(w, W') > cc2m;

3. _M - MW'1 = a 23(W, W') < (m 1 2 log I.
Hence Lemma 2.7.4 implies a lower bound on -,2 - MIIy of rate Z2

2.7.5 Proofs of lemmas in Section 2.5.4

Proof of Lemma 2.5.13. The proof follows that of Theorem 2.2.1 with appropriate

adaptation, so for simplicity we will not detail every step. Assume without loss of

generality that 1* = In. Fix A E Sm and ft (E 6n. Define

t2

fA(t) = sup (M - A,Y - A) - -.
MEHSmnBm(1fA,t) 2

Since S' = C' with 1 = (n, . . . , n), by Lemma 2.5.7,

log N(fs.m(A, t), 1 - |IF, E) CEIt K(A) log (e)m

Following the proof of Lemma 2.5.3, we see that

fhA(t) C-t K(A)lg + tjIIA - A*IIF - - + St
K(A) 2

with probability at least 1 - C exp(-2). Lemma 2.5.1 then implies that on this
event

mA - A*IIF < 2Ca K(A) log + 31IflA - A*IIF + 2s. (2.33)

Taking s = a K(A) log !{) + C2v/n log n] for a sufficiently large constant C2 > 0,

we see that with probability at least 1 - exp(-c(m + n) - n log n),

L - A* |12 < o- K(A) log ernm A+ on log n + 1HA - A*||%

,< uK(A) log -H +onlogrn + IA - A*IF + I|iA* - A*| F.
K( A)
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Minimizing over A E S' yields the desired bound for a fixed fl. Finally, the bound
holds simultaneously for all H E &, with probability at least 1 - e-d"*") by a union
bound since n! < nn = exp(n log n).

Proof of Lemma 2.5.14. Since Z ~ subG(oa), Z,, and i E"L Z,,j are sub-Gaussian

random variables with variance proxy or'. A standard union bound yields that

max max ZIma = 3 /log(nm-)
Cef'n),jEl] i E[n] VY' E</1

on an event E of probability at least 1 - 2(nm + n) exp(-_) > 1 - 6.

In the sequel, we make statements that are valid on the event S. Since Y,7 (i),=
A*. + Z,, by the triangle inequality,

IAy (w*(i), w*(i')) - AA- (i, i') I< 2T. (2.34)

Suppose that AA*(i,i') > 4r. We claim that si*(i) < s,*(i,). If for 1 C [n] we have
Ay(7*(l), 7*()) > 2T, then AA. (1, i) > 0 by (2.34). Since A* has increasing columns,
AA*(l, i') > 4T. Again by (2.34), Ay(7r*(l),7*(i')) > 2T. By the definition of the
score, we see that s,*(i) < s*(j). Moreover, AA*(i,i') 4T so Ay(*(i), *(i')) 2 T .

Therefore s(i) < s*(j). According to the construction of k, i-1 a J*(i) < k-1 0

T *(i'f).

Proof of Lemma 2.5.15. Throughout the proof, we restrict ourselves to the event S
defined in Lemma 2.5.14. To simplify the notation, we define ai = A* . A.
Then

IInA* - fl*A*|| = |A*i . - A = || 2Cei |1, (2.35)
i=1iE

where I is the set of indices i for which ao is nonzero. For each i E I,

2e1 m ||la,1 2 , 11 2|
|1ai112 = min ( I2 ) - max (IliaII2 7 11 )

= min -I i 2 (i, -1 7r*(i))2  (2.36)

by (2.26).
Next, we proceed to showing that IAA*(i, v(i))j I 4r for any i [In], where

v = r-1 o *. To that end, note that if AA* (i, v(i)) > 4T, in which case AA*(i, i') > 4r
for all i' C I' := {i' E [In] : i' > v(i)}, then it follows from Lemma 2.5.14 that
on 8, v(i) < v(i'), V i E I'. Note that iv(I')I = I'| = n - v(i) + 1. Hence
v(i) < v(i'), V i E I' implies that v(i) n - v(I')l = v(i)-1, which is a contradiction.
Therefore, there does not exist such i E [n] on S. The case whereAA* (i, v(i) < -4T

is treated in a symmetric manner.
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Combining this bound with (2.35) and (2.36), we conclude that

1IIA* - fl*A* 112 < min T2

< 0 2 R(A*) n log(nm6-1 ).

by the definitions of R(A*) and T. E

2.7.6 Proof of Corollary 2.4.1

The proof closely follows that of Theorem 2.2.1 and Theorem 2.2.3.
First note that the term n log n in the bound of Lemma 2.5.8 comes from a union

bound applied to the set of permutations, so it is not present if we consider only the
set of unimodal matrices U"' instead of M. Hence taking m = 1 in the lemma yields
that

log N(Eu(Ot), 11 - 112, -) < CE- 1t k(6) log en
k(O)

For 9 E U, define

t2
f (t) =sup (0 y -Oy) - -.

OeunB- (6,t) 2

Following the proof of Lemma 2.5.3 and using the above metric entropy bound, we
see that

f6(t) Cut k() log n - 0*|2 - + St
k(6) 2

with probability at least 1 - C exp(--). Then the proof of Theorem 2.2.1 gives that

with probability at least 1 - Cexp(-c),

|110*|2 C(u k(0)*log en +|0 - 0*||2)+2s.
k(O)

Taking s = Cuv'a log n for a > 1 and C sufficiently large, we get that with probability
at least 1 - n-,

en
2| -*| ak(i) log +|| - *o g n.

k(O)

Minimizing over 9 E U yields the first bound of the corollary. The corresponding
bound in expectation follows from integrating the tail probability as in the proof of
Theorem 2.2.1.

Finally, we can apply the proof of Theorem 2.2.3 with m = 1 to achieve the global

bound.
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Chapter 3

Minimax Rates and Efficient

Algorithms for Noisy Sorting

Pairwise comparison data is frequently observed in various domains, including recom-
mender systems, website ranking, voting and social choice [BMR10, DKNS01, Liu09,
You88, CN91]. For these applications, it is of significant interest to produce a suit-
able ranking of the items by aggregating the outcomes of pairwise comparisons. The
general problem of interest can be stated as follows. Suppose there are n items to be
compared and an underlying matrix P of probability parameters, each entry Pjj of
which represents the probability that item i beats item j if they are compared. Hence
we have P,i = 1 - Pjj and the event that item i beats item j in a comparison can be
viewed as a Bernoulli random variable with probability Pj. Observing the outcomes
of N independent pairwise comparisons, we aim to estimate the absolute ranking of
the items.

For the sake of consistency, one needs of course to impose some structure on
the matrix P = {Pj,3 } 1 i~jj. These structural assumptions are traditionally split
between parametric and nonparametric ones. Classical parametric models include the
Bradley-Terry-Luce model [BT52, Luc59 and the Thurstone model [Thu27. These
models can be recast as log-linear models, which enables the use of the statistical
and computational machinery of maximum likelihood estimation in generalized linear
models [HunO4, NOS12, RA14, HOX14, SBB+16, NOS16, NOTX17.

To allow richer structures on the probability matrix P beyond the scope of para-
metric models, permutation-based models such as the noisy sorting model [BM08,
BM091 and the strong stochastic transitivity (SST) model tCha15, SBGW17] have
recently become more prevalent. These models only require shape constraints on the
matrix P and are typically called nonparametric. In these models, the underlying
ranking of items is determined by an unknown permutation r*, and, additionally, the
comparison probabilities are assumed to have a bi-isotonic structure when the items
are aligned according to r*. While permutation-based models provide ordering struc-
tures that are not captured by parametric models [Aga16, SBGW17, they introduce
both statistical and computational barriers for estimation of the underlying ranking.
These barriers are mainly due to the complexity of the discrete set of permutations.
On the one hand, the coriplexity of the set of permutations is not well understood
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(see the discussion following Theorem 8 of [CD16]), which leads to logarithmic gaps
in the current statistical bounds for permutation-based models. On the other hand,
it is computationally challenging to optimize over the set of permutations, so current
algorithms either sacrifice nontrivial statistical performance or have impractical time
complexity. In this chapter, we aim to address both questions for the noisy sorting
model.

In practice, it is unlikely that all the items are compared to each other. To

account for this limitation, a widely used scheme consists in assuming that that
each pairwise comparison is observed with probability p E (0, 1] [Cha15, SBGW17].
In addition to this model of missing comparisons, we study the model where N
pairwise comparisons are sampled uniformly at random from the (n) pairs, with

replacement and independent of each other. It turns out that sampling with and
without replacement yields the same rate of estimation up to a constant when the
expected numbers of observations coincide.

Our contributions. We focus on the noisy sorting model with partial observations,
under which a stronger item wins a comparison against a weaker item with probability

at least . + A where A C (0, 1). For sampling both with and without replacement, we
establish the minimax rate of learning the underlying permutation. In particular, the
rate does not involve a logarithmic term, and we explain this phenomenon through
a careful analysis of the metric entropy of the set of permutations equipped with the

Kendall tau distance, which is of independent theoretical interest.

Moreover, we propose a multistage sorting algorithm that has time complexity
0(n2 ). For the sampling with replacement model, we prove a theoretical guarantee on
the performance of the multistage sorting algorithm, which differs from the minimax
rate by only a polylogarithmic factor. In addition, the algorithm is demonstrated to
perform similarly for both sampling models using simulated examples.

Related work. The noisy sorting model was proposed by [BM08I. In the original
paper, the optimal rate of estimation achieved by the maximum likelihood estimator

(MLE) is established, and an algorithm with time complexity Q(nc) is shown to find
the MLE with high probability in the case of full observations1 , where C C(A) is
a large unknown constant. Moreover, their algorithm does not have a polynomial
running time if only o(n2 ) random pairwise comparisons are observed. Our work
generalizes the optimal rate to the partial observation settings by studying a variant
of the MLE for the upper bound. In the model of sampling with replacement, our fast
multistage sorting algorithm provably achieves near-optimal rate of estimation. Since

finding the MLE for the noisy sorting model is an instance of the NP-hard feedback
arc set problem [Alo06, KMS07, ACN08, BM08], our results indicate that, despite the

NP-hardness of the worst-case problem, it is still possible to achieve (near-)optimal
rates for the average-case statistical setting in polynomial time.

'If the algorithm is allowed to actively choose the pairs to be compared, the sample complexity
can be reduced to O(n log n). However, in the passive setting which we adopt throughout this
chapter, the algorithm still needs 6(n2 ) pairwise comparisons.
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The SST model generalizes the noisy sorting model, and minimax rates in the
SST model have been studied by [SBGW17. However, the upper bound specialized
to noisy sorting contains an extra logarithmic factor, which this work shows to be
unnecessary. Moreover, the lower bound there is based on noisy sorting models with
A shrinking to zero as n -+ oc, while we establish a matching lower bound at any
fixed A. In addition, algorithms of fWJJ13, SBGW17, CM16] are all statistically
suboptimal for the noisy sorting model. This is partially addressed by our multistage
sorting algorithm as discussed above.

In fact, both with- and without-replacement sampling models discussed in this
chapter are restrictive for applications where the set of observed comparisons is sub-
ject to certain structural constraints [HOX14, SBB+16, NOTX17, PMM+17b]. Ob-
taining sharper rates of estimation for these more complex sampling models is of
significant interest but is beyond the scope of the current work.

Finally, we mention a few other lines of related work. Besides permutation-based
models, low-rank structures have also been proposed by [RA16] to generalize classical
parametric models. Moreover, there is an extensive literature on active ranking from
pairwise comparisons [JN11, HSRW16, AAAK17], where the pairs to be compared
are chosen actively and in a sequential fashion by the learner. The sequential nature
of the models greatly reduces sample complexity, so we do not compare our results
for passive observations to the literature on active learning. However, it is interesting
to note that our multistage sorting algorithm is reminiscent of active algorithms,
because it uses different batches of samples for different stages. Thus active learning
algorithms could potentially be useful even for passive sampling models.

Organization. The noisy sorting model together with the two sampling models is
formalized in Section 3.1. In Section 3.2, we present our main results, the minimax
rate of estimation for the latent permutation and the near-optimal rate achieved by
an efficient multistage sorting algorithm. To complement our theoretical findings, we
inspect the empirical performance of the multistage sorting algorithm on numerical
examples in Section 3.3. We discuss directions for future research in Section 3.4.
Section 3.5 is devoted to the study of the set of permutations equipped with the
Kendall tau distance. Proofs of the main results are provided in Section 3.6.

Notation. For a positive integer n, let [n] = {1, . . . , n}. For a finite set S, we denote
its cardinality by ISI. Given a, b E R, let a A b = min(a, b) and a V b = max(a, b).
We use C and c, possibly with subscripts, to denote universal positive constants that
may change at each appearance. For two sequences {un} 1 and {vn}=_, we write

Un < Vn if there exists a universal constant C > 0 such that un < Cvn for all n.
We define the relation un ;>, v, analogously, and write un : Vn if both an $v, and

Un r>v hold. Let 6., denote the symmetric group on [n], i.e., the set of permutations
7 : [n] -+ [n].
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3.1 Problem setup

The noisy sorting model can be formulated as follows. Fix an unknown permutation
7r* E 6, which determines the underlying order of n items. More precisely, 7r* orders
the items from the weakest to the strongest, so that item i is the lr*(i)-th weakest
among the n items. For a fixed, possibly unknown A E (0, 1/2), we define a class of
matrices

9JM (A) =M E [0, 11"n" : Mi, - Mi, > - + A if i > J, Mij < I -Aifti<j,
2 -2 2

where 1, is the n-dimensional all-ones vector. In addition, we define a special matrix
M*(A) E 9JI4(A) by

1/2+A ifi>j,

[M*(A)]i,j 1/2 - A if i <j,

1/2 ifi=j.

Note that M*(A) satisfies strong stochastic transitivity but other matrices M E 9R1 (A)
may not. Though this observation plays a crucial role in the design of efficient algo-
rithms, our statistical results hold for general matrices in 9&(A).

To model pairwise comparisons, fix M E 9J1n(A) and let M1 *(j),,*(j) denote the
probability that items i beats item j when they are compared2 , so that a stronger
item beats a weaker item with probability at least . + A. As a result, A captures the
signal-to-noise ratio of our problem and our minimax results explicitly capture the
dependence in this key parameter.

3.1.1 Sampling models

In the noisy sorting model, suppose that for each (unordered) pair (i, J) with i $
j, we observe the outcomes of Nij (= Njj) comparisons between them, and item i
wins a comparison against item j with probability M*(j),,*(j) independently. The
set {Nj, of (n) nonnegative integers is determined by certain sampling models
described below. We allow Ni, to be zero, which means that i and j are not compared.
We collect sufficient statistics into a matrix A E R" " consisting of outcomes of
pairwise comparisons, by defining Aij to be the number of times item i beats item
j among the Nij comparisons between i and j. In particular, we have Aij + A,i
Ni, = Nj,i for i jand Aj,j = 0. Our goal is to aggregate the results of pairwise
comparisons to estimate qr*, the underlying order of items.

In the full observation setup of [BM08, we have Ni, = 1 for each pair (i, j) and
the total number of observations is N := j Ni, = ("). Instead, we are interested
here in the regime where the total number of observations N is much smaller than

(). We study the following two sampling models in this chapter:

2The diagonal entries of M are inessential in the model as an item is not compared to itself, and
they are set to 1/2 only for concreteness.
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(01) Sampling without replacement. In this sampling model, instead of observing
all the pairwise comparisons, we observe each pair with probability p (0, 1]
independently. Hence each Nij ~ Ber(p) is a Bernoulli random variable with
parameter p, and in expectation we have N' = p(n) observations in total.

(02) Sampling with replacement. We observe N pairwise comparisons between the
items, sampled uniformly and independently with replacement from the (n)
pairs.

In the sequel, we study the noisy sorting model with either of the above two sam-
pling models. In particular, the minimax rates of estimating 7r* coincide for the two
sampling models if p(n) x N, i.e., if the expected number of observations are of the
same order.

3.1.2 Measures of performance

Having discussed the sampling and comparison models, we turn to the distance used
to measure the difference between the underlying permutation r* and an estimated
permutation *r. Among various distances defined on the symmetric group, we consider
primarily the Kendall tan distance, i.e., the number of inversions (or discordant pairs)
between permutations, defined as

dKT(7r, ) S 1(7W(i) > ())
(iJ):O(i)<oU)

for r, o- E 6,. Note that 0 < dKT(7r, o-) < ('). The Kendall tau distance between two
permutations is a natural metric on 6, and it is equal to the minimum number of
adjacent transpositions required to change from one permutation to another [Knu98].
A closely related distance on 6, is the fr-distance, also known as Spearman's footrule,
defined as

1r - o-11 = 17W(i) - -(i)|
i= 1

for 7r, a- E 6n. It is well known [DG771 that

dKT (Ir,o < -ol1 2dKT(7, 0-). (3.1)

Hence the rates of estimation in the two distances coincide. Another distance on 6n
we use is the f,,-distance, defined as

117r - u-||oc = max 17r(i) - u(i)l.

Note that unlike existing literature on ranking from pairwise comparisons where
metrics on the probability parameters are studied, we employ here distances that
measure how far an item is from its true ranking.
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3.2 Main results

In this section, we state our main results. Specifically, we establish the minimax rates
of estimating r* in the Kendall tau distance (and thus in e1 distance) for noisy sorting
under both sampling models (01) and (02). The minimax estimator that we propose

is intractable in general and we complement our results with an efficient estimator of

7r* which achieves near-optimal rates in both the Kendall tau and the f ,-distance,
under the sampling model (02).

3.2.1 Minimax rates of noisy sorting

Under the noisy sorting model with latent permutation 7r* E 6, and matrix of proba-
bilities M E 9&t(A), we determine the minimax rate of estimating lr* in the following
theorem. We assume that A is given in this section for simplicity; an efficient proce-
dure of estimating A is presented in Section 3.2.2. Let E.*,K denote the expectation
with respect to the probability distribution of the observations in the noisy sorting
model with underlying permutation 7r* E 6, and matrix of probabilities M E 9&1 (A),
in either sampling model.

Theorem 3.2.1. Fix A E (0, { - c] where c is a universal positive constant. It holds

that

[ 3  
2

A2  n , in sampling model (01),
min max E,*,M dKT(Tr, 7r*] N'A3

*En n3  2
Me931n(A) N 2 A , in sampling model (02),

N A

where the minimum is taken minimized over all permutation estimators -k E 6 that

are measurable with respect to the observations.

The theorem establishes the minimax rates for noisy sorting, including the case
of partial observations and weak signals. The upper bounds in fact hold with high
probability as shown in Theorem 3.6.2. If the expected numbers of observations in
the two sampling models (01) and (02) are of the same order, i.e., N' = p(n) N,
then the two rates coincide. In this sense, the two sampling models are statistically
equivalent. In sampling model (01), if p = 1 and A is larger than a constant, then
the rate of order n recovers the upper bound proved by [BM08J.

Note in particular the absence of logarithmic factor in the rates. Naively bound-

ing the metric entropy of 6n by log 16., ~ n log n actually yields a superfluous
logarithmic term in the upper bound. To avoid it, we employ the maximum like-
lihood estimator over an appropriately chosen e-net of 6n, discussed in detail in

Section 3.6.1. In addition, we study the doubling dimension of &,n; see the discussion
after Proposition 3.5.1. Closing this logarithmic gap for other problems involving
latent permutations [CD16, FMR16, SBGW17, PWC17] remains an open question.

The technical assumption A < 1/2 - c in Theorem 3.2.1 is very mild, because we
are interested in the "noisy" sorting model (meaning that the pairwise comparisons
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are noisy, or equivalently that A is not close to j). In fact the requirement that A
be bounded away from } can be lifted, in which case we establish upper and lower
bounds that match up to a logarithmic factor of order log(1/A), where A = 1/2 - A

(see Section 3.6).
Finally, we note that the proof of Theorem 3.2.1 holds even in the so-called semi-

random setting [BS95, MMV13J, in which observations are generated by one of the
random procedures described above, but a "helpful" adversary is allowed to reverse the
outcome of any comparison in which a weaker item beat a stronger item. Though these
reversals appear benign at first glance, the presence of such an adversary can in fact
worsen statistical rates of estimation in more brittle models such as stochastic block
models and the related broadcast tree model [MPW16. Our results indicate that no
such degradation occurs for the rates of estimation in the noisy sorting problem.

3.2.2 Efficient multistage sorting

The minimax upper bound in Theorem 3.2.1 is established using a computationally
prohibitive estimator, so we now introduce an efficient estimator of the underlying
permutation that can be computed in time 0(n 2 ). In this section, we prove theoretical
guarantees for this estimator under the noisy sorting model with probability matrix
M = M,*(A) and observations sampled with replacement according to (02) when A is
bounded away from zero by a universal constant. No polynomial-time algorithm was
previously known to achieve near-optimal rates even in this simplified setting when
o(n2 ) pairwise comparisons are observed.

Since we aim to prove guarantees up to constants, we may assume that we have 2N
pairwise comparisons, and split them into two independent samples, each containing
N pairwise comparisons. The first sample is used to estimate the parameter A and
the second one is used to estimate the permutation 7r*.

First, we introduce a fairly simple estimator A of A that can be described informally
as follows: first sort in increasing order the items according to the number of wins.
Then for any pair (i, j) for which item i is ranked n/2 positions higher than item
j, it is very likely that item i is stronger than item j so that it beats item j with
probability . + A. We then average the Ber(! + A) variables over all such pairs to

obtain an estimator A of A. More formally, we further split the first sample into
two subsamples, each containing N/2 pairwise comparisons. Denote by A' 3 and A'/j
the number of wins item i has against item j in the first and second subsample,
respectively. The estimator A is given by the following procedure:

1. For each i E [n], associate with item i a score Si = L'=," A'J.

2. Construct a permutation -k by sorting the scores Si in increasing order, i.e., Fr
is chosen so that iR(i) < -r(j) if Si < Sj, with ties broken arbitrarily.

2 (n) (n/2 1 1
3. Define A= 2 (A' . -

N 2) 2 *()Y 2
(j()> n
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Given the estimator A, we now describe a multistage procedure to estimate the
permutation 7r* To recover the underlying order of items, it is equivalent to estimate
the row sums E'_, Mr*(i,,*(j) which we call scores of the items, because the scores
are increasing linearly if the items are placed in order. Initially, for each i C (n}, we
estimate the score of item i by the number of wins item i has. If item i has a much
higher score than item j in the first stage, then we are confident that item i is stronger
than item j. Hence in the second stage, we can estimate M,.(j),,-(j) by i + A, which
is very close to the truth. For those pairs that we are not certain about, M*(>,-*(j)
is still estimated by its empirical version. The variance of each score is thus greatly
reduced in the second stage, thereby yielding a more accurate order of the items.
Then we iterate this process to obtain finer and finer estimates of the scores and the
underlying order.

To present the Multistage Sorting (MS) algorithm formally, let us fix a positive
integer T which is the number of stages of the algorithm. We further split the second
sample into T subsamples each containing N/T pairwise comparisons3 . Similar to
the data matrix A for the full sample, for t E [T] we define a matrix A(t E R" x by
setting At to be the number of wins item i has against item j in the t-th sample.
The MS algorithm proceeds as follows:

1. For each i E [n], define I(0)(i) = [n], Ifo)(i) 0 and I(O)(i) = 0. For 0 < t < T,
we use I(t) (i) to denote the set of items j whose ranking relative to i has not
been determined by the algorithm at stage t.

2. At the t-th stage where t E [T], compute the score Sit) of item Z:

S(t) nn A + ( + )+ 1 ( - ).
S2N ij2 2e'~ijEIGt-1(i) jEI (-l(i) jEI (i)

3. Let CO and C1 be sufficiently large universal constants4 . If it holds that

IG-0 () 1 ;> Cin2T log(nT) , (3.2)
N

then we set the threshold

Ti = (10 + 2C)n II-(t1)(i)|TN1 log(nT) ,

and define the sets

(= {j E [ )] : W- St< ,

It)(i) ={j E [n] : s7 - SiT > f}, and

I() (i) -[n] \ (I -(t (i) U I ().
3We assume without loss of generality that T divides N to ease the notation.
4Determined according to Lemma 3.6.5 and Lemma 3.6.6 respectively.

60

Illl'llillilllllill|| ||Illlllllillii llill'lill|iil MilEllill ||



If (3.2) does not hold, then we define I(t)(i) = I-1)(i), IP(i) = I- 1 (i) and

I+(i) - )

4. After repeating Step 2 and 3 for t = 1,..., T, output a permutation IFS by
sorting the scores S in increasing order, i.e., *Ms is chosen so that riMS(i) <

MS (.j) if (T) < S with ties broken arbitrarily.

It is clear that the time complexity of each stage of the algorithm is 0(n2). Take
T = [log log nj so that the overall time complexity of the MS algorithm is only
0(n2 log log n). Our main result in this section is the following guarantee on the
performance of the estimator rMS given by the MS algorithm.

