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Abstract

Chromatic localization can be seen as a way to calculate a particular infinite piece
of the homotopy of a spectrum. For example, the (finite) chromatic localization of
a p-local sphere is its rationalization, and the corresponding chromatic localization
of its Adams F, page recovers just the zero-stem. We study a different localization
of Adams E, pages for spectra, which recovers more information than the chromatic
localization. This approach can be seen as the analogue of chromatic localization in a
category related to the derived category of comodules over the dual Steenrod algebra,
a setting in which Palmieri has developed an analogue of chromatic homotopy theory.
We work at p = 3 and compute the F; page and first nontrivial differential of a spectral
sequence converging to b;y Exth(FF3,F3) (where P is the Steenrod reduced powers), and
give a complete calculation of other localized Ext groups, including by Ext}(F3, F3[£3]).
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0.1 Notation

We use the following notation extensively in this thesis.

Comodr

Stable(I")
EXtF

F, (for p odd, specialized to p = 3 in Chapter 4)

cotensor productv of I'-comodules M, N

Exterior algebra k[zi,...,z,]/(22,..., 12

Polynomial algebra k[z1, ..., Zy]

Truncated height-p polynomial algebra k[zy,...,z,]/(2},..., 22)

Coaugmentation ideal coker(k — R), for a unital k-algebra R

mod-p Steenrod dual P[§;,&s,...] ® Elro, 71, - - -]

Steenrod reduced powers algebra P[£;, &, .. . ]

Antipode of the generator usually called &, (see Notation 4.1.5)

Category of I'-comodules (for a coalgebra I')

See Definition 2.1.6

Derived functors of Homgemod, (see §2.1)

Any symmetric monoidal model for the category of spectra

Homgapler) (k, M) (see Notation 2.1.13)

DI

Popk = k[€3,&,&3, . ..] (see Notation 4.1.5)

colim(B 2 phg .) as an object of Stable(P)

bio Extp(k, k) = E[hi) ® P[b3,

Cobar complex N CL’I’:(M , N) as defined in Definitions 3.1.5 and 3.1.11

Diagonal, left, and right comodule structures on a tensor product
(see Definition 3.1.1)

See Definition 2.2.2

D-comodule isomorphic to k[&;]/&}
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Chapter 1

Introduction

The goal of the work described in this thesis is to compute graded abelian groups of

the form

br Ext}(Fs, M)

where:

e P is the mod-3 Steenrod reduced powers algebra F3[;, &, ... ],
e bjy € Ext%(FF3,F3) is the element with cobar representative [£; |€2] + [£€2]&,], and

e M is a P-comodule.

The main focus is the case where M = F53: we describe the F5 page and first nontrivial
differentials of a spectral sequence converging to by, Ext}(IF3, F3). We also have complete
calculations of b;y Ext}(F3, M) for some other comodules M, and a conjecture about
the general structure of these Ext groups. We will begin by explaining the motivation
for this project by situating it within the larger context of chromatic homotopy theory.

Later in this chapter we will give a summary of our main techniques and results.
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1.1 Motivation: chromatic localizations in Stable(P)

This section is structured as follows: first we will describe a class of objects we would
like to better understand (Adams E; pages), then we will describe an approximation
technique (chromatic localization) that does not seem to immediately apply to the
desired objects of study, and finally we will describe a way to apply the technique to
the objects of study (by re-constructing the machinery of chromatic homotopy theory
within an algebraic category related to Adams F, pages). None of the work described in
this section is ours; the main ingredients are the nilpotence and periodicity theorems of
Devinatz-Hopkins-Smith and the work by Palmieri about stable categories of comodules.
Unless explicitly stated otherwise, we will work localized at an odd prime p, which will

eventually be specialized to 3, and write k = F,,.

1.1.1 Adams FE, pages

Given a finite p-local spectrum X, there is an Adams spectral sequence

Es(X) = Ext’y(k, H.(X)) = m.X

p

converging to the p-complete homotopy of X. Here A is the mod-p Steenrod algebra
dual k[&1,&s, ..., 70,1, .. ]/(7:)?, viewed as a Hopf algebra, and (as will be the case
throughout this document) Ext denotes comodule Ext. For spectra X of interest, such
as the p-local sphere, the Fy page is more computationally tractable than 7,.X: the
E, page is purely algebraic, and can be computed algorithmically in a finite range.
However, for many X of interest, there is no hope of obtaining a closed-form formula for
E»(X), and its structure encodes deep information about 7,X. Thus, we are interested

in obtaining information about the structure of graded abelian groups of the form

Ext’ (k, M) for A-comodules M.

Let P = k[£1, &2, . . . ] be the Steenrod reduced powers algebra, and let E be the quotient
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Hopf algebra k[7q, 71, ...]/(7?). Then there is an extension of Hopf algebras P — A — E,

which gives rise to a Cartan-Eilenberg spectral sequence
E* = Extp(k, Extp(k, M)) = Ext}(k, M).

There is a third grading on this spectral sequence that comes from powers of E which
causes it to collapse at Fy when M has trivial E-coaction—in particular, when M = k,

which corresponds to the case X = S. This motivates us to consider the following goal:

Goal 1.1.1. Study Extp(k, N) where N is a P-comodule.

1.1.2 Chromatic localization

Now we will review chromatic localization from the perspective of Adams spectral
sequence vanishing lines. The main idea is that, given a finite p-local spectrum X, there
is a localization v 7, X of m,X that can be seen as an approximation to m, X in the
sense that v, 'm, X is often easier to compute than 7, X and it agrees with 7,X in an

infinite region.

Theorem 1.1.2 (Hopkins-Smith [HS98]). There is a filtration of the category Spy," of
p-local finite spectra

Spp"=0020126'22...

such that if X is in C, and not Cnyq, there is a non-nilpotent self-map L¥X — X (for
some k) satisfying certain nice properties, which we denote vi. This gives rise to a

non-nilpotent operator v on every page of the Adams spectral sequence.

If X is in C, and not C,, we say that X has type n.

Theorem 1.1.3 (Hopkins-Palmieri-Smith [HPS99]). Suppose X is a finite p-local

spectrum of type n. Then Eo(X) vanishes above a line of slope —ﬁ (which v acts

[Tn
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parallel to), and in the wedge between this line and a lower line of slope we

I
[Tn41]—1"
have

Eo(X) 2 v Ex(X)

where v, ' Eoo(X) = colim(Eq(X) e Eoo(X) i B

Chromatic localization is v,-localization, and this theorem shows that if we know v, '7, X,
we know an infinite amount of information about 7, X . (Of course, since the v,-periodic

region is defined in terms of Adams filtration, we do not learn 7, X for any given stem

k.)

Example 1.1.4. The sphere spectrum has type 0, and the first chromatic localization
is vy 'm,.S, = p~'m.S, = 1.8 ® Q. Serre [Ser53] proved that 7,5 ® Q = 1S ® Q= Q.
Theorem 1.1.3 only makes guarantees for vanishing and periodicity in the F., page of

the Adams spectral sequence, but in this case we can see this illustrated in Es.

Figure 1-1: E5(S) at p = 3, with line above which this is p-periodic

The vanishing line has infinite slope, and the line drawn in the picture is the line above

which 7,5 is p-periodic; the only elements in the p-periodic wedge are powers of the
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class [7o] representing the map S 2 S.

Example 1.1.5. The mod-p Moore spectrum .S/p has type 1. At odd primes, Miller
[Mil78, Corollary 3.6] showed that

v (S/p) = Plgt) ® Elhio - i > 1] ® Plbig : i > 1]

(where q; = [11]) by computing v;*E,(S/p) and showing that the spectral sequence

collapses at Ej.

These localizations give information about 7,S: given an element z € 7,(S/p) we can
k
form an infinite family S — S/p 548 /p % S (where the first map is inclusion of the

bottom cell), and similarly one studies infinite v,-periodic families in 7,5 for higher n.

1.1.3 Chromatic localization in Stable(P)

Chromatic localization, as described above, gives information about homotopy groups
of spectra, not Ext groups. We will describe an algebraic category Stable(P) and
describe Palmieri’s construction of a partial analogue of chromatic homotopy theory in
this category, such that the analogue of chromatic localization gives information about

Exty(k, M) for P-comodules M, in accordance with Goal 1.1.1.

We will give a fuller summary of the construction and properties of Stable(P) in Section
2.1, but for now define Stable(P) as the category whose objects are unbounded cochain
complexes of injective P-comodules, and whose morphisms are chain complex morphisms
modulo chain homotopy. The idea is that it is a modification of the derived category of
P-comodules D(P), in order for it to be better-behaved for localizations. There is a

functor 7 : Comodp — Stable(P) taking a P-comodule to an injective resolution, and
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the important property is that, similar to D(P), we have
HomStable(P) (’L(M), 2(N)) = EXt};(M7 N)
for M, N in Comodp.

This category has many structural similarities to the homotopy category of spectra
Ho(Sp), and Palmieri [Pal01] proves algebraic analogues of many results in homotopy
theory, including partial analogues of the nilpotence and periodicity theorems mentioned
in Section 1.1.2. Some of these results are summarized in Section 2.3. The analogue
of “homotopy groups”—maps in Ho(Sp) from the unit object to a certain object—is
Homsgabie(p) (k, X ), and if X = (M), this is Extp(k, M). In the analogue of chromatic
homotopy theory in Stable(P), the full set of periodicity operators is difficult to
enumerate explicitly, but it contains powers of the May spectral sequence elements
bis = %Zo cicpott (”:.H) 1334 5+1_i] for s < t. The corresponding chromatic localizations
have the form b;;! Ext}(k, M), and (if M has the right analogue of “type” to have

bys-periodicity) they agree with Exth(k, M) in a range of dimensions.

Classically, every p-local finite spectrum X has a unique type n, and only one chromatic
localization v, 17, (X) is defined and nonzero. An object of Stable(P) might have an ac-
tion of multiple periodicity elements, and the analogue of the Nishida nilpotence theorem
(which says that every element in 7,5 is nilpotent except for the multiplication-by-p
map) is much more complicated: for example, at p = 3, Extp(k, k) has an action by at

least two non-nilpotent operators, b1g and by;.

Our main focus in this project is to study the Stable(P) analogue of Example 1.1.4—
that is, to compute that localization of Ext}(k, k) (the Stable(P) analogue of 7,.S) by
the first periodicity operator, namely byo. Slightly more generally, we will discuss the

computation of

bia Exth(k, M)

for several P-comodules M. This can be thought of as an approximation of Exty(k, M)

16



in the sense that this agrees with its localization above a line of p(pQ—_ll)—_—l. We end up

specializing to p = 3; see Section 1.2.1.

1.1.4 Connection to motivic homotopy theory

Another part of the motivation for this project is its potential applications to motivic

homotopy theory; this is part of planned future work.

The element by, € Ext?(k, k) survives the Adams spectral sequence and converges to
B € m.S. While 3 is nilpotent (and hence 3;'m.S = 0) by the Nishida nilpotence
theorem, it is non-nilpotent in Extgp, gp(B Py, BP.), as well as in the homotopy of the
p-complete C-motivic sphere (Sm"t);. So studying its localization gives topological, as

opposed to purely algebraic, information in the context of motivic homotopy theory.

In particular, there is an element 7 € ﬂo,_l((Sm"t);) in the homotopy of the p-completed
motivic sphere over C such that the realization map from motivic homotopy theory
to classical homotopy theory corresponds to inverting 7. That is, the 7-periodic
part of m,,((S™*),) corresponds to classical homotopy theory, and so recent work
on understanding the unique properties of motivic homotopy theory centers around
studying C7, the cofiber of multiplication by 7. Gheorghe, Wang, and Xu [GWX] show
that 7,.CT = Extgp,gp(BP,, BP,), and the motivic Adams spectral sequence for Ct

coincides with the algebraic Novikov spectral sequence
E, = EXtP(k, Q) - EXth*Bp(BP*, BP*)

where Q = Exty, - (k, k).

The element byy € Extp(k, Q) converges to 8y in Extgp, gp(BP., BP,), which acts par-
allel to the vanishing line. So understanding the big-localization of the F page of the alge-
braic Novikov spectral sequence is the first step to understanding 5, 'Extpp,gp(BP,, BP,) =
B 'n..C1 at p = 3. This would be the p = 3 analogue to Andrews and Miller’s

17



computation [AM17] of a~! Extpp,gp(BP,, BP,) at p = 2.

1.2 Techniques

1.2.1 Margolis-Palmieri Adams spectral sequence

Our main technique is an Adams spectral sequence constructed in the category Stable(P):
given a monoid object E in Stable(P) and another object X satisfying some finiteness

conditions (see Proposition 2.2.5), there is a convergent spectral sequence
E=m(ERE"®X) = m.(X)

where 7,.(X) denotes Homsapie(r)(k, X ), and E is the cofiber of the unit map k — E.
If, in addition, m.(E ® E) is flat over m.(FE) (an analogue of the Adams flatness
condition), the E, page has the form Ext;  pgg)(Tw(E), T.u(E ® X)). As this spectral

sequence was first studied by Margolis [Mar83] and Palmieri [Pal01], we call it the
Margolis-Palmieri Adams spectral sequence (abbreviated MPASS).

To study by Ext}h(k, M), we apply the MPASS in the case where the monoid object E
is

K(&) := colim (i(POpye,k) 23 i(Popie, k) 23 ... )

and X = bj;i(M). (In general we use the notation D[z] to denote k[x]/zP.) This satisfies
Adams flatness at p = 3 but not for p > 3 (and the connective version i(P Opj,k) does
not satisfy Adams flatness at any prime). One reason to expect simpler behavior at

lower primes is that we have
Te(K(61) ® K(&1)) = big Extp(k, (POpg k) ® (POpjeyk)) 2 byg Extpye (K, P Opje, k)
by the change of rings theorem (Corollary 3.1.10), and the category Comodpy, is

18



simpler at lower primes: every comodule over a height-p truncated polynomial algebra
is a sum of comodules of the form k[z]/z* for 1 < i < p, and there are fewer of these
for lower primes. One illustration of the extra simplicity at p = 3 is that there is a

Kiinneth isomorphism for the functor by Extpie, (k, —) only for p = 3.

1.2.2 Different forms of the MPASS

When doing computations with the MPASS as outlined above, we use the fact that
this spectral sequence coincides starting at F; with the bjg-localized versions of the

following two spectral sequences:

(1) the spectral sequence associated to the filtration of the cobar complex C%(k, M),
where F*C}%(k, M) consists of elements {[a1] ... |a,)Jm} such that at least s of the
a;’s are in ker(P — D[&]);

(2) a generalized version of the Cartan-Eilenberg spectral sequence associated to the

map P Opje )k — P.

For (2), recall that there is a Cartan-Eilenberg spectral sequence
Ey = Exty(k,Exty(k, M)) = Ext(k, M)

associated to an extension of Hopf algebras B — A — (C. We present a similar
construction that can be defined if B is only an A-comodule algebra, instead of a Hopf
algebra of the form A Ocgk; we believe that the construction, with this level of generality,
is new. In Section 3.2, we show that the Cartan-Eilenberg spectral sequence for an
A-comodule algebra B agrees with the B-based MPASS in Stable(A). The filtration
spectral sequence (1) is only defined in the case that B is a subalgebra of A of the form
AOck, and in Section 3.3 we show that this agrees with the Cartan-Eilenberg spectral
sequence (and hence also the MPASS). This generalizes the classical fact that the

filtration spectral sequence in (1) coincides at E; with the (classical) Cartan-Eilenberg

19



spectral sequence.

These spectral sequences are useful at different times. Though not ideal for large-
scale computation due to the lack of structure, the filtration spectral sequence is very
concrete and useful for computing differentials in low degrees. The MPASS is useful
largely because of the form of the E, term (in the case where flatness is satisfied).
From the Cartan-Eilenberg spectral sequence variant we obtain structure such as power

operations in some cases (see [Saw82]).

1.2.3 Twisting cochains

When computing by, Ext}(k, k[¢3]) in Section 6.3, we use a very different technique,
inspired by the theory of twisting cochains, which we feel is worth pointing out here.
The technique applies to computing Exty.(k, k) for a Hopf algebra I', as well as localized
versions of algebras of this form; it is applicable to the case at hand because k[£}] &

POy, ¢,,..1/(e3)k and so by the change of rings theorem, we have

bio Extp(k, k[E7]) = big Extype, e 1yen) (ks F)-

Suppose we wish to show that by, Exth(k, k) & H*(Q), where Q is a cochain complex.
The idea is to explicitly construct a map from the cobar complex Cf{(k, k) to @, and
then show that the resulting map is a quasi-isomorphism after inverting b;9. Recall that
Ct(k, k) is a dga where the algebra structure comes from the concatenation product; thus
it is multiplicatively generated by CL(k, k). So to construct a map 8’ : Cf(k, k) — Q*, it
suffices to construct a map 6 : Ci(k, k) — @', and then extend the map multiplicatively
to all of Ct(k, k). However, one also needs to make sure the resulting map is a chain

map, and one can show (see Proposition 6.3.2) that it suffices to check
do(6(z)) =D _ 6(a")6(z")

20



for all z € T = CL(k, k), where 3" 2’ ® " is the reduced diagonal of z € T

Once the map 6 has been constructed, one way to show that 8 is a quasi-isomorphism
after inverting byg is to define a filtration on @Q* such that € is a filtration-preserving
map with respect to the filtration on C}:(k, k) described in Section 1.2.2. This gives
rise to a map of filtration spectral sequences, and the idea is to use knowledge of H*()

to show the spectral sequences coincide.

1.3 Outline and main results

In Chapter 2, we first give a construction of the category Stable(A) that we are
working in, and explain the properties that makes it a desirable setting. We then
give details about the construction of the MPASS, and review several of Palmieri’s
results about the analogues of the nilpotence and periodicity theorems in Stable(A)
and Stable(P). As was sketched in Section 1.1.3, we use this to motivate our quest to
compute bj; Ext}(k, k), by situating it as the most basic chromatic localization in the

category Stable(P)..

