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Abstract

Coherent, large scale dynamics in many nonequilibrium physical, biological, or in-
formation transport networks are driven by small-scale local energy input. In the
first part of this thesis, we introduce and explore two analytically tractable nonlinear
models for such active flow networks, drawing motivation from recent microfluidic
experiments on bacterial and other microbial suspensions. In contrast to equiparti-
tion with thermal driving, we find that active friction selects discrete states with only
a limited number of modes excited at distinct fixed amplitudes. When the active
transport network is incompressible, these modes are cycles with constant flow; when
it is compressible, they are oscillatory. As is common in such network dynamical sys-
tems, the spectrum of the underlying graph Laplacian plays a key role in controlling
the flow. Spectral graph theory has traditionally prioritized analyzing Laplacians
of unweighted networks with specified adjacency properties. For the second part
of the thesis, we introduce a complementary framework, providing a mathematically
rigorous positively weighted graph construction that exactly realizes any desired spec-
trum. We illustrate the broad applicability of this approach by showing how designer
spectra can be used to control the dynamics of three archetypal physical systems.
Specifically, we demonstrate that a strategically placed gap induces weak chimera
states in Kuramoto-type oscillator networks, tunes or suppresses pattern formation
in a generic Swift-Hohenberg model, and leads to persistent localization in a discrete
Gross-Pitaevskii quantum network.

Thesis Supervisor: J6rn Dunkel
Title: Assistant Professor
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List of Figures

1-1 Active driving interacts with networks in diverse biological systems. (a)

In Drosophila embryos, networks of ATP-driven myosin motors (fluo-

rescently labeled in green) couple to the cell boundaries (magenta) to

control tissue folding [33]. (b) The slime mold Physarum polycephalum

(yellow) can form complex optimized transport networks to connect

food sources like the oat flakes (white dots) shown. Here, the food

was placed in roughly the pattern of population centers around Tokyo.

The organism's final state is reminiscent of the human-designed rail

system [131]. (c) Microtubules and kinesin motors like these from the

Dogic lab can be confined to channels where they drive coherent shape-

dependent flows [1471. (d) Our theoretical work models most closely

confined suspensions of swimming microbes. In this picture, from pre-

liminary experiments by the Kantsler lab, sperm cells are confined to a

network of channels in a microfluidic chamber with barriers (light gray

polygons). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2-1 Stochastic cycle selection in two elementary graphs. (a) Flux-time

traces from Eq. 2.4 for each of the three edges in the graph shown,

signed according to the edges' arrows, with three different temporary

configurations highlighted as indicated by (i)-(iii). A = 2.5, p = 25,

/-- = 0.05. (b) Same as (a), but with an additional edge in the graph.

States are more stable with even-degree vertices, since flux conserving

flows are possible with all edges flowing. . . . . . . . . . . . . . . . . 32
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2-2 Noise and activity cause stochastic cycle selection. (a-c) Flux-time

traces (b) for each edge of the complete graph on four vertices, K4 .

Edge orientations are as in (a). The sub-diagrams in (c) (i-iv) exemplify

the flow state in the corresponding regions of the trace. Parameters

A = 2.5, t = 25, 0-1 = 0.05. (d-f) As in (a-c), but for the generalized

Petersen graph P3,1. The same switching behavior results, but now

with more cycle states. (g) Survival function S(t) = P(T > t) of the

transition waiting time T for an edge in K4, at regularly-spaced values

of A in 2 < A ( 3 with p = 25, 0- 1 = 0.05. Log-scaled vertical; straight

lines imply an exponential distribution at large t. Inset: S(t) at small t

with log-scaled vertical, showing non-exponential behavior. (h,i) Slow

and fast edge transition rates in K4, with parameters as in (g). Circles

are from fitting T to a mixture of two exponential distributions, lines

show best-fit theoretical rates k oc A exp(-3AH) with AH calculated

for transitions between 3- and 4-cycles. (j) Transition rate k = (T)-

for each set of equivalent edges in P3,1, as per the key, as a function

of A, with t = 25, /- 1 = 0.05. Log-scaled vertical shows exponential

dependence on A. ....... ............................ 38

2-3 Transition rates in highly symmetric graphs are determined by cycle

structure. (a) Transition rate for edges in the first eight generalized

Petersen graphs with A = 2.5, i = 25, -1 = 0.05. The rate was

determined for each edge, then averaged within classes of equivalent

edges. Symbols denote the rate for each class, categorized by e-girth g,

as in the key. The range of computed rates within each class is smaller

than the symbols. (b) The graphs in (a) with their edge equivalence

classes when more than one exists. Edges colors denote g, as in (a).

Observe that identical e-girth does not imply equivalence of edges. . 43

12



2-4 Cycle structure determines edge transition rates in asymmetric graphs.

(a) Transition rate for each edge in 20 random asymmetric bridgeless

cubic graphs on 21 edges. Markers denote e-girth ge as per the key

in (c). A = 2.5, [t = 25, A- 1 = 0.05. (b) One of the graphs in (a),

corresponding to the marked column (*). Edges colored and labelled

according to g.. All 20 graphs are shown in Fig. 2-5. (c) Transition

rates k from (a) binned by girth-weighted rate Rg, using best-fit value

a = 1.31, with markers denoting ge as per the key. Horizontal error

bars are range of marker position over 95% confidence interval in a,

vertical error bars are 1 standard deviation in k within each group.

Solid line is best fit k = -yRg, dashed lines are 95% prediction intervals

on k w ith a fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2-5 The 20 non-isomorphic asymmetric cubic graphs in Fig. 2-4. Edges are

colored according to e-girth as indicated in graph 1 and in Fig. 2-4.

Graph 19 is that illustrated in Fig. 2-4b. All planar graphs (2, 3, 5, 6,

7, 12, 16 and 19) are shown in a planar embedding. . . . . . . . . . . 46

2-6 Constructing a cycle basis for P4,1. (a) A planar embedding of P4,1, with

edges numbered and oriented as shown. (b) The dual of the embedding

in (a), with dual graph vertices (original graph faces) numbered as

shown. Edge orientations depend on those chosen in (a), as described

in the text. Vertex 6 and its incident edges, highlighted, correspond to

the external face whose flux is fixed at zero. . . . . . . . . . . . . . . 50

2-7 Incompressible flow on planar graphs can be represented using a face-

based cycle basis. (a) Flux-time traces for flow about each of the

internal faces of P4,1, as labelled in (c), from Eq. (2.11) with A = 2.5,

0-1 = 0.05. (b) Zoom of trace showing a transition between two

8-cycles, which are global minima, via a 6-cycle. (c) Distinct state

configurations in (b) of face fluxes (upper) and corresponding edge

flow s (low er). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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2-8 Incompressible flow on a 15 x 15 hexagonal lattice using the face cycle

basis. (a) Plot of flux values over time for each face in an integration on

the 15 x 15 lattice, at A = 2.5, p = 25, /#' = 0.05. (b,c) Configurations

of the face fluxes at the times marked in (a), along with the cycle

configurations they represent. Cycles are colored according to their

orientation clockwise (cyan) or counterclockwise (magenta). Faces are

ordered in (a) column-wise from bottom-left to top-right of the lattice. 53

2-9 Empirical probability distributions of e-girth determined from ten graph

realizations each from four random 1000-vertex graph ensembles: (a)

fixed degree 3, i.e. cubic; (b) uniform with 1500 edges; (c) 'scale free'

Barabdsi-Albert with a degree k = 2 vertex added at every step; and

(d) 'small world' Watts-Strogatz with rewiring probability p = 0.5 and

mean degree k = 4. The pseudo-real-life networks of (c) and (d) exhibit

distributions with far more small e-girth edges than the more generic

random graphs in (a) and (b). . . . . . . . . . . . . . . . . . . . . . 55

3-1 Our active network model exhibits behavior similar to the topological

edge modes of Ref. [1241. (a) A discretized version of the Lieb lat-

tice considered in Ref. [124]. Edges shared by adjacent 8-cycles have

weight we = 2 to account for the additional width of the correspond-

ing channels. The most stable flow on this network consists of a lat-

tice of counter-rotating cycles, in which both the active friction term

g(p, qe/ ) and the pressure variations p, are everywhere zero. (b)

This lattice has modes confined to the edges of the domain, allowing

sound waves to propagate and decay without scattering into the bulk

(cf. discussion in App. I.B of Ref. [1241); one such mode is pictured.

Simulations started in this mode as a perturbation to the most stable

flow pattern do not cause density changes in the center. The network

model allows study of such phenomena without resorting to full scale

simulation of the flow patterns. . . . . . . . . . . . . . . . . . . . . . 65
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3-2 Activity can select a single dominant oscillation mode on hierarchically

weighted networks. (a) The edges in the graph simulated in (b) and (c)

are given weights decreasing exponentially with their distance from the

central red path. (b) Oscillations in pressure and flux develop primar-

ily along the central high-weight path. (c) Edge fluxes #e settle into

steady synchronized oscillations as exemplified for two edges indicated

in (b), one on (0 17) and one off (#59) the path. (d) Plotting the time-

dependent amplitude of each analytically-determined flow eigenmode

confirms selection of a single oscillatory mode. The ten modes with

the highest average amplitude in this simulation run are pictured; the

marked top two rows are oscillatory modes, while the remaining rows

are cyclic modes. See Fig. 3-3 for all modes. Simulation parameters

are E=0.1, p= 1, andD= 10 4 . . . . . . . . . . . . . . . . . . . . 67

3-3 Including all of the modes from the simulation in Fig. 3-2 shows clear

single mode selection on this weighted network. Edges a distance d

from the central red path were given weight e-. Modes are ordered

by frequency from high (top) to low (bottom); the last thirty modes,

marked in red, are cycles. The modes pictured in Fig. 3-2 are marked

in b lack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3-4 Steady state amplitudes Ai as a function of activity p for the tree

pictured undergo a Hopf bifurcation as p crosses 0. Dots are long-time

root-mean-square amplitudes from simulations started in each mode;

lines are numerical solutions of Eq. (3.20). Mode A 2 is too unstable

to reliably observe in simulations, so it is omitted. For ya < 0, all

amplitudes go to zero in simulations; the dot included in that region

is at [ = -1 where the friction is purely passive. Some deviations

between simulation and analytics are expected because the simulations

do not use the Rayleigh friction approximation and c k 0. Parameters

are E= 0.5 and D = 0. . . . . . . . . . . . . . . . . . .. . . . . . . . 75
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3-5 First order perturbation theory accurately predicts the stable states

on small trees. (a) A five vertex tree possessing four nontrivial modes,

as illustrated. (b) On the tree in (a), mode amplitudes settle into

one of two stable stationary states, as seen in simulations for three

different initial conditions. Modes are ordered by frequency from high

(top) to low (bottom). (c) Simulated mode trajectories (rainbow) in

(b) match analytic predictions (blue streamlines) in the subspaces of

activated modes. There are three possible arrangements of nonzero

critical points in each 2D subspace: a saddle point on one axis and a

stable node on the other axis (left), a stable node on each axis and a

saddle point in the middle (center), or a saddle point on each axis and

a stable node in the middle (right). Higher order effects cause both

the convergence to a point with A2 > 0 in the left and middle plots

and the oscillations in the trajectories. Parameters used are C = 0.5,

p = 1, D = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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3-6 States on larger trees possess surprisingly few active modes, which can

be inferred from time series with non-zero noise. (a) The mean num-

ber of stationary states of Eq. (3.13) grows exponentially with edges

E as 1 .7 7 E (E 4/5 (solid orange line), close to the upper bound of

2E states (dashed black line), while the mean number of stable states

grows as 1.2 ( 2 E)1/4 (solid blue line). We counted states on all

nonisomorphic trees with E < 14 edges (filled circles) and on a ran-

dom sample of ~ 175 trees per point for 15 < E < 24 (open circles).

Averages are over trees with a fixed number of edges. (b) As E in-

creases, both the mean and the variance of the distribution of trees

with each number of stable states increase rapidly. (c) Distribution

of the average number of modes active in a stable state. The mean

over trees scales like 0.26E ~ E/4 (solid line), significantly below E/2

expected if modes were selected randomly. (d) Two example trees in-

dicated in (a-c) by the corresponding colored symbols. Stable states

on paths (x) always only activate one mode; complex trees (+) have

more modes active. (e) Noisy networks (D > 0) transition stochasti-

cally between stable states, exemplified by an amplitude-time trace for

the tree shown. Modes are ordered by frequency from high (top) to low

(bottom). Simulation parameters are c = 0.5, p = 1, D = 5 x 10-3.

(f) States found by vbFRET from simulations on the tree in (e). The

second, first, and fifth columns are states seen in (e), indicated by the

colored bars above. (g) States predicted by Eq. (3.13) for the tree in

(e). The first five states in (f) match those in (g); the sixth column in

(f) is likely a transient combination of analytically stable states. . . . 78
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3-7 Slow global oscillations emerge from the fast active dynamics. (a)

First order considerations fix a constant mean flow energy; higher order

effects cause significant slow oscillations about that mean. Simulation

parameters were yu = 1, E = 0.5, and D = 0; the tree used is inset.

(b) The mode amplitudes A 2 and A3 , like the energy, oscillate much

more slowly than the harmonic oscillations of f2 and f3. All other

mode amplitudes (unlabelled traces) are close to zero. (c) Frequency

spectra of the two active modes and the energy H for the simulation

in (a) and (b). The energy oscillates due to higher-order interactions

between modes at frequencies that are linear combinations of active

mode frequencies, not the harmonic frequencies alone (dashed lines). 81

3-8 Activity causes depth-dependent separation of time scales on a large

tree. (a) Most pressure variation occurs near the leaves on large binary

trees. (b) The tree in (a) develops an activity-driven steady state with

slow oscillations in the center and fast oscillations near the edges, as

illustrated by the flux 0, on the three edges labelled in (a). (c) Unnor-

malized correlations between the Fourier transforms of the flux through

the edges of the tree in (a), with phases ignored. Colors indicate the

tree level of the tail vertex of the edge. There are strong correlations

within each level and between neighboring levels, but low correlations

for edges in widely-separated levels. (d) Frequency spectra of each tree

level, computed by taking Fourier transforms of the edge fluxes as in

(c) and averaging the magnitudes across all edges at each level. A

distinct primary oscillation frequency for each level can be seen, which

increases with distance from the tree center. Simulation parameters

in all panels are E = 0.5, p = 1, and D = 10-3. (e-h) While adding

edges in the center leads to steady flow on cycles there, frequency still

increases with distance from the center in the outer, tree-like sections. 86
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3-9 Lower energy modes transition more often for the graph in Fig. 3-

6. Modes are ordered by frequency from high (top) to low (bottom).

Simulation parameters are 6 = 0.5, p = 1, D = 5 x 10-3, identical to

those in Fig. 3-6. Note that rows 7 and 8, the two modes that switch

on and off most, are degenerate. . . . . . . . . . . . . . . . . . . . . 87

3-10 States on graphs with cycles, like the one shown, tend to be more stable.

Modes are ordered by frequency from high (top) to low (bottom). Note

that the eight modes at the bottom, which are the only ones active in

the lower half of the trace, are all cycles. Simulation parameters are

E = 0.5, p = 1, D = 5 x 10-3. . . . . . . . . . . . . . . . . . . . . . . 88

3-11 The emergence of an activity-driven spectral band gap is exhibited

by a simulation on a 14-vertex path with (a) all weights equal to 1

and (b) alternating vertex weights 1 and 5. Modes are ordered by

frequency from high (top) to low (bottom). Note that in (b) the central

n = 7 mode is always active and the low energy states on the right half

of the plot are significantly more suppressed than they ever are in

(a). The qualitative difference is due to the presence of vertices with

unequal weights, not the overall scale of the vertex weights; changing

vertex weights uniformly is equivalent to rescaling other parameters.

Parameters are p = 1.2, D = 5 x 10--3, and E = 0.5. Both simulations

used the same random seed. . . . . . . . . . . . . . . . . . . . . . . . 90
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4-1 Designing networks from spectra. (a), Schematic of DBG network

construction. Given a spectrum of eigenvalues distributed in two (or

more) groups, we build a graph with non-negative edge weights that

realizes this spectrum exactly (1). Sparsification of this complete DBG

network with the Spielman-Srivastava [125] algorithm (2) yields a new

network with wider eigenvalue distributions and a smaller gap (3).

(b), Example graphs used in applications below: Starting from a DBG

graph on 200 vertices with 100 eigenvalues set to i.i.d. K(5, 0.25) and 99

set to i.i.d. A(20, 0.25) (left), sparsification with e = 0.5 creates a new

graph (top) with the number of edges reduced from 19900 to 3758.

As a control, we also compare to a gapless random graph (bottom)

with 362 edges and the same weighted vertex degrees as the original

DBG graph. (c), The eigenvalues for the graphs in (b). The mode on

the complete DBG network with the k-th largest nonzero eigenvalue is

supported on the first k +1 vertices, counted counterclockwise from the

top red vertex, and highly localized on vertex k +1, which is colored to

match in (b). Grey lines indicate the borders of the unstable region for

the Swift-Hohenberg model with the parameters used in Fig. 4-3. (d),

Sparsified networks retain a significant gap even for relatively large C.

Each point shows the mean number of edges and gap size at fixed E

between 1 (left) and 0.01 (right), starting from a graph on 200 vertices

designed to have 100 x eigenvalue 5 and 99 x eigenvalue 20. The solid

curve shows the worst-case gap estimate, reduction by a factor 1 - 5C.

Sample size is 1000 for c > 0.1 and 300 for 6 < 0.1. Error bars are 1

standard deviation; horizontal error bars are smaller than the marker

size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 7
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4-2 DBG networks lead to staggered synchronization and chimeras. (a-

f), In the Kuramoto model with a = 0, the complete (first row) and

sparsified (second row) graphs synchronize much faster than the ran-

dom graph (third row). For the complete graph the gap affects the

rate of synchronization, with highly-connected vertices synchronizing

faster (a), while on the sparsified graph the gap is only visible in the

mode basis (e). (g-i), Weak chimera states appear when a = 1. Both

the complete (g) and sparsified (h) graphs have two dominant groups of

phase-locked oscillators, with the complete graph more fully synchro-

nized. Dynamics on the random graph (i) are much less coherent. Solid

black lines indicate the predicted approximate frequency difference for

a network with two distinct eigenvalues, 5 and 20. (j-1), Order parame-

ter r = I ea I for the simulations in (g-i) for the strongly-connected

vertices (red), weakly-connected vertices (teal), and all vertices (gray). 102

4-3 Generic suppression of pattern formation with a designed discrete band

gap. (a), Pattern formation in the Swift-Hohenberg system is com-

pletely suppressed by constructing a gap around the range where eigen-

values would be unstable (Fig. 4-1c). (b), On a sparsified graph that

has a few eigenvalues just within the unstable region, some modes set-

tle at small nonzero values. (c), On the random graph many more

eigenvalues are well within the unstable region and the corresponding

modes settle at larger amplitudes. Inset graphs show the final steady

state on each graph; the size of vertices corresponds to 101. All sim-

ulations used identical initial conditions ai - )A(0, 1) and parameters

a = 90, D, = -20, D 2 = I. . . . . . . . . . . . . . .. . . . . . . . 106
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4-4 Controlling pattern formation with a designed discrete band gap. (a)

Instead of placing a gap in the spectrum around the unstable pattern-

forming range, as in Fig. 4-3, we deliberately place particular eigenval-

ues in the middle of that range corresponding to eigenvectors localised

on a desired pattern. (b) From random initial conditions, the system

settles into a state where only the chosen modes have nonnegligible am-

plitudes. (c-e) Time series of pattern evolution on a designed network,

with vertices colored according to the stability of the mode localized

there as in (a). The size of the vertices indicates 101. (c) The encoded

pattern is not obvious from either the designed network or the random

initial conditions. (d) By time t = 0.07 the stable modes have nearly

all vanished. (e) The steady state reveals the eigenmode-designed pat-

tern. Because the modes are highly localized, selecting a set of modes

to activate is approximately equivalent to selecting a set of vertices to

activate. Thus we can encode an arbitrary pattern as the steady state.