Theorem 3.2.2. Suppose that N > Cn log n for a sufficiently larqe constant C > 0
and that M = M*(A) where A E [c, 2) for a constant c > 0. Then, under the noisy
sorting model with sampling model (02), the following holds. With probability at least
1 - n 7 , the MS algorithm with T = [log log nj stages outputs an estimator *MS that
satisfies

*MS - lr*1o < n (log n) log log n

and
n3

dKT (rM, 7*) < -(og n) log log n .

Note that the second statement follows from the first one together with (3.1).
Indeed, we have

dKT(* MS, r*) ! 1MS - l* MS nm' - lr* H00 < *

which is optimal up to a polylogarithmic factor in the regime where A is bounded away
from 0 according to Theorem 3.2.1 (and Theorem 3.6.3). Therefore, the MS algorithm
achieves significant computational efficiency while sacrificing little in terms of statis-
tical performance. On the downside, it is limited to the noisy sorting model where
M = M,*(A)-this assumption is necessary to exploit strong stochastic transitivity-
and our analysis does not account for the dependence in A.

Furthermore, although we only consider model (02) of sampling with replace-
ment in this section, the MS algorithm can be easily modified to handle model (01)
of sampling without replacement. It is much more challenging to prove analogous
theoretical guarantees in this case, because we cannot split the observations into in-
dependent samples. In Section 3.3, however, we provide empirical evidence showing
that the MS estimator has very similar performance for the two sampling models.

Our algorithm bears comparison with the algorithm proposed by [BM08]. Their
algorithm-which works in the full observation case N = (')-achieves the statisti-
cally optimal rate in time 0(nC), where C is a large positive constant depending on
A. Though our algorithm's statistical performance falls short of the optimal rate by a
polylogarithmic factor, it runs in time 0(n2 log log n) and works in the partial obser-
vation setting as long as N > n log n. Note by way of comparison that Theorem 3.6.3
indicates that no procedure achieves nontrivial recovery unless N > n.
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3.3 Simulations

To support our theoretical findings in Section 3.2.2, we implement the MS algorithm
on synthetic instances generated from the noisy sorting model. For simplicity, we
take A = 0.25 and set A = A in the algorithm. Theorem 3.2.2 predicts a scaling
n3N-'(log n) log log n of the estimation error in the Kendall tau distance for model

(02) of sampling with replacement, where n is the number of items and N is the
number of pairwise comparisons. This rate is optimal up to a polylogarithmic factor
according to Theorem 3.6.3.
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Figure 3-1: Estimation errors dKT(fr"M, ir*) for

without replacement. Left: N = p(") = 0.1 (")
Right: n = 10, 000 and N = p(2) ranging from

x10
6

-e-With Replacement
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the observations sampled with and
and n ranging from 1,000 to 10,000;
0.1(n) to 0.01(").

In Figure 3-1, we plot estimation errors dKT( "S, 7r*) averaged over 10 instances
generated from the model. In the left plot, we let n range from 1, 000 to 10, 000 and set
N = .i(n). For this choice of N, Theorem 3.2.2 predicts that dK(S,*) = Op(n)
and we indeed observe a near-linear scaling in that plot. In the right plot, we fix
n = 10, 000 and let the proportion of observed entries, a = N/ (") range from .01 to
.1. For this choice of parameters, Theorem 3.2.2 predicts that dKT(*"S, ir*) !; Cna-

(recall that here n is fixed), and we clearly observe a sublinear relation between
dKT(*Ms, ir*) and a-1 . Note that this does not contradict the lower bound since the
latter is stated up to constants.

Moreover, the MS algorithm can be easily modified to work for the without re-
placement model (01). Namely, given the partially observed pairwise comparisons,
we assign each comparison to one of the samples 1,... , T uniformly at random, in-
dependent of all the other assignments. After splitting the whole sample into T
subsamples, we execute the MS algorithm as in the previous case. In Figure 3-1, we
take p = N/ (n) and plot the estimation errors for sampling without replacement,
which closely follow the errors for observations sampled with replacement. Therefore,
although it seems difficult to prove analogous guarantees on the performance of the
MS algorithm applied to the without replacement model, empirically the algorithm
performs very similarly for the two sampling models.
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To gain further intuition about the MS algorithm, we consider the set I(t)(i)
defined in the algorithm. At stage t of the algorithm, the set I(t)(i) consists of all
indices j for which we are not certain about the relative order of item i and item

j. The proof of Theorem 3.2.2 essentially shows that the uncertainty set I(t)(i) is

shrinking as the algorithm proceeds. To verify this intuition, in Figure 3-2 we plot
the uncertainty regions

-R(t) :{(i, j) C [n]2 : I E [n], j E I(')(i)J

at stages t = 1, 2,3 of the MS algorithm, for n = 10, 000 and N = ( . The items are
ordered according to 7r* = id for visibility of the region. As exhibited in the plots,
the uncertainty region is indeed shrinking as the algorithm proceeds.

3.4 Discussion and open problems

In this chapter, we focused on minimax estimation of the latent permutation ir*.
Viewing M = }11 as the null hypothesis and M E 9)T1(A) as the alternative

hypothesis, a natural question is to establish the minimax detection level of the signal
strength A in the hypothesis testing framework.

Moreover, we proved that the minimax rates for the noisy sorting problem do not
involve any extra logarithmic factors even in the case of partial observations. For more

complex models involving permutations [CD16, FMR16, SBGW17, PWC17, SBW17],
however, there are logarithmic gaps between current upper and lower bounds. Accord-

ing to the discussion after Proposition 3.5.1, the logarithmic gaps do not necessarily

stem from the unknown permutation, so it would be interesting to close these gaps

or study whether they exist because of other aspects of the richer models.

For the MS algorithm, it remains an open question whether analogous upper

bounds can be established for sampling without replacement. We conjecture that

this is the case because of the empirical evidence in Section 3.3. More importantly,
there are still statistical-computational gaps unresolved for the general noisy sorting
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model where M E 9R(A), for the SST model of [SBGW17] and for the seriation model
of [FMR16]. It would be interesting to know if the ideas behind the MS algorithm
could help tighten the gaps.

3.5 The symmetric group and inversions

Before proving the main results for the noisy sorting model, we study the met-
ric entropy of the symmetric group On with respect to the Kendall tau distance.
Counting permutations subject to constraints in terms of the Kendall tau distance
is of theoretical importance and has interesting applications, e.g., in coding theory
{BM10, MBZ13]. We present the results in terms of metric entropy, which easily
applies to the noisy sorting problem and may find further applications in statistical
problems involving permutations.

For e > 0 and S C On, let N(S, E) and D(S, e) denote respectively the E-covering
number and the E-packing number of S with respect to the Kendall tau distance. The
following main result of this section provides bounds on the metric entropy of balls
in On.

Proposition 3.5.1. Consider the ball B(7, r) = {au E O : dKT(lr, ca) < r} centered
at 7 E On with radius r E (0, (')]. We have that forE e: (0,r),

r 2n+--2r
n log ( )- 2n < log N(B(, r), E) log D(B(7r, r), E) < n log ( ) + 2n.

We now discuss some high-level implications of Proposition 3.5.1. Note that if

n <e r ("), the lemma states that the e-metric entropy of a ball of radius r in
the Kendall tau distance scales as n log -. In other words, the symmetric group Gn
equipped with the Kendall tau metric is a doubling space with doubling dimension
0(n). One of the main messages of the current work is that although log 4n =

log(n!) :: n log n, the intrinsic dimension of O, is 0(n), which explains the absence
of logarithmic factor in the minimax rate.

To start the proof, we first recall a useful tool for counting permutations, the
inversion table. Formally, the inversion table b 1,... , bn of a permutation 7F E On is
defined by

bi (ri > j)
j:i<j

for i E [n]. Clearly, we have that bi E {0,1,... ,n - i} and dKT(7, id) = "bi.
It is easy to reconstruct a unique permutation using an inversion table with bi E
{0, 1, . . , n-i}, i E [n], so the set of inversion tables is bijective to 67, via this relation;
see, e.g., [Mah00l. We use this bijection to bound the number of permutations that
differ from the identity by at most k inversions. The following lemma appears in a
different form in [BM10. We provide a simple proof here for completeness.

Lemma 3.5.2. For 0 < k < (n), we have that

nlog(k/n) - n < log {7r E On : dr (7, id) < k}| I n log(1 + k/n) + n.
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Proof. According to the discussion above, the cardinality 1{w7 E 6, : dKT(7, id) < k} ,
which we denote by L, is equal to the number of inversion tables b1 ,...,be where
b E {O, 1, . .. ,nn - i} such that " bi k. On the one hand, if bi < [k/nj for all
i E [n], then E'l bi < k, so a lower bound on L is given by

n

L > ([k/n] + 1) A (n - i + 1)
%i 1

n-jkn] n

> fJ ([k/nj + 1) H (n - i + 1)
i=1 i=n-Lk/nj+1

> (k/n)-k/n [ k/nj!.

Using Stirling's approximation, we see that

log L > n log(k/n) - (k/n) log(k/n) + [k/nj log[k/nj - [k/nj

> n log(k/n) - n.

On the other hand, if bi is only required to be a nonnegative integer for each
i E [n], then we can use a standard "stars and bars" counting argument [Fel68 to get
an upper bound of the form

L < (n+ k < n"(1 + k/n)" .
n)

Taking the logarithm finishes the proof. l

We are ready to prove Proposition 3.5.1.

of Proposition 3.5.1. The relation between the covering and the packing number is
standard.

We employ a standard volume argument to control these numbers. Let P be a
2E-packing of B(7r, r) so that the balls B(o-, E) are disjoint for o, E P. Moreover, by
the triangle inequality, B(-, E) C B(7r, r + e) for each a E P. By the invariance of the
Kendall tau distance under composition, Lemma 3.5.2 yields

log D(B(7r, r), 2E) < n log(1 + r/n) + n - n log(E/n) + n

=nlog( + + 2n.

On the other hand, if X is an e-net of B(7r, r), then the set of balls {B(o, e)} ,
covers B(7r, r). By Lemma 3.5.2, we obtain

log N(B(r, r), E) log I8U(7r, r) - log IB(o-, c)|

> n log(r/n) - n - n log(1 + E/n) - n

=nlog ( r) - 2n,n + E
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as claimed. 0

The lower bound on the packing number in Proposition 3.5.1 becomes vacuous
when r and e are smaller than n, so we complement it with the following result, which
is useful for proving minimax lower bounds.

Lemma 3.5.3. Consider the ball B(w, r) where r < n/2. We have that

r n
log N(B(ir, r), r/4) > - log -.

5 r

Proof. Without loss of generality, we may assume that 7r = id and n is even. The
sparse Varshamov-Gilbert bound (see Lemma 4.10 of [Mas07J) states that there exists
a set S of r-sparse vectors in {0, 1}n/2, such that log |SI > 1 log " and any two distinct
vectors in S are separated by at least r/2 in the Hamming distance. We now map
every v E S to a permutation 7r E B(id, r) by defining

1. 7r(2i - 1) = 2i - 1 and w(2i) = 2i if v(i) = 0, and

2. 7(2i - 1) = 2i and 7r(2i) = 2i - 1 if v(i) = 1,

for i E [n]. Note that 7r E B(id, r) because i swaps at most r adjacent pairs. Denote
by P the image of S under this mapping. Since the Hamming distance between any
two distinct vectors in S is lower bounded by r/2, we see that dKT(7r, -) r/2 for
any distinct 7, o, E P. Thus P is an r/2-packing of B(id, r). By construction, IPI =
1S 1 log ", so we can use the standard relation D(B(id, r), r/2) < N(B(id, r), r/4)
to complete the proof. 0

3.6 Proofs of the main results

This section is devoted to the proofs of our main results. We start with a lemma
giving useful tail bounds for the binomial distribution.

Lemma 3.6.1. Suppose that X has the Binomial distribution Bin(N,p) where N E
Z+ and p E (0, 1). Then for r E (0, p) and s C (p, 1), we have

1. P(X < rN) exp ( -N (p-r)2  and2p(1 -r)~J

2. P(X > sN) < exp ( - N (p-,)2

Proof. First, for 0 < q < p < 1, by the definition of the Kullback-Leibler divergence,
we have

p __-_ _ f~p1-p\
KL (Ber(p)11Ber(q)) = p log -+ (1 - p) log P (- - ) dx

q 1-q q X l X

fJP Jx - dx> p px dx= (p - q)2
Jq x(1-X) - q p(1 -q) 2p(l - q)
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Thus we also have

KL (Ber(q)11Ber(p)) = KL (Ber(l - q)11Ber(l - p)) 2 . (3.4)
2p(l - q) (34

Moreover, by Theorem 1 of [AG89 and symmetry, it holds that

1. P(X < rN) exp(-NKL(Ber(r)!Ber(p))), and

2. P(X > sN) < exp(-NKL(Ber(s)|Ber(p))).

The claimed tail bounds hence follow from (3.3) and (3.4). L

3.6.1 Proof of Theorem 3.2.1

First, to achieve optimal upper bounds, we consider a variant of maximum likelihood
estimation. Fix A E (0, 1/2),p E (0,1] and define p = np-1 A 2 in the case of sampling
model (01), and p = n3N- 1A 2 in the case of sampling model (02). If A or p is
unknown, one may learn these scalar parameters easily from the observations and
define W using the estimated values. For readability, we assume that they are given
to avoid these technical complications.

Let P be a maximal o-packing (and thus a sp-net) of the symmetric group 6,
with respect to dKT. Consider the following estimator:

ft C argmax Ai, . (3.5)
7rEP 7r(i)>7r(j)

It is easy to see that fr is the MLE of 7r* over P. Such an estimator is often called
sieve estimator (see, e.g., [LC86I) in the statistics literature. The estimator -r satisfies
the following upper bounds.

Theorem 3.6.2. Consider the noisy sorting model with underlying permutation 7r*

and probability matrix M E 9R1(A) where A E (0, }). Then, with probability at least
1 - e-", the estimator fr defined in (3.5) satisfies

n 2J A n in model (O1)

dKT (fr, 79 < n 3

NA 2 An in model (02).

By integrating the tail probabilities of the above bounds, we easily obtain bounds
on the expectation E[dKT(fr, 7r*)] of the same order, which then prove the upper
bounds in Theorem 3.2.1. One may wonder whether the rate in Theorem 3.6.2 can
be achieved by the MLE -r over E,, defined by

-r C argmax E Ai .
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Our current techniques only allow us to prove bounds on dKT(F, 7r*) that incur an
extra factor log(1/pA) (resp. log(n 2 /NA)) in model (01) (resp. (02)). It is unclear

whether these logarithmic factors can be removed for the MLE.

of Theorem 3.6.2. We assume that n is lower bounded by a constant without loss of

generality, and note that the bounds of order n2 are trivial. The proof is split into

four parts to improve readability.

Basic setup. Since P is a maximal p-packing of E3n, it is also a yp-net and thus there

exists ir E P such that 0) := dKT(ir, ir*) < W. By definition of fr, E()<*(j) Ai,

E()<(j) Ai. Canceling concordant pairs (i, J) under fr and -r, we see that

( S()*)*i<U
Splitting the summands according to 7r* yields that

*(i)<*(j)

Aij + Ai, 5 E
*(M>fr(j),
k(i)<*(U),
* (i) <'r*(j)

Ai, + E

-**(i)>r* (j)

Since Aij > 0, we may drop the leftmost term and drop the condition
the rightmost term to obtain that

Aij, 5 E
i (i) <i(j),

r* (i) <-*(j)

Ai,+ 5
N(i)<*(U),
r* (i) >7* (j)

This inequality is crucial to proving that fr is close to 7r* with high probability.
To set up the rest of the proof, we define, for 7r E P,

Ler df E [n]: 7r(i) <7r(j), r() > -r(j), 7*() > 7*
={(Zi, E)E [n]2 : 7(1) > -xj, ri < ij,7r* (Z) < 7*().

Moreover, define the random variables

X - 5 Ai, ,Y= Y
7 (j)),(j)

7r*(i)>Ir*(j) 'r* (i) <'* (j)

and Z = E
7* (2)<I* (j)

We will prove that the random process X, - Y, - Z is positive with high probability
if 7r is too far from r. However, (3.6) says precisely that X* - Yf - Z < 0, so that 7r

must be close to r which is in turn close to r*.

The case M = M,*(A) under sampling model (01). Consider model (01) of

sampling without replacement, and suppose that M = M*(A) first. For a pair (i, J)
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with 7r*(i) > wr*(j), the entry Aij has distribution Ber(p(j + A)), since item i and
item j are compared with probability p and conditioned on them being compared,
item i wins with probability -+ A. Moreover, Aij is independent from any other Ak,f

with 7r*(k) > Tr*(f). Hence X, has distribution Bin (L,, p(I + A)). Similarly, Y, has
distribution Bin(Lr,p( - A)), and Z has distribution Bin(,p(I + A)). Therefore,
Lemma 3.6.1 implies that

1. P(Xr < L p(- + !A)) < exp(- LpA 2/8), and

2. P(Y, > L p(! - !A)) < exp ( - LpA 2 /8).

Then we have that

P(X, - Y, < LpA) 2 exp ( - LpA 2 /8). (3.7)

For an integer r C [CWo, (")] where C is a sufficiently large constant to be chosen,
consider the slice S, = {F C P L, r}. Note that if ir E Sr, then

dKT(r,7r* = (i, j) :(i) < r(j), r*(i) > wr(j}
5 |(i j :ft~ < frj) -rki > -r 0), 7r*(i > 7*(0)}I|

+ {(i,j) fr (i) < (j) 7*(Z) > 7r*(j)}|

-L, + dKT(, 7r*) r + p. (3-8)

Since P is a p-packing of C5, and S, C 'P, we see that ISrI is bounded by the p-
packing number of the ball B(7r*, r + W) in the Kendall tau distance. Therefore,
Proposition 3.5.1 gves

2n +2r + 2W 45r
log S,| I nlog + 2n < nlog

By (3.7) and a union bound over Sr, we see that minEs, (X, - Y,) > cLp with
probability at least

1- exp nlog +log 2- rpA2

1P 8

=1- exp nlog 45r + log 2 - -) 1 - exp(-2n),
W 8W

where the inequality holds because r/ > C for a sufficiently large constant C. Then
a union bound over integers r E [Cp, (')] yields that X, - Y, > cLp for all 7rE P
such that L, > CW with probability at least 1 - e-'.

Furthermore, since Z ~ Bin (D,p(4 + A)) and 0 < p, Lemma 3.6.1 gives that

P(Z > 2Wp) < exp(-pp/4) < exp(-n/4).

Combining the bounds on X, - Y, and Z, we conclude that with probability at least
1 - -/8,

X, - Y, - Z > cCpp - 2 pp > 0
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for all 7r E P with L, > CW, as long as C > 2/c.
We have seen in (3.6) that X* - Y* - Z < 0, so Lf < Cp on the above event.

By (3.8), dKT(f, 7r*) 5 Lf + o on the same event, which completes the proof for the
model (Qi).

The general case under sampling model (01). Let us continue to use X,, Y,

and Z to denote the above random variables under the noisy sorting model P with
probability matrix M,*(A), and use X,, Y, and Z to denote the corresponding random
variables under a general noisy sorting model P with M e 9&(A). We couple the
two models such that:

1. The sets of pairs of items being compared are the same (and if a pair is compared
multiple times, the multiplicity is also the same);

2. For each pair (i, j) with 7r*(i) > 7r*(j), if item i beats item j in a comparison in
the model P, then it also beats item j in the corresponding comparison in the
model P.

The second statement can be satisfied because the results of comparisons are Bernoulli

random variables and Mr.*(i),w*(J) > [M*(A)1]*(i),,*(j) for all 7r*(i) > r*(j), by defini-

tion. Under this coupling, we always have that 1 , > X, and k, < Y, so the above
high probability lower bound on X, - Y, also holds on X, - Y,.

Moreover recall the definition Z = i)<*), Aij where we have that Ai,

Ber(p[M*(A)]r*(i),x*(j)). Since [M*(A)],*(i),Ir*(j) E (0, 1), we can couple a sequence of
i.i.d. Bi, ~ Ber(p) with the Aij's in such a way that Bi, = 1 whenever Ai, = 1.
Define W = E *(i)<7(j), Bi,. Then we see that W - Bin(O,p) and W > Z. Since

7r (* )>l*()
0 < p, Lemma 3.6.1 gives

P(W > 2Wp) < exp(-Wp/4) < exp(-n/4).

Thus Z is subject to the same high probability upper bound as Z. Therefore, the
proof for the model P also works to show the desired bound for the model '.

Sampling model (02). The proof for model (02) of sampling with replacement
is essentially the same, except the part of probability bounds where we assume
M = M,*(A). We now demonstrate the differences in detail. For a single pairwise
comparison sampled uniformly from the possible (') pairs, the probability that

1. the chosen pair (i,j) satisfies r(i) < 7(j), r(i) > Fr(j) and r*(i) > ir*(j), and

2. item i wins the comparison,

is equal to L,(") (- + A). By definition, X, is the number of times the above
event happens if N independent pairwise comparisons take place, so we have that

X, ~ Bin (N, L,(n) (1 + A)). Similarly, we have Y, - Bin (N, L,(") -(_ - A)) and

Z - Bin (N, (") 1 ( + A)). Hence Lemma 3.6.1 gives that
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1. P(X, < L,,N() ( + 'A)) < exp ( - L, N(n)-A2/8),

2. P(Y, > L,~N(n) (I - 1A)) < exp ( - L,N(") 1A2/8), and

3. P(Z > 2yN(n)') exp ( - (") /4).

Note that if we set p N(") 1 , then the tail bounds above are exactly the same as

those for the model (01). Therefore, replacing p by N(n) ' everywhere in the above
proof, we then obtain the desired bound for the model (02)- I

Next, we turn to the lower bounds. Let P,. = Pr*,M*(A) denote the probability
distribution of the observations in the noisy sorting model with underlying permuta-
tion 7r* E G, and probability matrix M,(A), where A E (0, 1). We prove the following
stronger statement which clearly implies the lower bounds in Theorem 3.2.1.

Theorem 3.6.3. For the sampling model (01), suppose we have A G (0, -) and
p c (0,1] such that plog 12A < C for some constant C > 0. Then it holds that

min max P7,. d1(p, 7l > 'A n A n2 2 > ,
m *m pA2 p log 1_1 A

where the minimum is taken minimized over all permutation estimators ~ 7 6 , that
are measurable with respect to the observations and c is a universal positive constant.
Similarly, for the sampling model (02), if we have Nn- 2 log 112A < C, then it holds
that

mmmx 7*1K~r,rr 7 A A n 2> c.min max Pr* dKT(, >r 2 1 A 22
R 7*Cen NA Nlog1 -2 A

Compared to the lower bounds in Theorem 3.2.1, the above lower bounds hold in
probability, weaken the condition that A is bounded away from 1/2 and only require
maximizing 7r* instead of both 7r* and M, and are therefore stronger.

One key ingredient in proving lower bounds is to relate the Kullback-Leibler di-
vergence between model distributions to the distance measuring the error (see, e.g.,
Chapter 2 of [Tsy09]). This is achieved in the following lemma for both sampling
models.

Lemma 3.6.4. Fix r, - E 6, and A E (0, }). We denote by P, the probability
distribution of the noisy sorting model with underlying permutation 7r. Then for the

sampling model (01) we have

1 + 2A
KL(P,|11|Pa) = 2 dK (7r, a) pA log 1- 2A,

I - 2A

and for the sampling model (02) we have

KL(P7,IIP,) 2dKT(7r, ) N A log 1 + 2A
2 1- 2A
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Proof. First, we consider model (01) of sampling without replacement. For i f J,
let P('j) denote the distribution of outcomes between i and j, or more formally, the

distribution of Ni and A2,j. For a pair (ij) such that ir(i) > 7r(j) and o-(i) > o(j),
the distributions P"'S and P(".) are indistinguishable. For (i, j) such that ir(i) > ir(j)

and u(i) < o(j), the probability that i and j are not compared stays the same, but

the probability that they are compared and i wins the comparison is p(! + A) under

P,') while it is A-1- A) under P,'. A symmetric statement holds for the probability

that they are compared and j wins the comparison. Therefore, we obtain that

K-L(P('j |P('j) = p(1/2 + A) log + p(1/ 2 - A) log 1/2 - A
1/2- A 1/2+ A

1 + 2A
= 2pA log 1 - 2A

1 - 2A

It follows from the chain rule that

KL(PIIP,) = KL(P"3IIP ') = 2dK (7,a) pA log 1 + 2AIr or 1- 2A'
7(i)>lr(j), o(i)<Oc(j)

which proves the claimed bound.

