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Abstract

Given a Galois cover of curves X - Y with Galois group G which is totally ramified
at a point x and unramified elsewhere, restriction to the punctured formal neighbor-
hood of x induces a Galois extension of Laurent series rings k((u))/k((t)). If we fix a
base curve Y, we can ask when a Galois extension of Laurent series fields comes from
a global cover of Y in this way. Harbater proved that over a separably closed field,
every Laurent series extension comes from a global cover for any base curve if G is
a p-group, and he gave a condition for the uniqueness of such an extension. Using a
generalization of Artin-Schreier theory to non-abelian p-groups, we characterize the
curves Y for which this extension property holds and for which it is unique up to
isomorphism, but over a more general ground field.
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Title: Professor of Mathematics
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Chapter 1

Introduction

This thesis concerns Galois covers of curves in characteristic p. We give conditions

under which one can extend very local data about a formal neighborhood of a point

to a global cover of curves with specified ramification, extending work of Harbater

in [Har80] to arbitrary fields, which might not be algebraically closed. We do this by

working explicitly with equations for covers of curves, which we do by introducing

a cohomological interpretation and refinement of Inaba's nonabelian Artin-Schreier

theory.

In general, arithmetic geometers are interested in the geometry of spaces defined

over more number-theoretic fields, not only C; our primary focus is curves over fields

of characteristic p. Many of the tools used in complex geometry do not translate

directly to geometry over other fields. For example, the fundamental group r1 (X)

of a topological space X is an invariant which is used to classify unramified covers

of X. However, over fields of characteristic p, literal paths do not make sense and

we cannot rely on them for geometric information. The theory of the 6tale site and

the 6tale fundamental group 7r, as introduced by Artin and Grothendieck, provided
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beautiful analogues of these topological objects.

For a smooth affine curve X over C, 7r< (X) turns out to be the profinite com-

pletion of ri(X), which admits a simple description in terms of its genus g and

the number r of points of X - X, where X is a smooth compactification of X.

Grothendieck proved that the same description of <r',(X) in terms of g and r applies

over any algebraically closed field k of characteristic 0; in particular, in characteristic

0, rT<(X) does not depend on the field. Grothendieck also showed that the prime-

to-p quotient of Trt(X) is the same in characteristic p as the prime-to-p quotient of

7r, of a curve over C having the same g and r.

However, when k has characteristic p, looking at Galois covers with Galois group

a p-group reveals some dramatic differences from the characteristic 0 case. For ex-

ample, we know <re'(Al) = {1}, so A' has no nontrivial unramified Z/pZ covers,

whereas for k of characteristic p, A' has many Z/pZ-covers. Indeed, they are param-

eterized by k[t]/p(k[t]) via the map sending f to the affine cover k[t, y]/(yP - y -

where p is the Artin-Schreier map f -+ fP - f. From this, we can already see that

the fundamental group is more complicated, and even depends on the base field.

Using covers such as these, one sees that the pro-p fundamental group 7rp(X) of any

affine curve is infinitely generated. The rich study of p-group covers of curves has

motivated this thesis.

Now fix an arbitrary field k of characteristic p and a finite p-group G.

Let Y be a smooth proper curve over k and y E Y(k). We define a "y-ramified

G-cover of Y" to be a Galois cover of curves q: X -+ Y with Galois group G, totally

ramified over y and unramified above the complement Y' := Y - {y}. Now let x be

the k-point of X lying above y; then q induces a map Spec x,x -+ Spec OYy. Let t

be a uniformizer at y, so by the Cohen structure theorem, Oyy a k[[t]]. We can also

choose a uniformizer u such that OXX a E[[u]] for E a finite extension of k, but in
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fact we must have 0 x, , k[[uj]] since the extension E/k would be unramified, and

would have to be degree 1 since q is totally ramified at x. Taking fraction fields gives

rise to an extension of Laurent series fields k((u))/k((t)) which is Galois with Galois

group G.

We say that the extension k((u))/k((t)) arises from the G-action on X.

Thus, for each curve Y and point y C Y, we obtain a functor

f y-ramified alois field extensions "P
py,y: p-group covers k((u)) over k((t)) with Galois I

of Y group a p-group

The functor py, can be extended to the entire category of Galois covers (as

defined in Definition 2.1.4) X of Y with Galois group a p-group which are unramified

over Y', including covers where X is not integral. We define oyy by mapping the

cover q : X -÷ Y to O(X x y Spec k((t))) and obtain a functor

Galois covers X p Galois 6tale algebras OPY,, of Y with Galois group - over k((t)) with GaloisVYy: a p-group that aregrua -op
unramified over Y' group a p-group

From now on, we denote the source category by C and the target category by D.

Understanding the functors Oy, and Poy, allows one to use the geometry of Galois

covers of curves to classify automorphisms of k[[t]] as in [BCPS17. In the other

direction, it allows us to use extensions of k((t)) in order to classify possibilities for

the ramification filtration for a Galois covers of curves with Galois group a p-group,

as noted in the survey [HOPS].

Questions about Oyy and pyy can be approached by turning to stale cohomology.

Throughout this thesis, for a scheme S and a (not necessarily abelian) group G,

we denote by G the constant sheaf of groups associated to G with respect to the

6tale site on X, and we denote by H1 (S, G) the Cech cohomology set fte(S, G;
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this cohomology set parameterizes principal G-bundles on X, as noted on p. 75 of

[Mil08]. Let O(Y') be the ring of regular functions on Y'. The inclusion O(Y') "

k((t)) induces a map Spec k((t)) -+ Y' which we can think of as inclusion of the

formal deleted neighborhood around y into Y'. Hence, we obtain a map IYy,G

H1(Y', G) -+ H1(k((t)), G).

