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Abstract
We present a collection of results about the scaling limits of several models from integrable
probability.

Our first result concerns the asymptotic behavior of the bottom slice of a Hall-Littlewood
random plane partition. We show the latter concentrates around a limit shape and in two
different scaling regimes identify the fluctuations around this shape with the GUE Tracy-
Widom distribution and the narrow wedge initial data solution to the Kardar-Parisi-Zhang
(KPZ) equation. The second result concerns the limiting behavior of a class of six-vertex
models in the quadrant, and we obtain the GUE-corners process as a scaling limit for this
class near the boundary. Our final result, joint with Ivan Corwin, demonstrates the (long
predicted) transversal 2/3 critical exponent for the height functions of the stochastic six-
vertex model and asymmetric simple exclusion process (ASEP).

The algebraic parts of our arguments involve the construction and use of degenerations
and modifications of the Macdonald difference operators to obtain rich families of observables
for the models we consider. These formulas are in terms of multiple contour integrals and
provide a direct access to quantities of interest. The analytic parts of our arguments include
the detailed asymptotic analysis of Fredholm determinants and contour integrals through
steepest descent methods. An important aspect of our approach, is the combination of exact
formulas with more probabilistic arguments, based on various Gibbs properties enjoyed by
the models we study.

Thesis Supervisor: Alexei Borodin
Title: Professor of Mathematics
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Chapter 1

Introduction

This thesis presents a collection of results about the scaling limits of large stochastic systems,
which have been the object of immense study in a relatively young area of mathematics
called integrable probability. The majority of the models we investigate can be formulated
as random plane partitions or random six-vertex models, which in turn can be viewed as
random two-dimensional surfaces. The probability distribution of any of the models we
consider depends on several parameters and when these parameters converge to their critical
values the system size stochastically increases. Our main goal is to describe the behavior
of these systems as they approach criticality. The general flavor of the results we present
is that if one appropriately shifts and rescales these random surfaces, they will converge to
limiting probabilistic objects.

It is believed that many of the limits of random surfaces are universal, in the sense that
large classes of models should converge to the same objects regardless of the specifics of their
distributions. Proving such a statement remains out of reach in the general case; however,
there are now several integrable models (including the ones presented in this thesis) for which
there are tools to partially verify this belief. In the context of this thesis, the integrability
of the distributions we consider comes from their connection to special classes of symmetric
functions - Hall-Littlewood functions [64] and their rational generalizations [20]. The struc-
tural dependence of our models on symmetric functions allows the use of purely algebraic
tools, which provide exact formulas for rich families of observables of the systems. Once
these formulas are available, one can study them asymptotically and combine them with
additional combinatorial and probabilistic arguments to derive precise statements about the
limits of the systems.

The results of this thesis are split into three chapters, which are for the most part self-
contained and may be read in any order. We summarize each chapter below.

In Chapter 2 we consider a probability distribution pqIt on plane partitions, which arises
as a one parameter generalization of the standard qvolme measure. This generalization is
closely related to the classical multivariate Hall-Littlewood polynomials, and it was first
introduced by Vuleti6 in [81]. We prove that as the plane partitions become large (q goes
to 1, while the Hall-Littlewood parameter t is fixed), the scaled bottom slice of the random
plane partition converges to a deterministic limit shape, and that one-point fluctuations
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around the limit shape are asymptotically given by the GUE Tracy-Widom distribution. On
the other hand, if t simultaneously converges to its own critical value of 1, the fluctuations
instead converge to the one-dimensional Kardar-Parisi-Zhang (KPZ) equation with the so-
called narrow wedge initial data.

The connection of Pjpt to Hall-Littlewood functions, allows us to apply the (more general)
formalism of Macdonald difference operators from [24] to our problem. In the Hall-Littlewood
setting the operators approach gives access to a single observable and we find a (general)
Fredholm determinant formula for its t-Laplace transform. In order to prove our main results
we specialize the general formula for the t-Laplace transform to the particular measure we
consider. Subsequently, we find two different representations of this formula that are suitable
for the two limiting regimes. When t E (0, 1) is fixed and q -+ 1- the t-Laplace transform
converges to an indicator function and our Fredholm determinant formula converges to the
CDF of the Tracy-Widom GUE distribution. When both q, t -+1- the t-Laplace transform
converges to the usual Laplace transform and our Fredholm determinant formula converges
to the Laplace transform of the partition function of the continuous directed random polymer
[5,351. The main difficulties in establishing the above convergence results are finding suitable
contours for our Fredholm determinants and representations for the integrands. We reduce
the convergence results to verifying certain exponential bounds for the integrands, which are
obtained through a careful analysis on the (specially) constructed contours. This detailed
asymptotic analysis of the arising Fredholm determinants forms the analytic part of our
arguments. Chapter 2 is based on the paper

[47] E. Dimitrov, KPZ and Airy limits of Hall-Littlewood random plane partitions, Ann.
Inst. Henri Poincari Probab. Stat., to appear, 2016. Preprint, arXiv:1602.00727

In Chapter 3 we consider a class of probability distributions on the vertically inhomoge-
neous six-vertex model, which originates from the higher spin vertex models of [33]. These
distributions are closely related to a remarkable family of symmetric rational functions FA,
parametrized by non-negative signatures A = A 1 > A2 > ... > AN > 0. These functions
form a one-parameter generalization of the classical Hall-Littlewood polynomials [64] and
enjoy many of the same structural properties [20]. Our approach to studying the vertically
inhomogeneous six-vertex model is based on a new class of operators DN, inspired by the
Macdonald difference operators. These operators act diagonally on the functions FA, when-
ever A has distinct parts and can be used to derive formulas for the probability of observing
certain arrow configurations in different locations of the model.

The main goal of Chapter 3 is to use the correlation functions obtained from our operators
to analyze a particular class of homogeneous six-vertex models as the system size becomes
large. For the class of models we consider, the correlation functions can be expressed in terms
of multiple contour integrals, which are suitable for asymptotic analysis. For a particular
choice of parameters we analyze the limit of the correlation functions through a steepest
descent method. Combining this asymptotic statement with some new results about Gibbs
measures on Gelfand-Tsetlin cones and patterns, we show that certain configurations of holes
(absence of arrows or empty edges) weakly converge to the GUE-corners process as the size of
the system tends to infinity. An important ingredient in the proof is a classification result,
which identifies the GUE-corners process as the unique probability measure that satisfies
the continuous Gibbs property and has the correct marginal distribution on the right edge.

10



Chapter 3 is based on the paper

[48] E. Dimitrov, Six-vertex models and the GUE-corners process, Int. Math. Res. Notices,
to appear, 2016. Preprint, arXiv:1610.06893

In Chapter 4 we prove the long predicted transversal 2/3 exponent for the asymmetric
simple exclusion process (ASEP) [63,76] and the stochastic six vertex model [53] - two closely
related 1+1 dimensional random interface growth models in the Kardar-Parisi-Zhang (KPZ)
universality class. We work with step initial data for both models and demonstrate that their
height functions, scaled in space by T2/3 and in fluctuation size by T1 /3, are tight as spatial
processes as time T goes to infinity. We also show that all subsequential limits of the scaled
height function (shifted by a parabola) have increments, which are absolutely continuous
with respect to a Brownian bridge measure. Conjecturally, the limit process should be the
Airy 2 process and we provide further evidence for this conjecture by uncovering a Gibbsian
line ensemble structure behind these models, which formally limits to that of the Airy line
ensemble [42].

Our approach is based on the study of a class of measures on discrete line ensembles that
satisfy what we call the 'Hall-Littlewood Gibbs' resampling property. This Gibbs property
implies that conditional on the second curve in the line ensemble, the top curve has a law
expressible in terms of an explicit Radon-Nikodym derivative with respect to the trajectory
of a random walk. By controlling this Radon-Nikodym derivative as T goes to infinity, we
are able to control quantities like the maximum, minimum and modulus of continuity of
the prelimit continuous curves, which translates into a tightness statement in the space of
continuous curves. By exploiting a strong coupling of random walk and Brownian bridges we
can further deduce the absolute continuity of subsequential limits with respect to Brownian
bridges of appropriate variance. The results we establish for line ensembles are quite general
and can be applied to the six-vertex model using the recent developments in [231 and to the
ASEP using the results in [3,27]. Chapter 4 is based on the joint paper with Ivan Corwin

[411 I. Corwin and E. Dimitrov, Transversal fluctuations of the ASEP, stochastic six vertex
model, and Hall-Littlewood Gibbsian line ensembles, Comm. Math. Phys., to appear, 2017.
Preprint, arXiv:1703.07180
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Chapter 2

KPZ and Airy limits of Hall-Littlewood random

plane partitions

2.1 Introduction

The purpose of this chapter is to use the Macdonald difference operators [641 to study the
q = 0 degeneration of the Macdonald process [24], called the Hall-Littlewood process. Our
motivation for studying the Hall-Littlewood process is that it arises naturally in a problem
of random plane partitions. The distribution on plane partitions we consider, called P"' in
the text and defined in the next section, was first considered by Vuletid in [81], where she
discovered a generalization of the famous MacMahon formula and identified an important
geometric structure of the measure. The measure P"L is a one-parameter generalization of
the usual r"' measure on plane partitions, which is recovered if one sets t = 0 (the volume
parameter is usually denoted by q in the literature, but we reserve this letter for the q in the
Macdonald polynomials and use r instead for the remainder of the text).

The algebraic part of our arguments consists of developing a framework for the Macdonald
difference operators in the Hall-Littlewood case. Although our discussion is parallel to the
one for the q-Whittaker case in [24], we remark that there are several technical modifications
that need to be made. In the Hall-Littlewood setting the operators approach gives access to
a single observable and we find a Fredholm determinant formula for its t-Laplace transform.
This result is given in Proposition 2.3.10 and we believe it to be of separate interest as it can
be applied to generic Hall-Littlewood measures and its Fredholm determinant form makes
it suitable for asymptotic analysis. For the particular model we consider, the observable is
insufficient to study the 3-dimensional diagram; however, we are able to use it to analyze
the one-point marginal distribution of the bottom part of the diagram.

The main results of the chapter (Theorems 2.1.2 and 2.1.3 below) describe the asymptotic
distribution of the bottom slice of a plane partition, distributed according to Pft, in two
limiting regimes: when r -+ 1-, t E (0, 1) - fixed and when r, t -1+ -- in some critical fashion.
In both cases one observes the same limit shape, while the fluctuations in the first limiting
regime converge to the Tracy-Widom GUE distribution [78], and to the distribution of the
Hopf-Cole solution to the KPZ equation with narrow wedge initial data [6,101 in the second
one. The latter results suggest that our model belongs to the KPZ universality class [40],
although some care needs to be taken. Typically, models belonging to the KPZ universality
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class are characterized by some dynamics (interacting particle systems, growing interfaces,
random polymers etc.), so that the system evolves with time. In sharp contrast, the model
we consider is stationary, i.e. there is no notion of time.

We now turn to carefully describing the measure P"L and explaining our results in detail.

2.1.1 The measure PK

We recommend Section 2.2.1 for a brief overview of some concepts related to partitions and
Young diagrams. A plane partition is a Young diagram filled with positive integers that
form non-increasing rows and columns. A connected component of a plane partition is the
set of all connected boxes of its Young diagram that are filled with the same number. The
number of connected components in a plane partition 7r is denoted by k(7r). Figure 2-1 shows
an example of a plane partition and the 3-d Young diagram representing it. The connected
components, which are separated in the Young diagram with bold lines, naturally correspond
to the grey terraces in the 3-d diagram.

5 5 4 3 3 3

4 4 3 3 3 3

4 3 3 3 3 3

3 3 3 2 2 1

3 3 3 2 2

1 1 1

Figure 2-1: A plane partition and its 3-d Young diagram. In this example k(ir) = 7.

If a box (i, j) belongs to a connected component C, we define its level h(i, j) as the
smallest h E N such that (i + h, j + h) 0 C. A border component is a connected subset of
a connected component where all boxes have the same level. We also say that the border
component is of this level. For the example above, the border components and their levels
are illustrated in Figure 2-2.

For each connected component C we define a sequence (ni, n2 , ...) where ni is the number
of i-level border components of C. We set

Pc(t) := J( - ti)ni.
i>1

Let C1, C2,...C k,) be the connected components of 7r. We define

k(7)

A (t) := 1 Pci (t)
i=1

14



Levels: 1 *2 *3

Figure 2-2: Border components and their levels.

For the example above A,(t) = (1 - t)7(1 - t2 ) 3(1 - t).
Given two parameters r, t E (0, 1) we define P"' to be the probability distribution on

plane partitions such that

P r't( ) 17r r I A r(t),IHL (w) C<

where 17rl denotes the volume of 7r, i.e. the number of boxes in its 3-d Young diagram. In [81]
it was shown that

Zr7rIA,(t) = -- =: Z(r, t). (2.1.2)
n=1

The above explicitly determines PrL as

PHL(7r) := Z(r, t)-1r17r1A,(t), (2.1.3)

with Z(r, t) as in (2.1.2).

Remark 2.1.1. In Section 2.2.4 it will be shown that P"' arises as a limit of certain Macdonald
processes. These processes are defined in terms of Hall-Littlewood symmetric functions,
which explains the "HL" in our notation.

The distribution P"L has been studied in the cases t = 0 and t = -1. When t = 0 we
have P' (7r) = Z(r, 0)-rl7rI, where Z(r, 0) is given by the famous MacMahon formula

Z(r, 0) = Zr7r1 J n -nrm . (2.1.4)
7r n=1

We summarize a few of the known results when t = 0. In [36] it was shown that under
suitable scaling a partition ir, distributed according to P%", converges to a particular limit
shape as r - 1- (see also [57]). In [69] it was shown that P]F is described by a Schur
process and has the structure of a determinantal point process with an explicit correlation
kernel, suitable for asymptotic analysis. In [51] it was shown that under suitable scaling the
edge of the limit shape converges to the Airy process.

When t = -1 the measure P'- concentrates on strict plane partitions (these are plane
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partitions such that all border components have level 1) and is described by a shifted Schur
process as discussed in [80]. The shifted Schur process is shown to have the structure of a
Pfaffian point process with an explicit correlation kernel, which can be analyzed as r -+ 1-.
A limiting point density can be derived, which suggests a limit-shape phenomenon similar to
the t = 0 case. To the author's knowledge there are no results regarding the edge asymptotics
in this case.

In this chapter we study the distribution PHL for t e (0, 1). In particular, we will be
interested in the behavior of a plane partition, distributed according to pr,t as the parameterHL'

r goes to 1-. Part of the difficulty in dealing with the case t C (0, 1) comes from the fact
that a determinantal or Pfaffian point process structure is no longer availbable. Instead,
we will use the formalism of Macdonald difference operators (see [24] and [28]) to obtain
formulas for a certain class of observables for a plane partition 7, distributed accodrding
to P"L. These formulas can be asymptotically analyzed and imply one-point convergence
results for the bottom slice of 7.

2.1.2 Main results

For a partition A, we let A' denote its largest column (i.e. the number of non-zero parts).
Given a plane partition 7, we consider its diagonal slices At (alternatively A(t)) for t E Z,
i.e. the sequences

Ak = A(k) = (ri,i+k) for i > max(0, -k).

For r E (0, 1), T E R we define

1 ajeI/
2  1 -1/3

N()1 - r (1+e-rl/ 2)2 _

4 --1/3

cosh 2(,/4)

Below we analyze the large N asymptotics of A'(LTN(r)]) of a random
distributed according to Pfr.

Theorem 2.1.2. Consider the measure PfL on plane partitions, given in
(0,1) fixed. Then for all T C R\{0} and x E R we have

t A'([rN(r)]) - 2N(r) log(1 + e-17/2)
rlm PHL ( 3 = FGUE

plane partition,

(2.1.3), with t E

where FGUE is the GUE Tracy-Widom distribution [78] and N(r), X are as in (2.1.5).

Theorem 2.1.3. Consider the measure PfH on plane partitions, given in (2.1.3). Suppose
T > 0 is fixed and -_9= x(T/2)1/3 . Then for allT C R\{0} and x E R we have

lim (A'([TrN(r)j) - 2N(r) log(1 +H eI1I/ 2 ) + log(N(r)1/ 3X-1(T/2)-1/ 3) < X = FCDRP(X)

where FCDRP (X) = P (E(T, 0) + T/24 < x) and F(T, X) is the Hopf-Cole solution to the
Kardar-Parisi-Zhang equation with narrow wedge initial data [6, 10]. The coefficients N(r)
and x are as in (2.1.5).

16
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The definitions of FGUE(X) and FCDRP(x) are provided below in Definition 2.1.7. In
Sections 2.4 and 2.5 we will reduce the proofs of the above results to claims on certain
asymptotics of Fredholm determinant formulas. Throughout the chapter, we will, rather
informally, refer to the limiting regime in Theorem 2.1.2 as "the GUE case" and to the one
in Theorem 2.1.3 as "the CDRP case".

Remark 2.1.4. The exclusion of the case T = 0 appears to be a technical assumption, neces-
sary for our proofs to work. It is possible that the arguments in this chapter can be modified
to include this case, but we will not pursue this goal.

Before we record the limiting distributions that appear in our results, we briefly discuss
the definition of T(X, T). The continuous directed random polymer (CDRP) is a universal
scaling limit for 1 + 1 dimensional directed random polymers [5, 351. Its partition function
with respect to general boundary perturbations is given as follows (cf. [26, Definition 1.71).

Definition 2.1.5. The partition function for the continuum directed random polymer with
boundary perturbation ln Zo(X) is given by the solution to the stochastic heat equation
(SHE) with multiplicative Gaussian space-time white noise and Zo(X) initial data:

arZ= -DkZ+ZVV, Z(0, X) = Zo(X). (2.1.6)
2

The initial data ZO(X) may be random but is assumed to be independent of the Gaussian
space-time white noise W and is assumed to be almost surely a sigma-finite positive measure.
Observe that even if Zo(X) is zero in some regions, the stochastic PDE makes sense and
hence the partition function is well-defined.

A detailed description of the SHE and the class of initial data for which it is well-posed
can be found in [6, 10]. Provided, Zo is an almost surely sigma-finite positive measure, it
follows from the work of Mueller [66] that, almost surely, Z(T, X) is positive for all T > 0
and X c R and hence its logarithm is a well-defined random space-time function. The
following is Definition 1.8 in [26].

Definition 2.1.6. For Zo an almost surely sigma-finite positive measure define the free
energy for the continuous directed random polymer with boundary perturbation ln Zo(X) as

JF(T, X) = In Z(T, X).

The random space-time function F is also the Hopf-Cole solution to the Kardar-Parisi-
Zhang equation with initial data FO(X) = lnZo(X) [6, 10]. In this chapter, we will focus
on the case when ZO(X) = 11x=o1, which is known as the narrow wedge or 0-spiked initial
data [6, 26]. In [26, Theorem 1.10] it was shown that when ZO(X) = 11x=o}, one has the
following formula for the Laplace tansform of exp(JF(T, 0) + T/24).

E [e-e'exp(F(T,0)+T/24 )] = det(I - KCDRP)L2(R+) (2.1-7)

where the right-hand-side (RHS) denotes the Fredholm determinant (see Section 2.2.5) of
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the operator KCDRP, given in terms of its integral kernel

KCD RP~rr' dte ex Ai(t ri)Ai(t + 771). (2.1.8)KCDRP~yex + -t/a '8

In the above formula o- (2/T)1 /3, x (E R and Ai(.) is the Airy function.
We now record the definitions of the limiting distributions that appear in Theorems 2.1.2

and 2.1.3. The first part of the following definition is [26, Definition 1.6].
Definition 2.1.7. The GUE Tracy-Widom distribution [78] is defined as

FGUE(X) := det(I - KAi)L2(X, ),

where KAi is the Airy kernel, that has the integral representation

1 L2wt/30 I e&/ 3oo 1 ez3 /3-zn'
KAi(77, 7') = dw dz , 3 /3-w'

(27rt)2 -2,,,/3,), e -7r/3, Z - W ew33 m

where the contours z and w do not intersect.
Suppose F(T, X) is the free energy for the CDRP with boundary perturbation In Zo(X)

and Zo(X) = 11x=o1 as in Definition 2.1.6. Then we define

FCDRP (X) P(.F(T, 0) + T/24 < x).

2.1.3 Outline
The introductory section above formulated the problem statement and gave the main results
of the chapter. In Section 2.2 we present some background on partitions, symmetric func-
tions, Macdonald processes and Fredholm determinants. In Section 2.3 we derive a formula
for the t-Laplace transform of a certain random variable in terms of a Fredholm determinant
using the approach of Macdonald difference operators. In Sections 2.4 and 2.5 we extend the
results of Section 2.3 to a setting suitable for asymptotic analysis in the GUE and CDRP
cases respectively and prove Theorems 2.1.2 and 2.1.3. Section 2.6 summarizes various tech-
nical results used in the proofs of Theorems 2.4.7 and 2.5.3. Section 2.7 presents a sampling
algorithm for random plane partitions, formuates conjectural extensions of the results of this
chapter and provides some empirical evidence supporting them.

2.2 General definitions

In this section we summarize some facts about symmetric functions and Macdonald processes.
Macdonald processes were defined and studied in [24], which is the main reference for what
follows together with the book of Macdonald [64]. We explain how the measure P"nt arises
as a limit of a certain sequence of Macdonald processes and end with some background on
Fredholm determinants, used in the text.

2.2.1 Partitions and Young diagrams
We start by fixing terminology and notation. A partition is a sequence A = (Al, 2, ) of
non-negative integers such that A, > A2 ... and all but finitely many elements are zero.
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We denote the set of all partitions by Y. The length f(A) is the number of non-zero Ai and
the weight is given by JAI = A, + A2 + - - - . If JAI = n we say that A partitions n, also
denoted by A I- n. There is a single partition of 0, which we denote by 0. An alternative
representation is given by A = 1"12"* -, where m3 (A) = {i E N : Ai = j}f is called the
multiplicity of j in the partition A. There is a natural ordering on the space of partitions,
called the reverse lexicographic order, which is given by

A > IL -==> 3k E N such that Ai = pi, whenever i < k and Ak > /k.

A Young diagram is a graphical representation of a partition A, with A, left justified
boxes in the top row, A2 in the second row and so on. In general, we do not distinguish
between a partition A and the Young diagram representing it. The conjugate of a partition
A is the partition A' whose Young diagram is the transpose of the diagram A. In particular,
we have the formula A' = I{j E N : A3 > i}.

Given two diagrams A and p such that 1i c A (as a collection of boxes), we call the
difference 0 = A - pa a skew Young diagram. A skew Young diagram 9 is a horizontal m-
strip if 0 contains m boxes and no two lie in the same column. If A - A is a horizontal strip
we write A >. . Some of these concepts are illustrated in Figure 2-3.

A -

Figure 2-3: The Young diagram A = (5,3,3,2,2) and its transpose (not shown) A' =

(5, 5, 3, 1, 1). The length f(A) = 5 and weight IAl = 15. The Young diagram /- = (3, 3, 2, 2, 1)
is such that pu C A. The skew Young diagram A - pt is shown in black bold lines and is a
horizontal 4-strip.

A plane partition is a two-dimensional array of nonnegative integers

7r=(7rij), ij=0,1,2, ... ,

such that rij > max(7rijy 1, iri+1,j) for all i, j > 0 and the volume 17rI = Eij3  7rij is finite.
Alternatively, a plane partition is a Young diagram filled with positive integers that form
non-increasing rows and columns. A graphical representation of a plane partition 7r is given
by a 3-dimensional Young diagram, which can be viewed as the plot of the function

(x, y) -+ 7rLxj, LyJ x, y > 0.

Given a plane partition 7r we consider its diagonal slices At for t E Z, i.e. the sequences

At = (7ri,i+t) for i > max(0, -t).
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One readily observes that At are partitions and satisfy the following interlacing property

Conversely,
a partition
Figure 2-4.

any (finite) sequence of partitions At, satisfying the interlacing property, defines
7r in the obvious way. Concepts related to plane partitions are illustrated in

5
4

3
1

1

4 4 3 3
3 3 3 1

2 1 IT

Figure 2-4: The plane partition 7r = 0 -< (1) -< (1) -< (3) -< (4, 2) -<

(4, 3) - (3, 1) >- (3) >- 0 . The volume |7rl = 41.
(5, 3, 1) >- (4, 3) >-

2.2.2 Macdonald symmetric functions
We let Ax denote the Z>o graded algebra over C of symmetric functions in variables X
(Xi, x 2, ...), which can be viewed as the algebra of symmetric polynomials in infinitely many
variables with bounded degree, see e.g. Chapter I of [64] for general information on Ax. One
way to view Ax is as an algebra of polynomials in Newton power sums

00

pk(X)= xi, for k > 1.
i=1

For any partition A we define
'e(A)

pA(X) = J7PA (X),
i=1

and note that p(X), A E Y form a linear basis in Ax.
An alternative set of algebraically independent generators of

tary symmetric functions

ek(X) = xix .. x , for k
1<il<i2<---<ik

Ax is given by the elemen-

;>1.

In what follows we fix two parameters q, t and assume that they are real numbers with
q, t E (0, 1). Unless the dependence on q, t is important we will suppress them from our
notation, similarly for the variable set X.
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The Macdonald scalar product (-, -) on A is defined via

(PA, )= i"(Ami)(A)!P. (2.2.1)

The following definition can be found in Chapter VI of [64].

Definition 2.2.1. Macdonald symmetric functions P, A c Y, are the unique linear basis of
A such that

1. (PA, P,) = 0 unless A = [t.

2. The leading (with respect to reverse lexicographic order) monomial in PA is O x( .

Remark 2.2.2. The Macdonald symmetric function PA is a homogeneous symmetric function
of degree JAI.

Remark 2.2.3. If we set XN+1 = XN+2 0 in PA(X), then we obtain the symmetric
polynomials PA (x1, ... , XN) in N variables, which are called the Macdonald polynomials.

There is a second family of Macdonald symmetric functions Qx, A E Y, which are dual
to P with respect to the Macdonald scalar product:

QA (PA, PA)-PA, (PA, Qp) = 6A,,, A, E Y.

For two sets of variables X = (X1 , x2 ,...) and Y = (Yi, Y2, ... ) define

HI(X ;Y) Ps(X)Q,(Y).
AEY

Then from Chapter VI (2.5) in [64] we have

II(X; Y) = txiyj; q).O, (2.2.2)
ij (xjyj; q).O

where (a; q)c, = (1-a) (1- aq) (1- aq2 ) ... is the q-Pochhammer symbol. The above equality
holds when both sides are viewed as formal power series in the variables X, Y and it is known
as the Cauchy identity.

We next proceed to define the skew Macdonald symmetric functions (see Chapter VI
in [64] for details). Take two sets of variables X = (X 1 , x 2 , ... ) and Y = (Yi, Y2, ... ) and a
symmetric function f E A. Let (X, Y) denote the union of sets of variables X and Y. Then
we can view f(X, Y) E A(xy) as a symmetric function in xi and yj together. More precisely,
let

f = LCAP, = ZCHPAX ,
AEY AEY i=1

be the expansion of f into the basis px of power symmetric functions (in the above sum
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CA = 0 for all but finitely many A). Then we have

f(XY)= C\ f(PA,(X) +pA,(Y)).
A GEY i=1

In particular, we see that f(X, Y) is the sum of products of symmetric functions of xi and
symmetric functions of yi.

Skew Macdonald symmetric functions Px/,,, QA, are defined as the coefficients in the
expansion

PA(X, Y) = E P,(X)Px/,(Y) and QA(X, Y) = E Q,(X)Q/,,(Y) (2.2.3)
EY EY

Remark 2.2.4. The skew Macdonald symmetric function P/1, is 0 unless C A, in which
case it is homogeneous of degree JAl - pl.

Remark 2.2.5. When A = p, PA/, = 1 and if p = 0 (the unique partition of 0), then

PX 1, = P.

We mention here two important special cases for the skew Macdonald symmetric func-
tions. Suppose x 2 = 3 = 0. Then we have

PA/ , (x) = A/1, X 1 "1 and QA/1, (xl) = #,/,x A1,

whenever A >- y and zero otherwise. The coefficients 05\/,, and 0,A/, , have exact formulas as is
shown in Chapter VI (6.24) of [64], and we write them below. Let f(u) = (tu; q)>/(qu; q).
If A >- y then

q5A/1,(q, t) = -(q\i-ti-)f (qi-Ai+1t-i), (2.2.4)

I~~jt(\)f (q)i-1jtia)f (qt'i Aj+1tj-i))

0,bA/ 1 (q, t) = -f-1i tJ-) V)f (q'i-Ai 1tj-i) (2.2.5)
1<<< j~e( , )

otherwise the coefficients are zero.

2.2.3 The Macdonald process

A specialization p of A is a unital algebra homomorphism of A to C. We denote the applica-
tion of p to f c A as f(p). One example of a specialization is the trivial specialization 0,
which takes the value 1 at the constant function 1 E A and the value 0 at any homogeneous
f E A of degree > 1. Since the power sums pn are algebraically independent generators of A,
a specialization p is uniquely defined by the numbers pn(p). Conversely, given any sequence
a = ai, a2 , ... of complex numbers, we can define a specialization pc, by setting pn(p.) = a
and linearly extending to the rest of A.

Given two specializations pi and P2 we define their union p = (PI, P2) as the specialization
defined on power sum symmetric functions via

Pn(Pi, P2) = Pn(Pi) + Pn(P2), n> 1.
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One specialization that we will consider frequently is of the form x1 = a,, ..., XN = aN

and Xk = 0 for k > N, where a1 , ... , aN are given complex numbers. That is, we set

N

n a for all n c N.
i=1

Notice that the above is well defined even if N = oc, provided that E Jai I < oo for
each n > 1, which is ensured if E> |ail < oo. If N < oo we call the above a finite length
specialization.

Definition 2.2.6. We say that a specialization p of A is Macdonald nonnegative (or just
'nonnegative') if it takes nonnegative values on the skew Macdonald symmetric functions:
Px/,(p) > 0 for any partitions A and p.

One can show (see e.g. Section 2.2 in [24]) that if we have ai > 0 and E> a < oc in the
specialization we considered before, then it is nonnegative. Such a specialization is called
Pure alpha. We remark that finite unions of nonnegative specializations are nonnegative (see
Section 2.2 in [24]).

Let p1 and P2 be two non-negative specializations, then one defines

H(p1, p2) = PX (PI)QA (P2),
Acy

the latter being well-defined in [1, oo] (observe that P0 (pi) = 1 = QO(p2), so that fl(pi, P2) >
1).

We now formulate the definition of the Macdonald process. Let N be a natural number
and fix nonnegative specializations p+, ... 1 , PI P+, p-, such that H(pi, -) < o for all
i, j. Consider two sequences of partitions A = (A',..., AN 1 ,..., ). We define
their weight as

VV2(A, y) = P\ (p+)Q\1 1p -(P-) P\2,_1 (p) ... PAN7 ZN-1 (p _ 1 )QN (P (2.2.6)

Definition 2.2.7. With the above notation, the Macdonald process M(po N-1; P , --- ,
is the probability measure on sequences (A, [L), given by

HOP +I/j N(A, PjM 0p + ... I PN-1; P-1 ...- I PN) +A -_)(110<i<j<N PI P-.)'

Using properties of Macdonald symmetric functions one can show (see e.g. Proposition
2.4 in Section 2 of [24]) that the above definition indeed produces a probability measure,
that is

VW(A, p) =7 H(pt; py-).
A,p O5i<j N

The Macdonald process with N = 1 is called the Macdonald measure and is written as
MM(p; p-).

One important feature of Macdonald processes is that if we pick out subsequences of
(A, M), then their distribution is also a Macdonald process (with possibly different specializa-

23



tions). One special case that is important for us is the distribution of Ak under projection of
the above law. As shown in Section 2 of [24], Ak is distributed according to the Macdonald
measure MM(pj ; pkN]), where p+b denotes the union of specializations p-, m = a, ... , b.

2.2.4 The measure P'' as a limit of Macdonald processes.

The main object of interest in this chapter is a distribution PI' on plane partitions, de-
pending on two parameters r, t E (0, 1), which satisfies PHL(7) Cx rI A,(t) for a certain
explicit polynomial A., depending on the geometry of 7r (see Section 2.1.1 for the details).
We explain how this measure arises as a limit of Macdonald processes with q = 0.

Start by fixing a natural number N and consider sequences of partitions A-N+1,..A N-1

0 -< A -N+1 .- . . 1 -- - - 0 >- A' >- . . > N-1 _0

The latter sequences exactly represent the set of plane partitions, whose support lies in a
square of size N, i.e. the set {r : 7ri, = 0 if i > N or j > N} (see Section 2.2.1). We next
consider the collection of finite length specializations p,, p- given by

p:x 1 = r-n-1/2 X2 =X3 = =0 - N < n < -1,

Pn- : X1 X2 = X3 0 - N_+ n < -1,

pn : X1 = rn+1/2,2 = X2 =X3 -- 0 0 < n < N - 1,

:- 0 < n < N -2.

Consider the Macdonald process M(pN, '+- 2 PN+1,'-'.N- 1 ) and recall that the proba-
bility of a pair of sequences (A, y) with A = (A-N+l,... AN-) and /-= (p-N+1 ... N-2)

is given by

MN+ + . - - _ 1= N+1)Q./n/,-1
... P P--12= H+-N+1 - Nn-- n (2.2.7)

H-N+ i<j<N-2 H(pi; pj-)

where we set p-N _ AN-1 = 0. Using properties of skew Macdonald polynomials we see
that the above product is zero unless

, = An for n < 0 and pu - An+1 for n > 0,

S0 - A-N+1 --. . . - 1 ' A0 >- A' >- . .-> N-1 >-0

Under the two conditions above the numerator in (2.2.7) equals (see Section 2.2.2)

0 N

_1( )(-2n+1)(IA,1-1,pn-1I)/2 X ( -/g - , r(2n+1)( A\n-1I -|pn-1I )/2

n=-N+1 n=1

Using that /n = An for n < 0 and [L = An+ 1 for n > 0 we get

-2n + 1 N 2n + IThI(I 0 A2n+ Afl1D
1 2 (A=+ 1 )+E 2 ( 2

n=-N+1 = n-~
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N -1 N-1 N-1

+E,2n+ I (J - J j JA n +1A 01- + A0  E JAn A nj-1F
n=1 n=-N+2 n=1 n=-N+1

where we set AN AN = 0 and 7r is the plane partition corresponding to the diagonal
slices An (see Section 2.2.1).

Letting q - 0 in equations (2.2.4) and (2.2.5) we get (see (5.8) and (5.8') in Chapter 3
of [64]):

0A/(0, t) = fJ(I - tmiA)) and OA/,,(0, t) = 171(1 - tm(IL)).
iEI jEJ

In the above formula we assume A >- /t otherwise both expressions equal 0. The sets I, J
are:

I={i N : A'i+1 = /i+ and A' > '4} and J = {j E N : A'+1 > I+ 1 and A/= y }.

Summarizing the above work, we see that M(p+N -- PN-2; P-N+i '''pN-1) induces a proba-
bility measure on sequences 0 -< A-+ 1 -.< . - A -< A0 > A' > .. > N-1 0 0 and
hence on plane partitions 7r, whose support lies in the square of size N. Call the latter
measure PLN and observe that

0 N

HL Zk(wr) =Xbn/X-1(0, t) X O#nl/x.(0, t)

n=-N+i n=1

where B, (t) is an integer polynomial in t and ZN is a normalizing constant. In [81] it was
shown that B,(t) = A,(t) and the normalizing constant was evaluated to equal

N N I _ tri+j-1

ZN (r, t)=f 1 -- i+j-1
i=1 j=1

Remark 2.2.8. The "HL" in our notation stands for Hall-Littlewood, since in the limit q -
0 the Macdonald symmetric functions PA(X; q, t) and QA(X; q, t) degenerate to the Hall-
Littlewood symmetric functions PA(X; t) and Q.(X; t).

As N -+ oo the measures pFjLN converge to the measure P L since limNo ZN(r, t) =

Z(r, t) - the normalizing constant in the definition of PHL (see (2.1.2)). Thus, we indeed see
that PfH arises as a limit of Macdonald processes, in which the parameter q is set to 0.

Our approach of studying pr3L goes through understanding the distribution of the diag-
onal slices Ak. For N > Jkl we have that

HLPtN (Ak = A) = ZT1PA(r1/ 2, ... , r(2N-1)/ 2 ; t)Q 1(ri/2+kl ... , r( 2 N-1)/ 2 0,0, ... ) 0; t),

Ik

where we used results in Section 2.2.3 and the proportionality of P and Q\ to combine the
cases k > 0 and k < 0. Letting N -+ oo we conclude that

IHL(A = A) = Z(r,t)~1P(r/ 2 ,r3 /2 , r - - ;t)Q(r/ 2+lk, r3/20k .
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Finally, using the homogeneity of P and Q., we see that

1Pr'(Ak = A) = Z(r, t)--PA(a, ar, ar2, - ; t)QA(a, ar, ar2 ,- ; 0

where a(k) = r(lIkl)/2 . It is this distribution, which we call the Hall-Littlewood measure
with parameters a, r, t E (0, 1), that we will analyze in subsequent sections.

2.2.5 Background on Fredholm determinants
We present a brief background on Fredholm determinants. For a general overview of the
theory of Fredholm determinants, the reader is referred to [75] and [61]. For our purposes
the definition below is sufficient and we will not require additional properties.

Definition 2.2.9. Fix a Hilbert space L2 (X, 1L), where X is a measure space and p is a
measure on X. When X = F, a simple (anticlockwise oriented) smooth contour in C we
write L2 (F) where for z E F, dft(z) is understood to be Q.

Let K be an integral operator acting on f(-) E L2 (X, /p) by Kf(x) = fx K(x, y)f(y)dp(y).
K(x, y) is called the kernel of K and we assume throughout K(x, y) is continuous in both x
and y. If K is a trace-class operator then one defines the Fredholm determinant of I + K,
where I is the identity operator, via

00 n

det(I + K)L2(X) = 1 + -- det [K(xi, x))] _1 dp(xi), (2.2.8)
n=1 X . X i=1

where the latter sum can be shown to be absolutely convergent (see [75]).
A sufficient condition for the operator K(x, y) to be trace-class is the following (see [61]

page 345).

Lemma 2.2.10. An operator K acting on L2 (1F) for a simple smooth contour F in C with
integral kernel K(x, y) is trace-class if K(x, y) : F2 -+ R is continuous as well as K2 (x, y) is
continuous in y. Here K 2 (x, y) is the derivative of K(x, y) along the contour F in the second
entry.

The expression appearing on the RHS of (2.2.8) can be absolutely convergent even if K
is not trace-class. In particular, this is so if X = F is a piecewise smooth, oriented compact
contour and K(x, y) is continuous on X x X. Let us check the latter briefly.

Since K(x, y) is continuous on X x X, which is compact, we have IK(x, y)l I A for some
constant A > 0, independent of x, y E X. Then by Hadamard's inequality1 we have

det [K(xi, xj)]Q._ < n /A"

This implies that

I' det [K(xi, xj)]n_1  ) n n ,
n!X X

'Hadamard's inequality: the absolute value of the determinant of an n x n matrix is at most the product
of the lengths of the column vectors.
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where B = Alpu(X). The latter is absolutely summable because of the n! in the denominator.

Whenever X and K are such that the RHS in (2.2.8) is absolutely convergent, we will still
call it det(I + K)L2(X). The latter is no longer a Fredholm determinant, but some numeric
quantity we attach to the kernel K. Of course, if K is the kernel of a trace-class operator on
L2 (X) this numeric quantity agrees with the Fredholm determinant. Doing this allows us to
work on the level of numbers throughout most of the text, and avoid constantly checking if
the kernels we use represent a trace-class operator.

The following lemmas provide a framework for proving convergence of Fredholm deter-
minants, based on pointwise convergence and estimates of their defining kernels.

Lemma 2.2.11. Suppose that F is a piecewise smooth contour in C and KN(x, y), N E N
or N 0 o, are measurable kernels on F x F such that limNoo KN(x, y) Ko (x, y) for all
x, y G F. In addition, suppose there is a non-negative, measurable function F(x) on 1 with

sup sup KN(x,y)I < F(x) and F(x)|dpt(x)| = M < oo.
NEN yEr If

Then for each n > 1 and N one has that det [KN x, Xj) is integrable on Fn, so that in
particular fr*.. J' fdet [KN (xi, Xj)] n 1 dp(x) is well defined. Moreover, for each N

det(I + KN)L2(r) = 1 + E - -. f det [KN ij1 da(x2 )
n=1 2=1

is absolutely convergent and limN-+o det(I + KN )L 2 (r) = det(I + K )L2(r).

Proof. The following is similar to Lemma 8.5 in [26]; however, it allows for infinite contours
F and assumes a weaker pointwise convergence of the kernels, while requiring a dominating
function F. The idea is to use the Dominated Convergence Theorem multiple times.

Since limN-+oo KN(X, y) _ Ko)(x, y) we know that supyer IK 0 (x, y)| F(x) and also

lim det [KN(xi, Xj)] 1 = det [K'(xi, xj)]n. for all x 1, ... , x, E F.
N ---oo ji =

By Hadamard's inequality we have det [KN(X, Xj)]n 1 < n/2 H 1 F(xi), which is inte-
grable by assumption. It follows from the Dominated Convergence Theorem with dominating
function nn/2 - n F(xi) that for each n > 1 one has

lim j.- -det [KN(xi,x )] n fJ dp(xi) = 1*- -jdet [K' (xi,xj)]n 1 x

Next observe that

det [K' (xi,x d)x n < N In/2M
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The latter shows the absolute convergence of the series, defining det(I + KN)L2(r) for each
N. A second application of the Dominated Convergence Theorem with dominating series
1 + > r/An now shows the last statement of the lemma.

Lemma 2.2.12. Suppose that I1, 172 are piecewise smooth contours and g N (z) are measur-
able on 1 x 172 for N c N or N = oc and satisfy limN-, g7(x y gx (z) for all x, y C I,
z E 172. In addition, suppose that there exist bounded non-negative measurable functions F1

and F2 on I1 and 172 respectively such that

sup sup jg9 (z)j < F1(x)F2 (z), and F (u)jd/u(u) = Mi < oc.
NCN yEFr ii<4

Then 1r1 gNj(z)||d (z)| < oc for each N and KN(X, y) f1 2 gNj(z)du(z) are well-defined
and satisfy the conditions of Lemma 2.2.11 with IF =r1 and F = M2F1 .

Proof. Since limNgoN(Z) = g"O(z) for all x, y E 17, z E F2 we know that go (z) I
F1 (x)F2 (z) as well. Observe that for each x, y E 1, and N one has that

/I gNj(z)udp(z)j F(x)F2(z)ldp(z)I < M2F(x) < oc.
r 2 X Jr 2

Setting KN(x, y) = fr g ,(z)dp(z), we see that IKN(x, y)| I M 2F(x) for each x, y E 1I

and N. As an easy consequence of Fubini's Theorem one has that KN(x, y) is measurable
on ]p2 (the case of real functions and measures y can be found in Corollary 3.4.6 of [15], from
which the complex extension is immediate). Using the Dominated Convergence Theorem
with dominating function FI(x)F2(z) we see that limN-,o KN (X, y) Koo(x, y)

2.3 Finite length formulas

In this section, we derive formulas for the t-Laplace transform of the random variable (1 -
t)t-A, where A is distributed according to the finite length Hall-Littlewood measure Pxy

(see Section 2.2.4). The main result in this section is Proposition 2.3.10, which expresses
the t-Laplace transform as a Fredholm determinant. We believe that such a formula is of
separate interest as it can be applied to generic Hall-Littlewood measures and its Fredholm
determinant form makes it suitable for asymptotic analysis. The derivation of Proposition
2.3.10 goes through a sequence of steps that is very similar to the work in Sections 2.2.3, 3.1
and 3.2 of [24]. There are, however, several technical modifications that need to be made,
which require us to redo most of the work there. In particular, the statements below do not
follow from some simple limit transition from those in [24].

In all statements in the remainder of this chapter we will be working with the principal
branch of the logarithm.

2.3.1 Observables of Hall-Littlewood measures
In this section we describe a framework for obtaining certain observables of Macdonald
measures. Our discussion will be very much in the spirit of section 2.2.3 in [241; however,
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the results we need do not directly follow from that work and so we derive them explicitly.
In this chapter we will be primarily working with finite length specializations, which greatly
simplifies the discussion; however, we mention that the results below can be derived in a
much more general setting as is done in [281. Finally, our focus will be on the case when
q = 0 in the Macdonald measure and we call this degeneration a Hall-Littlewood measure.

In what follows we fix a natural number N and consider the space of functions in N
variables. Inside this space lies the space of symmetric polynomials Ax in N variables
X = (X,..., xN)-

Definition 2.3.1. For any u E R and 1 < i < n define the shift operator T,x, by

(TU',i F) (x1, ..., XN) := F(xi, ... , Uz , ..., XN) -

For any subset I C {1, ... , N} of size r define

A, (X ; t) := tr 2 1) t* 3.

Finally, for any r = 1, 2, ... , N define the Macdonald difference operator

Drv := Y AI(X-t) fjT ~.

Ic{1,...,N} iEI
II=r

A key property of the Macdonald difference operators is that they are diagonalized by
the Macdonald polynomials PA. Specifically, as shown in Chapter VI (4.15) of [64], we have

Proposition 2.3.2. For any partition A with f(A) < N

D'PA (X 1 , ... , XN; q, t) = er (qAN-1 qA2tN- 2  qAN)PA(X 1 , -- , N; q, t),

where er denote the elementary symmetric functions (see Section 2.2.2).

In particular, we see that

N

DNPA(X1 ,...,XN;qt) - PA (X 1, -X,,N; q, t).

We now let q - 0, while t E (0, 1) is still fixed. In this limiting regime the Macdonald
polynomials PA(X; q, t) degenerate to the Hall-Littlewood polynomials PA(X; t). In addition,
the Macdonald difference operator D' degenerates to (we use the same notation)

N N ('tn

= S ti - XjTO and also qAitN-i _ N-A'-1 _ + t0 = 1 -t
i1 jsi fs

D' is still an operator on the space of functions in N variables and we summarize the
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properties that we will need:

1. D' is linear.

2. If F converge pointwise to a function F in N variables, then D' F, converge pointwise to

DNF away from the set {(x1 , ..., XN) : xi = xj for some i 7 j.
1 - tN-A'

3. DPA(x1,...,xN-t) 1 t A (X1, -,XN;t)
1 - t

Proposition 2.3.3. Assume that F(ui,...,UN) f(ul). fuN) with f(0) = 1. Take
X1,..., XN > 0 and assume that f(u) is holomorphic and non-zero in a complex neighborhood
of an interval in R that contains x 1, ... , XN. Then we have

(Dh F) (xi, .. XN) = F(x1,...,XN) fiN tz - xj 1 dz (2.3.1)
27rt C , z- xj f(z) (t - 1)z'

where C is a positively oriented contour encircling {x 1, ..., XN} and no other singularities of
the integrand.

Proof. The following proof is very similar to the proof of Proposition 2.11 in [24]. First
observe that from t C (0, 1) and our assumptions on f a contour C will always exist. Using
continuity of both sides in the variables x 1 , ... , XN it suffices to prove the above when the xi
are pairwise distinct. The contour encircles the simple poles at x1 , ... , xN and the residue at
xi equals

fjtx - xi 1
x - x f(xj)

Using the Residue Theorem we conclude that the RHS of (2.3.1) equals

N N txixj 1 N Ntx xj - (x -x)(x1 xvF(x, ... , XN) )1X = (NF)z,.. N

We next consider the operator DN [(t-1) 1 It satisfies Properties 1. and 2. above

and Property 3. is replaced by

3.' DNPA (x1, xN; t) t PA(x1, , xN; t)

Proposition 2.3.4. Assume that F(u1,...,uN) f(Ui) ... f(UN) with f(0) = 1. Take
X1..., x > 0 and assume that f(u) is holomorphic and non-zero in a complex neighborhood
D of an interval in R that contans x 1, ... ,xN and 0. Then for any k > 1 we have

(D'F)(x, ., XN) = F (x1, ... , xN .fa -Zb Ni -f-x 1 dzi
2rt)k co, Co,k1<a<b<k Za - Zbt z - xj Jf(Zi) Zi

(2.3.2)
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where Co,a are positively oriented simple contours encircling x 1, ..., XN and 0 and no zeros of
f(z). In addition, CO,a contains t-lCo,b for a < b and C0,1 C D.

Proof. The proof is similar to the proof of Proposition 2.14 in [24]. In this proposition the
existence of the contours Co,a depends on the properties of the function f. In what follows
we will assume that they exist and whenever we use this result in the future with a particular
function f we will provide explicit contours satisfying the conditions in the proposition.

Using the continuity of both sides in x 1, ... , xN it suffices to show the result when the xi
are pairwise distinct. We now proceed by induction on k c N.

Base case: k = 1. The RHS of (2.3.2) equals

F(xl,...,xN )

27rt JC0,1

[N _1] f zi) dz1

zi - xj f(zi) zi

The contour 00,1 encircles the simple poles of the integrand at x,, ..., XN and 0 and the
residue at 0 equals t-N (using f(0) = 1). If we now deform 00,1 to a contour C, which no
longer encircles 0 but does encirlce x 1, ..., XN we see, using the Residue Theorem, that the
RHS of (2.3.2) equals

tN F(xi, ... , XN) + F(xl, ,XN)
27r t 1 C

t_ t-N F(x1, ... , x N) I N

27r t C .H

N

j1

_- xt11 1 dz1

z1 - x f (zi) z,
-N=t F(x1, ..., xN)+

(DNF)(x1, ... , XN) -

In the last equality we used Proposition 2.3.4 and the definition of DN. This proves the base
case.

We next suppose that the result holds for k > 1 and wish to prove it for k + 1. In
particular, we have

1 N k

f, . f1(xj z1, zk) b Za - Zb II 1 dz
JCo,i I ok3.= <~ Za - Zbti1f (zi) zi

where g(u; zi, ... , Zk) = f -U

We apply DN to both sides in the above expression and observe we may switch the order
of DN and the integrals on the RHS. To see the latter, one may approximate the integrals by
Riemann sums and use Property 1. of DN to switch the order of the sums and the operator.
Subsequently, one may use Property 2. to show that the change of the order also holds in
the limit. We thus obtain

I. k

(D'+1F)(x,..., xN I DNG)(x1, XN; Z ... Zk) JJZa - Zb -k dz
(2 rt)k J, 1 c1<a<b<k Za - Zbt- 1 zif (zi )
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where G(x 1, X ; zI z, Zk) _ fIN=1 9(xj; z 1, ... , Zk)- We now wish to apply the base case to
the function G. Notice that g(O) = 1 and the zeros of g(u) coincide with those of f(u) except
that it has additional zeros at tzi for i =1, ..., k. By assumption tCo,j contain CO,k+1 for all
i = 1, ... , k so the additional zeros of g(u) are not contained in Co,k+1, while x1 , ... , xN and 0
are. Thus the Base case is applicable and we conclude that

(DNF)(x, .. , xN) ( 2 k+l I - - G(x1 , ... , xN; , , Z k [ k+.
(27rt)k ~ 'o1 CO,k coai k1 Zk+1 - X

1 Za - Zb dzk+1 1 dz

g(zk+1; Z1, ... , Zk ) 1<a<b<k Za - Zbt- 1 Zk+1 i1 f (zi) zi

Expressing g(zk+1; z1 , ..., Zk) and G(xi, ... , xN; z 1, --- , Zk) in terms of f(zi) and F(xi, ..., XN)
we arrive at

(D%+1F)(x1, ... , xN) - F(1, ... ,xN .. a - Zb k [1(2rt)k co,1 CO,k+1 1<a<bsk+1 Za - Z=t z -x ] f(z1)z

This concludes the proof of the case k +1. The general result now proceeds by induction. D

Let px and py be the nonnegative finite length specializations in N variables X =

(x 1, ..., XN) and Y = (yi, ... , YN) respectively, with xi, y, C (0, 1) for i = 1, ..., N. We consider
the Macdonald measure MM(px; py) with parameter q = 0 and denote the probability
distribution and expectation with respect to this measure by Px,y and Ex,y. Using the
Cauchy identity (see equation (2.2.2)) with q = 0 we get

N N

PA(x1, ..., xN t)QA(yl, ..., yN; 0 ltXjyj flfy (xi) with fy (u) =Hj= I-tyj,
AEY i,j= 1 

- i 1

(2.3.3)
We want to apply Dk in the X variable to both sides of (2.3.3). We observe that the

sum on the LHS is absolutely convergent so from Properties 1. and 2. we see that

D : PA(X; t)QA(Y; t) = 2PA(X; t)QA(Y; t) = A kA'PA(X; t)QA(Y; t), (2.3.4)
AcY AEY AEY

where in the last equality we used Property 3.' k times. We remark that the latter sum is
absolutely convergent as well, since A' < N on the support of Px,y.

On the other hand, the RHS of (2.3.3) satisfies the conditions of Proposition 2.3.4 and
in order to apply it we need to find suitable contours. The contours will exist provided y,
are sufficiently small. So suppose yi < < < tk for all i and observe that the zeros of fy(u),
which are at t-y7', lie outside the circle of radius ct- 1 around the origin. Let Co,k be
the positively oriented circle around the origin of radius 1 and let CO,a be positively oriented
circles of radius slightly bigger than ta-k, so that CO,a contains t-Co,b for all a < b and C0 ,1
has radius less than E-1. Clearly such contours exist and satisfy the conditions of Proposition

32



2.3.4. Consequently, we obtain

Dk -fy(x-) -( Za k z ,--xt-1 dz2
(27rt)k o , 00k 1<a<b<k Za - Zbt- 1  Z - x fy(zj)zi

(2.3.5)
Equating the expressions in (2.3.4) and (2.3.5) and dividing by H] fy(xi) we arrive at

Z -kA PA (X; t) QA(Y; t) 1 Za - Zb k [N Z _xt11 dz

Hl (X; Y) (21rt)k CO cOk 1 za - zt-1 i - xJ fy(zi)zi'

in which we recognize the LHS as Exy [t-kAi]. We isolate the above result in a proposition.

Proposition 2.3.5. Fix positive integers k and N and a parameter t e (0,1). Let px
and py be the nonnegative finite length specializations in N variables X = (x1 , ... , XN) and
Y = (yi, ... , YN) respectively, with xi, y, E (0, 1) for i = 1, ... , N. In addition, suppose Yj < 6
for all i. Then we have

-kA' f Za - Zb [ [NfZi - xj t 1)(I - ziyj) dziEx'y t 1 - --
XY[(2it)k i, 0,1  Jo 1<a<b<k Za--Zbh 1  -(x -t) zi'

where CO,a are positively oriented simple contours encircling x 1, ... , xN and 0 and contained
in a disk of radius e- 1 around 0. In addition, CO,a contains t- 1 Cob for a < b. Such contours
will exist provided c < tk.

Proposition 2.3.5 is an important milestone in our discussion as it provides an integral
representation for a class of observables for Px,y. In subsequent sections, we will combine
the above formulas for different values of k, similarly to the moment problem for random
variables, in order to better understand the distribution Px,y.

2.3.2 An alternative formula for ExIy [t-kA'i
There are two difficulties in using Proposition 2.3.5. The first is that the contours that we use
are all different and depend implicitly on the value k. The second issue is that the formula for
Exy [t-kA'] that we obtain holds only when yj are sufficiently small (again depending on k).
We would like to get rid of this restriction by finding an alternative formula for Ex,y [t-kAI
This is achieved in Proposition 2.3.7, whose proof relies on the following technical lemma.
The following result is very similar to Proposition 7.2 in [22].

Lemma 2.3.6. Fix k > 1 and q E (1, oc). Assume that we are given a set of positively
oriented closed contours 'y1, ... , -yk, containing 0, and a function F(z1,...,Zk), satisfying the
following properties:

1. F(zi, ... , Zk) = H - f (zi);

2. For all 1 < A < B < k the interior of gA contains the image of yB multiplied by q;
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3. For all 1 < j < k there exists a deformation Dj of 7j to yk so that for all
ZI,..., z_1 zj7,..., Zk with zi E -y for 1 < i < j and zi (E yk forj < i K k, the
function zj -+ F(z1, ... , zj,..., Zk) is analytic in a neighborhood of the area swept out
by the deformation Dj.

Then we have the following residue expansion identity:

k -k(k-i)

- ZB dzi (I - q k q 2 1 kq!

Yi Ak 1<A<B<k A- qZB Fi=. ,Zk 2  AL mi (A)!M 2(A)!... (2-3,6)
- (A (A)L L t [ wjqAi~ . 1ff(wj)f(wjq) ... f (wjq'i1j WJ, (2.3.67' k .. k i - ij=1 =1

where k,! = U -

Proof. The proof of the lemma closely follows the proof of Proposition 7.2 in [22], and we
will thus only sketch the main idea. We remark that in [22] the considered contours do not
contain 0 and q c (0, 1). Nevertheless, all the arguments remain the same and the result of
that proposition hold in the setting of the lemma.

The strategy is to sequentially deform each of the contours 'Y-1, 'Yk-2, ... , 71 to Yk through
the deformations Di afforded from the hypothesis of the lemma. During the deformations
one passes through simple poles, coming from ZA - qzB in the denominator of (2.3.6), which
by the Residue Theorem produce additional integrals of possibly fewer variables. Once
all the contours are expanded to -yb one obtains a big sum of multivariate integrals over
various residue subspaces, which can be recombined into the following form (see equation
(38) in [221):

(1 - q)21)kqf j 1

Al-k mi(A)!M 2(A)! ... .i Ikj=1 wqi1

(A) A (A -- 1) dw -
Eq (wi, qwi, ..., q wi, ... , wf(A), qwe(A), ---, )w(A)) jf wj q 2 ,rt

j=1

where

Eq(Z,..., Z) S 1 Z(A) - qzo(B) F(z,.(l), ... , Zo(n))

.ES. 1<B<A<k Za(A) - Za(B) k Z.(i)

By assumption F(zi,...,zn) is a symmetric function of z1 , ... , zk and thus can be taken out of
lI 1  i s e

the sum, while the remaining expression evaluates to kq! as is shown in equation (1.4) in
Chapter III of [64]. Substituting this back and performing some cancellation we arrive at
(2.3.6).

Proposition 2.3.7. Fix positive integers k and N and a parameter t E (0, 1). Let px
and py be the nonnegative finite length specializations in N variables X = (x1 ,...,xN) and
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Y = (y1, YN) respectively, with xi, yj E (0,1) for i = 1, ... , N. Let Co be a simple positively
oriented contour, which is contained in the closed disk of radius t- 1 around the origin, such

that Co encircles x 1 , ... ,XN and 0. Then we have

(t-1 ' 1)kkt! - t x
E(A) N Al-k m0(A)!M2( . wit' ' C C i,j=1 (2.3.7)

fIA ' - i(w jt)- 1  1 - yi(wjt)t-Ai dw , (_)(1_t2)...(Itk)
1where k! = t) .k

x=1 i=1 I xi(wjt)-ltAj 1 - yi(wjt) 2rt' (1-tl

Proof. Let CO,k = Co and let CO,a be such that CO,a contains t-1 Co,b for all a < b, a, b C
{1, ..., k}. Suppose 0 < c < tk is sufficiently small so that C0,1 is contained in the disk of
radius c- and suppose yj < E for i = 1, ... , N. Then we may apply Proposition 2.3.5 to get

k ~N
-k A'J Za - Zb (zi - xjt - ziyj dzi

I(2rt)k Coj, Co, Za - Zbt- (zi - x) (1 - tz y ) Z1

We may now apply Lemma 2.3.6 (with q = t-1 ) to the RHS of the above and get

Exy [t-kA'] ( 1 -1)k(-1)k t k(k-2 1) f- det x
Al-k mi(A)!m 2(A). JO,k JCOk witAi - WJ ij=1

(A GwtA) dw h - W - xjt- 1 - yjwJ G(wj)G(wjt-1 ) ... G 2 where G(w) =I
j2=1 j=1 - tyiw

(2.3.8)

Observe that (-1)kt k(2 kt-l!(1 - t-1)k (t-1 - 1)kkt! and also

(A) N (A) 1 - x(twj) 1 1 - y(wjt)t-Ai

11 G(w)G(wt- 1) ... G(wtlAi) = ( 11 1 - xi(tw)-ltAi 1 - y(wt)
j=11 - )

Substituting these expressions into (2.3.8) and recalling that C,k = Co we arrive at (2.3.7).
What remains is to extend the result to arbitrary Y1, ... , YN E (0, 1) by analyticity. In
particular, if we can show that both sides of (2.3.7) define analytic functions on DN (D is
the unit complex disk), then because they are equal on (0, E)N it would follow they are equal
on DN. This would imply the full statement of the proposition.

We start with the RHS of (2.3.7). Observe that it is a finite sum of integrals over
compact contours. Thus it suffices to show analyticity of the integrands in yj C D. The

fle(x) HN 1-yi(wjt)t A 3
integrand's dependence on y is through _ H[=1 1-yi(wt), which is clearly analytic on

IDN as wj <t-1.
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For the LHS of (2.3.7) we have:

Exy [ t- ] -- (X- Y) 1  PA(X)QX(yl, ..., YN),
AEY

where I(X; Y) = H~] 1_x . Clearly I7(X; Y) is analytic and non-zero on DN (as xi E
(0, 1)) and then so is II(X; Y)- 1 . In addition, the sum is absolutely convergent on DN, since
by the Cauchy identity

N tz lyjl
PA(X)QX(y, ... , yN) PX (X)QA(Iy l1, ..., )yN I- 1-tXyjl

Yj=1 1 - xiyj|
<00-

As the absolutely converging sum of analytic functions is analytic and the product of two
analytic functions is analytic we conclude that the LHS of (2.3.7) is analytic on DN. El

2.3.3 Fredholm determinant formula for Exy [
In this section we will combine Proposition 2.3.7 with different values of k to obtain a formula
for the t-Laplace transform of (1-- t)t-i, which is defined by Exy 1 u;
that (a; t), = (1 - a)(1 - at)(1 - at2 ) ... is the t-Pochhammer symbol.

. We recall

Proposition 2.3.8. Fix N G N and t E (0, 1). Let px and py be the nonnegative finite
length specializations in N variables X = (x1, ... , XN) and Y = (Y1, ---, YN) respectively, with
xi, y E (0,1) for i 1, ... , N. Suppose |ul < tN+1 is a complex number. Then we have

lim UkExy[tk= ExY
M-+o00 -k

(2.3.9)
[(1 - t)uthA'; t)co]

Proof. We have that

N

E IX'y(A'1 =

M uk t-ck

c)Z

By our assumption on u and Corollary 10.2.2a in [7] we have that the inner sum over k
converges to _ as M - oo. Thus

N

lim EPX'y
M-0 0 P

C=O

M

(A' = c)
k=O

ukt-ck

c=O

IPx'x(A = c) = Ex,y
((1 t-

Proposition 2.3.9. Fix N e N, t C (0, 1) and xi, yj E (0, 1) for i = 1, ... , N. Then there
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exists e > 0 such that for |u| < E and u R+ we have

M

1 + lim (t- 1

k=1

- 1)kuk E

AAk N 2 ... C ... Co
det [

- f (A)1

wit-xi .. Jib=

f( 1 - xi(wjt) 1 1 - y_(wjt)t-Aa dwj - det(I + K)L2(CO).
r=1 1 - xi(wjt) ltAj 1 - y (wjt) 2,rt

(2.3.10)

In the above Co is the positively oriented circle of radius t-1 around 0.
terms of its integral kernel

K (w; w') 1 1/ 2+ 1o0

=2rt 1/2-too dI(-s)F(1 + s)(-u( 1 - ,

where

N s N

9Wg ,(t ) = Wt- - W N
_ 1J (1 - xj(wt)-1 tS)(1 - yj(wt))

The proof of Proposition 2.3.9 depends on two lemmas: Lemma 2.3.11 and Lemma 2.3.12,
whose proof is postponed to Section 2.3.4. Our choice for Co is made in order to simplify
the proof.

Proof. From Lemma 2.3.12 we know that Ky is trace-class for u R+. Consequently we
have that

det(I + K)L2(Co) 1 + - -f

n=1 _n c '0
det [K (Wi )

ndw2
=i -

i=1t

sign(-)
cEs

nA
1/2_

+Itoo

1(-s)F(1 + s)(-u(t-' - 1))8gwiw,(i)
too

n
(ts)ds

Using Lemma 2.3.11 and the above formula we can find an c > 0 such that for Jul < e and
a V R+ one has

det(I+K) 1 +
0- -1-

n=1 J0

n oo

foE sign(a-) f E
SO-E Sn i=1 _j=1

u (r- - 1)gwiw(i) (t)
n

dw=

2..t
(2.3.11)

Let us introduce the following short-hand notation

B(c, ., Cn) : det 1 1 w 1 1- yc(wjt)t

Co co c ,1 xi(wt)-ltc 1 - y (wjt) 27rt

Notice that B(ci, ..., cn) is invariant under permutation of its arguments and that (Ml(A) M 2 (A) .. )!
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is the number of distinct permutations of the parts of A. The latter suggests that

(t-1 - 1)kuk B(Al, ... I AiA) =

A mk mi(A)!m 2(A)! ... n>1 C1C2, ,Cn 1
Oe=k

Observe that for some positive constant C we have

(t- 1 - )kukB()

n!

N

< CNnt-NkU)

_=1 (I -- X)n(1 - y,)n
j=1 i=1 I X(wjt)-ltCa 1 - yi(wjt)

The above together with Hadamard's inequality and the compactness of Co implies that for
some positive constants P, Q (independent of k and n) we have IB(ci, ... , cn) < nn/ 2 pnQk.

