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Abstract

We study two gauge-theoretic Floer homologies associated to links, the singular in-
stanton Floer homology introduced in [15] and the monopole Floer homology, which
is explained in the book [16]. For both cases, we study in particular the spectral
sequence that relates the Floer homologies to the Khovanov homologies of links.

In our study of singular instanton Floer homology, we introduce a version of
Khovanov homology for alternating links with marking data, W, inspired by singular
instanton theory. We show that the analogue of the spectral sequence from Khovanov
homology to singular instanton homology introduced in 115] for this marked Khovanov
homology collapses on the E2 page for alternating links. We moreover show that for
non-split links the Khovanov homology we introduce for alternating links does not
depend on w; thus, the instanton homology also does not depend on W for non-split
alternating links. We study a version of binary dihedral representations for links with
markings, and show that for links of non-zero determinant, this also does not depend
on w.

In our study of monopole Floer homology, we construct families of metrics on the
cobordisms that are used to construct differentials in the spectral sequence relating
the Khovanov homology of a link to the monopole Floer homology of its double
branched cover, such that each metric has positive scalar curvature. This allows us
to conclude that the Seiberg-Witten equations for these families of metrics have no
irreducible solutions, so the differentials in the spectral sequence can be computed
from counting only the reducible solutions.

Thesis Supervisor: Tomasz S. Mrowka
Title: Professor of Mathematics

3



4



Acknowledgments

First of all, I would like to thank my advisor, Tom Mrowka, who taught me so

much mathematics and selflessly made time for me and answered my questions with

inhuman patience. He could make me smile even when things were rough, and his

encouragement and infectious enthusiasm were sometimes all that kept me going.

I would like to thank the topology community at MIT and elsewhere. I am

particularly grateful to my academic brothers, Piotr Suwara and Yasha Berchenko-

Kogan, for all the discussions about mathematics and other topics. I would specifically

like to thank, in no particular order, Matthew Stoffregen, Peter Kronheimer, Jianfeng

Lin, Boyu Zhang, Daniel Ruberman, Ciprian Manolescu, Raphael Zentner, and Julian

Chaidez.

I am grateful that I have had many great teachers throughout my education. I

would especially like to thank Zurning Feng, Cheo Santos, and Carmen Olmo, who

inspired my interest in mathematics and pushed me to do my best. I would like to

thank my undergraduate advisor, Dennis Gaitsgory; his courses shaped my math-

ematical education and showed me the beauty of the subject. I would also like to

thank Joe Gallian and Pavel Etingof, whose programs introduced me to research in

different areas of mathematics. I would like to thank Guoliang Yu, who introduced

me to research in non-commutative geometry. His advice and guidance over the years

have been invaluable.

I would like to thank my friends for their camaraderie and for the moments we

spent together. I would in particular like to thank Mark Chilenski, Inna Zakharevich,

Yi Sun, and Andrea Carney; I would not have made it through (more or less) sane

without their friendship and support.

Finally, I would like to extend my deepest gratitude to my family for their constant

support and love.

5



6



Contents

1 Marked link invariants from singular instanton Floer theory 11

1.1 Context: A review of singular instanton Floer homology . . . . . . . 11

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Marked points Khovanov homology . . . . . . . . . . . . . . . . . . . 19

1.3.1 Marked points and alternating links . . . . . . . . . . . . . . . 21

1.3.2 A discussion of filtrations for non-alternating links . . . . . . . 39

1.3.3 Modifying the q filtration in the presence of w . . . . . . . . . 46

1.4 Spectral sequence collapse . . . . . . . . . . . . . . . . . . . . . . . . 61

1.5 Binary dihedral representations . . . . . . . . . . . . . . . . . . . . . 70

1.5.1 Concerning RB(Lw) . . . . . . . . . . . . . . . . . . . . . . . 72

2 Monopoles and positive scalar curvature 81

2.1 Context: A review of monopole Floer homology . . . . . . . . . . . . 81

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.3 Form of the cobordisms . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.4 Metrics of positive scalar curvature . . . . . . . . . . . . . . . . . . . 87

2.4.1 Surgery on the metric S1 x D 2 ............ . . . .. 87

2.4.2 when the S2 has radius 1 . . . . . . . . . . . . . . . . . . . . . 102

2.4.3 Families of metrics on the cobordisms . . . . . . . . . . . . . . 103

7



8



List of Figures

1-1 Resolutions for a crossing. . . . . . . . . . . . . . . . . . . . . . . . . 14

1-2 Trefoil with markings . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1-3 Cube of resolutions for trefoil with markings . . . . . . . . . . . . . . 15

1-4 Counter-example to link invariance . . . . . . . . . . . . . . . . . . . 21

1-5 Exact triangles for 1 crossing with marking data . . . . . . . . . . . . 25

1-8 Decomposing the exact sequence. . . . . . . . . . . . . . . . . . . . . 29

1-9 Cobordism for unlink with one dropped crossing . . . . . . . . . . . . 41

1-11 Resolution for counterexample . . . . . . . . . . . . . . . . . . . . . . 45

1-12 Configurations with 2 adjacent dropped crossings . . . . . . . . . . . 49

1-13 Adding a crossing to reduce the number of components . . . . . . . . 65

1-16 Example determinant 0 links, where the number of binary dihedral

representations may depend on w. . . . . . . . . . . . . . . . . . . . . 79

2-3 A resolution of a link with arcs representing crossings changed in cobor-

d ism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2-6 Attaching a handle to S1 
x S2 . . . . . . . . . . . . . . . . . . . . . . 88

2-7 A function used to construct the metrics of positive scalar curvature . 97

9



10



Chapter 1

Marked link invariants from singular

instanton Floer theory

1.1 Context: A review of singular instanton Floer

homology

Let us start by defining the singular instanton Floer homology, a functor that asso-

ciates a Z/4 graded abelian group to a triple (Y, K, P), where Y is a closed, oriented,

connected 3-manifold Y, L is an embedded link in Y, and P a choice of singular

bundle data. This is defined by Kronheimer and Mrowka in 115].

Let us briefly discuss the singular bundle data. For a closed, oriented 4 dimensional

Riemannian manifold X, with a smoothly embedded surface E c X, the singular

bundle data allows us to write down model singular connection A 1 on a PU(2) bundle

P on X\E, which is modelled near E on the connection matrix

i 1 0
- dO
4 0 -1

where dO is the angular coordinate around E.

Kronheimer and Mrowka also defined an analogous concept of singular bundle data

for (Y, K), and from there, a space of connections modelled on a singular connection,
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ek(Y, K, P), and the determinant 1 gauge group for the singular bundle 9k+1(Y, K, P).

(Here, k is the number of derivatives in the Sobolev norm; this number will not affect

the computations in the end.)

The singular instanton Floer homology is, in rough terms, an infinite dimensional

analogue of Morse homology. Recall that the Morse homology of a finite dimensional,

closed, oriented Riemannian manifold M is defined as the homology of a complex with

chain group generated by the critical points of a Morse function f : M - R, which has

to satisfy certain transversality conditions. The differential counts gradient flow lines

for pairs of critical points such that the space of gradient flow lines is 0 dimensional.

The singular instanton Floer homology is the analogue of this construction for the

space '3 = Ck/9Sk1 and the Chern-Simons functional

CS : B -- R/Z.

That is, it is the homology of a complex with chain group generated by the critical

points of CS and differentials counting the gradient flow lines of CS.

Using a Chern-Simons functional on Ck(Y, K, P), Kronheimer and Mrowka con-

structed the singular instanton Floer homology as a functor

I: BLINK -. P-GROUP

from the category BLINK of closed, oriented, connected 3-manifolds Y with unori-

ented embedded link K and singular bundle data P, to P-GROUP, the category of

abelian groups where morphims are only defined up to overall sign.

Kronheimer and Mrowka further constructed a category WINK that replaces the

singular bundle data with an embedded 1 manifold (w, Ow) c (Y, K) where morphisms

between (Y, K1 , wi) and (Y, KO, wo) are cobordisms (W, S) with a 2 manifold with

boundary w whose boundary consists of wl, wo and various arcs in S. The singular

instanton Floer homology also defines a functor from WINK to P-GROUP,

I: BLINK -- P-GROUP

12



The intuition behind this construction is that w represents the Poincare dual of the

w 2 of the singular bundle. More about these functors can be found in Section 4 of

1151.
In the rest of 115], Kronheimer and Mrowka constructed a singular instanton Floer

homology for based links in 3-manifolds. This is constructed by taking

I (Y, L) -= I(Y, L , w)

where L is L with an additional component forming a small circle around the base-

point, and w is a radius connecting the basepoint to the additional circle. When

Y = S 3, they exhibited a spectral sequence E such that (E1 , dl) is the reduced Kho-

vanov complex of L, and such that E abuts to the instanton Floer homology, I (S3, L).

They then used this to prove that the Khovanov homology detects the unknot. They

further showed that for alternating knots, the spectral sequence collapses on the E2

page.

There is also an unreduced version of this

10 (Y, L) = I(Y, LO, o

where L is the disjoint union of L with a Hopf link far away from L in Y and W is

an arc that connects the two components of the Hopf link. There is an analogous

spectral sequence relating the unreduced Khovanov homology of a link to I(S 3 , L).

The purpose of this chapter is to analyse what happens for different values of w.

Specifically, we will still take the w that is already in the definitions of I and I, that

is, the arc between the basepoint and the added circle in the reduced case, and the

arc between components of the Hopf link in the unreduced, but we allow additional

arcs of w that may go between components of the original link. The filtred complex

that gave rise to the aforementioned spectral sequences can still be constructed for

other values of w, but the homology of the (E1 , dl) page may no longer be a link

invariant. We explore what it may be, and what marked link invariants we can find

that are inspired by it.
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1.2 Introduction

For the rest of this chapter, we shall work over a field of characteristic 2.

Let L c S3 be a link, and let w be a one dimensional submanifold of S3 with

boundary in L, thought of as the Poincare dual of w2 (Q), where Q is an SO(3)

bundle on the link complement, S3\L.

Let us delve a little further into the construction of the spectral sequence men-

tioned in the previous section. This spectral sequence comes from a skein relation for

instanton Floer homology: for a projection of a link, there are skein maps between

the instanton Floer homologies for the different resolutions, which gives us a filtered

cube complex. The edge maps coincide with the Khovanov differential.

For PL a projection of the link L, Kronheimer and Mrowka's spectral sequence

can be generalised to all w, so that it becomes a spectral sequence whose E2 page is

an object we call H(PL, Ow), and which abuts to I#(L, w) = I(L u H, wo u w), where

H(PL, aw) is constructed as follows.

Let A denote the Z/2-algebra Z/2[x]/x 2 . Consider the cube of resolutions of of

a link projection PL with n crossings, where each vertex v e {0, 1} of the cube is

assigned a resolution D,, by resolving each crossing as in Figure 1-1.

1 /

Figure 1 1: Resolutions for a crossing

Figure 1 2: Trefoil with markings

At each vertex of the cube, we then have an unlink and some marked points on

the unlink representing Ow, the boundary of w. Let C(PL, aw) be the complex that
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assigns to a resolution of c components Aec if each of the components has an even

number of endpoints of w, and otherwise assigns that resolution 0. For example, for

the trefoil with w to the right, the resolutions are as given in Figure 1-3. The only

resolutions whose unlink has more than one component for which the AO' has not

been replaced with 0 is the (1,0,0) resolution, because for that one the arc w has

endpoints on the same component of the unlink.

(1,0,0)

AOA

(0,0,0) (0,1,0)

(0,0,1)

0

A

(1,0,1)

O

A

(0,1,1)

A

(1,1,1)

0

Figure 1 3: Cube of resolutions for trefoil with markings

The differentials in C(PL, ow) are along edges of the cube as depicted in figure

1-3 and given by the merge map m : A 9 A -- A and the split map A : A -- A 9 A,

where

m(10 1) = 1, m(10 x) = m(x 91) = x, m(x 9x) = 0,

and

A(1) = 10 x+ X91, A(x) = x9x,

when the source and target are both non-zero.

Definition 1.2.1. The marked Khovanov homology of PL with w, H(P, aw) is the

homology of the complex C(PL, Ow).

For a link projection PL with marking data w and a basepoint p c PL, we may also

consider the reduced complex Cred (PL, Ow) formed by, at each vertex, replacing the A

15



in AOn corresponding to the component with the basepoint with A/Kx), similarly to

the usual reduced Khovanov complex. The differentials in this complex are defined

similarly, replacing m and A with the induced maps mred and Ared on the quotients.

The following definition is the reduced version of the above.

Definition 1.2.2. The reduced marked Khovanov homology of PL with w, Hred(PL, OW)

is the homology of the complex Cred(PL,8w)-

In general, H(PL, Ow) is not a marked link invariant, in that it is not invariant

with respect to moving an endpoint of w along a component, nor is it invariant with

respect to Reidermeister II and III moves.

In this chapter, however, we show an invariance result for alternating link projec-

tions.

Theorem 1.2.3. For an alternating projection PL of an alternating link L, with

marking data w, H(PL, Ow) is a marked link invariant; that is, it is invariant with

respect to different projections for the same alternating link and with respect to

moving an endpoint of w along a component of the link. Moreover, for non-split

alternating links, it does not depend on w. For based links, the same is true for

Hred(PL, Ow ).

Analogously to the spectral sequence in 1151, there is a spectral sequence from

H(PL, Ow) to I#(L, w). In 1151, they show that the spectral sequence collapses for

quasi-alternating knots K. We extend that to a result for alternating link projections

L with marking data w:

Theorem 1.2.4. For alternating link projections PL, the spectral sequence from

H(PL, Ow) to I#(L, w) collapses on the E2 page.

Combining this theorem with Theorem 1.2.3, we have:

Corollary 1.2.5. For non-split alternating links L, the instanton homology I#(L, w)

does not depend on w.

16



In [13], Kronheimer and Mrowka also exhibited filtrations q and h on the Khovanov

complex for an alternating link such that the Khovanov differential increases h by 1

and preserves q, and such that the difference between the instanton differential and

the Khovanov differential has order > 1 with respect to the h filtration and > 2 with

respect to the q filtration. They moreover use this to show that the isomorphism

types of the pages of the spectral sequence with respect to the q and h filtrations are

link invariants.

We extend the q filtration result to links with certain w. Specifically, consider

w corresponding to singular bundle data PA satisfying that on the cobordism corre-

sponding to each diagonal of the cube, we have '(w 2 (PA)) 0 (mod 4) where 'P is

the Pontrjagin square. Here PA is defined in section 1.3.2, as in 115], to be a certain

principal PU(2)-bundle on a non-Hausdorff space XA coming from (X, E) where E

is the cobordism and X is the ambient space, S3 x R.

For such w, we define a q filtration on the modified Khovanov complex, so that the

instanton differential has order > 0. We use this to show that the isomorphism class

of the first page of the spectral sequence from H(PL, w) to the instanton homology is

a tangle invariant of the tangle obtained by considering the part of the link outside

of a ball containing w.

In 122], Scaduto and Stoffregen studied the homology of the complex C(PL, OW),

which they called Hd(D, w), and exhibited its relation via a spectral sequence to the

framed instanton homology of the double branched cover of the link. This spectral se-

quence is the framed instanton theory analogue of the spectral sequence in [151. They

moreover conjecture a relation between Hd(D, w) and a twisted Khovanov homology

similar to those in 121, 1101, and 1201, which is an invariant of links with marking data,

and which also has a spectral sequence relating it to the framed instanton homology.

We will also look at modifying the space of binary dihedral representations to

account for w: recall that the binary dihedral group BD c SU(2) - S3 c H is given

by BD = SA u SB, where SA = e,' and S' = Je'.

Recall that a dihedral subgroup of SO(3) is a a group generated by rotations

about a fixed axis and reflections about the orthogonal plane to that axis, and a
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binary dihedral representation p : G --* SU(2) is a representation whose image in

SO(3) via the canonical map SU(2) -* SO(3) is contained in a dihedral subgroup.

The space of binary dihedral representations of the fundamental group of a link

complement, which are conjugate to representations p : 7r,(S
3 \K) --+ BD c- SU(2),

has been studied as a link invariant. In [11, Klassen showed that for F = 71(S3 - K)

for a knot K, the number of conjugacy classes of non-abelian homomorphisms F --

BD is

where AK(t) is the Alexander polynomial of K.

In 1251, Zentner studied knots with the property that all of its SU(2) representa-

tions are binary dihedral and called such knots "SU(2)-simple". He showed that if a

knot K is SU(2)-simple and satisfies a certain genericity hypothesis, then the higher

differentials on the instanton complex vanish.

In this case, we study a modification of the space of binary dihedral representations

for links with w. Note that all the meridians of each component of L are conjugate

to each other in 7r,(S3 \L). Moreover, elements of SB can only be conjugate to other

elements of SB, so either all meridians of a given component of L go to SB, or they all

go to SA. For the representation to be non-abelian, they must go to SB for at least

one component.

To modify the link invariant of binary dihedral representations to account for W in

the spirit of the representations spaces that arise in instanton homology, we consider

the space of representations of ir,(S3 \(L u w)) which take the meridians around w to

-1.

We will primarily want to consider the representations which map the meridians

around the link components to SB. Let L = uLi be the components of Li.

Definition 1.2.6. For a link L, let the spaces of marked binary dihedral representa-

tions modulo conjugation be denoted by

R(L, w) = {p : 7r1(S 3\(L u w)) -+ BDIp(pw) = -1 e SA}/conj

18



and

RB(L, w) = 1p: (S3 \(L u w)) -) BDJp(pL) e SB, P(Pw) = -1 e SA }/Conj.

where pLi is a meridian around Li and p, is a meridian around W.

