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Abstract

We present a collection of results about the scaling limits of several models from integrable
probability.

Our first result concerns the asymptotic behavior of the bottom slice of a Hall-Littlewood
random plane partition. We show the latter concentrates around a limit shape and in two
different scaling regimes identify the fluctuations around this shape with the GUE Tracy-
Widom distribution and the narrow wedge initial data solution to the Kardar-Parisi-Zhang
(KPZ) equation. The second result concerns the limiting behavior of a class of six-vertex
models in the quadrant, and we obtain the GUE-corners process as a scaling limit for this
class near the boundary. Our final result, joint with Ivan Corwin, demonstrates the (long
predicted) transversal 2/3 critical exponent for the height functions of the stochastic six-
vertex model and asymmetric simple exclusion process (ASEP).

The algebraic parts of our arguments involve the construction and use of degenerations
and modifications of the Macdonald difference operators to obtain rich families of observables
for the models we consider. These formulas are in terms of multiple contour integrals and
provide a direct access to quantities of interest. The analytic parts of our arguments include
the detailed asymptotic analysis of Fredholm determinants and contour integrals through
steepest descent methods. An important aspect of our approach, is the combination of exact
formulas with more probabilistic arguments, based on various Gibbs properties enjoyed by
the models we study.
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Chapter 1

Introduction

This thesis presents a collection of results about the scaling limits of large stochastic systems,
which have been the object of immense study in a relatively young area of mathematics
called integrable probability. The majority of the models we investigate can be formulated
as random plane partitions or random six-vertex models, which in turn can be viewed as
random two-dimensional surfaces. The probability distribution of any of the models we
consider depends on several parameters and when these parameters converge to their critical
values the system size stochastically increases. Our main goal is to describe the behavior
of these systems as they approach criticality. The general flavor of the results we present
is that if one appropriately shifts and rescales these random surfaces, they will converge to
limiting probabilistic objects.

It is believed that many of the limits of random surfaces are universal, in the sense that
large classes of models should converge to the same objects regardless of the specifics of their
distributions. Proving such a statement remains out of reach in the general case; however,
there are now several integrable models (including the ones presented in this thesis) for which
there are tools to partially verify this belief. In the context of this thesis, the integrability
of the distributions we consider comes from their connection to special classes of symmetric
functions — Hall-Littlewood functions [64] and their rational generalizations [20]. The struc-
tural dependence of our models on symmetric functions allows the use of purely algebraic
tools, which provide exact formulas for rich families of observables of the systems. Once
these formulas are available, one can study them asymptotically and combine them with
additional combinatorial and probabilistic arguments to derive precise statements about the
limits of the systems.

The results of this thesis are split into three chapters, which are for the most part self-
contained and may be read in any order. We summarize each chapter below.

In Chapter 2 we consider a probability distribution ]P’j{}tL on plane partitions, which arises
as a one parameter generalization of the standard ¢"?“™¢ measure. This generalization is
closely related to the classical multivariate Hall-Littlewood polynomials, and it was first
introduced by Vuleti¢ in [81]. We prove that as the plane partitions become large (g goes
to 1, while the Hall-Littlewood parameter t is fixed), the scaled bottom slice of the random
plane partition converges to a deterministic limit shape, and that one-point fluctuations



around the limit shape are asymptotically given by the GUE Tracy-Widom distribution. On
the other hand, if ¢ simultaneously converges to its own critical value of 1, the fluctuations
instead converge to the one-dimensional Kardar-Parisi-Zhang (KPZ) equation with the so-
called narrow wedge initial data.

The connection of P, to Hall-Littlewood functions, allows us to apply the (more general)
formalism of Macdonald difference operators from [24] to our problem. In the Hall-Littlewood
setting the operators approach gives access to a single observable and we find a (general)
Fredholm determinant formula for its t-Laplace transform. In order to prove our main results
we specialize the general formula for the ¢-Laplace transform to the particular measure we
consider. Subsequently, we find two different representations of this formula that are suitable
for the two limiting regimes. When ¢ € (0, 1) is fixed and ¢ — 1~ the ¢-Laplace transform
converges to an indicator function and our Fredholm determinant formula converges to the
CDF of the Tracy-Widom GUE distribution. When both ¢, — 1~ the ¢-Laplace transform
converges to the usual Laplace transform and our Fredholm determinant formula converges
to the Laplace transform of the partition function of the continuous directed random polymer
[5,35]. The main difficulties in establishing the above convergence results are finding suitable
contours for our Fredholm determinants and representations for the integrands. We reduce
the convergence results to verifying certain exponential bounds for the integrands, which are
obtained through a careful analysis on the (specially) constructed contours. This detailed
asymptotic analysis of the arising Fredholm determinants forms the analytic part of our
arguments. Chapter 2 is based on the paper

[47] E. Dimitrov, KPZ and Airy limits of Hall-Littlewood random plane partitions, Ann.
Inst. Henri Poincaré Probab. Stat., to appear, 2016. Preprint, arXiv:1602.00727

In Chapter 3 we consider a class of probability distributions on the vertically inhomoge-
neous six-vertex model, which originates from the higher spin vertex models of [33]. These
distributions are closely related to a remarkable family of symmetric rational functions F,
parametrized by non-negative signatures A\ = A\; > Ay > ... > Ay > 0. These functions
form a one-parameter generalization of the classical Hall-Littlewood polynomials [64] and
enjoy many of the same structural properties [20]. Our approach to studying the vertically
inhomogeneous six-vertex model is based on a new class of operators DX, inspired by the
Macdonald difference operators. These operators act diagonally on the functions F,, when-
ever A has distinct parts and can be used to derive formulas for the probability of observing
certain arrow configurations in different locations of the model.

The main goal of Chapter 3 is to use the correlation functions obtained from our operators
to analyze a particular class of homogeneous six-vertex models as the system size becomes
large. For the class of models we consider, the correlation functions can be expressed in terms
of multiple contour integrals, which are suitable for asymptotic analysis. For a particular
choice of parameters we analyze the limit of the correlation functions through a steepest
descent method. Combining this asymptotic statement with some new results about Gibbs
measures on Gelfand-Tsetlin cones and patterns, we show that certain configurations of holes
(absence of arrows or empty edges) weakly converge to the GUE-corners process as the size of
the system tends to infinity. An important ingredient in the proof is a classification result,
which identifies the GUE-corners process as the unique probability measure that satisfies
the continuous Gibbs property and has the correct marginal distribution on the right edge.
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Chapter 3 is based on the paper

[48] E. Dimitrov, Six-vertex models and the GUE-corners process, Int. Math. Res. Notices,
to appear, 2016. Preprint, arXiv:1610.06893

In Chapter 4 we prove the long predicted transversal 2/3 exponent for the asymmetric
simple exclusion process (ASEP) [63,76] and the stochastic six vertex model [53] — two closely
related 1+ 1 dimensional random interface growth models in the Kardar-Parisi-Zhang (KPZ)
universality class. We work with step initial data for both models and demonstrate that their
height functions, scaled in space by T%% and in fluctuation size by T3, are tight as spatial
processes as time T goes to infinity. We also show that all subsequential limits of the scaled
height function (shifted by a parabola) have increments, which are absolutely continuous
with respect to a Brownian bridge measure. Conjecturally, the limit process should be the
Airy, process and we provide further evidence for this conjecture by uncovering a Gibbsian
line ensemble structure behind these models, which formally limits to that of the Airy line
ensemble [42].

Our approach is based on the study of a class of measures on discrete line ensembles that
satisfy what we call the ‘Hall-Littlewood Gibbs’ resampling property. This Gibbs property
implies that conditional on the second curve in the line ensemble, the top curve has a law
expressible in terms of an explicit Radon-Nikodym derivative with respect to the trajectory
of a random walk. By controlling this Radon-Nikodym derivative as T goes to infinity, we
are able to control quantities like the maximum, minimum and modulus of continuity of
the prelimit continuous curves, which translates into a tightness statement in the space of
continuous curves. By exploiting a strong coupling of random walk and Brownian bridges we
can further deduce the absolute continuity of subsequential limits with respect to Brownian
bridges of appropriate variance. The results we establish for line ensembles are quite general
and can be applied to the six-vertex model using the recent developments in [23] and to the
ASEP using the results in [3,27]. Chapter 4 is based on the joint paper with Ivan Corwin

[41] I. Corwin and E. Dimitrov, Transversal fluctuations of the ASEP, stochastic six vertex
model, and Hall-Littlewood Gibbsian line ensembles, Comm. Math. Phys., to appear, 2017.
Preprint, arXiv:1703.07180
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Chapter 2

KPZ and Airy limits of Hall-Littlewood random
plane partitions

2.1 Introduction

The purpose of this chapter is to use the Macdonald difference operators [64] to study the
q = 0 degeneration of the Macdonald process [24], called the Hall-Littlewood process. Our
motivation for studying the Hall-Littlewood process is that it arises naturally in a problem
of random plane partitions. The distribution on plane partitions we consider, called IPEL in
the text and defined in the next section, was first considered by Vuleti¢ in [81], where she
discovered a generalization of the famous MacMahon formula and identified an important
geometric structure of the measure. The measure P}, is a one-parameter generalization of
the usual r¥° measure on plane partitions, which is recovered if one sets ¢ = 0 (the volume
parameter is usually denoted by ¢ in the literature, but we reserve this letter for the ¢ in the
Macdonald polynomials and use r instead for the remainder of the text).

The algebraic part of our arguments consists of developing a framework for the Macdonald
difference operators in the Hall-Littlewood case. Although our discussion is parallel to the
one for the g-Whittaker case in [24], we remark that there are several technical modifications
that need to be made. In the Hall-Littlewood setting the operators approach gives access to
a single observable and we find a Fredholm determinant formula for its ¢-Laplace transform.
This result is given in Proposition 2.3.10 and we believe it to be of separate interest as it can
be applied to generic Hall-Littlewood measures and its Fredholm determinant form makes
it suitable for asymptotic analysis. For the particular model we consider, the observable is
insufficient to study the 3-dimensional diagram; however, we are able to use it to analyze
the one-point marginal distribution of the bottom part of the diagram.

The main results of the chapter (Theorems 2.1.2 and 2.1.3 below) describe the asymptotic
distribution of the bottom slice of a plane partition, distributed according to P’}}tL, in two
limiting regimes: when r — 17, ¢ € (0,1) - fixed and when 7,¢ — 1~ in some critical fashion.
In both cases one observes the same limit shape, while the fluctuations in the first limiting
regime converge to the Tracy-Widom GUE distribution [78], and to the distribution of the
Hopf-Cole solution to the KPZ equation with narrow wedge initial data [6,10] in the second
one. The latter results suggest that our model belongs to the KPZ universality class [40],
although some care needs to be taken. Typically, models belonging to the KPZ universality
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class are characterized by some dynamics (interacting particle systems, growing interfaces,
random polymers etc.), so that the system evolves with time. In sharp contrast, the model
we consider is stationary, i.e. there is no notion of time.

We now turn to carefully describing the measure ]P’;;fL and explaining our results in detail.

2.1.1 The measure PTH’tL

We recommend Section 2.2.1 for a brief overview of some concepts related to partitions and
Young diagrams. A plane partition is a Young diagram filled with positive integers that
form non-increasing rows and columns. A connected component of a plane partition is the
set of all connected boxes of its Young diagram that are filled with the same number. The
number of connected components in a plane partition 7 is denoted by k(). Figure 2-1 shows
an example of a plane partition and the 3-d Young diagram representing it. The connected
components, which are separated in the Young diagram with bold lines, naturally correspond
to the grey terraces in the 3-d diagram.

—_— | o W

b oW W W

BN W W W

5
4
4
3
3
1

— W W Wl |w
— W W W W

Figure 2-1: A plane partition and its 3-d Young diagram. In this example k(7) = 7.

If a box (¢,7) belongs to a connected component C, we define its level h(i,j) as the
smallest h € N such that (¢ + h,j + h) € C. A border component is a connected subset of
a connected component where all boxes have the same level. We also say that the border
component is of this level. For the example above, the border components and their levels
are illustrated in Figure 2-2.

For each connected component C' we define a sequence (n;,no, ...) where n; is the number
of i-level border components of C'. We set

Po(t) = [J(1 —t9)™.

i>1
Let C1, Cy, ...Cir) be the connected components of m. We define

k()

Ar(t) =[] Pe. @) (2.1.1)

14



Figure 2-2: Border components and their levels.

For the example above A (t) = (1 —¢)"(1 — t2)3(1 — ¢3).
Given two parameters r,t € (0,1) we define }P’TH’tL to be the probability distribution on
plane partitions such that
Pyt (m) oc 7l AL (8),

where || denotes the volume of 7, i.e. the number of boxes in its 3-d Young diagram. In [81]

it was shown that
1 (1—trm\"
Il = =: £). 9,19
;r Ar(t) H(I_TJ Z(r, 1) (2.1.2)

n=1

The above explicitly determines P, as
Py () i= Z(r,t) M AL (2), (2.1.3)
with Z(r,t) as in (2.1.2).

Remark 2.1.1. In Section 2.2.4 it will be shown that P}, arises as a limit of certain Macdonald
processes. These processes are defined in terms of Hall-Littlewood symmetric functions,
which explains the “HL” in our notation.

The distribution P}, has been studied in the cases t = 0 and ¢ = —1. When ¢t = 0 we
have Py (1) = Z(r,0)"'rI" where Z(r, 0) is given by the famous MacMahon formula

26,0) = 3o -=nﬁ (1 _ITH) (2.1.4)

=1

We summarize a few of the known results when ¢t = 0. In [36] it was shown that under
suitable scaling a partition , distributed according to ]P;}[}, converges to a particular limit
shape as r — 17 (see also [57]). In [69] it was shown that Py, is described by a Schur
process and has the structure of a determinantal point process with an explicit correlation
kernel, suitable for asymptotic analysis. In [51] it was shown that under suitable scaling the
edge of the limit shape converges to the Airy process.

When ¢ = —1 the measure P;;' concentrates on strict plane partitions (these are plane

15



partitions such that all border components have level 1) and is described by a shifted Schur
process as discussed in [80]. The shifted Schur process is shown to have the structure of a
Pfaffian point process with an explicit correlation kernel, which can be analyzed as r — 1~.
A limiting point density can be derived, which suggests a limit-shape phenomenon similar to
the t = 0 case. To the author’s knowledge there are no results regarding the edge asymptotics
in this case.

In this chapter we study the distribution ]P’TH’tL for t € (0,1). In particular, we will be
interested in the behavior of a plane partition, distributed according to lP’;i’tL, as the parameter
r goes to 17. Part of the difficulty in dealing with the case ¢ € (0,1) comes from the fact
that a determinantal or Pfaffian point process structure is no longer availbable. Instead,
we will use the formalism of Macdonald difference operators (see [24] and [28]) to obtain
formulas for a certain class of observables for a plane partition =, distributed accodrding
to ]P’Z’,tL. These formulas can be asymptotically analyzed and imply one-point convergence
results for the bottom slice of .

2.1.2 Main results

For a partition A, we let )| denote its largest column (i.e. the number of non-zero parts).
Given a plane partition 7, we consider its diagonal slices \* (alternatively A(t)) for t € Z,
i.e. the sequences

N = \(k) = (m;50%) for i > max(0, —k).

For r € (0,1), 7 € R we define

N(r) = 1: and x := {(l—g%g)-i] o {EI;TM)] - (2.1.5)

Below we analyze the large N asymptotics of A} (|7N(r)]) of a random plane partition,
distributed according to Py, .

Theorem 2.1.2. Consider the measure ]P’Z’,tL on plane partitions, given in (2.1.8), with t €
(0,1) fized. Then for all T € R\{0} and z € R we have

: 7.t
hm_ Pyt
r—1

N([TN(r)]) — 2N (r)log(1 + e~171/2)
( X"IN (r)1/3 <z ) = Faur(z),
where Feyp is the GUE Tracy-Widom distribution [78] and N(r), x are as in (2.1.5).

Theorem 2.1.3. Consider the measure ]P”;;L on plane partitions, given in (2.1.8). Suppose
T > 0 is fized and ﬁﬁ—g = x(T/2)/3. Then for all T € R\{0} and x € R we have

: 7t
lim Py,
r—1

()\'I(I_TN(T')J) — 2N (r)log(1 + e~I71/2)

XN (r)1/3(T/2)-1/3 +log(N(r)/3x (T /2)™"/?) < fU) = Foprp(T)

where Foprp(z) = P(F(T,0)+T/24 < z) and F(T,X) is the Hopf-Cole solution to the
Kardar-Parisi-Zhang equation with narrow wedge initial data [6, 10]. The coefficients N(r)
and x are as in (2.1.5).
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The definitions of Fgyg(x) and Foprp(z) are provided below in Definition 2.1.7. In
Sections 2.4 and 2.5 we will reduce the proofs of the above results to claims on certain
asymptotics of Fredholm determinant formulas. Throughout the chapter, we will, rather
informally, refer to the limiting regime in Theorem 2.1.2 as “the GUE case” and to the one
in Theorem 2.1.3 as “the CDRP case”.

Remark 2.1.4. The exclusion of the case 7 = 0 appears to be a technical assumption, neces-
sary for our proofs to work. It is possible that the arguments in this chapter can be modified
to include this case, but we will not pursue this goal.

Before we record the limiting distributions that appear in our results, we briefly discuss
the definition of F(X,T). The continuous directed random polymer (CDRP) is a universal
scaling limit for 1 4 1 dimensional directed random polymers [5,35]. Its partition function
with respect to general boundary perturbations is given as follows (cf. [26, Definition 1.7]).

Definition 2.1.5. The partition function for the continuum directed random polymer with
boundary perturbation In Z,(X) is given by the solution to the stochastic heat equation
(SHE) with multiplicative Gaussian space-time white noise and Z,(X) initial data:

%Zz%@Z+ZMA 2(0,X) = Zy(X). (2.1.6)

The initial data Z,(X) may be random but is assumed to be independent of the Gaussian
space-time white noise W and is assumed to be almost surely a sigma-finite positive measure.
Observe that even if Z;(X) is zero in some regions, the stochastic PDE makes sense and
hence the partition function is well-defined.

A detailed description of the SHE and the class of initial data for which it is well-posed
can be found in [6,10]. Provided, Z, is an almost surely sigma-finite positive measure, it
follows from the work of Mueller [66] that, almost surely, Z(T, X) is positive for all T > 0
and X € R and hence its logarithm is a well-defined random space-time function. The
following is Definition 1.8 in [26].

Definition 2.1.6. For Z, an almost surely sigma-finite positive measure define the free
energy for the continuous directed random polymer with boundary perturbation In Z4(X) as

F(T,X) =In Z(T, X).

The random space-time function F is also the Hopf-Cole solution to the Kardar-Parisi-
Zhang equation with initial data Fo(X) = In Zy(X) [6,10]. In this chapter, we will focus
on the case when Zy(X) = 1;x=o}, which is known as the narrow wedge or 0-spiked initial
data [6,26]. In [26, Theorem 1.10] it was shown that when Z(X) = 1{x—o}, one has the
following formula for the Laplace tansform of exp(F(T,0) + T'/24).

E [ exp(f(T,o)+T/24)] = det(I — Kcprp)r2(RL), (2.1.7)

where the right-hand-side (RHS) denotes the Fredholm determinant (see Section 2.2.5) of
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the operator Kcpgrp, given in terms of its integral kernel

T

Ai(t + ) Ai(t + 7). (2.1.8)

K, Ni= | dt——+
corp(n,M) /R ot + e—t/o

In the above formula o = (2/T)*/3, z € R and Ai(-) is the Airy function.
We now record the definitions of the limiting distributions that appear in Theorems 2.1.2
and 2.1.3. The first part of the following definition is [26, Definition 1.6].

Definition 2.1.7. The GUE Tracy-Widom distribution [78] is defined as
FGUE(.'IZ) = det(I — KAi)L2(z,oo),

where K 4; is the Airy kernel, that has the integral representation

1 627”’/300 67”‘/300 1 23/3_znl
Kai(n,n') = _/ dw/ dz ©

(27TL)2 —2me/3 50 —me/350 z— W €w3/3_wn7

where the contours z and w do not intersect.
Suppose F (T, X) is the free energy for the CDRP with boundary perturbation In Z(X)
and Z¢(X) = 1{x=o} as in Definition 2.1.6. Then we define

FCDRP(x) = IP(.F(T, 0) + T/24 < :I?)
2.1.3 Outline

The introductory section above formulated the problem statement and gave the main results
of the chapter. In Section 2.2 we present some background on partitions, symmetric func-
tions, Macdonald processes and Fredholm determinants. In Section 2.3 we derive a formula
for the t-Laplace transform of a certain random variable in terms of a Fredholm determinant
using the approach of Macdonald difference operators. In Sections 2.4 and 2.5 we extend the
results of Section 2.3 to a setting suitable for asymptotic analysis in the GUE and CDRP
cases respectively and prove Theorems 2.1.2 and 2.1.3. Section 2.6 summarizes various tech-
nical results used in the proofs of Theorems 2.4.7 and 2.5.3. Section 2.7 presents a sampling
algorithm for random plane partitions, formuates conjectural extensions of the results of this
chapter and provides some empirical evidence supporting them.

2.2 (General definitions

In this section we summarize some facts about symmetric functions and Macdonald processes.
Macdonald processes were defined and studied in [24], which is the main reference for what
follows together with the book of Macdonald [64]. We explain how the measure P, arises
as a limit of a certain sequence of Macdonald processes and end with some background on
Fredholm determinants, used in the text.

2.2.1 Partitions and Young diagrams

We start by fixing terminology and notation. A partition is a sequence A = (A1, Ag,---) of
" non-negative integers such that A\; > Ay > --- and all but finitely many elements are zero.

18



We denote the set of all partitions by Y. The length £()\) is the number of non-zero \; and
the weight is given by |A| = A + A+ -+ . If |A| = n we say that \ partitions n, also
denoted by A F n. There is a single partition of 0, which we denote by @. An alternative
representation is given by A = 1™2™2 ... where m;(X) = |[{i € N: \; = j}| is called the
multiplicity of j in the partition A. There is a natural ordering on the space of partitions,
called the reverse lexzicographic order, which is given by

A > p <= Tk € N such that \; = p;, whenever i < k and A > .

A Young diagram is a graphical representation of a partition ), with A; left justified
boxes in the top row, A; in the second row and so on. In general, we do not distinguish
between a partition A and the Young diagram representing it. The conjugate of a partition
A is the partition A" whose Young diagram is the transpose of the diagram A. In particular,
we have the formula X, = |{j € N: \; > i}|.

Given two diagrams A and p such that p C A (as a collection of boxes), we call the
difference 8 = XA — p a skew Young diagram. A skew Young diagram 6 is a horizontal m-
strip if € contains m boxes and no two lie in the same column. If A — p is a horizontal strip
we write A = p. Some of these concepts are illustrated in Figure 2-3.

Figure 2-3: The Young diagram A = (5,3,3,2,2) and its transpose (not shown) X =
(5,5,3,1,1). The length £(X) = 5 and weight |A| = 15. The Young diagram u = (3,3,2,2,1)
is such that 4 C A. The skew Young diagram A — p is shown in black bold lines and is a
horizontal 4-strip.

A plane partition is a two-dimensional array of nonnegative integers
m= (ﬂ-i,j): 'L,_’} = 0, 1, 2, a3
such that m;; > max(m; j41,mi41,;) for all 4,57 > 0 and the volume || =, .o ; is finite.
Alternatively, a plane partition is a Young diagram filled with positive integers that form

non-increasing rows and columns. A graphical representation of a plane partition 7 is given
by a 3-dimensional Young diagram, which can be viewed as the plot of the function

(x,y) — Tzl ly] LY > 0.

Given a plane partition 7 we consider its diagonal slices X! for t € Z, i.e. the sequences
M= (m:4¢) for i > max(0, —t).
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One readily observes that A* are partitions and satisfy the following interlacing property
vum RN N0 AP e AT - XB e e

Conversely, any (finite) sequence of partitions \!, satisfying the interlacing property, defines
a partition 7 in the obvious way. Concepts related to plane partitions are illustrated in
Figure 2-4.

[l B IS I S ]

Figure 2-4: The plane partition 7 = @ < (1) < (1) < (3) < (4,2) < (5,3,1) > (4,3) »
(4,3) > (3,1) > (3) » @ . The volume |r| = 41.

2.2.2 Macdonald symmetric functions

We let Ax denote the Z>, graded algebra over C of symmetric functions in variables X =
(21,2, ...), which can be viewed as the algebra of symmetric polynomials in infinitely many
variables with bounded degree, see e.g. Chapter I of [64] for general information on Ax. One
way to view Ay is as an algebra of polynomials in Newton power sums

o0

pr(X) = Z:Ef, for k > 1.

For any partition A we define
£(X)

n(X) =] r.(X),
i=1

and note that py(X), A € Y form a linear basis in Ax.
An alternative set of algebraically independent generators of Ay is given by the elemen-
tary symmetric functions

ex(X) = Z Bl W Ior B2 L
1<y <ig <<y,

In what follows we fix two parameters ¢,t and assume that they are real numbers with
g,t € (0,1). Unless the dependence on g¢,t is important we will suppress them from our
notation, similarly for the variable set X.
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The Macdonald scalar product (-,-) on A is defined via

o)

o) = | ] 1:#\ (H ™M ) (2.2.1)

=1

The following definition can be found in Chapter VI of [64].

Definition 2.2.1. Macdonald symmetric functions Py, A € Y, are the unique linear basis of
A such that

1. (P, P,) =0 unless \ = p.

2. The leading (with respect to reverse lexicographic order) monomial in Py is Hf(’\l) M,

Remark 2.2.2. The Macdonald symmetric function Py is a homogeneous symmetric function
of degree |\|.

Remark 2.2.3. If we set Tn41 = Tn4o = --- = 0 in Py(X), then we obtain the symmetric
polynomials Py(z1,...,zy) in N variables, which are called the Macdonald polynomials.

There is a second family of Macdonald symmetric functions @y, A € Y, which are dual
to P with respect to the Macdonald scalar product:

Q= (P, PP, (P\,Qu) =0 AMpEY.

For two sets of variables X = (21,22, ...) and Y = (y1, 42, ...) define

= ZP,\(X)Q,\(Y)

A€Y

Then from Chapter VI (2.5) in [64] we have

T (55 Qoo
I(X;Y) = [] ot 2.2.2
(% Y) gl (%Y @)oo’ (2232)
where (a;¢)e = (1—a)(1—aq)(1—aq?)--- is the g-Pochhammer symbol. The above equality
holds when both sides are viewed as formal power series in the variables X, Y and it is known
as the Cauchy identity.

We next proceed to define the skew Macdonald symmetric functions (see Chapter VI
in [64] for details). Take two sets of variables X = (z;,zs,...) and Y = (y1,%2,...) and a
symmetric function f € A. Let (X,Y’) denote the union of sets of variables X and Y. Then
we can view f(X,Y) € A(xy) as a symmetric function in z; and y; together. More precisely,
let

o«
F=Y _0pm=>_C]]pr
AeY A€Y i=1

be the expansion of f into the basis py of power symmetric functions (in the above sum
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Cx = 0 for all but finitely many X). Then we have

o)
Z Cx H P (X) +pa(Y))-
- €Y i=1

In particular, we see that f(X,Y’) is the sum of products of symmetric functions of x; and
symmetric functions of y;.

Skew Macdonald symmetric functions Py/,, Q. are defined as the coefficients in the
expansion

=Y PX)Pyu(Y) and Qu(X,Y) =) Qu()Qxu(Y) (22.3)

peEY HEY

Remark 2.2.4. The skew Macdonald symmetric function Py, is 0 unless p C A, in which
case it is homogeneous of degree || — |u|.

Remark 2.2.5. When A\ = p, Py, = 1 and if 4 = & (the unique partition of 0), then
Py/u = Pi.

We mention here two important special cases for the skew Macdonald symmetric func-
tions. Suppose xo = x3 = --- = 0. Then we have

A= I#I

Pyju(z1) = ¢>\/u93|| " and Qx/u(T1) = Pa/py

whenever A > p and zero otherwise. The coefficients ¢/, and 15/, have exact formulas as is
shown in Chapter VI (6.24) of [64], and we write them below. Let f(u) = (tu; @)oo/ (qU; @)oo
If A > u then

F@ N (gt~

¢ /A(Qat) = i ti—i P P (2’2'4)
Y KKJHQ(A Fl@rsti=i) f(qr—rserti=i)

i — 47—t Ai—=Xj 14—
TNRCT R | A A o) LC sl (2.2.5)

i— —1 i—A
L<iZisem f(q Hitd )f(q# j+14I— z)

otherwise the coefficients are zero.

2.2.3 The Macdonald process

A specialization p of A is a unital algebra homomorphism of A to C. We denote the applica-
tion of p to f € A as f(p). One example of a specialization is the trivial specialization &,
which takes the value 1 at the constant function 1 € A and the value 0 at any homogeneous
f € A of degree > 1. Since the power sums p, are algebraically independent generators of A,
a specialization p is uniquely defined by the numbers p,(p). Conversely, given any sequence
o = ai,as, ... of complex numbers, we can define a specialization p, by setting p,(pa) = an
and linearly extending to the rest of A.

Given two specializations p; and py we define their union p = (p1, p2) as the specialization
defined on power sum symmetric functions via

Pn(p1, p2) = Pnlp1) + Pr(p2), n > 1.
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One specialization that we will consider frequently is of the form z; = a1,...,2y = ay
and zy = 0 for £k > N, where ay, ..., ay are given complex numbers. That is, we set

N ‘
pn=) aforallneN.

i=1

Notice that the above is well defined even if N = oo, provided that ). |a;|* < oo for
each n > 1, which is ensured if ), |a;| < co. If N < oo we call the above a finite length
specialization.

Definition 2.2.6. We say that a specialization p of A is Macdonald nonnegative (or just
‘nonnegative’) if it takes nonnegative values on the skew Macdonald symmetric functions:
Py/.(p) > 0 for any partitions A and pu.

One can show (see e.g. Section 2.2 in [24]) that if we have a; > 0 and ), a; < oo in the
specialization we considered before, then it is nonnegative. Such a specialization is called
Pure alpha. We remark that finite unions of nonnegative specializations are nonnegative (see
Section 2.2 in [24]).

Let p; and ps be two non-negative specializations, then one defines

II(py, p2) = ZPA (p1)@x(p2),
AeY

the latter being well-defined in [1, co] (observe that Py(p1) = 1 = Qz(p2), so that II(p1, p2) >
1).

We now formulate the definition of the Macdonald process. Let N be a natural number
and fix nonnegative specializations p{, ..., p&_;, o1, ---, Px» such that H(pj,};\)r;) < oo for all
i,j. Consider two sequences of partitions A = (A!,...,AN) and p = (p!, ..., uV~1). We define
their weight as

WA, 1) = Pa(pg) @iy (07) Prz g (p7) - - PAN/MN—I(PJJQ—1)QAN (pn)- (2.2.6)

Definition 2.2.7. With the above notation, the Macdonald process M(pg, ..., o _1; 075 -, PN)
is the probability measure on sequences (\, u), given by

WA, p) _
HO<1<]<N H(p:_a pg_)

M5 s s P15 P15 s PN) My 1) =

Using properties of Macdonald symmetric functions one can show (see e.g. Proposition
2.4 in Section 2 of [24]) that the above definition indeed produces a probability measure,

that is
ZW(A w= T[] T e)

0<i<g<N
The Macdonald process with N = 1 is called the Macdonald measure and is written as
MM(pt; p7).
One important feature of Macdonald processes is that if we pick out subsequences of
(A, i), then their distribution is also a Macdonald process (with possibly different specializa-
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tions). One special case that is important for us is the distribution of A\* under projection of
the above law. As shown in Section 2 of [24], A* is distributed according to the Macdonald

measure MM(pFS,k_ll; Pir.ny)» Where pﬁ;,b] denotes the union of specializations p;,, m = a, ..., b.

2.2.4 The measure ]P’;;L as a limit of Macdonald processes.

The main object of interest in this chapter is a distribution P?}fL on plane partitions, de-
pending on two parameters r,t € (0,1), which satisfies Py (7) oc rI™A,(¢) for a certain
explicit polynomial A,, depending on the geometry of 7 (see Section 2.1.1 for the details).
We explain how this measure arises as a limit of Macdonald processes with ¢ = 0.

Start by fixing a natural number N and consider sequences of partitions A~V+1 ... AN-1

G<A N AT N e A - s AW e g

The latter sequences exactly represent the set of plane partitions, whose support lies in a
square of size N, i.e. theset {m :m; =0ifi > N or j > N} (see Section 2.2.1). We next
consider the collection of finite length specializations p;, p;- given by

pr iy =r Y2 gy =gy =-..=0 —N<n<-I,
Pr Z1=To=2g="--=0 —-N+1<n<-1,
Py ="t gy =gy =... =0 0<n<N-1,
pripy=xs=23=---=0 0<n<N-2.

Consider the Macdonald process M(p?y, ...0%_2; P=n41:---Py_1) and recall that the proba-
bility of a pair of sequences (A, u) with A = AN+ ... MW= and p = (™ N+, ... 4V 72)
is given by

N-1 _
Hn:—N—|—1 PA”/#"‘l(p:—l)QA"/u" (Pn)
I vii<icjen—2 (p]; p;)

M(pr, ...p]\L,_2; P_Nt1>—PN_1) = (2.2.7)

3

where we set u= = puN~! = @. Using properties of skew Macdonald polynomials we see
that the above product is zero unless

e "= X"forn <0 and pu™ = \"*! for n >0,
e I <AV L AT A0 AL - - AV g

Under the two conditions above the numerator in (2.2.7) equals (see Section 2.2.2)

0 N
[T wrejuns (@, )r2 D00 2072 5 TT s s (g, £)r@e DO =20/,
n=—N+1 n=1

Using that pu™ = A" for n < 0 and p® = A" for n > 0 we get
°. —2n+1 M 2n+1 2. —2n+1
> T’(WFIM”“”HZ =l = ) T(|A"|—|)\"—ll)

2
n=—N-+1 n=1 n=-N+1
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N -1 N-1 N-1

2n+1 n— n n n n
+> (X =) = Y W+ |A°I+ I/\°|+ZI>\I— Y. =[x

n=1 n=—N+1 n=1 n=—N+1

where we set A™N = AV = @ and 7 is the plane partition corresponding to the diagonal
slices A™ (see Section 2.2.1).

Letting ¢ — 0 in equations (2.2.4) and (2.2.5) we get (see (5.8) and (5.8') in Chapter 3
of [64]):

¢>\/u(07t) = H(l - tmi(’\)) and gb)‘/”(()’ t) = H(l — tmj(u))_

i€l jeJ
In the above formula we assume A > p otherwise both expressions equal 0. The sets I,J
are:

I={ieN: N =pand X, >pi}and J={j e N: X, > ), and N) = )}

Summarizing the above work, we see that M(p¥ y,...0N_2; P n11s---Py—1) induces a proba-
bility measure on sequences @ < A7Vl < ... < A7 < A0 = Al = .. = ANTL & and
hence on plane partitions 7, whose support lies in the square of size N. Call the latter
measure P} and observe that

PN () = Zybri H Yanjan1 (0, £) X Haﬁm ya(0,) = Zy'r!M Ba(t),

—N+1

where B,(t) is an integer polynomial in ¢ and Zy is a normalizing constant. In [81] it was
shown that B, (t) = A,(t) and the normalizing constant was evaluated to equal

1 —t’r’“ '
B0 e
i=1 j=1

Remark 2.2.8. The “HL” in our notation stands for Hall-Littlewood, since in the limit ¢ —
0 the Macdonald symmetric functions Py(X;q,t) and Qx(X;q,t) degenerate to the Hall-
Littlewood symmetric functions Py (X;t) and Qx(X;t).

As N — oo the measures 35" converge to the measure P, since limy o0 Zn(r,t) =
Z(r,t) - the normalizing constant in the definition of P}y, (see (2.1.2)). Thus, we indeed see
that IP’H . arises as a limit of Macdonald processes, in Wthh the parameter q is set to 0.

Our approach of studying ]P 57, goes through understanding the distribution of the diag-
onal slices A*. For N > |k| we have that

PT;[,,N( )\) P ( 1/2) e 7T(2N_1)/2; t)Q/\(Tl/2+|k|) R T<2N_1)/27 07 0) ey 0: t)a

k|

where we used results in Section 2.2.3 and the proportionality of Py and @, to combine the
cases k > 0 and k£ < 0. Letting N — co we conclude that

P (A = X) = Z(r,t) TRy (r'/2, 032, ) Qu (r P 2Ry,
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Finally, using the homogeneity of Py and @, we see that
P (N = X) = Z(r, t) ' Py(a, ar,ar?, - - - ;1)Qa(a, ar,ar?, - - - ;t),

where a(k) = r(+l¥D/2_ Tt is this distribution, which we call the Hall-Littlewood measure
with parameters a,r,t € (0,1), that we will analyze in subsequent sections.

2.2.5 Background on Fredholm determinants

We present a brief background on Fredholm determinants. For a general overview of the
theory of Fredholm determinants, the reader is referred to [75] and [61]. For our purposes
the definition below is sufficient and we will not require additional properties.

Definition 2.2.9. Fix a Hilbert space L*(X,u), where X is a measure space and u is a
measure on X. When X =T, a simple (anticlockwise oriented) smooth contour in C we
write L?(T") where for z € T, du(z) is understood to be £=.

Let K be an integral operator acting on f(-) € L*(X, ) by K f(z) = [, K(z,y) f(y)du(y).
K(z,y) is called the kernel of K and we assume throughout K (z,y) is continuous in both z
and y. If K is a trace-class operator then one defines the Fredholm determinant of I + K,
where [ is the identity operator, via '

oo 1 " k13
det(l + K)oy =1+ 3 /X . /X det [K (s, 2)]%,_, [] dis(as), (2.2.8)
n=1 """ i=1

where the latter sum can be shown to be absolutely convergent (see [75]).
A sufficient condition for the operator K(z,y) to be trace-class is the following (see [61]
page 345).

Lemma 2.2.10. An operator K acting on L?(T") for a simple smooth contour T in C with
integral kernel K(z,y) is trace-class if K(z,y) : T? — R is continuous as well as Ka(z,y) is
continuous in y. Here Ko(x,y) is the derivative of K(x,y) along the contour I" in the second
entry.

The expression appearing on the RHS of (2.2.8) can be absolutely convergent even if K
is not trace-class. In particular, this is so if X =I" is a piecewise smooth, oriented compact
contour and K (z,y) is continuous on X x X. Let us check the latter briefly.

Since K (z,y) is continuous on X x X, which is compact, we have |K(z,y)| < A for some
constant A > 0, independent of z,y € X. Then by Hadamard’s inequality! we have

‘det (K (x;, xj)]zjzl’ < nM2A",
This implies that

nn/ZBn

<
- nl

Y

1 n
— [ - K (zi, 7))} oy | [ diela
n! /J; /.;( det [ (w :L'J)]m_l i=1 d'uj(x )

!Hadamard’s inequality: the absolute value of the determinant of an n x n matrix is at most the product
of the lengths of the column vectors.
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where B = A|u|(X). The latter is absolutely summable because of the n! in the denominator.

Whenever X and K are such that the RHS in (2.2.8) is absolutely convergent, we will still
call it det(I + K)r2(x). The latter is no longer a Fredholm determinant, but some numeric
quantity we attach to the kernel K. Of course, if K is the kernel of a trace-class operator on
L?(X) this numeric quantity agrees with the Fredholm determinant. Doing this allows us to
work on the level of numbers throughout most of the text, and avoid constantly checking if
the kernels we use represent a trace-class operator.

The following lemmas provide a framework for proving convergence of Fredholm deter-
minants, based on pointwise convergence and estimates of their defining kernels.

Lemma 2.2.11. Suppose that I' is a piecewise smooth contour in C and KV (z,y), N € N
or N = oo, are measurable kernels on T' x T such that limy_,oo KN (z,y) = K®(z,y) for all
z,y € I'. In addition, suppose there is a non-negative, measurable function F(x) on T with

sup sup |K™ (z, )| < F(z) and /F(w)|du(a:)| =M < .
NeN yer r

Then for each n > 1 and N one has that det [KN (;, xj)]?jzl is integrable on I'™, so that in
particular [ --- [ det [KN(xi,xj)]?jzl [T, du(=;) is well defined. Moreover, for each N

o0 1 n n
det(I + K)oy =1+ ~ /F e /F det [KN (i, 2;)]7,_, H1 dp(;)
n=1 1=
is absolutely convergent and limy_, det(I + KN)LQ(F) = det(I + K*)r2r).

Proof. The following is similar to Lemma 8.5 in [26]; however, it allows for infinite contours
I' and assumes a weaker pointwise convergence of the kernels, while requiring a dominating
function F'. The idea is to use the Dominated Convergence Theorem multiple times.

Since limy 0o K™ (z,y) = K*(z,y) we know that sup,er |[K®(z,y)| < F(z) and also

]\}1_}11(1” det [KN(:ci,:cj)]ZJ,:l = det [K>(z;, z;)]};_, for all zy,..,2, €T

Zj=1| < n"2[[%, F(x;), which is inte-
grable by assumption. It follows from the Dominated Convergence Theorem with dominating
function n™2 ]}, F(;) that for each n > 1 one has

lim /F.../Fdet [KN(xi,xj)]ijlljdu(wi) =/F---/Fdet [Kw(xi,xj)]zjzlli[dﬂ(wi).

N—oo

By Hadamard’s inequality we have ’det [K™ (2, )]

Next observe that

/F o /F det [K™ (2i,25)]; ., ﬁ du(z;)

i=1

< // \det [KN(xi,xj)}?Fl’ H ldu(z;)| < n™2M™.
r r ’ =1
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The latter shows the absolute convergence of the series, defining det(f + K™)z2(r for each
N. A second application of the Dominated Convergence Theorem with dominating series

1+ 5 “’n/z,M now shows the last statement of the lemma. O

Lemma 2.2.12. Suppose that ',y are piecewise smooth contours and gx (2z) are measur-
able on T2 x Ty for N € N or N = oo and satisfy limp e gxy( z) = gg5,(2) for all z,y € I'y,
z € I's. In addition, suppose that there exist bounded non-negative measurable functions Fi
and F, on I'y and 'y respectively such that

sup sup |7, (2)| < Fi(z)Fa(2), and / u)|dp(u)| = M; < oo.

NeNyely

Then [, 195, (2)|ldu(2)| < oo for each N and K" (z,y) := [, g2, (2)du(z) are well-defined
and satisfy the conditions of Lemma 2.2.11 with I' =1 and F = M,F.

Proof. Since liquoogmy(z) = goo(2) for all z,y € T';, 2 € 'y we know that |gmy(z ‘ <
Fi(z)F5(z) as well. Observe that for each z,y € I'; and N one has that

/P |92,y (2)|]du(z)] < /P Fy(2)Fy(2)|dp(z)| < MaFy(z) < oo

Setting K™ (z,y) = [r, g5, (2)du(2), we see that |KV(z,y)| < MaFi(x) for each z,y € T
and N. As an easy consequence of Fubini’s Theorem one has that K~ (z,y) is measurable
on I'? (the case of real functions and measures u can be found in Corollary 3.4.6 of [15], from
which the complex extension is immediate). Using the Dominated Convergence Theorem
with dominating function Fi(z)Fy(z) we see that limy_,oo KV (z,y) = K*(z,y).

O

2.3 Finite length formulas

In this section, we derive formulas for the ¢-Laplace transform of the random variable (1 —
t)t™™1, where X is distributed according to the finite length Hall-Littlewood measure Pxy
(see Section 2.2.4). The main result in this section is Proposition 2.3.10, which expresses
the t-Laplace transform as a Fredholm determinant. We believe that such a formula is of
separate interest as it can be applied to generic Hall-Littlewood measures and its Fredholm
determinant form makes it suitable for asymptotic analysis. The derivation of Proposition
2.3.10 goes through a sequence of steps that is very similar to the work in Sections 2.2.3, 3.1
and 3.2 of [24]. There are, however, several technical modifications that need to be made,
which require us to redo most of the work there. In particular, the statements below do not
follow from some simple limit transition from those in [24].

In all statements in the remainder of this chapter we will be working with the principal
branch of the logarithm.

2.3.1 Observables of Hall-Littlewood measures

In this section we describe a framework for obtaining certain observables of Macdonald
measures. Our discussion will be very much in the spirit of section 2.2.3 in [24]; however,
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the results we need do not directly follow from that work and so we derive them explicitly.
In this chapter we will be primarily working with finite length specializations, which greatly
simplifies the discussion; however, we mention that the results below can be derived in a
much more general setting as is done in [28]. Finally, our focus will be on the case when
q = 0 in the Macdonald measure and we call this degeneration a Hall-Littlewood measure.
In what follows we fix a natural number N and consider the space of functions in N

variables. Inside this space lies the space of symmetric polynomials Ay in N variables
X = (1171,...,117]\7).

Definition 2.3.1. For any v € R and 1 < ¢ < n define the shift operator Ty, ,, by
(Tyo, F)(x1,.yxn) i= F(Z1, ..., ULs, oo, TN ).
For any subset I C {1,..., N} of size r define

Ar(X;t) = T H

T — T
iel jgr =" J

Finally, for any r = 1,2, ..., N define the Macdonald difference operator

DYy = Z AI(X;t)HTq’xi.

Ic{1,...,N} i€l
[I}=r

A key property of the Macdonald difference operators is that they are diagonalized by
the Macdonald polynomials Py. Specifically, as shown in Chapter VI (4.15) of [64], we have

Proposition 2.3.2. For any partition A with £()\) < N
D;\TP)\(xh <y TN G, t) - er(q)\lthl, q>‘2tN_2) ceey ql\N)P)\(xl) -y ITN; (4, t)a
where e, denote the elementary symmetric functions (see Section 2.2.2).

In particular, we see that

N
D}VP)\(xla "'axN; q) t) - (Z intN_i> PA(xh ...,.’EN; q’ t)

=1

We now let ¢ — 0, while t € (0,1) is still fixed. In this limiting regime the Macdonald
polynomials P(X;q,t) degenerate to the Hall-Littlewood polynomials Py(X;?). In addition,
the Macdonald difference operator D}, degenerates to (we use the same notation)

1— tN—)\'l

N N
i~z AigN—i NoN —
D}VZZHx,l L Toms, and also Y @V o VN 4 g0 = =

— x . N
i=1 j#i ° J i=1

D}, is still an operator on the space of functions in N variables and we summarize the

29



properties that we will need:

1. DY, is linear.

2. If F,, converge pointwise to a function F'in N variables, then D} F,, converge pointwise to
D} F away from the set {(z1,...,zn) : z; = x; for some i # j} .

1— tN—Xl

3. DIIVP)\(CL’l, ,QfN,t) = '1—_1:-

Py(z1, ..., zN; t):

Proposition 2.3.3. Assume that F(uy,...,uny) = f(u1)--- f(uy) with f(0) = 1. Take
Z1,...,on > 0 and assume that f(u) is holomorphic and non-zero in a complex neighborhood
of an interval in R that contains x1,...,xn. Then we have

(DNF) (@1, 0y ) = F(xl’ / H ks a2 (2.3.1)

z—z; f(2) (t—1)z’

where C' is a positively oriented contour encircling {x1,...,xn} and no other singularities of
the integrand.

Proof. The following proof is very similar to the proof of Proposition 2.11 in [24]. First
observe that from ¢ € (0,1) and our assumptions on f a contour C will always exist. Using
continuity of both sides in the variables zi, ..., zy it suffices to prove the above when the z;
are pairwise distinct. The contour encircles the simple poles at z1, ..., zy and the residue at

x; equals
ﬁ tr; — Z; 1
o Tz f(m)
Using the Residue Theorem we conclude that the RHS of (2.3.1) equals

- A NN .
F —-——Z J Dl F .
; (-’rla )xN)Jl#I fL'z—-’ITJ Z ZIE[ —.'L'Jf ( N )(-’Ifl, ,.'DN)

O

We next consider the operator Dy = [(t;ll—g—}"—ﬂ] It satisfies Properties 1. and 2. above
and Property 3. is replaced by

3. DNP)‘(.'Bl, ...,iL'N;t) = t_)\SP)\(.Tl, ey TN t).

Proposition 2.3.4. Assume that F(uy,...,un) = f(w)--- f(un) with f(0) = 1. Take
Z1,...,on > 0 and assume that f(u) is holomorphic and non-zero in a complex neighborhood
D of an interval in R that contans x1,...,xn and 0. Then for any k > 1 we have

Dk _ xl, Za T % i Nzi—:vjt_l—l 1 dz
( N )(xl,...,SCN) - 27TL -—Zt_l H H 2 — T Jf(z)7,
001 00k1<a<b<k L v
(2.3.2)
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where Cy , are positively oriented simple contours encircling 1, ...,xy and 0 and no zeros of
f(2). In addition, Cy, contains t=*Cqyy for a < b and Cy; C D.

Proof. The proof is similar to the proof of Proposition 2.14 in [24]. In this proposition the
existence of the contours Cy, depends on the properties of the function f. In what follows
we will assume that they exist and whenever we use this result in the future with a particular
function f we will provide explicit contours satisfying the conditions in the proposition.

Using the continuity of both sides in zy, ..., zy it suffices to show the result when the z;
are pairwise distinct. We now proceed by induction on k£ € N.

Base case: k = 1. The RHS of (2.3.2) equals

F(l‘l,...,.’L'N)/ ﬁzl—l'jt_l 1 Eiﬂ
27 Con |; 21 — I; f(z1) =

Jj=1

The contour Cp; encircles the simple poles of the integrand at z,...,xy and O and the
residue at 0 equals ¢~ (using f(0) = 1). If we now deform C; to a contour C, which no
longer encircles 0 but does encirlce z1,...,xy we see, using the Residue Theorem, that the
RHS of (2.3.2) equals

N
F(1, ... —zit7' 1 d
t—-NF(xl"n’xN)_l_L’Tm’.@/ Ll[zl Z; :| ﬁ:t_NF(l‘l,...,ZEN)—f—
C

2 sroa—zg | f(m) &

(t_l)t—NM/C[HtZl_xj] (1 i = (DnF)(z1, ..., zN).

27t i1 AT f(z) z1(t— 1)
In the last equality we used Proposition 2.3.4 and the definition of Dy. This proves the base
case.

We next suppose that the result holds for £ > 1 and wish to prove it for £k + 1. In
particular, we have

k
i Za — 2b 1 i%}.
(DY F)(z1, ..., zN) = (27TL /001 /;O Hg Tj; 21, ey Zk) H Zq — 2ptt E f(z) 2’

k=1 1<a<b<k ~*

where g(u’v Z1y ey Zk) = f(’LL) Hf:l Zz;—gt;l

We apply Dy to both sides in the above expression and observe we may switch the order
of Dy and the integrals on the RHS. To see the latter, one may approximate the integrals by
Riemann sums and use Property 1. of Dy to switch the order of the sums and the operator.
Subsequently, one may use Property 2. to show that the change of the order also holds in

the limit. We thus obtain

k

— dz;

Dk-l—lF / /D G y - YRy eeny “a i :
(D F)(z1, ..., ZN) (27” ol NG)(Z1, .oy TN 21y ey 2k) H — ot 1IIzzf (2)

1<a<b<k
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where G(x1, ..., N} 21, .oy 2) = Hévzlg(xj; 21, .-, 2c). We now wish to apply the base case to
the function G. Notice that g(0) = 1 and the zeros of g(u) coincide with those of f(u) except
that it has additional zeros at tz; for ¢ = 1, ..., k. By assumption tCp; contain Cy 4y for all
i=1,...,k so the additional zeros of g(u) are not contained in Cy g1, while z1, ...,zx and 0
are. Thus the Base case is applicable and we conclude that

1
k+1 241 ——x]t
(DN F)(zl""’ N 2 k:-l—l/ / / ‘Tl) TN 1y eeey Zk) H X
7”’ Co,1 COk Co,k+1 j=1 Zk+1 — T

Za — 2y dZkyq k 1 dz,

1<a<b<k “@ bl k+1 Z;

g(zk+1; 21y +evy Rk

Expressing g(2k+1; 21, ..., 2x) and G(z1,...,ZN; 21, ..., 2¢) In terms of f(z;) and F(zy,...,zN)
we arrive at

(DY F)(z1, . zy) = Fzy,.. / / — kfll H ot |t
ke 1 oo 2m P o o, 7o — 2t 1 z—z; |f(z)z

k+1 1<a<b<k:+1 j=1

This concludes the proof of the case k+1. The general result now proceeds by induction. [J

Let px and py be the nonnegative finite length specializations in N variables X =
(#1,...,zn) and Y = (yi, ..., yn) respectively, with z;,y; € (0,1) for i = 1,..., N. We consider
the Macdonald measure MM (px; py) with parameter ¢ = 0 and denote the probability
distribution and expectation with respect to this measure by Pxy and Exy. Using the
Cauchy identity (see equation (2.2.2)) with ¢ =0 we get

N
1 —tﬂ?i u
P,\(.Tl, "'7$N;t)Q)\(y17 ayNat) = yj fY xz Wlth fY(U) H 1 11 tuyJ
J= Yi

€Y i,j:ll T EY;
(2.3.3)
We want to apply D% in the X variable to both sides of (2.3.3). We observe that the

sum on the LHS is absolutely convergent so from Properties 1. and 2. we see that

Dy D B(X)QAY;t) = Y DEP(X; QMY t) = Y tTNPA(X)QA(Y5t), (2.3.4)
AEY ey AEY

where in the last equality we used Property 3. k times. We remark that the latter sum is
absolutely convergent as well, since A] < N on the support of Px y.

On the other hand, the RHS of (2.3.3) satisfies the conditions of Proposition 2.3.4 and
in order to apply it we need to find suitable contours. The contours will exist provided w;
are sufficiently small. So suppose y; < ¢ < t* for all i and observe that the zeros of fy(u),
which are at ¢~y;', lie outside the circle of radius e 't~ around the origin. Let Cyy be
the positively oriented circle around the origin of radius 1 and let Cy , be positively oriented
circles of radius slightly bigger than t*~*, so that Cp, contains t~1Cy for all a < b and Cj;
has radius less than e™'. Clearly such contours exist and satisfy the conditions of Proposition

32



2.3.4. Consequently, we obtain

Dkﬁfy(x _Hz— fY -Tz / / a — <b H Hz,—m] -1 dZi
i=1 z 27”’ Co,1 Co a—th Za— ! R — Zj fY(zz)Zz

k1<a<b<k: 1=1 Lj=1
(2.3.5)

Equating the expressions in (2.3.4) and (2.3.5) and dividing by Hivzl fy(z;) we arrive at

NI ED) ~ % z—zit] da
Zt II(X;Y) 2m /001 /Co — Zpt 1H[1:Il 2 — Tj JfY(Zi)Zi,

AEY k 1<a<b<k
in which we recognize the LHS as Ex y [t7**1]. We isolate the above result in a proposition.

Proposition 2.3.5. Fiz positive integers k and N and a parameter t € (0,1). Let px
and py be the nonnegative finite length specializations in N wvariables X = (x1,...,xn) and

= (y1, ..., yn) respectively, with z;,y; € (0,1) for i =1,...,N. In addition, suppose y; < €
for all i. Then we have

Za— % N 2 — x;t 1—zy;) | dz
H H( —)( Y;) azq

(zi —25)(1 = tzy;) | 2

)

Exy [t-—k)\’l] _

Coa Co,k 1<a<b<k

where Cy, are positively oriented simple contours encircling x1,...,xy and 0 and contained
in a disk of radius €' around 0. In addition, Cy, contains t™'Cqyy for a < b. Such contours
will exist provided € < t*.

Proposition 2.3.5 is an important milestone in our discussion as it provides an integral
representation for a class of observables for Py y. In subsequent sections, we will combine
the above formulas for different values of k, similarly to the moment problem for random
variables, in order to better understand the distribution Px y.

2.3.2 An alternative formula for Ex y [t_k)‘ll]

There are two difficulties in using Proposition 2.3.5. The first is that the contours that we use
are all different and depend implicitly on the value k. The second issue is that the formula for
Ex,y [t7**1] that we obtain holds only when y; are sufficiently small (again depending on k).
We would like to get rid of this restriction by finding an alternative formula for Ex y [t"“"l].
This is achieved in Proposition 2.3.7, whose proof relies on the following technical lemma.
The following result is very similar to Proposition 7.2 in [22].

Lemma 2.3.6. Fiz k > 1 and q € (1,00). Assume that we are given a set of positively
oriented closed contours 7, ...,7Vk, containing 0, and a function F(z1,...,2x), satisfying the
following properties:

1. F(Zl, ceey Zk) == Hle f(zi);'

2. For all1 < A < B <k, the interior of y4 contains the image of yg multiplied by q;
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3. For all 1 < j < k there emists a deformation D; of ; to vy, so that for all
21y ey Zjm1, %y oy 2k With z; € 7y for 1 < i < j and 2z € for j < i < k, the
function z; — F(z1,..., zj, ..., 2k) 5 analytic in a neighborhood of the area swept out
by the deformation D;.

Then we have the following residue expansion identity:
k —h(k=1)
) (=1 g2 k!

ZA — 2B de (1 —q —
F 2 ’... ’z - =
/ /Yk ZA — Q2B ( 1 k)EQWLZi ; ml(A)h’nQ(/\)'

1<A<B<k

o) £ (2.3.6)

-1 d’w‘7
/ /7,c det [Uhq Ai — wj] Hf w;) f (w;q) - - (qu )2—7”,

131

where k! = - t)(l( t?)k(l =,

Proof. The proof of the lemma closely follows the proof of Proposition 7.2 in [22], and we
will thus only sketch the main idea. We remark that in [22] the considered contours do not
contain 0 and ¢ € (0,1). Nevertheless, all the arguments remain the same and the result of
that proposition hold in the setting of the lemma.

The strategy is to sequentially deform each of the contours y¢_1,Vx—2, -.., 71 t0 Y% through
the deformations D; afforded from the hypothesis of the lemma. During the deformations
one passes through simple poles, coming from z4 — ¢zp in the denominator of (2.3.6), which
by the Residue Theorem produce additional integrals of possibly fewer variables. Once
all the contours are expanded to ; one obtains a big sum of multivariate integrals over
various residue subspaces, which can be recombined into the following form (see equation

(38) in [22]):
(1= (-1) g S
Z my(A)!Ima(A)!- - [yk[rk det [wiin _wj] i, j= :

Ak 3,j=1

()
2051 dw;
E? (wy, quy, ..., @ My, .. o POy w g~ E— i
( 1, qw1 q Wi,y -5 WeN), qQWeN)5 -+ 4 e(,\));gl 7 q oy’
where
E 21 Z H 25(A) — 420(B) F(za(1)7 SR za(n))
e - .
7€8, 1<B<A<k o(A) T Zo(B) [Tie1 o)
By assumption Fif[}; 2n) ig g symmetric function of zi,...,2; and thus can be taken out of
=1~

the sum, while the remaining expression evaluates to k,! as is shown in equation (1.4) in
Chapter III of [64]. Substituting this back and performing some cancellation we arrive at

(2.3.6).
O

Proposition 2.3.7. Fiz positive integers k and N and a parameter t € (0,1). Let px
and py be the nonnegative finite length specializations in N variables X = (z1,...,xzy) and
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= (y1, ..., yn) respectively, with z;,y; € (0,1) fori=1,...,N. Let Cy be a simple positively
oriented contour, which is contained in the closed disk of radius t=' around the origin, such
that Cy encircles zq,...,xn and 0. Then we have

’ 7 — 1)k )
Exy {t_’”‘l] = Z ( 1) ’Ct / / det y
ARk ma (At (A Co Co w;t™ ’\1 — Wjli5=1
B -1 Y (2.3.7)
— x;(w;t) 1 — y;(wt)t™ dw, | = 1=0(0-)-(1— tk)
HH “1pN; , where k; —
j=14=1 1 —ai(w;t) =1 1 —yi(wit)  2m

Proof. Let Cyr = Cj and let Cy, be such that Cp, contains t71Cy, for all a < b, a,b €
{1,...,k}. Suppose 0 < € < t* is sufficiently small so that Cy; is contained in the disk of
radius ¢! and suppose y; < € for i = 1,..., N. Then we may apply Proposition 2.3.5 to get

kK [N
e 1 —z H H (zi — it ™) (1 — ziy;) | dz
E t kX _ / / b (] J J .
oY [ 1] (2m)* Jo Co, Za — th Za — 2t L s (m— ) (L —tzyy) | &

k 1<a<b<k i=1 1

We may now apply Lemma 2.3.6 (with ¢ = ¢t™') to the RHS of the above and get

k(k 1)

o (1—t1)F(—1 oy ()
]EX,Y t kA = / / det X
[ ] Z my ()\)Im2 Coux Cox wit™ — w; wj

Ak 1,j=1

ﬁ G(w;)G(wt™) - -- G(w.tl—Aj)d_wJ; where G(w) = INI w—zt 1 - yw
- ’ ! ! 2m’ w

Jj=1

—z; 1—tyw
(2.3.8)

Observe that (——1)ktﬂﬁ2ilkt—1!(1 —t7)* = (7! — 1)Fk;! and also
£(X) N £(N)

B —zi(tw;) 71— ys(wit)t™
HG(wj)G(wjt 1). wtl AJ HH ( j ey vi( j ) .

1 — z;(tw,) 1 — y;(w;t)

j=1 i=1 j=1

Substituting these expressions into (2.3.8) and recalling that Cpr = Cy we arrive at (2.3.7).
What remains is to extend the result to arbitrary yi,...,yn € (0,1) by analyticity. In
particular, if we can show that both sides of (2.3.7) define analytic functions on DV (D is
the unit complex disk), then because they are equal on (0,¢€)" it would follow they are equal
on D¥. This would imply the full statement of the proposition.

We start with the RHS of (2.3.7). Observe that it is a finite sum of integrals over
compact contours. Thus it suffices to show analyticity of the integrands in y; € D. The
1— yi('wjt)t_Aj

e crpry e which is clearly analytic on

integrand’s dependence on y; is through Ha’\) Hz_
DY as |w;| <71
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For the LHS of (2.3.7) we have:

]Ex,y I:t_kxl] = X Y) Z P/\ Q)\(yb ayN))
AeY

where II(X;Y) = Hﬁszl }if_-t% Clearly II(X;Y) is analytic and non-zero on DY (as z; €
(0,1)) and then so is II(X;Y) ™. In addition, the sum is absolutely convergent on DV since

by the Cauchy identity
- tz;|y;|
S IRt € At s il) = [[ T < o
AY A€Y ij=1 ? yj

As the absolutely converging sum of analytic functions is analytic and the product of two
analytic functions is analytic we conclude that the LHS of (2.3.7) is analytic on DV, O

2.3.3 Fredholm determinant formula for Ex y [((l—t) 2—*’1 5 ]

In this section we will combine Proposition 2.3.7 with different values of k to obtain a formula
for the t-Laplace transform of (1—t)t~*1, which is defined by Ex y [m] . We recall

that (a;t)eo = (1 — a)(1 — at)(1 — at?)-- - is the t-Pochhammer symbol.

Proposition 2.3.8. Fiz N € N andt € (0,1). Let px and py be the nonnegative finite
length specializations in N variables X = (21, ...,zx) and Y = (y1, ..., yn) respectively, with
Zi,Yi € (0,1) fori=1,...,N. Suppose |u| < t"*1 is a complex number. Then we have

. M ukEx,y [t—,\gk]
lim —_— -

M— !
=0 ke

1
=Exy [ (DT ] (2.3.9)

Proof. We have that

kt—ck

ZPXY Z k,!

By our assumption on v and Corollary 10.2.2a in [7] we have that the inner sum over k

converges to m, as M — oco. Thus

A’l]

i/l:u ]EXY

k=0

M ukt—ck

al Pxy(A =¢) 1
e Z]PXY (M —C)Z ! Z (1—tut—c e Xy [((1—t)ut‘*'1;t)ooj|'

Proposition 2.3.9. Fizx N € N, t € (0,1) and z;,y; € (0,1) fori =1,...,N. Then there
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exists € > 0 such that for |u| < € and u € R* we have

M e
1+ lim ¢t — 1)kt / / det [ } X
M—o0 i — % my( 'm2 Co Co w;t~ >" —wj],;
o X (2.3.10)
1-— x, wjt) D1 — y(wit)t™ dw, N
=det(] + K .
JHl 1:[ = z(wt) 41— gi(wt) 2m (I + K )

In the above Cy is the positively oriented circle of radius t™% around 0. K is defined in
terms of its integral kernel

1/24w00
KX ww) = 5o [ a0 ) ule = 1)) o)
where
o_ 1 A —aw) ([ -y (wt)t )
) = e I = ey gy wm)

The proof of Proposition 2.3.9 depends on two lemmas: Lemma 2.3.11 and Lemma, 2.3.12,
whose proof is postponed to Section 2.3.4. Our choice for Cj is made in order to simplify
the proof.