The latter implies that for Juj < E and c sufficiently small the sum

k=1 n>1 C1,C2,...,C;>1
ci=k

(t- 1 
-1)kuk

W1 -W kB (ci, .. ,Cn)

is absolutely convergent. In particular, the limit on the LHS of equation (2.3.10) exists and
equals

00

1+ E n
n=1

[(t 1 - 1)u]c1+---+cnB(ci, ... ,

C1,C2,..,Cn>1

Expanding the determinant inside the integral in the definition of B(c1, ... , cn) we see that
the integrand equals E gri(ci) H=19 WW() (tci). Consequently the LHS of equation
(2.3.10) equals

Y: [(t-1 -1)u) 1+-+Cn

C1,C2,..,Cn>1l

10 JO- S sign(-)fgWs,.)(tci) . (2.3.12)
co co JEn i=1

What remains is to check that the two expressions in (2.3.12) and (2.3.11) agree. Since
both are absolutely converging sums over n, it suffices to show equality of the corresponding
summands. I.e. we wish to show that

[(t 1 - 1)u]Cl ++Cnf ... f >3 signccx) ]7J 2i

Ci7C2,...,cn 1 C O ES i=1

= --- sign(-) u (r- - 1)igW ,2W(i) (t3 ) wt
co c o E sn i=1 (t=1r

(2.3.13)

By Fubini's Theorem (provided Jul is sufficiently small) we may interchange the order of the
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sum and the integrals and the LHS of equation (2.3.13) becomes

[(t 1 -- )ul 1+..cn E sign(r) g., , (tc ) 2t-
Co Cl c,C2,...-,C, >1 u-ES, =

- - sign(-) 11 [(t 1 - 1)u] Cigw2,,w() (tci) dw
JCO 1O-OEs' i=1 _ci>1 2r

From the above equation (2.3.13) is obvious. This concludes the proof. l

Proposition 2.3.10. Fix N E N and a parameter t E (0,1). Let px and py be the non-
negative finite length specializations in N variables X = (x 1, ..., XN) and Y = (Y-, YN)

respectively, with xi, y E (0, 1) for i = 1, ... , N. Then for u R+ one has that

ExY [((1 - t) tA'; t) j = det(I + K)L2(Co). (2.3.14)

The contour CO is the positively oriented circle of radius t-1 , centered at 0, and the operator
KI' is defined in terms of its integral kernel

I 1/2+
t o

0

K2(w, w') ] dsF (--s)F(1 + s)(-u(F-1 -- 1))sg.N (s)K ( W 7 2 7rt 1/2- oo W

where

N sf (1 - XN(Wt)-')(I - yj(wt)ts)
gW'W, (t) =wt- - w' ___ (1 - xj(wt)-lts)(1 - yj(wt))

Proof. Using Propositions 2.3.7, 2.3.8 and 2.3.9 we have the statement of the proposition for
Jul < E and u 0 R+ for some sufficiently small c > 0. To conclude the proof it suffices to
show that both sides of (2.3.14) are analytic functions of u in C\R+.

The RHS is analytic by Lemma 2.3.12, while the LHS of (2.3.14) equals ZN-n P,y (A'

n) , and is thus a finite sum of analytic functions and so also analytic on C\R+. E

2.3.4 Proof of Lemmas 2.3.11 and 2.3.12
Versions of the following two lemmas appear in Section 3.2 of [24].

Lemma 2.3.11. Fix N e N, t E (0,1) and xi,yi E (0,1) for i = 1,...,N. Let w,w' E C be
such that |w| = |w'| = t-1 and let

N s N (1 - X _(W.)1 )(I - y (Wt)

wt-s - W' (1 - xj(wt)-lts)(1 - yj(wt))
j=1

Then there exists c > 0 such that if (C {Q { M <: I ,C < R+}, we have

00 1/2+oo

9N g ,(tn)0 2(-s)F(1 + s)(_)sgNw (ts)ds. (2.3.15)
n=1 1/2-too
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Proof. For simplicity we suppress N from our notation. Let RM = M + 1/2 (M E N) and
set A' = 1/2 - tRM, A = 1/2 + tRM, A = RM + tRM and A= RM - tRM. Denote by
-4& the contour, which goes from A' vertically up to A2, by y2 the contour, which goes
from A2 horizontally to A', by 7' the contour, which goes from A' vertically down to
AM, and by y' the contour, which goes from A horizontally to AL. Also let YM =uj7h

traversed in order (see Figure 2-5).

2

1-lYJ IMi e iel retd

Al

4

AkA

Figure 2-5: The contours '-yb, for i 1) 1,.**4.

We make the following observations:

1. -yM is negatively oriented.

2. The function g,,, (t) is well-defined and analytic in a neighborhood of the closure of
the region enclosed by yM. This follows from It8 < 1 for Re(s) > 0, which prevents
any of the poles of g.,,,(ts) from entering the region Re(s) > 0.

3. If dist(s, Z) > c for some fixed constant c > 0, then si7r ) < c'e-7rIm(s)1 for some

fixed constant c', depending on c. In particular, this estimate holds for all s E 7m
since dist(7m, Z) = 1/2 for all M by construction.

4. If -(=re'O with 101 <7r ands =x+ty then

(-()S = exp ((log(r) + tO)(x + ty)) = exp (log(r)x - yG + t(log(r)y + xO)) ,

since we took the principal branch. In particular, 1(-()' = rxe-yo.

We also recall Euler's Gamma reflection formula

](-s)F(1 + s) = .r
sin(-7rs)

(2.3.16)
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We observe for s = x + ty, with x > 1/2 that

HN 1 11_y(Wt)t-s N 2
|gw,w' (t )| I - -j t-3/2 - t-1 1 -y)( i

In addition, we haveljt 1 - yj (wt)t-8 | Cecx for some positive constants C, c > 0, de-
pending on N, t and yi. Consequently, we see that if c is chosen sufficiently small and

reo with r < E then

|g ,w (tX-("| <_5 Ce*ye9l < Ce-IeYGI

with some new constant C > 0. In particular, the LHS in (2.3.15) is absolutely convergent,
and we have

o M

Z gW', (tn)(n = lim g,,(t")(n.
n=1 Mon=1

From the Residue Theorem we have

M

S 9,W'(t) = () (n F(-s)F(1 + s)( -()sg,,(ts)ds.
n=127 Y

The last formula used Res8 =kF(-s)F(1 + s) = (-I)k+1 and observations 1. and 2. above.
What remains to be shown is that

11 f1/2+too
lim 2 /F(-s)(1 + s)(-()Sgw,w1(ts)ds = ](-s)F(1 + s)(-)sgw,w-,(ts)ds.

M-+oo 27LJYM 27t J1/2-Loo

(2.3.17)
Observe that on Re(s) = 1/2 we have that gw,wr,(ts)I is bounded, while from (2.3.16) and

observations 3. and 4. we have

]F(-s)F(1 + s)(-)S - (-()S c'exp(( O1 - ir)Im(s))r1/2, (2.3.18)
sin(-7rs)

which decays exponentially in |Im(s)| since |0| < 7r. Thus the integrand on the RHS of
(2.3.17) is exponentially decaying near too and so the integral is well-defined. Moreover,
from the Dominated Convergence Theorem we have that

li (11 )(1/2+t(tSds=olim - F(-s)F( + s)(-()g,,(t)ds = 1/2o F(--s)F(1 + s)(-)sgw,w-,(ts)ds.M-~o 27t 27rt 1/2-too

We now consider the integrals

2I j F(-s)F(1 + s)(-()SgW,',(tS)127rt 0I1

when i -,4 1 and show they go to 0 in the limit. If true, (2.3.17) will follow.
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Suppose that i = 2 or i = 4. Let s = x + Ly E 7j, so jyj = RM and we get

IF(-s)IF(1 + s) (- )"gW- () I Ce-CXeoyIc'e-7ryI < Ce(OI-r)Rm,

for some new constant C > 0. Since 10 - 7r < 0 we see that

2t j rF(-s)F(1+ s)(-)SgW,(ts) < CRme(III-,r)Rm -+ 0 as M -+ oc.
27rt ,

Finally, let i = 3. Let s = x + ty E 'y, so x = RM and we get

|P(-s)F(1+ s)(- )g tS)| < Ce-xeIOvic'e-IYI < Cc'- .

Consequently, we obtain

It j F(-s)F(1 + s)(-)g ,(t8) 2RMCc'e-CR -+ 0 as M - oc.
27rt ,

This concludes the proof of (2.3.17) and hence the lemma. El

Lemma 2.3.12. Fix N E N or N = oo, t c (0, 1) and xi, yj E (0, 1) for i 1, ... , N such
that >i xi < oc, E> y, < oc. Suppose u E C\R+. Consider the operator Kf on L2 (CO)
(here Co is the positive circle of radius t-1), which is defined in terms of its integral kernel

1 1/2+Loo
Kf(w, w') = If dsF(-s)F(1 + s)(-u(t-' - 1)),gwN s

27rt W/-o

where

N 1 N (_x(wt)- 1 )(1 - y _(wt)ts)
gW'W' (t ) = wt- - w' (1- xj(wt)-lts)(1 - yj(wt))

Then Kjj is trace-class. Moreover, as a function of u we have that det(I+K ) is an analytic
function on C\R+.

Proof. We begin with the first statement of the lemma and suppress the dependence on N
and u from the notation. From Lemma 2.2.10 it suffices to show that K(w, w') is continuous
on CO x CO and that K2(w, w') is continuous as well, where we recall that K2 (w, w') is the
derivative of K(x, y) along the contour Co in the second entry.

In equation (2.3.18) we showed that if -u(t- 1 - 1) = retO with 101 < 7r and s = 1/2 + ty,
then

IF(-s)P(1 + s)(-()sj < Cexp((101 - 7r)lyl)ri/2

We observe that gw,w' (ts) is continuous in w, w' and moreover on Re(s) = 1/2 we have

1 (1 + X)(1 + y.t- 1 / 2 )
g ' ) t= -3/2 _ t-- _ X t1/2)(I _ Y ) < 00

j=1
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independently of w, w'. So if (w, w') -+ (w, w') we have that gw,,, (ts) - g.,(ts) and
by the Dominated Convergence Theorem, we conclude that K(wn, ') -+ K(w, w') so that
K(w, w') is continuous on Co x Co.

We next observe that

K 2(w,w') = tw'd K(w, w') =tw' j dsI7(-s)F(1 + s)(-u(t-1 - 1))s d gWw (ts)Idwl 27t 11 -110 dw!

where the change of the order of integration and differentiation is allowed by the exponential
decay of the integrand. We have that d g,,(ts) = - g,,(t) so a similar argument

as above now shows that K2 (w, w') is continuous on Co x Co. We conclude that K is indeed
trace-class.

Since K is trace-class we know that

det(I + K ) = 1 + --- det [K (Wi j)] .d
n>1 m!Jc0 0 i=12

We wish to show that the above sum is analytic in u E C\R+.
We begin by showing that Kf(w, w') is analytic in u for each (w, w') c Co x Co. Observe

that on (C\R+) x (1/2 + tR), F(-s)F(1 + s)(-u(t- 1 - 1))sg4w,(ts) is jointly continuous in

(U, s) and analytic in u for each s. From Theorem 5.4 in Chapter 2 of [77] we know that for
any A > 0

p1/2 LA
hA(u) := /(-s)F(1 + s)(-u(t-1 - 1))sgN ,(t')ds

J1/2-A

is an analytic function of u E C\R+. In addition, using our earlier estimates we see that

JhA(u) - KN(w,w')J < 2ul /2MCf exp((101 - 7r)y)dy = u 1 0M exp((101 - 7)A).

The latter shows that hA(u) converges uniformly on compact subsets of C\R+ to K (w, w')
as A - oc, which implies that K (w, w') is analytic in u. Notice that when A = 0 the above
shows that if K' is a compact subset of C\R+ and u E K', we have IK (w, w') C (K') for
some contant C > 0 independent of w, w'.

We next observe that K (w, w') is jointly continuous in u and (w, w') and analytic in u for
each w, w' from our proof above. The latter implies that det [Kj'(wi, w n)] 1 is continuous

on Co' x C\R+ and analytic in u for each (wi, ... , w,,) E Co. It follows from Theorem 5.4 in
Chapter 2 of [77] that

Hn (u) = det [K (wi, w)] _ n 2w'

is analytic in u.
Finally, suppose K' c C\R+ is compact and u E K'. Then from Hadamard's inequality
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and our earlier estimate on JKN(w, w')I we know that

H.(u) = - .f det [Kf (wiw j)]. dwi < (t-1)"n/ 2 C(K')n = B nn/2

n! JO o = 27rt n! n!

The latter is absolutely summable, and since the absolutely convergent sum of analytic
functions is analytic and K' was arbitrary, we conclude that 1 + InH(u) det(I +
K )L2 (co) is analytic in u on C\R+. This suffices for the proof.

2.4 GUE asymptotics

In this section, we use the results from Section 2.3 to get formulas for the t-Laplace trans-
form of t"- , with A distributed according to the Hall-Littlewood measure with parameters
a, r, t E (0, 1) (see Section 2.2.4). Subsequently, we analyze the formulas that we get in the
limiting regime r -+ 1-, t c (0, 1) - fixed and obtain convergence to the Tracy-Widom GUE
distribution. In what follows, we will denote by Pa,r,t and Ea,r,t the probability distribution
and expectation with respect to the Hall-Littlewood measure with parameters a, r, t E (0, 1).

2.4.1 Fredholm determinant formula for Eart

In the following results, unless otherwise specified, det(I + K)L2(c) dentotes the absolutely
convergent sum on the RHS of (2.2.8) - see the discussion in Section 2.2.5.

Proposition 2.4.1. Suppose a,r,t C (0,1) and let 6 > 0 be such that a < (1 - 6). Then for
u C C\R+ one has that

[ ~ 11
Ea,r,t = det(I + K)L2(cO). (2.4.1)

1((1 - t) ut-A ; t) ,I

The contour CO is a positively oriented piecewise smooth simple curve, contained in the closed

annulus A6 ,t between the 0-centered circles of radius t- 1 and max (t- 1 (1 - 6/2), t- 3/ 4 ). The

kernel Ku(w,w') is defined as

I 1/2+too
K(w, w') = [ dsF(-s)F(1 + s) (-u(t-1 - 1))Sg,,, (t'), (2.4.2)

1/2-too

where

= w- 1  (I ar(wt)-')(1 - ari(wt)t~s)
Wt-8 - W' (1 - ar(wt)-ts)(1 - ari(wt))j=0

Remark 2.4.2. Proposition 2.4.1 will be the starting point for our asymptotic analysis in
both the GUE and CDRP cases. In the different limiting regimes, we will encounter different
contours, which will be suitably picked contours contained in Aj,t.

Proof. We first prove the proposition when CO is the positively oriented circle of radius t-'.
The starting point is Proposition 2.3.10, from which we see that whenever u 0 R+ one has
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for every N c N

ENr t 1A = det(I + KN)L2(Co ).
(1-t)Ut-1 I; t)"] _

Here EN,,t stands for the expectation with respect to the Macdonald measure on partitions,
corresponding to q = 0 and xi = y = ara for i = 1, ... , N and xi = y = 0 for i > N. The
result would thus follow once we show that

2. limNao det(I + Kj)L2(Co) = det(I + Ku)L2(CO).

Before we prove the above two statements let us remark that the two limiting quantities
are indeed well-defined. The fact that Ku is a trace-class operator on L2 (CO) follows from
Lemma 2.3.12. Next, we observe that if u 0 R+ then for any n we have that 1 iswelldefnedand oreverther exstsa costat Mu) sch hat 1 K (Ut-;t), 15

well defined and moreover there exists a constant M(u) such that 1< M, for all n.

Consequently, we can define unambiguously the expectation E a,r,t and it is a

finite quantity.

We start with 1. Denote by PN and QN the N-length specialization of the the Hall-
Littlewood symmetric functions with xi = yj = arT- 1 for i = 1, ... , N and xi = y = 0 for
i > N (here N is a positive integer or oo). Also let ZN be the normalization constant, which
in the above case equals

ZN = N arar 1 - this is the Cauchy identity in (2.2.2).H ari-lari-1-
i,j=1

We obtain

E N -
((1 - t)Ut-AI; t)"" ZN

~AQ 1pNN
A ((I - t~ --A' .)

One readily verifies that ZN Z Z, P 7 P' and QN 7 Q' as N - oc. Thus from the
Dominated Convergence Theorem (with dominating function MP'Q') we get

lim E pN N 1
N-+oo 1 Q ( - t)Ut~A' ; t) 0

EP0oOQ00
AGY

The latter implies that

1
lim -

N-+oo ZN
AEY

P (QN _ -t
1

zoo PAooQ
AEY

which concludes the proof of 1.

Next we turn to 2. Firstly, we one readily observes that

9 N g W (ts), as N -+ oc
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and moreover we have

N1 (1 + ari)(1 + arit-1/2)
g9w,w(t8)| t -3/2 - 11 (1t- arit/ 2 )(1 - ari)

j=O

- M < oo,

independently of N, w, w'. Recall from (2.3.18) that

JF(-s)F(1 + s)(-(t 1 - 1)u)| < C exp((19 - 7r)jyj)ri/2,

where -(t- 1 - 1)u = reo and s = 1/2 + ty. It follows by the Dominated Convergence
Theorem (with dominating function MCexp((1O| - r)IyI)r1/ 2 ) that

lim K$ (w, w') = K.(w, w'),
N-oo

and moreover there exists a finite constant M2 (depending on u) such that IK (w, v')I < M2

for all N, w, w'. Next we have from the Bounded Convergence Theorem that for every n

im -... det dw (i7 j I f,.1 ... f det [K w wj)] I j = d1w7t
JCo [K(w=j)~ 1 2wrt n! C o

By Hadamard's inequality we have that for each n the above is bounded (in absolute value)

by n n! M2 . Consequently, by the Dominated Convergence Theorem we have that

n w
_im C det [K (Wi, )

n=1 0

ndwi

f2 7rt

This concludes the proof of 2.

We next wish to extend the result to a more general class of contours. Let C be a
positively oriented piecewise smooth simple contour contained in the annulus, described in
the statement of the proposition. What we have proved so far is that

Ea,r,t ((1 - t)tM; t) 00
= 0 

+ 1

n=1

J j det [Ku(wi, wi)]n n dw, (2.4.3)

where the latter sum is absolutely convergent. One readily verifies that g,,,' (t) is analytic in
w, w' on a neighborhood of Aj,t x A&,t and by the exponential decay of F(-s)P(1+s)(-(t 1 -

1)u)S near 1/2 t too the same is true for Ks(w, w'). It follows that det [Ku(wi, wj)]' is
analytic on a neighborhood of A n and by Cauchy's theorem we may deform the contours Co
in (2.4.3) to C, without changing the value of the integrals. This is the result we wanted. L:

2.4.2 A formula suitable for asymptotics: GUE case
In this section we use Proposition 2.4.1 to derive an alternative t-Laplace transform, which is
more suitable for asymptotic analysis in the GUE case. The following result makes references
to two contours 'yw(A) and -yz(A), which depend on a real parameter A > 0, as well as a
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function Sa,,(-), which we define below.

Definition 2.4.3. For a parameter A > 0 define

7w(A) = {-Ajyj + ty: y E I} and -z(A) = {A y + ty: y E I}, where I = [-7r].

The orientation is determined from y increasing in I.

Definition 2.4.4. For a, r C (0, 1) define

00 00

Sa,,(z) : log(1 + arie') - Elog(1 + arie-).
j=0 j=0

The function Sa,, plays a central role in our arguments and the properties that we will
need are summarized in Section 2.6. We isolate the most basic facts about Sa,r in a lemma
below. The lemma appears again in Section 2.6 as Lemma 2.6.1, where it is proved.

Lemma 2.4.5. Suppose that 6 E (0,1). Consider r E (0,1) and a E (0, 1 - 6]. Then there
exists A'(6) > 0 such that Sa,r(Z) is well-defined and analytic on D6  {z G C: Re(z)\ < A'}
and satisfies

,1+ arjez
exp(Sa,r(z)) =1+ are (2.4.4)'i . + arie-z-

j=0

Proposition 2.4.6. Suppose a, r,t c (0, 1) and let 6 > 0 be such that a < (1 - 6). If A > 0
is sufficiently small (depending on 6 and t) and -yw(A) and -yz(A) are as in Definition 2.4.3,
then for ( e C\R+ one has

Ea,r,t ((t1-;t)00_ det(I - kL2 (-) .

The kernel k(WW') has the integral representation

KC(W, W') = w dZ( z)ft(z~W) G(,t(W, Z) exp (Sa,r(Z) - Sa,r(W)). (2.4.5)27rt (A) eW' - eZ

In the above formula, Sa,, is as in Definition 2.4.4 and we have

GO (W, Z) := 7 _ and ft(Z, W) := . (2.4.6)
kEZ sin(-7rft(Z + 27rkt, W)) - logt

Proof. We consider the contour CA := {-rleA-^I : 9 C [-ir, r]}, which is a positively
oriented piecewise smooth contour. For A > 0 sufficiently small we know that CA is contained
in the annulus A6,t in the statement of Proposition 2.4.1. Consequently, from (2.4.1) we know
that

Ea,r,, ((1 - t)utAi; t)OO = 1 + -/ det [K=(w1, wj)]
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where Ku(w, w') is as in (2.4.2) and the above sum is absolutely convergent. The n-th
summand equals

-1 det [Ku (-t-leA-^fl, -t-letoj-

Setting yj = tOi - AjOil the above becomes

"I I t-leOj-^AIOi(t - Asign(j))dj
ij=1 2

- -- d [t leyiK ( -t-leyi, n- yi)] . n .

! Tw(A) Jtw(A) ' i=1

To conclude the proof it suffices to show that for W, W' EE 'w(A) and ( = (t- - 1)u one has

(2.4.7)

Setting Z = (-log t)s + W, using the Euler Gamma reflection formula from (2.3.16) and
recalling ft(Z, W) = zg, we see that the LHS of (2.4.7) equals

eW -f2t+W (- log t)-rdZ (_ ft(zW)
27t - . w-too sin(-7rft (ZI W))

1 (1 + arie-w)(1 + ariez)
ew' - ez (I + arie-z)(1 + arjew)

If W E yw(A) we know that Re [- + W] E [-logt 7rA -logt]. In addition, the
only poles of the integrand for Re(Z) > 0 come from 1 and are located at W +sin(-irft (Z,W))

(- log t)Z. This implies that if A is sufficiently small we may shift the Z- contour so that it
passes through the point A7r, without crossing any poles of the integrand (see Figure 2-6).
The shift does not change the value of the integral by Cauchy's Theorem and the exponential
decay of the integrand near ttoo. Thus we get that the LHS of (2.4.7) equals

2 W A7r+O<

27rt Arto

(- log t) -7r dZ (_ ft(zw)

sin(-7rft(Z, W))

1 (1 + arie-W)(1 + ariez)
eW' - ez _= (1 + arie-z)(1 + ariew)

The next observation is that eAr+ty is periodic in y with period T = 27. Using this we
see that the LHS of (2.4.7) equals

eW Alr+tr/2+tkT (- log t)- rdZ (_Wt(ZW)
27rt kZ ]A7r-tT/2+tkT sin(-7rft(Z, W))

ew

27rtZ
kEzZ

arie-w)(1 + arieZ)1 (0 +
e' _ ez H( +

j=O

I Ar+tT/2
^1r-LT/2

dZ (_tkT/(-Iogt)(- log t)- 1 r (()ft(W) 0 (1
sin(-7rft(Z + tkT, W)) ew' - eZ _ (1

Let (-() = retO with 101 < 7r. Using a similar argument to (2.3.18), we have for Jkl > 1

_(- tkT (- logt) -OkT/(- log t)

sin(-7rft(Z + tkT, W)) sin(-7rft(Z +tkT, W))
(2.4.8)
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arie-z)(1 + ar new)

+ arie-W)(1 + arieZ)
+ arie-z)(1 + ariew)-

C-lewK& (t-sewI -r ew' ) = k(W,W ).

Ce IkIT(JO -7r)/(- log t)



-ylw(A)

2

* V+(-logt)Z.

Figure 2-6: If A is very small, no points of
W + (- log t)Z fall between Air + tR and
-logt + W + tR, when W E 7w(A).2

-W k

-yz(A)/

TV+ (- log t)Z

Figure 2-7: If A is very small, no points of
W + (- log t) Z fall between Air t [-r, 7r]
and 'yz (A), when W E 'yW (A).

where C is some positive constant, independent of Z and W, provided W E -yw(A),
jIm(Z) I < r and Re(Z) = Air. We observe the latter is summable over k. Additionally,

(-)t(zw) (1 + arie-w)( + arez)
ew _ z (I + arie-z( re) eAr - 1

(_)ft(z,W) .~. (1 + arie-w)(1 + arez)
11 (1 + arie-z)(1 + ariew)

and the latter is bounded by some constant M(C, B), provided Re(Z) = Air and W e 7yw(A).
By Fubini's theorem, we may change the order of the sum and the integral and get that LHS
of (2.4.7) equals

wV A7+tT/2

21rtfA_1,/2

dZ(-()ft(zW)

eW/ - ez

7r(- log t)-1 (-()kT /(- logt) + arie-w)( + ariez)
sin(-7rft(Z + tkT, W)) 1 + arie-z)(1 + ariew)

From (2.4.8) we see that GC,t(W, Z), which is given by

7r(- log t)-1 7r(- log t)-1 (-()tkT/(- log t)

sin(-rft(Z, W)) sin(-7rft(Z + tkT, W))
IkI 1

is the sum of -.logt)' and an analytic function in Z in the region D = {Z E Csin(-4rt(Z,W))

1Im(Z)I < r and Re(Z) > 0}. In particular, the poles of GC,t(W, Z) in D are exactly at
W + (- log t)N. If we now deform the contour [A7r - tr, A7r + tLr] to yz(A) (see Figure 2-7)
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we will not cross any poles and from Cauchy's Theorem we obtain that the LHS of (2.4.7) is

ew dZ(-()ftzw)G (W (1 + arie-W)(1 + ariez)
27rt yz(A) ew ez C,=0 (I + arie- 1+ rw)

From Lemma 2.4.5 (provided A is sufficiently small so that yz(A), yw(A) C D6 ), we have

1 (1 + arieW)(l + ariez) =
11(1 + arie-z)(1 + areW) '

Substituting this above we recognize the RHS of (2.4.7).

2.4.3 Convergence of the t-Laplace transform (GUE case) and proof
of Theorem 2.1.2

Here we state the regime, in which we scale parameters and obtain an asymptotic formula

for Ea,,r _t . The formula is analyzed below and used to prove Theorem 2.1.2. One

key reason we are considering the t-Laplace transform is that it asymptotically behaves like
the expectation of an indicator function. The latter (as will be shown carefully below) allows
one to obtain the limiting CDF of the properly scaled first column of a partition distributed
according to the Hall-Littlewood measure with parameters a, r, t and match it with FGUE

(see Definition 2.1.7).

We summarize the limiting regime and some relevant expressions.

1. We will let r -+ 1- and keep t c (0, 1) fixed.

2. We assume that a depends on r and for some 6 > 0 we have limr,- a(r) = a(1) E
(0, 1 - 6].

3. We denote by N(r) = 1, M(r) = 2 ea(r)k (-rk and o a( ) 2 .
_- kL-- r (l~a(l))

For a given x E R set (x = -tM(r)+xa~1N(,r)/ 3  (2.4.9)

The following result is the key fact for the Tracy-Widom limit of the fluctuations of the
first column of a partition distributed according to Pa,r,t in the GUE case. It shows that
under the scaling regime described above the Fredholm determinant (and hence the t-Laplace
transform) appearing in Proposition 2.4.6 converges to FGUE-

Theorem 2.4.7. Let x - R be given and let (, be given as in (2.4.9). If A > 0 is sufficiently
small (depending on 6 and t) then

lim det(I - K.)L2(-yww(A)) = FGUE(X), (2.4.10)
r+1-

where FGUE is the GUE Tracy-Widom distribution (see Definition 2.1.7), yw (A) is defined
in Definition 2.4.3 and K, is as in (2.4.5).
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In what follows we prove Theorem 2.1.2, assuming the validity of Theorem 2.4.7, whose proof
is postponed until the next section.

We begin by summarizing the key results from our previous work as well as recalling a
couple of lemmas from the literature. From Proposition 2.4.6 and Theorem 2.4.7 we have
that under the scaling described in the beginning of the section and any x E R

rl'h ]Ea,r,t [ ]~Mr+l =)/t-j t),,] FU(x). (2.4.11)lim "'" (-tM(r)+a--1 N(r) 1/3 tj_y GE() 1--

Set r := oN(r)- 1/ 3 (A' - M(r)) and observe that (2.4.11) is equivalent to

11
lim Ea,r,t = FGUE(X)- (2.4.12)

r-1 (t- -N(r)1/3a_('-) _)0

The function that appears on the LHS under the expectation in (2.4.12) has the following
asymptotic property.

Lemma 2.4.8. Fix a parameter t e (0, 1). Then

00

fq (y) :1 1 (2.4.13)
((-t) . ty; t) 00  1 + tqy+k

k=1

is increasing for all q > 0 and decreasing for all q < 0. For each 6 > 0 one has fq(y) -+ 1y>o}

uniformly on R\[-6,6] as q -+ oo.

Proof. This is essentially Lemma 5.1 in [501, but we present the proof for completeness.
Each factor in the t-Pochhammer symbol tqyk is positive, increases in y when q > 0 and
decreases in y when q < 0. This proves monotonicity.

Let 6 > 0 be given. If y < -6 we have

1 1
0 <; fq(y) < 1tl+q + -0 as q -+ o. (2.4.14)

If y > 6 we have

00

0 > log fq (y) > - log [1 + tqs+k] -+ 0 as q - oo, (2.4.15)
k=1

where the latter statement follows from the Dominated Convergence Theorem with domi-
nating function log [1 + tk]. Exponentiating (2.4.15) and combining it with (2.4.14) proves
the second part of the lemma.

We will use the following elementary probability lemma (Lemma 4.1.39 of [241).

Lemma 2.4.9. Suppose that f,, is a sequence of functions f, : R -+ [0,1], such that for each
n, f,(y) is strictly decreasing in y with a limit of 1 at y = -oo and 0 at y = cx. Assume
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that for each 6 > 0 one has on f,\[-6,6], - 1fy<0 uniformly. Let X, be a sequence of
random variables such that for each x E R

E[fn(Xn - x)] -+ p(x),

and assume that p(x) is a continuous probability distribution function. Then Xn converges
in distribution to a random variable X, such that P(X < x) = p(x).

Proof. (Theorem 2.1.2) Let rn be a sequence converging to 1 and set

fL(y) 1 and Xn = Gn.
(( t) . t-[N(r_)1/3 -y] )"

Lemma 2.4.8 shows that fn satisfy the conditions of Lemma 2.4.9. Consequently, Lemma
2.4.9 and (2.4.12) show that rn converges weakly to the Tracy-Widom distribution. In
particular, for each x c R we have

lim Pa,,t(Gr < X) = FGUE(x)- (2.4.16)
r-- 1-

Consider a(r) = r(1+ILTN(r)J|)/2. Since, limr,- rN e-1, we see that liMr,1- a(r) =
rIr 2al 1/3 - 1-/ 1/

a(1) - e-II/ 2 < 1 (whenever r , 0). This means that a-1 : a() 1 1/3

x1. From Section 2.2.4 we conclude that

HLA'([N(r)]) - M(r) <A' - M(r) \
HLn X'Ni/3 (~, a-1Nl/3 <x =P,, ( _x, (..7

Combining (2.4.16) and (2.4.17) shows that if T # 0 one has

him IprL A'(A N(r)]) -- M(r) < x FGUE(X).

In (2.6.8) we will show that M(r) = 2N(r) log(1+a(1))+O(1) = 2N(r) log(1+e 1-Tr/ 2)+0(1).
Substituting this above concludes the proof of the theorem.

2.4.4 Proof of Theorem 2.4.7
We split the proof of Theorem 2.4.7 into four steps. In the first step we rewrite the LHS of
(2.4.10) in a suitable form for the application of Lemmas 2.2.11 and 2.2.12. In the second step
we verify the pointwise convergence and in the third step we provide dominating functions,
which are necessary to apply the lemmas. In the fourth step we obtain a limit for the LHS
of (2.4.10), subsequently we use a result from [261, to show that the limit we obtained is in
fact FGUE-

In Steps 2 and 3 we will require some estimates, which we summarize in Lemmas 2.4.10
and 2.4.11 below. The proofs are postponed until Section 2.6.
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Lemma 2.4.10. Let A > 0 be sufficiently small. Then for all large N we have

Re(Sa,,(z) - M(r)z) < -cNlzl3 for all z c 'z(A) and (2.4.18)

Re(Sa,,(z) - M(r)z) > cN z 3 for all z E -yw(A). (2.4.19)

In the above c > 0 depends on A and 6. In addition, we have

Re(Sa,,(z) - M(r)z) = 0(1) if Jzj = O(N-11 3) and (2.4.20)

lim S,,,(N-1/3U) - M(r)N-1/3U - U3-3/3 for all u E C. (2.4.21)
N- oo

Lemma 2.4.11. Let t, u, U E (0, 1) be given such that 0 < u < U < min(1, - log t/10).
Suppose that z,w - C are such that Re(w) E [-U,0], Re(z) E [u, U]. Then there exists a
constant C > 0, depending on t such that the following hold

1 11-I < Cu-1 and [ U-1 , where ft (z, w) = -
ez _ ew G a sin(-7rft(z + 27rtk, w)) - Cu w

kcZ
(2.4.22)

Step 1. For A > 0 define -'w(A) ={-Ajyj + ty : y E R} and -'(A) = {Ajyj + ty : y E R}.
Suppose A > 0 is sufficiently small, so that Proposition 2.4.6 holds. We consider the change
of variables zi = NI/3 Zi and wi = N1/3 W and observe that the LHS of (2.4.10) can be
rewritten as det(I - k7)L2(-y,'(A)), where

kN (~ ' N xz dz an g x Z 3lX

S(W, ) = 9JA , W,(Z) and g',,(z) ={max(IIm(w)I,IIm(w')I,Irm(z)1)<N1/3l X
'z(A

eN-1/ 3wN-2/3 exp(Sa,(N-1/ 3z) - MN-1/ 3z - xc-1z)

eN- 1/ 3w' _ eN-1/ 3z (x,t(N w N- exp(Sa,(N-1/ 3W) - MN- 1/ 3w - 1w-
(2.4.23)

We deform the contour yZ'(A) inside the disc of radius A 1 so that it is still piecewise smooth
and contained in {z E C : Re(z) > 1/2}. Observe that the poles of gN,x,(z) in the right
complex half-plane come from Gcxt and are thus located at least a distance of order N1 /3

from the imaginary axis. The later implies that if we perform, a deformation inside a disc
of radius 0(1) we will not cross any poles provided N is sufficiently large. In particular, our
deformation does not change the value of g N'x , for all large N by Cauchy's Theorem. We
will continue to call the new contour by -yZ (A). Deforming the contour has the advantage of
shifting integration away from the singularity point 0.

Step 2. Let us now fix w, w' C -'-4(A) and z E 'y (A) and show that

lim gN,x g (z), , exp(OAz 3 /3 a-3w3 /3 - xar 1z + x- 1 w)
N-oo ,(z) = where g,(z) := (W - z)(w - Z)

(2.4.24)
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One readily observes that

N-
1
/
3W l{max(IIm(w)j,IIm(w'),Im(z))<N'/ir 1 (2.4.25)n e N1 3 (eN- 1

/
3w' _ N-1/ 3

z) W _ z

Using (2.4.21) we get

rexp(Sa,r(N-1/3 z) - MN"1 3 z -- xr'z) __lim =exp(Sar(Nl/3w)- MN'/ 3w - Xa-'w) = exp(a (Z3 /3 - w3/3) - xacHz + xoz7w).N-+oo eXp(Sa,r(N-1/3W) - MN-1/3W - xa-1w) (..6(2.4.26)
From (2.4.6) we have

-1/3 __ -'~ ~ r(- log t)-l(-( )2rkL/(- log t)
N-1/ 3Gt(N-1/3w, N--13z) = N-1/3 p _ i_ _ _ ( _ log .) (2.4.27)

C'' ~Ez sin(-7rft (N-1/3Z + 27kt, N-1/3W))

Using a similar argument as in (2.3.18) we see that for Jk| > 1 and all large N one has

7r (- log t) 1(-(X)2rkt/(- log t) < Ce-2kIlr/(- log(t))

sin(-7rft(N-1/3z + 27rkt, N-1/ 3w))

The latter is summable over Jkl > 1 and killed by N-1/ 3 in (2.4.27). We see that the only
non-trivial contribution in (2.4.27) comes from k = 0 and so

lim N-1/3Gcx,t(N-1/3w, N-1/ 3z) = lim N-1 / 3  7r( log= . (2.4.28)
N-*oo N-+oo sin (rN-1/3 -z

(- iogt (W Z

Equations (2.4.25), (2.4.26) and (2.4.28) imply (2.4.24).

Step 3. We now proceed to find estimates of the type necessary in Lemma 2.2.12 for the
functions gNN, (z). If z is outside of the disc of radius A' (so lies on the undeformed portion
of '-Yz(A)) and IIm(z)| I irN1/ 3 the estimates of (2.4.18) are applicable (provided A is small
enough) and so we obtain

exp(Sa,r(N-1/3z) - MN-1/3z - Xa-z)| I Cexp(-cIz13 + Xa-1zj), (2.4.29)

where C, c are positive constants. Next suppose z is contained the disc of radius A- around
the origin (i.e. lies on the portion of -y' (A) we deformed). From (2.4.21) we know that
Sa,r(N-1/3Z) - MN-1/ 3z is 0(1). This implies that I exp(Sa(N-1/3z) - MN-1/ 3 z - xa-lz)l
is bounded and the estimate (2.4.29) continues to hold with possibly a bigger C.

If w E .-Y((A) and IIm(w) I <7rN/ 3 the estimates of (2.4.19) are applicable (provided A
is small enough) and we obtain

I exp(-Sa,r(N-1/3w) + MN-1/3w + xa-'w) C exp(-cw1 3 + IXa wI), (2.4.30)

for some C, c > 0.
If A is sufficiently small so that A7r < min(1, - log t/10), then the estimates in Lemma
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2.4.11 hold (with u = (1/2)N- 1/ 3 and U = A7r), provided max(|Im(w)j, Im(w')j, 1Im(z))
/3rz ' 7(A) and w', w E -' (A). Consequently, for some positive constant C we have

(2.4.31)
N - N/3 - -1/3G (N - 1/3W, N -1/3z) < C.

Observe that eN-1/ 3w 0 0(1) when 1Im(w)l rN'/3 and w E -y'(A). Combining the lat-
ter with (2.4.29), (2.4.30) and (2.4.31) we see that whenever max(IIm(w) , 1Im(w')
N1/37 Iz C y' (A) and w', w E 7'w(A) we have

Ig (z)l < Cexp(-clw13 + xa-lw) exp(-clz3 _+ iXcy
1 z),

1, JIm(z)1) <

(2.4.32)

where C, c are positive constants. Since g ,(z) = 0 when max(IIm(w) , 1Im(w') , JIm(z)1) >
/3r we see that (2.4.32) holds for all z E -y' (A) and w', w E 7'((A).

Step 4. We apply Lemma 2.2.12 to the functions g ',(z) with FI(w) = C exp(-clw1 3 +

xa- wl) = F2(w) and IF = '(A), r 2 = 75(A). Notice that the functions F are integrable
on 1I7 by the cube in the exponential. As a consequence we see that if we set K (w, w')

f' (A) 9g ( z)-, then kN and kT satisfy the conditions of Lemma 2.2.11, from which we

conclude that
lim det(I - k )L2(yW(A)) = det(I - kT)L2(-y (A)). (2.4.33)

What remains to be seen is that det(I - kT)L2(g,(A)) =FGUE(X)-

Changing variables, we have that det(I - k)L2(y) 1 + E (Ql H(n), where

H(n)= E sign(-) J J 1 jexp(z /3 - w/3 - xzi + xw)

WZ Z=1 (wi - zi)(w, (i) - zi)

dwi dzi
27rt 27rt

Consequently, we see that

det(I - k)L2(l) = det(I + kAi)L2(4),

where

KA (w, w')
/ exp(z3/3 - w 3/3 - xz + xw) dz

(w - z)(z - w') 21rt
(2.4.34)

The proof of Lemma 8.6 in [261 can now be repeated verbatim to show that

det(I + kAi)L2() = det(I - KAi)L2(X,00) = FGUE(X)-

This suffices for the proof.

2.5 CDRP asymptotics

In this section, we obtain alternative formulas for the t-Laplace transform of t1 -'-, with A
distributed according to the Hall-Littlewood measure with parameters a, r, t E (0, 1) (see
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Section 2.2.4), which are more suitable for asymptotics in the CDRP case. Subsequently,
we analyze the formulas that we get in the limiting regime r, t -+ 1-, and prove Theorem
2.1.3. In what follows, we will denote by ]Pa,r,t and Ea,r,t the probability distribution and
expectation with respect to the Hall-Littlewood measure with parameters a, r, t G (0, 1).

2.5.1 A formula suitable for asymptotics: CDRP case
In this section we use Proposition 2.4.1 to derive an alternative representation for

Ea,r,t [ 1-' . In what follows we will make reference to the following contours

Definition 2.5.1. For t c (0, 1) define

7t ={-1/4+ty : y E [-7r(-logt) 1 ,7r(-logt)1 ]}}, -_ = {-1/4+ty: y E R},

-'= {1/4 + ty : y E [-7r(- log t) ,7r(- log t)]} and y+ = {1/4 + ty: y E R}.

All contours are oriented upward.

The following proposition is very similar to Proposition 2.4.6 and will be the starting
point of our proof of Theorem 2.1.3 the same way Proposition 2.4.6 was the starting point
of the proof of Theorem 2.1.2.

Proposition 2.5.2. Suppose a, r, t E (0,1) and let 6 > 0 be such that a < (1 - 6). If t is
sufficiently close to 1- then for ( E C\R+ one has

Ea,r,t [(Ct12A; I = det(I - kc)L2(y).

The kernel kC(W, W') has the integral representation

-w f(-log t)(-()z-wdZ exp (Sa,((- log t)Z))
K( (W, W') = G, (W, Z) 'W , -09t ) (2.5.1)

27rt t tw' - exp (Sa,,(( log t)W))

where G(W, Z) = kZ (-2/1gt and the contours -y_ and -' are as in Definition
2.5.1.

Proof. We consider the contour C := {- 3/ 4 ,0 : 0 E [-7r, 7r]}, which is a positively oriented
smooth contour, contained in the annulus A,t in the statement of Proposition 2.4.1 for t
sufficiently close to 1-. Consequently, from (2.4.1) we know that

Ea,, [((1 - t)t-; t)cl = 1 + -- ~ -jdet [K(wi, w,)] 1

where Ku(w, w') is as in (2.4.2) and the above sum is absolutely convergent. The n-th
summand equals

7r n n _-t- 3/4e d6-
det (Ks --t-3/e -- 3/4eiO)

n _, _, f--r _e K ij 27rt
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Setting yi = (-1/4) + t6/(- log t), the above becomes

I t ... j det [Ku (-t- 3 / 4 t-yi- 1/ 4, -t- 3 / 4 t-yj-1/ 4 n
/ i 4 ~

which can be rewritten as

t- 3 / 4 t-yi- 1/ 4 (- log t)dyi
27rt

nfly
1127t

and the latter is still absolutely summable over n.

To conclude the proof it suffices to show that for W, W' E y and I = (t-1 - 1)u one has

(- log t)t-lt-WK, (-tt-w, -t-it-w') = k(W, W'). (2.5.2)

We observe that the LHS of (2.5.2) equals

(- log t)t-It-w 1/2+toO ds F(-s)F(1 + s)(-()' " (1 + aritw)(1 + arit-wt~s)

2?7t J/ 2-tc st-ot-w' - t-It-wt-8 (1 + aritwts)(1 + arit-w)j=0

We set Z = s + W, and use that Re(W) = - for W E -yL together with Euler's Gamma4
reflection formula (2.3.16) to see that the above equals

t-w 1 rdZ
27rt f^+sin(7r(W - Z ))

(-logt)(-()z-w 00 (1+aritw)(1+arit-z)

t-w' - t-z (1 + aritz)(1 + arit-w)

We observe that t"s is periodic in s with period T - 2 . This allows us to rewrite thee fobrv tat logt
above formula as

t-W f si ( ( - kT

2 't in+ r( - t kT - Z ))

(-logt)(-()z-wdZ 00

t-w' - t-z Iij=o

(1 + aritw)(1 + aritZ)

(1 + aritz)(1 + arit-W)-

Let (-() = reO with 16 < 7r. Then, using a similar argument as in (2.3.18), we have for
IkI ;> I

sin(7r(W + tkT - Z)

e-OkT

sin(7r(W + tkT - Z))

where C is some positive constant, independent of Z and W, provided Z E y and W E 7t.
The latter is clearly summable over k, which allows us to change the order of the sum and
the integrals above and conclude that the LHS of (2.5.2) equals

t-w 7r( bkT

27rt sin(7r(W + tkT - Z)]-W+ [kz (-logt)(-()Z-wdZ 00 (1 + aritw)(1 + arit-z)

t-w' - t-z rl (1 + aritz)(1 + arit-w-j=O
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From Lemma 2.4.5 we have that if t is sufficiently close to 1 (so that (- log t)z E D6 when
JRe(z)I = 1/4) we have

H (1 + aritW)(1 + arit-Z) exp (Sa,,(( log t)Z))

j=O (1 + aritz)(1 + arit-w) exp (Sa,,(( log t) W))

Substituting this above we see that the LHS of (2.5.2) equals

t-W 7(-()kT (-logt)(-()z-wdZ exp(Sa,r((-logt)Z))

2 z tI .kz sin(wr(W + tkT - Z) tw' _tz exp(Sa,r((-logt)W))'

which equals the RHS of (2.5.2) once we identify the sum in the square brackets with
GC(W, Z).

2.5.2 Convergence of the t-Laplace transform (CDRP case) and
proof of Theorem 2.1.3

Here we state the regime, in which we scale parameters and obtain an asymptotic formula
for Ea,r,t ( , in the CDRP case. The formula is analyzed below and used to prove

Theorem 2.1.3. In the CDRP case the t-Laplace transform asymptotically behaves like the
usual Laplace transform. The latter (as will be shown carefully below) allows one to obtain
the limiting CDF of the properly scaled first column of of a partition distributed according to
the Hall-Littlewood measure with parameters a, r, t and match it with FCDRP (see Definition
2.1.7).

We summarize the limiting regime and some relevant expressions.

1. We fix a positive parameter n and let r -+ 1 and t -+ 1- so that n = -(1-r)'/

2. We assume that a depends on r and for some 6 > 0 we have limr÷- a(r) = a(1) E
(0, 1 - 6].

3. We denote by N(r) =-i-;, M(r) = 2E' (-1)k+la(r)k and a = l) .

For a given x E R set (x = -tM(r)-xs-N(r)l/ 3 . (2.5.4)

The following result is the key fact for the limiting fluctuations of the first column of
a partition distributed according to the Hall-Littlewood measure with parameters a, r, t in
the CDRP case. It shows that under the scaling regime described above the Fredholm
determinant (and hence the t-Laplace transform) appearing in Proposition 2.5.2 converges
to the Laplace transform of F(T, 0) + T/24 (see Definition 2.1.7 and equation (2.1.7)). The
latter, as demonstrated below, implies convergence of the usual Laplace transforms and leads
to a weak convergence necessary for the proof of Theorem 2.1.3.

Theorem 2.5.3. Let x E R be given and let (x be given as in (2.5.4). Then we have

lim det(I - IKt)L2(Yt) = det(I - KCDRP)L2(R+), (2.5.5)
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where KCDRP is given in (2.1.8) with T = 2,a-, a- is as in Definition 2.5.1, and K( is
as in (2.5.1).

In what follows we prove Theorem 2.1.3, assuming the validity of Theorem 2.5.3, whose proof
is postponed until the next section.

We begin by summarizing the key results from our previous work that we will use as
well as stating a couple of lemmas. From Proposition 2.5.2 and Theorem 2.5.3 we have that
under the scaling described in the beginning of this section and any x E R

r1lm Ea,r, [((-t) . tM(r)-i-N(r)1/3t_ = det(I - KCDRP)L2(R+). (2.5.6)

Set i: (- log t) (A' - M(r)) - log(1 - t) and observe that (2.5.6) is equivalent to

limr Ea,r,t [ ) = det(I - KCDRP)L2(R+). (2.5.7)
r-1- ((- t) (I - t) - e -+X; t),),

The function that appears on the LHS under the expectation in (2.5.7) has the following
asymptotic property.

Lemma 2.5.4. For t E (0, 1) and x > 0 let

00

gt(x) .I - .1 (1 t)Xtk (2.5.8)
((-t) (I - O~X; 0)0 k1+(1- xt

Then gt(x) -+ e-x uniformly on R>O as t -+ 1-.

Proof. From the monotonicity of gt(x) and e-x it suffices to show the result only for compact
subsets of R>O. Using (10.2.7) in [71 one has that 1 _ e- uniformly on compact
subsets of R>o as t - 1-. Consequently,

1+ (1 - t)x 1 (1 - t)x
(It (X) = = +

I(-(1 - t)x; t)0 0  (-(1 - t)x; t)00  (-(1 - t) x; t) 0O

also converges uniformly to e-x on compact subsets R>O as t -+ 1-. El

We will use the following elementary probability lemma.

Lemma 2.5.5. Suppose that f,, is a sequence of functions, f, : R>o -+ [0,1], such that
fn(x) -+ e-x uniformly on R>O. Let X, be a sequence of non-negagive random variables such
that for each c > 0 one has

lim E[fn(cXn)] = p(c),

and assume that p(c) = E [e-cX] for some non-negative random variable X. Then we have

lim E [e-cXn] = E [e-X]

In particular, Xn converges in distribution to X as n -s oc.
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Proof. Let E > 0 be given. We observe that

E [e-cXn] - E [f,(cX,)] E [ecX - fn(cX,) sup Ie-' - f,(x) -+0 as n -+ oc.
xER>o

In the second inequality we used that X, are non-negative and the last statement holds by
assumption.

It follows that for every c > 0 (and clearly also when c = 0)

lim E [e-cX"] = E [e- x]ln-+ oo

The above statement implies Xn converges to X in distribution by Theorem 4.3 in [55]. E

Proof. (Theorem 2.1.3) Let rn be a sequence converging to 1- and set tn so that (- log tn) =
K(1 - rn) 1/3. Define

fn(x) 1 and X, = e

Lemma 2.5.4 shows that fn satisfy the conditions of Lemma 2.5.5. In addition, recall
that by (2.1.7) we have

det(I - KCDRP)L2(R+) E [e-ex exp(F(T,O)+T/24)

where F is as in Definition 2.1.7 and T = 2, 3 a 3 . Consequently, Lemma 2.5.5 and (2.5.7)
show that for x E R one has

lim Ea,rn,t,, e-ex exp( "') = E [,-ex exp(F(To)+T/ 2 4 ).] (2.5.9)

In particular, exp( r) converges weakly to exp(F(T, 0) + T/24) = eT/ 2 4 Z(T, 0). In [671 it
was shown that Z(T, 0) is a.s. positive and has a smooth density, thus we conclude that for
each x E R+ we have

lim Pa,,t(exp( r) < x) P(exp(.F(T, 0) + T/24) < x).
r+1-

Taking logarithms we see that for each x E R we have

lim Pa,r,t( r < x) = P(F(T, 0) + T/24 x). (2.5.10)
r-+1-

Consider a(r) = r(1LrN(r)])/2. Since, limr-+ rN(r) e-1, we see that limr1- a(r) =

a(1) - e-ITI/2 < 1 (whenever T # 0). This means that a-1 a: 1)aL)I(weee (l+a(l))2j L le /2)J
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X. From Section 2.2.4 we conclude that

PHL 1 /3J - 3)+ log(N(r)1/ 3X- (T/2)-1/3 ) < X

A' - M(r)
Par,t 1 -N(r)/3 -1/3 + log(N(r)1 /3a-1 (T/2)- 1/3) < x

The latter implies that if we set K - (T/2)1/ 3a we will get

PnHL -I(LN/3JM - 3 + log(N(r) 1/3-1 (T/2)~1/3) < X =Pa,,t( ,+log((1-t)rj-lN(r)/ 3

One observes that (1 -t)r- 1 N(r)1/3 
- -+ 1 as r - 1- and so from (2.5.10) we conclude

that

L 1 / + log(N(r) 1 / 3 X-1(T/2)1/ 3) < = P(QF(T, 0)+ T/24 < x).
r-i1 ( A'(N(r)J) -M/)0) /3 )

From (2.6.8) we have ci = M(r) = 2N(r) log(1 + a(1)) + 0(1) 2N(r) log(1 + e- 1 / 2 ) +
0(1). Substituting this above concludes the proof of the theorem. 3

2.5.3 Proof of Theorem 2.5.3
We split the proof of Theorem 2.5.3 into three steps. In the first step we rewrite the LHS
of (2.5.5) in a suitable form for the application of Lemmas 2.2.11 and 2.2.12 and identify
the pointwise limit of the integrands. In the second step we provide dominating functions,
which are necessary to apply the lemmas. In the third step we obtain a limit for the LHS of
(2.5.5), subsequently we use a result from [26], to show that the limit we obtained is in fact
det(I - KCDRP)L2(R+).

In Steps 1 and 2 we will require some estimates, which we summarize in Lemmas 2.5.6
and 2.5.7 below. The proofs are postponed until Section 2.6.

Lemma 2.5.6. Let t be sufficiently close to 1-. Then for all large N we have

Re(Sa,((- log t)z) - M(r)(- log t)z) < C - cIz12 for all z C -< and (2.5.11)

Re(Sa,r((- log t)z) - M(r)(- log t)z) > cIz1 2 - C for all z E -y_. (2.5.12)

In the above C,c > 0 depends on 6. In addition, we have

lim Sa,r((- log t)u) - M(r)(- log t)u = u 3a-3 /3 for all u E C. (2.5.13)
N-*oo

Lemma 2.5.7. Let t E (1/2, 1). Then we can find a universal constant C such that

ez 1 ew < C and E sin(w(W - ___ - Z)) < C when Re(z) = 1/4 and Re(w) = -1/4.
kc7Z - _o -t

(2.5.14)
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Step 1. Observe that the LHS of (2.5.5) can be rewritten as det(I - KN)L2(y_), where

_-w, W)t WGe,(w,

1-+N,x z dz and N {) lfmax(Im(),Im(w'),Im(z))<f(- log t)-l} X

z) (- logt) exp (Sa,((- log t)z) + M(logt)z + xz)
t--' - t-z exp (Sa,,((- log t)w) + M(log t)w + Xw)

(2.5.15)

Let us now fix w, WI E -y'w(A) and z E y'z(A) and show that

Um gN.x, (z) = gx,,(z), where g, (z)
7r 1 exp(aK 3 z3 /3+xz)

sin(7r(z - w)) z - w' exp(a-3 3W3/3 + xw)

One readily observes that

lim(- log t) _im t-w1{max(Im(w)l,l m(wl)lIm(z)l)<(-10gt)-17} '- log -

(2.5.16)

(2.5.17)

Using (2.5.13) we get

lim exp (Sa,r((- log t)z) + M(log t)z + Xz)
N-+oo exp (Sa,r((- log t)w) + M(log t)w + Xw)

From the definition of G(. we have

Gcx(w, z) =

exp(c-3K 3z3/3 + xz)
exp(a- 303 w3/3 + xw)

s i n r ( w- ) 2 7 r kt/ ( - Io g t )

kEZ sin(7w(w - z) + 27rkt/ log t))'

Using a similar argument as in (2.3.18) we see that for Ik| > 1 and all large N one has

7r(-( X )27kt/(-1gt) < Ce-21klr/(-ogt)
sin(7r(w - z) + 27rkt/log t) -

The latter is summable over I k > 1 and since 1/(- log t) goes to infinity the sum goes to 0.
We see that the only non-trivial contribution in (2.5.19) comes from k = 0 and so

7r Ir
(2.5.20)lim GN, (w, z) = lim.w

N--oo 'N-+oo sin(7r(w - Z)) sin (7r(W - z))

Equations (2.5.17), (2.5.18) and (2.5.20) imply (2.5.16).

Step 2. We now proceed to find estimates of the type necessary in Lemma 2.2.12 for
the functions g N,x (z). If z E -y+ and lIm(z)l < 7r(-logt)- 1 the estimates of (2.5.11) are
applicable and so we obtain

I exp(S,,((- log t)z) + M(log t)z + xz)| C exp(-cIz 2 + IXzz), (2.5.21)

where C, c are positive constants.
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If w E _ and 1Im(w)l < r(- log t)-1 the estimates of (2.5.12) are applicable and we
obtain

I exp(-Sa,r((- log t)w) - M(logt)w - xw)j Cexp(-cw 12 + IXwI), (2.5.22)

for some C, c > 0.
From Lemma 2.5.7 we have for some C > 0 that

(2.5.23)t- log t)<
zt-' - t-Z - .

Observe that t-w = 0(1) when IIm(w)| wr(- log t)- 1 and w E y_. Combining the latter
with (2.5.21), (2.5.22) and (2.5.23) we see that whenever max(jIm(w)j, Im(w'), 1Im(z)j) <
(-log t)-'7r, z E 7+ and w', w E 7_ we have

IgN' ,(z)| Cexp(-c w1 2 + jxw) exp(-clz 2 + Xzz), (2.5.24)

where C, c are positive constants. Since gj' ,(z) 0 when max(I Im(w)1, 1Im(w')1, 1Im(z) ) >
(-log t)-7r we see that (2.5.24) holds for all z E + and w',w E y+.

Step 3. We may now apply Lemma 2.2.12 to the functions gN'x , (z) with F (w) = C exp(-clw1 2 +

1xwj) F2(w) and I =_, F 2 = 7+. Notice that the functions F are integrable on Fj by the
square in the exponential. As a consence we see that if we set k (w, w') f,_ gwOl (z) d,

then k and kT satisfy the conditions of Lemma 2.2.11, from which we conclude that

lim det(I - k(.) L2(yt det(I - k )L2(-).

What remains to be seen is that det(I - k)L2 y) = det(I - KCDRP)L2(R+).

We have that det(I - kf)L2(_) = 1 + 0 (-1)- H(n), where

H(n) sign(p) j. n 7re a-3 3Z3/3-K
3 a- 3 W3/3+xZj-xWi

pas 7- 7- + 7+i1sng(i-Wi)) (Zi - WP(i))

Put o = ar-1 and consider the change of variables zi = o--Zi, wi = oa-W2. Then we have

H(n) = sign(p)
pES Iv+tR Ia+tR

wn .z/3-w/3+oxzi-axwi

ZIR 1 sin(o-7r(zi - wi))(zi - wp(j)) 2 7rt 27rt

Consequently, we see that

det(I - k )LT2_) - det(I + kCDRP) L2(=+R)>

where

kCDRP(ww') = 1 dz u-ex(z-w) z3/3-w 3/3
27rt +t sin(u7r(z - w)) z - w
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dW dZi
27t 27rt'

(2.5.26)

+ -R
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The proof of Lemma 8.8 in [261 can now be repeated verbatim to show that

det(I + KCDRP)L2(-+tR)= det(I - KcDRP)L2(R+)-

This suffices for the proof.

2.6 The function Sa,r

In this section we isolate some of the more technical results that were implicitly used in
the proofs of Theorems 2.1.2 and 2.1.3. We start by summarizing some of the analytic
properties of the function Sa,, (see Definition 2.4.4). Subsequently, we identify different
ascent/descent contours and analyze the real part of the function along them. We finish
with several estimates that played a central role in the proofs of Theorems 2.4.7 and 2.5.3.

2.6.1 Analytic properties
We summarize some of the properties of S,, in a sequence of lemmas. For the reader's
convenience we recall the definition of S,,.

00 00

S,,r(Z) : log(1 + arez) - log(1 + arie-),
j=0 j=0

where a, r E (0, 1).

Lemma 2.6.1. Suppose that J C (0, 1). Consider r E (0,1) and a c (0,1 - 6]. Then there
exists A'(6) > 0 such that Sa,r(Z) is well-defined and analytic on Dj = {z c C: IRe(z) < A'}
and satisfies

001+ariez
exp(Sar(z)) = 11(261)

'1 + arie-z (

Proof. We let A' > 0 be such that (1 - 6)eA' < 1. Since r E (0, 1), we have that Iarie*zI < 1
for z E D6 and j > 0. Consequently, log(1 + arielz) is a well-defined analytic function on
Dj for each j > 0.

Let K c Dj be compact. Then there exists a constant C(K) > 0 such that 1e z < C for
all z E K. It follows, that for all large j one has je*Zaril < 1/2. Using that Ilog(1+w)l < 21wl
when jwj < 1/2 we see that (1 + arie z) < 2Car for all large j, which are summable.
This implies that the sums _jO= log(1 + arie z) are absolutely convergent on K. This in
particular shows Sa,r is well-defined, but also, since the absolutely convergent sum of analytic
functions is analytic, we conclude that Sa,,(z) is analytic on D6.

Next let z C D6. From our work above

M M

Sa,r(Z) = M-+i0 log(1 + arie)- log(1 + arie-z)
j=0 j=0.
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By continuity of the exponential we see that

exp(Sa,,(z)) = lim exp
M- oo

[M

log(1 + arez)
_ j=0

M

- log(1 + ariez)1
j=0

M

lim
M=:0

1 + arjez

1+ arie-z'

which equals the RHS of (2.6.1).

Lemma 2.6.2. Assume the notation in Lemma 2.6.1. Then Sa,,(z) is an odd function on
D6 and the power series expansion of Sa,,(z) near zero has the form

Sa,r = ciz + c3 z3 +..- , where c21+1
2

(1 - r)(21 + 1)!
21 1-rk 2l()k+ak 1 - r

1-rk
E R. (2.6.2)

k=1

Moreover, for each 1 > 1 one has that

1
C21+1 < (I - 06o21+1.' (2.6.3)

Proof. The fact that Sa,, is odd follows from its definition and Lemma 2.6.1. Next we
consider G(z) = _' log(1 + ariez). On D6 we have that jariezI < 1 so we can use the
power-series expansion for log(1 + x) to get

0 log(1 00 arie0) -(- 1)k+1Elog(1 + ard e z) E k (ariez

Y YL Y, 1 (- 1)k1 k kz.
m! k (r)k'".

j=O k=1 m=0

j=0

We will show that the above sum is absolutely convergent (provided Iz is sufficiently small),
which would allow us to freely rearrange the sum.

Consider f(x) = = Z.>oxj for IxI < 1. We know that for IxI < l and m >0 we
have

j=O k=1

Power-expanding the exponential, the above becomes

(2.6.4)

f("(x) E(j + m)(j +Tm - 1) ... (j+ 1)x, and
j>0

f"()X)m+1'

Putting x = a we see that

Z akkm-
k=1

< akkm < E(k
k=1 k>1

+ m) -. (k + 1)ak < _m+l.
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The latter shows that

m=O k=1 j=O

(ar) k km I z
km!

100 00 km-lzm 1

in! a 1- a)m+1'
m=O k=1 m=0

and the leftmost expression is finite for small enough IzI.

Rearranging (2.6.4) we see that the coefficient of z m in G(z) is _ E',E 0 (-k (r)kkm
Since Sa,r(Z) = G(z) - G(-z) we see that the even coefficients of Sar(z) are zero, while the
odd ones equal

2 00~%(-)k+1

C21+1 = 2 00 (-kl (ari ) k k 21+1
(21 + 1)! ZLE k

k1 j=O

2

(1 - r)(21 + 1)! Zk
k1

lkak1 - rk+1 ak r
1 -rk '

as desired.
For the second part of the lemma observe that

k2lg1)k+1a 1 r < k21ak
1-rk a

k=1 k=1

where in the last inequaity we used (2.6.5). If 1 > 1 and a E (0,1 - J] we conclude that

2 (21)! <
c2 1 ~ 5 (1 - r)(21 + 1)! (1 - a)2 +1

-

1

(1 - r)6 21 +1

Lemma 2.6.3. Let c1 and c 3 be as in Lemma 2.6.2. Also suppose that a, depends on r and
limr_,- a(r) = a(1) E (0, 1 - J]. Then

lim (1 - r)ci = 2 log(1 + a(1)) and lim (1
r-+1- r->1-

-r)C 3 = 1 a(1)
3 (1 + a(1))2

Proof. From Lemma 2.6.2 we know that c1 = - E'(-1)k+la(r)k . Consequently,

lim (I - r)ci = 2 lim E(-1)k+1a k -T-- 2 j:(-1
r-+1- r-1- 1 - r

k=1 k=1

)k+1a(1)k-

k
2 log(1 + a(1)),

where the middle equality follows from the Dominated Convergence Theorem with dominat-
ing function (1 - 6/ 2 )k.

Similarly, we have c 3 = 3 (1-r) Eli k2 (_1)k+1ar)k y Consequently,

1 C (lk rk -00 100 ~ l 1 al
lim (1 - r)c3 = -lim k2 (_ 1 )k+1\k 1- r (- )+(1 1 a()
r-1- .3 r-1- -r 3 3 (1 + a(1)) 2 )

where the middle equality follows from the Dominated Convergence Theorem with dominat-
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ing function k2 (1 - 612)k.

Lemma 2.6.4. Let c1 and c3 be as in Lemma 2.6.2. Let r C R\{0} and suppose
a(r) = exp (log r (1/2 + 1 L 'r] )), then

lim (1 - r)ci = 2 log(1 + e-Tr1/2)
re-+

and lim (1 - 3 = e r/ 2
r -I- 3 (1 + e-IrI/ 2)2

Moreover, one has

2 log(1 + e- 1 1/2)
c1 =0(1), where the constant depends on . (2.6.8)

Proof. Using that r- -+ e as r I- 1 we see that a(1) = limr1- a(r) - e-I/ 2 . (2.6.7)
now follows from Lemma 2.6.3.

We can rewrite

ci - 2log(1+ a(1)) = 11 +12, where
1- r

21 20
1 - r S bk and

k=1

I2 = 2 00
12 rZk

with bk := (-I)k+1 [a(r)k1r

that I1 = 0(1) = 12.

_ a(r)k1 and ck := (I)k+1 [a(r)kI - a(1)k ] . We will show

We begin with 1. One observes that

1-r 1 1 1 k-i-

1-rk k 1+--+rk-1 k k(1+

Consequently,

|bk| < (1 - r)a(r)kl 2 -- +(k-1) k
kK -(1 - r)a(r)k.

k-2

It follows that

2
- (1 -a(r))3

2
2 - 0(1)1

- (1 _ e-ITI/ 4 )3

where in the second inequality we used (2.6.5) and the last inequality holds for all r close to
1-.

Next we turn to I2 = r [log(1 + a(r)) - log(1 + a(1))]. Since log(1 + x) is C' on R+,
we see that 121 < 'ja(r) - a(1)I for some constant C, independent of r (provided it
is sufficiently close to 1-, so that |a(1) - a(r)l < 1/2). Hence it suffices to show that
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rk-2

k(1+r- -- +rk-1)

1 00

I <( - r)ka(r
-k=1 r

+ 2r k-3 +---.+ (k -1)ro
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a(1) - a(r) = 0(1 - r). We know that

a(1) - a(r) = e- T/2 - exp (log r

where A(r) = e-1/2 - exp log r/2 +-r and B(r) - e-17/ 2 - exp logr

Thus it suffices to show that A(r) 0 0(1 - r) = B(r). We know that rl/ 2 e-M/2

0(1-r) = rle-T/ 2 _e-jr/ 2, thus it remains to show that e-rI/2 _ep - ( log rir)

Using that e-lru/ 2 is C1 in u, we see that

e- -2 _ exp (- io0grT)

(2(1 - r) )
<C 1

+ .

= 0(1-r).

- log r

1 -r'

and the latter is clearly 0(1 - r) by power expanding the logarithm near 1.