These are marked link invariants. That is,

Lemma 1.2.7. The dependence on w of the spaces R(L, w) and RB(L, w) can be

reduced to the parity of the number of endpoints of w on each component.

In particular, if L is a knot, then these invariants do not depend on w.

We shall prove that similarly to the Khovanov homology we defined, for non-split

alternating links, and more generally, for links of non-zero determinant, this invariant

does not depend on w:

Theorem 1.2.8. For a link L with non-zero determinant and singular bundle data

W, the number of conjugacy classes of binary dihedral representations in RB(L, w)

does not depend on w.

We will also show a partial converse to this: For a link L with determinant zero, the

number of conjugacy classes in RB(L, w) does depend on w. In particular, RB(L, 0) #

0, but we will show that there is w such that RB(L, w) is empty.

1.3 Marked points Khovanov homology

Given a link projection PL, with a finite set of marked points Ow, recall in the intro-

duction, we defined a complex C(PL, Ow), which was like the Khovanov complex, but

with 0 instead of AOn at vertices of the cube where a component has an odd number of

marked points. In the latter case, where a component has an odd number of marked

points, we say that Ow "kills" the vertex in the modified Khovanov complex.

Lemma 1.3.1. The C(PL, aw) defined above is actually a complex, ie, d2 = 0.
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Proof. Just as in the usual Khovanov homology, we need only show that squares in

the cube commute.

Dio .Dil

Doo Do,

If Ow does not kill any of the corners in the square, then the edge maps are the same

as those in the usual Khovanov complex, so the square commutes. If Doo or D11 is

killed, or if D10 and Do, are both killed, then the square obviously commutes.

The only remaining case is that Doo and D11 are both not killed, but one of D10

and Do, is killed. Without loss of generality assume that it is D10 . Then there must

be a two components in the D10 diagram with an odd number of marked points each,

and these two components must be merged into one component in both Doo and D11 .

This is only possible when the square is the projection of a two component unlink

that has two crossings between the components, corresponding to the two dimensions

of the square.

Thus, the other map Doo i  -+ D11 is m o A, which is 0, because

m(A(1)) = m(1 0 x + x 0 1) = 0,

because we are over a field of characteristic 2, and

m(A(x)) = m(X 0 x) = 0.

At this point, we have not assumed that the projection is alternating, but it

already makes sense to consider the spectral sequence from H(PL, OW) to I#(L, w)

analogous to the one in 1151. However, H(PL, Ow) is not an independent of the choice

of projection for L, nor of choice of where the endpoints of w are on the components.
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For a counterexample to the latter, see Figure 1-4.

Figure 1 4: In this non alternating projection for an unknot, with w being the arc shown, it is easy to
see that H(PL, 4w) has dimension 6 over Z/2Z. However, if we used a projection with no crossings,
we would get dimension 2.

1.3.1 Marked points and alternating links

We have now seen an example that shows that our marked point Khovanov homology

may change as an endpoint of w slides along a component in the link. We shall see,

however, that this cannot happen for alternating link projections:

Proposition 1.3.2. For an alternating link projection, the complex above is well

defined up to not-necessarily-degree-preserving quasi-isomorphism. That is the oper-

ations of sliding an endpoint across a crossing does not change the complex (up to

not-necessarily-degree-preserving quasi-isomorphism).

To that end, first let us show that for alternating link projections, we can compute

our homology dropping one of the crossings.

Remark. Throughout this discourse in all diagrams, the "vertical maps" will always

correspond to the one crossing we are trying to drop.

Definition 1.3.3. Note that if we 'drop' one crossing in a cube a resolutions, ie, leave

it unresolved, we still have unlinks, because a projection with only one crossing can

only be an unlink. We will call a partial resolution that is an unlink a "pseudo-diagram

resolution".
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For crossing x on the alternating link projection PL with marking data OW, we

define a complex C(PL, Ow, x) whose underlying groups are the same as before: if there

are k crossings total, form the k - 1 dimensional cube of resolutions from resolving

all crossings except x. Place A8n at a vertex where there are n components to the

unlink there, unless some component has an odd number of markings, in which case

place 0. These are the chain groups.

Let us define the differential dc. There is a map for each edge, and edges corre-

spond to crossings, so let us define the differential corresponding to edge y thus:

* Type 0: The number of components in the pseudodiagram resolution changes

and neither source nor target is killed by w: In this case take the maps to be m

or A, the merging or splitting maps of the Khovanov complex.

" Type 1: The number of components of the pseudodiagram resolution changes

and at least one of source or target is killed by w: In this case the map is 0.

" Type 2: The number of components of the pseudodiagram resolution does not

change. In this case, the map is 0.

Lemma 1.3.4. For a link projection, the cube with a dropped crossing (C, dc) defined

above forms a complex; since we are working over Z/2, this is saying that the cube

commutes.

Proof. Consider a square in C:

C2 C4

C1 -- 03

There are two crossings that are being resolved in this square (in addition to the

crossing left unresolved). Let us consider only the active components, that is the

components in the pseudo-diagram resolutions in question that involve at least one
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of the crossings. Let a, be the number of active components in the pseudodiagram

resolution corresponding to Ci.

Note that the minimal ai is at most two, because in the corner of the square with

the minimal aj, each crossing can only involve one component.

If the total number of endpoints of w on these active components is odd, then

all the Ci are 0, so the diagram commutes. We assume that the total number of

endpoints on the active components is even.

Moreover, if the unresolved crossing is not in one of the active components, then

the diagram commutes because it looks the same as the marked Khovanov for a fully

resolved link, which we showed commutes above. Thus, we may assume that the

unresolved crossing is on an active component.

We do some casework:

1. If min(ai) = 2. Consider the corner with minimal aj. It has two components,

both of which are active. There cannot be a crossing that goes between com-

ponents, or resolving it the other way would lead to lower aj. Thus, there must

be one crossing on each of the two components. In this case it is clear that the

diagram commutes, because the two crossings act independently of each other

and are then tensored together.

For all other cases, min(ai) = 1.

2. If min(ai) = 1 and max(ai) = 3. In this case all the maps change number of

components, so they are m, A, or 0, where they are only 0 if either the source

or the target is 0. Then all maps are analogous to the case where we did not

drop a crossing.

In particular, at the corner with ai = 1, the two resolved crossings must each

be restricted to one wing of the component, which means that if we resolve the

remaining crossing in a way that doesn't change the number of components at

the vertex with ai = 1, we do not affect the other groups and morphisms in the

diagram. Commutativity now follows from commutativity for the case with all

crossings resolved.
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3. If min(a) = 1 and max(ai) = 2.

If adjacent vertices on the cube all have different ai, then we get commutativity

for the same reason that commutativity works in the case where we do not drop

a crossing, since all the maps are analogous, as in the previous case.

So we may assume that there is either a pair of adjacent vertices with ai = 1,

or there is a pair with ai = 2.

If there are simultaneously a pair with ai = 1 and a pair with ai = 2, then it is

clear that however you traverse the square, you get zero, so it commutes.

In there aren't both pairs simultaneously, then the ai are either (1, 1, 1, 2) in

some order, or (2,2,2,1) in some order. Since m o A = 0, the case (1, 1,1,2)

commutes.

The case (2, 2, 2, 1) is not actually possible: consider the corner with one com-

ponent. This is a single loop with a crossing on it, which divides it into two

wings. There are two other crossings on it, such that if you resolve either of

the crossings in the other way, you get two loops. This means each of these two

crossings must be restricted to one wing, ie, it must go from one wing to itself.

If the two crossings are on different wings, then switching the resolutions for

both would give you 3 components.

Thus we have that both crossings are restricted to the same wing. Then, one

wing does not have any crossing endpoints on it, which means that we can think

of the diagram ignoring the crossing and the empty wing; thus it is not possible

for another crossing not the change the number of components, a contradiction.

4. If min(ai) = 1 and max(ai) = 1. In this case all edge maps are 0, so the square

commutes.

This finishes the cases and we have shown commutativity. L

Let C be the cube with one of the crossings not dropped, and A and B be the

corresponding cubes when we resolve that crossing in the 0 and 1 configurations.
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We will establish maps Ai -+ B - C - Ai for i e (0, 1}N-1 that commute with

the maps in the cube, such that Ai - Bi -+ Ci -+ Ai - B, is exact, and also this

splits (I will define what that means in this context).

The maps within A, B, and C are already defined. As shown in Figure 1-5, define

the maps B -- C, A -- B, C -- A, thus: whenever there are maps between terms

with a different number of components, take m or A, unless either the source or the

target is 0 (which happens when one of the components of the corresponding unlink

has an odd number of endpoints of w), in which case the map is 0.

If the source and target unlinks have the same number of components, let the

map be 0 unless an unresolved crossing divides a component into two parts with an

odd number of marked points on each side, in exactly one of the source and target,

in which case let the map be Id.

m 0 0 Id

o m I 0 ('D

Figure 1 5: Exact triangles for 1 crossing with marking data

Lemma 1.3.5. The cube commutes and for i e {0, 1}N, the sequences A -- Bi -

C, - Ai -- B, are exact.

Proof. The exactness is easy to see. As for the commutation: we wish to show that

squares containing the vertical maps commute. For squares that only involve As and

Bs, we have already shown this above, when we checked that out modified Khovanov

homology forms a complex.
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This means it remains to show that the complex:

A1 . A 2

C1. C2

B1 . B2

commutes.

As before, let us ignore components that are not touched by either of the two

crossings in question, and only look at ones that are, ie, the active ones.

Note that two crossings are involved in this picture; the one corresponding to the

vertical edges is the one we will be leaving unresolved in row C. Call this x. The two

columns correspond to the resolutions of the other. Call this y.

Let a,, a2, a3, a 4 denote the number of components in the pseudo-diagram reso-

lutions corresponding to A 1, A 2, B1, and B2, respectively. Note that min(ai) < 2.

Again, we divide into cases:

1. If min(ai) = 2. In this case at the corner (of the AB square) with the minimal

number of components, neither crossing x nor y goes between components, and

since both components have to be involved, that means x is on one component

and y on the other. The maps then act independently on corresponding tensor

factors, so the squares commute.

2. If min(ai) = 1 and max(ai) = 3. Then the resolution looks like one of the

resolutions in Figure 1-6 (possibly with w). In the corner with three components,

one of the components does not involve x. Therefore it persists in the entire

column. If that component has an odd number of endpoints of w, then any

composed map across any square has either vanishing source or vanishing target,

so the squares commute.
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Otherwise, we have that if the vertical maps on the left are f and g, as in the

diagram, then the ones on the right are f 0&Id and g 9Id. Then each square in

question is:

A

t

f

m

f O Id

A

m

Here, f is one of: 0, Id, m, A. If f = 0 or f = Id, the diagram clearly commutes.

For f = m or f = A, the picture is the same as a classical Khovanov diagram

where instead of the loop with a crossing as in row C, it is just a loop, so the

diagram commutes.

3. If min(a) = 1 and max(ai) = 2. In this case if we look at the square formed by

A 1, A 2 , B1, B2 , ie the one corresponding to the classical Khovanov complex for

the two crossings, it must have two vertices with ai = 1, opposite each other;

the other two vertices have ai = 2.

More specifically, A1 and B2 must have one component, and A 2 and B1 must

have two components; if this were reversed, then the square would represent
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a link projection for an unlink with two crossings between the components,

which cannot be a projection of an alternating link. Thus, the full picture (not

including w) looks as in Figure 1-7.

JDm o cI

0 o

00~ 0-0
to 0 

fl d g

os 0*

0 r7

TO

Figure 1 7: In this figure, the top row is the row corresponding to the Ai, the middle one to the C,
and the bottom one to the Bi. The four cases are based on whether either or both of A1 and B2 are
killed by w

Note that in this case C1 and C2 must both have 1 component, so the map

C --- C2 is 0. Thus, to show that the squares commute, it suffices to show that

B1 -* B2 -- + C2

and

C1 -- A1 --* A 2

are zero. These compositions are both either 0 or m o A, which is also 0.

This concludes the proof that the complex composed of A, B, C as exhibited com-

mutes. E

We shall now explain the sense in which the vertical exact sequences "split", as we

alluded to earlier.

In figure 1-8, we show the four cases for what the vertical maps could be, only

taking into account components with the crossing x.

Let us exhibit Di, Ei, F such that Ai = Ei G F, Bi = Di E F and C, = Di E Ei,

such that map Ai -- Bi is 0 on Ei and Id : F -+ F, and similarly for Bi -+ Ci and
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C=DeE

B=DSF

A=EOF

Figure 1 8: Decomposing the exact sequence.

Ci - Ej.

This, again, happens by casework. For the four cases la, lb, 2a, 2b, in figure 2,

Then Di, Ej, F are given by

e Case la:

Ai = E E®F, with E = (1&x + x®&1,x x), F = (1®91,1®gx)

B = Di D Fi, with Di = 0, F = (1, x)

Ci = ED Di, with Di = 0, E = (1, x)

e Case lb:

Ai = Ej (D Fi, with Ej = 0, F = 0

B = Di E Fi, with Di = (1, x), F = 0

Ci = E D Di, with Di = (1, x), Ej = 0

* Case 2a:

Ai = E2 D Fi, with E = 0, F = (1, x)

Bi = Di e Fi, with E = (10 1, 1 (9x), F = (1 ®9x + x ®1, x (9x)
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Ci = Ej ( Di, with Di = (1, x), E = 0

* Case 2b:

Ai= Ej ( Fi, with Ej = (1, x), F = 0

Bi = Di D F, with Ej = 0, 0

C= E @ Di, with Di = 0, E = (1, x)

Note that in the above definition, we have to make some choice with the term

Fl c Ai in case la and Di c Bi in case 2a. Our definition depends on the choice of

ordering of the two components. We can do this consistently by choosing some one

of the four corners of the crossing we want unresolved and always taking the loop

containing that corner to be the first. We call this the first loop.

In defining the D, E, F, we are considering the component of the pseudodiagram

resolution containing the unresolved crossing. For the rest we tensor up with AN-1

componentwise.

Now we are looking at sequences of cubes E @ F - D @ F -- D D E -- E D F.

We can split D into @Dj where Di is the direct sum of all parts of D where the sum

of the indices is i; similarly for E and F.

.- E@ F - E E F+ '

--- .Di @ E -- D+ EiA1 - .-

- -- D- D9 F. - D D9i1 0F+1  '

-, 0 F, -.- E F+1 '
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where the horizontal maps are the differentials in the cubes A, B, C and the vertical

maps are all identity on one component and 0 on the other.

Let us consider what the horizontal maps are, ie how the differentials within cubes

A, B, and C look when written in terms of D, E, F. Let us consider dA : Ei E Fi -+

Ejwi @ F41 and write it as dE -Y . Note that dEF = 0, because if it were
dEF dF

nonzero, consider

dD dFD

dDF dF
Di F - Dj+j (@ F+j = Bj+j

0, Id _ _ 0, Id
dE 7Y

[ dEF dF J

Then if dEF # 0, then some x e Ej maps nontrivially to Fi+1, which then maps

nontrivially up to F+1 c Biw+, but this is impossible because the diagram commutes,

and x maps to 0 e Di ( Fi.

Similarly, dDE and dFD = 0. Let us remark that for this argument, it is not

surprising that we do not need to take into account the choice we made for F c A

and D c B, whose definitions required a choice of a corner of unresolved crossing,

because the statement that dEF, dDE, and dFD vanish is saying that the part that

the vertical differential kills must map horizontally to the part of the target that the

vertical differential kills.

We can now write

dA = dE 1
0 dF

dB F dD 01
3 dF
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and

dc= dD d
0 d E

Lemma 1.3.6. In the notation above, a = 0, where a: E -- D.

Proof. Notice that in the cube C, in each vertex of the cube we have Di = 0 or Ej = 0

(notice this by checking all the cases; see figure 1-8). The cases with nonzero E are la

and 2b, and the ones with non-zero D are lb and 2a. Hence, a part of the differential

on C with a # 0 must be

(la or 2b) -- (lb or 2a)

We divide into cases:

" la -- 1b: Looking at the square on the A and B rows,

B1 - B 2

A1 . A 2

the vertical maps come from merges, and the horizontal map on row A must

come from a split, because it goes from a resolution that doesn't split w to one

that splits w. Counting numbers of components, we see that the horizontal map

on level B must also be a split. Thus, if B1 has i components, then A 1, B2 have

i + 1 and A 2 has i + 2.

Counting only active components (components that involve at least one of the

two crossings), i is 1 or 2. In case i = 1, the original link cannot be alternating.

If i = 2, we are looking at two crossings on two separate components in the B1

corner, at least one of which has w split across the crossing, which means either

A 1 = 0, in which case the first column is not in case la, or B2 = 0, in which

case the second is not in case 1b, a contradiction.

* 2b -+ 2a, This proof works exactly the same way; the vertical maps come from
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splits, and for the horizontal map B -) B2 to go from splitting w to not splitting

W, it must be a merge, and then the same argument applies.

* la - 2a and 2b -+ lb. Note that the number of components in the resolution

for A1 must be of opposite parity to the number of components in the resolution

for A 2, but this means that the number of components in the resolution for C1

must be the same as that for C2 . Thus for this map, the differential C1 -- C2 is

simply zero, because on level C we defined the differential to be zero whenever

it goes between two resolutions of the same number of components.