We denote by CG be the category of pairs consisting of an object X -e Y of C

and an injective homomorphism G -+ Aut(X/Y); a morphism in CG is a morphism

in C that respects the G-actions. Define DG similarly using objects of D. We denote

by 4 Yy,G the functor CG -+ DG which is the restriction of Oyy.

Elements of H'(Y', G) correspond to isomorphism classes of G-Galois 6tale covers

of Y'. From a G-Galois 6tale cover X' of Y', we can get a G-Galois cover X of Y

by taking the normalization of Y in X'. Conversely, a G-Galois cover X of Y which

is unramified over Y' restricts to a G-Galois 6tale cover of Y', and this restriction

gives us a bijective map from the isomorphism classes of C to H1 (Y', G); similarly

we have a bijective map from isomorphism classes of D to H'(k((t)), G), and we see

that TY,y,G comes from Y,y,G applied to isomorphism classes.

By the above discussion, Oyy is essentially surjective if and only if Jyy,G is

surjective for every p-group G. And Oy,, is an equivalence of categories if and only if

XPY,y,G is an isomorphism for every p-group G. Also, 4yy is injective on isomorphism

classes of C if and only if FYy,G is injective for every p-group G.

We pose some basic questions about JY,y,G.

Question 1.0.1. When iS XYyG SurfjeCtive?

A positive answer would imply that every G-Galois extension of k((t)) extends

to a global Galois cover of Y, and so /yy is essentially surjective, by the above

remarks. In [Har80], Harbater showed that if the ground field k is algebraically
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closed, then 'Y,y,G is surjective for any p-group G. In this thesis, we provide an

answer to Question 1.0.1 over a more general field k, not necessarily algebraically or

even separably closed, in Theorem 1.0.2.

Notation: for any ring R of characteristic p, let p: R - R denote the Artin-

Schreier map f 4 fP - f.

Theorem 1.0.2. Let G be a nontrivial finite p-group. Then the following are equiv-

alent:

(a) The equality k((t)) = p(k((t))) + 0(Y') holds.

(b) The map "Yy,G is SurjeCtive.

We note that (a) is independent of G, so for any nontrivial p-groups G and G',

the map 1 Yy,G is surjective if and only if Yy,G' is surjective.

We can also ask whether two global Galois covers of Y in C which are not iso-

morphic over Y can induce isomorphic extensions of k((t)).

Question 1.0.3. When is "Yy,G injecive?

An answer to this over algebraically closed fields k was given as well by Harbater

in [Har80. In fact, he calculates that each fiber of TYIy,G has size p', where r is the

p-rank of Y. We extend the answer to Question 1.0.3 to a more general field k, which

might not be separably closed.

Theorem 1.0.4. Let G be a nontrivial finite p-group. Then the following are equiv-

alent:

(a) The equality p(k((t))) n 0(Y') = p(O(Y')) holds.

(b) The map "Yy,G is injective.
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We note that (a) of this theorem also is independent of G, so for any nontrivial

p-groups G and G', the map TY,y,G is injective if and only if FYWy,G' is injective.

Combining our answers to Questions 1.0.1 and 1.0.3, without assuming that the

base field is algebraically or even separably closed, gives a criterion for TYy,G to be a

bijection, or equivalently for Oyy to be an equivalence of categories. This generalizes

the result of Katz in [Kat86], which states that over any field of characteristic p,

the functor 0p1,,, is an equivalence of categories. Curves satisfying the criteria of

Theorems 1.0.2 and 1.0.4 are particularly useful for relating the geometry of the

curve and its covers to properties of k((t)) and its extensions. In Chapter 4 of this

thesis, we give examples of such curves beyond P'.

Our proofs of these theorems use new and more explicit methods. Proofs in previ-

ous work, as in [Kat86, have reduced the problem to the case in which G is abelian.

In this case, one can use the vanishing of certain H2 groups or a characterization

of abelian p-group field extensions using Witt vector theory, as noted in [HOPS].

However, in this thesis, we prove our results using a different method: describing

and working with an explicit characterization of G-Galois 6tale algebras for G not

necessarily abelian, given in Theorem 3.2. This characterization, which we will call

the Inaba classification, is a generalization of a theorem of Inaba in [Ina6l], which

extends Artin-Schreier-Witt theory to nonabelian Galois 6tale algebras.
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Chapter 2

Background and Definitions

2.1 Galois Covers and Etale Cohomology

In topology, a lot of information about a space can be gleaned from its covers and

the automorphism groups of those covers (also called deck transformations). In

particular, a useful algebraic invariant of a path-connected, locally path-connected

topological space X (with base point x) is the fundamental group r1(X, x), which can

be defined as either homotopy classes of loops at x, or automorphisms of a universal

cover over X.

By a variety over k, where k is a field, we mean a separated geometrically reduced

scheme of finite type over k. Varieties over the complex numbers have analytic

spaces associated to them, and one can compute the topological fundamental group

of these. But for varieties V over other fields, like finite fields, there is not a sensible

theory of continuous maps from the interval [0, 1] to V, and we also need a more

algebro-geometric sense of "cover" that does not rely on the analytic notion of "local

diffeomorphism" or purely topological notions. To this end, Alexander Grothendieck
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defined 6tale maps for schemes. We now recall this theory, following Milne's lectures

on 6tale cohomology [MilO8I.

Definition 2.1.1. We say a morphism of varieties f : X -+ Y is 6tale if it is smooth

and unramified.

In topology, a cover f : X -+ Y is regular if the action of G := Aut(X/Y) is

transitive on each fiber, which is equivalent to X being a principal G-bundle over Y,

or, for finite covers, equivalent to the size of each fiber being equal to IG1. Principal G-

bundles are in one-to-one correspondence with homomorphisms 7ri(Y) -+ G. Finite

6tale maps serve as analogues to covering maps; the analogue to regular covering

maps is as follows:

Definition 2.1.2. [PS11, p. 41 For a finite group G, a G-Galois 6tale cover is a finite

itale map f : X -+ Y together with an inclusion p : G "- Aut(X/Y) such that

f- 1(Oy) is equal to the sheaf of G-invariants of Ox.