Proof. From Lemma 2.3.12 we know that K is trace-class for u ¢ R*. Consequently we
have that

dw;
det(I + KN) L2(Cy) _1+§ /C /Cdet wl,w,)” 1||2m=
0 0

00 1/2+w00 n w
14{21% /C /C D sign(o H {% / T(=8)T (1 + 8)(—u(t™ = 1)) Guy s () ds] ;lm

G'GS 1/2 Loo i=1

Using Lemma 2.3.11 and the above formula we can find an € > 0 such that for |u| < € and
u & R* one has

n

=1 , . ) 2 dw
det(I + KY) =1+ Z E/c /c Z sign(o) H [Z ul (7! — l)ngi,wa(i)(tJ)] -
n=1 " 0 0 7=1

o€Sy i=1 i=1
(2.3.11)
Let us introduce the following short-hand notation
n N
1—zi(wit)™t 1 —y(wit)t™% dw;
B(ey, ..y / / det [ ] HH z;(w; )1 _ yi(w;i) i
Co Co w;t ™ - wj i,j=1 j=1 i=1 1—x1(w1t)_ 1 1-yl(w.7t) 2me
Notice that B(cy, ..., ¢,) is invariant under permutation of its arguments and that ( m(l ()/\1;,7232((’\,\); !
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is the number of distinct permutations of the parts of A. The latter suggests that

-1 _ k’u,k 1 kuk
Zml(l(t)\)!mzl())\)l...B()‘lv---a/\e(/\)):Z Z g*——;—%—!l—)—B(cl,...,cn),

Ak n>1 c1,¢2,...,cn>1
Zcizk

Observe that for some positive constant C' we have

n

e N
1) GRS A s | S S
1 — z;(wyt)~1t% Pl (1 —z)"(1 — ;)"

e 1 —yi(w;t)

The above together with Hadamard’s inequality and the compactness of Cy implies that for
some positive constants P, Q (independent of k and n) we have |B(cy, ..., c,)| < n™/2P"Q*.
The latter implies that for |u| < € and e sufficiently small the sum

= 71— 1)kyk
>y s

k=1 n>1 ec1,c2,...,.cn>1
S ei=k

is absolutely convergent. In particular, the limit on the LHS of equation (2.3.10) exists and
equals

— 1 _ S
1+z;m > >1[(t Lo Dulat e Bley, oo ).
n= C1,C2,y..-,Cn >

Expanding the determinant inside the integral in the definition of B(cy, ..., c,) we see that
the integrand equals }_ g sign(0) [[;2; Guiw,, (t%). Consequently the LHS of equation
(2.3.10) equals

1+Z > (@t =puperttes /C /C 3 sign(a)ngi,w,(i)(tCi)%. (2.3.12)

€1,€2,..-,cn>1 gESy =1

What remains is to check that the two expressions in (2.3.12) and (2.3.11) agree. Since
both are absolutely converging sums over n, it suffices to show equality of the corresponding
summands. L.e. we wish to show that

e [ . » _
Z [(t )u] Co Co Z Slgn Hg 7y o-(z)( 2'/TL

€1,C2,...,cn>1 0ESH

=/CO.../CO S sign(@) [ [Z“] 1) Gus o () ‘;‘T’L (2.3.13)

o€Sn i=1

By Fubini’s Theorem (provided |u| is sufficiently small) we may interchange the order of the
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sum and the integrals and the LHS of equation (2.3.13) becomes

dw,-
]Cl+ Acn szgn g Wi Cz —
/CO D> ) H gy () 2

C1,C2,...,Cn, >l 0€Sn

/CO e /CO Z sign(o) H [Z[(t—l — l)u]cigwi7wa(‘i) (%) ‘;:Z

TE€Sn i=1 Lei>1
From the above equation (2.3.13) is obvious. This concludes the proof. O

Proposition 2.3.10. Fiz N € N and a parameter t € (0,1). Let px and py be the non-
negative finite length specializations in N variables X = (zi,..,zn) and Y = (y1,...,yn)
respectively, with x;,y; € (0,1) fori=1,...,N. Then for u ¢ R* one has that

1
(1= Dut 1)

The contour Cy is the positively oriented circle of radius t=1, centered at 0, and the operator
KX is defined in terms of its integral kernel

]EX,Y [ J det(I - K )L2 (Co)+ (2314)

1/24100
K (w,0') = —— / dsT(~$)T(1 + 8)(—u(t™! — 1))°gY o, (t°),

2me 1/2—w00

where

N L ﬁ(1—xj(wt)'l)(l—yj(wt)t‘s)

gw,w’ S —14s )
wt=* —w' & (1= z(wt) 1) (1 — y;(wi))

=
Proof. Using Propositions 2.3.7, 2.3.8 and 2.3.9 we have the statement of the proposition for
lu] < € and u € R for some sufficiently small ¢ > 0. To conclude the proof it suffices to
show that both sides of (2.3.14) are analytic functions of u in C\R™.

The RHS is analytic by Lemma 2.3.12, while the LHS of (2.3.14) equals 3.~ P, , (X, =
n)m, and is thus a finite sum of analytic functions and so also analytic on C\R*. O

2.3.4 Proof of Lemmas 2.3.11 and 2.3.12

Versions of the following two lemmas appear in Section 3.2 of [24].

Lemma 2.3.11. Fizx N € N, t € (0,1) and z;,y; € (0,1) fori =1,...,N. Let w,w’ € C be
such that |w| = |w'| =t7! and let
N —S
gN ,(ts) _ 1 1—[ (1 - xj(wt)‘l)(l - yj(wt)t )
o wt= —w' - (1= zj(wt)~1e0) (1 — y;(wi)) -

j:
Then there erists € > 0 such that if { € {¢ : |¢]| < €,{ € R}, we have
1/2+4w00

Zgw (¢ = 5 D(=8)(1 + 5)(=C)°gl o (£)ds. (23.15)

1/2—t0
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Proof. For simplicity we suppress N from our notation. Let Ry = M +1/2 (M € N) and
set A}, =1/2— Ry, A%, = 1/2+ 1Ry, A, = Ry + 1Ry and A, = Ry — 1Ry Denote by
Yis the contour, which goes from A}, vertically up to A%, by v%, the contour, which goes
from A%, horizontally to A3}, by 73, the contour, which goes from A3, vertically down to
Ajy, and by v}, the contour, which goes from A%, horizontally to A},. Also let vy = Ui,
traversed in order (see Figure 2-5).

2 3
A Ay
2
™
1 i
Tat T = Uity
3
Tar
A4
™
1 4
Ay Ay

Figure 2-5: The contours 7%, fori =1, ...,4.

We make the following observations:
1. 7yar is negatively oriented.

2. The function g . (t°) is well-defined and analytic in a neighborhood of the closure of
the region enclosed by vas. This follows from [t5| < 1 for Re(s) > 0, which prevents
any of the poles of gy, (t°) from entering the region Re(s) > 0.

sin(ms)

3. If dist(s,Z) > c for some fixed constant ¢ > 0, then )—”—‘ < de~™m)l for some

fixed constant ¢/, depending on c¢. In particular, this estimate holds for all s € vy
since dist(yar,Z) = 1/2 for all M by construction.

4. If —¢ = re? with |0] < 7 and s = z + 1y then
(—¢)* = exp ((log(r) + f)(z + ty)) = exp (log(r)z — yb + ¢(log(r)y + z6))
since we took the principal branch. In particular, |(—(¢)®| = r®e¥".

We also recall Euler’s Gamma reflection formula

P(—s)I(1 + 8) = —— (2.3.16)

sin(—ms)’
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We observe for s =« + vy, with z > 1/2 that

T 11—y (wt)t ™| ﬁ 2

w,w’ t° < .
9o ()] < =g =)0 -

i=1

In addition, we h:cwe]—[;\[:1 |1 — y;(wt)t™*| < Ce®® for some positive constants C,c > 0, de-
pending on N, t and y;. Consequently, we see that if € is chosen sufficiently small and
¢ = re? with r < € then

|G (£)(—C)*| < Ce@eelV?l < Cemeelv?!,

with some new constant C' > 0. In particular, the LHS in (2.3.15) is absolutely convergent,
and we have

M—o00

(¢S] M
> Guawr ()¢ = lm Y guw ()¢
n=1 n=1

From the Residue Theorem we have

3 G ()¢ = / P(— )DL+ 8)(—C)° guon (£°)ds.

27t -~

The last formula used Ress—x['(—s)['(1 + s) = (—1)**! and observations 1. and 2. above.
What remains to be shown is that

1/2+w00

Jim o [P 9)(~0) g (1) = o D(=)D(L 4 8)(~C)* i ().
(2.3.17)

™ 1/2—100
Observe that on Re(s) = 1/2 we have that |g,, . (t°)] is bounded, while from (2.3.16) and
observations 3. and 4. we have

D(=8)0(1+ 8)(—¢)*| = |=——(~()°| < ¢ exp((|6] — ™)\ Im(s)|)r'/?, (2.3.18)

sin(—ms)

which decays exponentially in |Im(s)| since |§| < 7. Thus the integrand on the RHS of
(2.3.17) is exponentially decaying near toco and so the integral is well-defined. Moreover,
from the Dominated Convergence Theorem we have that

. 1 s s _ — —()® (t°
A/lll—r>no<>2_m " L(=8)L(1 + 8)(—C)° guw (t°)ds = by Lo D(=8)I'(1 + 8)(=¢)°Guw,w (t°)ds.

We now consider the integrals

_2_17['_1, i F(——S)F(l + S)(_C)sgw,w'(ts)’

when 7 # 1 and show they go to 0 in the limit. If true, (2.3.17) will follow.
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Suppose that i =2 or i = 4. Let s =z + 1y € ¥4, so |y| = Ry and we get
ID(=$)P(L + 8) (=€) guw (£°)] < CeelPce™m < Cellfmiin,
for some new constant C' > 0. Since |#] — 7 < 0 we see that

7 / D(=)T (1L + 8)(—C) G ()

< CRpelfl=mEM 5 0 as M — 0.
2mL y

Finally, let i = 3. Let s = z + 1y € 73, so £ = Ry and we get
IT(=8)T(L + 8)(—C)* g ()] < Cem el e < Ceefm,
Consequently, we obtain

o / T8 A+ 8) (=€) o ()

< 2Ry Cce™B’M 5 0 as M — oo.
2me

This concludes the proof of (2.3.17) and hence the lemma. a

Lemma 2.3.12. Fizt N e N or N =00, t € (0,1) and z;,y; € (0,1) for i =1,...,N such
that Y, z; < 00, Y., 4 < 0o. Suppose u € C\R*. Consider the operator K. on L*(Cp)
(here Cy is the positive circle of radius t™!), which is defined in terms of its integral kernel

1 1/24w00
K (w,0) = 5~ /1 o AT )t = 1)) gl ),

where
N

1 1 —z;(wt) 1) (1 — y;(wt)t™*
H( (wt) ) (A — y;(wt)t™)

W —w 14 (U=, (w) )1 — g () |

Then KY is trace-class. Moreover, as a function of u we have that det(I+K.>') is an analytic
function on C\RT.

g'z]:)[,w' (ts) =

Proof. We begin with the first statement of the lemma and suppress the dependence on N
and u from the notation. From Lemma 2.2.10 it suffices to show that K (w,w’) is continuous
on Cy x Cp and that Ky(w,w’) is continuous as well, where we recall that Ky(w,w') is the
derivative of K(z,y) along the contour Cj in the second entry.

In equation (2.3.18) we showed that if —u(t™! —1) = re?? with |6] < 7 and s = 1/2 4y,
then
ID(=$)T(1 + 8)(—=()°| < Cexp((|6] — m)ly[)r/

We observe that gy, (%) is continuous in w,w’ and moreover on Re(s) = 1/2 we have

1 ﬁ (14 ;) (1 + y;t=1/2)

St 2 (1wt (1 - yy)

|gw,w’(ts)| < M <0
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independently of w,w’. So if (w,,w),) = (w,w’) we have that gy, . (t*) = Gu.w(t°) and
by the Dominated Convergence Theorem, we conclude that K (w,,w)) — K(w,w’) so that
K (w,w') is continuous on Cy X Cj.

We next observe that

1 1/2+LOO

(w,w') = v’ — dsT'(=s)L(1 + s)(—u(t™! = 1))° dd,gww (t%),

d
Ka(w, ) =/ 2me Jy,
1/2—to0

dw'’

where the change of the order of integration and differentiation is allowed by the exponential
decay of the integrand. We have that -% g, ./ (t*) = ————gu,w (t*) s0 a similar argument
as above now shows that Ky(w,w') is continuous on Cy x Cy. We conclude that K7 is indeed
trace-class.

Since K7 is trace-class we know that

det(I + KY) =1 +Z /C /C det [K, wl,wj)} i 1H Q:L.
0 0 i=1

n>1

We wish to show that the above sum is analytic in u € C\R™.

We begin by showing that K2 (w,w’) is analytic in u for each (w,w’) € Cy x Cy. Observe
that on (C\R™) x (1/2 + (R), T(—=s)T'(1 + s)(—u(t™! — 1))°gl ,,(t°) is jointly continuous in
(u, s) and analytic in u for each s. From Theorem 5.4 in Chapter 2 of [77] we know that for
any A >0

1/2+A
ha(u) := /1/2_ ) T(=s)T(1 + 8)(—u(t™" = 1))°g o (t°)ds

is an analytic function of v € C\R*. In addition, using our earlier estimates we see that

ul1/2
ha() — K (w, )| < 2ful2MC / exp(([6] — m)y)dy = 2—'—'%0 xp((16] — ) A).

The latter shows that h4(u) converges uniformly on compact subsets of C\R™ to K} (w, w’)
as A — oo, which implies that K2 (w,w’) is analytic in u. Notice that when A = 0 the above
shows that if K is a compact subset of C\R* and u € K’, we have |KY (w,w')| < C(K") for
some contant C' > 0 independent of w,w’.

We next observe that K (w, w') is jointly continuous in u and (w, w’) and analytic in u for
each w,w' from our proof above. The latter implies that det [K (w;, w])] , is continuous

on C§ x C\R* and analytic in u for each (wy,...,w,) € C§. It follows from Theorem 5.4 in
Chapter 2 of [77] that

~e dw;
H, (u / /det (w;, w :
( Co Co j)Ly 1:!;!:27”

is analytic in w.
Finally, suppose K’ C C\R* is compact and u € K’. Then from Hadamard’s inequality
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and our earlier estimate on |K2 (w,w')| we know that

dwi 1 n/ 2

/ / det [K (w;, wj)] < =@t HM2C (K" = L
Co Co

i.3=1 9, n! n!

n!

The latter is absolutely summable, and since the absolutely convergent sum of analytic
functions is analytic and K’ was arbitrary, we conclude that 1 + > °  H,(u) = det(] +
KY)12(c0y is analytic in u on C\R™. This suffices for the proof. O

2.4 GUE asymptotics

In this section, we use the results from Section 2.3 to get formulas for the t-Laplace trans-
form of 1=, with X distributed according to the Hall-Littlewood measure with parameters
a,r,t € (0,1) (see Section 2.2.4). Subsequently, we analyze the formulas that we get in the
limiting regime » — 17, ¢ € (0,1) - fixed and obtain convergence to the Tracy-Widom GUE
distribution. In what follows, we will denote by P, ., and E, ., the probability distribution
and expectation with respect to the Hall-Littlewood measure with parameters a,r,t € (0,1).

2.4.1 Fredholm determinant formula for E, [((l—t) i_)‘ll 3 ]

In the following results, unless otherwise specified, det(/ + K)r2(c) dentotes the absolutely
convergent sum on the RHS of (2.2.8) - see the discussion in Section 2.2.5.

Proposition 2.4.1. Suppose a,r,t € (0,1) and let § > 0 be such that a < (1 — ). Then for
u € C\R" one has that

1
E,, -
it [((1 — tyut; 1)

The contour Cy is a positively oriented piecewise smooth simple curve, contained in the closed
annulus As, between the 0-centered circles of radius t™! and max (t (1—16/2),t~% 4). The
kernel K,(w,w') is defined as

= det(I + Ku)Lz(Co)- (241)

1/24100
Ko(w,w) = — / dsT(=8)D(1 + s)(—u(t= — 1)) g (£°), (2.4.2)
2m 1/2—t00
where B
s = (1 — ard (wt) ™) (1 — ar? (wt)t=)
(T
G (1) = — E) 1 — ard(wt)=1ts)(1 — ard(wt))

Remark 2.4.2. Proposition 2.4.1 will be the starting point for our asymptotic analysis in
both the GUE and CDRP cases. In the different limiting regimes, we will encounter different
contours, which will be suitably picked contours contained in As.

Proof. We first prove the proposition when C, is the positively oriented circle of radius ¢~*.
The starting point is Proposition 2.3.10, from which we see that whenever u € R* one has
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for every N € N
1
EY ,
ot [((1 — tut™; 1)
Here EY, , stands for the expectation with respect to the Macdonald measure on partitions,
corresponding to g =0 and z; = y; =ar* ' fori=1,...,N and z; = y; = 0 for s > N. The
result would thus follow once we show that

. N 1 — 1
L lmy oo oy [((1—t)ut‘”1 ;t):l Bara [((1—t)ut_x1 ;t)}

] — det(I + KN p2(c0)-

2. limN_,oo det(I + Kév)LZ(CO) det(I + K )Lz (Co)-

Before we prove the above two statements let us remark that the two limiting quantities
are indeed well-defined. The fact that K, is a trace-class operator on L*(Cj) follows from

Lemma 2.3.12. Next, we observe that if © € R* then for any n we have that (u—t%t—); is

‘ < M, for all n.

well defined and moreover there exists a constant M (u) such that m

1

Consequently, we can define unambiguously the expectation E,,; =
—t)ut—

] and it is a
finite quantity.

We start with 1. Denote by P and QY the N-length specialization of the the Hall-
Littlewood symmetric functions with z; = 3 = ar* ! fors = 1,..., N and z; = y; = 0 for

i > N (here N is a positive integer or o). Also let ZV be the normalization constant, which
in the above case equals

N - .

1 —tart~tari~! .

ZN = H T 57:._1&;;_1 - this is the Cauchy identity in (2.2.2).
1,j=1

We obtain

1 1
EN N .
art [((1 t)ut=;t) } ZN 2B Q* — tut=M;t)

A€Y

One readily verifies that Z¥ # Z>~ PY ~ P and QY 7 Q° as N — oo. Thus from the
Dominated Convergence Theorem (with dominating function MPQS°) we get

1 1
5 PNON i — PXrQ 7
Nim E N @) (1= Dut—>5; 1) Z A= tyut=™;t)

A€Y AeY

The latter implies that

1 1
PN N — P> . ,
N 7N Z YA, 25 =P AT 0.,

AcY

which concludes the proof of 1.

Next we turn to 2. Firstly, we one readily observes that
gljt\il,w’ (ts) — Quww (ts), as N — oo
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and moreover we have

1 (1 + ar?)(1 + arit~1/2)
,(t° -
Guyr ()] < = tH T ars 78 (1 —ar)

=M < o0,

independently of N, w,w’. Recall from (2.3.18) that
ID(=8)T(L+ 8)(= (¢! = Du)*| < Cexp((16] — m)ly|)r'/,

where —(t7! — 1)u = re¥ and s = 1/2 + 1. It follows by the Dominated Convergence
Theorem (with dominating function MC exp((|6] — 7)|y|)r'/?) that

N !
Jim K (w, w) = Ky (w, ),

and moreover there exists a finite constant M, (depending on u) such that |KY (w,w’)] < M,
for all N, w,w’. Next we have from the Bounded Convergence Theorem that for every n

1i s dt s = dtKu iy Wj T'l’— Z'
Novoo 1) /co /Oo ) (s b= IH 2me ! /Co /Co el wj)]z’]_lil;[l 2m

By Hadamard’s inequality we have that for each n the above is bounded (in absolute value)
nn/2¢—npn
by —ﬂz— Consequently, by the Dominated Convergence Theorem we have that

I}E)Iclmz /CO /et (KL (wi, w))]; lf[ an/ /det (K (wi, wj)]7 5 IHZZZ

This concludes the proof of 2.

We next wish to extend the result to a more general class of contours. Let C be a
positively oriented piecewise smooth simple contour contained in the annulus, described in
the statement of the proposition. What we have proved so far is that

1 dw;
Eq., = " : A.
= ] 1+Zn|/ det u(ws, w7, 11’[27“ (2.4.3)

where the latter sum is absolutely convergent. One readily verifies that g, . (%) is analytic in
w,w' on a neighborhood of As; X As; and by the exponential decay of I'(—s)I'(1+s)(— (¢t —
1)u)® near 1/2 + 100 the same is true for K,(w,w’). It follows that det [Ky(w;, w;)];,_; i
analytic on a neighborhood of A%, and by Cauchy’s theorem we may deform the contours Co
in (2.4.3) to C, without changing the value of the integrals. This is the result we wanted. [J

2.4.2 A formula suitable for asymptotics: GUE case

In this section we use Proposition 2.4.1 to derive an alternative t-Laplace transform, which is
more suitable for asymptotic analysis in the GUE case. The following result makes references
to two contours v (A) and yz(A), which depend on a real parameter A > 0, as well as a
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function S, (), which we define below.

Definition 2.4.3. For a parameter A > 0 define
Yw(A) ={-Aly| +w:y €I} and vz(A) = {Aly| + vy : y € I};, where I = [-m,7].

The orientation is determined from y increasing in I.

Definition 2.4.4. For a,r € (0,1) define
z) = Z log(1 + arie®) — Z log(1 + arie™@).
=0 =0

The function S, plays a central role in our arguments and the properties that we will
need are summarized in Section 2.6. We isolate the most basic facts about S, , in a lemma
below. The lemma appears again in Section 2.6 as Lemma 2.6.1, where it is proved.

Lemma 2.4.5. Suppose that § € (0,1). Consider r € (0,1) and a € (0,1 — 6]. Then there
exists A'(8) > 0 such that S, ,(z) is well-defined and analytic on Ds = {z € C : |Re(z)] < A’}
and satisfies

1 1+arie?
exp(S, 1;[ oo (2.4.4)

Proposition 2.4.6. Suppose a,r,t € (0,1) and let 6 > 0 be such that a < (1 —46). If A>0
is sufficiently small (depending on 6 and t) and yw(A) and vz(A) are as in Definition 2.4.3,
then for ¢ € C\R* one has

1
(G215 )0

The kernel K(W, W') has the integral representation

E. [ } = det(I — KC)U(’YW)'

27 e —eZ

w dZ (=2 W)
kawwy =5 [ B G 0, 2 exp (5ur(2) — 50 (W) (245)
vz (A)
In the above formula, S, . is as in Definition 2.4.4 and we have
ﬂ-(_ IOg t)—l(_C)Zﬂ'kb/(— log t) 7 W

Gl W, 2) = kEZZ sin(—m fy(Z + 21k, W)) and fi(Z, W) = —logt’

(2.4.6)

Proof. We consider the contour Cy := {—t1e®=4l . § ¢ [~m, n]}, which is a positively
oriented piecewise smooth contour. For A > 0 sufficiently small we know that Cy is contained
in the annulus As; in the statement of Proposition 2.4.1. Consequently, from (2.4.1) we know
that

1 > 1 dw;
. =1+ — det [Ku(w;, wy)
o)~ o o el T 5
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where K, (w,w') is as in (2.4.2) and the above sum is absolutely convergent. The n-th
summand equals

1 " " —~1 _.6;—Alb; —1_:6;—Al0;|\1™ - —t_lewi_Awil([’_ASign(ei))de
;;!/_-W--/_ﬂdet (K, (—t et A0l —¢1e |J|)]i’j=1H

! 27t
=1

Setting y; = 6; — Al|6;| the above becomes

_ dy;
. det [t71e¥ K, (—t~te¥, —t~ eyl
w(4) S (a) [ - Jism H 2
To conclude the proof it suffices to show that for W, W’ € yy-(A) and ¢ = (¢! — 1)u one has
te" K, (—t_lew, —t_lewl) = K:(W,W"). (2.4.7)

Setting Z = (—log t) + W, using the Euler Gamma reflection formula from (2.3.16) and
recalling f,(Z, W) = Z=% we see that the LHS of (2.4.7) equals

logt’

e TFEAW 0 (100 4)-IndZ ( C)ft(Z’W) ﬁ (1+arie ™™)(1 + arfe?)
2me Jztomt oo SIN(—T f1(Z, W)) — eZ -+ (L+arie=?)(1 + arie™)

If W € yw(A) we know that Re [:l;—gt +W] € [% —TA, #—t] In addition, the
only poles of the integrand for Re(Z) > 0 come from sm(——n?lf(z—W)) and are located at W +
(—logt)Z. This implies that if A is sufficiently small we may shift the Z- contour so that it
passes through the point Aw, without crossing any poles of the integrand (see Figure 2-6).
The shift does not change the value of the integral by Cauchy’s Theorem and the exponential
decay of the integrand near ftoo. Thus we get that the LHS of (2.4.7) equals

e_I/V— Am+100 (— log t)_lﬂ'dZ (__g)ft(Z,W) H (]. + arie= W)(l + arie? )
270 J pr—roo SIN(—Tfi(Z, W) e eZ (14 arie=2)(1+ arieV)’

The next observation is that eA™% is periodic in y with period T = 27. Using this we
see that the LHS of (2.4.7) equals

2wt

eW An+i T/2+kT [ logt A 1 1+ 0,7']6 1 + arie?
ft(Z,W H -
—_ e

= Jan—irpprar sin(=mfi(Z,W)) (=¢) (1+ arﬂe'z) (14 arieW)

W An4.T/2 (— C)LkT/( log t)( log t) ft(Z w) (1 +arieW (1 + ar? eZ)

az
= Jan—i1/2 sin(—7fi(Z + kT, W) -4 (L+arfemZ)(1 +arieV)’

Let (—¢) = re? with |f| < 7. Using a similar argument to (2.3.18), we have for |k| > 1
6—0kT/(— logt)

T \Sin(—7f,(Z + kT, W)

(_C)LkT/(— logt)
sin(—7 fu(Z + kT, W)) \

\ < CeltTio-m/(~1ost) (945
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Figure 2-6: If A is very small, no points of ~ Figure 2-7: If A is very small, no points of
W 4+ (—logt)Z fall between Am + (R and W + (—logt)Z fall between A+ ¢[—, ]
=8t L W + (R, when W € vy (A). and z(A), when W € yw(A).

where C' is some positive constant, independent of Z and W, provided W € yu(A),
|Im(Z)| < 7 and Re(Z) = Am. We observe the latter is summable over k. Additionally,

ff(ZW)H (1 +arie=")(1 + arie?) < 1 ft(zw)ﬁ (1+arie W (1+ar~762)
—e? 1+ arﬁ‘e—z (1+arieW)| = eAr — J=0 (14 arie=2)(1 + arieW)|’

and the latter is bounded by some constant M (¢, B), provided Re(Z) = Am and W € yy (A).
By Fubini’s theorem, we may change the order of the sum and the integral and get that LHS
of (2.4.7) equals

eW Am+.T/2 dz(_c)fg(Z,W) ! ﬂ.(__10gt)—1(_c)t,kT/(—logt)] 00 (1+a,r.je—W)(1+a.rjeZ)
k

oML Jpn—irys €V — €7 sin(—mfy(Z + kT, W)) | -2 (1+arie=?)(1 +arie%)’

From (2.4.8) we see that G¢.(W, Z), which is given by

m(—logt)™! (= logt)~1(—()T/(~logt)
sin(—7rJ%(Z,Vl/))+Z sin(—mwf(Z + kT, W)) ’

k=1

is the sum of ﬁ% and an analytic function in Z in the region D = {Z € C :
|Im(Z)| < 7 and Re(Z) > 0}. In particular, the poles of G¢4(W, Z) in D are exactly at

W + (—logt)N. If we now deform the contour [Am — ¢, AT + 1] to vz(A) (see Figure 2-7)
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we will not cross any poles and from Cauchy’s Theorem we obtain that the LHS of (2.4.7) is

i”_/ dZ(—C)ft(Z’W) (W, Z ﬁ (1+arie W) (1 + arie?)
21 Joyyay €V —€Z (1 +arie=2)(1+ arieV)’

Jj=

From Lemma 2.4.5 (provided A is sufficiently small so that yz(A), yw(A) C Ds), we have

o0

H (1+ arie”™)(1 + ar’e?)
o (14+arie=%)(1 + arie%)

= exp (Sor(Z) — Sor(W)).

Substituting this above we recognize the RHS of (2.4.7). O

2.4.3 Convergence of the t-Laplace transform (GUE case) and proof
of Theorem 2.1.2

Here we state the regime, in which we scale parameters and obtain an asymptotic formula
for Eq [(—Ctl_—i,l;)—} The formula is analyzed below and used to prove Theorem 2.1.2. One

key reason we are considering the t-Laplace transform is that it asymptotically behaves like
the expectation of an indicator function. The latter (as will be shown carefully below) allows
one to obtain the limiting CDF of the properly scaled first column of a partition distributed
according to the Hall-Littlewood measure with parameters a,r,t and match it with Foyg
(see Definition 2.1.7).

We summarize the limiting regime and some relevant expressions.
1. We will let r — 17 and keep ¢ € (0,1) fixed.

2. We assume that a depends on r and for some § > 0 we have lim,_,;- a(r) = a(l) €
(0,1 —14].

3. We denote by N(r) = &, M(r) =232 La(r)* &

—-1/3
— a(1)
and o = [m)‘f] .

For a given = € R set (, = —tM()Fea N2 (2.4.9)

The following result is the key fact for the Tracy-Widom limit of the fluctuations of the
first column of a partition distributed according to P, in the GUE case. It shows that
under the scaling regime described above the Fredholm determinant (and hence the t-Laplace
transform) appearing in Proposition 2.4.6 converges to Fgug.

Theorem 2.4.7. Let x € R be given and let {, be given as in (2.4.9). If A > 0 is sufficiently
small (depending on § and t) then

lim det(I KCm)LZ(’YW(A)) = FGUE( ) (2410)

r—1-

where Foyg is the GUE Tracy-Widom distribution (see Definition 2.1.7), yw(A) is defined
in Definition 2.4.3 and K¢, is as in (2.4.5).
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In what follows we prove Theorem 2.1.2, assuming the validity of Theorem 2.4.7, whose proof
is postponed until the next section.

We begin by summarizing the key results from our previous work as well as recalling a
couple of lemmas from the literature. From Proposition 2.4.6 and Theorem 2.4.7 we have
that under the scaling described in the beginning of the section and any z € R

1
lim Eqr¢ [( tM(r)+a=1zN(r)1/31-X] t)oo ] = Foug(z). (2.4.11)

r—1-

Set & := aN(r)"Y/3 (X, — M(r)) and observe that (2.4.11) is equivalent to

1
Hm By [N (6—a)].

The function that appears on the LHS under the expectation in (2.4.12) has the following
asymptotic property.

Lemma 2.4.8. Fiz a parameter t € (0,1). Then

1 |
foly) = (EETT g T (2.4.13)

is increasing for all ¢ > 0 and decreasing for all ¢ < 0. For each 6 > 0 one has fy(y) = l{y>0}
uniformly on R\[—4, 0] as ¢ — oo.

Proof. This is essentially Lemma 5.1 in [50], but we present the proof for completeness.
Each factor in the ¢-Pochhammer symbol i is positive, increases in y when ¢ > 0 and
decreases in y when ¢ < 0. This proves monotonicity.

Let 6 > 0 be given. If y < —§ we have

1 1
0<fq()_1H1+qysl+t1 5 —0asq— oo (2.4.14)
If y > § we have
0 > log f,(y Zlog + ¢+ — 0 as ¢ — oo, (2.4.15)

where the latter statement follows from the Dominated Convergence Theorem with domi-
nating function log [1 + t*]. Exponentiating (2.4.15) and combining it with (2.4.14) proves
the second part of the lemma.

O

We will use the following elementary probability lemma (Lemma 4.1.39 of [24]).

Lemma 2.4.9. Suppose that f, is a sequence of functions f, : R — [0, 1], such that for each
n, fo(y) is strictly decreasing in y with a limit of 1 at y = —oo and 0 at y = co. Assume
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that for each & > 0 one has on R\[=0,0], f, = Llyy<o} uniformly. Let X, be a sequence of
random vartables such that for each x € R

E[fn(Xn - .'I))] — p(a)),

and assume that p(x) is a continuous probability distribution function. Then X, converges
in distribution to a random variable X, such that P(X < z) = p(z).

Proof. (Theorem 2.1.2) Let 7, be a sequence converging to 1~ and set

1
n = d X, = [
f (y) ((—t) . t—[N(T")l/sa—ly];t)m an f n

Lemma 2.4.8 shows that f, satisfy the conditions of Lemma 2.4.9. Consequently, Lemma
2.4.9 and (2.4.12) show that &. converges weakly to the Tracy-Widom distribution. In
particular, for each x € R we have

lim P, ,:(& < z) = Four(z). (2.4.16)

r—1-

Consider a(r) = r(HII™NMID/2 - Since, lim,_,;- r¥ = e7!, we see that lim,_;- a(r) =
1/3 i 1/3
a(l) = e7I"1/2 < 1 (whenever 7 # 0). This means that ¢~ := [fl—f«gz_l))V] = [uTee—lllT/l%f] =:

x~!. From Section 2.2.4 we conclude that

- (A’l(wi(:)]{f)l/; M(r) _ x) _p,., (%—_T]\\f% < x) L P(6 <o), (24.17)

Combining (2.4.16) and (2.4.17) shows that if 7 # 0 one has

(M(LTN(T)J) — M(r)
Y IN1/3

< x) = Foyg(z).

lim P,
r—1—
In (2.6.8) we will show that M(r) = 2N(r) log(14-a(1))+O(1) = 2N(r) log(1+e~1"/2)+0(1).
Substituting this above concludes the proof of the theorem. O

2.4.4 Proof of Theorem 2.4.7

We split the proof of Theorem 2.4.7 into four steps. In the first step we rewrite the LHS of
(2.4.10) in a suitable form for the application of Lemmas 2.2.11 and 2.2.12. In the second step
we verify the pointwise convergence and in the third step we provide dominating functions,
which are necessary to apply the lemmas. In the fourth step we obtain a limit for the LHS
of (2.4.10), subsequently we use a result from [26], to show that the limit we obtained is in
fact Fouk.

In Steps 2 and 3 we will require some estimates, which we summarize in Lemmas 2.4.10
and 2.4.11 below. The proofs are postponed until Section 2.6.
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Lemma 2.4.10. Let A > 0 be sufficiently small. Then for all large N we have

Re(S,,(2) — M(r)z) < —cN|z|* for all z € yz(A) and (2.4.18)
Re(Sur(2) — M(7)z) > cN|z|? for all z € yw(A). (2.4.19)
In the above ¢ > 0 depends on A and §. In addition, we have
Re(S,,(2) — M(r)z) = O(1) if |2| = O(N7'3) and (2.4.20)
131_131 Sar(N7Y3u) — M(r)N~V3u = u3a=3/3 for all u € C. (2.4.21)

Lemma 2.4.11. Let t,u,U € (0,1) be given such that 0 < u < U < min(1, —logt/10).
Suppose that z,w € C are such that Re(w) € [-U,0], Re(z) € [u,U]. Then there ezists a
constant C > 0, depending on t such that the following hold

1
ez___ew

1
< Cu™! and
= an kEZZ sin(—m fi(z 4 2wk, w))

< Cu™', where fi(z,w) = 255

(2.4.22)

Step 1. For A > 0 define v, (A) = {—Aly| + ty : y € R} and v4(A) = {Aly| + wy : y € R}.
Suppose A > 0 is sufficiently small, so that Proposition 2.4.6 holds. We consider the change
of variables z; = NY3Z; and w; = NY3W, and observe that the LHS of (2.4.10) can be
rewritten as det(I — KX) L2(vy (4))> Where

- dz
N,z
Kalcv(wa wl) = / gw,w’(z)z ) and 9w w'( ) = ]-{ma.x(|Im(w)[,|I7n(w’)l,|!'m(:/:)|)§N1/37r}><
7y (4) m

N3y nr— _ _ _
eV N—2/3 G (N, N-13) exp(Sy (N"Y32) — MN~Y3z — za712)
eN—1/3uwl _ N-1/37 St J exp(S,,(N—13w) — MN-13w — za~1w)’
(2.4.23)

We deform the contour v, (A) inside the disc of radius A~! so that it is still piecewise smooth
and contained in {z € C : Re(z) > 1/2}. Observe that the poles of gul\)[,’f),(z) in the right
complex half-plane come from G¢,; and are thus located at least a distance of order N'/3
from the imaginary axis. The later implies that if we perform, a deformation inside a disc
of radius O(1) we will not cross any poles prov1ded N is sufficiently large. In particular, our
deformation does not change the value of gw *, for all large N by Cauchy’s Theorem. We
will continue to call the new contour by v (A) Deforming the contour has the advantage of
shifting integration away from the singularity point 0.

Step 2. Let us now fix w,w’ € 74, (A) and z € y;(A) and show that

oz sz, expla23/3 —a?uw?/3 — ra 'z + za " w)
]\}E)n gw'w ( ) gw,w’( ) Where gww (Z) L ( — Z)('LU — z)

(2.4.24)
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One readily observes that

| , 1
. N—1/3 H{max(|Im(w)],| Im(w")|,|[Im(2)[)<N/3x}
1\}'1—I+Ic1>oe N1/3 (eN—l/sw/ — 6N~1/3z) T w— 2 (2.4.25)

Using (2.4.21) we get

exp(S,,(N"Y32) — MN~Y3z — za12) 3, 3 3 . )
]. —_— —_— — .
Nvoo exp(Sar(N~V3w) — MN-Y3w — za~w) exp(a”(z"/3 —w'/3) —za”z + za”w)

(2.4.26)
From (2.4.6) we have

~ ~ ~ ~ logt) 1( C )21rkb/( logt)
N-1/3 Ny, N-1/37) 1/3 ”( 2.4.27
GCa:,t( 'LU, N Z Sln 7rft N 1/32’ —|— 27TkL N 1/3w)) ( )

Using a similar argument as in (2.3.18) we see that for |k| > 1 and all large N one has

7T(—— log t)—l(_é’x)21rkl./(— logt)
sin(—n fy(N=1/32 + 2wke, N=13w))

\ < Ce~2kim/(~1o8(0).

The latter is summable over |k| > 1 and killed by N~'/3 in (2.4.27). We see that the only
non-trivial contribution in (2.4.27) comes from k£ = 0 and so
—logt)™! 1
lim N7V, (N™V*w, N7%2) = lim N7V ult . ) = . (2.4.28)
N—oo —»00 sin (Wi\f— / w — Z)) w—z

logt

Equations (2.4.25), (2.4.26) and (2.4.28) imply (2.4.24).

Step 3. We now proceed to find estimates of the type necessary in Lemma 2.2.12 for the
functions g,; w,( ). If 2 is outside of the disc of radius A~! (so lies on the undeformed portion

of v,(A)) and |Im(z)| < wN/3 the estimates of (2.4.18) are applicable (provided A is small
enough) and so we obtain

|exp(S,,(N"Y32) — MNY32 — za712)| < Cexp(—c|z® + |za™'2]|), (2.4.29)

where C, ¢ are positive constants. Next suppose z is contained the disc of radius A~! around
the origin (i.e. lies on the portion of v,(A) we deformed). From (2.4.21) we know that
Sar(N~32) — MN~/3zis O(1). This implies that | exp(S,(N~/32) — MN~V3z— za™'2)|
is bounded and the estimate (2.4.29) continues to hold with possibly a bigger C.

If w € vy (A) and |[Im(w)| < mN/3 the estimates of (2.4.19) are applicable (provided A
is small enough) and we obtain

|exp(— S, (N"Y3w) + MN™YPw + zo 'w)| < Cexp(—clw|® + |za w)), (2.4.30)
for some C,c > 0.

If A is sufficiently small so that Am < min(1, —log¢/10), then the estimates in Lemma
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2.4.11 hold (with v = (1/2)N~/3 and U = Ar), provided max(|Im(w)|, |[Im(w')|,|Im(z)]) <
N3z, 2 € v,(A) and w',w € v}, (A). Consequently, for some positive constant C we have

N-1/3
eN—l/Sw/ . eN—1/3Z

N3G, (N~Y3uw, N7132)| < C. (2.4.31)

Observe that eV ™""*% = O(1) when |Im(w)| < 7N*/? and w € 7}y (A). Combining the lat-
ter with (2.4.29), (2.4.30) and (2.4.31) we see that whenever max(|Im(w)|, |[Im(w')|, |[Im(z)|) <
N3, 2 € 4,(A) and w',w € ¥}, (A) we have

gy 2/(2)] < Cexp(—clwl® + |za™ w]) exp(—c|z]® + |za™"2]), (2.4.32)

where C, ¢ are positive constants. Since g 7 (z) = 0 when max(|Im(w)|, [ Im(w")|, [Im(2)|) >
N37 we see that (2.4.32) holds for all z € 75 (A) and W', w € vy, (A).

Step 4. We apply Lemma 2. 2 12 to the functions gww (2) with Fy(w) = C exp(—c|w|® +
lza™ w|) = Fy(w) and Ty =+ (A4), Ty = v5(A). Notice that the functions F; are integrable

on I'; by the cube in the exponen'mal As a consequence we see that if we set K, X(w,w') =
I oy (4) o (2)22, then KY and K2 satisfy the conditions of Lemma 2.2.11, from which we

conclude that
lim det(I — KCx)L2(7W(A)) = det(I — K )LZ(’y(,V(A))' (2.4.33)

r—1-

What remains to be seen is that det(I — I~(§°)Lz(7/W(A)) = Fgur(z).
Changing variables, we have that det(] — K3°) ) = 14+ 207 CU% H(n), where

n!

3 3 _
H(n) =Y sign(o / / / / ] SXRLa2/® = wd/S = o + ow) du d
Tw /% o7 (wZ - Zz)(wa(z) - Z,L) 2me 2y

ocES, Z i=1

Consequently, we see that
det(I — RIOO)LZ(,Y{V) = det(I + RAi)H(q«(,V),

where
exp(2%/3 — w®/3 — zz + zw) dz

(w—2)(z —w) omy (2.4.34)

K ai(w,w') = /
Yz
The proof of Lemma 8.6 in [26] can now be repeated verbatim to show that

det([+ kAi)Lz('y(,V) = det(I - KAi)LQ(x,oo) = FGUE(CE).

This suffices for the proof.

2.5 CDRP asymptotics

In this section, we obtain alternative formulas for the ¢-Laplace transform of t1=2 with A
distributed according to the Hall-Littlewood measure with parameters a,7,t € (0,1) (see
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Section 2.2.4), which are more suitable for asymptotics in the CDRP case. Subsequently,
we analyze the formulas that we get in the limiting regime r,t — 17, and prove Theorem
2.1.3. In what follows, we will denote by P,,; and E,,; the probability distribution and
expectation with respect to the Hall-Littlewood measure with parameters a,r,t € (0,1).

2.5.1 A formula suitable for asymptotics: CDRP case

In this section we use Proposition 2.4.1 to derive an alternative representation for

Eg [(471‘%'1_5_] In what follows we will make reference to the following contours

Definition 2.5.1. For ¢t € (0,1) define
vo={-1/4+w:y € [-m(=logt) ", m(=logt) ']}, 7- ={-1/4+ 1y :y € R},
={1/44+w:y € [-m(=logt) !, m(~logt) !} and 74 = {1/4 +wy: y € R}.
All contours are oriented upward.

The following proposition is very similar to Proposition 2.4.6 and will be the starting
point of our proof of Theorem 2.1.3 the same way Proposition 2.4.6 was the starting point
of the proof of Theorem 2.1.2.

Proposition 2.5.2. Suppose a,r,t € (0,1) and let 6 > 0 be such that a < (1 —96). Ift is
sufficiently close to 1~ then for ( € C\R™ one has

1 N
a,rt [(C—_—tl_)‘ll’ t)oo] = det(I - K()Lz(“yf_)

The kernel K'C(W, W') has the integral representation

log t)(=¢)?""dZ exp (Sas((~logt)Z))

K W,W') = W, Z = : 2.5.1

«l / CW 2 — 7 e (Sar((—logt)W))’ (2:5.1)
where Ge(W,Z) = 3 1ca sm(:(WC Z;_:’;Z;ijtlog 55, and the contours YL and 4 are as in Definition

2.5.1.

Proof. We consider the contour C := {~t~%/%¢Y : § € [, 7]}, which is a positively oriented
smooth contour, contained in the annulus Aj;; in the statement of Proposition 2.4.1 for ¢
sufficiently close to 17. Consequently, from (2.4.1) we know that

1 dw;
Eort [((1 B ] =1+ Z .y / /det [Ku(wi, wy)]; - 1H oy

where K,(w,w’) is as in (2.4.2) and the above sum is absolutely convergent. The n-th
summand equals

. . B —t73/% e dg;
\/—:71' [Wdet 3/4 0 -t 3/4 " )]19—1H 2me ’

=1
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Setting y; = (—1/4) + ¢0;/(—logt), the above becomes

n .
t=3/4~ %4~ log t)dy;
—3/dy—yi-1/4 _ 4—3/d —y;—1/4\ 1" i
/ / det [K e e N | 5t :
i=1

which can be rewritten as

(_l)n/ / —li—y; —li—y; -1 y] -
m 73det[( logt)t VK, (—t7 1t %, —t 71t ];[

and the latter is still absolutely summable over n.

To conclude the proof it suffices to show that for W, W’ € 4% and ¢ = (¢~! — 1)u one has
(—logt)t 'tV K, (—t‘lt"w, —t“lt‘W') = K (W, W"). (2.5.2)

We observe that the LHS of (2.5.2) equals

(—logt)t~ 1" /1/2“00 [(=s)T'(1 + s) H (14 aritV)(1 + arit="t9)

d :
om T Wt s 1+arJtWtS Y1+ arit %)
We set Z = s+ W, and use that Re(W) = —2 for W € . together with Euler’s Gamma,

reflection formula (2.3.16) to see that the above equals

t=W ndZ (=logt)(—=O)?W 1 (1 + ar?tV)(1 + arit=%)
27L / sin(m(W - Z2)) tW —t¢ 1;[0 (1 + arit?)(1 + arit=")’

We observe that ¢ is periodic in s with period T = _i’;g -
above formula as

Z / )T (=logt)(—=¢)?2""dZ {7 (1 + aritV)(1 + arit=%)
2me J.¢ sin 7r(W - Lk)T 7)) W' — -2 P (1+ arit?)(1 + arit=")

kEZ

Let (—¢) = re with |8] < 7. Then, using a similar argument as in (2.3.18), we have for

k| > 1

r(=Q* | me
sin(m(W 4+ kT — Z)|  |sin(r(W + kT — 2))
where C is some positive constant, independent of Z and W, provided Z € 4% and W € 4%

The latter is clearly summable over k, which allows us to change the order of the sum and
the integrals above and conclude that the LHS of (2.5.2) equals

—6kT
< CelkITdtl=m) (2.5.3)

(—logt)(=¢)?WdZ & (1 + ar’tW)(1 + arit=%)

t=W — -2 pin (1 + arit?)(1 + arit=")

2 > (=)
2me Sy | sin(m(W + kT — 2)
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From Lemma 2.4.5 we have that if ¢ is sufficiently close to 1 (so that (—logt)z € Ds when
|Re(z)| = 1/4) we have

o

(1+ ar?t")(1 + arit~ Z) _exp (Sar((—logt)Z))
(1 + arit?) 1 +arit=")  exp (So ((—logt)W))’

]::O
Substituting this above we see that the LHS of (2.5.2) equals

—C)LkT

t” (
2m [% sin(n(W + kT — Z)

(_ log t)(_C)Z—WdZ €xp (Sa,r((_ 1Og t)Z))
tW' —t=72  exp (Sa,((—logt)W))’

which equals the RHS of (2.5.2) once we identify the sum in the square brackets with
Ge(W, Z). O

2.5.2 Convergence of the t-Laplace transform (CDRP case) and
proof of Theorem 2.1.3

Here we state the regime, in which we scale parameters and obtain an asymptotic formula
for Ea,r,t [m]
Theorem 2.1.3. Tn the CDRP case the t-Laplace transform asymptotically behaves like the
usual Laplace transform. The latter (as will be shown carefully below) allows one to obtain

the limiting CDF of the properly scaled first column of of a partition distributed according to

the Hall-Littlewood measure with parameters a,r,t and match it with Fopgp (see Definition
2.1.7).

in the CDRP case. The formula is analyzed below and used to prove

We summarize the limiting regime and some relevant expressions.

1. We fix a positive parameter x and let r — 1~ and £ — 1~ so that kK = (;_lr%fg

2. We assume that a depends on r and for some § > 0 we have lim, ;- a(r) = a(1) €

(0,1 4).
. -1/3
3. We denote by N(r) = &, M(r) = 232, (—1)*la(r)F—L, = [m—%ﬂ .
For a given z € R set (, = —tM@)-ax N3 (2.5.4)

The following result is the key fact for the limiting fluctuations of the first column of
a partition distributed according to the Hall-Littlewood measure with parameters a,r,t in
the CDRP case. It shows that under the scaling regime described above the Fredholm
determinant (and hence the ¢-Laplace transform) appearing in Proposition 2.5.2 converges
to the Laplace transform of F(T,0) + T'/24 (see Definition 2.1.7 and equation (2.1.7)). The
latter, as demonstrated below, implies convergence of the usual Laplace transforms and leads
to a weak convergence necessary for the proof of Theorem 2.1.3.

Theorem 2.5.3. Let x € R be given and let (, be given as in (2.5.4). Then we have

lim det(I KC )Lz(,), det(I — KCDRP)LZ(R+), (2.5.5)

r—1-
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where Koprp 1s given in (2.1.8) with T = 2k3a73, 4 is as in Definition 2.5.1, and ch s
as in (2.5.1).

In what follows we prove Theorem 2.1.3, assuming the validity of Theorem 2.5.3, whose proof
is postponed until the next section.

We begin by summarizing the key results from our previous work that we will use as
well as stating a couple of lemmas. From Proposition 2.5.2 and Theorem 2.5.3 we have that
under the scaling described in the beginning of this section and any z € R

1
_t) . tM(r)—n—lxN(r)1/3t—)\’1 : t)oo

lim Eort I:(( :| = det(I - KCDRP)LQ(IR*‘)- (2.5.6)

Set &, := (—logt) (N, — M(r)) — log(1 — t) and observe that (2.5.6) is equivalent to

lim Ea,r,t [ ! =
e (CHA =) - i D)

The function that appears on the LHS under the expectation in (2.5.7) has the following
asymptotic property.

:I = det(] — KC’DRP)LQ(RJr)- (2.5.7)

Lemma 2.5.4. Fort e (0,1) and z >0 let

1 =
)= e L Tr o (258

Then g:(x) — e~* uniformly on Rsp ast — 17.

Proof. From the monotonicity of g,(z) and e~ it suffices to show the result only for compact
subsets of R>o. Using (10.2.7) in [7] one has that — e~ ? uniformly on compact

subsets of R as t — 17. Consequently,

1
(=(1-t)z;t)oo

(z) = 1+ (1-t)z 1 (1-1t)z
P T 0= 080e O -5t (—(0 - D300
also converges uniformly to e™ on compact subsets R>p as ¢t — 17. O

We will use the following elementary probability lemma.

Lemma 2.5.5. Suppose that f, is a sequence of functions, f, : Rso — [0,1], such that
fo(x) = €7 uniformly on R>o. Let X, be a sequence of non-negagive random variables such
that for each ¢ > 0 one has

lim E[fn(cXn)] = p(c),

and assume that p(c) = E [e=X] for some non-negative random variable X. Then we have

lim E [e_CX”] =E [e"cx} .

n—r00

In particular, X,, converges in distribution to X as n — oco.
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Proof. Let € > 0 be given. We observe that

|IE [e_CX"] —E [fn(an)” <E He”CX" - fn(an)’] < sup |e—”’ — fn(x)| — 0asn — 0.

mERzo

In the second inequality we used that X, are non-negative and the last statement holds by
assumption.
It follows that for every ¢ > 0 (and clearly also when ¢ = 0)

lim E [e_CX"] =E [e”cx] .

n—00

The above statement implies X, converges to X in distribution by Theorem 4.3 in [55]. O

Proof. (Theorem 2.1.3) Let 7, be a sequence converging to 1~ and set ¢, so that (—logt,) =
k(1 —7,)Y/3. Define

1
((_tn)(l - tn) * T tn)oo

Lemma 2.5.4 shows that f, satisfy the conditions of Lemma 2.5.5. In addition, recall
that by (2.1.7) we have

and X,, = ebrn

fn(x) =

det(I — Kcprp) 12w,y = E [e7¢" PFTOFT/20]

where F is as in Definition 2.1.7 and T = 2x3a~3. Consequently, Lemma 2.5.5 and (2.5.7)
show that for x € R one has

lim E,, , [e—ex EXP(érn)] =T [6—6“ exp(f(T,0)+T/24)_] (2.5.9)
n—oco "

In particular, exp(€,) converges weakly to exp(F(T,0) +T/24) = eT/24Z(T,0). In [67] it
was shown that Z(T,0) is a.s. positive and has a smooth density, thus we conclude that for
each x € R, we have

~

111§1_ P, t(exp(&r) < z) = Plexp(F(T,0) +T/24) < x).

r—

Taking logarithms we see that for each z € R we have

lim P,,,(& < z) = P(F(T,0) + T/24 < x). (2.5.10)

r—1-
Consider a(r) = rAHITNOIN/2 - Gince, lim,_,1- ¥V = e, we see that lim,_,;- a(r) =

1/3 . 1/3
a(1) = e7I"V/2 < 1 (whenever 7 # 0). This means that o™ := [#ﬁi»ﬁ} = [ﬁ] =:
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Xx- From Section 2.2.4 we conclude that

rt MTN(r)]) — M(r) o 1/3. -1 -1/3 z) =
]P)HL (X_lN( )1/3(T/2) 1/3 +1 g(N( ) X (T/2) )S )

Pyt (a*lN(;)1/3(’1(’72)‘1/3 + log(N(r)3a1 (T/2)—1/3) < m)

The latter implies that if we set k = (T/2)/3a we will get

Tt M (TN (r)]) — M(r) 1/3. —1 ~1/3 _ £ -1 1/3
Pty (S g (N3 (T/2) ) £ ) = Paga(fHoB(1=)x N () < ),

One observes that (1—)k !N (r)1/® = “os; — Lasr — 1~ and so from (2.5.10) we conclude
that

tim B, (SUHOD MO 4 togV() 1 (T2 < ) = FFT,0)+ 724 < ).

From (2.6.8) we have ¢; = M(r) = 2N (r) log(1 + a(1)) + O(1) = 2N (r) log(1 + e 1"/2) +
O(1). Substituting this above concludes the proof of the theorem. O

2.5.3 Proof of Theorem 2.5.3

We split the proof of Theorem 2.5.3 into three steps. In the first step we rewrite the LHS
of (2.5.5) in a suitable form for the application of Lemmas 2.2.11 and 2.2.12 and identify
the pointwise limit of the integrands. In the second step we provide dominating functions,
which are necessary to apply the lemmas. In the third step we obtain a limit for the LHS of
(2.5.5), subsequently we use a result from [26], to show that the limit we obtained is in fact

det([ - KCDRP)LZ(R'*‘)-
In Steps 1 and 2 we will require some estimates, which we summarize in Lemmas 2.5.6
and 2.5.7 below. The proofs are postponed until Section 2.6.

Lemma 2.5.6. Let t be sufficiently close to 1~. Then for all large N we have
Re(Sa,((—logt)z) — M(r)(=logt)z) < C — c|z|* for all z € 4. and (2.5.11)

Re(Sa,((—logt)z) — M(r)(—logt)z) > c|z|* — C for all z € 4. (2.5.12)
In the above C,c > 0 depends on 0. In addition, we have

A}im Sar((—=logt)u) — M(r)(—logt)u = u’k*a3/3 for all u € C. (2.5.13)
—>00

Lemma 2.5.7. Let t € (1/2,1). Then we can find a universal constant C such that

Candz

keZ

< C when Re(z) = 1/4 and Re(w) = —1/4.

sin(m(w — 2L — 2))

z
€ log t

(2.5.14)
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Step 1. Observe that the LHS of (2.5.5) can be rewritten as det(l — Kﬁv)m(y_), where

K w,w) = / G, w'(z)—> and g37(2) = Lmax(m(w)], [ Im(w) L [Im(2)) <(- log)~1x} X
T+
—w (—logt) exp (S, ((—logt)z) + M(logt)z + z=z)
t GCa: (w, Z) 0 _ 1% ox — .
P (Sar((—logt)w) + M(logt)w + zw)

(2.5.15)
Let us now fix w,w’ € 7}, (A) and z € v;(A) and show that
7r 1 exp(a™3k32%/3 + z2)
1 , o0 h (2) ==
e g’”“’ (2) = 9y (2), where g3, (2) sin(m(z — w)) z — w' exp(a3k3w?/3 + zw)’
(2.5.16)
One readily observes that
, (—logt) 1
Nin 7 e ) L ()L (DS~ log )~ 1my T — s = (2:5.17)
Using (2.5.13) we get
. exp(S.,((—logt)z) + M(logt)z + zz) exp(a™3k323/3 + 2)
lim ’ = (2.5.18)
N-oo exp (S, - ((—log t)w) + M(logt)w + zw)  exp(a—3x3w3/3 + zw)’
From the definition of G¢, we have
)27rkc/( logt)
G 2.5.19
¢ (w;2) ZZ — 2) + 2mwke/ logt)) ( )

Using a similar argument as in (2.3.18) we see that for |k| > 1 and all large N one has

7 (—()?he/ (= 1os ) < Ce-2lkin/(~logt)
sin(m(w — 2z) + 2mke/logt) | ~

The latter is summable over |k| > 1 and since 1/(—logt) goes to infinity the sum goes to 0.
We see that the only non-trivial contribution in (2.5.19) comes from £ = 0 and so

™ ™

R Ge.(w, 2) = A, sin(r(w — 2)) _ sin(r(w — 2))’ (2:5.20)

Equations (2.5.17), (2.5.18) and (2.5.20) imply (2.5.16).

Step 2. We now proceed to find estimates of the type necessary in Lemma 2.2.12 for
the functions g, w,(z)‘ If z € v+ and |Im(z)| < w(—logt)™" the estimates of (2.5.11) are
applicable and so we obtain

| exp(Sa,((—logt)z) + M(logt)z + z2z)| < Cexp(—c|z|* + |zz]), (2.5.21)

where C, c are positive constants.
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If w e y- and |Im(w)| < w(—logt)™! the estimates of (2.5.12) are applicable and we
obtain

| exp(—S,((—logt)w) — M(log)w — zw)| < Cexp(—clw|® + |zw)), (2.5.22)

for some C, ¢ > 0.
From Lemma 2.5.7 we have for some C > 0 that

(“logt) <C. (2.5.23)

ch (w Z)'{*“:‘z‘ s

Observe that ¢~ = O(1) when |Im(w)| < 7(—logt)™* and w € y_. Combining the latter
with (2.5.21), (2.5.22) and (2.5.23) we see that whenever max(|Im(w)|, |[Im(w’)|,|Im(2)]) <
(—logt)~im, 2 € v, and w',w € y_ we have

|G ()] < Cexp(—clw]? + |zw]) exp(—clz]” + |az]), (2.5.24)

where C, care positive constants. Since g2’ wow (2) = 0 when max(|]m( )N, [Im(w')|, [Im(2)]) >
(—logt)~'m we see that (2.5.24) holds for all z € v+ and W', w € v,

Step 3. We may now apply Lemma 2.2.12 to the functions gw”w,(z) with F} (w) = C exp(—clw|?*+
|lzw|) = Fy(w) and T'; = v_, 'y = ,. Notice that the functions F; are 1ntegrable on F by the
square in the exponential. As a consence we see that if we set K (w, w') f 9o w,

then KV and K3° satisfy the conditions of Lemma 2.2.11, from which we conclude that

2m ?

lim det(I — KCZ)L2

r—1-

det(I K )L2('y_)' (2525)

() =

What remains to be seen is that det(I — f(g’)w_) = det(I — Kcprp)r2@®+)-
We have that det(] — I?go),;zh_) =1+, (_nl!)nH(n), where

K023 [3—KPa W [3+aZi—aWs gV, 47,
Zé’zgn(P/ / / / -1 sin(m(Z; — Wi))(Zs — W) 2me 2’

PESK

Put 0 = ax~! and consider the change of variables z; = 0~1Z;, w; = o~'W;. Then we have

n z§/3—wz.3/3+aa:zi-0'wwi dw; dz

ome W; Gz

H(n) = Sign(/o)/ / / / |1 ot
Z ym Stk Jiisid sin(om(z; — w;))(zi — Wpgs)) 2L 2L

PESH

Consequently, we see that
det(I — K&) 12,y = det(I + Koprp) p2(st1.m):

where

N -1 omesT(z—w) 3/3—w3/3
K N=— d 2.5.26
cprp(W, /) 2me / R zsin(mr(z —w)) z—w ( )
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The proof of Lemma 8.8 in [26] can now be repeated verbatim to show that

det(l + KCDRP)LZ( —I—L]R det([ - KCDRP)LZ(R+)'

This suffices for the proof.

2.6 The function S,

In this section we isolate some of the more technical results that were implicitly used in
the proofs of Theorems 2.1.2 and 2.1.3. We start by summarizing some of the analytic
properties of the function S,, (see Definition 2.4.4). Subsequently, we identify different
ascent/descent contours and analyze the real part of the function along them. We finish
with several estimates that played a central role in the proofs of Theorems 2.4.7 and 2.5.3.

2.6.1 Analytic properties

We summarize some of the properties of S,, in a sequence of lemmas. For the reader’s
convenience we recall the definition of S, .

z) = Zlog(l + arie?) — Z log(1 + ar’e™?),
=0 =0

where a,r € (0,1).

Lemma 2.6.1. Suppose that § € (0,1). Consider r € (0,1) and a € (0,1 — 8]. Then there
exists A'(0) > 0 such that S, »(2) is well-defined and analytic on Ds = {z € C : |Re(z)| < A’}
and satisfies
e J
~exp(S M= L +arle” (2.6.1)

1+ arie—z
=0

Proof. We let A’ > 0 be such that (1—6)e®” < 1. Since r € (0, 1), we have that |arie*?| < 1
for z € Ds and j > 0. Consequently, log(1 + arfe*?) is a well-defined analytic function on
D;s for each 5 > 0.

Let K C Ds be compact. Then there exists a constant C(K) > 0 such that |e**| < C for
all z € K. It follows, that for all large j one has [e*?ar’| < 1/2. Using that |log(1+w)| < 2|w|
when |w| < 1/2 we see that | (1 + ar’e**)| < 2Car? for all large j, which are summable.
This implies that the sums ) 72 log(1 + ar/e**) are absolutely convergent on K. This in
particular shows S, , is well-defined, but also, since the absolutely convergent sum of analytic
functions is analytic, we conclude that S, .(2) is analytic on Ds.

Next let z € Ds. From our work above
M .
Sar(2) = hm Zlog 1+ arie? Z log(1 + ar’e™)
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By continuity of the exponential we see that

M . M . M 1 + CL’I"jez
exp(Sar(2)) = lim exp | > log(1+ar'e’) = > log(1+ar’e™)| = Iim [[———,
7=0 j= j=0

which equals the RHS of (2.6.1). U

Lemma 2.6.2. Assume the notation in Lemma 2.6.1. Then S,,(z) is an odd function on
Ds and the power series expansion of S, ,(z) near zero has the form

o0

1-—
k:-l—l k
( 2l n 1 kE: 1_—-_’)"—’“ e R. (262)

Sur=crz+c3z’ +--+, where cyyy =

Moreover, for each I > 1 one has that

1

= (2.6.3)

Corp1 <

Proof. The fact that S,, is odd follows from its definition and Lemma 2.6.1. Next we
consider G(2) = 3772 log(1 4 arfe*). On Ds we have that |ar’e?| < 1 so we can use the
power-series expansion for log(1 + z) to get

Zlog (14 arie? Z

7=0 k=1

kz

ar’ ke

Power-expanding the exponential, the above becomes

0o 00 00 1( 1k+1 .
Z Z Z — (ar?)FE™m 2™, (2.6.4)

§=0 k=1 m=0

We will show that the above sum is absolutely convergent (provided |z| is sufficiently small),
which would allow us to freely rearrange the sum.

Consider f(z) = 25 = Y502’ for |z < 1. We know that for |z| < 1 and m > 0 we
have -

|
(m) (4 _ ; j ™) (g) = "
f => (G+m)@G+m—1)---(j+ )2/, and f™)(z) = Aoy
7>0
Putting x = a we see that

Zakkm 1< Zakkm <Y (k+m)---(k+ 1)k ™ (2.6.5)

k>1

65



The latter shows that

ar’) kmzm > km=Lzjm z|™
>3y Il oy s e S

m=0 k=1 5=0

and the leftmost expression is finite for small enough |z|.

k+1

Rearranging (2.6.4) we see that the coefficient of 2™ in G(2) is - > 7o, > e 0 = (ari)kE™.
Since S,,(z) = G(z) — G(—z) we see that the even coefficients of S, ,(z) are zero, Whlle the
odd ones equal

N 2 - 1—r
k 2041 __ A0 1\k+1k
s = Gy 2o D (e R = e SR e
k=1 j=0 k=1

as desired.
For the second part of the lemma observe that

= 1~— (20)!

2l k+1 k 21
Sorra i <3 < B
k_

where in the last inequaity we used (2.6.5). If { > 1 and a € (0,1 — 8] we conclude that

2 (20! 1
exnl < T @I - a1 = [T r)ea

(]

Lemma 2.6.3. Let c¢; and c3 be as in Lemma 2.6.2. Also suppose that a, depends on r and
lim, ;- a(r) = a(1) € (0,1 —4§]. Then

1 a(l)
1 - = 2log(1 1 = 6.
Jim (1 —7)e; = 2log(1 +a(1)) and lim (1 —r)es = 3 AT e (2.6.6)
Proof. From Lemma 2.6.2 we know that ¢; = 2= 312 (—1)**'a(r)¥1=%. Consequently,
lim (1 —r)e; = 2 lim EOO:(—Uk“a(r)k-li =2 }w:(~1)k+1ﬂ = 2log(1 + a(1))
Tt 1 e 1—r* k=1 k ,

where the middle equality follows from the Dominated Convergence Theorem with dominat-
ing function (1 — 6/2)*.

Similarly, we have c3 = g0 3772, k*(—1)**'a(r)* {=%. Consequently,

1 1
lim _ = 2 lim 2 k+1 - N\
7'—1)1—(1 7" . r—1>1— Z k; a(r — Tk 3 —1 3 ( (1))2,

where the middle equality follows from the Dominated Convergence Theorem with dominat-
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ing function k2(1 — 6/2)*. O

Lemma 2.6.4. Let c¢; and c3 be as in Lemma 2.6.2. Let T € R\{0} and suppose
a(r) = exp (logr (1/2+ § |[:=]])), then

1 e_|T|/2
. . —lrl/2 . _
r]iI}l*(l - ’I")Cl = QIOg(l +e I '/ ) and T‘l_lgl_(l — ’I")C3 = gm (267)
Moreover, one has
21oe(1 —Il/2
¢ — og(l+e ) = 0(1), where the constant depends on T. (2.6.8)

l1—1r

Proof. Using that rir — e~! as r — 1~ we see that a(1) = lim, ;- a(r) = e 1172, (2.6.7)
now follows from Lemma 2.6.3.