Thus a = 0.

From the above analysis, we see that the cone of the differential A -+ B is @Di_ 1

Fi_1 @ F D Ej, with the differential

given by

Observe, moreover, that

maps: This is because

dD 0 0 0

/ dF 0 Id

0 0 dE Th

0 0 0 dF

D, E, and F are chain complexes and # and -y are chain

- 2

2 dD 0 d2 0

/3 dF /OdD dFO dF

I
so d2 = 0, d 2 = 0, and / is a chain map. Using dA, we can show the same for dE

and -y.

Let us consider the composition -y o 0 : Di -E+2.
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Lemma 1.3.7. The cone of the map A -- B, that is the complex - - (D

Fi_ ( F ( Ej --- is quasi isomorphic to the complex

Di1 G Ej --+ Di e Ej+1 ---

with differential d = dD 0 ,which we can think of as a complex based on
-y o 0 dE

the psuedodiagram that gave rise to C, but with an extra differential term -y/ 3 which

bumps the degree up by 2 (ie, the differential now has components in (un-adjusted

for self-intersection of cobordisms) cohomological dimension both 1 and 2).

Proof. Consider the maps

7r : D- 1 @Fi_1 (E Ej (1 F +-+ Di_1 (E Ej : i

given by

i(X, z) = (X, 0, z, OX), and 7r(x, y, z, w) = (x, z + yy).

Let us check that these are chain maps:

d(i(x, z)) =

dD

)3

0

0

0 0 0 X dDX

dF 0 Id 0 O3X

0 dE -Y z dEz +f-X

0 0 dF dFOX

= [dDX
7y3x + dEz

where the equality '22 comes from the facts

working over characteristic 2.

For the other direction, we have

I i(d(x, z))

that /3 is a chain map and that we are

d(r(x, y, z, w)) = dD 0 dDX

-y/ dE z 3y 7 + dEz+ dE-yy
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dDX

dDX1 OxdFYw =+ W (d(x, y, z, w))
LdEz+ -yw 3x + 7dFy + 7w dEz + 7W

dFw

Having checked that the maps are chain maps, we proceed to show that their

compositions are chain homotopic to the identity.

For 7r o i, note that 7r o i(, z) =r(x, 0, z, Ox) = (x, z + '}0) = (x, z), so 7r is a true

left inverse of i.

For i o 7r, we have

i o 7r(x, y, z, w) =i(X, z + yy) = (x, 0, z + Yy, OX).

To show that this is chain homotopic to

w) is chain homotopic to 0.

Consider

the identity, it suffices to show that (0, y, yy, Ox+

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Then we have

(hd+dh)(x,y,z,w) =

0

0

0

/3

0

I

0

0

0

0

0

0

0

0

1Ix

y

z

w1=0

y

.yy

OX + wI
As desired.

Note that terms of the form -y o /3: Ci -- Ci+2 will involve 2 crossings (other than

the dropped one), so we can think of it as a diagonal map on a square in C.

We can now show that -y o / = 0 for alternating links.
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Lemma 1.3.8. For alternating link projections, with our notation as above, yo/3 = 0.

Thus, for alternating link projections, the complex A -- B is quasi-isomorphic to the

complex C with differential dD 0 but as -y o3 0, this is ,
yo#0 dE 0 dE

which is the complex for one dropped crossing, by Lemma 1.3.6.

Proof. We will exhaustively go through all cases where # # 0 or y # 0 to see what

-y o 3 could be. To understand / and -y, we only need to look at two crossings, the

one that is unresolved in C, which we call x, and the other one, which we call y.

Consider the types la, 1b, 2a, and 2b, as in Figure 1-8.

Note that # can only be nonzero if we are going from a type where D # 0 to a

type where F # 0. So this is only possible when we are going:

# # 0: (lb or 2a) - (la or 2a).

Similarly,

y # 0: (la or 2a) -+ (la or 2b).

We can eliminate some cases:

" Let's consider a map lb - la. If we start with the lb picture and switch

crossing y, then on level A, we go from splitting w to not splitting w. Thus the

map A 1 -- A 2 is a merge. However, A1 -* B1 and A 2 - B2 are both merges,

by the definition of types la and 1b. So all four maps in the AB square are

merges.

This, however, is impossible, because the fact that we are going from lb to la

means that both the maps A1 -- A 2 and A1 -- B1 must come from merges

between the two components which have an odd number of endpoints of w in

A 1, but for two merges between the same two components, the two crossing

diagram this is resolving has to be a Hopf link, which means the maps A 2 -* B2

and B1 -+ B2 must be splits.

" Similarly, for maps 2a - 2b, by counting components, the horizontal arrows
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must either both arise from merges, or both arise from splits, but the condition

that only the B2 diagram separates w contradicts this.

Thus for -y o 3 0 0, the only possibilities are:

" lb - 2a -+ la

" 2a - la - la

" 2a - la -+ 2b

" 2a - 2a - la

All four of these possibilities involve some map 2a -+ la. Again, let us consider

the AB square for this:

B1 B2

A1 - A 2

Since this picture is 2a to la, the vertical maps are A on the left and m on the right.

Thus, counting components, we see that the horizontal maps can only be A on the

bottom and m on the top. The map C1 --- C2 therefore comes from a resolution

switch that doesn't change the number of components. The crossing therefore has

to go between the wings of a loop with x on it. Thus, if we leave both x and y

unresolved, we get either a Hopf link or a two component unlink with two crossings

between components. The 00 resolution of this picture has only one component, so

of these two possibilities, it must be the unlink. Such an unlink projection, however,

is not alternating, so we have reached a contradiction. El

Corollary 1.3.9. For alternating link projections PL with w, the rank of the Kho-

vanov homology with w we defined is invariant with respect to dragging endpoints of

w around a component.
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Proof. The only problem case is when you drag an endpoint diagonally across a

crossing, and in this case, we can compare both sides to the complex with that

crossing dropped. The one crossing dropped complex doesn't see where the endpoint

is.

Corollary 1.3.10. For alternating link projections PL with w, where L is not split,

the rank of the marked link Khovanov homology of PL with w does not depend on w.

Proof. Consider some arc in w with its two endpoints on two components of L. We

may call them L1 , Lk, where there are components L1 , L 2 ,... Lk such that Li and

Li+1 have a crossing between them (because L is not split). Then we can replace w,

with uwi, where wi has one endpoint on Li and one on Li+1 and is sitting on adjacent

branches of a crossing between Li and Li+i, which we call Xi.

Then adding each wi does not affect the complex, because we can consider the

complex with Xi unresolved. In the resulting pseudo-diagram resolution, Wi cannot

kill components (because wi sits across crossing Xi, which is not being resolved),

meaning wi does not affect the underlying groups in the complex with Xi unresolved,

and it is easy to see from the definition that it also does not affect any of the dif-

ferentials. Thus, it does not affect the homology of the complex with Xi unresolved,

which means it also does not affect the homology of the original complex.

Now we can remove the wi one by one, not changing the homology of the complex,

so removing the entire arc does not change the homology of the complex. We may

further remove all the arcs of w one by one, as desired.

As a consequence of this last corollary, we see that the marked Khovanov homology

for alternating link projections we defined is just the usual Khovanov homology of

the link. In particular, it is also a link invariant, completing the proof of Theorem

1.2.3 for H(PL, Ow).

For the reduced version, note that the same proof holds: We may still form the

complex with the dropped crossing, by taking quotients by (x> appropriately. Lemma
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1.3.5 still holds because the sequence A/(x) -- A & A/(x) -- A -+ A/Kx) -+ A/(x)

with maps given by Ared, mred, and 0 is still exact.

Then in the splitting of the complexes A, B, and C into D, E, and F there is a

little bit of subtlety with the choice of F in case la and E in case 1b. In particular,

let us make the choice so that if the the base point is on the active components,

then it is on the second component, so that, in case la, we have F = (1 0 1) and

Ei = (x 0 1), and for case 1b, Ei = (1 0 1) and Fi = (x 0 1). Then, we again get

direct sum decompositions.

This change in the choice for F and Ei does not affect the proof that dEF, dFD,

and dDE vanish in general, nor for ar or -yo for alternating links.

Thus, by the same argument, we get that Hred(PL, Ow) does not depend on w,

completing the proof of Theorem 1.2.3.

1.3.2 A discussion of filtrations for non-alternating links

Dropped crossings without w

We have shown that for alternating link projections, w has no effect on H(PL, Ow),

by way of a complex that comes from dropping one crossing. The latter complex was

inspired by the crossing dropping procedure that Kronheimer and Mrowka introduced

in 113].

Let us omit w for the moment and examine more carefully how the property that

the projection was alternating came into our picture, and how it relates to the one

in [131. This will give another explanation for why one can drop a crossing when

computing the Khovanov homology of alternating link projections (without w).

In link projection that is not necessarily alternating, most of the statements in

subsection 1.3.1 regarding Khovanov complexes computed with dropped crossings

continue to hold, though there are more cases to consider, and we must take more

care when defining the differentials in the pseudo-diagram in the case of maps between

resolutions with the same number of components.

In particular, this more subtle complex still commutes as in Lemma 1.3.4, and
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still fits into a larger complex with the dropped crossing resolved as in Lemma 1.3.5.

Moreover, the exact sequence still has the splitting into D, E, F, with a = 0. The

main difference is that now -y# does not necessarily vanish.

Thus, we still get a complex based on the resolutions with one dropped crossing,

but now the cube may have diagonal maps across squares.

Let us compare this to what happens in [13], in which Kronheimer and Mrowka

consider an oriented link projection PL and a subset N of its crossings, such that

resolutions of PL at the N crossings yield pseudo-diagram resolutions. They form

the complex (oC(L,), d#) where L, runs over the resolutions of L, and chain maps

arise from counting solutions to the ASD equation on the corresponding cobordisms.

They further consider two filtrations on the complex, h and q, coming from the

topologies of the cobordisms, and show that the isomorphism types of the pages of

the corresponding spectral sequences for both of these filtrations are invariants of L.

These filtrations are given by:

q =Q- E v(c) + 3(v, o) - n+ + 2n_

and

h - V(C) + IU(, o) +n-,

where Q is a grading on (R[x]/x2 )O', which has x in grading -1 and 1 in grading

1; on the summand C., where v(c) denotes the resolution of c, that is, it is 0 or 1,

depending on how C is resolved in the pseudo-diagram resolution at C, with v(c) = 1

for the 0 resolution and v(c) = 0 for the 1-resolution; o is a chosen vertex of the cube

where the corresponding resolution can be oriented in a way that is consistent with

the orientation on L; a(v, u) is the self intersection S,, -0 Sv of the cobordism S,,, when

U _> v, and is defined for u ;* v in such a way that it is additive, that is for u, v, w,

o-(w, v) + a(v, u) = a(w, u); and n and n_ the number of positive and negative

crossings of the N crossings, respectively.

Remark. In this subsection, we will be following the notation in 1131 and 115], in
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which the maps go from the 1 resolution to the 0 resolution, so we are actually

looking at the resolutions of the mirror image of the link. This is the reverse of the

direction our maps were going in subsection 1.3.1.

Consider the first page of this spectral sequence, (E1 , dl,h), where di,h : Fi/Fi+-

Fi+1 /Fi+2 is the map induced by the differential on the page of the spectral sequence

arising from the h filtration. Kronheimer and Mrowka show in 1131 Proposition 10.2

that when all the crossings of L are resolved, only maps along the edges of the cubes

come into dl,h, and they show in [15J Section 8.2 that these maps agree with the

Khovanov edge maps di.

Let us consider what happens when one crossing is left unresolved. In this case,

the edge cobordisms in question have two possibilities: If the edge corresponds to

a change in number of components in the resolution, then the cobordism is a pair

of pants, and otherwise it is a twice punctured RP2 . (Here we are only concerning

ourselves with the parts of the cobordisms between the active components; the rest

of the cobordisms consist of cylinders, which contribute to neither x(S) nor S - S).

If a cobordism S is a pair of pants, then S - S = 0. If S is a twice punctured

RP2 , consider the two crossing projection given by the unresolved crossing and the

crossing that corresponds to the edge in question. This cobordism is as depicted in

Figure 1-9, with the map left to right corresponding to the Hopf link and right to

left corresponding to the unlink. (This is the opposite to the Khovanov differentials

because the E1 , d, page of the instanton complex corresponds to the mirror image of

the Khovanov complex.)

Figure 1 9: Cobordism for unlink with one dropped crossing

Figure 1 10
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By sliding the arcs around it is easy to see that these are the same as the cobor-

disms in Figure 1-10. It was shown in Lemma 7.2 of 115] that the cobordism going

from the right to the left in 1-10 has self intersection +2, so the one left to right has

self intersection -2. We conclude that for cobordisms corresponding to an unlink the

self intersection is +2, and for Hopf links, it is -2.

If L is an alternating link projection, for v > u, if any punctured RP2 s are involved

in the path from v to u, they must correspond to Hopf links, rather than unlinks,

because if we resolve some crossings of an alternating projection, the resulting projec-

tion is still alternating. Thus, for alternating projections, Svu -Sv < 0. Consequently,

the difference in h satisfies

h(u) - h(v) = - )-' u - I r(v, u),

which is at least 1 for edges and at least 2 for diagonals in the cube. Therefore the

(E1 , dl) page does not involve diagonal maps in the cube, and it is easy to check that

it agrees with the cube from our previous section.

If L is non-alternating, however, there may be diagonal maps on the cube that

are part of dl, that is, which shift h by 1. This is because the change in h as you

go along the diagonal is equal to the change in naive grading (the grading on the

cube), shifted by ja(v,u), but now for v > u, a(v,u) could be positive. Thus some

diagonals could change h by only 1.

Let us consider which diagonals can appear in the dl,h level. It was shown in

1131 that when only one crossing is dropped, la(v, u)j < 2, for any two vertices, so

the change in h can be at most 1 off from the change in naive grading. Thus the di

includes only edge maps and diagonal maps across squares.

Now, using the q grading, one can write down what the diagonal maps across

squares must be.
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Figure 1-4: an example non-alternating link projection with w

In the case of links with marking data, the pages with respect to the q filtration in 113]

no longer provide invariants. This makes sense because the q filtration comes from

studying the maps in the cube of instanton complexes, which come from counting

points in zero dimensional moduli spaces of certain anti-self-dual connections.

More specifically, for a cobordism S c S3 x R from L, c S3 to L, c S3, and

singular bundle data PA on (S, S3 x R), we are considering connections on PA that

satisfy the perturbed ASD equation and agree with #1 and #o on the ends. For such

connections, the action, which is given by

r(A) = tr(FA A FA),
87r2 XE

is a homotopy invariant of the path A and also satisfies

1 1
,(A) I --p(PA)[XA] + S - S (mod 1/2),

4 16

Where XA and PA are set up as follows.

Let X = S3 x R, and let S c X be a two dimensional submanifold. Recall from

1151 that a PU(2) bundle P on X\S modelled on lid6 gives rise to a double cover

SA of S coming from the two ways to extend P to S. From this, Kronheimer and

Mrowka constructed a non-Hausdorff space, XA, equipped with a map XA -* X that

is an isomorphism over X\S and such that the pre-image of S is SA, and a PU(2)

bundle PA over XA, which agrees with P outside of a neighbourhood of SA c XA.

In 1151 Kronheimer and Mrowka further constructed a space Xh, a Hausdorff

space with the same weak homotopy type as XA, and showed that [XA] is a half

integral class in H4 (Xh; Q). Thus, for p1 (P5) e H4 (XA, Z), we may consider the half

integer pl(PA)[XA]. Moreover, since pl(PA) '(w2(PA)) (mod 4), where 'P is the

Pontryagin square, pi(PA)[XA] '(w2(PA))[XA] (mod 2).

For #1 and /o solutions to the perturbed Chern Simons functional on the ends (flat

connections in the unperturbed case), the dimension of the moduli space of solutions
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to the perturbed ASD equation that agree with i31 and /O on the ends, in a homotopy

class of paths with action K is given by the formula

1
dim(M.(S; 01, 3o)) = 8K + X(S) + IS -S + Q(01) - Q(o) + dim(G)

2

where Q is the grading on A~n defined in subsection 1.3.2, G is the space of metrics

over which the moduli space of connections sits, and X is the Euler characteristic. The

coefficient of [0o] in the image of [01] under the differential is then given by counting

the number of points in the zero-dimensional moduli space, ie, those paths with

1
8K + X(S) + 1 S -S + Q(/1) - Q(o) + dim(G) = 0.

2

The non-negativity of the action for anti-self-dual connections implies that for

small perturbations, K > 0. Moreover, in the situation without W, p(PA)[XA] 0

(mod 1/2), because p 1 (PN) is a multiple of 4 and [XA] is a half integral class. Thus,

K >IS- S-4[s j.

The proof of invariance of the isomorphism type of the complex in the category

of homotopy classes of q or h filtered chain complexes comes from keeping track of

constraints on the edges and diagonal maps in the cube coming from the dimension

formula above.

In the fully resolved case, invariance of the isomorphism type of the Khovanov

homology could be extracted from looking at the h filtration for the diagonal maps

and showing that there are no diagonal maps on the cube with h-order 1. Thus, the

isomorphism type of the Khovanov homology agrees with that of the E2 page of the

instanton complex with respect to the h filtration, and is therefore a link invariant.

In the case of the counterexample in Figure 1-4 from subsection 1.3.1, we can

still use the dimension calculation essentially to write down what the diagonal maps

on the cube of instanton complexes have to be. Consider the cube of resolutions in

Figure 1-11. The groups C1 ,o,o, C1 ,1,o, C1 ,o,1 , and Co,1,1 vanish.