Lemma 2.6.5. Assume the notation in Lemma 2.6.1. On Dj one has

E

S,(z) = ae 00 ar.e- =
1 + arrE l + arie-z

j0 j=

E ar
j=0

ez e -Z 1
+1 arjez i+arie-zj

(2.6.9)

Proof. In the proof of Lemma 2.6.1 we showed that on D6

00 00
Sa,(z) = log (I + ariez) - log (I + ari e -z),

j=0 j=0

the latter sum being absolutely convergent over compact subsets of Dj. From Theorem 5.2
in Chapter 2 of [77] it follows that

S00
S',r(Z) = + log(1 + ariez)

j dz

d
- 2 + log(1 + arie-z)dz

ff:ar ez 00

_ I + arez

2.6.2 Descent contours
In the following lemmas we demonstrate contours, along which the real part of Sa,,(z) -
zS',,(0) varies monotonically. This monotonicity plays an important role in obtaining the
estimates of Lemmas 2.4.10 and 2.5.6.

Lemma 2.6.6. Assume the notation in Lemma 2.6.1. Set E = 1 and c1  S',,(0). Then
there exists an A0 > 0 such that if 0 < A < A 0, one has

d
-Re (Sa,r(Ay + Ety) - ci(Ay + Ety)) < 0 for all y E [0, r].
dy

+Re (Sa,r(-Ay + Ety) - c1(-Ay + Ety)) > 0 for all y E [0, 7r].dy
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Proof. Choose AO > 0 sufficiently small so that { Ay + ty : y E [-7r, 7r]I c Dj, whenever
0 < A < A 0 .

Set bj = ari. We will focus on the first statement. We have (using Lemma 2.6.5) that

+Re (Sa,r(Ay + Ety) - c1(Ay + ty))
dy

e[bK eAy+Ey + e-(Ay+ey) 2 (A +
Ez~ Re + bjeAy+Ly 1 + bje-(y+Ety) I + bj

We will show that each summand is < 0, provided A is small enough. The latter would
follow provided we know that for every b E (0, 1 - 6] one has

Re e Ay+cy + e-(Ay+fy) 2 ]A + ~ 0.
I I+ beAy+(:y I +be-(Ay+Ety) I1+b]

Multiplying denominators by their complex conjugates and extracting the real part, we see
that the above is equivalent to I + 12 < 0, where

[be2Ay + eAY cos(y) be- 2 Ay + e-Ay cos(y) 2 1
A [1 + beAY+LY 2 + 1 + be-^2-Ya 2 2 1 + bJan

-eAyE sin(6y) e-Aye sin(ey)
2 := beY+Y 2  1 + be^-Ay"L 2y

We show that I1 < 0 and 12 < 0, provided A is small enough.

We start with 12, which can be rewritten as

1 =-eAy sin(y) + eAy sin(y)
I2 = 1 + b2e 2Ay + 2 cos(y)beAy 1 + b2e-2Ay + 2 cos(y)be-Ay'

Since y c [0, 7r], we have that sin(y) > 0. Hence it suffices to show that

_e Ay e-Ay

1 >1 + b2e2Ay + 2 cos(y)beAy + 1 + b2e-2Ay + 2 cos(y)be-Ay

u- I + b2U + 2b cos(y) > u + b2 U- 1 + 2b cos(y)

where u - e-Ay C (0, 1]. The above now is equivalent to (u- 1 - u)(1 - b2 ) > 0, which clearly
holds if u c (0, 1] and b c (0, 1], as is the case. Hence 12 < 0 without any restrictions on A
except that it is positive.

Next we analyze I,, which can be rewritten as

be2Ay + eAy cos(y) be- 2Ay + e-Ay cos(y) 2
[1 + b2e 2Ay + 2b cos(y)e Ay 1 + b2 e- 2Ay + 2bcos(y)e-Ay 1 + bJ

69



We see that (since A > 0)

11 < 0 - (1+b2 -2A+2b cos(y)A)(be 2 AY _ Acos(y))(+b)+(1+b2e 2 A +2b cos(y)ey).

(be- 2 AY --AY cos(y))(1+b)-2(1+b2 2AY+2b cos(y)eA)(1+b2 ,2 AY+2bcos(y)eAY) 0 4-=

(1 + b2 e- 2 Ay + 2b cos(y)e-Ay) ( 2 Ay + eAy cos(y) - 1 - beAy cos(y)) +

+ (1 + b2 e 2Ay + 2b cos(y)eAy) (be~- 2 Ay + e-Ay cos(y) - 1 - be~Ay cos(y)) <0 -- >

f(y) = u(y) 2 (b - b 2 ) + u(y) cos(y)(1 - b) 3 + [-2b - 2+2b 3 + 2b2 + 4b cos(y) 2 - 4b2 cos(y) 2] 0,

where u(y) = eAy - e-Ay. We want to show f(y) < 0 on [0, 7r], provided A is small enough.

First consider y c [0, 7r/2]. We have

f'(y) = 2uu'(b- b2 ) +u' cos(y) (1- b) 3 -u sin(y) (1- b) 3 + [-8b cos(y) sin(y) +8b 2 cos(y) sin(y)].

The last term equals 8bsin(y) cos(y)(b - 1) and is non-positive, when y E [0, 7/2]. Thus

f'(y) < 2uu'(b - b 2 ) + U' cos(y)(1 - b)3 - u sin(y)(1 - b)3.

For A sufficiently small we have u' < 4Ay, u < 3 and sin(y) > y/5 on [0, 7/2]. Thus we see

f'(y) < 24A(b - b 2 )y + 4(1 - b)3Ay - -(1 - b)3Y.
5

For A sufficiently small f'(y) < 0 on (0,7r/2) so f is decreasing on (0,w7/2). But f(0) = 0 so
we see f(y) < 0 when y E [0, 7r/2].

Next we consider the case when y E [7r/2,7r]. In that case cos(y) < 0 and we see

f(y) u(y)2b(1 - b) - 2(1 - b)(1 + b)2 + 4b cos(y) 2 (1 - b).

The latter expression is non-positive exactly when

bu(y) 2 - 2(1 + b)2 + 4b cos(y) 2 < 0.

For A sufficiently small we have U2 E [4,4 + 6O) for all y E [7r/2, 7r]. Thus it suffices to show
that we can find 6o > 0 such that

4b+ beo - 2(1+ b)2 + 4b < 0 --=> beo 2(1 - b) 2,

which is clearly possible as b E [0, 1 - J]. Thus we conclude that there exists A > 0 small
enough so that the first statement of the lemma holds. Using that Sa,,(z) is an odd function,
the second statement of the lemma follows from the first and the same A may be chosen. 1

Lemma 2.6.7. Assume the notation in Lemma 2.6.1. Suppose t is sufficiently close to 1-.

If / > 0 andz= (-logt)(3+ts) then

d d
-- Re(Sa,(z)) 0 when s E [0, 7r(- log t) '] and -- Re(S,,(z)) > 0 when s E [-7r(- log t)~ , 0].
ds ds
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If # < 0 andz= (-logt)(#B+ts) then

-Re(S,,(z)) > 0 when s E [0, 7r(- log t)]ds
d

and -Re(Sa,,(z)) < 0 when s E [-7r(- log t) , 0].
ds

Proof. The dependence on t comes from our desire to make 13 1(- log t) <A' in the statement
of Lemma 2.6.1. We assume this for the remainder of the proof.

Setting z = (- log t)(0 + ts) we see from Lemma 2.6.5

d
ds (Z) = tbj (- log t)

e(- log t)(!3+ts)

1 + bje(-logt)(3 +ts)

e(- log t)(-8-ts) 1

1 + bje(- logt)(-3-Ls) J
where b3 = ari. Thus we see that

bj (- log t) sin()t-,

1 + 2 cos(O)bjt- 3 + bjt-2 3
bj (- log t) sin(0)t 1

+ 1 + 2 cos(0)bjt3 + b t2,3

where 0 = s(- log t).

We now check that each summand has the right sign for the ranges of s and 3 in the
statement in the lemma. We focus on > 0 and s c [0, 7r(- log t)- 1 ], all other cases can be
handled similarly.

We want to show that

b1 (- log t) sin((0))t-
I + 2 cos(O)bjt-0 + bj t-2p

+ bj (- log t) sin(0)t0 < 0 for each.
1 + 2cos()bjt + bjt22 -

.71, '11. -1

Put u = t-0 and bi = b. Observe that for s E [0,w7(-log t)-1 ], 0 c [0,7-] so the above would
follow from

1 + 2 cos(0)bu + b2u 2  1 + 2 cos(6)bu-I + b2 u-2 -

4> u-1 (1 + 2 cos(0)bu + b 2U 2) < u(1 + 2 cos(0)bu- 1 + b2 U- 2 )

u 1 + 2 cos(0)b + b2U < u + 2 cos(0)b + b2 u-1 __> (u 1 - u)(1 - b 2 ) < 0.

The latter is true since u > 1 and b e (0, 1). l

2.6.3 Proof of Lemmas 2.4.10 and 2.5.6
Suppose that 6 > e > 0 is sufficiently small so that Sa,, has an analytic expansion in the disc
of radius e for r E (0, 1) and a E (0, 1 - 6]. From (2.6.3) we know that when IzI < E one has

ISa,,(Z) - cIz - C3 (2.6.10)S1C2-3-21-1

1>2

71

d
d Re(Sa,r
ds C,0(z)) - E [

j=0



and the latter sum is finite by comparison with the geometric series. Suppose that z
N- 1 3 w where N 1. Clearly, the RHS of (2.6.10) is O(N- 1/ 3) and so

lim ISa,,(N- 1/ 3W) - c1N-11 3w - c3Nw 3 1 = 0.
N-*oo

Using that limNoo c3N- 1 1 a( (this is (2.6.6)) and the above we conclude that

Sa,,(N-1/ 3 w)-cN-1 3w = 0(1) if w = 0(1) and lim S,,(N-1/ 3 )-cN-1 3W - a()w 3
N-*oo 3(1 + a(1))

This proves (2.4.20), (2.4.21) and once we set (- log t) = rN-1/ 3 also (2.5.13).

Suppose A sufficiently small so that the statement of Proposition 2.6.6 holds and so that
= arctan(A) is less than 10 . By choosing a smaller E than the one we had before we may

assume that 2 13621+1 < a(1)sin(3 ) = c'. In view of (2.6.10) and (2.6.6) we know thatfoassum a E1 12(1aa(d))<
for all large N and I z <6E

Re (Sa,r(z) - ciz) c3Re(z3 ) - c'N z 2 z3 a(1) sin(30) - ' ' 3 if Z C-c'Nz4 > N1zJ 6 (1 + a(1))2 c'NJz > (!N i z Ew.

This proves (2.4.19) when IzI < e. Put K = - and observe that if z E -yw then Kz E -yw
and KIzI < c. The latter suggests that if z E -yw we have

Re (Sa,,(z) - ciz) Re(Sa,,(Kz) - M(r)Kz) > c'NK3 zI 3 ,

where in the first inequality we used the first statement of Lemma 2.6.6, and in the second
one we used that K~zJ < E and our earlier estimate. This proves (2.4.19) and using that
Sa,r(-z) = -Sa,r(z), while 7Yw = -7yz it also proves (2.4.18).

Let z = 1/4-+ ts and set (- log t) = ,N-1/ 3 for some positive K. Suppose I(- log t)zI < E
with c as in the beginning of the section. We have the following equality

Re(c2 +1(- log t)21+1 z2 +1) =c21+1(- log t)21+1 21+
k=O

1 2kN4, 1
1) s~(~1) 4 21- 2 k+1

In particular, we see that

Re(c 2 1+1(- log t) 21 +1z 21 +1 )1 < c21+1(- log t)21+1 ((IsI + 1/4)21+1 _ 18 21+1) <

c21+1(- log t)2 Ek s(1/4)21-k < (21 + 1)c21+1(- log t)21+1 Z21.
k=O

Using (2.6.11) and (2.6.3) we have for I(- log t)zI < 6 that

c21+1 (- log t)21+1z21+1

\1>2 /

< K 3 zl 2 3(21 + 1)~21-1E21-2.

1>2
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On the other hand, we have that

Re(c3 (- log t)3z3 ) = -(3c 3/4)(- log t)3 zI 2 + (- log t)3/64 +(3c 3/64)(- log t)3 . (2.6.13)

Combining equations (2.6.12) and (2.6.13) we see that if I(- log t)zI < 6 then

Re(Sa,,((- log t)z)-c1(- log t)z) < -(3c 3/4)(- log t)3 1zI 2 +(- log t)3/64+(3c3/64)(- log t)3+

+K 3 1z 2 Z(21 + 1)-21121-2.

1>2

Notice that (3c3 /4)(- log t)3 --+ r3 '()2 : p as N -+ oc from (2.6.6). Moreover if weNotic that(3C3/)(- ,4(1+a(1)) :

pick c small enough we can make ,3 El;> 2 (21 + 1)621-1C21-2 < (p/4). It follows that for all
large N we have

Re(S,,((- log t)z) - c1(- log t)z) < --(p/2) z2 + (p/8).

This proves (2.5.11) whenever I(- log t)z < E.
Suppose now that z = 1/4 + ts and s E [--F (- log t) 1 , 7(- log t) 1 ]. Put K = and

notice that for all large N we have i 1/4 + LKs satisfies I(- log t)I < 6. It follows from
the first result of Lemma 2.6.7 and our estimate above that

Re(S,,((- log t)z) - c1(- log t)z) < Re(S,,((- log t)i) - c1(- log t)i) < -(p/2) 1 2 + (p/ 8).

Observing that 1i|2 > K-21z1 2 we conclude (2.5.11) for all z E -yt. The result of (2.5.12)
now follows from (2.5.11) once we use that Sa,,(-z) = -Sa,,(z) and that -' =-7y.

2.6.4 Proof of Lemmas 2.4.11 and 2.5.7
Let z = x + tp and w = y + tq so that x > 0 and y < 0. Then we have

1 1 1 1
e-e ~ex - eye6 (q-p) - ex - ey - ex -l

where in the last inequality we used e > c + 1 for c > 0. This proves the first parts of
(2.4.22) and (2.5.14).

Let - = (- log t)-. Then we have

1 2

sin(-7ru(x - y + t(p - q)) e-r0(X-Y)ero(p-q) - er(x-y)e7ro(q-p)

If q > p we see

e-vir_7roYqep)(P-4) - -- (p-q) _ e2ro(x-y)., (q-p) > e,(q-p) sin(27ru(x-y))L.

Conversely, if q < p we see

e-7rO(x-Y) e 7r(p-q) _ e ora(x-y) era(q-p) e-2to(x-y),7o(p-q) _ .ror(q-p) >e (-q)Isin(27ru(x-y)).
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We thus conclude that

1 <2 .(2.6.14)
sin(-7r-(x - y + t(p - q)) - I sin(27ro-(x - y))(14

In the assumption of Lemma 2.4.11 we have x - y C ju, 2U] and 2U < a-- 1/5. Thus
27ru(x - y) E [27r-u, 27r/5I. This implies that

1 < e-7raIP-q , (2.6.15)
I sin(27r-(x - y)) I-U

where we used that sin x is increasing on [0, 7r/2] and satisfies 7r sin x > x there. In addition,
we have from the above

I 7 rlp+2k-qlo- 1 .- -1~ 2 r,
sin(-7ro-(x - y + t(p + 27rk - q)) S 1Ze-klr2 O

kZkEZ k>O

This proves the second part of (2.4.22).

Finally, suppose that x = 1/4 and y = -1/4. Notice that if dist(s, Z) > c for some

constant c > 0 then I < c'e~rIIm(s) for some c', depending on c. Using this we get
sin(irs) -

sin(7r(w - ___ - z)) sin(wr/2 - + rt(q - p)))

;c'Sexp (- - + r(q - p) < 2c' exp -
kEZ k > og

The latter is uniformly bounded for t E (1/2, 1), by 2; with v = exp (- _ . This

concludes the proof of the second part of (2.5.14).

2.7 Sampling of plane partitions

In this section, we describe a sampler of random plane partitions, based on Glauber dynamics.
Subsequently, we formulate several conjectures about the convergence of the measure tHL
and provide some evidence about their validity.

2.7.1 Glauber dynamics
We start with a brief recollection of the (single-site) Glauber dynamics for probability mea-
sures on labelled graphs. In what follows, we will use Section 3.3 in 1621 as a main reference
and recommend the latter for more details.

Let V and S be finite sets and suppose that Q is a subset of SV. The elements of
SV, called configurations, are the functions from V to S. One visualizes a configuration
as a labeling of the vertex set V of some graph by elements in S. Let r be a probability
distribution, whose support is Q. The (single-site) Glauber dynamics for r is a reversible
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Markov chain with state space Q, stationary distribution 7r and transition probabilities as
described below.

For x E Q and v c V, let

7( if y (X, V)
Q(x, v) := {y E : y(w) x(w) for all w $ v} and 7rx'v(y) 7((x,v)) (x,

0 if y Q(x, v).

With the above notation, the Glauber chain moves from state x as follows: a vertex v is
chosen uniformly at random from V, then one chooses a new configuration according to ?rxV.

One can show that 7r is a stationary measure for the Glauber dynamics and that the
chain is ergodic. This implies that if the chain is run for T steps, started from any initial
state, then the distribution of the state at step T will converge to the stationary distribution
-r as T - oc. The latter observation explains how one can use the Glauber dynamics to
numerically (approximately) sample arbitrary distributions 7r on Q. Namely, one constructs
the Glauber dynamics and runs it for a very long time T, so that the distribution is close
to the stationary distribution of the chain. This sampling method is called a Gibbs sampler
and it belongs to a more general class of methods called Markov chain Monte Carlo. The
time one has to wait for the chain to converge, is typically referred to as a mixing time; and
finding estimates for mixing times is in general very hard.

In our case, we consider the measure P,,t (here r E (0, 1) and t E [-1, 1] ) on plane
partitions, which are contained in a big box N x N x N, satisfying

Pr,t(7r) oc rIIB,(t), (2.7.1)

where 1r1 is the volume of the partition and B,(t) is as in Section 2.2.4. Specifically, P,,t
is the same as the distribution Pr/LN of Section 2.2.4, conditioned on plane partitions not
exceeding height N. We now describe a Gibbs sampler for the above measure.

Set V = {(x,y,z) : x,y,z E {1, ... , N}} and S = {0, 1}. A configuration w E SV is
interpreted as a placements of unit cubes inside the box N x N x N, so that w((x, y, z)) =1
if an only if there is a cube at position (x, y, z). We next let Q be the subset of cube
placements, corresponding to plane partitions. This describes the state space of our Glauber
dynamics. Since ISI = 2, we see that if 7ra E Q we have IQ(7ra, v)I = 1 or 2; hence, P lraV is
either a point mass at 7ra or a Bernoulli measure, whose support lies on 7ra and the partition
7rb, which is obtained from ira by changing the value of ira at v from 1 to 0 or vice versa.

At this time we introduce some terminology. Given a plane partition 7r, we call a cube
addable if the the cube does not belong to 7r and by placing the cube in the box we obtain a
valid plane partition. Similarly, we call a cube removable if it belongs to 7r and removing the
cube from the box results in a valid plane partition. Denote by Add, and Rem, the (disjoint)
sets of addable and removable cubes respectively. Some of these concepts are illustrated in
Figure 2-8. We observe that IQ(ir, v) = 2 precisely when there is an element of Add, or
Rem, at position v.

We now turn to finding P"' when IQ(7r, v)I = 2. Let ft be the plane partition obtained
from 7r by adding a cube at position v if one is not already present there, otherwise fr = 7r.

In addition, let -k be the plane partition obtained from 7r by removing the cube at position
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5 4 4 3 3

4 3 3 3 1

3 2 j ir

X y

Figure 2-8: If N = 5, then the addable cubes in this example are at positions:
(4,1,2),(3,1,4),(2,1,5),(3,2,3),(2,2,4),(1,2,5),(3,3,2),(1,4,4),(2,5,2). The removable
cubes are at positions: (5, 1,1), (3,1,3), (2, 1,4), (1,1,5), (3,2,2), (3,3,1),
(1, 3,4), (2,4, 3), (2,5, 1), (1,5,3).

v if there is one, otherwise -i = ir. Observe that if |Q(ir, v)I = 2, we have either fr = 7r, or
Fr = er.
From our earlier discussion, 1P' is a Bernoulli measure supported on 7r and -r. Using

results from Section 2.2.4 we have that if Ak and Ik denote the diagonal slices of fr and -k
respectively, we have

0 N

Pr,t(f) c r"' 171 1J 0 -1/Anl(0, t) X Q #5n-1 (0, t),
n=-N+1

0
n=1

N (2.7.2)

Pr't Or) oc rl' 17 H 1 qp-n-1 (0, t) x fj #5n-1in (0, t).
n=-N+1 n=1

We recall that A-N _ ,N __0 _-N - N and

#A/,(0, t) = J7(i - t"M(A))
iEI

and (0/,(O, t) = ]7J(I - tj(1))
jEJ

In the above formula we assume A >- p otherwise both expressions equal 0.
are:

The sets I, J

I(A, p = {i - N : A'1+1 = /,t+l and A' > p.L!} and J(A, /p) = {j E N : Aj/+1 > /-I+i and A'=p

Set k = x - y and observe that Ai = Ai = Ai whenever i -, k. By combining common
factors this gives

1. k = 0: P"'(fr) oc roIo/A 1(0,t)#o 1(0,t) and P'W fr) 0 b0/A-l(0, t) 0/1 (0, t).

2. k > 0: P'(r) c r# 1/5k(0, t)k/Ak+ 1(0,t) and P" (,r) Oc #k-1/ k (0, t)# k/Ak+(0, t).

3. k < 0: Pr' (fr) Oc rk/Ak_1( (0, t)Ak+1/ k(0, t) and Pr'(fr) Oc 0xbk/Ak-1(0, t)'Ak1/ k (0, t).
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In the above Ak is obtained from k, by removing 1 box from row min(x, y). The above
weights, while explicit, are difficult to calculate efficiently on a computer. Thus we will
search for simpler formulas, utilizing that 5k is structurally similar to Ak.

For a partition A we introduce the following notation. Let S(A) be the multiset of
positive row-lengths of A, counted with multiplicities. One observes that if A >- A one has
I(A, p) = S(A)\S(p) and J(A, [) = S(t)\S(A) as multisets, in particular S(A)\S(p1) and
S(p)\S(A) are honest sets. Let us prove this briefly.

Since A >- p we have A' = [4 or ' + 1. Consequently, we have i E I(A, p) <- A' >
A'/ and A'+ P'/+1 - A' = /-'/ + I and A'+, = )u/+1 - A' - A/+ =/i - 'I++
I and A'/+, =N+1 <->A' - A'+, ' '+ + I - mi (A) = mi (p) + 1 <>iE
S(A)/S(p) and has multiplicity 1.

Similarly, j E J(A, p) > A+ > 9t;+i and A' p < A'+, p9 +1 + 1 and A'.
p <-- A'+, - A' = '.+1 - /-t + 1 and Aj = I' - >j A/+, - Ai '+ + 1 4-
m3 (p) = mj(A) +1 -- > j E S(p)\S(A) and has multiplicity 1.

The above arguments show that

OA/p(0, t) = J (1 - tmi("A)) and 4'x/,(O, t) = (1 - t"'d10).
iES(A)\S(/) ics(9,)\S()

Suppose that A, M, v are plane partitions, such that A >- v, At >- v and A is obtained
from A by removing a single box from row k. In addtition, set c = tk. Then we have
S(A) = S(p)-{c}+{c+1} as multisets. Put M = [S(A)\S(v)]n[S(p)\S(v)] and observe that
mi(A) = mj(p), whenever i E M. Indeed, we have from our earlier work that i E M -

i e S(A)\S(v) and i E S(p)\S(v) - mi(A) = 1 + mi(v) and mi(p) =1 + mi(v)
--+ mi(A) = mi(p). Then we have

5X/V (0, t) = (1 - lCeS(X)\S(v)t ) (1 - 1c+1ES(X)\S(V)t"c+1)) (1 -" ),

01/v (0, t) = (1 - 1CCS(p)\S(V)t) (1 - 1C+1ES(pt)\s(V)t c+ ) 1 - ")). (27.)
iEM

A similar argument shows that if L = [S(v)\.S(A)] n [S(v)\S(p,), then we have

0'\/v (0, t) = (1 - 1CES(V)\s(A)t"MC (I - 1C+1(V)\s('X)t"*C' "0) 1(1 - t"'d"()),

iEL (2.7.4)
0L)/u(0, t) = (1 - 1CES(V)\S(A)t" ) (1 - 1C+1ES(V)\S(A)t "c+")) 1(i - t

iEL

Set

G(A, v, c) = 1- 1{mc(v)>mC(A)}tmc(") if C > 0, (2.7.5)
1 otherwise.
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Then the above work implies that when v = (x, y, z) and k = x - y we get

Pv(-r) oc rG(Ak, Ak-1 z - l)G(Ak, Ak-, z)G(Ak+1, 5k, z - 1)G(Ak+l, 5k, Z)r~t k -11) Z I k -11 +11 kjZ (A+1 k(2.7.6)
p r)o G(K, Ak-, z - l)G(Ak, Aki, z)G(Ak+, jk z - 1)G(Ak+1, k ). (

In obtaining the above formulas we used (2.7.3) and (2.7.4) for the three different cases
k < 0, k > 0 and k = 0. Some special care is needed when k = N and in this case the terms
in (2.7.6) involving Ak+1 are replaced with I's.

Summarizing our results, we see that the transition from 7r is as follows: pick a position
v = (x, y, z) in the box N x N x N uniformly at random; if the position v does not correspond
to an element in the sets Add, or Rem, then leave 7r unchanged with probability 1; if the
position v E Add, Li Rem,, then 7r is goes to ft with probability p and to ir with probability
1 - p, where

r
p + G( kAk-l,z-1)G( kAk-l,z)G(Ak+l1jk,z-1)G(,\k+l, k,z)

G(Ak ,Ak-1,z-1)G(kAk-1,z)G(Ak+l ,k,z-1)G(Ak+1,5k,z)

As before if k = N we replace the terms in the above formula involving Ak+1 with l's.

2.7.2 Gibbs sampler algorithm and simulations
In Section 2.7.1 we described a Gibbs sampler for the measure P,,t and gave exact formulas
for the transition probabilities in (2.7.7). Our goal now is to give an outline for an algorithm
implementing the sampler and present some simulations of random plane partitions. The
main difficulty in constructing Gibbs samplers for distributions involving symmetric functions
is finding computationally efficient ways to calculate the transition probabilities, which we
did in (2.7.7). Beyond this formula there are no particularly novel ideas in the algorithm
below; however, as we could not find an adequate reference in the literature, we believe that
an outline is in order. It is quite possible that different methods can be used to exactly
sample the distribution P'L or some variant of it, using ideas like those in [311, [111 or [14].
Unfortunately, we were unable to implement exact sampling algorithms efficiently, which is
why we resort to the Gibbs sampler and leave the development of better samplers for future
work.

One of the difficulties in making simulations is that the number of iterations necessary
to obtain convergence is very large. In the cases described below we will need about 2 x 1015

iterations to see a limit shape emerge. Part of the reason for needing so many iterations
is that most of the time the uniformly sampled position v in the N x N x N box will not
belong to the sets Add, and Rem, and thus the chain will stay in one place for extended
periods of time. Let us call steps of the chain, where v was not chosen inside Add , or Rem,

empty; if v E Add, U Rem, we call the step successful. Empty steps, although individually
computationally cheap, add up and significantly increase the runtime of a simulation. It is
thus very important to come up with ways to circumvent spending so much time in empty
steps.

We will now describe a neat idea that allows us to group together empty steps and thus
greatly reduce the runtime of simulations. Let add, = jAdd , j and rem, = jRem , j and
observe that the probability of making an empty step, starting from the plane partition 7r,
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is
addr + rem,

P, (v Add, U Rem,) = I - =dd x em . r

N3

Consequently, the number of empty steps E,, before a successful one, is distributed according
to the geometric distribution

P,(E, = k) = xk(1 - x') for k > 0. (2.7.8)

Using the latter observation, instead of sampling v uniformly from the N x N x N box,
updating our chain and increasing the number of iterations by 1, we may sample a geometric
random variable X with the above distribution, sample v uniformly from Add, U Rem,
update our chain and increase the number of iterations by 1 + X. What we have done is
calculate beforehand how many empty moves we need to make before we make a successful
one and then do all of them together, which by definition means to just do the successful
move.

Typically, the cost of drawing an integer-valued random variable K according to some
prescribed distribution is of the order of the value k that is finally assigned to K (see the
discussion at the end of Section 3 in [14]). An exception is the geometric law, which is
simpler. Indeed, to draw X according to (2.7.8) it is enough to set X = [log U/ log(x,)],
where U is uniform (0,1). Hence, the cost of drawing a geometric law is 0(1).

If N is very large, one observes that x, is very close to 1. Indeed, add, and rem, are both
bounded from above by N2 , since there can be at most one addable and removable cube in
every column (x, y, .). Consequently, one expects to make on average at most 1 successful
step every N steps of the iteration. The upshot of our idea now is that we have replaced
sampling a large number of uniform random variables, with sampling a single geometric
random variable at cost 0(1). Moreover, we have reduced the number of jump commands
in our loop, improving runtime further.

With the above discussion we are now prepared to describe our algorithm for the Gibbs
sampler. We begin with a brief description of random number generators. Bernoulli(p)
samples a Bernoulli random variable X with parameter p, i.e. P(X = 1) = p and P(X =
0) = 1 - p. Geom(p) samples a geometric random variable X with parameter p, i.e. P(X =
k) = pk(1 - p) for k > 0. Unif orm(n) samples a uniform random variable X on {1, ... , n},
i.e. P(X = k) = 1/n for k = 1, ... , n. The random number generator algorthms are described
below.

Bernoulli(p) Geom(p) Unif orm(n)
U := uniform(0,1); U := uniform(0,1); U := uniform(0,1);
if U <p return 1; return [log(U)/logp]; return 1 + LnUi;
else return 0;

Next we consider the following functions, which perform the basic operations on plane
partitions necessary for running the Glauber dynamics. In the functions below we recall that
for a plane partition 7r, add, and rem, are the number of cubes that can be added to and
removed from 7r respectively, so that the result is a plane partition contained in N x N x N.
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AddCube (7r, k)
Input: 7r; index k c{1, ... , add}.

Add the k-th addable cube to -r.

RemCube (7r, k)

Input: r; index k C {1, ... , rem }.
Remove the k-th removable cube from 7r.

GetAdd(7r, k)
Input: 7r; index k E {1, ... , add,.
Output: The position (x, y, z) of the

k-th addable cube.

GetRem(7r, k)
Input: 7r; index k E {1, ..., remj}.
Output: The position (x, y, z) of the

k-th removable cube.

GetMult(7r, k, c)
Input: 7r, k - slice index, c > 0.
Output: mc(Ak) - multiplicity of c in the k-th slice of ir.

If c = 0 the output is -2.

WeightG(m, n, t)
if ((n < 0) or (m < 0)) return 1;
if m > n return (1 - t"');
return 1;

With the above functions we now write an algorithm, which runs the Glauber dynamics
for some predescribed number of iterations.
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Algorithm GibbsSampler(7r, N, T, r, t)
Input: 7r - initial plane partition, N - size of box, T - total number of iterations,

r c (0, 1) and t E [-1, 1] - parameters of the distribution.
iter 0;
while (iter < T) do

X:= Geom(1 - addir+rem,);

iter = iter + X;
if (iter > T) break;
U := Unif orm(add, + rem,);
if (u < add,)

(x, y,z) := GetAdd(7r, U);

k := x - y;
w, := r* WeightG(GetMult (7, k - 1, z), GetMult (7r, k, z) + 1, t);
w,= wi* WeightG(GetMult(7, k - 1, z - 1), GetMult(7r, k, z - 1) - 1, t);

W2 := WeightG(GetMult (7r, k - 1, z), GetMult (7, k, z), t);

W2= w 2 * WeightG(GetMult (7r, k - 1, z - 1), GetMult (7r, k, z - 1), t);
if (k < N)

= wi* WeightG(GetMult(7r, k,
= wi* WeightG(GetMult(-r, k,
= w 2 * WeightG(GetMult (-r, k,
= w2 * WeightG(GetMult(7r, k,

z) + 1, GetMult (7r, k + 1, z), t);

z - 1) -1, GetMult (7r, k + 1, z - 1), t);
z), GetMult (7r, k + 1, z), t);
z - 1), GetMult (7r, k + 1, z - 1), t);

end
p := w/(w1 i + W2);
B := Bernoulli(p);
if (B == 1) AddCube (7, u);

else

(x, y, z) := GetRem(7r, u - add,);
k := x - y;
w, := WeightG(GetMult(7r, k - 1, z), GetMult (7, k, z) - 1, t);
w= w1 * WeightG(GetMult(7r, k - 1, z - 1), GetMult (7r, k, z - 1) + I

W2 := r* WeightG(GetMult(7r, k - 1, z), GetMult (7r, k, z), t);

W2= w 2* WeightG(GetMult(7r, k - 1, z - 1), GetMult (7r, k, z - 1), t);
if (k < N)

w, = wi* WeightG(GetMult(7r, k, z) - 1, GetMult (7r, k + 1, z), t);

w, = w,* WeightG(GetMult (7r, k, z - 1) + 1, GetMult (7r, k + 1, z

W2= w2 * WeightG(GetMult(7r, k, z), GetMult(7r, k + 1, z), t);

W2= w2 * WeightG(GetMult (7r, k, z - 1), GetMult (7r, k + 1, z - 1)

-- 1), t);

, t)
end
p w1 /(w1 + w 2 );
B := Bernoulli(p);
if (B == 1) RemCube(7,u - add,);

end
iter = iter + 1;

end
Output: ir.
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Remark 2.7.1. In the above algorithm, an expression of the form
WeightG(GetMult(7r, -, .), GetMult(7r, -, -), t) simulates the function G, given in (2.7.5). The
case z = 1 is special, since G is defined differently depending on c > 0 and c = 0. In order to
make the algorithm more concise, and exclude additional checks of whether z = 1, we have
rigged the functions GetMult and WeightG so that the end results agree with (2.7.6).

2.7.3 Discussion and extensions
In this section we discuss some of the implications of the results of the paper and some of
their possible extensions.

We start by considering possible limit shape phenomena. In [36] it was shown that if
each dimension of a plane partition 7r, distributed according to PfL with t = 0, is scaled
by 1 - r then as r -+ 1- the distribution concentrates on a limit shape with probability 1.
We expect that a similar phenomenon occurs for any value t C (0, 1). The limit shape, if
it exists, should depend on t, which one observes by considering the volume of the plane
partition. Specifically, we have that

r -!I Z (r)t) dE [H7r|] =- , and Var(7rl) = E [|ir 21 - E [F]2 = r+E [l7[j].
Z dr F1

Using that Z(r, t) = f[ _1 ('-.')n one readily verifies that

S rkI -rk) Ztkrk(+ rk)
E[r] (1 - rk)3  t (i _k 3

k=1 k=1

The latter implies that lim,,i- E [(1 - r)3 17r|] = 2((3) -2Li 3 (t), where ((s) = is the
Riemann zeta function and Li3 (z) = k is the polylogarithm of order 3. In addition, one
verifies that limr,1- Var ((1 - r)3 1rj) = 0 and so the rescaled volume (1--r)317r converges in
probability to 2((3) - 2Lis(t). In particular, the volume decreases from 2((3) to 0 as t varies
from 0 to 1. When t =1 the measure PrL is concentrated on the empty plane partition for
any value of r and so convergence of the volume to 0 is expected.

In sharp contrast, the result of Theorem 2.1.2 suggests that while the volume of the plane
partition decreases in t the bottom slice asymptotically looks the same. Using GibbsSampler
we can run different simulations, to verify this type of behavior. At this time we remark that
we have not done any analysis to estimate the mixing time of the chain we have constructed,
hence our choice of number of iterations below will be somewhat arbitrary. The major
point to be made here is that we are only interested in qualitative information about the
distribution, such as a limit-shape phenomenon, and the purpose of the iterations is to
pictorially support statements for which we have analytic proofs.

In the simulations below, the sampler is started from 7r = 0, the size of the box N = 2000,
the number of iterations is T = 2 x 10" and r = 0.99. The only parameter we will vary is t.
Results are summarized in Figures 2-9 - 2-12, where the red curve indicates the limit shape
2 log(1 + e-T/ 2 ) in Theorem 2.1.2.

What happens as t increases to 1 is that the mass from the top part of the plane partition
7r decreases (so 7ri decrease), but the base (given by the non-zero rij) remains asymptotically
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Figure 2-9: t = 0. Figure 2-10: t = 0.2.

1~

Figure 2-11: t = 0.4. Figure 2-12: t = 0.6.

the same. The latter can be observed in the left parts of Figures 2-13 and 2-14 (we will get
to the right parts shortly).
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Figure 2-13: Simulation with t = 0.4.

Figure 2-14: Simulation with t = 0.8.
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We next turn to possible extensions of Theorems 2.1.2 and 2.1.3 and state a couple of
conjectures about the convergence of P" that go beyond the results of this paper. At this
time we do not have any clear strategy on how they can be proved, however, we will provide
some evidence for their validity. We start by rather informally recalling the definitions and
properties of the Airy and KPZ line ensembles. For more details about these objects the
reader is encouraged to look at [42] and [43], where they were introduced and analyzed.

Let BN, ... , BN be N independent standard Brownian bridges on [-N, N], BN(-N) =

BN(N) = 0, conditioned on not intersecting in (-N, N) and set EN = {1, ... , N}. The latter
object can be viewed as a line ensemble, i.e. a random variable with values in the space
X of continuous functions f : EN X [-N, N] -- R endowed with the topology of uniform
convergence on compact subsets of EN X [-N, N]. In [42] these line ensembles are called
Dyson line ensembles and it is shown that under suitable shifts and scaling they converge
(in the sense of line ensembles - see the discussion at the beginning of Section 2.1 in [42])
to a continuous non-intersecting N x R-indexed line ensemble. The limit is called the Airy
line ensemble and is denoted byA: N x R - R. The two properties of A that we will focus
on are that A1 (t) is distributed according to the Airy process and that the N-indexed line
ensemble L : N x R -+ R, given by Li(x) : 2-1/2(A(x) - ) for each i E N satisfies a
certain Brownian Gibbs property that we describe below.

The Airy process first appeared in the paper of Prahofer and Spohn [73], as the scaling
limit of the fluctuations of the PNG droplet and it is believed to be the universal scaling
limit of a large class of stochastic growth models. It's single time distribution is given by
the GUE Tracy-Widom distribution.

We now describe an instance of the Brownian Gibbs property, satisfied by Li. Let k > 2,
and consider the curves L4 -1, L and Lk+1. Let a, b E R and a < b be given and put
x = L(a), y -- L(b). Then if we erase 4k([a, b]) and sample an independent Brownian
bridge on [a, b] between the points x and y, conditional on not intersecting 4 -1 and k+1,
then the new line ensemble has the same distribution as the old one.

We shift our attention to the KPZ line ensemble. Let N E N and s > 0 be given. For each
sequence 0 < si < ... < sN-1 < s we can associate an up/right path # in [0, s] x {1, ... , N}
that is the range of the unique non-decreasing surjective map [0, s] -+ {1, ... , N} whose set
of jump times is {sI}_-1 . Let B1, ..., BN be independent standard Brownian motions and
define

E(#) = Bi(si) + (B 2 (s2 ) - B2 (s1)) + - + (BN(s) - BN(sN-1))

The O'Connel- Yor polymer partition function line ensemble is a {1, ... , N} x R+-indexed line
ensemble {Zfj(s) : n E {1, ... , N}, s > 0}, defined by

ZN(s) := exp E(#i) d#, ... d.n,
n (8 := Dn(s)

where the integral is with respect to Lebesgue measure on the Euclidean set Dn(s) of all n-
tuples of non-intersecting (disjoint) up/right paths #1, ... , #4 with initial points (0, 1), ... , (0, n)
and endpoints (s, N - n + 1), ... , (s, N). Setting ZON(s) =1 we define the O'Connel- Yor
polymer free energy line ensemble as the {1, ... , N} x R+-indexed line ensemble {X N(s) : n E
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{1, ..., N}, s > 0} defined by

X' (s) = log N (

In [43] it was shown that under suitable shifts and scaling the line ensembles Xf(OtN+-) are
sequentially compact and hence have at least one weak limit, called the KPZt line ensemble
and denoted by 7l : N x R -+ R. The uniqueness of this limit is an open problem, however
any weak limit has to satisfy the following two properties. The lowest index curve 'ti : R -+ R
is equal in distribution to F(t,-) - the time t Hopf-Cole solution to the narrow wedge initial
data KPZ equation (see Definition 2.1.6). In addition, the ensemble 't satisfies a certain
H1- Brownian Gibbs property, an instance of which we now describe.

Let k > 2, and consider the curves V-, V and V+1. Let a, b EE R and a < b be given
and put x = -i(a), y = V (b). We erase V ([a, b]) and sample an independent Brownian
bridge on [a, b] between the points x and y. The new path is accepted with probability

exp [- H (-Ht+1(u) - -t(u)) du - jH, (V (u) - Vi1u)) du , Ht(x) = et11 3 ,

and if the path is not accepted we sample a new Brownian bridge and repeat. This procedure
yields a new line ensemble and it has the same distribution as the old one.

The Hamiltonian Ht acts as a potential in which the Brownian paths evolve, assigning
more weight to certain path configurations. Formally, setting t = oc we have H+oo(x) = 00
if x > 0 and 0 if x < 0. This Hamiltonian corresponds to conditioning consecutively labeled
curves to not touch and hence reduces the H- Brownian Gibbs property to the Brownian
Gibbs property we had earlier.

For T > 0 let f (T) = 2 log(1 + e--/ 2 ), f'(r) = -,- and f"(T) = -,/_ . Also set
N(r) = 9. With this notation we have the following conjectures.

Conjecture 2.7.2. Consider the measure PrL on plane partitions, given in (2.1.3), with
t E (0,1) fixed. For r E R define the random N x R-indexed line ensemble A' as

A A(LTN + sN2/3]) - Nf(TI) - sN 2/ 3f'(ITr) - (1/2)s 2 N 1/ 3f"(ITI)A'(s) =k (2.7.9)

Then as r -+1 we have AT -> AT (weak convergence in the sense of line ensembles),
where A' is defined as AT(s) = Ak(s g2f"r(JT)/2) and (Ak)kEN is the Airy line ensemble.

Conjecture 2.7.3. Consider the measure Pr on plane partitions, given in (2.1.3). Suppose

T > 0 is fixed and - l.gt ( For T E R define the random N x R-indexed line
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ensemble E as

k(s) =-T/24 + (LTN + sN2 /3j) - Nf(1T1) - sN 2/3f'( JT) - (1/2)s 2 N1/ 3 f(IT)
-k~s) = T/24 + k(T/2)-1/3 2f"1(JTJ)N

-1/ f f "(1r 1 N)NT-'(2f"( IT ))-3/2 s 2TO/(2f"( I1)2/3+ log((T/2) 1/ 3  2f"(r)N) + (k - 1) log

(2.7.10)

Then as r - 1- we have .T - 1TT (weak convergence in the sense of line ensembles),
where +,'T is defined as W,,T(s) = WT (sT2/3  2f"(rl)/2) and (WT)kEN is the KPZ line
ensemble.

Remark 2.7.4. We provide some motivation behind our choice of scaling in Conjecture 2.7.2.
Since the lines in the Airy line ensemble a.s. do not intersect as do the lines A'([TN+sN2/3])
we expect that all lines undergo the same scaling and translation. This allows us to only
concern ourselves with A'([TN + sN 2/3]), whose limit should be some rescaled version of
the Airy process (the distribution of A1 ). Arguments in the proof of Theorem 2.1.2 can
be used to show that in distribution the expression on the RHS in (2.7.9) converges to the
GUE Tracy-Widom distribution for each s. The latter still leaves the question of possible
argument scaling since A1 (Ks) has the same one-point marginal distribution for all values
of r,. In [51] an expression similar to Af(s) (related to setting t = 0 in P'L), was shown to
converge to the Airy process, with a rescaled argument. Consequently, we have chosen to
rescale the argument so that it matches this result.

Remark 2.7.5. The choice for scaling in Conjecture 2.7.3 is somewhat more involved. When
k =1 in equation (2.7.10) we run into the same argument scaling issue as in Conjecture 2.7.2;
however, we no longer have results in the literature that we can use as a guide. Nevertheless,
in [6] it was conjectured that (T/2)- 1/ 3 (r(T, T2/ 3X) + 912 + converges to the Airy

process as T - oc. Consequently, we have picked a scaling of the argument in Conjecture
2.7.3 in such a way that under the scaling by (T/2)- 1/3 we would obtain the (argument
rescaled) Airy process in Conjecture 2.7.2. Since the lines in the KPZ line ensemble are
allowed to cross, we no longer expect that all lines A'([TN -+ sN 2/3]) undergo the same
translation and scaling and in equation (2.7.10) we see that each line is deterministically
shifted by a N/ 3 log(N) factor compared to the previously indexed line. The precise choice
of this shift is explained below and it is related to the Hl- Brownian Gibbs property, enjoyed
by the KPZ line ensemble.

We will now present some evidence that supports the validity of the above conjectures,
starting from the results of this paper. Theorems 2.1.2 and 2.1.3 only deal with A' and can
be understood as one-point convergence results about the bottom slice of the partition 7F as
follows. The proof of Theorem 2.1.2 shows that

(A'([TN + sN 2 /3J) - M(r) <x =FGUE(X)= IP(A'(s) < x)

/"))N

In the last equality we used that the one-point distribution of the Airy process is given by the
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Tracy-Widom GUE distribution [73]. In the above formula we have M(r) = 2 E0r1 a(r)k (k1)k+1

where a(r) = rLN(r)T sN(r)2 /31. Using ideas that are similar to those in Lemma 2.6.4 one ob-
tains M(r) Nf (ITI) + sN2/3f'( IT) + (1/2)s 2 N / 3f"( TI) + 0(1). Consequently, Theorem
2.1.2 implies that the one-point distribution of A' converges to that of A'.

Similarly, the proof of Theorem 2.1.3 shows that

rt A' (LrN + sN 2/3]) - M(r)lim L +(T Nlog()T/2) -1/3 M)2f"(|T|)N) < = FCDRP(x)
r-+1- (T/2)- 1/ 3 ( T +"(T)N o

P HT (sT 2/3 f2_f"Q'r )/2) + s2T1 3 (2f"( IT)) 2/ 3 + T/241 8

In the last equality we used that F(T, X) + 2 is a stationary process in X and hence

F(T, 0)+ T/24 has the same distribution as 7-T(sT2/ 3  2f"(I T)/2) + S2 T'/ 3(2f"(Ir1)) 2 / 3 + T/24.1 8

In the above formula we have M(r) = 2 E' a(r)k (-_7< , where a(r) = rLN(r)r+sN(r)2/ 3
]

Using M(r) = Nf(I r)+sN2/3f'(TI)+(1/2)s2 N /3f"(TI)+0(1) we see that Theorem 2.1.3
implies that the one-point distribution of B' converges to that of R" TI.

The next observation that we make is that in the statement of Conjecture 2.7.2, the sep-
aration between consecutive horizontal slices of 7r, distributed according to PtL is suggested
to be of order N1/ 3 , which is the order of the fluctuations. On the other hand, in Conjecture
2.7.3 there is a deterministic shift of order N1/3 log N, while fluctuations remain of order
N1 /3. The latter phenomenon can be observed in simulations, as is shown in Figures 2-13
and 2-14. Namely, the conjectures suggest that as t goes to 1, one should observe a larger
spacing between the bottom slices of 7r, which is clearly visible.

Finally, we match the Brownian Gibbs and Hi-Brownian Gibbs properties. Suppose
that we fix the slices A'_1 (m) and A'+1(m), m E Z and consider the conditional distribution
of A'([A, B]). The weight w(A'([A, B]) that each path obtains consists of two terms: an
entropy term, which comes from the rl"I dependence of P"L, and a potential term, which
comes from the dependence on A,(t). Specifically, if the number of cells between A' ([A, B])
and A'+ 1 ([A, B]) is P then the entropy term is given by rp. The potential term is a bit more
involved but depends only on the local structure of the paths. It is constructed as follows:
start from A and move to the right towards B, every time the distance between A,(m) and

Ak. (m) decreases by 1 when we increase m by 1 we obtain a factor of (1 -
the potential term is now the product of these factors. The weight w(A([A, B]) is given by
the product of the entropy and potential terms and the conditional probability is the ratio
of the weight and the sum of all path weights. See Figure 2-15 for a pictorial depiction of
the latter construction.

In the limit as r -+ 1-, the entropy term goes to 1 and if we ignore the potential, we
see that the measure converges to the uniform measure on all paths from A to B, which
do not intersect the lines A 1 and Ak+ 1. This motivates the Brownian limit of the paths.
When t E (0, 1) is fixed, we have the conjectural separation of consecutive lines in AT being
of order N 1/3. This implies that if B - A is of order N2 /3 , which is the conjectural scaling
we have suggested, then the potential term is bounded from below by an expression of the
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Figure 2-15: The left part of the figure shows that we get a non-trivial factor only when
the distance between two slices decreases. For the path on the right we have P = 16 x
5 + 2 x 6 + 1 x 4 = 96, hence the entropy term is r9 6. The potential term is given by
(1 - t4 ) x (1 - t5 ) 3 x (1 - t6 ) 2 . The weight is the product of the entropy and potential terms
and equals w(A'([A, B]) = r 96(1 - t4 )( - t5 )3(1 - t)2

form (1 - tcN/ 3 )CN 2/ 3. The latter converges to 1 exponentially fast, and so we see that the
contribution of the potential disappears in the limit. Consequently, the limit distribution
of A', at least heuristically, converges to a Brownian path, which is conditioned on not
intersecting Aki. This is precisely the Brownian Gibbs property.

When both r and t converge to 1- as in Conjecture 2.7.3, the potential term can no longer
be ignored. One can understand the contribution of the potential term as an acceptance
probability similarly to the KPZ line ensemble. Specifically, suppose we fix the slices A'_ 1 (M)
and A'+1 (m), m E Z and consider the conditional distribution of A'([A, B]). One way to
obtain it is to draw a random path between the points A and B that does not intersect the
slices A_ 1 (m) and A+ 1 (i) using the entropy term alone. Then with probability equal to
the potential term we accept the path and otherwise we draw again and repeat. When r and
t go to 1- we have that the paths we sample converge to a uniform sampling of all paths,
suggesting the Brownian nature of the limits; and what we would like to show is that the
acceptance probability in the discrete case converges to the acceptance probability in the
limit. Notice that the separation between slices being of order N1/3 log(N), while fluctuations
remaining of order NO/3 suggests that non-intersection of the lines automatically holds with
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large probability and hence can be ignored.

I T

(2n-'/3)N'/ Io~N-+,'N1+()C
A

1.~ TU~

N 2/3A A

Figure 2-16: ' and E i converge to constant functions. Quantities increase downwards.

We will now proceed to match the acceptance probabilities, by considering a simple to
analyze case, when the paths converge to constant lines. The situation is depicted in Figure
2-16. To simplify notation, let A = N-2/3(B - A), X- 1 = / 2f"(|IT), ti = (T/2)1/3-1
(- log t)N1 /3 and IL = T 2 Due to the Brownian nature of the limit of the paths,
one expects roughly AN2/3 of the steps to lead to decreasing the distance between A' and
Ai. Suppose that |A(m) -)| = (2K- 1/3)N 1/3 log(/uN) - Cr.-1N1 /3 + 0(1), for
m C [A, B]; then the acceptance probability is roughly equal to

PN(t) = (1 - t(2n- 1/3)N1/ 3 log(/N)-C+K- 1N 1/ 3 ) AN2/3/4( _ t(2n- 1/3)Nl/ 3 log(N)-C--'N'1/3 )AN 2 /3/4

Taking logarithms we see that log(pN(t)) = - 4A2 /3 (e-(2 / 3)log(pAN)+C+ + e-(2/3)Iog(pLN)+C) +
O(N- 2 /3 ). We thus see that limN-+oo log(pN(t)) = -(A/4)-( 2 /3)log(p) (eC+ + C).

On the other hand, the acceptance probability for 1H,,T is given by exp(-(AT 2/3X-1/2)(ec+
eC-). Equality of the latter and limN-,o PN (t) is equivalent to

-(A/4)e-(2/3) log()(eC+ + eC-) = -(AT 2/3X-1/2)(eC+ + eC-) _ -( 2 / 3 )log(/L) = 2T 2/ 3 -1.

Substituting Iy = T~21 /2 one readily verifies that the latter equality holds. This shows
that the discrete acceptance probability, at least heuristically, converges to the limiting one,
verifying the H-Brownian Gibbs property.
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Chapter 3

Six-vertex models and the GUE-corners process

3.1 Introduction

The six-vertex model is a well-known exactly solvable lattice model of equilibrium statistical
mechanics. The study of its properties is a rich subject, which has enjoyed many exciting
developments during the last half-century (see, e.g., [9], [74], and the references therein).
Fixing particular boundary conditions and weights, connects the six-vertex model to a num-
ber of combinatorial objects like alternating sign matrices and domino tilings [49]. The
six-vertex model and certain higher spin generalizations of it have been linked to a large
class of integrable probabilistic models that belong to the KPZ universality class in 1 + 1
dimensions - this was first observed in [53] and studied more recently in [27, 33,44]. These
recent advances have spurred new interest in vertex models and the development of tools to
analyze them.

The main subject of this chapter is the (vertically inhomogeneous) six-vertex model
in a half-infinite strip. We will work with a particular weight parametrization, introduced
in [20], whose origin lies in the Yang-Baxter equation, and which corresponds to the so-called
ferroelectric regime [9]. The partition function of this model is described by a remarkable
family of symmetric rational functions FA, parametrized by non-negative signatures A =
A1 > A 2 > ... AN > 0. These functions form a one-parameter generalization of the
classical Hall-Littlewood polynomials [64] and enjoy many of the same structural properties
[20]. In a recent paper [331, the authors derive many useful features of the functions FA,
which allow them to obtain integral representations for certain multi-point q-moments of
the inhomogeneous higher spin six vertex model in infinite volume. Such formulas are well-
known to be a fruitful source of asymptotic results and were recently utilized to study the
asymptotics of various stochastic six-vertex models [1,4,19].

In this chapter we develop a different approach to study the vertically inhomogeneous six-
vertex model , which is based on a new class of operators Dk. These operators act diagonally
on the functions FA, whenever A has distinct parts and can be used to derive formulas for
the probability of observing certain arrow configurations in different locations of the model.
These observables were very recently investigated for the six-vertex model with domain wall
boundary condition (DWBC) in [38] under the name of generalized emptiness formation
probability (GEFP). The derivation of the formulas in [38] is based on the quantum inverse
scattering method, which has been successfully used to derive large classes of correlation
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functions [16,38, 391. Whether our operators are related to the quantum inverse scattering
method is unclear, and at this time the two approaches appear to be orthogonal. As discussed
in [38] the GEFP can be used to understand macroscopic frozen regions in the six-vertex
model with DWBC and it is our hope that the operators we develop can be used to address
similar questions for more general six-vertex models.

Our main goal is to use the correlation functions obtained from our operators to analyze
a particular class of homogeneous six-vertex models as the system size becomes large. There
are two natural ways to understand the probability distributions that we analyze. On the
one hand, one can view them as stochastic six-vertex models on the half-infinite strip with a
particular choice of boundary data, which is related to a special class of symmetric functions,
considered in [33]. Alternatively, these probabilities distributions describe the marginal law
of a discrete time Markov process on vertex models, which is started from the stochastic
six-vertex model of [27], and whose dynamics is described by certain sequential update rules.
For the models we consider we show that certain configurations of holes (absence of arrows
or empty edges) weakly converge to the GUE-corners process as the size of the system tends
to infinity. We view the latter as the main result of this chapter and the exact statement
is given in Theorem 3.1.3. The proof is based on the formulas obtained from our operators
as well as a classification result, which identifies the GUE-corners process as the unique
probability measure that satisfies the continuous Gibbs property (see Definition 3.5.4) and
has the correct marginal distribution on the right edge.

We now turn to describing our model and main results.

3.1.1 Problem statement and main results
For N C N we let PN denote the collection of N up-right paths drawn in the sector DN
Z>o x {1, .... , N} of the square lattice, with all paths starting from a left-to-right arrow
entering each of the points {(0, m) :1 < m < N} on the left boundary and all paths exiting
from the top boundary. We assume that no two paths are allowed to share a horizontal or
vertical piece. For w E PN and k 1,... ,N we let Ak(w) = Ak > Ak > ... > A be the
ordered x-coordinates of the intersection points of w with the horizontal line y = k + 1/2.
Let Sign+ denote the set of signatures A of length k with Ak > 0, then Ak(w) E Sign+ for all
w C PN and k = 1,... , N. The condition that no two paths share a horizontal piece, implies
that Ak satisfy the interlacing property

AA+1 > +1 > ... >A k A + for k = 1, . . N - 1,

while the condition of no shared vertical edges implies Ak > A k> ... > Ak. See Figure 3-1.
We encode arrow configurations at a vertex through the numbers (ii, il; i2 , 2 ), represent-

ing the number of arrows coming from the bottom and left of the vertex, and leaving from the
top and right, respectively (see Figure 3-2). Let us fix a parameter s and N indeterminates
ui, ... , UN, called spectral parameters. For a spectral parameter u, we define the following
vertex weights s 1  (1s 2 )u

w (0,; 0, 0) =1, wU(1, 0; 1, 0) = , w (1, 0; 0, 1) =
1-su 1 su (3.1.1)

WU (0, 1; 1, 0) =,WU(0, 1; 0, 1) = ,WU(1, 1; 1, 1) = ,
I su 1-su, I su

92



T2 3

0 1 2 3 4 5 6 i= 2

Figure 3-1: A path collection w E PN Figure 3-2: Incoming and outgoing ver-
with N = 6. In this example A4 = 6, tical and horizontal arrows at a vertex,
A4= 5, A4= 3 and A4= 2 1 denoted by (ii, ji;i 2 ,j2 ) = (2,1;3,0)

and set all other vertex weights to zero. The choice of the above parametrization is made
after [20], where higher spin versions of the above vertex weights were considered. Those
weights depend on two parameters s, q and they are closely related to the matrix elements
of the higher spin R-matrix associated with Uq(sl2). Formulas for the higher spin weights
are present in (3.2.1) later in the text, and those in (3.1.1) are obtained by setting q = s 2 .
Given w E PN, we let w(i, j) denote the arrow configuration at the vertex (i, j) E DN and
note that we have six possible arrow configurations for w(i, j), corresponding to the weights
in (3.1.1).

In addition, let us consider a function f : Sign+ -÷ R. With the above data we define
the weight of a path configuration w as

oo N

WV (w) := lH wu, (w(i, j)) x f(AN(W) (3.1.2)
i=Oj=1

We observe that all but finitely many of w(i, j) equal (0, 0; 0, 0), which by (3.1.1) has weight
1 and so the product in (3.1.2) is a well-defined rational function. Suppose that for a choice
of parameters and function f the weights Wf(w) are non-negative, not all 0 and their sum

Zf := W (w) < 00,
WEPN

then we may define a probability measure on PN through Pf (w) = The function f
can be interpreted as a condition for the top boundary of an arrow configuration on DN,
complementing the other boundary conditions of no arrows entering from the bottom, all
arrows entering from the left and no arrows propagating to infinity on the right. For example,
taking f(A) to be zero unless AN-i+1 = i - 1 for i = 1, . . . , N corresponds to the (vertically)

93



inhomogeneous six-vertex model with domain wall boundary condition [58].

Our main algebraic tools are particular operators Dm, which can be used to extract a set
of observables for measures on PN of the form P! above. The operators Dk are inspired by
the Macdonald difference operators, which have been used successfully in deriving asymptotic
statements about random plane partitions, directed polymers and particle systems [24-26,
29,47,501. To give an example, the first order operator D1 acts on functions in m variables
and is given by

Dm= fj (u-qui uj- > 1 8~2 TM i=1 j=llj/\ Uj - Ui Uj - sq 1-sui

where Tug,F(Ui,...,um) = F(ui,... ,u_ 1 ,s,u+ 1, ... ,um). The formula for the general
operator Dk is given in Definition 3.3.2.

As will be explained later in Sections 3.2 and 3.3, the probability distribution Pf is related
to certain symmetric functions FA(ui,... , um), parametrized by non-negative signatures A.
The key property of Dk is that they act diagonally on Fx(ui,... ,um), whenever A has
distinct parts and satisfy

DmFX(ui, . . . , um) {Am-O,Am .m-+=k-1}Fx(ui, . . . , um).

The above relation is essentially sufficient to prove that for 1 < k < m K N we have

Pf PN:Am 07.. Ai} -1) Zfr (3.1.3)

where we remark that the partition function Z is a function of the variables ul, ... , uN and
Dk acts on the first m variables. In words, the above expresses the probability of observing
k vertical arrows going from (m, i) to (m + 1, i) for i = 0,... , k - 1, in terms of the partition
function Z and the result of Dk acting on it.

The validity of (3.1.3) can be established for a fairly general class of boundary functions
f; however, in order for the formula to be useful one needs to understand the action of
our operators on the partition function Z. For general boundary conditions the partition
function may not have a closed form or the action of the operators might not be clear.
One particular class of functions, on which D' act well are functions that have the product
form F(ui, . . . , urn) = i 1 g(ui). Such functions are eigenfunctions for D' with eigenvalues
expressed through k-fold contour integrals - see Lemmas 3.3.10 and 3.3.12. Whenever a
model has a partition function in such a form (this can be achieved by fixing appropriate
boundary conditions f and is the case for the models we study in this chapter) our method
leads to contour integral representations for the probabilities in (3.1.3). In general, such
representations are useful for asymptotic analysis as one has a lot of freedom in deforming
contours and using steepest descent methods.

In what follows we write down the general form of a function f that we will consider and
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explain the probabilistic meaning of this choice. Define

00 N

G'(p) := (-1)N]{ 1=0} { } 11 -
i=1 j=1

where A = ono - - - is the multiplicative expression for A (see Section 3.2.1). For an M-tuple
of real parameters (vi, ... , VM) we define f as

f(A) = G'(p,v,.. ., vM) = G' (p)G (vi,. . .,

PLESign+

where Gc/ (v,. .. , VM) is given by Definition 3.2.1 below.
If M = 0 we have that f(A) = Gc(p) and

N 8 S_1
Zf = E If(W) = (s-;s-2)NfJ sui

WEPN i=1

where we recall that (a; q), denotes the q-Pochhammer symbol and equals (a; q)n = (1 -
a)(1 - aq) ... (1 - aq n-1). The latter identity is understood as an equality of formal power
series and was derived in [33]. Fixing s > 1 and ui > s has the effect that W/X(w) > 0
and that the above identity holds numerically as well. In particular, for this choice of
f, we have a well-defined probability distribution PJ on PN. The latter measure is the
(vertically) inhomogeneous stochastic six-vertex model (see Section 6.5 in [33]). Further
setting ui = u > s for i 1,... , N, one arrives at the stochastic six-vertex model of [27] (see
also [33]).

Given the above discussion, one can understand f(A) = G 1 ,(v,. . . , vM) as a certain
many-parameter generalization of the boundary function of the previous models. As will be
explained in Section 3.2 we have for this choice of f that

Zf = W(W) = (S-22 VN (1- 1 Ui f 1_-2

wE'PN k 5 i=j 1  ~ j=zl

where the equality is in the sense of formal power series. As before, we set s > 1, ui > s and,
in addition, assume vj > 0 are such that uivj < 1 for i = 1,. . ., N and j = 1, . . . , M. Under
these conditions one can show that )WVf(w) > 0 and the above identity holds numerically as
well. In particular, for this choice of f, we have a well-defined probability distribution Pf on
PN, denoted by Pu,v. This is the main probabilistic object we will study.

For m 0,.. . , M we let Pu,v. denote the above probability distribution, where vm =

(v 1 ,..., m). Then one can interpret the distribution Pu,v, as the time m distribution of a
Markov chain {Xm}- 0 , whose dynamics is governed by sequential update rules. For more
details and an exact formulation we refer the reader to Section 3.8 below as well as Section
6 in [33]. For a pictorial description of how the configurations Xm evolve as time increases
see Figure 3-3. Our primary interest is in understanding the large-time behavior of Xm and
we investigate this by studying the measure Pu,v as both M and N tend to infinity.
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m 0

m= 20

I IM

m=n50

Figure 3-3: Random paths in PN, sampled from the Markov chain Xm at times m = 0, 5,20
and 50. In this example N = M =50, s-2 = 0.7, ui = U for i = 1, ... ,N and vi = v for

1, ... , M, where u = 1.5 and v= 0.4

While most of the results we have in mind can readily be extended to more general
parameter choices for u and v we keep our discussion simple and assume that ui = u for
i = 1,..., N and v3 = v for j = 1,..., M. The resulting measure is denoted by pNf (the
measure also depends on the parameter s but we suppress it from the notation). The first
result about this measure is the following.

Theorem 3.1.1. Suppose s > 1, ' > u > s and v E (0, u- 1 ). Let a = v(u~s-i )(U-) > 02 u(v-' 5s1) (v' -s)
and suppose -y > a. Let N(M) ; y M for all M >> 1 and consider the measure PNM on
PN, defined above. Then for every k E N, we have that

lim PN M ({w E PN : A-+1 i (3-1.4)

Remark 3.1.2. We choose s > 1 and u > s to ensure non-negativity of the weights defining
pfNM. This choice of parameters lands our Gibbs measure in the ferroelectric regime of theu,v
six-vertex model [91 and s > 1 covers the entire range of the ferroelectric region - see also
the discussion in Section 3.6.1. One requires v E (0, u-1 ) in order to ensure finiteness of the
partition function and non-negativity of the weights. The condition ' > u is technical
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and assumed in order to simplify some arguments later in the text.