Definition 2.1.3. [MilO8, p. 291 For a connected normal variety Y and a geometric

point 9 of Y lying over the generic point of Y, and Q the corresponding algebraic

closure of the function field k(Y), we let L be the union of all the finite separable

field extensions K of k(Y) in Q such that the normalization of Y in K is etale over

Y; then the 6tale fundamental group 7et(Y, y) is

7ri(Y, g) = Gal(L/k(Y)).

When Y is a smooth variety, it is also of interest of us to consider maps to Y

which are almost 6tale but have some ramification. For this purpose, we introduce

the following definition.
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Definition 2.1.4. A G-Galois cover is a finite, generically 6tale map f : X - Y of

regular schemes together with an inclusion p : G --- Aut(X/Y) such that f -1 (Oy) is

equal to the sheaf of G-invariants of Ox.

If Y is a curve, a G-Galois cover of Y is ramified above finitely many points of

Y.

Another type of useful invariant of a topological space is its singular cohomol-

ogy; Galois cohomology provides a similar invariant for fields which classifies finite

separable extensions of the base. Since 6tale maps include both covering maps of

complex varieties and separable extensions of fields, we use them as the basis for

another cohomology theory. Open immersions are also 6tale, so this motivates us to

first extend the notion of a collection of open maps covering a space to 6tale maps.

Definition 2.1.5. A collection of etale maps {f, : U - Y} is an 6tale covering if

U fi(U) =Y.

Definition 2.1.6. The 6tale site on Y is the category of all Ctale maps X -4 Y,

together with the Grothendieck topology in which coverings are 6tale coverings.

Definition 2.1.7. An 6tale sheaf on Y is a contravariant functor from the category

of 6tale maps to Y to the category of abelian groups that satisfies the sheaf conditions

with respect to the 6tale site.

Definition 2.1.8. The ith 6tale cohomology group H'(Y, -) is the ith right derived

functor of the functor of global sections of etale sheaves on Y.

Etale cohomology coincides with Galois cohomology when Y = Spec k, as noted

in [Mil08] p. 7. And for A finite and Y a variety over C, we also have Hr(Yt, A) Y

Hsrn(Y (C),I A).
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We note, however, that 6tale cohomology is usually defined for sheaves of abelian

groups, and we want to consider covers of spaces with a nonabelian Galois group

G. This can be done by considering the Cech cohomology set H1 (U, G); for sheaves

of abelian groups, the Cech cohomology groups agree with 6tale cohomology groups

by Proposition 10.6 of [Mil08]. And most importantly, the first cohomology set still

classifies principal homogeneous spaces, per Proposition 11.1 of [Mil08I:

Theorem 2.1.9. For a scheme U and finite group G, there is a natural bijection

from the set of isomorphism classes of principal homogeneous spaces for G over U

to t1(U, G).

2.2 Prime-to-p-covers

In this section, we discuss Galois covers of curves whose Galois groups are prime to

p, the characteristic of the field.

We first recall the classification of Galois covers of complex curves.

Theorem 2.2.1. Let X be a smooth projective curve over C of genus g, and let S be

a nonempty, finite subset of points of X with IS| = r. Then a finite group G is the

Galois group of a cover of X unramified outside S if and only if G can be generated

by 2g + r - 1 elements.

One can see this by noting X is isomorphic to a quotient of a polygon and using

Van Kampen's theorem to compute the topological fundamental group. And from

the theory of base change for proper normal curves (Corollary 4.6.11 of [Sza]), this

result actually holds over any algebraically closed field of characteristic 0.

Over characteristic p fields, there is a philosophy that the theory of Galois covers

with Galois groups of order prime to p is the same as in characteristic 0. This is made
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precise by the following theorem of Grothendieck, as presented in Theorem 4.6.11 of

[Sza], for which we denote by ri(U)(P') the inverse limit of quotients of ri(G) having

order prime to p.

Theorem 2.2.2. Let k be an algebraically closed field of characteristic p > 0 and let

Y be an integral proper normal curve of genus g over k. Let U C Y be an open sub

curve, and r > 0 the number of closed points in Y\U. Then 7r1(U)( ') is isomorphic

to the profinite p'-completion of the group

Fig,r : (ai, bi, ... , ag, bg, yi, ... , y, [ai, b1] ... [ag, bg .- Y - 1)

This suggests that the richest behavior unique to characteristic p comes from

p-group covers of curves, which we investigate in this thesis.

2.3 Artin-Schreier-Witt theory

We first focus on the simplest nontrivial p-group, G = Z/pZ; this is the topic of

Artin-Schreier theory. Classically, Artin-Schreier theory has been used to describe

Z/pZ-extensions of fields explicitly in terms of equations defining the extension over

the ground field; we give this characterization in the following proposition:

Proposition 2.3.1. Let k be a field of characteristic p.

(i) Let L be a ZIpZ-Galois 6tale algebra over k. Then L is isomorphic to an algebra

of the form k[y]/(yP - y - f ) for some f G k, and the Galois action of i G Z/pZ

sends y - y + i.

(ii) Given f E k, the algebra Lf := k[y]/(yP - y - f) is a Z/pZ-Galois itale algebra
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over k, and two such algebras Lf and L; are isomorphic (as Z/pZ-Galois k-

algebras) if and only if f - f = gP - g for some g E k.