The maps Co,o,o -> Co,1,o and Co,o,o -- Co,o,1 can be seen to be merge maps, as seen

in Section 8 of 115]. The remaining possible maps are Co,o,o - C1,1,1, CO,1,O -- C1,1,1,
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(1,0,0) (1,1,0)

(0(01,1,)) (P,,)(111

(0,0,1) (0,1,1)

Figure 1 11: Resolution for counterexample

and Co,o, -* C1,,,,.

From the definition given in [15], dim(G) is one less than the number of crossings

in the cobordism. It is then easy to see that X(S) = - dim(G) -1, so X(S) +dim(G) =

-1. Moreover, since the cobordisms in the diagram are orientable, S - S = 0. Thus

for moduli spaces of dimension 0, we must have

Q(3o) - Q(31) = 8K - 1.

As in [13], we have K > 0 and K = !p1(PA)[XA]. However, pl(PA) is no longer

a multiple of 4. To figure out what it is instead, let us consider the cobordisms

in question. The cobordisms (0, 1, 0) -. (1, 1, 1) and (0, 0, 1) -+ (1, 1, 1) are twice

punctured tori and the cobordism (0,0,0) -- (1, 1,1) is a thrice punctured torus. If

we cap off the ends, we get a torus, with aw given by a circle that winds once around

each representative of H'.

To calculate the action in this situation, let us consider the double branched cover.

The double branched cover of T2 in S4 is S 2 x S2, with T2
= S1 x S' sitting inside it
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as the product of the equators of the two S2 s. In this picture, w c- S4 represents the

H2(S2 x S2 ) class [S 2 x pt] + [pt x S2]. Consequently, on the double branched cover,

'P(w2 (P)) = 2 (mod 4), where 'P denotes the Pontrjagin square. Thus, pi(P) = 2

(mod 4), and , = - p1(P)[S 2 x S2] = _ (mod 1). The action on the double branched

cover is twice the action on the base, so on the original space, , - (mod 2).

From here, we see that Q(fo)-Q(/(1) = 8K-i 1 (mod 4), so, by parity, the only

possible diagonal map is the one C0 ,o,0 -- C1,1,1 , which takes x~x to x and either 1&x

or x 0D1 to 1. We know these maps must appear in the instanton complex, because

otherwise it would be impossible to end up with the right value for the instanton

homology.

Remark. This does not tell us which of the maps 10 x -- 1 and x 01 -- 1 happens.

The specific map in the chain complex may depend on the choice of perturbation.

1.3.3 Modifying the q filtration in the presence of w

In the previous section, we explained what happens to Kronheimer and Mrowka's q

and h filtrations when a crossing is dropped in the case of non-alternating links. In

this section we give a modification of the q filtration to show an analogous result to

the q part of Corollary 1.3 in 1131, which stated that the isomorphism types of the

pages of the spectral sequence with respect to the q filtration are link invariants.

For a projection PL of a link, taking the cube of pseudo-diagram resolutions with

0, 1, or 2 adjacent (meaning there are no crossings or endpoints of w between them),

opposite sign dropped crossings, with certain w, we define a modified version of the

q filtration for the cube. Let us define the particular kind of w that we would like to

work with.

Definition 1.3.11. We say that w is "trivial" at a resolution if no component has an

odd number of end-points. We say that w is "good" if for every cobordism between

projections with trivial w (ie, for all diagonals vu of the cube, including those which

do not satisfy v > u), once we cap off the ends, the resulting cobordism has 'P(w2 ) 0

(mod 4), where 'P is the Pontrjagin square.
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In this subsection we will show the following theorem regarding good W.

Theorem 1.3.12. Let PL be a link projection in S 2 and w be good marking data.

Let B c S 2 be a ball containing w. Then the isomorphism type of Kh(P, w) as

defined in the introduction is a tangle invariant of PL n (S2 \B).

Similarly to the proof of the main theorem in [13], we will accomplish this by way

of a filtration on the instanton complex. Before introducing the filtration, it will be

useful to give a property of good w.

Lemma 1.3.13. For good w, in the (fully resolved) cube of resolutions, if u, v are

two vertices such that w is trivial at both of these vertices, then there is a path from

v to u that only goes through vertices at which w is trivial. Moreover, there is such a

path of length I v-u i and for v > u, there is such a path v = v> v 2 > -.. > Vk --

Proof. Consider going from the resolution of v to the resolution of u applying the

following steps greedily:

1. merge

2. split into pieces with a remaining crossing between them; ie that will later be

merged

3. split into pieces with no remaining crossing between them

Then, it is easy to see that the sequence of moves must be of the form:

mm ... (Am)AA ... A

because after we do merges until we cannot do any more, we have components with

only crossings to themselves. Then if we do a type 2 split, we immediately do a

merge, and we are again in a situation where no crossings go between components.

This proceeds until we can no longer do 1 or 2, at which point there are only splits

left.
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Now note that since we started and ended with trivial w, the initial merges and

final splits all preserve this trivialness. For the (Am)s going from trivial W config-

urations to trivial w configurations, if we look at the cobordism capped off, it is a

torus, and it is easy to see that if w does not intertwine this torus, there must be at

least one crossing we can split at that does not make w non-trivial, so we split at that

crossing. This completes the proof. D

Let us now define a filtration q on the complex associated to the cube of pseudo-

diagram resolutions. We will consider in particular three types of cubes of pseudo-

diagram resolutions: those that come from a projection for which we resolve all

crossings, those for which we resolve all but one crossing, and those for which we

resolve all but two adjacent, opposite-sign crossings.

Our q is only defined for vertices of the cube at which w is trivial; at other vertices,

the group is 0 anyway, so it does not matter what filtration we choose).

For a generator q corresponding to a critical point for the resolution at a vertex

v, define

q(a) = Q(a) - v(c) + 3-(v,o) + r(v, o), (1.1)2
C

where wr(v, u) is defined below, o is a globally chosen vertex of the cube so that the W

is trivial at that vertex.

Remark. There is a choice of o involved in the definition of q, but this will not

matter, because the results we will extract from the q filtration will only require q to

be defined up to a constant shift for the whole complex.

In this subsection, as in the previous, our maps are going from v to u with v > u

(see Remark 1.3.2).

Definition 1.3.14. Let D be the set of dropped crossings. Let 7r(V, u) = 7r(u) -7r(V),

where

7r(v) = )7(-2) (sign (c))s, (c)
ceD

where sign(c) = 1 and s,(c) is 1 or 0 depending on the parity of the number of w

endpoints on each of the wings that c divides its component into, if applicable; that
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is

0 c does not divide one component into two components

s.(c) = 0 each wing has an even number of endpoints

1 each wing has an odd number of endpoints

where the first of the three cases is only possible when there are two dropped crossings

and the picture looks like the middle picture in Figure 1-12. In particular, when there

are no dropped crossings, 7r = 0.

S.S=2

S.S=-

S.S=2

2 1 SS= .S=-2

U
I S.S=

S.S=2

S.S=-2

S.S=2

0

S.S=-2

Figure 1 12: This figure shows all possible configurations with two adjacent dropped crossings.
The picture on the left shows the pseudo diagram resolution in which both unresolved crossings
are negative, and the picture on the right has both unresolved crossings positive. The column in
the middle consists of pseudo diagram resolutions with one positive and one negative unresolved
crossing. The maps depicted are all of the possible

Note that for v corresponding to a configuration on the left hand side of Figure

1-12, the possible values of 7r are 0, 2, and 4. For the middle column configurations

they are 0 and 2, and for the configuration on the right, they are 0, -2, and -4.

By construction, ir(v, w) = ir(v, u) + ir(u, w).

Lemma 1.3.15. For a cobordism from the pseudo-diagram resolution at v to that
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at u, with good w, r(v, u) = -4p,(PA)[XA] (mod 8).

Moreover, if N' has one more dropped crossing than N, (ie N is all the crossings

and N' is all but one, or N is all but one, and N' is all but two, the one missing in N

and another adjacent one of opposite sign), consider the complex over Z x {0, 1}'N',

with vertical cobordisms as in [15]. We can still define ir(v, u) = 7r(u) - ir(v). In this

situation, we still have -4p1(P)[XA] (mod 8).

Proof. Let us show the second statement only; the first follows.

We begin by showing it for vertical maps, that is the one corresponding to the

extra dropped crossing in N'. Since both pi and ir(v, u) are additive, it suffices to

show i(v, u) = - 4 p (P) [XA] (mod 8) for cobordisms of length 1 or 2, with the ones

of length 2 being from a split followed by a merge where the middle term is killed by

" If the cobordism is length 1 and is a merge or a split, where neither the source

nor the target is killed by w: the cobordism corresponds to splitting into parts

each of which has an even number of endpoints of w, which does not affect the

contribution to (v) for any unresolved crossing, so w(v, u) = 0. On the other

hand, the cobordism is a pair of pants, which, upon having ends capped off,

becomes a sphere, for which -4p1(PA)[XA] = 0 (mod 8).

" If the cobordism is length 1, and it is between two resolutions with the same

number of unresolved crossings and the same number of components: because

we are looking at a vertical map, the number of unresolved crossings must be

1, so the cobordism is between a component with one negative crossing and a

component with one positive crossing (along with some cylinders for the other

components).

If the cobordism goes from negative to positive, then it is a RPS with ends.

By the computation in section 2.7 of 1151, RP, has two possibilities for the

singular bundle data. In the non-trivial case, p1(PA)[XA] .1 (mod 2), so

X 2.
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Note that the fact that w is good means that it is not possible that s(c) = 1

for the unresolved crossing in both the source and the target, so the only possi-

bilities are if in both s,(c) = 0, in which case wr(v, u) = 0 and 4p,(PA)[XA] 0

(mod 8), or if s,(c) = 1 on one of the sides and 0 on the other, in which case

7r(v, u) = -2, and 4p,(PA)[XA] = -2 (mod 8), as desired.

Similarly, if the map goes from positive to negative, then the cobordism is a

twice-punctured RP2 , and the same argument applies with the signs reversed.

" If the cobordism is length 1 and preserves the number of components but

changes the number of unresolved crossings: Let c be the crossing that is un-

resolved in exactly one of the source and the target. Then only c contributes

to ir(v, u). Moreover, if c is a positive unresolved crossing in the source, or a

negative one in the target, then the cobordism is RP and otherwise it is RP.

Moreover the singular bundle data is nontrivial if and only if s"(c) = 1 for the

unresolved projection. The computation is now similar to the previous case.

" If the cobordism is length 2: By Lemma 7.2 of 1151, the composite cobordism

S20 = Sio o S21 is (I x S3 , V20)#(S4 , R P2 ), where V2 is the reverse of S32 . The

(B4 , RP2 ) in this decomposition is localised around c, and the singular bundle

data may be taken to be trivial there. Thus, the calculation for this case is the

same as that for the previous two cases, but with signs reversed.

For horizontal maps, we can use the vertical maps to translate the horizontal so

that it is confined to the 0, 1 (mod 3) levels (choosing the right one of the 0 or 1 mod

3, so that w is still trivial, and applying the fact that the lemma holds for no dropped

crossings (so all 7r = 0) to show that it holds for 1 dropped crossing, and then use

that it holds for one dropped crossing to show that it holds for 2. E

The main result of this subsection will be the use of the q filtration to extract the

following proposition:

Proposition 1.3.16. Let Cq be the category of q-filtered finitely generated differ-

ential Z/2 modules with differentials of order > 0, whose morphisms are differential

51



homomorphisms of order > 0 up to chain homotopies of order > 0. Then the isomor-

phisms type of the instanton complex of (PL, B, w) is a tangle invariant up to shift in

q. That is, if A is the q-filtered instanton complex corresponding to (PL, B, w) and

A' is that corresponding to (PL, B, w) where (PL, B, w) and (P, B, w) represent the

same tangle, then A is isomorphic to A'[c] in Cq, where A'[c] denotes A' with the

filtration shifted by c.

From this, we deduce that the isomorphism type of the pages of the spectral

sequence corresponding to the q filtration are tangle invariants, and then, comparing

the q filtration to the Khovanov picture, we will deduce theorem 1.3.12.

We will now show that the differential on the instanton complex has order > 0

with respect to the q filtration. This is the analogue to Proposition 4.6 in 1131.

Lemma 1.3.17. Consider a cube of pseudo-diagram resolutions for a link projection

that comes from one of the following: a full resolution for a projection, dropping all

but one crossing, or dropping all but two adjacent, opposite sign crossings. Then the

differentials on the corresponding instanton complex have order > 0 with respect to

the q filtration.

Proof. Note that Lemma 4.4 of [13], which states that the parity of the q filtration on

the instanton complex is constant, still applies; 7r is even and our q filtration differs

from theirs by ir(v, o).

For an ASD connection with value #o at u and #1 at v, we have that if there is a

map !1 to O3, on Svu, then

q(0o) - q(0 1) = Q(0o) - Q(01) - Z u + I v- 3o(v, u) -i r(v, u)

1 3
=8K + -S. S - 1 - u +Ev - 2-(v, u) - ir(v, u)

= 8K-i -E u + v-O(v,u) -7(V,u).

The second equality above is from equation (6) in [131, which states that

1
dim(M,(S; #1 , Bo)) = 8K + x(S) + S -S + Q(01) - Q(o),2
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where M(S; f1, 00) is the moduli space of instantons on S from 01 to i10 and MK(S; 01, #o)

is the part with action K.

From the fact that the parity of q is constant, we see that it suffices to show

q(0o) - q(01) > -1. In other words, it suffices to show that for v > u

8K - EU + V - -(v, u) - wr(v, u) > 0.

If there are no dropped crossings, then 7r and o vanish, and the above statement

follows from the non-negativity of the action and the fact that the differential in the

instanton complex is upper triangular, that is, the maps vanish unless v u.

Note that these are the possible values of ir(v) for the one dropped crossing case:

" The dropped crossing is negative: wr(v) = 0, 2

" The dropped crossing is positive: wr(v) = -2,0.

Thus, for one dropped crossing, the possible values of ir(v, u) for a cobordism S from

v to u are:

" If S S = -2, then 7r(v, u) = 0, 2,4

" If S S = 0, then wr(v, u) = -2,0, 2

" If S S = 2, then 7r(v, u) = -4, -2, 0,

because S - S = -2 if the cobordism goes from a diagram with a positive dropped

crossing to one with a negative dropped crossing, S - S = 0 for positive to positive or

negative to negative, and S - S = 2 for negative to positive.

For the two dropped crossing picture, the possible values of ir(v) are:

" Left hand side of Figure 1-12, ie, both crossings negative: 7(v) = 0, 2, 4

" Middle column of Figure 1-12, ie, one negative, one positive crossing: 7r(v) =

-2,0,2

" Right hand side of Figure 1-12, ie, both crossings positive: r(v) = -4, -2, 0

53



Note that these are the possible values of 7r(v, u):

" If S -S = -4, then 7r(v, u) = 0,2, ... 8.

" If S -S = -2, then 7r(v,u) = -2,0,...6.

" IfS.S=0,then 7r(v, u) = -4, -2,...4.

* If S -S = +2, then 7r(v, u) = -6, -4,...2.

" IfS-S= +4, then 7r(v,u) = -8, -6,...0.

For the differentials on the cube, V > U, and 8, > 0, so if a + ir 0, we are

done. Thus, we may assume that a +7r > 0. Recall that by Lemma 1.3.15, ir(v, u) =

-4p(PA)[XA] mod 8. By Proposition 2.7 of [151, r, = -1p1(PA)[XA] + -S S.

Hence, 8, (mod 4), and it is easy to see in the above cases that a + 7r 4,

so 2. Then, if 8r, < T, by the mod 4 computation, we would have to have

8r, < 0" - 4 < 0, a contradiction. Thus, 8i > a.

It therefore suffices to show that 'T 5 >Lv-Eu. Note that if v = u, then

- = 7r = 0, and the inequality is true. So we may assume that E v - Eu > 1.

But ' takes values 0, 1, 2, so we only need to show that for ' = 2, we have

Ev - Zu > 2.

We do this by going through the cases. If IS. SI = 4, then obviously you need to

take at least two steps.

If S - S = 2, then to have a + 7r = 4, we must have 7r = 2, but if E v - E u 1,

then the map is an RP2 and S - S = 2 means that it is specifically an RP+, so

7r = -4p 1 (PA)[XA] - -2 (mod 8), a contradiction.

Similarly, if S - S = -2, then to have a + r = 4, we must have 7r = 6, but if

Ev-Eu=1, then the map is an RP 2 and S -S =-2 means that it is an RP2 , so

7r = -4p,(PA)[XA] 2 (mod 8), a contradiction.

Finally if S - S = 0, then to have a + 7r = 4, we must have 7r = 4, but if

E v - E u = 1, then the map is a pair of pants, so 7r = 0 (mod 8).

LI
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Our approach to proving Proposition 1.3.16 will be to show invariance of Reider-

meister moves performed away from a ball containing w, by way of showing that drop-

ping two adjacent, opposite sign crossings does not affect the isomorphism type in 2q

and then performing isotopies between different projections with crossings dropped.

Observe that isotopies preserve the isomorphism type in Cq, as in the following

lemma, which is analogous to Proposition 5.1 in 1131 and has the same proof, namely

by considering maps T., for v > u coming from counting instantons on the trace of

the isotopy from L to L' and showing that the chain maps and homotopies preserve

the q grading, as in the previous lemma.