Informally, Theorem 3.1.1 states that the probability PM concentrates on path configu-
rations, which have outgoing vertical arrows at locations (i, N) for i = 1, . . . , k, where k E N
is fixed but arbitrary, and no such arrow at (0, N). Let us consider such a path configuration
w and denote by A, = {(j, i) : i = 1, . . . , N} the vertical slice of DN at location j. We
observe that the left and bottom boundary conditions on w imply that there are exactly N
arrows going into the set AO and no vertical outgoing arrow from (0, N). The conservation of
arrows over the region A0 , implies that all N arrows must leave from the right boundary of
A0 , and so each arrow that enters (0, i) must continue horizontally (see Figure 3-4). When

6

5

4

3

- C)-

~-- 0

3 0 00

2 00

0 0

AA 3 1 2 3 4 5Ao A3
0 1 2 3 4

Figure 3-4: The left figure shows a path collection w, such that Ai 1 (w) = i for i = 1, ... , k
with N = 6 and k = 3. Circles indicate the positions of the empty edges. The right figure
shows the array (Yj)1 isj 53; j varies vertically and position is measured horizontally. In this
case Y=Y =Y 3, Y =2 Y3 4 Y = 1.

we consider A 1, we see that there are still N arrows going in, however, one arrow leaves at
(1, N) and so the conservation of arrows implies that there are N - 1 arrows leaving A1 to
the right and entering A 2 . In general, there will be N - j +1 arrows going into region Aj and
one arrow leaving from the top, implying that there are N - j arrows leaving from the right
and entering Aj+,1 Let us denote by Yj < Yj < ... < Y?, the ordered vertical positions
of the j vertices in A,, that have no outgoing horizontal arrow (alternatively, the vertical
coordinates of the empty horizontal edges between A, and Aj+1 ) - see Figure 3-4. A direct
consequence of the up-right path direction, implies that Y? satisfy the interlacing property

Y 1 < Y < Y+' < --- Y <Yj+ for j=1,..., k - 1.

The above definition can readily be extended to w E PN, which do not satisfy the condition
_ = i, 1 < i k as follows. We set Y| to be the i-th smallest y-coordinate of

a vertex in Aj with no horizontal outgoing arrow, or Y = +oo if the number of such
vertices is less than i. In this way, we obtain an extended random vector Y(N, M; k) (w) :=
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(N U 001)k(k+1)
(Y)1<i<j;1<j:k E (N U {.})2 . The statement of Theorem 3.1.1 is that with probability
going to 1, the interlacing array Y(N, M; k)(w) is actually finite.

Recall that the Gaussian Unitary Ensemble (GUE) of rank k is the ensemble of random
Hermitian matrices X = {Xi2J}k_ 1 with probability density (proportional to) exp(-Tr(X 2 )/2),
with respect to Lebesgue measure. For r = 1,... , k we let A" < Ar < ... A" denote the
eigenvalues of the top-left r x r corner {Xij},_1. The joint distribution of A' i = 1,..., j,
j = 1,... , k is known as the GUE-corners process of rank k (sometimes called the GUE-
minors process). The following theorem is the main result of this chapter.

Theorem 3.1.3. Assume the same notation as in Theorem 3.1.1, put q = s2 and fix k E N.
Consider the sequence Y(N, M; k)(w) with w distributed according to PN'. Then the random
vectors

1 (Y(N, M; k) - aM - 1k(k+1) (3.1.5)

converge weakly to the GUE-corners process of rank k as M - oc. In the above equation 1 K
is the vector of RK with all entries equal to 1 and c = (2a2)1/ 2b--1 , with

a2 - (1 - q)v- 1  (q+ 1)s - 2v- 1  (q+ 1)s - 2u b = 1 - 1
(V - s)(v-1 - sq) (v- 1 - s)(v- 1 - sq) (u - s)(u - sq)_' u - s q-u - s'

We end this section by briefly outlining the key ideas that go into proving Theorem 3.1.3.
The first key observation is that for w E PN one has A'(w) = 1, ... , A-k+1(w) = k if and
only if Ykk(w) < m. Using this observation and our operators Dk, we express Pu,v(Ykk < m)
and more generally Pu,, (Y1 i,. . . , Y Mik) in terms of certain k-fold contour integrals.
These formulas for the joint cumulative distribution functions (CDFs) of the random vector
(Y,... , Ykk) are suitable for asymptotic analysis and can be used to show that under the
translation and rescaling of Theorem 3.1.3, this vector converges weakly to (AI,... ,
where Al i = 1, ... ,j, j = 1, ..., k is the GUE-corners process of rank k. Using the six-
vertex Gibbs property (see Section 3.6.2) and our convergence result for (Y1

1, .. . , Ykk), we
show that the sequence of random interlacing arrays Y(N, M; k) under the translation and
rescaling of Theorem 3.1.3 is tight and any subsequential limit satisfies the continuous Gibbs
property (see Definition 3.5.4). The final ingredient, in the proof is a classification result,
which identifies the GUE-corners process as the unique probability measure on interlacing
arrays that satisfies the continuous Gibbs property and has the correct distribution on the
right edge. This shows that any weak subsequential limit of Y(N, M; k) is in fact the GUE-
corners process of rank k, which together with tightness proves Theorem 3.1.3.

3.1.2 Outline
The introductory section above formulated the problem statement and gave the main re-
sults of the chapter. In Section 3.2 we study the measure Pu ,, and derive formulas for its
finite dimensional distributions. In Section 3.3 we define our operators D k and establish
some of their properties. In Section 3.4 we obtain integral formulas for the probabilities
PNM(yl < Mi,..., Y i), study their asymptotics and prove Theorem 3.1.1. In Sec-
tion 3.5 we discuss probability measures on Gelfand-Tsetlin cones, satisfying a continuous
Gibbs property. In Section 3.6 we study probability measures on Gelfand-Tsetlin patterns,
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satisfying what we call the six-vertex Gibbs property. The proof of Theorem 3.1.3 is given
in Section 3.7. In Section 3.8 we describe an exact sampling algorithm for the measure Po,
and discuss some of their conjectural properties.

3.2 Measures on up-right paths

In this section we provide some results about Puv. In particular, we show that it arises
as a limit of measures on non-negative signatures, studied in Section 6 of [33], and is a
well-defined probability measure on the set of oriented up-right paths drawn in the region
DN = Z>O X {, .. . , N}. We also provide explicit formulas for its marginal distributions. In
what follows we adopt the notation from [33] and summarize some of the results there.

3.2.1 Symmetric rational functions
We start by introducing some necessary notation. A signature of length N is a sequence
A = (A, > A 2 > ... AN), Ai E Z. The set of all signatures of length N is denoted by SignN,
and Sign-- is the set of signatures with AN 0- We agree that Signo = Sign+ consists of the
single empty signature 0 of length 0. We also denote by Sign := LJN>OSign+ the set of all
non-negative signatures. An alternative representation of a signature p c Sign+ is through
the multiplicative notation p = 0"o"m2"1 . -. , which means that m = I{i : pi j= j}I is the
number of parts in p that are equal to j (also called multiplicity of j in P). We also recall
the q-Pochhammer symbol (a; q), := (1 - a)(1 - aq) ... (1 - aqn 1 ).

In what follows, we want to define the weight of a finite collection of up-right paths in
some region D of Z2, which will be given by the product of weights of all vertices that belong
to the path collection. Throughout this chapter we will always assume that the weight of
an empty vertex is 1 and so alternatively the weight of a path configuration can be defined
through the product of the weights of all vertices in D. Figures 3-1 and 3-3 give examples
of collections of up-right paths, see also Figure 3-5 below.

The configuration at a vertex is determined by four numbers (ii, ii; i2 , i2), representing
the number of arrows that enter the vertex from below and right, and that leave from the top
and left respectively (see Figure 2). Vertex weights are thus functions of those four variables.
We postulate that a configuration (ii,j; i 2 , j2) must satisfy i1 , ji, i2 , j 2 > 0, ji, j 2 E {0, 1}
and i1 + ji = i2 +i2 (otherwise its weight is 0).

We will consider two sets of special vertex weights. They are both defined through two
parameters s, q (which are fixed throughout this section) as well as an additional spectral
parameter u. We assume all parameters are generic complex numbers, and for the most
part ignore possible singularities of the expressions below. The first set of vertex weights is
explicitly given by

1 - squ (1 -- s2 q9)u
wU(g,0;g,0) = s W(g+1,0;g,1)=

1- su 1-SU (3.2.1)u - sq9 1 - g+
wU(g, 1; g, 1) = - sq, WU(g, 1; g + 1, 0) q+

1-su 1-su

where g is any non-negative integer. All other weights are assumed to be zero. We also
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define the following conjugated vertex weights

1 - su

wg (g, 1; g, 1) = u sq
1 - su

WU,(g + 1, 0; g, 1) = q+)
1 - su

wUC(g, 1; g + 1, 0) = S1- su

where as before g c Z>o and all other weights are zero. We remark that the weights are
non-zero only if Ji, J2 E {0, 1}, which implies that the multiplicity of the horizontal edges is
bounded by 1. For more background and motivation for this particular choice of weights we
refer the reader to Section 2 of [33].

Let us fix a number n E N, n indeterminates u1 ,... ,un and the region Dn = Z>o x

{1, ... , n}. Let w be a finite collection of up-right paths in Dn, which end in the top
boundary, but are allowed to start from the left or bottom boundary of Dn. By w(i, j) we
denote the arrow configuration of the vertex at location (i, j) E Dn. Then the weight of w
with respect to the two sets of weights above is defined by

00 fl

W(w) = fl wu (w(i, j)),
i=O j=1

W (w) = fl7wi (w(i j)).
i=O j=1

We notice that by (3.2.1) and (3.2.2) wu(0,0;0,0) = 1 = WC(0,
finitely many vertices are empty, the products above are in fact
notation we define the following partition functions.

Definition 3.2.1. Let N, n E Z>O, A, y c Sign+ and ul,... , Un
the collection of up-right paths W, which

" start with N vertical edges ([ti, 0) (Ai, 1), i = 1,..., N;

" end with N vertical edges (Ai, n) - (Ai, n + 1), i = 1,... , N.

0; 0, 0) and since all but
finite. With the above

C be given. Let P be

Then we define

Gc,/,(1, . ... , Un) :=We(w).

We will also use the abbreviation G for GA/ .  For the second set of weights we have a
similar definition.

Definition 3.2.2. Let N, n E Z4o, p c Sign+ , A c Sign+ and u, ... ,un E C be given.
Let / be the collection of up-right paths, which

* start with N vertical edges (pi, 0) -+ (Pi, 1), i = 1,... , N and with n horizontal edges

(-1, y) (0, y), y = 1, ... , n;

" end with N +n vertical edges (Ai, n) -+ (Ai, n+ 1), i = I1,..., N+n.

Then we define

wEP/,
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We will also use the abbreviation
P, are depicted in Figure 3-5.

FA = FA/ 0 . Path configurations that belong to P\/,, and

A7 = A1

(1

A5 A4 =A3=A\2

/12 /11

Figure 3-5: Path collections belonging to PA/, (left) and P (right).

In the definitions above we define the weight of a collection of paths to be 1, if it has no
interior vertices. Also, the weight of an empty collection of paths is 0. We now summarize
some of the properties of the functions G, and FA/,, in a sequence of propositions; see
Section 4 of [33] for details.

Proposition 3.2.3. Let N, n, k E Z>O, p C Sign+, A c Sign+ and u1,- . , u E C be given.
Suppose IN > k and AN+n > k, and denote by pL - (k)N and A - (k)N+n the signatures with
parts pu - k and Ai - k respectively. Then we have

n k

F,\/,(ui, . .,Un)- =i - 8 u F_(k)N+n/ _(k)N (Ul, ... Un).
(i=1 u)

(3.2.3)

Proposition 3.2.4. The functions F/,(ul,... , un) and G'(u1,. .. , u,) defined above are
rational symmetric functions in the variables u1 ,... , un.

Proposition 3.2.5. 1. For any N, ni, n 2 E Z>o, p E Sign+ and A E Sign+ one has

F\/, (i,..... , u 1n+n 2 ) = E
KESign+N+nl

FA/(unl1+1, ... , un 1+n2 )F,/,(ui, .... , Unj).

2. For any N, ni, n 2 E Z;>O and A, p E SignN, one has

Gy,(ui, ... , u 1+n2) = Gc/K(unl+1, ... ,un+n2)G /,,(ul, ... ,uni).
K ESign+

The properties of the last proposition are known as branching rules.

Definition 3.2.6. We say that two complex numbers u, v E C are admissible
to the parameter s if I 1- < 1.

(3.2.5)

with respect
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Proposition 3.2.7. Let u1 , ... , uN and v 1, - - -, VK be complex numbers such that ui, vj are
admissible for all i 1,... , N and] = 1,... , K. Then for any A, v E Sign+ one has

G~ ~~ (-,..,K)ui(l,..j F \,(ui,... N G /,(v1, ..., VK)-
KESign+ i=1 j=1 pLESign+

(3.2.6)

Remark 3.2.8. Equation (3.2.6) is called the skew Cauchy identity for the symmetric functions
FA/, and Gc because of its similarity with the skew Cauchy identities for Schur, Hall-
Littlewood, or Macdonald symmetric functions [64]. The sum on the right-hand side (RHS)
of (3.2.6) has finitely many non-zero terms and is thus well-defined. The left-hand side (LHS)
can have infinitely many non-zero terms, but part of the statement of the proposition is that
if the variables are admissible, then this sum is absolutely converging and numerically equals
the right side.

A special case of (3.2.6), when A = 0 and v = (0, 0, ... , 0) leads us to the Cauchy identity

fi uivi
F,(ui,... , uN)G,(vl,. . . ,VK q)N 1- (3.2.7)

Y1 - sui . 1 -
vESign+ 1=13

We end this section with the symmetrization formulas for Gc and F, and also formulas
for the functions when the variable set forms a geometric progression with parameter q.

Proposition 3.2.9. 1. For any N E Z>o, p E Sign+N and u1 ,--- ,UN E C, one has

F/ (l,- N)- (I -- q)N or u - qu,3 Ui - s 328F__(__,_._.-qu, _____. (3.2.8)

fli=(1 - sui) OESN \1 a<3 N UO -Up \15-suiJ

2. Let n >0 and Sign + E V = 0 "O 1n12 n2.--- Then for any N > n - no and ul,...,uN EC

we have

(1 - q)N 00 2 n
G (ui,. . . , UN) ( q)N(q;q)n fi (s2 q)n,

-i_1(1 sui)(q; q)N-n+no(q; q)nO k(; (3.2.9)
vin-no N (''

x o: - fj uc - quo Ui_8 v i - sq noU
x ~ ~ C 5 U (1sN ui ) H ff-O 8 .]71 (1~sfo~)

'E SN 1&<)3N a~ -s i= =i- s k+1

In both equations above, SN denotes the permutation group on {1,... , N} and an element
a- e SN acts on the expression by permuting the variable set to U.,( , ... , U(N). By agreement,
we set u' = 0 if j > n. If N < n-no, then Gc(u1,...,uN) is equal to 0.

Proposition 3.2.10. 1. For any N E Z>O, p E Sign+ and u E C, one has

N i_1 - i
F,(u, qu,... qNu) - (q; q)qI- (I - qiu ( sqiu)10)

= 1 -sq - 1 -s
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2. Let n > 0 and Sign+ E =0_Oo In12n2 .... Then for any N > n-no andu c C we have

N 2 (q; q)N(su; q)N+no(q; q) 1 (i- i1
G'(u, qu, . .. , q )

k= ; q),-n, (q; q)N-n+n(, (su q n~ q 9nosu; q- n--no

(3.2.11)

3.2.2 The measure IPu,v
As discussed in Section 3.1.1 the main probabilistic object we study is the measure Puv
on up-right paths in the half-infinite strip that share no horizontal or vertical pieces. The
purpose of this section is to properly define it.

Let us briefly explain the main steps of the construction of Pu,.. We begin by considering
the bigger space of all up-right paths in the half-infinite strip that share no horizontal piece
but are allowed to share vertical pieces. For each such collection of paths we define its weight
and show that these weights are absolutely summable and their sum has a product form.
Afterwards we specialize one parameter in those weights and perform a limit transition for
some of the other parameters. This procedure has the effect of killing the weight of those
path configurations that share a vertical piece. Consequently, we are left with weights that
are non-zero only for six-vertex configurations, are absolutely summable and their sum has
a product form. We check that each weight is non-negative, and define Pu,v as the quotient
of these weights with the partition function.

We fix positive integers N, M, J, and K = M + J, as well as real numbers q E (0, 1)
and s > 1. In addition, we suppose u = (ui, ... ,UN) and w = (w 1, .. . , WK) are positive
real numbers, such that maxij uiw < 1 and u := mini ui > s. One readily verifies that the
latter conditions ensure that ui, wj are admissible with respect to s for i = 1,...,N and
j = 1,..., K.

Let us go back to the setup of Section 3.1.1. We let P, be the collection of N up-right
paths drawn in the sector DN >0 x 1,.. ., N} of the square lattice, with all paths
starting from a left-to-right arrow entering each of the points {(0, m) :1 < m < N} on the
left boundary and all paths exiting from the top boundary of DN. We still assume that no
two paths share a horizontal piece, but sharing vertical pieces is allowed. As in Section 3.1.1
we let PN c P be those collections of paths that do not share vertical pieces. For W E P
and k = 1,..., N we let Ak(W) E Sign+ denote the ordered x-coordinates of the intersection
of w with the horizontal line y = k + 1/2. We denote by w(i, j) the arrow configuration at
the vertex in position (i, j) E DN. We also let f : Sign+ -+ R be given by

f(A; w) := G' (wi,. ... , wi) G' (J1 -- ,w

tLESign+

With the above data, we define the weight of a collection of paths w by

N oo

Wf (w) = 1l1wi(w (i, j)) x f(AN(W); w).

i=1 j=1
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If we perform the summation over M and use Proposition 3.2.5 we see that f(A; w) =

Gc (wi,... , WK). This together with Definition 3.2.2 implies that

Wlfw(w) = FA1(,)(ul)Fx2(,)/A1()(u2) .. FAN()/AN-1()(uN) x G'N(,) (W1, K)

Using the branching relations for FA/,, from Proposition 3.2.5 and performing the sum over
A 1 ... , AN-1 we obtain FAN()(U, ... , UN)GN )(w1,... , WK). A final summation over AN

and application of the Cauchy identity (3.2.7) leads us to

S ,v(w = (q; q) NFJ( -~ s 1 1-uiW -: Zf(U; w).
w EP i=1 j=1

In view of the admissability conditions satisfied by u and w, the above sum is in fact
absolutely convergent, hence the particular order of summation we chose is irrelevant. We
remark that the weights W4,2(w) are real and not necessarily non-negative, but they are
absolutely summable and their sum equals the above expression.

We next wish to specialize some of the variables wi and relabel the others, in addition
we fix s = q-1/ 2 . Set wi = q'-1 for i = 1,...,J and put vj =w j +J forj = 1,...,M. Here
E > 0 is chosen sufficiently small so that the admissibility condition is maintained.

Remark 3.2.11. Choosing s = q-1/ 2 has the effect that if t c Sign+ has distinct parts
and A c Sign+ then G 1,(ui,...,u,) = 0, unless A has distinct parts. Indeed, suppose
that k = Ai = Ai+ 1 for some i E {1,. .. ,N - 1}. Let w' E P (see Definition 3.2.1).
For j = 1,... , n + 1 denote by aj the number of arrows from (k, j - 1) to (k, j). As the
number of horizontal arrows entering or leaving a given vertex is 0 or 1, we see that aj+1 E
{aj, aj - 1, aj + 1} for j = 1, ... , n. Our assumption on A and ft implies that a1 < 1, while
an+1 > 2, thus for some j E {1, ... , n} we must have aj = 1 and ai+1 = 2. Consequently,
any w' E contains a vertex of the form (1, 1; 2, 0). By (3.2.2) the conjugated weight of

such a vertex equals w'(1, 1; 2, 0) = I-Q = 0 if s = q-/ 2 . We conclude that WC(w') = 0 for
any W' E , which by Definition 3.2.1 implies G' 1 1,(ui,...., un) = 0.

Remark 3.2.12. A similar argument to the one presented in Remark 3.2.11 shows that
s = q 1 / 2 has the effect that if M c Sign+, A c Sign+~ and A has distinct parts then
FA/,(ui,... , un) = 0 unless p has distinct parts.

We next investigate how the new choice of parameters affects the function f.

Lemma 3.2.13. Suppose J > N, q = (0, 1), s = q-1/ 2 and v e Sign+ with v - 0on 12n2..

Then for any v E (0, s-1) we have

G" (v, qv, q.2 q J- 1v) - (q; q)-q)noN (sv; q)N-no I 
V ~~(q; q).. (sv; q)N (sv1 q'N-n.

J-Nlo~lN-no vj-1 - s -(32.2
(qJN+o+ ;q)N-no(svqJ;q)no -

when ni < 1 for i > 1 and 0 otherwise.
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Proof. We begin by dropping the assumption that s = q- 1 / 2 and consider G'(v, qv, q2
qJl v; s), where we record the dependence on s in the notation. The latter is a finite sum of
finite products of weights w'vqj and by continuity of the weights (see (3.2.2)) we have

=lim G'(v, qv, q 2  -qj1v; s).
s- q-1/2 V

Using Proposition 3.2.10 we have

(q; q)j(su; q) j+n (q; q) N

(;q -N+no (su; q) N (;qno (su-1q-) N-,o
xqJ- ; s) 2 ;q), .

k=1 k

N-no

i1 ( 1

1-sqi-lu

qi-i(U1- squ

1
(svqN-no; q)J-N~flj

Some cancellations and rearrangements (see also the proof of Proposition 6.7 in [33]) give

G'(v, qv, q2 q ,-
1v; s) =(q q) N jS ;)nk 1 (q; q)no k=1 ( k (sv; q)N (sV;q 1 ) N-no

(qJ ~l~; q)M-no(SV; q)N-no(svqJ ;q)no Hi 0 - svqji1

j=1l
1-svqj}

Finally, letting s - q- 1/ 2 we see that H][ (s2; q), - 0'unless ni 1 for all k > 1, ie.
unless the non-zero parts of v are all distinct. If nk < 1 for all k > 1, then ][1  -

(-q)no-N, which proves the lemma.

Let us denote qj by X. Then, in view of Lemma 3.2.13, f becomes

f,(A;v,X): (q; q)N (~ q)no (s; q)N-no (Xq-N+no+l; q)N-n. (sEX; q)no X
(q; q)no(sE; q)N(se~1 -vESign+ -) -,

0 N-no (
ljj:l H( ;I - segj-l

=1j=1

1j-1 - .
1 - s- Gc/,(Vi, .

where v = On m 12 n2 ... and 1 E is the indicator function of an event E. In addition, special-
izing our w variables in Z(u; w) and replacing qJ with X, we get

( NL[ ( -X 1 - quivjZf' (u; v, X) :=(q; q)N -
i U~

.=1 I - suj 1 u - e = 1 -uv
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Our earlier results now yield

N e( i o)) X feA (W); , =) (;Q N1 1 -XEni M1 -quivj

1 -=1 i=1 -=1 j 1

(3.2.14)
provided E is sufficiently small and X = qJ with J > N.

In view of Lemma 3.2.13, we have that fE(A; v, X) is a polynomial in X. Moreover, one
readily observes that as X varies over compact sets in C the weights R= 1 H-1 w4(w(ij)) X
f(AN(W); v, X) are absolutely summable (this is a consequence of the admissibility conditions
and our choice for E). Hence the LHS of (3.2.14) is an entire function in X. The RHS of
(3.2.14) is also clearly entire in X and the two sides agree whenever X = qJ with J > N.
Since qJ is a sequence with a limit point in C, we conclude that (3.2.14) holds for all X and
we will set X = (sE)- 1 .

When we subsitute X = (sE)-1 in the expression for fE(A; v, X) we see that the factor

(sX; q)no vanishes unless no = 0, in which case it equals 1. Denoting fE(A; v, (sE)-') by
f,(A; v) we thus obtain

1(: (q) =) N 9(-q) no N (sE q N-no --N+no+1 l -n
f, (A; v) = + (q; q)no (sE; q)N (s; q)N-no ((sE)lqN q)N X

vESign (

00 N-no_ v

i1j 1311(ne~~o- -) 1vj<; Gcl(vi, . .. , vm),
i=1 j=1

and equation (3.2.14) takes the form

N oo NN M

E fwe,(w(i, j)) x fE(AN (q; q N (u 1 H
1 - si=1 j-1 1

(3.2.15)
Since G ( .. ,VM) = 0 unless A v for i = 1,..., N, we conclude that the sum,

defining f,(A; v) is finite and taking the limit as E goes to zero we have

00 N

f (A; v, p) := lim fE (A; v) = (-1)N(q; q)N 1{no=0} {R[ 1 }f < J (-s)" G/v (vi,-.- , vM),
C-+O

vESign+ i=1 j=1
(3.2.16)

where we used that s2 = q 1. Taking the limit as E -+ 0+ in equation (3.2.15) we conclude

N o oN W - p ) - ( q N N S i M q i j ( . . 7

wE i i=1 j==1 j=1

The change of the order of the limit and the sum is justified, because ui and vj are admissible
for i= 1,... ,N and j= 1,...,M, and ui > s.
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With f(A; v, p) given by (3.2.16), we define the following weight of a collection of paths
in P'

N oo

W() =u (c we((i, j)) x f (A N () ,p.(..8
i=1 j=1

So far, we only know that W),V(w) are finite real numbers, which are absolutely summable
and their sum equals the RHS of (3.2.17). We will show below that VV,(w) = 0 unless
w C PN, in which case it is non-negative. This will show that one can define an honest
probability measure on PN through these weights.

We first investigate when such a weight vanishes. Since G/, (vi, . . . , vM) vanishes unless
Ai > vi for i = 1, ... , N, we see that f(A; v, p) = 0 unless AN > 0. Combining this with
Remark 3.2.11, we see that f(A; v, p) = 0 unless AN(w) has all distinct and positive parts.
Let w E PN, be such that AN(w) has distinct and non-zero parts. Using that

N oo

fl fl w1 (w(i, j)) = Fx1(,) (ui)FA(w/1(w)(u 2 ) - F(N) /)XN-1(() (UN),

i=1 j=1

together with Remark 3.2.12, we conclude that W4,V(w) = 0 unless A' have distinct parts for
all i = 1, ... , N, i.e. unless w c PN.

We next investigate the sign of WuV,v(w). Since the weight is 0 otherwise, we may as-
sume that w E PN. Hence we have six possible choices for the vertices W(i, j): (0,0; 0,0),
(0, 1; 1, 0), (1, 0; 1, 0), (0, 1; 1, 0), (0, 1; 0, 1) and (1, 1; 1, 1). Using the formulas in (3.2.1) we
see that the sign of the weight of a vertex is precisely (-1)i1. Consequently, the sign of

f A=1 w (w(i, j)) is precisely (-1)K(w), where K(w) is the number of horizontal arrows
in the configuration w. One readily observes that the number of horizontal arrows in DN
is precisely ZN A (w). In addition, we have N horizontal arrows from (-1, i) to (0, i) for

i = 1,. . . , N. Thus we conclude that sign (fLI 1  wNi(P(ili) _1)N+f_ iA$ (w).

We next consider the sign of Wc(w'), where w' c P/, and v has distinct and positive
parts. Arguing as in Remark 3.2.11, we can assume that no paths in W' share a vertical
piece, otherwise Wc(w') = 0. Consequently, we may assume that w'(i, j) is among the six
vertex types we had before for all (i, j) E Dm. From (3.2.2) the sign of the conjugated
weight of a vertex is again (-l)i1, and so the sign equals (-1)K(w'), where K W') is the total
number of horizontal arrows in w'. One readily observes that K(w') - = 1 Ai - EN=
(notice that in this case we do not have horizontal arrows entering the 0-th column). We
conclude that all weights Wc(w') for w' E RPc/ have the same sign, which implies that

sign (Gc/ (v,. .. , VM)) = (-)Zf 1 A-Zf 1 "i

The last paragraph implies that each summand in (3.2.16) has sign ( r-)=1 Ai and so

we conclude that sign (f(A; v, p)) (-)N+Z1 Ai. Since sign (H 1 H1 wui(P(i,-))

= (-1)N+Z 1 (w), we conclude that WV,v(w) > 0 for all w E RN. As W,(w) = 0 for
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w E PN'/PN, equation (3.2.17) can be rewritten as

N _1 1 M

Wu,,(w) = (q; q)N Zf(u). (3.2.19)= 1 - U s 1 -Uiv.
WEPN .3

As weights are non-negative and the partition function Zf(u) is positive and finite, we see
that

Wf (U)

defines an honest probability measure on PN- For future reference we summarize the pa-
rameter choices we have made in the following definition.

Definition 3.2.14. Let N, M c N. We fix q E (0, 1) and s = q- 1 / 2 , u = (Ui,.. . ,UN) with
ui > s and v = (v 1 ,... , VM) with vj > 0, and maxij uivj < 1. With these parameters, we
denote Pu,v to be the probability measure on PN, defined above.

3.2.3 Projections of Pu,V
We assume the same notation as in the previous section. Let us fix k E N, 1 < m1 < M2 <
- - i<Mk < N and tm' E Sign+. Our goal in this section is to derive formulas for the
following probabilities

Pu,v (Am'(w) = m, , A" (W) = fMfk)

Let A = {w EE PN . Ami(w) = m A~k(W) - mk}. Then we have that

N oo

Pu,v (A) = Zf(u) WuV v (w) = Z(u)- E Z F w (w(i, j)) x f (ANw);VIP)
wcA wEA i=1 i=1

= Z(u) 1  FA,()(ul)FA2(.)/A1()(U2) ... F AN (W)AN-(L) (UN)f (AN )Vp).

WEA

Let M {mi,... , I}. We observe that the rightmost sum above may be replaced with the
sum over all A' E Signt, where i E {1, ... , N}/M. Indeed, from our work in the previous
section, the extra terms that we are summing over are all 0. We thus conclude that

Pu,v(A) = Zf(u) 1  13 FA (ul)FA2/1 (U2) - - FAN/AN-1 (uN)f(AN;v,p),

iE{1,...,N}/M Ai ESign+

(3.2.20)
where A = Ar for j E M are fixed.

Let us first assume that Mk = N. Then the branching relations (3.2.4) yield

mr+1-1

E : FAmr+1 /Amr (Umr+1) FAmr+2/Amr+1 (Umr+2) ... F mr+i/AMr1- (Umr+) =
i=mr+1 AieSign+

FAmr+1 /Amr (Umr+1, ... , Um+ I),
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when r = 0, ... , k - 1 with the convention that mo = 0 and AO - 0. Substituting these
expressions in (3.2.20) we see that if mk = N we have

k-1

Pu,v (A) = Zf(u) 1 x ]7 FAmr+1/Mm (Ur+1, -
r=O

, UMr+i) x f (mk; ,p).

In the remainder, we assume that mk < N. In this case we may still apply the branching
relations as above to conclude that

k-i

Pu,v(A) = Zf(u) -1 x H Ftmr+1/mr (Umr+1,. . . , UMr) x F(pMk; V, p), where

F(pm k; V, p) :

r=O

FA/tm (umk+1, ... , UN)f (A; v, p).
AESignN

An alternative formula for F(pm k; v, p) is derived in the following lemma.

Lemma 3.2.15. Let N, m E N, q E (0, 1), s = q-1/ 2 , A E Sign+ and p E Sign+- 1 . Assume

Um, ... ,UN and vj, --- ,vM are positive, ui > s and ui, vj admissible with respect to s. Then

E F/gn+ (um, UN)f

AESign+

N M

A; v, p) r (1 - qi)(1 - s 1 uj) 1 - quiv
.= I - suj .=1 I- Uivj

p).-

(3.2.22)

Proof. We start by considering the expression

S FA/, (um+1, - ,UN)G'(wi , . . , wJ+M),
AESign+

where as in the previous section wi = Eq- 1 for i = 1,... , J and wj+j = vj for j =1,..., M
The skew Cauchy identity in (3.2.6) yields (see also Corollary 4.11 in [33]):

N qi J+M uw
F,\/,(um, .-- ,UN) G'(wi, . jM . .1 ,u w+1 = G', (wi, ...

. 1- s 1 - i
AESign+

Substituting wi in the above expression and denoting qJ by X we arrive at

SWJ+M)-

FA/, (um ... ,uN)fE(A; v, X)
AESign+

where fe(P; v, X) is given in (3.2.13).

N M
1- q 1EXui 1 - quivj fPVvX)

i=m j V=1j

(3.2.23)
As in the previous section we argue that both sides

of (3.2.23) are entire functions in X, which are equal on a sequence with a limit point in C,
hence equality holds for all X. If we set X = (se)- 1 and let e go to zero we get (3.2.22). E

Substituting F(pirk; V, p) into (3.2.21) with the expression in (3.2.22) and performing a
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bit of cancellations we see that

k-1

Pu,v (Am(w) = m ,Arn ) _ rMk) ] J F,mr+1m, (Umr, I... , +Urn ) x f(p";Vp)x
r=O

Mk

Zf(u, v; mk) 1 , where Zf(u, v; mk) = (q; q)m M I
-su

M
1qujvj

1 - uiv

(3.2.24)

3.3 The operators D k

In this section we fix a positive integer m > 1 and provide
that act diagonally on the functions F\(ui,... , Um) with
i = 1, ... , m - 1. Specifically, we will show that

operators D. for k
A E Sign+ and Ai >

DiFa(ui, .. . , Um) = 1{9m=O,Am-1=1,...,Am-k+1=k-}Fa(U1,... ,Ur).

In addition, we explain how the operators Dk can be used to extract formulas for a set of
observables and prove several properties that are relevant to the problem we consider.

3.3.1 Definition of Dk

We start with the symmetrization formula for FA(Ul,. .. ,Um) (here A E Sign+), given in
Proposition 3.2.9:

Fx(u,... , Um) = (1-q)
=1 (1 -sui)rim OESin

H
1 a<O3 r

u,() - qu,() i-j
a(uo -s8

We are interested in setting um = Um-k+1 = s for each k C {0, ... , m} in the above
expression, which is the content of the following lemma.

Lemma 3.3.1. Let m > 1, k 2 {0,. .. , m} and A E Sign' with Ai > Aji+ for i = 1,... ,m-1.
Then we have that

1 (1 - q)m
Fa(ui,..., Um-k, s,... , s) ( 2)k Hm-k(j - su)

(1 -s ) =1 ( u)

s(1 q) k(k-)/2

1 - s2 J
m-k i )k ug(a) - qu)m-k - -k

1 - s ESm-k 1 a</3 m-k U=-\ U) i= U(i)

if Am = 0, AMn 1,..., Amk+1 = k - 1 (if k = 0 this condition is empty).
F\(u1,... , Um-k, s,..., s) =0. If k = m the sum over Sm-k is replaced by 1.

(3.3.2)

Otherwise

Proof. We proceed by induction on k with base case k = 0 true by (3.3.1). Supposing the
result for k we now show it for k + 1.

By induction hypothesis we may assume that Am = 0, Am-, = 1,... , Am-k+1 = k - 1, for
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otherwise the expression is 0 for all Um-k in particular for Um-k = s and there is nothing to
prove. Consequently, we have that

1 (1- q) m  s( _ q) k(k-1)/2

F,\ (u ,...,)Um--k , s2...,2 )m8 --k 1 2
( -s ) i_= 1 - SUi) -S2

x

m-k k Eum 

- qs

i=1 1 u ESm-k 1<a<#<m-k

u,(,- qu(,3 ) tfk ( Ua(i) - s At-k

o(-) UcO() \ 1 - Suo(i) )

Since Ai > Ai+ 1 we know Am-k > Am-k+1 + 1 = k. We notice that (Um-k - s)Am-k-k

divides each summand and so the total sum will be 0 unless Am-k = k. Let us assume that
Am-k= k, which means Ai > k for i < m - k. The latter implies that each summand for
which -(m - k) z m - k is divisible by (Um-k - s) and so vanishes when Um-k= s. This
reduces the sum over Sm-k to a sum over Sm-k-i and if we substitute Um-k = s we see that

1q)m s( - q ) k(k-)/2
FA (ui, . k. Um--1, s, S, .. ., s) = 1 s2)k+H mk-(i _ su) (s2 ) S2 X

H u,) - qu(#)
1<a<<m-k-1 O(a) NU

m-k-1
uo(i) - qs

Ua(i) - S

m-k-1( 8 -k
U (i)-s

1- SUo(i)J

Upon rearrangement the above equals the expression in (3.3.2) with k+ 1. The general result
now proceeds by induction on k. E

Put M
which can
formed by

= {1, . . . , m}. We record the following alternative representation of FX(ui,.. ., um),
be obtained from (3.3.1) by splitting the sum over the possible variable subsets

{ u(m), . . , Ua(m-k+1)} (these correspond to sets I below and le = M/I)

F(, ., um) =j k UjT(o)- qu,"(") x
(- 1 u E -Sk TESm-k I={i1,---,ik}CM a=' 3=1 UjT() -Ua(a)

I.=..,---.jm-k}

Ujo,(Oe) -u k U2  -S Am-X+i uj,(,) - quj,( m-) UJ,(Y) -Se~a )Cea2) O-(X) (6)(2)T-k

1<a1<a 2 <k C(ai) a(a2) x=1 (x) 1 1<2m-k 3(01) 3(2) y=1 -

(3.3.3)

We introduce some necessary notation. Define operators T,, 2 that act on functions of m
variables (ui, . . . , um), by setting ui to s. I.e.

TS,'F(ui,. . . , um) = F(ui,.. . , U-1, s, Ui+11,... IUm).

We also consider the function

Fk(=l, -Uk) ( ) z
ri11- SU') OESk

H uo(a) qu, ) 1 -J(UO(i) - 8

U<a'6< a(ce) -UO'0 =11\(I - SUO0 (i)
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Notice that Fk(ui, ... , Uk)= FA(Ul, ... ,uk) with A= (k - 1, k - 2,... ,0). In particular, Fk
is a symmetric rational function.

Let k E M be fixed. For a subset I C M with I ={i,... , ik} we write F(uI) to mean
F(usi,... uik), whenever F is a symmetric function in k variables. We also write Fk(S) to
be Fk(s, s, . . . , s) and from Lemma 3.3.1 we have

F (S) = sk(k-1)/2 1 - )k(k+1)/2

With the above notation we define the following operators.

Definition 3.3.2. Let m E N and M = {1,..., m}. For 1 < k < m we define the operator

D on functions of m variables to be

u- - qui Uj - -s FkI
DS Uj:=Uifl (uis - k F Tus). (3.3.4)

ICM:III=k iEI;jZI jI 3 F(S) iEI

Remark 3.3.3. One readily observes that Dk is a linear operator on the set of functions
in m-variables, and also satisfies the property that if fr(i,... ,um) converge pointwise to

f (Uj .. . UM), then Djr converge pointwise to Dkf away from the points Ui - uj for i j.
The key property of Di is given in the following lemma.

Lemma 3.3.4. Let m > 1, kE {1, ... , m} and A E Sign+ with Ai > Aj+ 1 for i = 1, ... ,m-
1. Then we have that

DiFA(Ui,. . . U, U) = 1{Am-O,Am-j=1,...,Am-k+1=k1}FA(U1,. . . ,Um). (3.3.5)

Proof. Using Lemma 3.3.1 and that FA is symmetric we have that DFA(,. . . , UM) = 0
unless Am = 0, Am-, = 1,... , Am-k+1 = k - 1. We thus assume that Am = 0, Am-1 = 1,... ,
Am-k+1 k - 1. Let p C Sign+-k be given by /ii = Ai - k. It follows from Lemma 3.3.1 and
(3.3.1) that

k k

D kF (ui . .u .j , u)= s F (UI) uj F-(qscX ~ ~u -ul um . 1 u. - sq) 1 H -suj)F

)k
Uj - -i 1 1 - sUj

IcM:1II=k iEI;joI U2 -U

Using Proposition 3.2.3 and (3.3.1) we can rewrite the above as

(1 q)m A f jk U -qUi ,(,) X
fJm( E EU~ E 1111ii=1) T={i1,---i CM o-ESk 'rESm-k a=1/3=1 U2 ) - )

Ic={j1,.--Jm-k}

Uia(al) -qui, (a 2 ) k Ua(aX) -8 X-1 in(, uj(, -k A11~)
< -- .1!sc.1 U= s ) 1<u --2Tfl) - qUj'(62) y=1 u( -

1<cll<c 2 k uMai) ~ Ui2) x=. 1 k 1 -SUe(z) / 1</3v<f 2<m-k Jr(p) - j(l2) y=1 - sui()/
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By virtue of (3.3.3) the latter is exactly FA(ul, . . . , um) as desired.

3.3.2 Observables from Dk

This section is devoted to explaining how one can use the operators Dk to analyze the
probability measures Pf on PN. These measures were discussed in the beginning of Section
3.1.1 and IPu,v is a particular example. In addition, we will prove an interesting property for
the first operator D' , which we believe to be of separate interest. Throughout this section
we require that q = s.

Let us summarize the assumptions we need to make the statements in this section valid.
Assumptions:

" N E N and u,... , UN are pairwise distinct complex numbers;

* f : Sign+ -+ R is supported on signatures with distinct parts;

" for w E PN we define the weights

oo N

If(W; z) := H W, (w (i, j)) x f (A N(W;(336

i=0 j=1

" the weights in (3.3.6) are absolutely summable in some neighborhood of the point

(U. .. ,UN) and we denote

EWf (W; Z) =: Zf (zi, . . ., ZN) = Zf (Z);)

WEPN

" for every w C PN we have )4fW(w;u) > 0 and Zf(u) > 0.

Notice that under the above assumptions PIf(w) := (';u is a probability measure on PN-

For the remainder of this section we will work under the above assumptions.
Let us introduce the following definitions

Definition 3.3.5. For m, r > 0 we define

Sign* = {A C Sign+ : Am < Am-, < '.' < A1}, Sign*, = {A E Sign* : Am = 0,.. , Am-r+, = r-

Suppose k E {1, ... , N} and 1 <M1 < m 2 < - <ik < N are given. Set Si = Sign*,. for
1,... Ik and define

A(m) = A(mi,..., ik) = {w : Am i(w) e Si, i = 1,..., k} and Wf(m; z) = W2(w; z).
wEA(m)

(3.3.7)

Lemma 3.3.6. Assume the same notation as in Definition 3.3.5. Then we have

(/f(m;u) _f(D D -- (D338)
Pf (A (m)) .----- M~)U (3.3.8)

ZV (u) ZV (u)
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We view Lemma 3.3.6 as one of the main results of this article. Under very mild conditions
on the function f it provides formulas for the observables Pf (A(m)), which form a large class
of correlation functions that can be used to analyze the six-vertex model. In the context of
this chapter (3.3.8) plays the role of a starting point for our asymptotic analysis, and we
hope that it will be useful for studying other six-vertex models in the future.

Proof. Repeating some of the arguments from Section 3.2.3, we have that
k

Wf(m;z) = ... S F1 i//i-(zm +1, .. . , )mj)F(/ ), and

A k Sk pik--1 Sk-1 p E 31 i=1

Z(z) = 3 F 1(zi,... , Zmk)F(PI), where F(p) = FA/ (Zmk+1, . . ., ZN)f(A)-
tzESign k AESign*

(3.3.9)

The statement of the lemma will be produced if we apply D' D 2 ... D k (in the z-variables)
to both sides of the second line of (3.3.9), set z = u and divide by Z(u). We provide the
details below.

We start by applying D k to get

Dk S F(zi, . . ,Zmk)F(k) =5 D F,(Z, .. ., zm)F(M) = F, (zi, . . . , z,,)F(p).
ptESign k 4eSignM~ pESk

The change of the order of the sum and the operator is allowed by the linearity of D'k and
the absolute convergence of the sum (see Remark 3.3.3), while the second equality follows
from Lemma 3.3.4. We next use Proposition 3.2.5 and rewrite the above as

S E F (zi, ... ., Zm A)Fk/A(Zmk_1+1, ... , Zmk)F(p k). (3.3.10)
Ak ESk XESign+mk-1

If ILk E Sk, we know that it has all distinct parts. The latter implies by Remark 3.2.12
that F.k/A(Zmk-1+1,..., Zmk)= 0 unless A has distinct parts. Consequently we may rewrite
(3.3.10) as

F,\(zi, ... , ZMk_1 )FpA /A(ZMk_1+1, . .. , ZMk ) F (1-). (3.3.11)
1k ESk AESign k-1

Applying D k- 1 to (3.3.11), using its linearity and Lemma 3.3.4, we get

>1 E FA-1(zl, ... ,Zmk _)FA/kAk-1(Zmk_1+1, . Z. . , Zm)F(gk). (3.3.12)
AkESk p k-1ESk-1

Repeating the above argument fork -2,...,1, we see the result of applying D' D 2 ... D D
to the RHS of (3.3.9) to be

k5 - 5 iFi/ii-1(zmij+1, ... . ,ZmJF(/_,k), (3.3.13)
AkESk k-1 lE Sk-1 pLE S1 i=1
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with the convention that mo = 0 and p0 = 0. From (3.3.9) the latter equals Wf(m; z) and
so (D' D 2 ... DkZf )(u) = VVf(m; u). Dividing both sides by Z(u) and recalling that
Pf (A(m)) = Z(u)1 Wf(m; u) proves the lemma. E

In the remainder of this section, we explain how our first order operator D1 can be used
to derive an interesting recurrence relation for )/Vf(m; z) in terms of the same quantity for
a system of fewer parameters. The exact statement is given in the following lemma.

Lemma 3.3.7. Assume the same notation as in Definition 3.3.5. Let n = (m2 -1,.... , M-
1) and z/{ zi} be the variable set (z 1,... , z1, zi+ 1, ... , ZN). Then we have

N M1M1

W-(m; z) 1 = q z- 1 W( )'(ii; z/{zi}), (3.3.14)
j=m1+1 s Z. i=1 - Z =1zJi Z 1 - sZj

where g : SignN - R is given by g and A is such that

Aj= pj+1 for i < N - 1 and AN = 0-

This result will not be used in the remainder of the chapter, but we believe it to be of
separate interest as we explain now. In order to use Pf (A(m)) to analyze a six-vertex model
it is desirable to have closed formulas for these quantities. In this chapter we will work with a
particular model, for which Z has a product form. This will allow us to find contour integral
formulas for the RHS of (3.3.8) as will be explained in the next section. For other boundary
conditions; however, one might not be able to use (3.3.8) to derive formulas for Pf (A(m)) and
a different approach needs to be taken. Having a recurrence relation for W(m; z) provides
a possible route for finding closed formulas for these correlation functions. In the base case,
which occurs when k = 0 or equivalently m = 0, we have that Wl(o; z) = Z(z). If one
has a closed formula for Z(z) then (3.3.14) can be potentially used to guess a formula for
WIf(m; z), by matching the base case and showing it satisfies the above recurrence relation.
A similar approach was used in [38], where a determinant formula for Wf (m; z) was guessed
for the six-vertex model with DWBC and shown to satisfy such a recurrence relation. The
key point is that the recurrence relation we prove holds for general boundary conditions.

Proof. For p E Sign* we define A E Sign* by Ai = ti - 1 for i 1,...,m- 1. We apply
D,, (in the z-variables) to both sides of the first line of (3.3.9) and get

k

D 1 W (m; z) =Z- S 11 Fi.-(zm_ 1 +, . . . , Zmi)F(...)D F,1(zi,..., zmi).
AkESk gk- -Sk-1 WS, i=2

In obtaining the above we used the linearity of D 1 and the convergence of the sum to
change the order of the sum and operator. Using that D 1 F,1(zi, ... , Zmi) = F 1(zi, ... , Zmi)
whenever p E S1 , we deduce

D 1 W1V (m; z) = Wf(m; z). (3.3.15)
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On the other hand, using the definition of D' and Lemma 3.3.1, we have

mi

M:1D 1 F'1(zi, . .. , ZM1) =

M1
zg(' - "z zj - s F[,1(zm1/{zj}),

j=jh Zi - zi I - sZj (3.3.16)

where zm,/{zi} stands for the variable set (zi,... , zi 1, zi+ 1 ,..., zM 1). Replacing (3.3.16) in
our earlier expression for D' )lVf (m; z) and utilizing (3.3.15) we conclude that

m1

Wf(m; z) = q
1 -sz

A*s k , /I-1 Csk_1 ICSsi i

M1
i (z - qzi zj - s

j=1,j=l si
k

I F ...(zms_+i, . ,zmi)F(Ikp)Ffl(zmi /{Zi}).
=2

(3.3.17)

We notice from the definition of F\/,, that for A E Sign*, and pu E Sign*, we have

b a
b

FA/,(za+,. .. , Zb) -- I I - s x F 4 (Za+1,. . . ,Zb).

j=a+1 3

Substituting this and the definition of F in (3.3.17), we arrive at

N m 1 mI

Wf (m;z) = 1 zj-sq 1-q
j=m1 - Z 1 z i

ES
t'ESignM~ i-i

E
[Lk ETk_

E
ftk-1 ETk-2

k

1 Ffi/fti-l(zmi_+1, ... zmi)G(k)F1i1(Zmi /{zi}).
i=2

Above Ti = Sign* _1,i and G(A) EAeSign. F/ (Zmk+l,..., ZN)f(A). Using the branching
relations (3.2.4), (3.3.9) and the definition of g we recognize the above identity as (3.3.14). El

Remark 3.3.8. So far in this chapter we have considered the vertically inhomogeneous six-
vertex model; however, one can introduce horizontal inhomogeneities as well. A particular
way to do this is given in [33], where the weights depend on an additional set = {lj=o,...
of inhomogeneity parameters (our model corresponds to setting j = 1 for all i). We denote
the partition function in this case by F\(ui,... ,urn I) and refer the reader to (1.4) in [33]
for the exact formula (the variables s. in that formula need to be set to q- 1 / 2 ). In a certain
sense, one can interpret Dk as acting on the first k columns of the six-vertex model. If the
first k inhomogeneity parameters -,. . , k_1 are all the same, then we can find an equivalent
to Lemma 3.3.4, but in general no such extension seems possible. Let us explain how this
can be done in the case k = 1. If we set

1ss - sqyl0) # 0(s(-)T"i'SE '
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then one readily verifies, as done above, that D'Fx(ui,... , uZ) 1{A=O} Fx (ul, , Um.. ),
whenever A has distinct parts. The latter can be used to derive a recurrence relation for
'Vf(m; ul.) in terms of /V(mi; u/{ui}J1E) (here T1 Z = {j}j=1,2,...), which generalizes
(3.3.14). The proof is essentially the same as the one presented above.

Remark 3.3.9. In the case of the domain wall boundary condition for the six-vertex model,
which corresponds to f(A) = 1{A=N-1,...,AN=O} above, the quantity Z (u)--Wf (m; u) was
investigated in [38] under the name generalized emptiness formation probability (GEFP).
In this setting, (3.3.14) naturally corresponds to equation (3.6) of [38], which is the key
ingredient in finding closed determinant formulas for the GEFP. The derivation of (3.6)
in [38] is based on the quantum inverse scattering method, and we see that the operators
D' (and their generalization outlined in Remark 3.3.8) provide an alternative route for
establishing the recurrence relation.

3.3.3 Action on product functions

Equation (3.3.8) shows that understanding Pf (A(m)) requires knowledge of how Dk act on
the partition function Z. In this section, we will see that if Z has a product form, then
the action of the operators is relatively simple.

In the following sequence of lemmas we investigate how D' D 2 ... D k acts on a func-
tion F(z) of the form F(z) = F(zi, . . . , zm) = H 1m= f (zi).

Lemma 3.3.10. Let m > 1 and 1 < k < m be given. Suppose that q (E (0,1), s > 1,
u1,... ,um > s and ui $ uj when i # j. Let f(z) be a holomorphic non-vanishing function
in a neighborhood of an interval containing s, u1 , ... ,um. Put F(z) = F(z1,...,zm)

M, f(zi). Then we have that

(D F (u) = F(u) - q 2 x
S- sq (2wrL k.

f..1f- l Fk(Z1,...,Zk) H qzj - u) z-sq k dz (- - ) 
det

Fqzi - z _ im Fk(S) z -ui zj - s f(z3 )

The contour -y is a positively oriented contour around the points u1 ,... , um, and does not
contain other singularities of the integrand. Such a contour will exist, provided ui are suffi-
ciently close to each other.

Proof. The proof is essentially the same as that of Proposition 2.11 in [24]. Firstly, we notice
that the contours will always exist, provided ui are sufficiently close to each other. Indeed,
the singularities of the integrand that are not singularities of f are precisely at ui, s, 0,
zi = q--zj and at s-' (the latter one is a singularity of Fk). Since u are bounded away to
the right from s (and hence s-1 and 0 ) and the function f does not vanish in a neighborhood
of an interval containing ui we may pick the contour -y so as to exclude all singularities of the
integrand, except possibly for zi = q--zj. However, if ui are sufficiently close then we can
choose -y to be a small circle around those points, which is disjoint from q -y. This excludes
the remaining singularities.
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We substitute in (3.3.18) the Cauchy determinant identity

k (k -1)
q 2 H1 i<j!k(zi - zj)(zj - zi)

ll l (qzi - zj)

and calculate the residues at zj = u1.. The Vandermonde determinants in the numerator
prevent any of the lj's to be the same. If they are distinct and I ={l, . 1. . , l} one calculates
the residue to be

1 - u - Fk(u' ) J-
k! u- - sq F(S) 11

30I iEI;jIO

uj - qui

uj -

The expression in the bracket is precisely Hi, 1 Tu,SF(u). Summing over all permutations of
I removes the k! above and summing over I we recognize precisely (DkF)(u) as desired. D

For k <r K m we let Dk be the operator that acts on the variables u, . , Ur. Then we
have the following result.

Lemma 3.3.11. Suppose 1 < k < m, m 2 < ... mk < m. Denote by Mi = {1,. .. , m}
for i=1,...,k. Then

DlD 2-...-D=ml m2 M

k

i 1EM1 i 2 EM2 /1 1  ikEMk/Ik1 r=1 kjEMr/Ir Ui uu sq

111fk 1-q ui.,-sq r1 k1r=1 1-suir 1I-Sui,)r Ti, weeIi
Fk (S) Uj,, where Ir = {i,.. ,

x

(3.3.19)

The above is understood as an equality of operators on functions in m variables.

Proof. We proceed by induction on k with base case k = 1
Suppose the result is known for k and we wish to show it for
of D and the induction hypothesis we have

D' D2 2 D k D k+ -mi2 Mk mk+12 2/1

k 1 (ur-sq
r=1 1-sur 1-sur-

Fk(S)

being just the definition of D'.
k +1. Substituting the definition

k

z E(/k 1 - qUi U, -

ik(EMk/Ik-, r=l \jEMr /Ir U3 - Uir Uj sq})

kk+
k ~ z u - qui U - s Fk+1(UI)

I *ur is Uj - u i u -sq Fk+1(S)r=1 ICMk+1 iE1I 3JEMk+1il,
|I|==k+1 j E Mk+11/

Suppose that ik i' I. Then

u _ - qui U ) - k+1
Tu ks - u-qujMik7 ~ ~ ri U- -i r u - - sq

iEI~JEMk+1/1 jEMk+1/g (

Fk+1(uI)

Fk+1(S) HlUiEI
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since one of the factors in the above expressions is (uik - s)k+1 and it vanishes when Uik = s.
It follows that to get a non-zero contribution we must have ik E I. Repeating the argument
we see that Zr E I for all r = 1, ... , k. Thus I = Ik U {k+I1 } for some ik+1 c Mk+1 are the
only cases that lead to a non-zero contribution. If I does have this form we see that

k

I=I TuiIS
r=1

uj - qui . 1 -. (u- 8k+1 Fk+1(I) T

iEl;jEMkk/I iEz- ) k 1(S) iCI

uj- quji+ uj - qs

uj - Ui+i Uj - s
.jEMk+1/

j ) k+1

( uj - sq

Fk+1 (s,-,s, Uik.l) k+1

Fk+1(S) r

uj - -ui+1 Uj - s Fk+1(S... - - s,3,us k+1
n 3 -qu i u Fk ~~~t+tI1 Tu4 ,.- ui+ 1 . uj - sq Fk+ H(S)

jEMk+l/I jjMk+ /1 r=1

From Lemma 3.3.1 we know that Fk+ 1(s,. . . , ), k) = Fk(S)_ lU* . Subsi-

tuting this above and cancelling Fk(S) we get

k+1

DM D M D -Dk k+1
i1E M1i2 EM2/11 ik E Mk/Ik _ iik+1 EMk+1/Ik r=1

k+1 1-q ui-s r-1
r=1 1-suir 1-suir

Fk+1 (S)

jE Mr/Ir n3-n. nisuj-uuj -sq

k+1

r=1
This proves the case k + 1 and the general result now follows by induction.

Lemma 3.3.12. Suppose 1 < k < mi < m 2 < ... < Mk K m. Suppose that q (0, 1), s > 1,
'u 1,... ,um > s and ui $ uj when i # j. Let f(z) be a holomorphic non-vanishing function
in a neighborhood of an interval containing s, u1,...,um. Put F(z) = F(zi,... ,zm)

[= f(zi). Then we have that

f(S)k

(27rt)k j zi - qzj

qzr - ui

S][ Zr- Us }

k-r+Z

zr - s)

dzr

f(zr)zr(q -

(3.3.20)

The contour -y is a positively oriented contour around the points u1,... , um, and does not
contain other singularities of the integrand. Such a contour will exist, provided ui are suffi-
ciently close to each other.

Proof. The proof is similar to that of Lemma 3.3.10 and by the same arguments we know
that the contour -y exists, provided ui are sufficiently close.
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We calculate the residues at zr = u,. The Vandermonde determinant in the numerator
prevents any of the ir's to be the same. The residue at z1 = ui, ... , Zk = Uik is given by

k m _ k k 1-q U rl-sq
Ui - s Us, -UZ,1 = 1-sui,. 1-sui, f

r= jlU - sq ) I~~~ i u = i(q -)Fk (S)

k M~r k-r+l F F(U)f (S k
fl(q - I) ui , qi - Ursk

Performing some cancellations and recognizing the term inside the square brackets as
k[1 T . F(u) we recognize precisely the term on the RHS of (3.3.19) corresponding to

i, ... , ik. Summing over all the residues we arrive at the desired identity. LI

3.4 Weak convergence of (Y1,. , Yk)

In this section we use our results from Section 3.3 to derive formulas for Pu,,(Y1 < m 1 , ... ,
Yk < Mk). Afterwards we specialize our formulas to the case when all u and all v parameters
are the same and show that under the scaling of Theorem 3.1.3 the joint CDFs of the vectors
(Y,..., Ykk) converge to a fixed function as the size of the six-vertex model increases. We
finish by identifying the limit as the joint CDF of the right edge of the GUE-corners process
of rank k and proving Theorem 3.1.1.

3.4.1 Pre-limit formulas

The goal of this section is to use the results from Section 3.3 to obtain formulas for P 1,,(Y <
m1,..., Y _ Mk), where mi E N for i = 1,... )k and Y? are defined in Section 3.1.1. We
summarize the result in the following proposition.

Proposition 3.4.1. Fix parameters as in Definition 3.2.14. Let k and mi for i = 1,. . . , k
be positive integers such that 1 < k < m1  m 2 < ... < ink N. Then we have

M k~ km -

Pu,v(Y1 ' M 1 ,...,Y Mk) = ( l-qsv k m P i u- s q-k
(r=1 1 - 3 rs1 i/_ 1 u- sq / (27rt) ' (3.4.1)

z. - Mrz -u zr -sq k-r+111 Zj U(V1f qzr-ui Hr sq ~ - Zrvj dZr
1<i<j<k Z - r=1 \i=1 Zr - (Zi r -= 1 - qzrvj zr(I s Zr)

The contour -y is a positively oriented contour that contains u 's and excludes all other
singularities of the integrand. Such a contour will exist, provided ui are sufficiently close
to each other.

Proof. In what follows we adopt notation from Sections 3.1.1 and 3.2.2.
Let E = {w E PN : w(0, j) = (0, 1; 0, 1) for i = 1, . . . , N }. From our discussion in

Section 3.2, we know that Pu,v(E) = 1. Consider the map h : E - PN, given by
h(w)(i,j) = w(i + 1,j). I.e. h(w) is just the collection of up-right paths w, with the ze-
roth column deleted. One readily observes that h is a bijection and the distribution of h(w),
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induced by the distribution of w, is given by P9, where g([p) = x f((p + (I)N; V, p). We
recall that A = p + (+)N is the signature with Ai = [i + 1 for i = 1,..., N and f(A; , p) is
given in (3.2.16).

Indeed, we have for w E E, that

(sN O N N N 1 - sW W

= q) VFfw.(W(ij))f(A(w);vP pX / (w; u).
(q;=)N j= N _i= -s

The above shows that the weights )42q(h(w); u) are constant multiples of WfV(w; u), and so
the probability distributions they define are the same. The partition function Zg(u) differs
from Z(u) by the same constant factor (-s)N N 1sui and b

(q;q)N Hi= U y(.219 qul

Z9(u)=FJ(1 quivj).
i=1 (j=1 1-uv

(3.4.2)

One easily observes the following equality of events

{w E E : A mi(h(w)) E Sign*, i = 1, ... , k} = f E E : Y7(w) mi, i = 1,..., k}.

For example A m i(h(w)) E Sign* 1 is equivalent to Am (w) = 1, which by the conservation of
arrows in the region {(1, y) E DN : y = 1,... ,m1} is equivalent to Y1 (w) < mi. The above
equality of events, coupled with P,,,v(E) = 1 and the previous two paragraphs implies

Pu,v(Y 1 Mi1 , . . , Y < Mk) = (A(m)), (3.4.3)

where A(m) is as in (3.3.7). In view of (3.3.8) and (3.4.2), we conclude that if U1 ,... , UN

are pairwise distinct

(D D 2 --. D kZ9)(u) N 1 - quivj
FU, (Y m< , .l ... , Ykk - m) = 1 M2 g , where Z9 (u) = 1K 11 U 1

i=1 j=1
(3.4.4)

The result of the proposition now follows from (3.4.4) and Lemma 3.3.12 when u1 ,.. .UN

are pairwise distinct. By continuity it also holds if some are equal. E

3.4.2 Asymptotic analysis
While most of the results below can be extended to a more general choice of parameters, we
keep discussion simple and assume that all u and all v parameters are the same, and that
S > u > s. With this in mind we have the following definition.

2

Definition 3.4.2. Let N, M c N and fix q E (0, 1), s = q-/2 S+S > u > s and v E (0, u 1 ).
We denote by PfMA the probability measure IPu,v of Definition 3.2.14, with ui = u and vo = v
for i = 1, ... IN and j = 1,..., M.

With the above definition, we have the following consequence of Proposition 3.4.1. If
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1 < k < mi : M2 < - < Mk< N, then

Fu,v (Yi mi, ... ,Yk < mk) = q f -- J - x(27t 1<<j<k zi - qzj

k qzrj-U - s r (Zr ~sq k-r+1 M

r1 zr-u uZ-rsq Zr - qZrV -s

where -y is a contour, containing u and excluding other singularities of the integrand. Equa-
tion (3.4.5) is prime for asymptotic analysis and we use it to prove the following proposition.

Proposition 3.4.3. Let PNM be as in Definition 3.4.2. Put a v_-q - and c=V u(v 1 -Sq)(v-2s)

(2a2) 1/2 bj , where

a2 - (1 - q)v- 1

(v- 1 -s) (v-1 - sq)
(q+ 1)s - 2v- 1  (q+ 1)s - 2u 1

(v-1 - s)(v-1 - sq) (u - s)(u - sq) _

1 1
and b = I - I

u-s q-lu-s

Let -y > a and assume that N(M) > y - M for all M >> 1. Then for any k > 1 and
X1 - -. x, XXi E R we have

lim INM (Y i - aM < 1 1det
M-+oo U'V CV M 27rt 1+tR

e2
y -i-1 y /2+xjydy i~

Proof. Put mi = aM+ cxi M+hi for i = 1, ... , k, where hi E (-1, 1) are such that mi E N
and mi 1 m 2  - - - < mk for M sufficiently large. Using (3.4.5) we reduce the proof of
(3.4.6) to the following statement

m q-k f - kk-r+ MG(Zr)+CVIxr(g(ZZrr)+hr(Zk) rZrMm J M i z- - qz H (, Zr(1 - SZr)
M-oo (2t)k<i<j<k r=1

= det [1 If
27rt iRta

Y J-i-le 2/2+xjydyj l

where -ym are contours that contain u and do not include 0, q- 1 v-1 , s or points from q - -ym
and

G(z) = a log (zi:'i-q)+ log V11 sq) and g(z) =log .z-u u-s
z - u u- sq V-- - qz v-1 - s z - u u - sq

(3.4.8)
Our goal is to find the M -+o o limit of the LHS of (3.4.7) and match it with the RHS. Let

us briefly explain what the strategy is. We will find specific contours -YM = yM(0) H yM(1),
such that Re[G(z)] < 0 on -yM(1) and the integrand (upon a change of variables) has a
clear limit on -yM(0). The condition Re[G(z)] < 0 will show that the integral over 7M(1)
decays exponentially fast, and hence does not contribute to the limit. The non-vanishing
contribution, coming from -yM(O), will then be shown to equal the RHS of (3.4.7). The latter
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approach is typically referred to as the method of steepest descent in the literature.

To simplify formulas in the sequel we denote v- 1 by w. We start by analyzing the
functions G and g. From (3.4.8) we have G'(z) = a (1q)u _ (q)w and so G(s) = 0a(z-u)(qz-u) (z-w)(qz-w)

and G'(s) = 0 by our choice of a. We observe

+Re [G(s + ty)] = Im (- q)w a( -qW( 1 -q)yA(y),
dy 1(s + ty - w)(q(s + ty) - w) (s + ty - u)(q(s + ty) - u)]

where

A(y) = (u -s) (u -sq) 2q - (q+ 1)u 2q - (q + 1)w
(w - s)(w - sq) ((s - u) 2 + y2)((qs - u) 2 + q2 y 2 ) ((s - W) 2 + y2)((qs - w) 2 + q2y 2 )

We observe that

A (0) 1 2q - (q + 1)u _2q - (q + 1)w <0
(w - s)(w - sq) _(u - s)(u - sq) (w - s)(w - sq)

where we used u, w > s, q E (0, 1) and w > u. In addition, if we put the two fractions in
the definition of A(y) under a common denominator, we see that the sign of A(y) agrees
with the sign of a certain quadratic polynomial in y2 with a positive leading coefficient. This
implies that as y goes from 0 to oc, A(y) is initially negative and then becomes positive,
i.e. Re [G(s + ty)] initially decreases and then increases in y > 0. A similar statement holds
when y < 0. In particular, we can find e > 0 small such that Re [G(s + ty)] < 0 for y E [-e, e]
and Re [G(s te)] < 0.

Using u, w > s, q E (0, 1) and w > u, we notice

u -- s ) o w - sq) _O<.G(0) = a log (+) log (=: -c 0 < 0.G() alo u - sq W - s

We next observe that

,,& (1-q)w (q +1)s - 2w (q +1)s - 2u ~
a2 = G (s) = -> 0.

(w - s)(w - sq) [(w - s)(w - sq) (u - s)(u - sq)_

Consequently, we have that near s we have G(z) = a2 (z - S)2 + a3 (z - S)3 + - and
g(z) = bi(z - s) + b2 (z - S)2 +- - In particular, if we choose e sufficiently small we can
ensure that

G(z) - a2 (z - s)21 < Rjz - s13 and jg(z) - bi(z - s)l < Rjz - s12, when Iz - sl < 6,
(3.4.9)

where R can be taken to be jb 2 |+ a3l + 1. For the remainder we fix E > 0 sufficiently small
so that (3.4.9) holds and cE := -Re [G(s te)] > 0.