We can rewrite

2log(1 + a(1)) 2 2 <
c1 — 1_r :Il+I2, Whereh:1_r;bkandIQ=1—~;kZ_;ck,

with by := (=1)**! la(r)* =% — a(r)*1| and ¢t := (—1)**! [a(r)FL — a(1)*1] . We will show
that Il = O(l) = 12.
We begin with I;. One observes that

1—r 1 1 1 k—1—-r—...—pkt (1 )rk_2+2rk“3+'--+(k—1)r0
_—— = —_—— = = —-7T .
1—rk k& 14+---47rk=1 k& k(l+7r+---+7rk1) E1+7r+---4rk1)
Consequently,
1424 — k
Bl < (1= r)a(r) == k+(k Yk mapry
It follows that
1 «— X 2 2
< - — < < = 1
|| < 1__TZ:(l rYka(r)® < A= a) = [T = ey 0(1),

k=1
where in the second inequality we used (2.6.5) and the last inequality holds for all r close to
1-.
Next we turn to I, = 2 [log(1 + a(r)) — log(1 + a(1))]. Since log(1 + z) is C* on R,

we see that |I] < 2Z|a(r) — a(1)| for some constant C, independent of r (provided it
is sufficiently close to 17, so that |a(1) — a(r)| < 1/2). Hence it suffices to show that
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a(l) —a(r) = O(1 —r). We know that

a(1) —a(r) = e7"/% —exp <logr (1/2+ }L*JD) [A(r), B(r)],

where A(r) = e~ 1"/2 — exp (logr/Q + 120(%1«|:|) and B(r) = e I"/2 — exp (logr + %)

Thus it suffices to show that A(r) = O(1 —r) = B(r). We know that r'/2e=17l/2 — ¢~I71/2 =
O(1—r) = rle7ITl/2_e=I7/2 thus it remains to show that e~I"/2 —exp (—:2—1(%9) = O(1-r).
Using that e~I71%/2 is C in u, we see that

_ —logr|T| —logr
Irl/2 _ _ZloermIN | o oy
€ exp ( 21—r) - 1—r

and the latter is clearly O(1 — r) by power expanding the logarithm near 1. O

Y

Lemma 2.6.5. Assume the notation in Lemma 2.6.1. On Djs one has

o0 o0 o0
ar’e? arie™* e ?
S’ = E E . . 2.6.9
o) =0 1+ arie * e 1+arie* ; [1 + arie? + 1+ ar]e“z] ( )

Proof. In the proof of Lemma 2.6.1 we showed that on Djs
z) = Z log(1 + arie?) — Zlog(l +arle”?),
§=0 §=0

the latter sum being absolutely convergent over compact subsets of Ds. From Theorem 5.2
in Chapter 2 of [77] it follows that

oo —z

Z d o(1+ i i d o(l+ i i arle® 2. arie
= dz = dz p= 1+ arﬂez = 1+arie=

O

2.6.2 Descent contours

In the following lemmas we demonstrate contours, along which the real part of S,,(z) —
28, ,(0) varies monotonically. This monotonicity plays an important role in obtaining the
estimates of Lemmas 2.4.10 and 2.5.6.

Lemma 2.6.6. Assume the notation in Lemma 2.6.1. Set ¢ = £1 and ¢; = S, ,(0). Then
there exists an Ay > 0 such that if 0 < A < Ap, one has

%Re (Sar(Ay + ey) — c1(Ay + ey)) <0 for all y € [0,7].
%Re (Sar(—Ay + ery) — c1(—Ay + ewy)) > 0 for all y € [0,7].
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Proof. Choose Ag > 0 sufficiently small so that {+Ay + ty:y € [-m, 7]} C Ds, whenever
0< A<A,.
Set b; = ari. We will focus on the first statement. We have (using Lemma 2.6.5) that

d
d—yRe (Sar(Ay + ey) — c1(Ay + ) =

[S%) 2o s eAy+€Ly 6_(Ay+€"y) 9 4

We will show that each summand is < 0, provided A is small enough. The latter would
follow provided we know that for every b € (0,1 — 4] one has

] (A+ eb)] <0.

eAytewy e~ (Aytew) 9
Re + _
|:|:1 + beAvtew 1 + be—(Aytew) 1+0b

Multiplying denominators by their complex conjugates and extracting the real part, we see
that the above is equivalent to I; 4+ I < 0, where

I o= A be?AV 4 e cos(y) - be A + e~ cos(y) 2 and
= - n
! |1+ beAv+ew|2 |1+ be—Av—eaw|2 1+b
I —eMesin(ey) e Wesin(ey)

- |]_ + beAy-l—eLle ‘1 + be~AyAeLy|2 ’
We show that I; < 0 and I; < 0, provided A is small enough.
We start with I5, which can be rewritten as

. —e sin(y) e~ sin(y)
14 b2e24 + 2cos(y)ber 1+ b2e~24v + 2 cos(y)be Y’

I

Since y € [0, 7], we have that sin(y) > 0. Hence it suffices to show that

Ay —Ay

—e e
>
~ 14 b2e?4Y + 2 cos(y)bey 1 + b2e—24Y 4 2 cos(y)be—AY

0

u™t 4 b2u + 2bcos(y) > u + b*u~t + 2bcos(y)

where u = e=4¥ € (0, 1]. The above now is equivalent to (u~! —u)(1 —?) > 0, which clearly
holds if w € (0,1] and b € (0, 1], as is the case. Hence I; < 0 without any restrictions on A
except that it is positive.

Next we analyze I;, which can be rewritten as

I — A be*AY + e cos(y) N be24Y + e~ cos(y) 2
VT 1+ b2e24y + 2bcos(y)ey | 1+ b2e24V 4 2bcos(y)eA¥  1+b]
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We see that (since A > 0)

L <0 <= (14+b%e 242 cos(y)e ) (be* ¥ +e cos(y)) (1+b)+(1+b%e24Y+2b cos(y)e?)-
(be™24Y e cos(y) ) (1+b)—2(14+-b2e~24Y +2b cos(y)e ) (14-b%e* ¥ +2b cos(y)e??) < 0 <=
(14 b%e™24Y + 2bcos(y)e™ ) (b€ + e cos(y) — 1 — be!? cos(y)) +
+ (1 + b%e**Y + 2bcos(y)e™) (be 4 + e ¥ cos(y) — 1 — be™* cos(y)) < 0 <
f(y) = u(y)?(b—b%) +u(y) cos(y) (1 —b)> + [~2b— 2+ 2b> +2b* + 4b cos(y)? — 4b* cos(y)?] < 0,
where u(y) = e 4+ e~4¥. We want to show f(y) < 0 on [0, 7], provided A is small enough.

First consider y € [0,7/2]. We have
f'(y) = 2uw’ (b—b%)+u’ cos(y) (1 —b)® —usin(y)(1—b)34[—8b cos(y) sin(y) +8b* cos(y) sin(y)].
The last term equals 8bsin(y) cos(y)(b — 1) and is non-positive, when y € [0, 7/2]. Thus
f'(y) < 2uu'(b—b%) + o cos(y)(1 — b)® — usin(y)(1 — b)°.

For A sufficiently small we have v/ < 4Ay, u < 3 and sin(y) > y/5 on [0,7/2]. Thus we see
2
f'(y) < 2440 — by +4(1 - b)* Ay — =(1 = b)*y.

For A sufficiently small f/(y) < 0 on (0,7/2) so f is decreasing on (0,7/2). But f(0) =0 so
we see f(y) < 0 when y € [0, 7/2].
Next we consider the case when y € [7/2,7]. In that case cos(y) < 0 and we see

Fy) < u(y)*(1 —b) —2(1 = b)(1 + b)® + 4bcos(y)*(1 — b).
The latter expression is non-positive exactly when
bu(y)? — 2(1 + b) + 4bcos(y)® < 0.

For A sufficiently small we have u? € [4,4 + ¢) for all y € [r/2,7]. Thus it suffices to show
that we can find ¢y > 0 such that

4b+bep —2(1+b)2 +4b< 0 <= bep < 2(1 —b)?,

which is clearly possible as b € [0,1 — §]. Thus we conclude that there exists A > 0 small
enough so that the first statement of the lemma holds. Using that S, ,(z) is an odd function,
the second statement of the lemma follows from the first and the same A may be chosen. [

Lemma 2.6.7. Assume the notation in Lemma 2.6.1. Suppose t is sufficiently close to 17.
If >0 and z = (—logt)(B + 1) then

%Re(Sa,r(z)) < 0 when s € [0,7(—logt)™'] and %Re(Sa,T(z)) > 0 when s € [-7(—logt)™",0].
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If 6 <0 and z = (—logt)(B + ts) then

%Re(S ~(2)) > 0 when s € [0,7(—logt) '] and El—Re( (2)) <0 when s € [-m(—logt)™"

Proof. The dependence on ¢ comes from our desire to make |3|(—logt) < A’ in the statement
of Lemma 2.6.1. We assume this for the remainder of the proof.

Setting z = (—logt)(8 + ts) we see from Lemma 2.6.5

d oo
—=Sar(2) = ) ub;(~log?)

J=0

e(—logt)(B+1s) e(—logt)(—B—1s)
[1 T bje(—logt)(ﬁ+bs) - 1+ bje(— logt)(—,B-Ls):|

where b; = ar?. Thus we see that

d R b;(—logt)sin(9)t=* b;(—logt) sin(6)t?
dsRe(S (2)) = Z { 14 2cos(0)bjt=F 4+ b2t=28 14 2cos(0)b;tP + b2

where 6 = s(—logt).
We now check that each summand has the right sign for the ranges of s and S in the
statement in the lemma. We focus on 8 > 0 and s € [0, m(— logt)™!], all other cases can be

handled similarly.
We want to show that

b;(— logt) sin(#)t=? b;(— logt) sin(6)t?

N < 0 for each j.
1+ 2cos(B)b;t—F + b2t=2F 1+ 2cos(6)b;tP + b2t2 — or each j

Put u = t=# and b; = b. Observe that for s € [0, 7(—logt)™!], 6 € [0,7] so the above would
follow from

-1

u u
— <0 <=
1+ 2cos(0)bu + b*u? 1 + 2cos(f)bu=?! + b2u=2 —

= u (1 4+ 2cos(8)bu + b?u?) < u(l + 2cos(@)bu~t + b*u?) =
u™l + 2cos(0)b + b*u < u + 2cos(0)b + bPuTt <= (uT' —u)(1—-b%) <0.
The latter is true since u > 1 and b € (0, 1). O

2.6.3 Proof of Lemmas 2.4.10 and 2.5.6

Suppose that § > € > 0 is sufficiently small so that S, , has an analytic expansion in the disc
of radius € for r € (0,1) and a € (0,1 — §]. From (2.6.3) we know that when |z| < € one has

lSa,r(z) —012—032 S 1l | 2 : 20— 35—21 1 (2610)
-T
1>2
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and the latter sum is finite by comparison with the geometric series. Suppose that z =
N3y where N = -L-. Clearly, the RHS of (2.6.10) is O(N~/3) and so

A}im |Sar(N"Y30) — ¢, N™30w — czN~'w®| = 0.
—0o0

oll)__ (this is (2.6.6)) and the above we conclude that

. . — 1
USlIlg that th_,oo CgN 1 = g( Ta(l ))2

a(1)w?

—1/3, N_ . A-1/3,  _ e : ~1/3 1/3,,
Sor(N"w)—at N™/°w = O(1) if w = O(1) and J}EHOOS“’T(N w)—c N~ 3(1+a(1))2

This proves (2.4.20), (2.4.21) and once we set (—logt) = kN~Y/3 also (2.5.13).

Suppose A sufficiently small so that the statement of Proposition 2.6.6 holds and so that
¢ = arctan(A) is less than 10°. By choosing a smaller € than the one we had before we may
assume that )7, #7364 < %(1—1)%’%% c. In view of (2.6.10) and (2.6.6) we know that
for all large N and |z| < €

Re (S,,(2) — c12) > c3Re(2®) — I N|z|* > N]z]3g((11)_%?((f);¢;)2 — Nz > Nz if z € yw.

This proves (2.4.19) when |z| < . Put K = 5= and observe that if z € yw then Kz € yw

and K|z| < e. The latter suggests that if z € vy we have
Re (Sor(2) — ¢12) > Re(Sa,(K2) — M(r)Kz) > ¢ NK?|z?,

where in the first inequality we used the first statement of Lemma 2.6.6, and in the second
one we used that K|z| < € and our earlier estimate. This proves (2.4.19) and using that
Sar(—2) = =S, ,(2), while v = —vz it also proves (2.4.18).

Let z = 1/4 + s and set (—logt) = kN3 for some positive k. Suppose |(—logt)z| < €
with € as in the beginning of the section. We have the following equality

!
20 + 1
Re(caiq1(—log t)2l+1 2l+1) = cor41(—logt) 21+1 Z < ) 2k(_1)k_“4gl_2k+1'

k=0

In particular, we see that

| Re(carss (— og )21 2241)| < s (— log /% ((Js| + 1/4)+ — [s]*1) <

2
1 2.6.11
Cott1 —logt 2l+ Z Z 1/4 2l k < (2l + 1)Czl+1(— logt)21+1|2|2l ( )
k=0
Using (2.6.11) and (2.6.3) we have for |(—logt)z| < € that
Re (}: Cari1(—log 1)1z Zl+1> < B3P (21 4 1) H e, (2.6.12)
1>2 1>2
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On the other hand, we have that
Re(cz(—logt)*2%) = —(3c3/4)(—logt)3|z|*> + (— logt)3/64 + (3c3/64)(—logt)®. (2.6.13)
Combining equations (2.6.12) and (2.6.13) we see that if |(—logt)z| < € then
Re(Sur((—logt)z)—ci(—logt)z) < —(3cs/4)(—logt)3|z|>+(— logt)®/64+(3c3/64)(— logt)*+
+k3|2|? Z(2l 4 1)67 22,
1>2

Notice that (3c3/4)(—logt)® — n3ﬂ% =: pas N — oo from (2.6.6). Moreover if we

pick € small enough we can make x* 3,5, (20 + 1)6~271272 < (p/4). Tt follows that for all
large N we have -

Re(Sar((—logt)z) — ci(—logt)z) < —(p/2)|2|* + (p/8).

This proves (2.5.11) whenever |(—logt)z| < e.

Suppose now that 2 = 1/4 + s and s € [—n(—logt)™,m(—logt)™']. Put K = 5 and
notice that for all large N we have Z := 1/4 + (K's satisfies |2(—logt)| < e. It follows from
the first result of Lemma 2.6.7 and our estimate above that

Re(S,,((—logt)z) — c1(—logt)z) < Re(Sa,((—logt)?) —c1(—logt)z) < —(p/2)|2]> + (p/8).

Observing that |Z|? > K~2|z|> we conclude (2.5.11) for all z € 7%. The result of (2.5.12)
now follows from (2.5.11) once we use that S, .(—z) = —S,,(z) and that v* = —7%.

2.6.4 Proof of Lemmas 2.4.11 and 2.5.7
Let z=2x+(p and w =y +tqgso that z > 0 and y < 0. Then we have

1
ez_ew

1

el — eyeb(q—P)

1

et —ev

1 -1
< <z
et —1

= <

?

where in the last inequality we used e > ¢ + 1 for ¢ > 0. This proves the first parts of
(2.4.22) and (2.5.14).

Let 0 = (—logt)~!. Then we have

2

e—ino(z—y) gno(p—q) — gumo(z—y)emo(q—p)

FEneEnl
sin(—mo(z —y + t(p — q))

If ¢ > p we see

| e~ wmo(z—y) omo(p—q) _ ema(w—y)ewo(q—p)| = |67W(P—f1) — e2m0(m—y)e7w(q—p)| > ew(q—p)l sin(2ro(z—y))|.

Conversely, if ¢ < p we see

o0 grop=0) _ mo@—)grola—p)| = |=2mo(a-1) ralp=0) _ gmola—p)| > o= sin (20 (z—y))|.
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We thus conclude that

1
sin(—wo(z —y+ t(p —q))

2
|sin(2mo(z —y))|

(2.6.14)

l S e-71‘0"p—~q|
In the assumption of Lemma 2.4.11 we have x — y € [u,2U] and 2U < o~!/5. Thus
2mo(x —y) € [2mou, 2r/5]. This implies that

1
| sin(27o (z —

1
™
ou

(2.6.15)

< e~ molp—al
Y))| ‘

where we used that sin z is increasing on [0, 7/2] and satisfies 7w sinz > z there. In addition,
we have from the above

> 1 |

& |sin(—mo(z —y + «(p + 27k — q))

_ 1 1 _ L2
< § e wo|p+2rk q|0_ lu 1 <20 1u 1 § :6 2km o
keZ k>0

This proves the second part of (2.4.22).

Finally, suppose that z = 1/4 and y = —1/4. Notice that if dist(s,Z) > c for some
constant ¢ > 0 then \ 1

sin(ws)

' < eI for some ¢, depending on c. Using this we get

Zkez sin(r(w — 25 —2))| £ |sin(n/2 — B2 L mu(g - p))| T
27-(-2k 27T2k
<dd — |- — <2y - ~
<c exp ( ’ “Togt + (g P)D <2 exp ( —logt)
kez k>0

The latter is uniformly bounded for ¢ € (1/2,1), by 12%; with v = exp (——ng’r(%). This
concludes the proof of the second part of (2.5.14).

2.7 Sampling of plane partitions

In this section, we describe a sampler of random plane partitions, based on Glauber dynamics.
Subsequently, we formulate several conjectures about the convergence of the measure ]P"};tL
and provide some evidence about their validity.

2.7.1 Glauber dynamics

We start with a brief recollection of the (single-site) Glauber dynamics for probability mea-
sures on labelled graphs. In what follows, we will use Section 3.3 in [62] as a main reference
and recommend the latter for more details.

Let V and S be finite sets and suppose that 2 is a subset of S¥. The elements of
SV, called configurations, are the functions from V to S. One visualizes a configuration
as a labeling of the vertex set V' of some graph by elements in S. Let m be a probability
distribution, whose support is Q. The (single-site) Glauber dynamics for 7 is a reversible
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Markov chain with state space (2, stationary distribution 7 and transition probabilities as
described below.
Forx € Qand v € V, let

(1) if y € Q
Qz,v) = {y € Q: y(w) = z(w) for all w £ v} and 7°¥(y) = { @ =Y (@,),
0 ify & Qz,v).

With the above notation, the Glauber chain moves from state z as follows: a vertex v is
chosen uniformly at random from V', then one chooses a new configuration according to 77,

One can show that 7 is a stationary measure for the Glauber dynamics and that the
chain is ergodic. This implies that if the chain is run for T steps, started from any initial
state, then the distribution of the state at step T" will converge to the stationary distribution
7 as T' — oco. The latter observation explains how one can use the Glauber dynamics to
numerically (approximately) sample arbitrary distributions 7 on €. Namely, one constructs
the Glauber dynamics and runs it for a very long time 7', so that the distribution is close
to the stationary distribution of the chain. This sampling method is called a Gibbs sampler
and it belongs to a more general class of methods called Markov chain Monte Carlo. The
time one has to wait for the chain to converge, is typically referred to as a mizing time; and
finding estimates for mixing times is in general very hard.

In our case, we consider the measure P,; (here r € (0,1) and ¢t € [—1,1] ) on plane
partitions, which are contained in a big box N x N x N, satisfying

P,,(7) o r™ B (1), (2.7.1)

where || is the volume of the partition and B,(t) is as in Section 2.2.4. Specifically, P, ;
is the same as the distribution P};" of Section 2.2.4, conditioned on plane partitions not
exceeding height N. We now describe a Gibbs sampler for the above measure.

Set V = {(z,y,2) :z,y,2€ {1,..,N}} and S = {0,1}. A configuration w € SV is
interpreted as a placements of unit cubes inside the box N x N x N, so that w((z,y,2)) =1
if an only if there is a cube at position (z,y,z). We next let Q be the subset of cube
placements, corresponding to plane partitions. This describes the state space of our Glauber
dynamics. Since |S| = 2, we see that if 7, € Q we have |Q(m,,v)| = 1 or 2; hence, P7}" is
either a point mass at 7, or a Bernoulli measure, whose support lies on 7, and the partition
T, Which is obtained from 7, by changing the value of 7, at v from 1 to 0 or vice versa.

At this time we introduce some terminology. Given a plane partition m, we call a cube
addable if the the cube does not belong to m and by placing the cube in the box we obtain a
valid plane partition. Similarly, we call a cube removable if it belongs to 7 and removing the
cube from the box results in a valid plane partition. Denote by Add, and Rem, the (disjoint)
sets of addable and removable cubes respectively. Some of these concepts are illustrated in
Figure 2-8. We observe that |Q(m,v)| = 2 precisely when there is an element of Add, or
Rem, at position v.

,U

We now turn to finding P7}’ when [Q(7,v)| = 2. Let 7 be the plane partition obtained
from 7 by adding a cube at position v if one is not already present there, otherwise 7 = .
In addition, let 7 be the plane partition obtained from 7 by removing the cube at position
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1
Figure 2-8: If N = 5, then the addable cubes in this example are at positions:

(4,1,2),(3,1,4),(2,1,5),(3,2,3),(2,2,4),(1,2,5), (3,3,2), (1,4,4), (2,5,2). The removable
cubes are at positions: (5,1,1),(3,1,3),(2,1,4),(1,1,5),(3,2,2), (3,3, 1),
(1,3,4),(2,4,3),(2,5,1),(1,5, 3).

v if there is one, otherwise 7 = m. Observe that if [Q(m,v)| = 2, we have either # = =, or
=T,

From our earlier discussion, IP]} is a Bernoulli measure supported on # and #. Using
results from Section 2.2.4 we have that if \¥ and A* denote the diagonal slices of # and #
respectively, we have

P,, ocr"f'HuJ,\,,,,,\MOt xquAn 150 (0, 8),

RO (2.7.2)
P O(Tl ] HQ'DAR/AR 1 O t XHQSAn 1/)‘11 0 t)
n=—N+1

We recall that A™N = AV = @ = X~V = ¥ and

$au(0,8) = JI(1 = #™®) and  4,,,(0,¢) = [T - emi®).

i€l jed

In the above formula we assume A > p otherwise both expressions equal 0. The sets I,.J
are:

Ip)={ieN: X, =pj,; and X, >y} and JO\, pu) = {j e N: Njt1 > iy and X = pil}.

~

Set k = z — y and observe that \; = A; = \; whenever i # k. By combining common
factors this gives

- k= 0: PRy () oc rihso -1 (0,8)s0/0 (0,8) and T (7) o< 9o /a1 (0, 8) o (0, 2).
2. k>0: P:r’f(fr) X rd)/\k_l/;\k (O,t)fﬁik/)\kﬂ(ﬁ, t) and P;r,’tv(ﬁ') o ¢Ak—1/j\k(0,t)¢j\k/)\k+1(0, 1)
> kgl ]P:f,’tv(‘ﬁ') & T’lj)j\k//\k_l(o,t)w,\k+1/j‘k (O,t) and Pwv( ) & ’?,b)\k/Ak 1( ,t)?,b/\k+1/j\k (O,t)-
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In the above A\* is obtained from A, by removing 1 box from row min(z,y). The above
weights, while explicit, are difficult to calculate efficiently on a computer. Thus we will
search for simpler formulas, utilizing that A* is structurally similar to A*.

For a partition A we introduce the following notation. Let S(A) be the multiset of
positive row-lengths of A, counted with multiplicities. One observes that if X\ > p one has
I p) = S(A\S(u) and J(A, p) = S(u)\S(\) as multisets, in particular S(A)\S(x) and
S()\S(A) are honest sets. Let us prove this briefly.

Since A > p we have A} = p} or uj + 1. Consequently, we have i € I(\, pu) <= X, >
piand Ay = piy <= N o= pi+tland Ny = piy = N - ANy = g g +
land Xy = pig <= N — Ay =i — g +1 = mi(d) = mi(p) +1 <= i€
S(X)/S(p) and has multiplicity 1.

Similarly, j € J(\,p) <= XNy > phand N, =y <= N, =y} +1and X; =
B = XNy =N =pig i+ land N, = = Ny - N =iy —ui+ 1l =
m;(p) = m;(A) +1 < j € S(p)\S()) and has multiplicity 1.

The above arguments show that

60 = I @—t™®)and9y,0,0)= ] @—tm®).

i€S(A\S (k) i€S(u\S(A)

Suppose that A, u,v are plane partitions, such that A > v, u > v and p is obtained
from A by removing a single box from row k. In addtition, set ¢ = pux. Then we have
S(A) = S(p)—{c}+{c+1} as multisets. Put M = [S(A\)\S(¥)]N[S(u)\S(v)] and observe that
m;(A) = m;(u), whenever ¢ € M. Indeed, we have from our earlier work that i € M <=
i€ SA\S(v) and 7 € S(w\S(v) <= my(\) = 1+ m(v) and m;(p) = 1 + my(v)
= m;(A) = m;(u). Then we have

$2(0,) = (1 = Leesonsont™™) (1 = Lepresonset™ V) [T @ — ™),
ieM

| (2.7.3)
busn(0,1) = (1 = Lees(unse)t™ ™) (1 = Lepresnsomt™ ™) H(l — ¢y,
ieM
A similar argument shows that if L = [S(¥)\S(A\)] N [S(¥)\S(x)], then we have
Uaw(0,8) = (1= Leesensot™™) (1 = Lenesopsot™ ) T[] (1 — ™),
i€l
| (2.7.4)
Y (0,) = (1 = Leesons@t™™) (1 = Leprespnset™ ) [J(1 - ™).
icL
Set
1 = Lim,@ysmept™ ™ if >0,
G\ v,c) = {me(v)>me(N)} ne _ (2.7.5)
1 otherwise.
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Then the above work implies that when v = (z,y,2) and k = z — y we get

Pry () o< rG(NE, Xe1 2 — DGR, ML )G AR 2 — 1)GOFHL AR 2)

. . . . 2.7.6
Pry(7) oc GOAR, X1, 2 — DGV, A1 2) G MR 2 — )G R, 2). (27.6)
In obtaining the above formulas we used (2.7.3) and (2.7.4) for the three different cases
k <0,k >0 and k = 0. Some special care is needed when k = N and in this case the terms
in (2.7.6) involving A\**! are replaced with 1s.

Summarizing our results, we see that the transition from 7 is as follows: pick a position
v = (z,y, z) in the box N X N x N uniformly at random; if the position v does not correspond
to an element in the sets Add, or Rem, then leave m unchanged with probability 1; if the
position v € Add, U Rem,, then 7 is goes to 7 with probability p and to # with probability

1 — p, where
r

G(AEXE=1 2 1)G Ok Ab=1 )G(AFHL 3k z—1)G(AR+L 3F 2)
G(Ak 2b=1 2 1)G(Ak N1 2)G(AR+1 Ak 2—1)G(A*+1,3F 2)

pi= (2.7.7)

r+

As before if kK = N we replace the terms in the above formula involving A\**! with 1’s.

2.7.2 Gibbs sampler algorithm and simulations

In Section 2.7.1 we described a Gibbs sampler for the measure P, ; and gave exact formulas
for the transition probabilities in (2.7.7). Our goal now is to give an outline for an algorithm
implementing the sampler and present some simulations of random plane partitions. The
main difficulty in constructing Gibbs samplers for distributions involving symmetric functions
is finding computationally efficient ways to calculate the transition probabilities, which we
did in (2.7.7). Beyond this formula there are no particularly novel ideas in the algorithm
below; however, as we could not find an adequate reference in the literature, we believe that
an outline is in order. It is quite possible that different methods can be used to ezactly
sample the distribution P, or some variant of it, using ideas like those in [31], [11] or [14].
Unfortunately, we were unable to implement exact sampling algorithms efficiently, which is
why we resort to the Gibbs sampler and leave the development of better samplers for future
work.

One of the difficulties in making simulations is that the number of iterations necessary
to obtain convergence is very large. In the cases described below we will need about 2 x 10'°
iterations to see a limit shape emerge. Part of the reason for needing so many iterations
is that most of the time the uniformly sampled position v in the N x N x N box will not
belong to the sets Add, and Rem, and thus the chain will stay in one place for extended
periods of time. Let us call steps of the chain, where v was not chosen inside Add, or Rem,
empty; if v € Add, U Rem, we call the step successful. Empty steps, although individually
computationally cheap, add up and significantly increase the runtime of a simulation. It is
thus very important to come up with ways to circumvent spending so much time in empty
steps.

We will now describe a neat idea that allows us to group together empty steps and thus
greatly reduce the runtime of simulations. Let add, = |Add,| and rem, = |Rem,| and
observe that the probability of making an empty step, starting from the plane partition m,
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1s
add, + rem,
Pr(v & Add, U Rem,) = 1 — — =: T,.
Consequently, the number of empty steps E,, before a successful one, is distributed according
to the geometric distribution

P.(Ex = k) = z%(1 — x,) for k > 0. (2.7.8)

Using the latter observation, instead of sampling v uniformly from the N x N x N box,
updating our chain and increasing the number of iterations by 1, we may sample a geometric
random variable X with the above distribution, sample v uniformly from Add, U Rem,
update our chain and increase the number of iterations by 1+ X. What we have done is
calculate beforehand how many empty moves we need to make before we make a successful
one and then do all of them together, which by definition means to just do the successful
move.

Typically, the cost of drawing an integer-valued random variable K according to some
prescribed distribution is of the order of the value k that is finally assigned to K (see the
discussion at the end of Section 3 in [14]). An exception is the geometric law, which is
simpler. Indeed, to draw X according to (2.7.8) it is enough to set X = |logU/log(zx)],
where U is uniform (0, 1). Hence, the cost of drawing a geometric law is O(1).

If N is very large, one observes that z, is very close to 1. Indeed, add, and rem, are both
bounded from above by N2, since there can be at most one addable and removable cube in
every column (z,y,-). Consequently, one expects to make on average at most 1 successful
step every N steps of the iteration. The upshot of our idea now is that we have replaced
sampling a large number of uniform random variables, with sampling a single geometric
random variable at cost O(1). Moreover, we have reduced the number of jump commands
in our loop, improving runtime further.

With the above discussion we are now prepared to describe our algorithm for the Gibbs
sampler. We begin with a brief description of random number generators. Bernoulli(p)
samples a Bernoulli random variable X with parameter p, i.e. P(X = 1) = p and P(X =
0) = 1 — p. Geom(p) samples a geometric random variable X with parameter p, i.e. P(X =
k) = p*(1 — p) for k > 0. Uniform(n) samples a uniform random variable X on {1,...,n},
ie. P(X =k)=1/nfor k=1,...,n. The random number generator algorthms are described
below.

Bernoulli(p) Geom(p) Uniform(n)
U := uniform(0,1); U := uniform(0,1); U := uniform(0,1);
if U <p return 1; return |log(U)/logp]; return 1 + |nU];

else return 0;

Next we consider the following functions, which perform the basic operations on plane
partitions necessary for running the Glauber dynamics. In the functions below we recall that
for a plane partition =, add, and rem, are the number of cubes that can be added to and
removed from 7 respectively, so that the result is a plane partition contained in N X N x N.
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AddCube(m, k)
Input: =; index k € {1, ..., add, }.
Add the k-th addable cube to .

RemCube(, k)
Input: 7; index k € {1,...,rem,}.
Remove the k-th removable cube from 7.

GetAdd(w, k)

Input: =; index k € {1, ..., add, }.

Output: The position (z,y, z) of the
k-th addable cube.

GetRem(, k)

Input: 7; index k € {1,...,remy}.

Output: The position (z,y, z) of the
k-th removable cube.

GetMult(w, k, c)

Input: =, k - slice index, ¢ > 0.

Output: m.(A*) - multiplicity of ¢ in the k-th slice of .
If ¢ = 0 the output is —2.

WeightG(m,n,t)

if ((n <0)or (m<0)) return 1;
if m > n return (1 —t™);

return 1;

With the above functions we now write an algorithm, which runs the Glauber dynamics
for some predescribed number of iterations.
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Algorithm GibbsSampler(mw, N,T,r,t)

Input: 7 - initial plane partition, N - size of box, T - total number of iterations,
r € (0,1) and t € [—1, 1] - parameters of the distribution.
iter 1= 0;
while (iter < T') do
X = Geom(l - 9‘-@%3%);
iter = iter + X;
if (iter > T) break;
u := Uniform(add, + rem,);
if (u < add,)
(x,y, z) := GetAdd(m, u);
k:=x—y;
w; = r* WeightG(GetMult(m, k — 1, 2), GetMult(m, k, 2) + 1,1);
w; = wi* WeightG(GetMult(m, k — 1,z — 1), GetMult(m, k,z — 1) — 1,1);
wy = WeightG(GetMult(m, k — 1, 2), GetMult(m, k, 2),1);
wy = wy* WeightG(GetMult(m, k — 1,z — 1), GetMult(m, k, 2z — 1),1);
if (k< N)
wy = wi* WeightG(GetMult(w
wy = wr* WeightG(GetMult(w
wy = wa* WeightG(GetMult(m
wy = Wk WeightG(GetMult(m
end
p = w1/ (w1 + wa);
B := Bernoulli(p);
if (B == 1) AddCube(m, u);
else
(z,y, z) := GetRem(7, u — add,);
k:=x—uy;
wy = WeightG(GetMult(m, k — 1, z), GetMult(m, k, z) — 1,t);
w; = wy* WeightG(GetMult(m, k — 1,2 — 1), GetMult(m, k,z — 1) + 1,1);
wy = r* WeightG(GetMult(m, k — 1, 2), GetMult(m, k, 2),t);
wy = wo* WeightG(GetMult(m, k — 1,2 — 1), GetMult(m, k, z — 1),1);
if (k< N)
w) = wi* WeightG(GetMult(
w) = wi* WeightG(GetMult(
wp = wox WeightG(GetMult(
wy = Wwo* WeightG(GetMult(
end
p = wi /(w1 + w);
B := Bernoulli(p);

k,2) + 1, GetMult(m, k + 1, 2),t);
k,z—1)—1, GetMult(m, k+ 1,2 — 1),t);
Ky 2), GetMult(7r k+1,2),t);

k,z—1), GetMult(m, k+ 1,z — 1),t);

? )

7, k,2z) — 1, GetMult(m, k + 1, 2),t);

m k,z—1)+ 1, GetMult(m, k + 1,z — 1),t);
7k, z), GetMult(ﬂ kE+1,2),1);

m, k,z — 1), GetMult(m, k + 1,z — 1),1)

)

if (B == 1) RemCube(m,u — add,);
end
iter = iter + 1;
end
Output: 7.

81



Remark 2.7.1. In the above algorithm, an expression of the form

WeightG(GetMult(mw, -, ), GetMult(w, -, ),t) simulates the function G, given in (2.7.5). The
case z = 1 is special, since G is defined differently depending on ¢ > 0 and ¢ = 0. In order to
make the algorithm more concise, and exclude additional checks of whether z = 1, we have
rigged the functions GetMult and WeightG so that the end results agree with (2.7.6).

2.7.3 Discussion and extensions

In this section we discuss some of the implications of the results of the paper and some of
their possible extensions.

We start by considering possible limit shape phenomena. In [36] it was shown that if
each dimension of a plane partition =, distributed according to IP”}’}L with ¢ = 0, is scaled
by 1 —r then as » — 1~ the distribution concentrates on a limit shape with probability 1.
We expect that a similar phenomenon occurs for any value ¢ € (0,1). The limit shape, if
it exists, should depend on ¢, which one observes by considering the volume of the plane
partition. Specifically, we have that

r2<Z(r,t) d
E[jn]] = ~—-- and Var(|n|) = E [|r*] - E [[a[]* = r—E[|x]].
VA dr
Using that Z(r,t) = [[2, (3=)" one readily verifies that
(LR S LR+ rR)
Eflr] =S Ut T) ol UHm)

The latter implies that lim,_,;- E [(1 — )?|7|] = 2¢(3) —2Lis(t), where {(s) = > 7, % is the
Riemann zeta function and Liz(z) = > ooy z—'; is the polylogarithm of order 3. In addition, one
verifies that lim,_,;- Var ((1 — r)3|r|) = 0 and so the rescaled volume (1—7)3|7| converges in
probability to 2((3) — 2Li3(¢t). In particular, the volume decreases from 2¢(3) to 0 as t varies
from 0 to 1. When ¢ = 1 the measure ]P";ItL is concentrated on the empty plane partition for
any value of » and so convergence of the volume to 0 is expected.

In sharp contrast, the result of Theorem 2.1.2 suggests that while the volume of the plane
partition decreases in ¢ the bottom slice asymptotically looks the same. Using GibbsSampler
we can run different simulations, to verify this type of behavior. At this time we remark that
we have not done any analysis to estimate the mixing time of the chain we have constructed,
hence our choice of number of iterations below will be somewhat arbitrary. The major
point to be made here is that we are only interested in qualitative information about the
distribution, such as a limit-shape phenomenon, and the purpose of the iterations is to
pictorially support statements for which we have analytic proofs.

In the simulations below, the sampler is started from 7 = &, the size of the box N = 2000,
the number of iterations is 7' = 2 x 10'® and r = 0.99. The only parameter we will vary is t.
Results are summarized in Figures 2-9 - 2-12, where the red curve indicates the limit shape
21og(1 + e 1"1/2) in Theorem 2.1.2.

What happens as ¢ increases to 1 is that the mass from the top part of the plane partition
7 decreases (so 7; ; decrease), but the base (given by the non-zero 7; ;) remains asymptotically
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Figure 2-9: t = 0. Figure 2-10: ¢t = 0.2.

Figure 2-11: ¢t = 0.4. Figure 2-12: t = 0.6.

the same. The latter can be observed in the left parts of Figures 2-13 and 2-14 (we will get
to the right parts shortly).
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Figure 2-13: Simulation with ¢ = 0.4.

Figure 2-14: Simulation with ¢ = 0.8.
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We next turn to possible extensions of Theorems 2.1.2 and 2.1.3 and state a couple of
conjectures about the convergence of P;{’tL that go beyond the results of this paper. At this
time we do not have any clear strategy on how they can be proved, however, we will provide
some evidence for their validity. We start by rather informally recalling the definitions and
properties of the Airy and KPZ line ensembles. For more details about these objects the
reader is encouraged to look at [42] and [43], where they were introduced and analyzed.

Let By, ..., BN be N independent standard Brownian bridges on [-N, N], BN(—N) =
BY(N) = 0, conditioned on not intersecting in (=N, N) and set £y = {1, ..., N}. The latter
object can be viewed as a line ensemble, i.e. a random variable with values in the space
X of continuous functions f : ¥y X [-N, N] — R endowed with the topology of uniform
convergence on compact subsets of ¥y x [N, N]. In [42] these line ensembles are called
Dyson line ensembles and it is shown that under suitable shifts and scaling they converge
(in the sense of line ensembles - see the discussion at the beginning of Section 2.1 in [42])
to a continuous non-intersecting N x R-indexed line ensemble. The limit is called the Airy
line ensemble and is denoted by A : N x R — R. The two properties of A that we will focus
on are that A,;(¢) is distributed according to the Airy process and that the N-indexed line
ensemble £ : N x R — R, given by £;(z) := 27Y2(A;(x) — 2?) for each i € N satisfies a
certain Brownian Gibbs property that we describe below.

The Airy process first appeared in the paper of Prahofer and Spohn [73], as the scaling
limit of the fluctuations of the PNG droplet and it is believed to be the universal scaling
limit of a large class of stochastic growth models. It’s single time distribution is given by
the GUE Tracy-Widom distribution.

We now describe an instance of the Brownian Gibbs property, satisfied by £;. Let k > 2,
and consider the curves Ly_1,L; and Lp.;. Let a,b € R and a < b be given and put
z = Li(a), y = Lx(b). Then if we erase L([a,b]) and sample an independent Brownian
bridge on [a, b] between the points x and y, conditional on not intersecting Lr_; and Lri1,
then the new line ensemble has the same distribution as the old one.

We shift our attention to the KPZ line ensemble. Let N € N and s > 0 be given. For each
sequence 0 < s; < --- < sy_1 < § we can associate an up/right path ¢ in [0,s] x {1,..., N}
that is the range of the unique non-decreasing surjective map [0,s] — {1,..., N} whose set
of jump times is {s;};x7'. Let By, ..., By be independent standard Brownian motions and
define

E(¢) = Bi(s1) + (Ba(s2) — Ba(s1)) + -+ + (Bn(s) — Bn(sn-1))-

The O’Connel-Yor polymer partition function line ensemble is a {1, ..., N} x R, -indexed line
ensemble {ZY(s) : n € {1,...,N},s > 0}, defined by

ZN = - E i d ",
N(s) /D e (Z 0 >> by do

where the integral is with respect to Lebesgue measure on the Euclidean set D, (s) of all n-
tuples of non-intersecting (disjoint) up/right paths ¢, ..., ¢, with initial points (0, 1), ..., (0, n)
and endpoints (s, N —n + 1),...,(s, N). Setting Z{'(s) = 1 we define the O’Connel-Yor
polymer free energy line ensemble as the {1,..., N} x R, -indexed line ensemble {X¥(s) : n €
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{1,...,N},s > 0} defined by

st -w(50)

In [43] it was shown that under suitable shifts and scaling the line ensembles X~ (vtN+:) are
sequentially compact and hence have at least one weak limit, called the KPZ; line ensemble
and denoted by H! : N x R — R. The uniqueness of this limit is an open problem, however
any weak limit has to satisfy the following two properties. The lowest index curve H: : R — R
is equal in distribution to F(¢,-) - the time ¢ Hopf-Cole solution to the narrow wedge initial
data KPZ equation (see Definition 2.1.6). In addition, the ensemble ! satisfies a certain
H;- Brownian Gibbs property, an instance of which we now describe.

Let k > 2, and consider the curves Hj_;,H} and H},,. Let a,b € R and a < b be given
and put z = Hi(a), y = HE(b). We erase Hi([a,b]) and sample an independent Brownian
bridge on [a, b] between the points z and y. The new path is accepted with probability

exp [— /ab H; (M}, (u) — Hi(w)) du — /ab Hy (H(u) — Hi_y(uw)) du] . Hyz) =¢""7,

and if the path is not accepted we sample a new Brownian bridge and repeat. This procedure
yields a new line ensemble and it has the same distribution as the old one.

The Hamiltonian H, acts as a potential in which the Brownian paths evolve, assigning
more weight to certain path configurations. Formally, setting ¢ = co we have H,(z) = oo
if £ > 0 and 0 if x < 0. This Hamiltonian corresponds to conditioning consecutively labeled
curves to not touch and hence reduces the H- Brownian Gibbs property to the Brownian
Gibbs property we had earlier.

—T/2

For 7> 0 let f(7) = 2log(1 + e~ ™/?), f'(1) = ——1—;%1—/,—2/—2— and f"(1) = 55—y Also set
N(r) = -&=. With this notation we have the following conjectures.

Conjecture 2.7.2. Consider the measure P}, on plane partitions, given in (2.1.3), with

t € (0,1) fixed. For 7 € R define the random N x R-indexed line ensemble A7 as

rooy_ M(LTN + sN2B)) — Nf([r]) = sN*2f'(Ir]) — (1/2)s> N2 £" (7))
AL (s) (2.7.9)
* 2f (N ' -

Then as 7 — 1~ we have A = A" (weak convergence in the sense of line ensembles),
where A7 is defined as A[(s) = Ar(s/2f"(|7])/2) and (A)ken is the Airy line ensemble.

Conjecture 2.7.3. Consider the measure P}, on plane partitions, given in (2.1.3). Suppose
T > 0 is fixed and 7= 1:;51’;3 = 2L Tor 7 € R define the random N x R-indexed line

2
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ensemble =7 as
ANellTN + sN?3|) = N f(|r]) — sN*3 f'(|r]) — (1/2)821\/1/31”’(IT|)Jr
(T/2)=133/2f"(|IT[)N

-1 " T —-3/2 82 1/3 7] T 2/3
+1Og((T/2)_1/332f”(lT|)N)+(k—1)log(NT i) )_ e i

=p(s) =-T/24 +

(2.7.10)

Then as r — 17 we have =7 = H"™T (weak convergence in the sense of line ensembles),
where H™T is defined as Hp" (s) = HI(sT23/2f"(|r])/2) and (HT)gen is the KPZ line
ensemble.

Remark 2.7.4. We provide some motivation behind our choice of scaling in Conjecture 2.7.2.
Since the lines in the Airy line ensemble a.s. do not intersect as do the lines A} (| 7N +sN?/3])
we expect that all lines undergo the same scaling and translation. This allows us to only
concern ourselves with Xj([7N + sN?3|), whose limit should be some rescaled version of
the Airy process (the distribution of A;). Arguments in the proof of Theorem 2.1.2 can
be used to show that in distribution the expression on the RHS in (2.7.9) converges to the
GUE Tracy-Widom distribution for each s. The latter still leaves the question of possible
argument scaling since 4;(ks) has the same one-point marginal distribution for all values
of k. In [51] an expression similar to A7(s) (related to setting t = 0 in P}, ), was shown to
converge to the Airy process, with a rescaled argument. Consequently, we have chosen to
rescale the argument so that it matches this result.

Remark 2.7.5. The choice for scaling in Conjecture 2.7.3 is somewhat more involved. When
k = 1 in equation (2.7.10) we run into the same argument scaling issue as in Conjecture 2.7.2;
however, we no longer have results in the literature that we can use as a guide. Nevertheless,

in [6] it was conjectured that (T/2)~Y3 ( F(T, T?3X) + T22X2 4 T} converges to the Airy
24

2T
process as T — oo. Consequently, we have picked a scaling of the argument in Conjecture
2.7.3 in such a way that under the scaling by (7/2)"'/® we would obtain the (argument
rescaled) Airy process in Conjecture 2.7.2. Since the lines in the KPZ line ensemble are
allowed to cross, we no longer expect that all lines X, (|7N + sN?/3|) undergo the same
translation and scaling and in equation (2.7.10) we see that each line is deterministically
shifted by a N'/3log(N) factor compared to the previously indexed line. The precise choice
of this shift is explained below and it is related to the H;- Brownian Gibbs property, enjoyed
by the KPZ line ensemble.

We will now present some evidence that supports the validity of the above conjectures,
starting from the results of this paper. Theorems 2.1.2 and 2.1.3 only deal with A} and can
be understood as one-point convergence results about the bottom slice of the partition 7 as
follows. The proof of Theorem 2.1.2 shows that

: Tt
lim Py
r—1

(AS(LTN + sN?)) — M(r)

3 QfII(l'rDN = :L.) - FGUE(-'E) = ]P’(A’l'(s) < m)

In the last equality we used that the one-point distribution of the Airy process is given by the
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Tracy-Widom GUE distribution [73]. In the above formula we have M (r) =22, a(r)k%;,
where a(r) = NN {ging ideas that are similar to those in Lemma 2.6.4 one ob-
tains M(r) = Nf(|7]) + sN223f'(|7|) + (1/2)s2 N3 f(|r|) + O(1). Consequently, Theorem
2.1.2 implies that the one-point distribution of AT converges to that of AJ.

Similarly, the proof of Theorem 2.1.3 shows that

lim P3¢
r—1— HL

(xl(wv + sN2/3|) — M(r)

(T/2) 32 ()N +log((T/2)"33/2f"(I7|)N) < 33) = Feprp(z) =

=2 (wr /2 + L s < ).

In the last equality we used that F(T,X) + g(—; is a stationary process in X and hence

. . S2TV/3(2 7/ (17]))2/3
F(T,0)+T/24 has the same distribution as HT (sT?/3 \3/2[l’l(|7|)/2) +T (ZJ; (D= /24,
In the above formula we have M(r) = 23222, a(r)* G, where a(r) = rlNOT+sNO¥2],
Using M(r) = Nf(|7]) +sN?3f'(|7]) + (1/2)s2N'/3 f"(|7|) + O(1) we see that Theorem 2.1.3
implies that the one-point distribution of =] converges to that of ’HI’T.

The next observation that we make is that in the statement of Conjecture 2.7.2, the sep-
aration between consecutive horizontal slices of 7, distributed according to P}/, is suggested
to be of order N'/3, which is the order of the fluctuations. On the other hand, in Conjecture
2.7.3 there is a deterministic shift of order N/3log N, while fluctuations remain of order
N'/3. The latter phenomenon can be observed in simulations, as is shown in Figures 2-13
and 2-14. Namely, the conjectures suggest that as ¢ goes to 1, one should observe a larger
spacing between the bottom slices of 7, which is clearly visible.

Finally, we match the Brownian Gibbs and H;-Brownian Gibbs properties. Suppose
that we fix the slices A\j_;(m) and A, ,(m), m € Z and consider the conditional distribution
of AL([A4,B]). The weight w(A([A, B]) that each path obtains consists of two terms: an
entropy term, which comes from the rI"! dependence of IP”"H”:L, and a potential term, which
comes from the dependence on A,(t). Specifically, if the number of cells between X, ([A, B])
and A, ([A, B]) is P then the entropy term is given by r*. The potential term is a bit more
involved but depends only on the local structure of the paths. It is constructed as follows:
start from A and move to the right towards B, every time the distance between X, (m) and

' +1(m) decreases by 1 when we increase m by 1 we obtain a factor of (1 — (™) Xes (M),
the potential term is now the product of these factors. The weight w(\,([4, B]) is given by
the product of the entropy and potential terms and the conditional probability is the ratio
of the weight and the sum of all path weights. See Figure 2-15 for a pictorial depiction of
the latter construction.

In the limit as r — 17, the entropy term goes to 1 and if we ignore the potential, we
see that the measure converges to the uniform measure on all paths from A to B, which
do not intersect the lines Aj_; and A, ;. This motivates the Brownian limit of the paths.
When ¢ € (0,1) is fixed, we have the conjectural separation of consecutive lines in A” being
of order N'/3. This implies that if B — A is of order N?/3, which is the conjectural scaling
we have suggested, then the potential term is bounded from below by an expression of the
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(1-1)

(1 - ¢9) Akt

1-t)

(1-1%) (1-19)

1 ~*)

Figure 2-15: The left part of the figure shows that we get a non-trivial factor only when
the distance between two slices decreases. For the path on the right we have P = 16 x
5+2x6+1x4 = 96, hence the entropy term is r%. The potential term is given by
(1—1*) x (1 —1¢°)3 x (1 —5)%. The weight is the product of the entropy and potential terms
and equals w(A}([A, B]) = r%(1 — ¢*)(1 — t°)3(1 — t6)2.

form (1 — ¢*N'/*)ON* The latter converges to 1 exponentially fast, and so we see that the
contribution of the potential disappears in the limit. Consequently, the limit distribution
of AL, at least heuristically, converges to a Brownian path, which is conditioned on not
intersecting A7 ;. This is precisely the Brownian Gibbs property.

When both r and ¢ converge to 1~ as in Conjecture 2.7.3, the potential term can no longer
be ignored. One can understand the contribution of the potential term as an acceptance
probability similarly to the KPZ line ensemble. Specifically, suppose we fix the slices X,_,(m)
and A;,,(m), m € Z and consider the conditional distribution of \,([4, B]). One way to
obtain it is to draw a random path between the points A and B that does not intersect the
slices Aj_;(m) and X, ;(m) using the entropy term alone. Then with probability equal to
the potential term we accept the path and otherwise we draw again and repeat. When r and
t go to 17 we have that the paths we sample converge to a uniform sampling of all paths,
suggesting the Brownian nature of the limits; and what we would like to show is that the
acceptance probability in the discrete case converges to the acceptance probability in the
limit. Notice that the separation between slices being of order N/%log(N), while fluctuations
remaining of order N'/® suggests that non-intersection of the lines automatically holds with
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large probability and hence can be ignored.

kb1 Hi_,
T e N N
e S S o e
(2671 /3) N3 log(uN)-CHx I NV3+0(1) o-
Hi
A Xk :
B #
e WP e e
(2L /3)NLS log(puN)~C~xk~INY340(1) \ ct
k—1 ,Hr['
k41
MM
M
N2/3A A

Figure 2-16: =] and Z},, converge to constant functions. Quantities increase downwards.

We will now proceed to match the acceptance probabilities, by considering a simple to
analyze case, when the paths converge to constant lines. The situation is depicted in Figure
2-16. To simplify notation, let A = N=23(B — A), x~' = /2f"(|7]), & = (T/2)3x"! =
(—logt)NV/3 and p = %-;ﬁ Due to the Brownian nature of the limit of the paths,
ANZ2/3

4

one expects roughly of the steps to lead to decreasing the distance between A, and
Aex1- Suppose that [N (m) — Xy, (m)| = (2671 /3)NV3log(uN) — C*+x~'N/3 4+ O(1), for
m € [A, B]; then the acceptance probability is roughly equal to

pN(t) _ (1 _ t(2n_1/3)N1/3 log(,uN)—C""m_lNI/S)AN2/3/4(1 _ t(zm-i/a)NI/S 1og(p,N)—c-n-lles)AN2/3/4_
Taking logarithms we see that log(py(t)) = ——A’\fﬁ' (e~ (3/3)Tog(N)+C 4 o—(2/3)log(uN)+C™) 4
O(N~2/%). We thus see that limy_,e log(py(t)) = —(A/4)e~(/3)1sw) (¢ 4 £C7),

On the other hand, the acceptance probability for H™ is given by exp(—(AT?3x~1/2)(eC" +
e®"). Equality of the latter and limy_,. py(t) is equivalent to

_(A/4)e~(2/3)log(p.)(ec+ +eC‘) _ _(/_\T2/3X—1/2)(6(J+ 4 eC“) iy e—(2/3)log(p) _ 2T2/3X_1-
Substituting u = Z%-:ﬁ one readily verifies that the latter equality holds. This shows

that the discrete acceptance probability, at least heuristically, converges to the limiting one,
verifying the H;-Brownian Gibbs property.
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Chapter 3

Six-vertex models and the GUE-corners process

3.1 Introduction

The six-vertex model is a well-known exactly solvable lattice model of equilibrium statistical
mechanics. The study of its properties is a rich subject, which has enjoyed many exciting
developments during the last half-century (see, e.g., [9], [74], and the references therein).
Fixing particular boundary conditions and weights, connects the six-vertex model to a num-
ber of combinatorial objects like alternating sign matrices and domino tilings [49]. The
six-vertex model and certain higher spin generalizations of it have been linked to a large
class of integrable probabilistic models that belong to the KPZ universality class in 1 + 1
dimensions - this was first observed in [53] and studied more recently in [27,33,44]. These
recent advances have spurred new interest in vertex models and the development of tools to
analyze them.

The main subject of this chapter is the (vertically inhomogeneous) six-vertex model
in a half-infinite strip. We will work with a particular weight parametrization, introduced
in [20], whose origin lies in the Yang-Baxter equation, and which corresponds to the so-called
ferroelectric regime [9]. The partition function of this model is described by a remarkable
family of symmetric rational functions F,, parametrized by non-negative signatures A\ =
A1 = Ay > -+ > Ay > 0. These functions form a one-parameter generalization of the
classical Hall-Littlewood polynomials [64] and enjoy many of the same structural properties
[20]. In a recent paper [33], the authors derive many useful features of the functions Fy,
which allow them to obtain integral representations for certain multi-point g-moments of
the inhomogeneous higher spin six vertex model in infinite volume. Such formulas are well-
known to be a fruitful source of asymptotic results and were recently utilized to study the
asymptotics of various stochastic six-vertex models [1,4,19].

In this chapter we develop a different approach to study the vertically inhomogeneous six-
vertex model , which is based on a new class of operators D%,. These operators act diagonally
on the functions F,, whenever X\ has distinct parts and can be used to derive formulas for
the probability of observing certain arrow configurations in different locations of the model.
These observables were very recently investigated for the six-vertex model with domain wall
boundary condition (DWBC) in [38] under the name of generalized emptiness formation
probability (GEFP). The derivation of the formulas in [38] is based on the quantum inverse
scattering method, which has been successfully used to derive large classes of correlation
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functions [16,38,39]. Whether our operators are related to the quantum inverse scattering
method is unclear, and at this time the two approaches appear to be orthogonal. As discussed
in [38] the GEFP can be used to understand macroscopic frozen regions in the six-vertex
model with DWBC and it is our hope that the operators we develop can be used to address
similar questions for more general six-vertex models.

Our main goal is to use the correlation functions obtained from our operators to analyze
a particular class of homogeneous six-vertex models as the system size becomes large. There
are two natural ways to understand the probability distributions that we analyze. On the
one hand, one can view them as stochastic six-vertex models on the half-infinite strip with a
particular choice of boundary data, which is related to a special class of symmetric functions,
considered in [33]. Alternatively, these probabilities distributions describe the marginal law
of a discrete time Markov process on vertex models, which is started from the stochastic
six-vertex model of [27], and whose dynamics is described by certain sequential update rules.
For the models we consider we show that certain configurations of holes (absence of arrows
or empty edges) weakly converge to the GUE-corners process as the size of the system tends
to infinity. We view the latter as the main result of this chapter and the exact statement
is given in Theorem 3.1.3. The proof is based on the formulas obtained from our operators
as well as a classification result, which identifies the GUE-corners process as the unique
probability measure that satisfies the continuous Gibbs property (see Definition 3.5.4) and
has the correct marginal distribution on the right edge.

We now turn to describing our model and main results.

3.1.1 Problem statement and main results

For N € N we let Py denote the collection of N up-right paths drawn in the sector Dy :=
Z>o x {1,...,N} of the square lattice, with all paths starting from a left-to-right arrow
entering each of the points {(0,m) : 1 < m < N} on the left boundary and all paths exiting
from the top boundary. We assume that no two paths are allowed to share a horizontal or
vertical piece. For w € Py and k = 1,...,N we let M¥(w) = \F > X5 > ... > Xk be the
ordered z-coordinates of the intersection points of w with the horizontal line y = k + 1/2.
Let Sign; denote the set of signatures A of length k with Az > 0, then \*¥(w) € Sign} for all
w € Pyand k= 1,..., N. The condition that no two paths share a horizontal piece, implies
that A\* satisfy the interlacing property
MU S> AN > > M > Ml fork=1,...,N—1,

while the condition of no shared vertical edges implies A¥ > A\ > ... > AF. See Figure 3-1.

We encode arrow configurations at a vertex through the numbers (i1, j1; %2, j2), represent-
ing the number of arrows coming from the bottom and left of the vertex, and leaving from the
top and right, respectively (see Figure 3-2). Let us fix a parameter s and N indeterminates
Uy, ...,un, called spectral parameters. For a spectral parameter u, we define the following
vertex weights

1 — -1 1— 2
w,(0,0;0,0) = 1, wy(1,0;1,0) = — > w,(1,0;0,1) = 1=su
1—su 1—su (311)
1—s2 uU—S u— st o
u 71;1) = -, ulY, 13U, I —— u1717171 e —
wy (0 0) T w(OlOl) — w( ) ——
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Figure 3-2: Incoming and outgoing ver-
tical and horizontal arrows at a vertex,
denoted by (i1, j1; 12, J2) = (2,1;3,0)

Figure 3-1: A path collection w € Py
with N = 6. In this example )} = 6,
X =25 X =3 and &} =2

and set all other vertex weights to zero. The choice of the above parametrization is made
after [20], where higher spin versions of the above vertex weights were considered. Those
weights depend on two parameters s,q and they _are closely related to the matrix elements
of the higher spin R-matrix associated with U,(sly). Formulas for the higher spin weights
are present in (3.2.1) later in the text, and those in (3.1.1) are obtained by setting ¢ = s~2.
Given w € Py, we let w(i,j) denote the arrow configuration at the vertex (4,7) € Dy and
note that we have six possible arrow configurations for w(i, j), corresponding to the weights
in (3.1.1).

In addition, let us consider a function f : Signj; — R. With the above data we define
the weight of a path configuration w as

WHw) = [[ [T ww (i 5)) x FON ). (3.1.2)

i=0 j=1

We observe that all but finitely many of w(%, j) equal (0,0;0,0), which by (3.1.1) has weight
1 and so the product in (3.1.2) is a well-defined rational function. Suppose that for a choice
of parameters and function f the weights W/ (w) are non-negative, not all 0 and their sum

then we may define a probability measure on Py through Pf(w) = W—;(,-‘i) The function f
can be interpreted as a condition for the top boundary of an arrow configuration on Dy,
complementing the other boundary conditions of no arrows entering from the bottom, all
arrows entering from the left and no arrows propagating to infinity on the right. For example,
taking f()) to be zero unless Ay_;;1 =i—1fori=1,..., N corresponds to the (vertically)
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inhomogeneous six-vertex model with domain wall boundary condition [58].

Our main algebraic tools are particular operators D¥ | which can be used to extract a set
of observables for measures on Py of the form P above. The operators DF, are inspired by
the Macdonald difference operators, which have been used successfully in deriving asymptotic
statements about random plane partitions, directed polymers and particle systems [24-26,
29,47,50]. To give an example, the first order operator D} acts on functions in m variables

and is given by
m m 2
U —qu; u; —s \ 1—s
ph=y I (4zteizi)iztog,,
o7 i \ Wi T Ui U = 8q 1 —su;

where Ty, sF'(u1,...,Un) = F(u1,.-.,U%_1,8,Uit1,...,Uy). The formula for the general
operator DF is given in Definition 3.3.2.

As will be explained later in Sections 3.2 and 3.3, the probability distribution P7 is related
to certain symmetric functions Fy(ui, ..., us,), parametrized by non-negative signatures A.
The key property of D¥ is that they act diagonally on Fy(ui,...,ur), whenever A has
distinct parts and satisfy

D:;F)\(uh s Um) = L =0 mo1=1, Am_er=k—13FA (UL, - Um).
The above relation is essentially sufficient to prove that for 1 < k < m < N we have

Dk zf
Zf

P/ ({w € Py : A0w)=0,...,07_, (W) =k—1}) = (3.1.3)
where we remark that the partition function Z/ is a function of the variables u1, ..., uy and
DF, acts on the first m variables. In words, the above expresses the probability of observing
k vertical arrows going from (m,%) to (m+1,:) for i =0,...,k—1, in terms of the partition
function Z/ and the result of D¥, acting on it.

The validity of (3.1.3) can be established for a fairly general class of boundary functions
f; however, in order for the formula to be useful one needs to understand the action of
our operators on the partition function Z/. For general boundary conditions the partition
function may not have a closed form or the action of the operators might not be clear.
One particular class of functions, on which D}* act well are functions that have the product
form F(uq,...,un) =[], 9(u;). Such functions are eigenfunctions for DJ* with eigenvalues
expressed through k-fold contour integrals - see Lemmas 3.3.10 and 3.3.12. Whenever a
model has a partition function in such a form (this can be achieved by fixing appropriate
boundary conditions f and is the case for the models we study in this chapter) our method
leads to contour integral representations for the probabilities in (3.1.3). In general, such
representations are useful for asymptotic analysis as one has a lot of freedom in deforming
contours and using steepest descent methods.

In what follows we write down the general form of a function f that we will consider and
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explain the probabilistic meaning of this choice. Define

%) N
G5(p) = (=1)"Ling=oy [ [ 1mezy [] (-
i=1 j=1

where A = (™1™ ... is the multiplicative expression for A (see Section 3.2.1). For an M-tuple
of real parameters (vy,...,vy) we define f as

f(A) = Gi(pi U1,y 7UM) - Z GZ(p)Gi/u(Ul’ ce ”UM)a

‘ot
pHESigny,

where GS, ,(v1,...,vnm) is given by Definition 3.2.1 below.
If M = 0 we have that f(A) = G§(p) and

2= Ww) =(s%s NH 11__3‘%:%,

wEPN

where we recall that (a;q), denotes the g-Pochhammer symbol and equals (a;¢q), = (1 —
a)(1 —agq)--- (1 —ag™ ). The latter identity is understood as an equality of formal power
series and was derived in [33]. Fixing s > 1 and u; > s has the effect that W/ (w) > 0
and that the above identity holds numerically as well. In particular, for this choice of
f, we have a well-defined probability distribution P/ on Py. The latter measure is the
(vertically) inhomogeneous stochastic six-vertex model (see Section 6.5 in [33]). Further

setting u; = u > sfor 4 =1,..., N, one arrives at the stochastic six-vertex model of [27] (see
also [33]).
Given the above discussion, one can understand f(A) = G5/, (v1,...,vm) as a certain

many-parameter generalization of the boundary function of the previous models. As will be
explained in Section 3.2 we have for this choice of f that

N1 = sy g 1 — s 200
i f(w) = (572 =2 —— [ —"
Z_ZW(w)—(s ;8 )Nl—I(l—suiH 1 — wv; )’

WEPN =1

where the equality is in the sense of formal power series. As before, we set s > 1, u; > s and,
in addition, assume v; > 0 are such that w;v; <1for¢=1,...,Nand j=1,..., M. Under
these conditions one can show that W/(w) > 0 and the above identity holds numerically as
well. In particular, for this choice of f, we have a well-defined probability distribution P/ on
Pn, denoted by P, . This is the main probabilistic object we will study.

For m = 0,..., M we let Py, _ denote the above probability distribution, where v,, =
(v1,...,Vm). Then one can interpret the distribution Py, _ as the time m distribution of a
Markov chain {X,,}}_,, whose dynamics is governed by sequential update rules. For more
details and an exact formulation we refer the reader to Section 3.8 below as well as Section
6 in [33]. For a pictorial description of how the configurations X, evolve as time increases
see Figure 3-3. Our primary interest is in understanding the large-time behavior of X,, and
we investigate this by studying the measure P, , as both M and N tend to infinity.
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m = 50

Figure 3-3: Random paths in Py, sampled from the Markov chain X,, at times m = 0, 5,20
and 50. In this example N = M =50, s2 = 0.7, u; = u fori =1,..., N and v; = v for
j=1,...,M, where u =1.5and v=0.4

While most of the results we have in mind can readily be extended to more general
parameter choices for u and v we keep our discussion simple and assume that u; = u for
i=1,...,Nand v; = v for j = 1,..., M. The resulting measure is denoted by PY;™ (the
measure also depends on the parameter s but we suppress it from the notation). The first
result about this measure is the following.

v (u—s71)(u—s)

Theorem 3.1.1. Suppose s > 1, # >u>sandv € (0,u ). Leta = st il

and suppose ¥ > a. Let N(M) >~ - M for all M >> 1 and consider the measure P):M on
Pn, defined above. Then for every k € N, we have that

Jim PYM({wePy: My iw)=4,1<i<k}) =1 (3.1.4)
Remark 3.1.2. We choose s > 1 and u > s to ensure non-negativity of the weights defining
PX:M. This choice of parameters lands our Gibbs measure in the ferroelectric regime of the
six-vertex model [9] and s > 1 covers the entire range of the ferroelectric region - see also
the discussion in Section 3.6.1. One requires v € (0,u™') in order to ensure finiteness of the
partition function and non-negativity of the weights. The condition # > wu is technical
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and assumed in order to simplify some arguments later in the text.

Informally, Theorem 3.1.1 states that the probability ]P’ﬁf M concentrates on path configu-
rations, which have outgoing vertical arrows at locations (i, N) fori =1,...,k, where k € N
is fixed but arbitrary, and no such arrow at (0, N). Let us consider such a path configuration
w and denote by A; = {(j,4) : = = 1,..., N} the vertical slice of Dy at location j. We
observe that the left and bottom boundary conditions on w imply that there are exactly N
arrows going into the set Ay and no vertical outgoing arrow from (0, N). The conservation of
arrows over the region Ay, implies that all N arrows must leave from the right boundary of
Ay, and so each arrow that enters (0,4) must continue horizontally (see Figure 3-4). When

4 [ ! 3 A

o

5 —— —— —— e |
30 0 ©

4 e oo r | -
2 O O
I O

2 > - -

1 > O

A{) .Ag 1 2 3 4 5
0 i 2 3 e

Figure 3-4: The left figure shows a path collection w, such that AY_,.;(w) =ifori=1,...,k
with N = 6 and k = 3. Circles indicate the positions of the empty edges. The right ﬁgure

shows the array (Y )1<z<3<3, j varies vertically and position is measured horizontally. In this
pame Y =Y2 =Y =3 V=Y}=4 ¥ =1,

we consider A;, we see that there are still N arrows going in, however, one arrow leaves at
(1, N) and so the conservation of arrows implies that there are N — 1 arrows leaving A, to
the right and entering A,. In general, there will be N — j+1 arrows going into region A; and
one arrow leaving from the top, implying that there are N — j arrows leaving from the nght
and entering Aj,;. Let us denote by Y7 < ¥J < --- < YJ the ordered vertical positions
of the j vertices in A;, that have no outgoing hor1zontal arrow (alternatively, the vertical
coordinates of the empty horizontal edges between A; and A;y,) - see Figure 3-4. A direct
consequence of the up-right path direction, implies that Y; satisfy the interlacing property
WY <vi"<...cvi<yiilforj=1,...,k—1
The above definition can readily be extended to w € Py, which do not satisfy the condition
M_iyi(w) = 4,1 < i < k as follows. We set Y7 to be the i-th smallest y-coordinate of
a vertex in A; with no horizontal outgoing arrow, or ¥/ = +oo if the number of such

1
vertices is less than 7. In this way, we obtain an extended random vector Y (N, M; k)(w) :=
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k(k+

(Y )1<icjncicr € (NU {o0})™ 2 “ The statement of Theorem 3.1.1 is that with probability

going to 1, the interlacing array Y (N, M;k)(w) is actually finite.