Depending on initial conditions, the system may settle into other sta-

ble states with slight variations in the vertex activations; the pattern

is always identifiable and often as clear as shown. The parameters

a = 90, D, = -20, and D 2 = 1 are identical to those in Fig. 4-3; the

tuning parameters to control pattern formation are only the network

edge w eights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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4-5 Localization on a DBG quantum network. (a-c), When the wavefunc-

tion in the Gross-Pitaevskii model of Eq. (4.20) is initialized at a weakly

connected vertex with low kinetic energy, localization or delocalization

(indicated by high or low potential energy, respectively) is controlled

by the interplay between the graph spectrum and the rate of potential

energy loss g. The random graph (purple) always delocalizes, due to its

dense spectrum. However, while the sparsified graph (yellow) can de-

localize for low g (a) and high g (c), again due to available eigenmodes,

intermediate g (b) places the range of allowed modes inside the spec-

tral gap, preventing delocalization. The complete graph (blue) always

inhibits spreading due to the extreme localization of its eigenvectors. 111

4-6 Designed spectra on a discrete network are preserved when extended

periodically in one dimension. (a) We extend a finite network to an

infinite one by rewiring a subset of the edges to cross between adjacent

copies of the original network. Here, we take the network with the

spectrum in (b) and rewired the edge between vertices j and k if Ik -

jI > n/2. This rewires roughly one quarter of the edges. (b) One unit

cell in (a) would have a discrete spectrum with A = 21-j. (c) Most of

the eigenvalue bands do not change significantly with q, so the density

of states consists of 21 sharp peaks with low- or zero-density regions

between. (d) The same construction as in (a) can be repeated for any

spectrum; this is the result for a gapped network. (e) One unit cell in

(d) would have a gapped spectrum, with 10 eigenvalues equal to 20 and

10 equal to 5, in addition to the always-present zero eigenvalue. (f)

Again, most of the eigenvalue bands are roughly constant, even though

the eigenvectors do depend strongly on q. The gap in the middle of the

spectrum is nearly perfectly preserved; a small gap remains between

the bottom two bands. Note the log scale on both density of states

p lots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
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Chapter 1

Introduction

This thesis will explore two related topics in network theory. For the first two chap-

ters, we will study active flows, investigating the nonequilibrium mode selection prin-

ciples [43, 45] governing their dynamics in the network setting. The tools from the

active flow chapters are in fact of much more general interest. In particular, one

mathematical object called the graph Laplacian plays a critical role in problems across

mathematics and physics. Motivated by this broad relevance, we will show in the last

chapter how to construct networks with exactly specified Laplacian spectra.

1.1 Active flows

Classical fluid dynamics deals with externally-imposed driving forces such as gravity

or applied pressure gradients. These passive fluids dissipate energy through viscosity,

but do not generate it. Biological systems may act very differently, producing energy

at a very small scale, perhaps individual swimming bacteria, and propagating the

energy upwards to drive larger flows. Often, the flows occur within an intricate

network structure (Fig. 1-1). These biological flow networks, such as capillaries [51],

leaf veins 67], and slime molds [2], use an evolved topology or active remodeling to

achieve near-optimal transport when diffusion is ineffectual or inappropriate [10, 39,

67, 95, 131].

Even in the absence of explicit matter flux, living systems often involve flow of
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information currents along physical or virtual links between interacting nodes, as

in neural networks [31], biochemical interactions [65], epidemics [103], and traffic

flow [50]. The ability to vary the flow topology gives network-based dynamics a rich

phenomenology distinct from that of equivalent continuum models [96]. Identical

local rules can invoke dramatically different global dynamical behaviors when node

connectivities change from nearest-neighbor interactions to the broad distributions

seen in many networks [1, 12, 21, 141]. Certain classes of interacting networks are

now sufficiently well understood to be able to exploit their topology for the control of

input-output relations [90, 97], as exemplified by microfluidic logic gates [104, 109].

However, when matter or information flow through a noisy network is not merely pas-

sive but actively driven by non-equilibrium constituents [2], as in maze-solving slime

molds [95], there are no overarching dynamical self-organization principles known. In

such an active network, noise and flow may conspire to produce behavior radically dif-

ferent from that of a classical forced network. This raises the general question of how

path selection and flow statistics in an active flow network depend on its interaction

topology.

Flow networks can be viewed as approximations of a complex physical environ-

ment, using nodes and links to model intricate geometric constraints [41, 42, 148].

These constraints can profoundly affect matter transport [17, 47, 63, 92], particu-

larly for active systems [44, 85, 137] where geometric confinement can enforce highly

ordered collective dynamics [24, 30, 48, 80, 102, 104, 110, 132, 144, 146, 150]. In sym-

metric geometries like discs and channels, active flows can often be effectively captured

by a single variable 0(t), such as angular velocity [143, 144] or net flux 11501, that

tends to adopt one of two preferred states o. External or intrinsic fluctuations

can cause #(t) to diffuse in the vicinity of, say, - 00 and may occasionally trigger a

fast transition to #o and vice versa [143, 150]. Geometrically coupling together many

such confined units then results in a lattice field theory, reducing a non-equilibrium

active medium to a discrete set of variables obeying pseudo-equilibrium physics, as

was recently demonstrated for a lattice of bacterial vortices [143].

In Chapter 2, we develop this idea by constructing a generic lattice field model for
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an incompressible active medium flowing in an arbitrary network of narrow channels.

By connecting concepts from lattice field theory, graph theory, and transition rate

theory we can understand how topology controls dynamics for this actively driven

network flow. Our combined theoretical and numerical analysis identifies symmetry-

based rules that make it possible to classify and predict the selection statistics of

complex flow cycles from the network topology. The conceptual framework devel-

oped is applicable to a broad class of non-biological far-from-equilibrium networks,

including actively controlled information flows, and establishes a new correspondence

between active flow networks and generalized ice-type models. The content of chap-

ter 2 was published in the Proceedings of the National Academy of Sciences [145].

In Chapter 3, we extend to the compressible case where variations in local den-

sity or volume are dynamically relevant. Using perturbation theory, we systemati-

cally predict the stationary states of noisy networks and find good agreement with

a Bayesian state estimation based on a hidden Markov model applied to simulated

time series data. Our results suggest that the macroscopic response of active network

structures, from actomyosin force networks to cytoplasmic flows, can be dominated

by a significantly reduced number of modes, in contrast to energy equipartition in

thermal equilibrium. The model is also well-suited to study topological sound modes

and spectral band gaps in active matter. This work appeared in Physical Review

Letters 146].

1.2 Graph Laplacians

Complex real-world phenomena across a wide range of scales, from aviation [25] and

internet traffic [1511 to electronic [36] and gene regulatory [83] circuits, can be effi-

ciently described through active and passive network models encoded with weighted

graphs. Their dynamics are often essentially determined by the associated graph

Laplacian, which we introduce here. A weighted simple graph G is defined by its

vertex set V, edge set 9 containing unordered pairs of distinct vertices (u, v), and

corresponding edge weights w.. We consider the case with real, nonnegative weights
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Figure 1-1: Active driving interacts with networks in diverse biological systems. (a) In
Drosophila embryos, networks of ATP-driven myosin motors (fluorescently labeled in
green) couple to the cell boundaries (magenta) to control tissue folding [33]. (b) The
slime mold Physarum polycephalum (yellow) can form complex optimized transport
networks to connect food sources like the oat flakes (white dots) shown. Here, the
food was placed in roughly the pattern of population centers around Tokyo. The
organism's final state is reminiscent of the human-designed rail system [131]. (c)
Microtubules and kinesin motors like these from the Dogic lab can be confined to
channels where they drive coherent shape-dependent flows [1471. (d) Our theoretical
work models most closely confined suspensions of swimming microbes. In this picture,
from preliminary experiments by the Kantsler lab, sperm cells are confined to a
network of channels in a microfluidic chamber with barriers (light gray polygons).
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'wUV > 0 and set wu, = 0 if there is no edge between u and v. The Laplacian of G

is the matrix whose off-diagonal elements are the negatives of the edge weights and

whose diagonal elements are the weighted vertex degrees. That is, Lu, = -wu, for

u v and LUU = E' wUV

The Laplacian matrix occurs naturally in a wide range of physical systems. Up

to a sign, it is the discrete analog of the continuous Laplacian: where V2 appears

in continuous models, -L typically appears in the discrete version of the model.

For example, the ubiquitous nearest-neighbour finite difference approximation to V 2

arises as the graph Laplacian of a square lattice 162]. In Chapters 2 and 3 we will work

with the discrete gradient operator Ve, which with weighted edges equals - /w if

there is an edge from u to v, wU, if there is an edge from v to u, and zero otherwise.

For any arbitrary orientation of G, the Laplacian is equal to the gradient times its

transpose: L U = E, VueVLT. The singular value decomposition of Vu, which will

feature prominently in Chapter 3, is then the eigendecomposition of L.

The simplest physical examples of network Laplacians come from spring systems

and discrete random walks. If a set of identical masses moving in one dimension are

coupled by springs with stiffness wuv between masses u and u, the force on mass u is

exactly - EZ Luvz = ZE wuv(x - xu). Here xu is the coordinate of the uth mass.

The mechanics then decouple into n = IVI oscillation modes corresponding to the

eigenvectors of L, with the eigenvalues as squared frequencies.

Similarly, if a particle follows a random walk on a network, traveling from node

u to node v with rate wuv (so the probability flow from u to v is the probability pu

of being in state u times the rate), then the probability distribution evolves in time

according to

=p wUVPU + E war PV LUVpo.(11dt V u viu V

The solution again comes from the eigendecomposition of L: the eigenvalues deter-

mine the diffusion rate and the rate of decay to the stationary distribution.

It is natural, then, to ask whether we can control these eigenvalues. By design-

ing the network appropriately, what spectra can we construct? There are two clear
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constraints. First, the rows and columns of L sum to zero, implying that 1, the vec-

tor of all ones, is an eigenvector with eigenvalue zero. This eigenvector corresponds

to the stationary distribution for the random walk, rigid translation for the spring

system, and a constant pressure shift for flow networks. Moreover, the remaining

eigenvalues must be nonnegative by the Gershgorin circle theorem [27]. We will see

in Chapter 4 that these are the only two restrictions for weighted networks, and

that by explicitly constructing networks to have particular spectra we can control a

wide variety of classic physical models, including Kuramoto-type coupled oscillators,

Swift-Hohenberg pattern formation, and quantum Gross-Pitaevskii dynamics.
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Chapter 2

Incompressible flow networks

In this chapter we introduce the active network model in the incompressible setting. 1

Combining concepts from transition rate theory and graph theory, we show how

the competition among incompressibility, noise, and spontaneous flow can trigger

stochastic switching between states comprising cycles of flowing edges separated by

acyclic sets of non-flowing edges. As a main result, we find that the state transition

rates for individual edges can be related to one another via the cycle structure of

the underlying network, yielding a topological heuristic for predicting these rates in

arbitrary networks. We conclude by establishing a mapping between incompressible

active flow networks and generalized ice-type or loop models [14, 16, 721.

2.1 Model

2.1.1 Lattice q56 field theory for active flow networks

Our network is a set of vertices v E V connected by edges e E S, forming an undirected

loop-free graph G. (We use graph theoretic terminology throughout, where a loop is

a single self-adjacent edge and a cycle is a closed vertex-disjoint walk.) To describe

signed flux, we construct the directed graph d by assigning an arbitrary orientation

'This work was published in the following paper:
Francis G. Woodhouse, Aden Forrow, Joanna B. Fawcett, and J6rn Dunkel. Stochastic cycle selection
in active flow networks Proc. Natl. Acad. Sci. U.S.A., 113(29):8200-8205, 2016.
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Figure 2-1: Stochastic cycle selection in two elementary graphs. (a) Flux-time traces
from Eq. 2.4 for each of the three edges in the graph shown, signed according to the
edges' arrows, with three different temporary configurations highlighted as indicated
by (i)-(iii). A = 2.5, p = 25, 0--' = 0.05. (b) Same as (a), but with an additional edge

in the graph. States are more stable with even-degree vertices, since flux conserving
flows are possible with all edges flowing.

to each edge. Now, let #, be the flux along edge e, where 4 e > 0 denotes flow

in the direction of the orientation of e in d and qe < 0 denotes the opposite. To

model typical active matter behavior 180, 143, 144, 146J, we assume that fluxes either

spontaneously polarize into flow states #, ~ +1 or adopt some other non-flowing

mode qe ~ 0. We formalize this by imposing a bistable potential V(#e) on each flux

variable. The typical symmetric, bistable potential is the quartic V4 (0) = - 2+ #04.

However, we use the sixth-order form V(O) = V6 (0) - - 9 4 + 106. This form, of

higher order than in a typical Landau theory, ensures that incompressible potential

minima are polarized flows with every #e in the set {-1, 0, +1}, rather than the

continuum of fractional flow states that a typical #4 potential would yield.

Incompressibility, appropriate to dense bacterial suspensions or active liquid crys-

tals, is imposed as follows. The net flux into vertex v is EeC Vve~e, where the

discrete negative gradient operator V = (Vve) is the IVI x 191 incidence matrix of G

such that Vve is -1 if e is directed out of v, +1 if e is directed into v, and 0 if e is not

incident to v [53]. Exact incompressibility corresponds to the constraint V(D = 0 on
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the global flow configuration D = (0e) E R I. To allow for small fluctuations, model-

ing variability in the microscopic flow structure, we apply this as a soft constraint via

an interaction potential oc IV(D 2 . The total energy H(z) of the active flow network

then reads

H(1) = A V(#e) + }PIV(If2, (2.1)
eEE

with coupling constants A and y.

To see why V4 (0) has the undesirable symmetry mentioned above, consider the

elementary (though not simple!) two-vertex, three-edge graph in Fig. 2-la. Here the

energy is

H(01, q52, 53)= A[V(# 1) + V(0 2) + V(0 3 )] + P(01 + # 2 + 33)2.

In the limit p/A >> 1, the flow is incompressible, so we can substitute03 = -#1 - 02

to obtain a reduced energy H(#1 , # 2) = AN(# 1, # 2 ), where, assuming a symmetric

potential V(O),

W((i, # 2) = V(0 1) + V(02 ) + V(01 + #2 ).

Local minima of R then yield metastable states of the system, independent of A.

Consider the case V = V4 . Then R factorizes as

2- = f(1, q2)[f (#1, 02) - 2],

where f(# 1 , #2) =1# + q10 2 + #2. Thus V- = 0 implies (f - 1)Vf = 0, so either

f = 1 or q1 = #2 = 0. The latter is a local maximum, so our minima are the

solutions of #2 + 10#2 + #2 = 1. But these solutions form an ellipse in the (#1 , #2)
plane, implying a continuous U(1)-symmetric set of fixed points. In other words,

with V = V4 , mixed states such as ( , 3, - ) are equally preferable to unit-flux

states like (1, 0, -1). In contrast, the choice V = V6 results in minima of 'H only at
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the six states (q 1 , $2 ) = ( I, 0), (0, 1), ( 1, -1), which is the phenomenology we

are interested in. Based on simulations, these results carry over to more complicated

networks, though we do not prove so here; V4 typically allows mixed states while V6

selects unit fluxes.

The energy in Eq. (2.1) is comparable to that of a lattice spin field theory, but

with interactions given by higher-dimensional quadratic forms akin to a spin theory

on the vertices of a hypergraph. Suppose we switch to a typical vertex-based picture,

where fluxes #, on edges e in G are now spins 4
'i on vertices i in an interaction graph

B. A scalar lattice spin theory then has Hamiltonian

Hspi = Aj V(V/i) + It ((bi ij 0j)2, (2.2)
i {i,j}

where in the sum over adjacent spins {i, j} in E, the sign ij is + or - according to

whether the interaction between i and j is antiferromagnetic or ferromagnetic, respec-

tively. In our theory, however, multiple spins are permitted inside each interaction

term according to the degree of each vertex in G. For instance, on a cubic graph, the

energy (2.1) is equivalent to

H = AZV(Vi) + 'A E ()i ij )j jk /k )2 (2.3)
i {i,j,k}

where the interaction is now a sum over interacting triples of spins, one term for each

vertex in G, with pairwise signs being - or + according to whether the corresponding

edges in C are oriented head-to-tail or not at the vertex. Thus we have essentially

defined a theory on an interaction hypergraph E, with Eq. (2.2) being the special case

where E is a graph: while Eq. (2.2) has two types of interaction edge-antiferro- and

ferromagnetic-between two spins, the general theory has 2n-1 types of interaction

hyperedge between n spins for all n ;; 1.
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2.1.2 Network dynamics

Appealing to recent results showing that bacterial vortex lattices obey equilibrium-

like physics [143], we impose that 4 obeys the overdamped Langevin equation

5H
d = H dt + 2/3-'dW,, (2.4)

64D

with Wt an JEJ-dimensional vector of uncorrelated Wiener processes and 3 the inverse

temperature. We choose additive noise for mathematical simplicity and because we

focus on the effect of the active driving; plausibly, more detailed physical modeling

could lead to a different stochastic term potentially depending on 1. This would

change the quantitative results of this chapter and Chapter 3, for example the cal-

culation of transition rates, but broad qualitative features like the selection of stable

flow states will remain.

The stochastic dynamical system in Eq. (2.4) has a Boltzmann stationary distri-

bution xc e-H. The components of the energy gradient 6H/& in Eq. (2.4) are

( ) -A053(1 _ q2) + ii(VT V4)e. (2.5)
641 e * 25

VTV is the discrete Laplacian operator on edges, which is of opposite sign to the

continuous Laplacian V 2 by convention. Remember that the vertex Laplacian defined

in Chapter 1 is equal to VVT; the edge Laplacian is a related but distinct operator.

The last term in Eq. (2.5) arises in an otherwise equivalent fashion to how a bending

energy IV012 yields a diffusive term V 2V in a continuous field theory. On its own,

this term damps non-cyclic components of the flow while leaving cyclic components

untouched; these components' amplitudes would then undergo independent Brownian

walks were they not constrained by the #6 component of V. This process results in

a long-term state dominated by a weighted sum of cycles of the graph, as we now

describe.

As in the derivation of the incompressible limit (see section 2.3.1 below), by anal-

ogy with a spectral decomposition for the diffusion equation, we decompose 4 into a

35



sum h = fT 1! over an orthonormal eigenbasis T3 of the edge Laplacian VTV, where

'F'= (04) has eigenvalue v4 > 0. If A is set to zero, the components fi then obey

dfi = -wvi fidt + f2/- 1dWi,1,

after combining independent noise terms. Thus modes with vi > 0 are damped by the

diffusivity it while modes with vi = 0 are only subject to noise-induced fluctuations.