Lemma 1.3.18. Let (L, N, w) and (L', N, w) be pseudo-diagram resolutions with

either no crossings dropped, one crossing dropped, or two adjacent, opposite-sign

crossings dropped, and suppose that L and L' are isotopic via an isotopy that is

constant around N and w. Then C(PL, N, w) and C(P, N, w) are isomorphic as

elements of Cq, up to overall shift in q.

We can also extend the complex beyond the cube to Z, and it will be useful to

note that when we extend the complex beyond the cube in one direction, there is a

certain 3 periodicity. That is, if K, and K are the links corresponding to vertices

v and u with 31v - u e Z", then K, K and the C, and Cu can be identified via

isomorphisms with H, (S2 )®P where p is the number of components, as in equation

(2) of [131.

The analogue of Lemma 4.3 or [131, which states that the aforementioned isomor-

phism between C, and C,, preserves the q filtration, still holds in our setting, because

7r(v) and 7r(u) are the same, so if v' = v + (3, 0,0 ... 0), then a(v', u) = o-(v, u) + 2

and wr(v, u) = r(v', u).

Definition 1.3.19. Consider the extended complex over Z x {0, 1}'. Let the type of

a cobordism denote v(O) - u(O).

Lemma 1.3.20. Consider (N, N') where either N is all the crossings and N' has

one dropped crossing, or N has one dropped crossing, and N' has another, adjacent,
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opposite crossing dropped. Let n = IN'l and index the crossings of N 0, 1, ... , n, so

that the 0th one is the distinguished crossing dropped in N'.

The differentials on the instanton complex over Z x {0, 1} (where the -1 (mod 3)

pages correspond to leaving the 0th crossing unresolved) of type at most 3 have order

> 0 with respect to the q filtration.

Proof. The proof of this is similar to the proof of Lemma 1.3.17: First note that the

parity of q on the extended complex is still constant, by the same argument as before.

Thus, it again suffices to show 8K - u + E v - a(v, u) - 7r(v, u) > 0. This is again

clear for o +7r < 0, so we may assume a + I > 0.

Let the vertical part of a map on the cube be the Z part and the horizontal part

by the part on {0, }l. Then for the horizontal part, there is at most one crossing,

and we have, per the above chart that Oh + 7rh E {-2, 0, 2}. For the vertical part, for

a map of Type < 3, we have Iavj I 2 and 17vl I 2, so we still have a + I < 6. Thus,

for 8K > 0 and 8K = ' (mod 4), we still have 8 >, .

It again suffices to show that a + < 2(E v - E u). For maps of Type 1, the

chart in the proof of Lemma 1.3.17 still holds: to see this we need to understand the

vertical cobordisms between the resolution where one of the crossings is dropped and

the resolutions where it isn't.

In the case of pairs of pants, a and 7F are both 0. Otherwise, the cobordism is

between a loop and that loop with one extra crossing, say of sign c. As in all of the

cases on the outer rim of Figure 1-12, if there is an extra crossing in the picture, we

can ignore it when analysing the cobordism up to isotopy. The cobordism is between

a loop and that loop with one extra crossing, say of sign c is isotopic to that between

a loop of sign -c and a loop with sign c. Thus, for this case we also have IF = 0 or

F = -O, so the values IF takes, indexed by a, are still as in the chart in the proof of

Lemma 1.3.17.

Moreover, then the same proof applies to show a + I < 2(E v - Eu).

For a map of Type 2, let us find the possible values of a + IF for the vertical

part ie, the cobordism from v' = v + (2, 0,... 0) to v. Consider v" = v - (1, 0,... 0).

Then a(v', v) + a(v, v") = 2 and 7F(v', v) + I(v, v") = 0. Moreover (v, v") is a Type
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1 vertical cobordism, so the possibilities for o-(v, v") are 2, 0, -2, and the possibilities

for ir(v, v") are -a(v, v"), 0.

The way the resolution works, for the map (v, v") which, we recall, goes between

a loop and a loop with an extra crossing, the map has to go from either no crossing

to positive crossing, or from negative crossing to no crossing. (Unless it is a pair

of pants.) Thus, a(v, v") can be 0 or 2, with r(v, v") 0 if a(v, v") = 0, and

7r(v, v") e {0, -2} if a(v, v") = 2.

Thus a(v', v) can be 2 or 0, with ir(v', v) = 0 if a(v', v) 2 and ir(v', v) e {2, 0} if

a(v', v) = 0. Either way, a(v', v) takes values 0, 2. From here, the same argument as

in Lemma 1.3.17 works.

Finally, in the case of Type 3, we have a = 2 and 7r = 0, and the same proof

holds.

Let PL be a link projection and N be either the set of all crossings or the set of

all but one crossing. Let N' c N be obtained by dropping one crossing; in the case

that N already has a dropped crossing, we further require that the second dropped

crossing be adjacent to the first with opposite sign. We will call the pair (N, N') of

sets of crossings "okay" if it is one of the aforementioned two situations.

Recall from [151 that in this situation, the instanton complexes C(PL, N) and

C(PL, N') are quasi-isomorphic. Let us describe this quasi-isomorphism.

Let c, e N denote that crossing that is dropped in N'. Note that we can decom-

pose C(PL, N) into the two parts based on the resolution of c., as C(PL, N) = C1G3CO.

We may then consider the complex @iczCi. Then C(PL, N') is isomorphic to C_1,

and C-1 is homotopic to C(PL, N) = CG D Co via maps

T = [F1,_1, Fo,- 1] :C1 GC - C-1

and

(D2 = [F2 ,1 , F2,0] :C2 -+ C1 Co
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_- = [F-1,- 2, F-1,- 3] : C_1 - C-2 e C-3

where C2 ~ C-i, and the Fij are the maps on the instanton complex C to Cj.

For the composite D2 o : C2 -- C_1, it is shown in [151 that

F 2 ,-lF 2 ,2 + F 1 ,-1 F 2,-l + ' o = T 2 ,- 1 + N 2 ,-l

where T2,-, is an isomorphism coming from cylindrical cobordisms and N2,-- is chain

homotopic to zero via a map H2,-i which we will describe in more detail in the proof

of the following lemma.

The other composite 4)-i o T is shown in 113] to be homotopic via chain homotopy

L = F 1 ,- 2  FO,-2

F1,- 3 FO,-3

to a map

T,-2 +Ni,-2

Y

01
I :C1 CO - C-2 @ C-3,

TO,- 3 + NO,-3

which is in turn homotopic via chain homotopy

F 0

HO,-3

H,-2

0

to a map

T 1,-2 0 :Ci G Co

X TO,-3

for a map X : CO - C-2.

-- C-2 E C-3,

Lemma 1.3.21. If PL is a link projection and (N, N') is okay, then the instanton

complexes for (PL, N) and (PL, N') are isomorphic in Cq, up to an overall shift in the

q filtration.

Proof. We would like to show that the morphisms T and 4D as well as all the homo-
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topies in the above discussion have order > 0 with respect to the q filtration. Note

that <D, T, and the chain homotopy L all come from differentials of type at most three

on the chain complex, which are shown in Lemma 1.3.20 to have order > 0.

In the case of the map H2,- 1 , we write down the map, from pages 106-107 of [151.

For C2 -- C_1 This map works like this: Consider (W, S), which is obtained from

(W, S) by removing (B 2,- 1 , M2 ,- 1 ) where B03 contains basically the three handles of

the 0th crossing, and M2,-1 is the plumbing of two M6bius bands. The boundary of

M2 ,_1 is a two component unlink. Attach back in (B03 , D 2 u D2 ), the two disks.

For going from (2, v) to (-1, u), the cobordism is now S(2 ,,)(2 ,u), ie what it would

be if we removed the part corresponding to the additionally dropped crossing.

Consider the family of metrics where you move the crossings 1,... n back and

forth, and also stretch along the boundary of B0 3 , and also don't quotient anything.

The dimension of this family is |v - uli + 1, and X(S) = -1v - uli, so

I- - I-
Q(Oo) - Q( ,) = 8r + x(S) + S - S+ dim(G) = 8r + S - 1

2 2

and

q(Qo) - q(,31 ) = Q(#o) - Q(01) - Z u + v + 3 - ( - ir(v, u)

where 7r(v, u) is three periodic. This

1- -3
8r + 2 + - U + v + 3 - 2S(2,v)(-1,u) S(2,v)(-1,u) - ir(v, u)

1- 3-
=8K + -S 1 -- u + v- - -(,u)

= 8K + 1 - )u + Ev - .- - ir(v, u)

But this is better than what we had before. Thus H2,-1 also has order > 0.

Thus we have that (D and T are morphisms in Cq, and in this category,

<D0 X'2 ~ T2,- 1 , and

59



T-2 0

X TO,-3

and by lemma 1.3.18, the maps T1 ,- 2 and To,_ 3 , which correspond to isotopies, are

isomorphisms in C, so ',-2 0 is also an isomorphism in Cq.
X TO,-3

This shows that C(PL, N) C_1 in Cq. However, C_1 and C(PL, N') represent

the same complex, up to a constant shift in q. Thus, C(PL, N) and C(PL, N') are

isomorphic in eq, as desired.

At this point, we can prove Proposition 1.3.16.

Proof of Proposition 1.3.16. We would like to show that the eq type is a tangle in-

variant. For this, it suffices to show that Reidermeister moves performed away from

w preserve the isomorphism type of the complex in (q. This follows the proof of

Proposition 8.1 of 1131:

We compare the complexes C and C', obtained from cubes of resolutions cor-

responding to projections P and P' of a link that differ by a Reidermeister move

performed away from w. Consider the complexes C" and C"' arising from the cube of

pseudodiagram resolutions obtained by dropping the one or two relevant crossing in

C and C' respectively.

Aa consequence of Lemma 1.3.21, C" has the same C2 type as C and C"' has

the same Cq type as C', and by Lemma 1.3.18, C" and C"' have the same Cq type,

completing the proof.

Using Proposition 1.3.16, we now deduce Theorem 1.3.12.

Proof of Theorem 1.3.12. Theorem 3.5 in Chapter XI of 1171 states that homotopy

equivalences of order > t induce isomorphisms of the E' pages of the spectral se-

quences for r > t. Moreover by Proposition 1.3.16, if PL and PL represent the same

tangle, then there they are isomorphic in eq, which means there is a homotopy equiv-

alence between the (up to overall shift in q). Combining these two results, we see that

the (El, di) page of the instanton complex filtered by the q-filtration, up to overall

shift in the q filtration, is a tangle invariant.
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By the definition of the spectral sequence, as in [17], it is easy to see that the

isomorphism type of the E' page is the same as the homology of the instanton complex

with the differential replaced with the Aq = 0 part of the differential, i.e., the part of

the differential that changes the q grading by 0. Indeed, E' = H(FpA/Fp ,A), where

we have adjusted Theorem 3.5 in Chapter XI of 1171, because we are considering

descending rather than ascending filtrations.

Unpacking the definition for El of a filtered complex, as in the definition given

in Theorem 3.1 of Chapter XI of [17], E' is the homology of the part of q-grading p

with the q-grading 0 part of the differential.

In the fully resolved picture, 7r and a both vanish, and if i0 is at vertex u and f1
at vertex v and the coefficient of #O in d#1 does not vanish, then

q(C) - q( 1) = 8r - 1 - Zu + Zv

Thus, this piece of the differential has q-order 0 if and only if

v - Zu = 1 - 8K.

However, 8K is non-negative, so this implies that the map is part of an edge map.

It now suffices to show that the edge maps all have Aq = 0. However, the edge

maps are calculated in Lemma 8.7 of [151, and it is easy to see that these have

AQ = -1, so that K = 0 and Aq= 0, as desired.

1.4 Spectral sequence collapse

In the previous section, we defined a complex, C(PL, Ow), for alternating link pro-

jections, and we showed that its homology was an invariant of (L, Ow), and indeed

independent of w.

In 1151, Kronheimer and Mrowka exhibited a spectral sequence for (L, 0) whose

(El, dl) page is the Khovanov complex which abuts to I#(L, 0).
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They did this by exhibiting a spectral sequence for a link L with w whose E1 term

is

(DV1}1NIgw(Y, LVI)

which abuts to Ig'(Y, L.) where w = (2,2,... 2), so that Lv, goes through the 0 and

1 resolutions of a link L, and L, is the unresolved link. They then showed that for

unlinks L, with n components, in the situation where w is empty, I#(Y, Lu,) is the

group Aon, and that the maps di agree with those in the Khovanov complex.

It is easy to see that for general w and Lv, an unlink, I#(Y, LVI, w) agrees with

C(PL, w) with di also agreeing with the differential of C(L, w).

This leads us to the following theorem:

Theorem 1.4.1. For an alternating link projection PL with singular bundle data

w, there is a spectral sequence whose (El, dl) term is C(PL, Ow), which abuts to

I#(Y, L, w).

In 115], Kronheimer and Mrowka also showed that for K an alternating knot,

the spectral sequence from Khovanov homology to instanton homology collapses on

the E 2 page. This means that the Khovanov homology and the instanton homology

have the same rank for a alternating knot projection PK. By corollary 1.3.9, for an

alternating knot projection PK with w, the homology of C(PK, w) is the same as the

Khovanov homology of K. This implies the following:

Lemma 1.4.2 (Corollary 1.6 from 1151). For an alternating knot projection K with

marking data, the spectral sequence from C(PK, w) to the instanton homology col-

lapses on the E 2 page.

Proof. To avoid confusion, let us spell out the reasoning of Corollary 1.6 from 115].

In 1151, Kronheimer and Mrowka show that, with Z coefficients, for any link L, there

is a spectral sequence with E2 term the reduced Khovanov homology, Khr(T), which

abuts to the reduced instanton homology I(L). They further showed that with Q

coefficients, the reduced singular instanton homology P(L, Q) is isomorphic to the

sutured Floer homology KHI(L; Q).
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They also showed in [141 that for a knot, the rank of the sutured Floer homology

KHI(K; Q) is the sum of the absolute values of the coefficients of the Alexander

polynomial of K. Thus, for quasi-alternating knots K, the rank of KHI(K; Q), and

therefore that of I(K, Q) is bounded below by the determinant of K.

In [181, Manolescu and OzsvAth showed that the rank of the Khovanov homology

for a quasi-alternating link is equal to the determinant. Thus, for quasi-alternating

knots, the rank of I(K, Q) is equal to that of Khr(K, Q).

Moreover, it was shown in [181 that the reduced Khovanov homology over Z is

a free Z module. Thus, in the instanton complex, the E2 page is a free Z module,

and for the E,, page to have the same rank over Q as the E2 page, which we just

proved must hold, the differentials on the E 2 page and beyond must vanish over Z.

Thus, the spectral sequence collapses on the E 2 page over Z, and therefore over Z/2,

as desired.

Let us now extend this result to alternating links:

Theorem 1.4.3. For a non-split alternating link projection PL with marking data

W, the spectral sequence from C(PL, Ow) to the instanton homology collapses on the

E 2 page.

Corollary 1.4.4. For a non-split alternating link L, the rank of the instanton ho-

mology I#(L, w) is independent of w.

Proof of Corollary. By Theorem 1.4.3, the instanton homology of I#(L, w) has the

same rank as the homology of C(PL, Ow). The latter, however, has the same rank

as the homology of C(PL, 0) by Corollary 1.3.10, which by Theorem 1.4.3, also

agrees with I#(L, 0). Thus the homology of I#(L, w) has the same rank as that of

I#(L, 0) Ez

Proof of Theorem 1.4.3. In the course of this proof, we are returning to the notation

in subsection 1.3.1, where the maps go from the 0 resolution to the 1 resolution.

Recall that for an n dimensional cube of resolutions, we have associated (C, f).

Let us start by describing this complex; in doing so we will set up the notation for
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this section. Consider the cube of resolutions associated to the link projection. For

v a vertex of the cube, let C, be A0n or 0, where n is the number of components,

realised as Iw(S3 , Li). For u, v e {0, 1}" with v > u, let the map fu, : Cu -- C, count

instantons on the cobordism from Lu to L,. The cube C is defined to be C = ovC,

and the maps on it are the fuv.

Here fv, = 0, for reasons of degree, and for Iv - ul = 1, fu, is merge or split map

as in Khovanov homology when w is trivial at the source and target.

We group the complex and differentials by Khovanov cohomological degree; that

is, for i >, 0, let Ci denote eIvI=iC, and for x c C, let ai(x) denote the part of O(x) in

Ci. Let Fp denote (@iaCi, so that F is a descending filtration on C.

We start with the following Lemma, which reformulates what it means for the

spectral sequence to collapse:

Lemma 1.4.5. To say that "the spectral sequence collapses on the E2 page" for a

link projection singular bundle data (PL,w) is the same as saying that for any r > 2

and x e Fp such that p+1 x, ap+2X, -.. , a+r-lX = 0, then there is y e Fp+1 such that

a,+2 Y, a,+ 3Y, - - -, a,+r-ly = 0 and ap+ry = ap+rX.

Proof. By the definition of the spectral sequence, as in the proof of theorem 3.1 of

chapter XI of 117],

EP' = ?({x e Fplap+i(x) = 01i < r})/,q(O({x e Fp-r+1iap-r+1+i(x) = 01i < r - 1}))

where yp is the projection Fp --+ Fp/Fp+1 . The spectral sequence differential d' : Ep -+

Ep+r is the map induced by a. The lemma follows from unpacking the definition of

d.