In what follows we define the contour Y. Let B1 and C1 be the points u and q-lu in
the complex plane respectively, and also denote w and q-'w by B2 and C2 respectively. For
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i = 1, 2 we let wi be the Appolonius circle' of the segment BiCi, which passes through the
origin. By properties of the Appolonius circle, we know that XjY is a diameter for wi, where
Xi = 0, Yi = 2 and Y2 = 2. Observe that since w > u we have that w, is internally
tangent to w 2 at 0.

Let s ty, be the points on w, that lie on the vertical line through s, with y' > 0. YM

starts from s - ty, and follows w, to s+ tyi counterclockwise, afterwards it goes down to to
s + LM-1/ 2 , follows the right half of the circle of radius M-1/ 2 around s to s - tM-1/2, and
then continues down to s - ty,. See the left part of Figure 3-6. Observe that by construction
u is enclosed by -yM and 0, s, s-1 are not. In addition, we notice that since q - w, lies to the
left of q -Y = 2- and the latter is less than s if u < S+S, then q - ym lies to the left of yM.

T s m2This means that 'yM satisfies the conditions we stated after (3.4.7).

8 + yi

U

S -Y

q-iu
W : )1

(0)

S+ f

Figure 3-6: The contour 7M (left) and yM(0) and yM(1) (right).

We now investigate the real part of G(z) on yM.
circle, we see that for z E w, we have

Using the properties of the Appolonius

Re a log qz-u u- = alog Iz-qlu\+ a log (qu-qs =
Rz-u u-sq}J | z-uj) \u-sq)

a log + a log , q while on the other hand
| X2B2|) (U - sq)

Re log w Zw-)] = log ( WjZI +log <; log +log
Iw_-qz w-s |qw - z| qw - qs( qw - qs)

'For r E (0, 1), the Appolonius circle of a segment BC with ratio r is the set of points X such that
= r. For points inside the circle we have B < r and for those outside 4B > r. If X and'Y denote

the (unique) points on the line BC, which satisfy 4B = r = 9, with X lying inside and Y outside the
segment BC, the Appolonius circle of BC with ratio r, is the circle with diamater XY.
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Adding the above inequalities we see that for z E w1, we have

Re [G(z)] < Re [G(0)] -co < 0. (3.4.10)

Equation (3.4.10) in particular says that Re[G(s t tyl)] < -co, and since Re[G(s + ty)]
decreases and then increases in jyj, while Re[G(s tc)] < -cE < 0, we know that Re[G(s
ty)] < -min(co,cE), for |yj E [E,y21. Let us denote by -yM(O) the portion of -y-, which
connects s tE near s, and by 'yM(l), the rest of -m - see the right part of Figure 3-6.

The above estimates show that Re[G(z)] < - min(co, cE) for z c 7M(l). This suggests,
that asymptotically, we may ignore -yM(1), as its contribution goes to zero exponentially fast.
Explicitly, if we denote by H(zi,. . . , Zk) the integrand in (3.4.7) then we have

lim ... H(z,... k)dz - - H(zl,...,zk)dz =0. (3.4.11)
M-oJ' Mu fTf(0) fTu(0)

We isolate the proof of the above statement in Proposition 3.4.4 below and continue with
the proof of (3.4.7).

In view of (3.4.11), the limit as M - oo of the LHS of (3.4.7) is the same as that of

q -k Z - k k-r+1 MG(z,)+cVM5x g(z,)-a g(z, ) dz,

(27rt)k 7M(O) hM(0) 1 -z z-qj H ( Zr - s zr(I - szr)
1 i<i~k r=1 ZSJZ(Sr

(3.4.12)
We do the change of variables y, (Z, -s)M 1/ 2 and set F to be the contour that goes up
from -too to -t, follows the right half of the circle of radius 1 around 0 to t, and then
continues up to too. Using (3.4.9), we observe that (3.4.12) equals

(-q) f y - Yj

(27rt)k ... if M- 1/ 2 (y, _ qyj) + s(1 - q)

Si<j<k13)
M-11/2 yr + s(1 - q) kr+1 ea2yr+cb1xrYr+O(M-1/2) {IyrI<M-1/2E (dyr

Hyr (1 - S2 - M- 1/ 2syr)(M 1/ 2yr + s)

The pointwise limit of the integrand as M -4 oo is given by

k d
(-q)' rl (, - Y) ea2y +cbixryr yr+

1<i<j<k r=1

Since a2 > 0 we see that the integrand in (3.4.13) is dominated by C H$_1 e-a2yr 12/2. From
the Dominated Convergence Theorem the M -+ oo limit of (3.4.12), and hence (3.4.7) is

1 f .. f (i k 2dyr

(27rt)k j,... r, _ j) Li Ca2yr+cblxryr k-r+1. (3.4.14)
1<i<j<k r=1 Yr

What remains is to show that (3.4.14) and the RHS of (3.4.7) agree. We perform the
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change of variables yj - (2a2) 1/ 2 yi, replace H1<< (yZ-y) Hr=1 2- 'with det [y-] 1,

set F' = (2a 2) 1/ 2 F and use (2a2)- 1/ 2 bic = 1. This allows us to rewrite (3.4.14) as

(2r)k ,- j det[y - -% 1]j eYg/2+xcr dyr.

Using properties of determinants we rewrite the above as

det [ yij-1eY2/2+xiYdy .

. ij=1
(3.4.15)

By Cauchy's theorem and the rapid decay of ey2/2 near too, we may deform F' to 1+ tR,
without changing the value of the integral. Replacing the matrix in the determinant with
its transpose, finally transforms (3.4.15) into the RHS of (3.4.7).

Proposition 3.4.4. Denote by H(z1,..., Zk) the integrand in (3.4.7). Then we have

lim J . 1  H(zi,.. Zk)dz -
M- 0./rm 7M fM(O)

... I2
M(0)

H(zI, ... , zk)dz = 0 (3.4.16)

Proof. We adopt the same notation as in the proof of Proposition 3.4.3. We write

H(zi, .. . , zk)dz =
JM .JM

E
E1,.EkE{O,1} Y (l ... JM(Ek)

H(zi,. . . , Zk)dz,

and so we observe that the expression in the absolute value in (3.4.16) is a finite sum of
terms

.. -- H (zi, . .. , Zk)dz,
YM (Ek)J M(1)

where ci are not all equal to 1. Recall from (3.4.7)

Hi ,.,z )k Zj sq k-r+l MG(zr)+cvm-xrg(zr)+hrg(z,)
H(zi,..., Zk) = 11 1 1 -Q ri-S,

1<i<j<k - qzj Zr1-szr)

When zi E 'yM, we know that

. . k k-r+1
- z1 j1 (zr - sq)k

1<i<j<k r=1 Zr(1 - SZr)

k

<C and
r=1

(r 1k-r+1

Zr -sJ
< CMk(k+1) (3.4.17)

for some constant C > 0, where we used that z E -yM is at least a distance M- 1/ 2 from the
point s, and is uniformly bounded away from other singularities.

Further, from our earlier analysis of the real part of G(z) on 7M, we know that when

126



z C -YM(1), we have for some (maybe different than before) constant C > 0

eMG(zr)+cvi MIxrg(zr)+hrg(zr) < CeC'M, where c' = min(co, ce).

Finally, if z C 'yM(0), we know that

eMG(zr)+cVMxrg(zr)+hrg(zr) < 0 eKV1i

eMG(zr)+cV/xdrg(zr)+hrg(zr) < C if 1I

if M- 1/ 2 < 1Im(z)l < e, and

In (3.4.19), K is a constant that dominates Icxrg(z)l, for z EE yM and r
obtaining the first estimate in (3.4.19), we used that Re[G(s + ty)] < 0 for
while for the second one we used (3.4.9).

= 1,. .. , k. In

jyj (E [M-1/2Ej

If we combine the statements in (3.4.17), (3.4.18) and (3.4.19) and use the compactness
of -ym, we see that

J'YM(E 1)

. . JM(Ek) H(z1,... , Z/)dz < Ce- '(El+-.+)MMk k+1)/4ek-K M

and if ci are not all 0, we see that the above decays to 0 as M - oc. E

3.4.3 Limit identification and proof of Theorem 3.1.1

We start this section by showing that the RHS of (3.4.6) equals P(A{ < x1 , - -, At k Xk)
when x, < x 2 < ... xk and xi E R. Here Ai i = 1,... J, j = 1,..., k is the GUE-corners
process (see Section 3.1.1). The density of A,..., Ak was calculated in [82] to equal

p(Xi,... , Xk) - 1{X1 X2 -.- s} det -i)

In the above we have that 4V for n > 1 is the n-th order iterated integral of the Gaussian

density O(x) = -x2/2

/Dn(Y (y - X)"n-1(y) = (n-i)! (x)dx,
_weO> (n - 1) .

and when n ;> 0, 4--n denotes the n-th order derivative of 0. Let us denote

(3.4.20)

IP" (y) :2= I
27rt i1+LR xmex

2 /2+yx dx.

Then to show that the RHS of (3.4.6) equals P(Al < x1 , - -, A k Xk), it suffices to show
that, when xl x 2 - Xk,

ii:01 dy, X2 d 
j 7

d .y1 dy det -(y) = det [ i- -(X j)] . (3.4.21)

The rapid decay of ey2 /2 near too shows that 'm (y) is differentiable, and its derivative
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equals

d 1 f " d 2ex2/2+yxdx - 1 f Mx 2/2+yxdx = qpm+1(y).dyl,(y) = 27rt f+tR dy ewt Jl Lx = +-

The other properties of Im that we will need are that TM(y) = 0(y) and limy_, TM(y) = 0.
To see the former, we complete the square in the exponential of I 0(y) and change variables
x = 1 + tz to see

e-Y 2/
2 j(1+y+tz)2 /2dz e -Y2 -/2jZL(y+1))2/2d eY 2 /2z2/ 2d = b(y).

21r fR 27r I 2r JR

The middle equality follows from the usual shift of R to R + t(y + 1), which does not change
the integral by Cauchy's theorem. Performing the same change of variables we see that for
any m E Z and y -1, we have that

e-y2 /2 P-y2 /2
T"(y)- e 2 / (1 + tz) m e-(z-t(y+))2/ 2dz = 2 (t z - y)me-z 2/2dz,

where the last equality follows from the shift of R to R + t(y + 1), which does not change
the integral by Cauchy's theorem, as the possible pole at z = t is never crossed when y < 0.
When m < 0, we notice that I(tz - y)'I < 1, when y < -1, while when m > 0, we can
bound the same expression by C( ylm + Iz|m + 1), uniformly in z c R and y < -1. The
upshot is that

eY2/ (lIM+e-22 CM le-y2/2
|FM(y) 5 j C((yY"+|z)"+1)e_ 2 /2dz < C(m)|y|"e- 2 /2, and hence lim 'm(y) = 0

Similar arguments also show that limy-+0 1 m (y) = 0 for any m E Z.

We next show that 5-m(y) =JT m (y) for all m E Z. From the previous paragraph we

know this to be the case when m = 0. Since Tm+1 (y) = (4"(y) and <D-"--(y) = (y),
when m > 0, we have equality when m > 0. Finally, we prove the result for -m > 0 by
induction on -m. Suppose, we know that (y) _-ji-k(y), for k > 0. Then we have

-Dk+1) __ d-k- 1 (y) and so <bk+l(y) __ -k-(y) is constant.
dy dy

As both <bk+1(y) and T-k-(y) vanish as y -+ -oc, we see that the constant is 0, and we
have <bk+l(y) - y-k-(y). The general result now follows by induction.

We now turn to the proof of (3.4.21). From our discussion above we know that both
sides define continuously differentiable functions in x1 . When x1 goes to -oc, we have that
the first column in the matrix on the RHS goes to 0 and so the determinant vanishes. The
LHS also vanishes, as it is dominated by P(A} < x1 ). Consequently, it suffices to show that
the derivatives w.r.t. x, on both sides agree. Replacing <' with '-m, what we want is to
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show that when x, < X2 < - - - < Xk and y1 = x,

X2 dy 2  Xdy - dy det [*.-i(yj)] _ d. det -

xy 3 ,2 y 1 dx1 l

Using that !Lim (y) = 4 m+l(y), we see that RHS above is the determinant of a ma-dy
trix, whose first column is X0 (XI),..., 41k(x1 ) and its j-th column for 2 < j < k is
4i- 2(Xj) Ij- 3 (Xj) I . I qfj-k-l(Xj). In particular, when x 2 = x1 the first two columns are
the same and so the determinant vanishes. The LHS also vanishes because of the integral

fX 2 dy2 , and so to show equality it suffices to show equality of the derivatives w.r.t. x 2. I.e.
we want when x1 < x 2  - Xk and yi = X 1 , Y2 = X2

dy3 .. dyn det [j-i(yj)] _ = det [j-i-(Xj)]_
X2 Y"_ 1 ~ j~l dX 2 dxl det ~

In this case, when x 3 = x 2 , the RHS vanishes as the second and third column of the matrix
become the same, while the LHS vanishes because of fx3 dy3 . Thus it is enough to show
that the derivatives w.r.t. x3 are equal. Continuing in this fashion for x 3 , ... , Xk, we see that
(3.4.21) will follow if we know that

det [lj-i(Xj)]. . = det [ ji- I(Xj)].
10=l dxk dx 2 dx1 det

The above is now a trivial consequence of -L-m(y) - Qpm+l(y) and so we conclude the

validity of (3.4.21).

Our work above together with Proposition 3.4.3 show that when x 1 < x 2  - k Xk

lim jpN7M Yi -aM
M-+oo U, c VMI -

Since with probability 1, we have Y 1 < Y22 < ... < Ykk and A' < Al 2 ... < A k4 the above
equality readily extends to all xl, ... ,X E R. In particular, we obtain the following lemma.

Lemma 3.4.5. Assume the same notation as in Theorem 3.1.3. For any k > 1, we have
that

(Y (M ) - aM , .. , Y k (M ) - aM ),
c M

converge weakly to the vector (AI,..., Ak), where Aj for i = 1,...,j and j = 1,..., k is the
GUE-corners process of rank k.

The above lemma will be one of the central ingredients necessary for the proof of Theorem
3.1.3 and we use it below to prove Theorem 3.1.1

P;roof. (Theorem 3.1.1) Assume the same notation as in Theorem 3.1.1. It follows from our
discussion in the proof of Proposition 3.4.1 that

IPN; ({w: A-i+ 1 (w) = i1 < i K k}) = IP (Y 1 N,.. .,Y N) =P k(Y < N).
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Let x E R and notice that as N -y -M with y > a, we have that for all large M,

IpNM(y~l<N yk N) pNIM (Yi - aM

By Lemma 3.4.5, the latter expression converges to P (A' < x; i = 1, ... , k) = P (At x) as
M --+ 00. Thus we have

lim inf P ({w: i+1(w)= i, 1 < i < k}) > P (A < x).
M-+oo A

The above holds for all x E R, and sending x -+ oo we conclude the statement of the theorem.

3.5 Gibbs measures on Gelfand-Tsetlin cones

In this section we investigate probability measures on Gelfand-Tsetlin cones in R'(n+l)/ 2 ,
which satisfy what is known as the continuous Gibbs property (see Definition 3.5.4 be-
low). An example of such a measure is given by the GUE-corners process Aj, i = 1 * ,
j = 1, . .. , n of rank n. The main result of this section is Proposition 3.5.6, which can be un-
derstood as a classification result for the GUE-corners process. Essentially, it distinguishes
the GUE-corners process as the unique probability measure on the Gelfand-Tsetlin cone
GTn (defined in Section 3.5.1 below), which satisfies the continuous Gibbs property and has
a certain marginal distribution. A similar result, which we also use, is given by Proposition
6 in [52].

It is well known that Gibbs measures on Cn are related to measures on n x n Hermitian
matrices, that are invariant under the action of the unitary group U(n) (see e.g. [45J). The
study of unitarily invariant measures on Hermitian matrices is a rich subject with connections
to many branches of mathematics. A towering result in this area is the classification of the
ergodic unitarily invariant Borel probability measures on infinite Hermitian matrices [711,
which can be viewed as the origin of our GUE-corners process classification result.

3.5.1 The continuous Gibbs property
In what follows we adopt some of the terminology from [45] and [52]. Let Cn be the Weyl
chamber in R' i.e.

C,, := {(x1,...,x,,) (E R' : x, <- X2 <- - - - Xn}

For x E R' and y E Rn we write x - y to mean that

X1 < Y1 < X2 < Y2 < -- - < Xn-1 Yn-1 Xn.

For x = (x1 ,. . . , xn) E Cn we define the Gelfand-Tsetlin polytope to be

GTn(x) :{(xI,... ,x) : xn = x Rk k k X k-, 2 < k < n}.
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We explain what we mean by the uniform measure on a Gelfand-Tsetlin polytope GTn(x).
The latter set is a bounded convex set C of a real vector space. We define its volume, as we
do for any bounded convex set, to be to be its measure according to the Lebesgue measure
on the real affine subspace that it spans (if the subspace is of dimension 0, i.e. X1 = - -=
the Lebesgue measure is given by the delta mass at X1 = - - - = X1 ) and denote it by vol(C).
We define the Lebesgue measure on C as this Lebesgue measure restricted to C and the
uniform probability measure on C as the normalized Lebesgue measure on C by vol(C).
The inclusion xk E Rk identifies GTn(x) as a subset of R'(n-1)/ 2 and we can naturally think
of measures on GTn(x) as measures on Rn(n-1)/2.

If A E Cn we denote by px the image of the uniform measure on GT,(A) by the map
PA- : x E GTa(A) -4 Xn- 1 E Cn_ 1. Let 1A be the Lebesgue measure on the convex set

pn_ 1 (GTn(A)). Then Lemma 3.8 of [45] shows that p is a probability measure on the set
{xn- 1 C Cn_ 1 : A >- X- 1 } and

Px (d#) = dn_ 1(#,) (do),dn (A)

where dk(A) for A C Ck denotes vol(GT(A)). Lemma 3.7 in [45] shows that dn(A) is explicitly
given by

dn (A)= -
1<i<j<n -

For A E Cn we define ELA to be the expectation with respect to p as defined above and
we also set E to be the expectation with respect to the uniform measure on GTn(A) as
defined above. We summarize some of the properties of these expectations in a sequence of
lemmas, whose proof is deferred to Section 3.5.2.

Lemma 3.5.1. Fix n > 2. Let A G Cn and Ak e C, be such that limkl, IA - Aki - 0.
Suppose f : Rn- -+ C is a bounded continuous function. Then we have

lim E",k [f(x)] = EPA [f(x)].
k-+oo

Lemma 3.5.2. Let n > 2 and f : Rn(n+l)/2 _+ C be bounded and continuous. Then the
function

g(y) := El [f(y, xn- 1,..., X)] , is bounded and continuous on Cn.

Lemma 3.5.3. Let n > 2, A c Cn and Ak Cn be such that limk,, |A - Ak = 0. Suppose
f : Rn(n-1)/2 -+ C is a bounded continuous function. Then we have

lim EAk [f (X- 1 , ... X1)] = EA [f(x-,... ., X 1 )]
k--+oo

We define the Gelfand-Tsetlin cone GTn to be

GT = y e Rn(n+l)/ 2  +1 <y j+ j <j n

Alternatively, we have GTn = UxecGTn(A). We make the following definition after [52].
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Definition 3.5.4. A probability measure M on GT' is said to satisfy the continuous Gibbs
property if conditioned on y' the distribution of (y', . . . , y'l) under [t is uniform on GTn(y').
Equivalently, for any bounded continuous function f : R'(n+1)/2 -+ C we have that

Ett [f (Yn, ...,I yl)] = E,,' [Ey' [f (yn, yn-1, ...,I y1]],

where pM is the pushforward of p to the top row yn of the Gelfand-Tsetlin cone GTn.

Remark 3.5.5. It follows from Lemma 3.5.2 that Eyn [f(y, y-1, . . . , y1 ] is a continuous func-
tion of yn and so its expectation with respect to p' is a well-defined quantity.

The main result of this section is as follows.

Proposition 3.5.6. Suppose that p is a probability distributions on GT , which satisfies
the continuous Gibbs property (Definition 3.5.4). Suppose that the joint distribution of
(y, yn) under [ agrees with the law of (X,...,A"),where Aj, i = ,..., J, n
is the GUE-corners process of rank n. Then p is the GUE-corners process of rank n.

The above proposition relies on the following lemmas, whose proof is deferred to Section
3.5.3.

Lemma 3.5.7. For z E Ci, i = 1,.., n and t = (t1 ,.. . ,tn) with ti E R define

n

fn(t, Xn, X-, I... . ,X 1) := fexp(tti( x | - 1xi-i )
i=1

where |x - k and JxO = 0. Suppose n > 2 andx" C with x> xn_1
and t = (t 1,... , tn) with ti pairwise distinct. Then

dn(xX) E . ,x 1)] = t(t - ti) x sign(-) exp t_
1-,'i<j~n OE n (

Lemma 3.5.8. Suppose n > 2 and x h c en with xn > x_ 1 - > xi. Let t= (t1 ,.. .tn)

with ti E R. For o E Sn we define t, := (t,(1).,.. . ,t,n)) and we set

n

i=1

If ti are all nonzero we have

dn (Xn). I: sign(,-)Exn [gn (ta, 7" .... , X 1)] H(,t,,())n-- = (_1) 2 sign(o-) exp t o)2 .
OESn i=1 _ ESn (

Proof. (Proposition 3.5.6) Suppose t = (t1 , ... ,i tn) with ti E R is such that ti are pairwise
distinct and non-zero. It follows from Lemmas 3.5.7 and 3.5.8 that if xn > xn_1 > ... > xy,
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we have

E ( , ,x1 )] 171 t(t t2 ) 1 sign(o-)Ex [gn(ta, x",..., x1 )] J(t..(i))-.

1&i<j:5n (t - i)O'-S

From Lemma 3.5.3 we know that both sides of the above equality are continuous in X" and
so the equality holds for all Xn E Cn.

Taking the expectation with respect to /t on both sides we recognize the LHS as the
characteristic function of (jXj - lXn-11,..., Ix 2 | - JX1, x1  ) under the law [. The RHS is
a linear combination of the characteristic functions of (XI,... , xn) under the law P. By
assumption, (Xz,... , xn) has the same law under IL as (A',.. . , A"), from which we conclude
that

n n

n e exp tti(|xiI - xI- 1  = E exp ( tti(ixI - Ai1-)]

whenever tj are pairwise distinct and non-zero (recall Ix0 - 0). Since the characteristic
functions are continuous in t it follows that the above equality holds for all t E Rn. As
the characteristic function of a distribution uniquely defines it we conclude that (xn -
I- . . .,)x 2 _ I, Ix ) are i.i.d. Gaussian random variables with mean 0 and variance 1.
The latter together with the continuous Gibbs property, satisfied by A, implies that [I is the
GUE corners process by Proposition 6 in [52].

3.5.2 Proof of Lemmas 3.5.1, 3.5.2 and 3.5.3
We adopt the same notation as in Section 3.5.1.

Proof. (Lemma 3.5.1) We begin by first assuming that f(x) = 11- fi(Xi) where fi are
bounded, continuous and non-negative real-valued functions. Let 1 < ni < n2 < -.. < nr <
n- I and m,..., mr > I be such that

" Ai=Ajifije M for some q=1,...,r;

* Ai < Aj if i < j and {i,j} M for any q=1,...,

where Mq = {n,...,nq+ Mq - 1}. We also set J:= {j :1 < j < n - 1, and {j,j +1} $
Mq for any q = 1, ... ,r} and M'= {nq, . . . , nq + mq - 2}. Then by the definition of pX

-n-1 . rA X
E IA fi(xi) ] x flf1f fj (An) X x (

i=1 1i<j<n A q=1 jEMq 1 i<j!r sEM tCM'

where F(A) (dij J ) f (xi) 1 -

JE J 3 jEj J <i<j:n-I 1<i<j<n-1 1<i<j<n-1
i,jEJ zEJjgJ i J,jEJ

Let us assume that for each k we have Ak < A k < ... < Ak. Then the above formula
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EIA [ifi (xi)] = A1
J 1 i<j:!n 37 z 2

f3+1
J 

Ak
k

dx)n-i
dx ff (xj)

)j=1

Suppose E > 0 is given. Then if k is sufficiently large we know by the continuity of the
functions that for all j E J we have Ifj(xj) - f(Aj)I < E for all xj C [Al, A +1]. Using that fi
are uniformly bounded by some M we conclude that

n--1. . n- k

,\E~x k Ifxi dxj fj (Aj)
i=1 . 1<i<j: n i (=1 3 +1 jgJ

fj (xj) j< CE,
jEj 1<i<j:5n-I 3-

for all sufficiently large k, where C can be taken to be (n - 1)(1 + M)"-1.

Hjgj fj(Aj) = F1=1 ( -2fj+fq(Anq) and using (3.5.1) we get

(3.5.1)
Observing that

Sn-1

lim SUP E"', H fi (xi)
k- oc _=

where G1 (A) = (

n-I
-' kA H fi (xi)]

Hnini'
i,j=1,..,r scMi' tEM'I

2<3

< CE + (M + 1)n lim sup IG1 (A) - G2(Ak1
k-+oo

At- A)
t - S)

(3.5.2)

F(A), and
1i<j n

G2 (Ak)= LI + 1k
l<i<j:ri 37 T 3 3jl

For j ' J denote by q(j) the q such that {j,j + 1} c Mq.
follows

G1 (A k)s
1<i<j! n 3-

x -j A 1k Xh r
3 -2 q1 <,

jeJ,iJ E-2 iJ,j j q1 i<
i<j i<j i,jEM '

G2 (A k)= II A-A _ A

1<z<j<n 32 _=

We define G+ and G- as

1<i<jin-1
2,jEJ

xj -xi

Xj Xi A k _Ak
j+1

3-2 j~J2<j 3-
JoM(,%

dxi) fJ (x )

H xj -A~ k A~ i I-I.i+1 ][ I , ir

i<j i<j i,jEM '

- i i 3 i+1.-7 21

IIM 
.,

ioM4(~)

Using the non-negativity of fi we observe that G-(Ak) G 2 (A') < G+j(Ak).
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H'
1 <j:5n-1

Xi - i

H
1<i<j<n-1

- Xi

1<i<jsn-1
ijEJ

dx J 1 ( j

n-1 A41

n fA k dxj fj (xj)
j=1 i ) jej



Performing the integration over xj for j 0 J we may rewrite Gj (Ak) as

1<i<jn 3 2j

Aik-A (kjI;dxj)1 f(x 7 ) x

i<j ~

Similarly, we have

1<i<j<n 3 2
A f 4 Aj

171
ijVJ,<J,

(Ej, dxJ ff(xj)x
Si-1

:x3  X ~ xj A k~i+1
1<i<j<n-1 E JioJ E

i,jEJ i<j 2<3

We observe that

lim j+1

Ai#hAj joMo

-lim H
1<i<j<n 3 i 4joi<

A i 0 i M~(m

-i x ir At -As
1<i<j:n A j , .sEm2 tEM S

_j~ 2,1,, s~' c

Moreover, by the Bounded Convergence Theorem we conclude that

3j+1

lim
k-+oo J

/ Ak

lim
k(ojEJ j

dx3 ) ff3 (x3 )
/ jEJ 1<i<j<n-1

ij EJ

H
jcJ,ioJ

i<j

dx) f1 (x) xi-xi H
jEJ 1<i<jn--1 jEJ~iJ

ijEJ i<j

J
ik

iEJjJ
i<3

z+1

iEJ,jOJ
i<j

From (3.5.3) and (3.5.4) we conclude that limkwo G4(Ak) = G1 (A) and since G-(Ak) <

G 2(Ak) G+(Ak) we conclude that limn~k+. G2 (Ak) = G1 (A). The latter implies from (3.5.2)
that

[n-1 1
lim sup E", J7 fi(xi)

k- oo L =1

n-1

-A) E~k fi(xi)] < CE.
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G+(Ak) =

1<i<jEJn-
i~JEJ

A k

-i

Gj(Ak) =

3 X

i+1 _

(3.5.3)

A k(

j x2
= F(A).

(3.5.4)



Since 6 > 0 was arbitrary we conclude that

-l [ (n- 1  ~

lim sup EMA fi (xi) -- E,4 \k f, (X) =0.

We next suppose that Ak do not necessarily satisfy Ak <
a Ak, then from our earlier work we may find vk such that

1. 1Vk - Ak| < 1/k,

i<... < Ak. If we are given

3. E',k [H_-1 fi(Xi)] - EAlk [H -1 fi(Xi)] I < 1/k.

Condition (1) above implies that vk converges to A and by (2) our
get

-n-1

lim sup E"A [j
k-+oo

fi(xi)] fi(xi)]

earlier work applies so we

-0.

Finally, by the triangle inequality and condition (3) we conclude that

lim sup EA [i
k-noo

fi(xi)]
n--1

-' \k

This proves the statement of the lemma, whenever f(x) = Hl- fi(xi)
continuous and non-negative real-valued functions.

with fi bounded,

Using linearity of expectation and our earlier result we concude the statement of the
lemma, whenever f(x) is a finite linear combination of functions of the form J11l fi(xi)
with fi bounded and continuous. In particular, we know the result whenever f equals
P(x) - 1B,, where R > 0, BR = {x E Rn-1 Ix2I < R for i = 1,...,n - 1} and P(x) is a
polynomial.

If f(x) is any bounded continuous function, we may replace it with f(x)1B,, where
R =1 + max( A 1 , An1), without affecting the statement of the lemma, since for large k,
the support of PUk lies in BR. By the Stone-Weierstrass Theorem we can find a polynomial
g(x) such that supean-1 If(x)1BR - 9(X)1B < r. The triangle inequality and our result for
polynomials now show

lim sup IEA [f(x)] - EAk [f (x)] lim sup IE"\ [f (x)1B] - EAk [f (x)1B,]
k-+oo k-+oo

lim sup(|EA\ f(x)1BI - IE [9(x)1B, + EAk [f(X)1BR El\k [9(x)1B]a
k-*oa

|E'^ [g(x)1Bj] - JFJLk [g(X)1BR] ) < 2E.

Since c > 0 was arbitrary we conclude that lim supk, 0 JEA [f(x)] - EIk [f(x)] = 0.
r-1
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Proof. (Lemma 3.5.2) We begin by assuming that f (xn .. . ,x) = fi(xn)f2 (xnl, ... , x')
with fi, f2 bounded and continuous. Fix # c C, and suppose Cn E 1 3 k - # as k -+ oc. From
Lemma 3.5.1 we have

lim Ex 1f k )"-1 . 1)] = lim fi(/3k)E[f2 (Xn-1, ... X1 )] = fi(O)E[f2 (Xn..., X)].k--oc k--+oo

Using linearity of expectation and the above we have that E13 [f(3, Xn-,..., Xi)] is a con-
tinuous function in #, whenever f is of the form P(x",Xn-1,... ,i) - 1 B,, where R > 0,
BR= {x E Rn(n+l)/ 2 1IXjl K; R for i = 1, . .. j;j = 1, .. , n} and P(x) is a polynomial.

Suppose now f is any bounded continuous function, fix # C Cn and suppose Cn D /k a #
as k - oo. For all large k we have that /k lie in the compact set BR, with R = 1 +
max(j/# 1 , /3rj). By the Stone-Weierstrass Theorem we can find a polynomial g(x) such that
sUPxERn(n+1)/2 If(x)1BR -g(x)1B, < E. The triangle inequality and our result for polynomials
now show

limsup Ek[fkXn-1, ... 1)] - EI[f(#1 , w,... i)]
k-+oo

lim sup Ek f k-k , ..., X1)1BRI - E'f(, "-1,. .. , x1)1BR]
k-+oo

lim sup E,3 k g(kXn- ,'. .,X)1BR El [g(/3, xn-1, .. ., )1BR 2E 2c.
k-+oo

As c > 0 was arbitrary we conclude continuity, while boundedness is immediate from the
boundedness of f.

Proof. (Lemma 3.5.3) We proceed by induction on n with n = 2 being true by Lemma 3.5.1.
Suppose the result holds for n - 1 > 2 and we want to prove it for n.

For any v E Cn we have

E" [f(xn-1, ... , X1 )] = J ,1 AV (d#)El[f(#, Xn-2, ... , X1 )] = Ej" [E13[f (, Xn- 2 , . ., X1)]

By Lemma 3.5.2, we have EP[f (#, Xn- 2 , . .. , )] is a bounded and continuous function in
/ E Cn. From Lemma 3.5.1 we conclude that

Jim EA,\k [E,[f (O, n-2 .. '1)]] = I [4f ( , Xn-2, .. 1II
k- oo 

=EL

This proves the result for n and the general result follows by induction. l

3.5.3 Proof of Lemmas 3.5.7 and 3.5.8
We adopt the same notation as in Section 3.5.1.

Proof. (Lemma 3.5.7) We proceed by induction on n. When n = 2 we have that

/ A 4(1- 2 _ (ti -t2)X2
2x 2+2 (tl-t2)Xl2( 2 e /(tl t2)X2 e e t 1t2x

d2 (Xn) . E 2 [f2 (t, 2 X 1)] t2(X2 X) e u 2x - et2(x+x2 )1 t(t, - t2 )
11 - 2
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x
1 t2),x [exp(t(t 2xi + tiX)) - exp(t(tlx + t 2xi))]

which proves the base case.

Suppose the result holds for n - 1 > 2 and we wish to prove it for n. We have

x x2 itix,-, Idyn-, ... dyldn-,(y).Fy [fn-1(8 Mx n-2, ... 7 x1)]
n nJxn_ 1 I I

where s = (t1 - tn,... , tn-2 - tn, tn_ 1 - tn). By induction hypothesis the above becomes

n - - n- dy1 -- dy
1 i1 L(tj - ti) x E

sign(o-) exp

1 sign(
<i<j n-l - ESn_1

e t1 t(t- - t )
1<i<j!n

ES
oUESn-1

n- exp

i=1

n-i1

sigriju) fJ(exp

- exp tsixz()+

t(tn - t )

(LS,(j)X n) - exp LiX

where in the last equality we used that sign(-) = sign(--1 ).
The above equality reduces the induction step to showing

n-1 n

17 (exp (ts,(i)xn) - exp (Ls,(,)+1= 1 sigi(u) exp (t
i=1 ESn i1

S,(i)Xi )

(3.5.5)
where s, = 0.

Put Ai,= exp ( ts,(i)Xn) and B,,= - exp (tsc(i)X+). We open the brackets on the
LHS of (3.5.5) and obtain a sum of words sign(o-)Ci,, ---Cn-,,, where C = A or B. We
consider the words that have B followed by an A at positions r, r + 1 and set T to be the
transposition (r, r + 1). Observe that

sign(O)Br,Ar+1,o, + sign(TU)Br,,rAr+1,r, = 0, and hence

E sign(o-)C,, ... Cr,,oBr,Ar+1,,Cr+2,, -- -Cn-,, = 0.

The latter implies that the only words that contribute to the LHS of (3.5.5) are k A's followed
by n - k - 1 B's for k 0,... , n - 1. We conclude that the LHS of (3.5.5) equals

n-1

E(-k )-1-

k=0

k n-1

sign(o-) 1J exp (tsa(i)Xi) J exp (tsO(j)X7+1)
i=1

(3.5.6)
i=k+i

and the latter now clearly equals the RHS of (3.5.5) by inspecting the signs of the summands
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exp (L E S s,(i)Xn) on both sides for o- E Sn.

Proof. (Lemma 3.5.8) We proceed by induction on n. When n = 2 we have that

dn(X2)EX 2 [gn(tx 2,XI)] = e'tIx
2xi

ttjx 2 tx2
e'r z e 2o e 2 _ et 1x

etlxdx - e't2X2e 1
tt1

Consequently, we have

dn(X 2 ) - sign(u)(tt,())Ex2 [92(ta, X 2 . .. ) x)] = ettx+ttx2 _ e 1xs tix,

aES2

from which we conclude the base case.
Suppose we know the result for n - 1 > 2 and we wish to prove it for n. We have

dn(Xn) _ sign(o-)E'h

a ES

n

i=1

n

[gn(to, , . . . , 1i)] 17(tti))n-i
i=l

-- dyn_- - -dyj-dn_1(y)EY [gn_1(s, yX zn-2, .I.
J"-

1 1

where s, = (t(1), ... , to,(n-1)). Splitting the above sum over permutations of t,(1), ... , to(n-1)
and applying the induction hypothesis we see that the above equals

(-1) ((-1)ke 1 (tt)

k=1

( n-1) (-1i-e -

k=1

r=,k

xn 2

n- X n

dyn_1 -dyi 5 sign(T)
TESn-1

exp t

n-I
5 sign(TF) 11J (exp (tSk(i)Xn 1 ) - exp

rGS,_ 1 i=1

where sk = (t1 , . . . , tk_1, tk+1 ... ,t n).
Using equation (3.5.6), we may rewrite the above as

n-1

(- E
1=0 TESn-1

sign(T) fJ exp (ts _(i)X)

i=1

If <n - 1 we have

n

l(-1) -ke ltk*n

k=1
sign(T) 1J exp (ts()x(i)X) H exp (ts=(i)Xn+1

EESn-1 i=1 i=+1

sign(-) exp (t(t,(I+1) + t,(n))Xn) ]7 exp (tt,(i) X) 17 exp (tt,(,) Xn+) = 0.
i=1 i=1+1

To see the last equality we may swap 1 + 1 and n in the above sum by a transposition and
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k=1

(tsk r ))

n-I

II

n-I

n-2

CESn

k
,(i)Xn 1

exp (ts i+ ) .
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observe that we get the same sum but with a flipped sign due to the factors sign(o). Hence,
the sum is invariant under change of sign and must be 0. The last argument shows that only
1 = n - 1 contributes in our earlier formula and so we conclude that

n

dn(xn) - sign(o-)E"x [g(te,, xn, .... , 1)] J(tt,(i))-i =
OESn i=1

n n-1

n~n -1)-1)k=1 TE~n1

The latter expression is clearly equal to (-1) 2 , sign(u) exp (t D_ 1 t,(i)xy), which
proves the case n. The general result now follows by induction.

3.6 Gibbs measures on Gelfand-Tsetlin patterns

The purpose of this section is to analyze probability measures on half-strict Gelfand-Tsetlin
patterns GT+, which satisfy what we call the six-vertex Gibbs property (see Definition 3.6.2).
An example of such a measure is given by the distribution function of (Y)1<iij;1ijn (see
Section 3.1.1). The main result of this section is Proposition 3.6.7, which roughly states that
under weak limits the six-vertex Gibbs property becomes the continuous Gibbs property
(Definition 3.5.4).

3.6.1 Gibbs measures on the six-vertex model
In this section we define the Gibbs property for the six-vertex model on a domain D. We
also explain how to symmetrize such a model when D is finite and relate the weight choice
in this chapter to the ferroelectric phase of the six-vertex model. In what follows we will
adopt some of the notation from Appendix A in [1].

Suppose we have a finite domain D C Z2. For A C Z2, we let OA denote the boundary
of A, which consists of all vertices in Z2/A, which are adjacent to some vertex in A. We
consider the six-vertex model on D with fixed boundary condition. This is a probability
measure on up-right paths in D with fixed endpoints and we explain its construction below.

We start by assigning certain arrow configurations to the vertices in OD and consider all
up-right path configurations in D, which match the arrow assignments in OD. Call the latter
set P(D, OD). Paths are not allowed to share horizontal or vertical pieces and as in Section
3.1.1 we encode the arrow configuration at a vertex through the four-tuple (ii, ii; i2 , i 2 ),
representing the number of incoming and outgoing vertical and horizontal arrows. For (i, j) E
D and w e P(D, OD) we let w(i, j) denote the arrow configuration at the corresponding
vertex. We have six possible arrow configurations and we define corresponding positive
vertex weights as follows

w(0, 0; 0, 0) = w1 , w(1, 1; 1, 1) = w 2, w(1, 0; 1, 0) = w3 , (3.6.1)

w(0, 1; 0, 1) = w4 , w(1, 0; 0, 1) = w5 , w(0, 1; 1, 0) = w6.

The weight of a path configuration w is defined through W(w) := H (ij)ED w(w(i, j)), and we
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define the six-vertex model as the the probability measure M on P(D, 0D) with probability
proportional to W(w). As weights are positive and D is finite this is well-defined.

For w E P(D, 0D), A c D and an arrow configuration (ii, ji; i2 , j 2 ) we let Nw;A(i1, Ji; i2,32)
denote the number of vertices (x, y) E A with arrow configuration (i iji; i 2 , j 2 ). We abbre-
viate N1 = N;A(0, 0; 0, 0), N2 = N;A(1, 1; 1, 1), N3 = N;A(1, 0; 1, 0), N4 =N;A(0, 1; 0, 1),
N5  Nw;A(1, 0; 0,1), and N6 = N.;A(0, 1; 1,0). With this notation we make the following
definition.

Definition 3.6.1. Fix w1, w2 , W3,w 4, W5 , w6 > 0. A probability measure p on P(D; OD) is
said to satisfy the Gibbs property (for the six-vertex model on D with weights (w 1 , w 2 , w 3, W4 ,
w5 , w6 )) if for any finite subset A c D the conditional probability pA(w) of selecting w E
P(D, OD) conditioned on W|D/A is proportional to w WN2WN3 N4 5 W N6

Notice that Definition 3.6.1 makes sense even if D is not finite. It is easy to see that the
measure M we defined earlier satisfies the Gibbs property with weights (w1i, w2 , W 3, w4 , s, w6 ).
Similarly, let us consider the measure 1pM from Definition 3.4.2 conditioned on the top row
AN(w) being fixed. The latter satisfies the Gibbs property for the domain DN 2 >0 X
{1,... , N} with weights

) - -1 us-1 u- s u(s2 1) 1 S2
(wi,w2 ,w 3 ,w 4 ,ws,w 6)= (, s 1 , us-i 'us-i' us-i , UsI). (3.6.2)

The change of sign above compared to (3.1.1) is made so that the above weights are positive

(recall u > s > 1 in our case).
If we have w1 = W2 = a, w 3 = w4 = b and w5 = W6 = c we call the resulting model

a symmetric six-vertex model. Otherwise, we call the model asymmetric. An important
point we want to make is that a single measure p on P(D, OD) can satisfy a Gibbs property
for many different 6-tuples of weights (w1 , W 2 , W 3, W4 , w5 , w6 ). The latter is a consequence
of certain conservation laws satisfied by the quantities N;A (i, ii; i2 , j 2 ). As discussed in
Appendix A of [1] we have the following conservation laws (see also Section 3 in [21]).

1. The quantity N 1 + N2 + N3 + N 4 + N5 + N6 = JA is constant.

2. Conditioned on WID/A, the quantity N2 + N4 + N5 is constant.

3. Conditioned on WID/A, the quantity N2 + N3 + N6 is constant.

4. Conditioned on WID/A, the quantity N5 - N6 is constant.

The latter imply that if a measure p satisfies the Gibbs property with weights (w1i, w 2 , 3, W4,
W5 , iW6 ) then p also satisfies the Gibbs property with weights (xwi, xyzw 2 , Xzw 3, Xyw 4, xytW,
xzt-w 6 ) for any x, y, z, t > 0.

Let us fix x = 2 , W1W2W3W4 I Z = VWW2W3W 4 and t - v/w4w. Then one directly
N/ 1W2' W2W4 'W3W4 /W3W5*

checks that

(Xwi, xyzw 2, Xzw 3, Xyw 4, xytw 5 , Xzt- 1w6 ) = (a, a, b, b, c, C),

where a = Vw 1 w 2 , b = /w 3w4 and c = w5 w6 . The latter shows that any six-vertex model
on a finite domain with prescribed boundary condition can be realized as a symmetric six
vertex model.
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The above arguments can be repeated for other (e.g. periodic) boundary conditions and
the consequence is that when working in a finite domain, one can always assume that the
six-vertex model is symmetric. This is how the model typically appears in the literature. An
important parameter for the symmetric six-vertex model with weights (a, a, b, b, c, c) is

a 2 + b2 - c2

2ab

As discussed in Chapters 8 and 9 in [9] (see also [74]) the symmetric six-vertex model
has several phases called ferroelectric (A > 1), disordered (JAI < 1) and antiferroelectric
(A < -1).

Based on our earlier discussion, we may extend the definition of A to any (not necessarily
symmetric) six-vertex model by

w1w 2 + w3w4 - w5W 6
2 wiw2 w 3w4

Observe that the latter quantity is invariant under the transformation of (wj, w 2 , W 3, W 4, W5 ,
w6 ) into (Xw 1 , Xyzw 2, Xzw 3, Xyw 4 , Xytw 5 , Xzt- 1w 6 ). This implies that the parameter A for a
six-vertex model on a finite domain agrees with the parameter A for its symmetric realization.

For the six-vertex model we defined in Section 3.1.1 a crucial assumption is that w1 = 1,
since our configurations contain infinitely many vertices of type (0, 0; 0, 0). This restriction
forbids us from freely rescaling our vertex weights and forces us to work with an asymmetric
six-vertex model. However, the above extension of A allows us to investigate to which phase
our parameter choice u > s > 1 corresponds. As remarked PNMI satisfies the Gibbs property
for the domain DN = Z>X {1,... , N} with weights as in (3.6.2). For these weights we find
that A = (s + s-1)/2. The latter expression covers (1, oc) when s > 1 and so our parameter
choice u > s > 1 corresponds to the ferroelectric phase of the six-vertex model.

A natural question that arises from the above discussion is whether we can find different
parameter choices for u and s, which would land us in the disordered or antiferroelectric
phase. If this is achieved one could potentially use the methods of this chapter to study
the macroscopic behavior of this new model. It would be very interesting to see if the limit
shape in Figure 3-12 changes when we move to a different phase - like in the six-vertex model
with periodic (or domain wall) boundary condition. We leave these questions outside of the
scope of this chapter.

3.6.2 The six-vertex Gibbs property
We define several important concepts, adopting some of the notation from [521. Let GT"
denote the set of n-tuples of distinct integers

GTn = {A E Zn : A, < A2 < ''. < Ani.

We let GT+ be the subset of GTn with A1 > 0. We say that A E GTn and /u E GT,_ 1 interlace
and write [ -< A if
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Let GT" denote the set of sequences

A A I2 ... c i GTi, I < i < n.

We call elements of GT' half-strict Gelfand-Tsetlin patterns (also known as monotonous
triangles, cf. [65]). We also let GTn+ be the subset of GT' with ft E GT[. For A E GTn
we let GT\ C GTn denote the set of half-strict Gelfand-Tsetlin patterns [Z - p - - bp such
that /I = A.

We turn back to the notation from Section 3.1.1 and consider w E Pn. For k = 1,.. .,

we have that [p(w) = A-+ 1 (w) for i = 1,.., k satisfy pn C GTZ and pk+1 Pk for k =
1,..., n - 1. Consequently, the sequence p,..., pu defines an element of GTn+. It is easy
to see that the map h : JP -+ GT-+, given by h(w) = p(w) - -. -< [p(w), is a bijection.
For A E GT+ we let

PA { Pn : Af) = An-i+1 for i = 1, ..., n}.

One observes that the map h by restriction is a bijection between GTA and PnA. With the
above notation we make the following definition.

Definition 3.6.2. Fix w 1 , w2 , W 3, W 4 , W 5, w6 > 0. A probability distribution p on GTn+
is said to satisfy the six-vertex Gibbs property (with weights (w1 , w 2 , w 3, w4 , w5 , w6 )) if the
following holds. For any A E GT+ such that p(p"n(w) = A) > 0 we have that the measure v
on Pn defined through

v(h 1 (w)) = p(wcnP = A)

satisfies the Gibbs property for the six-vertex model on Dn with weights (wI, w2 , W3, W 4, w5 , w6).
In the above p(-|_j = A) stands for the measure p conditioned on A = A.

Remark 3.6.3. If w1 = - - - = w6  1 and p satisfies the six-vertex Gibbs property with these
weights then the conditional distribution p(- 1y = A) becomes the uniform distribution on
GTA. In this case the six-vertex Gibbs property reduces to the discrete Gibbs property of [52].

For a probability distribution p on GTn+ and an element A E GT+ such that p(pn(w) =
A) > 0, we denote by px the distribution on GT$_ 1 given by p(pi, ... ,A-l t = A). We let

pk denote the projection of p onto Pk for k = 1,.. . , n. Then the six-vertex Gibbs property
is equivallent to the following statement. If f : Zn(n+1)/2 -* C is a bounded function, then

EP [f(p",...,1 p')] =(Epn [EP)n [f.([, . . .,)]] . (3.6.3)

We record two lemmas whose proof is deferred to Section 3.6.3.

Lemma 3.6.4. Fix wl, w2 , W3, w 4, w5 , w6 > 0. Let n E N and p be a measure on GTn+,
which satisfies the six-vertex Gibbs property. Then we can find a positive constant c E (0,1)
(depending on n and w1 , ... ,w 6) such that for all A E GT+ with p(p = A) > 0, and

(al, ... ,a"l, A), (3 1, . .., I -,A) E GTA we have

C- > P\(al, ... , an1) > c.
~ pA(01, . .. , #n-l) -
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Definition 3.6.5. We consider sequences Ak E GT,. We call the sequence very good if for
i = 1, ... , n - 1 each sequence A'+1 - A has a limit in N U {oo} and for i = 1, ... , n - 2, each
sequence Ai+ 2 - A goes to oc. We call the sequence good if every subsequence of Ak has a
further subsequence that is very good.

Lemma 3.6.6. Fix n c N. Let a(k) and b(k) be sequences in R such that b(k) -+ oo as
k - oc. Suppose that Ak is a good sequence in GT+ and f is a bounded uniformly continuous
function on Rn(n+1)/2. Put gk : Rn(n+l)/ 2 - Rn(n+1 )/ 2 to be

9k(x) = b x - a(k) - ln(n+1)
b(k) 2

Then we have

lim EP\k [f ng1(A , /n-1 , .-2.. ) 1)] -EA [f o gk(Ak x"- 1 , Xn- 2 ,... , i)] =0, (3.6.4)
k-+oo

where EP\k is defined above while E/\k is as in Section 3.5.1.

With the above lemma we can prove the main result of this section.

Proposition 3.6.7. Fix w1, w2 , w3 W4, w5, 6 > 0 and n E N. Let p(k) be a sequence of prob-
ability measures on GTn+, satisfying the six-vertex Gibbs property with weights (wi, w 2 , w3, w4 ,

w5,w 6 ). Let a(k) and b(k) be sequences in R such that b(k) - oc as k -n oo. Put

gk :Rn(n+)/2 _ Rn(n+l)/2 to be

gk(x) = )x - a(k) - In(1+1))gk()-b(k)2

and suppose that p(k) ogj converges weakly to a probability distribution [t on GTn (Gelfand-
Tsetlin cone), such that

iP(y? = y i +2 for some i = 1,.. ,n - 2) = 0. (3.6.5)

Then p satisfies the continuous Gibbs property (Definition 3.5.4).

Remark 3.6.8. The statement of the proposition remains true if we remove the condition
(3.6.5) on yt; however, its proof requires a stronger statement than Lemma 3.6.6. For the
applications we have in mind Proposition 3.6.7 is sufficient and we will not pursue the most
general possible result here.

Proof. By Skorohod's theorem, we may find random vectors Y(k) for k E N and X, de-

fined on the same probability space (Q, F, P), such that Y(k) have distribution p(k), X has

distribution pu, and

P ({ E Q lim gk(Y(k)(W)) = X(w)}) = 1.
\k-+oo

Let f be a bounded continuous function on Rn(n+1)/2. As usual we write Y(k) = Y'(k) d
Y(k) and X = X1 - Xn. We want to show that

IE [f (X)] =E [E Xn [f (X)]].
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From the Bounded Convergence Theorem we know that

IE [f (X)] = lim E [f (gk(Y(k)))1. (3.6.6)

We now let A = {w E Q Ilimk-+og gk(Y(k)(w)) = X(w) and X7(w) = X 1 (w) = X 2 (w)
for no i}. One observes that for w c A, Y(k)(w) is a good sequence and so by Lemma 3.6.6

lim EYn(k)(w) [f(gk(Y(k)))] - IEPy(k)(W) [f(gk(Y(k)))] =0.

Taking expectations on both sides above (which is justified by the Bounded convergence
theorem) and using that p(k) satisfy the six-vertex Gibbs property (see also (3.6.3)), we
conclude that

lim E [EYn(k)(w) [f(gk (Y(k)))]] - E [f(gk (Y(k)))] = 0. (3.6.7)
k-+ oc

Finally, if w E A and Z(k) = gk(Y(k)), we have by Lemma 3.5.2 that

lim EY'(k)(w) [f(gk (Y(k))) = lim EZn(k)(w) [f (Z(k))] - E Xn(w) [f (X)] .k-*oo k-+oo

Taking expectations on both sides above (which is justified by the Bounded convergence
theorem) we conclude that

lim E [EYn(k)(W) [f (gk(Y(k)))]] = E [EXn(w) [f (X)]] . (3.6.8)

Combining (3.6.6), (3.6.7) and (3.6.8) proves the proposition.

3.6.3 Proof of Lemmas 3.6.4 and 3.6.6
We adopt the same notation as in Section 3.6.2.

Proof. (Lemma 3.6.4) Introduce vertex weights as in (3.6.1). For A E Sign+ we fix wx E Pn,
such that Aj(wA) = Ai for i = 1, ... ,j and j = 1, . . . , n. We also define for L E P, the weight

W(w) := l J" w(w(i, j)).
Since p satisfies the conditions of Definition 3.6.2, it is enough to show that for each

A E Sign+, and any collection of paths w E Pn, with A7(w) = A2 for i = 1,... , n, we have

)4(w)
C-1 > W()> C

for some c E (0, 1), which depends on n and w 1,... , w6 . The strategy is to apply elementary
moves to the configuration w that transform it to WA, and record how the weight changes at
each step. We will see that the number of changes is at most n(n - 1) and each change is
given by a multiplication by some factor, which can take finitely many values, depending on

WI, ... , w6. This will show that W(w) belongs to a finite set of numbers, which then can be
upper and lower bounded, proving the lemma.

Let PnA denote the set of w c Pri such that A"(W) = A. Starting from any w E Pn" an
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elementary move consists of increasing one of Aj (w) by 1 so that the resulting element still
lies in PsA. If we apply an elementary move to W, increasing m = A (w) by 1 and obtain
w+ E Pn" as a result, we observe that

W(w) _ w(w(m, j))w(w(m, j + 1))w(w(m + 1, j))w(w(m + 1, j + 1))

/V(w+) - w(w+(m, j))w(w+(m, j + 1))w(w+(m + 1, j))w(w+(m + 1, j + 1))

Since we have only finitely many possible vertex weights we see that can take finitely
many values.

The way we transform w to wx is as follows. We consider the complete order on pairs

(x, y) given by (x, y) < (x', y') if and only if x < x' or x = x' and y > y'. We traverse the
pairs (i, j): i = 1, ... , j, = 1, .., n - 1 in increasing order, and for each (i, j) we increase
A) (w) by 1 until it reaches Aq (wx). One readily observes that each such move is elementary
and the result of applying all these moves to w is indeed w\. We continue to denote the
result of applying an elementary move to w by w - this should cause no confusion.

An important situation occurs when prior to the application of the move m = Al(i) -+

m + 1 we have that there are no vertical arrows coming in (m, j) and (iM + 1, j) and coming
out of (m, j + 1) and (m + 1, j + 1). The latter situation determines the types of the four
vertices:

W (M, j) = (0, 1; 1, 0), W(M + 1, j) = (0, 0; 0, 0),

w(m, j + 1) = (1, 0; 0, 1), W(m + 1, j + 1) = (0, 1; 0, 1).

After the application of the move they become

( (0,j) (,1;0,1), w(m+ 1,j) (0,1;1, 0),

W(Mlj+I) = (,0;;,0), W(m+1,j+1) = (1,0;0,1).

We thus see that the product of these weights stays the same and so W(w) remains un-
changed. We call such a situation good.

Suppose that in the string of elementary moves, transforming W to WX, we have reached the
pair (i, j), and we are increasing Aq(w) to A(w,\). Let us denote A = Aj(w) and B = Aq(W,\).
The condition that we can increase Aq (w) to B via elementary moves, implies that there
are no arrows from (k, j) to (k, j + 1) or from (k, j - 1) to (k, j) for k = A + 1, . . . , B - 1.
Consequently, in the process of increasing Aji (w) to B, we encounter at most two non-good
situations (corresponding to the first and last move). As we have n(n - 1)/2 pairs (i, j), we
see that in our string of elementary moves the situation is good in all but at most n(n - 1)
moves. This proves our desired result.

Before we go to the proof of Lemma 3.6.6, we introduce some notation and prove a couple
of facts. Let GTn denote the set of n-tuples of integers

GTnt G dAe se:AA 2 t <f su<eAn}

Let G T denote the set of sequences
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Pl / 2 -- z ', 12 E GMi, I < i < n.

We call elements of G-T Gelfand-Tsetlin patterns. For A c GTn we let GTA C GT denote
the set of Gelfand-Tsetlin patterns pl - - - pn such that n = A.

We say that A c GTn and [L E GT_ 1 strictly interlace and write At -* A if

A, < pi < A2 < -.-. < An-1 < An.

Let GT denote the set of sequences

l _ [2 /- n, GTj, I < < n.

We call elements of GTn strict Gelfand-Tsetlin patterns. For A E GTn we let GTA C GTn
denote the set of Gelfand-Tsetlin patterns Atl -< _ _ -. A , such that An = A.

For A E GTn we consider the size of GTA, which is equal to the dimension of the represen-
tation of the unitary griup U(n) with the highest weight A and is given by the well-known
formula

GTA| = ( .Ai+j . (3.6.9)
i<j 

j

For A E GT, we let A* = (A + (n - 1), A2 + (n - 3), ... , An +(-n + 1)). It is easy to check
that if A E GTn and At C GTn. 1 then y -< A if and only if p* -< A*. Consequently, we have
that the map f : GT, -+ GTA*, given by f(ft',. . P -)1 ,A) = ((p)*,. ... ,(p-l)*, A*), is a

bijection.
It follows from (3.6.9) that for A E GTn, the size of GTA is given by

G T ( =-Ai-j+i) (3.6.10)

Let us recall from Definition 3.6.5 that a sequence in GTn is very good if for i = 1, ... ,n-1
each sequence A'+1 - Ak has a limit in N U {oo}, while for i = 1, ... , n - 2, each sequence

i+2-4 goes to oc. For each very good sequence Ak, we let M C {1, ... , n - 1}, be the set
of indices i, such that Aj+1 - A is bounded, and for i E M, denote by mi E N the limit of
the sequence A+k - k, which exists by assumption.

Given a subset M C {1, . .. , n - 1} and A C GTn, we let

GT,\(M) :={p,...,p)EG T,\ "- -p48- -pp- (Aj, Aj+1) for i M}.

For (pt 1,... , PAn) E GT(M) and numbers xi for i E M, we define the function

fr(At
1 ,...,IAn) = (vi .,vn) with v = 

fXi ifj=n-l andiE M,
pi else.
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We now define

GTA(M; fM) (i 1, ... I A') E GTA(M) :f( 1,... ., n") E GTA(M) if Xi E [Ai, Ai+ 1], i E M}.

The first key result we need is the following.

Lemma 3.6.9. Let Ak E GTn be a very good sequence and M as above. As k -+ oc, we have

GTAk|~ GTAk l ~ GTAk(M; fM ) x rJ (A+ A k
1<i<j<n iOM,i<n

7+1<3

x ] iM +
iE M

Proof. We observe that GTk (M; fM) c GTAk C GTAk, and so by (3.6.9), it suffices to show
that

limsup GTa (M; fM 3. . x (A+ 1 - AX) x ] (Mi+1) 5 1. (3.6.11)
k--oo 1<2j j i,i<n iEM

i+1<j

For iE {1, ... ,n}, we let Xi {(x,y) : i < x y:5 n}, and Y = {(x,y) : 1 < x < y <
n and y-x <n-i-1}. Let (I,. . .,npt) E GT n and let i e {0, ... , n} be given. Then it is
easy to see that if we increase pit by 1 for all (x, y) E Xi or, alternatively, for all (x, y) E Yi,
we still get an element that belongs to GT n. See Figure 3-7.

-- ------

Figure 3-7: An element p E GT4. In left picture the grey curve encloses /ty for (x, y) E
and the dashed curve for (x, y) e Y. The right picture is the result of increasing My by 1
(x, y) E X3 and then for (x, y) C Yo.

X3
for

Let M c {1, ... , n - 1}, be such that M does not contain adjacent elements. Suppose
that A E GTn is such that Ai+ 1 - Ai = 2 when i E M. Suppose mi E N for i E M are given.
Let ci c {0, ... , mi} for i E M. Starting from an element 1,. .. , ptn in GTA, and given ci for
i E M as above, we construct a new element in GTn as follows:

1. We traverse the elements in M in increasing order.

2. For each element i > 2, i E M, we increase the values pitt for each (x, y) E Xi by 1.

3. Afterwards we increase pi by mi for each (x, y) E Yi.
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4. Finally, we set 1 = p4 + mi and set p>' to equal 4' + ci.

For a simple application of the above algorithm see Figure 3-8.

3

4

Y2

3t

A2

-----

~11

Y3 4 4~~2
2I _t I

I /12

-4
Figure 3-8: The top picture gives an element p E GT ; the grey curve encloses pj for

(x, y) E X2 and the dashed curve for (x, y) Y2. If M = {2} and m 2 = 3 the bottom picture
gives the output of applying our algorithm to p. The position p3 can be any element in
[/24 41.-

One readily verifies that each element that was constructed with the above algorithm
belongs to GT,(M; fM), where vi = A1 and for i = 2,..., n, we have

Mi if i E M,

Aj+j - Ai +1 if i +1 E M and i - 1 0 M,
vi1 - vi Aj+ 1 - Ai+ 2 if i+1 M and i - 1 E M,

A+i- Ai +3 if i+1 E M and i-1 E M

Aj+j - Ai if ii+1,i -l1g M.

We thus obtain a map from GT x HiEM{0,... , mS into GT,(M; fM), and it is easy to see
that it is injective. The latter implies that

GT,(M; fM) f(m - 1)x XG .
iEM

Combining the above with (3.6.10) we see that if v E GTn is such that vj+1 - vi = mi for
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i c M and v,+, - v, > 4 for i 0 M, then

V7 -- -t4(i - i)
G T, (M; f M) 1>1 (mi +1) x 1 x H (vj+1 - vi-4).

iEM 1<i<j<._n ioM,i<n
i+1<j

This readily implies (3.6.11) and hence the lemma. El

An important property of GTx(M) is contained in the following lemma.

Lemma 3.6.10. Fix w 1,w 2,w 3 ,w4 ,w4,w 6 > 0 and n e N. Suppose p is a probability distribu-
tion on GTn+, which satisfies the six-vertex Gibbs property with weights (w 1 , w 2,w 3 ,w3,w 5 , w 6).
Let A E GTn be such that p(pi(w) = A) > 0 and define px as in Section 3.6.2. Let

M C {1,...,n - 1} and suppose that (A',.. .,p), (v 1,..., v) E GT,\(M), are such that
=i- for i E M. Then p\(p1,..., n-1) =p(v,...,mn-1).

Proof. We set w = h-1 ((L1,. .. ,jp"',A) and w 2 = h 1((v,.. . ,jfl) (the function h
was defined in Section 3.6.2). By definition we know that Al(wi) = A'(w 2 ) = An-i+1 for
i = 1,... , n. As in the proof of Lemma 3.6.4 we introduce vertex weights as in (3.6.1) and
define for w E 'Pn the weight W(w) := J[J H~1 w(w(i, j)). Since p satisfies the six-vertex
Gibbs property we see that to prove the lemma it suffices to show that W(wi) = W(w 2 ).

Recalling the proof of Lemma 3.6.4, we see that it suffices to show that we can trans-
form wi to w2 via good elementary moves. I.e. we wish to show that any two elements in
h-1 (GTA(M)), that satisfy A- 1 (wi) = An- 1 (w2) for n-i E M are connected via good elemen-
tary moves. We prove the latter by induction on 1W1 - W21:= 1Ai(w) - 2

the base case Jw1 - W21= 0 being obvious.

Suppose we know the result for Jw1 - W = k - 1 > 0, and we wish to show it for k.
Since JWi - W21 = k > 1, we know that there exist (x, y) such that AY(wi) - AY(w 2) = 0.
Let (x, y) be the smallest such index (in the order considered in the proof of Lemma 3.6.4),
and without loss of generality we assume that A (wi) > A (w2 ). Notice that by assumption

(x, y) / (i, n - 1) for any n - i E M and also y < n - 1.
We want to increase AY(w 2 ) by 1 and show that this is a good elementary move. In order

for this to be the case we must have that AY_ 1 (w2 ), AI'(w 2 ) (if x > 1) and Ay+'(w 2) are all
strictly bigger than AY(w 2 ) + 1. Observe that

Ay+1(W2) - Ay+ 1(wi) > AY(wi) + 1 > AY(w 2) + 2,

where in the first equality we used the minimality of (x, y), in the second one we used that

(x, y) / (i, n - 1) for any n - i E M and in the third that AY(wi) > AY(w 2 ). Similarly, we
have for x > 1 that

A_ 1(w2 ) = A_ 1(wi) > AY(wi) + 1 > AY(w 2 ) + 2,

and

AyII(w 2 ) = A_1 (wi) > AY(wi) + 1 > A(w2) + 2.

Thus increasing AY(w 2 ) by 1 is a good elementary move, and does not change )V(w 2 ), while
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it reduces JWi - w2 | by 1. Applying the induction hypothesis proves the result for k, and the
general result follows by induction. E

With the above two results, we now turn to the proof of Lemma 3.6.6.

Proof. (Lemma 3.6.6) Clearly it suffices to prove the lemma when Ak is very good. As before
we let M C {1,.. . , n - 1}, be the set of indices i, such that A +1 - A is bounded, and for
i E M, denote by mi E N the limit of the sequence A+ - A . By ignoring finitely many
elements of the sequence Ak, we may assume that Ai+1 - Ai = mi for all k. We denote by

Mk = ]71i<j ( A) x HiVMi<n(A kI - A).
7+1<j

For y = yi = 1, ... ,j and j = 1, ... ,rn, we let Q(y) be the cube in Rn(nl)/ 2 , given by

H>1 H=1 (y3, y + 1). For A E GTs, we define

GT* ={(I, ... A,)E G TA(M; f) :p 1 < A for i E M}.