Next, we move on to model (02) of sampling with replacement. In this case,
for the noisy sorting model with underlying permutation 7r, we let Q, denote the

distribution of the outcome of a single pairwise comparison chosen uniformly from

the (n) possible pairs. Conditioned on a pair (i, j) with ir(i) > ir(j) and -(i) > o-(j)
being chosen, the outcome is indistinguishable under Q, and Q,. On the other hand,
conditioned on having chosen (i, j) with r(i) > ir(j) and o-(i) < o-(j), the probability
that i wins the comparison is p(I + A) under Q, and is p(! - A) under Q,. By the
definition of the KL divergence, we have

KL(QrjQa) = 2 K() (1/2 + A) log 1/2 + A

( 1 1/2 - A
+ (n) (1/2 - A)log 1/2+A

2 1/2 + A]

n 1 + 2A
= 2 I\ 7ro-)2, 1 - 2A '

where the bound holds similarly as above. Since N independent pairwise comparisons

are observed and the KL divergence tensorizes, the conclusion follows. l

We are ready to prove the minimax lower bound.

of Theorem 3.6.3. Consider the sampling model (01). We assume that n is lower

bounded by a constant, and use the shorthand notation K = 4pA log 1*A. Note that

, < C for some constant C > 0 by the assumption. Let r = con- 1 A (n) and E = c1r,
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where co and ci are constants to be chosen. Let P be a maximal E-packing of B(id, r),
which is thus an E-net by maximality. For any ir, u E P, we have dT (7, 0-) < 2r, so
Lemma 3.6.4 yields

1
KL(P,11|P,) = -I dKT(7r, o-) < Kr < con .

2

On one hand, if K < c 2 for a sufficiently small constant c 2 > 0, then r > coc-inA (n)
and thus Proposition 3.5.1 implies that

r
log IP > n log - 2n > 10 con > 10 KL(P,|IP,),

n + E

where we take co 1 and ci, c2 small enough for the inequalities to hold.
On the other hand, if c2 <r C then we take ci = 1/8 and co sufficiently small

so that r < ccin < n/2. Then we can apply Lemma 3.5.3 to obtain

r n con C2log PI -log -> log- - 10con > 10 KL(PIP,),
5 r 5C co

where the second inequality holds since coC-1 n K r < cocj1 n and the third inequality
holds for co small enough.

In either case, we have KL(PIIP,) < 0.1 log JPJ. Therefore, using [Tsy09, The-
orem 2.51 yields the lower bound of order r :_ nr,- 1 A n2 . Considering the limiting
behavior of r as A -+ 0 and A -+ 1 repectively, we see that K< , pA2 V p log i, So
the claimed lower bound follows.

For the sampling model (02), the same argument follows if we replace p with

3.6.2 Proof of Theorem 3.2.2

Without loss of generality, assume that 7r* id and n is even to simplify the notation.
We define a score

si S M -= A(2i - n - 1) + (n - 1)/2
jE[n]\{i}

for each i E [n], which is simply the i-th row sum of M minus 1/2. Analogously, we
define

si = + A) + E ( 1- A) = (2i' - n - 1) + (n - 1)/2
j=1 j=i+1

for each i E [n1, which is a slightly perturbed version of s* due to the difference
between A and A. The MS algorithm is designed to refine estimates for the scores s*
in multiple stages.

First, the estimator A satisfies the following bound, which in particular implies
that sj is close to s.
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Lemma 3.6.5. If N > Cnlog n, then we have IA - Al Co /N log n with proba-
bility at least 1 - n-8 , where C and Co are sufficiently large universal constants.

Proof. Consider a single pairwise comparison chosen uniformly from the (n) pairs.
The probability that item i is chosen and wins the comparison is therefore equal
to (En\{ M,/(") = s*/ ("). Thus the random variable Si = En1 A',j has
distribution Bin (N/2, s*/(n)). Hence Lemma 3.6.1 implies that

P(jSj - E[Sj] ciE[Sj]) < 2 exp ( - c2E[Sj]) < n" 0 ,

where the last inequality holds since N > Cn log n, and we use c1i, c2 ,... to denote
sufficiently small constants. A union bound shows that with probability at least
1 - n-9, we have jSj - E[Sj] < c1E[Si] for all i e [n]. Denote this high probability
event by , and we condition on henceforth.

Recall that sl = 2Ai - A(n + 1) + (n - 1)/2. Using that A is bounded away from
zero, we can choose ci small enough so that if i-j > n/4, then sl - s* > 2cs*. Note

that E[Sj] = !Ns/(n), so E[Sj] - E[Sj] > 2c1E[Si] if i - j > n/4. Therefore, on the
event . we have Si > S for all (i, j) with i - j > n/4. It follows that -R (i) > r(j) for
these pairs (i, 3), as - is defined by sorting the scores Si.

Next consider (i, j) such that *(i) - F(j) > n/2. Suppose we have i <j. Then
there exists k E [n] with -(j) < R(k) < r(i) such that either k-i > n/4 or j-k n/4,
which gives a contradiction on the event S. Therefore, it holds that i > j for all pairs

(i,j) with ~r(i) - ii(j) > n/2.

Recall that A = 1() ( "2 ij E_ A' - 2, where I = {(i, j) E [In]2 :ir(i) _
-(j) > !}. Note that A" is independent of E, on which we have i > j for all (i, j) E 1.
Similar to the argument at the beginning of the proof, the probability that a uniformly
chosen pair falls in I and i wins the comparison is (I + A) Il / (n). Hence the random
variable X = E(ij)E A"j has distribution Bin (N/2, (I + A) I|1/()). It follows that

E[A I] = A once we note that I= (n2).
Moreover, Lemma 3.6.1 gives the bound

P (IX - E[X]) > C2N log n 2 exp(-c 3 log n) < n-9

and consequently 1A-Al < Co N- 1 log n with probability at least 1 -n- 9 conditioned
on the event S, where C2 and Co are sufficiently large constants. A union bound then
completes the proof. l

We condition on the high probability event of Lemma 3.6.5 throughout the rest of
the proof, so that IA - Al Co/N-1 log n for a fixed constant Co > 0. In particular,

is bounded away from zero by a universal constant since A is and N > Cn log n,
and s3j < si iff j < i. We proceed with the following key lemma.

Lemma 3.6.6. Fix t E [T], i C [n] and I C [n] with i e I. Suppose that II| >
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C1, log(nT) for a sufficiently large constant C. If we define

= nn A- (1A)) -)

jE1 jEin]\I,j<i jE [n]\I, j>i

then it holds with probability at least 1 - 2(nT)- 9 that

IS - I| < (5 + Co)n|IIITN-1 log(nT).

Proof. Consider a single pairwise comparison chosen uniformly from the (n) pairs.
The probability that the chosen pair consists of item i and an item in I \ {i}, and
that item i wins the comparison, is equal to q := (nM, 3 ) /(). Thus the

random variable X = >j, A(' has distribution Bin(N/T, q). In particular, we have

E[X] = Nq/T = TN-1) jEI\{i} M,j and by Lemma 3.6.1,

P (IX - E[X] > -) 2exp - j .
T ~2T(q +r)

Taking r = 6 log(nT), we see that r < qby the assumption Il > Ci9 log(nT),
so

P (IX - E[X]I > 6 qNT- 1 log(nT)) < 2(nT)-9. (3.9)

By the definitions of S and sj, it is straightforward to verify that

S - si = Tn(n -1) (X - E[X]) + E (A - )+ 2 A-A).
jEIj<i jei,j>i

Therefore, we obtain from (3.9), the definition of q and the fact III < n that

IS - I < 3n(n - 1) qTN-1log(nT) + I|I A- Al

<5n J|IITN-1 log(nT) + CoIIN-' log n

(5 + Co)n |IIITN-1 log(nT)

with probability at least 1 - 2(nT)- 9 . [-

To analyze the MS algorithm, we apply Lemma 3.6.6 inductively to each stage
of the algorithm. Define 0) to be the full event. As the inductive hypothesis, we
assume that on the event (t'), it holds that j < i for all j E I 1 )(i) and j > i for

all j E P-'(i). In particular, this holds trivially for t = 1.

On the event E(t), the score S(') is exactly the quantity S in Lemma 3.6.6 with
I = I(t-)(i). Thus the lemma shows that if |I(t 1 )() C1 log(nT) for a large
enough constant C1, then

IS(') - s- < (5 + Co)n /II(t1)(i)ITN-1 log(nT) = 7T /2 (3.10)
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with probability at least 1 - 2(nT)- 9 conditional on g(t-1. We denote by S(M the
sub-event of E(t-1) that the above bound holds for all i E [n]. Then P(g(t j g(t-1) >
1 - (nT)-8 and we condition on S(t) henceforth.

For any j E I2(i), by definition S t) - St)< -r, so we have e <s and thus

j < i. Similarly, j > i for any j E Ift)(i) on the event (t). Hence the inductive

hypothesis is verified. Moreover, note that I( I-() {j E [n] ISt) - St)l 2rt} W

{j E [n]: s - 9i I 3Tr }. Since sj - s = 21(j - i) and I is bounded away from
zero by a universal constant, we have

|I t) (i) I C2 71t = C3n 'JI(t-1) (i)|TN-1 log(nT) , (3.11)

where we use C2, C3,... to denote sufficiently large constants.
Note that if we have a(0) - n and the iterative relation a(') < fia(t-) where

a(t) > 0 and 3 > 0, then it is easily seen that a(t) < /22- t . We would like to
obtain such a bound from the relation (3.11). Note that S(T) C E(T-1) C ... C g(O)

by definition and P(g(T)) = IT 1 P(() 10(t-1)) > I - n- 8 . Conditional on E(T,

the iterative relation (3.11) thus holds for all t c [T], and we have JI(M i)I = n by
definition. Since I(t)(i) is not updated in the algorithm once [I(t)() 1  C1"g log(nT),
we obtain that

|Ir0() C32 Nlog(nT)n- V (C1 log(nT))
2

< C (log n)(log log n),

where the last bound holds because we take T = [log log nj. Hence it follows from
(3.10) that

IST) - g_ < C5n
2 N-1 (log n)(log log n) ,

and a similar argument as above shows that S(T) > S for all pairs (i, j) with
i - j > C6n2N 1 (log n) (log log n) =: 6. As the permutation fr" 5 is defined by sorting

the scores S(T) in increasing order, we see that rM S > M S(j) for pairs (i, J) with

Finally, suppose that fr"(i) - i < -6 for some i E [n]. Then there exists j < i -
such that frMS(J) > *Ms(i), contradicting the guarantee we have just proved. A similar
argument leads to a contradiction if -r"s(i) - i > 6. Therefore, we obtain that

|Irm S(i) - ii 6 = C6n2 N 1 (log n)(log log n)

for all i E [n], which completes the proof.
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Chapter 4

Faster Rates for Permutation-based
Models in Polynomial Time

Structured matrices with entries in the range [0, 1] and unknown permutations acting
on their rows and columns arise in multiple applications, including estimation from
pairwise comparisons [BT52, SBGW171 and crowd-labeling [DS79, SBW16b]. Tradi-
tional parametric models [BT52, Luc59, Thu27, DS79] assume that these matrices are
obtained from rank-one matrices via a known link function. Aided by tools such as
maximum likelihood estimation and spectral methods, researchers have made signifi-
cant progress in studying both statistical and computational aspects of these paramet-
ric models [HOX14, RA14, SBB+16, NOS16, ZCZJ16, GZ13, GLZ16, KOS11b, LPI12,
DDKR13, GKM11] and their low-rank generalizations [RA16, NOTX17, KOS11a].

There has been evidence from empirical studies (e.g., [ML65, BW97]) that real-
world data is not always well-captured by such parametric models. With the goal of
increasing model flexibility, a recent line of work has studied the class of permutation-
based models [Cha15, SBGW17, SBW16b]. Rather than imposing parametric condi-
tions on the matrix entries, these models impose only shape constraints on the matrix,
such as monotonicity, before unknown permutations act on the its rows and columns.
This more flexible class reduces modeling bias compared to its parametric counter-
parts while, perhaps surprisingly, producing models that can be estimated at rates
that differ only by logarithmic factors from parametric models. On the negative side,
these advantages of permutation-based models are accompanied by significant com-
putational challenges. The unknown permutations make the parameter space highly
non-convex, so that efficient maximum likelihood estimation is unlikely. Moreover,
spectral methods are often suboptimal in approximating shape-constrained sets of
matrices [Cha15, SBGW17. Consequently, results from many recent papers show a
non-trivial statistical-computational gap in estimation rates for models with latent
permutations [SBGW17, CM16, SBW16b, FMR16, PWC17].

Related work. While the main motivation of our work comes from nonparametric
methods for aggregating pairwise comparisons, we begin by discussing a few other
lines of related work. The current paper lies at the intersection of shape-constrained
estimation and latent permutation learning. Shape-constrained estimation has long
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been a major topic in nonparametric statistics, and of particular relevance to our work
is the estimation of a bivariate isotonic matrix without latent permutations [CGS18].
There, it was shown that the minimax rate of estimating an n x n matrix from
noisy observations of all its entries is 0(n- 1). The upper bound is achieved by the
least squares estimator, which is efficiently computable due to the convexity of the
parameter space.

Shape-constrained matrices with permuted rows or columns also arise in applica-
tions such as seriation [FJBd13, FMR16] and feature matching [CD16]. In particular,
the monotone subclass of the statistical seriation model [FMR16 contains n x n ma-
trices that have increasing columns, and an unknown row permutation. The authors
established the minimax rate 6(n- 2/ 3) for estimating matrices in this class and pro-

posed a computationally efficient algorithm with rate O(n- 1 / 2 ). For the subclass of
such matrices where in addition, the rows are also monotone, the results of the current
paper improve the two rates to 5(n-1) and 5(n- 3/ 4 ) respectively.

Another related model is that of noisy sorting [BM08J, which involves a latent per-
mutation but no shape-constraint. In this prototype of a permutation-based ranking
model, we have an unknown, n x n matrix with constant upper and lower triangular
portions whose rows and columns are acted upon by an unknown permutation. The
hardness of recovering any such matrix in noise lies in estimating the unknown permu-
tation. As it turns out, this class of matrices can be estimated efficiently at minimax
optimal rate 6(n-1 ) by multiple procedures: the original work by Braverman and
Mossel [BM08] proposed an algorithm with time complexity ((nc) for some unknown

and large constant c, and recently, an O(n2)-time algorithm was proposed by Mao et
al. [MWR17. These algorithms, however, do not generalize beyond the noisy sorting
class, which constitutes a small subclass of an interesting class of matrices that we
describe next.

The most relevant body of work to the current paper is that on estimating ma-
trices satisfying the strong stochastic transitivity condition, or SST for short. This
class of matrices contains all n x n bivariate isotonic matrices with unknown permuta-
tions acting on their rows and columns, with an additional skew-symmetry constraint.
The first theoretical study of these matrices was carried out by Chatterjee [Chal5],
who showed that a spectral algorithm achieved the rate 0(n- 1/ 4 ) in the normalized
Frobenius norm. Shah et al. [SBGW17] then showed that the minimax rate of esti-

mation is given by 6(n-'), and also improved the analysis of the spectral estimator of

Chatterjee [Chal5 to obtain the computationally efficient rate 0(n- 1/ 2 ). In follow-
up work [SBW16a], they also showed a second CRL estimator based on the Borda
count that achieved the same rate, but in near-linear time. In related work, Chat-
terjee and Mukherjee [CM16] analyzed a variant of the CRL estimator, showing that
for subclasses of SST matrices, it achieved rates that were faster than O(n- 1/ 2). In
a complementary direction, a superset of the current authors [PMM+17a] analyzed
the estimation problem under an observation model with structured missing data,
and showed that for many observation patterns, a variant of the CRL estimator was
minimax optimal.

Shah et al. [SBW16a] also showed that conditioned on the planted clique con-
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jecture, it is impossible to improve upon a certain notion of adaptivity of the CRL
estimator in polynomial time. Such results have prompted various authors [FMR16,
SBW16a] to conjecture that a similar statistical-computational gap also exists when
estimating SST matrices in the Frobenius norm.

Our contributions. Our main contribution in the current work is to tighten the
aforementioned statistical-computational gap. More precisely, we study the problem
of estimating a bivariate isotonic matrix with unknown permutations acting on its
rows and columns, given noisy, partial observations of its entries; this matrix class
strictly contains the SST model [Cha15, SBGW17] for ranking from pairwise com-
parisons. As a corollary of our results, we show that when the underlying matrix
has dimension n x n and 1(n 2) noisy entries are observed, our polynomial-time, two-

dimensional sorting algorithm provably achieves the rate of estimation O(n- 3 /4 ) in
the normalized Frobenius norm; thus, this result breaks the previously mentioned
5(n--1/ 2 ) barrier ISBGW17, CM16J. Although the rate O(n- 3/ 4 ) still differs from the
minimax optimal rate 8(n-1 ), our algorithm is, to the best of our knowledge, the
first efficient procedure to obtain a rate faster than O(n- 1/ 2 ) uniformly over the SST
class. This guarantee, which is stated in slightly more technical terms below, can be
significant in practice (see Figure 4-1).

Main theorem (informal) There is an estimator M computable in time 0(n2.5 )
such that for any n x n SST matrix M*, given 0(n2 ) Bernoulli observations of its
entries, we have

IE 11- M*I11] 0 (log n) 3/ 4

n n

Our algorithm is novel in the sense that it is neither spectral in nature, nor simple
variations of the Borda count estimator that was previously employed. Our algorithm
takes advantage of the fine monotonicity structure of the underlying matrix along
both dimensions, and this allows us to prove tighter bounds than before. In addition
to making algorithmic contributions, we also briefly revisit the minimax rates of
estimation.

Organization. In Section 4.1, we formally introduce our estimation problem. Sec-
tion 4.2 contains statements and discussions of our main results, and in Section 4.3,
we describe in detail how the estimation problem that we study is connected to ap-
plications in crowd-labeling and ranking from pairwise comparisons. We provide the
proofs of our main results in Section 4.4.

Notation. For a positive integer n, let [n] = {1, 2,... , n}. For a finite set S, we
use ISI to denote its cardinality. For two sequences {an}', and {bn}', we write
an < bn if there is a universal constant C such that an Cbn for all n > 1. The
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Figure 4-1: Left: A bivariate isotonic matrix; M* E [0, 1]'Xf is a row and column

permuted version of such a matrix. Right: A log-log plot of the error -2JM$ - M*|1

(averaged over 10 experiments each using n2 Bernoulli observations) of our estimator
and the CRL estimator [SBW16a].

relation a, > bn is defined analogously. We use c, C, c1 , c2,... to denote universal
constants that may change from line to line. We use Ber(p) to denote the Bernoulli
distribution with success probability p, the notation Bin(n, p) to denote the binomial
distribution with n trials and success probability p, and the notation Poi(A) to denote
the Poisson distribution with parameter A. Given a matrix M E Rn xn2, its i-th row is
denoted by Mi. For a vector v E R n, define its variation as var(v) = maxi vi - mini vi.
Let S, denote the set of all permutations 7r : [n] -÷ [n]. Let id denote the identity
permutation, where the dimension can be inferred from context.

4.1 Background and problem setup

In this section, we present the relevant background and notation on permutation-
based models, and introduce the observation model of interest.

4.1.1 Matrix models

Our main focus is on designing efficient algorithms for estimating a bivariate isotonic
matrix with unknown permutations acting on its rows and columns. Formally, we
define CBISo to be the class of matrices in [0, 1]ni n2 with nondecreasing rows and
nondecreasing columns. For readability, we assume throughout that n1 ;> n2 unless
otherwise stated; our results can be straightforwardly extended to the other case.
Given a matrix M E R ni x12 and permutations 7r C 6, and o E 6n2, we define the
matrix M(7r, o-) E Rni xn2 by specifying its entries as

[M(7r, 0-)]i = Mr(i),a(j) for i E [n 1], j E [n2].
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Also define the class CBISO(7r, -) := {M(7r, -) : M E CBISo} as the set of matrices
that are bivariate isotonic when viewed along the row permutation ir and column
permutation o-, respectively.

The class of matrices that we are interested in estimating is given by

CPerm := U CBISO(7, )
7r E 6,,

In words, the class contains bivariate isotonic matrices with both rows and columns
permuted.

4.1.2 Observation model

In order to study estimation from noisy observations of a matrix M* in the class

CPerm, we suppose that N noisy entries are sampled independently and uniformly with
replacement from all entries of M*. This sampling model is popular in the matrix
completion literature, and is a special case of the trace regression model [NW12,
KLT11I. It has also been used in the context of permutation models by Mao et
al. [MWR17] to study the noisy sorting class.

More precisely, let E(?,J) denote the ni x n2 matrix with 1 in the (i, j)-th entry
and 0 elsewhere, and suppose that Xe is a random matrix sampled independently and
uniformly from the set {E(") : i E [nil, j E [n 2 ]}. We observe N < nin2 independent

pairs {(Xe, ye)}j1
1 from the model

ye = tr(X/M*) + Ze, (4.1)

where the observations are contaminated by independent, centered, sub-Gaussian

noise ze with variance parameter (2. Of particular interest is the noise model consid-

ered in applications such as crowd-labeling and ranking from pairwise comparisons.

Here our samples take the form

ye ~ Ber(tr(XT M)) (4.2)

and consequently, the sub-Gaussian parameter (2 is bounded; for a discussion of other

regimes of noise in a related matrix model, see Gao [Gao17].

For analytical convenience, we employ the standard trick of Poissonization, so that

we can assume throughout the paper that N' = Poi(N) random samples are drawn

according to the trace regression model (4.1). Upper and lower bounds derived under

this model carry over with loss of constant factors to the model with exactly N

samples; for a detailed discussion, see Appendix 4.6.

For notational convenience, denote the probability that an entry of the matrix is

observed under Poissonized sampling by Pobs = 1 - exp(-N/nin2 ). Since we assume

throughout that N < nin2 , it can be verified that N < Pobs < N
2nn2 - - itn2t

Now given N' = Poi (N) observations { (Xe, ye)} I J let us define the matrix of
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observations Y = Y ({(Xf, y,)} N 1), with entry (i, j) given by

i 1 N'
I;g y, 1{JXt = E(',j)}. (4.3)

Pobs 1 V ENIJ 1{Xt = E(i')} X

In words, the rescaled entry pobsYi,j is the average of all the noisy realizations
of M that we have observed, or zero if the entry goes unobserved. Note that
E[Yi,j] = Mob -posP = M , so that E[Y] = M*. Moreover, we may write the model
in the linearized form Y = M* + W, where W is a matrix of additive noise having

independent, zero-mean, sub-Gaussian entries.

4.2 Main results

In this section, we present our main results-we begin by briefly revisiting the fun-

damental limits of estimation, and then introduce our algorithms in Section 4.2.2.

We assume throughout this section that as per the setup, we have n, ;> n 2 and

N E [nin2]-

4.2.1 Statistical limits of estimation

We begin by characterizing the fundamental limits of estimation under the trace

regression observation model (4.1) with N' = Poi(N) observations. We define the

least squares estimator over the class of matrices CPerm as the projection

MLs(Y) :=arg min |1Y - MIIF.
MECPerm

The projection is a non-convex problem, and is unlikely to be computable exactly in
polynomial time. However, studying this estimator allows us to establish a baseline
that characterizes the best achievable statistical rate. The following theorem char-
acterizes its risk up to a logarithmic factor in the dimension; recall the shorthand
Y = Y ({X, ye} !).

Theorem 4.2.1. For any matrix M* C CPerm, we have

1 M Y 2 ((2 V 1 ) nlogn, (4.4a)
n1 n2  N

with probability at least 1 - (n1n2)~

Additionally, under the Bernoulli observation model (4.2), any estimator M sat-

isfies

1 - 2 ni
sup E M -M*IF >-. (4.4b)

M*ECPerm Lnn2 nn N
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The factor ((2 V 1) appears in the upper bound instead of the noise variance (2

because even if the noise is zero, there are missing entries. The theorem characterizes
the minimax rate of estimation for the class Cpe, up to a logarithmic factor.

4.2.2 Efficient algorithms

Next, we propose polynomial-time algorithms for estimating the permutations (w, a-)
and the matrix M*. Our main algorithm relies on two distinct steps: first, we es-

timate the unknown permutations; we then project onto the class of matrices that
are bivariate isotonic when viewed along the estimated permutations. The formal

meta-algorithm is described below.

Algorithm 1 (meta-algorithm)

" Step 0: Split the observations into two disjoint parts, each containing N'/2

observations, and construct the matrices Y() = Y ({X, y'}N/2 ) and y( 2)

y ({X, y,N'/2+1).

" Step 1: Use Y(1) to obtain the permutation estimates (, &).

* Step 2: Return the matrix estimate M(-, ') := arg minMEcBISO(ga) Y -MI2

Owing to the convexity of the set CBISo(r, &), the projection operation in Step 2 of

the algorithm can be computed in near linear time [BDPR84, KRS15]. The following

result, a slight variant of Proposition 4.2 of Chatterjee and Mukherjee [CM16], allows

us to characterize the error rate of any such meta-algorithm as a function of the

permutation estimates (R, 0).