The non-zero modes' amplitudes follow Ornstein-Uhlenbeck processes and therefore

have mean zero and variance (/pu')1 as t - oc, whereas, because of the absence of

damping, the zero modes' amplitudes follow simple Brownian processes and so have

variance 2/3- 1 t.

With these dynamics for any A, all loops in G, i.e., edges of the form (w, w) from

one vertex to itself, will decouple from the dynamics of the rest of G. Consider a

loop edge f E S incident to a vertex w E V. Then V is defined such that Vwe = 0

(consistent with #e contributing zero to the net flux at w, since flow in along f

always equals flow out along f). Therefore, using summation convention, Vvee is

independent of Oj for all v E V, which implies aH/#eq is independent of Of for

all e and thus Of decouples. Furthermore, (VTVII)f = VfVvOeqe = 0, so do =

-AV'(0e)dt+ 23-IdWt,t, meaning Of behaves as a non-interacting Brownian particle

in the potential V(#t). The remaining non-loop edges follow Eq. (2.4) exactly as they

would on the subgraph of G with all loops removed.

Altogether, the preceding paragraphs mean that the interesting behavior is con-

fined to flows around interacting cycles. We now characterize the behavior of this

model on a variety of forms of underlying graph G. For clarity, in addition to our

prior assumption that G is loop-free (which simplifies definitions and is unimpor-

tant dynamically since loops decouple), we will focus on connected, simple graphs G,

though multiple edges are not excluded per se (Fig. 2-1). In what follows, we work

in the near-incompressible regime p > A before discussing the strictly incompressible

limit p -+ oc below.
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2.2 Results

2.2.1 Stochastic cycle selection

The combination of energy minimization and noise leads to stochastic cycle selection.

A local energy minimum comprises a maximal edge-disjoint union of unit-flux cycles:

edge fluxes seek to be at 1 if possible subject to there being zero net flux at every

vertex, leading to states where the non-flowing edges contain no cycles (that is, they

form a forest, or a union of trees). However, noise renders these states only metastable

and induces random switches between them. Figure 2-2a-f depicts flow on the 4-vertex

complete graph K4 (Fig. 2-2a-c) and the generalized Petersen graph P3,1 (Fig. 2-2d-

f)-the tetrahedron and triangular prism, respectively-where we have integrated

Eq. (2.4) to yield flux-time traces of each edge. The coordinated switching of edges

between states of mean flux at -1, 0 and +1 leads to random transitions between

cyclic states, as illustrated. Note that the more flowing edges a state has, the lower

its energy and therefore the longer-lived that state will be; thus in K4, for example,

4-cycles, which are global minima, persist longer than 3-cycles (Fig. 2-2b,c).

A graph possessing an Eulerian cycle-a non-repeating tour of all edges starting

and ending at one vertex, which exists if and only if all vertices are of even degree-

has global energy minima with all edges flowing. By contrast, a graph possessing

many vertices of odd degree will have minimum energy states with non-flowing edges,

because edges flowing into and out of such a vertex pair up to leave an odd number

of 0-flow edges. Such 'odd' networks are particularly interesting dynamically as they

are more susceptible to noise-induced state switches than graphs with even degree

vertices. This susceptibility is exemplified by the small graphs in Fig. 2-1, where

adding an extra edge markedly slows transition rates. For the graph in Fig. 2-la

to change state while conserving flux, one edge changes from +1 (or -1) to 0 while

another simultaneously goes from 0 to -1 (or +1), which has an energy barrier

llA/192. However, for the graph in Fig. 2-1b, one edge changes from +1 to -1 while

another goes from -1 to +1, with an energy barrier A/6 nearly three times that of

graph (a). For this reason, from now on we restrict our attention to cubic or 3-regular
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Figure 2-2: Noise and activity cause stochastic cycle selection. (a-c) Flux-time traces
(b) for each edge of the complete graph on four vertices, K4. Edge orientations are
as in (a). The sub-diagrams in (c) (i-iv) exemplify the flow state in the corresponding
regions of the trace. Parameters A = 2.5, p = 25, #-1 = 0.05. (d-f) As in (a-c),
but for the generalized Petersen graph P3,1. The same switching behavior results, but
now with more cycle states. (g) Survival function S(t) = P(T > t) of the transition
waiting time T for an edge in K4, at regularly-spaced values of A in 2 < A < 3
with p = 25, 3-1 = 0.05. Log-scaled vertical; straight lines imply an exponential

distribution at large t. Inset: S(t) at small t with log-scaled vertical, showing non-
exponential behavior. (h,i) Slow and fast edge transition rates in K4 , with parameters
as in (g). Circles are from fitting T to a mixture of two exponential distributions, lines
show best-fit theoretical rates k oc A exp(--3AH) with AH calculated for transitions
between 3- and 4-cycles. (j) Transition rate k = (T)- for each set of equivalent edges
in P3,1, as per the key, as a function of A, with p = 25, - = 0.05. Log-scaled vertical

shows exponential dependence on A.
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graphs where all vertices have degree three.

2.2.2 Waiting times and graph symmetries

The cycle-swapping behavior can be quantified by the distribution of the waiting time

for an edge to transition between states in {--1, 0, 1}. For some edges, dependent on

G, this distribution will be identical: the interactions in the energy (2.1) are purely

topological, with no reference to an embedding of G, implying that only topological

properties-in particular, graph symmetries-can influence the dynamics. Symme-

tries of a graph G are encoded in its automorphism group Aut(G), whose elements

permute vertices and edges while preserving incidence and non-incidence [53]. We

will now show that two edges will follow identical state distributions if (but not only

if) one can be mapped to the other by some element of Aut(G); this determines an

equivalence relation on S. Here, for clarity, we do not use summation convention.

To permit multiple edges, we define an automorphism o E Aut(G) as a permuta-

tion of V U S preserving V and S such that v C V and e E S are incident if and only

if -(v) and o(e) are incident. Suppose we have flow (D on d obeying Eq. 2.4, whose

components read

de AV'($e) dt - p( VveVf of dt + f23 1 dWe,t. (2.6)
vEV fE

Let (D' (#$) be the flow vector after permuting by o, so that #5 = #e(e). Replacing

e with o(e) in Eq. (2.6) and substituting this definition implies

dc" = -AV'(#" )dt - p ( Vor(e)Vvf of dt + V20IdW(e),t. (2.7)
vEV fE-

Since o is a permutation, we can reorder the sums as

Z S VvO(e)VVfOf : z Vo(v)o(e)V(v)ao(f)Oo(f)-
vEV fCS vEV f e

Furthermore, since a preserves incidence but not necessarily orientation, Va(v)o(e) =
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SeVve where Se = 1 according to whether the orientation of u(e) with respect to

u(v) is the same as or opposite to the orientation of e with respect to v. Therefore,

Eq. (2.7) becomes

d'=-AV'(O')dt - pSe S veVvf sfq50'dt + 12031 dWo(e),t. (28

vEV fES

Let I (jb) be the flow with components q o = se#4. Multiplying Eq. (2.8) by se

and using seV'() = V'(se) gives

doe~ = -AV'(q5')dt -7~5 veVvfq5f dt + -\2/31dWoi(e),t,
vEV fGS

where we have also used dWt = -dWt by symmetry of the process W. In other

words, V'5 and <1 obey identical stochastic differential equations, meaning that se#"

and 0e obey identical waiting time distributions. But q#' and -#0 also obey identical

waiting time distributions, because for every state 41o, there is an idehtical probability

state -bo by symmetry of H. Therefore, any edges el and 62 for which there exists

- c Aut(G) with C2 = O(ei) will have identical waiting time distributions.

Note that in the incompressible limit p -÷ oc, there may also be pairs of edges

with identical waiting time distributions for which no such a exists, even in connected

simple graphs. One way to find examples of this is to construct graphs where (1) every

cycle passing through el also passes through e2 and vice versa and (2) there is no

automorphism mapping el to e 2.

In K4 , every vertex is connected to every other, so Aut(K4 ) = S4 . This means

any edge can be permuted to any other-the graph is edge transitive-so all edges

are equivalent and may be aggregated together. To quantify cycle swapping in K4 ,

we numerically determined the distribution of the waiting time for an edge to change

its state between -1, 0 and +1. The resultant survival function S(t) = IP(T > t)

for the transition waiting time T of any edge in K4 lengthens with increasing flow

polarization strength A (Fig. 2-2g), and is well approximated by a two-part mixture

of exponential distributions.

40



2.2.3 Transition rate estimation

Reaction-rate theory explains the form of the waiting time distribution [591. In a

system such as ours that obeys damped noisy Hamiltonian dynamics, a transition

from one local energy minimum to another, respectively 4a and (P, will occur along

a one-dimensional submanifold crossing a saddle point (D. The waiting time Tac for

this transition to occur is then distributed approximately exponentially, with rate

constant kac = (Tac)-'. For a Hamiltonian that is locally quadratic everywhere, the

rate follows from the generalized Arrhenius law [59]

IV (a) 11/2

kac c 1 (b) - ) exp(- Ha), (2.9)

where A Hab = H(b) - H((Ia) is the transition energy barrier and (a" and V(b) are the

eigenvalues of the Hessian 62H/6@2 with v, < 0 the unstable eigenvalue at the saddle

point. The reverse transition time Tca obeys another exponential distribution with

equivalent rate kca dependent on the energy barrier AHcb. Therefore, the aggregated

distribution of the waiting time T for the system to change its state between either

minimum is a mixture of two exponential distributions weighted by the equilibrium

probabilities of the system to be found in each state. For K4, almost all transitions

should be between 3-cycles and 4-cycles: each Eulerian subgraph is a 3-cycle or a

4-cycle, with 4-cycles being global minima, and direct transitions between different

4-cycles have a large enough energy barrier to be comparatively rare. Thus, we expect

K4 to exhibit a two-part mixture with a slow rate k43 from a 4- to a 3-cycle and a

fast rate k34 from a 3- to a 4-cycle. Figure 2-2h,i shows k43 and k34 for K4 at a

range of values of A, as determined by maximum likelihood estimation on simulation

data. Our non-quadratic potential means these rates are not precisely determined by

Eq. (2.9), but it does suggest an Arrhenius-type dependence kac cx A exp(-1AHab).

Computing the energy barriers and fitting the proportionality constant for each of k34

and k43 then gives excellent fits to the data, confirming our hypothesis (Fig. 2-2h,i).

In the limit p/A > 1 the transition energy barriers for K4 can be computed
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directly. We assume incompressibility throughout the transition and enforce that

assumption by directly solving the constraints, though using a cycle basis would yield

the same result. Using the vertex labelings and edge orientations in Fig. 2-2a, let #1,
02 and 03 be the flows on the outer edges 2 -+ 3, 2 - 4, and 3 -+ 4 respectively.

Then the flows on the other three edges are fixed by the four vertex constraints (one

of which is redundant), giving energy H(012,021 #3)= A(# 1 , 2, 3), where

N(# 1, 02, #3) = V(0 1) + V(# 2) + V(# 3 )

+ V(01 + 02) + V(02 + # 3) + V(03 - q1).

Extrema of W can then be evaluated numerically. By symmetry we need only consider

one particular transition. Let FDa be the state with unit flux on the 3-cycle 1 -+ 2 -

3 - 1 where (#1 , # 2 , # 3 ) (1, 0, 0). Similarly, let <D, be the 4-cycle 1 -+ 2 -4 3

4 -+ 1 where (#1, #2, #3) = (1, 0, 1). These states are separated by a saddle point <Jb

with (q 1, 0 2 , 3) = (1.03, 0, 0.44), where R(<Db) _ -0.20. Since W(<DIa) -1/4 and

H(IDC) = -1/3, there are transition energy barriers ZHab ~ 0.45A from a 3- to a

4-cycle and AHcb e 0.54A from a 4- to a 3-cycle.

Note that the transition is not exactly of the form (#1, #2, (3) = (1, 0, s) with

0 s 1, as it would be were it only adding or removing a unit of flux around a

3-cycle. Instead, the saddle point is slightly displaced from #1 = 1. However, this

effect is small, and (2 remains at 02 = 0 throughout.

The complete graph K 4 has as much symmetry as is possible on four vertices.

This is unusual: most graphs have multiple classes of equivalent edges. Though P3, 1

(Fig. 2-2d) is vertex transitive, in that any vertex can be permuted to any other by

its automorphism group Aut(P3,1) = D6 x C2, it is not edge transitive. Instead, the

edges split into two equivalence classes (Fig. 2-2j, inset), one containing the two trian-

gles and the other containing the three edges between them. The waiting times then

cluster into two distinct distributions according to these two classes. However, when

more than two inequivalent minima exist, as they do for P3,1, the potential transitions

rapidly increase according to the combinatorics of the mutual accessibility between

42



(a) (b) p. P P P

PP P P

10 - 0

g 
4,,51 ,2 6, 625,,7,

genralse Pere grph0O' g.g=

g=5 3:

f3.1 P4,1 P5,1 P5,2 P6,1 P6.2 P7,1 P7,2

generalised Petersen graphs

Figure 2-3: Transition rates in highly symmetric graphs are determined by cycle
structure. (a) Transition rate for edges in the first eight generalized Petersen graphs
with A = 2.5, p = 25, /-1 = 0.05. The rate was determined for each edge, then
averaged within classes of equivalent edges. Symbols denote the rate for each class,
categorized by e-girth g, as in the key. The range of computed rates within each class
is smaller than the symbols. (b) The graphs in (a) with their edge equivalence classes
when more than one exists. Edges colors denote g, as in (a). Observe that identical
e-girth does not imply equivalence of edges.

these minima. On P3,1 there is potentially one rate for each pairwise transition be-

tween 4-, 5- and 6-cycles, leading to a mixture of six or more exponentials for the

waiting time distribution. These mixture components cannot be reliably statistically

distinguished without large separations of time scales. Instead, we compute the tran-

sition rate k = (T)-' for each set of equivalent edges. The rates decay exponentially

with A (Fig. 2-2j), consistent with transitions obeying Eq. (2.9). But why does one

set of edges transition more slowly on average than the other? We shall now explore

this question for both highly symmetric and totally asymmetric graphs.

2.2.4 Edge girth determines rate band structure

Global symmetries and local graph structure play distinct roles when determining

the transition rates. Figure 2-3a shows the edge state transition rates for the first

eight generalized Petersen graphs P,k [1401, averaged within edge equivalence classes

(Fig. 2-3b), at a representative choice of parameter values which we fix henceforth to
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focus on the effects of network topology. Inspection of Fig. 2-3a reveals that there are

some graphs, such as P6 ,2, that exhibit distinct classes obeying near-identical average

rates, despite these edges' differing global symmetries. These classes turn out to be

composed of edges with similar sizes of cycles running through them.

When p >> A, state transitions will conserve flux throughout and so take the

form of adding or subtracting a unit of flux around an entire Eulerian subgraph

G' C G. The energy barrier to such a transition increases with the number of edges

m in G'. Indeed, suppose the transition consists of flipping a fraction p of the edges

in G' from q5 0 to # = 1, with the remaining edges necessarily flipping from

q = 1 to q = 0. The transition can then be approximated by a one-dimensional

reaction coordinate s running from 0 to 1, as follows. Suppose that only edges in

G' change during the transition (which is approximately true for K4 ; Section 2.2.3).

Using the symmetry of V, the energy H(s) at point s of the transition is given by

H(s) = Ho + pmV(s) + (1 - p)mV(1 - s) for Ho a constant dependent on the states

of the edges not in G'. The energy barrier is then AH = max, H(s) - H(O). H is

maximized precisely when pV(s) + (1- p)V(1 - s) is maximized, which is independent

of m. Therefore, for fixed p, A/H is linear in m. This argument suggests that, since

the transition rate k oc exp(-OAH), edges contained in small cycles should have

exponentially greater transition rates than those with longer minimal cycles. Define

the e-girth g, to be the minimum length of all cycles containing edge e, so that the

usual graph girth is mine ge. Categorizing edge classes in Fig. 2-3 by ge confirms our

hypothesis: the transition rates divide into near-distinct ranges where larger g, yields

rarer transitions, and equivalence classes with similar rates have identical e-girths.

2.2.5 Asymmetric networks

Even for graphs with no symmetry, the behavior of each edge can still be predicted

by a simple local heuristic. For our purposes, a graph with 'no symmetry' is one pos-

sessing only the identity automorphism, in which case we say it is asymmetric 1531. In

this case, edges can have transition rates entirely distinct from one another. Figure 2-

4a depicts the mean transition rates for the edges of 20 asymmetric bridgeless cubic
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Figure 2-4: Cycle structure determines edge transition rates in asymmetric graphs.
(a) Transition rate for each edge in 20 random asymmetric bridgeless cubic graphs on
21 edges. Markers denote e-girth g, as per the key in (c). A = 2.5, p = 25, 0-' = 0.05.
(b) One of the graphs in (a), corresponding to the marked column (*). Edges colored
and labelled according to g. All 20 graphs are shown in Fig. 2-5. (c) Transition
rates k from (a) binned by girth-weighted rate Rg, using best-fit value a = 1.31, with
markers denoting ge as per the key. Horizontal error bars are range of marker position
over 95% confidence interval in a, vertical error bars are +1 standard deviation in
k within each group. Solid line is best fit k = -yRg, dashed lines are 95% prediction
intervals on k with a fixed.
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Figure 2-5: The 20 non-isomorphic asymmetric cubic graphs in Fig. 2-4. Edges are
colored according to e-girth as indicated in graph 1 and in Fig. 2-4. Graph 19 is that
illustrated in Fig. 2-4b. All planar graphs (2, 3, 5, 6, 7, 12, 16 and 19) are shown in
a planar embedding.
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graphs on 21 edges. As in Fig. 2-3, categorizing edges by their e-girths (illustrated

in Fig. 2-4b for the starred graph; see Fig. 2-5 for all 20 graphs) splits the rates into

near-distinct bands, despite the total absence of symmetry. However, the bands are

not perfectly distinct, and high-girth edges in particular display a range of transition

rates both within and across graphs. A large portion of this variation is accounted for

by considering the sizes of all cycles containing an edge. While the full dependence

is highly complex, we can obtain a good transition rate estimate by considering just

two cycles. Let fi = g, and f2 be the sizes of the two smallest cycles through e. (It

may be that f I= f2.) Drawing on our earlier argument for the transition rate of

an m-cycle, suppose that flips of these two cycles occur independently with waiting

times T distributed exponentially at rates Ai = -y exp(-azf) for constants a, -y. The

waiting time T = min{TI, T2} for one of these to occur is then exponentially dis-

tributed with rate A 1 + A 2 . Therefore, (T) = (A 1 + A 2)' and so the transition rate

k = 1/(T) = yRg, where we have defined the girth-weighted rate

R9 = exp(-af1 ) + exp(-af2 ). (2.10)

This could be extended to an arbitrary number of independent cycles, but as the

longer cycles are exponentially less likely to transition they have only a small effect.

Fitting k = yRg to the data in Fig. 2-4a yields an exponent a = 1.31. This fit gives

a strong match to the data (Fig. 2-4c): the different e-girth categories now spread

out along the fit line, showing that Eq. (2.10) yields an easily computed heuristic to

estimate the transition rates of edges in a given graph better than g, alone. Moreover,

the good fit suggests that interactions among cycles have only minor effects on the

transition rates.
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2.3 Discussion

2.3.1 Incompressible limit

Thus far, we have been considering approximate incompressibility with P >> A but

finite. We now pass to the fully incompressible limit p -+ oc, which necessitates a

change of flow representation. In this limit, the dynamics of 4) are constrained to the

null space ker V, and so 41 must be decomposed using a basis of ker V.