Recall that the Gaussian Unitary Ensemble (GUE) of rank k is the ensemble of random
Hermitian matrices X = {X;;}F;_, with probability density (proportional to) exp(—Tr(X?)/2),
with respect to Lebesgue measure. For r =1,...,k we let A\] < A} < ... < AT denote the

eigenvalues of the top-left 7 x r corner {X;;}7._,. The joint distribution of Ni=1,...,7,
J=1,...,k is known as the GUE-corners process of rank k (sometimes called the GUE-

minors process). The following theorem is the main result of this chapter.

Theorem 3.1.3. Assume the same notation as in Theorem 8.1.1, put ¢ = s~2 and fit k € N.
Consider the sequence Y (N, M; k)(w) with w distributed according to PY;M. Then the random

vectors 1

cvM

converge weakly to the GUE-corners process of rank k as M — oo. In the above equation 1k
is the vector of R¥ with all entries equal to 1 and ¢ = (2a2)'/?b7*, with

(Y(N, M:k) —aM - 1kgk+1)) (3.1.5)

o — (1—q)v™! [ (g+1)s—2v"" (q—l—l)s—2u} poo L1
LT =T s LT =) =) s T T u—s g u—s

We end this section by briefly outlining the key ideas that go into proving Theorem 3.1.3.
The first key observation is that for w € Py one has A\ (w) = 1,...,A7_, ., (w) = k if and
only if Y}*(w) < m. Using this observation and our operators D¥  we express P, (Y} < m)
and more generally Py (Y}! < my,..., Y < my) in terms of certain k-fold contour integrals.
These formulas for the joint cumulative distribution functions (CDFs) of the random vector
(Y4, ..., Y¥) are suitable for asymptotic analysis and can be used to show that under the
translation and rescaling of Theorem 3.1.3, this vector converges weakly to (Af,...,AF),
where X ¢ = 1,...,7, 7 = 1,...,k is the GUE-corners process of rank k. Using the six-
vertex Gibbs property (see Section 3.6.2) and our convergence result for (Yi,...,YE), we
show that the sequence of random interlacing arrays Y (N, M; k) under the translation and
rescaling of Theorem 3.1.3 is tight and any subsequential limit satisfies the continuous Gibbs
property (see Definition 3.5.4). The final ingredient, in the proof is a classification result,
which identifies the GUE-corners process as the unique probability measure on interlacing
arrays that satisfies the continuous Gibbs property and has the correct distribution on the
right edge. This shows that any weak subsequential limit of Y (N, M; k) is in fact the GUE-
corners process of rank k, which together with tightness proves Theorem 3.1.3.

3.1.2 Outline

The introductory section above formulated the problem statement and gave the main re-
sults of the chapter. In Section 3.2 we study the measure P, and derive formulas for its
finite dimensional distributions. In Section 3.3 we define our operators DF, and establish
some of their properties. In Section 3.4 we obtain integral formulas for the probabilities
PYM(YY < my,..., Y < my), study their asymptotics and prove Theorem 3.1.1. In Sec-
tion 3.5 we discuss probability measures on Gelfand-Tsetlin cones, satisfying a continuous
Gibbs property. In Section 3.6 we study probability measures on Gelfand-Tsetlin patterns,
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satisfying what we call the six-vertex Gibbs property. The proof of Theorem 3.1.3 is given
in Section 3.7. In Section 3.8 we describe an exact sampling algorithm for the measure P,
and discuss some of their conjectural properties.

3.2 Measures on up-right paths

In this section we provide some results about P, .. In particular, we show that it arises
as a limit of measures on non-negative signatures, studied in Section 6 of [33], and is a
well-defined probability measure on the set of oriented up-right paths drawn in the region
Dy =Z»o x{1,..., N}. We also provide explicit formulas for its marginal distributions. In
what follows we adopt the notation from [33] and summarize some of the results there.

3.2.1 Symmetric rational functions

We start by introducing some necessary notation. A signature of length N is a sequence
A= (A1 > Xy >+ > An), \s € Z. The set of all signatures of length N is denoted by Signy,
and Sign}; is the set of signatures with Ay > 0. We agree that Sign, = Sign{ consists of the
single empty signature @ of length 0. We also denote by Sign™ := Un>oSign}; the set of all
non-negative signatures. An alternative representation of a signature pu € Sign™ is through
the multiplicative notation y = 0™17™2™2 ... which means that m; = |{i : p; = j}| is the
number of parts in u that are equal to j (also called multiplicity of j in p). We also recall
the g-Pochhammer symbol (a;q), := (1 — a)(1 —aq)--- (1 — ag™™?).

In what follows, we want to define the weight of a finite collection of up-right paths in
some region D of Z2, which will be given by the product of weights of all vertices that belong
to the path collection. Throughout this chapter we will always assume that the weight of
an empty vertex is 1 and so alternatively the weight of a path configuration can be defined
through the product of the weights of all vertices in D. Figures 3-1 and 3-3 give examples
of collections of up-right paths, see also Figure 3-5 below.

The configuration at a vertex is determined by four numbers (i1, j1; %2, j2), representing
the number of arrows that enter the vertex from below and right, and that leave from the top
and left respectively (see Figure 2). Vertex weights are thus functions of those four variables.
We postulate that a configuration (iy,71;12,j2) must satisfy i1, 51,142,792 > 0, j1,72 € {0,1}
and i; + j1 = is + j2 (otherwise its weight is 0).

We will consider two sets of special vertex weights. They are both defined through two
parameters s,q (which are fixed throughout this section) as well as an additional spectral
parameter u. We assume all parameters are generic complex numbers, and for the most
part ignore possible singularities of the expressions below. The first set of vertex weights is
explicitly given by

1 — squ (1—5%¢%u
wu(gaoag70) = _i’_—_, wu(g+ 1,0;9, 1) = ﬂ_
" 1 (3.2.1)
(9,139,1) = 2L wa(g, 1; +1O)*1_qg+
Wy\9, 1; G, _1—811,, ul\g, 17 9 s = 1—son

where g is any non-negative integer. All other weights are assumed to be zero. We also
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define the following conjugated vertex weights

¢ 1 —sq%u . (1— qg—i-l)u
wi(9,0:9,0) = 5~ wilg+1,0,9,1) = =
u— ng 1— szqg (322)
(& 1. 1 — C ’1; 1’0 — ’
wu(g, 395 ) 1—su’ ’UJu(g g+ ) _—1 ey

where as before g € Z3( and all other weights are zero. We remark that the weights are
non-zero only if 71, jo € {0, 1}, which implies that the multiplicity of the horizontal edges is
bounded by 1. For more background and motivation for this particular choice of weights we
refer the reader to Section 2 of [33].

Let us fix a number n € N, n indeterminates u1,...,u, and the region D, = Z>¢ X
{1,...,n}. Let w be a finite collection of up-right paths in D,, which end in the top
boundary, but are allowed to start from the left or bottom boundary of D,. By w(i,j) we
denote the arrow configuration of the vertex at location (3,j) € D,. Then the weight of w
with respect to the two sets of weights above is defined by

W(w) = [TT]wu @), wew) = [T 1] ws, W, ))-

i=0 j=1 i=0 j=1

We notice that by (3.2.1) and (3.2.2) w,(0,0;0,0) = 1 = w:(0,0;0,0) and since all but
finitely many vertices are empty, the products above are in fact finite. With the above
notation we define the following partition functions.

Definition 3.2.1. Let N,n € Zxo, A, € Signy and uy,...,u, € C be given. Let P§,, be
the collection of up-right paths w, which

e start with NV vertical edges (p;,0) — (pi,1), ¢ =1,...,N;
e end with N vertical edges (\;,n) = (A,n+1),i=1,...,N.

Then we define

GS/u(ua, - un) = Z W (w).

wE'Pf‘/u
We will also use the abbreviation G for G o - For the second set of weights we have a
similar definition.

Definition 3.2.2. Let N,n € Zso, p € Sign}, A € Signf,, and uy,...,u, € C be given.
Let Py, be the collection of up-right paths, which

e start with IV vertical edges (u;,0) — (us;,1), 4 =1,..., N and with n horizontal edges
(_17y) - (O7y)a Yy = 17"'7/”';

e end with N + n vertical edges (\;,n) = (A,n+1),i=1,...,N +n.

Then we define

F,\/,L(ul,...,un) = Z W(W)

wEP,\/,L

100



We will also use the abbreviation Fy = Fy/z. Path configurations that belong to P,,, and
s /u Are depicted in Figure 3-5.

Ar=Ag As Ag=Az=Xy M Mo A=A A
& 4 m A Iy y
3 > 5
G ——— 4
f JE—— 3
2 = 2
1 - 1
'y A ! 4
0 0

H2 H1 4 p3=li2 23

Figure 3-5: Path collections belonging to Py, (left) and P5,, (right).

In the definitions above we define the weight of a collection of paths to be 1, if it has no
interior vertices. Also, the weight of an empty collection of paths is 0. We now summarize
some of the properties of the functions G§ i and F,/, in a sequence of propositions; see
Section 4 of [33] for details.

Proposition 3.2.3. Let N,n,k € Zx, j1 € Signy, A € Signy,, and uy, ..., u, € C be given.
Suppose uy > k and Anin, > k, and denote by p— (k)N and X — (k)N*™ the signatures with
parts p; — k and A\; — k respectively. Then we have

4 k
U; — 8
FA/H(U;], 5 % g :un) = (H * ) F)‘_(k)N+n/y’_(k)N(’u1, LT un). (323)

e 1— su
Proposition 3.2.4. The functions Fy;,(u1,...,u,) and Gf\/”(ul, .oy Up) defined above are
rational symmetric functions in the variables uq,. .., Uy,.

Proposition 3.2.5. 1. For any N,ny,ny € Zxo, p € Signy and X € Sign{, ..., one has

F,\/“(ul, 6ot um+n2) = Z FA/N(um+1, ‘s ,un1+n2)Fn/”(u1, s ,um). (3.2.4)

nESignR}+n1

2. For any N,ny,ne € Zsq and A, u € Sign};, one has

Gi/,u(uli S ?uﬂ1+ﬂ2) = 2 Gi/n(unl-i-l? SR uﬂ1+ﬂ2)Gfﬁ/p(ula cee 7un1)‘ (325)
nESign"f\}
The properties of the last proposition are known as branching rules.
Definition 3.2.6. We say that two complex numbers u,v € C are admissible with respect

to the parameter s if |ﬁ . ﬁ’ < 1.
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Proposition 3.2.7. Let us,...,uny and vi,...,vx be complex numbers such that u;,v; are
admissible for alli=1,...,N and j =1,...,K. Then for any \,v € Sign* one has

c — qUiU
ZGK’/A(UI,'...,vK)FK/V(’UJl,..., HH 1—u JZFA/M Uy, - .- ’LLN)GU/#(’Ul,...,’UK).

KESign™ 1=1 j=1 uESlgn+
(3.2.6)

Remark 3.2.8. Equation (3.2.6) is called the skew Cauchy identity for the symmetric functions
Fa/u and G§ /u because of its similarity with the skew Cauchy identities for Schur, Hall-
Littlewood, or Macdonald symmetric functions [64]. The sum on the right-hand side (RHS)
of (3.2.6) has finitely many non-zero terms and is thus well-defined. The left-hand side (LHS)
can have infinitely many non-zero terms, but part of the statement of the proposition is that
if the variables are admissible, then this sum is absolutely converging and numerically equals
the right side.

A special case of (3.2.6), when A = @ and v =(0,0,...,0) leads us to the Cauchy identity

K
Z Fo(ug,...,un)G(vy, ..., vk) = (g q)NH ( H 11‘_61;1‘:9') ) (3.2.7)

font
veSigny

We end this section with the symmetrization formulas for G, and F, and also formulas
for the functions when the variable set forms a geometric progression with parameter g.

Proposition 3.2.9. 1. For any N € Z>q, p € Signl; and uq,...,unx € C, one has
>0, K gny

1-q)¥ Ua — qU u; — 8 Hi
Fu(ul,...,uN)ZHJS (lq) Z"( I qa(l_sw) ) (3.2.8)

im1 (1 — su;) ceSy 1<a<p<n Yo T UB
2. Let n > 0 and Sign, > v = 0™1™2"2.... Then for any N > n —ng and uy,...,uy € C
we have
1—- N(g; n 5 2; n
GE(tn, . un) = 1-9"(9 (% @

TTiL1 (1 — )@ @) N-ntno (@ Do g (T D

SAB N (3.2.9)
Ua — qUg ( U — ) i o
XZO’ H H H (1 —sq™u;) | .
ool <1§a<ﬂ_<_N Ug —Ug \1— su; LT Ui — S =kt
In both equations above, Sy denotes the permutation group on {1,...,N} and an element
o € Sy acts on the expression by permuting the variable set to uy(y, . . ., o). By agreement,

we set v; =0 if j > n. If N <n—ng, then GS(uq,...,un) is equal to 0.

Proposition 3.2.10. 1. For any N € Zxo, p € Sign}; and u € C, one has

ug—t — s \ M
Fu(u,qu,...,q" (g;9)N H qu i \T 5714 . (3.2.10)
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2. Let n > 0 and Sign! > v =0"1™2" ... Then for any N > n —ng and u € C we have

0 . . . N 1 ¢ lu—s Vj)
ce (u ... qN—lu) _ H (32; q)nk . (q) q)N(S'Uq q)N+no (q7 q)n Hi:l (1*8!}’*111, (l—sq’_lu) '
Y o (@D (€5 Q)N —ntno (5% (5 Do (5U™15 ¢ g
(3.2.11)

3.2.2 The measure P,

As discussed in Section 3.1.1 the main probabilistic object we study is the measure Py~
on up-right paths in the half-infinite strip that share no horizontal or vertical pieces. The
purpose of this section is to properly define it.

Let us briefly explain the main steps of the construction of P, . We begin by considering
the bigger space of all up-right paths in the half-infinite strip that share no horizontal piece
but are allowed to share vertical pieces. For each such collection of paths we define its weight
and show that these weights are absolutely summable and their sum has a product form.
Afterwards we specialize one parameter in those weights and perform a limit transition for
some of the other parameters. This procedure has the effect of killing the weight of those
path configurations that share a vertical piece. Consequently, we are left with weights that
are non-zero only for six-vertex configurations, are absolutely summable and their sum has
a product form. We check that each weight is non-negative, and define P, as the quotient
of these weights with the partition function.

We fix positive integers N, M, J, and K = M + J, as well as real numbers q € (0, 1)

and s > 1. In addition, we suppose u = (uy,...,uy) and w = (wy, ..., wg) are positive
real numbers, such that max; ; u;w; < 1 and w := min; u; > s. One readily verifies that the
latter conditions ensure that u,;, w; are admissible with respect to s for ¢ = 1,..., N and
j=1,...,K.

Let us go back to the setup of Section 3.1.1. We let P} be the collection of N up-right
paths drawn in the sector Dy = Zsp X {1,..., N} of the square lattice, with all paths
starting from a left-to-right arrow entering each of the points {(0,m) : 1 < m < N} on the
left boundary and all paths exiting from the top boundary of Dy. We still assume that no
two paths share a horizontal piece, but sharing vertical pieces is allowed. As in Section 3.1.1
we let Py C Py be those collections of paths that do not share vertical pieces. For w € Pl
and k =1,..., N we let \*(w) € Sign{ denote the ordered z-coordinates of the intersection
of w with the horlzontal line y = k + 1/2. We denote by w(i, ) the arrow configuration at
the vertex in position (¢,7) € Dy. We also let f : Signi, — R be given by

FOsw) = Y G(wr, . ws)GS (Wi, - -, W)

MGSlgnN

With the above data, we define the weight of a collection of paths w by

) =TT 066 ) x O ()iw).

=1 j=1
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If we perform the summation over g and use Proposition 3.2.5 we see that f(A\;w) =
G§(wn, ..., wk). This together with Definition 3.2.2 implies that

Wl{w(w) = F)‘l(w)(ul)F,\z(w)/)‘l(w)(uz) .. F)\N(w)//\N—l(w)(’U/N) X Gi”(w) (wl, ce ,’wK).

Using the branching relations for Fy/, from Proposition 3.2.5 and performing the sum over
AL AN we obtain Fyng(us, .. ,uN)GSw oy (W1, -, wk). A final summation over AN
and application of the Cauchy identity (3.2.7) leads us to

N K
1 1 — qusw;
E Wi,w(w) = (¢ 9N | l (1—su-H l—u‘w-3> = Z (w; w).
i=1 i

wEPY ¢ j=1

In view of the admissability conditions satisfied by u and w, the above sum is in fact
absolutely convergent, hence the particular order of summation we chose is irrelevant. We
remark that the weights WY, (w) are real and not necessarily non-negative, but they are
absolutely summable and their sum equals the above expression.

We next wish to specialize some of the variables w; and relabel the others, in addition
we fix s = ¢7%/2. Set w; = ¢""lefori = 1,...,J and put v; = w;,y for j = 1,..., M. Here
€ > 0 is chosen sufficiently small so that the admissibility condition is maintained.

Remark 3.2.11. Choosing s = q~'/2? has the effect that if 4 € Sign}, has distinct parts
and A € Sign}; then Gﬁ‘/u(ul,...,un) = 0, unless A\ has distinct parts. Indeed, suppose
that £k = A\; = Ajyq for some 7 € {1,...,N —1}. Let o' € Ps/u (see Definition 3.2.1).
For j = 1,...,n + 1 denote by a; the number of arrows from (k,j — 1) to (k,j). As the
number of horizontal arrows entering or leaving a given vertex is 0 or 1, we see that a;1; €
{aj,a; —1,a;+ 1} for j = 1,...,n. Our assumption on A and g implies that a; < 1, while
Qnt1 > 2, thus for some j € {1,...,n} we must have a; = 1 and a;;; = 2. Consequently,
any w' € P5,, contains a vertex of the form (1,1;2,0). By (3.2.2) the conjugated weight of

such a vertex equals wg(1,1;2,0) = 1-59 — (if s = g~ 1/2. We conclude that We(w') = 0 for

1—su
any w’ € P§, ,, which by Definition 3.2.1 implies GS/u(u1, - yUp) = 0.
Remark 3.2.12. A similar argument to the one presented in Remark 3.2.11 shows that
s = ¢~'/? has the effect that if p € Sign}, A € Sign},, and A has distinct parts then

Fa/u(u1,...,u,) = 0 unless p has distinct parts.

We next investigate how the new choice of parameters affects the function f.

Lemma 3.2.13. Suppose J > N, q = (0,1), s = ¢~ /2 and v € Sign}; with v = Qmo1™m2"2 ...
Then for any v € (0,s™!) we have

GS(v,qu,q%,...,¢" ) = (g N (=)™ (5V; @) N=no 1 y
o (45 2o (sv;9)n  (sv7H¢7 ) N=no (3.2.12)
N-—n i— vj 2.
(qJ—N+no+1, Q)N (quj. q) HO 1 vq’ 1 _ s 5
] —ng I no jzl 1 _ S’qu——l 1 . quj_]_ 9

when n; <1 for i > 1 and 0 otherwise.
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Proof. We begin by dropping the assumption that s = ¢~/ and consider G¢(v, qv,¢?,. ..,
g’ v, s), where we record the dependence on s in the notation. The latter is a finite sum of
finite products of weights wj_; and by continuity of the weights (see (3.2.2)) we have

Gy (v, qu,¢% ..., ¢" ;¢ ?) = lim Gi(v,qu,¢%, ..., ¢ Tv;s).
s—q—1/2
Using Proposition 3.2.10 we have
(o]
% ;@) (55 9) 740 (¢ O
G;(u,qu, .. q L (494 ) X
’ ,El D (69 T-Ntno (8% QN (G5 Do (587171 Ny
Nﬁm 1 ¢ u—s\" 1
1 —sgi=lu \1 - sg~u (svgN="0,q) s N1no

=1

Some cancellations and rearrangements (see also the proof of Proposition 6.7 in [33]) give

e o]
- 7q n 1 1
Go(v,qu,¢*,...,q" v;s il : X
T no,g (¢ D (5v30) v (507571 Nng

N-—ng i1 12
1 vt =85\’
(@ (svsao (oo [T (s () ).

_ 1 _ 1
oy 1 —svg? 1—svg

Finally, letting s — g~'/? we see that [[5e,(5% q)n, — O'unless nj, < 1 for all k > 1, i.e.
unless the non-zero parts of v are all distinct. If ny < 1 for all £ > 1, then [}, -(q’q—q))%& —

(—q)™~N, which proves the lemma. =

Let us denote ¢/ by X. Then, in view of Lemma 3.2.13, f becomes

feliv, X) = ) ((q;q) 0 o tone (Xg™™ " @) oo (86X Qg

q; Q)no (56 q)N(SE 1 1)N—no
VESlgn

N—no el — s\
Hl{nl<1} H ( squ 1 (1—86qj_1) )G/\/u(vl7"'7vM))

(3.2.13)

where v = 0™1™2"2 ... and 1g is the indicator function of an event E. In addition, special-
izing our w variables in Zf(u;w) and replacing ¢’ with X, we get

7t X) 1 — Xeu, il 1 — qu;v;
(W v, (49 NH 1—suZ 1 — eu; gl—uivj '
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Our earlier results now yield

M . .
S T Tl i) % £ () v, ) = q,NH< mtyf?fﬁhﬁﬁ)
e i

wePNz 1 4=1

(3.2.14)
provided ¢ is sufficiently small and X = ¢/ with J > N.

In view of Lemma 3.2.13, we have that f.(\; v, X) is a polynomial in X. Moreover, one
readily observes that as X varies over compact sets in C the weights []., 152, wu; (w(3, 7)) %
S(AN(w); v, X) are absolutely summable (this is a consequence of the admissibility conditions
and our choice for €). Hence the LHS of (3.2.14) is an entire function in X. The RHS of
(3.2.14) is also clearly entire in X and the two sides agree whenever X = ¢’ with J > N.
Since ¢’ is a sequence with a limit point in C, we conclude that (3.2.14) holds for all X and
we will set X = (se)™%.

When we subsitute X = (se)™! in the expression for f.(A\;v,X) we see that the factor
(s€X; q)n, vanishes unless ng = 0, in which case it equals 1. Denoting f.();V, (se)™) by
f-(\; v) we thus obtain

fxv)= > ((q;Q)N(_q)nO—N(SE;q)N_RO ((s€)7g~M+m0%h ) vy X

st (B D56 (567157 g

N-no e~ — s \“
1{710'—0} H 1{m<1} H (1 _ 86(]] 1 (1 — seqj'l) ) G}\/V(U]-? . ,’UM),

and equation (3.2.14) takes the form

N oo N N 1— s lu; 1 1 — quav;
ZHku( (4,7)) x fe(AN (w) (g; 9 NII l—suz r—— ]11 o, |

weP)y i=1 j=1

(3.2.15)
Since Gg/y(vl, ...;Up) = 0 unless \; > y; for i = 1,..., N, we conclude that the sum,
defining f.(); v) is finite and taking the limit as € goes to zero we have
fiv,p) = lim (X v) = (= Y Zl{no~0}H1{m<1}H(— TGy (vr, - vm),
VESlgn
(3.2.16)

where we used that s> = q~!. Taking the limit as ¢ — 0% in equation (3.2.15) we conclude

Al ~ly; + 1 — quv;
S [T wMﬂW)p)mmHCfWTHiM)BMU

wE’P’ i=1 j=1 i=1

The change of the order of the limit and the sum is justified, because u; and v; are admissible
fore=1,...,Nand j=1,...,M, and u; > s.
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With f(X; v, p) given by (3.2.16), we define the following weight of a collection of paths
in Py

H H wu, (W(i, 7)) x fFAN (W); v, p). (3.2.18)

=1 j=1

So far, we only know that WY (w) are finite real numbers, which are absolutely summable
and their sum equals the RHS of (3.2.17). We will show below that Wi (w) = 0 unless
w € Py, in which case it is non-negative. This will show that one can define an honest
probability measure on Py through these weights.

We first investigate when such a weight vanishes. Since G/, (v1,...,vy) vanishes unless
Ai >y fore=1,...,N, we see that f(A;v,p) = 0 unless Ay > 0. Combining this with
Remark 3.2.11, we see that f(\;v,p) = 0 unless AV (w) has all distinct and positive parts.
Let w € Ply, be such that AV (w) has distinct and non-zero parts. Using that

H H Wy, (W = Fx) ()P (U2) -+ Fav o) av-1() (un),

i=1 j=1

together with Remark 3.2.12, we conclude that W/ (w) = 0 unless A" have distinct parts for
alle=1,...,N, ie. unless w € Py.

We next investigate the sign of W/ (w). Since the weight is 0 otherwise, we may as-
sume that w € Py. Hence we have six possible choices for the vertices w(i,j): (0,0;0,0),
(0,1;1,0), (1,0;1,0), (0,1;1,0), (0,1;0,1) and (1,1;1,1). Using the formulas in (3.2.1) we
see that the sign of the weight of a vertex is precisely (—1)*. Consequently, the sign of
Y, 172, wu, (w(3, 4)) is precisely (—1)%®), where K (w) is the number of horizontal arrows
in the configuration w. One readily observes that the number of horizontal arrows in Dy
is precisely Zfil AN(w). In addition, we have N horizontal arrows from (—1,4) to (0,4) for
i=1,...,N. Thus we conclude that sign (Hf\i H;’ol Wy, (w3, j))) = (=1)VHEL AT @),

We next consider the sign of We(w'), where ' € P5,, and v has distinct and positive
parts. Arguing as in Remark 3.2.11, we can assume that no paths in «’ share a vertical
piece, otherwise W¢(w') = 0. Consequently, we may assume that w'(7,7) is among the six
vertex types we had before for all (¢,j) € Dy. From (3.2.2) the sign of the conjugated
weight of a vertex is again (—1)71, and so the sign equals (—1)X“") where K 1sz ) is the total
number of horizontal arrows in «’. One readily observes that K(w') = S0 X — 32N,
(notice that in this case we do not have horizontal arrows entering the 0-th column). We
conclude that all weights W¢(w') for w' € P§/, have the same sign, which implies that

sign (Gj/u(vl, .. vM)) = (1)L A—Ti v

The last paragraph implies that each summand in (3.2.16) has sign (—1)Xs= 1% and so
we conclude that sign (f(A\;v,p)) = (—1)N+Ez= 1% Since sign (Hi:l [152, wui(w(z,])))
= (—1)N+XL A @) we conclude that WY, (w) > 0 for all w € Py. As Wi (w) = 0 for
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w € Py /Pn, equation (3.2.17) can be rewritten as

f s v 1—s“luiM1—quivj L of
Z Wu,v(w) - (Qa Q)NH H =: 7 (U) (3219)

1 — sy 1— wv;
wEPN ¢ (e’

As weights are non-negative and the partition function Zf(u) is positive and finite, we see

that W ()
u,v W
P )= iy

defines an honest probability measure on Py. For future reference we summarize the pa-
rameter choices we have made in the following definition.

Definition 3.2.14. Let N,M € N. We fix ¢ € (0,1) and s = ¢~ /2, u = (uy, ..., uy) with
u; > s and v = (v1,...,vy) with v; > 0, and max; ; u;v; < 1. With these parameters, we
denote P, , to be the probability measure on Py, defined above.

3.2.3 Projections of P,

We assume the same notation as in the previous section. Let us fix k € N, 1 <my < my <
e < my < N oand p™ € Sign:;i. Our goal in this section is to derive formulas for the
following probabilities

Py (V™ (W) = ™, .., A () = ™)

Let A= {w e Py : A™(w) = p™,...,\™ (w) = u™}. Then we have that

Pun(A) =27 ()™ Y W (w) = 27 ()" 3 T[] wui (@ (i 3) x SN (w)sv,0) =

wEA weA i=1 j=1

= Z7 (W)™ Fai) (W) Fazyarw) (2) - - Fanoyav-10) (un) FAN (w); v, p).
wEA

Let M = {my,...,my}. We observe that the rightmost sum above may be replaced with the
sum over all X\ € Sign], where i € {1,..., N}/M. Indeed, from our work in the previous
section, the extra terms that we are summing over are all 0. We thus conclude that

Puy(A) =Z/(u)™ ) > Fau(un)Fazyn (uz) - - Fanpv-a (un) F(AV; v, ),
ie{l,...,N}/M ,\iQSignj'
(3.2.20)
where M =y for j € M are fixed.
Let us first assume that mj = N. Then the branching relations (3.2.4) yield

mry1—1
E E FAmr+1/)\mr (Umr+1)FAmr+2/Amr+1 ('U,mr_,_g) e F)\m'r‘+1/Am7‘+1—1 (’U,mr+1) =
i=mr+1 \igSign}

F)‘mr+1/,\mr (umr+1> R u"mr+1)7

108



when r = 0,...,k — 1 with the convention that my = 0 and \° = @. Substituting these
expressions in (3.2.20) we see that if mj; = N we have

k-1
Pyv(4) = Z7(u)™! x H Fumess jyme (Ump sty - oy Uy ) X F(T*5, p).

r=0

In the remainder, we assume that m; < N. In this case we may still apply the branching
relations as above to conclude that

k—1
Puy(A) = Z/(u)™! x H Fumrst yme (Ump i1y - <+, Umnpyy) X F (™5 v, p), where
(3.2.21)
F( B Vv :0 Z F/\/umk Ump+1, - - -,UN)f(/\;V,p)-

AeSignT; N
An alternative formula for F'(u™*;v, p) is derived in the following lemma.

Lemma 3.2.15. Let Nym €N, ¢ € (0,1), s = ¢~/2, X\ € Sign}; and u € Sign;}_|. Assume

U, - - -, UN and Vq, ..., Uy aTe positive, u; > s and u;, v; admissible with respect to s. Then
N » M
' (1 —g")(1— s w) 11— quw;
S Fuulims ) fOv,p) = [ S DU L0y
/\ESignx i=m j=1
(3.2.22)

Proof. We start by considering the expression

Z FA/“(umH, e ,uN)Gﬁ\(wl, e ,w_]+M),

)\ESignj\}

where as in the previous section w; = eg* ' fori=1,...,J and w4y =wv; for j=1,..., M.
The skew Cauchy identity in (3.2.6) yields (see also Corollary 4.11 in [33]):

N 1 — qu;w;
| I - ?G;(wlv"'an—l—M)'
j

1 4
Z F/\/H(um’"‘auN)Gi(wh’"’wJ"‘M):H1_ q
7=1

)\ESignj,(, i=m

Substituting w; in the above expression and denoting ¢’ by X we arrive at

N l—qil-—eXUvM — qu;v;
> Fajultim, o un) fe(sv, X) =[] T AL 1 (v, ),

1—su; 1—eu; ey 1 — w5

/\ESignE i=m
(3.2.23)

where f.(u;v,X) is given in (3.2.13). As in the previous section we argue that both sides
of (3.2.23) are entire functions in X, which are equal on a sequence with a limit point in C,
hence equality holds for all X. If we set X = (s€)~! and let € go to zero we get (3.2.22). O

Substituting F(u™*; v, p) into (3.2.21) with the expression in (3.2.22) and performing a

109



bit of cancellations we see that

k-1

Pu,v (A" (w) = ™, AT (w) = pm) = H F;A’”T‘Fl/umr ('Ufmr+1> ce ’umr+1) X f(u™;v, p)X
r=0

- 1-— 8—1'1,1,’ M 1 — guv;
Zf(u,v;mk)_l, where Zf(u, v; mk) = (Q7Q)mk H ( J H qu; ]) .

Pl 1 — su; - 1 — uv;
(3.2.24)
3.3 The operators D
In this section we fix a positive integer m > 1 and provide operators D% for k = 1,...,m

that act diagonally on the functions Fy(ui,...,un,) with A € Sign and X\; > Xy for
t=1,...,m — 1. Specifically, we will show that

k
Dy Fa(ut, .oy Um) = 1onn=0Amo1=1, Am_pr1=k~1} FA (%1, -5 Um).

In addition, we explain how the operators D¥ can be used to extract formulas for a set of
observables and prove several properties that are relevant to the problem we consider.

3.3.1 Definition of DF,

We start with the symmetrization formula for Fy(uy,...,u,) (here A € Sign'), given in
Proposition 3.2.9:

1 - q Ug(a) — qUs(B) Ug(z) — S A
F e U) = . 3.
AUty Um) T — 5a) § 11 | | T (3.3.1)

0ESm 1<a<B<m Uo(a) = Uo(B) i=1

We are interested in setting w,, = -++ = Uy _py1 = s for each k € {0,...,m} in the above
expression, which is the content of the following lemma.

Lemma 3.3.1. Letm > 1,k € {0,...,m} and X € Sign,", with \; > A1y fori=1,...,m—1.
Then we have that

F,\(’U,l, ooy Um—k,y S,

1 —gm (si-g)
..,S)—(I_SQ)ka—k(l_Sui)(1—82) X

m—k k Ai—k
U; — g8 Ug(a) — qUo(B) Uo(i) — 8
(H l—sui> : Z H H (1_Sua(i)) ’

=1 0€Sm_x 1<a<pm—k Col@) T Ua(B) 5

(3.3.2)

if A = 0, A1 = 1,..., Aekt1 = k — 1 (if k = 0 this condition is empty). Otherwise
Fa(ut, ... tUmi,8,...,8) =0. If k = m the sum over S,,_x, s replaced by 1.

Proof. We proceed by induction on k with base case kK = 0 true by (3.3.1). Supposing the
result for £ we now show it for k + 1.

By induction hypothesis we may assume that A, =0, Ap—1 = 1,..., App_p41 = k— 1, for
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otherwise the expression is 0 for all u,,_; in particular for u,,_; = s and there is nothing to
prove. Consequently, we have that

1 (1-gq)™ ) (3(1 _ q))k<k—1>/2 )

F)\(Ula ceey Um—ky Sy vy S) = (1 _ 82)k Hm—k(l — Su: 1 — g2
i=1 t

(m_k“ qs>k Uo(a) = QUos) TT [ Yoty =5 )7
H 7 Z H o(a) — o ( o( ) .
Pl 1— su; et 1<asBSm—k Uo(a) = Us(B) 37 1 — suq(;
Since A\; > Ajy1 we know Mg > Apeis1 + 1 = k. We notice that (upy_p — §)*m—+=*
divides each summand and so the total sum will be 0 unless \,,_x = k. Let us assume that
Am—x = k, which means \; > k for i < m — k. The latter implies that each summand for
which o(m — k) # m — k is divisible by (u,,—x — $) and so vanishes when u,,_ = s. This
reduces the sum over S,,_x to a sum over S,,_,_1 and if we substitute u,,_r = s we see that

1 (L—gm s(1—g)\"* V% s —gs\*
F)\(ula"'aum—k—hS?Sa"'?S) = (1_82)k+1 Hm—k—l(l_su_) < 1 — g2 1 —82 X

=1

m—k—1 k m—k—1 m—k—1 i—k
< H U; — qs) Z H Uo(a) — qUs(B) H Uo(s) — 98 H (_—u”(i) —S j .
=1 1— sy, 0€Sm—k-1 1Sa<f<m—k—1 Uo(a) — Us(B) i=1 Uo(i) =5 i=1 1- o (i)

Upon rearrangement the above equals the expression in (3.3.2) with k+1. The general result
now proceeds by induction on k. O

Put M = {1,...,m}. Werecord the following alternative representation of Fy(u1, ..., un),
which can be obtained from (3.3.1) by splitting the sum over the possible variable subsets
formed by {Us(m); - - -, Uo(m—tk+1) } (these correspond to sets I below and I¢ = M/I)

k m—k
Fa(u ) = (1- q Z Z Z H H Yire) ~ MWio)
Tyeo- =
T T T (1 = sug) — u
iz ( 0ES) T€S Sk I={i1,.,is}CM a=1 f=1 Uirce) a(e)

IC_{Jla Jm— k}

u; g\ wio —qui " s\
io(ay)  TWic(ay) “la jrgy 94 JT(Bz)H Jr ()
I I ‘ II II ~ —u 1 — su; ’
a(w) ?

1<on <ap<k Yiotar) ~ Wiotay) zo 1<p1 <Ba<m—k irBy) T Yir(ay) y=1 ()
(3.3.3)
We introduce some necessary notation. Define operators T, that act on functions of m
variables (u1, ..., uy), by setting u; to s. Le.
Ts,uiF(ula o 7um) = F(uh sy U1, 8, Ui 1y - - ,um)'

We also consider the function

i—1
(1-eF Ug(a) — qUo(8) Uo(i) — 8
Fr(uy, ... up) = Z H 1 — suq() '

Hz—l(l SUi) se5, 1<acp<k UYol@) ~ Uo(B) ;
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Notice that Fi(uy,...,ux) = Fa(u,...,ux) with A= (k -1,k —2,...,0). In particular, Fj
is a symmetric rational function.

Let k € M be fixed. For a subset I C M with I = {41,...,4x} we write F'(us) to mean
F(ui,,...u; ), whenever F is a symmetric function in k variables. We also write F%(S) to

be Fi(s,s,...,s) and from Lemma 3.3.1 we have
1—gq k(k-+1)/2
F.(S) = gk(k—1)/2 '
F(S) = s T2

With the above notation we define the following operators.

Definition 3.3.2. Let m € Nand M = {1,...,m}. For 1 < k < m we define the operator
Dk on functions of m variables to be

D= Y I u]wq:H(azj——:q) 1;{ 1 7. (3.3.4)

i
UJ i
ICM:|I|=ki€l;j&I j€I el

Remark 3.3.3. One readily observes that DF is a linear operator on the set of functions

in m-variables, and also satisfies the property that if f.(u1,...,u,) converge pointwise to
fluy ), then Dmrf converge pointwise to DF f away from the points u; = u; for i # j.
The key property of DF is given in the following lemma.
g

Lemma 3.3.4. Letm > 1, k € {1,...,m} and A € Sign}, with A\; > \iyq fori=1,...,m—
1. Then we have that

Dan,\(ul, e ,’U,m) = 1{)\m=0,)\m—1=1,~--,/\m—k+1=k—1} F,\(ul, “ee ,um). (335)

Proof. Using Lemma 3.3.1 and that F, is symmetric we have that DEFy(uy,...,un) = 0
unless A\, =0, Apy_1 = 1,..., Apn—g+1 = k£ — 1. We thus assume that A\, =0, A1 = 1,...,
Am—k+1 = k—1. Let u € Sign?t _, be given by p; = X\; — k. It follows from Lemma 3.3.1 and
(3.3.1) that

DanA(Uh ey Up) = Z H UJ' _q;: H (uj.—-sq> Fy.(ur) (H ;Lj-_si‘j) F.(ure)

ICM:|I|=ki€l;j &I U; jel

k
= u] qu’l, u] — S .
= Z H _— ———— Fy(ur) (H 1= suj> F.(ure), where I¢= M/I.

Using Proposition 3.2.3 and (3.3.1) we can rewrite the above as

k m—k

(1-gm Yirgy — Qlig(a)
L I Y N 1=
i=1 g I={i1,...,ix }CM 0€SK TESy_ =1 =1 '7"'(/3) to(e)

1°={j1, oJm—k}

-1 Ay
H Uigiay)y — TWig(ay) H ( Uiy(zy — 3) H Ujrp) — AUir(ay) H (“Jr(y) )
SU;
7(y)

1<ar<on<k Yioten) T Yiotan) 721 \ 1 T o) ) 1<p <pram—t irn) T Wiren 31
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By virtue of (3.3.3) the latter is exactly Fy(uy,...,u,) as desired. O

3.3.2 Observables from Dﬁl

This section is devoted to explaining how one can use the operators DF to analyze the
probability measures P/ on Py. These measures were discussed in the beginning of Section
3.1.1 and P, is a particular example. In addition, we will prove an interesting property for
the first operator D! | which we believe to be of separate interest. Throughout this section
we require that ¢ = s72.

Let us summarize the assumptions we need to make the statements in this section valid.
Assumptions:

e N e N and uy,...,uy are pairwise distinct complex numbers;
e f:Sign} — R is supported on signatures with distinct parts;

e for w € Py we define the weights

W (w; z) Hsz] (w(i, 7)) x FON (w)); (3.3.6)

=0 j=1

e the weights in (3.3.6) are absolutely summable in some neighborhood of the point
(u1,...,uy) and we denote

Z Wf(w;z) =720 (z,...,25) = Z9(2);

wePN

e for every w € Py we have W/ (w;u) > 0 and Z/(u) > 0.

Notice that under the above assumptions P/ (w) := V‘g};’u;’) is a probability measure on Py.

For the remainder of this section we will work under the above assumptions.
Let us introduce the following definitions

Definition 3.3.5. For m,r > 0 we define
Signk, = {X €Sign : A < A1 < - - < A1} Sign,,, = {AeSign}, : A =0,..., Ap_pp1 =7—1}.

Suppose k € {1,...,N}and 1 <m; <my < --- <my < N are given. Set S; = Sign,, ; for
t=1,...,k and define

A(m) = A(my,...,me) = {w: \™ (W) € S;, i=1,...,k} and W (mjz) = Y W (w;z)
weA(m)

(3.3.7)
Lemma 3.3.6. Assume the same notation as in Definition 3.3.5. Then we have

W/ (m;u) _ (Dp, Dy, -~ Dy, Z7)(u)
Zfm) ZI () '

P/ (A(m)) = (3.3.8)
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We view Lemma 3.3.6 as one of the main results of this article. Under very mild conditions
on the function f it provides formulas for the observables P/ (A(m)), which form a large class
of correlation functions that can be used to analyze the six-vertex model. In the context of
this chapter (3.3.8) plays the role of a starting point for our asymptotic analysis, and we
hope that it will be useful for studying other six-vertex models in the future.

Proof. Repeating some of the arguments from Section 3.2.3, we have that

k
Wf(m; z) o Z Z con Z H F“i/m—l(zmikl,*.l, - ,Zmi)F(uk), and

pkeSy pk-1eS,_y  pleSii=l
Z Fu(z1,. .., 2m, ) F (1), where F(u Z Fa/u(Zmgsts- -5 28) F(A).
HESign’;nk AESignyy

(3.3.9)

The statement of the lemma will be produced if we apply D}, D2 --- D¥ (in the z-variables)
to both sides of the second line of (3.3.9), set z = u and divide by Z¥(u). We provide the
details below.

We start by applying Df,  to get

DE.S T Fulzr, . 2m ) Fp = Y DEFu(zr,... 2m)F(p) = > Fulzn, o 2m ) Fu).
uGSign:nk uESngnmk BESK

The change of the order of the sum and the operator is allowed by the linearity of Dfnk and
the absolute convergence of the sum (see Remark 3.3.3), while the second equality follows
from Lemma 3.3.4. We next use Proposition 3.2.5 and rewrite the above as

S Y R Zm )Fua (B 1y - - 2 ) F (5. (3.3.10)

k
uEESK )\ESlgnmk 1

If u* € Sk, we know that it has all distinct parts. The latter implies by Remark 3.2.12

that F /) (2my_4+1,- -+, 2m,) = 0 unless X has distinct parts. Consequently we may rewrite
(3.3.10) as
> D R 2w F i a (B Zmg ) F (). (3.3.11)
ukeSy AESlgnmk L

Applying D¥-1 to (3.3.11), using its linearity and Lemma 3.3.4, we get

Mi--1

S Fua(z e 2wy )P gt (g -y 2 ) F (1), (3.3.12)

pFES), ph—1€S,_y

Repeating the above argument for k£ —2,...,1, we see the result of applying D}, DZ ---Dk
to the RHS of (3.3.9) to be

Z Z T Z H Fui/m—l(zmi_1+la .. ;Zmi)F(IJJk), (3.3.13)

pkeSy pk—les, pres: =1
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with the convention that mg = 0 and u° = @. From (3.3.9) the latter equals W/ (m;z) and
so (D, D2, --- Dk Z7)(u) = W/(m;u). Dividing both sides by Z/(u) and recalling that
]Pf (A(m)) Zf(u) W/ (m;u) proves the lemma. O

In the remainder of this section, we explain how our first order operator D} can be used
to derive an interesting recurrence relation for W/(m;z) in terms of the same quantity for
a system of fewer parameters. The exact statement is given in the following lemma.

Lemma 3.3.7. Assume the same notation as in Definition 8.8.5. Let ta = (ma—1,...,mg—
1) and z/{z} be the variable set (zy,...,2_1,2+1,.-.,2n). Then we have

Wf(m;z)z H 2j — 89 ! 1—g¢ l—]: <‘-—-qzi Zj )Wg(m z/{zz}) (3.3.14)

1—sz; 1 — sz 2: —2z; 1 —s82;
j=mi+1 7 i=1 v =157 J t J

where g : Signk_, — R is given by g(u) = f(u+ 1V"Y) and X = p+ 1V is such that
AMi=p;+1fori <N—1and Ay =0.

This result will not be used in the remainder of the chapter, but we believe it to be of
separate interest as we explain now. In order to use P¥ (A(m)) to analyze a six-vertex model
it is desirable to have closed formulas for these quantities. In this chapter we will work with a
particular model, for which Z/ has a product form. This will allow us to find contour integral
formulas for the RHS of (3.3.8) as will be explained in the next section. For other boundary
conditions; however, one might not be able to use (3.3.8) to derive formulas for P/ (A(m)) and
a different approach needs to be taken. Having a recurrence relation for W/ (m;z) provides
a possible route for finding closed formulas for these correlation functions. In the base case,
which occurs when k = 0 or equivalently m = &, we have that W/(2;z) = Z/(z). If one
has a closed formula for Z/(z) then (3.3.14) can be potentially used to guess a formula for
WY (m;z), by matching the base case and showing it satisfies the above recurrence relation.
A similar approach was used in [38], where a determinant formula for W/ (m;z) was guessed
for the six-vertex model with DWBC and shown to satisfy such a recurrence relation. The
key point is that the recurrence relation we prove holds for general boundary conditions.

Proof. For p € Sign;, we define i € Sign>,_; by ji; = u; — 1 fori=1,...,m — 1. We apply
Dy, (in the z-variables) to both sides of the first line of (3.3.9) and get

D} W!(m;z) = Z Z Z HF“ 11 (Zmg_1 115 -+ - s Zmg ) F (W) DY, Fa (21, 2my)-
pFESK ph=1eSy_y  pleS) i=2

In obtaining the above we used the linearity of D} and the convergence of the sum to
change the order of the sum and operator. Using that D}, Fi(21,...,2m;,) = Fu(21,--, 2my)
whenever pu! € S;, we deduce

D} W/(m;z) = W/ (m;z). (3.3.15)
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On the other hand, using the definition of D,, and Lemma 3.3.1, we have

mi mi
1 1—gq Zj —qz; 25— S
Dm1 FHI (Zl, B ,Zml) = Z 1_ 52 H \Zz -2 1 525 Fp,l (Zml/{zi})7 (3316)
=1 J=1,j#i
where z,, /{z;} stands for the variable set (z1,...,2_1, 2i41,-- ., 2m, ). Replacing (3.3.16) in

our earlier expression for D}, W/ (m;z) and utilizing (3.3.15) we conclude that

wimn -3t 1 (2tit)
2) =
izll—szij:u# zj— 2z 1— sz

(3.3.17)

k
Z Z o Z H Fl‘i/ﬂi~1 (zmi—l"l‘li ceey Zmi)F(Mk)Fﬂl (Zml/{zi})'

pkeSy pk—1e8,_y  pleS i=2

We notice from the definition of Fy/, that for A € Sign; , and u € Signj, | we have

b
Zi— 8
F)\/“(Z(H_],. .. ,Zb) = H J q X F;\/ﬂ(z,ﬁ_l,. . ‘,Zb).
; J

Substituting this and the definition of F' in (3.3.17), we arrive at

N ™ i
T mmsg s 1-g Gl L
Wf(m, z) = H 11— S2; 1 — sz H (ZJJ % 11823') Z Z Z

j=mi+1 7 =1 b j=15#i ARET_y pF—1€Th_o  A*€T

k
> TIFava Gmeist - 2m) GUEF)F it (2, /{23}).

preSigny, .y =2

Above T; = Sign;,,., 1, and G(j1) = Z,\esign;‘v F5/a(#me+15 - - -, 2v) f(A). Using the branching
relations (3.2.4), (3.3.9) and the definition of g we recognize the above identity as (3.3.14). O

Remark 3.3.8. So far in this chapter we have considered the vertically inhomogeneous six-
vertex model; however, one can introduce horizontal inhomogeneities as well. A particular
way to do this is given in [33], where the weights depend on an additional set = = {§;};-01,..
of inhomogeneity parameters (our model corresponds to setting & = 1 for all 7). We denote
the partition function in this case by Fy(u1,...,un|Z) and refer the reader to (1.4) in [33]
for the exact formula (the variables s, in that formula need to be set to g~/2). In a certain
sense, one can interpret D¥ as acting on the first k£ columns of the six-vertex model. If the
first k inhomogeneity parameters &, . .., &x_1 are all the same, then we can find an equivalent
to Lemma 3.3.4, but in general no such extension seems possible. Let us explain how this
can be done in the case k£ = 1. If we set

u; — qu, S ) g
“S IS (20) St

i=1 ji i\~ 84&"
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then one readily verifies, as done above, that D}, Fx(u1, ..., un|Z) = 1= Fa(u, - - -, um|E),
whenever A has distinct parts. The latter can be used to derive a recurrence relation for
W/ (m;u|E) in terms of W9(th;u/{u;}|1E) (here m= = {&};=12..), which generalizes
(3.3.14). The proof is essentially the same as the one presented above.

Remark 3.3.9. In the case of the domain wall boundary condition for the six-vertex model,
which corresponds to f(A) = 1{—n-1,. ay=0} above, the quantity Z/(u)™'W/(m;u) was
investigated in [38] under the name generalized emptiness formation probability (GEFP).
In this setting, (3.3.14) naturally corresponds to equation (3.6) of [38], which is the key
ingredient in finding closed determinant formulas for the GEFP. The derivation of (3.6)
in [38] is based on the quantum inverse scattering method, and we see that the operators
D} (and their generalization outlined in Remark 3.3.8) provide an alternative route for
establishing the recurrence relation.

3.3.3 Action on product functions

Equation (3.3.8) shows that understanding Pf (A(m)) requires knowledge of how DF, act on
the partition function Z/. In this section, we will see that if Z/ has a product form, then
the action of the operators is relatively simple.

In the following sequence of lemmas we investigate how D} D2 ...Dk acts on a func-
tion F'(z) of the form F(z) = F(z1,...,2m) = [[1r; f(2:).

Lemma 3.3.10. Let m > 1 and 1 < k < m be given. Suppose that ¢ € (0,1), s > 1,
ULy ooy Uy > S and u; # u; when @ # j. Let f(2) be a holomorphic non-vanishing function
in a neighborhood of an interval containing 8,uy,...,Un. Put F(z) = F(21,...,2m) =
[T, f(2:). Then we have that

(DX F)(u) = F(u) - =% ﬁ ( Ui — s >'° (f(s)’“

s \u;—sq) (2m)Rk!
N k /m . (3.3.18)
/---/det [ 1 ] Fk(zl,...,zk)l—[ qzj — u; (zj—sq> dz; '
vy Jy 9z =%l FR(S) o \ip s w zi—s ) f(z)
The contour v s a positively oriented contour around the points ui,...,Un,, and does not

contain other singularities of the integrand. Such a contour will exist, provided wu; are suffi-
ciently close to each other.

Proof. The proof is essentially the same as that of Proposition 2.11 in [24]. Firstly, we notice
that the contours will always exist, provided u; are sufficiently close to each other. Indeed,
the singularities of the integrand that are not singularities of f are precisely at u;, s, 0,
2 = ¢ 'z; and at s7! (the latter one is a singularity of Fj). Since u; are bounded away to
the right from s (and hence s™! and 0 ) and the function f does not vanish in a neighborhood
of an interval containing u; we may pick the contour 7 so as to exclude all singularities of the
integrand, except possibly for z; = ¢~'z;. However, if u; are sufficiently close then we can
choose v to be a small circle around those points, which is disjoint from ¢ -+. This excludes
the remaining singularities.
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We substitute in (3.3.18) the Cauchy determinant identity

k(k—1
= %
%~ Q%5 14 =1 IL; ;=1 (a2 — 25)
and calculate the residues at z; = ;- The Vandermonde determinants in the numerator
prevent any of the [;’s to be the same. If they are distinct and I = {ly,..., [} one calculates

the residue to be

1 . U — S k Fi(ur) U; — qu; f(s) u
k! H (uj—sq) F.(9) H u; — [H flw )F( )

¢ iel;jel Ui

The expression in the bracket is precisely [ ], ; Ty, sF(u). Summing over all permutations of
I removes the k! above and summing over I we recognize precisely (DF F)(u) as desired. [

For k <r < m we let DF be the operator that acts on the variables u,...,u,. Then we
have the following result.

Lemma 3.3.11. Suppose 1 <k <my <my < --- <my <m. Denote by M; = {1,...,m;}
fori=1,... k. Then

k
Dl D2 Dk . uj_quir ’LL]'—S %
e ™ Uj — U;, U; — Sq

11EMy igeMy /Iy €My /Iy r=1 \jeM,. /I, 7 I

Hk: 1—q (u,;r—sq r-1 k
r=1 1—su;,. \ 1—su;,. . .
Fi(S) HTuims , where I, = {iy,...,%,}.
k

r=1

(3.3.19)

The above is understood as an equality of operators on functions in m variables.

Proof. We proceed by induction on k with base case k = 1 being just the definition of D},
Suppose the result is known for k£ and we wish to show it for k+1. Substituting the definition
of D} and the induction hypothesis we have

k
DL DEDEL =Y X o ¥ [ I Yttt

i1€My igeMy /1 wEMp/Ix_1 7= \jEM./I,

) r—1
Fk;(S) ol “" 1T il ]eMk I ] — 8q Fk+1(S s
[Tj=k+1 JEMk+1/I
Suppose that i, & I. Then
7 11 Uj — qu; 11 uj— 5\ Fepa (ur) HT _
'U/ikys L ] u] . sq Fk+1(s Ui ,S ’

u U
i€Lj€Mkyr/T 7 T jEMjqa/I i€l
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since one of the factors in the above expressions is (u;, — s)*™* and it vanishes when u;, = s.
It follows that to get a non-zero contribution we must have i, € I. Repeating the argument
we see that ¢, € [ forall r =1,... k. Thus I = I} U {iy,1} for some iy, 1 € M4 are the
only cases that lead to a non-zero contribution. If I does have this form we see that

ok

T Uj — qU; Uj — 8 Fk+1(U1) T
Uiy 8 H Ui — ] H U — Sq Fk H u;,8 —
r=1 €LjeEMpyr /T 0 T jeMyyr/I N 0 +1(S icl
k k+1 k+1
. Uj — qUiy1 [ U; — 4GS U; — 8 Fk+1(8,...,8,uik+l) T _
iy Uj — Uip1 \ Uj — 8 , u; — 59 Fr1(S) e
JEMyq1 /1 JEMy /I r=1

_ Uj — QUi uj =8\ Fenals,---,s u“““ kHT
= H ———-—. — H . Fk+1 H Uiy, S°

. U; — Ujrq u; — 8q
JEMyr /T 7 s JEMy1/1 J

NNy’
From Lemma 3.3.1 we know that Fiii(s,..., 8, us,,) = Fi(S)1—o (u”““ Sq) . Subsi-
k+1

1—suik+1

tuting this above and cancelling Fi(S) we get

k+1

DL DLPEL=Y T Y Y I ] umesee

€My igeMa/I1 ix€My/Ix_1 ikt1E€EMpy1/Ix =1 \jEMr/I, 7 "

-1
| e e Tk
r=1 1—su;. \ 1—su;,

X Ty s

Fies1(5) ,1:11 e
This proves the case k£ + 1 and the general result now follows by induction. O
Lemma 3.3.12. Suppose1 < k <my < my < --- < myg < m. Suppose that g € (0,1), s > 1,
ULy ooy Um > 8 and u; # u; when @ # j. Let f(z) be a holomorphic non-vanishing function
in a neighborhood of an interval containing s,uy, ..., Un. Put F(z) = F(21,...,2m) =

I, f(z). Then we have that

E (T w— s s)* 2 — Zj
(D, D, -+ Dy, F)(u H(Hu;_sq)(];su))k/“'/ 11 —a

r= Y Y 1<i<j<k Zi
Hk 1—q (m)r_l k [/ me k—r+1
r=1 1—sz, \ 1—szr qzr — U; Z, — 8q dz,
- Fi(9) g (i:l Zr — U ) ( Z — 8 ) f(z)z(g—1)
(3.3.20)
The contour 7 is a positively oriented contour around the points ui,...,Un, and does not

contain other singularities of the integrand. Such a contour will exist, provided u; are suffi-
ciently close to each other.

Proof. The proof is similar to that of Lemma 3.3.10 and by the same arguments we know
that the contour v exists, provided u; are sufficiently close.
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We calculate the residues at z, = u;.. The Vandermonde determinant in the numerator
prevents any of the 4,’s to be the same. The residue at z; = u;,, ..., 2 = u;, is given by

r—1
k[ me k ko _1-q (uip—sq
[I(II—) II = ] e
u; — 8q — qug, = u;, (g Fr(S)

r=1 \i=1 1<r<p<k &
k k—r+1
qu;,. — U; Uz, — 8q .
[T, ] ms) (mee
i=1 z;ézT ir t tr

r=1

F(u)f(s)* } |
Hf=1 f(us,)

Performmg some cancellations and recognizing the term inside the square brackets as
e, TumsF(u) we recognize precisely the term on the RHS of (3.3.19) corresponding to
1, ...,k Summing over all the residues we arrive at the desired identity. (|

3.4 Weak convergence of (Y],...,YF)

In this section we use our results from Section 3.3 to derive formulas for P, (YL <my,...,
V¥ < my). Afterwards we specialize our formulas to the case when all u and all v parameters
are the same and show that under the scaling of Theorem 3.1.3 the joint CDFs of the vectors
(Y1, ..., Y/F) converge to a fixed function as the size of the six-vertex model increases. We
finish by identifying the limit as the joint CDF of the right edge of the GUE-corners process
of rank k£ and proving Theorem 3.1.1.

3.4.1 Pre-limit formulas

The goal of this section is to use the results from Section 3.3 to obtain formulas for P, (Y7 <
mi,..., Y < my), where m; € Nfori = 1,...,k and Y7 are defined in Section 3.1.1. We
summarize the result in the following proposition.

Proposition 3.4.1. Fiz parameters as in Definition 3.2.14. Let k and m; fori=1,...,k
be positive integers such that 1 <k <m; <my < ---<my < N. Then we have

M Kk o/m
1 — qsv; Tui—s)\ ¢ / /
Puy (Y <ma,.., VE<my) = | [[—22
~(Y7 <my w < k) (11 1——svj> H<Hui—sq> (2w )k oy v

j= r=1 =1
H ;— zJ H H qzr — U z —sq\ " ﬁ 1 — 2,0, dz, .
2 Zr — Us 2Zr — 8 F 1 — gz z-(1 — sz,)

1<i<j<k r=1 \i=1 j=

(3.4.1)

The contour v is a positively oriented contour that contains w;’s and excludes all other
singularities of the integrand. Such a contour will exist, provided u; are sufficiently close
to each other.

Proof. In what follows we adopt notation from Sections 3.1.1 and 3.2.2.

Let £ = {w € Py : w(0,j) =(0,1;0,1)fori=1,...,N }. From our discussion in
Section 3.2, we know that P,.(E) = 1. Consider the map h : E — Py, given by
h(w)(%,j) = w(@ + 1,5). Le. h(w) is just the collection of up-right paths w, with the ze-
roth column deleted. One readily observes that h is a bijection and the distribution of h(w),
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induced by the distribution of w, is given by P9, where g(u) = gq Z;N X flp+ (D)N;v,p). We
recall that A = p + (1)V is the signature with \; = y; + 1 fori = 1,..., N and f(\;v,p) is
given in (3.2.16).

Indeed, we have for w € E, that

oo N —SN N — su
Hlnlwu,(w o) N (W); v, p) = ((q;q))N_ll 1ui_; x W (w; u).

SN

W9 (h(w);u) @ n

The above shows that the weights W9(h(w);u) are constant multiples of WY (w;u), and so
the probability distributions they define are the same. The partition function Z9(u) differs

from Z7(u) by the same constant factor %}3% Y, —uﬂl and by (3.2.19) equals

N 1 — qu;v
H (H — vj) . (3.4.2)

One easily observes the following equality of events

{we E: \"(h(w)) €Signt, .,i=1,... .k} ={we€ E: Y {w) <m;, i=1,...,k}.

mz’

For example A™ (h(w)) € Sign;,, ; is equivalent to A7'}(w) = 1, which by the conservation of
arrows in the region {(1,y) € Dy :y=1,...,my} is equivalent to Y{(w) < m;. The above
equality of events, coupled with P, (E) = 1 and the previous two paragraphs implies

Puy (Y7 <ma,..., V¥ < my) = P9(A(m)), (3.4.3)

where A(m) is as in (3.3.7). In view of (3.3.8) and (3.4.2), we conclude that if u;,...,uy
are pairwise distinct

1 2 k N M
1 k - (Dmleg'“Dm Zg)(u) _ l I | I l_quivj
]P)u,v(}/l S mi,... ,}/;c S mk) = Zg(u) k s where Zg(u) = m .

i=1 \j=1

(3.4.4)

The result of the proposition now follows from (3.4.4) and Lemma 3.3.12 when uy,...,unx
are pairwise distinct. By continuity it also holds if some are equal. (]

3.4.2 Asymptotic analysis

While most of the results below can be extended to a more general choice of parameters, we
keep discussion simple and assume that all v and all v parameters are the same, and that
# > u > s. With this in mind we have the following definition.

Definition 3.4.2. Let N, M € Nand fix ¢ € (0,1), s = ¢~/2, # >u>sandv € (0,u™?).
We denote by ]PuN, :M the probability measure Py of Definition 3.2.14, with u; = v and v; = v
fore=1,...,Nand j=1,..., M.

With the above definition, we have the following consequence of Proposition 3.4.1. If
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1§k§m1§m2§§mk§N then

Pu,v(yvllgmh"'?y;ckgmk) k/ / jX
Y

1<icj<k 4
f[ @z —uu—s\" (2—sq\"T [ 1-zv 1—gsv\M da
ST\ % —uu-—sq 2y — 8 1—gqgzv1—sv 2 (1 — s2,)’

where -y is a contour, containing u and excluding other singularities of the integrand. Equa-
tion (3.4.5) is prime for asymptotic analysis and we use it to prove the following proposition.

(3.4.5)

Proposition 3.4.3. Let P;M be as in Definition 3.4.2. Put a = uz(’;_ll(li;;;l()ﬁi—f)s) and ¢ =
(2a2)Y/2b7!, where

Qg =

(1—q)v?! { (g+1)s — 2071 (g+1)s —2u 1 1
(v™

o9 —sq) [ =) —sq)‘(u—sxu—sq)] and b S T s

Let v > a and assume that N(M) > v - M for all M >> 1. Then for any k > 1 and
) < - < 1z, 2; € R we have :

Yi—aM - k
lim PY.M ( P Y 1k) = det [i yﬂ—l*leyzmxiydy] . (3.4.6)
M—oo *° e M 27 J1oR

1,5=1

Proof. Put m; = aM +cx;vV M +h; fori=1,...,k, where h; € (—1,1) are such that m; € N
and m; < my < -+ < my for M sufficiently large. Using (3.4.5) we reduce the proof of
(3.4.6) to the following statement :

lim —q-_k—/ / H — % Zr — 8q k=rtl MG (zr)+evMarg(ar)+hrg(er) d
M—o0 (271’L)k Y™ Y™ ; Zr(l _ SZT)

1<i<j<k S 5

k
= det [ 1 / yj—i—16y2/2+zjydy] ,
2me Jior y

4,j=1

(3.4.7)

where 7, are contours that contain u and do not include 0, g7 'v™!

and

— -1 __ -1 _ — —_
G(z) = alog (qz u_ i ) + log (vv—1 zv sq> and g(z) = log (qz vazs ) :

sq —qz v l—s Z—u u— sq

(3.4.8)

Our goal is to find the M — oo limit of the LHS of (3.4.7) and match it with the RHS. Let

us briefly explain what the strategy is. We will find specific contours v = yar(0) U yar(1),
such that Re[G(z)] < 0 on ~,(1) and the integrand (upon a change of variables) has a
clear limit on ya(0). The condition Re[G(z)] < 0 will show that the integral over (1)
decays exponentially fast, and hence does not contribute to the limit. The non-vanishing
contribution, coming from v,,(0), will then be shown to equal the RHS of (3.4.7). The latter

, § or points from g - vy
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approach is typically referred to as the method of steepest descent in the literature.

To simplify formulas in the sequel we denote v~ by w. We start by analyzing the
functions G and g. From (3.4.8) we have G'(z) = a (z_(i)_(z)z“_u) — (Z_(;)"(‘f])iw) and so G(s) =0

and G'(s) = 0 by our choice of a. We observe

(1-qw a(l — qju

—d—Re [G(s+w)]=Im = w(l-q)yA(y),

dy (s+w—w)gs+w)—w) (s+w—u)(g(s+w)—u)
where
Aly) = = 8)u = sq9) 2¢—(g+u _ 2¢—(g+Dw

(w—8)(w—sq) ((s —u)? +y*)((gs —u)? + %) ((s —w)? +y?)((gs — w)? + ¢%y?)
We observe that

B 1 2¢—(g+Vu  2¢—(¢+w
AV = w0 [ -9)u-s) @-s)w-sg) "

where we used u,w > s, ¢ € (0,1) and w > w. In addition, if we put the two fractions in
the definition of A(y) under a common denominator, we see that the sign of A(y) agrees
with the sign of a certain quadratic polynomial in 3? with a positive leading coefficient. This
implies that as y goes from 0 to co, A(y) is initially negative and then becomes positive,
i.e. Re[G(s+ wy)] initially decreases and then increases in y > 0. A similar statement holds
when y < 0. In particular, we can find € > 0 small such that Re [G(s + wy)] < 0fory € [—¢, €]
and Re [G(s £ te)] < 0.
Using u,w > s, ¢ € (0,1) and w > u, we notice

G(0) = alog (E) + log (w — sq) =: —¢y < 0.

u — sq w—3$§

We next observe that

s = G"(s) = (1-qw l (g+1l)s—2w  (g+1)s—2u >0
(w—s)(w—sq) |[(w—s)(w—-s9) (u—s)(u—sq)
Consequently, we have that near s we have G(2) = as(z — s)* + az(z — 5)® + --- and
g(z) = bi(z — s) + ba(z — 5)*> + - --. In particular, if we choose e sufficiently small we can

ensure that

|G(2) — az(z — 8)?| < R|z — s|® and |g(z) — b1(z — s)| < R|z — s|?, when |z — 5| <,
(3.4.9)
where R can be taken to be |by| + |as| + 1. For the remainder we fix € > 0 sufficiently small
so that (3.4.9) holds and ¢, := —Re[G(s £ t€)] > 0.
In what follows we define the contour <. Let B; and C) be the points u and ¢ lu in
the complex plane respectively, and also denote w and ¢~ 'w by B, and C, respectively. For
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i = 1,2 we let w; be the Appolonius circle! of the segment B;C;, which passes through the
origin. By properties of the Appolonius circle, we know that X.Y; is a diameter for w;, where
X =1 = 1—2+“—q and Yy = IQ_F—"”q. Observe that since w > u we have that w; is internally
tangent to wy at 0.