Proposition 4.2.2. Suppose that M* c CBIso(w, a) where r and a are unknown

permutations in 6 and 62 respectively. Then with probability at least 1 -(nin2) ,

we have

MR ni log 2 n1  1 2
1 (7,F3) - M*1| < ((2 V 1) + M*(7-' o 7, id) - M*|IF

nin2 N nin2

+ 1 M*(id, a-' o o) - M*12.nin2 F

(4.5)

The first term on the right hand side of the bound (4.5) corresponds to an esti-

mation error, if the true permutations r and o were known a priori, and the latter

two terms correspond to an approximation error that we incur as a result of hav-

ing to estimate these permutations from data. Comparing the bound (4.5) to the

minimax lower bound (4.4b), we see that up to a logarithmic factor, the first term

of the bound (4.5) is unavoidable, and so we can restrict our attention to obtaining

good permutation estimates (7, a). We now present our main permutation estimation

procedure that can be plugged into Step 1 of this meta-algorithm.
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Two-dimensional sorting

To reorder the rows or columns of a matrix with monotonicity constraints, sorting
row or column sums is perhaps the most natural approach popularly adopted in the
literature [CM16, FMR16. However, such a procedure does not take advantage of
the fact that the underlying matrix is monotonic in both dimensions. To improve
upon simply sorting row sums, we propose an algorithm that first sorts the columns
of the matrix approximately, and then exploits this approximate ordering to sort the
rows of the matrix.

We need more notation to facilitate the description of the algorithm. For a parti-
tion
bl = (bli, ... , bK) of the set [n21', we group the columns of a matrix Y E Rnixn2 into
K blocks according to their indices in bl, and refer to bi as a partition or blocking of
the columns of Y.

Given a data matrix Y E R ni Xn2, the following blocking subroutine returns a
column partition BL(Y). In the main algorithm, partial row sums are computed on
indices contained in each block.

Subroutine 1 (blocking)

* Step 1: Compute the column sums {C(j)}1 1 of the matrix Y as

ni

C( j) = (Yg
i=1

Let &pre be the permutation along which the sequence {C('pre(j))}> is nonde-
creasing.

" Step 2: Set -r = 16(( +1) ( 1 log(nin2) + -l'"2 log(nin2)) and K = [n2 /rl.
Partition the columns of Y into K blocks by defining

b1i {j E [n2] : C(j) E (-oo, r)},
blk = {j E [n2] :C(j) E [(k- 1)r,kT)} for 1< k <K, and

bK = E [n2] : C(j) E [(K - 1)T, oo)}.

Note that each block is contiguous when the columns are permuted by apre.

" Step 3 (aggregation): Set / = n2 V/ log(nin2 ). Call a block blk "large" if

Ibik I > 3 and "small" otherwise. Aggregate small blocks in bl while leaving the
large blocks as they are, to obtain the final partition BL.

More precisely, consider the matrix Y' = Y(id, 'pre) having nondecreasing col-
umn sums and contiguous blocks. Call two small blocks "adjacent" if there is
no other small block between them. Take unions of adjacent small blocks to

1b1 is a partition of [n2 ] if [n 2] = UK_ Ibl and bl n bik = 0 for j # k
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ensure that the size of each resulting block is in the range [j/, 2,3]. If the union
of all small blocks is smaller than -#, aggregate them all.

Return the resulting partition BL(Y) = BL.

The threshold T is a chosen to be a high probability bound on the perturbation
of any column sum, so we are confident that columns in a block b13 are in fact
close to those in b13 when the columns are sorted increasingly. It turns out that
comparing partial row sums on these blocks aids us in reordering the rows of the
matrix. Moreover, Step 3 aggregates small blocks into large enough ones to reduce
noise in these partial row sums. We are now in a position to describe the two-
dimensional sorting algorithm.

Algorithm 2 (two-dimensional sorting)

" Step 0: Split the observations into two independent subsamples of equal size,
and form the corresponding matrices Y(O) and y( 2) according to equation (4.3).

" Step 1: Apply Subroutine 1 to the matrix Y(O) to obtain a partition BL =

BL(Y( 1)) of the columns. Let K be the number of blocks in BL.

" Step 2: Using the second sample y( 2), compute the row sums

S(i) = Y for each i E [ni,
jE[n2]

and the partial row sums within each block

SBLk (i) = Y3 for each i c [n1 ], k c [K].
jEBLk

Create a directed graph G with vertex set [ni], where an edge u -+ v is present
if either

S(v) - S(u) > 16(( + 1) ( log(nin 2) + N log(nin2)), or

(4.6a)

SBLk (V) - SBLk (u) > 16(( + 1) N IBLJ Ilog(nin2 ) + N2 log(nin2 )

for some k E [K]. (4.6b)

* Step 3: Compute a topological sort 7'd, of the graph G; if none exists, set

td, = id.

" Step 4: Repeat Steps 1-3 with (y(i))T replacing YCi for i = 1, 2, the roles of ni
and n2 switched, and the roles of 7 and o switched, to compute the permutation

estimate 0tds.
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* Step 5: Return the permutation estimates (its, cttds).

Recall that a permutation ir is called a topological sort of G if ir(u) < ir(v) for
every directed edge u -+ v. The construction of the graph G in Step 2 dominates
the computational complexity, and takes time O(n2n2 /0) O(nin1/2 ). We have the
following guarantee for the two-dimensional sorting algorithm.

Theorem 4.2.3. For any matrix M* E CPerm, we have

1 , - - 2 ni log ni 3/4 n1 log2 n-
IM(7tds, &tds) - M* I IF 25S v 1 +

nlln2  [ nll l34 N J_

with probability at least 1 - 9(nin2 )-.

In particular, setting N = n1 n2 , we have proved that our efficient estimator enjoys
the rate

1 (tds, Stds) - M*. = 6 (n2-)
n1n2

which is the main theoretical guarantee established in this paper for permutation-
based models.

4.3 Applications

We now discuss in detail how the matrix models studied in this paper arise in
practice. The class CPerm was studied as a permutation-based model for crowd-
labeling ISBW16b] in the case of binary questions, and was proposed as a strict
generalization of the classical Dawid-Skene model [DS79, KOS11b, LPI12, DDKR13,
GKM11I. Here there is a set of n2 questions of a binary nature; the true answer to
these questions can be represented by a vector x* E {0, 1}2, and our goal is to esti-
mate this vector by asking these questions to ni workers on a crowdsourcing platform.
A key to this problem is being able to model the probabilities with which workers
answer questions correctly, and we do so by collecting these probabilities within a
matrix M* E [0, 1 ],iXn2. Assuming that workers have a strict ordering 7 of their abil-
ities, and that questions have a strict ordering o of their difficulties, the matrix M* is
bivariate isotonic when the rows are ordered in increasing order of worker ability, and
columns are ordered in decreasing order of question difficulty. However, since worker
abilities and question difficulties are unknown a priori, the matrix of probabilities
obeys the inclusion M* E CPerm.

In the calibration problem, we would like to ask questions whose answers we know
a priori, so that we can estimate worker abilities and question difficulties, or more
generally, the entries of the matrix M*. This corresponds to estimating matrices in
the class CPerm from noisy observations of their entries, whose rate of estimation is
our main result.

A subclass of CPerm specializes to the case ni = n2 = n, and also imposes an
additional skew symmetry constraint. More precisely, define C'BISO analogously to the
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class CBISO, except with matrices having columns that are nonincreasing instead of
nondecreasing. Also define the class Ckew(n) Y{M E [0, I]nl xn 2 :M + MT = 11T}
and the strong stochastic transitivity class

CssT(n): (U CIS(,n))lnCskew (n).

The class CSST(n) is useful as a model for estimation from pairwise compar-
isons [Cha15, SBGW17], and was proposed as a strict generalization of parametric
models for this problem [BT52, NOS16, RA14. In particular, given n items obeying
some unknown underlying ranking 7T, entry (i, j) of a matrix * E CSST(n) represents
the probability Pr(i >- j) with which item i beats item j in a pairwise comparison
between them. The shape constraint encodes the transitivity condition that for all
triples (i, j, k) obeying 7r(i) < 7r(j) < ir(k), we must have

Pr(i >- k) > max{Pr(i >- j), Pr(j >- k)}.

For a more classical introduction to these models, see the papers [Fis73, ML65, BW97]
and the references therein. Our task is to estimate the underlying ranking from results
of passively chosen pairwise comparisons2 between the n items, or more generally,
to estimate the underlying probabilities M* that govern these comparisons3. All
the results we obtain in this work clearly extend to the class CssT(n) with minimal
modifications; for example, either of the two estimates -7tds or c'td, may be returned
as an estimate of the permutation 7. Consequently, the informal theorem stated in
the introduction is an immediate corollary of Theorem 4.2.3 once these modifications
are made to the algorithm.

4.4 Proofs

Throughout the proofs, we assume without loss of generality that M* E CBISO(id, id) -

CBISO. Because we are interested in rates of estimation up to universal constants, we
assume that each independent subsample contains N' = Poi(N) observations (instead
of Poi(N)/2 or Poi(N)/4). We use the shorthand Y = Y ({(Xj, ye)} , throughout.

4.4.1 Some preliminary lemmas

Before turning to the proof of Theorems 4.2.1 and 4.2.3, we provide three lemmas that
underlie many of our arguments. The first lemma can be readily distilled from the
proof of Theorem 5 of Shah et al. [SBGW17] with slight modifications. It is worth

2Such a passive, simultaneous setting should be contrasted with the active case (e.g., IHSRW16,
FOPS17, AAAK17I), where we may sequentially choose pairs of items to compare depending on the
results of previous comparisons.

3Accurate, proper estimates of M* translate to accurate estimates of the ranking 7r (see Shah et
al. |SBGW171).
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mentioning that similar lemmas characterizing the estimation error of a bivariate
isotonic matrix were also proved by [CGS18, CM16I.

Lemma 4.4.1 ({SBGW17J). Let ni > n2, and let M* E CPerm. Assume that our
observation model takes the form Y = M* + W, where the noise matrix W satisfies
the properties

(a) the entries Wj, are independent, centered, c (C V 1)-sub-Gaussian random varn-

ables;

(b) the second moments are bounded as E[Wjj 12] 2 (( 2 V 1) for all i C [nI1],j

[n21-

Then the least squares estimator MLS(Y) satisfies

Pr {MLS(Y) - M* 2 C 3 (( 2 V2ni (nin2)
F Pobs

Moreover, the same result holds if the class Cep,, is replaced by the class CBISO-

The proof follows that of Shah et al. [SBGW17, Theorem 5] very closely, and is
postponed to Section 4.4.5. The next lemma establishes concentration of sums of our
observations around their means.

Lemma 4.4.2. For any nonempty subset S C In1 ] x [n2], it holds that

zr(Y~ - M ini'lg~~ 2 + 2N
Pr j( Mfy) > 8(( + 1) ( S:'ri2 lg(nin2)+ N log(nn2)

< 2(nin2 ) 4 .

Proof. According to definitions (4.1) and (4.3), we have

W *. - *. if entry (i,j) is not observed, and

' j Mi"P/Pos, - Mj3 + , otherwise,

where W' is a (-sub-Gaussian noise matrix with inde endent entries. Consequently,
we can express the noise on each entry as Wv,= Z + Z where {Z 1 }iE[niIjE[n2]
are independent, zero-mean random variables given by

Z(= M1J(p-1 - 1) with probability Pobs,{Mg, with probability 1 - Pobs,

and {Z } }E[n],jE[n2] are independent, zero-mean random variables such that

Z( is li -sub-Gaussian with probability Pobs,
"j 0 with probability 1 - Pobs,
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We control the two separately. First, we have iZ(' | < 1 /iS and the variance

of each Z(1. is bounded by (1 - Pos) 2 /Pobs + (1 - Pobs) 1/pobs. Hence Bernstein's

inequality for bounded noise yields

Pr (1 >t <2exp(- t2 /2{ ISI/pobs + t/(3pobs)

Taking t = 4 Snn2 log(ni 2 ) + 6 '1'2 log(nin2 ) and recalling that Pobs > N2, weNS N - n2
obtain

Pr Z > 4 +6 log(rin2)+6ni2 log(nin2) < (nin2)-4.
(i~j)GS

In order to control the deviation of the sum of Z , we note that the q-th moment

of Z is bounded by N q <qC2 nn2 (4(n n2 )q-2. Then another version ofnlln2 Pobs -2N N

Bernstein's inequality [BLM13 yields

Pr Z>3 I > 16 2 S nin2 +4(nn2t < 2 exp(-t),
(i,j)Es

and setting t = 4 log(nin2 ) gives

Pr Z >8 log(i + 16nin2 log(nin 2 ) < (nin2) -4 .
(ij)ES

Combining the above two deviation bounds completes the proof. E

The last lemma is a deterministic result.

Lemma 4.4.3. Let {ai} n 1 be a nondecreasing sequence of real numbers. If ir is a
permutation in 6, such that 7(i) < ir(j) whenever a3 - a, > T where T > 0, then

|a,(j) - ai I < Tfor all i E [n].

Proof. Suppose that aj - a7(j) > T for some index j E [n]. Since 7r is a bijection,
there must exist an index i < wr(j) such that r(i) > Tr(j). However, we then have
a- - a. > aj - a,(j) > T, which contradicts the assumption. A similar argument
shows that a,(j) - aj > T also leads to a contradiction. Therefore, we obtain that

Iar(j) - aj I <T for every j c [n].

With these lemmas in hand, we are now ready to prove our main theorems.

4.4.2 Proof of Theorem 4.2.1

We split the proof into two parts by proving the upper and lower bounds separately.
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Proof of upper bound

The upper bound follows from Lemma 4.4.1 once we check the conditions on the
noise for our model. We have seen in the proof of Lemma 4.4.2 that the noise on
each entry can be written as Wj= ZM + Z(. Again, Z) and Z() are C-sub-%3 %j jj Pobs

Gaussian and -sub-Gaussian respectively, and have variances bounded by 1 and
Pobs Pobs

respectively. Hence the conditions on W in Lemma 4.4.1 are satisfied. Then we
Pobs

can apply the lemma, recall the relation Pobs > N and normalize the bound by

to complete the proof.

Proof of lower bound

The lower bound follows from an application of Fano's lemma. The technique is
standard, and we briefly review it here. Suppose we wish to estimate a parameter 0
over an indexed class of distributions P = {Po 1 0 E } in the square of a (pseudo-

)metric p. We refer to a subset of parameters {61, 02,... , OK I as a local (6, E)-packing
set if

min p(0i, Q0) > 6 and D(PoillPoq) < E.
i~jE [K], ifAj K(K - 1) i KiA

Note that this set is a 6-packing in the metric p with the average KL-divergence
bounded by e. The following result is a straightforward consequence of Fano's in-
equality:

Lemma 4.4.4 (Local packing Fano lower bound). For any (6, E)-packing set of car-
dinality K, we have

[P( |*2 > 2 c +log2
inf sup E p(9, I*)2 ( l_ (4.7)

5 Oie- 2 log K

In addition, the Gilbert-Varshamov bound [Gil52, Var57] guarantees the existence
of binary vectors {vi, v2 ,..., vK} C 0, 1ni such that

K > 2Ci"' and (4.8a)

I1vt - v I11 > c2 n1 for each i # j, (4.8b)

for some fixed tuple of constants (ci, c 2 ). We use this guarantee to design a packing
of matrices in the class Cperm. For each i E [K], fix some 6 E [0, 1/4] to be precisely
set later, and define the matrix M' having identical columns, with entries given by

Mik 1/2, if v= = 0

1/2 + J, otherwise.

Clearly, each of these matrices {Mi}Ki1 is a member of the class CPerm, and each
distinct pair of matrices (Mi, Mj) satisfies the inequality |IMi - MjIl2 > c2 rinn2 6 2.
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Let P.N denote the probability distribution of the observations in the model (4.1)
with underlying matrix M E CPerm. Our observations are independent across entries
of the matrix, and so the KL divergence tensorizes to yield

D(PMijMj) = E D(Pp II1PM' ).
kE[nl]
fe[n2]

Let us now examine one term of this sum. We observe Tk,e = Poi( N) samples of
entry (k, f); conditioned on the event Tk,e = m, we have the distributions

PN, = Bin(m, M, ), and PAj = Bin(m, Mj ).k k

Consequently, the KL divergence conditioned on Tk , = m is given by

D(Pj || P  ) = mD(MkeMIA'Ik),

where we have used D(pjq) = p log( + (1 - p) log(-P) to denote the KL divergence
between the Bernoulli random variables Ber(p) and Ber(q).

Note that for p, q E [1/2, 3/4], we have

D(plIq) =plog - + (1 -p)log ( P)q - q
(P)

(0) - q )q - p
< pq + (1 - P)

(p-q)2

q(1 - q)

(0 16 2
- (p -q2
3

Here, step (i) follows from the inequality log x < x - 1, and step (ii) from the assump-
tion q E [1, ']. Taking the expectation with respect to Tkt, we have

16 N 2 16 N
D(PAl1 'Mj, ) <3 nin2 - ke) - 3 nin2

Summing over k E [n,], E n2] yields D(PmiIIPmj) < N6 2.

Substituting into the Fano's inequality (4.7), we have

ci262 _6N62 + log 2
inf sup E - M*I} ; 1 _ 3 l

i M*CCPerm C3n1

Finally, choosing 62 = c- and normalizing by n1n2 yields the claim.
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4.4.3 Proof of Proposition 4.2.2

Recall the definition of M('Fi, 0) in the meta-algorithm, and additionally, define the
projection of any matrix M E R" 1xn2, as

P.,(M) = arg min JIM - jU2
MECBISO(r,Ol)

and letting W = y( 2) - M*, we have

(i)
IIM(7,&) - M*I< 2IIPj,a(M* + W) - 7F(M*(9,a) + W)0II

+ 2IIP(M*(2, 7) + W) - M*lI1
(ii)
<_ 2||M*(2, 1) - M*II}+ 2|Ihia(M*(',&) + W) - M*II2
(iii)

_ 4IJPI,a(M*(,&) + W) -- M*(1,&)I| + 6IIM*(9,a) - M*II,
(4.10)

where step (ii) follows from the non-expansiveness of a projection onto a convex set,
and steps (i) and (iii) from the triangle inequality.

The first term in (4.10) is the estimation error of a bivariate isotonic matrix
with known permutations. Since the sample used to obtain (7, a) is independent
from the sample used in the projection step, it is equivalent to control the error
IIPid,id(M* + W) - M*1I'. As before, the noise matrix W satisfies the conditions
of Lemma 4.4.1. Therefore, applying Lemma 4.4.1 in the case M* E CBISO with

Pobs ; 2> yields the desired bound of order ((2 V 1), Nlg2,,

It remains to bound the second term of (4.10), the approximation error of the
permutation estimates. Note that the approximation error can be split into two
components: one along the rows of the matrix, and the other along the columns.
More explicitly, we have

IIM* - M*(a,&)I 211M* - M*(7, id)|} + 211M*(-, id) - M*(-, a)F
211M* - M*(F, id)||1 + 211M* - M*(id, &)1j.

Recall that we assumed without loss of generality that the true permutations are
identity permutations, so this completes the proof of Proposition 4.2.2. The proof
readily extends to the general case by precomposing ' and & with r- 1 and o
respectively.

4.4.4 Proof of Theorem 4.2.3

Recall that according to Proposition 4.2.2, it suffices to bound the approximation
error of our permutation estimate |M* - M*(tds, id)IIF. To ease the notation, we use
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the shorthand

= 16(( + 1) ( log(nin2) + 2 log(nin 2)i,

and for each block BLk in Algorithm 2 where k E [K], we use the shorthand

7
7k 16(N+1) log(nin 2 ) 2N log(nin2)

throughout the proof. Applying Lemma 4.4.2 with S = {i} x [n 2 ] and then with
S = {i} x BLk for each i E [n,], k c [K], we obtain that

Pr S(i) - Z[ 2 * 2
iE[n21

< 2(nin2 ) -4,

Pr SBLk(i) -

Note that K
ities (4.11a)
event

(4.11b)M > 2(nin2) 4.
EBLk

n2/ < n1/2, so a union bound over all n1 (K + 1) events in inequal-
and (4.11b) yields that Pr{E} > 1 - 2(nin2 )- 3 , where we define the

E { S(i) - E
fE['n2]

< and SBLk (i)

We now condition on event S. Applying the triangle inequality yields that if

S(V) - S(U) > 7 or SBLk (V) - SBLk (U) > k,

then we have

- S A, > 0
fE[n2}

or M* 1 M*, > 0.
fEBLk fEBLk

It follows that u < v since M* has nondecreasing columns. Thus, by the choice of
thresholds q and k in inequalities (4.6a) and (4.6b), we have guaranteed that every
edge u - v in the graph G is consistent with the underlying permutation id, so a
topological sort exists on event S.

Conversely, if we have

E M*' - E M*, > 2q
fE [n2] fE G[n2]

or 5 MV*, -
fEBLk

-M* f > 2M,
EcBLk
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- Ilk V iE[ni1, k E [K]
fEBLk

E
fE[n2 j



then the triangle inequality implies that

S(v) - S(u) > q or SBLk(V) - SBLk(U) > Qk-

Hence the edge u -+ v is present in the graph G, so the topological sort lrtdS(u) satisfies

the relation 7'tdS(u) < ' d,(v). Claim that this allows us to obtain the following bounds

on event E:

IE (Mtds(i),j - Mfg) < 96(( + 1) nn2 log(nin2) for all i E [ni], and
jE[n2]

(4.12a)

Z(Mc tds(),j - M ) 96(( + 1) I2BLkI log(nin 2) for all i E [n1], k E [K].
JEBLk

(4.12b)

We now prove inequality (4.12b). The proof of inequality (4.12a) follows in the

same fashion. We split the proof into two cases.

Case 1. First, suppose that IBLkI > "fl% log(nin2 ). Applying Lemma 4.4.3 with

ai = E1EBLk Mf, 7r = rtds and T = 271, we see that for all i E

(M;tds(i)e - Mf,) I 277k 96(( + 1) ni2 BLk I log(nin2)-
fEBLk

Case 2. Otherwise, we have IBLkI "2 log(n1 n2 ). It then follows that

NN
(Mi*-td(i),f - Mi*,) 21BLki < 2 N2 BLk I log(nin2),

tEBLk

where we have used the fact that M E [0, 1]fnXn2.

Next, we consider concentration of column sums of Y('). Applying Lemma 4.4.2
again with S = [n1] x {j}, we obtain that

C(j) - M* < 8((+ 1) 2log(nn2) + 2N2 l og ( n in2)) (4.13)
i=1

for all j E [n2] with probability at least 1 - 2(nin2 )- 3 . We carry out the remain-
der of the proof conditioned on the event of probability at least 1 - 4(nin 2) 3 that
inequalities (4.12a), (4.12b) and (4.13) hold.

Having stated the necessary bounds, we now split the remainder of the proof into
two parts for convenience. In order to do so, we first split the set BL into two disjoint
sets of blocks, depending on whether a block comes from an originally large block
(of size larger than 3 = %N log(nrin 2 ) as in Step 3 of Subroutine 1) or from an
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aggregation of small blocks. More formally, define the sets

BLL: {B E BL: B was not obtained via aggregation}, and

BLs :=BL\ BLL

For a set of blocks B, define the shorthand UB = UBEB B for convenience. We begin

by focusing on the blocks BLL

Error on columns indexed by UBLL

Recall that when the columns of the matrix are ordered according to ,pre, the blocks
in BLL are contiguous and thus have an intrinsic ordering. We index the blocks
according to this ordering as B1 , B2 , ... , Bi where f = IBLLI. Now define the disjoint
sets

BL(1:= {Bk C BLL k = 0 (mod 2)}, and

BL :=) {Bk C BLL k = 1 (mod 2)}.

Let ft = BL)I for each t = 1, 2.
Recall that each block Bk in BLL remains unchanged after aggregation, and that

the threshold we used to block the columns is r = 16(( + 1) (V"'2 log(nin2 ) +
2"fl2 log(nin2 )). Hence, applying the concentration bound (4.13) together with the
definition of blocks in Step 2 of Subroutine 1 yields

n, n, 2

S- Mi*J 2 < 96(( +-1) 1 2 log(nin 2) for all jI, J2 E Bk, (4.15)S - N
i=1 i=1

where we again used the argument leading to claim (4.12b) to combine the two terms.
Moreover, since the threshold is twice the concentration bound, it holds that under the
true ordering id, every index in Bk precedes every index in Bk+2 for any k E [K - 2].
By definition, we have thus ensured that the blocks in BLt) do not "mix" with each
other.

The rest of the argument hinges on the following lemma, which is proved in Sec-
tion 4.4.4.