Dimensional reduction

Let L = VTV be the (IS1 x 1E1, symmetric, positive semi-definite) Laplacian ma-

trix on edges, and let {V, 2 ... , I1} be an orthonormal basis of eigenvectors

of L with components I' = (<4) and corresponding real, non-negative eigenvalues

{Vi, v2 , .. . , VIEI}. Note that this is not the same as the vertex Laplacian L = VVT,

which will be the subject of Chapter 4. Now, using summation convention, let

fi = 0e0 be the components of 1 in this basis. Then by orthonormality of the

basis vectors, #e = fj<, so fi obeys

dfi,= -AV'(fj'$b )O'dt - fti fidt + /2/-h 1<4dWe,t,

with no sum over i. As p - oc, the second term damps to zero all fi with non-

zero eigenvalues vi > 0, leaving only components with vi = 0. The corresponding

eigenvectors span ker V, the space of all incompressible flows termed the cycle space

or flow space. Furthermore, orthonormality implies the noise term O'dW,t reduces

to a single term of unit variance. Therefore, in this limit, the system obeys

df, = H d t + /20- d Wo, t,ffa

where Greek indices run over only those components where v, = 0, and we use the

reduced energy H = A EeCS V(f<O4e).

Having reduced the dynamics onto ker V, we are now free to change basis inside
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this subspace. In general, the orthonormal basis { T} will not be physically intuitive,

since its basis vectors include fractional flows on many edges. More comprehensible is

a cycle basis, where basis vectors comprise unit flux flows around closed cycles. Such

a basis of ker V always exists: for example, one can start with an empty set C and

repeatedly (1) add an arbitrary cycle ci to C and (2) remove an arbitrary edge in ci

from G. After E - V + n, repetitions, where n, is the number of components of G,

each component will be reduced to a tree. Removing edges at every step ensures that

the ci are linearly independent and that the coefficients ai in v - asc2 for

any incompressible flow vector v can be recovered in order by matching the flow on

each removed edge. While the intuitiveness comes at the cost of non-orthogonality, a

cycle basis is particularly effective for planar graphs, as we describe next.

Fix a planar embedding for G. Let each {F0 } be the component of anti-clockwise

flux around each of the IS - Vl + 1 non-external (finite) faces of G, and define the flux

about the external (infinite) face to be zero. The flux on an edge is then simply the

difference of the fluxes about its two adjacent faces. In particular, let A = (A,,) be

the matrix whose rows are the cycle basis vectors, so that #, = F0 Aae. This implies

Fa = Paee for P = (AAT)-1A. The components F, then obey

dF = -(PP T )aO dt + 20-1 dX,t, (2.11)

where H is the reduced energy H = X Ec, V(FAe), and Xt is a vector of correlated

Brownian noise with covariance matrix ppT = (AAT)-1. Now, A.e is non-zero only

when edge e borders face a, and is then +1 or -1 depending on the orientation of the

edge relative to the face. Therefore, A is all but one row of the incidence matrix of the

planar dual of G, where the missing row is that corresponding to the external face,

meaning L = AAT is the Laplacian on vertices of the dual (its Kirchhoff matrix) with

the row and column corresponding to the external face deleted. Thus the independent

edge noise turns into correlated noise with covariance L.. which is typically non-zero

almost everywhere. In other words, flux conservation means that the noise on one

edge is felt across the entire graph.
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Figure 2-6: Constructing a cycle basis for P4,1. (a) A planar embedding of P4,1, with
edges numbered and oriented as shown. (b) The dual of the embedding in (a), with
dual graph vertices (original graph faces) numbered as shown. Edge orientations
depend on those chosen in (a), as described in the text. Vertex 6 and its incident
edges, highlighted, correspond to the external face whose flux is fixed at zero.

Cycle basis for P4 ,1

As an example, we detail the derivation of the planar cycle basis representation in the

incompressible limit for the cube P4,1. Using the embedding shown in Fig. 2-6a, orient

and number the edges as indicated. Next, construct the dual of the (undirected) plane

graph, with vertices numbered as in Fig. 2-6b, and assign an orientation to each edge

of the dual such that A - B implies that the flow on the edge between faces A and

B is FR - FA, where F, is the flow counter-clockwise around face oe (Fig. 2-6b). This

dual has incidence matrix

-1 0 0 0 -1 0

0 1 0 0 1 -1

0 0 1 0 0 1

0 0 0 1 0 0

1 -1-1-1 0 0

0 0 0 0 0 0

0 1

0 0

-1 0

1 -1

0 0

0 0

1

0

0

0

0

-1

0 0 0

-1 0 0

0 -1 0

0 0 -1

0 0 0
000

the rows of which are the cycle basis vectors. General face flow components F =

(F1 , ... , F6 ) then translate to edge flows 1D = (#, . . , 512 ) as e = Fale. However,

there is a degree of freedom: adding a constant to each component of F results in the

same <b, so to obtain a unique correspondence between F and (D we fix the external

face flux F6 = 0. Let A be I with the corresponding final row omitted and drop
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the final component of F. Then for <D E ker V, #, = F Ae inverts to F, = Pee

with P = (AA T)-A. Thus the truncated dual Kirchhoff matrix L AAT - which is

independent of the edge orientations in Fig. 2-6b - reads

L

4

-1

0

-1

-1

-1

4

-1

0

-1

0

-1

4

-1

-1

-1

0

-1

4

-1

-1'

-1

-1

-1

4

giving a noise covariance ppT = L in Eq. (2.11) reading

= 1
24
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Observe that non-adjacent face pairs such as faces 1 and 3 have correlated noise.

Example

Figure 2-7 shows an integration of Eq. (2.11) for an embedding of the graph P4 ,1

(Fig. 2-3), the cube, whose covariance matrix L-1 is non-zero everywhere. (In fact,

the dual of a polyhedral graph is unique [142].) Note that the F, need not only

fluctuate around states {-1, 0, 1}, as seen in Fig. 2-7 when a state with F5 = +2

is attained. The constraint now is that the difference F, - F3 between adjacent

faces a and # must be near {-1, 0, 1}, as this is the flux on the shared edge. Here,

the central face F5 can assume 2 if its neighbors are all 1. In general, a face of

minimum distance d to the external face, which is constrained to zero flux, can be

metastable at values up to id if all its neighbors are at (d - 1). A further example

on a 15 x 15 hexagonal lattice is given in Fig. 2-8.
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Figure 2-7: Incompressible flow on planar graphs can be represented using a face-

based cycle basis. (a) Flux-time traces for flow about each of the internal faces of
P4,1, as labelled in (c), from Eq. (2.11) with A = 2.5, 3-1 = 0.05. (b) Zoom of trace
showing a transition between two 8-cycles, which are global minima, via a 6-cycle.

(c) Distinct state configurations in (b) of face fluxes (upper) and corresponding edge

flows (lower).

2.3.2 Low temperature limit and ice-type models

Similar to how a lattice #4 theory generalizes the Ising model 1143], on a regular

lattice our model in the incompressible limit gives a lattice field theory generalization

of ice-type or loop models [14, 16, 72]. Instead of there being a finite set of permitted

flow configurations at each vertex, we now have a continuous space of configurations.

Taking the low temperature limit OA -s oc then recovers a discrete vertex model

with i { -1, 0, 1}, where allowed configurations must be maximally flowing; thus,

for example, a square lattice yields the six-vertex ice model 1161. For general G, the

OA -+ oc limit can be understood as a form of random subgraph model [551, where the

ground states are flows on maximum Eulerian subgraphs which are selected uniformly

with a multiplicity of two for either orientation of every sub-cycle. On a cubic graph,

a subset of the ground states are the Hamiltonian cycles (cycles covering every vertex

exactly once), if they exist, since a maximally-flowing state will have two out of every

three edges at every vertex flowing. The expected number of Hamiltonian cycles on a

cubic graph grows like IV -1/2( 4 / 3 )VI/2 as IVI - oc [116], meaning large cubic graphs

possess a huge number of ground states.
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Figure 2-8: Incompressible flow on a 15 x 15 hexagonal lattice using the face cycle
basis. (a) Plot of flux values over time for each face in an integration on the 15 x 15
lattice, at A = 2.5, p = 25, f-1 = 0.05. (b,c) Configurations of the face fluxes at the
times marked in (a), along with the cycle configurations they represent. Cycles are
colored according to their orientation clockwise (cyan) or counterclockwise (magenta).
Faces are ordered in (a) column-wise from bottom-left to top-right of the lattice.
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2.3.3 Complex networks

We have focused on small regular graphs, but the dynamical principles presented here

will still apply to active flow on complex networks. The edges in a large random graph

typically exhibit a wide distribution of e-girths, where topologically protected edges,

whose e-girth is large enough to prevent them ever changing state within a realistic

observation window, coexist with frequently switching edges of small e-girth. In

fact, graphs drawn from distributions modeling real-life network phenomena [12, 1411

seem to have far more small e-girth edges than their fixed degree or uniformly random

counterparts.

Unlike the cubic graphs we have focused on, a complex network possesses a broad

vertex degree distribution. This will certainly affect transition rates, since the pres-

ence of even-degree vertices deepens energy minima (Fig. 2-1). However, since the

effect of vertex degree is broadly independent of cycle structure, we predict that the

distribution of transition rates will still qualitatively match the e-girth distribution.

In Fig. 2-9 we plot e-girth distributions derived from ten instances each of four ran-

dom graph distributions on 1000 vertices: fixed degree 3, uniform, Barabdsi-Albert

('scale free'), and Watts-Strogatz ('small world'). Of the four, random cubic graphs

display by far the highest e-girths, whereas the Barabdsi-Albert and Watts-Strogatz

graphs, commonly used as prototypes of certain forms of real-life complex networks,

both retain many edges with low e-girth despite their size. Therefore, by this mea-

sure, complex networks may exhibit a far greater proportion of fast-switching edges

than random cubic graphs on the same number of vertices.

Furthermore, though large random graphs are almost always asymmetric [531,

many real-life complex networks have very large automorphism groups [81] meaning

that, as in Fig. 2-3, there will be large sets of edges in such a network with identical

transition rates. Active flow on complex networks can therefore be expected to display

a rich phenomenology of local and global state transitions.
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Figure 2-9: Empirical probability distributions of e-girth determined from ten graph
realizations each from four random 1000-vertex graph ensembles: (a) fixed degree 3,
i.e. cubic; (b) uniform with 1500 edges; (c) 'scale free' Barabisi-Albert with a degree
k = 2 vertex added at every step; and (d) 'small world' Watts-Strogatz with rewiring
probability p = 0.5 and mean degree k = 4. The pseudo-real-life networks of (c)
and (d) exhibit distributions with far more small e-girth edges than the more generic
random graphs in (a) and (b).
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2.4 Numerical methods

2.4.1 Numerical integration and waiting times

Equations (2) and (6) were integrated by the Euler-Maruyama method with time step

6t = 5 x 10-. After an initialization period to t = 500, state transition waiting times

in Figs. 2-2 to 2-4 were determined by applying a moving average filter of width At ~ 3

to eliminate noise-induced recrossings of without a true state change, rounding to

the nearest integer, and computing the times between changes in this integer state.

Waiting times were aggregated over sets of 16 integrations to t = 4 x 10' for each A

in Fig. 2-2, and over 24 (Fig. 2-3) or 8 (Fig. 2-4) integrations to t = 1.6 x 106 for each

graph in Figs. 2-3 and 2-4.

2.4.2 Graph generation and properties

Mathematica (Wolfram Research, Inc.) was used to generate graphs and their inci-

dence matrices and to determine all graph-theoretic properties including cycle lengths

and edge equivalence classes. The graphs in Fig. 2-4 and Fig. 2-5 were chosen uni-

formly at random from the database of all non-isomorphic bridgeless connected cubic

graphs on 14 vertices accessible in Mathematica after filtering to discard those with

non-trivial automorphism group. A bridge is a single edge that is not part of any

cycle and therefore cannot support incompressible flow.

2.5 Conclusions

Our analysis shows that the state transition statistics of actively driven nearly in-

compressible flow networks can be understood by combining reaction rate theory

with graph-theoretic symmetry considerations. In particular, we have shown that the

girth of an edge is a strong predictor of the time it takes to change its flow, and there-

fore that the length of a cyclic flow directly determines its stability. Furthermore,

our results suggest that non-equilibrium flow networks may offer new insights into
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ice-type models and vice versa. The framework developed here offers ample opportu-

nity for future generalizations both from a biophysical and a transport optimization

perspective. For example, an interesting open biological question concerns how plas-

modial organisms such as Physarum [2, 95, 131] adapt and optimize their network

structure in response to external stimuli, such as light or nutrient sources or geomet-

ric constraints [3, 113]. Our investigation suggests that a combined experimental and

mathematical analysis of cycle structure may help explain the decentralized compu-

tation strategies employed by these organisms. More generally, it will be interesting

to explore whether similar symmetry-based statistical approaches can guide the topo-

logical optimization of other classes of non-equilibrium networks, including neuronal

and man-made information flow networks that typically operate far from equilibrium.
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Chapter 3

Compressible active flow networks

After the extensive investigation of the incompressible case in the previous chapter,

we will now turn to the case where density or volume can change across the net-

work.1 Building on Rayleigh's work [1121 on driven vibrations and the Toner-Tu

model of flocking [133], the theory accounts for network activity through a nonlin-

ear friction [32, 117, 121, 1331. We work in a fully compressible framework allowing

accumulated matter at vertices to affect flow through network pressure gradients, as

suited to the many biological systems exhibiting flexible network geometry [2, 4, 1311

or variations in the density of active components [124]. Although inherently non-

linear, the model can be systematically analyzed through perturbation theory. Such

analysis shows how slow global dynamics emerge naturally from the fast local dynam-

ics, enabling prediction of the typical states in large noisy networks; these states have

significantly fewer active modes than for energy equipartition [701 in thermal equi-

librium. More broadly, our model provides an accessible framework for investigating

generic physical phenomena in active systems, including topologically-protected sound

modes [124] and the influence of spectral band gaps.

'This work was published in the following paper:
Aden Forrow, Francis G. Woodhouse, and Jdrn Dunkel. Mode Selection in Compressible Active
Flow Networks Phys. Rev. Lett., 119(2):028102, 2017.
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3.1 Model

We consider activity-driven mass flow on an arbitrarily-oriented graph G = (V, S)

with V = IVI vertices and E = 8SI edges. The elements of the V x E gradient (inci-

dence) matrix V are Vve = -1 if edge e is oriented outwards from vertex v, Vve = +1

if e is oriented inwards into v, and V,, = 0 otherwise. The dynamical state variables

are the deviations from the mean mass g = M/V on the nodes, (p,(t), . . . , pv (t)), and

the mass fluxes on the edges, (q 1(t), ... , #E(t)), governed by the non-dimensionalized

transport equations

QV= Vvee, (3.1a)
e

qe =VTjQV+ q #e + 2De (t), (3.1b)

where &e(t) is standard Gaussian white noise. Equation (3.1a) ensures mass conser-

vation. The first term on the r.h.s. of Eq. (3.1b) represents the gradient of an ideal

gas-type node pressure pv Xc p, corresponding to the leading term in a virial expan-

sion; the second term is a Toner-Tu type active friction force derived from a depot

model [118, 121] with coupling c > 0 and active-passive control parameter A, which

drives the edge fluxes #e towards preferred values /7y when p > 0. Many networks

have non-uniform edge and vertex weights, which can be incorporated into equations

of identical form to Eqs. (3.1) with appropriate rescaling of p, q, and V, as we will

see in the next section.

3.1.1 Weight scaling and nondimensionalization

We could define the model in terms of the dimensional quantities e, qe, and t; global

dimensional parameters e, /, and D; dimensional edge conductances tdie and vertex

volumes 7n,; and a dimensionless global parameter p and function g as
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dt vee

d~e iie V 7ri71 v + g O~e~e 2 ~)

V

The scaling by conductance in the argument of g is chosen to match the phe-

nomenology observed in dense bacterial suspensions, where activity selects a charac-

teristic velocity and not a fixed flux; if the edges are all of the same length, which

can be achieved by appropriately discretizing an experimental network, the velocity

will be proportional to #e/We and not #. If we choose a conductance scale 'CV and

volume scale rhn (which together give a time scale (r7n/il) 1/ 2 ) and insert the rescaled,

nondimensional parameters

we =b-61>We,

and variables

= ri-1 ^n',

1

g= mv2 (- i?),

t =
w v

(

W e $$ ( #)~ e,

te(t) = $ l~)

we are left with

dpv

dt

do~e

dt

M_ 1/2,7v l/

e

we ew'V mVj'2  + Eg (A, Vf~ + V2De~)
V

With constant conductances we = 1 and volumes mv = 1, we recover the model
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introduced above, namely

e= 7 , (3.2a)
dt

e
do/e = VT D~~) (3.2b)
dt ev + Cg (A, 0,) e + V/ (t) (

V

with nonzero entries of the gradient matrix equal to 1 and g(p, qe) = 1 . All of our

analysis applies equally well to the varying weights case: the only substantive changes

are replacing Ve with the weighted gradient V*e = m1/2 V 1/2 and choosing the

appropriate scaling for the noise and activity.

We can combine Eqs. (3.2a) and (3.2b) into one second order equation for the

pressure dynamics reading

v = SVve -- VQ. + Cg(p, Oe)#e + 2De (t) . (3.3)

In the absence of friction, when g(P, #e) = 0, the dynamics are Hamiltonian with

energy

H = QvVve VTPu + 1 eVvlof. (3.4)
V'e'U e,v,f

The energy is particularly simple when written in the basis of singular vectors of VT

with non-zero singular values, giving

H = (,r2+ f2) = Hn.
n n

3.1.2 Relation to physical flow systems

We choose to explore a minimal model coupling local active energy input to network

structure, rather than capture the details of any particular model system. Never-

theless, the key features of our model, namely mass conservation and a polynomial

expansion of the active term, are generic enough to be straightforwardly adapted to
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a range of applications.

Mass conservation and pressure driven flow are likely to remain in any active

flow model; the form of the active term may change in different contexts. In our

case, staying close to examples of bacterial suspensions, we model activity as driving

spontaneous flow on all edges. An alternative option, more closely related to shut-

tle streaming in networks, would be to apply an active force f, that compresses or

expands each vertex and drives flow in or out, with modified dynamics

dt
e

do~e _VTOv+Cv

dt ZVeig + Vefv) + 2De(t).
V

The correct form of the active force depends on the microscopic details of the driving.

Some generic features, however, will not depend on the exact form of fv and will

be discoverable by choosing a simple function of local quantities (OV, gV, etc.) as an

approximate driving force.

The same method is used to derive the Toner-Tu equations for continuous active

flows [133]; our model can be understood as a discrete version of a special case of

these equations. If advective and diffusive terms are rendered negligible in favor of

pressure-driven and activity-driven flow by geometric effects or otherwise, and we

take only the linear term in the virial expansion of the active pressure, the general

Toner-Tu model simplifies to

= aU - - o1V(p - PO) +f + V - (Vp) 0.
at at

In a limit where deviations from the mean density are small, so p = po + q for some

97< 1, we can further reduce to

= aO - V V-nol 'q-1 + O + nv (po+Qp)- V + ?' -Vg = 0.
at at
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Then on short time scales r = t/, we have

-4+

-= av - 7KI2 -li2 i, + 77 7- ~ -pov - V,

where we neglect terms that must be of order I: if the coefficients a, /, and a, are

sufficiently large, their terms will remain relevant. The scaling of T ensures that t is

small when T is order one or smaller. Discretizing the velocity and density fields as

well as the noise f and replacing the continuous gradient with either VT or -V, as

appropriate yields Eqs. (3.2).