We now show show that given that the spectral sequence collapses on the E 2 page

for alternating knots, it also collapses similarly for alternating links, regardless of W,

by induction on the number of components. The base case is the statement that

the spectral sequence collapses for alternating knots, Lemma 1.4.2; in this case, since

there is only one component, w is always trivial, and therefore does not affect I0(L, w).
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We have shown that it does not affect Kh(PL, w) earlier.

Assume that the claim holds for alternating links of 1 components. Consider link

L with 1 + 1 components.

Let n be the number of crossings, indexed 1,... , n. Consider some crossing k

where the two strands are from different components; this exists because L is not

split. Without loss of generality, let k = 1.

Consider the alternating link L' formed by taking L and adding another crossing

right next to k, between the same two strands, as in Figure 1-13. Note that there are

two ways to do this, depending on which side you add the new crossing. In one of

these, it will be the case that the 0 resolution of the new crossing in L' is the same

as L, in the other it will be the 1 resolution of the crossing that gives L; choose the

former of the two.

L '

Figure 1 13: A depiction of adding a crossing. For example, the usual projection of the Hopf link
would be turned into a trefoil.

Let the new crossing be indexed 0; that is, the crossings of L' are labelled by

0, 1, 2, .. ., where 0 is the new crossing, and the others are the same as the corre-

sponding crossing in L.

Let C and C' be the complexes for L and L', respectively. Let V1 and V' be the

sets of vertices of degree x for L and L', respectively. (See Figure 1-14.)

The cube for L' consists of a bottom cube, that is a cube with (0, *), ie coordinate

0 in index 0, and a top cube, (1, *). The bottom cube is isomorphic to L with the

same edge and diagonal maps, as in the following claim. We can consider Ci c Cj as

the bottom cube, but this inclusion is not a map of complexes.

Observe that relative to the other crossings, the 0 and 1 crossing on L' look the

same, so that on L',

C(0,1,X,,...) ~ C XZ'3)..

65



V2 '

V 2

Vi

Figure 1 14

and

d(OA,2, 2;3,... )-*O,1,72n,... ) = dO,O,X,,- ,..)_-'1,AX, 7,3,...,

respecting the above isomorphism, for xi e {0, 1}.

Claim. In the cube for L', for integers a, b, the maps fab : C' -+ Cb, restricted to the

cube for L seen as (0, *) in the cube for L', ie restricted to Ca - Cb, it is the same as

fab : Ca - COb.

Proof. For u, v vertices in the cube for L, we wish to show that f,, = f' ,, where the

right hand side is obtained from viewing u, v as vertices in the cube for L.

But recall that the maps fu, come from a moduli space over a family of metrics

on a cobordism from the unlinks representing Cu to the unlinks repsenting C, which

we call Lu and Lv. Let L' and L' denote the unlinks for (0, u) and (0, v) as vertices

in the cube for L'.
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Then the cobordism L, -+ L, is isomorphic to the cobordism L' -+ L,, and

the families of metrics and moduli spaces are also isomorphic. The induced maps

therefore agree. E

Consider the cube C' as Coo E Cl1EC11 E C11, with de on each C, for i, j e {0, 1},

with additional maps di,isi, and dij,ij+1 between parts. So what we have is that

C can be thought of as C60 e Co1 with d'o, do, and d',0 ,0 ,1 for differentials, and

(CO1, dol) ~ (Clo, d'1o). (See Figure 1-15)

} C11 1, d1 '

C10', d,0 '

doolo'

do,,,'

C

doool' Coo', doo'

Figure 1 15

Lemma 1.4.6. The map of Khovanov complexes (i.e. disregarding diagonal maps),

g: C - C' given by considering g(x, y) = (x, y, y, 0) for (x, y) e CJ (D Coi ~ C and

(x, y, y, 0) e Co0 ) Co 1 e Cio D C11 ~ C' is a chain map on the marked Khovanov

complex, as is the map in the other direction, h(x, y, z, w) = (x, y). The quotient

map h is, moreover, a chain map on the instanton complex.

Proof. Consider C = Coo ( C01 where the first 0 in the index doesn't actually mean

anything, but is just to keep notation convenient, and the 0 and 1 in the second index

indicates the resolution of crossing 1. Let doo and do1 be the differentials on Coo and
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C01 respectively, and doool is the differential Coo -+ C01. (Note that the differentials

here do not include the diagonal maps on the cubes.)

Then we know that Coo = Cho, C01 = Col, doo = d' , do, = df 1, and doooi = d'

Moreover, C61 = Clo, d'ol d'Ill, and d' i = d'

For g to be a chain map, we want d'g(x, y) = g(d(x, y)), where

LHS = d'g(x, y) = d'(x, y, y, 0) = (d'ox, d' o0 ix+d'ly, do'oix+d'iy, dI 0 x+d'oly+d'l1l(y))

= (d' x, d' lx + d' ly, d' lx + d' 1y, 0)

because we are over a ring of characteristic two, and because d'oll = do,,, doooi

dl 10, and do = d'%o.

On the other hand,

RHS = g(d(x, y)) = g(doox, doooix+do 1 y) = (d' x, d' x+d'ly, d' x+d'l1 y, 0) = LHS

as desired.

The proof for h is similar. The fact that h is a chain map on the instanton complex

follows from the fact that it is a quotient by C" := Co 6 C1, and the latter is a sub-

complex for both Khovanov and instanton differentials. The diagonal maps on C

and C" can be chosen to agree with those on C' by choosing auxiliary data, such as

perturbations, for the cobordisms in C' and letting C and C" inherit these data from

C'.

To summarise, we now have a sequence

C"- C' f h C (dKh,dI)

9

Where i is the inclusion of the upper cube, C", into the larger cube, C', which is a

chain map for both dKh and d1 , and h is the map described above, projecting to the

lower cube, also a chain map for both dKh and d1 . Thus C' can be seen as the mapping

cone for the map C ) C" for either the Khovanov or the instanton differentials.
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The map g is a splitting of the mapping cone for the Khovanov differential.

Lemma 1.4.7. Consider a filtered complex C' viewed as a filtered mapping cone of

d, : C - C", such that there is a splitting g of the projection h on the E, page, so

that C, C', C" fit into

i hC"/1 C'/ C d, C"l.
9

Then if the spectral sequence for (C', d') collapses on the E, page, then the same

holds for (C, d1 ).

Proof. We wish to show that for r > 2 and x c FpC such that 1p+1X, Op+2X,- , OP+r-i =

0 then there is y e Fp+1C such that OP+2Y, ... ap+r-iy = 0, and Op+rY ap+rX.

Let x e FpC be such that a+ix = 0 for i < r. Because ap+1x = 0 e Fp+1C/F+ 2C,

applying the above lemma we have O'+lg(x) = 0 e Fp+1C'/Fp+2C'; here the differen-

tials d and d, agree because when considering ap+ 1 on Fp, only the di maps come into

the picture.

By the assumption of spectral sequence collapse on L', there is y'+, e Fp+1 C' such

that '+ 2 (9(X)) = a'+2 (y'+1) C-Fp+2C'/Fp+3C'.

Consider g(x) + y>'+, we have '+ 1 (g(x) + yp+1) = 0 and O'+ 2 (g(x) + y'+ 0,

so applying spectral sequence collapse again, we get that there is Y'+2 E Fp+2C'

with O'+ 3 (g(XP) + Y'+1 + Y'+2) = 0. Iterating, we get that for any r there is y' =

y'+ + -.. + y'+r-e e Fp+1C' such that ,'+i(g(x) + y') = 0 for i < r.

For x + h(y') in C, we have h(y') e Fp+1 C and Op+i(xp + h(y')) = 0 for i < r, by

applying h to the statement a'+i(g(x) + y') = 0 for i < r, and using that h is a chain

map for both d and dl.

Let y = h(y') e Fp+1 C. Then,

OP+i(y) = ap+i(h(y')) = ap+i(x)

for i < r, as desired.
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Theorem 1.4.3 now follows from the above lemma.

1.5 Binary dihedral representations

In this section, we study the effect of w on binary dihedral representations R(L, w)

and RB(L, w), for a link L with w, as defined in the introduction.

To understand these representations, let us consider a projection for the link along

with w, drawn in two dimensions, and let us consider "arcs" in the projection, meaning

continuous pieces of the drawing, where two adjacent arcs are either separated by

something passing over the gap between them, or by an endpoint of w.

Let us label the arcs of the projection aij with 1 ; j ; ji, where i indexes the

component number, j indexes the arc number on a certain component, and j is the

number of arcs on component i; without loss of generality let us choose a labelling for

the arcs such that ai,1 , ai,2 ,. .. a, go along component i in counter-clockwise order.

Let bij denote the arcs of components of w, labelled similarly.

The index j in aij will be taken mod ji. (However on bij the indices are not

modulo anything.)

Lemma 1.5.1. The w dependence of the spaces R(L, w) and RB(L, w) can be reduced

to dependence on the parity of the number of endpoints of w on each component.

Proof. Let xij and yiy denote the meridians around aij and bij respectively. Then

representations in R(L, w) are given by the images of xi,, which we denote Oij, in the

binary dihedral group, N, with constraints:

6iji'i,,' = ijy'i,j+1

when agij passes between arcs aij and aij+,,

O.,00+1 1,Jij+1
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when there is an endpoint of w separating aij and aij+1, and

where some arc b ,y passes between arcs aij and ai,j+ 1 .

The last constraint would be the same if we had w pass under instead of over the

part of L, because it just says Oi, = 6i,j+1, and if w passed under instead of over, we

would have only one aij instead of having w split it into aij and ai,j+1, which would

have the same effect.

This shows that R(L, w) only depends on the endpoints.

It remains to show that R(L, w) only depends on the parity of the number of

endpoints of w on each component. It is clear that if there are two endpoints of w on

the same arc al,,, then we can cancel them.

It now suffices to show that dragging an endpoint of w across a crossing of the

link does not affect R(L, w). Suppose there is an endpoint of w separating aij and

ai,j+1. Then the relations involving Oi~j and 6
iij1 are

63,j-1O,,y = 0i,j ,j and 9 i,j+1 6gi,j = 6/,,yiJ,+2,

but 6 ij+1 = -O-i,j, because aij and aij+1 are separated by an endpoint of w, so we

could just eliminate 6 i,j+1 and write the relations as:

ij -1 6 i,j = 0gly61, and Oi,j", = -0i",9i,+2.

In this setting, we can instead look at the picture as having some marked crossings

on each component, and having O9, with crossing relations 3j,Olj = OltOij, at nor-

mal crossings and 9 i,j-19 i,j' = -i1,yij, at marked crossings, and we are saying that

moving the markings around along aij for fixed i does not affect the representation,

but moving a marked crossing from being between aij and ai,+1 to being between

aij+1 and ai,j+2 is like flipping the sign of 0 i,j+1, which is just a renaming and has no

effect on R(L, w) as desired.
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In the course of showing that lemma, we exhibited a different way to label arcs,

which we will now adopt. Consider aij the arcs of L, now only considered to be

separated if something in L passes over; that is, we are ignoring W in this picture.

For each component of L that has an odd number of endpoints of W, we consider one

of the crossings for which that component is the underbranch to be marked, and we

have that R(L, w) is given by 9ij c BD with relations

for an unmarked crossing of aij passing over Li separating Oi, and 9 i,j+1 and

z4,36, = - z ,j,+1

if the crossing in question is marked.

The relations for crossings shows that if two arcs belong to the same component,

their images are conjugate to each other. Note that in BD, elements of SB can only

be conjugate to other elements of Sh, and the same for SA, so each component maps

entirely to one of SA and SB.

1.5.1 Concerning RB(LW)

We restrict our attention to RB(L, w), i.e., the conjugacy classes of representations

that take meridians of the link to SB. Note that for X = cos(x)J + sin(x)K, and

Y = cos(y)J + sin(y)K, we have

Y- 1 XY = cos(2y - x)J + sin(2y - x)K.

Thus, X 1Y = YX 2 , for Xi = cos(xi)J + sin(xi)K means x1 + x 2 = 2y, modulo 27r.

Moreover, for X = cos(x)J + sin(x)K, the quaternion -X corresponds to angle

X + 7.
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Now, changing notation, we can think of arc xij as mapping to angle Oij, e

R/(27rZ), and the relations are

Oi, + 0i,+1 =20iy

for an unmarked crossing, and

oij + Oi,j+i = 20,' + 7r

for a marked crossing.

We can represent this as

MO = V,

where M is a matrix with coefficients 0, 1 or 2, 0 is a vector whose entries are

Oi, and v is a vector with coefficients 0 or 7r, with the 7r corresponding to marked

crossings.

Let us describe M more explicitly: the rows of M correspond to crossings and the

columns to arcs. For each crossing, its row has a 1 for each of the two arcs that end

there, a -2 for the arc that goes over, and Os elsewhere. (The reason the entries could

be -1 or 2 is that it is possible that some of the three arcs described could coincide,

in which case the Is or -2s add.)

Representations in RB(L, w) now correspond to solutions to MO = v. Note that

conjugating a representation shifts all entries of 0 by a constant. Thus, conjugacy

classes can be seen as vectors 0 e (R/27rZ)" with 0,, = 0, with MO = v.

Note that if v = 0, that corresponds to w being trivial. Moreover, if there is any

solution to MO = v with 0, = 0, then the number of such solutions is the same as the

number of solutions to MO =0 with 0, = 0, because given one solution to the former,

other solutions are obtained by translation by solutions of the latter. We immediately

deduce the following:

Lemma 1.5.2. For any link L, either RB(L, w) = RB(L, 0), or RB(L, W) = 0.

Of course, RB(L, 0) cannot be empty because the 0 = 0 is a solution to MO = 0
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with 0, = 0, so the two cases described in the lemma are mutually exclusive.

Note that if L = L, u L2 is a split link, and L1 is an unknot with an endpoint of

w, then RB(L, w) = 0, because the equation for it is 0, = 0, + r (mod 27). If L, is

an unknot with no endpoints of w, then it does not add any interesting structure to

RB(L1 u L2 , w). For the rest of this section, we will only consider links that do not

have a split unknot component.

If there is a component without any crossings in which it is the underbranch, then

it is clearly a split unknot component. Thus, we may assume that every component

has at least one crossing. This implies that on each component, the number of

crossings is equal to the number of arcs; after all, every arc has two endpoints (as

long as it is not a whole component) and every crossing has two endpoints on it.

Thus, the matrix M is square.

We may also rearrange M so that columns 1,... a, correspond to arcs of the first

component, going (in some direction) along the component, columns a, + 1,... a 2

correspond to the arcs of the second component, etc. We may also arrange so that

rows 1,... a, correspond to the crossings that separate arcs (1,2), (2,3), ... (a,, 1),

and rows a1 +1 . .. a 2 , similarly correspond to crossings separating arcs of component

2.

Note that this means that the diagonal of the matrix has all entries 1 or 2. Let

M_ denote the matrix obtained by deleting the nth row and the nth column of M.

It is easy to see that the rank of M is at least the rank of M_.

Moreover, the determinant of M_ is the same as the determinant of the link (this

could be taken to be a definition of the determinant, cf 1191 page 79-80).

We can now show the following theorem:

Theorem 1.5.3. If L is a link with det(L) # 0 then RB(L, w) is independent of w.

Proof. As mentioned in the preamble to this theorem, the determinant of L is the

determinant of M_, so since the determinant is non-zero, M_ has rank n - 1, so M

has rank at least n - 1. We wish to show that v is in the image of M : (R/27rZ) n-+

(R/2rZ)n. Recall that the entries of v correspond to crossings. We have grouped them
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by the component of the underbranch. The entries of v are 7r for some crossings, and

otherwise zero, where there is at most one entry that is 7 for each component.

To understand the image of M in (R/27iZ)", we analyse the image of M in R1.

Note that im(M) = (ker(MT ))' (-- R", where (ker(MT))I denotes the orthogonal

complement of the kernel of the transpose of M. Since M has rank at least n - 1, to

describe (ker(MT ))', it suffices to find one vector in ker(MT ).

Consider the vector u with entries 1, where the sign is the sign of the crossing

(where vectors in the domain of MT are thought to be indexed by crossings). We

would like to show that MTu = 0. Rows of MT correspond to arcs, with entries

+1 for each of the two (counted with multiplicity) crossings in which the arc is an

under-branch, and -2 for each crossings for which the arc is the over-branch.

Thus, on each arc, label the crossings c1 , c2, ... , ck, where ci and ck are the cross-

ings at the ends, and are allowed to coincide. Here, when we count the crossings

of an arc, we are including both the crossings at the end, where the are is the

underbranch, and the crossings in the middle, where the arc is the overbranch; it

is easy to see that with this definition, each arc must involve at least two cross-

ings. Then the crossings c 2 , c3 ,... C1 alternate signs. Crossings ci and c2 have the

same sign, and crossings ck_1 and Ck have the same sign. It is now easy to see that

UCj - 2(uC 2 + uc3 + -.. - UC,_i) + uc = 0 by checking in the two cases arising from

the parity of k. Thus, the u we constructed is in ker(MT ), so the image of M is the

orthogonal complement of u.

At this point, to show that v e (R/2wZ)n is in the image of M, it suffices to

show that there is some representative of it in Rn which is orthogonal to u. Some

representatives of v are ( i, 0, 0,..., 0, , 0,... 0, ir, 0,.. .), where there are an even

number of entries that are ir, and we are allowed to choose the signs. It is easy to

see that we can choose signs so that v - u = 0 c R, because all of the entries of u are

1 so we can choose the signs in v to make the 7rs cancel.