Lemma 4.4.5. For m E Z+, let J1 Li - Li J be a partition of [m] such that each Jk

is contiguous and Jk precedes Jk+1. Let ak = min Jk, bk = max Jk and Mk = IJk|.
Let A be a matrix in [0, ]"' with nondecreasing rows and nondecreasing columns.
Suppose that

5 (Ai,bk - A%,ak) < 7 for each k E [f] and some r > 0.
i=1

Additionally, suppose that there are positive reals p, P1, P2,..., pi, and a permutation ir
such that for any i E [n], we have (i) ',| IA~ri), - Ai| I p, and (ii) >1,jk, IAir(i)J -
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Ai I < Pk for each k E [f]. Then it holds that

n m2P

( A,(- Aj) 2  27 - Pk +npmax P

i=1 j=1 k=1 kE[fI mk

We apply the lemma as follows. For t = 1, 2, let the matrix M() be the submatrix
of M* restricted to the columns indexed by the indices in UBL(t). The matrix M(')
has nondecreasing rows and columns by assumption. We have shown that the blocks
in BL(t) do not mix with each other, so they are contiguous and correctly ordered
in M(). Moreover, the inequality assumptions of the lemma correspond to (4.15),
(4.12a) and (4.12b) respectively, with the substitutions

n=ni, m=IUBLt)I T = 96(( + 1) 1 2log(nin2)= (N

Pk=96( + 1) i JjkI log(nin2 ),

and setting J1 ,..., Jj to be the blocks in BL). Therefore, applying Lemma 4.4.5
yields

S E (Md(j - Mf)2
iE[nij jEUBL(t)

< ((2 V /2 log(nin 2)5
BEBL(t)

< ((2 V 1 ) N log(nin 2) 2B

I BI + ((2 V 1)T N log(nin2 )N

Bt IBI t +

max RI
BEBL(t) |BI

_((2 V /2/2 
2 V 1) nn/2

< V/ / N log(nmn2) + N lg(nin2)

NN< (~v)(m) 3 /2 (n V 1/2 log(njn2 )
rI~ V1 (i2 (nVh 2) N '

where step (i) follows from the Cauchy-Schwarz inequality, and step (ii) follows from
the fact that minBEBL(t) BI > 0 = n2 / ?N log(nin2 ) so that ft < n2 /3. Substituting
for 3 and normalizing by nin2 yields

n1 I:2~ (MgdSi - AJ) 2  2 / 4 (n, V n 2 )1/ 2 log(nin2) 3 /4

iE[ni] jEUBL(t)

(4.16)

This proves the required result for the set of blocks BL(t). Summing over t = 1, 2 then
yields a bound of twice the size for columns of the matrix indexed by UBLL

96

A=M(t),

2

p = 96(( + 1) n log(nln2),
N

2( 3gn n /2 m n n1((2 V 1 )Tih log(nin2 )
N minBEBL(t) I/_jBI



Error on columns indexed by UBLS

Next we bound the approximation error of each row of the matrix with column indices
restricted to the union of all small blocks. In the easy case where BLs contains a single
block of size less than !n 2 - log(nin 2 ), we have

S( I ds(),-
.j EUB LS

(i)
AP li2 i >1I<rd~),2-A1

iE[ni] jEUBLS

(Mt(i) M *)
iE[ni jEUBLS

E 96(( + 1)
iE[nil

nflif 2 (n, V n2) 1/2

2Nn2 N
log 3/ 2 (nin2)

3/2 n n 2 /

- 48v/2(( + 1) 2 (n V2) log 3 / 4 (nin2 ),

where step (i) follows from the H6lder's inequality and the fact that M* E [0, 1]nixn2,
step (ii) from the monotonicity of the columns of M*, and step (iii) from equa-
tion (4.12a).

Now we aim to prove a bound of the same order for the general case. Critical to

our analysis is the following lemma:

Lemma 4.4.6. For a vector v E R', define its variation as var(v) = maxi vi - min vi.
Then we have

IIvI12 < var(v)|1vI111 + 11vI I/n.

See Section 4.4.4 for the proof of this claim.

For each i E [In1 ], define A' to be the restriction of the i-th row difference M]G) -

M* to the union of blocks UBLs. For each block B E BLS, denote the restriction of
A' to B by A'. Lemma 4.4.6 applied with v = A yields

BEBLS

< var(Ai)11AI 1
BEBLO

+BE
BEBL5

B!1

AWIi1 ) var (A') +
BEBL5

|IAWII1) ( var
(BEBL5

(Ak)

maXBEBLS IIAB1l

minBEBLs JB BEBLS

+ maxBEBLs 111

minBEBLs JB!
B eBLS

(4.17)
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We now analyze the quantities in inequality (4.17). By the aggregation step of Sub-
routine 1, we have -, < IBI < 2,3, where # = %V log(nrin2 ). Additionally, the
bounds (4.12a) and (4.12b) imply that

n 2
S IA'IIA 1  IIAI 1 < 96( + 1) 2 log(nin 2) < (( + 1)0, and

BEBLS

IAB 11, 96(( + 1) Bi2 B log(nin2 )

< 96v/2((+ 1) /2log(nin2) for all B E BLS.

Moreover, to bound the quantity EBEBLS var (A'), we proceed as in the proof for
the large blocks in BLL. Recall that if we permute the columns by apre according
to the column sums, then the blocks in BLS have an intrinsic ordering, even after
adjacent small blocks are aggregated. Let us index the blocks in BLs by B1 , B2 , ... , Bn
according to this ordering, where m = IBLSI. As before, the odd-indexed (or even-
indexed) blocks do not mix with each other under the true ordering id, because the
threshold used to define the blocks is larger than twice the column sum perturbation.
We thus have

var (A') = var(A' ) + var(A )
BEBLS kE[m] kE[m]

k odd k even

var(Mp ) + var(Mitds(i),Bk)
kE[m]
k odd

+ E [var(Mik) + var(MitdS(i),Bk)]
kE[m]
k even

(i) (ii)
< 2 var(Mf*) + 2var(Md,(,i)) < 4,

where inequality (i) holds because the odd (or even) blocks do not mix, and inequality
(ii) holds because M* has monotone rows in [0, 1 ]"2.

Finally, putting together all the pieces, we can substitute for 3, sum over the
indices i E nI, and normalize by nin2 to obtain

IA ((2 1) ni log(nin2) 3/4, (4.18)
nin2 ndx b N

and so the error on columns indexed by the set UBLs is bounded as desired.
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Combining the bounds (4.16) and (4.18), we conclude that

1 |M* (Fts, id) - M* < ((2 V )/ 4 (n, V n2)1/2

nin2 Fr

log(nin2) 3/4

N

with probability at least 1 - 4(nin2) 3 . The same proof works with the roles of ni
and n2 switched and all the matrices transposed, so it holds with the same probability
that

1 |M*(id, _tds)- M* 112 < ((2 V 1)n1/4 (n, V n2) 1/2 log(nin2) 3/4

nin2 N

Consequently,

(JIM* (7Is( , id) - M*I,+ MIII*(id, aS) - M*1)
nin2

<nilogn 3/4
,<.1 (N y

with probability at least 1 - 8(nin2) , where we have used the relation ni > n2.
Applying Proposition 4.2.2 completes the proof.

Proof of Lemma 4.4.5

Since A has increasing rows, for any i, i 2 E [n] with i < i2 and any J, J2 E Jk, we have

Ai2,J - Aij =: (A 2,j - Ai 2 ,ak) + (Ai 2 ,ak - Ai,bk) + (Ai,bk -A,)

< (Ai2,1b - Ai 2 ,ak) + (Ai 2,J2 - AiJ2 ) + (Ai,bk Ai,ak).

Choosing J2 = arg minEJk(Ai 2 ,1 - Ai,,), we obtain

A,-A ( Ai<,b - Ai2 ,ak) + (Aib - Ai,ak) + > (A -2, Ai,,).
mk rEJk

Together with the assumption on 7r, this implies that

IAir(i),j - Aij| < Ar(i),bk A7r(i),ak + Aibk - Ai,a + IAr(i) - Ai
k rEJk

i,k 7 Zi,k k

=:Zk
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Hence it follows that

n m n f

EZ Z(Ajj - Z~~i, )2i Z EE(Aij -,rj)')

i=1 j=1 i=1 k=1 jEJk

n f

< S E E |Aj, - Ar(i),j|(xi,k + Yi,k + Zi,k/M k)
i=1 k==1 jEJk

n e

Zi,(1i,k + Yi,k + zi,k/mk).
i=1 k=1

According to the assumptions, we have

1. LXi ,<1 and Zn1xi,k < r for any i E [n], k E [f];

2. E yi,k l and En 1Yi,k < T for any i E [n], k E [f];

3. Zi,k Pk and E Zik < p for any i c [n], k c [f].

Consequently, the following bounds hold:

2. =1  1 Zikik < Zj= k=1 Pkxi,k < T _ Pk;

2. j= k=_1 ZiYik = E= Pk yi,k < T J 1pf

3. 1> ZF 1 z2m En z -k maxke p](pk/mk) < np maxke[] (pk/mk).

Combining these inequalities yields the claim.

Proof of Lemma 4.4.6

Let a = minic[n] vi and b = maxe[n] vi = a + var(v). Since the quantities in the
inequality remain the same if we replace v by -v, we assume without loss of generality
that b > 0. If a < 0, then I|vj|ko < b - a = var(v). If a > 0, then a < I|vI|1/n and
||vj,. = b < IjvIj1/n + var(v). Hence in any case we have fvJ22 IVvflfvI2i
[IjvI|1/n + var(v)]jvI|1.

4.4.5 Proof of Lemma 4.4.1

The proof parallels that of Shah et al. [SBGW17, Theorem 5(a)], so we only emphasize
the differences and sketch the remaining argument. We may assume that Pbs, > ,
since otherwise the bound is trivial.

We first employ a truncation argument. Consider the event

S := |Wj < C3 (C v log(nin 2 ) for all i [ni], jE [n2
Pobs
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If the universal constant c 3 is chosen to be sufficiently large, then it follows from the
sub-Gaussianity of Wjj and a union bound over all index pairs (i, J) c [ni] x [n2] that
Pr{S} > 1 - (nin2 ). Now define the truncation operator

TA(x) : X if 'x < (4.19)
A - sgn(x) otherwise.

With the choice A = (( V 1) log(nin 2 ), define the random variables W. =

TA (Wi,j) for each pair of indices (i, j) E [ni] x [n 2]. Consider the model where we
observe M* + WO) instead of Y = M* + W. Then the new model and the original
one are coupled so that they coincide on the event E. Therefore, it suffices to prove
a high probability bound assumingthat the noise is given by WG).

Let us define p = E[W(1 )] and W = WM - p. We claim that for any i E [ni,j E

[n2], the following relations hold:

1. 1pJiI < (( V 1)(nin2) 4;

2. Wjj are independent, centered and -(C V 1)-sub-Gaussian;
Pobs

3. 1WjI c (( V 1) Vlog(nin2 );Pobs

4. E[jWj, 2] < C((2 V 1).

Taking these claims as given for the moment, we turn to the main argument assuming
that our observations take the form Y = M* + W + p.

For any permutations 7r E &,1, o- E 6
f2, let M,,, = MLS(Y). We claim that for

any fixed pair (r, o) such that ||Y- M,|" <1|| - M*||1, we have

Pr jl|MV,, - M*1I2 > c1(( 2 V 1) ni log2 (n3) .n (4.20)
Pobs

Treating claim (4.20) as true for the moment, we see that since the least squares
estimator M is equal to M,,, for some pair (i, o-), a union bound over i E G 1, a E

6n2 yields

11||^ M* 11 2 >C1 ((2 VI1) ni lo2 -ni

Pobs

which completes the proof. Thus, to prove our result, it suffices to prove claim (4.20).
Let A,,a = M,,, - M*. The condition IY -_MwaII7 < IIY-M*11I yields the basic

inequality

1
-|2 ,| F -( ,,r, W + P).

Since A., E [-1, 1]'nixn2, we have (A,, y) IIpI|1 g-(( V 1)n-- by claim 1. If

t s(( V 1)n,-6, then the proof is immediate. Thus, we may
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assume the opposite, from which it follows that

1
4A F (A,,, W)

Consider the set of matrices

CDIFF(7r, o) = {a(M - M*) M E CBISO(7r, o), a E [0, 11} .

Additionally, for every t > 0, define the random variable

Z,,,(t) sup (D,W).
DECDIFF(7r,u),

IIDIIFit

For every t > 0, define the event

At= { D E CDIFF(7r, -) s.t. IIDIIF > t6n and (D, W) > 4IIDIIF -t6}

For t > 6, either we already have FIA.,L| < t6n, or we have IIA,,IIF > V7t- In

the latter case, on the complement of At, we must have , W) _< 4IIaIFpV'&-
Combining this with inequality (4.21) then yields I1A,'11 _ ct<6. It thus remains to
bound the probability Pr{At}.

Using the star-shaped nature of the set CDIFF(7r, a), a rescaling argument yields

Pr{At} < Pr {Z,,,(5n) > 46n t 6n for all t > J,,.

The following lemma bounds the tail behavior of the random variable Z,(6n), and
its proof is postponed to Section 4.4.5.

Lemma 4.4.7. For any 6 > 0 and u > 0, we have

Pr Z_,,1(6) > C 1-5 n + u)
Pobs J

< exp c iU 2
\Pos J2/ (log ni) + ni

Taking the lemma as given and setting 62 = S2((2 V 1) log 2 ni and = c( V
) Pobs = see a

1)ni log. ri, we see that for any t > 6,, we have

Pr{At} < Pr {Z,,,(Jn) > 46nv t-6}

<exp c 4 (( 2 V 1)n2 log< 'f
( ((2 V 1)nj log ni + ni log1-5 ni J
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In particular, for t = 6,, on the complement of At, we have

2IA<,a|I2 C5 ((2 V 1)nj log 2 ri,
Pobs

which completes the proof. Note that the original proof sacrificed a logarithmic factor
in proving the equivalent of equation (4.22), and this is why we recover the same
logarithmic factors as in the bounded case in spite of the sub-Gaussian truncation
argument.

In the setting where we know that M* E CBISO, the same proof clearly works,
except that we do not even need to take a union bound over ir C 6 ni, 0- C en2 as the
columns and rows are ordered.

Proof of claims 1-4

We assume throughout that the constant c 3 is chosen to be sufficiently large. Claim 1
follows as a result of the following argument; we have

I/,, I|= 1E[W )]

<E [Wiv - wi,w]

- Pr{IW9 - W -I > t}dt

f Pr{Wjj > c (C V 1) log(nrin2 ) + t}dt
Jo Pobs

<(nin2 ) 5  0 exp dt
1 C4((2 V 1)/p2

C 5 (( V 1)(nin2)
Pobs

By definition, the random variables W,) - pj are independent and zero-mean,
and applying Lemma 4.7.1 (see Appendix 4.7) yields that they are also sub-Gaussian

with the claimed variance parameter, thus yielding claim 2. The triangle inequality

together with the definition of Wj then yields claim 3.

Finally, since IT(x)I < jxl, we have

E[|I 12] < [IW 12 1 < EC[ C6 (2 V 1)
Pobs

yielding claim 4.
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Proof of Lemma 4.4.7

The chaining argument from the proof of Shah et al. [SBGW17, Lemma 10] can
applied to show that

E[Zr,,(5)} < C 2 ( V 1)nl log 2 ri,
Pobs

as Wj is V(v 1)-sub-Gaussian by claim 2. Note that although we are considering

a set of rectangular matrices CDIFF(w, 0) C [-1, 1 ]n 1fX2 instead of square matrices as
in [SBGW17], we can augment each matrix by zeros to obtain an ni x n1 matrix,
and so CDIFF(7r, U) can be viewed as a subset of its counterpart consisting of ni x ni
matrices. Hence the entropy bound depending on ni can be employed so that the
chaining argument indeed goes through.

In order to obtain the deviation bound, we apply Lemma 11 of [SBGW17] (i.e.,
Theorem 1.1(c) of Klein and Rio [KR051) with V = CDIFF(F, 0) n B6 , m = ni1 n2 ,

X = vo___-W and Xl = v ogniZ,,,(J). Claim 3 guarantees that 1XI is

uniformly bounded by 1. We also have E[(D, W)2 ] c ( V 1)62 by claim 4 for

IIDII' < 6. Therefore, we conclude that

Pr Z,,(6) > E[Z,,(6)] + C(( V 1) logni -u
Pobs

< exp \1.5 J
\pbs 6 2 /(log ni) + ni log n + u

Combining the expectation and the deviation bounds completes the proof.

4.5 Discussion

While the current paper narrows the statistical-computational gap for estimation in
permutation-based models with monotonicity constraints, several intriguing questions
remain:

" Can Algorithm 2 be recursed so as to improve the rate of estimation, until we
eventually achieve the statistically optimal rate (up to lower-order terms) in
polynomial time?

* If not, does there exist a statistical-computational gap in this problem, and if
so, what is the fastest rate achievable by computationally efficient estimators?

" Can the techniques from here be used to narrow statistical-computational gaps
in other permutation-based models [SBW16b, FMR16, PWC17?

As a partial answer to the first question, it can be shown that when our two-
dimensional sorting algorithm is recursed in the natural way and applied to the noisy
sorting subclass of the SST model, it yields another minimax optimal estimator for
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noisy sorting, similar to the multistage algorithm of Mao et al. [MWR17. However,
showing that this same guarantee is preserved for the larger class of SST matrices
seems out of the reach. In fact, we conjecture that any algorithm that only exploits
partial row and column sums cannot achieve a rate faster than 0(n- 3/ 4 ) for the SST
class.

It is also worth noting that the model (4.1) allowed us to perform multiple sample-
splitting steps while preserving the independence across observations. While our
proofs also hold for the observation model where we have exactly 3 independent sam-
ples per entry of the matrix, handling the weak dependence of the original sampling
model with one observation per entry is an interesting technical challenge that may
also involve its own statistical-computational tradeoffs [Monl5.

4.6 Appendix: Poissonization reduction

In this section, we show that estimation error bounds proved under a Poissonized
observation model are equivalent, up to constant factors, to bounds proved without
Poissonization. Note that we can assume that N > 4 log(nin2 ), since otherwise, all
the bounds in the theorems hold trivially.

In order to prove the upper bound, assume that we have an estimator MpO;(N),
which is designed under N' = Poi(N) observations {ye} 1 . Now, given exactly N

observations {yf}N from the model (4.1), choose an integer N= Poi(N/2), and
output the estimator

Mpoi (N/2) if N < N,
M0 otherwise.

Recalling the assumption N > 4 log(nin2 ), we have

Pr{N > N} < e-N/ 2 
< (nn2 -

2 .

Thus, the error of the estimator M(N) is bounded by 1Mpo (N/2) - M*II2 with
nfl'f2F

probability greater than 1 - (nin2 )- 2 , and moreover, we have

E [ |IM(N)-M*j E 112 ]Mpoi(N/2) - M* +-(nn2)2
nin2 . nin2I

In order to prove a lower bound, we must show the reverse, that an estimator
M(N) designed using exactly N samples may be used to estimate M* under a Pois-

sonized observation model. Given N = Poi(2N) samples, define the estimator

M(N) if > N
MPO;(2N) = -'0 otherwise,

where in the former case, M(N) is computed by discarding N - N samples at random.
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Again, using the fact that N > 4 log(nin 2 ) yields

Pr{N > N} < e-N < (n1n2 4 ,

and so once again, the error of the estimator Mp0 ;(2N) is bounded by |IM(N) -
fin2

M* 112 with probability greater than 1 - (nin2)~4 . A similar guarantee also holds in
expectation.

4.7 Appendix: Truncation preserves sub-Gaussianity

In this appendix, we show that truncating a sub-Gaussian random variable preserves
its sub-Gaussianity to within a constant factor.

Lemma 4.7.1. Let X be a (not necessarily centered) o-sub-Gaussian random vari-
able, and for some choice A > 0, let TX(X) denote its truncation according to equa-
tion (4.19). Then TA(X) is v'2-u-sub-Gaussian.

Proof. The proof follows a symmetrization argument. Let X' denote an i.i.d. copy of
X, and use the shorthand Y = T(X) and Y' = TA (X'). Let e denote a Rademacher
random variable that is independent of everything else. Then Y and Y' are i.i.d., and

E(Y - Y') = Y - Y'. Hence we have

E [et(YEY])] = E [et(Y-EY'])

< Eyy, I [t(YY')]-Eyy,, e t(-y'

Using the Taylor expansion of e', we have

E [et\-ELJ] <Eyy,,e wY - Y'))
Li>O 2

= Eyy (2j)!

since only the even moments remain. Finally, since the map TA : R - R is 1-Lipschitz,
we have IY - Y' < IX - X'I, and combining this with the fact that X - X' has odd
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moments equal to zero yields

E [et(Y[-YI)] < Exx
(2) (t(X - X')) 2]

.j>O

= Exx, (t(X - X'))
.i>O .

- Ex,x, [et(x-X)]

< e 02,2

where the last step follows since the random variable X - X' is zero-mean and V "2-

sub-Gaussian. D

107



108



Chapter 5

Worst-case v.s. Average-case Design
for Estimation from Fixed Pairwise
Comparisons

The problems of ranking and estimation from ordinal data arise in a variety of
disciplines, including web search and information retrieval [DKNSO1I, crowdsourc-
ing ICBCTH13], tournament play [HMG06], social choice theory ICN91] and recom-
mender systems [BMR1IO. The ubiquity of such datasets stems from the relative ease
with which ordinal data can be obtained, and from the empirical observation that
using pairwise comparisons as a means of data elicitation can lower the noise level in
the observations [Bar03, SBC05].

Given that the number of items n to be compared can be very large, it is often
difficult or impossible to obtain comparisons between all (") pairs of items. A subset
of pairs to compare, which defines the comparison topology, must therefore be chosen.
For example, such topologies arise from tournament formats in sports, experimental
designs in psychology set up to aid interpretability, or properties of the elicitation
process. For instance, in rating movies, pairwise comparisons between items of the
same genre are typically more abundant than comparisons between items of dissimilar
genres. For these reasons, studying the performance of ranking algorithms based
on fixed comparison topologies is of interest. Fixed comparison topologies are also
important in rank breaking [HOX14, K016], and more generally in matrix completion
based on structured observations [KTT15, PABN16.

An important problem in ranking is the design of accurate models for capturing un-
certainty in pairwise comparisons. Given a collection of n items, the results of pairwise
comparisons are completely characterized by the n-dimensional matrix of comparison

probabilities,1 and various models have been proposed for such matrices. The most

classical models, among them the Bradley-Terry-Luce [BT52, Luc59 and Thurstone

models [Thu27J, assign a quality vector to the set of items, and assign pairwise proba-

bilities by applying a cumulative distribution function to the difference of qualities as-

'A comparison probability refers to the probability that item i beats item j in a comparison
between them.
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sociated to the pair. There is now a relatively large body of work on methods for rank-
ing in such parametric models (e.g., see the papers [NOS16, HOX14, CS15, SBB+16
as well as references therein). In contrast, less attention has been paid to a richer
class of models proposed decades ago in the sociology literature fFis73, ML65, which
impose a milder set of constraints on pairwise comparison matrix. Rather than posit-
ing a quality vector, these models impose constraints that are typically given in terms
of a latent permutation that rearranges the matrix into a specified form, and hence
can be referred to as permutation-based models. Two such models that have been
recently analyzed are those of strong stochastic transitivity [SBGW17], as well as the
special case of noisy sorting [BM08J. The strong stochastic transitivity (SST) model,
in particular, has been shown to offer significant robustness guarantees and provide
a good fit to many existing datasets [BW97, and this flexibility has driven recent
interest in understanding its properties. Also, perhaps surprisingly, past work has
shown that this additional flexibility comes at only a small price when one has ac-
cess to all possible pairwise comparisons, or more generally, to comparisons chosen at
random [SBGW17]; in particular, the rates of estimation in these SST models differ
from those in parametric models by only logarithmic factors in the number of items.
On a related note, permutation-based models have also recently been shown to be
useful in other settings like crowd-labeling [SBW16b], statistical seriation [FMR16
and linear regression [PWC161.

Given pairwise comparison data from one of these models, the problem of estimat-
ing the comparison probabilities has applications in inferring customer preferences in
recommender systems, advertisement placement, and sports, and is the main focus of
this chapter.

Our Contributions: Our goal is to estimate the matrix of comparison probabilities
for fixed comparison topologies, studying both the noisy sorting and SST classes of
matrices. Focusing first on the worst-case setting in which the assignment of items to
the topology may be arbitrary, we show in Theorem 5.2.1 that consistent estimation
is impossible for many natural comparison topologies. This result stands in sharp
contrast to parametric models, and may be interpreted as a "no free lunch" theorem:
although it is possible to estimate SST models at rates comparable to parametric
models when given a full set of observations [SBGW17], the setting of fixed comparison
topologies is problematic for the SST class. This can be viewed as a price to be paid
for the additional robustness afforded by the SST model.

Seeing as such a worst-case design may be too strong for permutation-based mod-
els, we turn to an average-case setting in which the items are assigned to a fixed graph
topology in a randomized fashion. Under such an observation model, we propose and
analyze two efficient estimators: Theorems 5.2.2 and 5.2.4 show that consistent esti-
mation is possible under commonly used comparison topologies. Moreover, the error
rates of these estimators depend only on the degree sequence of the comparison topol-
ogy, and are shown to be unimprovable for a large class of graphs, in Theorem 5.2.3.

Our results therefore establish a sharp distinction between worst-case and average-
case designs when using fixed comparison topologies in permutation-based models.
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Such a phenomenon arises from the difference between minimax risk and Bayes risk
under a uniform prior on the ranking, and may also be worth studying for other
ranking models.

Related Work: The literature on ranking and estimation from pairwise compar-
isons is vast, and we refer the reader to some surveys [FV93, Mar96, Cat12] and ref-
erences therein for a more detailed overview. Estimation from pairwise comparisons
has been analyzed under various metrics like top-k ranking [CS15, SW15, JKSO16,
CGMS17] and comparison probability or parameter estimation [HOX14, SBB+16,
SBGW17]. There have been studies of these problems under active [JN11, HSRW16,
MG15], passive [NOS16, RA16], and collaborative settings [PNZ+15, NOTX17j, and
also for fixed as well as random comparison topologies [WJJ13, SBGW17. Here we
focus on the subset of papers that are most relevant to the work described here.