3.1.3 Compressibility

Compressibility as included in our model is intended to describe changes in density

or volume of the active component, not the underlying fluid. For example, variations

in o may be interpreted as variations in the density of swimmers in a bacterial system

or variations in the tube volume in Physarum polycephalum. Such systems may be

effectively compressible even though the solvent fluid (e.g. water) is incompressible.

In some cases, compressibility is the primary object of interest. For example,

Ref. [1241 discusses sound in active fluids in a network using a continuous wave equa-

tion derived from the Toner-Tu model. On top of a background flow taking the form

of a lattice of counter-rotating cycles, they find modes confined to the edges of a Lieb

lattice, which we can reproduce in our discretized setting (Fig. 3-1). In both their

setting and ours, these edge modes decay over time without propagating into the bulk

(cf. discussion in App. I.B of Ref. [1241).

We can recover an incompressible limit of our model by first extending it to include

damping on the vertices:

dg = V ee - 79vi, (3.9a)
dt

e

--Y 1 Vv +6 A O)O V/2 DG(t). (3.9b)
dt - evpve~i~~ie
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(a) (b)
0.1 0.1

cri.

0 0

Figure 3-1: Our active network model exhibits behavior similar to the topological
edge modes of Ref. [124]. (a) A discretized version of the Lieb lattice considered in
Ref. [124]. Edges shared by adjacent 8-cycles have weight we = 2 to account for the
additional width of the corresponding channels. The most stable flow on this network
consists of a lattice of counter-rotating cycles, in which both the active friction term
g(p, #e//V,'wi) and the pressure variations o are everywhere zero. (b) This lattice has
modes confined to the edges of the domain, allowing sound waves to propagate and
decay without scattering into the bulk (cf. discussion in App. I.B of Ref. [124]); one
such mode is pictured. Simulations started in this mode as a perturbation to the
most stable flow pattern do not cause density changes in the center. The network
model allows study of such phenomena without resorting to full scale simulation of
the flow patterns.

This chapter examines the limit y -+ 0 where total mass is exactly conserved. The

previous chapter, where we started from a purely edge-based perspective, is in fact

the opposite limit, 77 -+ oc, where Eq. (3.9a) can only be balanced if Lo -÷ 0 and

QOv = E Vve~e.

Substituting this into Eq. (3.9b) gives

d-SVVvaqa + cg(p, Oe)#Oe + V/2De(t).

With g(A, ke) = #0(1 - #2), this is equivalent to the model discussed in Chapter 2. If

-y -+ oo so that 7/,q is constant, small deviations from incompressibility are allowed; if

-7/7 -+ oc, incompressibility is fully enforced. However, compressibility is a necessary

ingredient for sound waves [124] and density oscillations [102].
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3.2 Mode selection

Active flow networks described by Eqs. (3.2) exhibit rich oscillatory transport be-

havior, including the mode selection illustrated in and Fig. 3-2 for a hierarchically-

weighted network with vertex degrees at most 3 as is typical of Physarum poly-

cephalum [15]. When this network is initialized with zero pressure variation and

flux, it typically settles into a quasi-steady state with a single dominant oscillation

frequency on the highest-weight path. This is a manifestation of the fact that single-

frequency selection is the norm on actively driven path graphs.

These oscillatory states arise from the interaction of the nonlinear active driving

with the harmonic coupling between p and q. With no friction, when E = 0, the

normal modes of Eqs. (3.2) coming from the singular value decomposition of VV,

decouple into undamped harmonic oscillators with constant amplitudes fixed by the

initial conditions. If we removed the harmonic terms and only had friction, the

nonlinearity would drive the flux to A on every edge. By combining both terms,

we find that activity drives flow which the harmonic terms convert to oscillations; the

two effects can balance when subsets of modes have fixed nonzero amplitudes, , as

we shall show analytically below. In essence, the driving excites every mode linearly

and then excited modes suppress other modes supported on similar edges.

Generally, the features of the steady-state attractor will be determined by the

topology of the subgraph of high-weight edges, which may be much sparser than the

original network. For this reason, as well as for ease- of analysis and illustration, we will

henceforth assume G to be a tree, as realized in certain peripheral sensory neurons [731,
though in general the full model in Eqs. (3.2) is not restricted to any particular class of

graph. The behaviors observed on trees can be extended to denser graphs by choosing

appropriate edge weights. The complex active flow dynamics encoded by Eqs. (3.2)

can be understood analytically by considering the basis of oscillation modes of the

network, as we illustrate next in the fully deterministic case (D = 0).
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Figure 3-2: Activity can select a single dominant oscillation mode on hierarchically
weighted networks. (a) The edges in the graph simulated in (b) and (c) are given
weights decreasing exponentially with their distance from the central red path. (b)
Oscillations in pressure and flux develop primarily along the central high-weight path.
(c) Edge fluxes .2 settle into steady synchronized oscillations as exemplified for two
edges indicated in (b), one on (017) and one Off (05 9 ) the path. (d) Plotting the
time-dependent amplitude of each analytically-det ermined flow eigenmode confirms
selection of a single oscillatory mode. The ten modes with the highest average am-
plitude in this simulation run are pictured; the marked top two rows are oscillatory
modes, while the remaining rows are cyclic modes. See Fig. 3-3 for all modes. Simu-
lation parameters are E = 0.1, y~ = 1, and D = 10-4.

3.2.1 Rayleigh friction approximation

While choosing the friction function of the energy depot model introduced in Ref. [1211,

g(p, e) 1+ 02
1 e

has the convenient theoretical property that it gives a passive constant friction coeffi-

cient c for p = -1 and for # - oc, it is analytically difficult. To simplify the analysis,

we approximate this g(p, #e) with a symmetric quadratic [1121

g(p, Oe)= a - b02, (3.10)
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Figure 3-3: Including all of the modes from the simulation in Fig. 3-2 shows clear
single mode selection on this weighted network. Edges a distance d from the central
red path were given weight ed. Modes are ordered by frequency from high (top) to
low (bottom); the last thirty modes, marked in red, are cycles. The modes pictured
in Fig. 3-2 are marked in black.
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where a = p and b = 1 are chosen so that (p, 0) = g(p, 0) and .(p, #e) has the same

zeros as g(p, #e). This ensures that the two functions approximately match when

they are both negative, that is, when activity is putting energy into the flow. The

large difference between g(P, #e) and XP, Oe) when the flux is large is less important,

as the flow will be damped down in either case. The larger damping in (p, #e) does

result in slightly lower steady amplitudes, both analytically and in simulations.

3.2.2 Perturbation expansion

Now, expand the pressure p, = En=1 rn(t)g9n and flux #, = n 1 fn(t)#en in the

right and left singular vectors On = (Qvn) andq#n = (Oen) of VT corresponding to the

E = V - 1 non-zero singular values An. (On a tree, there is a single zero eigenvalue of

VVT yielding an additional right singular vector for the pressure, but this corresponds

to a constant mass shift and so can be safely neglected.) Defining mode amplitudes

An,= nK + fn2, the network energy then takes the simple form H = 1 EnAnA.

When E, the coefficient of the active driving term, is small there are two distinct

timescales, namely the fast oscillation timescale t and the slow friction timescale

T =ct.After writing Lo and #, in the mode basis, we can further expand in E as

00

Trnt = E'rkn (t, T), (3. 11a)
k=O
00

fn(t) = Ek fkn(t, T), (3.11b)
k=O

where we explicitly separate the dependence on the two timescales. Then

Tkn(t, T) = Tkln+ 2ot(rkn + C(9T kn,

fAn(t, T) = t2 fkn + 2 c8 tOrfkn - E A -2&fl
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At zeroth order in 6, with D = 0, Eq. (3.3) becomes

(9t ronvn V ronvn

n=1 n=1

The modes O-v are orthonormal, so the terms decouple into separate harmonic os-

cillators; fAn can be found from rkn using Eq. (3.2a). The leading order solution is

then

ron (t) = Aon (T)cos(Ast - 6n(T)),

fAn(t) = -Aon(T) sin(Ant - 6n(T)).

At first order in E, with g(p, 0e) = ( - )

V V [ E 2 E

>1(t r1n + 2)tTTOrTOn)Pvn A- riQ + 5Vve P -- fonen foe-
n=1 n=1 e n=1 =

Multiplying by ovm and summing over v, we find

E 3~

2rim + 21tarrom = -Amrim + Am /for - 5 em fonqen . (3.12)
L e (n=1

3.2.3 Leading order amplitude dynamics

The influence of activity becomes apparent at first order in c, introducing couplings

between mode amplitudes whose dynamics encode the state selection behavior of the

active network. Requiring that the 0(c) amplitudes rin and fin remain small relative

to the leading terms implies that the secular (unbounded) terms in the first order

equations must vanish [1281. Assuming negligible mode degeneracies, we will see that

the slow dynamics of the 0(1) mode amplitudes Aon(T) obey

d(AOn) = ( - P , 2 (3.13)

k=1
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where the overlap matrix

3 1
nk =31 - I n)Y @o2 (3.14)Pk=2 2 6nk) ene

e

encodes the network topology. Fixed points of Eq. (3.13) can then be found by

choosing a subset of the AOn to be zero and solving

E

Z Pnk AOk = (3.15)
k=1

for A 2 over the remaining non-zero modes. If all the non-zero solutions for A2n are

positive, then there is a stationary point with those modes activated.

In more detail, the argument in the previous paragraph begins by noting that

the magnitudes of the summands rkn and fkn must remain bounded in order for

the expansion in Eqs. (3.11a) and (3.11b) to make sense. From Eq. (3.12), rim is a

harmonic oscillator with natural frequency Am driven by the zeroth order oscillations.

It will have bounded oscillations only if the resonant terms in Eq. (3.12), those that

drive rim at its natural frequency, are zero. Finding the resonant terms and setting

them to zero will fix the leading order mode amplitudes An (T).

Expanding the cube in Eq. (3.12) gives

E

t rim + 2 1t(rrom - Amrim + Am I'fm - em k k

e k,e,n=1

-[f E

Am2rim - Am 'm em ek Oef Oen

- k,f,n=1 ( e

x AOkAoAOn sin(Akt - 6k) sin(Aft - 6e) sin(At - 6n).

(3.16)
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Now, the product of sines can be expanded into

sin(Akt - 6 ) sin(Aet - &5) sin(Ast - 6n) = ' [sin(Gk - , - 6n - Akt + Ant + Aft)

- sin(6k - &e + 6n - Akt - Ant + Aft)

- sin(6 k + 6 f - 6, - Akt + Ant - Aft)

+ sin(6 k + 6f + 6n - Akt - Ant - At)].

We seek only resonant terms, which only occur when Ak, Ae, and An sum to Am.

This happens most often in one of two ways. First, we might have k = f and n = m

or similar. Alternatively, we might have degenerate modes, Ak = Ae and An = Am.

However, we ignore the latter possibility because degeneracies add significant analytic

complications, including nontrivial dynamics of their relative phases. We also ignore

the rare possibility of resonant terms arising from interactions of modes with three or

four distinct singular values. The results we get with these assumptions closely match

simulated time series (Fig. 3-6e-g), suggesting that the existence of degeneracies has

little impact on the dynamics of nondegenerate modes.

The remaining resonant terms in Eq. (3.16) must cancel so that rim is not an

oscillator of frequency Am driven at frequency Am. Thus,

2at(rrom = Am [fOm + I ( m) Aim(3 sin(Amt - 6m))

+3 ( z emek) AOkAom4 (2 sin(Amt - 6m))
k=1,k 4m (e-

Substituting in rom and fom,

-2A'm Am sin(Amt - 6m) + 2A2 cos(Amt - 6m)6m=

Am - IAom sin(Amt - 6m) + 4 ( ) m(3 sin(Amt - 6m))

+3 e 1 kmk A 2Aom 1 (2 sin(Amt - 6m))1,
k=1,kzhm (e-
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where primes denote differentiation with respect to r. For this to hold for all t we

need the coefficients of the sine and cosine terms to separately cancel. From the cosine

term, 6,,= 0; from the sine term,

E

A'= Ao. - ( 1 AB, o ($ $
( e k=1,km e

E 
2

= 'A 0m (YPkA k,
k=1l

where the matrix P has entries

Pnk =(16 mk) Z 2emnek

e

as specified in Eq. (3.14). Rewriting in terms of the squared amplitudes,

E

(A ) 2A0 m -A'n(- O PmkA . (317)
dT k=1

As a matrix equation, with xm = A2m, this reads

x' =x O(p1 - Px), (3.18)

where 1 denotes the vector of ones and 0 is the component-wise product.

To find stationary points, we set

x (PI - Px) =0. (3.19)

The obvious way to solve Eq. (3.18) for all stationary points is to exhaustively search

over combinations of active modes: on picking certain elements of x to be zero, the

remaining nonzero entries i are found by solving Pi = [d, where P is P restricted

to those modes chosen to be nonzero. Stability of a fixed point x0 then follows

by standard perturbation analysis: inserting a small perturbation x 0 + 6x(T) into
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Eq. (3.18) gives

6x' = 6x - x0 0 (P6x) - (Pxo) 0 6x + O(6x 2) M6x + O(6x 2),

where I denotes the identity matrix, and the eigenvalues of M then determine stability

in the usual fashion.

3.2.4 Accuracy of Rayleigh friction approximation

To verify that the Rayleigh friction approximation does not significantly impact the

results, we check the amplitude and stability of single modes for the full model with

g(f #,e) (j - #2)/(1 + 02) on all edges. Here setting the first order secular terms

to zero in a perturbation expansion with AO, = Aop6,6 leads to

A ( + 1) 2-2 2 + 2 . (3.20)

Numerically solving Eq. (3.20) for p = 1 yields solutions within a few percent of

the Rayleigh approximation solution 1/ Pp which additionally match numerical

simulations of the full model even for E as large as 0.5 (Fig. 3-4).

When the system transitions from no energy input to active flow, the steady state

amplitudes will grow with p. If we assume t < 1 (so AP < 1) and expand the square

root to order A4, we find

Aj + O(A ) = P/P, (3.21)

matching the Rayleigh friction result to leading order. The scaling Ap ~ is typical

of a supercritical Hopf bifurcation.

3.2.5 One- and two-mode selection

Activity-driven fixed points with exactly one mode active always exist. If only mode p

is active at leading order, then AO, = fp/Pp 6p is a fixed point of Eq. (3.13). These

amplitudes, which closely match both those calculated with the full unapproximated
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Figure 3-4: Steady state amplitudes A as a function of activity A for the tree pictured
undergo a Hopf bifurcation as p crosses 0. Dots are long-time root-mean-square
amplitudes from simulations started in each mode; lines are numerical solutions of
Eq. (3.20). Mode A 2 is too unstable to reliably observe in simulations, so it is omitted.
For A < 0, all amplitudes go to zero in simulations; the dot included in that region is
at A = -1 where the friction is purely passive. Some deviations between simulation
and analytics are expected because the simulations do not use the Rayleigh friction
approximation and c / 0. Parameters are c = 0.5 and D = 0.

active friction force and those from averages computed over fully nonlinear simula-

tions (Fig. 3-4), show that as At crosses 0 there is a supercritical Hopf bifurcation with

AO, ~ fp. However, the stability of such a single-mode state depends on topology:

our simulations suggest that activity always selects exactly one oscillation mode in

simple path graphs, whereas single-mode states are typically unstable in networks

with complex topologies. We can use this observation to model more complex active

networks with single mode selection by appropriately weighting the edges: if the edge

weights for a path are large enough compared to the weights elsewhere in the network,

the path behavior dominates (Fig. 3-2).

Insight into stability is provided by the case with up to two modes active. Writing

AOn = A0p6np + Aoq6 nq, (3.22)
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Eq. (3.13) yields

d(A2) (p P-pA - PqAq) A , (3.23)

and symmetrically for A q. Depending on the topology-encoding overlap coeffi-

cients Pk, this gives up to four fixed points: the zero state AOp = Aoq = 0, which is

always linearly unstable; the single-mode state (AOp, Aoq) = (V 1 /P, , 0), which is sta-

ble if Pq > Ppp and a saddle if not, plus analogously for (0, ii/Pqq); and, potentially,

a mixed state A, A ) where A =* y (Pqq - Ppq)/ (PppPqq - P%) with Alq de-

fined symmetrically. When it exists, the mixed state is either stable (if P2 < PppPqq)

or a saddle (if P2 > PppPqq), but if one of the single-mode states is stable and

one is unstable, then one of A* and A*q is imaginary and there is no mixed state.

Hence, we have three possible scenarios (Fig. 3-5): one stable single mode and the

other a saddle with no mixed state (Fig. 3-5b,c; left); two stable single-mode states

with a mixed saddle in-between (Fig. 3-5b,c; center); and two single-mode saddles

with a stable mixed state in-between (Fig. 3-5b,c; right). These predictions match

simulations quantitatively even for relatively large c beyond the small-c perturbation

regime (Fig. 3-5). In fact, simulations show the same qualitative behavior for f = 2,

suggesting perturbation analysis remains predictive at high activity.

This two-mode analysis yields a simple topological heuristic for the stability of

single-mode states. Since JOPJ = 1, Ppp is small when OP is spread over many edges

and large when #P is localized to a few edges. If #q is localized to the same edges

as O,, Ppq will also be large and mode p will be stable to perturbations in mode q.

However, if #q is localized to a disjoint set of edges, Pq will be a scaled inner product

of near-orthogonal vectors (q) and (#59) and will be small. Thus localized modes will

be unstable to modes in other regions, while conversely if a mode is to be stable alone

then it will be spread out across the entire network. Therefore, a stable combination

of modes will possess significant flows on all edges of the network.

The number of activated modes in an arbitrary compressible active network de-

pends on intricate interactions between local activity and global flow configurations.
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Figure 3-5: First order perturbation theory accurately predicts the stable states on
small trees. (a) A five vertex tree possessing four nontrivial modes, as illustrated. (b)
On the tree in (a), mode amplitudes settle into one of two stable stationary states,
as seen in simulations for three different initial conditions. Modes are ordered by
frequency from high (top) to low (bottom). (c) Simulated mode trajectories (rainbow)
in (b) match analytic predictions (blue streamlines) in the subspaces of activated
modes. There are three possible arrangements of nonzero critical points in each 2D
subspace: a saddle point on one axis and a stable node on the other axis (left), a
stable node on each axis and a saddle point in the middle (center), or a saddle point on
each axis and a stable node in the middle (right). Higher order effects cause both the
convergence to a point with A 2 > 0 in the left and middle plots and the oscillations
in the trajectories. Parameters used are c = 0.5, 1 = 1, D = 0.

The total number of available modes is equal to the number of edges E, meaning

that, were each combination of modes to be a fixed point, a tree could have up to 2 E

stationary states. To see how the true number of stationary and stable states depends

on tree size, we performed an exhaustive numerical fixed point search of Eq. (3.13)

over a large sample of trees with E < 24 (Fig. 3-6a-d). The naive upper bound of

2 E suggests exponential growth of the mean number of steady states with edges E;

this is indeed what we see, going as - (2 E)4/5. However, though still exponential

in E, the mean number of stable states is much smaller at ~ (2 E)1/4 (Fig. 3-6a).