Chapter 3 is devoted to setting up a more general version of the Cartan-Eilenberg

key point, which we explain in depth in Section 3.1, involves two isomorphic ways to
construct the cobar complex: one way produces the familiar cobar differential, and
the other way arises from the cosimplicial object associated to a free-forgetful monad
and has a differential x — 1 ® z. The Cartan-Eilenberg spectral sequence for the Hopf
algebra extension B — A — C arises from a double complex C%(k, A) 04C5(B, k).
Using the usual construction of the cobar complex, C%(B, k) only makes sense if B is a
coalgebra, but if we replace these cobar complexes with the second version, this can
be defined when B is an A-comodule algebra. We show that this coincides with the
MPASS in Theorem 3.2.4. Section 3.3 is devoted to proving the comparison with a
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filtration spectral sequence on the cobar complex, following the classical proof.

In Chapters 4 and 5 we turn to the K (&;)-based MPASS for computing b5 Ext}(k, k).
In Section 4.2 we determine the structure of POp,jk as a D[{;]-comodule in order
to obtain an expression for K (&;).K (&) = bjo Extpe, (k; AOppe, k) as a vector space.
For this computation, we work at an arbitrary odd prime. We find that K(&;).K(&1)
is flat over K (&;). at p = 3, and so we specialize to p = 3 going forward. In Section

4.3 we prove:

Theorem. The Hopf algebroid (K(&;)., K(&1)wK(&1)) is an exterior algebra over
K(&1) s = E[h10] ® P[b%] on generators ey, e3,... where e, is in degree 2(3" + 1).

Corollary. The FE, page of the K (&;)-based Adams spectral sequence for computing

T (bg k) is

Extieen).. (er) (K€1) wes K(61)e) = K(€1)ax ® Plwa, w3, . .. ]

where w, = [e,] has Adams filtration 1 and internal degree 2(3" + 1).

Using a degree argument, we show (Proposition 5.1.1) that d,(z) = 0 unless r = 4

(mod 9) or 7 = 8 (mod 9). Chapter 5 is devoted to computing the first differential.
Theorem. The element ws is a permanent cycle, and for n > 3, there is a differential

—4 2,.3
d4(wn) = blO hlowzwn_l.

The strategy is to use comparison with the MPASS computing b7y Ext} (k, k), where

Pn = k[&l, £2a§n—2a gn—laén]/(g?vfgaégz% 2—17 ‘53)

It is not hard to reduce to showing the differential d4(w,) = bjghpwiw3_, in this
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simpler MPASS. The main strategy is: (1) compute enough of the Es page of the
simpler MPASS to identify classes of interest such as w, and byghjowsw3_,; (2) show
that by Ext}, (k, k) is zero in the stem of bg'hiow3w3_, (so it is either the source or
target of a differential); (3) show that it is a permanent cycle and, for degree reasons,
wy, is the only element that can hit it. For step (2), we calculate part of by Ext}, (k, k)

using the dual of the May spectral sequence.

We conjecture the following behavior for dg in the MPASS converging to bjy Ext}h(k, k):
if dy(z) = hioy and d4(y) = hioz, then dg(z) = bigz. Furthermore, we conjecture that
the remaining differentials in the spectral sequence are zero. In Chapter 6, we state the

following more general conjecture:

Conjecture. Let D = k[£;]/(€3). There is a functor W : Comodp — Comodp such
that
bia Exth(k, M) = by Ext}(k, W(M))

and W (k) = k[ws, w3, .. .| with D-coaction given by ¥ (w,) = 1 ® w, + & ® waws_, for

n—1

n>3 and 1/)(132) = 1®’&72

(Here @, = bjywy.) In the remainder of the chapter, we prove two results that support

this conjecture.

Theorem. We have the following:

(1) big Exti(k, k[€9,€3,&35,€4,...]) = b1l Extl(k, k[@s, bao]) where 9(@2) = 1 ®
and w(gzo) =1®by+6® Wy;

(2) biy Exth(k, k[€3]) = byt Extp(k, k[hao, bao, w3, Wy, - . . | /h3,) Where 1 acts trivially

on all the generators.
Compare the conjecture above with the following analogue at p = 2:
Theorem 1.3.1 (Milgram-May [MMS&1]). Atp =2, let hip = [&1] and P = Fy[€},&3,...].
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Then for a P-comodule M we have

hio Extp(Fa, M) = hiy Extiye(Fa, M).

Note that this theorem is much simpler than the p = 3 case we study; this can be seen

in the fact that the p = 2 MPASS collapses.
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Chapter 2

Homotopy theory in the stable
category of comodules

Let (A, T') be a Hopf algebroid. This chapter will describe a program begun by Margolis
[Mar83] and Palmieri [Pal01] to study the homotopy theory of I'-comodules. The
eventual goal is to set up an analogy between Ho(Sp) and a homotopically nice algebraic
category Stable(I') into which Comodr embeds, such that Extr groups correspond
to homotopy groups in classical homotopy theory. This analogy can be developed to
the point that classical techniques for studying homotopy groups, such as the Adams
spectral sequence, can be imported into Stable(I') and applied for the study of Ext
groups. In the first section, we will define the category Stable(T"). In the second section,
we will discuss the analogue of the Adams spectral sequence in Stable(I"), which we call
the Margolis-Palmieri Adams spectral sequence. This will be our main computational
tool in the rest of this thesis. In the third section, we discuss the analogue of some
features of chromatic homotopy theory in Stable(I'), and explain how this fits our

central problem of computing b, Extp(k, M) into a larger conceptual framework.
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2.1 The category Stable(T')

It is a general fact about abelian categories (see e.g. [Stal8, Tags 06XQ)], [Stal8, Tag
06XS]) that to any abelian category A one can form the derived category D(A) by
inverting the homology isomorphisms in the category K(.A) of chain complexes in A4

up to chain homotopy, and there is an isomorphism
Exty(X,Y) := Hompa) (X, Y[i]) = H'(Homga)(X, 7))

where I3 is an injective resolution of Y. In particular, one can apply this to the
category Comodr of (A, T')-comodules (see [Rav86, Al.1.2] for a precise definition of
this category).

Definition 2.1.1. Define Extr(M, N) = Homp(comodr)(M, N) where M and N on the
right hand side are identified with their image in the derived category. If the context is
clear, we abbreviate D(Comodr) as D(T").

Our eventual goal is to try to use homotopy-theoretic techniques to study Ext groups, and
D(T) is not a bad first guess as a setting for this work. A fair amount of homotopy theory
only depends on the existence of a small number of formal properties of Ho(Sp), such as
the existence of (co)fiber sequences, an invertible suspension functor, and a symmetric
monoidal smash product. Given an arbitrary category with a symmetric monoidal
product (generalizing the smash product) and triangulated structure (generalizing the
(co)fiber sequences of homotopy theory), we are well on our way to at least being able
to write down analogues of many of the major constructions in homotopy theory. The
derived category D(T') fits this criterion: the shift functor gives rise to a triangulation,

and tensor product of chain complexes is symmetric monoidal.

In [HPS97], Hovey, Palmieri, and Strickland consider a set of axioms for Ho(Sp)-like
categories, which they call stable homotopy categories, and develop analogues of classical

homotopy theory in this generality.
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Definition 2.1.2 ([HPS97, Definition 1.1.4]). A stable homotopy category is a symmet-
ric monoidal triangulated category C (such that the symmetric monoidal product is
compatible with the triangulation) along with a set G of strongly dualizable objects of
C such that

Loce(G) ~ C, (2.1.1)

where Locc(G) indicates the localizing subcategory of C generated by G—that is, the

smallest thick subcategory that is closed under filtered colimits in C.

Before checking whether D(T") fits this definition, however, we note that D(I") already
has a problem that needs to be corrected first: while the derived category seems
like a good setting for studying Ext groups, it turns out it is not a good setting for
studying localized Ext groups. In particular, we would like to study groups of the form
z7 ' Extf(A, M) where M is a I-comodule and z € Extf.(4, A) is non-nilpotent, and
one might hope that 2~ Extr(A4, M) = Hompr)(A, 7' M); this is the same as asking

for the equality

colim (HOHID([\) (A, M) N HOIIlD(p) (A, M) 5 HOIIID(F)(A, M) —_ ... ) (212)
= Homp(r) (A,. colim(M 5 M 5 M — ...))

where in the sequence M = M — ... we are identifying M with its image in D(T), i.e.
the class in Ch(I") represented by a I-injective resolution of M. This would hold if the
unit object A were compact, but that is not true in general, and in fact (2.1.2) does

not hold in general, as we show with the following counterexample.

Example 2.1.3. Let (A,T") = (k, E[t]), the exterior Hopf algebra on one generator
over the field k. Then Extgp(k, k) = Pa] where « is the class in homological degree 1,
and k has injective resolution I = (E|[t] 2 E[t] % E [t] = ...) where J is the comodule

map taking 1+ 0 and ¢ — 1. In D(F[t]) we have

colim(k 5k Sk —...)=colim(I ST ST —...)
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This is acyclic, and hence zero in D(E[t]). So the right hand side of (2.1.2) in this case
is zero, and the left hand side is o Ext gy (k, k) = k[o*!] by definition.

We would like to fix this problem with the derived category and work in a category
such that localized Ext groups can be described as Hom-sets between localized objects.

More precisely, we would like to work in a category A such that:

(1) If M and N are I'-comodules, then Hom4(M, N) = Extr(M, N).
(2) We have z7! Extr(M, N) = Hom4(M,z7'N).
(3) The category A is a stable homotopy category in the sense of Definition 2.1.2.

The correct choice of A is called Stable(I'); there are three equivalent constructions.
First we need some preliminaries. Given a category C, the Ind construction Ind(C) is

designed to force
Hompg(c)(X, colim Y;) = colim Hominq(c) (X, Y3)
(2 1
where colimY; is a filtered colimit. More precisely:

Definition 2.1.4. Given a category C, let Ind(C) be the category whose objects are
diagrams F' : D — C where D is a small filtered category, and if F' : D — C and
F' . D' — C are objects, then

Homlnd(c) (F, G) = (liler% Cd(l)é%];’l HomC(F(d), Fl(d/))

By design, there is a full and faithful embedding C — Ind(C) such that objects in the
image are compact in Ind(C). This suggests we define Stable(I') = Ind(D(I')), but
we still need to satisfy (2.1.1). The following lemma provides some intuition for the

definition.

28



Lemma 2.1.5 ([BHV15, Lemma 2.15)). If G C C is a set of compact generators of C,
then
Ind(Tthkc(g)) ~ LOCThickc(g)(g).

Definition 2.1.6 ([BHV15, Definition 4.8]). Let G denote the set of dualizable F—combdules,
and let Thickpr)(G) denote the thick subcategory of D(I") generated by the image of
G in D(I"). Then define

Stable(l") = Ind(ThiCkD(p) (Q)) .

It turns out that this is equivalent to the following, somewhat more concrete, construc-

tion:

Definition 2.1.7. Define K(InjI') to be the category whose objects are unbounded
complexes of injective ['-comodules, and whose morphisms are chain complex morphisms

modulo chain homotopies.

Since D(T") is cocomplete, the universal property of the Ind construction gives rise to
a functor Stable(I') — D(I'), which can be regarded as a left Bousfield localization
functor. The claim is that this functor factors through K (InjI")

Stable(I) » D(T)

K(InjT)

and the functor Stable(I') — K(InjT’) induces an equivalence of categories under certain

hypotheses.

Theorem 2.1.8 ([BHV15, Proposition 4.17]). Suppose A is Noetherian, I is flat over
A, and every compact object in the image of Comodr s in Thickpry(A). Then there is
an equivalence of categories Stable(T") ~ K (InjT).
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The conditions on the theorem are satisfied for the Hopf algebroid (R., R.R) if R.R
is commutative and R is Landweber exact over MU or over the quotient of BP by a
finite regular invariant sequence (see [BHV15, after Definition 4.14]). Examples of R
satisfying this condition include HF, and BP.

There is a third way of thinking of this category:

Remark 2.1.9. Under a niceness assumption on (A,I') satisfied by Adams Hopf
algebroids, Hovey [Hov04] constructs the homotopy model structure on Ch(I') as a
localization of the projective model structure and shows that its homotopy category
is a stable homotopy category in the sense of Definition 2.1.2. In [BHV15, §4.5] it is
shown that this homotopy category is equivalent to Stable(I") as defined above.

Warning 2.1.10. Let A denote the Steenrod algebra, or more generally any algebra
that can be expressed as a union of Poincaré algebras. In [Mar83, Chapter 14 §1],
Margolis defines an enlargement StMod(A) of the category of A-modules that he calls
the “stable category.” Its objects are left A-modules and its morphisms are A-module
morphisms modulo those that factor through a projective module. One might wonder
if this agrees with the dual of the definitions of stable categories of comodules above,
but this is not true in general; see [BK0§] for a discussion of the difference between
StMod(kG) and the category K (InjkG) of chain complexes of injective kG-modules
up to chain homotopy. In particular, StMod(kG) is equivalent to the subcategory of

K(Inj kG) consisting of acyclic complexes.

Theorem 2.1.11 ([HPS97, Theorem 9.5.1], [BHV15, Lemma 4.21]). Under the hy-
potheses of Theorem 2.1.8, Stable(T') is a stable homotopy category in the sense of
Definition 2.1.2, and if M and N are I'-comodules, then

Extp(M, N) = Homstapie(r) (M, N).

30



Moreover, (2.1.2) is satisfied, and hence 7! Extr(M, N) = Homstabier) (M, z7'N),

because all objects in the image of Comodr are compact by definition of Ind.

Remark 2.1.12 (Symmetric monoidal structure). For concreteness, suppose we are
using the K (InjI") model of the stable category of I'-comodules. If X and Y are objects
of Stable(T'), it is clear that the symmetric monoidal product X ® Y should be the

tensor product of chain complexes—that is, (X ® V), = €D, ; X; ® Y;—but we need to

i+j
give it the structure of a chain complex of I'-comodules. We define the I'-coaction on

X; ®Y] to be the diagonal coaction, namely
w(x ® y) = Zx/y/ Q2" ® y//

where the I'-coaction on X; and Y; are given by ¥(z) = > 2/®2” and ¥(y) = >y’ ®y”,
respectively. We write X; é) Y to denote this tensor product as an object of Comodr
with the diagonal coaction, and write X é Y for the tensor product of chain complexes

with the levelwise I'-comodule structure given by the diagonal coaction.

Notation 2.1.13. The idea is that Stable(I') behaves enough like Ho(Sp) that we
should be able to port over a large amount of classical homotopy theory for the study
of Stable(I'). To emphasize this analogy, we adopt the following notation and make the

following observations:

e As k is the unit object in Stable(I"), write
Tax (X)) = Homggapier) (k, X)

for an object X of Stable(I"). We assume that I" is a graded Hopf algebra, and hence
objects of Stable(I") are bi-graded: the first grading in m,, will refer to homological
degree from regarding X as a chain complex in K(InjT'), and the second grading
will refer to internal degree. If M is the Stable(I") representative of a I'-comodule,

then 7s(M) = Ext3'(k, M).
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e As in topology, write X, X = 7. (X ® X).

e Notice that the analogue of the homotopy groups of spheres in this category is
Extr(k, k) (self-maps of the unit object). In particular, if I' = A, then this is the
E, page of the Adams spectral sequence for the sphere, and if Y is a (topological)
spectrum, T..(H,Y) = Exta(k, H,Y) is the Adams E, page for Y. The idea to take
tools originally designed to study (classical) homotopy groups, and construct them

internally in Stable(A) so they can be used to study Adams Es-pages T..(H.Y).

In the next section, we will extend this analogy and define a version of the Adams
spectral sequence within the category Stable(I'). In Section 2.3 we will extend this even

further and talk about analogues of chromatic homotopy theory in Stable(A).

2.2 The Margolis-Palmieri Adams spectral sequence

Let E be a (classical) ring spectrum and X a finite spectrum, and let E be the cofiber

of the unit map S — E. Recall that the classical Adams spectral sequence
E=E(E"AX) = mX,

is constructed by applying m.(—) to the tower of fiber sequences

where the fiber sequence
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is obtained by smashing

with E"° A X on the right.

Proposition 2.2.1. If E.FE is flat as an E,-algebra, then one can define the structure
of a Hopf algebroid on (E,, E.E) as follows:
e The left and right units come from applying 7, to the maps EANS — EANE and
SANE — ENE, respectively.

e The antipode comes from applying m, to the swap map EANE — ENE.
e The counit e : m,(E AN E) — w,.E comes from applying 7. to the multiplication map
on K.

e For the comultiplication, note that there is a natural map E,EQgp, E.E — E,(ENE)
induced by T (EAE)@m(EAE) > m(EANENEANE) ™" 7, (EANENE). The
flatness condition implies that this map is an isomorphism. Then the coaction on

E.E comes from the composition
m(EANE) S r,(ENEAE) & E,E ®g, E.E
where « is induced by the ring spectrum map EANE — EANS - E—- ENENE.

In this flat case, we have

Eg = EXtE*E(E*, E*X)

Definition 2.2.2 ([Pal01]). Given a monoid object (“ring spectrum”) E in Stable(I")
and another object X in Stable(I'), we can define an analogous tower of fibrations

in Stable(I') and apply the functor Homggapie(r) (A4, —) = Tx(—), obtaining a spectral
sequence with F; = E**(E®s ® X) abutting to m..X. We call this the E-based Margolis-

Palmieri Adams spectral sequence for computing 7,.X, henceforth abbreviated as

33



MPASS.

Remark 2.2.3. The unit map X — E ® X is given by m +— 1 ® m. One can check
that this respects the I'-coaction since £ ® X is endowed with the diagonal I'-coaction

(see Remark 2.1.12).