The problem of comparison probability estimation under a passively chosen fixed
topology has been analyzed for parametric models by Hajek et al. [HOX14] and
Shah et al. [SBB+16]. Both papers analyze the worst-case design setting in which
the assignment of items to the topology may be arbitrary, and derive bounds on
the minimax risk of parameter (or equivalently, comparison probability) estimation.
While their characterizations are not sharp in general, the rates are shown to depend
on the spectrum of the Laplacian matrix of the topology. We point out an interesting
consequence of both results: in the parametric model, provided that the comparison
graph G is connected, the maximum likelihood solution, in the limit of infinite samples
for each graph edge, allows for exact recovery of the quality vector, and hence matrix
of comparison probabilities. We will see that this property no longer holds for the SST
models considered in this chapter: there are comparison topologies and SST matrices
for which it is impossible to recover the full matrix even given an infinite amount of
data per graph edge. It is also worth mentioning that the top-k ranking problem has
been analyzed for parametric models under fixed design assumptions [JKSO16], and
here as well, asymptotic consistency is observed for connected comparison topologies.

Notation: Here we summarize some notation used throughout the remainder of
this chapter. We use n to denote the number of items, and adopt the shorthand
[n] := {1,2,...,n}. We use Ber(p) to denote a Bernoulli random variable with
success probability p. For two sequences {an}'ln and {bn}'L1, we write an ,< bn if
there is a universal constant C such that an < Cbn for all n > 1. The relation an> bn
is defined analogously, and we write an _ bn if the relations an < bn and an > bn hold
simultaneously. We use c, c 1 , c 2 to denote universal constants that may change from
line to line.

We use e C Rn to denote the all-ones vector in Rn. Given a matrix M E R"

its i-th row is denoted by Mi. For a graph G with edge set E, let M(G) denote the
entries of the matrix M restricted to the edge set of G, and let IIM|E 12 (ij)EE

For a matrix M (E Rn>X and a permutation 7r : [n] -+ [n], we use the shorthand
7(M) = 171M1T, where H represents the row permutation matrix corresponding to
the permutation 7r. We let id denote the identity permutation. The Kendall tau
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distance [Ken48 between two permutations 7r and -r' is given by

K T(7r, 7r') := l{7r (l) < 7r(J), 7r'(1) > 7r'(j) }.
i~JE[nl

Let C(G) represent the set of all connected, vertex-induced subgraphs of a graph G,
and let V(S) and E(S) represent the vertex and edge set of a subgraph S, respectively.
We let a(G) denote the size of the largest independent set of the graph G, which is
a largest subset of vertices that have no edges among them. Define a biclique of a
graph as two disjoint subsets of its vertices V and V2 such that (u, v) E E(G) for
all u E V and v E V2. Define the biclique number 3(G) as the maximum number of
edges in any such biclique, given by max IV1lV2 1. Let dv denote the degree of

V, ,V2 biclique
vertex v E V.

5.1 Background and problem setup

Consider a collection of n > 2 items that obey a total ordering or ranking determined
by a permutation 7r* : [n] - [n]. More precisely, item i E [n] is preferred to item
j E [n] in the underlying ranking if and only if lr*(i) < r*(j). We are interested in
observations arising from stochastic pairwise comparisons between items. We denote
the matrix of underlying comparison probabilities by M* E [0, 1]"xn, with Mi*=
Pr{i >- j} representing the probability that item i beats item j in a comparison.

Each item i is associated with a score, given by the probability that item i beats
another item chosen uniformly at random. More precisely, the score r* of item i is
given by

rf [T(M*)i := M1g. (5.1)

Arranging the scores in descending order naturally yields a ranking of items. In fact,
for the models we define below, the ranking given by the scores is consistent with the
ranking given by 7r*, i.e., ri T if ir* (i) < 7r*(j). The converse also holds if the scores
are distinct.

5.1.1 Pairwise comparison models

We consider a permutation-based model for the comparison matrix M*, one defined
by the property of strong stochastic transitivity [Fis73, ML65, or the SST property
for short. In particular, a matrix M* of pairwise comparison probabilities is said
to obey the SST property if for items i, j and k in the total ordering such that
7r*(i) < r*(j) < r*(k), it holds2 that Pr(i >-- k) > Pr(i >-- j). Alternatively, recalling
that 7r(M) denotes the matrix obtained from M by permuting its rows and columns

2We set ME = 1/2 by convention.
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according to the permutation 7r, the SST matrix class can be defined in terms of
permutations applied to the class CBISO of bivariate isotonic matrices as

CSST = Jr((CBISO) = U 7r(M) : M E CBISO}. (5.2)
7r 7r

Here the class CBISO of bivariate isotonic matrices is given by

{M E [0, I]nXn: M + MT = e eT and M has non-decreasing rows

and non-increasing columns},

where e c Rn denotes a vector of all ones.

As shown by Shah et al. [SBGW17], the SST class is substantially larger than
commonly used class of parametric models, in which each item i is associated with a

parameter wi E R, and the probability that item i beats item j is given by F(wi - wj),
where F : R '-4 [0, 1] is a smooth monotone function of its argument.

A special case of the SST model that we study in this chapter is the noisy sorting

model [BM08], in which the all underlying probabilities are described with a single
parameter A E [0, 1/2]. The matrix MNS(7r, A) E [0, 1]"lx" has entries

[MNs(lr, A)],,. 1/2 + A - sgn(ir(j) - (')

and the noisy sorting classes are given by

CNS(A)= U { MNS(7, A)}, and CNS U CNS(A)- (5.3)
7r AE[O,1/2]

Here sgn(x) is the sign operator, with the convention that sgn(0) 0. In words, the
noisy sorting class models the case where the probability Pr{i >- j} depends only on
the parameter A and whether 7r*(i) < ir*(j). Although a noisy sorting model is a very
special case of an SST model, apart from the degenerate case A* = 1/2, it cannot be
represented by any parametric model with a smooth function F, and so captures the
essential difficulty of learning in the SST class.

We now turn to describing the observation models that we consider in this chapter.

5.1.2 Partial observation models

Our goal is to provide guarantees on estimating the underlying comparison matrix
M* when the comparison topology is fixed. Suppose that we are given data for

comparisons in the form of a graph G = (V, E), where the vertices represent the n

items and edges represent the comparisons made between items. We assume that the

observations obey the probabilistic model

fBer(Mi*,) for (i,j) E E, independently 5.4
otherwise,
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where * indicates a missing observation. We set the diagonal entries of Y equal to
1/2, and also specify that Yi = 1 - Yij for j > i, so that Y + yT = e eT. We consider
two different instantiations of the edge set given the graph.

Worst-case setting

In this setting, we assume that the assignment of items to vertices of the comparison
graph G is arbitrary. In other words, once the graph G and its edges E are fixed, we
observe the entries of the matrix according to the observation model (5.4), and would

like to provide uniform guarantees in the metric JIM - M*112 over all matrices M* in
our model class given this restricted set of observations.

This setting is of the worst-case type, since the adversary is allowed to choose the
underlying matrix with knowledge of the edge set E. Providing guarantees against
such an adversary is known to be possible for parametric models [HOX14, SBB+16.
However, as we show in Section 5.2.1, such a guarantee is impossible to obtain even
over the the noisy sorting subclass of the full SST class. Consequently, the latter
parts of our analysis apply to a less rigid, average-case setting.

Average-case setting

In this setting, we assume that the assignment of items to vertices of the comparison
graph G is random. Equivalently, given a fixed comparison graph G having adjacency
matrix A, the subset of the entries that we observe can be modeled by the operator
O = -(A) for a permutation o : [n] -* [n] chosen uniformly at random. For a
fixed comparison matrix M*, our observations themselves consist of a random subset
of the entries of the matrix Y determined by the operator 0: a location where
Oij = 1 (respectively Oij = 0) indicates that entry Yij is observed (respectively is not
observed). Such a setting is reasonable when the graph topology is constrained, but
we are still given the freedom to assign items to vertices of the comparison graph,
e.g. in psychology experiments. A natural extension of such an observation model
is the one of k random designs, consisting of multiple random observation operators
{0 = ao(A)}'_ 1, chosen with independent, random permutations {i} .

Our guarantees in the one sample setting with the observation operator 0 can be
seen as a form of Bayes risk, where given a fixed observation pattern E (consisting of
the entries of the comparison matrix Y determined by the adjacency matrix A of the
graph G, with Aij representing the indicator that entry Yi is observed), we want to
estimate a matrix M* under a uniform Bayesian prior on the ranking r*. Studying
this average-case setting is well-motivated, since given fixed comparisons between a
set of items, there is no reason to assume a priori that the underlying ranking is
generated adversarially.

We are now ready to state the goal of the chapter. We address the problems of
recovering the ranking 7r* and estimating the matrix M* in the Frobenius norm. More
precisely, given the observation matrix Y = Y(E) (where the set E is random in the

average-case observation model), we would like to output a matrix M that is function
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of Y, and for which good control on the Frobenius norm error I - M*1j1 can be
guaranteed.

5.2 Main results

In this section, we state our main results and discuss some of their consequences.
Proofs are deferred to Section 5.4.

5.2.1 Worst-case design: minimax bounds

In the worst-case setting of Section 5.1.2, the performance of an estimator is measured

in terms of the normalized minimax error

[ 1 1-_ *1M4(G, C) = inf sup E ||M - F*|
M=f(Y(G))M*EC n2

where the expectation is taken over the randomness in the observations Y as well

as any randomness in the estimator, and C E {CSST, CNS} represents the model

class. Our first result shows that for many comparison topologies, the minimax risk

is prohibitively large even for the noisy sorting model.

Theorem 5.2.1. For any graph G, the diameter of the set consistent with observa-

tions on the edges of G is lower bounded as

sup IIMI - M2I1 > a(G)(a(G) - 1) V /1(Gc). (5.5a)
Mi,M 2 ECNS

M1(G)=AM2(G)

Consequently, the minimax risk of the noisy sorting model is lower bounded as

1
M(G, CNS) > n [a(G)(a(G) - 1) v 3(GC)]. (5.5b)

Note that via the inclusion CNS C CSST, Theorem 5.2.1 also implies the same

lower bound (5.5b) on the risk M(G, CSST). In addition to these bounds, the lower

bounds for estimation in parametric models, known from past work [SBB+161, carry

over directly to the SST model, since parametric models are subclasses of the SST
class.

Theorem 5.2.1 is approximation-theoretic in nature: more precisely, (5.5a) is a

statement purely about the size of the set of matrices consistent with observations

on the graph. Consequently, it does not capture the uncertainty due to noise, and

thus can be a loose characterization of the minimax risk for some graphs, with the

complete graph being one example. The bound (5.5a) on the diameter of the set

of consistent observations may be interpreted as the worst case error in the infinite

sample limit of observations on G. Hence, Theorem 5.2.1 stands in sharp contrast to

analogous results for parametric models [HOX14, SBB+161, in which it suffices for the

graph to be connected in order to obtain consistent estimation in the infinite sample
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limit. For example, connected graphs with large independent sets of order n do not
admit consistent estimation over the noisy sorting and hence SST classes.

It is also worth mentioning that the connectivity properties of the graph that
govern minimax estimation in the larger SST model are quite different from those
appearing in parametric models. In particular, the minimax rates for parametric
models are closely related (via the linear observation model) to the spectrum of the
Laplacian matrix of the graph G. In Theorem 5.2.1, however, we see other functions
of the graph appearing that are not directly related to the Laplacian spectrum. In
Section 5.3, we evaluate these functions for commonly used graph topologies, showing
that for many of them, the risk is lower bounded by a constant even for graphs
admitting consistent parametric estimation.

Seeing as the minimax error in the worst-case setting can be prohibitively large,
we now turn to evaluating practical estimators in the random observation models of
Section 5.1.2.

5.2.2 Average-case design: noisy sorting matrix estimation

In the average-case setting described in Section 5.1.2, we measure the performance of
an estimator using the risk

sup Eoy-IM -M*II2.
M*EC n

It is important to note that the expectation is taken over both the comparison noise,
as well as the random observation pattern 0 (or equivalently, the underlying random
permutation a assigning items to vertices). We propose the Average-Sort-Project
estimator (ASP for short) for matrix estimation in this metric, which is a natural
generalization of the Borda count estimator [CM16, SBW16a]. It consists of three
steps, described below for the noisy sorting model:

(1) Averaging step: Compute the average Fi = , corresponding to the

fraction of comparisons won by item i.

(2) Sorting step: Choose the permutation 'ASP such that the sequence
is decreasing in i, with ties broken arbitrarily.

(3) Projection step: Find the maximum likelihood estimate A by treating WASP as
the true permutation that sorts items in decreasing order. Output the matrix
MASP = MNS (ASP, A).

We now state an upper bound on the mean-squared Frobenius error achievable
using the ASP estimator. It involves the degree sequence {d,},Ev of a graph G without
isolated vertices, meaning that d. > 1 for all v E V.
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Theorem 5.2.2. Let the observation process be given by 0. For any graph G = (V, E)
without isolated vertices and any matrix M* G CNS(A*), we have

[1II I < 1 n log n A* a
Eoy -MASP - lM*1F1 , + El 2 + - and (5.6a)

I~~ I1E EVvd_

Eo,y [KT(7*, AsP)] , n E 1 (5.6b)

A few comments are in order. First, while the results are stated in expectation, a
high probability bound can be proved for permutation estimation-namely

P ns/logn dv}Pr KT(7* TASP) r 5 -1n
O,Y A* E /v

vEV

Second, it can be verified that - + log n ,E so that taking a supremumE l E2 - .n v EV V I'_
over the parameter A* E [0, 1/2] guarantees that the mean-squared Frobenius error

is upper bounded as 0 (1 EV , uniformly over the entire noisy sorting class

CNS. Third, it is also interesting to note the dependence of the bounds on the noise
parameter A* of the noisy sorting model. The "high-noise" regime A* ~~ 0 is a good one
for estimating the underlying matrix, since the true matrix M* is largely unaffected by
errors in estimating the true permutation. However, as captured by equation (5.6b),
the permutation estimation problem is more challenging in this regime.

The bound (5.6a) can be specialized to the complete graph K,, and the Erd6s-
R6nyi random graph with edge probability p to obtain the rates 1/Vf/ and 1/./n-p,
respectively, for estimation in the mean-squared Frobenius norm. These rates are
strictly sub-optimal for these graphs, since the minimax rates scale as 1/n and 1/(np),
respectively; both are achieved by the global MLE [SBGW17. Such a phenomenon
is consistent with the gap observed between computationally constrained and uncon-
strained estimators in similar and related problems JSBGW17, FMR16, PWC17].

Interestingly, it turns out that the estimation rate (5.6a) is optimal in a certain
sense, and we require some additional notions to state this precisely. Fix constants
C1 = 10-2 and C2 = 102 and two sequences {an};> and {b};> 1 of (strictly) positive
scalars. For each n > 1, define the family of graphs

g9(an, bn) = {G(V, E) is connected : IVI = n,

Clan |E| < C2an, and Cib, 1 < C2b.

As noted in Section 5.1.2, the average-case design observation model is equivalent to
choosing the matrix M* from a random ensemble with the permutation 7r* chosen
uniformly at random, and observing fixed pairwise comparisons. Such a viewpoint is
useful in order to state our lower bound. Expectations are taken over the randomness

of both 7r* and the Bernoulli observation noise.
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Theorem 5.2.3. (a) Let M* = MNs(7*, 1/4), where the permutation i* is chosen
uniformly at random on the set [n]. For any pair of sequences ({an}n>i, {bn}, 1 ) such

that the set gn(an, bn) is non-empty for every n > 1, and for any estimators (M, )
that are measurable functions of the observations on G, we have

sup E [ ||M - M*21 > , and sup E [KT(7r*, )] > nbn.
GEgn (an~bn) n2 F n GE!9n(an,b.) 1.

(b) For any graph G, let M* = MNs(7r*, c n/|E), with the permutation r* chosen
uniformly at random and the constant c chosen sufficiently small. Then for any
estimators (M, ') that are measurable functions of the observations on G, we have

E IM -M*11] ;> nEl

Parts (a) and (b) of the lower bound may be interpreted respectively as the ap-
proximation error caused by having observations only on a subset of edges, and the
estimation error arising from the Bernoulli observation noise. Note that part (b) ap-
plies to every graph, and is particularly noteworthy for sparse graphs. In particular,
in the regime in which the graph has bounded average degree, it shows that the in-
consistency exhibited by the ASP estimator is unavoidable for any estimator. A more
detailed discussion for specific graphs may be found in Section 5.3.

Although part (a) of the theorem is stated for a supremum over graphs, we actually
prove a stronger result that explicitly characterizes the class of graphs that attain
these lower bounds. As an example, given the sequences an = n2 and bn = V5, we
show that the ASP estimator is information-theoretically optimal for the sequence
of graphs consisting of two disjoint cliques Kn/2 U Kn1 2 , which can be verified to lie
within the class g(an, bn).

The ASP estimator for the SST model would replace step (iii), as stated, by a
maximum likelihood estimate using the entries on the edges that we observe. However,
analyzing such an estimator given only a single sample on the entries 0 is a challenging
problem due to dependencies between the different steps of the estimator, and the
difficulty of solving the associated matrix completion problem. Consequently, we
turn to an observation model consisting of two random designs, and design a different
estimator that renders the matrix completion problem tractable.

5.2.3 Two random designs: SST matrix estimation

Recall the average-case setting with multiple random designs, as described in Sec-
tion 5.1.2, in which the comparison topology is fixed ahead of time, but one can col-
lect multiple observations by assigning items to the vertices of the underlying graph
at random. In this section, we rely on two such independent observations 01 and 02
to design an estimator that is consistent over the SST class. In order to describe our
estimator, we require some additional notation. For any matrix X E [0, ']nxn such
that X + XT = e eT, we use r(X) := Xe to denote the vector of its row sums. Note
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that this vector is related to the vector of scores, as defined in equation (5.1), via
r(X) = (n - l)T(X) + 1/2.

Our estimator relies on the approximation of any matrix M* G CSST by a block-
wise constant matrix, and we require some more definitions to make this precise. For
any vector v G R'i, fix some value t E (0, n) and define a block partition bIt(v) of v as

[blt(v)]i {j E [n] : vj E [[(i - 1)t]], [it] - 11}

In particular, the blocking vector blt(r(X)) contains a partition of indices such that
the row sums of the matrix within each block of the partition are within a gap t of
each other. Denote the set of all possible partitions of the set [n] by X,. For any
partition C E Xn of the indices [n], define the set of blocks B(C) ={S x T : S, T E C}.

By definition, given a partition C E X, of [n], the set B(C) is a partition of the
set [n] x [n] into blocks. We are now ready to describe the blocking operation. For
indices i, j E [n], denote by Bc(ij) the block in B(C) that contains the tuple (i, j).
Given a matrix X G [0, 1]'Xf satisfying X +XT = e eT, we define the blocked version
of X depending on observations in a set E C [n] x [n] as

[B(X, C, E)]si = IBc(ij)nE E(k,f)EBC(i,j)nE Xke if Bc(i, j) n E 7 0 (5.7)
1/2 otherwise.

In words, this defines a projection of the matrix X onto the set of block-wise constant
matrices, by block-wise averaging the entries of X over the observed set of entries E.
We now turn to our estimator, called the Block-Average-Project estimator (BAP for
short), of the underlying matrix M* E CSST. Given the observation matrix Y1 , define

[1- [Y1 i if entry (i, j) is observed,
[Y ii = i

0 otherwise,

where Di = E" [01]ij is the (random) degree of item i. We now perform three
steps:
(1) Blocking step: Fix S = EV 1/\/d, and obtain the blocking vector b
bls(r(Yii)) and permutation -7ASP as in step (2) of the ASP estimator.
(2) Averaging step: Average the matrix Y2 within each block to obtain the matrix

M= B(Y2 , b, E 2 ).

(3) Projection step: Project onto the space 'ASP(CBISO) {ASP (M) : M E CBISO},

to obtain the estimator MBAP.

The blocking and averaging steps of the estimator are the main ingredients that

we use to bound the error of the associated matrix completion problem. Also, the
projection step of the estimator can be computed in polynomial time via bivariate

isotonic regression [BDPR84].

Theorem 5.2.4. Let the observation process be given by 01 U 02. For any graph G
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without isolated vertices and any matrix M* E CSST, we have

E [ ||MBAP - v z /

where the expectation is taken over the noise, and observation patterns 01 and 02.

To be clear, the blocking estimate MBAP is well-defined even when we have just
one sample 01 instead of two samples 01 and 02, where step (2) is replaced by
the estimate M = B(Y1, b, E1 ). In the simulations of Section 5.3, we see that for a
large variety of graphs, using a single sample 01 enjoys similar performance to using
two independent samples 01 and 02. We require two independent samples of the
observations in our theoretical analysis to decouple the randomness of the first step
of the algorithm from the second. When using one sample 01, the dependencies
that are introduced between the different steps of the algorithm make the analysis
challenging.

5.3 Dependence on graph topologies

In this section, we discuss implications of our results for some comparison topologies.
Let us focus first on the worst-case design setting, and the lower bound of Theo-
rem 5.2.1. For the star, path (or more generally, any graph with bounded average
degree), and complete bipartite graphs, one can verify that we have a(G) - n, so
M(G, CNS) 1. If the graph is a union of disjoint cliques Kn/ 2 U Kn1 2 (or having a
constant number of edges across the cliques, like a barbell graph), then we see that
L3(GC) - n2 , so M(G, CNS) x 1. Thus, our theory yields pessimistic results for many
practically motivated comparison topologies under worst-case designs, even though
all the connected graphs above admit consistent estimation for parametric models3

as the number of samples grows. In the average case-setting of Section 5.1.2, Theo-
rems 5.2.2, 5.2.3 and 5.2.4 characterize the mean-squared Frobenius norm errors of
the corresponding estimators (up to constants) as D(G) := -1 v-v 1

In order to illustrate our results for the average-case setting, we present the results
of simulations on data generated synthetically4 from two special cases of the SST
model. We fix 7r* = id without loss of generality, and generate the ground truth
comparison matrix M* in one of two ways:

(1) Noisy sorting with high SNR: We set M* = MNS(id, 0.4).

(2) SST with independent bands: We first set Mi*, = 1/2 for every i. Entries on the
diagonal band immediately above the diagonal (i.e. Mi*gi for i [n - 1]) are
chosen i.i.d. and uniformly at random from the set [1/2, 1]. The band above is
then chosen uniformly at random from the allowable set, where every entry is

3The complete bipartite graph, for instance, admits optimal rates of estimation.
4Note that the SST model has been validated extensively on real data in past work (see, e.g.

Ballinger and Wilcox [BW971).
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Figure 5-1: Normalized Frobenius norm error ny|MASP - M* | with data generated
using the noisy sorting model M* = MNs(id, 0.4), averaged over 10 trials.

constrained to be upper bounded by 1 and lower bounded by the entries to its
left and below. We also set M * = 1 - M! to fill the rest of the matrix.

For each graph G with adjacency matrix A, the data is generated from ground
truth by observing independent Bernoulli comparisons under the observation process
0 = a(A), for a randomly generated permutation a. For the SST model, we also
generate data from two independent random observations 01 and 02 as required by
the BAP estimator; however, we also simulate the behaviour of the estimator for one
sample 01 and show that it closely tracks that of the two-sample estimator.

Recall that the estimation error rate was dictated by the degree functional D(G).
While our graphs were chosen to illustrate scalings of D(G), some variants of these
graphs also naturally arise as comparison topologies.
(1) Two-disjoint-clique graph: For this graph Kn/ 2 U Kn/ 2 , we have d, = - 1 for
every v E V, and simple calculations yield D(G) x It is interesting to note that
this graph has unfavorable guarantees for parametric estimation under the adversarial
model, because it is disconnected (and thus has a Laplacian with zero spectral gap.)
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We observe that this spectral property does not play a role in our analysis of the

ASP or BAP estimator under the average-case observation model, and this behavior

is corroborated by our simulations. Although we do not show it here, a similar be-
havior is observed for the stochastic block model, a practically motivated comparison
topology when there are genres present among the items, which is a relaxation of
the two-clique case allowing for sparser "communities" instead of cliques, and edges
between the communities.
(2) Clique-plus-path graph: The nodes are partitioned into two sets of n/2 nodes
each. The graph contains an edge between every two nodes in the first set, and a
path starting from one of the nodes in the first set and chaining the other n/2 nodes.
This is an example of a graph construction that has many (x_ n2 ) edges, but is unfa-
vorable for noisy sorting or SST estimation. Simple calculations show that the degree

functional is dominated by the constant degree terms and we obtain D(G) - 1.
(3) Power law graph: We consider the special power law graph 1BA991 with de-
gree sequence di = i for 1 < i < n, and construct it using the Havel-Hakimi al-

gorithm [Hav55, Hak62]. For this graph, we have a disparate degree sequence, but
D(G) - , and the simulated estimators are consistent.