Remarkably, these stable states have only - E/4 modes active on average (Fig. 3-6c)

in stark contrast to the activation of all E modes under thermal equipartition [70].

Path-like topologies lead to even more dramatic reductions in the number of modes

active (Fig. 3-6c), suggesting that a biological system can further reduce the number

of active modes through an optimal choice of topology; moreover, hierarchically tuned
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Figure 3-6: States on larger trees possess surprisingly few active modes, which can
be inferred from time series with non-zero noise. (a) The mean number of stationary
states of Eq. (3.13) grows exponentially with edges E as 1.77 ( E 4/5 (solid orange
line), close to the upper bound of 2E states (dashed black line), while the mean
number of stable states grows as 1.2E (E)1/4 (solid blue line). We counted
states on all nonisomorphic trees with E < 14 edges (filled circles) and on a random
sample of ~ 175 trees per point for 15 < E < 24 (open circles). Averages are
over trees with a fixed number of edges. (b) As E increases, both the mean and
the variance of the distribution of trees with each number of stable states increase
rapidly. (c) Distribution of the average number of modes active in a stable state.
The mean over trees scales like 0.26E ~ E/4 (solid line), significantly below E/2
expected if modes were selected randomly. (d) Two example trees indicated in (a-
c) by the corresponding colored symbols. Stable states on paths (x) always only
activate one mode; complex trees (+) have more modes active. (e) Noisy networks
(D > 0) transition stochastically between stable states, exemplified by an amplitude-
time trace for the tree shown. Modes are ordered by frequency from high (top) to low
(bottom). Simulation parameters are c = 0.5, p = 1, D = 5 x 10-. (f) States found
by vbFRET from simulations on the tree in (e). The second, first, and fifth columns
are states seen in (e), indicated by the colored bars above. (g) States predicted by
Eq. (3.13) for the tree in (e). The first five states in (f) match those in (g); the sixth
column in (f) is likely a transient combination of analytically stable states.
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edge capacities as realized in Physarum [2, 4, 15] can further enhance mode selection

even in non-tree topologies (Fig. 3-2).

3.2.6 Differential growth rates

While the E/4 active modes per state that we observe is significantly reduced relative

to the total number of modes available, it is still a not insignificant fraction of E.

There are, however, several straightforward generalizations of our model that may lead

to more strict mode selection. We discuss two possibilities in this and the subsequent

section: variations in activity across the network and variations in weights of vertices

or edges.

For simplicity, we introduced Eqs. (3.2) with a uniform activity level P across the

entire network. This leads to equal driving on all modes: if Eq. (3.13) is initialized

near zero, it can be linearized to

dT (AM) = pA2,

where all modes grow at the same rate. Mode selection occurs in this system only

because of interactions between modes.

In many physical systems, however, differences in growth rate between modes are

important for mode selection. For example, the Rayleigh-Plateau instability [111]

causes fluid jets to break apart into droplets whose size is determined by the fastest

growing unstable perturbation to the jet radius. Nonlinear mode competition akin to

that in Eqs. (3.2) may only act on the subset of modes that grow quickly.

We can add this effect to our model by replacing At in Eqs. (3.2) with edge-

dependent parameters pe. With the quadratic driving of Eq. (3.10), Eq. (3.2b) be-

comes

dt =v - ~CQ A e O) /e + V2 DG(t).
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Following through the previous calculations with this change, Eq. (3.12) becomes

E 3-

(9r-m + 28tOrrom = -A2 r1. + Am [ZyenefOi~ei - er ( fonsen) .
Le,' e (n=1

The first term inside the square brackets no longer simplifies, since the #ei are not

orthonormal with the weighting pe. However, if we again ignore degeneracies, the only

resonant term is Ze #2mpefom from 1 = m. In this case, defining vr = Ze 02mpne,

Eq. (3.13) then reads

d A2m) =2Am Vm -- 2a An,%
+T(AOr) AOr (F - mrkA~k) (3.24)

k=1

where modes have distinct growth rates independent of their interactions. Alterna-

tively, one could specify vr arbitrarily in Eq. (3.24), though this would require more

complex changes in Eq. (3.2b) coupling activity across edges.

3.2.7 Higher order oscillations

Biological systems exhibit vastly different macroscopic and microscopic time scales [56,

69, 114, 136]. This phenomenon is present in our compressible active flow network,

where higher-order nonlinear effects induce slow global time scales from faster small-

scale dynamics. When the zeroth-order amplitudes AO, are at a fixed point, the

first-order corrections rin and fi, are harmonic oscillators with natural frequency

A, driven at linear combinations of the frequencies active at zeroth order. For in-

stance, if two modes p and q are active at zeroth order, the driving frequencies are

3AP - k(Ap Aq) for k = 0, ... , 3. This introduces new, slower timescales into the

dynamics, including oscillations in the energy H = Z1 A2(r2 + fn2) with frequency

AP - Aq. Their magnitude depends on the difference in frequency: slower oscillations,

driven by modes with similar frequencies A, ~~ Aq, have higher amplitudes (Fig. 3-7).

Before, by setting resonant terms to zero, we found the slow dynamics of A,. We

can also look at the non-resonant terms driving rim to find higher order effects. If we
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Figure 3-7: Slow global oscillations emerge from the fast active dynamics. (a) First
order considerations fix a constant mean flow energy; higher order effects cause signif-
icant slow oscillations about that mean. Simulation parameters were P = 1, C = 0.5,
and D = 0; the tree used is inset. (b) The mode amplitudes A 2 and A 3, like the
energy, oscillate much more slowly than the harmonic oscillations of f2 and f3. All
other mode amplitudes (unlabelled traces) are close to zero. (c) Frequency spectra
of the two active modes and the energy H for the simulation in (a) and (b). The en-
ergy oscillates due to higher-order interactions between modes at frequencies that are
linear combinations of active mode frequencies, not the harmonic frequencies alone
(dashed lines).

let

k

e j=1

assume the resonant terms are zero, and assume Aom = Aop6 mp+ Aoq 6 mq, the remain-

der of Eq. (3.12) is

Srim + Am2rim = Am{Smp3A 3 sin(3Apt)

+3Smq2pAopA 2[sin((2Aq - Ap)t) - sin((2Aq + Ap)t)]

+3Smqp2A 2Aoq[sin((2Ap - Aq)t) - sin((2Ap + Aq)t)]

+ Smq3A 3 sin(3Aqt) .

Setting m = p and only looking at the terms closest to resonance, we obtain

a2 r 1 + A2 ri ~ A{3Sq2p2AopASq sin((2Aq - Ap)t) + 3Sp3qAOpAoq sin((2Ap - Aq)t)}.
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Thus

rip ~ ci cos((2Aq - Ap)t - 61) + c2 cos((2Ap - Aq)t - 62),

fi, -ci sin((2Aq - Ap)t - 61) - c2 sin((2Ap - Aq)t - 62),

where

4(2A 3 2 A~ ApSq2p2AopAoq2ci=4((2Aq - Ap)2 _ A2) 2 2 Oql

3

C2 3) ApS p3A2pAoq.
4((2Ap - Aq)2 _- A OAe p

The energy in this mode to first order in E is

A 2
H = T ((r2, + Erip) 2 + (fO2 + cf1,)2) + Q(c2)

= A O + 2cAop [c, cos((2Aq - 2Ap)t) + c2 cos((Ap - Aq)t)]} + 0(62),

exhibiting an order c time dependence. The coefficients c1 and c2 are small unless

A ~ Aq. If we kept the frequency 3AP, 3 Aq, 2Ap + Aq, and 2 Aq + Ap terms from

Eq. (3.25), we would find energy oscillations with frequencies 2Ap, 2 Aq, 3 Aq - Ap, and

Ap + Aq (Fig. 3-7); those oscillations have smaller amplitudes as the driving is farther

from resonance.

3.3 Stochastic forcing

Real active transport networks will have some nonzero level of thermal or ather-

mal noise [49, 59, 77]. Provided the noise is not too large, it will render previously

stable states now only metastable, with flow patterns exhibiting small fluctuations

around these metastable states punctuated by noise-driven stochastic transitions be-

tween them [59, 145]. Long-time simulations of Eqs. (3.1) with D > 0 therefore

offer an independent numerical way to find stable fixed points of the amplitude dy-

namics. We use vbFRET [261, a variational Bayesian analysis of a continuous time

82



hidden Markov model, to identify states from simulated time series. Almost all of

the states discovered by vbFRET match stable states predicted by Eq. (3.13) even in

the presence of non-negligible noise (Fig. 3-6e-g), justifying the simplifications used

in deriving Eq. (3.13). This also promises that Bayesian methods like vbFRET will

function as reliable inference tools for experimental data from real-life active flow

networks [2, 84, 131].

3.3.1 Thermalization

In Eqs. (3.2a) and (3.2b) we add Gaussian white noise only to the flux as a physically

intuitive source of random fluctuations that preserve mass conservation. However,

even with purely passive friction, this does not lead to equipartition of energy as seen

in thermal systems.

Written as stochastic differential equations with g(p, #) = -1, Eqs. (3.2a) and

(3.2b) become

dv = ve edt, (3.26a)
e

doe= - V T ovdt - qe5dt + V2Ddbe (t), (3.26b)
V

where each Be (t) is standard Brownian motion. The components of the E-dimensional

Brownian motion B(t) = (B1 , ... , 5E(t)) in any orthonormal basis are also standard

Brownian motions, so we can rewrite the system in the mode basis as

drn = Anfndt, (3.27a)

dfn = - Arndt - cfndt + -/2DdBn(t). (3. 27b)

The associated Fokker-Planck equation for the probability distribution p(r, f, t) is

p = - (AnfnP) + (Anrnp) + a(Efp) + D tn Z r a fn f _

with p - 0 as rn, fn - oc and p integrating to 1. Now, without friction or noise, the
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dynamics are governed by the Hamiltonian

H = QvVveVeueu + IbeVevVvaa = 2(r2 +
2 22 nn

n
fn) ZHn.

n

If p is a function of the Hn alone, the Fokker-Planck equation in steady state reduces

to

09= (D + P Df2

which has solution

M

p(H1,..., HM) cX e-kAn,

n=1

where kT = AR D/c.

Loosely, adding noise this way couples each mode to a heat bath with a distinct

temperature. The result is equipartition of amplitude, not energy: the long-time

average (A2) is independent of n. Adding weak coupling between modes by making

pL> -1 does not change this.

To get equipartition of energy one could change the coupling to noise, replacing

the final term in Eq. (3.27b) with

,/-2DndBn(t) 2-- dBn(t).

This is only possible for An # 0, which precludes cyclic modes. Equation (3.2b)

becomes

d~e =7 VT odt + Eg( p, Me )edt + I en
V n

The previous analysis goes through identically, leading to

kT = A2Dn/E = D/E.
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3.4 Complex networks

To show more concretely the possible oscillatory steady states of Eqs. (3.2), we will

describe simulation results for a few example networks. Even with cycles, which

we did not explicitly account for in the perturbative analysis in this chapter, the

qualitative features of stochastic switching among selected modes remains.

3.4.1 Attractor characteristics on tree networks

The mode interactions of Eq. (3.18) can lead to complex oscillation patterns de-

pendent on global, not local, topology, as shown for a 127-vertex complete binary

tree in Fig. 3-8. After initializing with zero pressure variation and flux, the system

settles into quasi-steady states with dramatically different dynamics in separate re-

gions of the tree (Fig. 3-8a,b). Flux in edges near the leaves of the tree tends to

oscillate rapidly, driving large pressure fluctuations in nearby vertices, whereas flux

oscillations near the root are comparatively slow with nearly constant pressure in the

vertices (Fig. 3-8b,d). Since, apart from the root and leaves, each vertex has the same

local topology, the different time scales emerge from the interaction of the local active

friction with the global structure of the tree.

A comprehensive and precise characterization of the relative lifetimes of different

attractors in large active flow networks remains out of reach with current numerical

methods, in part because the range of noise levels low enough to observe state selec-

tion and high enough to observe transitions is quite small. Such a fine-tuning between

thermal and active transport processes is a characteristic feature of many, if not all,

biological systems that function optimally in a narrow temperature range: bacterial

flagellar motors are designed to barely beat Brownian diffusion at room tempera-

ture, ATP-driven intracellular transport is tuned such that it improves moderately

over thermal diffusion, and so-on. Another well-known example in this context is

stochastic resonance in driven multistable systems [49]. However, as all these systems

typically exhibit exponential Arrhenius-type waiting times, it is practically impossible

to completely explore their attractor statistics in the moderate-to-weak noise regime,
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Figure 3-8: Activity causes depth-dependent separation of time scales on a large tree.
(a) Most pressure variation occurs near the leaves on large binary trees. (b) The tree
in (a) develops an activity-driven steady state with slow oscillations in the center
and fast oscillations near the edges, as illustrated by the flux e on the three edges
labelled in (a). (c) Unnormalized correlations between the Fourier transforms of the
flux through the edges of the tree in (a), with phases ignored. Colors indicate the tree
level of the tail vertex of the edge. There are strong correlations within each level and
between neighboring levels, but low correlations for edges in widely-separated levels.
(d) Frequency spectra of each tree level, computed by taking Fourier transforms of
the edge fluxes as in (c) and averaging the magnitudes across all edges at each level.
A distinct primary oscillation frequency for each level can be seen, which increases
with distance from the tree center. Simulation parameters in all panels are 6 = 0.5,
p = 1, and D = 10-. (e-h) While adding edges in the center leads to steady flow
on cycles there, frequency still increases with distance from the center in the outer,
tree-like sections.

86

AWrv I



except for the simplest two-state systems [591.

Nevertheless, long simulation runs as shown in Fig. 3-9 offer some insight into the

qualitative behavior of attractors in active flow networks. Specifically, our simulations

suggest that, while there is considerable variation in the relative occupancy of different

attractors, stable states can be approximately divided in two classes: (1) states with

one high energy mode at high amplitude and a few low energy modes at low amplitude

and (2) states with multiple low-energy modes active at moderate amplitude, some

of them degenerate. States of type (2) tend to quickly transition to other states of

type (2) (Fig. 3-9); states of type (1) have a wide range of lifetimes but no obvious

transition patterns.

0

0 Time 104

Figure 3-9: Lower energy modes transition more often for the graph in Fig. 3-6. Modes
are ordered by frequency from high (top) to low (bottom). Simulation parameters
are E = 0.5, t = 1, D = 5 x 10-, identical to those in Fig. 3-6. Note that rows 7 and
8, the two modes that switch on and off most, are degenerate.

3.4.2 Networks with cycles

We focus on tree networks in this paper as they allow substantial analytical progress.

However, Eqs. (3.1) can be applied without modification to networks with cycles.

Cycles correspond to right singular vectors 0,, of VT with singular value zero. As

these are always degenerate, we expect the conclusions of Section 3.2.3 to be most

accurate when there are few or no cycles. Alternatively, on a weighted graph where

the edges of high conductance form a tree, the attractor characteristics will be similar

to the attractors on that tree (Fig. 3-2; all modes pictured in Fig. 3-3).

Qualitatively, we find the same stochastic switching between states with subsets
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Figure 3-10: States on graphs with cycles, like the one shown, tend to be more stable.
Modes are ordered by frequency from high (top) to low (bottom). Note that the eight
modes at the bottom, which are the only ones active in the lower half of the trace,
are all cycles. Simulation parameters are E = 0.5, p = 1, D = 5 x 10-.

of modes active in simulations of Eqs. (3.1) on cyclic graphs even with equal weights,

with the additional feature that cyclic modes are particularly stable and take longer

to transition on average (Fig. 3-10). If the dynamics of the cycles themselves are of

interest, the incompressible analysis of Chapter 2 may be more appropriate.

3.4.3 Band gaps

In addition to distinct activity levels pe across edges, we can also introduce edge

weights we or vertex weights m, that vary across the network. Changing the conduc-

tances we and volumes m, changes our system in two ways: first, by changing the

modes to the singular vectors of V*e; and second, by changing the coupling matrix to

Pmk = (1 - 6mk) Z WWm2, (3.29)

which depends explicitly on the edge weights.

Such changes are known to cause qualitative changes in the physics of classical

spring-mass networks, including the introduction of band gaps. In an infinite one-

dimensional line of beads of equal mass m connected by springs with equal spring

constant f, for example, the dispersion relation between frequency w and wavenum-
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ber q is

f qa)
w(q) = 2 sin -

where a is the size of the unit cell, in this case equal to distance between adjacent

beads [93]. If instead of equal masses the beads alternate between a smaller mass m,

and larger mass m 2 , the dispersion relation splits into two branches,

=f 1 + 1 )2 4 2 qa.
(q) + - - - sin2

(Ml M2 ( I M2 mmM2 2/

Here a unit cell has two beads, so the distance between beads is a/2. At q = 7r/a,

there is a gap between w+ = V2f/mi and w_ = /2f/m 2 . This band gap shows up

in a finite system as a large difference in frequency between modes above and below

the gap.

Since varying what are effectively vertex weights causes such a clear qualitative

change in behavior in the spring system, we can reasonably expect similar changes

in our model. Simulations on paths with alternating vertex weights show a distinct

separation of of low- and high-energy states not present with uniform weights (Fig. 3-

11), with stronger and more consistent suppression of the low-energy states and few

transitions across the band gap created by nonuniform weights. Band gaps in more

realistic topologies may have similar effects, allowing for enhanced control of the

large-scale behavior.

3.5 Conclusions

Beyond active density oscillations [102], the above theoretical framework can be used

to probe the effects of topology on the physical properties of complex active systems.

For instance, it was recently shown that continuum Toner-Tu systems in finite lattice

confinement possess topologically protected edge-localized sound modes 1124]. Simi-

lar edge modes can be reproduced in our coarse-grained model through a simplified
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Figure 3-11: The emergence of an activity-driven spectral band gap is exhibited by
a simulation on a 14-vertex path with (a) all weights equal to 1 and (b) alternating
vertex weights 1 and 5. Modes are ordered by frequency from high (top) to low
(bottom). Note that in (b) the central n = 7 mode is always active and the low energy
states on the right half of the plot are significantly more suppressed than they ever
are in (a). The qualitative difference is due to the presence of vertices with unequal
weights, not the overall scale of the vertex weights; changing vertex weights uniformly
is equivalent to rescaling other parameters. Parameters are y 1.2, D = 5 x 10-3,
and e = 0.5. Both simulations used the same random seed.

network representation of complex channel geometries (Fig. 3-1). In addition, gener-

alizing to allow different effective weights at vertices opens up band gaps, reflected in

the excitation spectrum of spontaneous activity modes (Fig. 3-11). As we focus on

phenomenological properties shared by many active systems, akin to the Toner-Tu

approach 11331, the results and techniques presented here promise insights into the

mode selection mechanisms governing a wide range of non-equilibrium transport and

force networks.
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Chapter 4

Designing spectra

Complex real-world phenomena across a wide range of scales, from aviation and in-

ternet traffic to signal propagation in electronic and gene regulatory circuits, can

be efficiently described through dynamic network models. In many such systems,

the spectrum of the underlying graph Laplacian plays a key role in controlling the

matter or information flow. Spectral graph theory has traditionally prioritized ana-

lyzing unweighted networks with specified adjacency properties. Here, we introduce

a complementary framework, providing a mathematically rigorous weighted graph

construction that exactly realizes any desired spectrum. We illustrate the broad ap-

plicability of this approach by showing how designer spectra can be used to control

the dynamics of various archetypal physical systems. Specifically, we demonstrate

that a strategically placed gap induces chimera states in Kuramoto-type oscillator

networks, tunes or suppresses pattern formation in a generic Swift-Hohenberg model,

and leads to persistent localization in a discrete Gross-Pitaevskii quantum network.