This theorem implies that for quasi-alternating links, RB(L, w) is independent of

w. Moreover from the proof of it, we see that the signed sum of each column of M is
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zero. We already know that the sum of each row is zero, because each row has two

is and a -2, (with multiplicity). Hence, deleting a column and then deleting a row

do not change the rank of M, and we deduce that the rank of M is equal to the rank

of M-. We will use this to show the following partial converse to the above theorem:

Theorem 1.5.4. Let L be a two component link with det(L) = 0. Then for w going

between the two components, RB(L,W) 0.

Proof. It suffices to show that there is an element u e ker(MT ) such that no represen-

tative of v in R' can be orthogonal to u. Note that v = (7, 0,0, ... ,0, 7r, 0,0,.... 0) e

(R/27rZ)" where the non-zero entries are in crossings from different components.

Thus, the representatives of v are of the form (7r+27rai, 27ra2 , . . . , 2 7rak_1, 7r+27rak, 27rak+l,.--)

with ai e Z.

It then suffices to find u e ker(MT ) c Z" c R"n such that the entries of u are even

on one component and odd on the other; with that, by a parity argument, we could

see that u cannot be orthogonal to any representative of v.

Since det(M) = 0, the rank of M-, and therefore the rank of M is at most n -2,

that is the kernel of MT has rank at least 2.

Consider the exact sequence

__-+K Z" M Z" - C -> 0

where K is the kernel and C is the cokernel of MT. We know that K has rank at

least 2. However, K, being a submodule of Z' is a free Z module, so this sequence is

a projective resolution of C. Thus, the homology groups of

0 -* K ® Z/2 - (Z/2Z)" - (Z/2Z)" -+ 0

compute the Torz(Z/2, C), where the homology at K ® Z/2 is Torz(Z/2, C). Note

that Z has global dimension 1, so Torz(Z/2, C) = 0. Thus K & Z/2 -- (Z/2Z)n in

the above sequence is injective, and, indeed is an injection into the kernel of MT.
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However, MT consists of two diagonal blocks that look like

1 0 0 0 ... 1

I 1 0 0 ... 0

0 0 0 0... 1 0

0 0 0 0... 1 1

where one block corresponds to each component of the link, so it is easy to see that its

kernel has rank 2, with kernel generated by (1, 1, .. . 1, 0, 0, . . . 0), and (0, 0,. . .0, 1, 1,... 1),

ie, vectors that are 1 on one component and 0 on the other.

Thus, the injectivity of the map K 0 Z/2 - (Z/2Z)" implies that it is an iso-

morphism to the kernel of MT in (Z/ 2 Z)n. However, the map comes from looking at

generators of K c Z' modulo 2, so we get that looking at K modulo 2 in (Z/2Z)",

we get

Span((1, 1,...1,0,0,...0), (0,0,...0,1,1,... 1)) c (Z/2Z).

Consequently, some element of K must be odd on one component and even on the

other, as desired. L

When L has more than two components, and det(L) = 0, there could be situations

where RB(L, w) is the same as RB(L, 0) for w going between some components, but

RB(L, w) is empty for other w. For example, consider the link in Figure 1-16. If we

consider only the black, blue, and green components (ignoring the red component), we

get a three component link. For this link, w between the blue and black components

and w between the blue and green components have RB(L, w) = 0, whereas for w

between black and green components, RB(L, w) is not empty.

However, we consider only the black, blue, and red components (ignoring the

green component), we get a three component link for which if w goes between any

two components, we get RB(L,w) = 0.

The question of whether w has RB(L, w) = 0 or RB(L, w) = RB(L, 0) relates

to the question of whether the corresponding elements of ker(MT ) over Z/2Z we
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constructed in the proof above lift to elements of ker(MT ) over Z.
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p

Figure 1 16: Example determinant 0 links, where the number of binary dihedral representations may
depend on w.
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Chapter 2

Monopoles and positive scalar

curvature

2.1 Context: A review of monopole Floer homology

In this chapter, we will be discussing a spectral sequence for a different gauge-theoretic

Floer homology: the Seiberg-Witten Floer homology, also called the monopole Floer

homology. Let us start by giving a brief recap of this version of Floer homology. A

very thorough and comprehensive account can be found in [16].

Like the singular instanton Floer homology, the monopole Floer homology can

be seen as an analogue for the Morse homology on an infinite dimensional config-

uration space obtained from a 3-manifold with some structure. We start with a

3-manifold Y with a spin'-structure s. The configuration space, '3(Y), consists of

equivalence classes of pairs (B, T), where B is a spinc connection, T is a spinor, and

the equivalence is up to gauge. The functional for the monopole Floer homology is

the Chern-Simons-Dirac functional,

CSD : '3 -+ R/Z,

and as before, we may construct a Floer homology for this; roughly, the chain groups

are generated by the critical points of CSD, and the differentials count gradient flow
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lines.

One subtlety in the case of monopole Floer theory, is that there is an S' action

on 3 such that CSD is invariant with respect to it. The stabiliser of a point of 3

under the S' action is either (1) or the whole of S'. Points where the stabiliser is

S' are called reducible configurations. In [16], Kronheimer and Mrowka overcome

this by doing the Floer theory construction on the blow-up of 3 at the reducible

configurations, which they denote 3.

If 3 were a finite dimensional manifold like in classical Morse theory, the analogue

for Bo would be a manifold with boundary, and we may think of our 3 as analogous

to this. The configurations sitting over reducible configurations are analogous to the

"boundary". Critical points of CSD in the boundary are divided into the boundary-

stable and boundary-unstable ones. Roughly speaking, they are called boundary-

stable if the normal vector to the boundary belongs to the positive eigenspace of the

Hessian of CSD.

From here, Kronheimer and Mrowka constructed three versions of Seiberg-Witten

Floer homology, HM, HM, and HM, which differ in which of the critical points

(non-boundary ones, boundary-stable, boundary-unstable) and trajectories (bound-

ary trajectories or all trajectories) are included.

2.2 Introduction

The purpose of this section is to give a greater understanding of some of the maps

in a spectral sequence constructed in 13], associated to a link L c S3 , thus: For a

projection PL of the link with k crossings, consider its resolutions LI for I e {0, 1}k.

Let Y be the double branched cover of L c S3, and let Y(I) be the double branched

cover of LI c 3. For the complex C given by the cone of of the map Ut on C,

where 0 is the complex for the "to" version of the monopole Floer homology, Bloom

constructed the filtered complex

X - (Dieo,1p0(Y(I))
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with differential b given by D' : C(Y(I)) -+ C(Y(J)) for I J. The aforementioned

spectral sequence is the associated spectral sequence of this complex; Bloom showed

that the homology of its E1 , d, page is the reduced Khovanov homology of the link,

and the spectral sequence abuts to HM(Y), where HM is a version of monopole

Floer homology that Bloom constructed; it is the homology associated to C.

The differentials D, in the spectral sequence arise from counting monopoles on

the cobordism W(IJ) between Y(I) and Y(J), over a family of metrics on W(IJ) of

dimension k - 1 where I and J differ at k crossings. To see this family of metrics,

note that one can obtain J from I by k - 1 1-surgeries and W(IJ) is the trace of

these surgeries. The k dimensions come from translating the k 1-handles along the

R direction, and then requiring that Z ri = 0 where Ti is the time at which the ith

handle is attached.

It was shown in Proposition 4.6.1 of the book, [161, that on a closed manifold with

positive scalar curvature, all solutions to the monopole equations are reducible. In

the context of the cobordisms in the aforementioned spectral sequence, this means

that if we could choose the family of metrics parametrising translation of the handles

in the R direction such that each metric in the family has positive scalar curvature,

then the maps D, contain only terms coming from reducible solutions, ideally making

them easier to calculate.

In this section, we will construct such families of metrics of positive scalar curva-

ture for some of the cobordisms that can arise in the spectral sequence. To specify the

particular cobordisms, consider a link projection PL c S 2 with the black-and-white

checkerboard colouring, as in Figure 2-1.

Let G be the graph associated with PL, with vertices corresponding to black

regions of PL, and edges corresponding to crossings; for the link projection depicted

in Figure 2-1, G has five vertices and eight edges.

Let LO be the unlink obtained by resolving all the crossings in PL in a way such

that each black region becomes a component, and let L1 be the resolutions that

reverses all the crossings of LO. In particular, if we were considering an alternating

link projection, these would be the 0 and 1 resolutions.
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Figure 2 1: The checkerboard colouring for the link L8N1. (The blue parts are the "black regions".)

For the link projection depicted in Figure 2-1, the unlink LO can be seen as the five

circles that form the boundary of the five blue regions. The information of the link

projection can now be expressed as an unlink LO along with some crossings, as shown

in Figure 2-2. In order fully to capture the information of the link, each crossing is

coloured in one of two colours representing whether the resolution in LO is the 0 or 1

resolution.

Figure 2 2: LO and the crossings for the L8N1 projection above in Figure 2 1. The red and black
crossings are for when the resolution into LO involved the 0 resolution and the 1 resolution, respec
tively.)

Lemma 2.2.1. Suppose that the black graph G has a vertex such that all of the

edges emanate from that vertex. Then there is a family of metrics on W(IJ) for any

pair of resolutions on I and J of PL, parametrising the translations of the handles, as

described above, such that every metric in the family has positive scalar curvature.

Note that in our definition, we are allowed to reverse black and white, and the

84



conditions of the lemma are not symmetric in this reversal. For example, for a trefoil,

for one choice of colouring of black and white, the black graph consists of two vertices

and three edges all of which go between the vertices, which satisfies the condition of

the lemma. For the other choice, the graph has three vertices, x, y, z and three edges,

one between each pair of x, y, and z, and does not satisfy the conditions.

2.3 Form of the cobordisms

Let S c S3 x R be the usual cobordism between LO and L1 , which attaches a pair

of pants for each crossing. Let W denote the double branched cover of S c S3 x R,

which is a cobordism between the double branched covers of LO c S3 and L1 c S3.

For PL satisfying the conditions of Lemma 2.2.1, we will exhibit a positive scalar

curvature on W, and also on W with the parts of the cobordism near some of the

crossings reversed, so that even if the original link was not alternating, we would have

a positive scalar curvature on the cobordism corresponding to the diagonal map.

Consider the double branched cover of Lo. We can consider LO as a collection of

circles co, ... c, in R2 , corresponding to vo, . . . v,, such that the circle corresponding

to vo has all the other circles inside it, and for i, j > 0, c and cj do not contain each

other. For example, for the unlink projection from Figure 2-1, the circles are depicted

in Figure 2-3.

C2

Cl C3 C4

CO

Figure 2 3: The LO for the L8N1 projection, drawn with co containing the others.
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The double branched cover Y of (S3 , Lo) can be thought of as #"(SI x S2), where

for i e {1,... n}, c, sits as {0} x -y c S1 x S2 in the ith component, and co sits as

#"{7r} x -y. In this picture, the crossings between the ci and co for i # 0 can be

thought of as certain points on the copies of {O} x -y, and their corresponding points

in the {r} x -y. Each of these crossings is over a point xi e S2, where we have projected

to the S2 component of S' x S2

For example, if n = 1, ie there are only two circles, then the double branched

cover is S' x S2, as depicted in Figure 2-4; descriptions of co and ci for this situation

are in the caption.

00 0

0 0

000
Figure 2 4: The double branched cover for co u c1 .

In the figure, as we go around the depicted great circle in S 2, the magenta star

traces out ci and the blue star traces out co. Crossings correspond to specific points

x, on the equator of the S2, and the embedding # : S' x D2 --+ Y of the corresponding

handle attachment has image given by the S' bundle over a disk D, around x1. If

the circles are co, . . .cl with all edges having one end on co, then the double branched

cover is the connected sum of 1 copies of the above picture.
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2.4 Metrics of positive scalar curvature

2.4.1 Surgery on the metric S' x D2

To constuct the desired family of metrics, let us start by constructing a metric on the

attaching handle on S' x D2 with positive scalar curvature.

Z

R

x

Figure 2 5

Let 90 and R be positive real numbers with 90 < 7r/2. In a sphere SR of radius

R, let D2,R be the cap in SR spanning ange 7r - 29, that is, in spherical coordinates,

D2,6 is given by {(1, 0)1 1 > 0}. In this section, we give a metric on the 1 surgery

associated to the S1 over the north pole.

Parametrising the cobordism using a "time" axis t, the metric looks like this: for

time t < -T, it is cylindrical metric S1 x D2 x R, in the middle region where the

cobordism is happening, -T < t < T, it is the submanifold metric on the submanifold

of R2 x D2 x R, where we take a circle in the R2 at each time, but as time increases,

the radius of the circle over the north pole in D2 decreases, so that for t > T, we will

have a cylindrical metric like that on the upper hemisphere in Figure 2-6; the latter

will be the metric on the other end of the cobordism.

Let r : [-7r/2, 7r/2] x R -+ R be a smooth function such that there are no (0, t) for
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00;

0

0 0

'0
R

Figure 2 6: Attaching a handle to S' x S2

which r, ro, and rt all vanish, and also such that the higher derivatives of r in 9 at

9 = 7r/2 all vanish that is r9o, rot, ret, etc all vanish at 9 = r/2; rt and rut, however,

need not vanish.

Consider X c R1 cut out by the equations h(x, y, z, u, w, t) = (0, 0), for h : R2

R2 given by

h(x, y, z, u, w, t) = (X2 + + z2 - R 2,u 2 + W2 - r(9(x, y, z), t))

where 9(x, y, z) = arctan(z/ x2 + y2 ).

The manifold cut out is the cobordism described above: the X2 + y 2 + z 2 = R2

part cuts out the S2, and the u2 + w 2 - r(9(x, y, z), t) part signifies how the radii of

the circles over each point in S2 change as you move along S2 (closer, or farther away

from the north pole) and along time.

In terms of r, the boundary conditions on the cobordism are that it:

1. Is constant in both 9 and t on the regions 9 < Oo, t < -T.

2. For t > T, r(9, t) is constant in t, and r(7r/2, t) < 0.

3. For all t, at 9 = 7r/2, all the 9 derivatives vanish; that is, (-) r = 0 for i > 1.

We start by showing that the equations cut out a smooth submanifold of R'.
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Note that

[ 2x 2y 2z 0 0 0
dh(x,y,z,u,w,t)=r'~2 [ o O -r0 OO -rLO2 2w -rtJ

2x 2y 2z 0 0 0F2 N X x2 +y2 2u 2w -rtI
R /2 + R

2 
VX

2 
y2 R

2

and this derivative is smooth at 0 = ir/2 because (A) r = 0 for i > 1, and

XZ YZ -Nx
2 + y 2 is a vector of norm R which is orthogonal to (x, y, z).

AX2+y2~ /X2y2~

Let us show that dh has rank 2. If not, then we must have rt = 0 and u = w = 0,

so r = 0. Thus, by our assumption that r, ro, and rt do not simultaneously vanish,

we have ro # 0. However,

ro xz ro yz ro

R2 ,2 + y2' R 2  R22 y2' +

is a vector of length " orthogonal to (2x, 2y, 2z), so it cannot be parallel to it.

Thus, dh has rank 2, so the submanifold cut out by h(x, y, z, u, w, t) = 0 is smooth.

We now construct a smooth function r, satisfying the above boundary conditions

such that the cobordism cut out by h has positive scalar curvature. First, we construct

such a function when we are allowed to vary R:

Lemma 2.4.1. For any positive Oo < 7r/2, for sufficiently large R > 0 there is a

function r : [0, 7r/2] x R -* R satisfying the boundary conditions above, such that the

cobordism cut out has postive scalar curvature.

Proof. Away from the north and south poles and away from r = 0, parametrize the

submanifold by:

(0, 0, t, a) -* (R cos(0) cos(#), R cos(6) sin(), R sin(0), /r cos(a), /H sin(a), t)

Then away from 6 = 1 and away from r = 0 metric g,, in (0, #, t, a) coordinates
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R 2 +jbr6 2

0
91L1

rTrtro

0

rt
2

+4r
rt

2
R

2
+4rR

2
+ro2

0
99"

rt re
rt 2R2+4r R2+ro2

0

o 1 r -
4 rtre 0

R2 cos 2 (0) 0 0

0 _rt2 + 1 0

0 0 r

rt+ro0 rt
2
R

2
+4rR2

r9
2

sec2
(0) 0

4rR2
+rO 2

rt
2
R

2
+4rR

2
+ro

2

0 0

Next we compute the %. using formula

pk = (O gi + agjm - Omgij).

These are given by the following matrices, with indices in order 0, <, t, a.

ro (ro2-2rroo )
2r(rt

2
R

2
+4rR

2
+ro

2
)

0

r6 (2rrOt-rtro)

2r(rt2
R

2
+4rR2

+ro2
)

0

0
R2(rt2 +4r) cos(0) sin(0)

rt
2
R

2
+4rR

2
+r8

2

0

0

r "(
2
rro-rtr)

2r(rt2 R
2
+4rR2

+ro2 )

0

rt
2 -2rrtt )ro

2r(rt2 R
2
+4rR2

+r&2 )

0

0

0

0

2rro
rt

2
R

2 4rR
2

+r6
2 /

0 - tan(6) 0 0

- tan(6) 0 0 0

0 0 0 0

0 0 0 0

90

is

and g" is

0

0

01
ri

Ftk =



R2
rt (ro2-2rroo)

2r(rt
2
R

2
+4rR

2
+rO

2
)

0
R2 rt (2rrot-rtro)

2r(rt2 R2 +4rR2 +ro2 )

0

0
R2 rtre cos(O) sin(O)
rt2

R
2
+4rR

2
+ro2

0

0

R
2
rt(2rrOt-rtro)

2r(rt
2
R

2
+4rR

2
+ro

2)

0
R2

rt (rt2-2rrtt)

2r(rt
2
R

2
+4rR

2
+ro

2)

0

0

0

0

2rR2rt
rt

2
R

2
+4rR

2
+ro

2 /

0

0

0

2r

0 0

0 0

0 0

0

2r

0

2r

0I
Next, we compute the Riemann curvature tensor, using the formula

RPIV = OPF/ - aip', + F I - vA .