(4) [(n/2)aJ-regular bipartite graphs: A final powerful illustration of our theo-

retical guarantees is provided by a regular bipartite graph construction in which the

nodes are partitioned into two sets of n/2 nodes each, and each node in one set is

(deterministically) connected to L(n/2)aJ nodes in the other set. This results in the

degree sequence d, = [(n/2)aJ for all v E V, and the degree functional evaluates to

D(G) - n-/ 2 . The value of a thus determines the scaling of the estimation error for

the ASP estimator in the noisy sorting case, as well as the BAP estimator in the SST
case, as seen from the slopes of the corresponding plots.

Some other graphs that were considered in parametric model environments by
[SBB+161, such as the star, cycle, path and hypercube graphs, turn out to be unfavor-

able for permutation-based models even in the average-case setting, as corroborated

by the lower bound of Theorem 5.2.3, part (b).

5.4 Proofs

In this section, we provide the proofs of our main results. We assume throughout

that n > 2, and use c, c' to denote universal constants that may change from line to

line.

5.4.1 Proof of Theorem 5.2.1

For each fixed graph G, define the quantity

A(G) := sup 1 (M3 _ M)
M,MECNjS (ij) E j

M(G)=M'(G)
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corresponding to the diameter quantity that is lower bounded in equation (5.5a).
Taking the lower bound (5.5a) as given for the moment, we first prove the lower
bound (5.5b) on the minimax risk. It suffices to show that the minimax risk is lower
bounded in terms of A(G) as

1 11 _ M *1
inf sup E [n2i - M*I F

M=f(Y(G)) M*ECNS . .

1
> -A(G).

4
(5.8)

In order to verify this claim, consider the two matrices M1 , M2 G

the supremum in the definition of A(G); note that such matrices
compactness of the space and the continuity of the squared loss.
these two matrices satisfy the properties

M1 (G) = M2(G), and (M - M )2 n 2A

CSST that attain
exist due to the
By construction,

(G).
(ij)VE

We can now reduce the problem to one of testing between the two matrices M 1

and M 2 , with the distribution of observations being identical for both alternatives.
Consequently, any procedure can do no better than to make a random guess between
the two, so we have

inf sup E M * - Z3 )2
R M*ECNS 4(ij)E

which proves the claim (5.8).
It remains to prove the claimed lower bound (5.5a) on

can be split into the following two claims:
A(G). This lower bound

1
A(G) > 12a(G)(a(G) - 1), and

n

A(G) > - O(Gc).
n2

(5.9a)

(5.9b)

We use a different argument to establish each claim.

Proof of claim (5.9a): Recall the definition of the largest independent set. Without
loss of generality, let the largest independent set be given by I = {v, ... v,}. Assign
item i to vertex vi for i E [a]. Now we choose permutations 7 and 7r' so that

* r(i) = i for i E [a],

S71r'(i) =a- i + 1 for i E [aI,

* 7r and -r' agree on {a 1, .. ,n}.

Note that last step is possible because ir([a]) = ir'([a]). Moreover, define the matrices
M = MNS(7,1/2) and M' = MNS(7', 1/2). Note that by construction, we have
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ensured that AI(G) = M'(G). However, it holds that

(Mg - M Ij)2 = I|M - M'111 = 2 KT(7r, T') = a(a - 1),
(ij) E

which completes the proof.

Proof of claim (5.9b): Recall the definition of a maximum biclique. Since the

complement graph G' has a biclique with 3(Gc) edges, the graph G has two disjoint
sets of vertices V and V2 with 1V1 1V2 I = !(GC) that do not have edges connecting

one to the other. We now pick the two permutations 7r and 7r' so that

" the permutation 7r ranks items from V as the top IV, I items, and ranks items
from V2 as the next |V21 items;

" the permutation 7r' ranks items from V2 as the top IV21 items, and ranks items
from V as the next IV21 items;

" the permutations 7r and w' agree with each other apart from the above con-
straints.

As before, we define M = MNS(7r, 1/2) and M' = MNS(7r', 1/2), and again, we have

M(G) = M'(G). The relative orders of items have been interchanged across the bi-
clique, so it holds that 2 KT(7r, 7r') = 3(GC), which completes the proof. D

5.4.2 Some useful lemmas for average-case proofs

We now turn to proofs for the average-case setting. For convenience, we begin by
stating two lemmas that are used in multiple proofs. The first lemma bounds the
performance of the permutation estimator WASP for a general SST matrix, and is thus

of independent interest.

Lemma 5.4.1. For any matrix M* E CSST, the permutation estimator -ASP satisfies

IIWASP(M) -- M*<} _ 4(n - 1)IIT* - 7-11, (5.10a)

and if additionally, M* E CNS(A*), we have

7ASP(*) - M*<j 8A*(n - 1)IIT* - F11. (5.10b)

In addition, the score estimates satisfy the bounds

E[IIr* - Ti 1 ] 5 C, and Pr {IIT* - -1 |1 > cs/logn < n}r0 .
vEV vVV

Note that Lemma 5.4.1 implies the bound (5.6b), since for a matrix M* G CNS(A*),
we have 8A2 KT(ASp, 7r*) = AsP(*) - M*l.
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Our second lemma is a type of rearrangement inequality.

Lemma 5.4.2. Let {a}"_ 1 be an increasing sequence of positive numbers and let
{ bu}" 1 be a decreasing sequence of positive numbers. Then we have

( au) ( bu) > n aubu.
u=1 u=1 u=1

Proof of Lemma 5.4.1

Assume without loss of generality that 7r* = id. We begin by applying Hblder's
inequality to obtain

1-WASP(M*) - M*II2 A 11 SP(M*) - M*IIc,0I1ASP(M*) - M*I11.

In the case where M* e CNS(A*), we have IIMAsP(i) - M*II.. < 2A*; in the general

case M* E CSS-, we haveIM - MgI|o < 1. Next, MAP denotes the matrix
obtained from permuting the rows of M* by WASP, then it holds that

IIWASP(M*) - M*7| I IWASP(M*) - 41AP11 + IIMjrAP - M* 11
n

= 2Z IMASPi) - Mi*Ii,
i=1

where the equality follows from the condition M* + Mj7i = 1. We also have

n n

|-M ASP(i) M*I1 2 (n - 1) E ITASP(j) - TiI

i-1
n

n n

< (n -1) E r* - 1j~ + E F I- e-

i=< ( E I i*- Tip + I' ?~p-i)
i=1 i=1 -

= 2(n - 1)IIT* - T111,

where step (i) is due to monotonicity along each column of M*, and step (ii) follows
from the fr-rearrangement inequality (see, e.g., Example 2 in the paper [Vin9OJ), using
the fact that both sequences {rT*}? 1 and {- 1i}1 are sorted in decreasing order.

Combining the last three displays yields the claimed bounds (5.10a) and (5.10b).
In order to prove the second part of the lemma, it suffices to show that the random

variable I1r* - '1, is sub-Gaussian with parameter cS, where S := de 1/v/ . Let
- : [n] -+ V be the uniform random assignment of items to vertices with c-(A) = 0,

and let Di denote the random degree da(j) = E>j Oij of item i. Note that conditioned
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on the event o-(i) v, the difference between a score and its empirical version can be
written as

9 -;* ( *, n (mt*) + W( W7gTj:o-(j)~v n Ii j:O>M-V

where ~ denotes the presence of an edge between two vertices. Note that the term

1 Z Ej:(j>.v M* is the empirical mean of dv numbers chosen uniformly at random

without replacement from the set {Mi*}ysi, while --- Ejoi M* is the true expec-
tation. Moreover, Wij represents independent, zero-mean noise bounded within the
interval [-1, 1]. Consequently, applying Hoeffding's inequality for sampling without
replacement [BM15, Proposition 1.21 and the standard Hoeffding bound [Hoe63] to
the two parts respectively, we obtain

Pr {f# - ri*l > t I -(i) = v} < 4exp(-cd dt2). (5.11)

Replacing t by t/V/d~, we see that conditioned on the event -(i) = v, the random
variable v/da If; - Tj*j is sub-Gaussian with a constant parameter c', or equivalently,

E [exp (t VD/i I -T *) u 0-(i) = V exp(c t2). (5.12)

Since S = E_ 1/V/'DI, Jensen's inequality implies that

n

E exp (t >3 v - ri*)]

< E ex 'Ti- r*

- E Pr {f-(i)= v}E exp (tS i D -j -Ti*I) I-(i) = v

I 1 exp(cS 2t2 )

i=1 vEV

= exp(cS 2t 2 )

where the last inequality follows from equation (5.12). Therefore, the random variable

||? - T*1li is sub-Gaussian with parameter cS, as claimed.

127



Proof of Lemma 5.4.2

For any increasing sequence {au} and decreasing sequence {bu}, the rearrangement
inequality (see, e.g., Example 2 in the paper [Vin90) guarantees that

n n

E b a < E abr() for any permutation 7r.
u=1 U=1

This inequality implies that

- n n n n n n n

-(EZau)(Z bu) EZ:aub~,,()(U) > 1  aubu Z :aubu,
nu=1 =1 V=1 u=1 v=1 U=1 u=1

where we define r() (u) (u +v) mod n and have used the rearrangement inequality
for each of these permutations.

Equipped with these two lemmas, we are now ready to prove Theorem 5.2.2.

5.4.3 Proof of Theorem 5.2.2

Without loss of generality, reindexing as necessary, we may assume that the true
permutation 7r* is the identity id, thereby ensuring that M* = MNs(id, A*). We begin
by applying the triangle inequality to upper bound the error as a sum of two terms:

1 -
-- IMASP - M*II2 < IIMASP - 7ASP(M*)IIF + 11,ASP(M*) - M*II1.
2

estimation error approximation error

Applying Lemma 5.4.1 yields bound on the approximation error. In particular, we
have

E [11'ASP(M*) - M*11 ] cnZ 1.

We now turn to the estimation error term, which evaluates to n2 (A - A*) 2 , with

A representing the MLE of A* conditional on ' being the correct permutation. For
each random set of edges E (we now let E be random in order to lighten notation)
and permutation 7r, define the set

I4(E) = {(i, j) E E I i.< j, r(i) > ir(j)},

corresponding to the set of inversions that are also observed on the edge set E. We
require that each ordered pair (i, j) E obeys i < j. Therefore, the MLE takes the
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1/2 + A=

((ij)EE\IfASP (E)

(i,j)EE

= 1/2 + A* +

(i,

Yij + (1 - Yij)
(i"j)E,;RASP (E)

(1 - 2Yi)
j)EI"ASP (E)

1W
(ij)EE

+ 1+1
((ij)EI"ASP (E)

where we have written Yij = Mij+ Wij. Consequently, the error obeys

A*) 2  W(Sj ) 2

(% j)EE 2

+ 12 I
12

+ E 2

(0)
<

3 w23
(ij) EE )

2

12
+ E 

2

2

12

E (ij)E 1' ASP (E)

T3

where step (i) follows since lIFAs,(E)l < El pointwise. We now bound each of the
terms T1 , T2 and T3 separately. First, by standard sub-exponential tail bounds, and
noting that Wij G [-1,1], we have

E[T1 ] < , and Pr T > <_ e~E

We also have

El E [T2] TE [lI Asp(E)1]
12(A*)

2

= E Pr[o-(i) = u, (j)
i<j (u,v)EE

v] Pr['ASp(-) > - ASP(j)Io(') u, o( v]

E n(n-1) Pr[ Asp(i) > -ASP o. u, ) v].

(u,v)EE i<j

We now require the following lemma, which is proved at the end of this section.

Lemma 5.4.3. For any pair of vertices u 7 v, we have

E
i<

n(n-1) Pr[ASp(i) > -ASP(j)o-(i) = u,-(j) = v] < c + .
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-2A* - 2Wij ,

2

Wij)
(i,j)EckASP (E)

(5.13)

Yj +
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Using Lemma 5.4.3 in conjunction with our previous bounds yields

E[T2] < c ( ( + )=cA*%EV , (5.14)
-E (U,V)EE E

where the equality follows since each term i appears du times in the sum over all

edges, and 21EI = EZcy d,. Let {d(u)}'-1 represent the sequence of vertex degrees
sorted in ascending order. An application of Lemma 5.4.2 with a., = d(u) and bu

1 for u E [n] yields

uEV uEV UEV

Together with equation (5.14), we find that

E T] < cA* 1EE[T2 ] --- .
nUEV rd

In order to complete the proof, it remains to bound E[T3 ]. Note that this step is
non-trivial, since the noise terms Wij for (i, j) E IjASP (E) depend on and are coupled
through the data-dependent quantity IrASP. In order to circumvent this tricky depen-

dency, consider some fixed permutation 7r, and let T3' = E(i)j3 )E(E) wij 2. Note

that T37 has two sources of randomness: randomness in the edge set E and random-
ness in observations. Since the observations {W jJ are independent and bounded and

1I(E)I < |El, the term

~Wij
(ij)EI,(E)

is sub-Gaussian with parameter at most El. We then have the uniform sub-
exponential tail bound

Pr{ T3 El -+ J} < e-. (5.15)

Notice that for any a E R, the inequality T3 > a implies that the inequality

T3 > a holds for some fixed permutation r. Taking a union bound over all n! <

e" logn fixed permutations, and setting 6 = cn log n for a constant c > 1 yields

Pr T3  2 + c logn exp {In log n - cn log n} exp {-c'n log n}. (5.16)
JEJ JE12
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Noticing that T3 < 1, we obtain

E[T3] < Pr T3 > + lo}+ C n llo n

( E J12 rlgr___

+ 1-Pr T3 -> 2+c + l

12 ri log rE
< exp{-cnlogn}+ E +C l 2

< /I+ nlgn

Combining the pieces proves the claimed bound on the expectation. L

The only remaining detail is to prove Lemma 5.4.3.

Proof of Lemma 5.4.3

We fix i, j E [n] with i < j and condition on the event that o-(i) = u and -(j) = v

throughout the proof. First, note that the bound stated is trivially true if one of
the vertices u or v has degree 1, by adjusting the constant appropriately. Hence, we

assume for the rest of the proof that d., dv > 2. Define the quantity

Aji = 2A* 2 (5.17)

We divide the rest of our analysis into two cases.

Case 1, (u, v) E(G): When the vertices u and v are not connected, we have

=E[]=- + A* n -2 andTJ 2 (n-2 n-2)
n n-iZ- z-

E[] =-+ A*
2 n-2 n-2

and it can be verified that -i - tj= aj. Consequently, we have

Pr {7AsP < ASP(Z) I o(Z) u, o) v}

= Pr { > ' I o- (i) = u, -(j) = v}

+x -c r 'J- >j (5.18)z)= ,rUT2U + /dij cri=)2()v
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where the last step follows from the Hoeffding bound for sampling without replace-
ment in conjunction with the standard Hoeffding bound for bounded independent.
noise, by an argument similar to that of equation (5.11).

Case 2, (u, v) E E(G): When the vertices u and v are connected, we have

1 d - 1 n-j j-2 1
:=E[- A A* and

2 dv n-2 n-2) d

,Jri E I du -1 A*n-i-1 - -1 1
Ti=E ] -+ * - + -A*7

2 du n-2 n-2) du

and it can be verified that i - ;- > A3j.
Now, however, we must apply the Hoeffding bound for sampling without replace-

ment to du - 1 and d, - 1 random variables, respectively. Recalling that du, d > 2,
we have

Pr {IASP(j) < 'Asp(') I a(i) = u, a(j) = v}

=Pr { > I a(i) = u, a(j) =v}

Pr{I%-i> A 3 =iV

- (~~v/ v + vd -1)
+ Pr -T - ti >Aj I c(i)-u,cr(0) -v}

L 4 exp -c du -i -1)2
n~~.d - I)9 v + ) ( - 2)2

4 ~dd d2e 2 A3

4exp c,} (519)

n ~ ~ ~ (/"n -) (d +P2) n )

We use the shorthand Lu to denote the LHS of equation (5.13). Having estab-
lished the bounds (5.18) and (5.19), we now combine them to derive that

b = i<j (22 (n Y[ 4

4 n d(1 + 2((-*2 = )21+ @es

(1 - (n - 1)ZEep (rd dU VJ) 2 M( )

where we have used m sci, and noted that there are at most - 1 repetitions of
each distinct value of j-i in the sum over ' > i.

Defining Oi/q) = E' 1q we recall the following theta function identity 5 for
ab = w (see, for instance, equation (2.3) in Yi [YiO4J):

,F (i1 + 20 e a2)) = v'b- (i + 2V)(e -b2)).

5For the rest of this subsection, ir denotes the universal constant.
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Using the identity by setting a2 = c d,,d (A*)2 yields

C T ~+ 2 + }
Luv~~~ + 1+2 xp-d

00 n 'v dd- 2 h 2

L < - Id:+vd- 1+ 2 exp -7r 2(/d+vv)m2n
- A* \dd dudv (*)2

c vd u +v {0 V ) 2 ni2

< * vdudv I + Eexp {-167r2nm} , (5.20)

where in the last step, we have used the fact that A* < 1/2, and that \Idv) 2 - 4/n.
Bounding the geometric sum by a universal constant yields the required result.

5.4.4 Proof of Theorem 5.2.3

We prove the two parts of the theorem separately.

Proof of part (a)

The proof of part (a) is based on the following lemmas.

Lemma 5.4.4. Consider a matrix of the form M* = MNs(7r*, 1/4) where the permu-

tation iF* is chosen uniformly at random. For any graph G = K1 U K2 U ... composed

of multiple disjoint cliques with the number of vertices bounded as C < jK I n/5 for

all i, and for any estimators ( M,-) that are measurable functions of the observations

on G, we have

E 11M- M*IFJ2 - -, and E [KT(7r*, C)] E c2n d. (5.21)
n - vEVv VE ,v

Lemma 5.4.5. Given any graph G with degree sequence {dv}vEv, there exists a graph
G' consisting of multiple disjoint cliques with degree sequence {d' ,vev such that

IEII'IE' anddI (5.22)

Part (a) follows by combining these two lemmas, so that it suffices to prove each of

the lemmas individually.

Proof of Lemma 5.4.4: Our result is structural, and proved for permutation re-

covery. The bound for matrix recovery follows as a corollary. Assume we are given a

graph on n vertices consisting of k disjoint cliques of sizes ni, ... , nk. Let No= 0 and

Nj = 3~i ni for j E [k]. Without loss of generality, we let the j-th clique consist of

the set of vertices V indexed by {N_1+1,... , NjJ. By assumption, each nj is upper

bounded by n/5 and lower bounded by a universal constant.
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Note that any estimator can only use the observations to construct the correct
partial order within each clique, but not across cliques. We denote the induced partial
order of a permutation 7r on the clique V by the permutation 7rj : [nj] -+ [nj] 6 .
We will demonstrate that there exists a coupling of two marginally uniform random
permutations (r*, 7r#) such that

k

E[KT(ir*, r#)] cn E V-j = cn 1
j=1 vEV

and the partial order of 7r* agrees with that of 7r# on each clique, that is, rj =

7f for all j E [k]. Another way of stating this is that for every clique V and every

two vertices il, i2 E V , we need that 7r#(ij) < 7r#(i2 ) if and only if 7r*(ii) < 7r*(i2).

Let E[- I ir*] denote the expectation over the observations conditional on 7r*. Given
a pair of permutations (7r*, 7r#) satisfying the above assumption, we view them as two
hypotheses of the latent permutation. Then for any estimator ', the Neyman-Pearson
lemma [NP66] guarantees that

E[KT(-, 7r*) I ir*] + E[KT(', 2r#) I 7r#] KT(wr#, 7r*)

for each instance of (-r*, 7r#), because the observations are identical for 7r* and 7r#.
Taking expectation over (7r*, 7r#), we obtain that

2 E[KT(-, 7r*)] > E[KT(7r*, 7r#)] > cnu 1

since both 7r* and 7r# are marginally uniform.

To finish the proof, it remains to construct the required coupling (ir*,7r#). The
construction is done as follows. First, permutations r* and 7r are generated uniformly
at random and independently. Second, we sort the permutation r on each clique
according to lr*, and denote the resulting permutation by 7r#. Then the permutations
7r* and 7r# are marginally uniform and have common induced partial orders on the
cliques, which we denote by {r : j E [k]}.

With some extra notation, we can define the sorting step more formally for the
interested reader. For a set of partial orders on the cliques {7rj : j E [k] }, we define a
special permutation that effectively orders vertices within each clique V according to
its corresponding partial order 7rj, but does not permute any vertices across cliques.
We denote this special permutation by irpar({rj j E [k]}). For every clique V, we
consider the permutation 7s,,, := 7rjo (-rj)- 1 . Now, we can formally define the sorting
step to generate 7r# by

7r#= rpar({rsortj : j E [k]j}) o -k.

Next, we need to evaluate the expected Kendall's tau distance between these

6As an example, the identity permutation 7r = id would yield -rx = id on [nj] for all j E [k].
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coupled permutations. By the tower property, we have

E[KT(7r*, 7#)] = E[E [KT(7r*, 7r#) I {7rj j E [k]} .

The inner expectation can be simplified as follows. Pre-composing permutations 7r*
and 7r# with any permutation does not change the Kendall's tau distance between
them, so we have

E [KT(7r*, 7r#) I {7r: j E [k]}] = E[KT(7r, gr')]

where the permutations r and 7r' are drawn independently and uniformly at random
from the set of permutations that are increasing on every clique. That is, for every
clique V and every two vertices i 1 , i2 E Vj, we have7 ir(ii) < ir(i2 ) and r'(ii) <

We now turn to computing the quantity E[KT(7r, 7r')]. It is well-known [DG77
that 2 KT(7r, 7r') > |7r - 7'|1 . This fact together with Jensen's inequality implies that

n

2 E[KT(7r, 7r')] > E [7(i) - r'(i)|]

n

E[E[7r(i) - r'(i) 7]
i=1
n

= EE[ r(i) -E[7r'(i)]
i=1

= E [1r - E[7r]111]. (5.23)

It therefore suffices to lower bound the quantity E[|I7r - E[7r] 11].

Fix any i E [n]. Then i is f-th smallest index in the j-th clique for some j E [k]
and f E [nj], or succinctly, i = Ni_ 1 + f. If we view 7r-1 as random draws from the n
items, then ir(i) is equal to the the number of draws needed to get the -th smallest
element of Vj. Denoting E[7r(i)] by [L, we have

=f +EL E 1{r is drawn before i}] =f+(n-n) n +

since the probability that an item not in V1 is drawn before the f-th smallest element
of Vj is f/(nj + 1). Furthermore, r(i) = s if and only if f - 1 elements of V1 are
selected in the first s - I draws and the s-th draw is from V, so

Pr{7r(i) = s} = nj) )n n7) (n 17 n - f + 1. (5.24)
(f - 1 S - f - 1 n - s + I

'To understand why 7T and 7r' can be chosen independently, note that the only dependency
between the original permutations 7r* and 7r# is through the common induced partial orders {ir:
j e [k]}. By conditioning and pre-composing, we are able to remove that dependency.
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We claim that for all [2nj/5] <_ f < [3nj/5] and Is - pj < nI/ nr, it holds that

Pr{ir(i) = s} cV/n/n (5.25)

where c is a universal positive constant.

If the claim holds, then for any 0 < m < n/fn , we have

E[[7r(i) - pI] > mPr {I7r(i) - pI m} m[1 - c(2m + 1)V/nln]

by Markov's inequality. Choosing m = yields

E[17r(i) - pl] C2n/Vhj

for some positive constant c2. Summing over f in the given range, together with

inequality (5.23), completes the proof.

Proof of claim (5.25): For f E [nj] and f < s < n - nj + e, define a bivariate
function

p (t , s ) : = 1 - s n

Note that for any fixed s, the function i '-+ p(f, s) is the probability mass function

of the hypergeometric distribution that describes the probability of f - 1 successes

in s - 1 draws without replacement from a population of size n with nr successes.

Hence, its maximum is attained at f = [s'j'4 J. Now we consider the index set

= (,s) : _ 
j] < [n ], [j]<[s <[

c , x ,

In particular, the range of interest 2nj/51 f < [3nj/5J and Is - p < n/ -j, is
contained within the set I, since p = e . Moreover, inequality (5.24) ensures that

Pr{7r(i) = s} < p(f, s) a for (f, s) E I. Thus, in order to complete the proof, it

suffices to prove that p(f, s) < c//1ij for (f, s) E I, and it suffices to consider (f, s)

such that f = [sn+ since each function f -+ p(f, s) attains its maximum at such a

pair (f, s).

Toward this end, we use Stirling's approximation [DM561 to obtain

P~f, S < C2 ng (n -n) (s - 1)(n -s +1) (.6p( , s) < cz2 5.
\(f - 1)(nj - f + 1)(s - f)(n - nj -- s + f)n

'n., )nnj 5-1n-s+1nj (n - n)"~"i(s - )-l(n - s + 1) - +.