Our approach can be generalized to design continuous band gaps through periodic

extensions of finite networks.

4.1 Discrete band gaps

Spectral band gaps control the behavior of physical systems in areas as diverse as

topological insulators [23, 60], phononic crystals [1221, superconductors [131, acoustic

91



metamaterials [139], and active matter {124]. In addition to ubiquitous physical

network models [19, 119, 123, 130] ranging from aviation [25] to electronics [36], there

is also considerable interest in virtual or computational networks [151] with fewer

physical constraints, such as those recently used to create spiral wave chimeras in

coupled chemical oscillators [134]. Often, dynamics in such systems depend on the

graph Laplacian [87, 96] and in particular on its spectrum of eigenvalues. Traditionally

studied in periodic lattice graph models [79, 122, 124, 139] and more recently also in

hyperuniform systems [82], the targeted design of spectra of any desired shape remains

a major challenge in modern materials science [58, 139]. Recent breakthroughs in 3D

printing [18, 52, 61, 138] and lithography [29] make it possible now to produce and

explore network structures that go beyond the traditionally considered periodic lattice

geometries.

Building on such experimental and theoretical progress, we present here a mathe-

matically rigorous solution to the longstanding question of how any desired spectrum

can be realized exactly on a suitably designed positively-weighted network. In par-

ticular, our construction of networks with specified eigenvalues allows us to place

arbitrary gaps in the spectrum of the network Laplacian

L = D - A, (4.1)

where D and A are the weighted degree and adjacency matrices respectively. These

gaps, finite analogs to band gaps in continuous systems, enable precise control over

the dynamics in a wide range of graph-based physical systems. To follow the anal-

ogy, we will name an eigenvalue-free region in our finite networks that is comparable

to the range of eigenvalues a discrete band gap (DBG). In a strict sense band gaps

can only exist in an extended system with continuous energy bands, and so we also

show how to create continuous band gaps by tiling our DBG construction periodically

(Section 4.4). Designing a suitably weighted network topology in this way presents

an alternative to control procedures based on adjusting model parameters or initial

conditions on a given network [94]. The spectral approach towards functional control
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of network dynamics proposed here can, for example, be directly implemented with

recently developed computer-coupled oscillator setups [134] and may find future ap-

plications in networked optical lattices [22, 34, 54, 98] and superconducting waveguide

resonators [711.

We motivated the general problem from a broader physics perspective in Sec-

tion 1.2. Here, after summarizing and explaining the main mathematical result (Sec-

tion 4.2), we focus on demonstrating its broad applicability explicitly for classical

and quantum systems, by showing how suitably placed DBGs can induce chimera

states [86, 101] in oscillator networks, control structural growth in pattern formation

models, and facilitate state localization in quantum networks (Section 4.3). In par-

allel, we illustrate how our exact spectral construction can be combined with spar-

sification algorithms [68, 125] to yield simplified networks preserving DBGs. This

approach complements the more traditional procedure of constructing graph ensem-

bles with predefined statistical adjacency characteristics [5, 8, 12, 106]. Finally, we

discuss periodic extensions of finite networks as a systematic procedure for designing

continuous band gaps (Section 4.4).

4.2 Network construction and sparsification

The problem of recovering a network from its eigenvalues has been studied exten-

sively, both from an algorithmic [38, 40, 64] and mathematical [57, 88] perspective.

However, with a few limited exceptions [57], most prior work has focused only on

unweighted networks [135], where there are a finite number of graphs on n vertices

and thus only a finite number of possible spectra. We here construct an exact solution

for the weighted case.
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4.2.1 Spectral graph construction

Our main result is that, given a set {Ai} of desired eigenvalues ordered so

A > ... ;> An ;> An = 0, (4.2)

there is a weighted graph G on n vertices with non-negative edge weights whose Lapla-

cian has spectrum A, ... , An_1, 0. We will denote this Laplacian as L* to distinguish

from a generic Laplacian L. The Laplacian, which determines the graph, can be re-

constructed from its eigenvalues and eigenvectors with the eigenvalue decomposition;

we therefore need to find a set of eigenvectors that together with {A} give a graph

Laplacian. In fact, the same set of eigenvectors v(k), k = 1,... , n - 1, given by

i<k+1
Vk(k+1)

(k) k i=k+1 (4.3)
-k(k+1)

0 i>k+1

suffices for any spectrum. These eigenvectors are strongly localized: the inverse

participation ratio (4-norm)

V(k) = I - 2k + O(k- 2) (4.4)

indicates near-perfect localization ||v(k) __- 1 for almost all k, itself a desirable4

phenomenon [96, 108] which we will exploit later in the context of pattern formation.

As the v(k) are mutually orthonormal and orthogonal to the vector of all ones, the

matrix
n-1

L* S Akv(k)v(k)T (4.5)
k=1

has the desired spectrum with 1 as the final eigenvector for k = n with eigenvalue

zero. By explicitly computing the sum over k for i < j, we find that the elements of
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the designed L* above the diagonal, L* for i < j, are given by

n-1

L Z ku(k) (k)

k=1

n-1

'k (-,)~j-) +Y kU (k) U k)

k=j

n-1

i1 k(k +1)

Aj-1 +
= J .n

=- < 0, (4.6)
n

that is, that the off-diagonal elements of L* are all nonpositive; L* therefore corre-

sponds to a graph with nonnegative weight -L* between vertices i and j. From the

second to third lines of Eq. (4.6) we use the definition of the eigenvectors in Eq. (4.3);

the sum
n- 1 1 1

k(k +1) j n (4.7)
k=j

in the third line can be computed as a telescoping sum of partial fractions. L*

is symmetric, so the elements below the diagonal must also be nonpositive. This

proves that the edge weights of the constructed graph are nonnegative. If all of the

eigenvalues are nonzero, all of the off-diagonal elements of L* will be nonzero and the

resulting graph will be complete.

Some spectra can only be realized on complete graphs. A graph G with approx-

imately constant spectrum must be complete: if a generic Laplacian L has nonzero

eigenvalues Ak = A + Ek for k < n and An = 0, then

Al - L = A 1 1 T n-1 ki)V(k)T.
k=1

The off-diagonal elements of AI - L, which equal the original edge weights of G, are

therefore + + 0(E). For small ek, every edge has nonzero weight; if E = 0, we have that
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the complete graph with equal weights is the only network with a fully degenerate

spectrum. More commonly, the network that realizes a spectrum is not unique.

For example, if there are k zero eigenvalues, then we can partition the eigenvalues

into k groups each containing one zero. The disjoint union of graphs constructed

to have each group's spectrum will have the full desired spectrum. If there is more

than one nonzero eigenvalue and k > 1, there will be multiple partitions that give

nonisomorphic graphs; typically, this construction will give an enormous number of

isospectral disconnected graphs.

For connected graphs, with only one zero eigenvalue, our construction also shows

that the spectrum of any non-complete weighted graph cannot uniquely specify that

graph, in line with older results on, for example, the spectra of trees 1881. Given any

connected graph with at least one missing edge, our design can match the spectrum

with a complete graph that cannot be isomorphic to the given one. In fact, since we

have (r) parameters (the edge weights) and only n - 1 constraints (the eigenvalues,

excluding the trivial 0 eigenvalue), there can be a continuous (n) - n + 1 parameter

family of isospectral graphs near our construction. We will investigate this family

further in future work, including its possible application to sparsification.

Controlling the eigenvalues allows us to create networks with precisely specified

gaps. For instance, choosing

A1 = A2  ... An/2- 1  (4.8)

and

An/2= A(n/2 = .. An-1 (4.9)

with n even leads to a graph with edge weights

-L = An- 1/n (4.10)

if i > n/2 or j > n/2 and

-L = (2A 1 - A_ 1 )/n (4.11)
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Figure 4-1: Designing networks from spectra. (a), Schematic of DBG network con-
struction. Given a spectrum of eigenvalues distributed in two (or more) groups, we
build a graph with non-negative edge weights that realizes this spectrum exactly (1).
Sparsification of this complete DBG network with the Spielman-Srivastava [125] algo-
rithm (2) yields a new network with wider eigenvalue distributions and a smaller gap
(3). (b), Example graphs used in applications below: Starting from a DBG graph on
200 vertices with 100 eigenvalues set to i.i.d. K(5, 0.25) and 99 set to i.i.d. .A(20, 0.25)
(left), sparsification with c = 0.5 creates a new graph (top) with the number of edges
reduced from 19900 to 3758. As a control, we also compare to a gapless random
graph (bottom) with 362 edges and the same weighted vertex degrees as the original
DBG graph. (c), The eigenvalues for the graphs in (b). The mode on the complete
DBG network with the k-th largest nonzero eigenvalue is supported on the first k + 1
vertices, counted counterclockwise from the top red vertex, and highly localized on
vertex k + 1, which is colored to match in (b). Grey lines indicate the borders of the
unstable region for the Swift-Hohenberg model with the parameters used in Fig. 4-3.
(d), Sparsified networks retain a significant gap even for relatively large c. Each point
shows the mean number of edges and gap size at fixed c between 1 (left) and 0.01
(right), starting from a graph on 200 vertices designed to have 100 x eigenvalue 5 and
99 x eigenvalue 20. The solid curve shows the worst-case gap estimate, reduction by
a factor 1 - c. Sample size is 1000 for c > 0.1 and 300 for c < 0.1. Error bars are
t1 standard deviation; horizontal error bars are smaller than the marker size.
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otherwise; that is, there are two groups of vertices, one strongly connected within

itself and one weakly connected to everything. Adding a small amount of noise to

each eigenvalue then lifts the eigenvalue degeneracy while preserving the connectivity

structure and retaining a gap (Fig. 4-1b,c).

In detail, suppose we have eigenvalues A, with multiplicity m and An- < A with

multiplicity n - m - 1. Then if i < j < m + 1

L* A m 1  n An-1
id _' 1dk(k+1) k(k+1)

k=j k=m+1

A , + A 1 I 1)

m+1 m+1 n

Else, ifi<j andj >m+1,

ij 3 k(k +1) n

There are two types of edges: edges with both endpoints in the first m + 1 vertices

have weight An_1/n + (A, - An- 1 )/(m + 1), while other edges have weight An-1/n.

4.2.2 Sparsification

Since complete graphs can be difficult to realize physically, we explore the effect

of the sparsification-by-resistances algorithm developed by Spielman and Srivastava

[125]. Given an accuracy parameter 6, this sparsification creates a network with

O((n log n)/c 2) edges whose eigenvalues match the eigenvalues of the original net-

work to within a multiplicative factor 1 c with high probability. Sparsification by

resistances aims to preserve the entire spectrum, not just a gap; future sparsifica-

tion algorithms directly constructed to preserve a gap could therefore improve on its

efficiency. In other applications, the networks of interest are virtual ones [134] and

sparsification may not be necessary.

Rather than removing edges from the initial graph, the sparsification algorithm
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constructs a new graph starting from disconnected vertices. Specifically, we first

compute the effective resistance Rij between every pair of vertices in the initial graph,

treating the edge weights as conductivities. We then sample q = (n log n)/c 2 edges at

random, with the probability pij of sampling edge (i, j) proportional to wijRij. Each

edge we sample is added to the sparsified graph with weight wij/(qpij); if an edge is

added multiple times, the weights are summed. Clearly, the new graph will have at

most q edges. We leave the argument that this preserves the spectrum to Ref. [125].

We can use the 1 c multiplicative error bound to estimate the size of a discrete

band gap after sparsification. Suppose we start from a network with eigenvalues A,

A 2, and 0, with some multiplicities, where A, > A 2 . The eigenvalues {pi} of the

sparsified graph corresponding to A, should be no smaller than Pi > (1 - E)Ai, while

the eigenvalues {vi} corresponding to A2 should be no larger than vi < (1+ E)A 2 . The

sparsified graph should therefore have a gap A = mini - maxi vi of size

A> ( A, + 2 ) (A, -A2).

That is, the gap contracts by a factor at most 1 - 6. For the parameters used

in Fig. 4-1d, this is (1 - E).

4.3 Applications

We now demonstrate the practical potential of DBGs with three generic network mod-

els. In each case, we compare the dynamics on a complete DBG network (Fig. 4-1b,

left) both to a sparsified approximate DBG network (Fig. 4-1b, top) and to a random

connected network (Fig. 4-1b, bottom) constructed to have the same weighted vertex

degrees as the DBG network (Section 4.3.1). The gap is approximately preserved

in the sparsified network and vanishes entirely in the random graph (Fig. 4-1c,d).

Matching the degrees in the random graph to the DBG network ensures that any

differences in dynamics are not due to differences in coarse features like the average
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connectivity, but rather are likely caused by the spectral differences. Often, the be-

havior of optimized networks is sensitive to small perturbations [100]; here, behaviors

preserved in the sparsified graph are robust to significant changes.

Laplacian matrices occur in a wide range of physical systems, in many of which,

like the spring networks and random walks mentioned earlier, the effect of the spec-

trum and band gaps is known. In other models, gaps can have significant but less

well-understood effects. We have chosen three nonlinear models to investigate in more

detail in order to illustrate the diversity of potential applications for this work. These

three systems are each generic, widely studied, and show distinct nontrivial effects of

gapped spectra.

First we will discuss the Kuramoto model of coupled phase oscillators, typically

studied as a model for synchronization. Here the Laplacian straightforwardly deter-

mines the linear behavior near synchronization and has a complex relationship with

the nonlinear dynamics. Next we will present a discretized Swift-Hohenberg type

pattern forming system, where controlling the Laplacian spectrum directly controls

the steady states of a nonlinear equation. Finally, to diversify our range of physical

applications, we will integrate our networks in a quantum mechanical model based

on the Gross-Pitaevskii equation. Band gaps in such energy-conserving systems can

inhibit transfer of energy between different modes, and we will see how this can tune

diffusion of the wavefunction.

A natural question in the context of the previous two chapters is what happens

when the DBG networks are put in the active flow models. Sadly, there are few

exciting developments. These constructed networks are complete, so they are very

far from planar and there are a large number of cycles that dominate the flow even

in the compressible case. Meanwhile, in the incompressible setting, flow states with

most edges at their desired flux are common. With relatively few frustrated edges,

transitions are relatively rare.

Simulations for the applications were performed using a third or fourth order

Adams-Bashforth linear multistep method with a time step At = 10'. All simula-

tions were written in C++ using Armadillo [1201.
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4.3.1 Random matched-degree graphs

Given a weighted graph G, we can construct a random simple graph C with the

same vertex degrees as G in a way analogous to known methods for sampling random

regular graphs 1891. Let w(e) denote the weight of edge e and d(v) denote the weighted

degree of vertex v. Begin with a disconnected graph with a loop of weight d(v)/2 at

each vertex v; this has the same degrees as G but is not simple. Repeat the following

steps until there are no loops:

1. Pick a loop 1 = (u, u) and another edge e = (v, w) at random, with v u w.

2. (a) If w(l) > w(e), remove e and add e' = (u, v) and e" = (u, w) with weight

w(e). Subtract w(e) from the weight of 1.

(b) Else, remove 1 and add e' = (u, v) and e" = (u, w) with weight w(l).

Subtract w(l) from the weight of e.

Once there are no more loops, merge all sets of edges between the same pair of vertices

into one edge with the same total weight. Since the degree of each vertex is preserved

at each step, the final graph has the same degrees as G. In the examples considered

here, the algorithm terminates quickly.

4.3.2 Kuramoto oscillators

Our first application is the Kuramoto model of coupled oscillators [74, 127]. Intro-

duced by Kuramoto in 1975, it has since been studied extensively as a generic setting

for interesting synchronization behavior. One of the more surprising discoveries was

the existence of chimera states [75], where sets of identical oscillators divide into coex-

isting synchronized and desynchronized clusters. Commonly considered in networks

with identically-coupled oscillators, chimeras or chimera-like states can also appear

with asymmetric couplings 166]. So far, relatively little attention has been paid to

the effect of the spectrum of the coupling network, or, in particular, to what effect a

gapped spectrum should have.
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Figure 4-2: DBG networks lead to staggered synchronization and chimeras. (a-f),
In the Kuramoto model with a = 0, the complete (first row) and sparsified (second
row) graphs synchronize much faster than the random graph (third row). For the
complete graph the gap affects the rate of synchronization, with highly-connected
vertices synchronizing faster (a), while on the sparsified graph the gap is only visible in
the mode basis (e). (g-i), Weak chimera states appear when a = 1. Both the complete
(g) and sparsified (h) graphs have two dominant groups of phase-locked oscillators,
with the complete graph more fully synchronized. Dynamics on the random graph (i)
are much less coherent. Solid black lines indicate the predicted approximate frequency
difference for a network with two distinct eigenvalues, 5 and 20. (j-1), Order parameter
r = e'oj for the simulations in (g-i) for the strongly-connected vertices (red),
weakly-connected vertices (teal), and all vertices (gray).
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Recent experiments coupling Belousov-Zhabotinsky reactions via a computer-

controlled projector have shown the emergence of chimeras [134]; we will show this

can be achieved in the weak sense of Ref. [9] using our construction with an appropri-

ately gapped spectrum. In the Kuramoto model phases 0i on the vertices evolve with

a natural frequency w and a nonlinear coupling defined by the network adjacency

matrix:

d0tdt w Z Ajsin(0, -02 +a). (4.12)
j=1

On a connected graph with a = 0, there is always a stable attractor 02 = 00 + Wt.

The rate of convergence to this state within its basin of attraction is controlled by

the eigenvalues of the Laplacian L [87]: if we linearize to sin(Oj - 0i) ~j - Oi

then perturbations p to the stable attractor will follow Eq. (1.1). Both the complete

and sparsified example graphs in Fig. 4-1 have no eigenvalues near zero, so they

synchronize much faster than the random graph (Fig. 4-2a-c). The rescaled spectral

gap An_ 1/A 1 is sometimes called the synchronizability of the network [1001: for a fixed

average connectivity, networks with lower synchronizability will typically have more

disordered dynamics. The other gap between the two large clusters of eigenvalues

divides the modes into two groups, one synchronizing faster than the other (Fig. 4-

2d-e); moreover, on the complete graph, the localization of the eigenvectors causes

staggered synchronization of vertices (Fig. 4-2a).

If a is sufficiently large, the oscillators no longer synchronize at a single frequency.