As in the classical case, if F,,F is flat over F,,, then we can define a Hopf algebroid
structure on the pair (E,., F.E) analogously to Proposition 2.2.1. In this case, the
MPASS has F, term ,

Ey = Extg,,g(Ew, Eu(X)).

This Adams flatness condition is satisfied in the following common situation.

Proposition 2.2.4 ([Pal0l, Proposition 1.4.6)). Suppose f : (A,T) — (A4,%) is a
map of Hopf algebroids such that ® := I'og A is a subalgebra of I', and such that the
Y-coaction on @ (defined by composing the I'-coaction on ® with f) is trivial. Then
(Pus, ... @) is flat.

Proof. We have
?,.D = Exti (4, (TosA) @ (TogA)) = Exty (A, 'osA)

by the variant of the change of rings theorem in Corollary 3.1.10, and by the hypothesis
about the coaction, this is Ext5 (A4, A) ® ® = ¢,, ® . O

We will eventually use this machinery in the special case where (A4,T") = (F3, P), where
P =TF3[£,,&,,...] is the reduced powers; our ring spectrum E will be by (P O, /e F3),
which does not satisfy the hypotvheses of the above proposition, but will end up satisfying

flatness regardless due to special properties of working in characteristic 3.
In the world of classical homotopy theory, in general the Adams spectral sequence
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converges not to m,X but to the E-completion 7,(X),. However, in Stable(T), a
connectivity argument shows that the inverse limit of the Adams tower is contractible
in most of the cases we care about, and so in these cases the spectral sequence converges

to T..(X). More precisely:

Proposition 2.2.5 ([Pal01, Proposition 1.4.3]). Suppose (A,T') is a Hopf algebra where
A is a field. Let E be a ring spectrum satisfying the following conditions:

® 7T1](E) =0 ’Lf’l, <0 OTj -1 < 0,'
e the unit map n induces an isomorphism on my o,
o i, :TooF ® mooE — moo induced by the multiplication map p is an isomorphism;

e the homology of the chain complex E is a finite-dimensional k-vector space in each
bi-degree.

Also suppose X 1is weakly connective: that is, there exists 1o and jo such that m;; X =0

if i <ip or j < jo. Then the MPASS converges to m(X).

Remark 2.2.6. There is an alternate construction of the Adams spectral sequence as

the spectral sequence associated to the augmented cosimplicial spectrum

L —

X————)EAX(—T’—)#:E/\E/\XL—A%EAE/\EAX (22.1)

(For more about this approach, see [Lurl0, Lecture 8] or [Pet16, §3.1].) This is the

cosimplicial spectrum associated to the monad arising from the free-forgetful adjunction

F :Spe= Modg : U

XIS EAX.

One can obtain a spectral sequence in Stable(I') analogously: let E be a monoid object
in Stable(I'). Then there is a free-forgetful adjunction Stable(F);’bModE as above,
where Modg denotes the category of E-modules in Stable(I"), and the free functor sends
X— F é X. The MPASS is the spectral sequence arising from the resulting' augmented
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cosimplicial object.

2.3 Nilpotence and periodicity in Stable(A) and Stable(P)

In this section we continue our review of homotopy theory constructions that can
be performed internally in Stable(I'), focusing on analogues of the nilpotence and
periodicity theorems of Devinatz, Hopkins, and Smith, which form an important part
of the foundations of chromatic homotopy theory. First we state the original theorems,
whose setting is the category Spf,;ln of finite p-local spectra for a fixed prime p, and
then discuss partial analogues in Stable(I"), focusing on the cases where I' is the dual
Steenrod algebra A or the Steenrod reduced powers P. In the last subsection, we discuss
a relationship between some periodicity operators over Stable(A) and the classical
theory of E, vanishing lines, and show how our project of computing b5 Extp(k, M)
for P-comodules M can be viewed in a chromatic framework as the first chromatic

localization in Stable(P).

Fix a prime p and let Spgn denote the category of p-local finite (classical) spectra. The
nilpotence and periodicity theorems are about a collection of ring spectra K (n) for n > 0
with K (n). = F,[vF!] which detect nilpotent maps, parametrize thick subcategories of

Spgn, and describe vanishing lines in Adams spectral sequences.

Theorem 2.3.1 (Nilpotence theorem, [DHS88, Theorem 1], [HS98, Theorem 3]). The

collection { K (n)}n>0 detects nilpotence:

(1) Given a p-local ring spectrum R, an element a € m.R is nilpotent if and only if

for all0 < n < oo, K(n).(a) is nilpotent.

(2) A self-map f:T*X — X (for X in Spﬁ"} is nilpotent if and only if K(n).f is

nilpotent for all 0 < n < co.

(8) Amap f: F — X from a finite spectrum to a p-local spectrum is smash nilpotent
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if and only if K(n).f =0 forall0 <n < oco.

There is also a single spectrum BP that detects nilpotence in an analogous sense.

Theorem 2.3.2 (Periodicity theorem, [HS98, Theorem 9]). Given a finite p-local
spectrum X, if K(n).(X) # 0 and K(n—1).(X) = 0 then there is an essentially unique
self map SR X X (for some i) such that the induced map K(n).(X) — K(n).(X)
1s multiplication by vgi (or, in the case n = 0, multiplication by a rational number), and

the induced map K (m),(X) — K(m).(X) is zero for m > n. We call this a v,-map.

Theorem 2.3.3 (Thick subcategory theorem, [HS98, Theorem 7]). The poset of thick

subcategories of Sp," is the system
Spp =C2C12C 2 ...
where C,, is the subcategory of Spy™ generated by the spectra X such that K(n—-1),X =0.

We say that X has type n if it is contained in C,, and not C,,. This filtration gives

information about the Adams spectral sequence:

Theorem 2.3.4 ([HPS99]). If X has type n, then the E page of the Adams spectral

spectral sequence E3*(X) = m.(X) has a vanishing line of slope

11
|l =1 2pn —2°

These theorems touch on deep structure in Spg“, and so one does not expect them to
generalize easily to an arbitrary stable homotopy category C in the sense of Definition
2.1.2. In the classical setting, most of the work is in proving the nilpotence theorem, and
the thick subcategory theorem and periodicity theorem follow from it with a somewhat
more formal argument. A version of the thick subcategory theorem in the setting of

stable homotopy categories, assuming the existence of a nilpotence theorem, can be
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found in [HPS97, Corollary 5.2.3], but the hypotheses on the nilpotence-detecting family
are not satisfied in Stable(A); indeed, we will see that the thick subcategory poset is

more complicated than the nilpotence-detecting family.

It is, however, a general fact about stable categories that Adams E, vanishing lines are
related to a thick subcategory classification: an object X has an Adams FE,, vanishing
line of a given slope if and only if every object in Thick(X') has a vanishing line of that
slope. (In fact, the proof of Theorem 2.3.4 amounts to proving this assertion, and using
the fact from [HS98, §4] that for every n, the finite type n spectrum constructed by
Smith in [Smi92] has the indicated vanishing line on its Adams E; page.)

There is a large body of work (see [Mar83], [Pal01], [Pal94], [BH17], [Kral8]) focused
on finding analogues of Theorems 2.3.1-2.3.4 in Stable(I") for various Hopf algebroids
(A,T) of interest.

2.3.1 Nilpotence, periodicity, and thick subcategory theorems
for Stable(A) and Stable(P)

Recall that the mod-2 Steenrod dual has the form A = Fy[£;,&s,...], and for p > 2 the
mod-p Steenrod dual has the form A = F,[§1,&2,...]® E[r, 71, . .. |; for p > 2 recall the
dual Steenrod reduced powers algebra is P = Fp[{1, &2, ...]. In this subsection we will
state theorems and conjectures by Palmieri on the structure of the thick subcategory
poset and a nilpotence-detecting family, and describe how a subset of that family relates

to vanishing lines in Adams E, pages.

For A at p =2 and P for p > 2, we have both an analogue of BP and of the collection
of K(n)’s. Recall that an elementary Hopf algebra is a tensor product of Hopf algebras

of the form F,[z]/z? and F,[z]/zP" for primitive generator x.
Theorem 2.3.5 (Palmieri, [Pal01, 2.1.7, 5.1.5, 5.1.6, 5.1.7(f)], [Pal96a, 4.2, 4.3], [Palo6h,

38



§5]). Let p =2 and let

E(T) = FQ[&T’&T-I—I? §r+2, .. ]/( fT, gfj_l,gf_:_% e )

(These are the mazimal elementary Hopf algebra quotients of A.) The collection of ring
spectra {AOg\Fa} detects nilpotence in the same sense as Theorem 2.5.1, except (1)
is an “if” instead of an “if and only if.” Furthermore, let C = A/(£2,£5,£5,...); then
AncF,y detects nilpotence in Stable(A).

Atp > 2, let
Q(r) = Fylbr, bt Eryar - 1/ (€0, €01 ).

Then the collection {POgnFp} detects nilpotence in a sense made precise in [Pal90a,
Theorem 4.3]. Let C' = P/( {’,552,55’3, ...). Then Poc/F, detects nilpotence over P in

a sense made precise in [Pal96a, Theorem 4.2].

(The issue with the other direction of (1) is a finiteness issue—there might be infinitely

many elementary quotients.)

Conjecture 2.3.6 (Palmieri, [Pal0l, Conjecture 5.4.1]). Let p > 2. Let Q be the
collection of quasi-elementary quotient Hopf algebras of A (see [Pal01, Definition

2.1.10]), which includes the maximal elementary quotients

E(-1) = E[ro, 11, - . .|

7r+1 pr+1 r+1

E(T) :A/(gl,"'agragf-kl ’£r+2 7511")4»3 a”-;TO»--'yTT)'

Then the collection {A0gF, : E € Q} detects nilpotence in Stable(A). Furthermore,
if we write C = A/(€P, €0, gg’s, ...) then AncIF, detects nilpotence in Stable(A).

The thick subcategory conjecture below is reminiscent of the classical theorem that the

thick subcategories C,, of Spgrl are in bijection with the invariant ideals of 7, BP.

39



Conjecture 2.3.7 (Palmieri, [Pal99, Conjecture 1.4], [Pal01, 6.7.3]). The thick sub-
categories of finite A-modules are in.one-to-one correspondence with radical ideals of
T (AOcF,) = Ext(F,, Fp) satisfying a finiteness condition that are invariant under
the coaction of AocF,. In particular, an invariant ideal I gets sent to the full subcate-
gory generated by finite objects X such that I(X) D I, where I(X) is the radical of
the ideal

{y € Tu(ADCF,) : X "% (AooF,) ® X is null}.

For y € m(AOcF,), there is a notion of a “y-map” similar to the classical v,-maps,
though with some technical differences (see [Pal0l, Definition 6.2.1, Remark 6.2.2,

Definition 6.2.5, Lemma 6.2.6] for details). The analogue of the periodicity theorem is:

Theorem 2.3.8 (Palmieri, [Pal01, Theorem 6.1.3, Theorem 6.2.4]). Let p = 2 and
let X be a finite object in Stable(A). For every y € m.(AOcF2) that maps to an
A-invariant element of m.(ADcF2)/I1(X), X has a y-map that is central in the ring
[X, X]s. Furthermore, the collection of objects having a y-map (for fixed y) forms a
thick subcategory of Stable(A).

The theorem is only proved at p = 2, in part because there is no known classification of
quasi-elementary Hopf algebras, but one can conjecture analogous behavior for A at

p > 2 and for P.

2.3.2 Vanishing lines

Unlike BP,, the ring m..(A0cF,) is very complicated, which is an impediment to
studying periodicity operators y. The Morava K-theory analogues AOg)F, and
AogF, of Theorem 2.3.5 and Conjecture 2.3.6 are much more tractable, though not

as simple as classical Morava K-theories. In particular, for p > 2 every generator in
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E(r) is primitive in the cobar complex Cg)(Fp,F,), and so we have

T (A O Fp) = Extgi) (Fp, Fp)

= FE[Rptij 0 1<%, 0< 5 <7 ® Plbryij,vryi 0 1 <4, 0< 5 < 7).

Moreover, one can show (see [Pal01, Proof of Proposition 5.3.4]) that for every v, and
b, s with s < ¢, there are powers o™, bi(; ) that lift to 7. (A Oc¢Fp). In this subsection,
we will discuss spectra that have b;- and v,-maps, and show how this relates to the

classical theory of vanishing lines in (topological) Adams spectral sequence Ey pages.

For s < t, let K(€2°) := b ;}(A DD[Efs]]Fp) denote the colimit

F, %5 Ao ]]FPE‘—SL..)

colim (AC Dler’

DIeP’]

and similarly for K(r,) := v, (A Dgr,)Fp), where Extan,, r, (Fp, Fp) = Ext g, (Fp, Fp) =
P(vy). Define the indexing set

Z = {ﬁfs}s« U {7 }n>0
and order them by degree s, defined by

y
s(€) = p—lgt |- 1)

8(1n) = |Ta] = 2p" — 1.

While the objects K (v) for v € 2 do not belong to the nilpotence-detecting family
of Conjecture 2.3.6, they look like Morava K-theories in the sense that they are
non-connective spectra with simple coefficient rings: by the change of rings theo-
](IFp’IFp) = Elhy] ® Plbic'] and m(K(70)) =
v Ext g, (Fp, Fp) = P(vE'). More importantly, we will see that they detect spectra

rem we have .. (K(€')) = b} Ext e

with b;s- and v,-maps. Say that X is type d if K(v).X = 0 for all v € & with s(v) < d
and K(v),X # 0 for (the unique) v € 2 such that s(v) = d.

41



Theorem 2.3.9 (Palmieri, [Pal01, Theorem 2.4.3]). Let X be a finite object in Stable(A)
of type d. If s(ﬁfs) = d then X has a non-nilpotent bys-map; if s(1,) = d then X has a

non-nilpotent v,-map.

By Theorem 2.3.8, the collection of all such X forms a thick subcategory, and by
[HPS99], given a vanishing plane in the MPASS E, page for one such X, any other
X has a vanishing plane parallel to the first. For every n, Palmieri constructs an
object of Stable(A) with a v,-self map, and shows it has an F, page vanishing plane
s > —|m|(s +t) + u ([Pal0l, Theorem 4.4.1]).! Since Adams filtrations are non-
negative and E3"* converges to msy¢4(X), this shows that 7sy4,(X) = 0 when 0 >
—|7n|(s+t) + u. This recovers the following classical theorem, which classifies vanishing
lines in (topological) Adams spectral sequence F, pages, in the case where d = s(7,)
for some n; the construction and analysis of an (algebraic) object of type s(€7") would

give a proof of the other case.

Theorem 2.3.10 (Miller-Wilkerson, [MW81]). Let M be an A-comodule of type d.
Then Ext}'(Fp, M) = 0 for s > 22=(t — s) + ¢ for some intercept c.

Remark 2.3.11. In topology, a spectrum has a v,-map for only one n. Here, this is

not the case: for example, at p > 3 the Smith complex V(1) has an E., page vanishing
1

line of slope =1 = 5 9
1

1

sE) -1 P —p
illustrates the fact that H,V (1) has not only a ve-map inherited from topology, but also

by Theorem 2.3.4, but has a higher slope vanishing

line

in its E5 page, parallel to which bjy acts non-nilpotently. This

a bjp-map. One can see this phenomenon even with the unit object I, in Stable(A): it

has a vg-map inherited from topology, but also a bjp-map (see Proposition 2.3.12).

Working over P instead of A, we also have a similar family of “easy” periodicity opera-

tors that come from the nilpotence-detecting families. To compute 7,.(P 0g)Fp) =

!Note that our grading convention for Adams spectral sequences is different from Palmieri’s: we
are using s to denote Adams filtration, ¢ to denote internal homological degree in Stable(A), and u to
denote internal topological degree. If we write Palmieri’s grading as (sp,tp,up) and ours as (s, ¢, u)
then (sp,tp,up) = (s,u —t,t).
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Extoq) (Fp, Fp) we note that every generator §fii of Q(r) is primitive in the cobar com-

plex except A(€yrpi) = & ® f;i for i > 1. So we have

Tn(P O@r)Fp) = Fplhrtio, Rrtjp, brrio, brijp 0 1<i<7,1<4,1<k<7r~ 1]/(h3+i,0)h3+j,k)

® Ext k,k).

(D[§r7€2r+iy§£:i : 13’])(

Furthermore, I claim b, is non-nilpotent in 7,,(P Og(rk) = Ext*Q(r)(k, k) using the
same argument as Proposition 2.53.12; using the comparison Q(r) — D[¢,]. One can
show, as for A, that powers of the periodicity operators b lift to .. (POcFp). In
particular, by is the operator with the lowest degree, and in the next proposition we

show that I, has type s(&1) as an object of Stable(P).

Proposition 2.3.12. Let p > 2. The element byy = %Zki@ ®) (816277 4s non-
nilpotent in Exty (IF,, F,) and in Exty (F,,F,).

Proof. The Hopf algebra maps A — D and P — D give rise to graded ring maps
Ext(k,k) — Extp(k, k) and Extp(k, k) — Ext},(k, k). Since by has cobar formula
2 D ocicp (L)€ ® €% in Cu(k, k), Cp(k, k), and Cp(k, k), these maps take big to by,
and hence take b7, to b7, for any n. Since bijq € Extp(k, k) = E[hio] ® Plbig] is non-
nilpotent, so are by € Ext?(k, k) and byg € Ext%(k, k). O

Remark 2.3.13. This shows that the unit object I, of Stable(P) has a byg-map. The
main goal of Chapters 4 and 5 is to study by Extp(F3, F3), and by the discussion above,
we can think of this as a chromatic localization of the unit object F3 in the category

Stable(P) with respect to by, the first periodicity operator acting on Fs.
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Chapter 3

Spectral sequence comparisons

In this chapter we discuss the relationship between three spectral sequences for comput-
ing Ext groups over a Hopf algebra I': the MPASS introduced in the previous chapter,
a particular filtration spectral sequence on the cobar complex of I', and the Cartan-
Eilenberg spectral sequence. In order to define the third spectral sequence, one needs
to start with the data of an extension of Hopf algebras & — I" — ¥; this then produces

a spectral sequence
ES* = Exty(k,Ext(k, k) = Extp(k, k).