(f - 1)f-1(nj - f + l)nj-f+l1(s -- f)s-L(n - nj - s + t)n-n--s+ n
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Since the factor in line (5.26) scales as 1/Vnj for (f, s) E I, it remains to bound the
factor in line (5.27) by a universal constant. This follows from lengthy yet standard

approximations which we briefly describe here. Assume that sn is an integer for

simplicity, so that f is equal to this quantity and we have s = f ;+2 the extension to

the general case is easy. We first group together

nj(s - 1) -1_nj (nf + 2f - nj - 1)/(nj + 1) -
(f - 1)n L(f - 1)nJ

I + (2fn 2 - nj - in)/(njn + n)
= 1+

- i

which is bounded by a constant for (f, s) E I considering that limm (1 + ")m = ea.

Then, we group together the terms

n[(n - s +1) ]ni-+1 (n - n)(s- 1)] an (n - n)(n - s +1) n-nj-s+

(nj - f + 1)n ' (s - f)n (n - nj - s + f)n

respectively, and a similar argument yields that each term is bounded by a constant.

Proof of Lemma 5.4.5: Fix a graph G with degree sequence {d,}1v, and intro-

duce the shorthand S = EV~ 1/dv. For some parameter k to be chosen, define the

graph G' on the same vertex set to be the disjoint union of one clique of size ci [IEliJ,
c2 k cliques of size [n/k] and c3 S cliques of size 2, where ci, c 2 and c 3 are constants to

be determined such that the sizes of each clique are integers. The number of vertices

remains the same, so that

n = cl [VI EI + c2kLrn/kJ + 2c3S. (5.28)

The number of edges of G' is

IE'|= (c 2 Eli) + c2 k (2/k) + c3S - |E|+ k'

where the last approximation holds because S < n < 21E1. Moreover, let

S'I = E 1 - c Ei c2 k [n/kJ + C3S x Vn + S,
vEV V c 1[ E iJ [n/kJ-1

where the last approximation holds since 1E1 1/4 < V/n < S.

In order to guarantee that IE'| x JEl and S' S, we need to choose an integer k

so that n2 /k < cE and v/rk < cS, or equivalently

n2 k 2

clEl n
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Such an integer k exists if IEIS2 > n3 . Indeed, applying Lemma 5.4.2 twice (with
au = d(u) and bu = 1/ d( the first time and au = d() and bu = 1/ d(u) the
second time, where {d()} = is the degree sequence in ascending order), we obtain
that

|E| S2 = (Edv ( n( d)E> n 3.

vEV vEV VVV 6VE

With k selected, it is easy to choose c 1 , c 2 and c 3 so that inequality (5.28) holds, since
each of El, kn/kJ and S is no larger than n. The issue of integrality can be taken
care of by constant-order adjustment of these numbers, so the proof is complete. L

Proof of part (b)

Given a parameter space E, a set P = {61, 02, .. ,I} is said to be a 6-packing in
the metric p if p(Oi, Oj) > 5 for all i j. The lower bound of part (b) is based on the
following packing lemma for the set of permutations in Kendall's tau distance. We
note that a similar lemma was proved by Barg and Mazumdar [BM10].

Lemma 5.4.6. For some positive constant c1 , there exists an c 1n
2 -packing P of the

set of permutations in the Kendall's tau distance such that log P| > n.

Consider the random observation model with graph G = (V, E), where E denotes
the random edge set of observations. We denote by QM the law of the random
observation noisy sorting model with underlying matrix M = MNS(7r, A). We require
the following lemma.

Lemma 5.4.7. Let PM,G denote the law of the noisy sorting model with underlying
matrix M G CNS(A) for A G [0, 1/4] and comparison graph G. Suppose that the entries
of two matrices M, M' E CNS(A) differ in s edges of the graph G. Then the KL
divergence is bounded as

KL(PM,G,PM',G) < 9A 2s. (5.29)

Note that conditional on any instance of E, Lemma 5.4.7 guarantees that

KL(PM,G,IPM',G) < 9A 2 {(i, j) E E : i < J, # Mi} ,)

where PM,G denotes the model for fixed graph G. Hence taking expectation over the
random edge set yields the upper bound

KL(QM, QM,) 9A 2  Pr{(ij) E} 9A2 21EI 9A 21E,
i<, M jm i<jn(n-

valid for any M, M' E CNS(A).
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Note that JIM - M'112 8 2KT(7r,7r') for M = MNs(7r, A) and M' = MNS(r ', A)-
Hence Fano's inequality applied to the packing given by Lemma 5.4.6 yields that

inf sup E M*F 8A 2ci I -
R M*ECNS 9

The proof is completed by choosing A 2 = c2n/IE for a

c2 .

It remains to prove Lemmas 5.4.6 and 5.4.7.

Proof of Lemma 5.4.6: The inversion table b = (b 1 ,.
has entries defined by

n

b = > 1{r(i) > r(j)} for
j=i+1

A21E + log 2

sufficiently small constant
LI

.. , bn) of a permutation 7r

We refer the reader to Mahmoud [MahOO] and references therein for background on
inversion tables. By definition, we have bi E {0, 1, ... , n - i} and KT(7r, id) = I" bi
where id denotes the identity permutation. In fact, the set of tables b satisfying
bi E {0, 1, . .. , n - i} is bijective to the set of permutations via this relation [MahOO].

This bijection aids in counting permutations with constraints.

Denote by B(id, r) the set of permutations that are within Kendall's tau distance
r of the identity id. We seek an upper bound on IB(id, r)I. Every 7r E B(id, r)
corresponds to an inversion table b such that E" b, r. If be is only required to
be a nonnegative integer, then the number of b satisfying En bi < r is bounded by

(n"r). After taking logarithms, this yields a bound

log |B(id, r)I < n log(1 + r/n) + n.

Let P be a maximal c1n 2-packing of the set of permutations, which is necessarily
also a c1i 2 -covering of that set. Then the family {B(7, cin2 )},Ep covers all permuta-
tions. By the right-invariance of the Kendall's tau distance under composition, the
above bound yields log B(7r, cin2)1 < n log(1 + c1in) + n for each 7r. Since there are
n! permutations in total, we conclude that log PI > log(n!) - n log(1 + cin) - n > n
for a sufficiently small constant c1. l
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Proof of Lemma 5.4.7

The KL divergence between Bernoulli observations has the form

KL(Ber(1/2 + A), Ber(1/2 - A)) = KL(Ber(1/2 - A), Ber(1/2 + A))

= (1/2 + A) log 1/2 A (1/2 -A) log1/ 2 -A
1/2- A 1/2- A

1/2 + A
2A log 1/2 - A

< 9A 2  for all A E [0, 1/4],

where the last inequality follows by some simple algebra,
Note that the KL divergence between a pair of product distributions is equal to

the sum of the KL divergences between individual pairs. Since M and M' differ in s
entries on the graph G and the Bernoulli observations are independent for different
edges, we see that KL(IPM,G 'EM',G) < 9A 2 S. E

5.4.5 Proof of Theorem 5.2.4

For the purpose of the proof, it is helpful to think of the observation model in its
linearized form. In particular, we have two random edge sets E1 and E2 and the
observation matrices

Y :=M* +W

for each i E {1, 2}. We also use the shorthand B(X, C) = B(X, C, [n] x [n]), and
recall the notation 11MI|2 (ij)EB Mi.

By the triangle inequality, we have

IIMBAP - M*II 21IMBAP - 7FASP(M*)IIF + 211M* - 7ASP(M*)IF
(i)< 211M - 'ASP (M*)|I + 211M* - IASP(M)I

<411M - M*1I2 + 611M* - 7ASP(M*)I11, (5.30)

where step (i) follows from the non-expansiveness of the projection operator. We
know from Lemma 5.4.1 that the second term in inequality (5.30) is bounded in
expectation by the quantity nS = n E,v 1//d, as desired, so it remains to bound
the first term. Toward that end, again apply triangle inequality to write

11M - M*I 211M - B(M*,b)|11 + 211M* - B(M*,1b)IF. (5.31)

We now bound each of these terms separately. Starting with the first, let us define
some notation. For a set S C [n] x [n] and a matrix M E R", let SIMfI$ =
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('j)eS M 2 . We have

|M-B(M*, b)|2 =1 F|| - B(M*,b) 11 .
BeB(b)

Note that it is sufficient to consider off diagonal blocks in the sum, since both
M and B(M*, b) are identically 1/2 in the diagonal blocks. Considering each block
separately, we now split the analysis into two cases.

Case 1, B n E2 =

[-1, 1], we have
Because the entries of the error matrix are bounded within

Case 2, B n E2 # #: Since both N and B(M*,b) are constant on each block, we
have

||M~ - B(M*,b)|| = -BJIM - B(M*,b)||BnE2BnE 2 |

=B nI 21IB(M* + W2 ,, bE2 ) - B(M*, b)IIBnE2

< 2 IB|I
|B nE2|

(|iB(M* + W2 ,b, E2) - B(B(M*,b) + W 2 ,b, 2)I2BnE 2

+ |IB(B(M*,b) + W2 ,b, E2) - B(M*,b) IBnE2 )

(5.32)

Let us handle each term on the RHS of the last inequality separately. First, by
non-expansiveness of the projection operation defined by equation (5.7), we have

IIB(M* + W 2 ,b, E2) - B(B(M*, b) + W 2 ,b, E 2 )BnE 2  IIM* - B(M*, b)|BnE2.
(5.33)

We also require the following technical lemma:

Lemma 5.4.8. For any block B and tuple (i, j) E B, we have

Pr (i, J) E E2 I IB n E2 = k
k

|BI

See Section 5.4.5 for the proof of this claim.

Returning to equation (5.33) and taking expectation over the randomness in E2
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(which, crucially, is independent of the randomness in b), we have

EE2 [JIM* - B(M*, b)BnE2 I Bn E21 = k]

= Pr {(i, j) E E2 I IBn E2 = k} - [M*
(ij)EB

- B(MA*,b)],j
(ij)EB

-kIM* - B(M*, b)II2,

where step (ii) follows from Lemma 5.4.8.

Additionally, notice that [W2]ij for (i, j) E E2 is independent and bounded within
the interval [- 1, 1]. Consequently, we have

Ew2 [|IB(B(M*,) + W2 ,, E2) - B(M*,b)2IIBnE2 1, (5.35)

where we have used the fact that the entries of the matrix B(M*,b) are constant on
the set of indices B n E2 .

It follows from equations (5.32), (5.33), (5.34) and (5.35) that

E [iM - B(M*,b)IB2] < 2E [ IBI ~ + 2E [IM* - B(M*,b)II2
L|B en E2 r el

Combining the two cases and summing over the blocks, we obtain that

E [iM- B(M*,b) Fi1 <2 E E [Bn EV ] + 2E [JIM* - B(M*,b)I}].
B(B(b) 5~

(5.36)

Note that the second term above is the same as the second term on the RHS of
inequality (5.31).

We now require the following definition, and two lemmas to complete the proof.
Given a matrix M* and a partition C E Xn, define its row average as

[R(M*, C)i = Ci)I .jEC(i)

Lemma 5.4.9. With S = E i/E 1/vd~ and for the partition b = blt(r(Yjl)), we have

EE
2

-BC1(b)

l BI
JB nE21 v 1

<25.
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Lemma 5.4.10. Given any matrix X G [0, 1]nx< with monotone columns, a score
vectorr E [0, n]", and a value t E [0, n], we have

liX - R(X, bIt($))I11 2 nt + 211?- r(X)111.

Applying Lemma 5.4.9 with the expectation taken over the edge set E2 yields the
desired bound on the first term of inequality (5.36).

In order to bound the second term of inequality (5.36), note that by definition,
we have

B(M*, C) = R(R(M*, C)T)T.

Consequently, it holds that

IIM* - B(M*, C)1I1 < 211M* - R(M*, C)I11 -+ 211R(M*, C) - B(M*, C)112
= 211M* - R(M*, C)FI}+ 211R(M*, 0 )T - R(R(M*, C)T C)II.

Setting C = bls($) and applying Lemma 5.4.10 to both the terms, we obtain

IIM* - B(M*, bIs($))I11 2 2nS + 4Irr- r(M*) 1.

Applying Lemma 5.4.1 yields a bound on the second term in expectation. This
together with equations (5.31) and (5.36) completes the proof of Theorem 5.2.4 with
the choice t = EVV 1/ /d'.
It remains to prove Lemmas 5.4.8, 5.4.9 and 5.4.10.

Proof of Lemma 5.4.8

Our proof relies crucially on the fact that one of the two sets is a block.
For a fixed integer k, we condition on the event {jB n E2 1 = k}. Note that E2 is

the random edge set defined by

E2 = r(E) = {(i,j) (r(i),(j)) E E

where 7r is a uniform random permutation, and E is a fixed instance of E2. For any
pair of tuples (i, j), (k, f) E B, consider the permutation * defined by

STr(i) = k, -(k) = i, -r(j) = f and r(f) =

-r(m) = m for m : i, j, k or f.

Note that right-composition by -r is clearly a bijection between the sets {r (i, J) E
7r(E)} and {7 : (k, f) E 7r(E)}. Therefore, we have I{7r : (i, j) E E211 = 1{r: (k,f) E
E211. A counting argument then completes the proof. Indeed, conditioned on the

event {B A E21 = k}, we have

S Pr{(i, j) C E21 = E[ 1{(i,j) E E21 = k,
(ij)E B (ij)E B
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which implies that Pr{(i, j) E E2} = k

Proof of Lemma 5.4.9

Fix an individual block B of dimensions h x w, and let E = E2 for notational
convenience. Define the random variable Y = IBnEl+1 so that (jBnEIV1)- 1 < 2/Y.
Hence we require a bound on the quantity E[Y-11. Toward this end, we write

Y = 1 + E 1{(i,j) E E}, and
(ij)EB

Y2 = 1 + 2 1{(i, j) E E} +
(ij)EB

S: 1{(i, j), (ij') C E}.
(ij),(ij')EB

Note that for (i, j), (i', j') c B where i 7 i' and j 7 j', we have

Pr{(i,j) E E} =

Pr{(i, j), (i, j') E E} =

Pr{(i, j), (i',j ') E E} =

21EI
n(n - 1)'

V dv(d - 1)

n(n - 1)(n - 2)
and

41E1 2 - 2EV dv(dv - 1) - 21E|
n(n - 1)(n - 2)(n - 3)

Hence, we can compute the first two moments of Y as

E[Y] = 1 + 5 Pr{(i,j) EE}
(ij)EB

E[Y2 ] = 1 + 2 Pr{(ij) E E
(ij)EB

h+ w IE l
n(n - 1)

2hwIEl
n(n - 1)

2hw|E|= 1 + , and
n(n - 1)'

1} + E Pr{(i, j), (i', j') E E}

(i,j),(i',j')EB

+ [hw(w - 1) + wh(h - 1)] EV (dv - 1)
n(n - 1)(n - 2)

41E j 2 - 2EveV dv(dv - 1) - 21El
+h(h- 1)w(w-1) n(n - 1)(n - 2)(n - 3)

where for the last step we split into cases according to whether i = i or i j'
Therefore, the variance var(Y) is equal to

2hwIEl
E [Y 2 ] - E [y]2 =- 1 +

n(n - 1) hw(w - 1) + wh(h - 1)] ZVEV dv(dv - 1)n(n - 1)(n - 2)

41E1 2 - 2 Evev dv(dv - 1) - 21E| 4h2W 2lE1 2

+ h(h - 1)w(w1)(n-2)(n -3) - 1)
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We note that

h(h - 1)w(w - 1) h2W 2  hw[hw(4rn - 6) - (h + w - 1)n(n - 1)]

n(n - 1)(n - 2)(n - 3) n2 (n _ 1)2 n(n - 1)(n - 2)(n - 3)
2h2W 2

n2(n - 1) 2 (n - 2)(n - 3)*

where in the last step, we have used the fact that the quantity above is maximized
when h = w, and that 2 < h + w < n by the construction of the blocks.

Combining the pieces, we conclude that var(Y) is bounded by

hwIE| > y d2  h 2W2 |E 2  hw|E| d 2
c +c(hw2+wh2) V +c < 2c +c(hw 2 +wh 2 ) VE

n2 n3 n6 - ,2 n 3

where the inequality holds because h < n, w < n and |El < n2. Using the fact that
Y > 1 and applying Chebyshev's inequality, we obtain

E [Y-'] "Pr {Y < + 
Y 2 EEY] P{Y E[Y]}2

" y var(Y) + 2
E~y]2E[Y]

ch2" 2 E|2 h |E + (hw 2 + wh 2) +EV d2 +hwIE|
2 hw Vvd 2

=2cn +cnh+W EVE 2
hwIE| hw |E12

Now the above bound yields

E < 2c + cn(h+ w) Vd
Y - ElE1

Note that there are at most m 2 
= (n/S) 2 blocks in total and the sum of h over m - 1

off-diagonal blocks vertically is bounded by n (similarly for w). Thus we conclude
that

E <BEll c + c mn2 EV d2V

BEB(b)

In order to complete the proof, it suffices to show that

n2 2 d -1 2 C 1

E V M + - Z/d
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Note that Lemma 5.4.2 implies that

21E(Z
vV

1 )2
S(E

vVV

It follows that

n2(

vev

1 -2

-%l~l

and that

i~ |vEV d2

vEV

since dv < n.

Proof of Lemma 5.4.10

This lemma is a generalization of an approximation theorem due to Chatterjee [Cha15]
and Shah et al. [SBGW17 to the noisy and two-dimensional setting.

We use the shorthand Ct = bl() for the rest of the proof. Also define the set of

placeholder elements in the partition Ct as

s(Ct) ={I i is smallest index in some set I E Ct}.

146

' l l T ' ll ll l l l IlII |||| l I I f l r I

2

n
2 

1

n VE vv

4 1

dv > n.
veV NT

d 2
< 4 EVEV V

n2 ( YEVEV dv VEV



We are now ready to prove the lemma. Begin by writing

-2 n1 _Y XI2
IIX - R(X,t)II = Xk - 2

k=1 Ct 60kk)I
k=1 lt~ jEOt(k)

(j) "

<r X~- -- X )
k=1 l E kI t

< r(X);k--r(X111

k=s( I Ct(k) j kEb(k)

< r(? - r(X)jl[' I rX;+? ?|

k=1 Ct(k)

(iv)
< ||r- r(X)1 +1-- r(X)|1 + E t(X -t(k)

kEs(Ct)

= 2|| - r(X)||1 + nt.

Step (i) follows from the fact that each entry of the difference matrix X - R(X, Ct) is
bounded in the interval [-1, 1]; step (ii) follows from Jensen's inequality and convexity
of the fi norm; step (iii) uses the fact that for fixed k and j, the quantity Xke - Xit
has the same sign for all f E [n] due to the monotonicity of columns of the matrix X;

step (iv) uses the property of the blocking partition Ct, which ensures that [rs -?ij I <t
when the inclusion i, 3 E Ct(k) is satisfied for some k. This completes the proof.

5.5 Discussion

In this chapter, we studied the problem of estimating the comparison probabilities
from noisy pairwise comparisons under worst-case and average-case design assump-
tions. We exhibited a dichotomy between worst-case and average-case models for
permutation-based models, which suggests that a similar distinction may exist even
for their parametric counterparts. Our bounds leave a few interesting questions un-
resolved: Is there a sharp characterization of the diameter A(G) quantifying the
approximation error of a comparison topology G? The Borda count estimator, a
variant of which we analyzed, is known to achieve a sub-optimal rate in the case of
full observations; the estimator of Braverman and Mossel [BM08] achieves the op-
timal rate over the noisy sorting class. What is the analog of such an estimator
in the average-case setting with partial pairwise comparisons? Is there a computa-
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tional lower bound to show that our estimators are the best possible polynomial-time
algorithms for SST matrix estimation in the average-case setting?

5.6 Appendix: Bounds on the minimax denoising er-
ror

As we saw in Theorem 5.2.1, the minimax risk of Frobenius norm estimation is pro-
hibitively large for many comparison topologies. In some applications, however, it
may be of interest to control the denoising error, which is the error we make on the
observations seen on the edges of the graph. Accordingly, we define the quantity

E(G, C) = inf sup E 11M- M*l ,
M=ff(Y(G)) M* EC IE

where we have used a normalization of |El to provide an average entry-wise bound on
the denoising error. The following theorem provides bounds on the minimax denoising
error for fixed topologies.

Theorem 5.6.1. For any connected graph G, we have

ci IV(S)12  c2n log2
E(G, CNS) > max ,(S)l and S(G, CSST) < . (5.37)

E| s ECG I E(S)| |E| _

Again, the lower bound on the error of the noisy sorting class provides a lower
bound for the SST class. Conversely, the upper bound on the error for the SST class
upper bounds the error for the noisy sorting class.

For many graphs used in practice, the lower bound can be evaluated to show
that Theorem 5.6.1 provides a sharp characterization of the denoising error up to

logarithmic factors.

The upper bound is obtained by the least squares estimator

MLs = arg _min IIY - M*I1I.
MECSST

While we do not know yet whether such an estimator is computable in polynomial
time, analyzing it provides a notion of the fundamental limits of the problem. In
particular, it is clear that the denoising problem is easier than Frobenius norm es-
timation, and we obtain consistent rates provided that the number of edges in the
graph satisfies IEl = w(n log2 n).

5.6.1 Proof of Theorem 5.6.1

In this section, we prove Theorem 5.6.1 on the denoising error rate of the problem,
splitting it into proofs of the lower and upper bounds.
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Proof of lower bound

In order to prove the lower bound, we construct a suitable local packing P of the
parameter space CNS, and then apply Fano's inequality. For simpler presentation, we
describe the packing P by gradually putting constraints on its members. First, every
matrix in P is chosen to be MNS(7r, A) for a fixed A and some permutation 7r, so we
focus on selecting the permutations 7r.

Consider any connected subgraph S E CG with at least two vertices. Let the
vertices of S form the top IV(S)J items and choose the same ranking for the vertices
of Sc for each instance in the packing. Then all the matrices in the packing P have
the same (i, j)-th entry if i c Sc or j E SC. Hence the KL divergence between any
two models with underlying matrices in the packing P is bounded by 9A2 IE(S)|, by
Lemma 5.4.7.

Next, fix a spanning tree T(S) of S which has JV(S)j - 1 edges. Note that all the

2 1v(s)i-1 assignments of values to these edges

{Mjj : (i, j) E T(S), i < j} E {1/2 + A, 1/2 - A}Iv(s)1-1

are possible, since there are no cycle conflicts in the spanning tree. Using the Gilbert-
Varshamov bound, we are guaranteed that there are constants a and b such that at
least 2aIV(S)j such assignments are separated pairwise by bIV(S)| in the Hamming
distance. We choose the packing P consisting of matrices corresponding to these
assignments, so that JIM - M'11 > 8bA 2 IV(S) for any distinct M, M' E P.

Finally, Fano's inequality implies that

IEl&(G,(CNS) > 8bA 2 IV(S) I - 9A 2 1E(S)I + log 2
a|V(S)J

The proof then follows by choosing A 2 = c for a sufficiently small constant c. l

Proof of upper bound

As mentioned before, we obtain the upper bound by considering the estimator MLs.
The proof follows from previous results on the full observation case [SBGW17], but
we provide it for completeness. Note that for each (i, j) E E, the observation model
takes the form

Yi = Mi* + Wi j,

where Wij is a zero-mean noise variable lying in the interval [-1, 1].

The optimality of MLS and feasibility of M* imply that we must have the basic
inequality IY - MLS11 2 < I2 E, M*lI2, which after simplification, leads to

2IA2E (A, WE, (5.38)

where A = MLS - M*, and (A, B)E = (ij)EE AijBij denotes the trace inner product
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restricted to the indices in E.
In order to establish the upper bound, we first define the class of difference matrices

CDIFF := {M - M , A M' E CSST}, as well as the associated random variable

Z(t) := sup (D, W)E-
DECDIFF:IIDIIE<t

With this notation, inequality (5.38) implies }||AII < Z(IA||E). It follows from the
star-shaped property 8 of the set CDIFF that the following critical inequality is satisfied
for some J > 0:

62
E[Z(6)] < -

2

We are interested in the smallest such value 6. In order to find it, we use Dudley's
entropy integral, for which we require a bound on the covering number of the class
CDIFF. Such a bound was calculated for the Frobenius norm by Shah et al. [SBGW17
using the results of Gao and Wellner [GW071. Clearly, since IIMi - M <II2 _ IIMi -
MAFI}, a 6-covering in the Frobenius norm automatically serves as a 6-covering in the
edge norm 1| - IIE. Thus, we have the following lemma.

Lemma 5.6.2. [SBGW17 For every e > 0, we have the metric entropy bound

log N(E, CDIFF, 11 IIE) < log N(E, CDIFF, 11 .F) 9- (log )2 + 9n log n.
E2 E

Dudley's entropy integral then yields that for all t > 0, we have

(ft<[~) fc inf nJ-- + /oNcDF A d() IIEd
EEO,n[ -J6/ 2

< c{n-8 + 1-9/2 log N(, CDIFF, . IIE)d,}

After some algebra (for details, see Shah et al. [SBGW17I), we have

E[Z(t)] < c{n log 2 n + tV/n log n}.

Setting t = cv/ log n completes the proof.

8A set S is said to be star-shaped if t e S implies that at e S for all aC E [0, 1]
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