These are:

- R2 cos(0)

(R2r2 + r2 + 4R2r)2

x (R2 cos(6)r4 + 4r (2R 2 cos(9)r2 + ro (cos(O)ro - sin(9)roo))

+ sin(6)r2rotrt + 2 sin(O)r' + ror2 (cos(9)ro - sin(O)roo) + 16R 2 cos(O)r2 )

R 2 rtro (roor2 - 2rorotrt + 2rr2e + rtt (r2 - 2rroo))

2r ( tR2 r + r5 + 4R2r)2
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R2 (r2 + 4r) (roor2 - 2roretrt + 2rr2e + rtt (r2 - 2rreo))

2r (R2r? r + 4R2r ) 2

Raot = [.1100, = Ro a = Roc, = 0

2R2r (2r2 + rtrotro - (r| + 4r) roo)

(R2 r2 + r\ + 4R2r)2

tan(9) (r' - 2rroro)
000 - 2r (R2r2 + r2 + 4R2r)

- tan 2(0) + sec 2 (6)

Ro = 0

Ro -tan(O)ro (rtro - 2rrot)
too - 2r(R2r2+r2+4R

2r)

ao5000X~ 000 tooq ato4

R = tan(6)ro (rtre - 2rrot)
0t - 2r (R2r2 + r2 + 4R2 r)

- tan(O) (r2 - 2rret) ro

tcot 2r (R2r2 + r2 + 4R2 r)

Rot = Ro t = R =R4,=a

Ro - 2tan(O)rro
" R 2r2 + r\ + 4R2r
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Rt - - R2 (roor2 - 2 rorotrt + 2rr2t + ru (r2 - 2rroo)) (r2 + 4R2 r)

OtO 2r ( R2r + ro + 4R2r)2

Rtoto = 0

= R 2rtro (roor2 - 2rorotrt + 2rr 2 + rtt (r2 - 2rroo))
2r ( R2 r+ ro + 4R2r)2

Ritc := Rtt = 0

Rt
R2 sin(20)ro (2R2 r2 - rtt (r2 + 4R2r) + rorotrt)

2 (R2r2 + r2 + 4R2r) 2

Rtt = R t = Rt t = Rt = Rtt = Rt = Rtta = R Rt t = 0

2R2 r (2R2r2 - rFt (r2 + 4R2 r) + rorotrt)

(R 2 r + ro + 4R2r)2

R2 (r2 - 2rroo)
oao r(R2 r +r2+4R2 r)

t 0
Rc' o = 0

Ra = R2 (rtro - 2rrot)
tao= r (R 2rt + r2 + 4R2r)

Ra - R2 sin(20)ro
R2r2 + r2 + 4R2r
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.R' -=



R2 (rtro - 2rrot)
ROL r (R2r2 + r2+ 4R2r )

~t0
R a t = 0

R2 (rt - 2rrtt)
=r (R2r2 + r2+ 4R2 r)

Raat = ROOa = Rya Ra" = Ra = 0.Taa Rt iaa g b

The Ricci curvature, with formula Rj .k ~is gienb

Ricoe = R2 (ro - 2rroo)
(R2rt + ro + 4R2 r)

R2 (roor2 - 2roretrt + 2rr 2 + rtt (r2 - 2rroo)) (r2 + 4R2 r)

2r (R2r +r +4R2r )2

tan (0) (r3 - 2rroro) - a2(0) + 2 s2(0)+2r ( R2r + ro + 4R2r)

Rico= 0

Ricto = x
2r (R2 rt + r2 + 4R2r)2

2R2 (rtro - 2rrot) ( R2 r2 + r2 + 4R2 r)-R2rtro (rOOr2 - 2roretrt + 2rr 2 + rtt (r - 2rroo)

+ tan(9)ro (rtro - 2rrot) (R2 r2 + r + 4R2r))

RicaO = 0
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Ricoo = 0

R 2 cos(0)

( R2r2 + r2 + 4R2r) 2

R2 cos(O)r 4 + ror2 (- sin(6)roo + cos(6)ro + 4R2 sin(O))

+4r (2R2 cos(6)r2 + ro (-R2 sin(O)rtt - sin(9)roo + cos(6)ro + 2R2 sin(O)))

+2 sin(6)rorotrt - sin(6) (rtt - 4) ro + 16R2 cos(O)r2

Ricto = 0

Ric,,o = 0

2r R~~ r +4Rr)Ricot = 2(R212 2x
2rt(r + ro + 4 R2r )

2R2 (rtro - 2rrot) (R2r2 + rI + 4R2r ) -R 2 rtro (roor2 - 2rorotrt + 2rr 2 + rtt (r - 2rroo))

+ tan(O)ro (rtro - 2rret) (R2 r2 + r + 4R2 r)

Ricot = 0

1
2r (R2 r? + ro + 4R2r)2

2R2 (rQ - 2rrtt) (R2 2r + r + 4R2 r) -R 2 (r2 + 4r) (roor2 - 2rorotrt + 2rr2 + rtt (r - 2rroo))

+ tan(O) (r2 - 2rrtt) ro (R2 r2 + r+ 4R2r))

Rict = 0

95



Rico, = 0

Rico, = 0

Rict, = 0

Ric, = 2rx
(R2 rt + ro + 4R2r 2

(2R2rtroret + R2 rt (-roo + tan(9)ro + 2R2) - 4R2 r (R2 rtt + roo - tan(9)ro)

+rO (R2 (-rtt) + tan(9)ro + 2R2))

The scalar curvature is then S = Ei gi'Ricij,

2
S = x

(R2 (4r + rt2 ) + ro2) 2

16r2R2-ro tan(6) (4r (R2 (rtt - 2) + roo) + rt (-4R2 rt + rtroo - 2rorot) + (rtt - 4)ro2) +

4r ( -2Rrtt + R 2 (2rt 2 + (rtt - 2)roo - rot2 ) + r0
2 ) + 4R4 rt2

R2 (Tt 4 - 4rt2roo + 8rtrorot - 4(rtt - 1)ro2 ) + rt2ro 2).

We want to find a function r(O, t) satisfying the boundary conditions, for which

this is positive.

Let us consider r(6, t) = ro-P(6)Q(t), where P and Q are smoothed step functions

on [00, 7r/2] and [-T, T] respectively, that is they are a scale/translate of a step

function s(x) on [0, 1].

We will also assume that P, Q, P', and Q' are positive on (00, 7r/2) and (-T, T),

respectively, and P" and Q" are positive on (0, Oo+72/2) and (-T, 0) respectively and

negative on (oo+,/2, 7r/2) and (0, T), respectively. Moreover, we require that P' and

Q' are symmetric about the middle of their supports.
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0.1
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-0.2

-0.3
10

5
0.8 0

og.o1.1 1.2 13-
3x 1.4 1.5 -10

Figure 2 7: The function r, in terms of 0 and t, where T = 10 and Oo = 0.8.

That is, P' and Q' have to look like scales (and translates) of Figure 2-8 and P"

and Q" should look like scales (and translates) of Figure 2-9.

0.015-

0.010

0.005

0.2 0.4 0.6 0.8 1.0

Figure 2 8: Q'

We will moreover require that lim o ,,x) 1 and lim.o , = 1 (or we
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0.2 0.4 0.6 0 8 1.0

-0.05

Figure 2 9: Q"

could replace 1 with some other positive constant). These conditions all hold for

s(x) = constant f e-'- 1/-(')dy.

In the numerator of the expression above for scalar curvature, -

(16r2R2-re tan(9) (4r (R2 (ru - 2) + roe) + rt (-4R2rt + rtroo - 2roret) + (rtt - 4)ro2) +

4r (-2R4rtt + R2 (2rt 2 + (ru - 2)roe - rot2 ) + re 2) + 4R4rt2+

R 2 (rt4 - 4ri2roe + 8rtroret - 4(ru - 1)r6
2 ) + rt2re2)

Let us consider scaling R to aR and T to aT.

Then, the leading order term in a is

N = 16r2 R2 + 4R4rt2 + 4R2r2 - 8R4rru - 8R2rroo + 8rR2 ro tan(0),

and it suffices to show that this is positive wherever r > 0 on [0o, 7r/2] x [-T, T] for

R = 1,T = 1.

Note that we are allowed to decrease ro as long as it remains positive. Hence, it

suffices to show that there exists E such that

-8rt - 8roe + 8ro tan() > 0
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whenever 9 < 90 + E or t < -1 + c, because if we had this, then we can choose

ro so that r(O0 + E, -1 + E) = 0, so that r > 0 means we are in the region where

-8rt - 8roe + 8 re tan(9) > 0, and then adding in the terms 16r2 + 4r2 + 4rO, we would

have N > 0.

T

-T
D E B

En n/2

Figure 2 10

Thus, it suffices to show that there is E > 0 such that on each of the blocks in

Figure 2-10, -8rtt - 8 ree + 8r9 tan(9) > 0, where the boundary between A and C is

t = 0 and the boundary between E and B is 9 = 390o+ /2
4

We can rewrite the desired inequality, -8rt - 8 ree + 8re tan(9) > 0 as

Q(9)P"(t) + Q"()P(t) - Q'(9)P(t) tan(9) > 0.

In region A, note that Q"(0) > 0 and for epsilon sufficiently small Q"(0) >>

Q'(0), Q(9). Also tan(9) < tan(o + E) is bounded above in region A, and P(t) > 1/2

and P"(t) and is bounded. Thus, the Q"(9)P(t) term wins and we get Q(9)P"(t) +

Q"(9)P(t) - Q'(9)P(t) tan(9) > 0, as desired.

In region B, we have P"(t) >> P(t), P'(t) and Q(9) > s(1/4). Also Q"(0) and

Q'(0) -tan(9) are bounded, so the P"(t)Q(9) term dominates and gives us the desired

inequality.
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For regions C and D, we still have that Q"(0) >> Q'(0) and tan(6) is bounded,

so that the IQ"()P(t) >> |Q'()P(t) tan(9)j. However, we no longer have a lower

bound on P(t), so we cannot necessarily say IQ"(9)P(t)l wins over IQ(9)P"(t). How-

ever in this region P"(t) > 0, so the desired inequality still holds.

In region E, note that P"(t) and Q"(0) > 0. Also note that there is some positive

C such that for 0 < 01, Q(9)Q"(9) > C(Q'(0)) 2 . This is because limo o (Q=() 1

so > 0 on [9o,= 38O /2] and we can let C be the infimum of in

this region.

Similarly, on E, for sufficiently small E, P(t)P"(t) > C. Then

P"(t)Q(9) + Q"(9)P(t) >, 2 P"(t)Q(O)Q"(9)P(t) > 2C|P'(t)Q'(0)I,

and it suffices to show that 2C|P'(t)Q'()| -Q'(9)P(t) tan(9) > 0. But P'(t) >> P(t)

for sufficiently small E and in region E, tan(9) is bounded, so the inequality holds, as

desired.

Now let us use the above construction to show the following lemma; it is the same

as the above, but no longer allows us to vary R.

Lemma 2.4.2. For any R and Oo <r/2, there is a metric on D2x D2 as a cobordism

2x S _, S x D2 that agrees with D2 xS on the -oo end and is constant in

time near the boundary S' x S' c D2 x Si

Proof. Consider the metric in the proof of the lemma above:

R2 + -r, 2  0 1rrtro 0

0 R 2 cos 2 (0) 0 0

1rtro 0 +rt2+1 0

0 0 0 rJ

Choose some RO and r such that this has positive scalar curvature; the previous

lemma shows that such r exists for RO sufficiently large, and the r(6, t) constructed
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has form ro - P(t)Q(6) where P and Q are smoothed step functions on [-T, T] and

[0, 7r/2].

Consider replacing the metric with

R 2 + -r02

0

rF ro

0

0

R 2 cos 2 (6)

0

0

rt ro

0

0rt2 +

0

0

0

0

CrI
for some constant c. This does not affect the scalar curvature of the metric.

For t < -T, the metric now looks like

R2 0

0 R2 cos 2 (6)

0 0

0 0

0

0

1

0

0

0

0

croI
which is the same as the previous one, but we have scaled the S' in D2 x S'. For

general Oo, we may now simply pick large R and small ro such that there is r(6, t) as

above, so the cobordism has positive scalar curvature, then scale the entire picture

(the S 2 part, the S' part, and time) down to make R match the original value we

wanted, and then scale the r coordinate back so that 9/r matches the desired S'

radius by varying c. (Note that for convenience in the proof of the previous lemma,

we have chosen r to be the square root of the S' radius.) F1
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2.4.2 when the S 2 has radius 1

Repackaging the metric in the previous section in a way that makes it easier for later

computations, but slightly less intuitive, we may consider on S' x S2, the metric

1+4r2 0 L2 0

0 cos 2 (6) 0 0

9AV tro 0 1 + r 0S4rR2 :4rR IJ

0 0 0 r

where r = 1 - MP(t)Q(0).

This is the metric on R 4 inherited from the map R4 -* R given by

(0, 0, t, a) -+ (cos(0) cos(#), cos(9) sin(4), sin(0), Vr (6, t)/R cos(Ra), N r(0, t)/R sin(Ra), t),

so it is a well defined metric.

When t < -T or 0 < 0, the metric is

1 0 0 0

0 cos 2 (9) 0 0

0 0 1 0

0 0 0 1

This has scalar curvature

2

(4R2r + rt2 + ro22 X

(16R 4 r 2 - 4R2r (rtt (2R2 + ro tan(0) - roe) - 2R 2 ro tan(9) + 2R2 roo - 2rt2 - r02 + roro0 tan(0) + rot 2)

+rt 2 (ro (4R2 - roo) tan(O) + 4R2 (R 2 - roo) + re2 ) + 2rtrorot (4R2 + ro tan(0))

+r,2 (4 (R4 + R2 ro tan(0)) - rtt (4R2 + ro tan(0))) + rt4 )
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the leading order term of the numerator in R is

16r2 - 8 rrtt + 8rro tan(9) - 8rrOO + 4rt2 + 4rO2

And, as in the previous section, let r(9, t) = 1- MP(t)Q(0), where P is the smoothed

step function on [-1, 1], and Q is the smoothed step function on [90, 7r/2]. When M

is sufficiently large, we can make the leading term in R positive, so that when R is

sufficiently large, the scalar curvature is positive whenever r > 0.

This gives us a positive scalar curvature on S2 x S1 with a handle attached such

that for t < -1, the metric is

1 0 0 0

0 cos2(9) 0 0

0 0 1 0

0 0 0 1

By taking 0 --* r/2, we can push the handle attachment arbitrarily close to the pole.

Note that the logic here is this: First find r of the form 1 - P(t)Q(9)M such that

-rtt +ro tan(9) - roo > 0, where it is equal to zero only on the boundary, where 0 = 00

or t = -1. Then, for sufficiently large R, the scalar curvature expression above is

positive. Then this is the scalar curvature for a metric in coordinates (0, <, t, a/R),

where the a has been divided by R because we scaled the last coordinate.

2.4.3 Families of metrics on the cobordisms

Let us explain how to get from the families of metrics described above to the ones in

Lemma 2.2.1. For a cobordism that satisfies the conditions of the lemma, the LO can

be drawn as a a circle, co, with smaller circles c,... cl inside it, where all crossings

are between co and ci for i > 0, as in Figure 2-11.

As mentioned in Section 2.3, stretching out the parts between the ci, we can write

the double branched cover of this as the connected sum (Si x S2 )#', where the ith

copy of SI x S2 corresponds to the double branched cover of co JH ci, and the neck
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Figure 2 11

between copies of S1 x S2, which is an S2, is the double branched cover of S2 with

respect to the two points where an S2 meets co, as in Figure 2-12.

Figure 2 12

It was shown by Gromov and Lawson in [91 and by Schoen and Yau in [231 that

for manifolds M and M' if M' is obtained from M by surgery in codimension at least

3 and M has a metric of positive scalar curvature, then M' does as well. In the case

of the connected sum construction for 3-manifolds M and M2 , which we can see as 0

surgery on the 3-manifold M1 _1 M2 , the new metric constructed on M1#M2 can be

taken to be the same as the original metric on M1 and M2 away from a small B3 in

each; the connected sum operation is being performed in the balls.

Now the double branched cover of the source unlink, L' is (S1 x S2)# with a

2-handle for each black edge (these are the crossings for which the 1 resolution is

the one in Lo), and the double branched cover of the target is (S x S2)# with a

2-handle for each red edge. As we have shown in the previous sections, these handles

can be attached in an arbitrarily small "cap" of the S2 in 5i X S2, so we can attach

all of these handles independently of each other in small caps of the S x S2S, away

from the balls that have been dug out for the aforementioned zero surgeries. Thus,
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they can be translated in time, relative to each other, limiting to any order, which

is exactly what was required for the family of metrics. This is the required family of

metrics, each of which has positive scalar curvature.
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