If ¥ is a conormal quotient of I', then Palmieri [Pal01, Proposition 1.4.9] shows that
the Cartan-Eilenberg spectral sequence agrees with the ®-based MPASS. However, the
MPASS is more general than this: given any I'-comodule-algebra ®—not necessarily a
Hopf algebra—one can study the ®-based MPASS computing Extr(k, k). In Section 3.2
we discuss a modification of the construction of the Cartan-Eilenberg spectral sequence
that permits it to be defined in this setting, though (as in the case of the MPASS)
more conditions are necessary to show it has the desired E; term. We show that this
more general Cartan-Eilenberg spectral sequence coincides with the MPASS at E;.
This involves some nuances of the cobar resolution, so we give a careful account of its

construction in Section 3.1.
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Furthermore, it is known [Ada60, §2.3] that the usual Cartan-Eilenberg spectral sequence
coincides with a certain filtration of the I'-cobar complex that depends on ®. This
filtration can be defined when ® is a sub-I"-comodule-algebra of I', and in Section 3.3 we
show that the filtration spectral sequence coincides with the Cartan-Eilenberg spectral

sequence defined in Section 3.2.

Our main interest in this setting comes from our desire to study the b7y B-based MPASS
for computing by Extp(k, k) = Homy-1 gy,p1(p) (K, k), where B = P Opje,jk. In Chapters
5 and 6, we will find each of these three computational tools convenient at different

points, and will make use of their equivalence.

Notation 3.0.1. Given a Hopf algebra I' and a left I'-comodule M, we will write
Sm/@m" :=(m) and >, ®v" := A(y) for m € M and v € T when there is no

ambiguity which coaction is in play.

We also will need notation for the iterated coproduct T’ A7 I®n+1 and coaction M %
I'®" @ M; we will write Y mp| ... |mu4+1) = ¥™(m) and Yyl - [ Y1) = A7)

(Note that this notation is well-defined because of coassociativity.)
For example, A(y) = 377" = 2w, and 3 Al(va) e = 2 vo e lve:-
We will make extensive use of the following identities, which are part of the definition

of a Hopf algebra.

Fact 3.0.2. Let T" be a Hopf algebra with antipode c, comultiplication A, unit n, and

coaugmentation €.

(1) (Coassociativity) > (') @ (') @ 2" = > 2’ ® (") @ (z")"
(This fact is used to make the notation above well-defined; in that language, this

just reads " x1) ® T(2) ® @) = 2 Ta) ® T(z) ® T(3)-)

(2) 2o c(a)a" = e(x) = 3o x'c(a")
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(3) Ye(@)y®@z"=1®«x

(4) 22 c(@)'fe(z)" = 32 e(z")|e(2")

3.1 The cobar complex and the shear isomorphism

3.1.1 Constructing the cobar complex

Let I' be a commutative Hopf algebra over k, N a left I'-comodule, and M a right
I'-comodule. The cobar resolution Dr(N) is a particularly nice I'-injective resolution
for N; the cobar complex Cr(M, N) is the complex obtained by applying M Or— to
the cobar resolution. The cohomology of the cobar resolution is Extr(M, N). We
will discuss two isomorphic constructions of the cobar resolution (denoted ﬁl’i(N ) and
IS;(N )), as they are both common in the literature; the isomorphism connecting them

is the shear isomorphism, which we discuss first.

Definition 3.1.1. Let M and N be left I'-comodules, with coaction denoted by 1)(m) =
>om' ®@m” and ¥(n) = > n’ @ n”. There are two natural ways to put a I'-comodule
structure on their tensor product M ® N: the left coaction M @ N - T'® (M ® N)
is given by m ® n — >, m' ® m” ® n, and the diagonal coaction is given by m ® n
S m/n’ @m” ®n". To distinguish these, we write M é) N for the tensor product M @ N

endowed with the left I'-coaction, and M é N for the diagonal coaction.

For a pair of right I'-comodules one can analogously define the right and diagonal

R JaN
coactions, denoted ® and ®, respectively.

These constructions agree in the following special case:

Lemma 3.1.2 (Shear isomorphism). If M is a left I'-comodule, there is an isomorphism
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S:FéM—»I‘QLQM given by:

where c is the antipode on T'. Analogously, if M is a right I'-comodule, there is an

isomorphism S, : M (%) r-m é I' given by:

Sc:m®av—>2m'®m"a

St :m®aHZm’®C(m")a.

Proof. We prove just that the pair (S, S™!) are actually inverses; the statement for S,

is analogous. First we prove that S o S~! = 1. We have

S(S™Ha®m)) = S(3 ac(m) ® m")
= 3" acm')(m") & (m")"
=Y ac(mq))m @ m,
=) ae(M(l)) ® m(y)

= Z a®m
where the fourth equality is by Fact 3.0.2(2) and the last equality is by Fact 3.0.2(3).

In the other direction, analogous application of Hopf algebra properties yields:

S7H(S(a®m)) = ST (X am’ ®@m")
= z am’c((m")") ® (m")"

= Zam m(z) & my3)



To define the first version Dy (N) of the cobar resolution of N, observe there is a free-

forgetful adjunction
U : Comodrz=— Mod;, : F.

The free functor F sends N — I' ® N with unit n — > n' ® n” where the I'-coaction
on N is written ¢(n) = ) n’ ®n". We can form an augmented cosimplicial object from

the monad FU:

N (3.1.1)
i m n
DpN)= T&@NZZT@TIONZSTRT@T &N ... )

The codegeneracies yu; are multiplication of the i* and (i + 1) copies of T', and the
coface maps 7; are given by insertion of 1 into the i** spot. The second version of the

cobar resolution arises from a second augmented cosimplicial object:

N (3.1.2)
~ AL
L L A L L (_ﬁ L L L
D;(N):(F®NH—’F®F®N;:F®F®F®N )
v P

Here the codegeneracies ¢; come from applying the coaugmentation € to the i** spot,
and the coface maps A; : I'®* @ N — I'®"*l @ N for 1 < i < n come from applying A

to the 7" slot; the last coface map comes from the coaction 1 : N — I'® N.

Remark 3.1.3. If N were a right I'-comodule, we could have built analogous cosimpli-
cial objects N <§> Fé"“ and N @ ['®* é) I'. To avoid too much notational clutter, we will
use the same notation in these cases: if N is being thought of as a right I'-comodule,
the symbol DA;(N ) will mean the aforementioned cosimplicial object, and if N is a left

I-comodule, lsﬁ(N ) will mean the cosimplicial object in (3.1.1).
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Definition 3.1.4. The (non-normalized) cobar resolution D}j(N) is the associated
chain complex of D(N) (that is, the complex ['®*+1 ® N whose differentials are an
alternating sum of coface maps in Dp(NN)). Similarly, define Df(N) to be the associated

chain complex of DL;(N )-

Definition 3.1.5. The (non-normalized) cobar complex CA'{i(M, N) is the complex
M orDi(N). Similarly, define C2(M, N) = M opDa(N).

Remark 3.1.6. The cobar differential most commonly used in cobar computations,
e.g. as in [Rav86, A1.2.11], is CL’l’i(M, N), not CA’F(M, N) (and Ravenel’s Cr(M, N) there
refers to (a normalized version of) é’l’i(M ,N)). Since the differential in CA’li‘(M , N) looks
simpler than the one in CL'Ii‘(M , N), one might wonder why we don’t use the former in
computations instead; one issue is that the complication resurfaces when trying to write
down an individual term CA’F(M , N) explicitly; by contrast, CL‘?(M N)Z2MRQI®* ®@N
is easy to work with. Another reason the CL’F(M , N) version is preferred is that it only

uses the coalgebra structure of I'.

3.1.2 More on the shear isomorphism

L
D}(N) is given by the iterated shear isomorphism:

L

The isomorphism DAF(N )
S™: TOGM = [E-1®(T@M) 5 IS 1g(TeM) S I 2((TeraM) = ... 5 TereM.
We will need an explicit formula for this.

Lemma 3.1.7. The iterated shear isomorphism S™ : T®* & M — T & T®"~1 g M is
given by

S": 331! Ce }mnlm — Z 1171(1)1:2(1) . xn(l)m(1)|x2(2) .. .xn(z)m(2)|x3(3) Ce zn(g,)m(g)l P |m(n+1).
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The iterated shear isomorphism S% : M QT® 5 M@Te 1 QT s given by
Sg . m]xn) ce |:E1 = Z m(l)lm(z)xn(l)]m(g)zn(g)xn_l(l)l B |m(n+1)xn(n)xn—1(n_1) ... T2(9)T1.

Proof. We prove just the first statement, as the second is analogous. Use induction on
n. If n = 2 this is true by definition of S. Now suppose S"! is given by the formula

above. We can write S™ as the composition

and by the inductive hypothesis the first map sends

Ty|xa| . .. |Tpn|m > Zacl]xg(l):r3(1) T )M T3(2) - - - TryM)] - - - |-

If we write this as x|y, then the second map sends this to ) z1y(1)|y(2); remembering

that the coaction on y just comes from the first component, this is:
21'11'2(1).133(1) . $n(1)m(1)|l'2(2)$3(2) Ce $n(2)m(2)ll‘3(3) P :rn(3)m(3)] . |7TL(n+1). ]

Lemma 3.1.8. The iterated inverse shear isomorphism S™™ : FéF®"‘1®M — I‘®"(§JM

is given by
ST |zpm Zxlc(a:g)lxgc(xg)lxgc(:vﬁl)l o zle(m)m”.
R A a
The iterated inverse shear isomorphism S;™ : M @ T®" 1 Q' — M ® I'®" is given by

S iml|xy|. .|z — Z m'|c(m")x), |c(z))x), 1] .. |c(xh)z:.

Proof. Again we only prove the first statement, and again this is by induction on n. If

n = 1, this is the definition of S~! in Lemma 3.1.2.
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Assume the formula holds for n — 1. Write S~ as the composition

g—(n—-1) L a AA

rére-teoM) 55" re e M) S5 & (T8 & M)
and by the inductive hypothesis the first map sends

T1|xg|. .. |Ta|m — Zxﬂuc(m%ﬂxé’c(x&)l o xe(m)|m”.

If we write this as x|y, then the second map sends this to ) z1¢(y(1))|y(2), which is

> " mic((wac(zh)The(ay) ... v m"))[zye(as)”|(23)" e(z)" - . - [(25) " e(m)"|(m")"
_ Z xlc(:cg(1)0(583(2))z3(3)0($4(2))$4(3) - .c(m@))m(g)) |T2(2)c(z3(1)) |3 (4)c(Ta (1))
o |zn@e(may)m
=Y zie(z20)e(@3(9) - - Tamm)) lE2 (@) |23 ()|
- JEngye(may)ime)

= E l’16($2(1)) |$2(2)C($3(1))|$3(2)C(934(1))| e |zn(2)c(m(1))|m(2).

Here the first equality uses the fact that > c(z’)|c(z”) = _ c(z)"|c(x)’, the second uses
the fact that ¢(z')z” = ¢(z), and the third uses the fact that > e(z')|z” = > 1|z. O

Eventually, we will work in a setting where ¢ : I' — ¥ is a map of Hopf algebras, and

® = TI'ogk. In this situation, we will make extensive use of the following lemma.

Lemma 3.1.9. Let M be a I'-comodule. Then 'ogM C I QLQ M inherits a left
I'-comodule structure, and the shear isomorphism S : T’ <§> M — T é) M restricts

to an isomorphism

(I)éM—:r:FDEM.

The shear isomorphism S, : M (}A@ ' - M é) I' restricts to an isomorphism M (§> =
MDEF.
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Proof. First we check that the left comodule structure on I" & M restricts to a comodule

structure on I'oOg M. I claim that both squares below commute:

reM el ToT ® M
¢®1H1®¢ 1®¢'®1H1®1®¢
roysoM 28181 roreyseM

This comes from coassociativity of I', plus the fact that the coaction I' — ¥ ® I" comes
from composing the comultiplication on I' with the given Hopf algebra map ¢: I' — 3.
An element is an element of I' é M that equalizes the left vertical maps. Given an
element a ® m € T'ogM (i.e. an element that equalizes the left vertical maps), we need
to show that ¥(a ® m) lands in I' ® (F'og M) (i.e. that this element is in the equalizer

of the right vertical maps). This is given by the commutativity of the diagram.

Write M,, for M with the trivial ¥-coaction. Then we have
O M= (Togk)® M = Tog(k® M) = TogM,.

To show S restricts to a map ® <§> M =T oxM, — I'Dx M, using the same argument as
above it suffices to find a map f such that both of the squares in the diagram below

commute:

r®M s y T &M

¢®11JJ11®1®1 ¢®1H1®¢
!

rYXM —TI'RXeQM

Define f: 2@y ® z+— Y x(2') ® y(2')" ® 2. Checking commutativity of the diagram
uses the fact (from coassociativity of A : ' - I'® I') that > (2')' ® (/)" ® 2" =
Z z/ ® (Z//)/ ® (Z”)/,.

Finally, we show that S~ : T Ql@ M-T é M restricts to a morphism I'ogM — I'og M.
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As before, it suffices to show commutativity of

reM S T®M

1J)®1H]1®’¢ ¢®1H]1®1®1l

YoM —L HTeYoM

for some g. Take g to be the morphism z ® y ® z — > zc(2') @ ye(2') ® 2". It
is obvious that the square obtained by taking the leftmost of each pair of vertical
arrows is commutative, but the other square needs to be checked. The bottom left
composition applied to a®@m is Cp := > ac((m”)) @ m’c((m”)")” ® (m”)” and the top
right composition is Cr := ) ac(m’) ® 1 ® m”. We have

Cp =Y _ac(my)|mayc(m)"Ims

= Z ac(mz))|mayc(mz))|m) Fact 3.0.2(4)
= E m2))e(ma))|ms) Fact 3.0.2(2)
=>_clmw)[me = Cr. O

The change of rings theorem
Exti(M,T'ogN) = Exty (M, N)

is a standard result in homological algebra (see, e.g., [CE99, §V1.4]). For future reference

we record the following variant, obtained using Lemma 3.1.9.

Corollary 3.1.10 (Change of rings theorem). Let M be a right T'-comodule and N a

left I'-comodule, and let ® = I'agN. Then there is an isomorphism

Exti(M,® ® N) = Exty(M, N).
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3.1.3 The normalized cobar complex

Finally, we discuss two useful smaller versions of the cobar complex that turn out to be
chain-homotopic to the cobar complex; they are isomorphic to each other, and are both

referred to as the normalized complex.

Definition 3.1.11. Let A® be a cosimplicial object in an abelian category, with associ-
ated complex A*. Define the subcomplex A’A* of A* and the quotient complex QA* of

A* as follows:

Theorem 3.1.12. There are chain homotopy equivalences N A* ~ A* ~ QA*, and
there is an isomorphism of chain complezes N A* = QA*. (In particular, we can write

A* = NA* @ DA* for a contractible complex D*, such that QA* = A*/DA*.)

For a proof of this theorem in the dual (simplicial) case, see [GJ09, Theorem I11.2.1
and Theorem III.2.4].

Remark 3.1.13. Note that N/ CL'l’i(M , N) is just usual normalized cobar complex M ®
A
" ® N = M op(T ST ® N). There is a resolution T @ T~ ® N of N, but this is
Q(ﬁﬁ(N)), not N(DA;(N)) Instead, by definition we have
NDE(N) = ﬂ ker(p; : T®" 1 — I'®") ®N C DE(N)
where p; multiplies the i* and (i + 1) factors of I'.

Since D{.(N) is defined to be zero in degrees < 0, we have ND%(N) =T ® N.
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3.2 The Cartan-Eilenberg spectral sequence

3.2.1 Classical Cartan-Eilenberg spectral sequence

Let I be a Hopf algebra. Given an extension of Hopf algebras
IR R

(so in particular ® = I'Dgk), a right I'-comodule M, and a left ®-comodule N, the
Cartan-Eilenberg spectral sequence for computing Cotorp(M, N) arises from the double

complex (I'-resolution of M) Or(®-resolution of N). If we use the usual normalized

cobar resolutions A/ DLI*i(M ) and N DLE,(N ), the double complex is

-1)'1®ds +=®s+1

e (MRTY D)o@ e N) - (M e T 9N or(@©

dr®lJ( J/dp@]l

QN)—— ...

=®t+1

—1)t1Rds =®t+1 —®s+1
——(MeT —

® ) on(@ @3> @ N) =2 MT*" 9T o (@ T e N)— ..

(3.2.1)
The signs come from the usual formula for the tensor product of chain complexes, and
satisty dyert@horiz + dnorizdvers = 0. The spectral sequence that starts by taking homology

in the vertical direction first has
E* = Cotorh(M, ® ® " ® N)
~ Cotork(M, (Tosgk) @ 3°° ® N)

[

=~ Cotork(M, & ® N).

where the last isomorphism is by the change of rings theorem. For the spectral sequence

that starts by taking homology in the horizontal direction first, exactness of the functor
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(M® I'™® ') or— gives
ot~ Ty ot P ~ ot . Pl
EV'2H(MeT oDop(®e% oN)2MTD DNorH* (PP ®N)

and by the exactness of the resolution ® ® T @ N of N , this is concentrated in degree
zero as (M ® ™ I orN. The E; page then takes cohomology in the ¢ direction,
obtaining Fy ¥ E., = Cotorr(M, N). This implies that the spectral sequence that
starts by taking homology in the vertical direction first also converges to Cotorp(M, N).
The Cartan-Eilenberg spectral sequence is the vertical-first spectral sequence, and we

have just shown that it has
ES = Cotory,(M, %" @ N) = Cotorit (M, N).

If ® has trivial X-coaction, then we have E * = Cotork (M, N) ®5®3, whose cohomology
is:

E, = Cotors, (k, Cotorl, (M, N)).