On DBG networks, global coherence gives way to weak chimera states [9] where

vertices synchronize into two clusters with distinct frequencies (Fig. 4-2g-i). For the

exactly-gapped network with edges of weight w, = AI/n + (A 1 - AnI)/(m + 1)

or w 2 = An- 1/n there is a steady state with 02 = 01 for i < m + 1 and 0i = 0 for

i > m + 1. In this state,

(0 - 01) = [nw2 - (m + 1)(wi + W2 )] sin(a) - nw2 sin(0n - 01 + a). (4.13)
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The two phases 01 and 0,, can synchronize only if there is a solution to

sin(O - 01 + a) [I - 2  1 - (, - 1) sin(a). (4.14)
n (n-1 _

This synchronization is possible if a is small enough that the right hand side is less

than one. If the two groups do not synchronize, and nw 2 A2 is not too large, the

second r.h.s. term in Eq. (4.13) will average to nearly zero giving an approximate

mean frequency difference

K+( n - 01))~ [nw2 - (m + 1)(wi + w2 )] sin(a), (4.15)

which reduces to

d(0 n - 01) ~ -(A - An_ 1) sin(a) (4.16)

if m + 1 = as in Fig. 4-2. More general cluster synchronization [35, 105] could

be achieved by adjusting the number and size of the gaps. In contrast, the random

graph becomes thoroughly incoherent at comparable values of a (Fig. 4-2i,l). The

coherence can be quantified by the order parameter

= ,io (4.17)

which oscillates for the complete and sparsified networks but is near zero for the

random graph (Fig. 4-2j-1), indicating complete disorder.

The result of our construction with a DBG is similar to a standard two-cluster

model where chimeras appear [101]. In this model, vertices are divided into two groups

of size n/2 with edge weight -Lij = p if i and j are in the same cluster and -Lij =

v < p if i and j are in different clusters. In the limit n -+ oc, this system exhibits

stable chimera states with one cluster synchronized and the other cluster incoherent.

However, for our DBG network, we relax the assumptions that intra-cluster couplings

[ are identical and stronger than inter-cluster couplings v. Perhaps surprisingly,
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oscillators on the weakly-connected side are consistently closer to synchronizing with

each other than with strongly-connected oscillators, even though the coupling among

weakly-connected vertices is smaller than the coupling between weakly- and strongly-

connected vertices. Ours are weak chimeras, where we do not require one cluster to

be incoherent, but they exist stably on small networks.

The effect appears more related to the gap than to the degeneracy of the eigenval-

ues. The densely-connected side of the sparsified graph is mostly synchronized, even

though the eigenvalues above the gap are no longer approximately degenerate. How-

ever, the spectrum is not the only determinant of behavior in the Kuramoto model.

The classic simplest example of a gapped network, a periodic chain with alternating

high- and low-weight edges, does not synchronize in clusters so simply.

This could be realized experimentally in any Kuramoto-type system where the

connectivity is controlled. For example, our networks could be input directly into the

chemical oscillator system of Ref. [1341 where the authors found spiral-wave chimeras.

4.3.3 Swift-Hohenberg pattern formation

As the second application, we study Swift-Hohenberg pattern formation dynamics

on a network [99, 129]. The Swift-Hohenberg equation (4.19) [1291 is a common,

generic model of pattern formation, intended to model the selection of patterns with

a well-defined scale. It has been applied in areas well beyond the thermally-driven

convection for which it was developed, ranging from wrinkling of elastic shells [1261 to

lasers [76]. Though originally defined in a continuous setting, the model can be easily

extended to discrete network systems using the analogy between -V 2 and L [99].
In contexts with a continuous, gapless spectrum of eigenvalues, the standard Swift-

Hohenberg parameters define the length scales of the system. With a gap, however,

there is an additional interaction between the length scales of pattern formation and

the location of the gap. Just as acoustic band gaps can inhibit transmission of sound

of particular frequencies [122], gaps in this system should inhibit pattern formation

at the corresponding scales.
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Figure 4-3: Generic suppression of pattern formation with a designed discrete band
gap. (a), Pattern formation in the Swift-Hohenberg system is completely suppressed
by constructing a gap around the range where eigenvalues would be unstable (Fig. 4-
1c). (b), On a sparsified graph that has a few eigenvalues just within the unstable
region, some modes settle at small nonzero values. (c), On the random graph many
more eigenvalues are well within the unstable region and the corresponding modes
settle at larger amplitudes. Inset graphs show the final steady state on each graph;
the size of vertices corresponds to 1#1. All simulations used identical initial conditions
Ui ~. M(0, 1) and parameters a = 90, D1 = -20, D2 = 1.

Consider a scalar field #4 on the vertices obeying

n n1
d = -D 1  Li j - D 2 5 LijLik~ - aq51 - $ . (4.18)
dt

j=1 j,k=1

This is the discrete network equivalent to the usual continuous Swift-Hohenberg

model [99, 1291

&ab/9t = D, V2q$ _ D2 V4q - aq5 _ 03; (4.19)

the extra minus sign in front of the D1 term in Eq. (4.18) arises from the adopted

standard sign convention for the discrete graph Laplacian L. The fixed point #i = 0

of Eq. (4.18), which exists for any values of the parameters D 1, D 2 and a, is linearly

stable to perturbations in a Laplacian eigenmode with eigenvalue A if the growth rate

a -a-D 1A-D2A 2 < 0. With a and D 2 positive, a is negative for small and large A,

but choosing D, < -2VaD 2 creates a range of unstable A in between. This can drive

pattern formation that is eventually stabilized by the nonlinearity. The patterns

can only form, however, if L has eigenvalues in the unstable range. Controlling

the spectrum of L* therefore allows us to completely suppress pattern formation in
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arbitrarily large systems by placing a gap around the unstable region (Figs. 4-1c, 4-

3a). If we sparsify the network with sufficiently small c, the gap will be preserved

and again no patterns will form. Eventually, though, increased sparsification will

push some eigenvectors into the edges of the unstable region and bring back partial

pattern formation (Fig. 4-3b), which becomes fully developed in the random graph

(Fig. 4-3c). The maximum c for which patterns will be fully suppressed for given

parameter settings can be predicted straightforwardly from the expected changes in

the eigenvalues, in a similar fashion to the post-sparsification gap size in Fig. 4-1d.

Pattern suppression relies only on controlling the available eigenvalues. Our con-

struction, however, has the additional desirable [96, 108] feature that the eigenvectors

are highly localized. This allows us to control not just whether patterns form, but

also which patterns appear. By choosing the eigenvalues of modes corresponding to

a set S of vertices to lie inside the unstable range, while leaving all other eigenvalues

outside of that range, we can selectively activate only the set S. While this only

guarantees that the linear part of Eq. (4.18) selects the desired pattern, because the

local nonlinearity only weakly couples different localized modes, the pattern typically

survives in the nonlinear regime (Fig. 4-4).

Depending on initial conditions, vertices corresponding to eigenvalues above the

unstable range may have small activations, since the activated modes have small but

nonzero amplitudes there. With random initial conditions, however, positive and

negative contributions from activated modes with opposite signs often nearly cancel

yielding uniform patterns (Fig. 4-4e). Uniformity can also be achieved by having no

eigenvalues above the unstable range or sufficiently many high eigenvalues that the

amplitudes of the activated modes on those vertices is nearly zero. Alternatively, this

phenomenon could be used to design more complex patterns with multiple levels of

activation.

The conclusion that a band gap can suppress pattern formation does not depend on

the discreteness of our system. Experimentally, then, it would be worth investigating

both ways to realize a network Swift-Hohenberg model where our networks could

be used directly and continuous Swift-Hohenberg systems where a band gap could

107



(a)

20

010 -

0
0 50 100

Eigenvalue rank
(d) t

(b)

20

-5

0.01 0.1 1
Time t

=0.07

(c) f = 0.00
S* *O 0O

(e) 1=10.0

Figure 4-4: Controlling pattern formation with a designed discrete band gap. (a)
Instead of placing a gap in the spectrum around the unstable pattern-forming range,
as in Fig. 4-3, we deliberately place particular eigenvalues in the middle of that range
corresponding to eigenvectors localised on a desired pattern. (b) From random initial
conditions, the system settles into a state where only the chosen modes have nonneg-
ligible amplitudes. (c-e) Time series of pattern evolution on a designed network, with
vertices colored according to the stability of the mode localized there as in (a). The
size of the vertices indicates 1<1. (c) The encoded pattern is not obvious from either
the designed network or the random initial conditions. (d) By time t = 0.07 the stable
modes have nearly all vanished. (e) The steady state reveals the eigenmode-designed
pattern. Because the modes are highly localized, selecting a set of modes to activate is
approximately equivalent to selecting a set of vertices to activate. Thus we can encode
an arbitrary pattern as the steady state. Depending on initial conditions, the system
may settle into other stable states with slight variations in the vertex activations; the
pattern is always identifiable and often as clear as shown. The parameters a = 90,
Di = -20, and D2 = 1 are identical to those in Fig. 4-3; the tuning parameters to
control pattern formation are only the network edge weights.
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be introduced.

4.3.4 Gross-Pitaevskii localization

Having discussed two classical applications to non-conservative systems, we now show

how DBGs can control quantum dynamics with conserved energy. In experiments with

Bose-Einstein condensates (BECs) in optical lattices [54] researchers often approxi-

mate the continuous quantum state with a discrete wavefunction in the Bose-Hubbard

model [28]. Similar Hamiltonians also combining Laplacian-like coupling with local

potentials arise for the recently realized fermionic lattice gases [34, 981 and connected

superconducting waveguides [71].

Assuming the coupling and potentials can be sufficiently well controlled, one can

create a network version of the Gross-Pitaevskii model of BEC wavefunctions. Just as

in the Swift-Hohenberg example, we take the Gross-Pitaevskii equation for a complex

wavefunction V) and replace the continuous Laplacian V2 with its discrete analog -L:

Zdit = LyLjkVk+g |24. (4.20)
k=1

This discrete nonlinear Schr6dinger equation [11, 107] can be written 1P = *,

where the energy E is the sum of the kinetic energy T = 13 'b/Ljjo' and the

potential energy U = 1g Zj(O*Oj) 2. In the special case of a lattice system, T would

include cross-site interaction energies. The potential energy quantifies the localization

of V): with g > 0, it is large when the probability 0*4 is concentrated at a single vertex

and small when V'*V4 is spread out. Delocalization is limited by the size of the network,

as U > -, but can vary widely even on a finite network. If 4 is initialized at a single

vertex j, then U = g/2, independent of j, while T = Ljj equals the degree of j.

We find that the interplay of the total energy conservation constraint in such a

model with the kinetic energy gap inhibits spreading of the wavefunction on DBG

networks. The effect is reminiscent of Anderson localization 171 and could appear in

similar experimental setups [22, 115], though the mechanism is distinct. Since energy

is conserved, the wavefunction can delocalize and reduce its potential energy only
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by converting it to kinetic energy. The rate of potential energy loss, set by g, must

therefore match the rate of kinetic energy gain, set by the differences in eigenvalues

among the modes involved. Suppose the wavefunction is mostly in a localized mode

j with eigenvalue A 3. Spreading to a higher mode k with Ak - Aj >> g would increase

kinetic energy by more than it would decrease potential energy, while a weak higher

mode 0 < Ak- A3 < g or a lower mode Ak < A would not increase kinetic energy by

enough, if at all. Both are barred by energy conservation. The amplitude in mode j

can only be reduced if there are other modes k with Ak -- Ai + g.

To see this in more detail, suppose we have a wavefunction comprising two modes,

() + c2Vj, with initial complex amplitudes ci, c2 . Suppose also that these

eigenmodes are localized on two different vertices, with v ~ (-1, E, E, ... , E) and

V2) (6, -1, c, . . . , c). The system energy as a function of ci and c2 is then

E = 1kc1|2 + A2jc212 + jg [Ic11 4 + c 2 14 + 0(6)]

If the squared amplitudes change slightly, to Ic1 2 - 6 and Jc21 2 + 6, the change in

energy to leading order in 6 is

AE = [A2 - A,+ g (c21 2 -- Ic1t2 )] 6 + 0().

Conservation of energy requires AE = 0, so in order to transfer a noticeable amplitude

6 >> c from the first mode to the second we must have A2 - A + g(c 21 2 - Ic1 2) ~ 0.

In the cases considered in Fig. 4-5, where |cu| - 1 and |c2 1 ~ 0, this reduces to

A2 - Au ~ g. Thus on a network with a spectral gap, the localization of / can depend

non-trivially on the interplay between g and the spectrum.

Initializing 0 at a weakly-connected vertex brings out this interplay as g is varied.

The initial state, with high potential energy and low kinetic energy, is localized on

modes with eigenvalue below the spectral gap. On the sparsified network, a low value

of g makes nearby modes below the gap accessible for delocalization, causing the

wavefunction to spread (Fig. 4-5a). However, increasing g pushes the region where

transfer is possible inside the spectral gap, inhibiting the spread of the wavefunction
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Figure 4-5: Localization on a DBG quantum network. (a-c), When the wavefunction
in the Gross-Pitaevskii model of Eq. (4.20) is initialized at a weakly connected vertex

with low kinetic energy, localization or delocalization (indicated by high or low poten-

tial energy, respectively) is controlled by the interplay between the graph spectrum
and the rate of potential energy loss g. The random graph (purple) always delocalizes,
due to its dense spectrum. However, while the sparsified graph (yellow) can delocalize
for low g (a) and high g (c), again due to available eigenmodes, intermediate g (b)
places the range of allowed modes inside the spectral gap, preventing delocalization.

The complete graph (blue) always inhibits spreading due to the extreme localization

of its eigenvectors.

on the sparsified network (Fig. 4-5b). Further increase of g once again enables delocal-

ization as the modes above the gap becomes accessible for energy transfer (Fig. 4-5c).

In contrast, the dense spectrum of the random graph means delocalization occurs in

all three instances (Fig. 4-5). Interestingly, the complete DBG network appears to

remain localized for all values of g in our simulations (Fig. 4-5); this is likely due to

the strong localization and near-zero overlap of the eigenmodes.

Experimentally, this could be realized either with BECs in appropriately-tuned

optical potentials or as a physical network of waveguides. Building the large com-

plete networks we introduced is beyond current experimental techniques but may be

possible with future advancements. For the short term, we will show in the next sec-

tion how extending smaller, low-connectivity networks periodically can lead to more

practical networks with approximately the same spectral properties.
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4.4 Band structure in periodic networks

High connectivity can make it difficult to build experimental versions of complex net-

works. This motivated our study of spectral sparsification, as the sparsified graphs

should be easier to realize in an experiment. An alternative approach to making

practically-usable networks is to create a periodic crystal where we control the be-

havior of the unit cell. Keeping the unit cell small will reduce the connectivity and

simplify fabrication, while the periodic structure will enable building on a larger scale.

The key question is then: can the spectrum of the full system be controlled by tuning

only the unit cell? In what follows, we show that it can.

We can construct infinite periodic networks in a standard way from any base

network G by tiling periodically and rewiring edges (Fig. 4-6a,d). Starting from the

original vertex set {j} for 1 < j < n and edge weights -Lik, we make an infinite

string G' of copies of G with vertices indexed by j, the label in G, and c C Z, the

unit cell. This will give a new, infinite Laplacian L'. For the edges that will not be

rewired, we set L'k = Ljk for all c. Doing this for all edges would leave the copies

of G disconnected. To connect them, we choose a subset of edges {(j, k) } and rewire

them to cross between unit cells; for example, if (j, k) is an edge to be rewired to have

k in a unit cell to the left of j we can set L?' _Cl Lik for all c and symmetrically

set L _1)= Lk. The remainder of the entries of L' are set to zero.

Since L' is periodic, Bloch's Theorem allows us to write the eigenvectors as

Ujc (q) = ei"cU (q),

where q is a wavenumber in the first Brilloun zone -- r < q < r. The U then satisfy

A(q)eio U(q) = Lj cde** k(q),
k,d

which reduces to a new eigenvalue equation for a matrix of size n:

A(q)UJ(q) = L(q)Oi'(q),
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Figure 4-6: Designed spectra on a discrete network are preserved when extended
periodically in one dimension. (a) We extend a finite network to an infinite one by
rewiring a subset of the edges to cross between adjacent copies of the original network.
Here, we take the network with the spectrum in (b) and rewired the edge between
vertices j and k if Ik - jI > n/2. This rewires roughly one quarter of the edges. (b)
One unit cell in (a) would have a discrete spectrum with A3 = 21 - j. (c) Most of the
eigenvalue bands do not change significantly with q, so the density of states consists of
21 sharp peaks with low- or zero-density regions between. (d) The same construction
as in (a) can be repeated for any spectrum; this is the result for a gapped network.
(e) One unit cell in (d) would have a gapped spectrum, with 10 eigenvalues equal to
20 and 10 equal to 5, in addition to the always-present zero eigenvalue. (f) Again,
most of the eigenvalue bands are roughly constant, even though the eigenvectors do
depend strongly on q. The gap in the middle of the spectrum is nearly perfectly
preserved; a small gap remains between the bottom two bands. Note the log scale on
both density of states plots.

where the matrix elements of L (q) are the same as those of L for edges within a single

unit cell and differ by a factor eiq(c-d) for edges that cross between unit cells c and d.

Using these transformations, which are standard in the study of lattice systems [79],

we can find the continuous spectra of periodic tilings of our designed networks. Even

without any optimization of which edges to rewire, the spectral characteristics can

persist in the infinite system. If we rewire all edges with Ij - kJ > n/2, for example, a

spectrum of equally-spaced eigenvalues leads to a density of states with corresponding

equally-spaced large spikes (Fig. 4-6a-c), while a discrete band gap is almost entirely

preserved (Fig. 4-6d-f). In both cases, only the bottom few bands vary significantly
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with q even though by rewiring approximately one quarter of the edges we are far

from a small perturbation. Note that, because we moved edges incident to the first

vertex, all of the eigenvectors do change and are not localized for nonzero q. We have

observed this preservation of the spectrum consistently in a small number of exam-

ples; in the future, it would be useful to investigate the exact conditions on rewiring

necessary to keep the spectrum nearly independent of q.

4.5 Conclusions

Controlling dynamics on a network typically requires detailed understanding of its

spectral properties. Here we have reversed the conventional approach by starting

from a desired spectrum and providing a mathematically rigorous construction of a

matching network. This enabled us to induce chimera states, suppress or fine-tune

pattern formation, and control wavefunction localization [6] using suitably designed

gapped spectra.

We introduced our three applications only to showcase a few possibilities and

we expect the construction to be useful in many other contexts. Still, these three al-

ready provide opportunities for experimental realizations, including computer-coupled

chemical oscillators [134], cold atomic systems with precisely-specified optical poten-

tials [22, 28, 34, 54, 98], or etched superconducting waveguide resonators [71]. For

metamaterials that can be approximated as spring networks, designing the Laplacian

would determine the transmission properties and allow selective acoustic damping.

Diffusive transport networks designed with these principles could have mixing times

controlled independently for different initial conditions. Any of these models can also

be naturally extended to periodic systems, where the spectral properties are preserved

well without any further optimization.

Our method, which starts from global properties, complements traditional ap-

proaches using small-scale local rules to build and analyze networks [12, 20, 78, 91].

In the future, the above results may also prove useful as a standard of comparison

for other networks. Contrasting the dynamics on an important class of networks with
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the dynamics on networks designed to have identical spectra can help identify the

important features of that class. Moreover, as dynamics are often related to matrices

other than the Laplacian [149], it will be interesting to investigate control of their

spectra for weighted networks as well. Although our construction works optimally

with fully-connected graphs, one can expect that improved sparsification algorithms

together with recent progress in 3D printing and lithography [29, 82] may soon lead to

physically-realizable networks with arbitrary gaps; since any graph can be embedded

in 3D [37], the framework introduced here lays a conceptual foundation for the tar-

geted design of complex non-periodic metamaterials with desired spectral properties.
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