Proof. We denote by Gk the absolute Galois group of k, and consider the sequence

of Gk modules

0 -+ Z/pZ -+ k"P 4 k"P 4 0,

where the action of Gk on Z/pZ is trivial, and p is the Artin-Schreier map sending

h - hP - h. We see that p is surjective onto k"P since the polynomial H(x) =

xP - x - 1 has H' = -1, so H is separable and has a root in kSeP. And the kernel of

p is exactly Z/pZ, the p roots of xP - x = 0, so in fact the sequence is exact. This

gives rise to a long exact sequence in Galois cohomology:

0 -+ HO(Gk, 7Z/PZ) -+ HO(Gk, ks*p) - H0 (Gk, kseP)

4 H'(Gk, Z/pZ) -+ Hl(G, kksep)

but by the additive version of Hilbert's Theorem 90, H1 (Gk, ks'P) = 0, so we can

rewrite the above exact sequence as

0 -+ Z/pZ -+ k 4 k 4 H1(Gk, Z/pZ) -+ 0,

and the map 6 sending f E k to the isomorphism class of the algebra k [x] / (P - x - f)
with Galois action in which i E Z/pZ acts as x F- x + i. Since 6 is surjective,

statement (i) holds. And since the kernel of 6 is elements of k of the form gP - g for

g E k, statement (ii) holds. E

Another commonly used characterization of extensions of characteristic p-fields

comes from Artin-Schreier-Witt theory, which classifies extensions by abelian p-
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groups. We give a proof of it as outlined in Exercises 49-51 of Chapter VI of [Lan].

Let W, (K) denote the ring of truncated Witt vectors over a field K of characteris-

tic p, and F : W,(K) -+ W,(K) to be the map sending (sco, ..., x_1) '-4 (X0 , ... , 1).

Proposition 2.3.2. Let k be a field of characteristic p and n an integer greater than

0. Let L be a Z/p7Z-Galois 6tale algebra over k. Then L 2 K[Xo, ... , Xn 1]1(0(X) =

) where the xi are indeterminates, = (co,..., n_1) is a Witt vector in W,(k),

and ( p(x) = ) represents the ideal coming from the entrywise equalities of the Witt

vector equation

(X! ... X"_ - (XO, .. ,X _1n- g , .,( 1).

Conversely, every Z/p7Z-Galois 6tale algebra over k is isomorphic to L for some

C z Wn(k), and two such algebras L and L are isomorphic as Z/p7Z-Galois k-

algebras if and only if - = Fw - w for some Witt vector w C Wn(k).

Proof. We now denote by p the map Wn(K) - Wn(K) sending (XO, ... , _n-)

(Xv, ... , _) - (XO, ... , 1), where the minus is understood to be subtraction in the

ring of Witt vectors.

We first prove by induction on n that the sequence

0 -+ Wn(Fp) -+ Wn(ksep) 4 Wn(k"P) -+ 0

is exact.

The base case n = 1 is the Artin-Schreier case, proved in Theorem 2.3.1.

Now we assume the sequence is exact for n - 1.

We denote by 7r the map Wn(K) -+ Wn_ 1(K) which is projection onto the first n-

1 coordinates. We denote by t the map K - Wn(K) which sends a '-4 (0, 0, ... , 0, a).
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These maps give us an exact sequence

0 -+ K -'+ Wn(K) 24 Wn_ 1 (K) -+ 0.

We now consider the diagram

0 > K - : Wn(K) - Wn_ 1 (K) -+0

tr tP P~
0 - K > Wn(K) 7 : Wn_ 1 (K) -*0

which has exact rows. By the inductive hypothesis, the left and right vertical P maps

are surjective, with kernel Z/pZ and Z/p"-'Z respectively. By the Five Lemma, the

middle map p: Wn(K) -÷ Wn(K) is surjective. To calculate the kernel, we note that

from the Snake Lemma the sequence

0 -+ Z/pZ -4 ker(p: Wn(K) -+ Wn(K)) -- Z/p" 1 /Z - 0

so ker(p : Wn(K) -* Wn(K)) has order p. But also, the Frobenius F acts as the

identity on Wn(Fp) C Wn(K), so W,(F) is a subgroup of the kernel, but bedause

Wn(Fp) also has order p", we must have Wn(Fp) = ker(p : Wn(K) - Wn(K)).

Now since the sequence

0 -+ W((F) -+ W(kseP) E+ Wn(kS"P) -- 0
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is exact, we have a long exact sequence in Galois cohomology

0 - HO(Gk, W,(Fp)) -+ H0 (GkW, (k ep)) -> HO(Gk, W(k"P))

-+ H (Gk, Wn(]Fp)) -+ H1 (Gk, Wn(ksP)) ...

We also have that H1 (Gk, Wa(ksep)) = 0, by devissage, so in fact

Wn(k)/p(Wn(k)) A H1 (Gk, W,(FP))

is an isomorphism.

2.4 Theorem of Inaba

Given a characteristic p field k and a finite (possibly non-abelian) p-group G, Inaba

(in [Ina6l]) gave an explicit characterization of Galois field extensions of k with

Galois group G.

The proof is similar to concrete proofs of Hilbert's Theorem 90 and the classifi-

cation of Artin-Schreier extensions, as presented on p. 302 of [Lan].

We first establish some notation. For each integer n > 1, we define the algebraic

group Un from the functor of points perspective. For an FP-algebra R, we define

U,,(R) to be the group of upper triangular n x n matrices with coefficients in R, such

that all the diagonal entries are 1, and the group action is matrix multiplication.

We also denote by X the upper triangular matrix of indeterminates, where the (i, j)

entry is the indeterminate xi for j-i > 0 and the (i, i) entry is 1. For a characteristic

p ring R and a matrix C E Un(R), we denote by C(P) the matrix obtained by raising
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each entry of C to the pth power (different from matrix multiplication of C with itself

p times). We denote by LM the R-algebra R[X]/(X(P) - MX), by which we mean

the R-algebra generated by the indeterminate entries of X, modulo the relations

coming from the matrix equation X(P) = MX. This has a U,(Fp)-action given by

X - X -g for g E U,-(F) (with indeterminates mapping to the corresponding entry

of the matrix X - g). We say that Lm is the U(Fp)-Galois etale algebra arising from

the matrix M. Lastly, we say that two matrices M, M' E Un(R) are p-equivalent over

R if there exists C E Un(R) such that M = C(P)M'C- 1 .