The spectral sequence converges because it is a first-quadrant double complex spectral

sequence (see e.g. [McCO01, Theorem 2.15]).

Remark 3.2.1. The E, page is independent of the ®-resolution of N and the I'-resolution
of M, but the E; page does depend on the ®-resolution of N.

3.2.2 Weakening the hypotheses

The goal of this section is to remove the requirement that ® be a coalgebra. More
precisely, let I be a Hopf algebra and ® be any I'-comodule-algebra. The first issue
with defining an analogue of (3.2.1) is that it is unclear what category N should be in,
seeing as there is no such thing as a ®-comodule. Furthermore, the cosimplicial object
ls,},(N ) can’t be defined, not just for the aforementioned reason but also because the

coface maps are defined in terms of the coproduct on ®. To remedy this, let N be a
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I'-comodule, and—because we assumed that ® is an algebra—we can write down the

analogue IS&,(N) of ﬁ;(N)

N (3.2.2)
s \
. M, M
Dy( (¢>®N<—:—<I>®<I>®N———><I>®<I>®<I>®N ).

3

This is a cosimplicial object in I'-comodules which is quasi-isomorphic to V.

It can also be described in a more natural way. Since ® is a monoid object in Comodr,

we can define the category Modg of ®-modules in Comodr. There is a free-forgetful

adjunction

Fs : Comodr = Modg : U

where Fp(N) = @ ® N. Then (3.2.2) is the cosimplicial object associated to the monad
UFs.

Definition 3.2.2. In this context, define the Cartan-Eilenberg spectral sequence to be

the spectral sequence associated to the double complex

(N DA(M))ar(N D (N)).

The spectral sequence is unchanged starting at E; if we replace the right-most complex
by a chain-homotopic one, and in Section 3.3 we will find it more convenient to use the

complex

Di(M) o (N D3(N)). (3.2.3)

By definition, we have the F; term

E5* = Cotorh(M, N D3 (N))
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and it converges to Cotorp(M, N) as with the usual construction of the Cartan-Eilenberg

spectral sequence.

Remark 3.2.3. If ® did have a coalgebra structure, we can also define the spectral
sequence in Section 3.2.1, and it is clear that these two spectral sequences are isomorphic

via the shear isomorphism.

3.2.3 Comparison with MPASS

Theorem 3.2.4. Given a left T'-comodule-algebra ® and a left I'-comodule N, the

Cartan-Filenberg spectral sequence

A

By = H*(Di(k) or(NDy(N))) = Cotori(k, N) = Ext}(k, N)
coincides starting at F, with the ®-based MPASS
B = Exti(k, 0 ® 3°° ® N) => Exti(k, N).

[

Proof. By Theorem 3.1.12, there is an isomorphism of chain complexes N/ 5?11(N )
QDA(})(N ), so instead of the double complex DAI‘i(k) op(N DAE,(N )) we may use

A

Di(k) op(QDY(N)) = T¥H op(@ & B

Let T* be the total complex, defined by T = @,.,,_, [+ op(® & T

a filtration F** on this total complex as follows:

FsoTn — @ ®t+1 Dp(q) §6®s é N)

s+t=n
§25s(
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For the associated graded we have:

Fso/Fso+1Tn — '®n—so+1 Dp(q) é‘@@% é N)

H*(F® /F*°*T*) = Cotor}(k, ® 23> ® N).

By definition, the Cartan-Eilenberg spectral sequence arises from the exact couple

H*(F*T*) « H*(Fs+1T%) (3.2.4)

T

H*(FS/FS-I_I%*).
Let X° denote the image of the complex

A_

PRP/N—L ,pR0° s+1c§>N———><I)®d>®s+2

N n®1
in Stable(T") (that is, a complex of injective comodules quasi-isomorphic to the above

complex). Note that the complex represented by X is a I'-comodule resolution for N,

and hence is quasi-isomorphic to /V; in general, there is a quasi-isomorphism

A A A

X L (@@ ON 00T HN) 2B S N. (3.2.5)

We can express (3.2.4) as the exact couple arising from applying Cotorr(k, —) to the

cofiber sequence

®s+1 A

X5 X 50030 ®N. (3.2.6)

On the other hand, the MPASS comes from the exact couple obtained by applying the

functor Extr(k, —) to the cofiber sequence

N
—®s A

T EN TN T RO N. (3.2.7)

in Stable(I'). There is an isomorphism Ext[(k, M) = Cotory.(k, M) for all M, so we

are applying the same functor to the two cofiber sequences. Moreover, there is a map
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of cofiber sequences from (3.2.7) to (3.2.6), and by (3.2.5) this is a quasi-isomorphism;

in particular, the induced map of exact couples is an isomorphism. O

3.3 Cartan-Eilenberg vs. filtration spectral sequence

It is a classical fact [Ada60, §2.3] that the Cartan-Eilenberg spectral sequence associated
to the Hopf extension ® — I' — ¥ computing Cotorr(M, N) coincides with a filtration
spectral sequence on the cobar complex Cr(M, N) defined by

FCH(M,N) ={m[a4|...|a,Jv € CF(M,N) : #({a1,...,a,} NG) > s}

where

G :=ker(I' - X).

As G is an ideal in I' and the cobar complex C{(k, k) is a ring under the concatenation
product, one can say this filtration of CE(M, N) = M ® C{(k, k) ® N comes from the
G-adic filtration of Cfi(k, k). In the previous section, we defined a variant of the Cartan-
Eilenberg spectral sequence that makes sense when @ is an arbitrary I'-comodule-algebra.
In this section, we will impose the additional condition that there is an inclusion ® — T
preserving the relevant structure, and that we can write ® = I'Ogk where I' — X is a

map of Hopf algebras.

Let E’* denote this filtration spectral sequence, and let EA:* denote the generalized
Cartan-Eilenberg spectral sequence. We will show that these agree starting at r = 1.
As a double complex spectral sequence can be viewed as a filtration spectral sequence

on the total complex, it suffices to show the following:

Theorem 3.3.1. There is a filtration-preserving chain map

0: @ (M&T8) op(WDy(N)) — C(M, N)

s+t=n

61



whose induced map of spectral sequences ]:é}:* — E** is an isomorphism on Ej.
Corollary 3.3.2. We have an isomorphism E’,’f* — EX* forr > 1.

Definition 3.3.3. Define  as the composition

§:(M&T® ) on (@1 @ N) < (M@ @) op(T ® T® @ N)

_e, M® [®s+t QN
where the second map e is defined to be
(mlay|...lasla) @ (blby]-. . |bs|n) — e(ab)m|ai]...|a|b1]...|bs|n.

Define 6 to be the restriction of 8 to (M ® Fét“) or (N ]32,(N ).

In Lemma 3.3.6, we will show that this restriction lands in (M é)F@t“) or(T'osG(s)osN),
where

G(S) = GDE ce DEG.

S

We will see that Eg*(M, N) is easy to describe (and in particular it is easy to show that
6 induces an isomorphism EAg’*(M ,N) = EX*(M, N)), and most of the work involves
identifying ES*(M, N) (for s > 0) with Eg*(M, N') for a different comodule N’, in a
way that is compatible with a similar identification for EAS* More precisely, we will

show that there is a map 8 of chain complexes making the following diagram commute.

(M & T or N DY(G(s) g N) = EO* (M, G(s) 0z N) —2—s EQ*(M, G(s) 0s.N)
1@5—112 ~|B
(3.3.1)

It suffices to show the following;:
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(1) 6 is a filtration-preserving chain map;

A AN
(2) S~ gives rise to an isomorphism N D3 (G(s)ogN) — N'D5(N);
(3) there exists a chain equivalence 8 making the diagram commute;

(4) 6 is a chain equivalence for s = 0.

(1) says we have written down a filtration-preserving map between total complexes,
and (2)—(4) allow us to use the diagram to show that 6 is a chain equivalence for all
s > 0. We prove (1) in Lemma 3.3.4 and Corollary 3.3.7, (2) in Corollary 3.3.8, (3) in
Corollary/ Definition 3.3.11, and (4) in Proposition 3.3.13.

Both the structure of the proof and the entirety of (2), the hardest part, are taken
from an argument attributed to Ossa appearing as [Rav86, A1.3.16], showing that
the classical Cartan-Eilenberg spectral sequence coincides with the filtration spectral
sequence under discussion. The only new part we offer is the translation, via iterated
shear isomorphisms, to the generalized Cartan-Eilenberg spectral sequence as defined

in Section 3.2.

Lemma 3.3.4. 0 is a chain map DM ® Fé’t“) Dr‘ﬁ%(N) — CF(M, N).

Proof. Since S and S, are maps of chain complexes of I'-comodules, there is an induced

map on the tensor product of chain complexes
(M T @ (85 @ N) — (M @ ") @ (I @ N)

and since these are maps of chain complexes of I'-comodules, this passes to a map on

the cotensor product

(M é F®*+1) Dp(@§*+1 é N) N (M ® P*+1) DF(F®*+1 ® N)
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Then @ is formed by post-composing with the map
e: (MT®)op(I®* M @ N) - MT'** @ N

which takes m[ay| ... |at)ar1 ®@bo[b1|. .. |bs|n — e(asy1bo)m[aq] . . . |ag|bi| .. . |bs]n. To see

this is a chain map, it suffices to check the following diagram commutes.

(M @ I'®*H1) gp (I8t @ N) Il MR @I® @ N
d double vlv in
complex cobar

(M @T®*)op(I® 2 @ N)  1zes1

®t+s+1
@ (M ® I'®+2) gp (Do g N) M@T ® N

This requires keeping track of signs: the double complex differential is dr®@1+(—1)"1®ds,

or more explicitly:

aola1| . .. |acas1 @ bo[by|. . . |bs]bsy1 — Z Yaol. .. lajlaf] .. . Jas1 @ bo[by] . . . bs]bss1

+ ) (1) aolay| .. . lacdar iy @ o[- . [Bi]bY] . . Jbsya
and the cobar differential is

aolay] ... |ag|by|. .. |bs]bssr — Z —1)aglag|...|d}|a’| ... |b1] ... |bs)bss1

+Z 1) aglay]. . . |ae|bi] ... |B1(67]. . . bs]bss1-

In particular, notice that, on the bottom left composition, the terms corresponding to
aol. - - |aiq]al, 1 ® bol. . . Jbs41 cancel in M ® I®*5+1 @ N with the terms corresponding

to (L()[ ]at+1 ® b} [b”l ] s+1- O

~ A A
While 6 is not filtration-preserving, we will show that its restriction to (M (§>F®t+1) or NDj

is.

A L
Lemma 3.3.5. The iterated shear isomorphism S : [®*+1 & N — &+ @ N restricts

64



to an isomorphism of chain complezes

S:®®* '@ N —I'oy... osl OgN. (3.3.2)
—_ 1

*+1

Proof. For any I'-comodule M, by Lemma 3.1.9 the shear isomorphism gives an
isomorphism & é N S I'og N, and iterating the shear map gives an isomorphism

¥+t & N 2 oy . osl osN. 0
s+1

Lemma 3.3.6. The iterated shear map S : T'®5t! ® N — 91 ® N restricts to an
isomorphism N'D§(N) — I'ogG(s)ogN.

Proof. It suffices to check the inclusions S~}(T'ogG(s) osN) C NDAg(N) and S(./\/’DA;(M)) C

I'osG(s)ogN. For the first inclusion, use Lemma 3.1.8 to observe that

“Halgil.--lgsln) =Y acgi)lgie(gh)lg5e(gs)] - - - |g5e(n’)n” (3.3.3)

and for 1 <7 < s we have

pi(32 ac(gi)lgie(ga)lgse(gs)l - - - 1gie(n’)In") = 3" ac(gy)lgie(ga)l - - - |91 c(gigi'clgisi)l - - - In”

"

=2 ac(gh)lgic(ga)l - - 1gi-1e(gi)e(gira)l - - - In
which is zero since g; € G (and so g; ¢ k). This shows (3.3.3) is in NDs ().

For the other direction, let 2| ... |zs/n € ND§(N) C ®®5t! @ N. By Lemma 3.1.7, we

have

S(xo|...|zs|n) = Z To1)T1(1) - - - Ls()(D)|Z1(2) - - - Ts2)P@) [ T2(3) - - - P3| - - - [M(s42).-
(3.3.4)
The goal is to show that each component Zy (ki 1)ZTk+1(k11) - - - Ts(k+1)Mk+1) 18 In G for
1 <k < s. Since ® is a left [-comodule, if z € ® then A/(z) = z(y)|... |z and so

z(;y € ®. By assumption, all of the z;’s are in @, and since (3.3.4) involves the iterated
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coproduct A1 (z;) = ziy)l ... |Tiu41) for every i, we have z;;,q) € ®. If we could
guarantee Ty (y1) were in ®, then we would be done (since G = ®T'). Instead, we show

that the terms where z(;41) = 1 sum to zero.

The terms where xy 1) = 1 are:

Z Zo(1)T1(1) - - - Th—1(1)Tk(1) - - -xs(l)n(l)l e |5Uk—2(k_1)$k—1(k_l)il:k(k_l) . (3.3.5)

' I.’Ek_l(k)xk(k)xk+1(k) e ka+1(k+1).’rk+2(k+1) e | e |n(5+2).

A
The assumption that zo|...|zs is in N'D5(M) implies that zy_1zx = 0 (this is where

we use the fact that £ > 1), and hence

0= Ak(xk—lwk) = Z xk—1(1)$k(1)| S |$k—1(k_1)$k(k—1)|93k—1(k)$k(k)-

Observing how A(xg_1zk) is embedded in (3.3.5), we have (3.3.5) = 0. O

Corollary 3.3.7. 0 is filtration-preserving.

Proof. This is a direct consequence of Lemma 3.3.6. O

Corollary 3.3.8. There are isomorphisms
NDL(G(s)osN) = & (G(s) o N) 58 TosG(s) osN 525 N D3 (N).
This gives the left vertical isomorphism in (3.3.1).

Our next task is to define the map £ in (3.3.1) and show it is a chain equivalence. Most
of the work for that is done in Lemma 3.3.10; the next lemma is helpful for that, and

the result is summarized in Corollary/ Definition 3.3.11.

Lemma 3.3.9. For fized s, there is an isomorphism of complezes F*/F*t1Cr(M, N) =
Ey"(M,N) = MosEy"(M,Z)osN.

66



In particular, E;*(M, N) only depends on the X-coaction on N, not the full I-coaction.
We will abuse notation by writing E;*(M, N) where N has a X-coaction and not a

I-coaction (specifically, we do this for N = G).

Proof. We begin by showing that F*/F*t'Cp(M, N) only depends on the Z—céaction
on N: given z = m[y|...|vw]v in FSCp(M, N), the term m[y1]. .. |v,|V]v” in d(z) is
in Ft1if V' € G. So, if we write ¥(v) = S V|V for the coaction ¥ : N - X ® N, we
can say that d(z) =Y m[n|... |w|[/]Y" in F5$/Fs+t1CETY (M, N).

We have an isomorphism 9 : N =) Os /N of X-comodules, where the coaction on the

right hand side is 0 @ v — ¢’ ® 0” ® v. This shows that the following diagram commutes
ESY(M,N)—Y— ESY(M, %) os N
dJ Jd
ESN (M, N) 25 B3 (M, $) og N

and so there is chain complex isomorphism FEy* (M, N) = Ey*(M,X)osN for every
S. g

Lemma 3.3.10 ([Rav86, A1.3.16]). The map

§: ESV(M,G) — EY*(M,X)

mlay|...|as_1]g — mlai|...|as_1|d']g"-

is a chain equivalence, where Y ¢’ ® ¢ is the image of g € G along the map T 4

I'l' -T®X.

Proof. We introduce a second filtration F** which is defined only on Cp(M,T):

ﬁsC{l(M, )= {m[n]|...|m]y : atleast s of {y,7,..., Y} are in G} '.

1This is off by one from the grading convention used in [Ravs6, A1.3.16].
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There is a short exact sequence of complexes
0 — F5/F*\C5(M,T) — F°/FHCHM,T) — F*/F°Ci(M,T) > 0.  (3.3.6)

Unlike F, the new filtration F preserves the contracting homotopy on Cp(M,T") given
by mvil... [ ly — e(Y)m[m|. .. Hn-1]mm- So F*Cr(M,T) is contractible, and so is
the quotient complex F*/F**1Cr(M,T). The short exact sequence (3.3.6) gives rise to
a long exact sequence in cohomology, and contractibility of the middle complex means

that the boundary map
§: H*(F*/F°C:(M,T)) —» H*(F*/F*t'C:t1 (M, T)) (3.3.7)

is an isomorphism. We will identify F'*/FsC{(M,T) and F¢/Fst1C:H (M, T) with the
source and target of the desired map in the lemma statement, and show that § can be

lifted to a map on chains.

Levelwise, we can write
F1Cp(M,T) = F*H'C}(M,T) + F*C}(M, G) (3.3.8)

but this is an abuse of notation—as G is not a I'-comodule, C}:(M, G) is not a complex
(but we can still talk about CEF(M, G) C CE(M,T') as a sub-module). We will see that

this will cease to be a problem upon passing to the associated graded Ej.

For each n, we have

F*/F*Cx(M,T) = (F*C}(M,T) + F*~'OR(M, G)) / F*CH(M,T) (3.3.9)
>~ ps=1/FSCM(M, G)
Fo/FHCr Y (M, T) =2 FSCR(M,T) [ (F*H'CR(M,T) + F*CR(M,G))  (3.3.10)
= (F°CH(M,T)/F**'CH(M,T)) /F°C}(M, G)
~ 5 /FHCR (M, T).
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While F*Ct(M, G) is not a complex, Lemma 3.3.10 shows that F*~1/F*Ci(M,G) is a
complex, and the isomorphisms F*¢/ FSC?(M,T) & Fs~1/FsC?(M,G) and F*/FsT1CH (M, T)
F*/Ft1C?(M, ) extend to isomorphisms of complexes. I claim the boundary map

(3.3.7) can be identified as the map

H*(F*"YJF*Cp(M, G)) = H*(F*/F*+H'Cx(3, N))

mla]...Janlg — Y _mlay] ... |an| lg"

where ) g'|g” is the image of g under the right E-coaction. As the boundary map, this is
just given by the cobar differential, but in order for m[a;]...|a,]g to be a cycle, the sum
of all the terms except the one in the formula for § is in F*CP™(M,T"). Furthermore, I

claim this can be extended to a map on chains:

§: F* Y F*CH(M,G) —> F*/F*H1CA(S, N)

mlay|...|anlg — Zm[aﬂ o] ']g".