Let s = vy, be the points on w; that lie on the vertical line through s, with 3, > 0. v,
starts from s —:y; and follows w; to s+ wty; counterclockwise, afterwards it goes down to to
s+ M ~'/2, follows the right half of the circle of radius M~/2 around s to s — :M~%/2, and
then continues down to s —ty;. See the left part of Figure 3-6. Observe that by construction
u is enclosed by -y and 0,s,s™! are not. In addition, we notice that since g - w; lies to the
left of ¢- Y] = f—_":‘% and the latter is less than s if u < 3+233, then q - vy lies to the left of ~,,.

This means that ), satisfies the conditions we stated after (3.4.7).

M
- W .
— g e (0)
yar(1)
8§+t
S+ tLe
CIMY ) )
Zoul g lu w g lw
s — L€
$ = un

Figure 3-6: The contour s (left) and ~,s(0) and s (1) (right).

We now investigate the real part of G(z) on 7. Using the properties of the Appolonius
circle, we see that for z € w; we have

- - — g1 e
s [alog (QZ wu—s )} - (I_a_q_ul) iy (u) _
Z—u u— 5q |z — ul u — sq
|X202|) (G’u — qs) :
alog| 7=—= ) +alo , while on the other hand
g (|Xng| g U — 8q

w—2z w—sq |lw — 2| w — sq | X1 B | (w—sq
Re |1 =1 — |41 — ) <1 +1 —
e[og (’w“qz w—S)] 0g(|9'1w-2l)+0g (qw—QS) N Og(lecxf % \qw—gs

'For 7 € (0,1), the Appolonius circle of a segment BC with ratio r is the set of points X such that
%2 = r. For points inside the circle we have XB < r and for those outside £Z > r. If X and'Y denote
the (unique) points on the line BC, which satisfy £2 = r = $5, with X lying inside and Y outside the

segment BC, the Appolonius circle of BC with ratio r, is the circle with diamater XY
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Adding the above inequalities we see that for z € wy, we have
Re[G(2)] < Re[G(0)] = —cp < 0. (3.4.10)

Equation (3.4.10) in particular says that Re[G(s & ty;)] < —co, and since Re[G(s + ty)]
decreases and then increases in |y|, while Re[G(s £ te)] < —ce < 0, we know that Re[G(s £
)] < —min(co, ce), for |y| € [€,y2). Let us denote by ~u(0) the portion of vy;, which
connects s & te near s, and by ya(1), the rest of 7y, - see the right part of Figure 3-6.

The above estimates show that Re[G(z)] < —min(co, cc) for z € ya(1). This suggests,
that asymptotically, we may ignore 7,,(1), as its contribution goes to zero exponentially fast.
Explicitly, if we denote by H(zi,..., z) the integrand in (3.4.7) then we have

lim
M—oco

/ H(zl,...,zk)dz—/ H(z,..., z)dz| = 0. (3.4.11)
M ™ 1M (0) ¥ (0)

We isolate the proof of the above statement in Proposition 3.4.4 below and continue with
the proof of (3.4.7).

In view of (3.4.11), the limit as M — oo of the LHS of (3.4.7) is the same as that of

/ /’ ~ 2 ﬁ (z'r' _ 3q>k—7‘+1 eMG(zT)+C\/Mz,«g(z,~)—a,.g(zr)dzr
27” 724(0) 2 (0) 1<z<J<k —qzi A\ % —s 2 (1 — 52,
(3.4.12)

We do the change of variables y; = (2; — s)M'/? and set I to be the contour that goes up
from —wo0 to —¢, follows the right half of the circle of radius 1 around 0 to ¢, and then
continues up to too. Using (3.4.9), we observe that (3.4.12) equals

Yi—Y; %
r 1<z<]<k M=2(y; — qy;) + s(1 - q)

ﬁ M- 1/2yr+s(1—q) T gzt OO g dyr
r=1 Yr (L =82 — M~12sy, ) (M~2y, +5)

(3.4.13)

The pointwise limit of the integrand as M — oo is given by

dy,
(-0 J] wi-w He%“”lmr%-—————k -

1<i<j<k r=1

Since ay > 0 we see that the integrand in (3.4.13) is dominated by C [[*_, e~ */2. From
the Dominated Convergence Theorem the M — oo limit of (3.4.12), and hence (3.4.7) is

k

1 agys+chi1zryr dyT
W/ /1-\ yJ H€2y 1TrY W (3414)

l<z<J<k r=1

What remains is to show that (3.4.14) and the RHS of (3.4.7) agree. We perform the
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change of variables y; — (2a2)~/?y;, replace [hcici<n(Wi—ys) H':zl yk_++1 with det[yf_j*l]f,jzl,
set IV = (2a,)Y/2T and use (2a;)~'/2bic = 1. This allows us to rewrite (3.4.14) as
1 k

L ety T ey,

(27n)’“ // /I‘/ e [yz ]z,]—lge Y
Using properties of determinants we rewrite the above as

1 g g
det [——/ y I e p”“dy] : (3.4.15)
2mL ind i=1

By Cauchy’s theorem and the rapid decay of e¥’/2 near .00, we may deform I" to 1 + (R,
without changing the value of the integral. Replacing the matrix in the determinant with
its transpose, finally transforms (3.4.15) into the RHS of (3.4.7).

O
Proposition 3.4.4. Denote by H(z,...,2x) the integrand in (3.4.7). Then we have
lim / / H(zl,...,zk)dz—/ H(z,...,zx)dz| =0 (3.4.16)
M=o | Jyy Y M (0) Y (0)

Proof. We adopt the same notation as in the proof of Proposition 3.4.3. We write

/ / H(zy,...,2z)dz = Z / / H(z,...,z2)dz,
™ ™ a(e1) yum(er)

€1,..,x€{0,1}

and so we observe that the expression in the absolute value in (3.4.16) is a finite sum of

terms
/ / H(z,...,2)dz,
var(e1) Yas (ek)

where ¢€; are not all equal to 1. Recall from (3.4.7)

o k _ k—r+1 MG(zr)+cx/M;crg(zT)+hrg(zr)
Heoom) = ] ZZET[(222) 6

1<i<j<k zr(1 — s2,)

Zi—QZj 1 Zp — 8

When z; € vy, we know that

.k _ k—r41 k k—r+1
H Z Zj H (zr Sq) S C and H ( 1 ) S CMk(k+1)/4, (3417)
1<icj<k 2~ 9% 5 zr(1 = s2) i \%r —$
for some constant C' > 0, where we used that z € vy, is at least a distance M ~'/2 from the

point s, and is uniformly bounded away from other singularities.

Further, from our earlier analysis of the real part of G(z) on v, we know that when
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z € ym(1), we have for some (maybe different than before) constant C' > 0

‘eMG(Zr)+C\/MIrg(Zr)+hrg(2r) < C’e_C/M, where ¢ = min(co,ce). (3418)

Finally, if z € y2,(0), we know that

)eMG(zr)+cmxr9(zr)+hrg(zr) < CeEVM i pp-1/2 < [Im(z)] < ¢, and

(3.4.19)

‘eMG(Zr)+C\/_Mxrg(27‘)+hrg(zr) S C if ’Im(z)| S M—1/2.

In (3.4.19), K is a constant that dominates |cz,g(z)|, for z € vy and r = 1,...,k. In
obtaining the first estimate in (3.4.19), we used that Re[G(s + ty)] < 0 for |y| € [M~Y/2 €],
while for the second one we used (3.4.9).

If we combine the statements in (3.4.17), (3.4.18) and (3.4.19) and use the compactness
of ypr, we see that

/ / H(z,...,2;)dz SCe—c'(el+~~—|—ek)MMk(k+l)/4ek~K\/1\_/I,
M (1) Y (k)

and if ¢; are not all 0, we see that the above decays to 0 as M — oc. O

3.4.3 Limit identification and proof of Theorem 3.1.1

We start this section by showing that the RHS of (3.4.6) equals P(A} < z1,--- , A} < i)
when 27 <z < --- < zpand z; € R. Here ] i =1,...,j, j =1,...,k is the GUE-corners
process (see Section 3.1.1). The density of A\l,... , \F was calculated in [82] to equal

k

p(xl, e ,l‘k) = 1{$IS$2S"‘Sxk} det [Cbi_‘j(l‘j)]i,jzl .

In the above we have that ®" for n > 1 is the n-th order iterated integral of the Gaussian

density ¢(x) = 67—:7:2
Y y—o)
"(y) = s 3.4.20
5~ [ g, (3.4.20)
and when n > 0, @ denotes the n-th order derivative of ¢. Let us denote
V(y) = o z™e™ /My,
C2mJier

Then to show that the RHS of (3.4.6) equals P(A\} < z1,--- ,AF < =), it suffices to show
that, when z; < x5 < -+ < 1y,

1 T2 Tn Py k e k
/ dy / dys - - / dy,, det [<I> ](yj)]i,jzl = det [\IIJ 1(:vj)]i,j=1 . (3.4.21)
—00 Y1 Yn—1

The rapid decay of e¥’/2 near +t0o shows that U™ (y) is differentiable, and its derivative
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equals

i\ym(y) - L/ xmiexg/zwa’dx -1 g e 2 gy — YL (y),
dy 2me Jipr dy 21 Jipm

The other properties of U™ that we will need are that ¥°(y) = ¢(y) and limy_,_oo ¥™(y) = 0.

To see the former, we complete the square in the exponential of ¥°(y) and change variables

=14 1z to see
e—y2/2

2T

e"y2/2

—y2/2
c / o~ G—uy+1)?/2g, — € v/
R

o [ = ot
R

V(y) =

2

/e(1+y+bz)2/2dz =
R 2

The middle equality follows from the usual shift of R to R+ ¢(y + 1), which does not change
the integral by Cauchy’s theorem. Performing the same change of variables we see that for
any m € Z and y < —1, we have that

—y2/2

m € m_—(z—u(y+1))2/2 e v'/?
U™ (y) = o R(l—i—bz) e dz =

/(Lz — )™ */dz,
R

where the last equality follows from the shift of R to R + ¢(y + 1), which does not change
the integral by Cauchy’s theorem, as the possible pole at z = ¢ is never crossed when y < 0.
When m < 0, we notice that |(tz — y)™| < 1, when y < —1, while when m > 0, we can
bound the same expression by C(|y|™ + |2|™ + 1), uniformly in z € R and y < —1. The
upshot is that

™

e_y2/2

o) < S

/C(Iy|m+|z|m+1)e“z2/2dz < C(m)ly|™e ¥"/?, and hence lim ¥™(y) = 0.
R

Y—+—00

Similar arguments also show that lim,, ., ®™(y) = 0 for any m € Z.

We next show that & ™(y) = ¥™(y) for all m € Z. From the previous paragraph we
know this to be the case when m = 0. Since ¥™*1(y) = d%\lfm(y) and " 1(y) = d%@_m(y),
when m > 0, we have equality when m > 0. Finally, we prove the result for —m > 0 by
induction on —m. Suppose, we know that ®*(y) = ¥U*(y), for kK > 0. Then we have

d d

— k1 (y) = —U*71(y) and so ®*+!(y) — U*"1(y) is constant.

dy dy

As both ®**1(y) and U~*1(y) vanish as y —+ —oo, we see that the constant is 0, and we
have ®*+1(y) = U=*-1(y). The general result now follows by induction.

We now turn to the proof of (3.4.21). From our discussion above we know that both
sides define continuously differentiable functions in z;. When z; goes to —oo, we have that
the first column in the matrix on the RHS goes to 0 and so the determinant vanishes. The
LHS also vanishes, as it is dominated by P(A\l < z;). Consequently, it suffices to show that
the derivatives w.r.t. z; on both sides agree. Replacing ®™ with ¥™™, what we want is to
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show that when z; <z <--- < zp and y; = 2,

T T3 Tn o d o
/ dy2/ dys - - / dy,, det [\I/”_z(yj)] i — det [W]_’_l(mj)]ijzl i
x1 Y2 Yn—1

Using that d%\Ilm(y) = U™rl(y), we see that RHS above is the determinant of a ma-
trix, whose first column is ¥°(z;),..., ¥*"1(z;) and its j-th column for 2 < j < k is
WI=2(z;), Ui3(z;), ..., W% 1(z;). In particular, when z = z; the first two columns are
the same and so the determinant vanishes. The LHS also vanishes because of the integral
fff dys, and so to show equality it suffices to show equality of the derivatives w.r.t. zs. lLe.
we want when 2y < zo <-.- <z and y; = 21, Yo = To

k d d k

T3 Tn
dyz - - - dy, det [TI7 (y)]7 . = ———det [¥I""(z;)] .
/:1;2 Y3 /yn—l Yn d€ [ (yj)]q,,jzl dm2 dml € [ (xﬂ)]zg:l

In this case, when x3 = x5, the RHS vanishes as the second and third column of the matrix
become the same, while the LHS vanishes because of f;; dys. Thus it is enough to show
that the derivatives w.r.t. x3 are equal. Continuing in this fashion for zs, ..., xx, we see that
(3.4.21) will follow if we know that

k d d d -
A Qi (.
1,5=1 da:k d.’EQ d.’l,'l det [ (-’13'3)]

- k
det [¥97(z;)] P

The above is now a trivial consequence of d%\llm(y) = U™ (y) and so we conclude the
validity of (3.4.21).

Our work above together with Proposition 3.4.3 show that when z; < 2o <.+ < g

lim PN-M

u,v

Yi—aM
S <gpi=1,... k) =P\ <z, A < ).
( C\/M = ) ( 1 1 k k)

Since with probability 1, we have Y} < Y2 < ... < YF and A} < A2 < ... < AF| the above
equality readily extends to all x1,...,z; € R. In particular, we obtain the following lemma.

Lemma 3.4.5. Assume the same notation as in Theorem 38.1.8. For any k > 1, we have

that
1

VM

converge weakly to the vector (A}, ..., \F), where )\g fori=1,....,5 and j=1,...,k is the
GUE-corners process of rank k.

(YII(M)_O'M>"' 7Ykk(M) _aM)a

The above lemma will be one of the central ingredients necessary for the proof of Theorem
3.1.3 and we use it below to prove Theorem 3.1.1

Broof. (Theorem 3.1.1) Assume the same notation as in Theorem 3.1.1. It follows from our
discussion in the proof of Proposition 3.4.1 that

PV ({w: AN (w) = 14,1 <i < k}) =PYMY! < N,... .Y < N)=PYM (¥ < N).
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Let z € R and notice that as N > - M with v > a, we have that for all large M,

Yi—aM
PVM(Yl< N, ... YF<N >]P’UN;,M(’————<x;z':1,...,k>.
u,v(l— k = )— . C\/—M =

By Lemma 3.4.5, the latter expression converges to P(Ai < z;i=1,...,k) = P (A} <) as
M — oo. Thus we have

11&15301?195;,1‘4 {w: M) =41<i<k}) 2P (N <z).
The above holds for all z € R, and sending £ — oo we conclude the statement of the theorem.
U

3.5 Gibbs measures on Gelfand-Tsetlin cones

In this section we investigate probability measures on Gelfand-Tsetlin cones in R™"+1/2,
which satisfy what is known as the continuous Gibbs property (see Definition 3.5.4 be-
low). An example of such a measure is given by the GUE-corners process X, i = 1,...,7,
j=1,...,nof rank n. The main result of this section is Proposition 3.5.6, which can be un-
derstood as a classification result for the GUE-corners process. Essentially, it distinguishes
the GUE-corners process as the unique probability measure on the Gelfand-Tsetlin cone
GT™ (defined in Section 3.5.1 below), which satisfies the continuous Gibbs property and has
a certain marginal distribution. A similar result, which we also use, is given by Proposition
6 in [52].

It is well known that Gibbs measures on C,, are related to measures on n X n Hermitian
matrices, that are invariant under the action of the unitary group U(n) (see e.g. [45]). The
study of unitarily invariant measures on Hermitian matrices is a rich subject with connections
to many branches of mathematics. A towering result in this area is the classification of the
ergodic unitarily invariant Borel probability measures on infinite Hermitian matrices [71],
which can be viewed as the origin of our GUE-corners process classification result.

3.5.1 The continuous Gibbs property

In what follows we adopt some of the terminology from [45] and [52]. Let C, be the Weyl
chamber in R" i.e.

Co ={(z1,...,2n) ER" 12y <5<+ <z}
For z € R™ and y € R*! we write > y to mean that
TSP ST S Yo < STy S Yno1 S T
For x = (x1,...,2,) € C, we define the Gelfand-Tsetlin polytope to be

GTo(z) == {(=*,...,2") : 2" = z,2" € R*, 2" = 21,2 < k < n}.
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We explain what we mean by the uniform measure on a Gelfand-Tsetlin polytope GT,(x).
The latter set is a bounded convex set C of a real vector space. We define its volume, as we
do for any bounded convex set, to be to be its measure according to the Lebesgue measure
on the real affine subspace that it spans (if the subspace is of dimension 0, i.e. x; =--- =z,
the Lebesgue measure is given by the delta mass at z; = --- = z,,) and denote it by vol(C).
We define the Lebesgue measure on C as this Lebesgue measure restricted to C' and the
uniform probability measure on C' as the normalized Lebesgue measure on C by vol(C).
The inclusion z* € R identifies GT,,(z) as a subset of R®™ /2 and we can naturally think
of measures on GT,(z) as measures on R™"~1/2,

If A € C, we denote by u, the image of the uniform measure on GT,(\) by the map
Prn-1 : ¢ € GT,(A) = z" ! € C,_;. Let I\ be the Lebesgue measure on the convex set
Pn—1(GT,(A)). Then Lemma 3.8 of [45] shows that u, is a probability measure on the set
{zrteChq: A= 2™ !} and

in(d) = = ds),

where di () for A € Cy, denotes vol(GT(A)). Lemma 3.7 in [45] shows that d,,()\) is explicitly

given by
A — N
dn(A) = I I 4
9 oy Jg—
1<i<j<n
AiFEA;

For A € C,, we define E#* to be the expectation with respect to w as defined above and
we also set E* to be the expectation with respect to the uniform measure on GT,(\) as
defined above. We summarize some of the properties of these expectations in a sequence of
lemmas, whose proof is deferred to Section 3.5.2.

Lemma 3.5.1. Fiz n > 2. Let A\ € C, and X\* € C, be such that limy_,o |A — N¥| = 0.
Suppose f: R"™! — C is a bounded continuous function. Then we have

Jim B4 [£(2)] = B [f(2)].

Lemma 3.5.2. Let n > 2 and f : R**D/2 5 C be bounded and continuous. Then the
function
g(y) =FE¥ [f(y,x”_l, - ,xl)] , 18 bounded and continuous on C,.

Lemma 3.5.3. Let n > 2, A\ € C, and \F € C, be such that limy_,o |A — A¥| = 0. Suppose
f:RM=1/2 5 C 45 a bounded continuous function. Then we have

leHOIOEAk [f(@*,. 2] =E*[f(="1,...,3Y)].
We define the Gelfand-Tsetlin cone GT™ to be
GT" = fy e R i < of il 1<i<j<no1).
Alternatively, we have GT™ = Uxec, GT,.(A). We make the following definition after [52].
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Definition 3.5.4. A probability measure g on GT™ is said to satisfy the continuous Gibbs
property if conditioned on y™ the distribution of (y*,...,y""!) under y is uniform on GT,,(y™).
Equivalently, for any bounded continuous function f : R*"+1)/2 — C we have that

B [f(y" ... u")] =E* [EY [f(y", " ", 9']],

where p™ is the pushforward of u to the top row y™ of the Gelfand-Tsetlin cone GT™.

Remark 3.5.5. It follows from Lemma 3.5.2 that E¥" [f(y™, y"},...,y'] is a continuous func-
tion of y™ and so its expectation with respect to u™ is a well-defined quantity.

The main result of this section is as follows.
Proposition 3.5.6. Suppose that p is a probability distributions on GT™, which satisfies
the continuous Gibbs property (Definition 3.5.4). Suppose that the joint distribution of

(Y1,...,y%) under p agrees with the law of (A},...,A"), where X, i=1,...,5,j=1,...,n
is the GUE-corners process of rank n. Then p is the GUE-corners process of rank n.

The above proposition relies on the following lemmas, whose proof is deferred to Section
3.5.3.

Lemma 3.5.7. Forz' € C;,i=1,...,n and t = (t,...,t,) with t; € R define
flt, a2 at) = [ exp(eta(|2F] — |271))),
i=1

where |zF| = 2% + - -+ 2 and |2°] = 0. Suppose n > 2 and z" € C, with x7 > z"_, -+ > z?
and t = (t1,...,t,) with t; pairwise distinct. Then

n 1 , - "
dn(z) - E*" [fult,2",...,2")] = H -5 X Z sign(o) exp (tha(i)xi> .
1<i<j<n N7 v GESn i=1

Lemma 3.5.8. Suppose n > 2 and z" € C,, with = > = - >t Lett = (t1,...,tn)

nel""

with t; € R. For o € S, we define ty := (t,q),--.,ts(n)) and we set

n
gn(t,z", 2"t . 2t) = Hexp(btixﬁ).
i=1

If t; are all nonzero we have

d,(z™)- Z sign(o)E™" [gn(ta,xn, - ,xl)] H(Lta(i))”—i = (—1)71_(22:2 Z sign(o) exp (LZta(i)x?>

OGSn =1 UESn

Proof. (Proposition 3.5.6) Suppose t = (¢i,...,t,) with ¢; € R is such that t; are pairwise
distinct and non-zero. It follows from Lemmas 3.5.7 and 3.5.8 that if 2 > a7 _; >--- > 27,
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we have '
E=" [falt,z”,...,2")] = H L(tL-—— Z sign(o)E™" [gu(ts, 2™, ..., z")] 1__[(Lt(,(i))”_Z
1<i<j<n VY o€Sn i=1

From Lemma 3.5.3 we know that both sides of the above equality are continuous in z" and
so the equality holds for all 2" € C,,.

Taking the expectation with respect to p on both sides we recognize the LHS as the

characteristic function of (|z| — |z"7Y,...,|z?| — |z!|,|z!|) under the law p. The RHS is
a linear combination of the characterlstlc functlons of (zi,...,2") under the law u. By
assumption, (z1,...,z") has the same law under p as (\,..., A\?), from which we conclude
E* |exp (Z uti(|x| — |x"1|>} =K [ekp (Z PACNES |)\i_1|>} ,
i=1 i=1
whenever ¢; are pairwise distinct and non-zero (recall |z°| = 0). Since the characteristic

functions are continuous in ¢ it follows that the above equality holds for all ¢ € R™. As
the characteristic function of a distribution uniquely defines it we conclude that (|z"| —
|z, ..., |z — |z!],|z!|) are i.i.d. Gaussian random variables with mean 0 and variance 1.
The latter together with the continuous Gibbs property, satisfied by u, implies that p is the
GUE corners process by Proposition 6 in [52]. O

3.5.2 Proof of Lemmas 3.5.1, 3.5.2 and 3.5.3

We adopt the same notation as in Section 3.5.1.

Proof. (Lemma 3.5.1) We begin by first assuming that f(z) = [[i] fi(z;) where f; are
bounded, continuous and non-negative real-valued functions. Let 1 <n; <ny <---<n, <
n — 1 and mq,...,m, > 1 be such that

o \, =)\ ifi,j € M, forsomeq=1,...,r;

o <) ifi<jand {i,j} & M, forany g=1,...,r

where My, = {ng,...,ng+my—1}. Wealsoset J:={j:1<j<n-—1,and {j,j+1} ¢
M, for any ¢ =1,...,r} and M, = {n,,...,ng +m, — 2}. Then by the definition of y,

- [ﬁfi(xi)J: I 5 XHHf, ax TT TI IT 222w o),

i=1 l§i;&<n q—lgeM’ 1<i<j<r sEM’ tGM’
i#As
J+1 €T: — @I, z__/\ )\_:L-
where F\(\) = H/ dxj> [re II 2= II 2= I ==
eJ e 1<ici<n—1 J 7 Y aciiina1 1TV 1<idicn J
j j
ijET iedigd igJjed
Let us assume that for each k we have \¥ < M\¥ < ... < A% Then the above formula
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yields .
n—1 ] — n—1 J+1 fI;j —
Efak Hfz(xz) = H N )\k H/ Hf] z;) H =i
i=1 1<i<j<n 7 G=1 7% 1<i<j<n—1

Suppose € > 0 is given. Then if k is sufficiently large we know by the continuity of the
functions that for all j € J we have |f;(z;) — f(\;)] < € for all z; € [X¥, A}, ,]. Using that f;
are uniformly bounded by some M we conclude that

n—1 . n—1 o
e [T - T 35T [ aoTso0 Mo T %= <ce
i=1 1<i<j<n 7 Jg€J jEJ 1<i<j<n—1 (3 . 1)

for all sufficiently large k, where C can be taken to be (n — 1)(1 + M)"~!. Observing that
g0 £5O) = Iy (T2 fr, (o)) an using (3.5.1) we et

n—1 n—1
lim sup |E*> [H st |~ B T A xz)] < e+ (M + 1) imsup G2 () — Ga(X),
k—o00 im1 i1 k—o00
(3.5.2)
At — j—1
where G (A H H H — H 3T )\iF(/\), and
4,j=1,....,r sSEM] te M 1<1<]Sn J
1<j )x,;-‘}é)\j

] —i [T Tj—T;

Ga(N*) = H (H/ )Hfj(xj) 11 ——

. 1<i<j<n J A jed 1<i<j<n—1 J

For j ¢ J denote by ¢(j) the ¢ such that {j,j + 1} C M,. We define G§ and G5 as
follows

aton = T 1= (H / )Hfj(xj) 1 ===

—1
1<i<j<n J jeJ 1<i<j<n—1 J
ijEJ
k k
: —x; , Ai— A
S ) ey i S ¥
—1 —1 —1
jEdig i€],j¢] 7 =1 i< 3T i,
1<J 1<j ,_7€M' jEM ¢(z)
— k . j—Z .7+1 x]_wz
o= 11 5 (H/ e T 2=
1<i<j<n .7 jeJ 1<i<j<n—1
(=
k k
xa i 351 Tj— % )‘j - Ai-i—l.
< 11 LT H 1~ s
—1 - —1 . —1
JEJEJ ieJ,j¢J j g=1 i<y, J a]¢J1<J» J
1<j 1<j 7.7€M’ JEM, 4’("-)

Using the non-negativity of f; we observe that G5 (AF) < Go(\*) < GF(\%).
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Performing the integration over z; for j & J we may rewrite G4 (AF) as

cio= T =% I 2 (H/A )foxj)x

1<i<j<n "7 g ughq, jed jeJ
AiFEA; JEM Yy
T; — T z; — Ak Ay —
II == II == 1l =
. . i . . Z. . _ Z- .
1<i<j<n~—1 J jETAgT J ied g J
i,j€J i<j i<j

Similarly, we have

Gy (\F) = H Xi_:j\_k H z+1 <H/Ak )Hf,(x]

1<i<j<n " J ¢ 43¢ J,i<7, jeJ jeJ
e TEM
k k _
e |
— — —
1<icj<n—1 7 jedig] J i€ i@ J
1,7€J i<g i<g
We observe that
lim J—1 H ’\j-i—l_’\i — lim J—1 H )‘j_)\i+1 .
Paresl IS J—i koo VY j—i
1<i<j<n 7J Pl i<y, 1<i<j<n 7 i i<,
. . . . : 7
XFAs TEM A7y TEM ;) (3.5.3)
< T T1 [T 2=
1<i<j<n Aj— i,j=1,....r s€ M/ te M}
/\1;-7"—‘)\7' 1<j

Moreover, by the Bounded Convergence Theorem we conclude that

o Y. DV
,JLH;O(H]/M )Hf””” [1 2= 1155 1 20 =ro

— — -4
j jed \<i<j<n—1 J jedigs ieqjes
1,J€J 1<J 1<J
k 2\E )
: ZTj—T; T — N j L
lim H Hf] z;) H L H e | | L =F()).
k—o00 . Ak - J—17 ; J—1 R . J—1
JEJ YN jeJ 1<i<j<n—1 jedigd i€, j&J
1,J€J 1<J 1<J

(3.5.4)

From (3.5.3) and (3.5.4) we conclude that lim;_ . GE()\*) = G1()\) and since G5 (\*) <
G2(NF) < GF(N*) we conclude that limy_,0, Go(A*) = G1(N). The latter implies from (3.5.2)

that . .
E# [H fi(z;)| — E#»* [H fz(a:l)]

i=1

lim sup
k—oo

< Ce.
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Since € > 0 was arbitrary we conclude that

- h:[ fi(xi)] — B [ﬁ fi(ﬂ%‘)]

i=1

lim sup =0.

k—o0

We next suppose that A\* do not necessarily satisfy \¥ < A\f < ... < k. If we are given
a AF, then from our earlier work we may find v* such that

1. |v* — N*| < 1/K,
2. vF <k <o < Uk

3. [Eme [[127) filzs)] — B4+ [[105) fi(mi)]| < 1/

Condition (1) above implies that v* converges to A and by (2) our earlier work applies so we

get |
E* [_H fi(w:) | — BAr {H fim)]

=1
Finally, by the triangle inequality and condition (3) we conclude that

g [ﬂ fz’(ﬂ?i)} — EHa liI:[ fi(xz‘)} ‘ =0.

=1

lim sup = 0.

k—o0

lim sup
k—o0

This proves the statement of the lemma, whenever f(z) = [[7; fi(z:) with f; bounded,
continuous and non-negative real-valued functions.

Using linearity of expectation and our earlier result we concude the statement of the
lemma, whenever f(z) is a finite linear combination of functions of the form [ fi(z:)
with f; bounded and continuous. In particular, we know the result whenever f equals
P(z)-1p,, where R > 0, By = {z € R"!||z;| < Rfori =1,...,n— 1} and P(z) is a
polynomial.

If f(x) is any bounded continuous function, we may replace it with f(z)1lp,, where
R = 1+ max(|\],|A\,]), without affecting the statement of the lemma, since for large k,
the support of pyx lies in Bg. By the Stone-Weierstrass Theorem we can find a polynomial
g(z) such that sup,cgn-1|f(z)1p, — g(z)1p,| < €. The triangle inequality and our result for
polynomials now show -

lim sup [E** [ (z)] — E*** [f(z)]] = limsup [E** [f(z)15,] — E** [f(z)184]] <

k—oo k—o00
lim sup ([ [/ (2)15,] = E* [g(&) L] + B [/ () 15,) — B [g(e) L]l +

[E** [9(2)155] — B [9(2)15,]]) < 2e.

Since € > 0 was arbitrary we conclude that lim sup,_, . |[E* [f(z)] — E#* [f(x)]| = 0.
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Proof. (Lemma 3.5.2) We begin by assuming that f(z",...,z') = fi(z")fo(2™L,.. ., 2t)
with fi, fo bounded and continuous. Fix 8 € C, and suppose C, > 8% — 3 as k — oo. From
Lemma 3.5.1 we have

Jim B (f(8%, 277, aY)] = lim A(BYE (R, 2] = LB RGE, 2,

Using linearity of expectation and the above we have that EA[f(8,z"},..., 2!)] is a con-
tinuous function in f, whenever f is of the form P(z",z"*,...,z') - 15,, where R > 0,
B = {z e R*"*V/2||g]| < Rfori=1,...,5;5=1,...,n} and P(z) is a polynomial.

Suppose now f is any bounded continuous function, fix 8 € C, and suppose C, 3 f* —
as k — oco. For all large k we have that $* lie in the compact set Bp, with R = 1 +
max(|B1],]8s]). By the Stone-Weierstrass Theorem we can find a polynomial g(z) such that
SUpP,egn(n+ny/2 | f(T)1p, —9(2)1p,| < €. The triangle inequality and our result for polynomials
now show

limsup [E°[£ (8%, 2, ..., a")] — B[£(8,2", ... 2")]| =

k—oo
hmsup ‘Eﬁk[f(ﬂkvmn_la < 7m1)1BR] - Eﬁ[f(ﬁ’zn_l7 s 7x1)1BR] <
k—ro0
lim sup ‘Eﬁk{g(ﬂk,w""l, a1, —EPg(B, 2™, .. 21, ]| 4 2€ = 2e.

k—o00

As € > 0 was arbitrary we conclude continuity, while boundedness is immediate from the
boundedness of f. O

Proof. (Lemma 3.5.3) We proceed by induction on n with n = 2 being true by Lemma 3.5.1.
Suppose the result holds for n — 1 > 2 and we want to prove it for n.
For any v € C,, we have

E¥ [f(a:"_l, . ,xl)] = /c uu(d,B)lEB[f(ﬁ,w"‘z, . ,a:l)] = EM [Eﬁ[f(ﬂ,x"_2, . ,xl)]] .

By Lemma 3.5.2, we have EA[f(3,2"2,...,2!)] is a bounded and continuous function in
B € C,. From Lemma 3.5.1 we conclude that

lim E* [EP[f(8,2"72%,... a")]] = B [EF[f(B,2"2%,...,2")]] .

k—o00

This proves the result for n and the general result follows by induction. O

3.5.3 Proof of Lemmas 3.5.7 and 3.5.8

We adopt the same notation as in Section 3.5.1.

Proof. (Lemma 3.5.7) We proceed by induction on . When n = 2 we have that

z3 L(tl-—tz)w% _ 8L(t1—t2)$%

2 eL(tl—tg)zdx — eLtz(x%—i-:c%)e —
2 L(tl - tZ)

1

dy(z") - B [fo(t, 2%, 2")] = eLtQ(m%er%)/
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1
L(tl — tz)
which proves the base case.

x [exp(e(taz; + t123)) — exp(e(t12] + ta23))]

Suppose the result holds for n — 1 > 2 and we wish to prove it for n. We have

@ ope
d,(z)-E® [f(t,a:",...,xl)] =// giinle |dyn_1---dy1dn_1(y)-]Ey [fn_l(s,y,x"_z,...,xl)],

where s = (t; —tpn,...,th—2 — tn,tn_1 — tn). By induction hypothesis the above becomes
ol [ " 1
L n w LIS LY
bt [T [y [] s x Y sion(o) e z sioty
n—-1 1 1<i<j<n—1 o0€ESn—1

H 1 Z sign(o)el=" ’i_Il exp (LS, G(i)) — exp (Lsi.’ﬂg(i) +1)

1<i<j<n—1 u(t; — ;) 0€Sn_1 t(tn —t;)

n—1
e T ﬁ— > sign(o) [ ] (exp (ss0F) — exp (t506)2741))
1<i<j<n Lt —t) 0€Sn_1 =1

where in the last equality we used that sign(o) = sign(c™1).
The above equality reduces the induction step to showing

n—1 n
Z sign(o) H (exp (tSo(iyz}) — exp (LSo(i)Zi1)) = Z sign(o) exp (LZ sa(i)x?> ,
i=1

0E€ESn—_1 i=1 o€Sy
(3.5.5)
where s, = 0.

Put A, = exp (Lsa(i)x?) and B;, = —exp (LSa(i).’E?+1). We open the brackets on the
LHS of (3.5.5) and obtain a sum of words sign(c)Ci,---Ch_1,, where C = A or B. We
consider the words that have B followed by an A at positions r,7 + 1 and set 7 to be the
transposition (r,7 + 1). Observe that

sign(o) By s Ari1,6 + $ign(70) By 1o Ari170 = 0, and hence

Z Sign(o-)cl,cr e Cr—-l,a'Br,aA'r—i-l,aCr—i-Z,a e Cn—l,a =0.

gESp_1

The latter implies that the only words that contribute to the LHS of (3.5.5) are k A’s followed
by n—k—1B’sfor k=0,...,n— 1. We conclude that the LHS of (3.5.5) equals

n—1 n—1
Z(—l)”'l_k Z sign(o Hexp LSo()ZY) H exp (LSo() 1) (3.5.6)
k=0 cE€Sn—_1 i=k+1

and the latter now clearly equals the RHS of (3.5.5) by inspecting the signs of the summands
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exp (¢ D27, Sox}) on both sides for ¢ € S,. O

Proof. (Lemma 3.5.8) We proceed by induction on n. When n = 2 we have that

2
5 2 el.tlcc2 _ eLtla:l

dn(22)E™ [ga(t, 2%, z1)] = 27 / eh?dy = et

Consequently, we have

Gula?) - 3 sign(o) (1hs))E? [galts, 0%, ..., 2")] = etisbeast _ gistnat
oESy

from which we conclude the base case.
Suppose we know the result for n — 1 > 2 and we wish to prove it for n. We have

d,(z"™) Z sign(o)E™" [gn(ts, 2", ..., z")] H(Ltc,(i))”‘i =
i=1

oESh

; Lta.( )1:"‘ - n—i mz mg Y n—2 1
E szgn(a)e e | I (Lta(i)) e dy'n—l e dyl'dn—l(y)E I:gn——l(80'7 Y, T gy L )] )
i=1 Tn oy vt

gESy

where s, = (ty(1), - - -, to(n-1)). Splitting the above sum over permutations of t,(1), . - ., te(n-1)
and applying the induction hypothesis we see that the above equals

(_1) (n—1}2(n—22 Z(_l)n k Ltkw Lt / / dyn— dyl Z szgn exp ( Z ST(,L )
r;ék

k=1 TESH_1

n

n—1
= (—l)gn;lén;22 Z(—l)"‘ke‘tkzz Z sign(T) H (exp (Lsf(i):v;ﬁrl) — exp (Lsf(i)x?))
i=1

k=1 TESHL—1

where Sk = (tl, C 7tk—1,tk+1a ce ,tn).
Using equation (3.5.6), we may rewrite the above as

n—1 n—1

n
(—1) =2 Z(—l)"‘ke‘tk”? Z(—l)’ Z sign(t Hexp vsbiyz) T exp (eskaiyy) -
k=1 1=0 TE€5n—1 i=l+1
If i <n—1 we have
n n—1
Z(—l)”_ke‘tkmz Z sign(T H exp LST(l).’E H exp (Lsf(i):c;';rl) =
k=1 T€ESH-1 =1 i=l+1
1 n—2
Z sign(o) exp (L(tous1) + tom))Th) H exp (o @y) H exp (to)afy,) = 0.
7ESn i=1 i=l4+1

To see the last equality we may swap [+ 1 and n in the above sum by a transposition and
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observe that we get the same sum but with a flipped sign due to the factors sign(c). Hence,
the sum is invariant under change of sign and must be 0. The last argument shows that only
[ =n — 1 contributes in our earlier formula and so we conclude that

Z sign(c)E*" n(t . ﬁ (tto@)"” =
i=1

0ESy
= (— )m121 Z( 1) Fethen z sign Hexp LS7()T
k=1 TESH—1
(n 1

The latter expression is clearly equal to (— 1) > oes, Stgn(o) exp (17 to(:2}), which
proves the case n. The general result now follows by induction. O

3.6 Gibbs measures on Gelfand-Tsetlin patterns

The purpose of this section is to analyze probability measures on half-strict Gelfand-Tsetlin
patterns GT;/, which satisfy what we call the siz-vertez Gibbs property (see Definition 3.6.2).
An example of such a measure is given by the distribution function of (Y7)1<i<ji<i<n (see
Section 3.1.1). The main result of this section is Proposition 3.6.7, which roughly states that
under weak limits the six-vertex Gibbs property becomes the continuous Gibbs property
(Definition 3.5.4).

3.6.1 Gibbs measures on the six-vertex model

In this section we define the Gibbs property for the six-vertex model on a domain D. We
also explain how to symmetrize such a model when D is finite and relate the weight choice
in this chapter to the ferroelectric phase of the six-vertex model. In what follows we will
adopt some of the notation from Appendix A in [1].

Suppose we have a finite domain D C Z2?. For A C Z2, we let OA denote the boundary
of A, which consists of all vertices in Z?/A, which are adjacent to some vertex in A. We
consider the six-vertex model on D with fixed boundary condition. This is a probability
measure on up-right paths in D with fixed endpoints and we explain its construction below.

We start by assigning certain arrow configurations to the vertices in 9D and consider all
up-right path configurations in D, which match the arrow assignments in dD. Call the latter
set P(D,0D). Paths are not allowed to share horizontal or vertical pieces and as in Section
3.1.1 we encode the arrow configuration at a vertex through the four-tuple (i1, 71;%2,j2),
representing the number of incoming and outgoing vertical and horizontal arrows. For (i, 7) €
D and w € P(D,0D) we let w(i,j) denote the arrow configuration at the corresponding
vertex. We have six possible arrow configurations and we define corresponding positive
vertex weights as follows

w(0,0;0,0) = wy, w(l,1;1,1) = wy, w(1,0;1,0) = ws,

3.6.1
w(0,1;0,1) = wy, w(1,0;0,1) = ws, w(0,1;1,0) = we. ( )

The weight of a path configuration w is defined through W(w) := []; ;cp w(w(%, 7)), and we
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define the six-vertex model as the the probability measure p on P(D,dD) with probability
proportional to W(w). As weights are positive and D is finite this is well-defined.

Forw € P(D,0D), A C D and an arrow configuration (i1, ji; 2, j2) we let Ny.a (i1, j1; 92, J2)
denote the number of vertices (z,y) € A with arrow configuration (iy, 51; %2, j2). We abbre-
viate Ny = Nw;A(07 0; O:O)a N; = Nw;A(L I;1, 1)7 N; = Nw;A(]-,O; 1, O)a Ny = Nw;A((]; 1;0, 1)7
Ns = N,:a(1,0;0,1), and Ng = N,2(0,1;1,0). With this notation we make the following
definition.

Definition 3.6.1. Fix w;, ws, w3, wy, ws,ws > 0. A probability measure p on P(D;8D) is
said to satisfy the Gibbs property (for the six-vertex model on D with weights (w;, wy, w3, wy,
ws,wg)) if for any finite subset A C D the conditional probability pa(w) of selecting w €

P(D,dD) conditioned on w|p, is proportional to wi  whws*wi*wiswe.

Notice that Definition 3.6.1 makes sense even if D is not finite. It is easy to see that the
measure 4 we defined earlier satisfies the Gibbs property with weights (w,, ws, w3, wy, ws, we).
Similarly, let us consider the measure P;" from Definition 3.4.2 conditioned on the top row
AV (w) being fixed. The latter satisfies the Gibbs property for the domain Dy = Zxq X
{1,..., N} with weights

u—st ust—1 u—s u(s?—-1) 1—-s572

) . (36.2)

I

us—1 " us—1

(wl’w27w37w4)w5)w6) = ]-) ) ;
us—1" wus—1 "us—1

The change of sign above compared to (3.1.1) is made so that the above weights are positive
(recall w > s > 1 in our case).

If we have w; = we = a, w3 = wy = b and ws = wg = ¢ we call the resulting model
a symmetric six-vertex model. Otherwise, we call the model asymmetric. An important
point we want to make is that a single measure p on P(D,dD) can satisfy a Gibbs property
for many different 6-tuples of weights (w1, ws, w3, wy, ws, wg). The latter is a consequence
of certain conservation laws satisfied by the quantities N, (41, j1;%2,J2). As discussed in
Appendix A of [1] we have the following conservation laws (see also Section 3 in [21]).

1. The quantity Ny 4+ Ny + N3 + Ny + N5 + Ng = |A| is constant.
2. Conditioned on w|p /A, the quantity Na + Ny + Nj is constant.
3. Conditioned on w|p/a, the quantity No + N3 + Np is constant.

4. Conditioned on w|p/a, the quantity N5 — Np is constant.

The latter imply that if a measure p satisfies the Gibbs property with weights (w;, ws, w3, wy,
ws, We) then p also satisfies the Gibbs property with weights (zw, Tyzw,, xzws, LYWy, TYtWs,
zzt " wg) for any x,vy, z,t > 0.

Let us fix x =
checks that

VLTS |y = YILURWSYE and t = Y226 Then one directly

w2 —
Vwiws’ y= wowg  ? w3 w4 VWw3ws

-1
(zw, xYZWa, T2W3, TYWs, TYtWs, T2t we) = (a,a,b, b, c,c),

where a = Juws, b = \/wzws and ¢ = \/wswg. The latter shows that any six-vertex model
on a finite domain with prescribed boundary condition can be realized as a symmetric six
vertex model.
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The above arguments can be repeated for other (e.g. periodic) boundary conditions and
the consequence is that when working in a finite domain, one can always assume that the
six-vertex model is symmetric. This is how the model typically appears in the literature. An
important parameter for the symmetric six-vertex model with weights (a,a,b,b, c,c) is

_al+ -

A
2ab

As discussed in Chapters 8 and 9 in [9] (see also [74]) the symmetric six-vertex model
has several phases called ferroelectric (A > 1), disordered (|A]| < 1) and antiferroelectric
(A < -1).

Based on our earlier discussion, we may extend the definition of A to any (not necessarily
symmetric) six-vertex model by

A L Wi1wy + wawy — WsWs
’ 2. /W WoW3Wy

Observe that the latter quantity is invariant under the transformation of (w,ws, w3, ws, ws,
wg) into (zw;, xYzws, T2W3, TYWy, TYtws, T2t wg). This implies that the parameter A for a
six-vertex model on a finite domain agrees with the parameter A for its symmetric realization.

For the six-vertex model we defined in Section 3.1.1 a crucial assumption is that w; = 1,
since our configurations contain infinitely many vertices of type (0,0;0,0). This restriction
forbids us from freely rescaling our vertex weights and forces us to work with an asymmetric
six-vertex model. However, the above extension of A allows us to investigate to which phase
our parameter choice u > s > 1 corresponds. As remarked ]P’fx :M satisfies the Gibbs property
for the domain Dy = Zx x {1,..., N} with weights as in (3.6.2). For these weights we find
that A = (s + s71)/2. The latter expression covers (1,00) when s > 1 and so our parameter
choice u > s > 1 corresponds to the ferroelectric phase of the six-vertex model.

A natural question that arises from the above discussion is whether we can find different
parameter choices for u and s, which would land us in the disordered or antiferroelectric
phase. If this is achieved one could potentially use the methods of this chapter to study
the macroscopic behavior of this new model. It would be very interesting to see if the limit
shape in Figure 3-12 changes when we move to a different phase - like in the six-vertex model
with periodic (or domain wall) boundary condition. We leave these questions outside of the
scope of this chapter.

3.6.2 The six-vertex Gibbs property
We define several important concepts, adopting some of the notation from [52]. Let GT,
denote the set of n-tuples of distinct integers

GT,={Ae€Z": A\ <A< - <\ }

We let GT, be the subset of GT,, with A\; > 0. We say that A € GT,, and u € GT,_; interlace
and write g < X\ if
M < <A< S gy £ A
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Let GT™ denote the set of sequences

pllp? <t pteGTy, 1<i<n.

We call elements of GT" half-strict Gelfand-Tsetlin patterns (also known as monotonous
triangles, cf. [65]). We also let GT™" be the subset of GT™ with u* € GT,,. For A € GT,
we let GT, C GT"™ denote the set of half-strict Gelfand-Tsetlin patterns p! < --- < u™ such
that u™ = A.

We turn back to the notation from Section 3.1.1 and consider w € P,. For k=1,...,n
we have that uf(w) = M_, . (w) for i = 1,..,k satisfy p™ € GT, and pFt' = u* for k =
1,...,n — 1. Consequently, the sequence p!,...,u " defines an element of GT"". It is easy

to see that the map h : P, — GT"", given by h(w) = p'(w) < -+ = p"(w), is a bijection.
For A\ € GT,} we let

Pr = {we Py \Mw) = Ap_ips fori=1,...,n}.

One observes that the map h by restriction is a bijection between GT, and P). With the
above notation we make the following definition.

Definition 3.6.2. Fix wi, ws, ws, ws, w5, wg > 0. A probability distribution p on GT™*
is said to satisfy the siz-vertez Gibbs property (with weights (wy, ws, ws, wa, ws, ws)) if the
following holds. For any A € GT, such that p(u"(w) = A) > 0 we have that the measure v
on P defined through

v(h™(w)) = plw|u" = )
satisfies the Gibbs property for the six-vertex model on D,, with weights (wy, wa, ws, wy, w5, We).
In the above p(-|u™ = A) stands for the measure p conditioned on p"™ = A.

Remark 3.6.3. If w; = --- = wg = 1 and p satisfies the six-vertex Gibbs property with these
weights then the conditional distribution p(-|u™ = X) becomes the uniform distribution on
GT,. In this case the six-vertex Gibbs property reduces to the discrete Gibbs property of [52].

For a probability distribution p on GT™" and an element A € GT.} such that p(u™(w) =
A) > 0, we denote by p, the distribution on GT;_; given by p(u!, ..., p" u™ = X). We let
p* denote the projection of p onto u* for k = 1,...,n. Then the six-vertex Gibbs property
is equivallent to the following statement. If f : Z*™+1/2 5 C is a bounded function, then

B [, pmY)) =B [B2 [F(u, )] (3.6.3)
We record two lemmas whose proof is deferred to Section 3.6.3.

Lemma 3.6.4. Fiz wy,ws, w3, wys,ws,ws > 0. Let n € N and p be a measure on GT"™,
which satisfies the siz-vertex Gibbs property. Then we can find a positive constant ¢ € (0,1)
(depending on n and w,...,we) such that for all X € GT with p(u™ = X) > 0, and
(at,...,a™ L N), (B, ..., 8" ) € GT, we have

paal, ..., a™ )

p/\(/Bla s “871—1)
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Definition 3.6.5. We consider sequences A* € GT,,. We call the sequence wvery good if for

i=1,...,n—1 each sequence A\¥_; — AF has a limit in NU{co} and for i = 1,...,n—2, each
sequence Af+2 — AF goes to co. We call the sequence good if every subsequence of A* has a

further subsequence that is very good.

Lemma 3.6.6. Fiz n € N. Let a(k) and b(k) be sequences in R such that b(k) — oo as
k — 0o. Suppose that \* is a good sequence in GT, and f is a bounded uniformly continuous
function on R™™tD/2 Pyt g - RMHD/2 5 Rr(HD/2 ¢4 pe

gr(z) = % (w—a(k) . ln(nTH)) .

Then we have

khm EPx [f ° gk(Ak) /J'n_la /J’n_27 te )y‘l)] - EAk [f © gk()‘k) wn—l, xn_2’ v axl):‘ = Oa (364)
—$00

where EPx* is defined above while EX" is as in Section 3.5.1.
With the above lemma we can prove the main result of this section.

Proposition 3.6.7. Fiz wy, ws, w3, wy, ws, ws > 0 andn € N. Let p(k) be a sequence of prob-
- ability measures on GT™", satisfying the siz-verter Gibbs property with weights (wy, we, w3, Wy,
ws,wg). Let a(k) and b(k) be sequences in R such that b(k) — oo as k — oo. Put
gk Rn(n+l)/2 - Rn(n+l)/2 to be

1

(@) = 1 (x —a(k) - 1&) ,

and suppose that p(k)ogy ' converges weakly to a probability distribution p on GT™ (Gelfand-
Tsetlin cone), such that

PH(yl = yiyq = Yihg for somei=1,...,n—2) = 0. (3.6.5)

Then p satisfies the continuous Gibbs property (Definition 3.5.4).

Remark 3.6.8. The statement of the proposition remains true if we remove the condition
(3.6.5) on u; however, its proof requires a stronger statement than Lemma 3.6.6. For the
applications we have in mind Proposition 3.6.7 is sufficient and we will not pursue the most
general possible result here.

Proof. By Skorohod’s theorem, we may find random vectors Y (k) for £ € N and X, de-
fined on the same probability space (2, F,P), such that Y (k) have distribution p(k), X has
distribution p, and

P ({w € | lim gu(Y (k)(w) = X(w)}) = 1.

Let f be a bounded continuous function on R™™+1/2_ As usual we write Y (k) = Y'(k) <
.- =<Y"(k)and X = X' < ... < X" We want to show that

E[f(X)] =E[E*" [f(X)].
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From the Bounded Convergence Theorem we know that
E[£(X)] = Jim E[f(ge(Y (})]. (3.6.6)

We now let 4 = {w € Q|limy 00 gi(Y (k)(w)) = X(w) and X (w) = X2 (w) = X1 ,(w)
for no i}. One observes that for w € 4, Y (k)(w) is a good sequence and so by Lemma 3.6.6
lim B [£(gi (Y (k)] — B ®© [f(gu(Y (k)] = 0.

k—co

Taking expectations on both sides above (which is justified by the Bounded convergence
theorem) and using that p(k) satisfy the six-vertex Gibbs property (see also (3.6.3)), we
conclude that

lim B [EY"® [£(g(Y (k)] — E[f(gx(Y (k)] = 0. (3.6.7)

k—o0

Finally, if w € A and Z(k) = gx(Y (k)), we have by Lemma 3.5.2 that

lim B W@ [f(g (Y (k)))] = lim BEZ"® [£(Z(k))] = EX") [£(X)].

k—o0 k—o0

Taking expectations on both sides above (which is justified by the Bounded convergence
theorem) we conclude that

lim E [E" " [f(ge(Y (k)] = E [EX" ) [f(X)]] - (3.6.8)

k—o00

Combining (3.6.6), (3.6.7) and (3.6.8) proves the proposition.

3.6.3 Proof of Lemmas 3.6.4 and 3.6.6

We adopt the same notation as in Section 3.6.2.

Proof. (Lemma 3.6.4) Introduce vertex weights as in (3.6.1). For X € Sign} we fix wy € Py,
such that AJ(wy) =X fori=1,...,5and j = 1,...,n. We also define for w € P, the weight
Wiw) = T2, TD, wlw(i, ).

Since p satisfies the conditions of Definition 3.6.2, it is enough to show that for each
A € Sign;’, and any collection of paths w € P,, with A\*(w) = \; for i = 1,...,n, we have

C—l 2 W(w) 2 c,
W((U)\)
for some ¢ € (0,1), which depends on n and wy, ..., ws. The strategy is to apply elementary

moves to the configuration w that transform it to wy, and record how the weight changes at
each step. We will see that the number of changes is at most n(n — 1) and each change is
given by a multiplication by some factor, which can take finitely many values, depending on
Wi, ..., wg. This will show that K)V(g‘;)) belongs to a finite set of numbers, which then can be
upper and lower bounded, proving the lemma.

Let P, denote the set of w € P, such that \"(w) = \. Starting from any w € P, an
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elementary move consists of increasing one of AJ(w) by 1 so that the resulting element still
lies in P). If we apply an elementary move to w, increasing m = X (w) by 1 and obtain
wt € P} as a result, we observe that

W) _  wwlm,j)wwim,j+ Dwwlm+1,j))wwm+1,5+1))
Ww)  w(wt(m, ))wwt(m,j+ )ww(m+1,j))wwt(m+1,j+1))

W(w)
W(w)

Since we have only finitely many possible vertex weights we see that
many values.

The way we transform w to wy is as follows. We consider the complete order on pairs
(z,y) given by (z,y) < («/,y') if and only if z < 2’ or z = z’ and y > /. We traverse the
pairs (4,7): 1 =1,...,5, § = 1,..,n — 1 in increasing order, and for each (i,j) we increase
Al(w) by 1 until it reaches Al(wy). One readily observes that each such move is elementary
and the result of applying all these moves to w is indeed wy. We continue to denote the
result of applying an elementary move to w by w - this should cause no confusion.

can take finitely

An important situation occurs when prior to the application of the move m = X (w) —
m + 1 we have that there are no vertical arrows coming in (m, j) and (m + 1, j) and coming
out of (m,j 4+ 1) and (m + 1,7 + 1). The latter situation determines the types of the four
vertices:

w(m7j + 1) = (1>O»0a 1)a w(m + 1).7 + 1) - (Oa 1707 1)
After the application of the move they become

w(m,j) = (0,1;0,1), w(m +1,5) = (0,1;1,0),

w(m,j+1) = (0,0;0,0), w(m+ 1,7+ 1) = (1,0;0,1).

We thus see that the product of these weights stays the same and so W(w) remains un-
changed. We call such a situation good.

Suppose that in the string of elementary moves, transforming w to wy, we have reached the
pair (4, ), and we are increasing X (w) to M (wy). Let us denote A = X (w) and B = X (w,).
The condition that we can increase M (w) to B via elementary moves, implies that there
are no arrows from (k, j) to (k,j + 1) or from (k,j — 1) to (k,j) for k=A+1,...,B—-1.
Consequently, in the process of increasing A](w) to B, we encounter at most two non-good
situations (corresponding to the first and last move). As we have n(n — 1)/2 pairs (4, 7), we
see that in our string of elementary moves the situation is good in all but at most n(n — 1)
moves. This proves our desired result.

0

Before we go to the proof of Lemma 3.6.6, we introduce some notation and prove a couple
of facts. Let GT,, denote the set of n-tuples of integers

GT,={A€Z": < X< <A}
Let GT  denote the set of sequences
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plp? < =2p”, peGl, 1<i<n.

We call elements of GT "~ Gelfand-Tsetlin patterns. For A € GT,, we let GTy C GT denote
the set of Gelfand-Tsetlin patterns u! < --- < u™ such that u™ = .
We say that A € GT,, and p € GT,,_; strictly interlace and write u < X if

A<y <A< < Uy < Ap.
Let GT denote the set of sequences
pt<p? <. <pu", peGT;, 1<i<n.

We call elements of GT strict Gelfand-Tsetlin patterns. For A € GT,, we let GT x C GT"
denote the set of Gelfand-Tsetlin patterns u! < --- < y” such that p” = \.

For A € GT,, we consider the size of GT,, which is equal to the dimension of the represen-
tation of the unitary griup U(n) with the highest weight A and is given by the well-known

formula
|§TA|=H(A"_’\Z'+9—Z>. (3.6.9)

j—i
i<j J

For \ € G_T,Lv_ve let A=A+ (n—1), A+ (n=3),..., A+ (—n+1)). It is easy to check
that if A € GT,, and p € GT,,_; then g < X if and only if u* < A*. Consequently, we have
that the map f : GT, — GTa, given by f(ul,..., " 1) = ((u)*,..., (" 1)* X, is a
bijection. e

It follows from (3.6.9) that for A € GT,, the size of GT, is given by

|6N :H(Aj_A"_jJ”). (3.6.10)

i<j Jt
Let us recall from Definition 3.6.5 that a sequence in GT,, is very good iffori = 1,...,n—1
each sequence A ; — AF has a limit in N U {co}, while for 4 = 1,...,n — 2, each sequence

Ao — AF goes to co. For each very good sequence A, we let M C {1,...,n— 1}, be the set
of indices i, such that AF ; — \¥ is bounded, and for i € M, denote by m; € N the limit of
the sequence A, ; — \¥, which exists by assumption.

Given a subset M C {1,...,n— 1} and X € GT,, we let

GTA(M) = {(i', ..., 1") € GTo: p" = pm 2 oo 270 € (Mg, Aug) for i ¢ M)
For (p!,...,u") € aA(M) and numbers z; for i € M, we define the function

z; ifj=n-—1andie M,

,ug else.

Aeut o p™) =@ v") with ] ={
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We now define
GTA(M; far) == {(w, ..., u") € GTA(M) : fy (..., u") € GTA(M) if @; € [, higa)yi € M.
The first key result we need is the following.
Lemma 3.6.9. Let \* € GT,, be a very good sequence and M as above. As k — oo, we have
_ —~ AF— 2k
IGT k| ~ |GT | ~ |GTAk(M;fM)‘ ~ H (——J—) X H (AF L —2F) x H(mi +1).

| — 1
1<i<j<n \ J igM,i<n ieM
1<)

Proof. We observe that G'T',\k(M; fum) C GTan C GTy, and so by (3.6.9), it suffices to show
that

s =j LAY
: L | I J (2 I I k k | |
lfjjifn i€M,i<n 1EM

Forie{l,...,n},welet X;={(z,9):i<z<y<nlhand ¥, ={(z,9): 1<z <y <
nand y—x <n-—i—1}. Let (u',...,u") € GT" and let i € {0,...,n} be given. Then it is
easy to see that if we increase ¥ by 1 for all (z,y) € X; or, alternatively, for all (z,y) € Y;,
we still get an element that belongs to GT". See Figure 3-7.

4 T 4 i 4 ! ] 4 Y o 4
Ml - Ha| K3 ,u}, \ i p‘}l ] | K3 V| Ha
By Ha 3 K ! 1 My | : yg
R m| A AN Y I S s’
W M i &7 #1]
I L i S N . S I R LN N .
? e

Figure 3-7: An element y € GT*. In left picture the grey curve encloses pY for (z,y) € X3
and the dashed curve for (z,y) € Y;. The right picture is the result of increasing 1Y by 1 for
(z,y) € X3 and then for (z,y) € Y.

Let M C {1,...,n — 1}, be such that M does not contain adjacent elements. Suppose
that A € GT,, is such that A\;;; — A\; = 2 when 7 € M. Suppose m; € N for i € M are given.

Let ¢; € {0,...,m;} for i € M. Starting from an element p',...,u" in GT, and given ¢; for
1 € M as above, we construct a new element in GT" as follows:

1. We traverse the elements in M in increasing order.
2. For each element 7 > 2,7 € M, we increase the values uY for each (z,y) € X; by 1.

3. Afterwards we increase p¥ by m; for each (z,y) € Y;.
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4. Finally, we set uf, ;, = pi +m; and set ! to equal ul + c;.

For a simple application of the above algorithm see Figure 3-8.

4 R | 4
75 o ,uél
My \ H2
i)
1y -
<
st
|
T
4 \ 4 i i Ak 4
My \ 0] i T P ! | | IHI
Hy Ha ] ,ug l
m | #%I
7 f
Hy
i e socgnen 3

~4
Figure 3-8: The top picture gives an element pu € GT ; the grey curve encloses p¥ for
(z,y) € X» and the dashed curve for (z,y) € Y2. If M = {2} and my = 3 the bottom picture
gives the output of applying our algorithm to . The position u3 can be any element in

(13, pa].

One readily verifies that each element that was constructed with the above algorithm
belongs to GT,(M; fir), where 14 = A; and for ¢ = 2,...,n, we have

(

my ifie M,

Aipi—XN+1 ifi+leMandi—1¢ M,
Vit —Vi={{ Ait1—A+2 ifi+lgMandi—1€ M,
Aivi—AN+3 ifi+leMandi—1eM
(i1 — A ifi,i+1,1—1¢ M.

We thus obtain a map from (’ﬁ} X [Licpr 10, ..., m;} into a’,,(M; fu), and it is easy to see
that it is injective. The latter implies that

‘ﬁy(M; fM)‘ = H(mz +1) x ‘ﬁx‘
ieM

Combining the above with (3.6.10) we see that if v € GT,, is such that v;4; — v; = m; for
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t€ M and vy —v; >4 fori g M, then

GTO; fun)| > [L6mi+ 1) x ] (”j_”i,_‘l,(j‘i))x [T @i —w—4).

J—1

ieM 1<i<j<n igM,i<n
+1<j
This readily implies (3.6.11) and hence the lemma. O

An important property of GT A(M) is contained in the following lemma.

Lemma 3.6.10. Fiz wq,wq, ws, ws, ws, wg > 0 andn € N. Suppose p is a probability distribu-
tion on GT™, which satisfies the siz-vertex Gibbs property with weights (w1, wa, w3, Wy, Ws, We)-
Let X € GT, be such that p(u"(w) = A) > 0 and define px as in Section 3.6.2. Let
M C {1,...,n — 1} and suppose that (ut,...,u"), (V},...,v") € GTA(M), are such that
prt = vt fori € M. Then pa(ut, ..., pu" Y = pa(vh, ..., 0770,

Proof. We set w; = h7Y((p!,...,u" ", A) and wy = A7H((v},...,v" "1, X) (the function h
was defined in Section 3.6.2). By definition we know that Al(w;) = A} (w2) = Ap_iy1 for
i=1,...,n. As in the proof of Lemma 3.6.4 we introduce vertex weights as in (3.6.1) and
define for w € P,, the weight W(w) := [T, H;Zl w(w(i, 7). Since p satisfies the six-vertex
Gibbs property we see that to prove the lemma it suffices to show that W(w;) = W(ws).

Recalling the proof of Lemma 3.6.4, we see that it suffices to show that we can trans-
form w; to wp via good elementary moves. L.e. we wish to show that any two elements in
h=Y(GTA(M)), that satisfy AP (w1) = A" (ws) for n—i € M are connected via good elemen-
tary moves. We prove the latter by induction on |w; — ws| := Z?;ll I I (wr) = N (w2)),
the base case |w; — wa| = 0 being obvious.

Suppose we know the result for |w; — wy| = k — 1 > 0, and we wish to show it for k.
Since |w; — ws| = k > 1, we know that there exist (z,y) such that A(w;) — AY(w2) # 0.
Let (x,y) be the smallest such index (in the order considered in the proof of Lemma 3.6.4),
and without loss of generality we assume that A\Y(w;) > A¥(w;). Notice that by assumption
(z,y) # (i,n—1) forany n —3 € M and also y < n — 1.

We want to increase AY(w,) by 1 and show that this is a good elementary move. In order
for this to be the case we must have that AY_,(wy), N_1(wz) (if z > 1) and A¥+!(w,) are all
strictly bigger than AY(wq) + 1. Observe that

/\g+1(w2) = Ag“(wl) 2 )\Z(wl) -+ 1 2 )\g(wg) + 2,

where in the first equality we used the minimality of (z,y), in the second one we used that
(z,y) # (i,n — 1) for any n — i € M and in the third that A¥(w;) > A%(w2). Similarly, we
have for z > 1 that

A _p(wa) = N1 (w1) = M(wr) +1 2> M (w2) + 2,

and
/\Z:i(wz) = /\gj(wl) 2 Ag(wl) +1 Z AZ(WQ) + 2.

Thus increasing A\Y(ws) by 1 is a good elementary move, and does not change W(w,), while
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it reduces |w; — ws| by 1. Applying the induction hypothesis proves the result for k, and the
general result follows by induction. 0

With the above two results, we now turn to the proof of Lemma 3.6.6.