We now reproduce Inaba's argument here.

Proposition 2.4.1. Let k be a field of characteristic p. Then, to every Galois

field extension L/k whose Galois group G has order a power of p, and embedding

A: G - U,((Fp) there corresponds a unipotent matrix M C Un(k), unique up to

p-equivalence, such that L is generated as a k-algebra by the entries of a matrix

A E U,(kseP) satisfying the matrix equation

A(P) = MA.

Conversely, for every unipotent matrix M E Uj(k), there exists a unique Galois

extension L/k and embedding A of the Galois group of L/k in Un(Fp) such that L

is generated as a k-algebra by the entries of one solution A E Un(ksep) to the matrix

equation

A(P) = AX,

and the embedding A : Gal(L/K) - Un(IFp) is determined uniquely by the p-equivalence

class of M.

Proof. First, suppose we have a Galois field extension L/k and an embedding A
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G -- U,(F) of the Galois group. Let -y be an element of L such that TrL/k(7y) # 0,

and let

TrLk (7) UEG

Then for all TE G,

TA = AA(-r)

This implies that if L' is the extension of k given by adjoining the entries of A, and

a is any automorphism of L over L', then in fact -(A) = A so a acts trivially on L'

and L = L'.

We also have that

so M := A()A- 1 E

o-(A CP)A-1) = o,(A(P))(o-(A))--I

= A (P)A(-)(P)(AA(-))-

= A(P)A(o-)(A(c-))-1A-1

= A(P)A-1

U,(k) and A satisfies the matrix equation

X(P) = MX.

Conversely, for some M E Us(k) consider the matrix equation

X () = MX.

We first note that this has at least one solution A E U,(kseP); this can be obtained by

iteratively adjoining roots of Artin-Schreier polynomials. So let A be such a matrix
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and let L be the extension of k generated by adjunction of all entries aj of A to k.

We want to show that L is a Galois extension of k and that its Galois group G is

isomorphic to a subgroup of Un, (Fp). Firstly, since Artin-Schreier polynomials are

separable, L/k is a separable extension. Next, we note that for a E Gal(kseP/k),

u(A) = a(M-1 A(P)) = Ml(uA)(P)

so a(A) also satisfies the equation X(P) = MX. But if A is any matrix in U"(ksep),

then (AA- 1 )(P) = Id, so AA- 1 E Un(IFp). But then the entries of a(A) are also in

L, so L/k is Galois, and from this we also see that the Galois group of L/k is a

subgroup of Us(Fp). D
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Chapter 3

Main Results

3.1 Preliminary Lemmas

We begin with a useful lemma that allows us to work with p-groups by viewing them

as subgroups of a nice matrix group.

Lemma 3.1.1. If G is a finite p-group, then there exists an n G Z>o and an injective

homomorphism A : G -4 U,(Fp).

Proof. Let , : G -* GL,(Fp) be the regular representation, so n = JGJ. If we consider

an eigenvalue A of the matrix p(g) for some g E G, we see that since gIGI = 1, we

must have A'GI = 1. But since IGI is a power of p, we have A = 1, so <p(g) is

unipotent. Then by Proposition 2.4.12 of [Spr], after a change of basis, G embeds

into U,(Fp). E

Next, we prove a lemma that allows us to work with unipotent matrices induc-

tively, one diagonal at a time.
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Lemma 3.1.2. Let R be a ring of characteristic p. Suppose that M = (mij), M'

(mij) c U,(R) are p-equivalent, so M = B(P)M'B-1 for some B = (bij) E Un(R).

Then for each pair i, j, there exists an element C of the Z-subalgebra of R generated by

{m1,bZm jj-i < j-i} such that mi = p(bjj)+m'j-+C. That is, mij = p(bij) + '*

modulo the elements on the lower diagonals.

Proof. Consider two matrices W = (wi3 ), Z = (zij) E Un(R). The (i, j) entry of

WZ, which we call aij, is Ek WikZkj, but since these matrices are in Un we have

aij 1-zi +wij 1+ E WikZkj,

i<k<j

and in this range, i - k < i - j and k - j < i - j. Applying this to both sides of the

equation MB = B(P)M' yields the result. D

3.2 Non-abelian p-group Covers of Affine Schemes

Theorem 3.2.1. Let G be a finite p-group, and fix an injective homomorphism

A : G - Un(Fp) for some suitable n. Let R be a ring of characteristic p such that

Spec R is connected, and let L/R be a Galois 6tale algebra with Galois group G.

(i) The R-algebra L is generated by elements aij E L for 1 < i < j < n such that

the unipotent matrix A := (aij) satisfies A(P) = MA for some M E Un(R).

Also, for o E G, O'A = AA(-), where o- acts entrywise on A.

(ii) Given two G-Galois etale algebras L and L', if we choose (A, M) for L and

(A', M') for L', then L and L' are isomorphic as R-algebras equipped with an

action of G if and only if M = C(P)M'C 1 for some C E U,(R).
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We now provide generalizations of Artin-Schreier theory to non-abelian groups.

We begin with a lemma about Un(Fp)-extensions.

Lemma 3.2.2. Let R be a ring of characteristic p such that Spec R is connected.

Then the finite Galois stale algebras over Spec R with Galois group Un(Fp) are the

algebras Lm := R[X]/(X(P) = MX) where M ranges over all matrices in U,(R),

and the Galois action is given by matrix multiplication X -4 X -g. Two such Galois

algebras defined by matrices M and M' are isomorphic as R-algebras with U"(Fp)-

action if and only if M = C(P)M'C- 1 for some C C U,(R).