It is easy to see that if ([t,...,np) E GT*, and y, = pu for i = 1,..., j and j = ,.n,
then

X1 X2 ... n-1 A, for any (Xi, ... ., Xn-1) ~)

Fix ci E {o,...,mi} for i c M, and set GT*k(c) =(,. 1 A) E GT* : pi-1 =

Ak + ci for i C M}. Then from the proof of Lemma 3.6.4 we know that

GT*k(c) ~- Mk and IGT*gkI - Mk f mi ~ dn(Ak) = vol(GTn(Ak)), as k -+ oc. (3.6.12)
iEM

Let us denote B(M) =] M0, ... , mi} and B*(M) = licM{, ... , mi - 1}. In view of

(3.6.12) and the boundedness of f, we know that

E E fQ() f o gk(Ak, xn-1, .. . x1 )dx
Ak k cEB*(M) yEGTk (C)

lim EAk [f 0 g(Ak, x-1,X- 2 1.., )] - = y -0.
k--+oo Mk X REM Mi

Moreover, using the uniform continuity of f and the fact that b(k) -+ oc as k --+ oc, we
conclude

k EZcEB*(M) ZYCGT*k) f 0 A '(Y)
lim EAk [f - k(A, X-1,Xn-2 . 1 _ ( yG ) = 0. (3.6.13)

k- oo Mk X REMC mi

Given ci E {0,... ,mi} for i E M, we let w(c,k) = pk(YI 1,... ,L- 1), where (pi,...,

pn Ip) c GT*k(c). By Lemma 3.6.10, we know that w(c, k) is well-defined. The bound-

edness of f, Lemma 3.6.9, and Lemma 3.6.4 now imply that

EcCB(M) w(c, k) EyEGT*k(c) f (y)
lim E [ (f 0 gk( A , ,n-l' ,n-2, . t1] _ _A-= 0.
k--oo Mk X EcEB(M) ck

(3.6.14)
Let c0 , be such that c9 = 0 for i E M. From the uniform continuity of f and the fact
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that b(k) -* oc, we note that for any c we have

EyGT*k(cO) f 0 9k(Y) ZyCGTk (c) f 9k (Y)

k-*oo Mk Mk

The latter, together with the boundedness of f and Lemma 3.6.4, implies that

rn cEB*(M) ZyEGTk (c) f 9k (Y)

k-+oo Mk x HEM mz

Z w(c, k) E f o gk(y)

urn cEB(M) yEGTk (c)

k-+oo Mk x E w(c,k)
cEB(M)

1 E yEGTk (CO) f 9k (Y)

REm i cGB* (M) Mk

1 yEGT* (CO) f 0 9k (Y)
w (c, k) A

Ew(c, k) Mk
cEB(M) cEB(M)

and so

ECEB*(M) EyEGTk (c) f 0 9k(Y)
lim X

k-+oo Mk X RiEM Mi

ZcEB(M) w(c, k)ZyGT*k (c) f 0 9k(Y)

Mk X EcEB(M) w(c, k)

Combining (3.6.13), (3.6.14) and (3.6.15) concludes the proof.

3.7 Proof of Theorem 3.1.3

In this section we give the proof of Theorem 3.1.3. We will split the proof into several steps
and outline here the flow of the argument. We assume the same notation as in Section 3.1.1
and define gm : Rk(k+1)/2 -+ Rk(k+1)/2 as

gM(x) = M - aM 1 k(k+1>).

In addition, we replace Y(N, M; k) with Y(M) for brevity. The statement of Theorem 3.1.3
is that gm(Y(M)) converge weakly to the GUE-corners process or rank k.

In the first step of the proof we show that we may replace the distribution of Y(M) with
the distribution vM, given by the distribution of Y(M) conditioned on Y(M)k < N, without
affecting the statement of the theorem. The latter is a consequence of Theorem 3.1.1. The
measures vM are probability measures on GTk+, which satisfy the six-vertex Gibbs property
with certain weights.

In the second step we check that the sequence of measures vM o gm- on Rk(k+1)/2 is tight.
This is shown by using the six-vertex Gibbs property satisfied by VM and Lemma 3.4.5. The
proof we present is similar to the proof of Proposition 7 in [521.

In the third step we prove that vM o g- converge weakly to the GUE-corners process of
rank k by induction on k. The base case is proved via Lemma 3.4.5. When going from k to
k + 1 we use the induction hypothesis and Proposition 3.6.7 to show that any weak limit of
VM 0 g-1 satisfies the continuous Gibbs property. The latter is combined with Proposition
3.5.6 to prove the result for k + 1.
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Step 1. Let EM be the event that Y(M)k < N. It follows from Theorem 3.1.1 (see also
(3.4.3)) that PNM(EM) -+ 1 as M -+ oc. Let vM be the distribution of Y(M), conditioned

on EM. Since pN, (EM) 1 , we see that it suffices to prove that vM O g c1 converge weakly
to the GUE-corners process of rank k.

We will show that vM is a probability distribution on GTk+, which satisfies the six-vertex
Gibbs property with weights

u - s 1  u -s
W u= -i w2 =1, W3 =

us- Ius 1

ILI

U-1 Ius-- - 1
=us-i

-,- -10~

0 1 2 3

(s 2 _ 1)u
us-1 .

0 0

4

3

2

4

1. 2 3 4

:LIJ...
1 2 3 4

Figure 3-9: The left figure shows a path collection w E EN with N = 6 and k = 3. Circles
indicate the positions of the empty edges. The top right figure shows the array (Yjj) 1 i j 3 ;
j varies vertically and position is measured horizontally. The bottom right figure shows the
image of (Yjj) 1 i js3 under h-1.

Recall from Section 3.1.1 that for w E EN, (Y?)i 1<ijk were the vertical positions of the
empty horizontal edges in the first k columns of w (see the left part of Figure 3-9). The
condition w E EM ensures that no Y(M)i are infinite, so that vM is a valid probability
distribution on GTk+

The fact that vM satisfies a six-vertex Gibbs property is a consequence of the fact that
pNM satisfies a Gibbs property for the six-vertex model on DN with weights (, w 2, 3, 4 ,

Iu5- 1  us-1 u-s Us-1 -\ (see Section 3.6.2). We observe that there is

a simple relationship between w and h- 1((Yj 3)(w)) (here h is as in Section 3.6.2). Namely,
h- 1((Y 3 )(w)) is obtained by reflecting w with respect to the line x = y and then flipping
filled and empty edges (see Figure 3-9). This transformation has the followng effect on arrow
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configurations at a vertex

(0,1 0; 0, 0) ++ (1,7 1; 1, 1) and (1, 0; 1, 0) ++- (0,7 1; 0, 1),7

while the vertices (0, 1; 1, 0) and (1, 0; 0, 1) are sent to themselves. This vertex transformation
implies that the measure h- 1 ((Y 3)(w)) satisfies the Gibbs property for the six-vertex model
on Dk with weights (w 2 , 1,w 4 , 3,w 5 , w 6 ), which are the weights in (3.7.1).

Step 2. In this step we show that vM o g-1 is tight, which is equivalent to showing that

((M)V"a is tight for each i = 1, . ,j and j = 1, . . . , k. We proceed by induction
on k, with base case k = 1, true by Lemma 3.4.5.

Suppose the result is known for k - 1 > 1 and we wish to show it for k. By induction
hypothesis q(M)i is tight for each i = 1, . . . , j and j = 1, . . . , k - 1. In addition, by Lemma
3.4.5 q(M)k is also tight. Using the interlacing condition Y(M)k-_ < Y(M)k < Y(M)k-1
for i = 2, ... , k - 1, and the induction hypothesis we conclude that T(M) is tight for
i = 2,... , k - 2. What remains to be seen is that r(M)k is tight.

We argue by contradiction and suppose that 'q(M)k is not tight as M -+ oc. Then we
may find a positive number p > 0, a subsequence M, and an increasing sequence L, going
to oc such that

(1(q (M,) k > L,) > p. (3.7.2)

Since Y(M,) < Y(M,)- 1 and by induction hypothesis 77(M,)-1 is tight, we see that if
(3.7.2) holds then we must have (by potentially passing to a further subsequence) that

(77(Mr)k < -Lr) > p/2.

Let us denote by B(M) = min (Y(M)k, Y(M)(- 1 - 1, Y(M)k- 2 ) (if k = 2, B(M) =
Y(M)k). B(M) is the rightmost positition that Yk-l(M) can take. From the tightness
result established for q(M)k, q(M)k- 1 and 77(M)k- 2 we know that

lim ID( B(Mr) - aM,
liMP < r)=1.r-4oc C /-M-

Thus by further passing to a subsequence we know that

<Lr;M)k B(Mr) - aMLP (M) < -Lr; CV_ ' < F r)> P/4. (3.7.3)

We know that Y(M)t- 1 is supported on A(M), A(M) + 1,. . . , B(M), where A(M) =

Yk(M) and B(M) is as above. Moreover, if

p (M) = p (yik-I(M) = iIyk (M), y(M), yk-1(M), yk- 2 (M)) for i = A(M), . .. B(M),

then by Lemma 3.6.4 c- 1 > > c for some constant c E (0, 1) that depends on k. The
Pi (M)
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latter implies that pi(M) > c2 /(B - A +I1) and so

SV ()<_ A(M) + B(M) y(M) yk (M), yk-1(M), Yk-2(M) .

This together with (3.7.3) implies

I 

gM)~ < -Lr/3) > (p/4)(c/2), (3.7.4)
which clearly contradicts the tightness of TI(Mr)- 1 . The contradiction arose from our as-
sumption that q(M)k is not tight as M -+ oc. This proves the induction step. By induction
we conclude that vM o g-1 is tight for any k E N.

Step 3. In this step we prove that gm(Y(M)) converge to A = A i = 1,..., j, j = ,... k
as M - oc, where A is the GUE-corners process of rank k. We proceed by induction on k,
with base case k = 1 true by Lemma 3.4.5.

Suppose the result is known for k - 1 > 1 and we wish to show it for k. From our earlier
work we know that vM o g-1 is tight. Let p be any subsequential limit and vMro g_. converge
weakly to p for some sequence M, - oo as r -+ oo.

We observe that p is a probability measure on GT {y E Rk(k+1)/2 .Y j+1 < <

y+, 1 i < j k - 1}. We have by induction hypothesis that the restriction to GTk-1
of 1- is the GUE-corners process of rank k - 1. In particular, we have

p(y c GT k k-1 y for some i = 1,..., k - 2) = 0.

The above together with the interlacing property of elements in GTk, shows that A satisfies

P"(y? = y'i+1 = Y+2 for some i = 1,...,n - 2) = 0.

From Step 1. in this proof we know that vM, satisfy the six-vertex Gibbs property with
weights as in (3.7.1). We may thus apply Proposition 3.6.7 to conclude that Y satisfies the
continuous Gibbs property.

From Lemma 3.4.5, we know that under M the distribution of (y1,..., yk) is the same as
(A',... , Ak). This together with Proposition 3.5.6 shows that A is the GUE-corners process
of rank k. The above work shows that any subsequential limit of vM o g-j has the same law
as A. As 11m o g-1 is tight we conclude it (and hence gM(Y(M))) weakly converge to the
GUE-corners process of rank k. The general result now follows by induction.

3.8 Exact sampling algorithm for Pu,v

In this section, we describe an exact sampling algorithm for P,,,v (see Definition 3.2.14),
which is based on discrete time dynamics on 'PN. We provide details on how this algorithm
can be implemented efficiently and give some examples of typical path collections sampled
from P,,.
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3.8.1 Markov kernels and sequential update
We start by recalling some notation from Section 6.2 in 1331. For any n we define

F, (u,. . . ,u ,,) (u) (3.8.1)

where u = (U, un), and v E Sign' 1, M E Sign+. Let us also define

Q 0 M1 - uiv F,(u, .... 7Un)
Q,;v(p -+ v) :=) ' ' Gc/(vi), (3.8.2)

(i 1 - quiv F,(Ui, .. . , U )

where ui and v are admissible with respect to s = q-1/ 2 for all i and [., v E Sign+. It follows
from Propositions 3.2.5 and 3.2.7 that A- Signi+1 -- + Signi and Q .i : Signi -- + Sign+

define Markov kernels. 2

For w E PN, we let An = An(w) for n = 1,... ,N be as in Section 3.1.1, we also let
AO(w) = 0. Let Pnv be the projection of Puv on An. As direct consquences of Proposition
3.2.7, we have

pnue, A- = P , n P,,Q = P1",vv, and Qu;vA- =A-uQ , (3.8.3)
uu, lu u~v) ' uVV Ul u l

where for a variable set w = (wi, ... , Wk) we write w U w = (w,. .. Wk, ).

Our next goal is to define a stochastic dynamics on PN. The construction we use is
parallel to those of [30] (see also [17, 24, 321) and it is based on an idea going back to [46],
which allows to couple the dynamics on signatures of different sizes.

Suppose that w is distributed accoriding to Puv as in Definition 3.2.14, and let v be
such that 0 < v and uiv < 1 for all i. We consider a random t < ... jN, with
[u' C Signt, whose distribution depends on An(w) for n = 1,..., N and the parameters u, v,
and is defined through the following sequential update rule.

We start with [t1 and sample it according to the distribution

Fz,(ui)G (v
P(pl= v = IA')GA) =/. (3.8.4)

( LZESign+ F,(ul)G (v)

If , .. . , k-1 are sampled, we sample p k for k > 2 according to

Fi,/g(Uk)G/(V)
P(/k - V A k -A, Mg-1 = P) = .(v) (3.8.5)

Essg ( F,/(A) (V)

We now let w' be the resulting element in PN, i.e., A (w') ptn for n = 1,..., N. The key

observation is that if w is distributed accoridng to Pu,v, then U' is distributed according to
Pu,vUv. The latter is a consequence of (3.8.3) and a Gibbs property satisfied by P,,, which

2 We use the notation "--+" to indicate that A- and Qu;, are Markov kernels, i.e., they are functions

in the first variable (belonging to the space on the left of "--+')' and probability distributions in the second

variable (belonging to the space on the right of "--+").
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states that conditioned on Ak, the distribution of A',..., Ak-1 is independent of v and is
given by

A- (Ak - Ak-1) ... A- A 3 (A3- A2)A-I(ul) (A 2 -* A1). (3.8.6)

For a more detailed description of the above procedure in analogous contexts we refer the
reader to Section 2 of [30] and Section 2 of [241.

For m = 0, .. ., M we let Pu,vm, denote the probability distribution as in Definition 3.2.14
with vm = (vi, . . . , vm). Equations (3.8.4) and (3.8.5) provide a mechanism for sampling W'
distributed according to Pu,vmel given w distributed as Pu,vm. Our strategy to sample
PUV = Pu,vm is to first sample Pu,vO and then use the above mechanism to sequentially
sample Pu,vm 1 for m = 0,. . . , M - 1.

We now turn to an algorithmic description of the above strategy. We assume we have the
following samplers, which will be described in the following section. For N > 1, q E (0, 1)
and u = (u 1 ,... ,UN) such that ui > q-/ 2 for i = 1,... N, we let ZeroSampler(N,q,u)
produce a random element w E PN, distributed according to P,vo. For k E {1, ... , N}, v > 0
such that uiv < 1 for all i, A c Sign+ and [ E Sign+ 1, we let RowSampler(k, q, u, v, A,)
produce a random signature p k E Sign+, distributed according to (3.8.5). With this notation
we have the following exact sampler for Pu,v.

Algorithm SixVerexSampler(N, M, q, u, v)
Input: q E (0, 1), u = (ui, ... ,UN) and v = (vi, . . . , vm) - parameters of the distribution.

w := ZeroSampler(N, q, u);
initialize p for i = 0, ... , N;

A0 = 0;
for (i= 1, i <M, i=i+1) do

for (k=1, k<N, k=k+1)do

fA RowSampler(k, q, U, vi, Ak (),Lk-l);
end

end
Output: w.

3.8.2 The algorithms ZeroSampler and RowSampler

From the definition of Pu,vO, we know that it agrees with the distribution of the vertically
inhomogeneous stochastic six vertex model of Section 6.5 in [33], except that all columns are
shifted by 1 to the right so that all vertices in the 0-th column are of the form (0, 1; 0, 1).
The vertically inhomogeneous six vertex model has a known sampling procedure, which we
now describe - see Section 6.5 [33] and [27] for details.

For u > q-/ 2 and q E (0, 1), we let

=1 - q/2_-u 1 /2 + q-1
bi(u) = and b2 (u) = 1

1uq-1/2 I _ q-1/2
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Notice that bi(u), b 2 (u) C (0, 1). We construct a random element W E PN by choosing the
types of vertices sequentially: we start from the corner vertex at (1, 1), then proceed to (1, 2)
and (2, 1),..., then proceed to all vertices (x, y) with x-+y = k, then with x-+y k + 1 and
so forth. The combinatorics of the model implies that when we choose the type of the vertex

(x, y), either it is uniquely determined by the types of its previously chosen neighbors, or
we need to choose between vertices of type (1,0; 1,0) and (1,0; 0, 1), or we need to choose
between vertices of type (0, 1; 0, 1) and (0, 1; 1, 0). We do all choiced independently and
choose type (1, 0; 1, 0) with probability bi(uy) and type (1,0; 0, 1) with probability 1- bi(uy).
Similarly, we choose type (0, 1; 0, 1) with probability b2(uy) and (0, 1; 1, 0) with probability
1- b2 (uy). We denote by Bernoulli(p) a Bernoulli random variable sampler with parameter
p E (0, 1). For a vertex a = (i, ji; i2 , j2 ), we let 12(a) = i2 and J2(a) = j2. With this
notation we have the following algorithm for ZeroSampler.
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Algorithm ZeroSampler(N, q, u)
Input: q E (0, 1), u = (u, .. . , UN) - parameters of the distribution.

initialize w;
c:= 0;
k := 2;
while (c < N) do

for (x= 1, x < k, = x + 1) do
y = k - x;
if (y > N) do nothing
else if (x == 1 and y == 1)

if (Bernoulli(b2 (uy)) == 1) w (x
else w(x, y) (0, 1; 1, 0);
end

else if (x 1)
if (12(w(x, y - 1)) == 1) w(x, y)
else if (Bernoulli(b2 (uy)) 1)
else w(x, y) = (0, 1; 1,0);
end

else if (y 1)
if (J2(w(x - 1, y)) == 0) w(x, y)
else if (Bernoulli(b2 (uy)) 1)
else w(x, y) = (0, 1; 1, 0);
end

, y) (0, 1; 0, 1);

= (1, 1;
W(x, y)

= (0, 0;
W(x, y)

1, 1);
= (0, 1; 0, 1);

0, 0);
= (0, 1; 0, 1);

else
if (12(w(x, y - 1)) == 0 and J2(w(x - 1, y)) == 0) w(x, y) = (0, 0; 0, 0);
else if (12(w(x, y - 1)) == 1 and J2(w(x - 1, y)) 1) W(x, y) = (1, 1; 1, 1);
else if (12(w(x, y - 1)) == 0 and J2(w(x - 1, y)) 1)

if (Bernoulli(b2(uy)) == 1) W(x,y) = (0, 1; 0, 1);
else w(x, y) = (0,1;1,0);
end

else
if (Bernoulli(b,(Qy))
else w(x, y) = (1,0; 0,
end

end
end
if (y == N

end
k = k + 1;

end
initialize Mu for i
for (i = 1, i < M, i

Pi = A(w) + 1;

== 1) w(x,y) = (1, 0; 1, 0);
1);

and 12(w(x, y)) == 1) c = c + 1;

= ... ) N;
=i + 1) do

end
Output: (/ -p ti 2  

... N
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Let us fix k > 1, parameters q, u, v such that q e (0, 1), u > q-l/ 2 , v > 0 and uv < 1.
We also fix p E Sign+ and A E Sign'. We now discuss how to sample the distribution
from (3.8.5) with the above parameters, which we denote by P for brevity. Let us define
the numbers ai = max(pu, Ai, 0) and bi = min(pi_-1 , Aj 1 ), where we agree that Pk = -- O,
AO = po = oc. We also set A(a, b) = Uk_ 1 [ai, bi]. The definition of P implies that P({. E
Sign : V E [ai, bi] for i = 1, ... , k}) = 1. Moreover, if v E Sign+ is such that vi E [ai, bi] for
i = 1, ... , k then P,/, and P,/, (see Definitions 3.2.1 and 3.2.2) consist of single elements w
and w', which implies that

P({ v}) oc w,(w(j, 1))w'(w'(j, 1)), where w and wc are as in (3.2.1) and (3.2.2).
jEA(a,b)n[,vi]

Sampling P is rather hard because there are infinite possible signautes V that are allowed.
Even if we consider only signatures, whose parts are bounded by some large constant L, their
number is still exponentially large in L and we cannot hope to efficiently enumerate possible
cases and calculate their weight.

The key observation that allows one to sample this distribution is that if 1 E {1, ... , k},
then conditional on v1, the distributions of v,... , vi_1 and i+1, ... , k are independent and
similar to the one of vi,. ... , Vk. Let us make the last statement more precise. Fix an integer
1 E {1, ... , k}, suppose we have fixed vi = x c [a , b1] and that there is at least one possible
signature vi, . . . , vk with vi = x. We modify ai and bi as follows

bi if bi 4 x ai if ai : x
bx2 bi -I else, ai + 1 else.

Let us fix yj E [a-, b-] for i # 1, put yj = x and denote AR = U [ab] and AL =

U -+1 [af, br]. Then we have

P({v E Sign+ vi = yj for i # 11vi = x) =P({v/ E Sign+ : vi = yj for i = 1, . .. , 1 - ilv, = X) X

P({v E Sign+,z : vi =yj for i = 1 + 1, . .. , klvl = x).

Moreover, we have

P({v E Sign: vi = yj for i = 1, ... , 1 - 1}vi = x) c 17 wu(w(j, 1))W'(W(j, 1)),
jEARn[o,y1]

P({v E Signgl vi = yj for i = 1 + 1, .. ). , k}v= x) cc w , w(w(j, 1))wc(c(j, 1))
jEALfn[o,y1]

The above arguments imply that we can sample P, by first sampling VLk/2j, conditioning
on its value and recursively sampling vi,... , vk/2j-1 and vLk/2j+1, ... , vk. The recursion
reduces runtime from exponentially large to polynomial in N.

We begin by explaining how to sample v, for 1 C {, .... , k}. Suppose that I = {ii, ... , ir} C
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{1, ... , k}, [ci, di] C [ai, bi] for i G I and xi E [ci, di]. We define

YVW(c, d, I, x) := 11 Wu((J, 1))W (Wc(j, 1)),
icl j=Ci

where wC and w are the single elements of P and P,/L, where vi xi for i E I and vz < ci
if j > i, i E I and j V I (if no such v E Sign+ exists W(c, d, I, x) = 0). We also define

di1  di,

W(c, d; I) := S - L W(c, d, I, x).

Xil =cii Xir =Cir

Let us denote by p = w,((0, 1; 0, 1))wc ((0, 1; 0, 1)), and suppose [ci, dj] c [a,, bj]. We wish
to sample v, conditioned on it belonging to [cI, dj] according to P. We define

wLl = W(c, d; {1, ... , l - 1}), where ci =a and di =bi;

wL2 =W(c, d; {1, . .. ,l - 1}), where ci ai and di = b, except cl_ 1 = a- 1 + 1;
wR1 = W(c, d; {l1, .. .,k}), where ci =ai and di = bi;
wR2 = W(c, d; {l + 1,... , k}), where ci ai and di = bi, except d1+1 = d1+1 - 1.

bLL = 1 if ci = A, and bLL = 0 otherwise;

bRL 1 if d, = A- 1 and bRL = 0 otherwise; (3.8.8)
bLM 1 if cl = ft, and bLM = 0 otherwise;

bRM = 1 if d, = pl-i and bRM = 0 otherwise;

The conditional distribution of v, depends on cl, d, and the above four variables bLL, bRL, bLM
and bRM.

If cl = d, then we have vi = cl with probability 1. If d, = cl + 1, then we have sixteen
possible cases for the variables bLL, bRL, bLM and bRM, which lead to different probability
distributions. To give one example, if bLL = bRL = bLM = bRM = 0, then

P(vi = cl) oc wL2 -wR1, P(vi = di) oc p -wLl -wR2.

If d, - cl = n > 2, then we have sixteen possible cases for the variables bLL, bRL, bLM
and bRM, which lead to different probability distributions. To give one example, if bLL =
bRL = bLM = bRM = 0, then

P(vi = cl) oc wu (0, 1; 1, 0)wu (0, 1; 1, 0) -wL2 -wR1,
P(v = dj) oc wu(0, 1; 1, 0)w ,(0, 1; 1, 0)w" (0, 1; 0, 1)w (0, 1; 0, 1)p"- 1 - wLl -wR2,
P(v1 = c, + i) c w (0, 1; 1, 0)w (0, 1; 1, 0)w(0, 1; 0, 1)w (0, 1; 0, l)pil- -wL1 - wRl, 1 < i < k - 1.

There are altogether thirty-three cases (sixteen corresponding to di = cl + 1, sixteen for d, >
cl +1 and the trivial case of cl = dj) and we will not write them out explicitly. The important
point is that the conditional distribution of vj, given wLl, wL2, wR1 and wR2 is explicit and
can be sampled. We let ArrowSampler(u, v, c, d, bLL, bRL, bLM, bRM, wLl, wL2, wRl, wR2)
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denote an algorithm that samples the above probability distribution when cl = c, d, = d.
Suppose that we have an algorithm Weight(u, v, c, d, x, y, A, A) := W(c, d; {x, x+1. ... , ),

then we have the following algorithm for RowSampler.

Algorithm RowSampler(u, v, c, d, x, y, A, /p)
Input: u, v - parameters, c = (cr, cX+1, ... , cy), d = (dr, dx+1, ... , dy), A E Signk , E Signk 1 -

if (x == y)
bLL := 0; if (c= Ax) bLL = 1; end
bRL:= 0; if (d= Ax_ 1) bRL 1; end
bLM:= 0; if (c= px) bLM 1; end
bRM := 0; if (d= px-) bRM = 1; end
v= ArrowSampler(u, v, cX, dX, bLL, bRL, bLM, bRM, 1, 1, 1, 1);

else
s [(x + y)/21;
C' := X {c,. . . , cs_1}1; c" := { c,+, . ..., cy}; d' := {do,.. . , d,_}; d" := d,+1, ...- dy};
wR1 := Weight (u, v, c', d', x, s - 1, A, ); wR2 := wR;
if (d8 == cs_1)

C' {Cx, .. ,Cs- 2 ,Cs 1 + 1}; wR2 =Weight(u,v,c', d', x, s - 1, Ap);
end
wL1 Weight (u, v, c", d", s + 1, y); wL2 := wL;
if (c, == d,+1)

d" {ds+, - 1, ds+2, ... , dy}; wL2 =Weight(u,v,c",d",s+1,y,A,pI);
end
bLL 0; if (c= As) bLL = 1; end
bRL 0; if (d8 s= A,_1 ) bRL 1; end
bLM:= 0; if (c= ps) bLM = 1; end
bRM := 0; if (ds = u_ 1) bRM = 1; end
us = ArrowSampler(u, V, cSds, bLL, bRL, bLM, bRM, wL, wL2, wR, wR2);
C' ={c,. . . , cS_ 1}; c" = {cs+ 1,. . . , cY}; d' = {d, .. . , ds_ 1}; d" = {ds+1,. . ., dy;
if (vS == ds+1) d" = {ds+1 - 1, ds+2 , ... , dy}; end
if (vs cS_ 1) C' ={CX, ... , cs- 2, cs_ 1 + 1}; end
RowSampler(u, v, c', d', x, s - 1, A, IL);
RowSampler(u, v, c", d", s + 1, y, A, m);

Output: v

In the algorithm RowSampler v = 11 v2 > ... vk is a global variable that we are
updating through the recursive calls to the same algorithm. Going back to the notation of
SixVerexSampler, we have that RowSampler(k, q, u, v, A, A) = RowSampler(u, v, a, b, 1, k, A, p).
Thus what remains is to show how to calculate Weight(u, v, c, d, x, y).

The function Weight can be calculated recursively by again conditioning on the middle
arrow and summing over the weights corresponding to its possible positions. We first discuss
the base case of having a single interval [cl, di]. We will consider a reweighted version of
W(c, d; {l}), where we have additional four weights wL, wL2, wR1 and wR2, which are
fixed. By definition W(c, d; {l}) is the sum of weights over the possible positions of the
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arrow in [cl, dj]. Our reweighed version will be the same sum, however we will multiply each
term by wL1 -wRl, wL1 -wR2, wL2 -wR1 or wL2 -wR2 according to the following rules.

We multiply the weight by wL1 unless the arrow is in location cl, in which case we
multiply it by wL2, we then multiply the weight by wR1 unless the arrow is in location dj,
in which case we multiply it by wR2. One observes that the weight of the interval [ci, di],
depends on d, - cl. We have three cases for d, - cl - when it is 0, 1 and > 2, and the weights
are as follows.

Sdi - cl = 0 : V(c, d; {1}) = w,(1, 1; 1, 1) - w'(1, 0; 1, 0) - wL2 -wR2;

" d, - cl = 1 : W(c, d; {l}) = ws(0, 1; 1, 0) - w(1, 0; 0, 1) - w'(1, 0; 1, 0) - wL2 - wRl +
wU(0, 1; 0, 1) - wU(1, 1; 1, 1) -wg(1, 0; 0, 1) - w'(0, 1; 1, 0) -wLl -wR2;

* d-- c = n > 2 : W(c, d; {l}) = ws(0, 1; 1, 0) -wu(1, 0;0, 1) -.w(1, 0; 1, 0) -wL2 wR1 +
wU(0, 1; 0, 1) -w (1, 1; 1, 1) -w (1, 0; 0, 1) -w'(0, 1; 1,0) -pn-1.- wL1 -wR2 + wu(0, 1; 1, 0) -
Ws (1, 0; 0, 1) - Ws (0, 1; 0, 1) - W' (1, 0; 0, 1) . W, (0, 1; 1, 0) . -pn-_ - wL1 -wR1.

We let BaseWeight(u, v, c, d, wLl, wL2, wRl, wR2) denote the above single interval weight
function and with it we define Weight(u, v, c, d, x, y, A, [1) as follows.

Algorithm Weight (u, v, c, d, x, y, A, P)
Input: u, v - parameters, c = (cr, cx+1,.. . , cy), d = (dx, d+ 1 ,. . . , dy), A E Signk+, [t c Sign_ 1 .

initialize w;
if (x == y)

w = BaseWeight(u, v, cz, dX, 1, 1, 1, 1);
else

s := [(x + y)/2];
C' := cx, . .. ,CS_1}; c" := {c,,+1,. .. ,cy}; d' := {dx, .. . ,ds_1}; d" := {d,+1, .. . ,dy};
wR1 := Weight(u,v,c', d', x,s- 1,A,t); wR2 := wR1;
if (d5 == cS8 1)

C' = {cx, ... , c-2, c1 + 1}; wR2 = Weight (u, v, c', d', x, s - 1, A, A);
end
wL1 := Weight(u, v, c", d", s + 1, y); wL2 := wLl;
if (c. == ds+1)

d" = {ds+1 - 1, ds+2 , ... , dy}; wL2 = Weight (u, v, c", d", s + 1, y, A, At);
end
w = BaseWeight(U, v, cS, ds, bLL, bRL, bLM, bRM, wL, wL2, wRl, wR2);

end
Output: w

3.8.3 Discussion and extensions
In this section we discuss some of the implications of the results of the paper and some of
their possible extensions. We also use the sampling algorithm developed above to produce
some simulations. We will be interested in demonstrating that there is a limit shape for
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the six-vertex model that we have considered. In addition, we will provide some empirical
evidence supporting the validity of Theorem 3.1.3.

Results similar to Theorem 3.1.3 are known for models of random Young diagrams and
random tilings, see [8, 54, 68, 70]. Moreover, for random lozenge tilings the GUE-corners
process is believed to be a universal scaling limit near the point separating two frozen regions
(also called a turning point) [54,70]. We believe, although we cannot prove, that in our model
the GUE-corners process also appears near the point separating two frozen regions. At this
time, our methods do not seem to be strong enough to verify a limit-shape phenomenon;
however, simulation results seem to indicate that this is indeed the case. For the simulations
we fix N = 100 and consider different choices for q, u and v. From Theorem 3.1.3 we know
that Y asymptotically looks like a -M, with a as in Theorem 3.1.1. We pick the parameter
M in our simulations so that a - M is roughly
3-10, 3-11and 3-12.

N/2. The results are summarized in Figures

~I~7t7I~7

Figure 3-10: Random paths in PN, sampled according to PNM with N = 100. For the left
picture s- 2 =q=0.5, u=5, v=0.1 and
v = 0.1 and M = 1000.

M = 100; for the right s-2 = q = 0.5, u = 2,
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Figure 3-11: Random paths in PN, sampled according to PNM with N = M = 100. For the
left picture s-2 = q = 0.25, u = 2.5 and v = 0.25; for the right s- 2 = q = 0.25, u = 5, and
v = 0.1 .

Figure 3-12: Random paths in PN, sampled according to PN with N = M = 100. For the
left picture s-2 = 0.8, u = 1.2 and v = 0.8; for the right s-2 = 0.5, u = 1.5 and v = 0.6.
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As can be seen on Figures 3-10, 3-1land 3-12 , there is a macroscopic frozen region, made of
(0,1; 0,1) vertices in the bottom left corner and another one, made of (1, 1; 1, 1) vertices in
the top left corner. The two regions are separated by a disordered region containing all six
types of vertices. It would be interesting to see if the methods of this chapter can be utilized
to rigorously confirm the existence of a limit shape, and to find parametrizations for it.

A particular implication of Theorem 3.1.3 is that 1 (Y 1 - aM) converges to the stan-
dard Gaussian distribution as M -+ oc. In what follows, we provide some numerical sim-
ulations supporting this fact. We took 1000 samples from pIf, with N = M = 200 and
different values for q, u, v, and calculated 3 (Y 1 - aM). The empirical distribution of the
samples is compared with the standard normal cdf, and the results are given in Figure 3-13.
As can be seen, the distributions appear to be quite close, as is expected.

1/2 1/2

-2 -1 0 1 2 -2 -1 0 1 2

Figure 3-13: Empirical distribution of 1000 samples of 1V (Y1
1 (w) - aM) with w distributed

as PNfM with N = M =200. For the left picture s-2 = q = 0.8, u = 1.2 and v = 0.8; for the
right s-2 = q = 0.5, u =1.5, v = 0.6.

Recall that one way to interpret the measure pN, is as the time m distribution of a certain
discrete time Markov chain, which at time 0 is distributed as the stochastic six-vertex model
of [27J. In [27] it was shown that configurations sampled from PN;? converge to a certain
deterministic cone-like limit shape (see Figure 3-14 for sample simulations). Comparing
Figures 3-12 and 3-14, we see that the stochastic dynamics has lead to a change in the limit
shape. What is remarkable is that Theorem 3.1.3 indicates that the bulk fluctuations change
as well. For the stochastic six-vertex model it is known that the fluctuations of the height
function' in the bulk are governed by the GUE Tracy-Widom distribution [27]. On the other
hand, the bulk fluctuations of the GUE-corners process are described by the Gaussian Free
Field (GFF) [18]. Theorem 3.1.3 suggests that the stochastic dynamics has transformed
height fluctuations from KPZ-like to GFF-like.

A possible explanation of the above phenomenon was suggested to us by Alexei Borodin
and Fabio Toninelli and goes as follows. At large times one has both KPZ and GFF statistics

3 The height function h(x, y) of the six-vertex model is defined as the number of paths that cross the
horizontal line through y to the right or at the point x.
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Figure 3-14: Random paths in 'PN, sampled according to Pf with N = 100 when f(A) =

Gc(p). For the left picture s- 2 = 0.8, u = 1.5; for the right s-2 = 0.5, u = 2

within the model, but they manifest themselves in different portions of the configurations.
As path configurations evolve, the KPZ region is pushed away from the origin and in its
place GFF statistics emerge. We motivate the latter explanation with some simulations in
Figure 3-15. One distinguishing feature between KPZ and GFF statistics is the order of
growth of the fluctuations, which are algebraic in the former and logarithmic in the latter
case. We expect that the variance of the height function in the KPZ region to be of order
N 2/3 , while in the GFF region to be of order log(N). The latter implies that we can use
the height variance as a proxy for distinguishing the different regions in our model and the
results are presented in Figure 3-15. As can be seen, there is indeed a high-variance cone,
which is moving away from the origin and a very low variance region takes its place. It would
be very interesting to verify that both GFF and KPZ fluctuations coexist in our model, since
to our knowledge such a phenomenon has not been observed in other settings.
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Figure 3-15: Variance of the height function at different locations for 2000 samples from
pNM . For the above simulations s- 2 = 0.5, u = 3, v = 0.2 and N = 200 and M = 0,30,60
and 90 for the top-left, top-right, bottom-left and bottom-right diagrams respectively. The
variance-to-shade correspondence is indicated on the right.
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Chapter 4

Transversal fluctuations of the ASEP, stochastic
six vertex model, and Hall-Littlewood Gibbsian
line ensembles

4.1 Introduction

In this chapter we prove, as Theorem 4.3.13 and Corollary 4.3.11, the long predicted transver-
sal 2/3 exponent for the asymmetric simple exclusion process (ASEP) [63,76] and the stochas-
tic six vertex (S6V) model [53] - two (closely related) 1 + 1 dimensional random interface
growth models / interacting particle systems in the Kardar-Parisi-Zhang (KPZ) universality
class. We work with step initial data for both models and demonstrate that their height
functions, scaled in space by T2/ 3 and in fluctuation size by T/ 3 , are tight as spatial pro-
cesses as time T goes to infinity (we use T for time since t E (0, 1) will be reserved for the
Hall-Littlewood parameter). We also show as Corollary 4.7.4, that all subsequential limits of
the scaled height function (shifted by a parabola) have increments, which are absolutely con-
tinuous with respect to a Brownian bridge measure. Conjecturally the limit process should
be the Airy 2 process and we provide further evidence for this conjecture by uncovering a
Gibbsian line ensemble structure behind these models, which formally limits to that of the
Airy line ensemble [42].

4.1.1 Main results
We now state our main results concerning the ASEP. Precise definitions of this model and
further discussion can be found in Section 4.2.3. We forgo stating the S6V model result until
the main text - Corollary 4.3.11 - since it requires more notation to define the model.

In the ASEP, particles occupy sites indexed by Z with at most one particle per site (the
exclusion rule) and jump according to independent exponential clocks to the right and left
with rates R and L respectively (R > L is assumed). Jumps that would violate the exclusion
rule are suppressed. Step initial data means that particles start at every site in Z<o (and
no particles start elsewhere). The height function T(x) records the number of particles at
or to the right of position x E Z at time T. For x V Z we linearly interpolate to make the
height function continuous. With this notation we can state our main theorem (Theorem
4.3.13 and Corollary 4.7.4 in the main text).
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Theorem 4.1.1. Suppose r > 0, R = 1, L E (0,1), -y = R - L and fix a E (0, 1). For
s E [-r, r] set

fASEP (s) = 1 N-1/ 3 (f 3 (a)N + f3(ce)sN2/3 + (1/2)s 2 f3'(a)N 1/ 3  [N/y (aN + sN 2/3 ))
(4.1.1)

The constants above are given by oa = 2-4/3(1 - a2)2/3, f3 (a) 1 2a)-

f3'(a) = I. If PN denotes the law of fNASEP(s) as a random variable in (C[-r, r], C) - the
space of continuous functions on [-r, r] with the uniform topology and Borel --algebra C (see
e.g. Chapter 7 in [13]) - then the sequence PN is tight.

Moreover, if P, denotes any subsequential limit of PN and fASEP has law P,, then
gASEPASE P defined by

2gASEP~x ~EP (x 2 , for x Ez [-r, r],

is absolutely continuous with respect to a Brownian bridge of variance -2rf'(a)[1 + f3(a)]
in the sense of Definition 4.7.2.

Our approach for proving Theorem 4.1.1 is to (1) embed the ASEP height function into
a line ensemble, which enjoys a certain 'Hall-Littlewood Gibbs' resampling property, and (2)
use the known one-point tightness in the T1 /3 fluctuation scale to obtain the T2/ 3 transversal
tightness. These two points are discussed more extensively in the section below. Here we
mention that the Gibbs property implies that conditional on the second curve in the line
ensemble, the top curve (i.e. the height function) has a law expressible in terms of an explicit
Radon-Nikodym derivative with respect to the trajectory of a random walk. By controlling
this Radon-Nikodym derivative as T goes to infinity, we are able to control quantities like
the maximum, minimum and modulus of continuity of the prelimit continuous curves, which
translates into a tightness statement in the space of continuous curves. By exploiting a
strong coupling of random walk and Brownian bridges we can further deduce the absolute
continuity of subsequential limits with respect to Brownian bridges of appropriate variance.

4.1.2 Hall-Littlewood Gibbsian line ensembles

Line ensembles and resampling

The central objects that we study in this chapter are discrete line ensembles, which satisfy
what we call the Hall-Littlewood Gibbs property. In what follows we describe the general
setup informally, and refer the reader to Section 4.3.1 for the details.

A discrete line ensemble is a finite collection of up-right paths {L}f_ 1 drawn on the
integer lattice, which we assume to be weakly ordered, meaning that Li(x) > Li+ (x) for
i = 1, ... , k - 1, and all x. The up-right paths Li are understood to be continuous curves
on some interval I = [a, b], and to be piecewise constant or have slope 1 (see Figure 4-1 for
examples). Suppose we are given a probability distribution A on the set of ensembles {L}_ 1 .
We will consider the following resampling procedure. Fix any i E {1, ... , k - 1} and denote
by f = Li_ 1 and g = Li+1 with the convention that Lo = +oo. Sample {Li} _1 according to
1t and afterwards erase the line Li, between its endpoints A = Li(a) and B = Li(b). Sample
a new path L', connecting the points (a, A) and (b, B) from the uniform distribution on all
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L3

1 2 3 4 5 6 7

Figure 4-1: The black lines are a sample from a discrete line ensemble {L.}ki with k = 3
(L2 is not drawn and coincides with the blue line above). Each line is a continuous curve
on I = [1, 7] that is piecewise constant or has slope 1. The red and blue lines are uniformly
sampled up-right paths connecting the endpoints (1, 1) and (7, 2) of L2 .

up-right paths that connect these points, and independently accept the path with probability
W (L , f, g). If the new path is not accepted the same procedure is repeated until a path is
accepted. We say that p has the Hall-Littlewood Gibbs property with parameter t E (0, 1)
if given {Lj}U distributed according to IL, the random path ensemble obtained from the
above resampling procedure again has distribution [L. The acceptance probability is

Wt(L , f, g) =
b

H (1 - 1{A+(s_1)-A+(s)_1- ta+( .(i _ A-(s-1)-A-(s)1}t
s=a+1

(4.1.2)
where A+(s) = f(s) - L(s) and A-(s) = L'(s) - g(s). The above expression can be
understood as follows. Follow the path L from left to right and any time f - L' decreases
from A+ to A+ - 1 at location s - 1 we multiply by a new factor 1 - tA+(s_1). Similarly,
any time L' - g decreases from A- to A- - 1 at location s - 1 we multiply by a new factor
1 - tA-(-). Observe that by our assumption on t we have that W(L', f, g) E [0, 1], which
is why we can interpret it as a probability.

We make a couple of additional observations about the acceptance probability Wt (L , f, g).
By assumption f(a) L (a) g(a) and f(b) L'(b) g(b). If for some s we fail to have
f(s) L'(s) g(s), we see that one of the factors in W(L', f, g) is zero and we will never
accept such a path. Consequently, the resampling procedure always maintains the relative
order of lines in the ensemble. An additional point we make is that if L is very well separated
from f and g (in particular, when f = +oo) we have that A' is very large and so the factors
in the definition of W(L', f, g) are close to 1. In this sense, we can interpret W(L', f, g) as
a deformed indicator function of the paths f, L', g having the correct order, the deformation
being very slight if the paths are well-separated.

Example: We give a short example of resampling L2 to explain the resampling procedure,
using Figure 4-1 as a reference. We will calculate the acceptance probability if the uniform
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path we sampled is the red or blue one in Figure 4-1. If L'e denotes the red line, we
have Wt(L',e, L1 , L3) = because the lines Lr and L',d go out of order. In particular,
we see that A--(s - 1) = 0 and A-(s) = -1 when s = 6, which means that the factor

(1 - - - tA (s-l) is zero. Such a path is never accepted in the resampling
procedure.

If L' denotes the blue line, we have Wt(L~iue, L1 , L3) (1 -t)(1 -t 2 )(1 -t 3 ). To see the
latter notice that A+ decreases at location 1 from 3 to 2, producing the factor (1 - t3). On
the other hand, A- decreases from 2 to I and from 1 to 0 at locations 2 and 5 respectively,
producing factors (1 -t 2 ) and (1-t). The product of all these factors equals Wt(L'iue, L1 , L3)
and with this probability we accept the new path.

The main result we prove for the Hall-Littlewood Gibbsian line ensembles appears as
Theorem 4.3.8 in the main text. It is a general result showing how one-point tightness for the
top curve of a sequence of Hall-Littlewood Gibbsian line ensembles translates into tightness
for the entire top curve. This theorem can be considered the main technical contribution
of this work, and we deduce tightness statements for different models like the ASEP by
appealing to it. It is possible that under some stronger (than tightness) assumptions, one
might be able to extend the results of that theorem to tightness of the entire ensemble (i.e.
all subsequent curves too) - but since we do not need this for our applications, we do not
pursue it here.

This idea of using the Gibbs property to propagate one-point tightness to tightness of
the entire ensemble was developed in [42, 43]. In those works, the Gibbs property was
either non-intersecting or an exponential repulsion. In other words, curves are penalized
by either an infinite energetic cost or an exponential energetic cost for moving out of their
indexed order. Those works rely fundamentally upon certain stochastic monotonicity enjoyed
by such Gibbsian line ensemble. Namely, if you consider a given curve and either shift
the starting/ending points of that curve up, or shift the above/below curves up, then the
conditional measure of the given curve will stochastically shift up too. Since the Hall-
Littlewood Gibbs property relies on not just the distance between curves, but on their
relative slope (or derivative of the distance), this type of monotonicity is lost. Indeed, it is
not just the proof of the monotonicity, but the actual result which no longer holds true in
our present setting (see Remark 4.4.2).

Faced with the loss of the above form of monotonicity, we had to find a weak enough
variant of it which would actually be true, while being strong enough to allow us to rework
various types of arguments from [42,43]. Lemma 4.4.1 (and its corollaries) ends up fitting this
need. In essence, it says that the acceptance probability of the top curve increases (though
only in terms of its expected value and up to a factor of c(t) = fl,(1 - ti)) as the curve is
raised. Informally, this result is a weaker version of the stochastic monotonicity of [42,43] in
that pointwise inequalities are replaced with ones that hold on average and upto an additional
factor. Armed with this result, we are able to redevelop a route to prove tightness of the
entire top line of the ensemble from its one-point tightness. Our approach should apply for
more general Gibbs properties which rely upon not just the relative separation of lines, but
also their relative slopes. Indeed, the constant c(t) arises in our case as a relatively crude
estimate needed to handle the dependence of our weights on the derivative of the distance
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between the top two curves. If the dependence of the weights becomes different, one should
be able to reproduce the same arguments, with only the constant c(t) changing its value.

The homogeneous ascending Hall-Littlewood process

The prototypical model behind the Hall-Littlewood Gibbsian line ensemble of the previous
section is the (homogeneous ascending) Hall-Littlewood process (HAHP). The HAHP (a
special case of the ascending Macdonald processes [241) is a probability distribution on
interlacing sequences 0 -< A(1) -< A(2) -< - - < A(M), where A(i) are partitions (see the
beginning of Section 4.2.1 for some background on partitions, Young diagrams etc.). It
depends on two positive integers M and N as well as two parameters t, ( E (0, 1). We will
provide a careful definition in terms of symmetric functions in Section 4.2.1 later, but here
we want to give a more geometric interpretation of this measure. In what follows we will
describe a measure on interlacing sequences of partitions 0 -- A-M+1 -.< ... .- - 0  > 1 >-

... >- AN-1 >- 0. The HAHP is then recovered by restriction to the first M partitions of this
sequence. The description we give dates back to [80], and we emphasize it here as it is the
origin of the Hall-Littlewood Gibbs property that we use.

We can associate an interlacing sequence of partitions with a boxed plane partition or
3d Young diagram, which is contained in the M x N rectangle - Figure 4-2 provides an
illustration of this correspondence. Consequently, measures on interlacing sequences are
equivalent to measures on boxed plane partitions and we focus on the latter. If a plane
partition 7r is given, we define its weight by

W(7r) = A , (t) x (diag(r), (4.1.3)

where diag(ir) denotes the sum of the entries on the main diagonal of 7 (alternatively this
is the sum of the parts of A' or the number of cubes on the diagonal x = y in the 3d Young
diagram). The function A,(t) depends on the geometry of 7r and is described in Figure 4-2

(see also Section 2.1.1 where the same A , appears in a slightly different measure on plane
partitions). With the above notation, we have that the probability of a plane partition is
given by the weight W(7r), divided by the sum of the weights of all plane partitions.

Let us denote A(i) = AiM- for i =1, ... , M. Then the HAHP is the probability distribution
induced from the weights (4.1.3) and projected to the first M terms 0 -< A(1) -< A(2) <
-. -< A(M). Denoting by A' the transpose of a partition A we observe that {A;(-)}j 1 defines
a discrete line ensemble on the interval [0, M]. In the above geometric setting, the lines in the
discrete line ensemble {A'(.)} 1 can be associated to the level lines of 7r (in particular, A'(.)
corresponds to the bottom slice of the plane partition 7r). The important point we emphasize
is that the geometric interpretation of A, (t) above can be seen to be equivalent with the
statement that the line ensemble {A (.)}IN_ 1 satisfies the Hall-Littlewood Gibbs property of
the previous section. The latter is proved in Proposition 4.3.9 in the main text.

The main result we prove for the HAHP is that as M, N tend to infinity the top line A'(.)

(or alternatively the bottom slice of 7r), appropriately shifted and scaled, is tight - this is
Theorem 4.3.10 in the text. In Theorem 4.2.2 we combine arguments from Chapter 2 as well
as [271 to show that the analogue of Theorem 2.1.2 is true for the model we described above.
This convergence implies in particular one-point tightness for the top line of the ensemble
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Figure 4-2: If given a sequence 0 -< A-M+' --< ... ..-< A - ... >- AN-i >- 0 we write the parts

of A' downward - in this way we obtain a plane partition. The left part of the figure shows
how to do this when A- 5 = (3), A- 4 = (3, 1), A- 3 = (3,3, 1) and so on. In this example
N = M = 6. The right part of the figure shows the corresponding 3d Young diagram. The
entry in a cell of the plane partition corresponds to the number of cubes in a vertical stack
of the 3d diagram.
For the above diagram we have diag(7r) = 5 + 4 + 3 + 2 + 2 = 16.
To find A,(t) we do the coloring in the right part of the figure. Each cell gets a level, which
measures the distance of the cell to the boundary of the terrace on which it lies. We consider
connected components (formed by cells of the same level that share a side) and for each one
we have a factor (1 - ti), where i is the level of the cells in the component. The product of
all these factors is A, (t). For the example above we have 7 components of level 1, 3 of level
2 and one of level 3 - thus A,(t) = (1 - t)7(1 - t2)3(1 - t3).

{A (-)} 1. Once the one-point tightness and Hall-Littlewood Gibbs property are established
we enter the setup Theorem 4.3.8, from which Theorem 4.3.10 is deduced.

Connection to the ASEP and S6V model

In this section we explain how the ASEP and S6V model fit into the setup of Hall-Littlewood
Gibbsian line ensembles.

For the S6V model, the key ingredient comes from the remarkable recent work in [231. In
particular, Theorem 4.1 in [23] (recalled as Theorem 4.2.4 in the main text), shows that the
top curve A' of the line ensemble {A (-)} 1 of the previous section has the same distribution
as the height function on a horizontal slice of the S6V model, with appropriately matched
parameters. This equivalence relies on the use of the t-Boson vertex model, as well as the
infinite volume limit of the Yang-Baxter equation (as developed, for instance, in [12,20,591).
Alternatively, [341 relates this distributional equality to a Hall-Littlewood version of the
RSK correspondence. Through this identification one deduces the predicted transversal 2/3
exponent for the height function of the S6V model as a corollary of the HAHP result Theorem
4.3.10 - the exact statement is given in Corollary 4.3.11 in the text.

We now explain how to relate the ASEP to our line ensemble framework. Recall from
Section 4.1.1 that [)T(x) denotes the height function of the ASEP with rates R and L,
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started from step initial condition at time T. Set R = 1 and L = t E (0, 1). Since we use
linear interpolation to define [T(X) for non-integer x, one observes that -OT(x) either stays
constant or goes up linearly with slope 1 as x increases, i.e. -OT(X) is an up-right path. In
Proposition 4.3.12 we show that for any T > 0 and k, K c N there is a random discrete
line ensemble {L 4SEP}_ 1 on I = [-K, K] such that (1) the law of {L ASEP} 1 satisfies the
Hall-Littlewood Gibbs property and (2) Li SEP has the same law as -rT(x), restricted to
x E [-K, K]. The realisation of -OT(x) as the top line in a Hall-Littlewood Gibbsian line
ensemble is an important step in our arguments and we will provide some details how this
is accomplished in a moment. For now let us explain the implications of this fact.

Once we have that {L-SEP}k 1 satisfies the Hall-Littlewood Gibbs property, we can use
Theorem 4.3.8 to reduce the spatial tightness of the top curve L4SEP (i.e. the negative height
function --OT(-)) to the one-point tightness of its height function. The latter is a well-known
fact - it follows from the celebrated theorem of Tracy-Widom [79, Theorem 31, and is recalled
as Theorem 4.2.5 in the main text. Consequently, once -OT(X) is understood as the top line
of a discrete line ensemble with the Hall-Littewood Gibbs property, the general machinery
of Theorem 4.3.8 takes over and produces the tightness statement of Theorem 4.1.1.

Let us briefly explain how we construct the line ensemble {L4SEP}I 1 from earlier - see
Proposition 4.3.12 for the details. One starts from a sequence of HAHP with parameters
(N= 1 - . Under suitable shifts and truncations, these line ensembles give rise to a se-
quence of line ensembles {L7}N_ 1, which one can show to be tight. One defines {LASEP}1
as a subsequential limit of this sequence. Since the HAHP satisfies the Hall-Littlewood
Gibbs property one deduces the same for {L4SEPk 1. The property that L SEP has the
same law as -OT(x) follows from the connection between the HAHP and the S6V model
height function we discussed above and the convergence of the height function of the S6V
model to [T(X). The fact that one can obtain the ASEP height function through a limit
transition of the S6V model was suggested in [27,53] with a complete proof given in [3].

We end this section with a brief discussion on possible extensions of our results. In
Theorem 4.3.10, Corollary 4.3.11 and Theorem 4.3.13 we construct sequences of random
continuous curves, which are tight in the space of continuous curves. We believe that the
same sequences should converge to the Airy 2 process - that is how the particular scaling
constants in those results were chosen. The missing ingredient necessary to establish this is
the convergence of several-point marginals of these curves (currently only one-point conver-
gence is known). It is possible that such several point-convergence will come from integrable
formulas for these models but we also mention here a possible alternative approach. One
could try to enhance the arguments of this chapter to show that the one-point convergence of
the top line of a Hall-Littlewood Gibbsian line ensemble in fact implies tightness of the entire
line ensemble (not just the top curve). This was done in a continuous setting in [42,43]. If
one achieves the latter and [42, Conjecture 3.2] were proved, this would provide a means to
prove that the entire line ensemble corresponding to the ascending Hall-Littlewood process
converges to the Airy line ensemble. In particular, this would demonstrate the Airy 2 process
limit for the ASEP and S6V height functions too.
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4.1.3 Outline
The introductory section above provided background context for our work and a general
overview of the chapter. In Section 4.2 we define the HAHP, S6V model and the ASEP
and supply some known one-point convergence results for the latter. Section 4.3 introduces
the necessary definitions in the chapter, states the main technical result - Theorem 4.3.8,
as well as the main results we prove about the HAHP, the S6V model and the ASEP in
Theorem 4.3.10, Corollary 4.3.11 and Theorem 4.3.13 respectively. Section 4.4 summarizes
the primary set of results we need to prove Theorem 4.3.8. In Section 4.5 we give the proof
of Theorem 4.3.8 by reducing it to three key lemmas, whose proofs are presented in Section
4.6. In Section 4.7 we demonstrate that all subsequential limits of the tight sequence of
Theorem 4.3.8 are absolutely continuous with respect to Brownian bridges of appropriate
variance. Section 4.8 is an appendix, which contains the proof of a strong coupling between
random walks and Brownian bridges, used in Section 4.4.

4.2 Three stochastic models

The results of our chapter have applications to three different but related probabilistic objects
- the ascending Hall-Littlewood process, the stochastic six-vertex model in a quadrant and
the ASEP. In this section we recall the definitions of these models, some known one-point
convergence results about them and explain how they are connected.

4.2.1 The ascending Hall-Littlewood process
In this section we briefly recall the definition of the Hall-Littlewood process (a special case
of the Macdonald process [24]). We will isolate a particular case that will be important for
us, which we call the homogeneous ascending Hall-Littlewood process (HAHP) and derive a
certain one-point convergence result for it. We adopt the same notation on partitions and
Hall-Littlewood symmetric functions as in Section 2.2.

Fix t E (0, 1). For partitions [t, A c Y we let P/,,, and QA/,, denote the (skew) Hall-
Littlewood symmetric functions with parameter t. Let us fix M, N E N and suppose (L, M)
is a pair of sequences of partitions L - {A-kNiM1 and M = {pk}~_2 +1 . Define the
weight of such a pair as

N-1

W(,, A4) := 7 Pa/,n1-n(xn)Qx /tzn (ynf), (4.2.1)
n=-M+1

where xi,yi E [0,1] for all i E {-M+1, ... , N - 1} and we have p-M = fN-1 =0. From
(5.8) and (5.8') in Chapter III of [64] we have

PA/,(x; t) = 0'X/,(t)X1'X-"H' and QX/,(x; t) = #x/,(t)xAI-/II, where

0A/ = w1A> 171(1 - tmi()) and #A/,(t) = 1>- J7J(1 - t(A)); (4.2.2)
jEJ iEI

I={i E N : A' 1 = i+1 and A' > 'i} and J = {j c N : A+ > u'+1 and A=
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Observe that the weights are non-negative (as t E (0, 1)) and provided Z := ZCM W(L, M),
is finite we have that P(L, M) := Z- - W(L, M) defines probability measure on (L, M),
which we call a Hall-Littlewood process.

In this chapter we will consider the following variable specialization

x,+1 = 1, yn = 0 if n < -1; Xn+ 1 = 0, yn= ( if 0 < n, where ( c (0, 1) is fixed. (4.2.3)

Using (4.2.2) and Proposition 2.4 in [241 we conclude that for the above variables we have

1. Z= (,_tNM < oc so that the measure is well defined;

2. /p" = A" for n < 0 and j" = An+ 1 for n > 0;

3. 0 A-m+1. . .-- A -< AO >- A' >- .. -> A N-1 _ 0.

The last statement shows that L defines a plane partition 7r, whose base is contained in an
M x N rectangle (i.e. such that 7rij = 0 for i > M or j > N). Denoting the set of such
plane partitions by P(M, N) we see that the projection of the Hall-Littlewood process on L1
induces a measure on P(M, N).

Substituting PA/,(x) and QA/,1 (x) from (4.2.2) one arrives at

)NM 0 N

P(L) = t B(t), where BL(t) = ]7 'n/An-1(t) x #71 n /A- M (t).
n=-M+1 n=1

What is remarkable is that if 7r is the plane partition associated to 'C, then BL(t) = A,(t)
from (4.1.3), i.e. BC admits the geometric interpretation from Figure 4-2. The latter is
very far from obvious from the definition of BL, since the functions # and 4 are somewhat
involved, and we refer the reader to [81] where this identification was first discovered.

The above formulation aimed to reconcile the definition of the Hall-Littlewood process
in terms of symmetric functions with the geometric formulation given in Section 4.1.2. In
the remainder of the chapter; however, we will be mostly interested in the projection of
this measure to the partitions A-M+ A'. We perform a shift of the indices by M and
denote the latter by A(1), ... , A(M). Using results from Section 2.2 in [24] we have the
following (equivalent) definition of the measure on these sequences, which we isolate for
future reference.

Definition 4.2.1. Let M, N E N and ( E (0,1). The homogeneous ascending Hall-Littlewood
process (HAHP) is a probability distribution on sequences of partitions 0 -< A(1) -< A(2) <
- - < A(M) such that

PIM,N(A(1), ... A(M)) = (j ) x IIPA(i)/A(i_1)(1) x QA(M)((N), (4.2.4)

where we use the convention that A(0) = 0 is the empty partition and (N denotes the
specialization of N variables to (. We also write E M,N for the expectation with respect to

177



PM,N

We end this section with an important asymptotic statement for the measures pM,N

Theorem 4.2.2. Let r > 0, C,t e (0,1) be given and fix M c ((, 1 ). Suppose N, M E N
are sufficiently large so that pN > (r + 2)N 2 / 3 and M > MN + (r + 2)N 2 / 3 . Let A'(-) be
sampled from PC!,N and set for x E [-r - 1, r + 1

f HL(X) o-1N'1 3 A'(IN + xN2/ 3) - f (p)N - f(p) xN2/ 3 - 2f'( )N1/3 , (4.2.5)

where we define A' at non-integer points by linear interpolation. The constants above are

given by a- (C )1/6(1- (1-1 1_ ( f (1-

z 21-(). Then for any x E [-r -1,r + 1 and y c R we have

lim PM (fNHL(x) < y) =FGUE(Y), (4.2.6).N-oo

where FGUE is the GUE Tracy- Widom distribution [78].

Remark 4.2.3. Owing to the recent work in [191, the result of Theorem 4.2.2 can be established
by reduction to the Schur process (corresponding to t = 0). For the Schur process a proof
of the convergence in (4.2.6) for the case s = 0 can be found in the proof of Theorem 6.1
in [19]. For the sake of completeness we will present a different (more direct) proof below,
relying on ideas from [271 and Chapter 2.

Proof. Fix x E [-r - 1, r + 1] and y E R throughout. For clarity we split the proof into
several steps.

Step 1. From Section 2.2 in [24] we know that for 1 < K < M we have

PCMN(A(K) = v) N(A (K) = v) (I- K(N

In the last equality we used the homogeneity of P, and Q,. Setting A' = A'(K), we have as
a consequence of Proposition 2.3.10 that if q E C\R+ then

EM,N = det(I + K ,N)L2 (Cp). (4.2.7)

The contour C, is the positively oriented circle of radius p E ((t', t 1 ), centered at 0, and
the operator K ,N is defined in terms of its integral kernel

KN~w w') dsF (-s) IF(I + 8)_)g1K ~ ~ ~ 1/2+ WW'oos
27r 1/2-tco
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where F is the Euler gamma function and

K,N S 1 WI ((WO-it K
9mW,(t =wt-S - W' (I - ((Wt)-Its )

( 1 -s

1- (Wt))

N

We also recall that (x; t000 = j=1 1(I - xt 1 ) is the t-Pochhammer symbol and

det(I + K0,N)L
2 (CP)

00

=1+ E
n=1 Cp ...Icp det K KN(w Wj)] n

i= 1

is the Fredholm determinant of the kernel KN (see Section 2.2 for details).

Step 2. For the remainder of the proof we set

K = pN + xN2/3 + 0(1) and O(N) = (-t- 1 ) x tf1(p)N+f'(p)xN2/3+(1/2)f'(p)X2Nl/3+y

where a-, and f(M) are as in the statement of the theorem. Our goal in this step is to show
that

lim det (I+ KKN)L 2 (CP) = FGUE(Y)-
N-ca of

We use the following change of variables and functional identities

(4.2.8)

-1
W -+ ,p-

7bi I
F(-s)F(1 + s) =

sin(7rs)

to rewrite
det(I + K0,N)L 2 (CP) = det(I + k4 N)L 2(C-).

In the above we have that

K 1(w, w')
-

t-f~nK+y&v K1 / 3 g(zb; (, vK, K) ds
sin(7rs) g(tsi; C, vK, K) Cvts - W

g(v; bi, b2 , x, t) = (1 + zt-l()x (I +t

1/2 V-1/6

((1- vc)( v/c-
2/3

fil=(y/v - //C)2 -2x21~n =2, and v = p-1 - xL-5/ 3K-1/ 3 + 2X 2 p-7/ 3K- 2 /3 +0M.
1 - (3

(4.2.9)

The validity of (4.2.8) is now equivalent to Proposition 5.3 in [27]. To make the connection
clearer we reconcile the notation from equation (65) in that paper with our own below:

p+r, K ++ L, b1 ++ ,
1 - t( 1- t(

We remark that in [27] the variable v is constant, while in our case it changes with K and
quickly converges to -- - this does not affect the validity of Proposition 5.3 and the same
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arguments can be repeated verbatim.

Step 3. Combining (4.2.7) and (4.2.8) we see that

1 an
lim EM,N [9N (XN - y)] = FGUE(Y), where gN(Z) = (nd/ 3  aN-+oo (-(t-N1Z t)z 4..0

XN = o N-1/ 3( A(pN + xN2/ 3) - f1 (u)N - f'(p)xN 2 / 3 - (1/2) f', I)X 2 N 1/ 3 ).

As discussed in the proof of Theorem 5.1 in [271, we have that gN(z) satisfy the conditions of
Lemma 5.2 of the same paper, which implies that XN weakly converges to a random variable
X such that P(X < y) = FGUE(Y). This suffices for the proof.

4.2.2 The stochastic six-vertex model in a quadrant
In this section we recall the definition of a stochastic inhomogeneous six-vertex model in a
quadrant, considered in [27,33,731. There are several (equivalent) ways to define the model
and we will, for the most part, adhere to the one presented in Section 1.1.2 in [2]. We also
refer the reader to Section 1 of [331 for the definition of a more general higher spin version
of this model.

A six-vertex directed path ensemble is a family of up-right directed paths drawn in the
first quadrant ZJ of the square lattice, such that all the paths start from a left-to-right
arrow entering each of the points {(1, m) : m > 1} on the left boundary (no path enters
from the bottom boundary) and no two paths share any horizontal or vertical edge (but
common vertices are allowed); see Figure 4-3. In particular, each vertex has six possible
arrow configurations, presented in Figure 4-4.

The stochastic inhomogeneous six-vertex model is a probability distribution P on six-
vertex directed path ensembles, which depends on a set of parameters {M}X>1, {uY},:,1 and
q, which satisfy

q E (0,1), x > 0,uu >y0, Euy > q 1/2 for all x,y 1. (4.2.11)

It is defined as the infinite-volume limit of a sequence of probability measures Ps, which are
constructed as follows.

For n > 1 we consider the triangular regions T = {(x, y) E Z2 : x + y < n} and let P
denote the set of six-vertex directed path ensembles whose vertices are all contained in T.
By convention, the set P consists of a single empty ensemble. We construct a consistent
family of probability distributions P, on P (in the sense that the restriction of a random
element sampled from Pn+1 to Tn has law P,) by induction on n, starting from P, which is
just the delta mass at the single element in P1.