Proof. (Lemma, 3.6.6) Clearly it suffices to prove the lemma when A* is very good. As before
we let M C {1,...,n — 1}, be the set of indices i, such that A% ; — AF is bounded, and for
i € M, denote by m; € N the limit of the sequence Af, ; — AF. By ignoring finitely many

elements of the sequence A\¥, we may assume that AF,; — AF = m; for all k. We denote by
PLEDV
My = Hlﬁfgn ( Jj—i ) X Hi€M,i<n(’\£€+1 — )
For y = ¢/, i=1,...,5and j =1,...,n, we let Q(y) be the cube in R™"=1D/2 given by

ey I_ (2,4l +1). For A € GT,,, we define

GT% :={(u,...,u") EG/T,\(M;fM) st < ) for i € M}

It is easy to see that if (u',...,u") € GTj}, andyf = u{ fori=1,...,jand 5 =1,...,n,
then
! <z? < ... 2" <\ for any (z',...,2"7") € Q(y).

Fix ¢; € {0,...,m;} for i € M, and set GTix(c) = {(u',...,p") € GT : p™' =
M+ ¢; for i € M}. Then from the proof of Lemma 3.6.4 we know that

IGT3(e)] ~ My, and |GT3s| ~ My [[ mi ~ da(X*) = vol(GTL(N)), as k — o0, (3.6.12)

iEM

Let us denote B(M) = [];c,{0,...,m;} and B*(M) = [[;c5,{0,...,m; — 1}. In view of
(3.6.12) and the boundedness of f, we know that

3 fQ(y) foge( Nzt . xl)dz

cEB*(M) yeGT:,c (c)

lim E* [fo P L N
[f 9k )} My X Ticprmi

k—o00

=0.

Moreover, using the uniform continuity of f and the fact that b(k) — oo as k — oo, we
conclude '

ZceB*(M) ZyeGT;k(c) foa(y)

=0. 3.6.13
M, x HieM m; ( )

lim B [fo ge(WF, 2t 22 ,zh)] —
k—o0

Given ¢; € {0,...,m;} for i € M, we let w(c,k) = p(ut,...,u"t), where (u',...,
™t u™) € GTie(c). By Lemma 3.6.10, we know that w(c, k) is well-defined. The bound-
edness of f, Lemma 3.6.9, and Lemma 3.6.4 now imply that

ZceB(M) w(c, k) ZyEGT:‘\k(c) foa(y)
Mk X ZCGB(M) w(C, k)

lim EPx* [f o ge(A, ™", 2%, ph)] =
k—o0

(3.6.14)
Let ¢, be such that ¢? = 0 for i € M. From the uniform continuity of f and the fact
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that b(k) — oo, we note that for any ¢ we have

ZyeGT:k (c0) fog(y) ZyeGT’:\k (c) foge(y) B

im
k—oo Mk Mk

The latter, together with the boundedness of f and Lemma 3.6.4, implies that

. ZCEB*(M) ZyEGT*k(c) foagk(y) 1 ZyeGT*k(co) fogr(y)
lim 2 — A =0, and
k—o0 Mk X HieM m; HieM m; ceB(M) Mk
> w(e,k) > foag(y)
Y cEB(M) y€GTS,(c) 1 f EyecT;k(CO)fogk(y) 0
koo M x Y w(c,k) I 2, wle,k) My a
ceB(M) ceB(M) ceB(M)
and so
i ZceB*(M) ZyeGT;k(c) foge(y) ZceB(M)w(C7 k) ZyeGT;k(c) fogky) 0. (3.6.15)
im - = 0. .6.
k—oo M, x HiGM my; M x ZCEB(M) ’LU(C, k)
Combining (3.6.13), (3.6.14) and (3.6.15) concludes the proof. O

3.7 Proof of Theorem 3.1.3

In this section we give the proof of Theorem 3.1.3. We will split the proof into several steps

and outline here the flow of the argument. We assume the same notation as in Section 3.1.1
and define gy, : REGC+1/2 5 RE(K+1)/2 5q

1
gM(ZE) = c\/M (.Z—GM' 1k(k2+1)) .

In addition, we replace Y (N, M; k) with Y (M) for brevity. The statement of Theorem 3.1.3
is that gp (Y (M)) converge weakly to the GUE-corners process or rank k.

In the first step of the proof we show that we may replace the distribution of Y (M) with
the distribution vy, given by the distribution of Y/(M) conditioned on Y (M) < N, without
affecting the statement of the theorem. The latter is a consequence of Theorem 3.1.1. The
measures vy, are probability measures on GT**, which satisfy the six-vertex Gibbs property
with certain weights.

In the second step we check that the sequence of measures vy o g3/ on RF*+1/2 ig tight.
This is shown by using the six-vertex Gibbs property satisfied by vy and Lemma 3.4.5. The
proof we present is similar to the proof of Proposition 7 in [52].

In the third step we prove that vy o g;; converge weakly to the GUE-corners process of
rank k by induction on k. The base case is proved via Lemma 3.4.5. When going from k to
k 4+ 1 we use the induction hypothesis and Proposition 3.6.7 to show that any weak limit of
vy o gy satisfies the continuous Gibbs property. The latter is combined with Proposition
3.5.6 to prove the result for k + 1.
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Step 1. Let E) be the event that Y (M) < N. It follows from Theorem 3.1.1 (see also
(3.4.3)) that PJ"M(E)) — 1 as M — oo. Let vy be the distribution of ¥ (M), conditioned
on Ey. Since PY,M(E)) — 1, we see that it suffices to prove that vy 0g,; converge weakly
to the GUE-corners process of rank k.

We will show that v, is a probability distribution on GT**, which satisfies the six-vertex

Gibbs property with weights

u—s! wo— 1 wee 275 us™! —1 w (s —1)u 1—s2

= s = 5 = ; = ey = ——, Weg = .

l us — 1 o T us—1 : us — 1 > us —1 8 us — 1
(3.7.1)

4 ' 'y 'y MR Hm
o
6 & > O O
1
4 T
' 1 2 3 4

1 2 3 4

Figure 3-9: The left figure shows a path collection w € Ex with N = 6 and k = 3. Circles
indicate the positions of the empty edges. The top right figure shows the array (Y7)1<i<j<3;
j varies vertically and position is measured horizontally. The bottom right figure shows the

image of (Y7)1<i<j<3 under h™1.

Recall from Section 3.1.1 that for w € Ey, (Y7)1<icj<x were the vertical positions of the
empty horizontal edges in the first k& columns of w (see the left part of Figure 3-9). The
condition w € Ej ensures that no Y (M)! are infinite, so that vy, is a valid probability
distribution on GT**.

The fact that vy, satisfies a six-vertex Gibbs property is a consequence of the fact that
PY:M satisfies a Gibbs property for the six-vertex model on Dy with weights (i, Ws, Ws, W4,

e 3 _e—1 —-1_ 8 2_1 =2 8 .
W, ) = (1, as ws ] Ms ”Efs_l ) " ) (see Section 3.6.2). We observe that there is

a simple relationship between w and R=1((Y7)(w)) (here A is as in Section 3.6.2). Namely,
h~Y((Y7)(w)) is obtained by reflecting w with respect to the line z = y and then flipping
filled and empty edges (see Figure 3-9). This transformation has the followng effect on arrow
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configurations at a vertex
(0,0;0,0) «» (1,1;1,1) and (1,0;1,0) + (0,1;0,1),

while the vertices (0, 1;1,0) and (1,0;0,1) are sent to themselves. This vertex transformation
implies that the measure h™!((Y/)(w)) satisfies the Gibbs property for the six-vertex model
on Dy with weights (W, W, W4, W3, Ws, We ), which are the weights in (3.7.1).

Step 2. In this step we show that vjs o gj; is tight, which is equivalent to showing that

n(M)f = W is tight for each 7 =1,...,7 and 7 =1,..., k. We proceed by induction
on k, with base case k = 1, true by Lemma 3.4.5.

Suppose the result is known for £ — 1 > 1 and we wish to show it for k. By induction
hypothesis n(M)Z is tight for each i =1,...,jand j =1,...,k — 1. In addition, by Lemma
3.4.5 n(M)F is also tight. Using the interlacing condition Y/(M)*~! < Y/(M)* < Y/(M)F?
for i = 2,...,k — 1, and the induction hypothesis we conclude that n(M)¥ is tight for
i=2,...,k— 2. What remains to be seen is that n(M)¥ is tight.

We argue by contradiction and suppose that n(M)¥ is not tight as M — oco. Then we
may find a positive number p > 0, a subsequence M, and an increasing sequence L, going
to oo such that

P (|n(M;)5] > L) > p. (3.7.2)
Since Y (M,)* < Y(M,)*! and by induction hypothesis n(M, )" is tight, we see that if
(3.7.2) holds then we must have (by potentially passing to a further subsequence) that
P (n(M,)} < —L,) > p/2.

Let us denote by B(M) = min (Y/(M)5 Y(M)5™' —1L,Y(M)}™?) (if k = 2, B(M) =
Y(M)¥). B(M) is the rightmost positition that Y;""*(M) can take. From the tightness
result established for n(M)k, n(M)5" and n(M)*¥~2 we know that

) B(M,) — aM,
lim P <+/L,}) =1
TLIEO ( cv M, )

Thus by further passing to a subsequence we know that

P (n(Mr)’f <—L;|2 ”fj%"M" < \/L—) > p/4. (3.7.3)

We know that Y (M)%! is supported on A(M), A(M) + 1,..., B(M), where A(M) =
Y*(M) and B(M) is as above. Moreover, if ,

pi(M) =P (Y1 (M) = i|Y (M), Yy (M), Yy~ (M), Y (M) for i = A(M), ..., B(M),

then by Lemma 3.6.4 ¢ > % > ¢ for some constant ¢ € (0,1) that depends on k. The
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latter implies that p;(M) > ¢*/(B — A+ 1) and so

[V

p(von) < 2B wan, v, v 00, v 0n)) > 5
This together with (3.7.3) implies |
P (n(M.)77! < =L:/3) > (p/4)(c*/2), (3.7.4)

which clearly contradicts the tightness of n(M,)5'. The contradiction arose from our as-

sumption that n(M)¥ is not tight as M — oco. This proves the induction step. By induction
we conclude that vy o g3/ is tight for any k € N.

Step 3. In this step we prove that gp/(Y (M)) converge to A = /\{ 1=1,...,5,7=1,...,k
as M — oo, where A is the GUE-corners process of rank k. We proceed by induction on k,
with base case k = 1 true by Lemma 3.4.5.

Suppose the result is known for £k —1 > 1 and we wish to show it for k. From our earlier
work we know that vprog;; is tight. Let 4 be any subsequential limit and vy, o 917/11 converge
weakly to u for some sequence M, — 0o as r — oo.

~ We observe that u is a probability measure on GT* = {y € R¥E+D/2 ;o1 < oJ <
yfjfll , 1 <4< j<k-—1}. We have by induction hypothesis that the restriction to GTF+!
of u is the GUE-corners process of rank k£ — 1. In particular, we have

ply € GT® : yF = yfl for some i =1,...,k — 2) = 0.
The above together with the interlacing property of elements in GT*, shows that u satisfies.
PA(yl = yihy = Yoo forsome i =1,...,n —2) = 0.

From Step 1. in this proof we know that vy, satisfy the six-vertex Gibbs property with
weights as in (3.7.1). We may thus apply Proposition 3.6.7 to conclude that p satisfies the
continuous Gibbs property.

From Lemma 3.4.5, we know that under u the distribution of (yi,...,yF) is the same as
(Al,...,AF). This together with Proposition 3.5.6 shows that u is the GUE-corners process
of rank k. The above work shows that any subsequential limit of v o g;; has the same law
as A. As vy o g;/ is tight we conclude it (and hence gu(Y (M))) weakly converge to the
GUE-corners process of rank k. The general result now follows by induction.

3.8 Exact sampling algorithm for P,

In this section, we describe an exact sampling algorithm for P, (see Definition 3.2.14),
which is based on discrete time dynamics on Py. We provide details on how this algorithm
can be implemented efficiently and give some examples of typical path collections sampled
from Py .
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3.8.1 Markov kernels and sequential update

We start by recalling some notation from Section 6.2 in [33]. For any n we define

_ L F“(ul,...,un)
Au]u(y - ,U/) o Fl/(u1) ce ,U/n;u) FV/#(U)’ (381)
where u = (uy,...,u,), and v € Signt,,, p € Sign;;. Let us also define
1 —uw Fo(ui,...,uy,)
W = 3.8.2
Qu,v(u - V) (g 1— quiv> F“(ul’ L u ) V/,LL(U) ( )

where u; and v are admissible with respect to s = ¢=/2 for all i and p, v € Sign;. It follows
from Propositions 3.2.5 and 3.2.7 that A, : Signif,,, --» Sign;, and Q3., : Sign;, --» Sign;!
define Markov kernels.?

For w € Py, we let A" = X\*(w) for n = 1,..., N be as in Section 3.1.1, we also let

A(w) = @. Let Py, be the projection of Py, on A”. As direct consquences of Proposition
3.2.7, we have

uUu vA;|u = ]P)ﬁ ,v) ]P):Lx,on = P?l vUv? and QuUu v u|u Au]u u;v? (383)

where for a variable set w = (wy, ..., ws) we write w Uw = (w1, ..., Wk, w).

Our next goal is to define a stochastic dynamics on Py. The construction we use is
parallel to those of [30] (see also [17,24,32]) and it is based on an idea going back to [46],
which allows to couple the dynamics on signatures of different sizes.

Suppose that w is distributed accoriding to Py, as in Definition 3.2.14, and let v be
such that 0 < v and u;v < 1 for all 5. We consider a random p* < p? < .-+ X uV, with
pt € Sign", whose distribution depends on A\"(w) for n = 1,..., N and the parameters u, v,

and is defined through the following sequential update rule.
‘ We start with u! and sample it according to the distribution

FV(UI)Gﬁ/A('U)

P =vA' =) = - . (3.8.4)
X S PG, )
If p!, ..., u*"1 are sampled, we sample p* for k > 2 according to
Fu/u(ue)Gs (v
P(/,Lk = I/I)\k = )\, ‘u,k_l = /_1,) = /“( k) /)\( ) (385)

ZRGSign;‘ F"/H (uk) Gi/)\ (U) '

We now let w’ be the resulting element in Py, i.e., \*(w') = ™ for n = 1,..., N. The key
observation is that if w is distributed accoridng to Py, then ' is distributed according to
Py vuv- The latter is a consequence of (3.8.3) and a Gibbs property satisfied by Py, which

2We use the notation “--+” to indicate that A;Iu and Qy,, are Markov kernels, i.e., they are functions

in the first variable (belonging to the space on the left of “--+’)’ and probability distributions in the second
variable (belonging to the space on the right of “--+").
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states that conditioned on A, the distribution of A!,..., A*~! is independent of v and is
given by '
A

gl (U1, Uk—1)

(A = N A O3 = XA (A = A, (3.8.6)
For a more detailed description of the above procedure in analogous contexts we refer the

reader to Section 2 of [30] and Section 2 of [24].

Form =0,..., M welet P, ., denote the probability distribution as in Definition 3.2.14
with v, = (v1,...,vn). Equations (3.8.4) and (3.8.5) provide a mechanism for sampling w’
distributed according to Py,.,,, given w distributed as Py,,. Our strategy to sample
Puv = Pyuy,, is to first sample P, ,, and then use the above mechanism to sequentially
sample Py,.., form=0,...,M — 1.

We now turn to an algorithmic description of the above strategy. We assume we have the
following samplers, which will be described in the following section. For N > 1, g € (0,1)
and u = (uy,...,uy) such that u; > ¢7/2 for i = 1,..., N, we let ZeroSampler(N,q, u)
produce a random element w € Py, distributed according to Py y,. Fork € {1,...,N},v >0
such that u;v < 1 for all ¢, A\ € Sign} and p € Sign{_,, we let RowSampler(k,q,u,v,\, )
produce a random signature u* € Sign}', distributed according to (3.8.5). With this notation
we have the following exact sampler for Py .

Algorithm SixVerexSampler (N, M, q,u,v)

Input: ¢ € (0,1), u= (u1,...,uny) and v = (v1,...,vy) - parameters of the distribution.

w := ZeroSampler(N, ¢, u);
initialize pi fori=0,...,N;
' = &;
for (i=1,i<M,i=i+1)do
for (k=1,k<N,k=k-+1)do
pF = RowSampler(k, q, ug, v;, A¥(w), uF~1);
end
w=(p'2p* =2
end
Output: w.

3.8.2 The algorithms ZeroSampler and RowSampler

From the definition of P, y,, we know that it agrees with the distribution of the vertically
inhomogeneous stochastic six vertex model of Section 6.5 in [33], except that all columns are
shifted by 1 to the right so that all vertices in the O-th column are of the form (0,1;0,1).
The vertically inhomogeneous six vertex model has a known sampling procedure, which we
now describe - see Section 6.5 [33] and [27] for details.

For u > ¢~%/2 and q € (0, 1), we let

—ugV/? 4 !
1 —ugq1/2

1— uql/Z
bl (U) = m‘ and bz(’LL) -
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Notice that b;(u),ba2(u) € (0,1). We construct a random element w € Py by choosing the
types of vertices sequentially: we start from the corner vertex at (1, 1), then proceed to (1,2)
and (2,1),..., then proceed to all vertices (z,y) with x +vy = k, then with x+y = k+ 1 and
so forth. The combinatorics of the model implies that when we choose the type of the vertex
(z,y), either it is uniquely determined by the types of its previously chosen neighbors, or
we need to choose between vertices of type (1,0;1,0) and (1,0;0,1), or we need to choose
between vertices of type (0,1;0,1) and (0,1;1,0). We do all choiced independently and
choose type (1,0; 1, 0) with probability b, (u,) and type (1,0;0,1) with probability 1—b;(uy).
Similarly, we choose type (0, 1;0,1) with probability by(u,) and (0, 1;1,0) with probability
1 —by(uy). We denote by Bernoulli(p) a Bernoulli random variable sampler with parameter
p € (0,1). For a vertex o = (i1, j1;%2,J2), we let I2(a)) = i and J2(a) = jo. With this
notation we have the following algorithm for ZeroSampler.
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Algorithm ZeroSampler(N, g, u)

Input: ¢ € (0,1), u= (uy,...,uy)

initialize w;

c:= 0

k.= 2;

while (¢ < N) do
for(z=1,z<k,z=2x+1)do

y=k—u;
(y > N) do nothing
else if (x ==1and y == 1)

if (Bernoulli(by(uy)) ==

else w(z,y) = (0,1;1,0);
end

else if (z ==1)
i (12(w(z,y — 1) == 1) w
else if (Bernoulli(by(uy))
else w(z,3) = (0, 1;1,0);
end

else if (y == 1)
if (J2(w(z—1,y)) ==0)

- parameters of the distribution.

1) w(z,y) = (0,1;0,1);

w(z,y) = (0,0;0,0);
1 (

else if (Bernoulll(bz(uy)) ) w(z,y) = (0,1;0,1);
else w(z,y) = (0,1;1,0);
end
else ,
if (I2(w(z,y —1)) ==0 and J2(w(z — 1,y)) == 0) w(z,y) = (0,0;0,0);
else if (I2(w(z,y—1)) ==1and J2(w(z — 1,y)) == 1) w(z,y) = (1,1;1,1);
else if (I2(w(z,y — 1)) ==0and J2(w(z — 1,y)) == 1)
if (Bernoulli(bs(u,)) == 1) w(z,y) = (0,1;0,1);
else w(z,y) = (0,1;1,0);
end
else
if (Bernoulli(bi(uy,)) == 1) w(z,y) = (1,0;1,0);
else w(z,y) = (1,0;0,1);
end
end

end
if (y== N and 12(w(x
end
k=k+1;
end
initialize pfori=1,...,N;
for (i=1,i<M,i=1i+1)do
pt=N(w) + 1%
end

Output: (p' < p° =< M).

2

b y)) ==

l)e=c+1;
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Let us fix k > 1, parameters ¢, u,v such that ¢ € (0,1), v > ¢~ /2, v > 0 and wv < 1.
We also fix u € Sign{_, and A € Sign{. We now discuss how to sample the distribution
from (3.8.5) with the above parameters, which we denote by P for brevity. Let us define
the numbers a; = max(u;, A;,0) and b; = min(p;—1, A\i—1), where we agree that px = —oo,
Ao = po = co. We also set A(a,b) = UF_,[a;,b;]. The definition of P implies that P({v €
Sign : v; € [a;,b;] for i = 1,...,k}) = 1. Moreover, if v € Sign; is such that v; € [a;, b;] for
it =1,...,k then P¢ 7 and P, (see Definitions 3.2.1 and 3.2.2) consist of single elements w
and w®, which implies that

P({r}) x H wy (w(g, 1))we(w(4,1)), where w, and w are as in (3.2.1) and (3.2.2).
j€A(a,b)N[0,v1]

Sampling P is rather hard because there are infinite possible signautes v that are allowed.
Even if we consider only signatures, whose parts are bounded by some large constant L, their
number is still exponentially large in L and we cannot hope to efficiently enumerate possible
cases and calculate their weight.

The key observation that allows one to sample this distribution is that if € {1,...,k},
then conditional on v, the distributions of v,...,y_; and v;41, ...,V are independent and
similar to the one of vy, ..., . Let us make the last statement more precise. Fix an integer
l € {1,...,k}, suppose we have fixed v; = z € [a;, b;] and that there is at least one possible
signature vy, ..., with v, = x. We modify a; and b; as follows

L b; —1 else, v a; +1 else.
Let us fix y; € [aZ,b?] for i # I, put 4, = z and denote Agr = U'_}[a%,b?] and A =
UF_ . 1[a?,b7]. Then we have

P{veSignf :v, =y fori#lly=2)=P{reSignf :v;=y; fori=1,..., 01— 1y =1z)x
P{v eSignf ,:vy=y fori=1+1,...,kly =z).
Moreover, we have

P({v eSign{ =y fori=1,...,1 -1}y =1) x H wy (w(F, 1))ws(w(F, 1)),
JEARN[0,y1]

P({veSigni_:vi=yifori=1+1,.. k{m=2)oc [[ wulwl )wi(w,1)).

JeALN[0,y1]

The above arguments imply that we can sample P, by first sampling v|z/2;, conditioning
on its value and recursively sampling vq,...,V|g/2j—1 and Vg/2j41,---,Vk. The recursion
reduces runtime from exponentially large to polynomial in N.

We begin by explaining how to sample v; forl € {1,...,k}. Suppose that I = {41,...,%,} C
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{1,...,k}, e, di] C [a, by for i € T and z; € [¢;,d;]. We define

W(e,d, I,x) H ku wy{w(4,1)),

i€l j=c¢;

where w® and w are the single elements of Pe m and P, /., where v; = x; fori € I and v; < ¢;
if j>4,9€land j¢I (if nosuch v € Sign exists W(c,d, I,x) = 0). We also define

d’tr
W(c,d; I) Z > W(e,d,1,x).
i1 =Ciy T, =C4y

Let us denote by p = w,((0, 1;0,1))ws((0, 1;0,1)), and suppose [¢;, d;] C [ar, b;]. We wish
to sample v; conditioned on it belonging to [¢, dj] according to P. We define

wLl =W(c,d;{1,...,l —1}), where ¢; = a; and d; = b;;
wLl2 =W(c,d;{1,...,l —1}), where ¢; = a; and d; = b;, except ¢;_; = a;_1 + 1;

3.8.7
wR1 =W(c,d; {{+1,...,k}), where ¢; = a; and d; = b;; ( )
wR2 =W(c,d;{l +1,...,k}), where ¢; = a; and d; = b;, except dj1 = dj1 — 1.

bLL =1 if ¢g = A; and bLL = 0 otherwise;
bRL =1 if d; = A1 and bRL = 0 otherwise; (3.8.8)

bLM =1if ¢, = p; and bLM = 0 otherwise;
bRM = 1if d; = py—1 and bRM = 0 otherwise;

The conditional distribution of v, depends on ¢;, d; and the above four variables bLL, bRL,bLM
and bRM.

If ¢, = d; then we have v; = ¢; with probability 1. If d; = ¢; + 1, then we have sixteen
possible cases for the variables bLL,bRL,bLM and bRM, which lead to different probability
distributions. To give one example, if bLL = bRL = bLM = bRM = 0, then

P(y,=¢) xwLl2-wRl, P, =d) xp-wLl- -wR2.

If d — ¢ = n > 2, then we have sixteen possible cases for the variables bLL,bRL,bLM
and bRM, which lead to different probability distributions. To give one example, if bLL =
bRL = bLM = bRM = 0, then

P(y, = ¢) o< wy,(0,1;1,0)w,(0,1;1,0) - wL2 - wR1,

P(y, = d;) o< wy,(0,1;1,0)ws(0,1;1,0)w,(0,1;0, 1)w(0,1;0,1)p" " - wLl - wR2,

P(v; = ¢ + 1) o< wy (0, 1;1,0)ws(0,1;1,0)w, (0, 1;0, Dw(0,1;0,1)p* ! - wLl - wR1, 1 <i < k— 1.
There are altogether thirty-three cases (sixteen corresponding to d; = ¢; + 1, sixteen for d; >

¢+ 1 and the trivial case of ¢; = d;) and we will not write them out explicitly. The important

point is that the conditional distribution of v, given wL1, wL2, wR1 and wR2 is explicit and
can be sampled. We let ArrowSampler(u,v,c,d,bLL,bRL,bLM,bRM,wLl,wL2, wR1, wR2)
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denote an algorithm that samples the above probability distribution when ¢ = ¢, d; = d.
Suppose that we have an algorithm Weight(u,v,c,d, z,y, A, p) := W(c,d; {z,z+1...,y}),
then we have the following algorithm for RowSampler.

Algorithm RowSampler(u,v,c,d, z,y, A, i)

Input: u,v - parameters, ¢ = (cz, Cot1,--->Cy)s d = (dzy dey1,---,dy), A € Sign,™, u € Sign;_,.

if (z == y)
bLL := 0; if (¢, == A;) bLL = 1; end
bRL := 0; if (d, == A,—1) bRL = 1; end
bLM := 0;if (¢, == p,) bLM = 1; end
bRM := 0; if (d, == p,—1) bBRM = 1; end
v, = ArrowSampler(u,v, ¢z, d;, bLL,bRL,bLM,bRM,1,1,1,1);
else
s = [(z+y)/2];
¢ i={cs .. c1); € = {Coq1,. 50yt A i={dy, ... don}; A7 = {dsya, .., dy )
wR1 := Weight(u,v,c/,d’,z,s — 1, \, u); wR2 := wR1;

if (ds == cs—l)

¢ ={cs ... 05-9,05-1 +1}; wR2 = Weight(u,v,c,d’,z,s — 1, A, u);
end
wLl := Weight(u,v,c”,d", s+ 1,y); wL2:=wLl;
if (Cs - s+1)

d” = {ds11 — 1,dss2,...,dy}; wL2 = Weight(u,v,c”,d", s+ 1,y, A, n);
end

bLL := 0; if (cs == A;) bLL = 1; end
bRL := 0; if (ds == A1) bBRL = 1; end
bLM := 0; if (¢c; == ps) bBLM = 1; end
bRM := 0; if (d; == ps_1) bRM = 1; end
vs = ArrowSampler(u, v, cs,ds, bLL,bRL,bLM,bRM,wL1,wL2,wR1, wR2);
c ={cp... 0m1}; & ={est1,- 0} A ={ds, ..., ds01}; A" = {dss1,.-.,dy )}
if (Vs === ds+1) d’ = {d8+1 — 1, ds_|_2, R ,dy}; end
if (vs ==1cs-1) ¢ ={cs,...,C5-2,¢_1 +1}; end
RowSampler(u,v,c/,d’,z,s — 1, \, u);
RowSampler(u,v,c”,d”, s+ 1,y, A, p);
Output: v

In the algorithm RowSampler v = 1y, > vy > --+ > v is a global variable that we are
updating through the recursive calls to the same algorithm. Going back to the notation of
SixVerexSampler, we have that RowSampler(k, ¢, u,v, A, u) = RowSampler(u,v,a,b, 1, k, A, u).
Thus what remains is to show how to calculate Weight(u,v,c,d,z,y).

The function Weight can be calculated recursively by again conditioning on the middle
arrow and summing over the weights corresponding to its possible positions. We first discuss
the base case of having a single interval [¢,d;]. We will consider a reweighted version of
W(c,d; {l}), where we have additional four weights wLl, wL2,wR1 and wR2, which are
fixed. By definition W(c,d;{l}) is the sum of weights over the possible positions of the
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arrow in [¢, dj]. Our reweighed version will be the same sum, however we will multiply each
term by wLl - wR1, wLl - wR2, wL2 - wR1 or wL2 - wR2 according to the following rules.

We multiply the weight by wL1 unless the arrow is in location ¢;, in which case we
multiply it by wL2, we then multiply the weight by wR1 unless the arrow is in location d;,
in which case we multiply it by wR2. One observes that the weight of the interval [c, d|],
depends on d; — ¢;. We have three cases for d; — ¢; - when it is 0, 1 and > 2, and the weights
are as follows.

o d— ¢ =0:W(c,d;{l}) =w,(1,1;1,1) - wi(1,0;1,0) - wL2 - wR2;

o d—¢ =1:W(,d{l}) = wu(O, :1,0) - wy,(1,0;0,1) - ws(1,0;1,0) - wL2 - wR1 +
wa(0,150,1) - wa(L, 131, 1) - we(L, 050, 1) - we(0, 1; 1, 0) - wLl - wR;

o di—c=n>2:W(c,d;{I}) =w,(0,1;1,0) - wy(1,0;0,1) - wS(1,0;1,0) - wL2 - wR1 +
wa(0,1;0,1) -wy(1, 131, 1) -ws(1,0;0, 1) - w§(0,1;1,0) - p*~* -wLl- wR2 + w,(0,1;1,0) -
wy(1,0;0,1) - wy(0,1;0,1) - we(1,0:0,1) - we(0,1:1,0) - =22~ . wL1 - wRl.

We let BaseWeight(u,v,c,d, wLl,wL2,wR1,wR2) denote the above single interval weight
function and with it we define Weight(u,v,c,d,z,y, A, u) as follows.

Algorithm Weight(u,v,c,d, z,y, A, u)

Input: u,v - parameters, € = (Cy,Ces1,--5Cy), A = (dg, a1, -- -, dy), A € Signic™, p € Sign;_;.

initialize w;

if (z == vy)
w = BaseWeight(u,v,c;,dy, 1,1,1,1);
else

s = [(z+y)/2];
c ={cz..yc1}; € ={csr1,.-r0y}; di={ds, ... ds1}; A7 = {dsyr, ... dy )l
wR1 := Weight(u,v,c/,d,z,s — 1, A\, u); wR2 := wRl; :

if (ds == Cs_]_)
¢ ={cs.-.,Cs2,¢o1+1}; wR2 = Weight(u,v,c,d’,z,s — 1, A, p);
end
wLl := Weight(u,v,c”,d", s +1,y); wL2:=wLl,
if (Cs - s+1)
d" = {ds11 — 1,dss9,...,dy}; wL2 = Weight(u,v,c”,d",s+ 1,y, A, u);
end
w = BaseWeight(u,v,cs,ds, bBLL,bRL, LM, bRM, wLl,wL2, wR1, wR2);
end
Output: w

3.8.3 Discussion and extensions

In this section we discuss some of the implications of the results of the paper and some of
their possible extensions. We also use the sampling algorithm developed above to produce
some simulations. We will be interested in demonstrating that there is. a limit shape for
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the six-vertex model that we have considered. In addition, we will provide some empirical
evidence supporting the validity of Theorem 3.1.3.

Results similar to Theorem 3.1.3 are known for models of random Young diagrams and
random tilings, see 8,54, 68, 70]. Moreover, for random lozenge tilings the GUE-corners
process is believed to be a universal scaling limit near the point separating two frozen regions
(also called a turning point) [54,70]. We believe, although we cannot prove, that in our model
the GUE-corners process also appears near the point separating two frozen regions. At this
time, our methods do not seem to be strong enough to verify a limit-shape phenomenon;
however, simulation results seem to indicate that this is indeed the case. For the simulations
we fix N = 100 and consider different choices for ¢, and v. From Theorem 3.1.3 we know
that Y}! asymptotically looks like a - M, with a as in Theorem 3.1.1. We pick the parameter
M in our simulations so that a - M is roughly N/2. The results are summarized in Figures
3-10, 3-11and 3-12.
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Figure 3-10: Random paths in Py, sampled according to Pﬁf M with N = 100. For the left
picture s2 = ¢ = 0.5, u = 5, v = 0.1 and M = 100; for the right s2 = q¢ = 0.5, u = 2,
v =0.1 and M = 1000.
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Figure 3-11: Random paths in Py, sampled according to Pﬂ‘: :M with N = M = 100. For the
left picture s™2 = q¢ = 0.25, u = 2.5 and v = 0.25; for the right s72 = ¢ = 0.25, u = 5, and
v=0.1.
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Figure 3-12: Random paths in Py, sampled according to IP{:{;,M with N = M = 100. For the
left picture s72 = 0.8, u = 1.2 and v = 0.8; for the right s72 = 0.5, u = 1.5 and v = 0.6.
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As can be seen on Figures 3-10, 3-11and 3-12 , there is a macroscopic frozen region, made of
(0,1;0,1) vertices in the bottom left corner and another one, made of (1,1;1,1) vertices in
the top left corner. The two regions are separated by a disordered region containing all six
types of vertices. It would be interesting to see if the methods of this chapter can be utilized
to rigorously confirm the existence of a limit shape, and to find parametrizations for it.

A particular implication of Theorem 3.1.3 is that —M (Y* — aM) converges to the stan-
dard Gaussian distribution as M — oco. In what follows, we provide some numerical sim-
ulations supporting this fact. We took 1000 samples from Pﬂ‘:ﬂM with N = M = 200 and
different values for g, u, v, and calculated CLM (Y — aM). The empirical distribution of the
samples is compared with the standard normal cdf, and the results are given in Figure 3-13.
As can be seen, the distributions appear to be quite close, as is expected.

—‘2 —1 0 1

Figure 3-13: Empirical distribution of 1000 samples of —— (¥'(w) — aM) with w distributed
as P>)M with N = M = 200. For the left picture s = ¢ = 0.8, u = 1.2 and v = 0.8; for the
right s72 = ¢ = 0.5, u = 1.5, v = 0.6.

Recall that one way to interpret the measure ]P’fﬁ ™ is as the time m distribution of a certain
discrete time Markov chain, which at time 0 is distributed as the stochastic six-vertex model
of [27]. In [27] it was shown that configurations sampled from PJ:0 converge to a certain
deterministic cone-like limit shape (see Figure 3-14 for sample simulations). Comparing
Figures 3-12 and 3-14, we see that the stochastic dynamics has lead to a change in the limit
shape. What is remarkable is that Theorem 3.1.3 indicates that the bulk fluctuations change
as well. For the stochastic six-vertex model it is known that the fluctuations of the height
function® in the bulk are governed by the GUE Tracy-Widom distribution [27]. On the other
hand, the bulk fluctuations of the GUE-corners process are described by the Gaussian Free
Field (GFF) [18]. Theorem 3.1.3 suggests that the stochastic dynamics has transformed
height fluctuations from KPZ-like to GFF-like.

A possible explanation of the above phenomenon was suggested to us by Alexei Borodin
and Fabio Toninelli and goes as follows. At large times one has both KPZ and GFF statistics

3The height function h(x,y) of the six-vertex model is defined as the number of paths that cross the
horizontal line through y to the right or at the point z.
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Figure 3-14: Random paths in Py, sampled according to P/ with N = 100 when f()\) =
G5 (p). For the left picture s72 = 0.8, u = 1.5; for the right s72 = 0.5, u = 2

within the model, but they manifest themselves in different portions of the configurations.
As path configurations evolve, the KPZ region is pushed away from the origin and in its
place GFF statistics emerge. We motivate the latter explanation with some simulations in
Figure 3-15. One distinguishing feature between KPZ and GFF statistics is the order of
growth of the fluctuations, which are algebraic in the former and logarithmic in the latter
case. We expect that the variance of the height function in the KPZ region to be of order
N?/3 while in the GFF region to be of order log(N). The latter implies that we can use
the height variance as a proxy for distinguishing the different regions in our model and the
results are presented in Figure 3-15. As can be seen, there is indeed a high-variance cone,
which is moving away from the origin and a very low variance region takes its place. It would
be very interesting to verify that both GFF and KPZ fluctuations coexist in our model, since
to our knowledge such a phenomenon has not been observed in other settings.
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Figure 3-15: Variance of the height function at different locations for 2000 samples from
PX:M . For the above simulations s™2 = 0.5,u = 3,v = 0.2 and N = 200 and M = 0, 30,60
and 90 for the top-left, top-right, bottom-left and bottom-right diagrams respectively. The
variance-to-shade correspondence is indicated on the right.
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Chapter 4

Transversal fluctuations of the ASEP, stochastic
six vertex model, and Hall-Littlewood Gibbsian
line ensembles

4.1 Introduction

In this chapter we prove, as Theorem 4.3.13 and Corollary 4.3.11, the long predicted transver-
sal 2/3 exponent for the asymmetric simple exclusion process (ASEP) [63,76] and the stochas-
tic six vertex (S6V) model [53] - two (closely related) 1+ 1 dimensional random interface
growth models / interacting particle systems in the Kardar-Parisi-Zhang (KPZ) universality
class. We work with step initial data for both models and demonstrate that their height
functions, scaled in space by T2%/3 and in fluctuation size by T'/3, are tight as spatial pro-
cesses as time T' goes to infinity (we use T for time since ¢ € (0,1) will be reserved for the
Hall-Littlewood parameter). We also show as Corollary 4.7.4, that all subsequential limits of
the scaled height function (shifted by a parabola) have increments, which are absolutely con-
tinuous with respect to a Brownian bridge measure. Conjecturally the limit process should
be the Airy, process and we provide further evidence for this conjecture by uncovering a
Gibbsian line ensemble structure behind these models, which formally limits to that of the
Airy line ensemble [42].

4.1.1 Main results

We now state our main results concerning the ASEP. Precise definitions of this model and
further discussion can be found in Section 4.2.3. We forgo stating the S6V model result until
the main text — Corollary 4.3.11 — since it requires more notation to define the model.

In the ASEP, particles occupy sites indexed by Z with at most one particle per site (the
exclusion rule) and jump according to independent exponential clocks to the right and left
with rates R and L respectively (R > L is assumed). Jumps that would violate the exclusion
rule are suppressed. Step initial data means that particles start at every site in Z<, (and
no particles start elsewhere). The height function hr(x) records the number of particles at
or to the right of position z € Z at time T. For z ¢ Z we linearly interpolate to make the
height function continuous. With this notation we can state our main theorem (Theorem
4.3.13 and Corollary 4.7.4 in the main text).
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Theorem 4.1.1. Supposer >0, R=1, L € (0,1), vy = R— L and fir o € (0,1). For
s € [—r,r] set

fASEP(§) = g N3 (f3(@)N + F3(a)sN?3 4 (1/2)s* f2 (a) NY/3 — by (N + sN2/3)) ,

(41.1)
The constants above are given by o, = 273(1 — a?)?3, f3(a) = (1_40‘)2, fila) = -2,
{(a) = L. If Py denotes the law of fASEP(s) as a random variable in (C[—r,7],C) — the

space of contmuous functions on [—r,r] with the uniform topology and Borel o-algebra C (see
e.g. Chapter 7 in [13]) — then the sequence Py is tight.

Moreover, if Py, denotes any subsequential limit of Py and fASEP has law P, then
g’ 5EP defined by

2
02577 (&) = 0u 2557 () - ZE O por [0

is absolutely continuous with respect to a Brownian bridge of variance —2r fi(a)[1 + fi(a)]

in the sense of Definition 4.7.2.

Our approach for proving Theorem 4.1.1 is to (1) embed the ASEP height function into
a line ensemble, which enjoys a certain ‘Hall-Littlewood Gibbs’ resampling property, and (2)
use the known one-point tightness in the T*/% fluctuation scale to obtain the 7/3 transversal
tightness. These two points are discussed more extensively in the section below. Here we
mention that the Gibbs property implies that conditional on the second curve in the line
ensemble, the top curve (i.e. the height function) has a law expressible in terms of an explicit
Radon-Nikodym derivative with respect to the trajectory of a random walk. By controlling
this Radon-Nikodym derivative as 1" goes to infinity, we are able to control quantities like
the maximum, minimum and modulus of continuity of the prelimit continuous curves, which
translates into a tightness statement in the space of continuous curves. By exploiting a
strong coupling of random walk and Brownian bridges we can further deduce the absolute
continuity of subsequential limits with respect to Brownian bridges of appropriate variance.

4.1.2 Hall-Littlewood Gibbsian line ensembles
Line ensembles and resampling

The central objects that we study in this chapter are discrete line ensembles, which satisfy
what we call the Hall-Littlewood Gibbs property. In what follows we describe the general
setup informally, and refer the reader to Section 4.3.1 for the details.

A discrete line ensemble is a finite collection of up-right paths {L;}* ; drawn on the
integer lattice, which we assume to be weakly ordered, meaning that L;(z) > L1 () for
it =1,..,k—1, and all x. The up-right paths L; are understood to be continuous curves
on some interval I = [a,b], and to be piecewise constant or have slope 1 (see Figure 4-1 for
examples). Suppose we are given a probability distribution y on the set of ensembles {L;}r_,.
We will consider the following resampling procedure. Fix any i € {1,. — 1} and denote
by f = L;_1 and g = L;,; with the convention that Ly = +o00. Sample {L }¥_, according to
p and afterwards erase the line L;, between its endpoints A = L;(a) and B = L;(b). Sample
a new path L}, connecting the points (a, A) and (b, B) from the uniform distribution on all
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Figure 4-1: The black lines are a sample from a discrete line ensemble {L;}¥ | with k = 3
(L2 is not drawn and coincides with the blue line above). Each line is a continuous curve
on I = [1,7] that is piecewise constant or has slope 1. The red and blue lines are uniformly
sampled up-right paths connecting the endpoints (1,1) and (7,2) of Ls.

up-right paths that connect these points, and independently accept the path with probability
Wi (L;, f, g). If the new path is not accepted the same procedure is repeated until a path is
accepted. We say that p has the Hall-Littlewood Gibbs property with parameter ¢ € (0,1)
if given {L;}* | distributed according to p, the random path ensemble obtained from the
above resampling procedure again has distribution p. The acceptance probability is

b
wuLi, f,9)= ][] (1 — Lia+(s-1)-a+(s)=1} - tm(s_l))-(l — L{a-(s-1)-A-(s)=1} * t‘r(s‘l)) ,

s=a+1
(4.1.2)
where At(s) = f(s) — Li(s) and A~(s) = Li(s) — g(s). The above expression can be
understood as follows. Follow the path L} from left to right and any time f — L! decreases
from At to At — 1 at location s — 1 we multiply by a new factor 1 — t2"(~1)_ Similarly,
any time L} — g decreases from A~ to A~ — 1 at location s — 1 we multiply by a new factor
1 —tA7(=1), Observe that by our assumption on t we have that W;(L., f,g) € [0, 1], which
is why we can interpret it as a probability.
We make a couple of additional observations about the acceptance probability Wi(L., f, g).
By assumption f(a) > Li(a) > g(a) and f(b) > Li(b) > g(b). If for some s we fail to have
f(s) = Li(s) > g(s), we see that one of the factors in W, (L, f, g) is zero and we will never
accept such a path. Consequently, the resampling procedure always maintains the relative
order of lines in the ensemble. An additional point we make is that if L. is very well separated
from f and g (in particular, when f = +o00) we have that A is very large and so the factors
in the definition of W;(L,, f, g) are close to 1. In this sense, we can interpret W;(L., £, g) as
a deformed indicator function of the paths f, L}, g having the correct order, the deformation
being very slight if the paths are well-separated.

Example: We give a short example of resampling L, to explain the resampling procedure,
using Figure 4-1 as a reference. We will calculate the acceptance probability if the uniform
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path we sampled is the red or blue one in Figure 4-1. If L, denotes the red line, we
have Wy(L!.;, L1,Ls) = 0 because the lines Lz and L!_, go out of order. In particular,
we see that A~ (s — 1) = 0 and A~ (s) = —1 when s = 6, which means that the factor
(1 — L{A~(s=1)—A—(s)=1} ° tA_(S_l)) is zero. Such a path is never accepted in the resampling
procedure. ‘

If L. denotes the blue line, we have W;(Lj,, ., L1, L3) = (1—1t)(1—1t?)(1 —¢3). To see the
latter notice that AT decreases at location 1 from 3 to 2, producing the factor (1 —¢*). On
the other hand, A~ decreases from 2 to 1 and from 1 to 0 at locations 2 and 5 respectively,
producing factors (1—¢?) and (1—t). The product of all these factors equals Wy(Lj,,., L1, L3)
and with this probability we accept the new path.

The main result we prove for the Hall-Littlewood Gibbsian line ensembles appears as
Theorem 4.3.8 in the main text. It is a general result showing how one-point tightness for the
top curve of a sequence of Hall-Littlewood Gibbsian line ensembles translates into tightness
for the entire top curve. This theorem can be considered the main technical contribution
of this work, and we deduce tightness statements for different models like the ASEP by
appealing to it. It is possible that under some stronger (than tightness) assumptions, one
might be able to extend the results of that theorem to tightness of the entire ensemble (i.e.
all subsequent curves too) — but since we do not need this for our applications, we do not
pursue it here.

This idea of using the Gibbs property to propagate one-point tightness to tightness of
the entire ensemble was developed in [42,43]. In those works, the Gibbs property was
either non-intersecting or an exponential repulsion. In other words, curves are penalized
by either an infinite energetic cost or an exponential energetic cost for moving out of their
indexed order. Those works rely fundamentally upon certain stochastic monotonicity enjoyed
by such Gibbsian line ensemble. Namely, if you consider a given curve and either shift
the starting/ending points of that curve up, or shift the above/below curves up, then the
conditional measure of the given curve will stochastically shift up too. Since the Hall-
Littlewood Gibbs property relies on not just the distance between curves, but on their
relative slope (or derivative of the distance), this type of monotonicity is lost. Indeed, it is
not just the proof of the monotonicity, but the actual result which no longer holds true in
our present setting (see Remark 4.4.2).

Faced with the loss of the above form of monotonicity, we had to find a weak enough
variant of it which would actually be true, while being strong enough to allow us to rework
various types of arguments from [42,43|. Lemma 4.4.1 (and its corollaries) ends up fitting this
need. In essence, it says that the acceptance probability of the top curve increases (though
only in terms of its expected value and up to a factor of c(t) = [Jro,(1 — t%)) as the curve is
raised. Informally, this result is a weaker version of the stochastic monotonicity of [42,43] in
that pointwise inequalities are replaced with ones that hold on average and upto an additional
factor. Armed with this result, we are able to redevelop a route to prove tightness of the
entire top line of the ensemble from its one-point tightness. Our approach should apply for
more general Gibbs properties which rely upon not just the relative separation of lines, but
also their relative slopes. Indeed, the constant c(t) arises in our case as a relatively crude
estimate needed to handle the dependence of our weights on the derivative of the distance
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between the top two curves. If the dependence of the weights becomes different, one should
be able to reproduce the same arguments, with only the constant c¢(t) changing its value.

The homogeneous ascending Hall-Littlewood process

The prototypical model behind the Hall-Littlewood Gibbsian line ensemble of the previous
section is the (homogeneous ascending) Hall-Littlewood process (HAHP). The HAHP (a
special case of the ascending Macdonald processes [24]) is a probability distribution on
interlacing sequences @ < A(1) < A(2) < --- < A(M), where \(i) are partitions (see the
beginning of Section 4.2.1 for some background on partitions, Young diagrams etc.). It
depends on two positive integers M and N as well as two parameters ¢, € (0,1). We will
provide a careful definition in terms of symmetric functions in Section 4.2.1 later, but here
we want to give a more geometric interpretation of this measure. In what follows we will
describe a measure on interlacing sequences of partitions @ < A™M*1 < ... < X0 = A} -
o+ = AV~ » & The HAHP is then recovered by restriction to the first M partitions of this
sequence. The description we give dates back to [80], and we emphasize it here as it is the
origin of the Hall-Littlewood Gibbs property that we use.

We can associate an interlacing sequence of partitions with a boxed plane partition or
3d Young diagram, which is contained in the M x N rectangle — Figure 4-2 provides an
illustration of this correspondence. Consequently, measures on interlacing sequences are
equivalent to measures on boxed plane partitions and we focus on the latter. If a plane
partition 7 is given, we define its weight by

W () = An(t) x (Has(™), (4.1.3)

where diag(m) denotes the sum of the entries on the main diagonal of 7 (alternatively this
is the sum of the parts of A° or the number of cubes on the diagonal z = y in the 3d Young
diagram). The function A,(t) depends on the geometry of 7 and is described in Figure 4-2
(see also Section 2.1.1 where the same A, appears in a slightly different measure on plane
partitions). With the above notation, we have that the probability of a plane partition is
given by the weight W (), divided by the sum of the weights of all plane partitions.

Let us denote A(i) = AX*"M fori = 1,..., M. Then the HAHP is the probability distribution
induced from the weights (4.1.3) and projected to the first M terms @ < A(1) < A(2) <
-+ < A(M). Denoting by X’ the transpose of a partition A we observe that {)\;()};\;1 defines
a discrete line ensemble on the interval [0, M]. In the above geometric setting, the lines in the
discrete line ensemble {\(-)}/_; can be associated to the level lines of 7 (in particular, Aj(-)
corresponds to the bottom slice of the plane partition 7). The important point we emphasize
is that the geometric interpretation of A,(t) above can be seen to be equivalent with the
statement that the line ensemble {N(-)}}_; satisfies the Hall-Littlewood Gibbs property of
the previous section. The latter is proved in Proposition 4.3.9 in the main text.

The main result we prove for the HAHP is that as M, N tend to infinity the top line X} (-)
(or alternatively the bottom slice of ), appropriately shifted and scaled, is tight — this is
Theorem 4.3.10 in the text. In Theorem 4.2.2 we combine arguments from Chapter 2 as well
as [27] to show that the analogue of Theorem 2.1.2 is true for the model we described above.
This convergence implies in particular one-point tightness for the top line of the ensemble
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Levels:

Figure 4-2: If given a sequence @ < A M+1 < ... < A0 ... = AN~1+ & we write the parts
of A* downward — in this way we obtain a plane partition. The left part of the figure shows
how to do this when A™° = (3), A™* = (3,1), A=® = (3,3,1) and so on. In this example
N = M = 6. The right part of the figure shows the corresponding 3d Young diagram. The
entry in a cell of the plane partition corresponds to the number of cubes in a vertical stack
of the 3d diagram.

For the above diagram we have diag(m) =5+4+3+2+ 2 = 16.

To find A, (t) we do the coloring in the right part of the figure. Each cell gets a level, which
measures the distance of the cell to the boundary of the terrace on which it lies. We consider
connected components (formed by cells of the same level that share a side) and for each one
we have a factor (1 — '), where i is the level of the cells in the component. The product of
all these factors is A,(t). For the example above we have 7 components of level 1, 3 of level
2 and one of level 3 — thus A.(t) = (1 —t)7(1 —t%)3(1 — ¢3).

{AL () f‘r:l. Once the one-point tightness and Hall-Littlewood Gibbs property are established
we enter the setup Theorem 4.3.8, from which Theorem 4.3.10 is deduced.

Connection to the ASEP and S6V model

In this section we explain how the ASEP and S6V model fit into the setup of Hall-Littlewood
Gibbsian line ensembles.

For the S6V model, the key ingredient comes from the remarkable recent work in [23]. In
particular, Theorem 4.1 in [23] (recalled as Theorem 4.2.4 in the main text), shows that the
top curve A} of the line ensemble {A}(-)}2L, of the previous section has the same distribution
as the height function on a horizontal slice of the S6V model, with appropriately matched
parameters. This equivalence relies on the use of the ¢-Boson vertex model, as well as the
infinite volume limit of the Yang-Baxter equation (as developed, for instance, in [12,20,59]).
Alternatively, [34| relates this distributional equality to a Hall-Littlewood version of the
RSK correspondence. Through this identification one deduces the predicted transversal 2/3
exponent for the height function of the S6V model as a corollary of the HAHP result Theorem
4.3.10 — the exact statement is given in Corollary 4.3.11 in the text.

We now explain how to relate the ASEP to our line ensemble framework. Recall from
Section 4.1.1 that hr(z) denotes the height function of the ASEP with rates R and L,
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started from step initial condition at time T. Set R = 1and L =t € (0,1). Since we use
linear interpolation to define hr(x) for non-integer z, one observes that —hp(z) either stays
constant or goes up linearly with slope 1 as x increases, i.e. —h7(z) is an up-right path. In
Proposition 4.3.12 we show that for any " > 0 and k, K € N there is a random discrete
line ensemble {LAFF}E | on I = [~ K, K] such that (1) the law of {LASFP}k | satisfies the
Hall-Littlewood Gibbs property and (2) L{¥*EF has the same law as —hr(x), restricted to
r € [~K, K]. The realisation of —hr(z) as the top line in a Hall-Littlewood Gibbsian line
ensemble is an important step in our arguments and we will provide some details how this
is accomplished in a moment. For now let us explain the implications of this fact.

Once we have that {LAPPYE | satisfies the Hall-Littlewood Gibbs property, we can use
Theorem 4.3.8 to reduce the spatial tightness of the top curve L{E¥ (i.e. the negative height
function —hr(-)) to the one-point tightness of its height function. The latter is a well-known
fact — it follows from the celebrated theorem of Tracy-Widom [79, Theorem 3|, and is recalled
as Theorem 4.2.5 in the main text. Consequently, once —hr(z) is understood as the top line
of a discrete line ensemble with the Hall-Littewood Gibbs property, the general machinery
of Theorem 4.3.8 takes over and produces the tightness statement of Theorem 4.1.1.

Let us briefly explain how we construct the line ensemble {LASEF1E  from earlier — see
Proposition 4.3.12 for the details. One starts from a sequence of HAHP with parameters
(v =1-— lﬁ Under suitable shifts and truncations, these line ensembles give rise to a se-
quence of line ensembles {LN}*_ |, which one can show to be tight. One defines {LASEP}F |
as a subsequential limit of this sequence. Since the HAHP satisfies the Hall-Littlewood
Gibbs property one deduces the same for {LASEP}E . The property that L{SFF has the
same law as —hr(z) follows from the connection between the HAHP and the S6V model
height function we discussed above and the convergence of the height function of the S6V
model to hr(x). The fact that one can obtain the ASEP height function through a limit
transition of the S6V model was suggested in [27, 53] with a complete proof given in [3].

We end this section with a brief discussion on possible extensions of our results. In
Theorem 4.3.10, Corollary 4.3.11 and Theorem 4.3.13 we construct sequences of random
continuous curves, which are tight in the space of continuous curves. We believe that the
same sequences should converge to the Airys process — that is how the particular scaling
constants in those results were chosen. The missing ingredient necessary to establish this is
the convergence of several-point marginals of these curves (currently only one-point conver-
gence is known). It is possible that such several point-convergence will come from integrable
formulas for these models but we also mention here a possible alternative approach. One
could try to enhance the arguments of this chapter to show that the one-point convergence of
the top line of a Hall-Littlewood Gibbsian line ensemble in fact implies tightness of the entire
line ensemble (not just the top curve). This was done in a continuous setting in [42,43]. If
one achieves the latter and [42, Conjecture 3.2] were proved, this would provide a means to
prove that the entire line ensemble corresponding to the ascending Hall-Littlewood process
converges to the Airy line ensemble. In particular, this would demonstrate the Airy o process
limit for the ASEP and S6V height functions too.
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4.1.3 Outline

The introductory section above provided background context for our work and a general
overview of the chapter. In Section 4.2 we define the HAHP, S6V model and the ASEP
and supply some known one-point convergence results for the latter. Section 4.3 introduces
the necessary definitions in the chapter, states the main technical result — Theorem 4.3.8,
as well as the main results we prove about the HAHP, the S6V model and the ASEP in
Theorem 4.3.10, Corollary 4.3.11 and Theorem 4.3.13 respectively. Section 4.4 summarizes
the primary set of results we need to prove Theorem 4.3.8. In Section 4.5 we give the proof
of Theorem 4.3.8 by reducing it to three key lemmas, whose proofs are presented in Section
4.6. In Section 4.7 we demonstrate that all subsequential limits of the tight sequence of
Theorem 4.3.8 are absolutely continuous with respect to Brownian bridges of appropriate
variance. Section 4.8 is an appendix, which contains the proof of a strong coupling between
random walks and Brownian bridges, used in Section 4.4.

4.2 Three stochastic models

The results of our chapter have applications to three different but related probabilistic objects
— the ascending Hall-Littlewood process, the stochastic six-vertex model in a quadrant and
the ASEP. In this section we recall the definitions of these models, some known one-point
convergence results about them and explain how they are connected.

4.2.1 The ascending Hall-Littlewood process

In this section we briefly recall the definition of the Hall-Littlewood process (a special case
of the Macdonald process [24]). We will isolate a particular case that will be important for
us, which we call the homogeneous ascending Hall-Littlewood process (HAHP) and derive a
certain one-point convergence result for it. We adopt the same notation on partitions and
Hall-Littlewood symmetric functions as in Section 2.2.

Fix ¢t € (0,1). For partitions p, A € Y we let Py, and @/, denote the (skew) Hall-
Littlewood symmetric functions with parameter t. Let us fix M, N € N and suppose (£, M)
is a pair of sequences of partitions £ = {X}}"', = and M = {p¥}}"%, ;. Define the
weight of such a pair as ’

N-1

WELM) = ] Pujurr(@n) Qe /un (¥n), (4.2.1)

n=—M+1
where z;,y; € [0,1] for all i € {—M +1,...,N — 1} and we have p=™ = p¥~! = @. From
(5.8) and (5.8") in Chapter III of [64] we have
Pyju(;t) = s, () 2z and Qy/u(m;t) = ¢ayu(t)a ™, where

Ua/u(t) = Lamp H(l — ™) and Oaju(t) = amp H(l — ¢ ); (4.2.2)
jeJ iel

I={ieN:X, =pand X, >} and J={j e N: Xj,; > p},; and X, = u}}.
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Observe that the weights are non-negative (as t € (0,1)) and provided Z := 3. ,, W(L, M),
is finite we have that P(£, M) := Z7! . W(L, M) defines probability measure on (£, M),
which we call a Hall-Littlewood process.

In this chapter we will consider the following variable specialization

Tot1=1, Yo =0ifn < —1; 2,y =0, y, = if 0 < n, where ( € (0,1) is fixed. (4.2.3)
Using (4.2.2) and Proposition 2.4 in [24] we conclude that for the above variables we have

NM
1. Z = (11—’_%4) < 00 so that the measure is well defined;

2. "= A"for n < 0 and " = A"*! for n > 0;
3. @ < ATMAL L AT < X0 AL - - AV

The last statement shows that £ defines a plane partition 7, whose base is contained in an
M x N rectangle (i.e. such that m;; = 0 for s > M or j > N). Denoting the set of such
plane partitions by P(M, N) we see that the projection of the Hall-Littlewood process on £
induces a measure on P(M, N).

Substituting Py/,(z) and Q/.(x) from (4.2.2) one arrives at

1— C NM 20 0 N
P(L) = ( — C) ¢ Be(t), where Be(t) =[] ¢anpan-r(t) x [ dan-1/an (0).

n=—M+1 n=1

What is remarkable is that if 7 is the plane partition associated to £, then B.(t) = A,(t)
from (4.1.3), i.e. B, admits the geometric interpretation from Figure 4-2. The latter is
very far from obvious from the definition of B/, since the functions ¢ and 1 are somewhat
involved, and we refer the reader to [81] where this identification was first discovered.

The above formulation aimed to reconcile the definition of the Hall-Littlewood process
in terms of symmetric functions with the geometric formulation given in Section 4.1.2. In
the remainder of the chapter; however, we will be mostly interested in the projection of
this measure to the partitions A™*1 ..., A%, We perform a shift of the indices by M and
denote the latter by A(1),...,A(M). Using results from Section 2.2 in [24] we have the
following (equivalent) definition of the measure on these sequences, which we isolate for
future reference.

Definition 4.2.1. Let M, N € Nand ¢ € (0,1). The homogeneous ascending Hall-Littlewood
process (HAHP) is a probability distribution on sequences of partitions @ < A(1) < A(2) <
-+« < A(M) such that

. | e\ M N
P (A(L), - A(M)) = (1 — tC) X || Praaya-1(1) x @an(CT), (4.2.4)
=1

where we use the convention that A(0) = & is the empty partition and ¢V denotes the
specialization of IV variables to (. We also write IEéM N for the expectation with respect to
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M,N
]P)C .

We end this section with an important asymptotic statement for the measures ]P’év‘”N .

Theorem 4.2.2. Let r > 0, ¢,t € (0,1) be given and fix p € ({,¢1). Suppose NyM € N
are sufficiently large so that uN > (r +2)N?3 and M > puN + (r + 2)N?/3. Let N,(-) be
sampled from ]P’MN and set for x € [—r — 1,7 + 1]

it (@) =0 'NT (Aa(uN +aN*?) = fi()N — f{(n)zN*/® — %Qf{’(u)N”E‘) , (4.2.5)

where we define X| at non-integer points by linear interpolation. The constants above are

. (€8 (1-vER) "> (1=/TTm) "
gien by o, = ( 1)~c( ) , filpw) =1— = {Z—) » filw) = (1(1\/;  fiw) =

Then for any z € [—r — 1,7 + 1] and y € R we have

—v<
20572(1-Q)"
dim PV (F7H(2) <) = Four(y), (4.2.6)
where Foyg is the GUE Tracy-Widom distribution [78].

Remark 4.2.3. Owing to the recent work in [19], the result of Theorem 4.2.2 can be established
by reduction to the Schur process (corresponding to ¢ = 0). For the Schur process a proof
of the convergence in (4.2.6) for the case s = 0 can be found in the proof of Theorem 6.1
in [19]. For the sake of completeness we will present a different (more direct) proof below,
relying on ideas from [27] and Chapter 2.

Proof. Fix x € [-r — 1,7 + 1] and y € R throughout. For clarity we split the proof into
several steps.

" Step 1. From Section 2.2 in [24] we know that for 1 < K < M we have
1= ¢ \EY
PN AR) =) = BN OE) =) = (155 ) B9 QU™
In the last equality we used the homogeneity of P, and @,. Setting \] = \{(K), we have as
a consequence of Proposition 2.3.10 that if ¢ € C\R™ then

MN 1 KN
]EC lM] = det([ + K¢ )Lz(cp). (427)

The contour C, is the positively oriented circle of radius p € ((t7*,¢t™!), centered at 0, and
the operator K f’N is defined in terms of its integral kernel

KN , 1 1/24100 s KN /s
KENww) = g [ dsD(=s)T( + 5)(-0) gL,

27 1/2~w00
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where T" is the Euler gamma function and

Gur () = wt‘sl— w’ (11—_5(1(0“;)-_‘; ) ) (Ll_—(—w(fu)f)__) N

We also recall that (z;t)e = [[;2,(1 — zt*~!) is the t-Pochhammer symbol and

det(I+K V2 CP)_1+Z '/C /C det [Kf’N(wi,wj)rj 1ﬁdwi
n:Je, 3 BI=

is the Fredholm determinant of the kernel K f’N (see Section 2.2 for details).

Step 2. For the remainder of the proof we set
K = uN + zN%° 1 O(1) and $(N) = (—t71) x thN RN 40/ F 2N o,

where o, and f(u) are as in the statement of the theorem. Our goal in this step is to show
that
1\11—1}20 det([ + Kf,N)LQ(Cp) = FGUE(y) (428)

We use the following change of variables and functional identities

-1 ~_1
w; — "ﬁ;: p—p ( S)F(l + 8) sm( )

to rewrite B
det(I + K;V)2c,) = det(I + K5 ™) 12(0,).

In the above we have that

where

REN (1, 0y = 2 / abioo g KB K g (UK K)  ds
¢ ’ -

Z 1/2—w00 SiIl(?TS) g(tsl‘[)’ C) VK7 K) wts — ~"
1 t CL/2~1/6 2/3
~ _ Y L - B
g(w7 blbe,-T;t) — (1’+"Zt C) (__1_+_t—12> , Oy 1 _C ((1 \/E)( I//C 1))
_ 2 9
’I’hu = (\/—T_—\C/Q’ and v = M_l N mlul——5/3K-l/3 + 2%“—7/3[(—2/3 + O(l)
(4.2.9)

The validity of (4.2.8) is now equivalent to Proposition 5.3 in [27]. To make the connection
clearer we reconcile the notation from equation (65) in that paper with our own below:

1-¢ 1-¢
e 2T

We remark that in [27] the variable v is constant, while in our case it changes with K and
quickly converges to p~! — this does not affect the validity of Proposition 5.3 and the same

y<h, teor por, KoL o —— ¢ & K.
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arguments can be repeated verbatim.

Step 3. Combining (4.2.7) and (4.2.8) we see that

. M,N — = L
1\}1_{%0 E:" [gv(Xnv — y)] = Foue(y), where gn(z) = (—t-N"7z ) and (4.2.10)

X = o N7V (uN + aNY%) = fi()N — f(u)eNY? — (1/2) £ (u)s>N"?).

As discussed in the proof of Theorem 5.1 in [27], we have that gn(z) satisfy the conditions of
Lemma 5.2 of the same paper, which implies that X weakly converges to a random variable
X such that P(X <y) = Fgyr(y). This suffices for the proof.

O

4.2.2 The stochastic six-vertex model in a quadrant

In this section we recall the definition of a stochastic inhomogeneous six-vertex model in a
quadrant, considered in [27,33,73|. There are several (equivalent) ways to define the model
and we will, for the most part, adhere to the one presented in Section 1.1.2 in [2]. We also
refer the reader to Section 1 of [33] for the definition of a more general higher spin version
of this model.

A siz-vertex directed path ensemble is a family of up-right directed paths drawn in the
first quadrant Z2, of the square lattice, such that all the paths start from a left-to-right
arrow entering each of the points {(1,m) : m > 1} on the left boundary (no path enters
from the bottom boundary) and no two paths share any horizontal or vertical edge (but
common vertices are allowed); see Figure 4-3. In particular, each vertex has six possible
arrow configurations, presented in Figure 4-4.

The stochastic inhomogeneous six-vertex model is a probability distribution P on six-
vertex directed path ensembles, which depends on a set of parameters {{;}.>1, {uy}y>1 and
q, which satisfy

g€ (0,1), & >0,u,>0, &u,>qg Y forallz,y>1. (4.2.11)

It is defined as the infinite-volume limit of a sequence of probability measures P,, which are
constructed as follows. '

For n > 1 we consider the triangular regions T, = {(z,y) € Z2, : £ +y < n} and let P,
denote the set of six-vertex directed path ensembles whose vertices are all contained in T},.
By convention, the set P; consists of a single empty ensemble. We construct a consistent
family of probability distributions P, on P, (in the sense that the restriction of a random
element sampled from P,41 to T;, has law P,) by induction on n, starting from P;, which is
just the delta mass at the single element in P;.