Proof. We identify the abstract group U,(Fp) with the associated constant group

scheme over the ground field Fp. We have a sequence

Un (Fp) - U. _' Un

where L is the morphism B H- B(P)B-' (which is not a group homomorphism). By

Lang's theorem [Lan56], L is surjective and identifies Un/Un(Fp) with U". Since

Spec R is connected, H0 (Spec R, Un(Fp)) = Un(Fp), so by Proposition 36 of [Ser],

we have an exact sequence of pointed sets

1 - U.(Fp) -9 U(f) -4 Un (R) 4 H'(Spec R, Un(F,)) -÷ H1 (Spec R, Un)

where 3 sends a matrix M E Un(R) to the class of the 6tale algebra LM. The action

of Un(R) on Uf(R) via L is given as follows. Since L is surjective, there is some

6tale R-algebra S and some N E Un(S) such that M = N(P)N-1. The action of

C e Un(fR) sends M to L(CN) = C(P)N(P)N-1C-1 = C(P)MC- 1.

Next, since H'(X, Ox) = 0 for affine schemes and U, has a composition se-

ries whose factors are Ga, we see by induction that H'(Spec R, U) = 1. So the
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map U,(R) -+ H1 (Spec R, U,(F,)) is surjective and expresses H1 (Spec R, U"(IFp))

as quotient of Un(R) by the left action of U,(R) via the map 1. So every Un(Fp)

6tale algebra is isomorphic to some Lm with the condition for equivalence as stated

in the lemma. E

Now we look at a general p-group and fix an embedding A: G -+ U,(Fp).

Proof of Theorem 3.2.1. First, the inclusion A: G -+ Us(Fp) induces a map

H1 (Spec R, G) -+ H1 (Spec R, UI(F))

sending the class of L to the class of the R-algebra

L := fJ L
G\ U,(F,)

with the following left U (IFp)-action. Let u1 , ... , u, be coset representatives for

G\Un(Fp), with ui = e being the identity element. Then we can write any element of

VlG\Un(Fp) L as (fi)= with ei E L. For each u E U(Fp), there exist gi E G such that

uiu = giuj(i), where j(i) is the index of the coset of niu. Then u- (fi)i = (- -1(i))i-

Let 7r : L -+ L be projection onto the first component. For an element h C G,

we see that 7 (h(Lr , ) - fl", so r respects the action of G. But by Lemma 3.2.2,

L c R[X]/(X(P) = MX) as G-Galois 6tale R-algebras, so the surjection 7r expresses

L as R[A], where A is the matrix with ij-coordinate equal to ir(xi3 ). And since 7r is

compatible with the action of G, the original G-action on L agrees with the action

coming from matrix multiplication by A(G).

Lastly, the map H0 (Spec R, Us(Fp)) -+ H0 (Spec R, Us(IFp)/G) is surjective, since
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it is the map U,(Fp) -4 U,(Fp)/G, so by the exact sequence in Proposition 36 of

[Ser], the map UI(Fp)/G -- H1 (Spec R, G) is zero, which implies that the map

H1 (Spec R, G) -- H1 (Spec R, Un(Fp)) is injective. This tells us that the condition

for equivalence of G-Galois 6tale algebras is the same as in Lemma 3.3.2.

3.3 Existence of Local-to-Global Extensions

Throughout the rest of this chapter, let Y be a smooth proper curve over k, let

y C Y(k), let Y' := Y - {y}, and let t be a uniformizer at y.

Theorem 3.3.1. Let G be a nontrivial finite p-group. Then the following are equiv-

alent:

(i) The equality k((t)) = p(k((t))) + O(Y') holds.

(ii) The map 'Yy,Un(F), is surjective for all n > 1.

(iii) The map JYy,G is surjective.

Proof. We first show that (i) implies (ii). Suppose k((t)) = O(Y') + p(k((t))). Let

L be a U,(Fp)-Galois 6tale k((t))-algebra, so by Lemma 3.2.2, L 2 LM for some

M C Un(k((t))). We want to find a matrix M' C Un(O(Y')) which is p-equivalent

over k((t)) to M. Suppose that not all entries of M are in O(Y'). Let mij be such

an entry on the lowest diagonal not having all entries in O(Y'). By the assumption

in (i), there exists b E k((t)) such that mij + p(b) E O(Y'). Let B be the matrix in

Un(k((t))) which has b in the (i, j) entry and is equal to the identity matrix elsewhere.

Then the (i, j) entry of B(P)MB- 1 is mij + p(b) + C with C E O(Y'). And by Lemma

3.1.2, the (ij) entry and entries of all lower diagonals of B(P)MB- 1 are in O(Y'),

so we can iterate this process until we have a matrix M' in Un(O(Y')).
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Next, we show that (ii) implies (iii), so suppose TYIy,U(Fp) is surjective. Since

U2 (Fp) Z Z/pZ, we can also assume that 'yy,z/pz We proceed by induction on the

order of G. Since G is a p-group, G has a central subgroup H which is isomorphic

to Z/pZ. The morphism Spec k((t)) -+ Y' induces the commutative diagram

0 - H'(Y', Z/pZ) 't-> H'(Y', G) - Y > H'(Y', G/H) - 0

I'YyZ/pZ yYG Y,y,G/H

0 > H1 (k((t)), Z/pZ) H1 (k((t)), G) > k ())H1(k((t)), G/H) -+0

By Proposition 42 of [Ser] and Lemma 1.4.3 of [Kat86] (which states that both

H2 (k((t)), Z/pZ) and H2(Y', Z/pZ) are zero), this diagram has exact rows, and two

elements of H1 (Y', G) have the same image in H1(Y', G/H) if and only if they are in

the same H1 (Y', Z/pZ)-orbit (and similarly for H1 (k((t)), G)). And by the inductive

hypothesis, IYy,z/pz and TYy,G/H are surjective. The surjectivity of IYy,G is proved

via the following diagram chase.