It suffices to show that the image of m[ay]. .. |ay]g € FSCi(M, G) lies in F¥T1CE(M, X)),
and this holds because g” is the (s + 1)* term in G. O

Using Lemma 3.3.9, we can write this as a map
ESV(M,G(s)0gN) 6 s on & e
’ E;* (M, ¥)ogN = EJ7 (M, XoxgN E;" (M, N
ZE(S)—l,*(M,G)DEN‘—’ o (M,X)0x o (M,ZosN) — Ey™( )
mlai|...|ay)glv — Zm[aﬂ . lang']g”u — Zm[aﬂ o anlg)v.

Corollary/ Definition 3.3.11. Iterating é gives rise to a chain equivalence

ES*(M,G(s)osN) - EX*(M,G(s — 1) ogN) -5 ... =25 ES*(M, N)

sending

mlai|...|an)g1] ... |gs|v — mla1] ... lanlg1] - - - |gs)v
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Let 8 denote this composition.

It is now easy to see that (3.3.1) commutes. Our final task is to show (4) after (3.3.1);

first we need an easy lemma.

Lemma 3.3.12. Let I be a Hopf algebra and M be an I'-comodule. Then the coaction
¥ : M — T'orM is an isomorphism with inverse T : 'opM — M sending a ® m —

e(a)m.

Proof. First we check that the coaction 1) lands in the cotensor product I'or M: we need
to check that ¢(m) = > m/®m” lands in the kernel of AQ1-1®%y : T®M — I'QT'®M.
But Y (m/) @ (m')" @ m" — > m' @ (m”) ® (m")” = 0 by coassociativity.

Next, we check that T is an inverse. We have Ty(m) =T (>_m’' @ m") = _ e(m')m”.
This is equal to m by Fact 3.0.2(3). For the other composition, we have ¥/T'(a ® m) =
S e(a)m’ @ m”. Since a ® m is in ['opM, we have > a@m' @m” =Y d' ® a" @ m.
Applying € - 1 ® 1 to this, we have Y_e(a)m’ @ m" =) e(a’)a”" ®m = > a®@m. So
Yol =1. |

Proposition 3.3.13. 6 induces an isomorphism 510,* — E(l)’*.
Proof. First notice that we have an isomorphism
FP/F'(MR@T®QN)2MRL®® N
since m[vy| ... |ys]v is in F! if any of the 4;’s are in G. On the other hand, we have
H*(E%) = H*((M & T840 op(@ & N)) = Cotorh(M, ® & N) = Cotor(M, N)

by the change of rings isomorphism. In the rest of this proof we make this isomorphism

A
more explicit, enough to see that the isomorphism E(l)’* — Ei”l is induced by 6.
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Since the shear map I’ T — I'® T commutes with the map '® T 2y ® 3, we have

a commutative diagram

(M & T+ op(® & N)

]lt+2®S
+

=

(M é F§t+l) or (T DEN)IMQ(M é Eé%tﬂ) or(logN) ——— (M (§> Eét“) Os N

St@ee1 lSéH@M

FY/F' (M ®I"® N) MRt @ N

IR

Note that the left vertical composition is 6, by definition. The middle horizon-
tal composition is the chain equivalence inducing the change of rings isomorphism
Cotorp(M,I'osxN) = Cotors(M, N). By Lemma 3.3.12, the right vertical map is
Sit1 @ T, an isomorphism. So the bottom left vertical map is a chain equivalence. The

top left vertical map is an isomorphism, so 6 is a chain equivalence. O
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Chapter 4

The E5 page of the K(&)-based
MPASS

Unless otherwise indicated, henceforth we will work at p = 3, and let &k = F5. We also

let D = k[&1]/€&} throughout.

4.1 Overview of the K({)-based MPASS

Our goal is to compute T..(bjy k) = by Extp(k, k) using a MPASS based at
K(&) :=b, B where B := Popk.

Since B is an algebra, K (&) is a ring object in Stable(P). At p = 3 we will show that
K (&) K (&) is flat over K(&)).x, and so the Ey term is:

Ep = Extre(g).. k(62) (K (€1) e K(€1)ws) = mas(bio k) = by Extp(k, k).

This flatness property does not hold at higher primes; this is the main reason this

problem is significantly more tractable at the prime 3.

In Section 4.4 we will show that this spectral sequence converges, and in Section 4.5 we
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will show that Extp(k, k) agrees with its bjo-localization above a line of slope 21—3 The
bulk of the chapter, in sections 4.2 and 4.3, is devoted to determining the structure of

the Hopf algebroid

(K(gl)**, K(&l)**K(gl)) = (bl_O1 EXt*P(kv B)? bl—Dl EXt’;’(k’ B ® B))
=~ (byy Ext(k, k), bg Exth(k, B))

(where the last isomorphism is by the change of rings theorem) in order to determine
the structure of the Fy page. The coefficient ring K (&;).« is easy to compute using the

change of rings theorem:

K(&1)ss = by Exti(k, B) = by Exth(k, POpk)

= byg Ext}(k, k) = E[hy] ® P[bL)

where hig is in homological degree 1 and by is in homological degree 2. It will be useful

to have notation for this coefficient ring:
R := E[hio] ® Pbiy). (4.1.1)
Our goal is to show the following:

Theorem 4.1.1. The ring of co-operations K(&)..K (&) is flat over K (& )., and

moreover there is an isomorphism of Hopf algebras

K(gl)**K(El) = K(gl)** ® E[Cz, €3, .. ]

for generators e, in homological degree 1 and internal degree 2(3™ + 1). That is, ey is

primitive, and K (&1).K (&) is exterior as a Hopf algebra over K (& ).

Corollary 4.1.2. The E; page of the K(&)-based Adams spectral sequence for com-
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puting m,.(bjgk) is
E;* = R®P[’U)2,U}3,...]

where wy, has Adams filtration 1 and internal degree 2(3™ + 1).

Remark 4.1.3. The generator w, is a permanent cycle, and converges to gg =
(h10, h10, h11) € Extp(k, k). We will see in Chapter 5 that the other w,’s support
differentials, so it is less easy to see how these generators connect to familiar ele-

ments in the Adams FE, page. One useful heuristic is that w, = (hig, k10, Rn_1,1) OVer

P/(€7,65,€5, )

Remark 4.1.4. As B is a P-comodule algebra, there is a Hopf algebroid (B, B ® B)

in Stable(P), where the comultiplication is given by
BB ¥ B B® B~ (B®B)®s (B® B).
The Hopf algebroid above is given by applying by .. (—) = by Exth(k, —) to this one.

Notation 4.1.5. We have chosen to define B as a left P-comodule. It can be written
explicitly as [F3 [E?, 52,23, ...]. To simplify the notation, everywhere in the remaining
chapters of this thesis we will redefine the symbol &, to mean the antipode of the usual

&n. Thus, going forward, we will have A(&,) =37, §i®£§’i, and B = F3(€3,£,,&3,...].

4.2 D-comodule structure of B

In this section we work at an arbitrary prime p. We will write k = F,, D =TF,[&]/&7,
and B = Popk = F,[¢7,&,, &3, ... ] (using the convention of Notation 4.1.5). Note that
B is an algebra and a P-comodule, but not a coalgebra. Let 1) denote the D-coaction
B — D ® B that comes from composing the P-coaction B — P ® B with the surjection
P—D.
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Definition 4.2.1. If we write
P(z) =10r+6Qm +E Qe+ +&  ®ap,

for some a;’s, define

o(z) = as.

For example, since A(§,) = 1 @&, + & ®E_, + ... we have 9(&,) = &_,, and

9(&2_,) = 0. One can show using coassociativity that a; = %Bk‘lal. As & is dual to

PP in the Steenrod algebra, the operator § : P — P is dual to the operator PV — PV
given by left PP-multiplication. In particular, (P?)P = 0 implies 97 = 0.

Lemma 4.2.2. We have d(zy) = 9(x)y + z0(v).

Proof. We have

Alzy) =A@X)AY) =10+ Q0+ ... ) (1Qy+ 6 QY +...)

=1Qzy+& Q (yor +xdy) + . ... O

The structure theorem for modules over a PID says that modules over DV = D
decompose as sums of modules isomorphic to F,[&;]/&} for 1 < i < p. Dually, we have

the following:

Lemma 4.2.3. Let M(n) denote the D-comodule F,[&,]/€3 . Then every D-comodule

splits uniquely as a direct sum of D-comodules isomorphic to M(n) forn <p—1.
Note that M(0) = F, and M(p — 1) = D.

The goal of this section is to prove the following proposition.

Proposition 4.2.4. Define the indexing set 9 to be the set of monomials of the form
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[T5-, 527 such that 1 < e; <p—2, and for X € B, write z;j(X) := 51-? and ej(X) 1= e;.

Then there is a D-comodule isomorphism

B2 @ @MeEm & F
Xe# j=1
where F' is a free D-comodule and M (e)ee 1= Fp{&5,067,...,0°€} = M(e).

If e < p— 1 then M(e)e is a sub-D-comodule of B with dimension e + 1. By the

Leibniz rule (Lemma 4.2.2) we have
M(e+pf)ror = Fp{E €, 0(E7)E ..., 0°(€7)ET} = M (e)e; @ Fp{€}
for e < p — 1. For any collection of e; € N, define
T(E5 - €2) i= M(ea)g © ... & M(ea)es. (4.2.1)

This is a sub-D-comodule spanned (as a vector space) by monomials of the form
oF1(ga) ... ok(ge). Clearly, B = Z"ﬁzﬁfe‘? T(&! ... &qe), but this is not a direct sum
decomposition—any given monomial appears in many different summands. To fix this,
we will study the poset of T(X)’s, and find that B is a direct sum of the maximal

elements of that poset.

Notation 4.2.5. Define the notation

(I TIef) =TTe TIe

i>1 i>2

(These are not formal products; they only make sense if ¢, = 0 = f; for all but

finitely many i.) For example, we have (X ; 1) = X for any monomial X, and

(1; &) = &_, = 9(&). Expressions <]_L.22 &5 Tiso §f> represent elements of

B C P, and conversely every element of B has a representation of this form (note that
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& = (1; &)). Monomials in B do not have unique expressions of the form (X ; Y):

for example, (€5_, ; 1) = (1; &).
Lemma 4.2.6. There is a bijection

{monomials in B} «— {<Hi22 &5 Tise 5{’> e <p-— 1} . (4.2.2)

Say that a bracket expression is admissible if it is of the form on the right hand side.

Proof. Given a monomial, the admissible bracket expression is the one with the greatest

number of terms on the right-hand side. O

Lemma 4.2.7. If X is a monomial with admissible bracket expression <H & Hﬁlf>
andY is a monomial in T(X), then'Y (up to invertible scalar) has admissible expression

<H &% H&ifi+°i> for a set of ¢; > 0 that are zero for all but finitely many 1.

The idea is that Y is obtained from X by moving terms from the left to the right.

Proof. If e < p — 1 then we have

el

(e —1)!

9'(€) = SARY
By definition, X = [],5, §f"+pfi+1 where e; = 0, and

i €i i € i ei! e;—k; i1 i+1
Y = Hak,gi +pfiv1 _ H(akzgil)élpfﬂ _ H (e‘ - k.)|§i ki+pki+ 6le+

- (M 2me™ Ie)

using the fact that 9 = 0. So we can take ¢; = k; in the lemma statement. O
Definition 4.2.8. For monomials X and Y, write X > Y if Y € T(X).
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It is easy to check that this makes the set of monomials into a poset, and that X > Y

if and only if T(X) D T(Y).

Lemma 4.2.9. Suppose W is a monomial with admissible bracket expression ([[ €5 ; T1&).
Let W = (T1€5 5 TI€") where ¢; = min{e; + fi,p — 1} and d; = f; — (¢; — ;). Then

W is the mazximal object > W.

Proof. Let X be an arbitrary monomial, written in its unique admissible bracket
expression. Then X > W if and only X can be obtained from W by moving terms in
W from the right to the left side of the bracket expression. Note that W is the bracket
expression obtained by moving as many terms to the left as possible while still keeping

the resulting expression admissible. This implies W is maximal. 0

Define an equivalence relation on monomials where X ~ Y if X=Y.

Lemma 4.2.10. There is a direct sum decomposition B = @ T(X).

eq. class
reps. X

Proof. 1 claim that T(X) = F,{Y : X ~ Y}; this follows from the fact that, by
definition, T'(X) is generated by Y such that ¥ < X. So the direct sum decomposition

comes from partitioning monomials into their equivalence classes. O

Let .# be the set of admissible bracket expressions X such that X =X. By Lemma

4.2.9 we have the following.

Lemma 4.2.11. . is the set of admissible bracket expressions <H IS Hg{*> such
thate; <p—1 and ife; <p—1 then f; = 0.

Lemma 4.2.12. If X = ([[ €% ; T[€/) is an admissible expression, there is an iso-
morphism of D-comodules T({J] & ; 1)) = T(X).
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Proof. By Lemma 4.2.7, every Y in T(X) has a bracket expression obtained from X by
moving terms from the left to the right, so the right hand side of the bracket expression
for Y is divisible by []&%, and so Y is divisible by u := (1; [[€") = []€"%. So
multiplication by u gives a map T((J] & ; 1)) — T(X), and moreover from the above
description of Y € T'(X) it is easy to see that this is a bijection. Finally, since 0(u) = 0,

this is an isomorphism of D-comodules. O

Lemma 4.2.13. If X = ([[ €% ; [1 &) is an admissible expression such that ey, = p—1
for some k then T'(X) is a free D-comodule.

Proof. By definition, we have T'(X) = @M /(e;).:: , and M(ek)ﬁi’fc = M(p—1)= Dby

~

assumption. Rearranging terms and using the shear isomorphism, we have T'(X)

D& ®i;ékM(61)§fli ~D® ®#kM(ei)5;ii, which is free.

O

By Lemmas 4.2.12 and 4.2.13, we have:

Corollary 4.2.14. If X = ([[¢¥ ; [1&]) is an admissible bracket expression in &
such that f; # 0 for any i, then T'(X) is free as a D-comodule.

Proof of Proposition 4.2.4. From Lemma 4.2.10 we have B = @, T(X), and by
Corollary 4.2.14 there are free D-comodules F' and F”’ such that

B  T(X;1)eF = P TX)eF
(X ; NYes (X ; les

> P TX)eF
(X ; 1) s.t.
e; (X)<p-2

80



We conclude with a useful lemma that simplifies checking relations in certain byg-local

Ext groups of interest.

Lemma 4.2.15. Let I(n) = (&", &",...)B. Then I(p — 1) is contained in the
free part of B according to the decomposition in Proposition 4.2.4. In particular,

if x € Extp(k, PopI(p — 1)) then z = 0 in byy Extp(k, POpB).

Proof. Consider an arbitrary monomial ¢ = &P VP X in I(p—1). If X has an admissible
expression <H &7 H{f’> then ¢ has an admissible expression <H &7 523 §1f’>
By Lemmas 4.2.10 and 4.2.13, it suffices to show that g = ([]&" ; Hﬁf”) satisfies

¢y = p—1 for some k. Using the formula for ¢ in Lemma 4.2.9, we have ¢,,;; = p—1. [0

Corollary 4.2.16. Let I(n) be as in Lemma 4.2.15. If x € Extp(k, Pop(Popl(p —
1))), then x is zero in byy Exths(k, Pop(Popl(p — 1))).

4.3 Hopf algebra structure

Convention 4.3.1. Unless indicated otherwise, we will work at p = 3 in this section
(and everywhere hereafter in this thesis). The reason for making this simplification is
the simplicity of the structure of Comodp and the Kinneth formula (Lemma 4.3.5),
which imply that K (& )..K (&) = byy Extp(k, B) is flat (in fact, free) over K (&;),, =
bio Ext}(k, k). All of these points are discussed in Section 4.3.1. ’

4.3.1 Vector space structure of K (&) K (&) at p=3

Using the shear isomorphism (Corollary 3.1.10), we have

K (&) K (€1) := Bxtp(k, K (&) K (€1)) = by Extp(k, B & B)
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= bl—ol Eti(k, PDDB) = b;ol EXtD(k, B)

The main result of the previous section allows us to write

d
bro Extiy(k, B) = by Exty(k, @ Q) M(ei)es @ F) (4.3.1)

e eq i—
fnll ~-€n(‘11 i=1
e; <p-2

112

P bra Bxtiy (k. (R Mer)es:)

e e i—
§n11-~§n((ii =
e;<p-2

d
1

at all primes.

There is a formula that allows us to decompose the tensor products @) M (e;) into a

sum of the basic comodules M (n), but in general it is rather complicated:
Theorem 4.3.2 (Renaud, [Ren79, Theorem 1}). At all primes,

M(T)@)M(S)g(T—C)M(P‘1)+2M(s—r+2z'—2) forc= " Yr+s<p

i=1 p— s otherwise.

At p = 3, however, the only D-comodules are M(0) = k, M (1), and M(2) = D, and it
is easy to see directly that M (1) ® M (1) = D@ X%/&lk. (Here we use bigraded notation
for the shift for consistency with viewing these objects in Stable(D), so £%/¢1l denotes

a shift of 0 in the homological dimension and |&;| in internal degree). In particular,

k{z, 0z} @ k{y,0y} = k{zy, d(z)y +zd(y), 9(2)d(y)} ® k{0(x)y — x0(y)}.