For any integer n > 1 we define P, from P, in the following Markovian way. Start by
sampling a directed path ensemble &, on T,, according to P,,. This gives arrow configurations
(of the type presented in Figure 4-4) to all vertices in T,_;. In addition, each vertex in
D, = {(z,y) € Z%, : ¢+ y = n} is given “half” of an arrow configuration, meaning that the
arrows entering the vertex from the bottom or left are specified, but not those leaving from
the top or right; see the right part of Figure 4-3.
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Figure 4-3: The left picture shows an example of a six-vertex directed path ensemble. The
right picture shows an element in P, for n = 6. The vertices on the dashed line belong to D,
and are given half of an arrow configuration if a directed path ensemble from P, is drawn.
Vertices in D,, with zero (two) incoming arrows from the left and bottom can be completed
in a unique way - by having zero (two) outgoing arrows. Compare vertices (4,2) in both
pictures, also vertices (1,5). Vertices in D,, with a single incoming arrow can be completed
by having exactly one outgoing arrow, which can go either to the right or up. Compare
vertices (5,1) in both pictures, also vertices (2,4).

To extend &, to a path ensemble on 7;,,;, we must “complete” the configurations, i.e.
specify the top and right arrows, for the vertices on D,,. Any half-configuration at a vertex
(z,y) can be completed in at most two ways; selecting between these completions is done
independently for each vertex in D, at random according to the probabilities given in the
second row of Figure 4-4, where the probabilities b;(z,y) and by(z,y) are defined as

] = ql/zé.:cuy
1~ q—1/2£$uy

P ¥
B B = (4.2.12)

b2(£7y) = 1 — q_l/gfmuy '

bl(x ) y) =

In this way we obtain a random ensemble &,.; in P,;; and we denote its law by P,.;. One
readily verifies that the distributions 7P, are consistent and then we define P = lim,,_o Ph.
A particular case that will be of interest to us is setting { = ¢ and u, = u for all

z > 1and y > 1, where £,u > 0 are such that fu > ¢~/2. We refer to this model as
the homogeneous stochastic siz-vertex model and denote the corresponding measure as P¢,, 4.
Let us remark that (upto a reflection with respect to the diagonal z = y) this model was
investigated in [53] and more recently in [27] under the name “stochastic six-vertex model”.

Given a six-vertex directed path ensemble on ZZ%,, we define the height function h(z,y)
as the number of up-right paths, which intersect the horizontal line through y at or to the
right of z. We end this section by recalling the following important connection between
the height function of the homogeneous stochastic six-vertex model and the homogeneous
ascending Hall-Littewood process. The following result is a special case of Theorem 4.1
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T’—‘

]

+

bi(z,y)

1- bl(.’l?, y)

ba(z,y)

1—ba(z,y)

1

Figure 4-4: The top row shows the six possible arrow configurations at a vertex (z,y). The
bottom row shows the probabilities of top-right completion, given the bottom-left half of a
configuration. The probabilities b;(z,y) and bs(z,y) depend on &, u, and g and are given
in (4.2.12).

in [23] and plays a central role in our arguments.

Theorem 4.2.4 (Theorem 4.1 in [23]). Let &,u,q > 0 be given such that ¢ € (0,1), { =
§umlq72 < 1 and fix p € (¢, (7). Let h(z,y) denote height function sampled from Pe.,,,
and @ < A(1) < -+ < A(M) be distributed as ]P’éVI’N from Definition 4.2.1, where t = q. Then
we have the following equality in distribution of random vectors

(N = X,(0), ..., N — X,(M)) £ (R(1,N),--- ,h(M +1,N)), where by convention X,(0) = 0.

4.2.3 The asymmetric simple exclusion process

The asymmetric simple exclusion process (ASEP) is a continuous time Markov process, which
was introduced in the mathematical community by Spitzer in [76]. In this chapter we consider
ASEP started from the so-called step initial condition, which can be described as follows.
Particles are initially (at time 0) placed on Z so that there is a particle at each location in
Z<p and all positions in Z>; are vacant. There are two exponential clocks, one with rate L
and one with rate R, associated to each particle; we assume that R > L > 0 and that all
clocks are independent. When some particle’s left clock rings, it attempts to jump to the left
by one; similarly when its right clock rings, it attempts to jump to the right by one. If the
adjacent site in the direction of the jump is unoccupied, the jump is performed; otherwise
it is not. For a more careful description of the model, as well as a proper definition of this
dynamics with infinitely many particles, we refer the reader to [63].

Given a particle configuration on Z, we define the height function bH(z) as the number
of particles at or to the right of the position z, when z € Z. For non-integral x, we define
h(z) by linear interpolation of h(|z|) and h([z]). For R > L > 0 and T > 0 we denote by
lP’f’ g the law of the height function b of the random particle configuration sampled from the
ASEP (started from the step initial condition) with parameters R and L after time 7.

We isolate the following one-point convergence result for future use.

Theorem 4.2.5. Supposer >0, R=1, L€ (0,1), y=R—L and fiza € (0,1). Let h(x)
denote height function sampled from Pﬁ/;{ and for s € [-r — 1,r + 1] set

PP (s) = 0 N7 (fa(a)N + fi(a)sN?2 + (1/2)s*f§ () N3 — b (aN + sN?/3))
(4.2.13)
where we define h(-) at non-integer points by linear interpolation. The constants above are
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given by oo = 27931 — )2, fi(a) = O, fi(a) = ~152, fi(a) = }. Then for any
se€[-r—1,r+1] and y € R we have

lim PP (f3°7P(s) < 9) = Feup(v), (4.2.14)

where Foyp is the GUE Tracy-Widom distribution [78].

Proof. The above result follows immediately from the celebrated theorem of Tracy-Widom
[79, Theorem 3], which says that

lim
T—o0

Pf,/g (EICJ;TEQ < y) = Feve(y), (4.2.15)
where 0 = 2 € (0,1), ¢ = 1 — 20, ¢; = 0 ¥/5(1 — \/5)?/. In the above relation zp,
denotes the position of the m-th right-most ASEP particle (notice there is a sign change
with the result in [79], due to the fact that in that paper L > R and the particles initially
occupy the positive integers). Below we briefly explain why the above statement implies the
theorem.

One observes that at each fixed time and for any positive integers m,n we have the
equality of events {h(n) > m} = {x,, > n}, which implies that for any 7 > 0 we have

e (H(n) > m) =P z(zm > n) (4.2.16)

Let m(N) = | fs(@)N + f5(a)sN*3 + (1/2)s2f (@) NV? — yN/30, ], n(N) = [aN + sN??|
and observe that

PYR (h(n(N)) > m(N) + 1) < Py (fa55F(s) < y) < PYA (h(n(N) + 1) > m(N)).
(4.2.17)
From (4.2.16) we have

PJLV,/zg (b(n(N) +1) =2 m(N)) = Pﬁ/g (Zmavy = &N — aNY3+ 0(1)), (4.2.18)

where we also used that 0 = % = f3(a) + fi(@)sN~V3 + (1/2)s>N=23f(a) — yoo  N72/3 +
O(N~1). One similarly obtains

P (5(n(N)) = m(N) + 1) = Py (€mevy1 = alN — e2NY3 4+ 0(1)) . (4.2.19)

The right sides in (4.2.18) and (4.2.19) converge to Fgyg(y) from (4.2.15) as N — oo, which
together with (4.2.17) proves the theorem. O

We end this section by recalling the following important connection between the height
function of the homogeneous stochastic six-vertex model and the height function of the ASEP
started from step initial condition. This connection was observed in [27,53] and carefully
proved for general initial conditions in [3].

Theorem 4.2.6 (Theorem 1 in [3]). Let £&(N),u(N),qg > 0 be given such that g € (0,1),

—qt/ u - —
CN) = E(N) T u(N) g2 < 1, by(N) = S0 — gN=1 + O(N~2) and by(N) =
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Lg SO — N1 O(N ). In addition, fiz K € N, T > 0 and set Ny = [N -T)|. Let

hN(z,y) denote height function sampled from Pen)uny,q and b have law PT p, where R =1
and L = q. Then we have the following convergence in distribution of random vectors

(RN(Ny — K 4+ 1,Nz), ..., hAN(Np + K4+ 1,N7)) = (h(=K +1),....5(K +1)) as N — oo.

4.3 Definitions, notations and main results

In this section we introduce the necessary definitions and notations that will be used in the
chapter as well as our main technical result — Theorem 4.3.8 below. Afterwards we give
several applications of Theorem 4.3.8 to the three models discussed in the previous section.

4.3.1 Discrete line ensembles and the Hall-Littlewood Gibbs prop-
erty

In this section we introduce the concept of a discrete line ensemble and the Hall-Littlewood
Gibbs property. Subsequently, we state the main result of the chapter.

Definition 4.3.1. Let N € N, Ty, Ty € Z with T, < Ty and denote ¥ = {1,...,N},
[To, T1] = {Ty,To + 1,...,T1}. Consider the set Y of functions f : ¥ x [Tp,T1] — Z such
that f(4,7+ 1) — f(4,4) € {0,1} when j € ¥ and i € [T, 71 — 1] and let D denote the
discrete topology on Y. We call elements in Y up-right paths.

A ¥ x[Th, T1]-indezed (up-right) discrete line ensemble £ is a random variable defined on
a probability space (€, B, P), taking values in Y such that £ is a (B, D)-measurable function.

Remark 4.3.2. Notice that the definition of an up-right path we use here differs from the
one in the six-vertex model. Namely, for the six-vertex model an up-right path is one that
moves either to the right or up, while in discrete line ensembles up-right paths move to the
right or with slope 1. This should cause no confusion as it will be clear from context, which
paths we mean.

The way we think of discrete line ensembles is as random collections of up-right paths on
the integer lattice, indexed by ¥ (see Figure 4-5). Observe that one can view a path L on
[To, T1] X Z as a continuous curve by linearly interpolating the points (¢, L(2)). This allows
us to define (£(w))(¢, s) for non-integer s € [Ty, T3] and to view discrete line ensembles as line
ensembles in the sense of [42]. In particular, we can think of L(s),s € [Ty, T1] as a random
variable in (C[Tp,T1],C) — the space of continuous functions on [Ty, 73] with the uniform
topology and Borel o-algebra C (see e.g. Chapter 7 in [13]).

We will often slightly abuse notation and write £ : ¥ X [Tp,T1] — Z, even though it
is not £ which is such a function, but rather £(w) for each w € Q. Furthermore we write
L; = (£(w))(4,-) for the index i € X path.

In what follows we fix a parameter ¢t € (0,1) and make several definitions. Suppose we
are given three up-right paths f, g, L on [Ty, T1] x Z. Given a (finite) subset S C [To+1,T1]
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Figure 4-5: Two samples of {1,2,3} x [1, 7]-indexed discrete line ensembles.

we define the following weight function

W (To, Th, L, f, g; S) =H (1 — L{a+(i-1)-a+()=1} 'tA+(i_1)) X
= (4.3.1)

H (1 = La-(-1)-a-@)=1} - tA’(i—l)) ,

€S

if f(i) > L(i) > g(i) for ¢ € S and 0 otherwise. In the above A*(s) = f(s) — L(s) and
A~(s) = L(s) — g(s). In words (4.3.1) means that we follow the paths f,g, L from left to
right and any time f — L (resp. L — g) decreases from A" to AT —1 (resp. A~ to A~ —1)
at a location in the set S we multiply by a factor of 1 — #2" (resp. 1 —t27). Observe that
by our assumption on ¢ we have that W; € (0, 1] unless L(i) > f(¢) or g() > L(i) for some
¢ € S, in which case the weight is 0. Typically S will be a finite union of disjoint intervals
(i.e. consecutive integer points).

Remark 4.3.3. Observe that (4.3.1) makes sense even if f = oo. In the latter case ast € (0,1)
the product on the first line of (4.3.1) becomes 1 — in fact, this will be the most common
way Wy(To, T1, L, f,g; S) will appear in the text.

Example. Take the left sample in Figure 4-5. If S = {2,..., 7} then we have Wy(1,7, Ls, L1,
L3;S) = (1 —t)(1 —¢*)(1 — ¢*) and Wi(1,7,L1,00,L9;S) = (1 —¢t%). If S = {3,...,5}
then Wy(1,7, Lo, L1, L3; S) = (1 — t?) and W;(1,7, L1, 00, Ly; S) = 1. If we take the right
sample in Figure 4-5 with S = {2,...,7} then we have W;(1,7, Ly, L;, L3;S) = 0 and
Wt(]-a?: Ll,OO,Lg;S) = (1 _t4)

Let t;,2; € Z for i = 1,2 be given such that ¢; < f; and 0 < 25 — z; < t5 — t;. We
denote by €(t1,ts; 21, 22) the collection of up-right paths that start from (¢, ;) and end at
(t2, 22), by P?;zi’zl’” the uniform distribution on Q(t1, t2; 21, 22) and write Etfl,,’tz’“’zz for the
expectation with respect to this measure. One thinks of the distribution ]P’t‘,_":z““’z2 as the
law of a simple random walk with i.i.d. Bernoulli increments with parameter p € (0,1) that
starts from 2; at time £; and is conditioned to end in 2, at time ¢;. Notice that by our
assumptions on the parameters the state space is non-empty.

The key definition of this section is the following.
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Definition 4.3.4. Fix N > 2, t € (0,1), two integers Ty < T} and set ¥ = {1,...,N}.
Suppose P is a probability distribution on ¥ x [Ty, T;]-indexed discrete line ensembles £ =
(Lq,...,Ly) and adopt the convention Ly = oco. We say that P satisfies the Hall-Littlewood
Gibbs property with parameter ¢ for a subset S C [Ty + 1, 73] if the following holds. Fix an
arbitrary index i € {1,..., N — 1} and let £;_1,4;,4; ., be three paths drawn in {(r,z) € Z? :
T() <r< Tl} such that P(Li_l = Ei_l,LHl = gi—l—l) >0 (le =1 we set 80 = OO) Then for
any path ¢ such that £(Tp) = a = £;,(Tp) and £(T1) = b = £;,(T}) we have

W, T)Tagaei— 7ei ;S
P(L; = £|Ly(Ty) = a, Li(T1) = b, Li-y = £i1, Liy1 = Liy1) = Zt(tl(’o OTl la b g._ll gJ.jl. ;)’

(4.3.2)
where Z,(Ty,T1,a,b,4;_1,%;11;S) is a normalization constant. We refer to the measure in
(4.3.2) as PRTV%P (10,1, 0511).

Remark 4.3.5. An equivalent formulation of the above definition is that the law of L;, con-
ditioned on its endpoints a = L;(Ty) and b = L;(Ty), L;—; = £;—1 and L;1; = £;44 is given by
the Radon-Nikodym derivative

dp (0) = Wi (To, 11,4, £i-1, 4115 S)
d]P’?ﬁ;z“a’b Zy(To,Th, a,b, €31, b3 S)

With the above reformulation we get that

Z(To, Ty, a,b, 41,0115 S) = BRI (W (To, Ty, £, i1, £ig1; S)]

free

where the expectation is over ¢, distributed according to P?ﬁ;ﬁl;“’b.

If a measure P satisfies the Hall-Littlewood Gibbs property, it enjoys the following sam-
pling property. Start by (jointly) sampling L;(T5), L;(T1) and L;(r) for j # ¢ and r € [Ty, T1]
according to P (i.e. according to the restriction of P to these random variables). Set
a = Li(Tp) and b = L;(Ty) and let LY, N € N be a sequence of ii.d. up-right paths
distributed according to P?ﬁ’ef“a’b. Let U be a uniform random variable on (0, 1), which is
independent of all else. For each N € N we check if W;(Ty, 1, LY, Li—y, Li+1;S) > U and set
@ to be the minimal index N for which the inequality holds. Observe that @ is a geometric
random variable with parameter Z;(Ty,T1,a,b, L;—1, Liy1;S), which we call the acceptance
probability. In view of the above Radon-Nikodym derivative formulation, it is clear that the
random ensemble of up-right paths (Lq,..., L;_1, L?, Lit1,...,Ly) is distributed according
to P.

Remark 4.3.6. We mention that the resampling property of Remark 4.3.5 for a {1,..., N} x
[Ty, T1]-indexed line ensemble {L;}¥, only holds for the first N — 1 lines. The latter, in
particular, implies that for M < N, we have that the induced law on {L;}}, also satisfies the
Hall-Littlewood Gibbs property with parameter ¢ and subset S as an {1,..., M} x [To,T1]-
indexed line ensemble.

In this chapter, we will be primarily concerned with the case when ¥ = {1,2} and the
discrete line ensemble is non-crossing, meaning that L, (r) > Lo(r) for all r € [Ty, T1]. For
brevity we will call {1,2} x [7p,T1]-indexed non-crossing discrete line ensembles simple.
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These line ensembles will typically arise by restricting a discrete line ensemble with many
lines to the top two lines. If the original line ensemble satisfies a Hall-Littlewood Gibbs
property with parameter ¢ and set .S, the same will be true for the restriction to the simple
line ensemble at the top (see Remark 4.3.6). To simplify notation, whenever we are working
with a simple discrete line ensemble we will omit the ¢ — 1 index from all of the earlier
formulas and notation, as Lg, £y are deterministically oco.

In the remainder of this section we describe a general framework that can be used to
prove tightness for the top curve of a sequence of simple discrete line ensembles. We start
with the following useful definition.

Definition 4.3.7. Fix t € (0,1), > 0, p € (0,1) and T > 0. Suppose we are given a
sequence {Tx}%_; with Ty € N and that {£V}_;, £V = (LY, LY) is a sequence of simple
discrete line ensembles on [—Tn,Tn]. We call the sequence (a,p,T)-good if there exists
No(a, p, T') such that for N > Ny we have

e Ty > TN and £V satisfies the Hall-Littlewood Gibbs property with parameter t for

e for each s € [T, T)] the sequence of random variables {N~*/2(LY¥(sN®) — psN*)} is
tight (i.e. we have one-point tightness of the top curves).

The main technical result of the chapter is as follows.

Theorem 4.3.8. Fiz a,r >0 and p € (0,1) and let £ = (LY, LY) be an (o, p,r + 1)-good
sequence. For N > No(a,p,r + 1) (as in Definition 4.3.7) set

fu(s) = N™2(LY (sN*) — psN*®), for s € [-r,7]

and denote by Py the law of fn(s) as a random variable in (C|—r,7],C). Then the sequence
Py is tight.

Roughly, Theorem 4.3.8 states that if a process can be viewed as the top curve of a simple
discrete line ensemble and under some shift and scaling the process’s one-point marginals
are tight, then under the same shift and scaling the trajectory of the process is tight in the
space of continuous curves. We will show later in Theorem 4.7.3 that any subsequential limit
of the measures Py in Theorem 4.3.8 is absolutely continuous with respect to a Brownian
bridge of a certain variance — see Section 4.7 for the details. We also want to remark that
both Theorem 4.3.8 and Theorem 4.7.3 do not depend strongly on any particular structure
of the Hall-Littlewood Gibbs property. Indeed, the main ingredient that is used in deriving
these results is a lower bound on the acceptance probability Z;(Ty, 11, a, b, La; S) (see Remark
4.3.5), which is the content of Proposition 4.5.1. It is our belief that our arguments can be
extended to other (similar) discrete Gibbs properties without significant modifications.

4.3.2 Applications to the three models

In this section we use Theorem 4.3.8 to prove our main results for the three models in Section
4.2, given in Theorem 4.3.10, Corollary 4.3.11 and Theorem 4.3.13 below. In order to apply
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Theorem 4.3.8 we will need to rephrase the ascending Hall-Littlewood process and the ASEP
in the language of discrete line ensembles, to which we first turn.

Suppose we are given a sequence & = A(0) < A(1) < A(2) < -+ < A(M). The condition
A(4) < A(i+1) is equivalent to X;(i41) —Aj;(3) € {0, 1} for any j > 1. The latter implies that
we can view the sequence @ = A(0) < A(1) < A(2) < --- < A(M) as a collection of up-right
paths {X;(-)}}L, drawn in the sector {0,..., M} x Z (see Figure 4-6). In particular, this
allows us to interpret the ascending Hall-Littlewood process as a probability distribution of
{1,...,N} x [0, M]-indexed discrete line ensembles in the sense of Definition 4.3.1, where
Lj(i) = X(§) for i =0,...,M and j=1,...,N.

61 2 3 4 5 6 7 8 9

(5,3,2) < (8,5,2,1).

The key observation we make is that if @ = A(0) < A1) < A(2) < -+ < A(M) is
distributed according to ]P’g'f’N from Definition 4.2.1, then the discrete line ensemble L;(i) =
A;(4) fori=0,...,M and j = 1,..., N satisfies the Hall-Littlewood Gibbs property (this is
the origin of the name of this property). We isolate this in the following proposition.
Proposition 4.3.9. Fizx M,N € N and (,t € (0,1). Let @ = A(0) < A(1) < A(2) < --- <
A(M) be sampled from P?’N (see Definition 4.2.1). Then (Xi(:),A5(:),..., Ay(:)) satisfies
the Hall-Littlewood Gibbs property with parameter t for S = [1,..., M].

Proof. By Definition 4.2.1 we know that

PoY(AQ), ..., A(M)) = (1_—15() X HPA(z')/A(z'—l)(l) X Qo) (CY).

The latter equation implies that A}(0) = 0 and 0 < X[ (M) < min(M, N) with probability 1.
Using (4.2.2) we see that

P (A), - A(M)) = @aan () - (1——tC) 'H%(ﬁ)/x(i-n(t), where

(4.3.3)

U = Lo - [ (1 = Lawa-a09=0t2®?) , and A(g, 7) = g — pjy.
=1
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Fix i € {1,...,N — 1} and notice that (4.3.3) and (4.3.1) imply that for any ¢ €
Q(0, M;0, k) with 0 < k < min(M, N) we have

Pé\/f’N ()‘;() = elfezt ({Z}a (01 M))) =C- VVt(O7 M,¢, )‘;—1(')3 )‘;—H('); S),

where Fey ({¢}, (0, M)) is the o-algebra generated by X;(a) for a = 0,..., M and j # i as
well as Aj(0) = 0 and A, (M) =k, and C is an F.p ({z} (0, M))-measurable normalization
constant. Let F; be the o-algebra generated by X;(0) = 0, Aj(M) =k, X;_,(-) and X, (")
and observe that 71 C Fep ({4}, (0, M)). It follows from the tower property for conditional
expectation that

PN (N(-) = N(0) = 0, X(M) = k, N (), Xy () =

PN (CW0, M, 6, X1 (), Xiga (3 S)IF) = W0, M, €, X1 (), Ny (5 ) - PEY (CLR),

where in the last equality we used that W;(0, M, £, X;_,(-), X1 (-); S) is Fi-measurable. The
latter equation is equivalent to (4.3.2), which proves the proposition. O

With the help of Proposition 4.3.9 we deduce the following results for the homogeneous
ascending Hall-Littlewood process and stochastic six-vertex model.

Theorem 4.3.10. Assume the same notation as in Theorem 4.2.2. If Py denotes the law
of fFE(-) as a random variable in (C[—r,7),C), then the sequence Py is tight.

Proof. Consider the {1,2} x [Ty, Ty]-indexed simple discrete line ensemble with Ty =
|(r +2)N?/3|, given by

(L7 (), L3 (1) = (N ([uN] +4) = AN, 2([uN] +14) = LA(N]) .

It follows from Proposition 4.3.9 that (LY, LY) is a simple discrete line ensemble, which
satisfies the Hall-Littlewood Gibbs property with parameter t for S = [-Tx + 1,Tx]. In
addition, by Theorem 4.2.2 we know that for each s € [-r — 1,7+ 1] the sequence of random
variables N~1/3 (LY (sN%?) — sN?/3fi(u1)) is tight. The latter statements imply that the
sequence (LYY, LY) is (2/3, fi(u),r + 1)-good. It follows from Theorem 4.3.8 that if

gn"(s) = N7 (X([eN] + sN*®) — Li(w)N] — fi(u)sN*?), for s € [—r,7],

then g&Z(-) form a tight sequence of random variables in (C[—r,7],C). The latter clearly
implies the statement of the theorem. O

Corollary 4.3.11. Let &,u,q,7 > 0 be given such that g € (0,1), ¢ = 'u"¢"?2 < 1 and
fix € (¢, (). Let h(z,y) denote height function sampled from P, , and set for s € [—r,rT]

NV (8) = o ' N7 (fa(W)N + f(n)sN?P + (1/2)s2f5 ()NY? — h(1 + uN + sN*, N)) ,

(4.3.4)

where we define h(-, N) at non-integer points by linear interpolation. The constants above
| (/e (1-v2m) ™ (1-y/TT) " _

are given by g, = LLCNE) (VD) 5y 0vG g1y - SOV gy
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—2—%. If Py denotes the law of f3"(s) as a random variable in (C[—r,7],C), then the

sequence Py is tight.

Proof. From Theorem 4.2.4 we know that the law of f#L as in the statement of Theorem
4.3.10 is the same as f5". The result now follows from Theorem 4.3.10. O

Before we apply Theorem 4.3.8 to the ASEP, we need to rephrase the latter in the
language of discrete line ensembles that satisfy the Hall-Littlewood Gibbs property. We
achieve this in the following proposition, whose proof is deferred to the next section.

Proposition 4.3.12. Suppose R =1, L =t € (0,1) are given, fir K1,Ks € N, T > 0 and
set ¥ = {1,...,K1}. Then there exists a probability space, on which a ¥ x [—K3, K3]-indezed
discrete line ensemble (Ly, Lo, ..., Lk, ) is defined such that

e the law of (L1, Lo, ..., Lk,) satisfies the Hall-Littlewood Gibbs property with parameter
t for the set S = [-Ky + 1, K3|;

o the law of (L1(—K2), ..., L1(K>)) is the same as (—=h(—K2+1),..., —h(Ks+1)), viewed
as random vectors in R*>%1 where b has law PT , (see Section 4.2.3).

With the help of Proposition 4.3.12 we deduce the following results for the ASEP.

Theorem 4.3.13. Assume the same notation as in Theorem 4.2.5. If Py denotes the law
of fA5EF(s) as a random variable in (C[—r,7],C), then the sequence Py is tight.

Proof. Consider the {1,2} x [—Tn,Tn]-indexed simple discrete line ensemble with T =
|(r + 2)N?%/3], given by

(L3(@), LY (0)) = (La(leN] + i) + | fa(@)N], Lo(laN] + i) + | fa(@)N]),

with (Li, Ls) defined as in Proposition 4.3.12 with K; =2, Ky = aN + Ty and T' = N/7.
By construction, we have that (LY, LY) satisfies the Hall-Littlewood Gibbs property with

parameter ¢t for S = [-Tn + 1,7x]. In addition, by Theorem 4.2.5 and the fact that L,

has the same law as —bh, we know that for each s € [-r — 1,7 + 1] the sequence of random

variables N~1/3 (ﬂ{v (sN?/3) 4 sN?/3 fé(a)) is tight. The latter statements imply that the
sequence (LY, LY) is (2/3, — fi(a), + 1)-good. It follows from Theorem 4.3.8 that if

gi°EE (s) = N7V3 (Li(laN] + sN?3) + | fa(a)N] + f5()sN?/3), for s € [—r,7],

then ga°FF(.) form a tight sequence of random variables in (C[—r,7],C). The latter clearly
implies the statement of the theorem. O

Remark 4.3.14. In Corollary 4.7.4 we show that any subsequential limit of either of the
sequences f2%, oV and f{5FF as in the text above, when shifted by an appropriate parabola,
is absolutely continuous with respect to a Brownian bridge of appropriate variance. This, in
particular, implies that the subsequential limits of these random curves are non-trivial.
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4.3.3 Proof of Proposition 4.3.12

In this section we present the proof of Proposition 4.3.12, which we split into several steps
for clarity. Before we go into the main argument let us briefly outline the main ideas of the
proof. We begin by considering a particular sequence of {1,...,K;} x [—Ka, Ks]-indexed
discrete line ensemble (AY .. .,A%l). The latter are defined through appropriately trun-
cated and shifted discrete line ensembles associated to ascending Hall-Littlewood processes
with parameters ((/V) such that ((N) converges to 1. In Step 1 below we carefully ex-
plain the construction of (A{',..., A ) and assume that the sequence is tight and that
(AV(—K3),...,AN(K3)) weakly converges to (—h(—K3 + 1),...,—b(Ky 4 1)). Using the
tightness assumption we can pick some subsequential limit (A$°,...,A% ) and show it sat-
isfies the conditions of the proposition. The weak convergence of (AY(—K5),...,AV(K?))
to (=h(—=K2+1),...,—h(Ks+ 1)) is proved in Step 2 and it relies on Theorems 4.2.4 and
4.2.6. The tightness of (AY,...,AY ) is demonstrated in Steps 3, 4, 5 and 6, by combining
the already known tightness of AV and the Hall-Littlewood Gibbs property.

Step 1. For each N € N consider the homogeneous ascending Hall-Littlewood process ]P’%%T

where Np = [N -T|, {(N)=1— 17;1 and M = Ny -+ K. For N such that Ny > K; we let

(AY,...,AX)) be the & x [—K>, K>]-indexed discrete line ensemble, given by
AV (@) = Xi(i + Nr) — Nr, fori € {~K»,—~K,+1,..., K} and j € {1,...,K;} (4.3.5)

where (X[ (-),..., Nk, (-)) is sampled from P?{}%T. We isolate the following claims.
Claims:

e the sequence (AY,..., A ) is tight as random vectors in ZK+(2K2+1)

e the sequence (AY(—Ka),...,AN(K3)) weakly converges to (—h(—=Ky+1),..., —h(Ks+
1)) as random vectors in Z2%2*! as N — 0.

The latter statements are proved in the steps below. In what follows we assume their validity
and finish the proof of the proposition.

Let (A$°,..., A% ) be any subsequential limit of (AY,..., A¥ ) and assume that Ny is an
increasing sequence of integers such that

ATk, ARE) = (A,...,A%) as k — oo, (4.3.6)

We know that (A:}‘lv koo ,A%’:) is a ¥ x [—Ks, Ks]-indexed discrete line ensemble, which by
Proposition 4.3.9 satisfies the Hall-Littlewood Gibbs property with parameter ¢ on S and

we conclude that the same is true for (A$°,...,A%® ). By our earlier assumptions we know
that (A°(—K3),...,A?(K>3)) has the same law as (—h(—Ks + 1),...,—h(K>3 + 1)) and so
(AS°, ..., A®) satisfies the conditions of the proposition.

Step 2. We show that (AV(—K;),...,AY(K;)) weakly converges to (—h(—K; + 1),...,
—h(K; +1)). Let us put ¢ = t, £(N) = t'/2 and u = t~1¢~!. From Theorem 4.2.4 we have
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the following equality in distribution
(AY(=K)),...,AN(K,)) £ (~h(Np — K3 + 1, N7), ..., —h(Nr + K5 + 1, Ny)),

where h is the height function of a homogeneous stochastic six-vertex model sampled from
Pe(n),u(N),q- From (4.2.12) we have

¢~ — ¢ PE(N)u(N)
1— ¢ 71/2(N)u(N)

1= g~ 2¢(N)u(N) =tNT4+O(N7*) by(N) =

As a consequence of Theorem 4.2.6 we have that (—h(Nr — K3+ 1, N7),...,—h(Nr+ K>+
1, Nr)) converges weakly to (—h(—K> +1),..., —h(K3 + 1)), where b has law P7 5.

Step 3. In this step we show that (AY,...,AY ) is tight, by showing that A} is tight for
each k =1,..., K;. We proceed by induction on k with base case k = 1 being true by Step 2.
In what follows assume that AY,..., Ay are tight and want to show that Ay, is also tight.
Notice that because LY (j) — LY¥(j + 1) € {0,1} it is enought to show that X,,,(Nz) — Nr
is tight.

Let € > 0 be given. Set Dy(B) := {|\,_(Nr) — Nr| > B}. If k > 2 we have from the
tightness of the sequence Aj_;(Nr) — Nr that there exists B € N sufficiently large so that

P (DS,(B)) < ¢/16. (4.3.7)

By convention, A\g = co and so Dy(B) is a set of full measure and (4.3.7) holds even if £ = 1.
From the tightness of the sequence A} (Nr) — N7, we know that there exists A € N
sufficiently large so that

P (|X,(Nr) — Np| > A) < e(1 —t)B/16 and 1 > (1 — t4)?4 > 1/2. (4.3.8)
We make the following definitions
Ey = {)\;C(NT — 2A) — Nt > -—4A} and Fy := {)\;C+1(NT) — Np < —8A}

Let us denote by F& = Fout ({k} X (Np — 24, Nr|) the o-algebra generated by the up-right
paths A(-) for j # k and A(-) on the interval [0, Ny — 2A]. Observe that all three events
Dn(B), Ex and Fy are Fr-measurable. Using the above notation we claim that for all N
sufficiently large we have

4-E [1{\,(Ng) < Np — AHFE] = (1= 8)® - Lpyapyney- (4.3.9)

The above statement will be proved in Step 4 below. For now we assume it and finish the
proof.

Taking expectations on both sides of (4.3.9) and using (4.3.8), we conclude that €/4 >
P(Dy N En N Fy). Notice that Ex C {0 > X, (N7) — Nr > —2A}, which implies by (4.3.8)
that P(Ef) < €/16. Combining the last two estimates with (4.3.7) we see that for all large
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N we have
P(Fy) <P(DyNENNEy)+P(EY) + P(D%(B)) < €/4+€/16 4+ ¢/16 < €.
The latter means that for all large N we have
P (0> Xy (N7) — Np > —8A) > 1 —e.
Since € > 0 was arbitrary this proves that Aj_,(Nr) — Nr is tight.

Step 4. For ti,ty,x € Z and t; < t, we let Q,(t1,%2) denote the set of up-right paths
drawn in {t1,...,¢} X Z, which start from (¢;,z). In addition, we fix two up-right path
byt € Qy(t1,t2) and £y € Q. (t1,t2), where y < z — 4A, y < z and K(4,,) < B where
K(€op) = {Nr —2A+1 < i < Nyt £igp(i) — Ligp(i — 1) = 0}]. If k = 1 we set €4, = 00 and
K(4iop) = 0.

For N € N we consider the measure P‘f\}&""’zb"t on Q. (Nr —2A, Nr), given by

]P}t\}zmp’fbm (E) = Z]GI ) Wt(NT - 2A7 NT7 E, eto;m ebot; SN) : C-(N)e(NT)—m7

where Sy = [Ny—2A+1, N7] and Zy is a normalization constant. With the above notation
we define P(x, N, £iop, byot) = P57 P (0(N7) < z + A) and claim that for all N sufficiently
large (depending on ¢ and A) we have that

P(, N, biop, loot) > (1 — )P /4. (4.3.10)

The latter will be proved in Step 5 below. For now we assume its true and finish the proof
of (4.3.9).

Let Esztl S Q,\;cil(NT_QA)(NT — QA,NT) be such that g;cvil(l) = )‘;cj:l(z) for 7 = NT -
2A,...,Nr, where £ | = N = co when k = 1. As a consequence of Proposition 4.3.9 (see

also (4.3.3)) we have the following a.s. equality of F% random variables

1py(BnEnnEy - B [L{(N1) < N(Np — 24) + A} FN] =

Lpy(Bnexnry - PO(Np — 24), N, 67 67, )).
In deriving the above equality we used that for w € Dy(B) we have K(¢Y ,(w)) < B by
definition of Dy (B).

Notice that a.s. A\, (Ny —2A) + A < Nr — A, from which we conclude that we have the
following a.s. inequality

/ AT (4.3.11)
lDN(B)ﬂENﬂFN ) P(Ak(NT - 2A)) N7 ek‘—l’ ek-{—l)'

From (4.3.10) we have for all large N that P(X,(Ny—2A), N, £, £F.|) > (1—t)B/4, which
together with 1 > 1g,nF, and (4.3.11) imply (4.3.9).

Step 5. In this step we establish (4.3.10), but first we briefly explain our idea. By assump-
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tion, we know that £ is a random path that lies at least a distance A above £, and that
£iop(1) increases by 1 when % increases by 1 on [Ny — 2A, Nr| with at most B exceptions.
The latter implies that

1> Wi(Nr — 24, N, £, Liop, oor; Sn) > (1 — 1)P(1 = t4)*4 > (1 — 1)B /2,

where in the last inequality we used (4.3.8). On the other hand, we know that {(N) — 1 as
N — oo. This implies that P;v\}e’“"”eb"t (¢) is essentially the uniform measure on up-right paths
of length 2A started from x, conditioned to stay below £, and distorted by a well-behaved
Radon-Nikodym derivative. At least half of the paths that start from x and have length 24
end in a position below z 4+ A, and since each path carries roughly the same weight we can
obtain the desired estimate.

We make the following definitions

QF (Ciop) := {€ € Q(Ng — 24, N7) : £(Np) >z + A and £y, (1) > £(3) for Nr — 2A < i < Nr},
O (beop) = {£ € Qu(Np — 2A, N7) : ¢(Nr) <z + A and £, (3) > £(3) for Nr —2A < i < Nr}.

We claim that we have
7] > |27 (4.3.12)

The latter will be proved in Step 6 below. For now we assume it and finish the proof of
(4.3.10).

Write Py instead of ]P’ff“’”’z""t for brevity. We can find Ny (depending on ¢ and A ) such
that for all N > Ny we have 1 > ((N)?4 > 1/2. The latter together with our assumption
on 44, implies

1 > Wy(Nr — 2A, Nr, £, biop, boor; Sw) > (1 — )P(1 — t1)24 > (1 —t)B /2
Consequently, for any ¢;, 4, € Q. (Nr — 2A, Nr) we have

Py (41) > [(1 )7 /2] - Pn(£a).
In view of (4.3.12) we have
Pn(Q7) = Y Pn(0) > [(1-1)B/2] - > Py(0) = [(1—1)P/2] - Px(QF).
LeQ- eq+ ‘

The latter implies that
Py(27) > (1/2) - Py(Q27) + [(1 — t)B/éﬂ Py(QT) > [(1 — t)3/4] .

Step 6. In this final step we establish the validity of (4.3.12). It is easy to see that (4.3.12)
is equivalent to the following purely probabilistic question:

Let X; be ii.d. random variables such that P(X; = 0) = P(X; = 1) = 1/2 and S =
X1 + -+ X be a random walk with increments X;. Fix an up-right path ¢, such that
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£15p(0) > 0 and A € N. Then we have the following inequality
P(Sos < AlSy < liop(k) for k=1,...,24) > 1/2. (4.3.13)

Observe that if £;,, = oo then the above is trivial by symmetry. For finite #;,,, conditioning
the walk to stay below 4, stochastically pushes the walk lower and so the probability it
ends up below A only increases.

A rigorous way to prove the above is using the FKG inequality. To be more specific, let
Ly4 be the set of up-right paths starting from 0 of length 2A. The natural partial order on
Loy is given by

61 < €2 < g](l) < 62(2) for 7 = 1,. . ,2A

With this Loy has the structure of a lattice and so the FKG inequality reads

1{€ < £,,,}1{£(24) < A} 1{£(24) < A} 1{6 < £,)
(Z Lol >Z<Z Lol )(Z Loa] )

lcloy VISI N £elan

and clearly implies (4.3.13). This concludes the proof of the proposition.

4.4 Basic lemmas

This section contains the primary set of results we will need to prove Theorem 4.3.8. For
the remainder of the chapter we will only work with simple discrete line ensembles and as
discussed in Section 4.3.1 we will drop references to £y and Lo from our notation.

4.4.1 Monotone weight lemma

In this section we isolate the key result that allows us to analyze measures that satisfy
the Hall-Littlewood Gibbs property — Lemma 4.4.1 below. In addition, we derive two easy
corollaries, which are more suitable for our arguments later in the text.

Let zy,29,t1,t2 € Z be such that ¢; < t; and 0 < 25 — 21 < t5 — t; and recall from
Section 4.3.1 that Q(t1,t2; 2122) denotes the set of up-right paths from (¢1,21) to (2, 22).
Each ¢ € Q(t1,t; 2122) can be encoded by a sequence R({) of t, — t; signs: +’s and —’s
indexed from ¢; + 1 to t3, so that R(¢) = + if and only if £(i) — £(¢ — 1) = 1. The latter is
depicted in Figure 4-7. The total number of +’s is fixed and equals z; — z; and the number
of —’s equals to — t; — 29 + 21.

The main result of this section is the following.

Lemma 4.4.1. Fizt € (0,1) and let c(t) = [[2,(1 —t*) € (0,1). Suppose a,b, z1, 22, 1,2
are given such that t1 +1 <1y, 0 < 20— 21 <tsg—t, 0<b—a <ty —t, z1 < a, zo0 <b.
Fiz any by, € Qt1,t2;21,22), S C{t1 +1,...,t2} and T € {t; + 1,...,t2 — 1}. Let m(T) and
M(T) denote the minimal and mazimal values of the set {€(T) : £ € Q(ty,1t;a,b)} and let
m(T) < ky < ko < M(T). Then we have

c(t) - L (Wilta, ta, £, byt S)|U(T) = k] < ERZS [Wi(ty, 12, £, Lo S)|E(T) = ks
(4.4.1)

Proof. For brevity we write W (£) for Wy(t1,t2,%, €yor; S). Let £; be a random path sampled
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12 3 4 5 6 7 8 9 10

Figure 4-7: A path identified with a sequence of 4+ and — signs. For the above path we have
29 — 21 = 4, tz — tl =9 and R(E) = (+, = —,+,+, —3 = +, —).

according to P}?g‘:“’b, conditioned on ¢;(T) = k;. We identify this path with a sequence of
+’s and —’s and observe that we have (k; — a) +’s in the first 7' — ¢, slots and the rest are
filled with —’s. Similarly, we have exactly (b — k2) +’s in the rest t; — T slots. Let us pick
uniformly at random (ks — k;) —’s in the first T — ¢; slots and change them to +, and also
we pick uniformly at random (ks — k1) +’s in the last ¢, — T slots and change them to —. In
this way we build a new sequence of +’s and —’s that naturally corresponds to an element
by € Q(t1,t2;a,b) such that é’gg)T = ky. Moreover it is clear that the random path £ is
distributed accordmg to P42 conditioned on £5(T) = k. We are interested in proving

free
the following statement
W () < c(t)™ - W(k). (4.4.2)

The statement of the lemma is obtained by taking expectations on both sides of (4.4.2).

Since W (¢;) = 0 otherwise (and then (4.4.2) is immediate) we may assume that £¢,(i) >
byt (3) for all 4 € S. Let r = ks — ky and denote by 1 < 2o < - < zpand y; > y2--+ > ¥r
the positions of —’s and +’s respectively that we changed when we transformed ¢; to £.
We also let ¢/ for j = 0,...,7 denote the paths in Q(t;,ts; a,b) obtained by flipping only the
signs at locations z,...,z; and ¥, ...,y; (in particular £° = ¢; and ¢ = ;). An example is
depicted in Figure 4-8.

Recall from (4.3.1) that W(¢) = [[;cs (1 — Liag-1-ag)=1) - t2V), where A(j) =
£(j) — £oot (7). Let us explain how W (£*1) differs from W (#7). When we flip the signs at z;
and y;41, we raise the path £ by 1 in the interval [z;1, ;41— 1], while outside (z;41—1,y;41)
it remains the same (see Figure 4-8). The latter operation modifies the factors in W (#) as
follows.

o If z;;; € S then W(#) has a factor (1-— 1{A(Ej+1)_A(mj+1_1)=1}-tA(“'"j“‘l)), which
changes to 1.

e All the factors (]. - 1{/_\.(1')WA(¢M1)=1} . tA(i_l)) become (1 - l{A(i)ﬁA(iﬁl)zl} . tA(i_I)_i_l)
whenever i € S N [T;41,Yj+1 — 1].

o If y;41 € S then W(#) has a factor (1 — Lia(y,,1)-Ady41—-1)=1} ° tﬁ(yﬂrl))’ which be-
comes (1 — L{A@11)-A(yj+1-1)=0} .tA(yj+1—1}+1)_
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Figure 4-8: An example of £°, ¢! and ¢2 for the case ky — k; = 2.

The first two changes only increase the weight W (¢#’), while the last can decrease it but at
most by a factor 1 — ™, where m; = 1 + miNiesns,,1,y;:1-1] [& (£) — Loot(¢)]. This implies

W (&) < (1— ™)L W(e+),

Notice that mg > 1 since we assumed that £°(z) = £;(3) > £y (i) for i € S. In addition,
since at step j + 1 we raise the path on [z;41,y;+1 — 1] by 1 it is clear that m;.; > 1+ m;,
which implies that m; > j + 1 for each 5 > 0. We conclude that

w(e) < [J1-6)" - W) <ty - wie).

As % = ¢; and €7 = ¥, the above proves (4.4.2) and hence the lemma. O

Remark 4.4.2. If t = 0 the acceptance probability Wy(¢1,t2, £, £t; S) is equal to 1 if £ does
not cross £y, on the set S, and 0 otherwise. In this case one can use the arguments in the
proof of Lemmas 2.6 and 2.7 in [42] to show that we can construct on the same probability
space £ and ¢” such that

Pl =€) = PL2™(Lle(T) = k1), P(£" =€) = PL™*(Lle(T) = k)

free

and ¢'(j) < £"(j) for t; < j < to with probability 1. The latter statement implies that we
have the following almost sure inequality Wy(t1,t2, 2, feot; S) < Wo(t1,ta, £”, bper; S), which
means that higher curves are accepted with higher probability. This statement fits well with
the continuous setup in [42].
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For general ¢ € (0,1) we no longer have the above inequality almost surely. For example,
we can take t; = 0,ty =2n,a =k =0,b=ky =n, S = [[t; + 1, t2], lyor = £ to be the path
that is flat on the interval [0,n] and goes up on [n,2n], while ¢’ the path that goes up on
[0,n] and is flat on [n,2n]. For this choice one calculates

Wt(tl>t2,e/)ebot;s) =1> H(l - tl) = Wt(t17t2>€”7€bot;s)'

Consequently, even though £ is below £ it is accepted with higher probability and the reason
is that the acceptance probability depends not only on the distance between lines but also
on their relative slope. In this context, the result of Lemma 4.4.1 is that the acceptance
probability of the top line does increase as it is raised, although only in terms of its expected
value and up to a factor of c(t) = [];2,(1 — t*). This monotonicity is much weaker than the
almost sure monotonicity in the ¢ = 0 case, but it turns out to be sufficient for our methods
to work.

Using the above lemma we prove two useful corollaries.
Corollary 4.4.3. Assume the same notation as in Lemma 4.4.1. Suppose A, B are non-

empty subsets of {m(T),m(T) + 1,..., M(T)}, such that a > B for alla € A and B € B.
Then we have

C(t) Etl’tz’a b [Wt(tla tz, @, ebot; S)lg(T) € B] S ]Etl’t%a’b [Wt(tl, t2, €, ebot; S)‘g(T) € A] . (443)

free free

Proof. For brevity we write W (£) for Wi (t1, 12,4, foot; S). We have that

tl RO N oT
o(t) - B W(OIUT) € B] = c(t) - > ELE [W(4)UT) = B] - ]P,tfffze abge((Ti c B; N

BEB free
tl,tz,a b _ t1,t2;a, b .
Z ZEtl,tz,ab W(€)|€(T) — ﬂ] fTee (e(T) O{) ]Pfrez ( (T) - ) <
free ]P)tl ,t2;a,b A t1,t2;a, b
BEB acA free (E(T) € ) ]P)free ( ( ) )
t1 to;a, b t1,t2;a,b
e (g(T Plizab((T) =
Z Z E?;ize,a b |€(T) _ Ot] tf::’a b( ( ) ) g:::;& b( ( ) ﬁ) _
BEB acA free ( ( ) € ) Pfree (E(T) € B)
]P;tl,t'_) a,b f T —
D _ELa WOIT) = o] - s b( =) gy i) e 4,
acA IP)free ( (T) € A)
The middle inequality follows from Lemma 4.4.1. O

Corollary 4.4.4. Assume the same notation as in Lemma 4.4.1 and let o < M(T). Denote
by P the probability distribution IPtSI’tQ’“’b(-Mbot) from Definition 4.3.4. Then we have

PU(T) > a) > c(t) - PLE(UT) > ). (4.4.4)

Proof. If a < m(T') then (4.4.4) becomes 1 > c(t), which is clearly true. We thus may
assume that M(T) > a > m(T). Let A = [a, M(T)] and B = [m(T), ). Define D, := {£ €
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Q(t1,t2;0,b) : L(T) € A} and Dy := {£ € Q(t1,ty;a,b) : £(T) € B}. Observe that A and B
satisfy the conditions of Corollary 4.4.3 and hence

D
3 Wilts, s 8) > elt)- 10U 57 Wit o, £, ).
¢eD; |1D2| /5,

Dividing both sides by Zeeg(tl,t%a’b) Wi(t1, ta, £, Loor; S) we see that

D
| Do

. | D |
| Da| + c(t)| D]

P(T) > o) > c(t) (1-P(4(T) > a)) or equivalently P(¢(T) > a) > c(t)

Since c(t) € (0,1) we can increase the denominator by replacing it with |D;| 4+ |D,|, which
makes the RHS above precisely c(t) - P'Y2**(4(T) > a) as desired. O

free

4.4.2 Properties of random paths

In this section we derive several lemmas about random paths distributed as ]P(};ZZS’Z for z €
{0,...,n}, which are essential for the proof of our main results. Recall that if L is such a
path, we define L(s) for non-integral s by linear interpolation (see Section 4.3.1). The key
ingredient we use to derive the lemmas below is a strong coupling between random walk
bridges and Brownian bridges, which is presented as Theorem 4.4.5 below.

If W, denotes a standard one-dimensional Brownian motion and o > 0, then the process
By = d*(W, —tW,), 0<t<]1,

is called a Brownian bridge (conditioned on By = 0,B; = 0) with variance o®. With this
notation we state the main result we use and defer its proof to Section 4.8.

Theorem 4.4.5. Let p € (0,1). There exist constants 0 < C,a,a < oo (depending on
p) such that for every positive integer n, there is a probability space on which are defined
a Brownian bridge B® with variance 0% = p(1 — p) and a family of random paths £™?) €
Q(0,n;0, 2) for z =0, ...,n such that £%) has law ]P’g;’;f’z and
E [eaA(n,z)] < Cveoz(logn)2elz-—perZ/n7 where A(n, z) := SUDg<t<n \/ﬁBzf/n + %z _ g(n,Z)(t)' )
(4.4.5)

Remark 4.4.6. When p = 1/2 the above theorem follows (after a trivial affine shift) from
Theorem 6.3 in [60]. The proof we present in Section 4.8 for the more general p € (0,1) case
is based on (suitably adapted) arguments from the same paper.

We will also need the following monotone coupling lemma for random walks, which can
readily be established from the arguments used in the proof of Lemma 2.6 in [42].

Lemma 4.4.7. Suppose ai,by,as,bs, t1,ts are given such that t1 < ta, 0 < by — as < to — t1,
0< b —a; <ty —t, a1 < ag, by < by. Then there exists a probability space on which
are defined random paths ¢1 and ly such that the law of ¢; is Pj};ﬁi’“i’b" fori = 1,2 and
P(¢1(s) < £a(s), for s =t1,...,ts) = 1.
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Using facts about Brownian motion and the above coupling results we establish the
following statements for random paths.

Lemma 4.4.8. Let M > 0 and p € (0,1) be given. Then we can find No(M, p) such that for
N > Ny, N> 2> pN+ MN'Y2 and s € [0, N] we have

POz (E(S) > %(pN + MN1/2) — N1/4) > 1/3. (4.4.6)

free

Proof. Assume that Ny > 2M? and N > Ny. In view of Lemma 4.4.7, we know that

By (Us) 2 (PN + MNY?) = N'4) > PR (£(s) > —(pN + MNY?) — N4,

free free

whenever z, > 2z; and so it suffices to prove the lemma when z = [pN + M N'/?]. Suppose
we have the same coupling as in Theorem 4.4.5 and let P denote the probability measure on
the space afforded by the theorem. Then we have for ¢ = p(1 — p) that

0,N;0,z s 5 1/2\ _ nl/4) _ (N,z) S 1/2y _ N1/4) >
PN (6s) 2 - (pIV + MNY2) = NV4) =P (6%9(s) > = (pN + MNY?) = NY4) >

> P (N'?Bgy 2 0 and A(N,2) < (N4~ 1)) 2 1/2 - P (A(N,z) > NY* - 1).

In the next to last inequality we used that |z — (pN + MN'/2)| < 1 and in last inequality
we used that P(B;,y > 0) = 1/2 for every v > 0 and s € [0, N]. Next by Theorem 4.4.5 and
Chebyshev’s inequality we know

P (A(Na Z) > N1/4 — 1) < Cea(logN)26M2e_aN1/4‘

The latter is at most 1/6 if we take N, sufficiently large and N > Ny, which would imply
that PN (4(s) > (s/N)(pN + MNYV?) — NY/4) > 1/3 for such N, as desired. O

free

Lemma 4.4.9. Let My, My > 0 and p € (0,1) be given. Then we can find No(M;, Ma,p)
such that for N > Ny, 2z > —MiN'Y2 z, > pN — M1 N2 we have

free

]Vfé]\fl/z %—19?0
2

P (e(zvm > -N ”4) > (1/2)(1 — S*CP2(M, + M), (44.7)

where ®Y s the cdf of a Gaussian random variable with mean 0 and vartance v.

Proof. Assume that Ny > 2(M; + M,)? and N > Ny. In view of Lemma 4.4.7 it suffices to
prove the lemma when z; = [-M;N'/?] and z, = [pN — M;NV/%]. Set Az = 2, — 2; and
observe that

1/2 1/2
P.(;;Igézl’n (E(N/Q) > MQN 5 +pN _ N1/4> — P?‘;JZ;,O’AZ (E(N/2) > MZN 5 +pN - N1/4) )

Suppose we have the same coupling as in Theorem 4.4.5 and let [P denote the probability
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measure on the space afforded by the theorem. Then we have

1/2 1/2
B0 (102 2 PRI ) < (e 2 MRS )

(2M1 -+ MQ)N1/2 —+ Az
2

where we used that |z; + M;N'/?| < 1 and |z, + M; N2 — pN| < 1. We now note that the
expression in the second line above is bounded from below by

My + 2M,
P o>« -
( 1/2 = 2

> P (e(NvM(N/z) > — NY* 4 2) ,

and A(N, z) < NV — 2> , where o = p(1 — p).

Since BY , has the distribution of a normal random variable with mean 0 and variance a?/2,
and ®v is decreasing on R we conclude that the last expression is bounded from below by

1—&P0P2(M, 4+ M)~ (A(N, z) > NY* — 2) > 1—&P1P/2(M, 4 M,) —Cetlos N M=o/,
In the last inequality we used Theorem 4.4.5 and Chebyshev’s inequality. The above is at
least (1/2)(1 — ®U=P)/2(M, + M,)) if Ny is taken sufficiently large and N > Nj. O

Lemma 4.4.10. Let p € (0,1) be given. Then we can find No(p) such that for N > Ny,
21> NY2, 2y > pN + N'/? we have

e (min ) =l + 00 20) 2 5 (1-e (G2 )) w4y

s€[0,N] 1—p)

Proof. In view of Lemma 4.4.7 it suffices to prove the lemma when z; = [NY/?] and 2 =
[pN 4 N/2]. Set Az = 2z, — 2; and observe that

]P)O,N;zl,ZQ . é _ N1/4 > 0 — ]P)O,N;O,AZ . e _ N1/4 > .
free (Sg[lol’%] [ (8) ps] + = free 32[101’%] [ (5) pS] + Z 21

Suppose we have the same coupling as in Theorem 4.4.5 and let PP denote the probability
measure on the space afforded by the theorem. Then we have

0,N;0,Az . 1/4 ~ _ _ : N,AZ) (o) _ N4 _
P free (Sglol,f]{,] [£(s) — ps] + NV/* > z1) =P <sg[101,111v1 [(NA9)(s) — ps] > —N z1> >

P ( min [K(N’Az)(s) — iAz] > _NYA_ N2 4 2) ,
s€[0,N] N
where in the last inequality we used that |21 — N'/2| < 1 and |2, — pN — N¥/2| < 1. We now

note that the expression in the second line above is bounded from below by

P (II}(I}I}] B? > —1 and A(N, z) < NV* - 2> , where 02 = p(1 — p).
se|0,
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We can lower-bound the above expression by P (min,ep,1j B > —1)—P (A(N,z) < NV —2).
By basic properties of Brownian bridges we know that

P(min B 2 _1> zlP’(min B > —0“1> =P (max B; < a‘l> =1—e2 7

s€[0,1] s€[0,1] s€[0,1]

where the last equality can be found for example in (3.40) of Chapter 4 of [56]. On the other
hand, by Theorem 4.4.5 and Chebyshev’s inequality we have

P (A(N, Z) > N1/4 - 2) < Cea(logN)26M2e_aN1/4’

and the latter is at most (1/2)(1 — e=2°"") if Ny is taken sufficiently large and N > Np.
Combining the above estimates we conclude that if Ny is sufficiently large and N > Ny, we
have P?ﬁfl’zz (minsepo,n [£(s) — ps] + N4 >0) > (1/2)(1 — e=2 ") as desired.

O
4.4.3 Modulus of continuity for random paths
For a function f € Cla,b] we define the modulus of continuity by
w(f,8) = sup |f(z)— f(y)l- (4.4.9)
z,y€[a,b]
lz—y|<é

In this section we derive estimates on the modulus of continuity of paths distributed according
to P‘};’?g “ for z € {0,...,n}, which are essential for the proof of Theorem 4.3.8. Recall that if
L is such a path, we define L(s) for non-integral s by linear interpolation (see Section 4.3.1).
The main result we want to show is as follows.

Lemma 4.4.11. Let M > 0 and p € (0,1) be given. For each positive € and n, there exist a
0 >0 and an Ny € N (depending on €¢,n, M and p) such that for N > Ny we have
PENOZ (w(f*,8) > €) <, (4.4.10)

free

where fY(z) = N~Y2(¢(zN) — pzN) for = € [0,1] and |z — pN| < M N2,

Proof. The strategy is to use the strong coupling between £ and a Brownian bridge afforded
by Theorem 4.4.5. This will allow us to argue that with high probability the modulus of
continuity of f* is close to that of a Brownian bridge, and since the latter is continuous a.s.,
this will lead to the desired statement of the lemma. We now turn to providing the necessary
details.

Let €, > 0 be given and fix § € (0,1), which will be determined later. Suppose we have
the same coupling as in Theorem 4.4.5 and let P denote the probability measure on the space
afforded by the theorem. Then we have

PONOZ (1(f4,8) > €) = P (w( 7 8) > e) . (4.4.11)

free =
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By definition, we have

w(fg(N,z), 5) _ N—1/2 sup |E(N’Z)($N) _pr _ E(N’Z)(yN) +pyN| .
x,y€(0,1]
lz—y|<d

From Theorem 4.4.5 and the above we conclude that for o2 = p(1 — p) we have

w(fe(N’z),(S) < N2 sup le/ng — Nl/zBZ +(z—pN)(z - y)| + IN"ZA(N, 2).
z,y€[0,1]
lz—y|<é

(4.4.12)
From (4.4.11), (4.4.12), the triangle inequality and our assumption that |z — pN| < M N/
we see that

PE® (w(f*,8) > €) <P (w(B%,6) + M +2N"2A(N, 2) > ¢) . (4.4.13)

free

Let (I) = P (w(B7,8) > ¢/3), (II) = P(6M > ¢/3) and (I1I) = P (2N~Y2A(N, z) > €/3),
then we have

P (w(B%,8) + 0M + 2NV2A(N,z) > €) < (I) + (1) + (I11).
By Theorem 4.4.5 and Chebyshev’s inequality we know
P (A(N,z) > NY/*) < Celoa N)? gM? g=alN!/%

Consequently, if we pick N, sufficiently large and N > N, we can ensure that 2N~Y/4 < ¢/3
and Ce(0sN)?M? g—aN'% /3 which would imply (I17) < n/3.

Since B? is a.s. continuous we know that w(B?,d) goes to 0 as ¢ goes to 0, hence we
can find &g sufficiently small so that if § < dy, we have (I) < /3. Finally, if M < €/3 then
(IT) = 0. Combining all the above estimates with (4.4.13) we see that for ¢ sufficiently small,
N, sufficiently large and N > Ny, we have P90 (wse(6) > €) < (2/3)n < n as desired.

free

O

4.5 Proof of Theorem 4.3.8

The goal of this section is to prove Theorem 4.3.8 and for the remainder we assume that
N = (LY, LY) is an (a,p,T + 1)-good sequence for some r > 0, defined on a probability
space with measure P. The main technical result we will require is contained in Proposition
4.5.1 below and its proof is the content of Section 4.5.1. The proof of Theorem 4.3.8 is given
in Section 4.5.2 and relies on Proposition 4.5.1 and Lemma 4.4.11.

4.5.1 Bounds on acceptance probabilities

The main result in this section is the following.

Proposition 4.5.1. Fizr > 0 and denote s; = [rN®|. Then for any € > 0 there exist § > 0
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and Ny (both depending on r,€,t, a,p) such that for all N > N; we have
P (Zt(——sl,31,L¥(~51),L{V(sl),L2;Sl) < 5) <e€

where S' = [—s1 + 1, 1] and Z, is the acceptance probability defined in Definition 4.3.4 (see
also Remark 4.3.5).

The general strategy we use to prove Proposition 4.5.1 is inspired by the proof of Propo-
sition 6.5 in [43]. We begin by stating three key lemmas that will be required. Their proofs
are postponed to Section 4.6. All constants in the statements below will, in addition, depend
on «,t and p, which are fixed throughout. We will not list this dependence explicitly.

Lemma 4.5.2. For each € > 0 there exist R(r,€) > 0 and Ni(r,€) such that for all N > N,
we have

P ( sup [LY(s) — ps] > RN"‘/Q) < €.
s€[—(

—(r+1)N=,(r+1)N?]

Set s1 = |[rN®| and ¢t; = |(r+1)N?| and assume a, b, 21, 22, t; satisfy, 0 < zp — 21 < 2¢4,

O <b—-a< 2,z <a, 22 <b Let fy be a fixed path in Q( —t1,t1; 21, 22) and denote

= [~ti +1,t1], § = [-t1 +1,—s1] U [s1 + 1,£1]. Let L and L be two random paths in
Q( t1,t1;a,b) , with laws Py, and P; respectively such that

Pp(L = £) = Pg***(¢4ser) and Py (L = £) = P (€] or).

where the definition of P5""*%(.|€,,,) was given in Definition 4.3.4. From (4.3.1) we know
that L will not cross £, with probability 1. On the other hand, L can cross £y multiple
times in the interval (—s1,s; + 1) but it will stay above it on [—¢1, —s1] U [s1 + 1,%4].

Lemma 4.5.3. Fiz My, Ms > 0, S’ = [—s1 + 1, s1] and suppose
1. SUDg_gy 1) [loot(8) — ps] < Ma N/,
2. a > max(lyos(—t1), —pt; — MyN/?),
3. b > max(Lyoy(t1), pt1 — MyN/?).

There exists Ny € N and explicit functions g and h (depending on 7, My, Ms) such that for
N > N,

P; (Zt (—sl,sl,i(—sl),i(sl),ebot;S’) > g) > h. (4.5.1)

The functions g and h are given by

_l — ex __2__ an = (e(t)? _ r(l-p)/2 V2 (M, 3
g-—4<1 p<p(1_p))) dh=(c(t)*/18)(1 — & (101 + r)*(My + My + 1)),

where c(t) = [0, (1 — ') and ®° is the cdf of a Gaussian random variable with mean zero
and variance v.

Lemma 4.5.4. Fiz My, M, >0, S’ = [—s; + 1, 51] and suppose
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1. Supse[—tl,tl] [gbot(s) - pS] < M2Na/2’
2. a > max(yr(—t1), —pt; — MyN®/?),
3. b 2 max(fbot(tl),ptl - MINQ/Q).

Let Na,g,h be as in Lemma 4.5.8 and for any € > 0 set 6(é) = €-g-h. Then for N > N, we
have
Pr (Zi (—s1, 81, L(—81), L(81), boot; S') < §(€)) < €. (4.5.2)

In the remainder we prove Proposition 4.5.1 assuming the validity of Lemmas 4.5.2 and
4.5.4. The arguments we present are similar to those used in the proof of Proposition 6.5
in [43].

Proof. (Proposition 4.5.1) Define the event

Eyx = {Liv(—tl) > max(LY (—t), —pt, — M1N°‘/2)} A

{LY(t;) > max(LY (t,), pt; — MlNa/2)} N { sup [Lg(s) —ps| < MQNQ/Z} ,
s€[—t1,t1]

where M, and M, are sufficiently large so that for all large N we have P(E%) < €/2. The
existence of such M; and M, is assured from Lemma 4.5.2 (since LY dominates L} pointwise)
and the fact that £V is (a,p,7 + 1) - good.

Let 0(€) be as in Lemma 4.5.4 for the values € = ¢/2, r, M, M5 in the statement of the
lemma. Consider the probability

P ({Zi(—s1,51, Ly (—s1), L} (s1), L); ") < 6(€)} N En) =

= E |15, [W{Z(=s1,50, LY (=s1), Y (1), L3'; §') < 8(&)}|Fuwn ({1} ¢ (=1,11))] |

(4.5.3)

In the above equation we have F..: ({1} x (—t1,%1)) is the o-algebra generated by the up-
right paths LY and LY outside the interval (—t1,¢;). The equality in (4.5.3) is justified by
the tower property since E is measurable with respect to Feu: ({1} X (—t1,¢1)) . We next
notice that we have the following a.s. equality of F..: ({1} x (—#1,t1))-measurable random
variables

E [1{Zu(=s1,51, LY (=s1), L} (s1), L} §') < 6(&)}
Pr (Ze(—s1, 51, L(—s1), L(s1), Ly ; S') < 8(€)),

Feer ({1} x (=t1,))] =

where Pr, is specified as in the setup after Lemma 4.5.2 with respect to a = LY (—t;),
b= LY (t1), by, = LY on [—t;,11].

When the Fez; ({1} x (—t1,11))-measurable event Ey holds we have that supge(_y, 4]
(oot (8) — ps] < MaN%/2 and a > max(Lpot(—t1), —pts — MiN®/2) b > max(€po(ty), pt1 —
M;N%/?) (recall that £V is a simple discrete line ensemble by definition so that LY lies
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above LY). Thus we may apply Lemma 4.5.4 on Ey and obtain that
Py, (Zt(S’, —S1, 81, L(—Sl),L(82), Lév) < 6(6)) < glEN -+ 1E1cv’

where the inequality is understood in the a.s. sense. Putting this into (4.5.3) we conclude
that

P ({28, —s1,81, L) (=s1), L7 (1), L3)) < 6(¢/2)} N E) < €/2.
Using this and P(E%;) < €/2, we see that for all large N we have

P (Z(S', —s1, 81, LY (—s1), LY (s1), L3') < 5(e/2)) <.