Let / be an element of H'(k((t)), G), and let ' : k((t))( 3 ). By the inductive

hypothesis, there exists an element -y E H1 (Y', G/H) such that 'Y,y,G/H(-Y) = '. Let

# be an element of H1(Y', G) mapping to 7. Then by Proposition 42 of [Ser], there

exists an element & E H1 (k((t)), Z/pZ) such that tk((t))(d) - tYy,G(/) equals 3. Now

let a be an element of H1 (Y', Z/pZ) mapping to d. We see that iy (a) - maps to /

under 0Y,y,G, SO Yy,G is surjective.

Next, we show that (iii) implies (i), so suppose VYy,G is surjective, and again

let H be a nontrivial central subgroup of G isomorphic to Z/pZ. Again consider

the aforementioned diagram. Since YPk((t)) 0 TYy,G is surjective, IY,y,G/H is surjec-

tive. Iterating this process shows that TYy,z/pz is surjective. Let f E k((t)), so

k((t))[x]/(P -- x - f) is a Z/pZ-Galois 6tale algebra over k((t)). Since xFY,yz/pz is
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surjective, Theorem 3.2.1 tells us that f is p-equivalent to an element g of O(Y'), so

f = p(b) + g for some b c k((t)). Thus the equality in (i) holds. E

3.4 Uniqueness of Local-to-Global Extensions

Theorem 3.4.1. Let G be a nontrivial finite p-group. Then the following are equiv-

alent:

(i) The equality p(k((t))) n 0(Y') = p(O(Y')) holds.

(ii) The map FYy,G is injective.

(iii) The map 1 yy,z/pz is injective.

Proof. First, we show that (i) implies (ii), so suppose that p(k((t))) n o(Y') =

p(O(Y')). Let Spec L and Spec L' be two 6tale G-covers of Y' that become iso-

morphic over k((t)). By Theorem 3.2.1, L = LM and L' = Lm, for some M

and M' C Un(O(Y')), and since they are isomorphic over k((t)), we have that

M = BCP)M'B-1 for some B c Un(k((t))). Suppose for contradiction that there

exists an entry bij of B not in O(Y'), chosen such that all entries on lower diagonals

are in 0(Y'). Then by Lemma 3.1.2, p(bij) = mi - MI + C where C is a polynomial

in the entries of lower diagonals of B, M, and M'. Then p(bij) C O(Y'), and by (i),

bij E O(Y'), a contradiction.

Next we show that (ii) implies (iii), so assume that ?Yy,G is injective. Since G is

a nontrivial p-group, it has a nontrivial subgroup H which is isomorphic to Z/pZ,
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so by Proposition 42 of [Seri, we have a commutative square

H'(Y', Z/pZ) H1(Y', G)

I P Y,y,Z/pZ }IYI y,G

H1 (k((t)), Z/pZ)C : H1 (k((t)), G)

and since the top and right arrows are injective, we know that Ty,y,Z/pz is injective.

Next we show that (iii) implies (i), so assume that OyYy,z/pz is injective. Let b

be an element of k((t)) such that p(b) E O(Y'). Then, by the Lemma 3.2.2 for

n = 2, we have that k((t))[x]/(xP - x) is isomorphic to k((t))[x]/(xP - x - p(b)) as

Z/pZ-Galois k((t))-algebras. But since PyWy,z/pz is injective, O(Y')[x]/(xP - x) e

O(Y')[x]/(xP - x - p(b)), so by Lemma 3.2.2, 0 = p(c) + p(b) for some c E O(Y'),

which means that b - c E Fp, so b E O(Y'). So p(k((t))) n O(Y') C p(O(Y')). The

direction p(k((t))) n O(Y') D p(O(Y')) is clear. D

3.5 Characterization of an Equivalence of Categories

We now give a concise reformulation of the criterion for when "Yy,G is a bijection.

We denote by F the Frobenius morphism Oy -* Oy sending f + fP. This induces

a homomorphism F*: H'(Y, Oy) -+ H'(Y, Oy); we also let p* F* - Id be the

endomorphism of H1 (Y, Oy) induced by Artin-Schreier. Then our reformulation is

as follows.

Let G be a finite nontrivial p-group.

Theorem 3.5.1.

(i) The map FYGy,G is a surjection if and only if p* : H1 (Y, Oy) --+ H1 (Y, Oy) is a

surjection.
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(ii) The map 4 'Yy,G is a injection if and only if p* : H'(Y, Oy) - H1 (Y Oy) is a

injection.

(iii) The map TYyG is a bijection if and only if p*: H1 (Y, Oy) -+ H1 (Y, Oy) is a

bijection.

Proof. Let skysc (k m denote the skyscraper sheaf at y, with value group k((t))/k[[t]],\ k[[t]] ~

where the group structure is given by the additive structure on k((t)). The natural

open immersion i: Y' s Y gives the following exact sequence of sheaves on Y:

0 Oy -÷ i*Oy, -+ skyscY (k[It]]) - 0.

We see that H1(Y, i*(Dy,) = H1(Y', Oy,) = 0 since Y' is affine, so the induced long

exact sequence in cohomology gives us an isomorphism

(Y, skyscy k+[[t]] _ _H 1(Y, Oy).
im (HO (YIi *00,) O(Y') +k[[]

We also see that the p-th power endomorphism of sending f 4 fP forO(Y')+k[[t]]f tfo
f C k((t)) corresponds to the Frobenius endomorphism F* of H1(Y, Oy).