After inverting byg, free comodules become zero, and the only basic types of comodules

are M(0) = k and M(1).

Remark 4.3.3. We will repeatedly use the fact that Ext}(k, D) is a 1-dimensional
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k-vector space in homological degree 0 and zero otherwise, and for i € {0, 1}, Ext},(k, M (7))
is 1-dimensional in homological degree > 0. As by is the generator of Ext?,(k, k),
we have by Exth(k, D) = 0, and by Ext},(k, M(i)) is a 1-dimensional k-vector space
in every dimension. Furthermore, for any D-comodule M, the localization map

Ext},(k, M) — byy Ext}(k, M) is an isomorphism in homological degree > 0.

Lemma 4.3.4. In Stable(D), we have an isomorphism

b M(1) = ©-128lpr A (0).

Proof. A representative for M (1) in Stable(D) (i.e., an injective resolution for it) is
0 — D & po2alp 8 wosialp & soslalp | and so b M(1) == colim(M(1) 22
¥2-bl M (1) — ...) is represented by

.. 0-lalp 2, B & y02lp 9, yo3ialp _,
hom.deg.0

Similarly, bj; M (0) is represented by

2 2
. Y02l 95 D 3, solalp & yosialp
hom.deg.0

and so there is a degree-preserving isomorphism by M (1) — L~12&lp 1 A7(0). 0

(At arbitrary primes, the formula by M(n) = R~bE-Dl&lp A (p — 2 — n) holds for
the same reason.) Therefore, if M is a D-comodule, then bj; M € Stable(D) is a sum
of shifts of the unit object £ = M(0). Remembering that Stable(D) was constructed
so that Homgapie(p) (X, bio M) = by Extp(k, M), we obtain the following Kiinneth

isomorphism:
Lemma 4.3.5. If M and N are D-comodules, then

bio Exth(k, M ® N) = b; Ext},(k, M) ® by Ext}(k, N).
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This only works at p = 3, and is the essential reason we have made the simplification of

working at p = 3.

Applying this to (4.3.1) we have the following.

Corollary 4.3.6. We have an isomorphism

biy Ext},(k, B) = €D by Exty(k, 5%k, )

monomials
ény--€ng

where L=l o s the copy of £~k isomorphic to L, M(1)g,, under
Lemma 4.3.4. In particular, K(&)wK (&) = by Ext}(k, B) is free over K(&)w =
bl Extp(k, k).

So by Extp(k, B) has R-module generators in bijection with monomials of the form
ny - - &n, (Where n; # nj if ¢ # j). Now we will be more precise in choosing these

generators.

Lemma 4.3.7. Suppose N is a D-comodule algebra with sub-D-comodules k{x,dx} =
M(1) and k{y,0y} = M(1).
(1) The image of Ext}(k, k{z,0zr}) in Ext},(k, N) is generated by e(z) = [€)]z —
[£7]0z.
(2) We have
e(z) - e(y) = bio(ydz — z0y)

in the multiplication Ext},(k, N) ® Ext},(k,N) — Ext}(k, N) induced by the

product structure on N. In particular, e(x)? = 0.

(8) If the multiplication map embeds k{zr,0z} ® k{y,0y} in N injectively, then
bio Exty(k, k{z,01} ® k{y,0y}) C by Exth(k,N) is a I-dimensional vector

space with generator e(z) - e(y).
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Since Ext’,(k, M) = by Ext},(k, M) for i > 0, note that this also gives a generator of
brg Extp(k, N).

Proof. Since Extp,(k, M (1)) is a 1-dimensional k-vector space, for (1) it suffices to show
that e(z) is a cycle that is not a boundary. Indeed, since dz = [§;]0z and d(0zx) = 0,
we have d(e(z)) = —[£]£1]0z + [£1]|€1]0x = 0, and e(z) is not in d(CY(k, k{z,0x})) =
d(k{z,0z}).

For (2), we use a special case of the cobar complex multiplication formula in [Mil78,

Proposition 1.2]:
Fact 4.3.8. The multiplication Ch(k, M) ® Ch(k, N) — C%(k, M ® N) is given by

[€lm @ [wln — Y [€ @ m'w)(m” @n).

Thus the product Ch(k, N) ® Ch(k, N) — C3(k,N @ N) & C%(k, N) takes [€]m ®

[wn — > [§ ® m'w]m”n. Using this formula, we have:

e(z) - e(y) = [Glz] - [&1]y] — [61]z] - [€7]0y]
— [&10z] - [&1ly] + [67102] - [€7]0y]
Eal2] - [Ely] = ) _[Gle’éle"y = [&l&]ay + [&1€])(0z)y
il2] - [€210y] = > [&|2'&a" 0y = [611€})=0y
[€3102] - [yl = ) _[E1(02)'&)(02)"y = [€}1€1](Bz)y
[€1102] - [€}10y] = ) €113 (02)')(9z)" Dy = [€]]€]1920y
d([e})zy) = 2[&|&]zy — [€]1€1)(9z)y — [€71€1]2dy — [€71€7]028y
e(z) - e(y) + d([E])zy) = [£11E]1(0z)y + [€7161)(82)y — [&1|€F]xdy — [€}|€1]2Dy
= bio((Oz)y — zy)
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For (3), note that there is a decomposition of D-comodules

k{z,0z} @ k{y, 9y} < k{zy, 23y, (92)y, (8z)(dy)}

= k{zy, (9z)y + 29y, (0z)(0y)} © k{(9z)y — z(dy)}
and since Ext};°(k, D) = 0, the quotient map
by Ext? (k, k{z, 01} ® k{y, 0x}) = byy Ext%(k, k{z0y — (0z)y})
is an isomorphism. By (2), e(z) - e(y) is a generator of the latter Ext group. O

Lemma 4.3.9. Suppose N is a D-comodule algebra with sub-D-comodules k{x,0x} =
M(1) and k{y} = k.

(1) The image of Ext)(k, k{y}) in Ext%(k, N) is generated by y.

(2) We have
e(z) -y = [&1]zy — [€3)(0z)y = y - e(x).

(8) If the multiplication map embeds k{z,0z} ® k{y} in N injectively, then e(x) -y
is a generator of the 1-dimensional vector space by, Extp,(k, k{z,0z} ® k{y}).

Proof. (1) is clear. (2) follows from the cobar complex multiplication formulas

Co(k, M) ® Ch(k,N) — C5,(k,M ® N) m @ [€]n — [€](m ®n)
Chk, M) ® C%(k,N) — Ch(k, M ® N) [€ln ® m — [€](n @ m).

For (3), note that k{z,0z} ® k{y} = k{zy, (0z)y}. Note that (0z)y = J(zy). From
Lemma 4.3.7, byy Extp(k, k{zy, d(zy)}) is generated by e(zy) = [&]zy — [£]]0(zy) =
e(z) - vy. O

86



Definition 4.3.10. Define e, := e(&,) as the chosen generator of by, Extp,(k, M (1)g,).

Lemma 4.3.11. Under the change of rings isomorphism
bio Extp(k, B) = byy Extp(k, PopB)
the image of e(x) in Extp(k, PopB) has cobar representative

[&](1]z) — [€](1]02) + [&1](61]02) € P® (PupB).

Proof. The change of rings isomorphism Extp(k, M) = Extp(k, PopM) works as
follows: since P is free over D, the functor POp— is exact, and so given an in-
jective D-resolution M — X* for M, the complex PopM — PopX?*® is an injective
P-resolution. So we have Ext’,(k, M) = Cotor’y(k, M) = H'(kopX*), which agrees
with Ext%(k, PopM) = Cotorl(k, PopM) = H{(kop(PopX*®)) & Hi(kopX*).

In particular, Extp(k, PopB) can be computed by applying kOp— to the resolution
Pop Cp(k,B) = (PupB — Pop(D®B) —» Pup(D®D®B) — ...). (4.3.2)

By Lemma 4.3.7, e(z) has representative [1|£;]z — [1|¢2]0r € D® D ® B in the D-cobar

resolution for B, and so its representative in (4.3.2) is 1|1|& |z — -1|1|€2|0z.

But we wanted a representative in the cobar complex Cp(k, POpB), so we will write
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down part of an explicit map from the P-cobar resolution for PopB to (4.3.2):

PDDB PDDB

P®(PopB)— " P®B

4 1 ¥
PRP®(PopB)——P2D® B

~+ v

PeP* @ (PopB)— PR D ® B

~+

By basic homological algebra, the map f* exists and is unique, so to find f° and f*
it suffices to find P-comodule maps that make the first two squares commute. In

particular, one can check that the maps

F*(alble) = e(b)ale
f'(albleld) = e(c)albld

make the diagram commute, and z := [1|6;](1|z) + [1]&](&1]0) — [11€7](1|0z) is a cycle
in P® P ® (PopB) such that (kopf)(2) = e(z). a

4.3.2 Multiplicative structure

Proposition 4.3.12. The summand
b Exth(k, M(1)g,, ® ... ® M(1)g,,) C big Extih(k, B)

s generated by the product ey, ... e,,.
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Proof. Since

Y40 b Extd(k, @ M(1)e, )  dis even
bio Exth(k, @ M(1)e,,) = 1
S0 b Extp (k, @ M(1)e,.) dis odd,

it suffices to show that byy Ext) (k, M(1)g, ®...®M(1)e,,) is generated by bl‘od/zen1 C . Eny
when d is even, and by Extp,(k, M(1)e, ®.. @M (1)g,,) is generated by l)l_o("l_l)/zen1 e Eny

when d is odd. We proceed by induction on d. The base case d = 1 is by definition.

Case 1: d is even. The tensor product M(1)e, ®...®@M(1)e, | isisomorphic to M(1)®
F for a free summand F. By Lemma 4.3.7, by Ext},(k, (M(1)e,, ® ...® M(1)e,, ) ®
M(1)g,,) is generated by e(z)-e,, where e(z) is a generator of bjg Extp(k, M(1)e, ®...®

)/2

M(1)g,,  )- By the inductive hypothesis, we can take e(z) = bl_o(d_2 €ny - -€ny_ - S0

then b e(z)en, = big*en, - . - €n, is a generator for byg Ext%(k, M(1)e, ®...@M(1), ).

Case 2: d is odd. In this case, M (1), ®...® M(1)g, | is isomorphic to k@ F for a
free summand F. By Lemma 4.3.9, big Extp(k, (M (1), ®...® M1, )®M()e,,)
is generated by y - e, where y is a generator of by Exty,(k, M(1)e, ®...®@ M(1), ).

—(d—1)/2
o,

By the inductive hypothesis, we can take y = b ny e Cng - O

Recall we defined R = by, Extp(k, k) = E[hio] ® P[bi)].

Corollary 4.3.13. There is an R-module isomorphism byy Ext},(k, M(1)e, ® ... ®

M(1)e,,) = Rien, .. en,} where the generator ey, ... eq, is in degree d.

Corollary 4.3.14. The map R® Eley, e3,...] — by Exth(k, B) is an isomorphism of
R-algebras.
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4.3.3 Antipode

The antipode is the map induced on Ext by the swap map 7 : B é B— B é B.

Recall (see Lemma 3.1.9) there is a shear isomorphism Sy : B ® M — PopM sending
a®@m Y am'@m”. It has an inverse S : a®@m — Y ac(m’) ® m”. In order to be

able to apply Lemma 4.2.15, we now obtain an explicit formula for the induced map

7':=SgoTo S,}l : PopB — PopB. This map is:

B&B—B&B  Lacy)ly" Sy |ze(y')
qu lsg I I
PopB - "',> PopB $|y Z Y- mlc(yl)l|mllc(yl)ﬂ

Using coassociativity we have

Trey) =Y y"  2ey)|z"cy)"

=Y ay'e z"c((y')') Fact 3.0.2(4)
=> w’yw)C(y(z))lw”C(y(l))

= Z z'e(ye)) 2" c(yy) Fact 3.0.2(2)
= Zx'lx"c(y). Fact 3.0.2(3)

Since (K (&), K (1)K (&1)) is a Hopf algebroid, the antipode is multiplicative, so to

determine it, it suffices to show:

Proposition 4.3.15. We have:

(1) e(h) =
(2) c(en) = —€n.

Proof. The antipode is given by the map 7. : Extp(k, PopB) — Extp(k, PopB)
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induced by 7', defined so that 7,([z1]. .. |zs]Jm) = [&]. .. |zs]7'(m). Since h = [&](1|1) €
Extp(k, PopB), we have c(h) = 7/(h) = h. For (2), we need an explicit formula for

the antipode in the dual Steenrod algebra:

Fact 4.3.16 ([Mil58, Lemma 10)). asdfasdf Let Part(n) be the set of ordered partitions
of n, {(a) the length of the partition o, and o;(«) = Z;:l a; be the partial sum. Then

we have:

£(a)
c(én) = }: (_1)13(:1) Hgg:i—l(a)‘
i=1

a€cPart(n)

In particular, if n > 2 then ¢(&,) = —&, + &£2_, (mod T’sz) and c(&8 ) = =&,
(mod ?ZP).

Recall (Notation 4.1.5) that we have defined &, to be the antipode of its usual definition,
so here we have A(&,) =32, & ® f;.’i. (Since the antipode is a ring homomorphism,

the formula in Fact 4.3.16 is the same in either case.)

Combining this antipode formula with the formula for e, in Lemma 4.3.11 we have:

Tu(en) = T[] (1) — [E](LIE-1) + (G (&l&a-1))
= [&](1]e(€n)) = [&](Le(€n-1)) + [Ea)(Erle(€a—1) + L€re(€ar))
= [&)(=1lgn + 1&16-1 + 1]A) — [E](-1]6a-, + 1| B)
+[&](—61l&-) + &IC — 1|&&,_, +1]D)
= —en +[€1](1]A + &|C + 1|D) — [£](1] B)

for A, B, C, and D in Pp= I(3). By Lemma 4.2.15 these terms are zero in bjg-local

cohomology, and c(e,) = 7.(e,) = —e,. O

Corollary 4.3.17. We have 1y, = ng; that is, the Hopf algebroid (K (&1 ), K (&) K (E1))
is, in fact, a Hopf algebra.

91



Proof. One of the axioms of a Hopf algebroid is cong = 1. Since 7 is just the

inclusion of R into by, Ext},(k, B), its image is invariant under the antipode c. O

4.3.4 Comultiplication

To define the comultiplication map by, Extp(k, B ® B) — by Extp(k, B ® B)®2 first

consider the maps
Extp(k, B® B) 2 Extp(k, B® B ® B) <2~ Extp(k, B® B) ® Extp(k, B® B)

where a, is the map on Ext induced by o : B®? — B®3 witha:a®b— a®1®b, and

[ is defined as the map in the factorization

Extp(k, B%2) @ Extp(k, B2) —Kimeth _ pp p#2 g goey __—®48~  py (1 BE3)

Eti(k), B§2) ®Extp(k,B) Eti(k, B§2)
(4.3.3)

It follows from the shear isomorphism Extp(k, B ®M ) =2 Extp(k, M) and the Kiinneth
isomorphism for bjp-local cohomology over D (Lemma 4.3.5) that 8 is an isomorphism

after inverting b;, and we define the comultiplication map on by Extp(k, B ® B ) by
A:=B"1oa,.

In particular, flatness of K (&1)..K (€1) over K (1) implies that (K (&), K(&1)mK(£1))
is a Hopf algebroid using the definitions of comultiplication, antipode, counit, and
unit above. In a Hopf algebroid, the comultiplication is a homomorphism, and so to
determine A explicitly it suffices to determine A(e,). We prove this in Proposition
4.3.19. Lemma 4.3.11 gives an expression for e, in Extp(k, POpB), so we prefer to

calculate A : byy Extp(k, B ® B) — by Extp(k, B ® B)®? after composing with the
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shear isomorphism; that is, there is a commutative diagram

bid Extp(k, B® B) —2 bt Extp(k, B&® B ® B) «2— byl Extp(k, B ® B)®?
(SBFJ_ l«1®SBNSB®B% JSB®SB
bil Extp(k, PopB) —s byl Extp(k, POp(POpB)) «2— byl Extp(k, PopB)®

and we will show that o,(e,) = B/(1® e, + €, ® 1) in byy Extp(k, Pop(PopB)). (We
have chosen to use an extra application of the shear isomorphism on the middle term

in order to apply Corollary 4.2.16.)

Lemma 4.3.18. If a € Extp(k, PopB) has cobar representative [a1]. .. |as](plq), we

have

=Y la1]...las)(pld'lq")

Bleata®l)=lal...|al(>p'p"lg + plall)
n Eti(k, PDD(PDDB)).

So to check that a is primitive after inverting byq, it suffices to check

> lail - lad(pld'l") = [as] .- - las (S PIp"lg + plal1) = 0 (4.3.4)

in bl_ol EXtP(k’, PDD(PEIDB)).

Proof. By definition, o’ is the map induced on Ext by the composition

B®B POpSg

PDDB—i——*B(gB——)B@B@B—-—)PDD(B@B) PDD(PDDB)

On elements, we have:

zly — > we(@)y" — > we@)ly" — > we(y) (") L")
— S @)W 1) 1)) =3 2ly'ly”
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where the last equality is a coassociativity argument similar to the one at the beginning

of Section 4.3.3. That is, we have o/(z ® y) = >z ® ¥’ ® y”’, which implies

(] Ja)(pla)) = [ai] .- |as](plg'lq")-

The map B’ comes from the bottom composition in

A . A A A — —Vu A
Extp(k, B52)82 — Kimeth , poo (kB8 & p82) "0 gk B3

(SB)*®(SB)*J (SB‘X’SB)*l Jv(SBQDB)*

Extp(k, PopB)®2 X Byt o (k, (PupB) ® (PopB)) —=— Extp(k, Pop(PopB)).