4.5.2 Concluding the proof of Theorem 4.3.8

For clarity we split the proof of Theorem 4.3.8 into several steps. In the first two steps we
reduce the statement of the theorem to establishing a certain estimate on the modulus of
continuity of the paths LY. In the next two steps we show that it is enough to establish these
estimates under the additional assumption that (LY, L)) are well-behaved (in particular,
well-behaved implies that the acceptance probability Z;,(—s;,s1, LY (—s1), L¥(s1), L2; ) is
lower bounded and it is here that we use Proposition 4.5.1). The fact that the acceptance
probability is lower bounded is exploited in Step 5, together with the resampling property of
Remark 4.3.5, to effectively reduce the estimates on the modulus of continuity of LY to those
of a uniform random path. The latter estimates are then derived in Step 6, by appealing to
Lemma 4.4.11.

Step 1. Recall from (4.4.9) that the modulus of continuity of f € C[—r,7] is defined by

w(f,0) = sup |f(z) — f(y)l.

z,y€[~r7]
le—y|<é

As an immediate generalization of Theorem 7.3 in [13], in order to prove the theorem it
suffices for us to show that the sequence of random variables fx(0) is tight and that for each
positive € and 7 there exist ¢’ > 0 and N; € N such that for N > N;, we have

P(w(fy,8) > €) <. S (@54

The tightness of fn(0) is immediate from our assumption that {£V}%_, is an (a,p, 7 + 1)-
good sequence (in fact we know from Definition 4.3.7 that fy(s) is tight for each s €
[—r — 1,7 + 1]). Consequently, we are left with verifying (4.5.4).
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Step 2. Suppose €, > 0 are given and also denote s; = [rN*|. We claim that we can find
0 > 0 such that for all N sufficiently large we have

Pl s |V - L) -pla—y)| > 07| < (4.5.5)
r,ye[—z,sll ' 1Y) =P =Yl = 202r)1/2 | = n- .0.
|z—y[<28s1

Let us assume the validity of (4.5.5) and deduce (4.5.4).

Let 6’ = 7. Suppose that z,y € [—r,r] are such that |z — y| < ¢’ and without loss of
generality assume that z < y. Let X = [zN*] and Y = |yN*|. One readily observes that if
N is sufficiently large then |X — Y| < 2ds1, and X, Y € [—s1, 51]. In addition, we have that

|fn(@) = fn(y)| = N~ |LY (eN*) = LY (yN*) — pN*(z — y)| <

N7 |LY(X) = LY (Y) = p(X = Y)| + 2N~*2(1 + p),

where we used that | X — zN®| < 1, |Y — yN?®| < 1, the slope of L, is in absolute value at
most 1, and the triangle inequality. The above inequality shows that for all N sufficiently
large we have

P(w(fn,8)2e) <P | sup |L¥(z) = LY (y) — p(z —y)| = eN*/? = 2(1 +p)
z,y€[—s1,81]
lz—y|<28s1

€(2s1)1/2
2@

1/2
that for all sufficiently large N we have 62((223;))1 //2 < eN®/? — 2(1 + p). This together with
(4.5.5) implies that the RHS in the last equation is bounded from above by 7, which is what

we wanted.

Since s; = |[rN“| we see that ~ (€/2)N*/? as N becomes large and so we conclude

Step 3. The first two steps above reduce the proof of the theorem to establishing (4.5.5),
which is the core statement we want to show. In order to prove it we will need additional
notation that we summarize in this step.

From the tightness of N~/ [L{V(xN"‘) — xpN"‘] at £ = —r and x = r we can find M; >0
sufficiently large so that for all large N we have

P((E1(Mi, N)) > 1—n/4, where E;(Mi, N) = {max (|Lf’(—31) + ps1, |L{V(51) —psi|) < M1N°‘/2} .

In addition, we know from Proposition 4.5.1 that we can find é; > 0 such that for all
sufficiently large N we have

IP(EQ(J], N)) >1- ?7/4, where E2(51,N) - {Zt(—sl,sl,Liv(—Sl),L{V(Sl),Lz; SI) > 61} .

Suppose a, b, 21, z3 are given such that 0 < 2o — 21 <25, 0<b—a <28, 21 < a, 22 <b.
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For a given £y, € Q(—s1, 81; 21, 22), we let
E(a,b, by, N) := {(L{V,Lév) : LY = lyop on [—s1, 1], LY (—s1) =a and LY (s1) =b }.

Observe that E;(M;, N) N Ey(6;, N) can be written as a countable disjoint union of sets of
the form E(a, b, £y, N), where the triple (a,b, £,) satisfies:

1. 0<b—a<2sy, |a+psi| < MN*? and |b—ps,| < MN?,
2. z1 < a, 20 < band by € QU—s51, 81, 21, 22),
3. Zt(S,,—Sl,Sl,G,, b, Ebot) > 61.

Clearly, there are only finitely many choices for a,b that satisfy the conditions above.
Then the number of z;,2, for each given pair (a,b) is countable, while the cardinality
of Q(—s1,81,21,22) is finite. This means that the number of triplets (a,b, o) is indeed
countable. The fact that E(a,b, fyt, N) are disjoint is again clear, while the first and third
condition above show that their union is indeed E;(Mi, N) N E2(d1, N). Let us denote by
F (81, My, s1, N) the set of triplets (a, b, {y,;) that satisfy the three conditions above.

Step 4. Let us write LY ([—s1,51]) as the restriction of LY to [—s1,s1]. For § > 0 and
¢ € Q(—s1,51;a,b) we define

V(6,£) = sup |[{(z)—L(y) —p(z —y)|.

z,y€[—s1,s1]
lz—y|<28s;

We assert that we can find § > 0 such that for all large N and (a, b, £pt) € F (1, M1, 51, N),
we have

6(281)1/2

P(V(6, LY ([=s1,51]) 2 A|E(a,b, £, N) ) < 1/4, where A = S

(4.5.6)
Let us assume the validity of (4.5.6) and deduce (4.5.5). We have

]P’(V((S, LV ([=s1,51])) > A) < ]P’( {V(8, LY ([—s1, 1)) > AYNEy(My, N)NE;(8y, N)) /2,

where we used that P(ES(M;, N)) < n/4 and P(E5(61, N)) < n/4. In addition, we have

]P’( {V (6, LY ([~s1,51])) = A} N Ei(My, N) N Ey(64, N)) -

3 P({V(6, LY ((=s1,51])) > A} 1 B(a,b, fui, N) ),

(a,b,Lyot)EF(61,M1,51,N)

where we used that E;(Mj, N) N Ey(61, N) is a disjoint union of E(a,b, s, N). Finally, we
have from (4.5.6) above that

P( {V(6,LY ([~s1,81])) > A} N E(a,b, Ebot,N)) =
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P(V(é, LY ([—s1,81])) > A’E(a, b, lyor, N))P(E(a,b,ébot, N)) < (n/4) - P(E(a, b, lyot, N)).

Summing the latter over (a,b,%,:) € F(61, M1, s, N) and combining it with the earlier
inequalities we see that

(VS LY (=s1,510) 2 A) <nf2+n/4- 3" B(E(a,b, b, N)) =

(a:b,gbot)eF(dl 7M1 »S1 ’N)

=n/2+ (n/4) - P(Ey\(My, N) N Ey(8;,N)) <,

where in the middle equality we again used that E;(Mj, N) N Ey(61, N) is a disjoint union
of E(a,b, o, N). The last equation implies (4.5.5).

Step 5. In this step we establish (4.5.6) and begin by fixing (a,b, by) € F(d1, M1, sy, N).
Since £V satisfies the Hall-Littlewood Gibbs property on [—s1,s;] with respect to S’ =
[—s1+1,s;] for N sufficiently large we know that

]P’(Lff([—sl, s1]) = E[E(a, b, Ebot,N)) = Pg,sl’sl’a’b (£]£yt) for any £ € Q(—sy, s1;0a,b). (4.5.7)

We now recall the sampling property we explained in Remark 4.3.5. Let ¢X be a se-
quence of L.i.d. up-right paths distributed according to P 7.""*  Also let U be a uni-
form random variable on (0,1), independent of all else. For each K € N we check if
Wi(—s1, 81,25, lyos; S') > U and set Q to be the minimal index K, which satisfies the inequal-
ity. Then we have that Q) is a geometric random variable with parameter Z;(—s1, s1, a, b, fpot; S’)
and

P (02 = ) = P (£]€yyy) for any £ € Q(—sy,51;a,b), (4.5.8)

where P is the probability measure on a space on which £X and U are defined, we also write
E for the expectation with respect to P.

By our assumption that (a, b, £y:) € F'(01, M1, $1, N), we know that Z;(—s1, $1, a, b, bpor; S') >
61 and so ]E[Q] = Zy(—s1,81,a,b,bpor; S') 7L < 071 Tt follows that if we take R = 8671n71,
then by Chebyshev’s inequality we have

P(Q > R) < n/s. (4.5.9)

Fix A = 62((223:))11//22 and observe that

P(V(5,49) > A) =P (V(5,69) > A,Q > R) +P(V(6,49) > A,Q < R) <P(Q > R) +

1<i<R

P max V(, ) > A) =P(Q>R)+1-P max V(5,6) < A} < 1-P (V(5,£") < A)P+4qy8.
1<i< (

In the last inequality we used (4.5.9) and the independence of ¢’. Combining the latter
inequality with (4.5.7) and (4.5.8) we see that

P (V(8, LY ([—s1,51])) > AlE(a,b, i, N)) <1 =P (V(5,6") < A +n/8. (45.10)

209



Equation (4.5.6) would now follow from (4.5.10) if we can show that for any ¢ > 0 we can
find 0 > 0 (depending on M, €, n, r and p), such that for all large N we have

P(V(5,¢") <A)>1-¢. (4.5.11)

Step 6. In this final step we establish (4.5.11), which is the remaining statement we require.

Notice that A = &(2s;)'/2, where & = W The key observation we make is the following
P (V(5,01) < A) = PlZstb=e (w( 7,8 <€), (4.5.12)

where ff(z) = (2s1)7Y2(¢(2zs,) — 2pxs,)) for = € [0,1] and w(f, ) denotes the modulus of
continuity on [0, 1] as in (4.4.9). |
Notice that since (a, b, £yo;) € F (1, M1, 51, N), we know that |b—a —2ps;| < 2M;N*/? <
%(281)1/ 2 for all large N. The latter means that we can apply Lemma 4.4.11, and find
0 > 0 (depending on M, €, € n and p), such that for all large N we have
PO,ZSl;O,b——a (w(fel’ 5) < E) >1—¢.

free

Combining the latter with (4.5.12) concludes the proof of (4.5.11).

Remark 4.5.5. An important idea in our arguments above is to condition on E(a,b, £y, N)
and obtain estimates on these events, where additional structure is available to us. The
latter is possible because of the discrete nature of our problem and substitutes the more
involved notions of stopping domains and strong Brownian Gibbs properties that were used
in [42] and [43].

4.6 Proof of three key lemmas

Here we prove the three key lemmas from Section 4.5.1. The arguments we use below heavily
depend on the results from Section 4.4.

4.6.1 Proof of Lemma 4.5.2

Let us start by fixing notation. As in Section 4.5.1 we set s; = [rN?| and t; = [(r+ 1)N*].
Define the events

E(M) = {|L'(=t:) + pta| > MN®/?} , F(M) = {Li(~s1) > —ps1 + MN/?} and

G(M) = { sup [LY(s) —ps] > (6r + 10)(M + 1)N°‘/2} .
s€[0,¢1]
For a,b € Z and s € {0,1,...,t;} as well as a path £y, in Q(—t1,s; 21, 22), where z; < a and
z2 < b we define F(a,b, s, ) to be the event that LY (—t;) = a, LY (s) = b, and L} agrees
with £per On [—t1,s]. We will also write LY ([m,n]) for the restriction of L} to the interval
[m, n].
Observe that E°(M) N G(M) can be written as a countable disjoint union of sets of the
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form E(a,b, s, lpt), where the quadruple (a, b, s, £y,;) satisfies:

1. 0<s< ¢y,
2.0<b—a<t +s,|atpt| < MN*? and b —ps > (6r + 10)(M + 1)N*/2,
3. z1 < a, zp < band b € QU—t4,s, 21, 22),

Clearly, there are only finitely many choices for s and for any s there are countably many
a, b that satisfy the conditions above. Then the number of z, z; for each given pair (a,b) is
again countable, while the cardinality of Q(—t1, s, 21, 22) is finite. This means that the num-
ber of quadruples (a, b, s,y is indeed countable. The fact that E(a,b,s, ) are disjoint
is again clear, while the first and second condition above show that their union is indeed
E¢(M)NG(M). Let us denote by D(M) the set of quadruples (a,b, s, fy) that satisfy the
three conditions above.

By 1-point tightness of LY we know that there exists M > 0 sufficiently large so that for
every N € N we have
ec(t)
127
where we recall that c(t) = [[;2,(1 — ¢*). Suppose (a,b, s, 4yt) € D(M) and observe that we
have

P(E(M)) < ¢/4 and P(F(M)) < (4.6.1)

PS50 (f(—s1) > —psy + MN®/2) = PYAFS007% (g4 — 51) + a > —ps; + MN*?) >

free free
P}:;jS?O”’—“ (8(t1 — 1) > p(ts — s1) + 2MN°/?)

(4.6.2)

where in the last inequality we used that a + pt; > —MN®/2. Since |a + pt;| < MN%/? and
b—ps > (6r + 10)(M + 1)N/2, we conclude that b — a > p(t; + s) + (6r + 9)(M + 1)N/2.
It follows from Lemma 4.4.8 that for all large N we have

]P,O,t1+s;0,b—a (E(tl . 81) > ttl — 81 [p(tl 1 S) + (67" + 9)(M + l)Na/Q] _ (tl + 5)1/4) > 1/3

free 1+ s
(4.6.3)
Notice that since s € [0,£1], sy = [rN®] and t; = |[(r + 1)N®], we have 832 > Lo for
all large N. These estimates together imply that for all large N we have ttll;jsl (tr+s) +

(6r 4+ 9)(M + 1)N®/?] — (t; 4+ 8)/* > p(t; — 81) + 2M N*/? and so from (4.6.2) and (4.6.3)
we conclude that
P (6(—s1) > —psy + MN*/?) > 1/3. (4.6.4)

Since the sequence LV is (a,p,r + 1)-good, we know that for any ¢ € Q(—t1,s;a,b) we
have Wi(—t1, 5,2, 05: 5)
N — Y — t\—11, 5, £, €9,
]P)(Ll ([ tl? 8]) KIE(a7 b’ S, bOt)) Zt(_tl, s, a, b, Zbot; S) )

where S = [—t; + 1,s]. The latter together with (4.6.4) and Corollary 4.4.4 allow us to
conclude that

P (Li(—s1) + psi > MN®?|E(a,b, s,6501)) > c(t)/3. (4.6.5)
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We now observe that

IP’(F(M)) > Z IP’(F(M) N E(a,b,s,fbot)) =

(a,b,5,8bot )ED(M)
= Y P(F(M)|E(a,b,5, b)) P(E(a,b,5,6)) > (c()/3)P(E(M) N G(M)),
(@,b,3,801)ED(M)

where in the last inequality we used (4.6.5). Combining the above inequality with the
inequalities in (4.6.1) we see that for all large N we have

e/2>P(G(M))="P ( sup [Ly(s) —ps] > (6r + 10)(M + 1)N°‘/2> . (4.6.6)
SE[O,tl]
A similar argument shows that for all large N we have

€/2>P ( sup [L{(s) —ps] > (6r + 10)(M + 1)N°‘/2) . (4.6.7)

s€[—t1,0]

Combining (4.6.6) and (4.6.7) we conclude the statement of the lemma for R = (6r+10)(M +
1).

4.6.2 Proof of Lemma 4.5.3

For clarity we will split the proof into two steps.
Step 1. Define F = {min (f/(—sl) + psy, L(s1) —psl) > (M, + 1)N*/2 + (281)1/2}. We
claim that for all N sufficiently large we have

P; (F) > (c(t)/18) (1 — ®P1=P/2 (10(1 + r)*(My + M2 + 1)) . (4.6.8)

Establishing the validity of (4.6.8) will be done in the second step, and in what follows we
assume it is true and finish the proof of the lemma.
We assert that if N, is sufficiently large and N > N, we have

FcA= {Z (—31,sl,i(—sl),i(sl),fbot; s’) > i (1 — exp (Eﬁ:—z—p)» } . (4.6.9)

Observe that (4.6.9) and (4.6.8) prove the lemma and so it suffices to verify (4.6.9). The
details are presented below (see also Figure 4-9).
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L(-s1)

— 81 81

Figure 4-9: Overview of the arguments in Step 1:

We want to prove that on the event F, we have a lower bound on the acceptance prob-
ability Z,(L(—s1), L(s1)) = Zy(—s1, 81, L(—s1), L(51), €ot; S'). As explained in (4.6.10) the
acceptance probability is just the average of the weights Wy(—s1, 81, £, £eot; S') over all up-
right paths in Q = Q(—s1,s1; L(—s1), L(s1)). Consequently, to show that Z,(L(—s;), L(s1))
is lower-bounded it suffices to find a big subset €' C €, such that the weights
Wi(—s1, 81, £, €yor; S') for £ € Q' are lower-bounded.

Let A(s) and B(s) denote the lines ps + (My + 1)N*/2 — (2s,)'/* and ps + MyN®/2, drawn
in grey and black respectively above. Then ' denotes the set of up-right paths in €2, which
lie above A(s) on [—sy,s1]. On the event F' we have that L(+s;) are at least a distance
(251)/2 + (251)1/* above the points A(+s;) respectively. Since the endpoints of paths in
are well above those of A(s) this means that some positive fraction of these paths will stay
above A(s) on the entire interval [—sy, s;]; i.e. [€|/|€?| is lower bounded. This is what we
mean by 2 being big and the exact relation is given in (4.6.11).

To see that Wi(—si,51,%, ber; S') for £ € €' are lower bounded, we notice that elements
¢ € Q' are well-above B(s), which dominates #,; by assumption. This means that £ is well
above £; and for such paths Wy(—s1, 81,4, £yor; S') is lower bounded. The exact relation is
given in (4.6.12).
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From Definition 4.3.4 (see also Remark 4.3.5) we have

4 (—81, 81, f’(_sl)) E(Sl)) ebot; S/) - E;:elt;SI;L(_SI)’L(Sl) [W/t(—sla S1, '7£b0t; S/)] .
If we set Q = Q(—s1, s1; i(—sl), _I:J(sl)) and Zt(i(_‘sl)a L(s1) =2 ("517 S1, f/(_sl), E(31)7€bot; S/)
then the above implies

Zo(L(=s1), L(s1)) = Q™Y Wi—s1, 81,4, brot; S). (4.6.10)
LeQd

Denote ' = {£ € Q: £(s) — ps > (M + 1)N®/% — (2s1)/* for s € [—s1,51]}. It follows from
Lemma 4.4.10 that on the event F', provided N, is sufficiently large and N > N, we have

Since |s; — rN€| < 1 we know that for N, sufficiently large and N > N, we have that
£ € U satisfies £(s) — ps > (My + 1/2)N%2 > £,,:(s) — ps + (1/2)N®/2, where the last
inequality holds true by our assumption on ¥,,;. The conclusion is that for £ € £, we have
that £(s) — lpot(s) > m, where m = (1/2)N%/2. In view of (4.3.1) we conclude that for N,
sufficiently large, N > N, and £ € ', we have
a a1

Wi(—s1, 51,4, loor; S') > (1 —t™)%1 > (1 — /2N /2)2rN > 3 (4.6.12)
Combining (4.6.10), (4.6.11) and (4.6.12) we conclude that provided N, is sufficiently large
and N > N, on the event F' we have

N 5 11 —2
— > Q! W, (— - SN > | => 21— .
Zt(L( 81)? L(Sl)) — |Q| éezﬂl t( 81) 811'67 gbot, S) — IQ' 2 —_ 4 <]‘ exp (p(]. _p)>)

Step 2. In this step we prove (4.6.8). We refer the reader to Figure 4-10 for an overview of
the main ideas in this step and a graphical representation of the notation we use.
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Figure 4-10: Overview of the arguments in Step 2:

Ly and L, are the restrictions of L to [—t,0] and [0,#,] respectively. £, and 7, denote the
restrictions of £y to [—#1,0] and [0, ] respectively. Let B(s) denote the line ps + My N e
drawn in black above. We have that [’ denotes the event that L is at least a distance
N*/2 4 (25,)1/% above the line B(s) at the points &-s; and we want to find a lower bound on
P; (F). i

We first let E denote the event that L(0) is much higher than B(0), and prove that P;(E) is
lower bounded. The exact statement is given in (4.6.13). Afterwards, we show that on the
event that the midpoint L(0) is very high, the points L(=s;) are also very high with positive
probability. The exact statement is given in (4.6.17).

In a sense, by conditioning on the midpoint L(0) we split our problem into two independent
subproblems for the left and right half of L - see (4.6.14). Establishing the required estimates
for each of the subproblems is then a relatively straightforward application of Lemma 4.4.8
and Corollary 4.4.4 - see (4.6.15).

Let K] = 8(1 + T)Z(Ml + Mg + I)NQ/Q. Define E = UMEXEM for
Ey={L(0)=M}and X = {M € N: M > (1/2)K; — [2(r + 1)N]*/* and P;(Ey) > 0} .

It follows from Lemma 4.4.9 that we can find N, depending on r, M;, My such that for
N > N, we have

Py (6(0) > (1/2)K:1 — [2(r + D)N]**) 2 (1/2)(1 - @ "P2(M; + K7)).
Then by Corollary 4.4.4 we conclude
P; (E) > (c(t)/2)(1 — ®*CP2(M, + K)). (4.6.13)

Denote by L; and L, the restriction of L to [—t1,0] and [0,;] respectively. Similarly,
we let £}, and 2, denote the restriction of £, to [—t1,0] and [0,¢;] respectively. The key
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observation we make is that if M € X then
P;(Ly = €1, Ly = £o| Enr) = P50 (8118,,) - PG M0 (La]€3,), (4.6.14)

where Sl = [[—tl -+ 1, ——81]], SQ = [[51 + 1,t1]] and €1 € Q(—tl,();a, M), 22 € Q(O,tl;M, b)
From Lemma 4.4.8, we know that

-8 S1
+

]P)-tl,oaM (e(—81) Z Mtl

free

—[(r+ 1)N]“/4> > 1/3,

1 1

provided N, is large enough and N > N,. Since a > —pt; — M;N®/? g = |rNe|, t; =
[(r + )N®|, M > (1/2)K; — [2(r + 1)N]*/* and K; = 8(1 + r)2(1 + M; + My)N*/* we
conclude that if N, is sufficiently large and N > N, then

P beM (0(=s1) + psy > (My+ 1)N*/? + (251)'/7) > 1/3.
From Corollary 4.4.4 and the above inequality we conclude
Pt %M (4 (=s1) + ps1 > (My + 1)N*/2 + (251)'/2) > c(t)/3. (4.6.15)
Similar arguments show that
PEME (0y(s1) — psy > (My+ )N + (251)1/%) > c(t)/3. (4.6.16)
Combining (4.6.14), (4.6.15) and (4.6.16), we see that for M € X, we have
P; (F|En) > c(t)?/9. (4.6.17)
The above inequality implies that

Pi(F) 2Py (FNE)= Y P (F|Ew)Pr(Bu) 2 (c(t)?/9) - Pp (E).
MeX

The latter inequality together with (4.6.13) and the monotonicity of ®” on R prove (4.6.8).

4.6.3 Proof of Lemma 4.5.4

Define P1, and P;, as the measure on up-right paths L' and I : [—t1,—s1] U [s1,t1] = R
(with L'(—t) = L( t1) = a and L'(t;) = L'(t;) = b ) induced by the restriction of the
measures Py and P; to these intervals. The Radon-Nikodym derivative between these two
restricted measures is given on up-right paths B : [—t;,—s;] U [s1,t1] = R by

d]PL

) = (Z") Zy(—s1, 51, B(—81), B(51), &bot; S'), (4.6.18)

where Z' = Ej, [Zt(_'sla s1, B(=s1), B(s1), £oot; S")]-
Observe that Zi(—s1,s1, B(—s1), B(81), fot; ) is a (deterministic) function of (B(—s1),
B(s1)). In addition, the law of (B(—s;), B(s;)) under P;, is the same as (L(—s1), L(s1))
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under P; (this is because P, is a restriction of P; to intervals that contain +s;). The latter
and Lemma 4.5.3 imply

Z/ = Ef/ [Zt(—sla slaB(_Sl)aB(sl)aebot; Sl)] = IEf, [Zt(_slasla j’(_sl)rz(sl))gbot; S,)] Z gh’

Similarly, the law of (B(—s;), B(s1)) under Py, is the same as (L(—s;1), L(s1)) under P,
(this is because Py is a restriction of Pj, to intervals that contain 4s;). Since Z;(—s1, s1,
B(—s1), B(s1),bot; S") is a (deterministic) function of (B(—s;), B(s1)), we conclude that

Pr, (Z(—s1, 51, L(—51), L(s1), Loot; S < 0(€)) = Pr/ (Z¢(—s1, 51, B(—51), B(51), Leot; §') < 4(8)).

Let us denote E = {Z;(—s1, 51, B(—51), B(s1),4bot; S") < 6(€)} C Q (here § is the space of
paths B). Then we have that

PL/ (E) = /QlE . dIP[/(B) = (Z,)_l /Q 1E‘ . Zt(—Sl,Sl,B(—Sl),B(Sl),ebot; S/) . d]P)D(B)

The above is immediate from (4.6.18). On E we have that Z;(—s1, s1, B(—s1), B(51), %ot; S') <
d(€) and so the above is bounded by

(Z’)‘I/QIE-6(€)~dPD(B) < gih/nlE-é(e)-dPi,(B) <e

The first inequality used that Z’ > gh and the second one that §(€) = € - gh and 15 < 1.
This concludes the proof of the lemma.

4.7 Absolute continuity with respect to Brownian bridges

In Theorem 4.3.8 we showed that under suitable shifts and scalings («,p,r + 1)-good se-
quences give rise to tight sequences of continuous random curves. In this section, we aim
to obtain some qualitative information about their subsequential limits and we will show
that any subsequential limit is absolutely continuous with respect to a Brownian bridge with
appropriate variance. In particular, this demonstrates that we have non-trivial limits and
do not kill fluctuations with our rescaling. In Section 4.7.1 we present the main result of the
section — Theorem 4.7.3 and explain how it relates to the other results in the chapter. The
proof of Theorem 4.7.3 is given in Section 4.7.2 and for the most part relies on our control
of the acceptance probability in Proposition 4.5.1 and the Hall-Littlewood Gibbs property.

4.7.1 Formulation of result and applications

We begin by introducing some relevant notation and defining what it means for a random
curve to be absolutely continuous with respect to a Brownian bridge.

Definition 4.7.1. Let X = C([0,1]) and Y = C([—r,r]) be the spaces of continuous func-
tions on [0, 1] and [—r,r] respectively with the uniform topology. Denote by dx and dy the
metrics on the two spaces and by B(X) and B(Y) their Borel o-algebras. Given 21,22 € R
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we define F,, ,,: X =+ Y and G, ., : Y — X by

[Foy s (9))(2) = 21+ (w + ) Lo

o 9 (Z2 —21) [Gz1,z2 (h)](f) =h (27{ "' r) —R1— (Z2 - Zl)&,

(4.7.1)
for z € [—r,r] and £ € [0, 1].

One observes that F,, ,, and G,, ,, are bijective homomorphisms between X and Y that
are mutual inverses. Let Xo = {f € X : f(0) = f(1) = 0} with the subspace topology and
define G : Y — X through G(h) = Gp(—r)n(r(h). Let us make some observations.

1. G is a continuous function. Indeed, from the triangle inequality we have
dx (Ghy(=r)ha () (h1), Gho(=r) ha(r) (h2)) < 2dy (R, ho).

2. If L is a random variable in (Y, B(Y)) then G(L) is a random variable in (X, B(X)),
which belongs to X, with probability 1. The measurability of G(L) follows from the
continuity of G, everything else is clearly true.

Recall from Section 4.4.2 that B stands for the Brownian bridge on [0, 1], with variance o2
— this is a random variable in (X, B(X)), which belongs to Xy with probability 1.
With the above notation we make the following definition.

Definition 4.7.2. Let L be a random variable in (Y,B(Y)) with law P,. We say that
L is absolutely continuous with respect to a Brownian bridge with variance o2 if for any
K € B(X) we have

P(B°e K)=0 = P.(G(L) e K) =0.
The main result of this section is as follows.

Theorem 4.7.3. Assume the same notation as in Theorem 4.3.8 and let Py, be any sub-
sequential limit of Pn. If foo has law Py, then it is absolutely continuous with respect to a
Brownian bridge with variance 2rp(l — p) in the sense of Definition 4.7.2.

We have the following immediate corollary to Theorem 4.7.3 about the three stochastic
models of Section 4.2.

Corollary 4.7.4. Assume the same notation as in Theorem 4.2.2, Corollary 4.3.11 and
Theorem 4.2.5 respectively and define for x € [—r,r|

@) = o fiH @)+ TLE o8V (@) = 0, 15 (0TI gser gy = o, pser () 20,

ASEP ASEP

If g2L, g5V and g are any subsequential limits of g%, g5 and g§ respectively
as N — oo then gL, g5V and gASFF are absolutely continuous with respect to a Brownian

bridge of variance 2r fi(p)[1— fi(w)],—2r fi(p)[1+ fi(p)] and —2r f5(a)[1+ f5(c)] respectively
in the sense of Definition 4.7.2.

Proof. From the proof of Theorem 4.3.10 we know that
giH(s) = N=V3 (LY (sN*2) — fi(u)sN*%) , for s € [~r,7],
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where the sequence (LY, LY) is (2/3, f](u), + 1)-good. By Theorem 4.7.3 we conclude the
statement for g’. In addition, by Theorem 4.2.4 we know that for each N € N, fH* has
the same distribution as f§' and so we conclude the statement for 5" as well.

From the proof of Theorem 4.3.13 we know that

GiPP(5) = N3 (LN (sN*F3) + fy(a)sN*°), for s € [—r,],

where the sequence (LY, LY) is (2/3, —fi(a),r + 1)-good. By Theorem 4.7.3 we conclude
the statement for g25EF. O

Remark 4.7.5. Conjecturally, fHL, f3V and fASEP should converge to the Airy, process.
Corollary 4.7.4 provides further ev1dence for this result as it is known that the Airy, process
minus a parabola has Brownian paths [42]. See also the discussion at the end of Section
4.1.2.

4.7.2 Proof of Theorem 4.7.3

In this section we give the proof of Theorem 4.7.3, which for clarity is split into several steps.
Before we go into the main argument we introduce some useful notation and give an outline
of our main ideas.

Throughout we assume we have the same notation as in the statement of Theorem 4.3.8
as well as the notation from Section 4.7.1 above. We Denote o7 = 2rp(1 — p), 51 = |[rN¢],
rv =51 N~* and §' = [—-s,+1, 51]. In addition, we define three probability spaces P!, P2, 3
as well as a big probability space P, which is the product space of P!, P? and P®. The three
spaces will carry different stochastic objects and we will use the superscript to emphasize,
which properties we are using in different steps of the proof. We also reserve P to refer to
the law of universal probabilistic objects like a Brownian bridge of a fixed variance.

From Theorem 4.4.5, we know that for each n € N we have a probability space, on which
we have a Brownian bridge B° with variance 02 = p(1 — p) and a family of random paths
1) € Q(0,n;0, 2) for z=0,...,n such that £ has law ]P’fme and

E [e al(n.z ] < Celogngle=ml/n  ghere A(n, z) = SUPo<i<n |VRBY), + Ly —(2(g)),

where the constants C, a, o depend only on p and are fixed. By taking products of countably
many of the above spaces we can construct a probability space (!, F!,P!), on which we
have defined independent Brownian bridges B*" and independent families of random paths
k%) € Q(0,n;0, z) for z=0,...,n such that £ has law IP’?CZS * for each k and

Ep [e“A("’k’z)] < Celogm?*cle—rl*/n  where A(n, k, z) == SUPg<i<n \/_Bf/ﬁ" £R2) (1))
In words, for each pair (k,n) € N x N we have an independent copy of the probability
space afforded by Theorem 4.4.5 sitting inside (2, 7! P!). In addition, we assume that
(Q, F1,P!) carries a uniform random variable U € (0, 1), which is independent of all else.

Since P, is a subsegential limit of Py we know that we can find an increasing sequence
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N; such that Py, weakly converge to P.. By Skorohod’s representation theorem (see e.g.
Theorem 6.7 in [13]) we can find a probability space (92, F2,P?), on which are defined
random variables fN and f, that take values in (Y, B(Y')) such that the laws of fN and fo

are Py, and P, respectively and such that dy ( fNj( Y, foo(wz)) — 0 as j — oo for each
w? e N2

We consider a probability space (03,73 P%), on which we have defined the original
(a,p,T + 1)-good sequence £~ = (LY, LY) and so

fn(s) = N=2(Ly(sN®) — psN®), for s € [~r,7]

has law Py for each NV > 1. Let us briefly explain the difference between P? and P2 and
why we need both. The space (922, F2,P?) carries the random variables fy, of law Py, and

what is crucial is that the latter converge almost surely to fo, whose law is Po,. The space
(923, F3,P%) carries the entire discrete line ensembles £ = (LY, LY) (and not just the top
curve), which is needed to perform the resampling procedure of Section 4.3.1. Finally, we
define (12, F, IF") as the product of the three probability spaces we defined above.

At this time we give a brief outline of the steps in our proof. In the first step we fix
K € B(X) such that P(B°* € K) = 0 and find an open set O, which contains K, and
such that B?! is extremely unlikely to belong to O. Our goal is then to show that G( foo)
is also unlikely to belong to O, the exact statement is given in (4.7.4) below. Using that
O is open and that fN converge to foo almost surely we can reduce our goal to showing

that it is unlikely that G( fNj) belongs to O and fNJ. is at least a small distance away
from the complement of G~!(O) for large j. Our gain from the almost sure convergence
is that we have bounded ourselves away from G~!(0)¢, which implies that by performing
small perturbations we do not leave G~1(O). As the laws of fNj and fy, are the same we
can switch from (Q2, F2,P?) to (3, F3,P3), reducing the goal to showing that it is unlikely
that G(fn) belongs to O and fy is at least a small distance away from the complement of
G~Y(O) for large N. The exact statement is given in (4.7.5) and the reduction happens in
Step 2. The benefit of this switch is that we can perform the resampling of Section 4.3.1 in
(23, F3,P?) as the latter carries an entire line ensemble.

In the third step we use U and #2152 for k = 1,2,3... to resample fy on the interval
[—s1, 81]. If we denote by @ the index k of the first line we accept from the resampling, we
can rephrase our statements for fy to equivalent statements that involve the path £(251:2:) —
this is (4.7.7). The benefit of working with £Bs1k2) i5 that they are already strongly coupled
with Brownian bridges by construction. In Step 4 we construct an event F(N), on which
our coupling of £(21:9) and the Browniand bridge B%®?%! is good and on which B@2 g
well-behaved (its supremum and modulus of continuity are controlled). Provided we are on
F(N) (where the coupling is good) we see that £(21:2*) belonging to a certain set (we want
to show is unlikely) implies that /2rB%@2s belongs to O. Here it is crucial, that we have
the extra distance to the complement of G™*(O) so that when we approximate our discrete
paths with Brownian bridges we do not leave the set G~1(O).

The above steps reduce the problem to showing that it is unlikely that V2r Bo@:251
belongs to O or that we are outside the event F(IN) — the exact statement is in (4.7.15). The
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control of v/2r B#@251 is obtained by arguing that with high probability @ is bounded — this
requires our estimate on the acceptance probability from Proposition 4.5.1 and is the focus
of Step 5. By having @ bounded we reduce the question to a regular Brownian bridge, for
which the event it belongs to O is unlikely by definition of O. We demonstrate that F(N)®
is unlikely in Step 6. As before we use the estimate on the acceptance probability to reduce
the question to one involving a regular Brownian bridge. In addition, we use that with high
probability we have uniform control of the coupling of our paths with Brownian bridges for
all large N.
We now turn to the proof of the theorem.

Step 1. Suppose that K € B(X) is given such that P(B* € K) = 0. We wish to show that
P2 (G(foo) e K) - 0. (4.7.2)

Let € € (0,1) be given and note that by Proposition 4.5.1 and Theorem 4.3.8 , we can find
0 € (0,1) and M > 0 such that for all large N one has

P* (E(6,M,N)) < ¢, where E(8,M,N) ={ Z,(~s1,51, L} (=s1), L (51), L2 §') < 5}u

{ sup !L{V(s)—psl ZMN"‘/2}.
s€[—rNa,rNe|
(4.7.3)

We observe that since C([—r,7]) is a metric space we have by Theorem II.2.1 in [72] that the
measure of B! is outer-regular. In particular, we can find an open set O such that K C O
and P(B? € O) < 105)(1( )‘5) The set O will not be constructed explicitly and we will not
require other propertles from it other than it is open and contains K.

We will show that ~
p? (G( 7o) € O) < 6e. (4.7.4)

Notice that the above implies that P? (G (fs) € K ) < 6e and hence we reduce the proof of
the theorem to establishing (4.7.4).

Step 2. Our goal in this step is to reduce (4.7.4) to a statement involving finite indexed
curves.

We first observe G=1(0) is open since G is continuous (this was proved in Section 4.7.1).
The latter implies that

P2 (G(foo) € o) — P2 (foo e G‘l(O)) = lim P° ({fN e G1(0) } N {dy(fNj,G_l(O)c) > rj}) ,

where r; is any sequence that converges to 0 as j — co. The first equality is by definition.

The second one follows from the fact that fN converge to fo, in the uniform topology P2
almost surely and that G~!(O) is open. To be more specific we take r; = N, ~*/% for the

sequel.

221



Since fy has law Py for each N > 1, we observe that to get (4.7.4) it suffices to show
that

liﬁljupPa ({fv € GHO)} n {dy(fx,G7(0O)°) > N"*/8}) < 6e. (4.7.5)

Step 3. At this time we recall the resampling procedure from Remark 4.3.5 in the setting
of our probability spaces P!. The goal of this step is to rephrase (4.7.5) into a statement
involving the paths £(™%?) that are defined on (0!, F1 P).

Denote by a = L¥V(—s;), b = LY¥(s1), 2 = b—a, n = 2s; and £y = LY restricted
to [—s1,51]. We resample the top curve LY as follows. We start by erasing the curve in
the interval [—s1,s;]. For k = 1,2,3,... we take £(**2) (these were defined on the space
(Q, F1,PY)), check if Wi(—s1, 51, (—s1, @) + £ £,4; S") > U and set Q to be the minimal
index k, which satisfies the inequality. Here (—s;,a)+£™*?) is just the up-right path £m*=)
shifted so that it starts from the point (—s;,a).

Notice that by construction the path (—s1,a) + £(*2) are independent identically dis-
tributed as P;°2°5%". Because £V satisfies the Hall-Littlewood Gibbs property we have

free

P ((—s1,a) + 2509070 = ) = P? (LY [—s1, 8] =€), (4.7.6)

for every £ € U,,<,,Q(—s1, 81; 21, 22) where LY¥[—s;,s;] stands for the restriction of L} to
the interval [—s1, s1]. If we denote

hv(s) = N=/2 (g + £@2s1@b=a)(sN* 1 1)), for s € [—Tn,TN]
M fn(s) for s € [—r,7]\[—"nN, 7N],

we have that hy has the same law as fy. Consequently it suffices to show that

limsupP ({hny € G71(0)} N {dy(hy, G(0)?) > N7*/8}) < 6e. (4.7.7)

N—o0

Step 4. Let B¥(s) := B2®21 for s € [0, 1] and consider the event

F(N) = {A251,Q.b—a) <N} { sup [BY(s)| < N C’“} N {w(B2,N=%) < N/}

s€[0,1]
(4.7.8)
In the above w stands for the modulus of continuity of a function on [0, 1] as defined in (4.4.9).

In this step we verify the following statement: There exists Ng € N and C both depending
on r such that for N > Ny and on the event F(N) we have

dy (hN, H?) S ON_a/4, where HlQ = FhN(—'r),hN(r) (\/ 2'I‘BQ) (479)
Before we prove (4.7.9) we give a brief summary of the ideas. By definition, we have that
HIQ is given by an appropriate shift and rescaling of B?, which interpolates the points

(=7, hy(—r)) and (r,hn(r)). To better understand how HY differs from hy we first do an
auxillary rescaling Hy by erasing the part of hy on the interval [—ry,ry| and interpolating
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the points (—ry, An(—7n)), (rn, hy(ry)) with an appropriate shift and rescaling of B®. The
distance dy (hy, Hy) is easily shown to be O (N~%/4) using only the strong coupling of B?
and £(251:@:b=a) on F(N) (this is the first event in (4.7.8)). Since ry is close to r and hy(£ry)
is close to hy(=r) one can show that dy (H, HZ) = O (N—*/*). The latter estimate uses
the bounds on B and w (B9, N ~*) from the second and third event in (4.7.8), since what
is involved is a certain stretching of the Brownian bridge B?. In what follows we supply the
details of the above strategy.
We start by defining

HE(s) = N—o/2 (a + /25, B° (SN;STSL> 4 sk (g a)) for s € [~rn,TN],
In(s) for s € [—r,7]\[~-Tn,TN],

where we recall that ry = s;N~%. Notice that
dy (hN7H2Q> = N—OL/2 AN (281a Qab - a’) )
and so on the event F'(N) for all N > 1 we have

dy (hN, H§’) < N—o/4, (4.7.10)

We next estimate HZ (s) — H2(s) on the interval [—r,7]. Whenever s € [—ry,ry] and
we are on the event F(N) we have

« NCY
HZ(s) — HE(s) = N~/ <a+ V25, B9 (3N2 i Sl) 42 Rkl (b— a)) —
o1 251 (4.7.11)

— (hN(—r) +V2rB? (S;T> + s;r(hN(T) - hN(—T))) = O(N~/1),

where the constant in the big O notation depends on r. In obtaining the second equality
above we used that:

1. sy = [rN®| =rN*+0O(1),b—a < 2rN%,

2. |An(=r) = N7%/2.a| = |An(—1) — hy (—rn)| < N7,

3. |hn(r) = N=®/2.b| = |hn(r) — hy (ra)| < N7o/2,

4. on F(N) we have sup,c ) |B9(s)| < N*/* and w(B?, N~*) < N—/4,
For s € [—r,r]\[-"n,TN], we know that

H(s) — HY(s)| < | B (rw) — HE (2rw)| + |[HR(s) = B (rw)| + [HE () — HF (2rw)]

where we choose the top sign if s > ry and the bottom sign otherwise. Note that the first
term above is O (N=%/4) by (4.7.11). Substituting the definitions of Hy’ and Hy’ we get for
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s € [-r,r\[-7n,7n]

NO{ (07
\Hf?(s) - Hg?(s)] < O (N~ + N~ |\/25, B9 (S 2: Sl) 45N ; Lh—a)| +
1 1
+ +s N ®+r s N~ —a
Va7 |89 (57) - 59 (B )| + SR — o] 0 (47,
(4.7.12)

where again we take the top sign if s > ry and the bottom sign otherwise and the constant
in the big O notation depends only on r. In obtaining the last equality we used the same
estimates above together with the inequality |hy(r)—hn(—7)| < 2rN®/2. Combining (4.7.11)
and (4.7.12) we deduce that

dy (Hf?, Hg) = 0 (N~*/), (4.7.13)

where the constant in the big O notation depends on r. Combining (4.7.10) and (4.7.13) we
deduce (4.7.9).

Step 5. In this step we first show we have the following inclusion of events for all large N
(depending on r)
I(N) := F(N) N {hy € G1(0)} N {dy (hy,G~(0)*) > N~*/2} C {\@BQ eo}.
(4.7.14)

Recall from (4.7.9) that there exists Ny and C depending on r such that for N > N and on
the event F'(N)

H? = Foy ey (\/QFBQ) and dy <hN, H?) < CN-°/4,

By increasing Ny we can also ensure that CN~*/* < N=%/8 for N > Nj.

Fix N > N, and assume we are on the event I(N). Since hy € G~1(O) and dy (hy, G71(0)°) >
N—°/% we see that H? € G~1(0). Observe that G(H?) = v/2rB? by definition and so we
conclude that v/2rB? € O on I(N). This proves (4.7.14).

From (4.7.14) we know that the LHS of (4.7.7) is bounded by

limsup [P (V2rB? € 0) +B(F(N))] .

N—o0

In order to finish the proof it suffices to show

lim sup P (\/é;BQ € O) < 3¢ and limsup P (F(N)°) < 3e. (4.7.15)

N-—00 N—r00

In the second part of this step we verify the first inequality in (4.7.15) and for brevity we
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set W = lolgc’g(i)é). Observe that

B (v2rB? e 0) <PY(E(,M,N)) +F (B, M, N0 {varBa e 0}),

where we recall that E(d, M, N) was defined in Step 1. By assumption on E(§, M, N) it
suffices to show that

lim sup P (E(a, M,N)n {@BQ e O}) < 2e. (4.7.16)

N—oo

Notice that on E(d, M, N)¢ we have that @ is a geometric random variable with parameter
Zi(—51,81,a, b, lyor; S’) > 4. In particular, we have the a.s. inequality

P(Q > W|E(S, M, N)) < (1 —8)". (4.7.17)
The above suggests that
i (E((S, M,N)n {@BQ e 0}) <
P(B(5,M,N)) [(1-6)" + B ({Q < Wn {VarB? e 0} |B(6 M, NY)] <

’(1—5)W+1F<6{\/§Bieo}) §(1—6)W+W~]‘P’(\/§7_"3160),

=1

where we used in the last inequality that B* are identically distributed.
Now notice that P (v2rB! € O) =P(B' € 0) <e¢- %gl(z—)‘s) by our choice of O and so
we conclude that

(1—5)W+W.1i»(\/2731 €0)<(1-8)" +e<2e
This establishes (4.7.16).

Step 6. In this final step we establish the second inequality in (4.7.15) and as in Step 5 set

W = lolgfl(i)&). Observe that

P (F(N)) <P*(E(6,M,N)) + P (E(5, M, N)° N F(N)°)
and so by assumption on E(d, M, N) it suffices to show that

limsup P (E(8, M, N)* N F(N)®) < 2e. (4.7.18)

N—oo

Using (4.7.17) we see that

P (E(5, M, N)°n F(N)) < B(E(6, M, N)°) [(1 — &V 4P ({Q <W}n F(N)|E©, M, N)c)] <
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w
1=0)" +> PHQ =4 nF(N)*NE@S M, N)°).

i=1

Since (1 —6)" < ¢, we reduce (4.7.18) to establishing

w
lim supZ]fD( (Q =i} N F(N) N E(3, M, N)c) <e. (4.7.19)

N—o0 i—

One clearly has that

P({Q =i} N F(N)° N E(6,M,NY) < B(4Y 0 E(6 M, N)*) +B(BY 0 B M, N))+
@(Cgv NE®,M, N)C)

where

AY ={A@2s1,4,b—a) > N*} B = { sup |B(s)| < N"‘/“} ,CN = [w(B}, N~) > N~*/1}.

s€[0,1]

In addition, we know that since B® are identically distributed

Y P{Q=i}nF(N)°NE@ M,N)) <

W [IED (AN N E(5, M, N)°) + P (BN N E(6, M, N)°) + P (CN n E(5, M, N)c)] .
The above inequality reduces (4.7.19) to showing that

lim sup P (A NE(§, M,N)°) =0,

N—oo ~ N _ N (4720)
limsupP (B N E(6, M,N)°) =0, limsupP (C{' N E(5, M,N)°) = 0.
N—o0 N—oo

Notice that by construction

- P(BY) = Z]P’l ( sup |BJP%%1| < N"‘/“) P* (LY (—s1) = a, LY (s1) = b)

a<b s€[0,1]

=>'P ( sup |B%(s)| < N°‘/4> P? (LY (~s1) = a,LY (51) =b) =P ( sup |B°(s)| < N"/4> :

a<b s€[0,1] s€f0,1]

and the latter clearly converges to 0 as N — oo.
A similar argument shows that

P(CN) =P (w(B’, N™®) > N™*/4),
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and the latter converges to 0 as N — oo by the almost sure Holder-1/3 continuity of the
Brownian bridge (see e.g. Proposition 7.8 in Chapter 8 of [37]). The above estimates estab-
lish the second line in (4.7.20).

In the remainder we study ]@(A{V N E(5, M,N)°) and notice that by assumption on
E(6, M, N) we have that on the event E(§, M, N) the values a = Ly(—s;) and b = L(s;)
satisfy

la+psi| < MN®/? and |b— ps;| < MN®/2,

The latter implies that

P(AYNE@GM,NF)< Y P(AVN{b—a=[2ps; +2]}) =

|2|<2MN/2
= > PY(A@2s1,1,[2ps1 + 2]) 2 NP ({b—a = [2ps; + z]}).
|2|<2M Na/2

By Chebyshev’s inequality and Theorem 4.4.5 we know that
]P)l (A (231? ]-7 L2P31 + Z_D > Na/4) < C’N‘a/4ec'(logN)2,

for some constants C’ and ¢’ that are independent of N but depend on M. The latter
inequalities show that

]f» (Ai\’ N E((S, M, N)c) < C/N_a/4ec,(logN)2 Z ]P3({b —a= [21081 + ZJ }) < CIN_Q/4601(10gN)2-
|2|<2M Ne/2

Since the latter clearly converges to 0 as N — oo, we conclude (4.7.20), which finishes the
proof.

4.8 Appendix: Strong coupling of random walks and Brow-
nian bridges

In this section we prove a certain generalization of Theorem 6.3 in [60], given in Theorem
4.8.1 below, which ‘we will use to prove Theorem 4.4.5 in the main text.

4.8.1 Proof of Theorem 4.4.5

Fix p € (0,1) throughout this and the next sections. Let X; be i.i.d. random variables with
P(X;=1)=pand P(X; =0)=1—p. Wealso let S, = X; +---+ X,, denote the random
walk with increments X;. For z € L, = {0,...,n} we let S™? = {S{?}n _ denote the
process with the law of {S,,}7_,, conditioned so that S, = z. Finally, recall from Section
4.4.2 that B stands for the Brownian bridge (conditioned on By = 0, B; = 0) with variance
o?. We are interested in proving the following result.

Theorem 4.8.1. For every b > 0, there exist constants 0 < C,a,« < oo (depending on b
and p) such that for every positive integer n, there is a probability space on which are defined
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a Brownian bridge B® with variance 0* = p(1 — p) and the family of processes S™) for
z € L, such that ‘
E [eaA(n,z)] < Cea(1°g")2eb|z_p”|2/", (481)

where A(n, z) = A(n, z, B, S("’Z)) = SUPg<t<n
non-integer t by linear interpolation.

VB, + Ltz — S5 We define S for

We observe that conditional on S,, = z the law of the path determined by S, is precisely
. Consequently, Theorem 4.8.1 implies Theorem 4.4.5 and in the remainder we focus
on establishing the former. Our arguments will follow closely those in Section 6 of [60].

The proof of Theorem 4.8.1 relies on two lemmas, which we state below and whose proofs
are deferred to Section 4.8.2. We begin by introducing some necessary notation. Suppose that
Z is a continuous random variable with strictly increasing cumulative distribution function F
and G is the distribution function of a discrete random variable, whose support is {a;, az, ... }.
Then (Z, W) are quantile-coupled (with distribution functions (F,G)) if W is defined by

W=a; if r,o<Z<ry,
where r;_,r; are defined by
F(rj-) = Gla;—), F(r;) = G(a;).
The quantile-coupling has the following property. If
F(ar —x) < G(ax—) < G(ax) < F(ax + x),

then
|Z —W|=|Z—ar] <z on the event {W = ai}. (4.8.2)

With the above notation we state the following two lemmas.
Lemma 4.8.2. There ezists €y (depending on p) such that for every by > 0 there ezist

constants 0 < c1,a; < 0o such that the following holds. Let N be an N(0,1) random
variable. For each integers m,n such that n>1 and [2m —n| < 1 and every z € Ly, let

Z = zmn?) = %z + \/p(l —p)m (1 - %)N, so that Z ~ N (%z,p(l —p)m (1 - —2—1)) .

Let W = Wmn2) be the random variable, whose law is the same as that of S and which
is quantile-coupled with Z. Then if |z — pn| < eon and P(W = w) > 0,

E [eallz—Wliw - w] <y -/n-exp (bl (w= pm)2: (2 *p”)z) . (4.8.3)

Lemma 4.8.3. There exist positive constants €, Co, by (depending on p) such that for every
integers m,n such that n > 2 and |2m —n| < 1, every z € L, with |z — pn| < €n and every
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P(Sm = w|Sp = 2) < can™ Y2 exp (—bg(—“’;%@lﬁ> ,

Proof. (Theorem 4.8.1) It suffices to prove the theorem when b is sufficiently small. For the
remainder we fix b > 0 such that b < b,/37, where b, is the constant from Lemma 4.8.3. Let
€o be the smaller of the two values of ¢; in Lemmas 4.8.2 and 4.8.3.

In this proof, by an n-coupling we will mean a probability space on which are defined
a Brownian bridge B° and the family of processes {S™? : z € L,}. Notice that for any

n-coupling if z € Ly, S; = S then

t z
A(n,z) = sup \/ﬁBf/n +—z— an’ | <2n+ sup |\/ﬁBg/nl
0<t<n n 0<t<n

The above together with the fact that there are positive constants ¢ and u such that
E [exp (supg<i<y | BY|)] < ée*” for any y > 0 (see e.g. (6.5) in [60]) imply that

E [eaA(n,z)] < 68(2a+ua2)n.

Clearly, there exists ag = ag(b) such that if 0 < a < ag then 2a + ua? < be?.

The latter has the following implications. Firstly, (4.8.1) will hold for any n-coupling
with C = ¢, o = 0 and a € (0,a9) if 2 € L, satisfies |z — pn| > eyn. For the remainder of
the proof we assume that a < ag. Let by = b/20 and let a;,¢; be as in Lemma 4.8.2 for this
value of b;. We assume that a < a; and show how to construct the n-coupling so that (4.8.1)
holds for some C, a.

We proceed by induction and note that we can find C > max(1,¢) sufficiently large so
that for any n-coupling with n < 2 we have

E [eaA(n,z)] e—b|Z—Pn|2/" <C, Vzel,n<2.

With the above we have fixed our choice of a and C.
We will show that for every positive integer s, we have that there exist n-couplings for
all n < 2% such that

E [eeAn2)] gmblempnl®/n < ps=1 ¢ vz € L, (4.8.4)
where A, = 2c¢1con + 2¢c14/n. The theorem clearly follows from this claim.

We proceed by induction on s with base case s = 1 being true by our choice of C
above. We suppose our claim is true for s and let 2° < n < 2°*!, We will show how to
construct a probability space on which we have a Brownian bridge and a family of processes
{8(™2) . |z — pn| < €yn}, which satisfy (4.8.4). Afterwards we can adjoin (after possibly
enlarging the probability space) the processes for |z| > ney. Since C' > ¢ and a < ag we
know that (4.8.4) will continue to hold for these processes as well. Hence, we assume that
|z — pn| < egn. For simplicity we assume that n = 2k, where k is an integer such that
2571 < k < 2% (if n is odd we write n = k + (k + 1) and do a similar argument).
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We define the n-coupling as follows:

e Choose two independent k-couplings

({S* &M o, BYY,  ({S*™D},c1,, B?), satistying (4.8.4).

Such a choice is possible by the induction hypothesis.

e Let N ~ N(0,1) and define the translated normal variables Z% = 2 + 4/ 2(_12_1'02_]\7 as
well as the quantile-coupled random variables W# as in Lemma 4.8.2. Assume, as we
may, that all of these random variables are independent of the two k-couplings chosen
above. Observe that by our choice of a we have that

W* = w] < ¢y -/n-exp (QbO (w = kp)* : (z= np)Q) . (4.8.5)

E [ealZz—Wzl

e Let

o 1/231t+t,/p(1- )N 0<t<1/2, (4.8.6)
FT 2By + (- VP =N 1/2<t<1L. -

By Lemma 6.5 in [60], B; is a Brownian bridge with variance o2.

o Let S(n 2 = W?, and

gy _ S 0<m<k,
™\ WE W <m <.

What we have done is that we first chose the value of S,(c"’z) from the conditional

distribution of S, given S, = z. Conditioned on the midpoint S,E"’z) = W? the two

halves of the random walk bridge are independent and upto a trivial shift we can use
S1W?) and S2(k2=W*) 0 build them.

The above defines our coupling and what remains to be seen is that it satisfies (4.8.4) with
s+ 1.
Note that

A(n, z,S™ B) < |27 — W?| + max (A(k, W?, S*&W) BY) Ak, z — W=, §*F==W") B?))
and therefore for any w such that P(W* = w) > 0 we have

E [eaA(n,z)

W?# = w] <E [e“'zl‘wz|

W? = w] x C A (eblw—kp|2/k 4 eb|z—w_kp|2/k) .

In deriving the last expression we used that our two k-couplings satisfy (4.8.4) and the simple
inequality E[em®(%1,22)] < E[e?] + E[e?2]. Taking expectation on both sides above we see
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that

k
E [¢2209)] < C- (2¢4/n) - A Z]P(WZ = w) exp

w=0

9 bmax(jw — kpl*, |2 — w — kp|?)
4 7 '

(4.8.7)
In deriving the last expression we used (4.8.5) and the simple inequality z2+3? < 5max(z?, (x—
y)?) as well as that k = n/2.

We finally estimate the sum in (4.8.7) by splitting it over the w such that |w — z/2| >
|z — pn|/6 and |w — z/2| < |z — pn|/6. Notice that if |lw — 2/2| < |z — pn|/6 we have
max(|w — pk|?, |z — w — pk|?) < (2|2 — pn|/3)?; hence

_ 2 _ _ 2 _ 2
> P(Wz:w)exp(%maxuw Bl |2 — w kp\))gexp(rz pn\)_

n n
w:|w—z/2|<|z—pn|/6

(4.8.8)
To handle the case |w — 2/2| > |z — pn|/6 we use Lemma 4.8.3, from which we know that

P(W? = w) =P(Sy = w|S, = 2) < cyn™?exp (—bg—————(w — S/Q)V) ,

Using the latter together with the fact that for [w—z/2| > |z—pn|/6 we have that (w—z/2)? >
semax ((w — kp)?, |z — w — kp|®) we see that

- 2 _ _ 2
> P(W? = w) exp (2 bmaxdfw = kpl%, 7 —w — kp )) <
n

w:lw—z/2]>|z—pn|/6

k (4.8.9)
- b (w—kp)®

E conVexp | ——  —— ) < v/

w=1

16 n

Combining the above estimates we see that

2 2
E [eaA(n,z)] S C . (261\/"—’1:) . Af;l [exp (’Z npn| ) +62\/ﬁ:| S C . Aflexp (IZ npnl ) )

4.8.2 Proof of Lemmas 4.8.2 and 4.8.3

Our proofs of Lemma 4.8.2 and 4.8.3 will mostly follow (appropriately adapted) arguments
from Sections 6.4 and 6.5 in [60]. We begin with two technical lemmas.

Lemma 4.8.4. There is a constant ¢ > 0 (depending on p) such that for integers m,n, z
and real w withn > 2, |2m —n| < 1, |z —pn| < cn, |w| < cn and w+ 22z € N one has

1 w? 1 |w?
=) = - - —_— 4.8.10
=)= e (e o (i) e
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where o , = (n/4)(z/n)(1 — z/n).

Proof. The result is similar to Lemma 6.7 in [60] and we only sketch the main ideas. The
statement of the lemma will follow if we can show that if |j| < cn we have

1 52 1 73
S, = ) I ~J ol —+L2)).
‘ \/2mo2 P ( 202, + (\/ﬁ + n2

Using Stirling’s approximation formula Al = v/2rA4+/2¢=4[1 4 O(A1)], we see that

. m .
p(])ma ’I’I,,Z) =P ('_Sm - —TTZJ =]

1
\/2mo?

Let us remark that in order to apply Stirling’s approximation, we needed to choose c suffi-
ciently small so that 2z, z, m — 2z, n — z all tend to infinity faster than en for some € > 0
fixed (depending on p) as n — oo. For the remainder we assume such a c is chosen and the
constant in the big O notation above depends on it.
Let us focus on the case j > 0 (if 7 < 0 a similar argument can be applied). For j > 0
(m+z—2[m2]-2;)"—(m—2)2
(2f%z]+2j+2+m—-z)2—(m—z)2

p(O,m,n,z)zIP([Sm—%L—zJ=OSn=z)= (1+0 (™).

and A(j,m,n,z) = we have

p(j + 17m7n7z) =p(]7m’n’z) X A(j’m)n’ z)
and so

J
p(4,m,n,z) =p(0,m,n, z) x HA(i,m,n, z).

i=1

Given our earlier result for p(0, m,n, z) to finish the proof it remains to show that

| il A(j = — 7 0] ! ﬁ 4.8.11
Og[ (],m,n,z)]— 202 + %_Q_ng : ( O )
i=1 n,z

Notice that if we choose c¢ sufficiently small, we have that

: _ ‘ g _—
A(j,m,n,z) =1— B(j,m,n, z), where B(j,m,n,z) = —— (‘77:* e +0 (# + ﬁ)

and 0 < B(j,m,n,z) < 3. Using the latter together with the fact that log(1+z) = z+0(z?)
for |z| < 1/2 we get
J

! . 8im 2 45%m A1
Elog [AG,m,m, 2)] = _Z m? — (m — z)2+0 (ﬁ—i * ﬁ) T mE—(m— z)2+0 (F - 7—%) '
=1

i=1

To conclude the proof we observe that

4‘2 3 - .9 .0 .3 1
LI : S vo(L)=2L-+0(L+—=).
m2—(m—-z)2 m.ﬁ.(l_i) ﬂ%.( _i) 72,2 20‘,,27"2 n2 \/ﬁ

2m




O

We now state without proof an easy large deviation estmiate, which can be established
in the same way one establishes large deviations for binomial random variables.

Lemma 4.8.5. There ezxists an n > 0 (depending on p) such that, for any a > 0, there exist
C = C(a) < oo and v = 7(a) > 0 with the following properties. For any integers m,n,z
withn > 2, 2m —n| < 1, |z — pn| < 9n one has

]P’(’Sm—%' > am

S, = z) < Ce ™, (4.8.12)

It is clear that Lemmas 4.8.4 and 4.8.5 imply Lemma 4.8.3. What remains is to prove
Lemma 4.8.2, to which we now turn.

Proof. (Lemma 4.8.2) Notice that we only need to prove the lemma for n sufficiently large.
In order to simplify the notation we will assume that 7 is even and so m = n/2 (the case n
odd can be handled similarly).

We start by choosing €y < min(e,n) with ¢ and 7 as in Lemmas 4.8.4 and 4.8.5 respec-
tively. We denote

Z=12y,=2/24++/p(l—p)n/4N, 7 = ZAn,Z =2/2+ 0y N,

where we recall that o2 , = (n/4)(z/n)(1 — z/n) and let W = W,, , be the random variable
with distribution ST(:;’;) that is quantile coupled with N. Notice that W is also quantile

coupled with Z and Z. We write F = F, . for the distribution function of Z and G = Gr,-
for the distribution function of W. We observe that from Lemmas 4.8.4 and 4.8.5, the random
variable W — | z/2] satisfies the conditions of Lemma 6.9 in [60], from which we deduce that
there are constants ¢, ¢ > 0 and N’ € N such that for n > N’ and |z — 2/2| < €'n we have

F(x-c’ [1+(—x;nz—/iq) §G(x—1)§G(w+1)§F<w+c' [1+—(ﬁ_—z/i)2]).'

n
(4.8.13)
In the remainder we assume ¢, < € as well. It follows from (4.8.2) and (4.8.13) that

W —=/2) 2)2] (4.8.14)
n

3

|Z—W|§c'[1+

for all n > N’, provided that |z — pn| < en, |W — 2/2| < eyn. In addition, we have the
following string of inequalities for any a > 0

E [ea<z—2) + e—a(Z‘Z)] 9ea’0(n.p)?/2
]P’(Wz’w) o ]P’(W:w),

E [€a|z—2|lW — w] <E [ea(Z—Z) + e—a(z—Z)IW = w] <

where o(n,p) = y/n/4- ’\/p(l —p) — /(z/n)(1 — z/n)‘ It follows from Lemma 4.8.4 that
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if |lw — 2/2| < ¢gn and |z — pn| < €yn then we have for some C > 0 and all n > 2 that
) ) — 2/9)2
E [ealZ—Zl‘W _ w] < Ce T2 [ exp (C(ﬂ_;/_m) _ (4.8.15)

Combining (4.8.14) and (4.8.15) we see that for some (possibly larger than before) C > 0
we have '

, , _ 4 /9)2
E [etzIW—ZIIW _ w} <E [ea1W—Z|ea|Z—Z|IW _ w] < Ce D2 f7 . oxp (C(w_T_Lz_/Q_)> ,

(4.8716)

provided n > N’ |lw — z/2| < €on and |z — pn| < en.
Notice that by possibly taking €y smaller we can make o(n,p) < \/n/4-c,|z/n—p|, where
¢ = ;- Using the latter together with (4.8.16) and Jensen’s inequality we have for any

k € N that

1/k _ 2 _ 2
E {e(l/kﬂW—Z[’W _ w] <E [e'W_Z"W _ w] < (VAC) *.exp (cp(znkpn) n oW n;/Q) ) ,

and if we further use that (z + y)? < 222 + 2y* above we see that

E {e(l/k)lW—Zl'W _ w] < (VRC)'* - exp ((CP iy V?}iz —pn)* QC(wn_kpm)z) , (4.8.17)

provided n > N’ lw — 2/2| < gyn and |z — pn| < n.

Suppose now that b; is given, and let k be sufficiently large so that

cp+1/2
k

If a1 < 1/k we see from (4.8.17) that

< b; and gEC— < b;.

— 2 — 2
E [eallw‘m‘W = w] < CY* y/n - exp (bl(z npn) + u(w npm) ) 5 (4.8.18)

provided n > N', |lw — z/2| < ¢n and |z — pn| < en. If |z — pn| > eon or |w — 2/2| > en
we observe that
bi(z—pn)* bi(w—pm)? _ biedn
+ > :
7 n n 3
One easily observes that if a; < ag with ag sufficiently small and C > ¢ with ¢ sufficiently
large we have for any w such that P(W = w) > 0 that

2
E [ea1|W—Z|1W — w] < Cl/k\/ﬁ . exp (b1;0n> '

The latter statements suggest that (4.8.18) holds for all w such that P(W = w) > 0 and
n > N’, which concludes the proof of the lemma. O
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