We first prove part (i). Now we will show that if p* is a surjection, then Ty,yG is

a surjection, so assume p* is a surjection. Since p* is surjective, for every f E k((t))

there exist g C k((t)), h E O(Y'), 1 E k[[t]] such that f = gP - g + h + 1. Let ao be

the constant term of 1; by setting h' := h + ao and 1' := 1 - ao we can assume I has

no constant term. So 1 = E00 ait. We define a power series I: E00 bit' where

b= -ai for i not divisible by p and bay = bn - an,. So f = P(g + I) + h, and since

p(l) = 1, we see that f E p(k((t)) + O(Y'). This is condition (i) of Theorem 3.3.1,

SO TY,yG is surjective.
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Conversely, suppose TY,y,G is a surjection. First, let f E k((t))/(k[[t]] + O(Y')),

with f represented by f E k((t)). Since TY,y,G is surjective, condition (i) of Theo-

rem 3.3.1 tells us that f = gP - g + h for some g E k((t)) and h E O(Y'), so f is the

image of j under the endomorphism of k((t))/(k[[t]] + O(Y')) corresponding to p*.

Therefore, P* is surjective, and we have proved part (i) of the theorem.

We now prove part (ii) of the theorem. Suppose that p* is injective; we will show

that this implies TY,y,G is injective. Consider f E k((t)) such that P(f) E O(Y').

Since p* is injective, f c k[[t]] + O(Y'), so there exist g E O(Y') and 1 E k[[t]] such

that f = g + 1. Again, we can assume that 1 has no constant term, so 1 E tk[[t]]. But

then p(_g)+p(l) E O(Y'), which implies p(l) E O(Y'), and so p(l) c O(Y')ntk[[t]] =

{0} since nonzero elements of O(Y') have nonpositive valuation at y. This shows

that p(k((t)))nO(Y') = p(O(Y')), which is condition (i) of Theorem 3.4.1, so Yy,G

is injective.

Next, assume JY,y,G is injective. Now consider f c k((t)) such that p(f) = g + 1

for some g E O(Y'), I E tk[[t]]. We can write 1 = p(l) for 1 as above, so - ) E

O(Y'), which implies f - i G O(Y') by Theorem 3.4.1 (ii) => (i). Then f = 0 in

k((t))/(k[[t]] + O(Y')), so p* is injective, proving part (ii) of the theorem.

Lastly, part (iii) follows from parts (i) and (ii). E
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Chapter 4

Examples

4.1 The Affine Line

It is a theorem of Katz and Gabber ([Kat86I Proposition 1.4.2) that the functor

is an equivalence of categories for any characteristic p ground field k. We can recover

this result from Corollary 3.5.1 of this thesis, since the map p : H1 (Pl, Opi) 4

H1 (Pk, Cp1) is an isomorphism because H1 (IPk, Opi) = 0.

4.2 Elliptic Curves over FP

In this section, we apply Theorem 3.5.1 to study qE,O for an elliptic curve E over

FP with 0 denoting the point at infinity. The operator F* on H1 (E, OE) acts as

multiplication by some a E Fp, and in fact #E(Fp) -1 - a mod p. We say that E

is anomalous if a =1 mod p.

Theorem 4.2.1. For an elliptic curve E over Fp, the following are equivalent:

(a) E is not anomalous.
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(b) The map XIE,O,G is injective for all p-groups G.

(c) The map "'E,O,G is surjective for all p-groups G.

Proof. First, we note that since H1 (E, OE) is finite, the endomorphism p* on H1 (E, OE)

is surjective if and only if it is injective. Since F* acts as multiplication by a, P* acts

as multiplication by a - 1. Then p* is surjective if and only if a # 1, and P* injective

if and only if a # 1. Applying (i) and (ii) of Theorem 3.5.1 gives the result. E

As indicated in [Sie35], the number of anomalous curves over Fp is on the order

of pl/ 2 +o(l), as opposed to the total number of elliptic curves which is on the order

of p, and so Theorem 4.2.1 provides us with a broad class of curves whose p-group

Galois covers correspond nicely to p-group k((t)) extensions.

4.3 Elliptic Curves over Fq

Let E be an elliptic curve over Fq, where q = pf. Then H1 (E, OE) is a 1-dimensional

vector space over Fq; we let b be a generator and write H'(E, OE) = Fq - b. By

Theorem 3.5.1 and the remarks in Chapter 1, we know that bE,O gives an equivalence

of categories if and only if p* is a bijection. Since H1 (E, OE) is finite, we know

H1 (E, OE) - H 1(E, OE) is bijective if and only if it is injective, which is true

if and only if F* H1(E, OE) -+ H1 (E, OE) has no nonzero fixed points.

Now let a E Fq be such that F*b = ab. Then F* has a nonzero fixed point

if and only if there exists A E Fq such that (APa)b = Ab, which holds if and only if

a c (F')Pl. But since (IFE)P- is cyclic of order (q-1)/(p -1) = l+p+...+p"-- 1, this

is equivalent to saying NFq/Fp(a) = 1. By Theorem I of [Man61], this is equivalent to

a being congruent to 1 mod p, which is equivalent to p I #E(Fq). So for a nontrivial

p-group G, 'PE,O,G is a bijection if and only if p does not divide #E(Fq)
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4.4 Higher Genus Curves over Fp

Theorem 4.4.1. Let Y be a curve over Fp of genus g. Let A be its Hasse-Witt

matrix and let 7r be the characteristic polynomial of the Frobenius morphism on the

Jacobian J(Y). Then the following are equivalent:

(a) Tyy is an equivalence of categories.

(b) p* on H1 (Y, Oy) is a bijection.

(c) det(A - I) # 0 where I is the g x g identity matrix.

(d) 7r(1) * 0 (mod p)

(e) #J(Fp) 6 0 (mod p)

Proof. By Theorem I of [Man61],

7r(A) -_ (-1)9A det(A - AI) mod p.

By Theorem 3.5.1, 'by, gives an equivalence of categories if and only if p does not

divide #J(Fp). But looking at the characteristic polynomial, we see that this is

equivalent to det(A - I) = 0. E

For many curves, like hyperelliptic curves, the Hasse-Witt matrix can be com-

puted with fast algorithms (as demonstrated in [HS14]), so one can check in practice

if Oyy is an equivalence of categories.
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