For any integer n > 1 we define Pn+1 from Pn in the following Markovian way. Start by
sampling a directed path ensemble S, on Tn according to Pn. This gives arrow configurations
(of the type presented in Figure 4-4) to all vertices in T,-1 . In addition, each vertex in
D= {(x, y) E Z x + y = n} is given "half" of an arrow configuration, meaning that the
arrows entering the vertex from the bottom or left are specified, but not those leaving from
the top or right; see the right part of Figure 4-3.
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Figure 4-3: The left picture shows an example
right picture shows an element in Pn for n = 6.

of a six-vertex directed path ensemble. The
The vertices on the dashed line belong to Dn

and are given half of an arrow configuration if a directed path ensemble from Pn is drawn.
Vertices in Dn with zero (two) incoming arrows from the left and bottom can be completed
in a unique way - by having zero (two) outgoing arrows. Compare vertices (4,2) in both
pictures, also vertices (1, 5). Vertices in Dn with a single incoming arrow can be completed
by having exactly one outgoing arrow, which can go either to the right or up. Compare
vertices (5, 1) in both pictures, also vertices (2,4).

To extend Sn to a path ensemble on Tn+, we must "complete" the configurations, i.e.
specify the top and right arrows, for the vertices on Dn. Any half-configuration at a vertex

(x, y) can be completed in at most two ways; selecting between these completions is done
independently for each vertex in Dn at random according to the probabilities given in the
second row of Figure 4-4, where the probabilities b,(x, y) and b2 (x, y) are defined as

1 - q1/ 2 xu
b,(x, y) = 1 /2 XUY

1-q-1/2 X

-1 _ - 2
b2(x, y) = 1- q 1 / 2 XUY

_ - -1/2 X

In this way we obtain a random ensemble 6,+1 in P+1 and we denote its law by P,+1. One
readily verifies that the distributions P,, are consistent and then we define P = lim,.- P.

A particular case that will be of interest to us is setting x = ( and uy = u for all
x > 1 and y ;> 1, where , u > 0 are such that u > q-1 2 . We refer to this model as
the homogeneous stochastic six-vertex model and denote the corresponding measure as PU,q.
Let us remark that (upto a reflection with respect to the diagonal x = y) this model was
investigated in [53] and more recently in [27] under the name "stochastic six-vertex model".

Given a six-vertex directed path ensemble on Z>, we define the height function h(x, y)
as the number of up-right paths, which intersect the horizontal line through y at or to the
right of x. We end this section by recalling the following important connection between
the height function of the homogeneous stochastic six-vertex model and the homogeneous
ascending Hall-Littewood process. The following result is a special case of Theorem 4.1
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1 bi(x, y) I - bi(x, y) b2 (x,y) 1-b2(x,y) I

Figure 4-4: The top row shows the six possible arrow configurations at a vertex (x, y). The
bottom row shows the probabilities of top-right completion, given the bottom-left half of a
configuration. The probabilities bi(x, y) and b2 (x, y) depend on , uY and q and are given
in (4.2.12).

in [23] and plays a central role in our arguments.

Theorem 4.2.4 (Theorem 4.1 in [23]). Let , u, q > 0 be given such that q E (0, 1), (*
--lu--q-1/2 < 1 and fix a C ((,(- 1 ). Let h(x, y) denote height function sampled from P ,u,,

and 0 -< A(1) - - - A(M) be distributed as pM,N from Definition 4.2.1, where t = q. Then
we have the following equality in distribution of random vectors

(N - A'(0), ... , N - A'(M)) = (h(1, N), ... , h(M + 1, N)), where by convention A'(O) = 0.

4.2.3 The asymmetric simple exclusion process
The asymmetric simple exclusion process (ASEP) is a continuous time Markov process, which
was introduced in the mathematical community by Spitzer in [76]. In this chapter we consider
ASEP started from the so-called step initial condition, which can be described as follows.
Particles are initially (at time 0) placed on Z so that there is a particle at each location in
Z<o and all positions in Z>1 are vacant. There are two exponential clocks, one with rate L
and one with rate R, associated to each particle; we assume that R > L > 0 and that all
clocks are independent. When some particle's left clock rings, it attempts to jump to the left
by one; similarly when its right clock rings, it attempts to jump to the right by one. If the
adjacent site in the direction of the jump is unoccupied, the jump is performed; otherwise
it is not. For a more careful description of the model, as well as a proper definition of this
dynamics with infinitely many particles, we refer the reader to [63].

Given a particle configuration on Z, we define the height function j(x) as the number
of particles at or to the right of the position x, when x E Z. For non-integral x, we define
O(x) by linear interpolation of [(LxJ) and [([x]). For R > L > 0 and T > 0 we denote by
PTR the law of the height function [ of the random particle configuration sampled from the
ASEP (started from the step initial condition) with parameters R and L after time T.

We isolate the following one-point convergence result for future use.

Theorem 4.2.5. Suppose r > 0, R = 1, L E (0, 1), -y = R - L and fix a E (0, 1). Let ,(x)
denote height function sampled from P and for s E [-r - 1,r +1] set

fASEP(s) - N- 1/3 (f 3 (a)N + f3(a)sN2/3 + (1/2)s 2 f3'(a)N1 /3 - f (aN + sN 2/ 3))

(4.2.13)
where we define i(-) at non-integer points by linear interpolation. The constants above are
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given by o- = 2-4/3(1 - a2)2/3, f3(a) (1-a)2, f,(C) = -a f'(a) =. Then for any
s E [-r-1,r+1] andyR we have

im PL/ (fSEP(s) y) = FGUE(y), (4.2.14)
N-+co LR

where FGUE is the G UE Tracy- Widom distribution [78].

Proof. The above result follows immediately from the celebrated theorem of Tracy-Widom
[79, Theorem 31, which says that

lim P T/ ciT - xm < y FGUE(y), (4.215)
T- oo L,R K c2T1/3  - ~ Ey,(..5

where - = C (0, 1), c, = 1 - 2/Fa, c 2 = o 1/6  /) 2/ 3. In the above relation xm

denotes the position of the m-th right-most ASEP particle (notice there is a sign change
with the result in [79], due to the fact that in that paper L > R and the particles initially
occupy the positive integers). Below we briefly explain why the above statement implies the
theorem.

One observes that at each fixed time and for any positive integers m, n we have the
equality of events {b(n) > m} = {xm > n}, which implies that for any r > 0 we have

LR ( i(n) > M) = PI%,R (Xm n)(2.6

Let m(N) = Lf3(a)N + f3(cx)sN 2/3 + (1/2)s 2 f'(oz)N1 /3 - yN1 /3 aJ , n(N) = LaN + sN 2/ 3

and observe that

L[j (n(N)) > m(N) + 1) F (f<SEP P/ (f(m(N) + 1) > m(N)).
-LRL,

(4.2.17)
From (4.2.16) we have

PN1^ (0(n(N) + 1) > m(N)) = PN/y (Xm(N) > c1N - c2 N1 /3 + 0(1)), (4.2.18)

where we also used that c- f3 (a) + f3(a)sN-1/3 + (1/2)s2 N-2/3 f '() - yo-N 2 /3 +
O(N-'). One similarly obtains

PNI (O(n(N)) m(N) + 1) ='N/ (m(N)+1 > ciN - c2 N1 /3 + 0(1)). (4.2.19)

The right sides in (4.2.18) and (4.2.19) converge to FGUE(y) from (4.2.15) as N -+ oc, which
together with (4.2.17) proves the theorem. D

We end this section by recalling the following important connection between the height
function of the homogeneous stochastic six-vertex model and the height function of the ASEP
started from step initial condition. This connection was observed in [27, 53] and carefully
proved for general initial conditions in [3].

Theorem 4.2.6 (Theorem 1 in [3]). Let (N), u(N), q > 0 be given such that q E (0, 1),
= N- -q-1/2 < 1, b = -_ = qN-1 + O(N--2q) andb2 =CjN) = (N)-'u(N)-'qi/ 1, b 1(N) =1-q'/

2 (N)u(N) = N i ( 2 n 2(N)
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q 1 -q' 2 =(N)u(N) N-1 + O(N 2 ). In addition, fix K E N, T > 0 and set NT = LN TJ. Let

hN(x, y) denote height function sampled from P (N),u(N),q and [ have law PL,R, where R =1
and L = q. Then we have the following convergence in distribution of random vectors

(h N(NT - K + 1, NT), ..., h N(NT + K + ,NT)) --:> ( (- K + 1), ... , (K + 1)) as N --+ oo.

4.3 Definitions, notations and main results

In this section we introduce the necessary definitions and notations that will be used in the
chapter as well as our main technical result - Theorem 4.3.8 below. Afterwards we give
several applications of Theorem 4.3.8 to the three models discussed in the previous section.

4.3.1 Discrete line ensembles and the Hall-Littlewood Gibbs prop-
erty

In this section we introduce the concept of a discrete line ensemble and the Hall-Littlewood
Gibbs property. Subsequently, we state the main result of the chapter.

Definition 4.3.1. Let N E N, TO,T1 E Z with To < T1 and denote E = {1,...,N},
T0 , T 11 = {TO, TO .. . , T1}. Consider the set Y of functions f : E x [To, Til - Z such

that f(j, i + 1) - f(j, i) c {0, 1} when j E E and i E To, T - 1 and let D denote the
discrete topology on Y. We call elements in Y up-right paths.

A E x fTo, Ti]-indexed (up-right) discrete line ensemble is a random variable defined on
a probability space (Q, B, P), taking values in Y such that Z is a (B, D)-measurable function.

Remark 4.3.2. Notice that the definition of an up-right path we use here differs from the
one in the six-vertex model. Namely, for the six-vertex model an up-right path is one that
moves either to the' right or up, while in discrete line ensembles up-right paths move to the
right or with slope 1. This should cause no confusion as it will be clear from context, which
paths we mean.

The way we think of discrete line ensembles is as random collections of up-right paths on
the integer lattice, indexed by E (see Figure 4-5). Observe that one can view a path L on
To, TI x Z as a continuous curve by linearly interpolating the points (i, L(i)). This allows

us to define (Z(w)) (i, s) for non-integer s E [To, T] and to view discrete line ensembles as line
ensembles in the sense of [42]. In particular, we can think of L(s), s E [To, T] as a random
variable in (C[To, T1 ], C) - the space of continuous functions on [To, T] with the uniform
topology and Borel --algebra C (see e.g. Chapter 7 in [131).

We will often slightly abuse notation and write : E x [To, T1j -+ Z, even though it
is not Z which is such a function, but rather !(w) for each w E Q. Furthermore we write
Li= ((w))(i,) for the index i E E path.

In what follows we fix a parameter t E (0, 1) and make several definitions. Suppose we
are given three up-right paths f, g, L on To, T1I x Z. Given a (finite) subset S C To+ 1, Ti]l
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Figure 4-5: Two samples of {1, 2, 3} x [1, 71-indexed discrete line ensembles.

we define the following weight function

Wt(T, T1, L, f, g; S) = 1(i -t A+(i-1) x

es (4.3.1)

iES

if f(i) L(i) g(i) for i E S and 0 otherwise. In the above A+(s) = f(s) - L(s) and
A-(s) = L(s) - g(s). In words (4.3.1) means that we follow the paths f, g, L from left to
right and any time f - L (resp. L - g) decreases from A+ to A+ - 1 (resp. A- to A- - 1)
at a location in the set S we multiply by a factor of 1 - t'+ (resp. 1 - tA ). Observe that
by our assumption on t we have that Wt E (0, 1] unless L(i) > f(i) or g(i) > L(i) for some
i e S, in which case the weight is 0. Typically S will be a finite union of disjoint intervals
(i.e. consecutive integer points).

Remark 4.3.3. Observe that (4.3.1) makes sense even if f = oc. In the latter case as t E (0, 1)
the product on the first line of (4.3.1) becomes 1 - in fact, this will be the most common
way W(To, T1, L, f, g; S) will appear in the text.

Example. Take the left sample in Figure 4-5. If S = {2,.. ., 7} then we have W(1, 7, L2 , L1 ,
L 3 ; S) = (1 - t)(1 - t2 )(1 -t 3 ) and Wt(1, 7, L1, oo, L2 ; S) = (1- t3 ). If S = {3, ... , 5}
then W(1, 7, L2 , L1 , L3; S) = (1 - t2 ) and W(1, 7, L 1, oc, L2 ; S) = 1. If we take the right
sample in Figure 4-5 with S = {2,...,7} then we have Wt(1,7, L2 , L1, L3 ;S) = 0 and
Wt(1, 7, L1, oo, L2 ; S) = (1 - t4 ).

Let ti, zi E Z for i = 1, 2 be given such that ti < t 2 and 0 < z2 - z1 <; t2 -t . We
denote by Q(ti, t2 ; z1 , z 2 ) the collection of up-right paths that start from (ti, zi) and end at

(t2 , z 2 ), by Pt'z1~z2 the uniform distribution on Q(ti, t2 ; z1, z2 ) and write Etl,t2;Z1,z2 for the
expectation with respect to this measure. One thinks of the distribution pt1,t2;Z1,Z 2 as the
law of a simple random walk with i.i.d. Bernoulli increments with parameter p E (0, 1) that
starts from z, at time t, and is conditioned to end in z2 at time t2 . Notice that by our
assumptions on the parameters the state space is non-empty.

The key definition of this section is the following.
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Definition 4.3.4. Fix N > 2, t E (0,1), two integers To < T and set E = {1,...,N}.
Suppose P is a probability distribution on E x To, Tif-indexed discrete line ensembles Z=
(L1 , . . . , LN) and adopt the convention Lo = oc. We say that P satisfies the Hall-Littlewood
Gibbs property with parameter t for a subset S C To + 1, Til if the following holds. Fix an
arbitrary index i E {1,... , N - 1} and let fi-1, fi, fi+1 be three paths drawn in {(r, z) C Z2

To < r < T1} such that P(Li_ 1 = i1, Li+1 = ei+1) > 0 (if i =1 we set to = 0o). Then for
any path f such that f(TO) = a = i(To) and f(T) = b = i(T1 ) we have

P(Li = f|Li(To) = a, Li(Ti) = b, Li_ 1 = fi_ 1, Li+1 = fi+1 ) = Wt(To, T1, f, fi_1, fi+1; S)
Zt (To, T1, Ia, b, ti-1, I i+1; S)

(4.3.2)
where Zt(T, T1, a, b, fi_1, ei+1; S) is a normalization constant. We refer to the measure in
(4.3.2) as pTo'T1'a-b(I , +1).

Remark 4.3.5. An equivalent formulation of the above definition is that the law of Li, con-
ditioned on its endpoints a = Li(TO) and b = Li(T1 ), Li_ 1 = _i-1 and Li+1 = fi+1 is given by
the Radon-Nikodym derivative

dP Wt(ToI TI ), i_1, i+1; S)
dpfr e " Zt (To, T1, a, b, fi_,t1 i+1; S)

With the above reformulation we get that

Zt (ToI T1, a, b, fi _1, fi+1; S) = re E ' 0[1( T1, f, fi_1, fi+1; S)],

where the expectation is over f, distributed according to p oT';ab

If a measure P satisfies the Hall-Littlewood Gibbs property, it enjoys the following sam-
pling property. Start by (jointly) sampling Li(TO), Li(T1) and Lj (r) for j f i and r E To, Ti]I
according to P (i.e. according to the restriction of P to these random variables). Set
a = Li(To) and b = Li(T1) and let L7, N E N be a sequence of i.i.d. up-right paths
distributed according to PTT ;ab Let U be a uniform random variable on (0, 1), which is
independent of all else. For each N E N we check if Wt(T, T1, L7, Li_ 1 , Li+1; S) > U and set
Q to be the minimal index N for which the inequality holds. Observe that Q is a geometric
random variable with parameter Zt(To, T1, a, b, Li_ 1, Li+,; S), which we call the acceptance
probability. In view of the above Radon-Nikodym derivative formulation, it is clear that the
random ensemble of up-right paths (L1 , ... , Li_ 1, L9, Li+1,... , LN) is distributed according
to P.

Remark 4.3.6. We mention that the resampling property of Remark 4.3.5 for a {1, ... , N} x
[To, TiJ-indexed line ensemble {Li}N only holds for the first N - 1 lines. The latter, in
particular, implies that for M < N, we have that the induced law on {Li}M also satisfies the
Hall-Littlewood Gibbs property with parameter t and subset S as an {1,..., M} x To, T11-
indexed line ensemble.

In this chapter, we will be primarily concerned with the case when E = {1, 2} and the
discrete line ensemble is non-crossing, meaning that Li(r) ;> L2 (r) for all r E To, T1. For
brevity we will call {1, 2} x To, Ti]-indexed non-crossing discrete line ensembles simple.
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These line ensembles will typically arise by restricting a discrete line ensemble with many
lines to the top two lines. If the original line ensemble satisfies a Hall-Littlewood Gibbs
property with parameter t and set S, the same will be true for the restriction to the simple
line ensemble at the top (see Remark 4.3.6). To simplify notation, whenever we are working
with a simple discrete line ensemble we will omit the i - 1 index from all of the earlier
formulas and notation, as Lo, to are deterministically o0.

In the remainder of this section we describe a general framework that can be used to
prove tightness for the top curve of a sequence of simple discrete line ensembles. We start
with the following useful definition.

Definition 4.3.7. Fix t E (0, 1), a > 0, p C (0, 1) and T > 0. Suppose we are given a
sequence {TN =1 with TN E N and that {ZN}N= 1 , ZN = (LN, LN) is a sequence of simple
discrete line ensembles on -TN, TN . We call the sequence (a, p, T)-good if there exists
No(a, p, T) such that for N > No we have

* TN > TN' and 2 N satisfies the Hall-Littlewood Gibbs property with parameter t for

S = -TN + 1,TNII;

" for each s E [-T, T] the sequence of random variables {N-,/ 2 (LN(sN') - psN'I)} is
tight (i.e. we have one-point tightness of the top curves).

The main technical result of the chapter is as follows.

Theorem 4.3.8. Fix a, r > 0 and p e (0,1) and let N - (LN, LN) be an (a,p, r + 1)-good
sequence. For N > No(a, p,r +1) (as in Definition 4.3.7) set

fN(s) = N-/ 2 (L (sN") - psN"), for s E [-r, r]

and denote by PN the law of fN(s) as a random variable in (C[-r, r], C). Then the sequence

PN is tight.

Roughly, Theorem 4.3.8 states that if a process can be viewed as the top curve of a simple
discrete line ensemble and under some shift and scaling the process's one-point marginals
are tight, then under the same shift and scaling the trajectory of the process is tight in the
space of continuous curves. We will show later in Theorem 4.7.3 that any subsequential limit
of the measures PN in Theorem 4.3.8 is absolutely continuous with respect to a Brownian
bridge of a certain variance - see Section 4.7 for the details. We also want to remark that
both Theorem 4.3.8 and Theorem 4.7.3 do not depend strongly on any particular structure
of the Hall-Littlewood Gibbs property. Indeed, the main ingredient that is used in deriving
these results is a lower bound on the acceptance probability Zt(T, T1, a, b, L2 ; S) (see Remark
4.3.5), which is the content of Proposition 4.5.1. It is our belief that our arguments can be
extended to other (similar) discrete Gibbs properties without significant modifications.

4.3.2 Applications to the three models
In this section we use Theorem 4.3.8 to prove our main results for the three models in Section
4.2, given in Theorem 4.3.10, Corollary 4.3.11 and Theorem 4.3.13 below. In order to apply
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Theorem 4.3.8 we will need to rephrase the ascending Hall-Littlewood process and the ASEP
in the language of discrete line ensembles, to which we first turn.

Suppose we are given a sequence 0 = A(0) -< A(1) -< A(2) -< - - - - A(M). The condition
A(i) -< A(i-+1) is equivalent to A (i+1) - A (i) E {0, 1} for any j > 1. The latter implies that
we can view the sequence 0 = A(0) -< A(1) - A(2) -< - - A(M) as a collection of up-right
paths {A (-)} _ drawn in the sector {,... , M} x Z (see Figure 4-6). In particular, this
allows us to interpret the ascending Hall-Littlewood process as a probability distribution of
{1,..., N} x [0, MI-indexed discrete line ensembles in the sense of Definition 4.3.1, where
Lj(i) =A(i) for i = 0,..., M and j =N.

5
4

3

2

0 1 2 3 4 5 6 7 8 9

Figure 4-6: The up-right paths corresponding to A'(i), A2(i), A'(i), for 0 < i < 9, where
A(i) is the i-the element in the sequence 0 -< (1) -< (2) <(2) -< (4) -< (4, 2) -< (5, 2, 2) <
(5, 3, 2) -< (8, 5, 2, 1).

The key observation we make is that if 0 = A(0) < A(1) -< A(2) A- . - A(M) is
distributed according to pM,N from Definition 4.2.1, then the discrete line ensemble Lj(i) =

A (i) for i = 0, ... , M and j = 1,... , N satisfies the Hall-Littlewood Gibbs property (this is
the origin of the name of this property). We isolate this in the following proposition.

Proposition 4.3.9. Fix M, N E N and (, t E (0, 1). Let 0 = A(0) -< A(1) -< A(2) -< --- -<
A(M) be sampled from pM,N (see Definition 4.2.1). Then (A'(.), A'(-),- , A(.)) satisfies
the Hall-Littlewood Gibbs property with parameter t for S = 1,..., MB.

Proof. By Definition 4.2.1 we know that

- NM M

PgMN(A(1) . ,A(M)) = ( )- t x fPA(i)/A(i-1)(1) X QA(M)((N).

The latter equation implies that A'(0) = 0 and 0 < A'(M) min(M, N) with probability 1.
Using (4.2.2) we see that

/ 1tNM M

IPgN(A(1), .. , A(M)) = QA(M)(jN) - - (i)/A(j-)(t), where

01 (4.3.3)

,/tI(t) = 1i{>.L} - fj (1 - 1{A( ,j)-A(gj)=j}tz(L,j)) , and A(pj) = p - p .
j=1
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Fix i E {1, .. . , N - 1} and notice that (4.3.3) and (4.3.1) imply that for any f E
Q(0, M; 0, k) with 0 < k < min(M, N) we have

p'N ( ) ext ({i}, (0, M))) = C - W(0, M, , A'_ 1 (), A'+ 1); S),

where Text ({i}, (0, M)) is the o--algebra generated by A'(a) for a = 0, . . . , M and j 4 i as
well as A'(O) = 0 and A'(M) = k, and C is an Fext ({i}, (0, M))-measurable normalization
constant. Let F1 be the u-algebra generated by A'(0) = 0, A'(M) = k, A'_() and A(')
and observe that F1 C Text ({i}, (0, M)). It follows from the tower property for conditional
expectation that

P M 'N (A+(.) = fIA'(0) =- 0, )(M) = k, A'-(.) )A 1 )
PgM'N (CWt(0, M, , A' 1 (-), A' 1(-); S)T 1 ) = W(O, M, , A'_ 1 (), A'+(')A S) pM,N (C )

where in the last equality we used that W(0, M, e, A'_1(-), A' +(-); 5) is T1-measurable. The
latter equation is equivalent to (4.3.2), which proves the proposition. D

With the help of Proposition 4.3.9 we deduce the following results for the homogeneous
ascending Hall-Littlewood process and stochastic six-vertex model.

Theorem 4.3.10. Assume the same notation as in Theorem 4.2.2. If PN denotes the law
of fj$L(.) as a random variable in (C[-r,r],C), then the sequence PN is tight.

Proof. Consider the {1, 2} x -TN, TN-indexed simple discrete line ensemble with TN
[(r + 2)N 2/3j, given by

(Lf (i), LN(O) / (([pA J + i) - Lfi(y)NJ, A'2([tN +i) -- [fi(,p)j) .

It follows from Proposition 4.3.9 that (LN, L N) is a simple discrete line ensemble, which
satisfies the Hall-Littlewood Gibbs property with parameter t for S = -TN + 1, TNI. In
addition, by Theorem 4.2.2 we know that for each s E [-r - 1, r + 1] the sequence of random
variables N- 1/3 (Li (sN2 /3) - sN2 /3 fj(b)) is tight. The latter statements imply that the
sequence (Lb, LNL) is (2/3, f(y), r + 1)-good. It follows from Theorem 4.3.8 that if

g5L (s) = N- 1 /3 (A'([pNJ + sN2 /3) - [fi(y)NJ - f ([t)sN2 /3) ,for s E [-r, r],

then gfL(.) form a tight sequence of random variables in (C[-r, r], C). The latter clearly
implies the statement of the theorem.

Corollary 4.3.11. Let , u, q, r > 0 be given such that q E (0, 1), = 'u'q~1/ 2 < 1 and
fix ya G (, (-1). Let h(x, y) denote height function sampled from P , and set for s E [-r, r]

fNV() = U 1N--1/ 3 (f2(p)N + f'(p)sN 2/3 + (1/2)s 2 f '(pu)N 1 3 - h(1 + pN + sN2/ 3, N)) ,
(4.3.4)

where we define h(., N) at non-integer points by linear interpolation. The constants above

are given by o - = 2/( - , 2 ) )212 -t) f
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p3/2(1() If PN denotes the law of fNV(s) as a random variable in (C[-r,r],C), then the

sequence PN is tight.

Proof. From Theorem 4.2.4 we know that the law of fNL as in the statement of Theorem
4.3.10 is the same as fSV. The result now follows from Theorem 4.3.10. EZ

Before we apply Theorem 4.3.8 to the ASEP, we need to rephrase the latter in the
language of discrete line ensembles that satisfy the Hall-Littlewood Gibbs property. We
achieve this in the following proposition, whose proof is deferred to the next section.

Proposition 4.3.12. Suppose R = 1, L = t E (0, 1) are given, fix K1, K2 E N, T > 0 and
set E = {1, ... , K1}. Then there exists a probability space, on which a E x [-K2 , K21-indexed
discrete line ensemble (L1 , L2 ,.. . , LK1 ) is defined such that

" the law of (L1, L 2 ,..., LK1 ) satisfies the Hall-Littlewood Gibbs property with parameter
t for the set S = (--K 2 + 1,K2 ;

" the law of (L 1(-K2),... , L1 (K2)) is the same as (-f(-K2+1), ... , -(K 2+1)), viewed
as random vectors in R2K2 +1, where has law PIR (see Section 4.2.3).

With the help of Proposition 4.3.12 we deduce the following results for the ASEP.

Theorem 4.3.13. Assume the same notation as in Theorem 4.2.5. If PN denotes the law
of fjNSEP(s) as a random variable in (C[-r, r], C), then the sequence PN is tight.

Proof. Consider the {1, 2} x [-TN, TNI-indexed simple discrete line ensemble with TN

[(r + 2)N 2 /3], given by

(Lj (i), LNf(i)) = (Li([LceNJ + i) + [f3(x)NJ, L2 ([aNJ\T + i) + Lf3(c)Ni)

with (L1 , L2) defined as in Proposition 4.3.12 with K1 = 2, K2 = ceN + TN and T = N/-.
By construction, we have that (4,1 2) satisfies the Hall-Littlewood Gibbs property with

parameter t for S = [-TN + 1, TN . In addition, by Theorem 4.2.5 and the fact that L1

has the same law as -, we know that for each s E [-r - 1, r + 1] the sequence of random

variables N-1/ 3 ( (sN2/3) + sN2/3f'(a)) is tight. The latter statements imply that the

sequence (IN, j) is (2/3, -f'(a), r + 1)-good. It follows from Theorem 4.3.8 that if

gNSEP(s) = N-1/ 3 (Li([aNJ + sN2/ 3 ) + [f3(c)Nj + f'(a)sN2/3) , for s E [-r r],

then g#SEP(.) form a tight sequence of random variables in (C[-r, r], C). The latter clearly
implies the statement of the theorem. E

Remark 4.3.14. In Corollary 4.7.4 we show that any subsequential limit of either of the

sequences fL, v and fNSEP as in the text above, when shifted by an appropriate parabola,
is absolutely continuous with respect to a Brownian bridge of appropriate variance. This, in
particular, implies that the subsequential limits of these random curves are non-trivial.
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4.3.3 Proof of Proposition 4.3.12
In this section we present the proof of Proposition 4.3.12, which we split into several steps
for clarity. Before we go into the main argument let us briefly outline the main ideas of the
proof. We begin by considering a particular sequence of {1,... , K1} x [-K2 , K2 -indexed
discrete line ensemble (A,... A,). The latter are defined through appropriately trun-
cated and shifted discrete line ensembles associated to ascending Hall-Littlewood processes
with parameters ((N) such that ((N) converges to 1. In Step 1 below we carefully ex-
plain the construction of (A,...,AM1 ) and assume that the sequence is tight and that
(AN (-K2), ... , Af (K2 )) weakly converges to (-Oj(-K2 + 1),... , -j(K 2 + 1)). Using the
tightness assumption we can pick some subsequential limit (Ac,... , A0 ) and show it sat-
isfies the conditions of the proposition. The weak convergence of (A'(-K2),..., A (K2))
to (-[(-K2 + 1),..., -j(K 2 + 1)) is proved in Step 2 and it relies on Theorems 4.2.4 and
4.2.6. The tightness of (A , . . . , A',) is demonstrated in Steps 3, 4, 5 and 6, by combining
the already known tightness of AN and the Hall-Littlewood Gibbs property.

Step 1. For each N E N consider the homogeneous ascending Hall-Littlewood process P MNT
((N)

where NT= [N -TJ, ((N) = 1 - 1-' and M = NT+ K. For N such that NT> K, we let
(AF,.. ,AZ1 ) be the E x i-K2 , K21-indexed discrete line ensemble, given by

AN(i) = A(i + NT) - NT, for i E {-K 2, -K 2 + 1, ... , K2} and j E {1, ... , K1} (4.3.5)

where (A(').,K(-)) is sampled from PMN T. We isolate the following claims.
Claims:

I the sequence (AK,..., Ay1) is tight as random vectors in ZK(2K2+1)

* the sequence (A (-K 2 ),. .A. ,A{(K2 )) weakly converges to (-[j(-K2 +1),..., -f(K2 +
1)) as random vectors in Z2K 2 +1 as N -+ oc.

The latter statements are proved in the steps below. In what follows we assume their validity
and finish the proof of the proposition.

Let (Ar,.. . , AO ) be any subsequential limit of (A,... ,AK 1) and assume that Nk is an
increasing sequence of integers such that

We know that (ANfk .. Ak) is a E x i-K2 , K21-indexed discrete line ensemble, which by
Proposition 4.3.9 satisfies the Hall-Littlewood Gibbs property with parameter t on S and
we conclude that the same is true for (A ,..., A' ). By our earlier assumptions we know
that (Aoo(-K2),... , A' (K2)) has the same law as (- (-K 2 + 1), ... , - (K2 + 1)) and so
(A,. . . , A' ) satisfies the conditions of the proposition.

Step 2. We show that (A N(-K 1 ), ... , Af (K)) weakly converges to (-)(-K + 1), ... ,
(K + 1)). Let us put q = t, (N) - t1/ 2 and u = t 1 (-1 . From Theorem 4.2.4 we have
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the following equality in distribution

(A (-K2 ),... , Al(K2 )) = (-h(NT - K2 + 1, NT), ... , -h(NT +K2 + 1, NT)),

where h is the height function of a homogeneous stochastic six-vertex model sampled from
P'(N),u(N),q- From (4.2.12) we have

b1 (N) = 1 - q 1 / 2 (N)u(N) - tN-1 +O(N-2) b2(N) = q1- q 1 / 2 (N )u(N) N- 1 +O(N-2).
I - q -1/2 (N)u(N) 1 - q- 1/ 2 (N)u(N)

As a consequence of Theorem 4.2.6 we have that (-h(NT - K2+1, NT), ... , -h(N + K2 -
1, NT)) converges weakly to (-(-K2 + 1), ... , -(K2 + 1)), where f has law PLR.

Step 3. In this step we show that (A, ... ,AZ) is tight, by showing that Ak is tight for
each k = 1, ... , K1. We proceed by induction on k with base case k = 1 being true by Step 2.
In what follows assume that Ar,..., Ak are tight and want to show that Ak+1 is also tight.
Notice that because Lf (j) - L7 (j + 1) E {0, 1} it is enought to show that A'+1(NT) - NT
is tight.

Let 6 > 0 be given. Set DN(B) := {!A'_l(NT) - NT! > B}. If k > 2 we have from the
tightness of the sequence A_ 1 (NT) - NT that there exists B c N sufficiently large so that

N 

(Dy (B)) < E/16. (4.3.7) By convention, A0 = o and so DN(B) is a set of full measure and (4.3.7) holds even if k = 1.
From the tightness of the sequence A'(NT) - NT, we know that there exists A E N

sufficiently large so that

I (A'(Nr) -NT! > A) < E(1 -t)B/16 and 1 > (1 -tA)2A > 1/2. (4.3.8)

We make the following definitions

EN := {A'(NT - 2A) - NT> -4A} and FN kA/+1(NT) - NT < -8A}.

Let us denote by k -=Text ({k} x (NT - 2A, NT]) the --algebra generated by the up-right
paths A'(.) for j $ k and A'(.) on the interval [0, NT - 2A]. Observe that all three events
DN(B), EN and FN are TFN-measurable. Using the above notation we claim that for all N
sufficiently large we have

4 - E [1{At(NT) < NT - A} FT] > (1 - t)B - 1DNnENnFN (439)

The above statement will be proved in Step 4 below. For now we assume it and finish the
proof.

Taking expectations on both sides of (4.3.9) and using (4.3.8), we conclude that E/4 >
P(DN n EN n FN). Notice that EN c {0 > A'(NT) - NT> -2A}, which implies by (4.3.8)
that P(E y) < E/16. Combining the last two estimates with (4.3.7) we see that for all large
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N we have

P(FN) < P(DN n EN n FN) + P(Ec) + P(Dc (B)) < 6/4 + c/16 + 6/16 < E.

The latter means that for all large N we have

P (0 > A'+,(NT) - NT > -8A) > 1 - e.

Since 6 > 0 was arbitrary this proves that A+ 1 (NT) - NT is tight.

Step 4. For t1 , t 2 , X E Z and t1 < t2 we let Qx(ti, t2 ) denote the set of up-right paths
drawn in {t, ... , t2 } x Z, which start from (ti, x). In addition, we fix two up-right path
4 bot E Qy(ti, t 2 ) and ftop E Q,(t 1 , t2 ), where y < x - 4A, y < z and K(etop) < B where
K(to) :{NT- 2A + 1 < i < NT : ftop(i) - ftop(i - 1) = 0}. If k= 1wesetetop=oo and

K(top) = 0.

For N E N we consider the measure Px'jo v'eot on Qx(NT - 2A, NT), given by

N 'top'bot (fi) - Z -Wt (NT - 2 A, NT, , tp, ebot; SN) - (N)(NT)x,

where SN= NT- 2A+1, NT and ZN is a normalization constant. With the above notation
we define P(x, N, ftp, Ifot) = Pt'o'P'fbot (fi(NT) < x + A) and claim that for all N sufficiently
large (depending on t and A) we have that

P(x, N, ftop, bot) > (1 - t)B/ 4 . (4.3.10)

The latter will be proved in Step 5 below. For now we assume its true and finish the proof
of (4.3.9).

Let Es E QA' (NT-2A)(NT - 2A,NT) be such that =ff1 (i) =' , (i) for i = NT -

2A,..., NT, where f_ = = oo when k = 1. As a consequence of Proposition 4.3.9 (see
also (4.3.3)) we have the following a.s. equality of _F random variables

1 DN(B)nENnFN -E (1{4A(NT) A'(NT - 2A) + A}|Flk]
1 DN(B)nENnFN - P(A'(NT - 2A), N, f_ 1 , 1 ).

In deriving the above equality we used that for w E DN(B) we have K( Z 1(w)) < B by
definition of DN(B).

Notice that a.s. Aj (NT - 2A) + A < NT - A, from which we conclude that we have the
following a.s. inequality

1 DN(B)nENnFN - E [1{A(NT) < NT - A}|Fjk] (
fN Jj 1).(4.3.11)

1DN(B)nENnFN -P(A/(NT- 2A), N e1 DNB~lEflk k-1k+

From (4.3.10) we have for all large N that P(A'(NT - 2A), N, f_ 1)f1) > (1 - t)B/4, which
together with 1 > 1 ENnFN and (4.3.11) imply (4.3.9).

Step 5. In this step we establish (4.3.10), but first we briefly explain our idea. By assump-
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tion, we know that f is a random path that lies at least a distance A above fbot and that
ftp(i) increases by 1 when i increases by 1 on [NT - 2A, NT] with at most B exceptions.
The latter implies that

1 > Wt(NT - 2A, NT, , top ot; SN) (1 _ t)B(l _ tA)2A B ( -

where in the last inequality we used (4.3.8). On the other hand, we know that ((N) -1+ as
N -+ oo. This implies that Pxe t'p,0t (f) is essentially the uniform measure on up-right paths
of length 2A started from x, conditioned to stay below etro and distorted by a well-behaved
Radon-Nikodym derivative. At least half of the paths that start from x and have length 2A
end in a position below x + A, and since each path carries roughly the same weight we can
obtain the desired estimate.

We make the following definitions

Q+ (top) := {f c Qx(NT - 2A, NT) f(NT) > x + A and ftop(i) > f(i) for NT - 2A < i < NT},

QC (top) := { Qx(NT - 2A, NT) : f(NT) x + A and fto0 (i) > f(i) for NT - 2A < i < NT}.

We claim that we have
Q- | (4.3.12)

The latter will be proved in Step 6 below. For now we assume it and finish the proof of
(4.3.10).

Write PN instead of Px'oP bt-" for brevity. We can find No (depending on t and A ) such
that for all N > No we have 1 > ((N)2A > 1/2. The latter together with our assumption
on ftop implies

1 Wt(NT - 2A, N,,top,ot SN (1 - t)B( tA)2A B ( -

Consequently, for any fl, f2 E Qx(NT - 2A, NT) we have

PN (fl) [(~ - t)B PN(f2)-

In view of (4.3.12) we have

IPN(Q-) PN(f) > [(I - t)B /2] . PN (f) =[(1 - t)B /2] - N (Q+)

The latter implies that

PN(Q) > (1/2) . FN(QY) + [(1 - t)B /4] . PN(Q+) [(I - t)B/4]

Step 6. In this final step we establish the validity of (4.3.12). It is easy to see that (4.3.12)
is equivalent to the following purely probabilistic question:

Let Xi be i.i.d. random variables such that P(X1 = 0) = P(X1 = 1) = 1/2 and Sk =
X 1 + - - - + Xk be a random walk with increments Xi. Fix an up-right path ftop such that
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ft,,(0) ;> 0 and A E N. Then we have the following inequality

P(S2A < AlSk < 10,(k) for k = 1, ... , 2A) > 1/2. (4.3.13)

Observe that if fet = o then the above is trivial by symmetry. For finite ftop, conditioning
the walk to stay below ftop stochastically pushes the walk lower and so the probability it
ends up below A only increases.

A rigorous way to prove the above is using the FKG inequality. To be more specific, let
L2A be the set of up-right paths starting from 0 of length 2A. The natural partial order on
L2A is given by

fl <_ f2 f- fI(i) < f2(i) for i = 1, . .. ,12A.

With this L2A has the structure of a lattice and so the FKG inequality reads

( 1{f < to}1{l(2A) < A} > z 1{(2A) < A} i{e < etro}
AL2A I2 \VEL 2A JL2AJ J EL 2A L2A J

and clearly implies (4.3.13). This concludes the proof of the proposition.

4.4 Basic lemmas

This section contains the primary set of results we will need to prove Theorem 4.3.8. For
the remainder of the chapter we will only work with simple discrete line ensembles and as
discussed in Section 4.3.1 we will drop references to Lo and Lo from our notation.

4.4.1 Monotone weight lemma
In this section we isolate the key result that allows us to analyze measures that satisfy
the Hall-Littlewood Gibbs property - Lemma 4.4.1 below. In addition, we derive two easy
corollaries, which are more suitable for our arguments later in the text.

Let z1 , z2 , ti, t2 E Z be such that t1 < t2 and 0 < z2 - zi < t 2 - ti and recall from
Section 4.3.1 that Q(ti, t2 ; z1 z 2 ) denotes the set of up-right paths from (ti, zi) to (t2 , z 2 ).
Each f E Q(ti, t2 ; ziz 2 ) can be encoded by a sequence R(C) of t2 - ti signs: +'s and -'s
indexed from t1 + 1 to t2 , so that R(i) = + if and only if f(i) - f(i - 1) = 1. The latter is
depicted in Figure 4-7. The total number of +'s is fixed and equals z2 - z, and the number
of -'s equals t2 -t - z 2 + zi.

The main result of this section is the following.

Lemma 4.4.1. Fix t C (0, 1) and let c(t) = fl_ 1 (1 - t') c (0, 1). Suppose a, b, zi, z2 , t1, t2

are given such that t 1 + 1 < t2 , 0 < z 2 - z1  t 2 - t1, 0 < b - a < t2 - t1, z1 a, z 2 < b.
Fix any ebot E Q(ti, t2 ; zi, z 2 ), S C {ti + 1, ... , t2} and T E {t1 + 1, ... , t2 - 1}. Let m(T) and
M(T) denote the minimal and maximal values of the set {f(T) : f C Q(t1 , t2 ; a, b)} and let

m(T) < k1 < k2 < M(T). Then we have

c(t) -Etlt2;a,b [W (t1,, Cbt ot; S)|f(T) = ki] < Et t2;a,b [W(t1, t2 , t, fot; S)|[f(T) = k2]
(4.4.1)

Proof. For brevity we write W(f) for Wt(ti, t2 f, 4 ot; S). Let f, be a random path sampled
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1 2 3 4 5 6 7 8 9 10

Figure 4-7: A path identified with a sequence of + and - signs. For the above path we have
z2 - z1 =4, t2 - t = 9 and R(f) =+ +, -, -, +,

according to pt,t2 ;a,b conditioned on f1(T) = k1 . We identify this path with a sequence of
+'s and -'s and observe that we have (ki - a) +'s in the first T - ti slots and the rest are
filled with -'s. Similarly, we have exactly (b - k2) +'s in the rest t2 - T slots. Let us pick
uniformly at random (k2 - kj) -'s in the first T - ti slots and change them to +, and also
we pick uniformly at random (k2 - k1 ) +'s in the last t2 - T slots and change them to -. In
this way we build a new sequence of +'s and -'s that naturally corresponds to an element

2 E Q(t4, t 2 ; a, b) such that t 2 (T) = k2. Moreover it is clear that the random path 2 is
distributed according to Pti ,t2 a, conditioned on 2 (T) = k2 . We are interested in proving
the following statement

W( i) < c(t)-1 - W( 2 ). (4.4.2)

The statement of the lemma is obtained by taking expectations on both sides of (4.4.2).

Since W( i) = 0 otherwise (and then (4.4.2) is immediate) we may assume that 1(i) >
bot(i) for all i E S. Let r = k2 - k, and denote by x1 < x 2 < -.. < Xr and y1 > Y2 -.. > Yr

the positions of -'s and +'s respectively that we changed when we transformed i to 2-

We also let Vi for j = 0, ... , r denote the paths in Q(ti, t2 ; a, b) obtained by flipping only the
signs at locations x1 , ... , xj and yi, ... , y (in particular 0 = i and r = 2). An example is
depicted in Figure 4-8.

Recall from (4.3.1) that W(t) = JES (1 - 1{A(j-1)-A(j)=1} - tA(j- ) , where A(j) =

(j) - bot(j). Let us explain how W(tj+') differs from W( P). When we flip the signs at x 1
and yj+i, we raise the path Va by 1 in the interval [xj+l, Yj+i -1], while outside (xj+1 -1, yj+1)
it remains the same (see Figure 4-8). The latter operation modifies the factors in W(i) as
follows.

* If xj+i E S then W(i) has a factor (1 - 1.A(o+)-A(om-1)=1} - t&(X3+1-)), which
changes to 1.

" All the factors (1 - 1jA(j)_A(j_1)=11 - tA('-1)) become (1 - tA( 1)+1)

whenever i E S n [Xj+1, Yj+1 - 1 -

" If yj+1 E S then W( P) has a factor (1 - 1_A(ym)-A(y 1)=1} - tA(Y+11)), which be-

comes (1 - 1{A(yj+i)-A(yj+1-1)=O} . tA(+1-1)+1)
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- A

ki

i x..2  T 2 y t2

Figure 4-8: An example of 0, 1 and 2 for the case k2 - ki= 2.

The first two changes only increase the weight W( i), while the last can decrease it but at
most by a factor 1 - tms, where m1 = 1 + minissl[XJ,YJl1] [ '(i) - bOt(i)]. This implies

W( ') (1 - m-1-Wl+

Notice that m0  1 since we assumed that 0(i) = 41(i) bOt(i) for i E S. In addition,
since at step j+---1 we raise the path on [xz +,,yj+1 - 1] by 1 it is clear that m3 +1  1 + in3 ,
which implies that mj j + 1 for each j 0. We conclude that

2

W( 0 ) Jl(i - t)14/( ') c(t)- 1 - W( r).
j=1

As 0 = 1 and ' = 2 the above proves (4.4.2) and hence the lemma. L

Remark 4.4.2. If t = 0 the acceptance probability Wo(t1, t2, , bot; 5) is equal to 1 if does
not cross bot on the set 5, and 0 otherwise. In this case one can use the arguments in the
proof of Lemmas 2.6 and 2.7 in [42] to show that we can construct on the same probability
space 1' and ." such that

P~'= ) = IPt1,'2a4'( ~ (T) = k1), IP( " = ) = P,t2a~b( I (T) = k2 )

and '(j) "(j) for t1  j t2 with probability 1. The latter statement implies that we
have the following almost sure inequality oa(t, t2, 1', foot; S) W k(ti, t 2, ", bot; 5), which
means that higher curves are accepted with higher probability. This statement fits well with
the continuous setup in [42].
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For general t c (0, 1) we no longer have the above inequality almost surely. For example,
we can take ti = 0, t2 = 2n, a = ki = 0, b = k2= n, S = t1+ 1, t2 , fCOt e' to be the path
that is flat on the interval [0, n] and goes up on [n, 2n], while e" the path that goes up on
[0, n] and is flat on [n, 2n]. For this choice one calculates

W(ti, t 2 , f', 4 bot; S) = 1 > 11(l - ti) = W(ti, t2 f", ebot; S).
i=1

Consequently, even though f' is below f" it is accepted with higher probability and the reason
is that the acceptance probability depends not only on the distance between lines but also
on their relative slope. In this context, the result of Lemma 4.4.1 is that the acceptance
probability of the top line does increase as it is raised, although only in terms of its expected
value and up to a factor of c(t) = ]~'1(1 - ti). This monotonicity is much weaker than the
almost sure monotonicity in the t = 0 case, but it turns out to be sufficient for our methods
to work.

Using the above lemma we prove two useful corollaries.

Corollary 4.4.3. Assume the same notation as in Lemma 4.4.1. Suppose A, B are non-
empty subsets of {m(T), m(T) + 1, ... , M(T)}, such that a > # for all a G A and P E B.
Then we have

c(t) - ;free [W (ti, 2, , fbot; S) e(T) E B] E;A,' [W (ti, t2 , , ibot; S) It(T) E A] . (4.4.3)

Proof. For brevity we write W(f) for Wt(ti, t 2 , f, fbot; S). We have that

t t,;ab 2apti,t2;a,b (f (T) =#
c(t) - E " 2;-' [W (f) If(T ) E B ] = c(t) - Etl "'* [W (t) If(T ) =- 0] frt 2abe (TE Bc(t) f [W( 2;~ [W (T) = Z t

2ee;ab((T ) f r pta~ b ("( (T) = B)

E A r ,f2;a,be(((T) E pjt2;a,b(f(T) E B)
c tl"'2;ab [W(f)[(T) ]a) P /,,32;),

#EBEAfree f2;a,b(v(T) A) ptt2;ab(f(T) B)

Z2-a b [W)( Pt2 ab (f(T) = ) pt1t 2;ab((T)
frEe a freeT = ( (T) E A) Ptt2;afb (e(T) E B)

The middle inequality follows from Lemma 4.4.1. E

Corollary 4.4.4. Assume the same notation as in Lemma 4.4.1 and let ae < M(T ). Denote
by P the probability distribution pt1,12,a,b(-|_t frmDfnto .. 4. Then we have

ree - 2a) -jt~ 2abWe~(

P(l(T) b a ) . _t b ; (f_(T) > ).- (4.4.4)

Proof. If a < m(T) then (4.4.4) becomes I > c(t), which is clearly true. We thus may
assume that M(T) W a > m(T). Let A = [a, M(T)] and B = [m(T), a). Define D, := {t E
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Q(ti, t2 ; a, b) : f(T) - A} and D2 := {f E Q(t1, t2 ; a, b) : f(T) E B}. Observe that A and B
satisfy the conditions of Corollary 4.4.3 and hence

E Wt t1,it2,7f, fbot ; S) ! cMt - ID1 Wt (t1,t2, f , bot ; S).
ED D2 EED2

Dividing both sides by E EQ(tit2 ;a,b) Wt(ti, t 2, f bot; S) we see that

P(f(T) > a) > c(t)- (I-P(f (T) > a)) or equivalently P(fe(T) > a) > c(t) D1
ID21 ID21 + c(t)|Di I

Since c(t) C (0, 1) we can increase the denominator by replacing it with IDI + ID2 1, which
makes the RHS above precisely c(t) - Ptit 2;ab (f(T) > a) as desired. lf ree )

4.4.2 Properties of random paths

In this section we derive several lemmas about random paths distributed as P/";O"' for z G
{0, ... , n}, which are essential for the proof of our main results. Recall that if L is such a
path, we define L(s) for non-integral s by linear interpolation (see Section 4.3.1). The key
ingredient we use to derive the lemmas below is a strong coupling between random walk
bridges and Brownian bridges, which is presented as Theorem 4.4.5 below.

If Wt denotes a standard one-dimensional Brownian motion and a > 0, then the process

Bo= (W - tW), 0 < t <1,

is called a Brownian bridge (conditioned on B0 = 0, B1 = 0) with variance 0 2 . With this
notation we state the main result we use and defer its proof to Section 4.8.

Theorem 4.4.5. Let p C (0,1). There exist constants 0 < C, a, a < oc (depending on
p) such that for every positive integer n, there is a probability space on which are defined
a Brownian bridge Bo with variance a2 = p(l - p) and a family of random paths (n,z) E

QO, n; 0, z) for z = 0, ... , n such that (n,z) has law pOn;O z and

E [eaA(nz)] < Cea ejz~pnJ/", where A(n, z) := supo0 <<n X/niB0'> + tz - /(nz)(t)

(4.4.5)

Remark 4.4.6. When p = 1/2 the above theorem follows (after a trivial affine shift) from
Theorem 6.3 in [60]. The proof we present in Section 4.8 for the more general p E (0, 1) case
is based on (suitably adapted) arguments from the same paper.

We will also need the following monotone coupling lemma for random walks, which can
readily be established from the arguments used in the proof of Lemma 2.6 in [42].

Lemma 4.4.7. Suppose a1, b1 , a2 , b2 , t1 , t2 are given such that t1 < t2, 0 < b2 - a2 t2 -t1
0 < b1 - a1 < t 2 - t1 , a1 < a2 , b1 < b2 . Then there exists a probability space on which

are defined random paths f1 and f2 such that the law of fl is P,42,aibi for i - 1,2 andf ree
(8~) 1 2(s), for s = t1 ,...t2 ) 1.I
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Using facts about Brownian motion and the above coupling results we establish the
following statements for random paths.

Lemma 4.4.8. Let M > 0 and p E (0,1) be given. Then we can find No(M,p) such that for
N > N, N > z > pN + MN 11 2 and s e [0, N] we have

]p ,z (f(s) > (pN + MN1/2) - N1/4) > 1/3. (4.4.6)f ree N I+)- J /.

Proof. Assume that No > 2M2 and N > No. In view of Lemma 4.4.7, we know that

]pO,N;Oz 2 e(s) > (pN + MN 1 2) - N1/4) > pO;,zi (e(s) > s(pN + MN1/ 2 ) - N1/4)

whenever z2 > z1 and so it suffices to prove the lemma when z = FpN + MN 1/ 2 ]. Suppose
we have the same coupling as in Theorem 4.4.5 and let P denote the probability measure on
the space afforded by the theorem. Then we have for a.2 = p(l - p) that

p'f,N;,z (e(s) > (pN + MN 1/ 2 ) - N 1/4) = ((N,z)(s) > s(pN + MN1/ 2 ) - N 1/4 >

>IED(N1 / 2 BO/N > 0 and A(N, z) (N1/4 - 1)) > 1/2 - P (A(N, z) > N 1/4 - 1)

In the next to last inequality we used that 1z - (pN + MN 1/2)1 < 1 and in last inequality
we used that P(B/N > 0) 1/2 for every v > 0 and s c [0, N]. Next by Theorem 4.4.5 and
Chebyshev's inequality we know

P (A(N, z) > N1 / 4 - 1) C (log N)2 M2 -aN/4

The latter is at most 1/6 if we take No sufficiently large and N > No, which would imply
that pF,N;O,z (e(s) > (s/N)(pN + MN1/ 2 ) - N1 /4) > 1/3 for such N, as desired. Elf ree \\/

Lemma 4.4.9. Let M1 , M2 > 0 and p E (0,1) be given. Then we can find NO(M 1 , M2 , p)
such that for N > No, z1 > -M 1N1 / 2, z 2 > pN - M1N 1 /2 we have

1p)ON;ziz2 ( (N/2) > M2N1/2 + pN N 1/4 > (1/2)(1 - ID( 1-p)/ 2 (M + M2 )), (4.4.7)

where 4 )v is the cdf of a Gaussian random variable with mean 0 and variance v.

Proof. Assume that No > 2(M1 + M2 ) 2 and N > No. In view of Lemma 4.4.7 it suffices to
prove the lemma when z 1 = [-M1N1/2] and z2 = [pN - MIN 1/ 2]. Set Az= z 2 - zi and
observe that

P~FN;ZiZ2 ( (N/2) > M2N1/2 + pN N 1/4 =p,N;AAz f(N/2) > M2N 1/ 2 + pN N11 4

Suppose we have the same coupling as in Theorem 4.4.5 and let P denote the probability
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measure on the space afforded by the theorem. Then we have

P IN;,A z f(N/2)f ree > M2N1/2 + pN
2

-- zi - N/4 = ( e(N,A z)(N/2) > M2N1/ 2 + pN -zi - N114
2

Sp (N,Az)(N/2) > (2M1 + M2)N 1/ 2 + Az - N 1 /4
2

where we used that zi + M1N1 /21 1 and Iz2 + MN1/ 2 - pNj 1. We now note that the
expression in the second line above is bounded from below by

( M2 +-2M1P BO/ 2 2 and A(N, z) < N 1 /4 -2) , where o = p(l - p).

Since B/ has the distribution of a normal random variable with mean 0 and variance a2 /2,
and (V is decreasing on R>o we conclude that the last expression is bounded from below by

-(M1+M2)-P (A(N, z) > N 1 4 - 2) (M1+M2)-e

In the last inequality we used Theorem 4.4.5 and Chebyshev's inequality. The above is at
least (1/2)(1 - 1p(1-p)/ 2 (M 1 + M2 )) if No is taken sufficiently large and N > No. El

Lemma 4.4.10. Let p E (0,1) be given.
z1 > N1 / 2 , z 2 > pN + N 11 2 we have

pfe kN Z2 min [fe(s) - ps] + N 1 1 4

f e sE[O,N]

Then we can find No(p) such that for N > No,

1
> 0) (1- exp ( )).

Al1 -- P)

Proof. In view of Lemma 4.4.7 it suffices to prove the lemma when
[pN + N 1!2]. Set Az = z2 - zi and observe that

(4.4.8)

pON;z1,z2 min [f(s) - ps] + N 1 /4
f ree ksE[O,N]

> 0 =F I N;O,Az
fI free min [e(s) -SE[0,N]

ps] + N 1 /4 >

Suppose we have the same coupling as in Theorem 4.4.5 and let P denote the probability
measure on the space afforded by the theorem. Then we have

p0,N;OAz min fe(s)ree 'sE[0,N] - ps] + N 1/4 > _z1 - ps] > -N 11 4

P min
(sE[0,N]

- _Az]
L N

> -N 1 /4 - N 11 2 +

where in the last inequality we used that Izi - N 1 / 2 1 5 1 and Iz 2 -pN - N11 2 1 5 1. We now
note that the expression in the second line above is bounded from below by

P min B ' > -1 and A(N, z) N14 - 2 ,where a2 = p(1 - P).

201

+2 ,

zi [ ~N1/2] and z 2 =

-Zi)

- Zi)=P (min, [f(,z()
sE[0,N]



We can lower-bound the above expression by P (minSe[ol B' > -1)-P (A(N, z) N 1/ 4 - 2).
By basic properties of Brownian bridges we know that

P (min B'" > -1 =P min B1 > -o" =P max B1 < a -' e-"2o-
sE[O,1] (sElo,1) (SC[O,1l

where the last equality can be found for example in (3.40) of Chapter 4 of [56]. On the other
hand, by Theorem 4.4.5 and Chebyshev's inequality we have

P (A(N, z) > N1/4 - 2) < Ce (IogN)2eM2e-aN1/4

and the latter is at most (1/2)(1 - e2- 2 ) if No is taken sufficiently large and N > No.
Combining the above estimates we conclude that if No is sufficiently large and N > No, we
have p0,N;ziz 2 (minsE[oN] [e(s) - ps] + N1/ 4 > 0) > (1/2)(1 - e-242 ) as desired.

f ree

4.4.3 Modulus of continuity for random paths
For a function f E C[a, b] we define the modulus of continuity by

w(f,6) = sup If(x) - f(y)I. (4.4.9)
x,yE[a,b]

In this section we derive estimates on the modulus of continuity of paths distributed according
to p F 0 '; for z E {0, ... , n}, which are essential for the proof of Theorem 4.3.8. Recall that if
L is such a path, we define L(s) for non-integral s by linear interpolation (see Section 4.3.1).
The main result we want to show is as follows.

Lemma 4.4.11. Let M > 0 and p E (0,1) be given. For each positive c and q, there exist a
J > 0 and an No E N (depending on E, 77, M and p) such that for N > No we have

f;0,zwe f) 6) c) r, (4.4.10)

where f'(x) - N- 1/ 2 (f(xN) - pxN) for x e [0,1] and |z - pN| < MN 1/ 2

Proof. The strategy is to use the strong coupling between f and a Brownian bridge afforded
by Theorem 4.4.5. This will allow us to argue that with high probability the modulus of
continuity of fe is close to that of a Brownian bridge, and since the latter is continuous a.s.,
this will lead to the desired statement of the lemma. We now turn to providing the necessary
details.

Let 6, q > 0 be given and fix 6 E (0, 1), which will be determined later. Suppose we have
the same coupling as in Theorem 4.4.5 and let P denote the probability measure on the space
afforded by the theorem. Then we have

P z E(4.4.11)f ree (~e6 6 W.,) )
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By definition, we have

w(f'(Nz), 6) -1/2 sup e(Nz)(xN) - pxN _- f(Nz)(yN) + pyN
x,ye [0,1
Ix-yl 6

From Theorem 4.4.5 and the above we conclude that for o.2 = p(l - p) we have

W(f,(N, z) , 6) < N-1/ 2 sup N/112Bo, - N 1 / 2 By + (z - pN)(x - y) + 2N-1/ 2 A(N, z).
x,YE[0,1 ]

(4.4.12)
From (4.4.11), (4.4.12), the triangle inequality and our assumption that Iz - pNI < MN/2
we see that

pOrN;0ez , 6) > E) 5 P (w(B", 6) + 6M + 2N- 1/2 A(N, z) > E) . (4.4.13)

Let (I) = P (w(B', 6) > E/3) , (II) = P (6M > E/3) and (III) = P (2N- 1/ 2 A(N, z) > E/3),
then we have

P (w(B", 6) + 6M + 2N-1/ 2 A(N, z) > e) (I) + (II) + (III).

By Theorem 4.4.5 and Chebyshev's inequality we know

P (A(N, z) > N'/4) < Cea(og N)2 eM 2e-aN1/4

Consequently, if we pick No sufficiently large and N > No we can ensure that 2N- 1/4 <c/3
and Ce(1og N)2 M 2 -aNl/4 < /3, which would imply (III) r/3.

Since BO is a.s. continuous we know that w(B, 6) goes to 0 as 6 goes to 0, hence we
can find 6o sufficiently small so that if 6 < 60, we have (I) < r7/3. Finally, if 6M < 6/3 then
(II) = 0. Combining all the above estimates with (4.4.13) we see that for 6 sufficiently small,
No sufficiently large and N > No, we have P4O,N;', (wfe(6) > c) < (2/3),q < r as desired.

l

4.5 Proof of Theorem 4.3.8

The goal of this section is to prove Theorem 4.3.8 and for the remainder we assume that
,N = (L , LN) is an (a, p, r + 1)-good sequence for some r > 0, defined on a probability

space with measure P. The main technical result we will require is contained in Proposition
4.5.1 below and its proof is the content of Section 4.5.1. The proof of Theorem 4.3.8 is given
in Section 4.5.2 and relies on Proposition 4.5.1 and Lemma 4.4.11.

4.5.1 Bounds on acceptance probabilities

The main result in this section is the following.

Proposition 4.5.1. Fix r > 0 and denote s1 = LrN"J. Then for any 6 > 0 there exist 6 > 0
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and N1 (both depending on r, e, t, a,p) such that for all N > N1 we have

P (Zt(-sl, si, L N(-s1), L N(s1), L2; S') < 6) < E,

where S' = -s 1 + 1, s1]] and Zt is the acceptance probability defined in Definition 4.3.4 (see
also Remark 4.3.5).

The general strategy we use to prove Proposition 4.5.1 is inspired by the proof of Propo-
sition 6.5 in [431. We begin by stating three key lemmas that will be required. Their proofs
are postponed to Section 4.6. All constants in the statements below will, in addition, depend
on a, t and p, which are fixed throughout. We will not list this dependence explicitly.

Lemma 4.5.2. For each c > 0 there exist R(r, E) > 0 and N1(r, E) such that for all N > N1

we have

P sup [Lb(s) - ps] > RNQ/2 <
sE[-(r+1)N-,(r+1)N-]

Set si = [rNJ and ti = [(r + 1)N'] and assume a, b, z1i, z 2, tl satisfy, 0 < z2 - z 1 < 2ti,
0 < b - a < 2ti, z, < a, z2 < b. Let fbot be a fixed path in Q(-ti, t1 ; z1 , z 2 ) and denote
S = -ti + 1,ti], S = T-ti + 1, -sil U si + 1, tij. Let L and L be two random paths in
Q(-ti, ti; a, b) , with laws PL and PL respectively such that

P'L(L = f) = PS t1't1'ab(f Iot) and PL(L = f) = p t ,t',ab(Iot)

where the definition of pTo'Ti'"'b(- tot) was given in Definition 4.3.4. From (4.3.1) we know
that L will not cross ebot with probability 1. On the other hand, L can cross fbot multiple
times in the interval (-si, s1 + 1) but it will stay above it on [-ti, -si] U [si + 1, t1].

Lemma 4.5.3. Fix M1, M2 > 0, S' = -s 1 + 1, s1 ] and suppose

1. suPse[ t,t] [ebot(s) - ps] < M2Na/2

2. a > max(4 0ot(-ti), -pt, - M1Na/2

3. b > max(4ot(t1),pti - M1Na/2).

There exists N2 C N and explicit functions g and h (depending on r, M1 , M2) such that for
N > N2

PL (Zt (-s1, s,(-sL),L(s1), fot;s') g) > h. (4.5.1)

The functions g and h are given by

1( -2
9=- 1 - exp -(2-and h = (c(t)3 /18)(1 - Dp( 1 -p)/ 2 (10(1 + r) 2 (Mi + M2 + 1))

4 (1~ - Ap))

where c(t) = 11'1(1 - t') and 4v is the cdf of a Gaussian random variable with mean zero
and variance v.

Lemma 4.5.4. Fix M1, M2 > 0, S' = f-s1 + 1, si] and suppose
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1. SupSEtiti]J [et0 (S) - Ps] < M2Na/2,

2. a > max(fbot(-t), -pt1 - MNa/2)7

3. b > max(ot(ti),pti - M1N /2).

Let N2, g, h be as in Lemma 4.5.3 and for any E > 0 set 6(E) = E -g -h. Then for N > N2 we
have

PL (Zt (--s1, s1, L(-s1), L(s1), fbot; S') < 6( )) < E. (4.5.2)

In the remainder we prove Proposition 4.5.1 assuming the validity of Lemmas 4.5.2 and
4.5.4. The arguments we present are similar to those used in the proof of Proposition 6.5
in [43].

Proof. (Proposition 4.5.1) Define the event

EN {L N(-t 1 ) > max(L 2(t 1 ), -pt 1 - M1N / 2 )If

{L (ti) > max(Lf (ti),pti - M1N / 2 )} n sup [L2N (s) - ps] < M2 Na/2
sE[--ti,tj]

where M1 and M2 are sufficiently large so that for all large N we have P(Ec) < 6/2. The
existence of such M1 and M2 is assured from Lemma 4.5.2 (since LN dominates LN pointwise)
and the fact that 2 N is (a, p, r + 1) - good.

Let 6(E) be as in Lemma 4.5.4 for the values E = c/2, r, M1 , M2 in the statement of the
lemma. Consider the probability

P ({Zt(-si, si, L (-si), Lf (si), L N; S') < 6(E)} n EN)

= E[1ENE [1{Zt(-ssi, Lf (-si),7Lf (si), LfN; S') < ()} Fext ({1} x (-ti, ti))].

(4.5.3)

In the above equation we have Fext ({1} x (-ti, ti)) is the --algebra generated by the up-
right paths L N and LN outside the interval (-ti, t1 ). The equality in (4.5.3) is justified by
the tower property since EN is measurable with respect to ext ({1} x (-ti, t1 )) . We next
notice that we have the following a.s. equality of ext ({1} x (-ti, ti))-measurable random
variables

E [1{Zt(-si, siLf (-Si), L N(s1),7 L N; S') < 6(E)} -Fext ({1}1 x (tt)

PL (Zt(-si, si, L(-si), L(si), L N; S') < j(E)),

where PL is specified as in the setup after Lemma 4.5.2 with respect to a = Li(-ti),
b - L, (tl), fbot = L2 on [-ti,t 1].

When the Text ({1} x (-ti, ti))-measurable event EN holds we have that supse[t,,ti]

[ibot(s) - ps] M 2N'1/
2 and a > max(Cot(-ti), -pt 1 - M1 Na/2 ), b > max(4bot(t1),pti -

M1 Na/
2) (recall that N is a simple discrete line ensemble by definition so that L N lies
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above LN). Thus we may apply Lemma 4.5.4 on EN and obtain that

PL (Zt(S', -s 1, si, L(-si), L(s2 ), L') < 6(E)) dEN ~

where the inequality is understood in the a.s. sense. Putting this into (4.5.3) we conclude
that

IP ({Z(S', -si, Is, L (-si), L N(s 1), LN) < 6(E/2)} n EN) _ /2.

Using this and P(E ,) < E/2, we see that for all large N we have

P(Zt (S' -s1, si, L N(-si), L NSI L N) (1) -

M

4.5.2 Concluding the proof of Theorem 4.3.8
For clarity we split the proof of Theorem 4.3.8 into several steps. In the first two steps we
reduce the statement of the theorem to establishing a certain estimate on the modulus of
continuity of the paths Li. In the next two steps we show that it is enough to establish these
estimates under the additional assumption that (LN, LN) are well-behaved (in particular,
well-behaved implies that the acceptance probability Zt(-s1 , si, L{ (-si), L N(s 1 ), L 2 ; S') is
lower bounded and it is here that we use Proposition 4.5.1). The fact that the acceptance
probability is lower bounded is exploited in Step 5, together with the resampling property of
Remark 4.3.5, to effectively reduce the estimates on the modulus of continuity of LN to those
of a uniform random path. The latter estimates are then derived in Step 6, by appealing to
Lemma 4.4.11.

Step 1. Recall from (4.4.9) that the modulus of continuity of f E C[-r, r] is defined by

w(f, 6)= sup If (x) - f (y) .
x'y6 [-r,r]

As an immediate generalization of Theorem 7.3 in [131, in order to prove the theorem it
suffices for us to show that the sequence of random variables fN(O) is tight and that for each
positive c and Tj there exist 6' > 0 and N1 E N such that for N > N1, we have

P (W fN, 6') > E) < 7. (4.5.4)

The tightness of fN(0) is immediate from our assumption that {N}o 1 is an (a,_p, r 1
good sequence (in fact we know from Definition 4.3.7 that fN(s) is tight for each s E

[-r - 1, r + 1]). Consequently, we are left with verifying (4.5.4).

206



Step 2. Suppose c, q > 0 are given and also denote si = LrNc1. We claim that we can find
6 > 0 such that for all N sufficiently large we have

P sup |Lf(x) - Lj(y) - p(x - y) > 6(2si)/ _ . (4.5.5)
x,yC[-Si,sil 2 (2r)1/2

Ix-y|<26si

Let us assume the validity of (4.5.5) and deduce (4.5.4).
Let 6' = r6. Suppose that x, y C [-r, r] are such that Ix - yj < 6' and without loss of

generality assume that x < y. Let X = [xN'] and Y = LyN'i. One readily observes that if
N is sufficiently large then IX - YI < 26s1, and X, Y E [-si, si]. In addition, we have that

fN(x) - fN(y)|= N-/2 L N(xN") - LN(yN") - pN"(x - y)| <

N-c/2 Lf(X) - L N(Y) -p(X - Y) + 2N-a/ 2 (1 +p),

where we used that IX - xNc| < 1, |Y - yN0| < 1, the slope of L1 is in absolute value at
most 1, and the triangle inequality. The above inequality shows that for all N sufficiently
large we have

P (w(fN, 6') > C) < P sup LNf(x) - LNj(y) - p(x - y) > Na/2 - 2(1 +
XyE[-sl ,s1] II -L N -21+p

ix-y[<2Ssi

Since si = [rNj we see that (2 ~)1/2  (c/2 )N a/2 as N becomes large and so we conclude

that for all sufficiently large N we have c(2sl)1/2 < ENa/ 2 - 2(1 + p). This together with2(2r)1/
2 

-

(4.5.5) implies that the RHS in the last equation is bounded from above by r7, which is what
we wanted.

Step 3. The first two steps above reduce the proof of the theorem to establishing (4.5.5),
which is the core statement we want to show. In order to prove it we will need additional
notation that we summarize in this step.

From the tightness of N-a/2 [L{N(xN') - xpN'] at x = -r and x = r we can find M > 0
sufficiently large so that for all large N we have

I((E 1(M1, N)) > 1-77/4, where E1(M1, N) = {max (I Lf (-s1 ) +psi I , 1LN(si) - PSi 1) < M1N'/2 }

In addition, we know from Proposition 4.5.1 that we can find 61 > 0 such that for all
sufficiently large N we have

P(E2 (61i, N)) > 1 - r7/4, where E2 (61, N) = {Zt(-s1 , si, L N(-s1 ), L N(s1), L2 ; S') > 6}.

Suppose a, b, zi, z2 are given such that 0 < z2 - z1 < 2si, 0 < b - a < 2si, zi a, z 2 < b.
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For a given ebot E Q(-81, si; zi, z 2 ), we let

E(a, b, 4ot, N) {(L N, LN) : L = ot on [-si, si], L N(-si) =a and Lf (si) = b

Observe that E1 (M1, N) n E2 (J1 , N) can be written as a countable disjoint union of sets of
the form E(a, b, ebot, N), where the triple (a, b, ebot) satisfies:

1. O<b-a 2s, la+psil < MN / 2 and Ib - psi < MiN,

2. z1 < a, z 2 < b and ebot E Q(-s1si, zi, Z2)i,

3. Zt (S',7 -s1, si, a, b, fbot) > 61.-

Clearly, there are only finitely many choices for a, b that satisfy the conditions above.
Then the number of z1, z2 for each given pair (a, b) is countable, while the cardinality

of Q(-si, si, z1 , z2 ) is finite. This means that the number of triplets (a, b, bot) is indeed
countable. The fact that E(a, b, ebot, N) are disjoint is again clear, while the first and third
condition above show that their union is indeed E1(M1, N) n E2 (6 1, N). Let us denote by
F(61 , M1, si, N) the set of triplets (a, b, fbot) that satisfy the three conditions above.

Step 4. Let us write L ([-s1 , si]) as the restriction of LN to [-s1, s1]. For 6 > 0 and
e E Q(-s1, si; a, b) we define

V(6, f) = sup If(x) - e(y) - p(x - y) .
x'yE [-Si ,sil

x-yJ 26si

We assert that we can find 6 > 0 such that for all large N and (a, b, bot) E F(6 1, M1, si, N),
we have

P (V(J, Lf ([-s1, s])) >! A E(a, b, bot, N)) n/4, where A - .(2s)1/2  (4.5.6)

Let us assume the validity of (4.5.6) and deduce (4.5.5). We have

P(v(6, Lf ([-s1 , si])) > A) iP ( {V(6, Li ([-s1, s >])) > A}nE1(M1, N)nE2( 1, N)) +T1/2,

where we used that P(Ec(M1, N)) < q/4 and P(Ej(61 , N)) < 7/4. In addition, we have

P ( {V(6, Lf ([-s 1 , Si])) ;> A} E1 (M1, N) n E2 (61, N)) =

P( {V(6, Lf ([-s1 , s1])) > A} n E(a, b, bot, N)),
(a,bebot)EF(61,M1 ,s1 ,N)

where we used that E1 (M1, N) n E2 (6 1 , N) is a disjoint union of E(a, b, ebot, N). Finally, we
have from (4.5.6) above that

P( {V(J, Lf ([-s1 , Si])) > A} n E(a, b, fbot, N))
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P (V(6, Lf ([-s1, Si])) > A E(a, b, Cbot, N))P(E(a, b, Ebot, N)) < (i/4) -P(E(a, b, Cbot, N)).

Summing the latter over (a, b, bot) E F(6 1, M1, s1 , N) and combining it with the earlier
inequalities we see that

P (V(6, Lf([-s1 , s >])) A) < q/2 + /4. P(E(a, b, ebot, N)) =
(a, bhost) EF (61, M1,s 1,N)

= 7/2 + (7/4) -P(E1 (M1 , N) n E2(6 1, N)) <T1,

where in the middle equality we again used that E1 (M1, N) n E2(6 1, N) is a disjoint union
of E(a, b, bot, N). The last equation implies (4.5.5).

Step 5. In this step we establish (4.5.6) and begin by fixing (a, b,bot) E F(6IM1 , s, N).
Since 2 N satisfies the Hall-Littlewood Gibbs property on 1[-s1, si1 with respect to S'
[-Si + 1, s1J for N sufficiently large we know that

P(L([-si, si]) = |E(a, b, eot, N)) = Psab(e eb0 t) for any f E (-s1 , si; a, b). (4.5.7)

We now recall the sampling property we explained in Remark 4.3.5. Let fK be a se-
quence of i.i.d. up-right paths distributed according to p-sis1;ab Also let U be a uni-f ree
form random variable on (0, 1), independent of all else. For each K E N we check if
Wt(-s1, Si, fK, ebot; S') > U and set Q to be the minimal index K, which satisfies the inequal-
ity. Then we have that Q is a geometric random variable with parameter Zt(-s1 , si, a, b, fbot; S')
and

f (eQ = f) = pS1''1,siab (f Ibot) for any f E Q(-si, si; a, b), (4.5.8)

where f is the probability measure on a space on which fK and U are defined, we also write
E for the expectation with respect to P.

By our assumption that (a, b, tbot) E F(61, Mi, si, N), we know that Zt(-s1, si, a, b, t bot; S') >
61 and so E[Q] = Zt(-sl, si, a, b, bot; S')-i 6-. It follows that if we take R = 86T1 r- 1,
then by Chebyshev's inequality we have

IP(Q > R) 17/8. (4.5.9)

Fix A = E(2s /and observe that

f(V(J, fQ) > A) = 1 (V(6, fQ) ! A, Q > R) + 1 (V(J, fQ) > A, Q < R) :5 1 (Q > R) +

( max V(6, f') > A) = I(Q> R)+1- ( max V(J, f') < A < 1- (V(6, e) < A) LR +/ 8 .1<i<R 1i<R

In the last inequality we used (4.5.9) and the independence of P. Combining the latter
inequality with (4.5.7) and (4.5.8) we see that

P(V(6, L N([-si, s])) > A[E(a, b, fbt, N)) < 1 - (V(J, P) < A) L"R +-/8. (4.5.10)
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Equation (4.5.6) would now follow from (4.5.10) if we can show that for any e' > 0 we can
find 6 > 0 (depending on M1 , E', rj, r and p), such that for all large N we have

1 (V(6, f0) < A) > 1 - E'. (4.5.11)

Step 6. In this final step we establish (4.5.11), which is the remaining statement we require.
Notice that A = E(2si)1 / 2 , where E= 2). The key observation we make is the following

IP (V(6,e f) < A) = p4f2re;,--a yw (f 6) < ) , (4.5.12)

where fe(x) = (2s,)- 1/ 2 (e(2xs1 ) - 2pxsi)) for x E [0,1] and w(f, 6) denotes the modulus of
continuity on [0, 1] as in (4.4.9).

Notice that since (a, b, fot) E F(61 , Mi, si, N), we know that lb - a - 2psI 2M1 N / 2 <

4M (2si) 1/ 2 for all large N. The latter means that we can apply Lemma 4.4.11, and find
6 > 0 (depending on M1, E', , 7 and p), such that for all large N we have

p0,sj0,-a(Wwfel6) < 0 > -6'

Combining the latter with (4.5.12) concludes the proof of (4.5.11).

Remark 4.5.5. An important idea in our arguments above is to condition on E(a, b, fbot, N)
and obtain estimates on these events, where additional structure is available to us. The
latter is possible because of the discrete nature of our problem and substitutes the more
involved notions of stopping domains and strong Brownian Gibbs properties that were used
in [42] and [43].

4.6 Proof of three key lemmas

Here we prove the three key lemmas from Section 4.5.1. The arguments we use below heavily
depend on the results from Section 4.4.

4.6.1 Proof of Lemma 4.5.2
Let us start by fixing notation. As in Section 4.5.1 we set s, = LrN&j and ti = L(r +1 )N'J.
Define the events

E(M) = {Lf(-ti) + pti I > MN / 2 } , F(M) = {Li(-si) > -psi + MN /2 } and

G(M) = sup [Li (s) - Ps] > (6r + 10)(M + 1)N'/2
sE[0'ti]

For a, b E Z and s E {0, 1, ..., t1} as well as a path fbot in Q(-tl, S; zi, z 2 ), where z1 < a and
z 2 Kb we define E(a, b, s, fbot) to be the event that LN(-ti) = a, Lb(s) = b, and L N agrees
with fbot on [-t1 , s]. We will also write LN([m, n]) for the restriction of LN to the interval

[m, n].
Observe that Ec(M) n G(M) can be written as a countable disjoint union of sets of the
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form E(a, b, s, Cbt), where the quadruple (a, b, s, Ebot) satisfies:

1. 0 < s < t1 ,

2. 0 < b - a < ti + s, Ja + ptil I MN/ 2 and b-ps > (6r+10)(M+1)Na/2 ,

3. z1 5 a, z 2 K b and eb0 t E Q(-ti, s, Z1; z2),

Clearly, there are only finitely many choices for s and for any s there are countably many
a, b that satisfy the conditions above. Then the number of z 1 , z 2 for each given pair (a, b) is
again countable, while the cardinality of Q(-t, s, z 1 , z 2 ) is finite. This means that the num-
ber of quadruples (a, b, s, bot) is indeed countable. The fact that E(a, b, s, fbot) are disjoint
is again clear, while the first and second condition above show that their union is indeed
EC(M) n G(M). Let us denote by D(M) the set of quadruples (a, b, s, f4 ot) that satisfy the
three conditions above.

By 1-point tightness of LN we know that there exists M > 0 sufficiently large so that for
every N c N we have

P(E(M)) < E/4 and P(F(M)) < 12 (4.6.1)

where we recall that c(t) = 1 (1 - ti). Suppose (a, b, s, fibt) E D(M) and observe that we
have

P-t ,s;a,b ((-si) -psi + MNa/2 ) - pO,t+s;O,b- (e(t, - si) + a > -psi + MNa/2) >free free.

p ' a (f(ti- si) > p(t1 - si) + 2MNa/ 2 )
(4.6.2)

where in the last inequality we used that a + pti > -MN,/ 2. Since a + pt1 I < MNc/ 2 and
b - ps > (6r + 10)(M + 1)Na/ 2 , we conclude that b - a > p(ti + s) + (6r + 9)(M + 1)Na/2 .
It follows from Lemma 4.4.8 that for all large N we have

pf ' a ti - s) ti [p(ti + s) + (6r + 9)(M + -)Na/2] _ (ti + S) > 1/3.

(4.6.3)
Notice that since s c [0, t1 ], si = [rNj and ti = [(r + 1)NaJ, we have ti > 1 for

all large N. These estimates together imply that for all large N we have "-+ [p(ti + s) +

(6r + 9)(M + 1)Nc/ 2] - (t1 + S)1/4 > p(ti - Si) + 2MN'/2 and so from (4.6.2) and (4.6.3)
we conclude that

P-ti"s;a'b (f (-si) > -psi + MNa/2) > 1/3. (4.6.4)

Since the sequence 1 N is (a, p, r + 1)-good, we know that for any f E Q(-t, s; a, b) we
have

P(LN([-t1 , S]) = fIE(a, b, S, fbot)) -
Z (-ti, Is, a, b, ebot; S)

where S = -ti + 1, s . The latter together with (4.6.4) and Corollary 4.4.4 allow us to
conclude that

P (Li(-si) + psi > MN/ 2 IE(a, b, s, bot)) > c(t)/3. (4.6.5)
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We now observe that

P(F(M)) >

(a,b,s,tbot)ED(M)

P(F(M) n E(a, b, s, ebot)) =

= P(F(M) E(a, b, s, fbot))P(E(a, b, s, fbot)) > (c(t)/3)P(Ec(M) n G(M))
(a,b,sAebt)ED(M)

where in the last inequality we used (4.6.5). Combining the above inequality with the
inequalities in (4.6.1) we see that for all large N we have

c/2 > P(G(M)) = P sup
(SE[o,til

A similar argument shows that for all large N we have

e/2 > P sup [Lf(s) - ps] > (6r + 10)(M +

Combining (4.6.6) and (4.6.7) we conclude the statement of the lemma for R = (6r+10)(M+
1).

4.6.2 Proof of Lemma 4.5.3
For clarity we will split the proof into two steps.
Step 1. Define F = {min (L(-s 1) +psi, L(81 ) - ps 1) >
claim that for all N sufficiently large we have

(M2 + 1)N/ 2 + (2s)1/2 .

PL (F) > (c(t)3/18) (1 - (>p(1-p)/2 (10(1 + r)2 (Mi + M2 + 1))) . (4.6.8)

Establishing the validity of (4.6.8) will be done in the second step, and in what follows we
assume it is true and finish the proof of the lemma.

We assert that if N2 is sufficiently large and N > N2 we have

F c A = Z (-sl, s, IL(-s), L(s8), ebot; S')
- exp (.)) . (

Observe that (4.6.9) and (4.6.8) prove the lemma and so it suffices to verify (4.6.9).
details are presented below (see also Figure 4-9).

4.6.9)

The
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[L'(s) - ps] > (6r + 10)(M + 1)Na/2) . (4.6.6)

(4.6.7)

We

1)Na/2 
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31)

-SI S1

Figure 4-9: Overview of the arguments in Step 1:
We want to prove that on the event F, we have a lower bound on the acceptance prob-
ability Zt(.L(-si), L(si)) = Zt(-s1, si, L(-s1),(si), fot; S'). As explained in (4.6.10) the
acceptance probability is just the average of the weights Wt(-s1, si, , febt; S') over all up-
right paths in Q = Q(-s1 , si; L(-si), L(s)). Consequently, to show that Zt(L(-si), L(si))
is lower-bounded it suffices to find a big subset Q' c Q, such that the weights
Wt(-s1, si, t, fbot; S') for t E Q' are lower-bounded.
Let A(s) and B(s) denote the lines ps + (M2 + 1)Na/2 - (2si)1/4 and ps + M2N'/2, drawn
in grey and black respectively above. Then Q' denotes the set of up-right paths in Q, which
lie above A(s) on [-s1 , s1]. On the event F we have that L(tsi) are at least a distance
(2s1 )1/ 2 + (2s 1)1/4 above the points A( s) respectively. Since the endpoints of paths in Q
are well above those of A(s) this means that some positive fraction of these paths will stay
above A(s) on the entire interval [-si, si]; i.e. |Q'I/IQ| is lower bounded. This is what we
mean by Q' being big and the exact relation is given in (4.6.11).
To see that Wt(-s, si, e, fbot; S') for f e Q' are lower bounded, we notice that elements
t E Q' are well-above B(s), which dominates tbot by assumption. This means that t is well
above ot and for such paths Wt(-s1, s1 , t, ot; S') is lower bounded. The exact relation is
given in (4.6.12).
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From Definition 4.3.4 (see also Remark 4.3.5) we have

(si, si, 2(-s1), L(s), bot; S') = E~, ~'free [WtV(-s 1, si, *, bot; S')]

If we set Q = Q(-s1 , si; L(-s), L(s1 )) and Zt(L(-si), L(si)) = Z (- s1, si, (-si), L(si), 4 bot; S)
then the above implies

Zt(L(-si), L(81)) = I Wt(-si, Si, f, fbot; S'). (4.6.10)

Denote Q' = { f G : f(s) - ps > (M2 + 1)No/ 2 - (2si) 1/4 for s E [-si, sil}. It follows from
Lemma 4.4.10 that on the event F, provided N2 is sufficiently large and N > N2 we have

> -I - exp (( )). (4.6.11)
|O| - 2 Al1 - A)

Since 1si - rN'j < 1 we know that for N2 sufficiently large and N > N2 , we have that
f E Q' satisfies f(s) - ps > (M2 + 1/2)Na/2  _ 40dS) - ps + (1/2)Na/ 2, where the last
inequality holds true by our assumption on fobt. The conclusion is that for f E Q', we have
that f(s) - fbot(s) > m, where m = (1/2)N /2 . In view of (4.3.1) we conclude that for N2

sufficiently large, N > N2 and f E Q', we have

W1 t(-s 1, sf, bot; S') > (1 - t)2si > (I _ t(1/2)NQ/ 2 )2rNa > (4.6.12)
2*

Combining (4.6.10), (4.6.11) and (4.6.12) we conclude that provided N2 is sufficiently large
and N > N2 on the event F we have

Zt(L2(-si), Ls(si)) ! j0|- Wt(-s, s, 1, f fot; S') > IQ/ 1 - exp .2

geo, |O 2 -4 Al1 - A)

Step 2. In this step we prove (4.6.8). We refer the reader to Figure 4-10 for an overview of
the main ideas in this step and a graphical representation of the notation we use.
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K1/2

S ti

Figure 4-10: Overview of the arguments in Step 2:

1, and L 2 are the restrictions of Li to [-ti, 0] and [0, t1 ] respectively. fio and f2Q denote the
restrictions of fbot to [-t, 0] and [0, t1 ] respectively. Let B(s) denote the line ps + M2N/
drawn in black above. We have that F denotes the event that L is at least a distance
N a/2 + (2s,)1/2 above the line B(s) at the points tsi and we want to find a lower bound on

P!(F).
We first let E denote the event that L(o) is much higher than B(0), and prove that PL(E) is
lower bounded. The exact statement is given in (4.6.13). Afterwards, we show that on the
event that the midpoint L(o) is very high, the points L(+si) are also very high with positive
probability. The exact statement is given in (4.6.17).
In a sense, by conditioning on the midpoint L(o) we split our problem into two independent
subproblems for the left and right half of L - see (4.6.14). Establishing the required estimates
for each of the subproblems is then a relatively straightforward application of Lemma 4.4.8
and Corollary 4.4.4 - see (4.6.15).

Let K1 = 8(1 + r)2 (M + M2 + 1)N / 2 . Define E = UMEXEM for

EM = {L(o) = M} and X = {M E N : M > (1/2)K - [2(r + 1)N]"/ 4 and PL(EM) > 0} .

It follows from Lemma 4.4.9 that we can find N2, depending on r, M1, M2 such that for
N > N2 we have

p-tit";a'b (f(o) > (1/2)K1 - [2(r + 1)N]a/4) > (1/2)(1 - j1p( 1-p)/ 2 (M + K1 )).free

Then by Corollary 4.4.4 we conclude

PL (E) (c(t)/2)(1 - ''(l-p)/ 2 (M1 + K1 )). (4.6.13)

Denote by 1, and L 2 the restriction of L- to [-ti, 0] and [0, ti] respectively. Similarly,
we let 6i0 and fe denote the restriction of fbot to [-t 1, 0] and [0, t1 ] respectively. The key
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observation we make is that if M E X then

PL(Li =Li, L2 = L2EM) =PtaM ,t,M,b2 t) (4.6-14)

where S = [-t1 + 1, -sil, S2 = i + 1, ti] and fI E Q(-ti, 0; a, M), f2 E Q(0, ti; M, b).
From Lemma 4.4.8, we know that

f (' ( -s)>M i - si + a- [(r + 1)N] /4 1/3,freet t1  \/i

provided N2 is large enough and N > N2. Since a > -pti - M1N'/2 , si = [rNcJ, ti =

[(r + 1)NcJ, M > (1/2)K1 - [2(r + 1)N]a/ 4 and K1 = 8(1 + r)2 (1 + M + M2 )N0/ 4 we
conclude that if N2 is sufficiently large and N > N2 then

p "-t'O;aM (L(-si) + psi (M2 + 1)N /2 + (2si)1/ 2 ) > 1/3.

From Corollary 4.4.4 and the above inequality we conclude

Ps-iO''"' (fl(-si) +psi > (M2 + 1)Na/2 + (2s1)1/2) c(t)/3. (4.6.15)

Similar arguments show that

p'2tiMb (f2 (sl) - psI > (M2 + 1)Na/ 2 + (2si)1/2) > c(t)/3. (4.6.16)

Combining (4.6.14), (4.6.15) and (4.6.16), we see that for M E X, we have

PL (FIEM) > c(t)2/9. (4.6.17)

The above inequality implies that

PIL(F) > PL (F n E) = P (FIEm) PL(Em) > (C(t)2/9) -P (E).
MeX

The latter inequality together with (4.6.13) and the monotonicity of 4V on R> 0 prove (4.6.8).

4.6.3 Proof of Lemma 4.5.4

Define PL' and PQ/ as the measure on up-right paths L' and L' : [-ti, -Si] U [si, t1 ] -+ R
(with L'(-ti) = L'(-ti) = a and L'(ti) = L'(ti) = b ) induced by the restriction of the
measures PL and PL to these intervals. The Radon-Nikodym derivative between these two
restricted measures is given on up-right paths B : [-ti, -si] U [Si, t1] -+* R by

dJPL (B) = (Z') -Zt(-s1, si, B(-s1 ), B(si), 4bot; S'), (4.6.18)

where Z' = Ei, [Zt(-si, si, B(--s 1 ), B(si), Ibot; S')].
Observe that Zt(-s 1, s, B(-s1 ), B(si), bot; S') is a (deterministic) function of (B(-si),

B(si)). In addition, the law of (B(-si), B(si)) under PL, is the same as (L(-si), L(si))
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under PL (this is because PL, is a restriction of PL to intervals that contain +si). The latter
and Lemma 4.5.3 imply

Z' = EL, [Zt(-si, si, B(-si), B(s1 ), fot; S')] = Et [Z'(-s1 , si, L(-si), L(s1), ebot; S')1 I gh.

Similarly, the law of (B(-si), B(si)) under PL/ is the same as (L(-si), L(s)) under PL
(this is because PFL is a restriction of PL to intervals that contain is 1 ). Since Zt(-si, si,
B(-si), B(si), fbot; S') is a (deterministic) function of (B(-si), B(si)), we conclude that

PL (Zt (-s1, s 1, L(-s1 ), L(si), febo; S') J(j)) = FPL (Zt (-s1, s1, B(-s1 ), B(si), tbot; S') 6())

Let us denote E {Zt(-sl, si, B(-si), B(s), foOt; S') < 6(E)} c Q (here Q is the space of
paths B). Then we have that

PFL (E) = f n dIP,'(B) = (Z') 1E Zt(-sl, sl, B(-si), B(s1 ), fbot; S') - dPL,(B).

The above is immediate from (4.6.18). On E we have that Zt(-si, si, B(-si), B(si), bot; S') <

J(E) and so the above is bounded by

(Z') j 1 E - 6(E) -dPL,(B) j 1 E - 6(E) -dPL,(B) < .

The first inequality used that Z' > gh and the second one that J(i) = j -gh and 1 E < 1-
This concludes the proof of the lemma.

4.7 Absolute continuity with respect to Brownian bridges

In Theorem 4.3.8 we showed that under suitable shifts and scalings (a,p, r + 1)-good se-
quences give rise to tight sequences of continuous random curves. In this section, we aim
to obtain some qualitative information about their subsequential limits and we will show
that any subsequential limit is absolutely continuous with respect to a Brownian bridge with
appropriate variance. In particular, this demonstrates that we have non-trivial limits and
do not kill fluctuations with our rescaling. In Section 4.7.1 we present the main result of the
section - Theorem 4.7.3 and explain how it relates to the other results in the chapter. The
proof of Theorem 4.7.3 is given in Section 4.7.2 and for the most part relies on our control
of the acceptance probability in Proposition 4.5.1 and the Hall-Littlewood Gibbs property.

4.7.1 Formulation of result and applications
We begin by introducing some relevant notation and defining what it means for a random
curve to be absolutely continuous with respect to a Brownian bridge.

Definition 4.7.1. Let X = C([0, 1]) and Y = C([-r, r]) be the spaces of continuous func-
tions on [0, 1] and [-r, r] respectively with the uniform topology. Denote by dx and dy the
metrics on the two spaces and by B(X) and B(Y) their Borel --algebras. Given zi, z 2 c R
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we define Fz, 2 : X - Y and Gz, 2 : Y -4 X by

/x~r\ x~r
[FzZ2 (g)] (x) = zi +g x +r 2r (z2 - z1 ) [G. 1 Z2 (h)]() =h (2r - r) -zi - (z2 -zi)),

(2r 2r
(4.7.1)

for x E [-r, r] and e [0, 1].

One observes that FZ1 ,Z2 and Gz1 ,Z2 are bijective homomorphisms between X and Y that
are mutual inverses. Let Xo = {f E X : f(0) = f(1) = 0} with the subspace topology and
define G: Y -+ X through G(h) = Gh(-,),h(r)(h). Let us make some observations.

1. G is a continuous function. Indeed, from the triangle inequality we have
dx (G 1 (_r),h(r) (h1 ), Gh 2(-r),h 2(r)(h2 )) < 2dy (h1, h2 ).

2. If L is a random variable in (Y, B(Y)) then G(L) is a random variable in (X, B(X)),
which belongs to X0 with probability 1. The measurability of G(L) follows from the
continuity of G, everything else is clearly true.

Recall from Section 4.4.2 that B7 stands for the Brownian bridge on [0, 1], with variance ar2
- this is a random variable in (X, B(X)), which belongs to X0 with probability 1.

With the above notation we make the following definition.

Definition 4.7.2. Let L be a random variable in (Y, B(Y)) with law PL- We say that
L is absolutely continuous with respect to a Brownian bridge with variance a 2 if for any
K E B(X) we have

P(B e E K) = 0 ==> PL(G(L) G K) = 0.

The main result of this section is as follows.

Theorem 4.7.3. Assume the same notation as in Theorem 4.3.8 and let P" be any sub-
sequential limit of PN- If foo has law Poo then it is absolutely continuous with respect to a
Brownian bridge with variance 2rp(1 - p) in the sense of Definition 4.7.2.

We have the following immediate corollary to Theorem 4.7.3 about the three stochastic
models of Section 4.2.

Corollary 4.7.4. Assume the same notation as in Theorem 4.2.2, Corollary 4.3.11 and
Theorem 4.2.5 respectively and define for x E [-r, r]

g~~x =o~(X) + 2X ~ ~ )=of~~)2 g ()=JiSPx f ) ASE xf'(P

H LHL V 2ASEP HL SV ASEP _l

If g , gSV and g P are any subsequential limits of gN and gE respectively
as N -+ oc then g H gL SV ASEP are absolutely continuous with respect to a Brownian
bridge of variance 2rf (p)[1 - fj ([t)],-2rf3(p4) [1 + f((p)] and -2rf3(a)[1 + f3(a)] respectively
in the sense of Definition 4.7.2.

Proof. From the proof of Theorem 4.3.10 we know that

gNL(s) = N-/ 3 (L 1(sN2/3) - f(p)sN2 /3 ) ,for s E [-r, r],
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where the sequence (LN, LN) is (2/3, ftj), r + 1)-good. By Theorem 4.7.3 we conclude the
statement for gHL. In addition, by Theorem 4.2.4 we know that for each N c N, fjL has
the same distribution as ffX and so we conclude the statement for gsv as well.

From the proof of Theorem 4.3.13 we know that

gNSEP(s) = N-/ 3 (L (sN2/3) + fj(o)sN2/3 , for s E [-r, r],

where the sequence (iN, LN) is (2/3, -f'(a), r + 1)-good. By Theorem 4.7.3 we conclude
the statement for gASEP l

Remark 4.7.5. Conjecturally, fHL, fNV and fjASEP should converge to the Airy 2 process.
Corollary 4.7.4 provides further evidence for this result as it is known that the Airy 2 process
minus a parabola has Brownian paths [421. See also the discussion at the end of Section
4.1.2.

4.7.2 Proof of Theorem 4.7.3
In this section we give the proof of Theorem 4.7.3, which for clarity is split into several steps.
Before we go into the main argument we introduce some useful notation and give an outline
of our main ideas.

Throughout we assume we have the same notation as in the statement of Theorem 4.3.8
as well as the notation from Section 4.7.1 above. We Denote ou = 2rp(1 - p), s, = LrNaJ,
rN = s1N-c and S' = -s-1+ 1, sJ. In addition, we define three probability spaces F1 , p 2, p3

as well as a big probability space F~, which is the product space of ?I, p2 and P3 . The three
spaces will carry different stochastic objects and we will use the superscript to emphasize,
which properties we are using in different steps of the proof. We also reserve P to refer to
the law of universal probabilistic objects like a Brownian bridge of a fixed variance.

From Theorem 4.4.5, we know that for each n c N we have a probability space, on which
we have a Brownian bridge B' with variance 0

2 = p(l - p) and a family of random paths
(nz) E Q(0, n; 0, z) for z = 0, . .. , n such that f(nz) has law pOf;O' and

IE [ea(nz)] < Cea(lon)2 ez-Pn 2 /n, where A(n, z) = supO<t<I x/nB0 + z - e(nz)(t)

where the constants C, a, a depend only on p and are fixed. By taking products of countably

many of the above spaces we can construct a probability space (Q1, F1 , F1 ), on which we

have defined independent Brownian bridges B ,k,n and independent families of random paths
e(nk,z) E Q(0, n; 0, z) for z = 0, ... , n such that f(n,k,z) has law F"O'Oz for each k and

free

EIP [eaA(n~k~z)] < Ce(on 2 !PnI 2 /n, where A (n, k, z) := supO<t<n \/iBnA' + z - e(n,k,z)

In words, for each pair (k, n) E N x N we have an independent copy of the probability

space afforded by Theorem 4.4.5 sitting inside (Q1 , Fl, P). In addition, we assume that

(Q 1 , F, P) carries a uniform random variable U G (0, 1), which is independent of all else.

Since P, is a subseqential limit of FN we know that we can find an increasing sequence
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N such that PNj weakly converge to POG. By Skorohod's representation theorem (see e.g.
Theorem 6.7 in [13]) we can find a probability space (Q 2, F 2, p2), on which are defined
random variables fNj and f& that take values in (Y, B(Y)) such that the laws of fNj and fo
are PNJ and Po respectively and such that dy (fN, (W2 f0(W 2)) 0 as j -+ oc for each

w 2 EQ 2.

We consider a probability space (Q 3, F 3 , p3), on which we have defined the original

(a, p, r + 1)-good sequence EN - (L N LN) and so

fN(s) = N-a/2 (L N(sN') - psN"), for s E [-r,r]

has law PN for each N > 1. Let us briefly explain the difference between P 2 and P3 and
why we need both. The space (Q2,F 2 , p2 ) carries the random variables fN3 of law PNj and

what is crucial is that the latter converge almost surely to f&, whose law is P,". The space
(Q 3 , F3 , P') carries the entire discrete line ensembles 2 N = (L N LN) (and not just the top
curve), which is needed to perform the resampling procedure of Section 4.3.1. Finally, we
define (0, .F, P) as the product of the three probability spaces we defined above.

At this time we give a brief outline of the steps in our proof. In the first step we fix
K C B(X) such that P(Bol E K) = 0 and find an open set 0, which contains K, and
such that B" is extremely unlikely to belong to 0. Our goal is then to show that G(foo)
is also unlikely to belong to 0, the exact statement is given in (4.7.4) below. Using that
o is open and that fNj converge to f.. almost surely we can reduce our goal to showing
that it is unlikely that G(fNj) belongs to 0 and fNj is at least a small distance away
from the complement of G- 1 (0) for large j. Our gain from the almost sure convergence
is that we have bounded ourselves away from G-'(Q)c, which implies that by performing
small perturbations we do not leave G 1 (O). As the laws of fN, and fN, are the same we
can switch from (Q 2 , 2 , p 2 ) to (Q 3, 7 3 , p 3), reducing the goal to showing that it is unlikely
that G(fN) belongs to 0 and fN is at least a small distance away from the complement of
G-'(O) for large N. The exact statement is given in (4.7.5) and the reduction happens in
Step 2. The benefit of this switch is that we can perform the resampling of Section 4.3.1 in

(Q3 ,F 3, p3) as the latter carries an entire line ensemble.
In the third step we use U and f(2si,k,z) for k = 1, 2, 3... to resample fN on the interval

[-s1, si]. If we denote by Q the index k of the first line we accept from the resampling, we
can rephrase our statements for fN to equivalent statements that involve the path f(2s1,Q,z) -

this is (4.7.7). The benefit of working with f(2si,k,z) is that they are already strongly coupled
with Brownian bridges by construction. In Step 4 we construct an event F(N), on which
our coupling of e(2s1,Q,z) and the Browniand bridge B,Q, 2 ,1 is good and on which B,,Q,2 ,1 is
well-behaved (its supremum and modulus of continuity are controlled). Provided we are on
F(N) (where the coupling is good) we see that (21,Q,z) belonging to a certain set (we want
to show is unlikely) implies that Vr2rB,Q, 2 1 belongs to 0. Here it is crucial, that we have
the extra distance to the complement of G- 1(0) so that when we approximate our discrete
paths with Brownian bridges we do not leave the set G- 1 (0).

The above steps reduce the problem to showing that it is unlikely that 2rBa,Q,2s1

belongs to 0 or that we are outside the event F(N) - the exact statement is in (4.7.15). The
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control of V2rBo,Q, 2s1 is obtained by arguing that with high probability Q is bounded - this
requires our estimate on the acceptance probability from Proposition 4.5.1 and is the focus
of Step 5. By having Q bounded we reduce the question to a regular Brownian bridge, for
which the event it belongs to 0 is unlikely by definition of 0. We demonstrate that F(N)C
is unlikely in Step 6. As before we use the estimate on the acceptance probability to reduce
the question to one involving a regular Brownian bridge. In addition, we use that with high
probability we have uniform control of the coupling of our paths with Brownian bridges for
all large N.

We now turn to the proof of the theorem.

Step 1. Suppose that K E B(X) is given such that P(Bo1 E K) = 0. We wish to show that

P2 G(f..) E K) = 0. (4.7.2)

Let c c (0, 1) be given and note that by Proposition 4.5.1 and Theorem 4.3.8 , we can find
6 C (0, 1) and M > 0 such that for all large N one has

P3 (E(6, M, N)) < c, where E(6, M, N) ={Z(-s, si, L N(si),7LN(si), L2; S) < 6}U

{ sup LNv(s) - ps ;> MN/2}
sE [-rNa ,rN-]

(4.7.3)

We observe that since C([-r, r]) is a metric space we have by Theorem 11.2.1 in [72] that the
measure of Bo" is outer-regular. In particular, we can find an open set 0 such that K C 0
and P(B"1 C 0) < c - .og() The set 0 will not be constructed explicitly and we will notlog(e)'
require other properties from it other than it is open and contains K.

We will show that
P2 G( 0) o) G E. (4.7.4)

Notice that the above implies that P2 (G(f0 ) E K) < 6E and hence we reduce the proof of

the theorem to establishing (4.7.4).

Step 2. Our goal in this step is to reduce (4.7.4) to a statement involving finite indexed
curves.

We first observe G-'(0) is open since G is continuous (this was proved in Section 4.7.1).
The latter implies that

I2 (G(f..) E 0) = 2 G-1(O)) = EiM p 2 ({N e G-1(O)} n dy(fNj,G-1(O)) > r

where rj is any sequence that converges to 0 as j -+ oo. The first equality is by definition.
The second one follows from the fact that fNj converge to fo in the uniform topology p2_

almost surely and that G-(O) is open. To be more specific we take rj = N,-'18 for the
sequel.
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Since fN has law PN for each N > 1, we observe that to get (4.7.4) it suffices to show
that

lim sup P 3 (fN c G 1 (O)} {dy (fN, G-1(O)c) > N /8 }) < 6c. (4.7.5)
N-*co

Step 3. At this time we recall the resampling procedure from Remark 4.3.5 in the setting
of our probability spaces P. The goal of this step is to rephrase (4.7.5) into a statement
involving the paths f(n,k,z) that are defined on (Q1, Fl, P').

Denote by a = LN(-si), b = LN(s 1 ), z = b - a, n = 2s, and fbot = Lf restricted
to [-s 1, s1]. We resample the top curve L N as follows. We start by erasing the curve in
the interval [-s1, Si]. For k = 1, 2,3, ... we take f(n,kz) (these were defined on the space
( 1 , .F1 , 1P)), check if W(-s 1 , si, (-si, a) +A(nz), fot; S') > U and set Q to be the minimal
index k, which satisfies the inequality. Here (-si, a) +e(n,k,z) is just the up-right path e(nkz)

shifted so that it starts from the point (-sl, a).
Notice that by construction the path (-si, a) + e(nk'z) are independent identically dis-

tributed as p-si,,;a"b. Because N satisfies the Hall-Littlewood Gibbs property we have
free

s((-si, a) + e(2s1,Q,b-a) _ = p3 (LN[-si, S,] =) , (4.7.6)

for every f E Uz<z 2 (-s1, si; z1 , z2 ) where L [-s1 , s1] stands for the restriction of LN to
the interval [-si, sil]. If we denote

hN s) =N-a/2 (a + f(2s1,QQ-a)(sNce + si)), for s E [-rN, rN

fN(S) for s [-r, r] [-rN, rN,

we have that hN has the same law as fN. Consequently it suffices to show that

limsup F ({hN E G-1(O)} n {dy(hN, Gi(O)c) > N-a/ 8}) < 6c. (4.7.7)
N-4oo

Step 4. Let Bk(s) := Bo,,k, 2s1 for s E [0, 1] and consider the event

F(N) = {A (2si, Q, b - a) < N/ 4 } n sup B (s)l <Na/4 n {w(B, N-) N-

(4.7.8)
In the above w stands for the modulus of continuity of a function on [0, 1] as defined in (4.4.9).

In this step we verify the following statement: There exists No E N and C both depending
on r such that for N > No and on the event F(N) we have

dy (hN, HQ) < CN-c/ 4, where H? = FhN(-),hN(r) (V2TBQ) (4.7.9)

Before we prove (4.7.9) we give a brief summary of the ideas. By definition, we have that
H? is given by an appropriate shift and rescaling of BQ, which interpolates the points

(-r, hN(-r)) and (r, hN(r)). To better understand how H? differs from hN we first do an
auxillary rescaling H by erasing the part of hN on the interval [-rN, rN] and interpolating
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the points (-rN, hN(-rN)) , (rN, hN(TN)) with an appropriate shift and rescaling of BQ. The

distance dy(hN, H) is easily shown to be 0 (N-/ 4 ) using only the strong coupling of BQ

and f(2s,,b-a) on F(N) (this is the first event in (4.7.8)). Since TN is close to r and hN ( rN)

is close to hN( r) one can show that dy(H9 , HQ) - 0 (N-c/ 4 ). The latter estimate uses

the bounds on BQ and w (BQ, N-a) from the second and third event in (4.7.8), since what
is involved is a certain stretching of the Brownian bridge BQ. In what follows we supply the

details of the above strategy.
We start by defining

H(s) Na/2 a + 2sBQ ( sNsl) sN +s1 (b - a for s E [-TN, TN,

fN(s) for s E [-r, r]\[-rN, rN,

where we recall that rN = s 1N-'. Notice that

dy (hN, HQ) - N-a/ 2 - A (2 si, Q, b - a) ,

and so on the event F(N) for all N > 1 we have

dy (hN, H) < N~a/4. (4.7.10)

We next estimate H2 (s) - HQ(s) on the interval [-r, r]. Whenever s E [-rN, TN and

we are on the event F(N) we have

H(s) - H(s) = N -a/2 a + 2sB ( sNs- + s1  sNOs (b - a) -
H(L (a 2s, 2s, (4.7.11)

- hN(-T) + 2rB (5+r) + S T'rN(T) - N(-r)) = (N

where the constant in the big 0 notation depends on r. In obtaining the second equality

above we used that:

1. si = LrN] = rNa + O(1), b - a < 2rNe

2. hN (-r) - N-c/ 2 -a = IhN(-r) - hN (-TN)| I N-a/2

3. hN (r) - N-c, 2 - = hN (T) - hN (TN)I N /2,

4. on F(N) we have supsEz[Ol BQ(s)| I N'/ 4 and w(BQ, N-c) N-' 4 .

For s E [-r, r]\[-TN, TN], we know that

HfQ (s) - H(s) H (kTN) - H(T N) + HQ (s) - H ( TN) + H2 (s) - H ( TN)

where we choose the top sign if s > TN and the bottom sign otherwise. Note that the first

term above is 0 (N -/ 4) by (4.7.11). Substituting the definitions of H? and H2c we get for
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s E [-rr]\[-rN,rNj

HQ(s) - H-(s) < (N-"/l) + N+-a/2 \ BQ sN" + s1 sN0 - s1(b - a) +
2s, 2s,

2r [B (s +r - B ks1 +- + r) s - s1N- (hN(r) - hN(-r)) = 0 (N-a/4),

(4.7.12)

where again we take the top sign if s > rN and the bottom sign otherwise and the constant
in the big 0 notation depends only on r. In obtaining the last equality we used the same
estimates above together with the inequality JhN(r)-hN(-r)| I 2rN/ 2 . Combining (4.7.11)
and (4.7.12) we deduce that

dy (H?, HQ) = 0 (N-a/4), (4.7.13)

where the constant in the big 0 notation depends on r. Combining (4.7.10) and (4.7.13) we
deduce (4.7.9).

Step 5. In this step we first show we have the following inclusion of events for all large N
(depending on r)

I(N) := F(N) nf {hN E G- 1(0)} n {dy(hN, G-1 (O)c) > N-c/ 8} C { N2Br E 0 .

(4.7.14)
Recall from (4.7.9) that there exists No and C depending on r such that for N > No and on
the event F(N)

H - FhN(-r),hN(r) (2rBQ) and dy (hN, H?) < CN -a/.

By increasing No we can also ensure that CN-c/4 < N-a/ 8 for N > No.
Fix N > No and assume we are on the event I(N). Since hN E G-1(O) and dy (hN, G- 1 (0)c) >

N-a/8, we see that H? E G-'(O). Observe that G(HQ) = 2rBQ by definition and so we
conclude that /2rBQ E 0 on I(N). This proves (4.7.14).

From (4.7.14) we know that the LHS of (4.7.7) is bounded by

lim sup [N (J2BQ c o) + f (F(N)c)].

In order to finish the proof it suffices to show

lim sup ( 2rBQ E 0 3 and lim sup (F(N)') < 3c. (4.7.15)
N-+oo N-*oo

In the second part of this step we verify the first inequality in (4.7.15) and for brevity we
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set W log(). Observe that

fF (VrBQ E 0) 5 p1 3(E(J, M, N)) + (E(J, M, N)C { 2rB c 0 ,

where we recall that E(6, M, N) was defined in Step 1. By assumption on E(6, M, N) it
suffices to show that

lim sup # (E(6, M, N)C n { 2rBQ
N- oo

E < ) 26. (4.7.16)

Notice that on E(6, M, N)C we have that Q is a geometric random variable with parameter
Z (-s1, si, a, b, fbot; S') ;> 6. In particular, we have the a.s. inequality

P (Q > WIE(6, M, N)C) < (1 - 6)w. (4.7.17)

The above suggests that

1(E(6, M, N)c n 2rBQ O}) <

P(E(5, M, N)c) [(1 6)W + D({Q W}n 2rBE O E(6, M, N)c)] <

(1 -6)w + 

where we used in the last inequality
Now notice that ] ( 2rB E 0)

we conclude that

that Bk are identically distributed.
= P(Bl E 0) < E - Ig(1-5) by ourlog(e) choice of 0 and so

(v2rB E 0) < (I - 6)w +,E < 2E.

This establishes (4.7.16).

Step 6. In this final step we establish the second inequality in (4.7.15) and as in Step 5 set
W = (') . Observe thatlog (I1-J)

P (F(N) C) < P3 (E(6, M, N)) + P (E(6, M, N)c n F(N)c)

and so by assumption on E(6, M, N) it suffices to show that

lim sup IP (E(5, M, N)C n F(N)) 26. (4.7.18)
N--oo

Using (4.7.17) we see that

lB (E(6, M, N)c n F(N)c) < fF (E(J, M, N)c) [(I _ J) W + f ({Q < W} n F(N)c E(J, M, N)c)]
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(l-6)w +I ({Q= i} nF(N)c nE(, M, N)C)

Since (1 - 6 )W < c, we reduce (4.7.18) to establishing

w
lim sup 1i j{Q = i}

N--+o ir
n F(N)C n E(6, M,

One clearly has that

{Q = i} n F(N)c n E(6, M, N)c) < (AN n E(6, M, N)c)

where

IBZ(s)I < Na/4} , Cf = {w(B', N-0) > N } .

In addition, we know that since Bi are identically distributed

({Q = i} n F(N) n E(6, M, N)c) <

W a i(AN n ( , M, N) ) + (B n E(6, M, N)) + (C n E(, M, N))t

The above inequality reduces (4.7.19) to showing that

lim sup # (A N n E(6, M, N)c) = 0,
N-+oo

lim sup (B{N n E(6, M, N)c) = 0,
N-too

Notice that by construction

a P1
a<b

sup
sE[0,1]

IB 0,b-a,2s1 < Na/4) p3

sup e Bu(s)l < Na/4 p3
sGE[0,1]

and the latter clearly converges to 0 as N -+ oc.
A similar argument shows that

# (Cf) = P (w(Bo, N--) > N-14
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N)c) < . (4.7.19)

AN A (2sI, i, b - a) > Na/4 B

n E(,M,

- sup
se[,1]

rn sup I (Cf n E(6, M, N)c) 0.
(4.7.20)

= P
a< b

(Lf (-s1 ) = a, Lf (s1) = b)

(Lf (-si) = a, Lf (si) = b)

= P sup IBa(s)l <N/4,
(sE [O,1]

+ fD (BN

i (C n E(6, M, N)c ,



and the latter converges to 0 as N -÷ oo by the almost sure H6lder-1/3 continuity of the
Brownian bridge (see e.g. Proposition 7.8 in Chapter 8 of [37]). The above estimates estab-
lish the second line in (4.7.20).

In the remainder we study i (A f n E(, M, N)c) and notice that by assumption on
E(J, M, N) we have that on the event E(6, M, N)c the values a = L(-si) and b = L(si)
satisfy

a+ps| < MN'2 and b-psi1 < MN' 2

The latter implies that

f (Af n E(6, M, N)c) < S (Af n {b - a = L2psi + zi})
|z\<2MNa/

2

= P1 (A (2si, 1, L2psi + zj) > N'/4) P3({b - a = L2psi + zJ}).
|z\<2MN/

2

By Chebyshev's inequality and Theorem 4.4.5 we know that

P1 (A (2si, 1, [2psi + zj) > N a/4) < C'N--/4ec'(1ogN)2

for some constants C' and c' that are independent of N but depend on M. The latter
inequalities show that

f (Af n E(5, M, N)c) < C'N-a/4ec'(og N) 2  P3({b - a = L2ps/ + zj }) < CN/-a/4ec'(og N)2

Iz|<2MN-/
2

Since the latter clearly converges to 0 as N -+ oo, we conclude (4.7.20), which finishes the
proof.

4.8 Appendix: Strong coupling of random walks and Brow-
nian bridges

In this section we prove a certain generalization of Theorem 6.3 in [60], given in Theorem
4.8.1 below, which we will use to prove Theorem 4.4.5 in the main text.

4.8.1 Proof of Theorem 4.4.5
Fix p E (0, 1) throughout this and the next sections. Let Xi be i.i.d. random variables with
IP(X1 = 1) = p and P(X1 = 0) = I - p. We also let S= X1 + -- - + X, denote the random
walk with increments Xi. For z E L, = {0, ... , n} we let S(n,z) {S(nZ)}f-= denote the
process with the law of {Sm}"- 0 , conditioned so that Sn = z. Finally, recall from Section
4.4.2 that B' stands for the Brownian bridge (conditioned on BO = 0, B1 = 0) with variance
a2 . We are interested in proving the following result.

Theorem 4.8.1. For every b > 0, there exist constants 0 < C, a, a < 00 (depending on b
and p) such that for every positive integer n, there is a probability space on which are defined
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a Brownian bridge B' with variance a.2 - p(_ - p) and the family of processes S(n,z) for
z e Ln such that

E (e"M'''z)] < Ce" a"og" b el-pnl2/n, (4.8.1)

where A(n, z) A(n, z, B", S(n'z)) = sup0  x/nBt0> + z - S n'z . We define S("'z) for

non-integer t by linear interpolation.

We observe that conditional on Sn = z the law of the path determined by S" is precisely
POg';O'z Consequently, Theorem 4.8.1 implies Theorem 4.4.5 and in the remainder we focus
on establishing the former. Our arguments will follow closely those in Section 6 of [60J.

The proof of Theorem 4.8.1 relies on two lemmas, which we state below and whose proofs
are deferred to Section 4.8.2. We begin by introducing some necessary notation. Suppose that
Z is a continuous random variable with strictly increasing cumulative distribution function F
and G is the distribution function of a discrete random variable, whose support is {a1 , a2 , .}.
Then (Z, W) are quantile-coupled (with distribution functions (F, G)) if W is defined by

W = aj if rj_ < Z < rj,

where rj-, rj are defined by

F(rj_) = G(aj-), F(rj) = G(aj).

The quantile-coupling has the following property. If

F(ak - x) < G(ak-) < G(ak) < F(ak - x),

then
IZ - W1 =Z - akj < X on the event {W = ak}. (4.8.2)

With the above notation we state the following two lemmas.

Lemma 4.8.2. There exists E0 (depending on p) such that for every b1 > 0 there exist
constants 0 < c1 , a1 < oo such that the following holds. Let N be an N(0, 1) random
variable. For each integers m, n such that n > 1 and 12m - nj < 1 and every z E Ln, let

Z - Z mnz) = -n+ p(l - p)m (I - ?fl)N, so that Z ~ N (-nz, p(1 - p)m (I - -

Let W = W(mnz) be the random variable, whose law is the same as that of S$"'z) and which

is quantile-coupled with Z. Then if |z - pn| < eon and P(W = w) > 0,

E ealzWI W - w] < ci - / -exp (b 1 (w - pm)+ (z - em)) (4.8.3)
n

Lemma 4.8.3. There exist positive constants 0, c2 , b2 (depending on p) such that for every

integers m, n such that n > 2 and |2m - n| <_ 1, every z c Ln with |z - pnj < con and every
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W E Z,

P(Sm = wISn = z) c2n 1/2 exp b2 (w (z/2))2

n

Proof. (Theorem 4.8.1) It suffices to prove the theorem when b is sufficiently small. For the
remainder we fix b > 0 such that b < b2/37, where b2 is the constant from Lemma 4.8.3. Let
Eo be the smaller of the two values of Eo in Lemmas 4.8.2 and 4.8.3.

In this proof, by an n-coupling we will mean a probability space on which are defined
a Brownian bridge BU and the family of processes {s(n) : z E Ln}. Notice that for any
n-coupling if z E Ln, St = n z) then

,Z) = sup d "/na +tiz- S (n5z) 2n + sup IB,.
O<t<n n O<t<n

The above together with the fact that there are positive constants a and u such that
E [exp (supo~t<i yJBOfl)] < aey2 for any y > 0 (see e.g. (6.5) in [601) imply that

E [eaA(n'z)] < ae(2a+ua2)n.

Clearly, there exists ao = ao(b) such that if 0 < a < ao then 2a + ua2 < be.
The latter has the following implications. Firstly, (4.8.1) will hold for any n-coupling

with C = a, a= 0 and a E (0, ao) if z E Ln satisfies Iz - pnl > con. For the remainder of
the proof we assume that a < ao. Let b1 = b/20 and let a1 , c1 be as in Lemma 4.8.2 for this
value of b1 . We assume that a < a1 and show how to construct the n-coupling so that (4.8.1)
holds for some C, a.

We proceed by induction and note that we can find C > max(1, ) sufficiently large so
that for any n-coupling with n < 2 we have

E [eaA(nz)] e-blz-pn2/n < C Vz E Ln, n < 2.

With the above we have fixed our choice of a and C.
We will show that for every positive integer s, we have that there exist n-couplings for

all n < 2S such that

E [ea(nz)] e-bz-pnl2 /n < As- 1 -C, Vz C Ln, (4.8.4)

where An = 2cic2 n + 2c1xy . The theorem clearly follows from this claim.

We proceed by induction on s with base case s = 1 being true by our choice of C
above. We suppose our claim is true for s and let 2 ' < n < 2s+1. We will show how to
construct a probability space on which we have a Brownian bridge and a family of processes
{S(n" : Iz - pn < con}, which satisfy (4.8.4). Afterwards we can adjoin (after possibly
enlarging the probability space) the processes for jzI > neo. Since C > a and a < ao we

know that (4.8.4) will continue to hold for these processes as well. Hence, we assume that

1z - pnJ < con. For simplicity we assume that n = 2k, where k is an integer such that
28-1 < k < 2' (if n is odd we write n = k + (k + 1) and do a similar argument).
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We define the n-coupling as follows:

* Choose two independent k-couplings

({Sl(kz))}zLk , B) ({S 2(kz))zELk , B 2 ) , satisfying (4.8.4).

Such a choice is possible by the induction hypothesis.

. Let N - N(O, 1) and define the translated normal variables Zz = - + p(I~p)n N asV( 4
well as the quantile-coupled random variables WZ as in Lemma 4.8.2. Assume, as we
may, that all of these random variables are independent of the two k-couplings chosen
above. Observe that by our choice of a we have that

E eaIz'-w2I W z - W <; ci - vr -exp (b (w - kp) 2 + (z - np)2 )

Bt {2 B2+t) p( 1 - p)N
2- 1/2 B 20 2 + (1 - t)Vl -p(1 - p) N

0 < t < 1/2,
1/2 < t < 1.

(4.8.6)

By Lemma 6.5 in [60], Bt is a Brownian bridge with variance a.

. Let Skn'z) - WZ, and

s .( n' ) = 2(k, w = z)

Wz + Sk

0 < m < k,
k < m < n.

What we have done is that we first chose the value of Si,~7 z) from the conditional
distribution of Sk, given Sn = z. Conditioned on the midpoint S(7'z) = Wz the two
halves of the random walk bridge are independent and upto a trivial shift we can use
S1(k,wz) and S2 (k,z-wz) to build them.

The above defines our coupling and what remains to be seen is that it satisfies (4.8.4) with
s+1.

Note that

A(n, z, S(n,z) B) < jZz - Wz + max (A(k, W , SI(k,wz) , B'), A(k, z - Wz, S 2 (k,z-wz), B2))

and therefore for any w such that P(Wz = w) > 0 we have

E [ea n~z) W" - w < E [ea zz-wI W" = w x CAs-' (ebIw--kP ez_

In deriving the last expression we used that our two k-couplings satisfy (4.8.4) and the simple
inequality E[emax(ziz2)] < E[ez1] + E[ez2]. Taking expectation on both sides above we see
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that

E [eaA'~"n)] C (2ciS) Az 9 bmax(lw - kp 2 , Iz - w - kp|2

(4.8.7)
In deriving the last expression we used (4.8.5) and the simple inequality x 2 +y 2 < 5 max(x 2, (x-

y) 2 ) as well as that k = n/2.

We finally estimate the sum in (4.8.7) by splitting it over the w such that 1w - z/21 >
1z - pn|/6 and |w - z/21 Iz - pn|/6. Notice that if 1w - z/21 < Iz - pnj/6 we have
max(fw - pk 2 , 1z - w-pkl) < (21z - pnl/3)2 ; hence

E
w:|w-z/ 2 |<;|z-pnj/6

P(WZ = w) exp -
max(|w - kp 2 , |z - w - kp 2)) <exp (|z -pn| 2

(4.8.8)
To handle the case 1w - z/21 > Iz - pnj/6 we use Lemma 4.8.3, from which we know that

P(WZ = w) = P(Sk = wISn = z) c2n-1/2 exp -b 2 (w - (z/2))2

Using the latter together with the fact that for lw-z/21 > Iz-pn/6 we have that (w-z/2)2 >a max ((w - kp) 2 , Iz - w - kpl 2 ) we see that

:
w: iw-z/21 >lz-pnl/6

C2n-1/2 exp
W-116

P(WZ = w) exp 9. bmax(lw - kp| 2, z - w - kp| 2 )
n

(w - kp)2

n

Combining the above estimates we see that

E [eaA(nz)] < C - (2civ/n) - A 71 zexp 2z p
+ c2Vnj < C -A exp (|z -- pn 2

4.8.2 Proof of Lemmas 4.8.2 and 4.8.3
Our proofs of Lemma 4.8.2 and 4.8.3 will mostly follow (appropriately adapted) arguments
from Sections 6.4 and 6.5 in [601. We begin with two technical lemmas.

Lemma 4.8.4. There is a constant c > 0 (depending on p) such that for integers m, n, z
and real w with n > 2, 12m

P (Sm = W + -z Snnn I

n 1, Iz - pnj cn, |wI < cn and w + -*-z E N one has

w 2

2on z
= exp (-

-2'ranz
+0 +

( /n n2 )) (4.8.10)
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where ,2 = (n/4)(z/n)(1 - z/n).

Proof. The result is similar to Lemma 6.7 in [60] and we only sketch the main ideas. The
statement of the lemma will follow if we can show that if Ij I cn we have

21 +2 1 j 3

p(j, m, n, z) P ([Sm - Tz = j Sn = z)= exp
n V2-orn2r-,z 2on2

Using Stirling's approximation formula A! = V2irAA+1/ 2 e-A[1+ O(A- 1)], we see that

P(0, m, n, z) = P([Sm - Mzi 0S z) 1 (1 + O ( )).n V/ 2 7ro-n,z

Let us remark that in order to apply Stirling's approximation, we needed to choose c suffi-
ciently small so that 1z, z, m - !z, n - z all tend to infinity faster than En for some C > 0
fixed (depending on p) as n - oo. For the remainder we assume such a c is chosen and the
constant in the big 0 notation above depends on it.

Let us focus on the case j > 0 (if j < 0 a similar argument can be applied). For j > 0

and A(j, m, n, z) =(m+z-2rnz]-2j22(M-Z)2w
(2FEr2z+2j+2+m-z)2-(m-z)2 we have

p(j + 1, m, n, z) = p(j, m, n, z) x A(j, m, n, z)

and so

p(j, m, n, z) = p(0, m, n, z) x A(i, m, n, z).

Given our earlier result for p(O, m, n, z) to finish the proof it remains to show that

i - j ~2 o ( I 4 . .1
Ntig that, mf we zh)]s ca, su+0inl smll we hav that

Notice that if we choose c sufficiently small, we have that

A(j, m, n, z) = 1 - B(j, m, n, z), where B(j, m, n, z) = m22(+0 Q- + -
M2 - (m -1))

and 0 < B(j, m, n, z) < 1. Using the latter together with the fact that log(1+x) = x+0(x 2 )
for IxI < 1/2 we get

8im 01j 2 + - 4j 2 m /
log [A(j, m, n, z)] m2- (M-z)2+ + = m2 - (M -)+O +

To conclude the proof we observe that

4j 2 m j 2  +2 2 j2 +_ (j _

m2-(m-)2 mn-(1-) -i -) n2 2u2( n2 /)
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Eli

We now state without proof an easy large deviation estmiate, which can be established
in the same way one establishes large deviations for binomial random variables.

Lemma 4.8.5. There exists an q > 0 (depending on p) such that, for any a > 0, there exist
C = C(a) < oo and -y =-y(a) > 0 with the following properties. For any integers m, n, z
with n > 2, 12m - n| <1 z - pn| < qn one has

P (ISm - > amS = z) Ce--m . (4.8.12)

It is clear that Lemmas 4.8.4 and 4.8.5 imply Lemma 4.8.3. What remains is to prove
Lemma 4.8.2, to which we now turn.

Proof. (Lemma 4.8.2) Notice that we only need to prove the lemma for n sufficiently large.
In order to simplify the notation we will assume that n is even and so m = n/2 (the case n
odd can be handled similarly).

We start by choosing co < min(c, ij) with c and 7 as in Lemmas 4.8.4 and 4.8.5 respec-
tively. We denote

Z = Zn,z = z/2 + Vp(1 - p)n/4N, ZZn,,Z = z/2 + -n,zN,

where we recall that o,, = (n/4)(z/n)(1 - z/n) and let W = Wn,z be the random variable

with distribution S(nz) that is quantile coupled with N. Notice that W is also quantilen/2

coupled with Z and Z. We write F = F,, for the distribution function of Z and G = G,,
for the distribution function of W. We observe that from Lemmas 4.8.4 and 4.8.5, the random
variable W - Lz/21 satisfies the conditions of Lemma 6.9 in [601, from which we deduce that
there are constants c', E' > 0 and N' E N such that for n > N' and Ix - z/21 < E'n we have

F x - c' + (x z/2)]) G(x - 1) < G(x + 1) F x [i + (x - z/2)

(4.8.13)
In the remainder we assume Eo < c' as well. It follows from (4.8.2) and (4.8.13) that

(W - z/2)2-
Z - W ' (W-/)1 + n , (4.8.14)

for all n > N', provided that 1z - pnj Eon, 1W - z/21 < eon. In addition, we have the

following string of inequalities for any a > 0

E [ea(z-2) + e-a(z-2) 2__(_'p_2/2

IF [ea z-z W = wI E [ea z--) + e-atz-z) W w I( = w)
E<E+I P(W = W) P(W = W)

where o-(n, p) = n/4 - p(l - p) - /(z/n)(1 - z/n) . It follows from Lemma 4.8.4 that
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if 1w - z/21 < Eon and Iz - pnl Eon then we have for some C > 0 and all n > 2 that

E [ealz-21 W = w] < Cea2u(np)2/2 v/, - exp C (w z / 2 )2

Combining (4.8.14) and (4.8.15) we see that for some (possibly larger than before) C > 0
we have

E [ealw-zI W = wl E [ealw-21ealzzI W w CeaZ2 a(n,p)
2/2 - exp ((w -z/2) 2

(4.8.16)
provided n > N', |w - z/21 < eon and |z - pn| con.

Notice that by possibly taking co smaller we can make o-(n, p) < n/4- cpIz/n -pl, where

CP - p( 2p) Using the latter together with (4.8.16) and Jensen's inequality we have for any
k c N that

E [e(1/k)jw-Z1 W = w] E 1e1w-zI W = w] I/k

and if we further use that (x + y) 2 < 2x 2 + 2y 2 above we see that

E [e(/k)\w-ZI W - w] < (V/nC)l/k - exp (cp + 1/2) (z - pn)2

*exp nk + 2C(w- ,M2

provided n > N', fw - z/21 < con and |z - pn| Eon.

Suppose now that b, is given, and let k be sufficiently large so that

cp + 1/2 < bi
k

If a, < 1/k we see from (4.8.17) that

E [eallw-zI W = w] C/kV/

20
and - Kb1 .

- exp bi(z - pn)2

Ku

provided n > N', w - z/21 < Eon and Iz - pnl < con. If Iz - pnr > con or lw - z/21 > con
we observe that

b1(z - pn) 2  bi(w - pm) 2  bleon
+ -

n n
One easily observes that if a, 5 ao with ao sufficiently small and C > with a sufficiently
large we have for any w such that P(W = w) > 0 that

E [ealw-zI W = w] C1/ k,/ - exp

The latter statements suggest that (4.8.18) holds for all w such that P(W = w) > 0 and
n > N', which concludes the proof of the lemma. l
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(4.8.15)

(4.8.17)

(4.8.18)

3

< (vl/-C)I/k*-xp cp(z -kpn)2 + C (w-z/2)2

+bi (w _ pM)2 ,
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