We will only give an explicit expression for 5’ on elements of the form 1 ® a and
a ® 1, where 1 denotes the unit 1 ® 1 € Ext%(k, PopB) and a = [ay]...|as](p® q) €
Ext%(k, POpB). In [Mil78], there is a full description of the Kiinneth map K on the level
of cochains, but here all we need are the maps K : C%(k, M)®C3%(k, N) — C%(k, M®N)
and K : C4(k,N)® Cy(k, M) — C3(k, M ® N). The former sends m ® [a1] .. . |as|n —
[a1]...|as](m ® n) and the latter sends [a4]...|as]n @ m — [ai]...|as](n ® m). In
particular, K(1 ® a) = [a4]...|as](1|1|plg) and K(a ® 1) = [a1]...]|as](plg|1|1) in
Extp(k, (PopB) ® (PopB)).

To determine /', it remains to determine the map v : (PopB)®(PopB) — Pop(PopB)
induced by — ® 4 ® —. This is accomplished by calculating the effect of shear isomor-

phisms as follows:

(B®B)® (B & B) ——2®~_, g&s

1o a—1 SpgB
Sp ®Sg I l ®
POpSp

(PDDB)®(PDDB) PDD(B®B)-———-—>PDD(PDDB)
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"

Yo ze(y)ly" © ze(w)|w” ——— 3 ze(y) |y ze(w') lw

] Zxc(y/ (y/l)/zlc(wl)/(wll)/
:L.I,y ® Z|’LU ®(y//)llzllc(wl)ll (wll)ll Z $21|yzﬂ|w.
= Yy e(w "

That is, y(z|y ® z|w) = > z2|y2"|w, which implies

Flleate®l)=nK(l®a+a®l)
=Y.([aa] - - las](1|1]plg + plq|1]1))
= [a1] ... |as]y(1]1|plg + plg|1|1)

= [a1]. .. |as](3_P'Ip"|q + pla|1). O

Proposition 4.3.19. The element e,, is primitive.

Proof. We need to check the criterion (4.3.4) for a = e,. Recall we had the formula

en = [&1](116) — [€11(1I&R 1) + [&1)(&11€3-1) € Cp(P oD B)

from Lemma 4.3.11. It suffices to check that o/ (e,) — fL.(1 ® e, + e, ® 1) is zero in
bro Extp(k, Pop(PopB)). Using Lemma 4.3.18 we have:

d(en) = BL1 @ en + e ®1) = ([6](1AE) — [E1(1AE_) + [6](61AE))
— ([E(1[11&n + 1161 — (€111, + 11€0_1 1)
+al(alE - + &Il + &g _111)
=[] Y 1aled - 1> U + e Y aleler”

itj=n it+j=n—1 itj=n—1
2<i<n—1 1<i<n—2 1<i<n -2

But all the remaining terms in the difference are in Cp(Pop(P0pl(3))) so by Corollary

4.2.16 they are zero in byg-local cohomology. O

Putting together Lemma 4.3.14, Proposition 4.3.15, Corollary 4.3.17, and Proposition
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4.3.19, we have the following:

Theorem 4.3.20. The map R ® Eleq, e3,...] — by Ext}(k, B) is an isomorphism of
Hopf algebras. That is, the Hopf algebroid (K (&1) s, K (&1)«K (1)) is an exterior Hopf

algebra over R on the generators eg, es, ... where e, has internal degree 2(3"™ + 1).

4.4 Convergence

The convergence argument will only rely on the form of the F; page of our spectral
sequence. Recall B = Popk and K (&) = by B. By the definition of the MPASS
(Definition 2.2.2), we have ES* = bl K (€,)w(K(&) ) = byl Extp(k, B ® B*"). By

the change of rings theorem, this is b7y Extp(k, §®s).

Proposition 4.4.1. The big-localized K (&;)-based MPASS
E* = bi} Extp(k, BY") = byl Extp(k, k)
converges.

The proof is a slight modification of [Pal01, Proposition 4.4.1, Proposition 4.2.6].

We use the following grading convention: z € EY** is an element in Ext’(k, B® B"")

with internal degree u. Note byg € E?’z‘lz.
Lemma 4.4.2. Let M be a bounded-below graded D-module and suppose up; = min{u(zx) :
z € M}. If x € Ext}(k, M) is a nonzero element of degree (s,t,u) and x # 0, then

u > up + 68 — 2.

Proof. First we check the cases when M =k, M(1), or D.
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Case 1: M = k. Let y be the generator of M, in degree (t,u) = (0,u(y)). We have
Ext}, (k, k{y}) = E[hio] ® Plbio] ® k{y} where hyo is in degree (t,u) = (1, |&]) = (1,4)
and byg is in degree (t,u) = (2,12). The minimum degree element is y, so up = u(y).
Every element has the form hyobjyy or by for n > 0, and both of these satisfy
u > up + 6t — 2.

Case 2: M = M(1). Write M = k{y, Oy}, where Oy is in degree (0,u(dy)) and 9y is in
degree (0,u(0y) +4). By Lemma 4.3.7(1), Ext},(k, M) = F,[b1o] ® k{Jy, e(y)} where
e(y) is in degree (t,u) = (1,u(dy) + 8). The minimum degree element is dy, and all

the elements satisfy u > uy; + 6¢.

Case 3: M = D. Here, Ext},(k, M) 2 k has degree (¢,u) = (0, uar) and Ext’,(k, M) = 0
for t > 0.

In general, a homogeneous element x € M is a sum > z; for z; € M; where M; is
a summand of the above type, and by definition, uy;, > up. So u(z) = u(x;) >

Upg, 4+ 6t — 2 > upy + 6t — 2. O

Proposition 4.4.3. There is a vanishing plane in the E; page of our spectral sequence:

EPM =0 ifu < 125 + 6t — 2.
Proof. Recall EJ'%* = Extl(k, PDDFX)S) = Extp(k, §®s). The element in B of smallest
internal degree is €3, which has u = 12. Therefore z € B®® has u > 12s. By Lemma

4.4.2, if z € EP"™ has degree (s,t,u), then u > 125 + 6t — 2. O

Corollary 4.4.4. The differential d, : E¥%* — EStH=+% 4s zero if r > 2(u — 125 —

6t — 4).

Proof. Given x € EStU, d.(z) € ES'Y = Estnt=r+1u will be zero because of the
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vanishing plane if 12s’ + 6t' — 2 —u' > 0. But
128 +6t' —2—u' =12(s+7r)+6(t —r+1)—2—u= (125 + 6t + 4 — u) + 67
which is > 0 for r as indicated. , O

Corollary 4.4.5. There is a vanishing line in Extp(k,k): if x € Exts;’u(k:, k) and
u—6t'+2 <0 then x = 0.

Proof. Permanent cycles in E¥*" converge to elements in Ext}"(k, k). Any such z
would then be represented by a permanent cycle in E{** with u — 6(s +1) +2 < 0 <
6s (since Adams filtrations are non-negative), which falls in the vanishing region of

Proposition 4.4.3. O

Note that b1 € Ext?;u(k, k) acts parallel to this vanishing line; this is an illustration of

the Stable(P) version of Theorem 1.1.3.

Proof of Proposition 4.4.1. The non-localized spectral sequence converges by Proposi-
tion 2.2.5. There are two things that can go wrong with convergence of a localized
spectral sequence: (1) a bjo-tower of permanent cycles is not in b;) Eo, because the
tower is split into infinitely many pieces in the spectral sequence, connected by hidden
multiplications; (2) a bjg-periodic tower supports a differential to an infinite sequence
of torsion elements, and hence this differential is not recorded in b5 E,. (The reverse of
(2), where a sequence of torsion elements supports a differential that hits a byp-tower,

cannot happen: if d.(z) = y and b},z = 0 in E,, then 0 = d,(b],z) = b7d,(z) = byy.)
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Figure 4-1: Illustration of (1): this represents a bjp-tower in m, X

For (1), suppose = has degree (s, t,,u,). If there were no multiplicative extensions,
then b}z would have degree (s;,t, + 2i, u, + 12¢). But multiplicative extensions cause
it to have the expected internal degree u and stem s + ¢, but higher s. That is, b%,z
has degree (s, + n;,t, + 2i — n;, u, + 124) for some n; > 0, and because this scenario
involves the existence of infinitely many multiplicative extensions, the sequence (n;); is
increasing and unbounded above. This causes us to run afoul of the vanishing plane

(Proposition 4.4.3) for sufficiently large i:

125 + 6t — 2 —u = 12(s; + n;) + 6(t, + 20 — n;) — 2 — (uy + 124)

= 128, + 6t, — 2 — u, + 61

which is > 0 for 7 > 0.

For (2), the scenario is, more precisely, as follows: we have a bjo-periodic element
x € Extp(k, k), and a sequence of differentials d,,(b%yz) = y; # 0, where every y; is
bio-torsion. The sequence (r;); must be increasing and bounded above: if bigy; = 0
then d,, (bi5z) = bigy; = 0, and so if b5z is to support a differential d,, , we must have
Tn; > 71;. Note that the condition on r in Corollary 4.4.4 is the same for all b%yz. So

some of the r;’s will be greater than this bound, contradicting the assumption that

dTi(bliOx) # 0. N
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4.5 Identifying the bp-periodic region

In this section, we determine a line of slope oz above which Ext}(k, k) is byo-periodic.
Our main input is the following theorem, which Palmieri states for the Steenrod dual
A instead of P, as we do below. The only difference is that, over A, one must also take
into account the objects K(7,), which do not come into play over P. (This reasoning

follows from the discussion in [Pal01, §2.3.2].)

Recall in Section 2.3.2, we defined s(¢7") = 1p|el"| = p**!(p! — 1) and discussed how

this related to vanishing lines on Adams FE; pages.

Theorem 4.5.1 ([Pal0l, Theorem 2.3.1]). Suppose X is a spectrum in Stable(P)

satisfying the following conditions:

(1) There exists an integer ig such that m; . X = 0 if i < ip,
(2) There exists an integer jo such that m;; X =0 if j — i < jo,

(3) There exists an integer i; such that the homology of the cochain complex X
vanishes in homological degree > i,. (In particular, this is satisfied if X is the

resolution of a bounded-below comodule.)

Suppose d = s(€0°) (with sy < to) has the property that K(& ).(X) = 0 for all (s,1)
with s < t and s(€7°) < d. Then 1, X has a vanishing line of slope d: for some c,

7]'1'ij =0 when j < di — c.

As elsewhere in this thesis, we abuse notation by identifying a P-comodule with its
image in Stable(P), and here we take that one step further by writing k/bjo for the
cofiber in Stable(P) of by € Ext%(k, k), thought of as a map k — k in Stable(P). We

will make use of the cofiber sequence

k28 k[2] — k/bo[2) (4.5.1)
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and its induced long exact sequence

- — Ext3(k, k) — Ext3 2 (k, k) — ExtS 22 (k k/byo) — ExtS M (k k) — ...

Ext 3"t (k k[2))

(4.5.2)
(Here we use Exty (k, k/bo) to denote Homggapie(p)(k, k/b10).)

Claim 4.5.2. The object k/byg satisfies the conditions of Theorem 4.5.1 for d = 24.

Proof. First we check the three homotopy boundedness conditions.

(1) k satisfies the condition for iy = 0, so (4.5.2) shows that k/b;o satisfies the condition

for ig = 0.

(2) k satisfies this condition for jo = 0, so by (4.5.2), k/byo satisfies the condition for

Jo=20.
(3) k/byg is (the resolution of) the 2-cell complex k %

Now we check the main condition in Theorem 4.5.1 with d = 24 = s(&,). Since & is the
first €7 with s < t and &, is the second, we just have to check K (£;).s(k/b1o) = 0. This

is essentially by construction: consider the long exact sequence of (4.5.1) in K (€7),.:

Since (POpig, k) = Bie = Elhio] ® Plbig], the non-connective version K(§) =
big (P Opjey k) has K (&) = Elhig)® P[bi), i.e. multiplication by byg is an isémorphism
K(&1)sx — K(&)s+2,4412 for all s, and so the LES shows K (&1).x(k/b1o) = 0. O

Thus, we can use Palmieri’s theorem to conclude that there exists some ¢ such that

7st(k/b1o) = 0 when ¢t < 24s — c¢. Going back to (4.5.2), we see that multiplication by
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byo is an isomorphism in this range; more specifically, from the exact sequence

'Ext;“’”u(k, k/bio) — Ext3'(k, k) — Ext3 22 (k, k) — IExtﬁ,”’t“Z(k, k/bio)
0 if t+12<24(s+1)—c 0 if t+12<24(s+2)—c

we see that Ext3(k, k) 23 Ext3r>"*12(k, k) is an isomorphism if ¢ < 24s 4+ 12 — ¢, or
equivalently ==(t —s) + 5;(c —12) <s. Ifz € Ext%'(k, k) is nonzero with s, ¢ satisfying

this condition, then so is b5,z for every k. Therefore:

Proposition 4.5.3. The localization map Ext3'(k, k) — by Ext3'(k, k) is an isomor-

phism in the range s > o (t — s) + ¢ for some constant c'.

In [Pal01, 2.3.5(c)], Palmieri gives an explicit expression for the constant ¢, which allows

us to calculate the y-intercept in the above line to be ¢’ ~ 6.39.
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Chapter 5

Computation of dj

Notation 5.0.1. As in all of the computational parts of this thesis, we are working at

p = 3. Recall we have set
e D =k[&]/&,
e K(&) = by B where B = Popk, and
® R= K(&)w = E[hio] ® P[big].
Finally, recall from 4.1.5 that we have established the convention that the symbol &,

means what is usually called € : that is, we have

AG) =Y o

i+j=n

This makes it easier to talk about B = POpk, which can be written k[¢3,£5,&3,. . .]

with the above unconventional notation.
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5.1 Overview of the computation

In the previous chapter, we've shown that the K (£;)-based MPASS computing bj; Extp(k, k)

has the form
E3* = Elhio] ® P[bi), wo, ws,...] = by Exth(k, k)

where s(w,) = 1, t(w,) = 1, and u(w,) = 2(3" +1). (Recall s is Adams filtration,
t is internal homological degree, and w is internal topological degree, so Ef’t’" =

Exti(k, B® B™).)

Proposition 5.1.1. If r > 2 and r # 4 (mod 9) or r # 8 (mod 9), then d, = 0.
Furthermore, if we let Wt = P[bE wq,ws,...] and W~ = WH{hyo}, then

d4+gn(W+) C W_ d4+gn(W_) = 0
d8+gn(W+) = 0 d8+gn(W_) C W+.

Proof. This is a degree argument, so we simplify to considering d,(x) where z is a

monormial.

Case 1: * = wg, ... wy, and d.(z) = bw,, . .. Wp,,, - 1 claim this is not possible
because t(d,(z)) has the wrong parity. Recall that t(w,) = 1, t(bio) = 2, and t(d,(z)) =
1 —r+t(z). But here we have t(d,(z))+r—t(z) = 2N +d+7r)+r—d=2N+2r #1
(mod 2).

Case 2: x = wg, ... w, and d.(x) = bf[’)hlowm...wnd”. We will measure degree
using v’ := u — 6(s + t); this has the property that u'(bjo) = 0, u'(hio) = —2, and
v/ (wi) = 2(3% — 5) for all k. Furthermore «'(d,(z)) = u/(x) — 6. Using the fact that
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U (wy) = 2(3" — 5), ¥/ (hio) = —2, and u/(byo) = 0, this equality becomes

d+r d
> 23M-5)—2=) 23 —5)-6
— p—

d+r

23"1 23’% =51 —

Since n;, k; > 2 for all ¢, j, taking this mod 9 gives 0 = 5r—2 (mod 9),sor =4 (mod 9).

Case 3: © = hjowy, ... wx, and d.(z) = bNwp, . . Wn,,,. Asin Case 2, v/(d,(z)) =

u/(x) — 6 becomes:

d+r d
Zz(?ﬁf —5)=) 2(3% —5)—2-6
< =

d+r

RES RIS

and taking this mod 9 yields » = 8 (mod 9).

Case 4: x = hyjowy, ... wy, and d.(x) = b hiowy, . . . Wn,,,- This can’t happen for the

same reason as Case 1. O

So the next possibly nontrivial differential is dy.

Proposition 5.1.2. We have the following:

dy(hp) =0 forr > 2

0 forr>2

)
dy (w2)
)
dy(wy) = £bjg hiowawsy.

Proof. The first two facts can be seen directly in the cobar complex Cp(k, k), using the
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cobar representatives hig = (1] and wy = [£1|€] — [€2|€3], which are permanent cycles.

The differentials on w3 and wy were deduced from the chart of Exth(k, k) up to the
700 stem that appears as Figure 4-2 (generated by the software [Nas|). In Proposition
4.5.3, we showed that Ext}(k, k) agreed with by Ext}(k, k) in the range of dimensions
depicted in the chart. Thus we know which classes in Ey = R ® Plws, ws, .. .] in this
range of dimensions die in the spectral sequence, and, using multiplicativity of the

spectral sequence, this forces the differentials above. O

The goal of this chapter is to prove the following:

Theorem 5.1.3. Forn > 5, there is a differential in the MPASS

d4(wn) - ib;04h10wgw3_l.

Since the spectral sequence is multiplicative and dy4(h1o) = 0, this determines dj.

The main idea is to use comparison with the MPASS computing b7y Extp_(k, k), where

Pn = k[fl, €2a§n—2, fn—lvﬁn]/(f?,ﬁg,ﬁizz, 79;,_.11 613;)

(The idea is that this is the smallest algebra in which the desired differential can be
seen.) This is a quotient Hopf algebra of P by the classification of such (see [Pal01,
Theorem 2.1.1.(a)]). Here’s a picture:

n—2
& S S
SRS En—2€n—1| &n

Let B = Popk and B, = P,opk. There is a by, Bp-based MPASS computing
bio Extp, (k, k), which we will denote E,(k, B,,). Let E,(k, B) denote the b7y B-based
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MPASS for bj; Extp(k, k) discussed above. Then the diagram
— P—D

[
B,—P,—— D

shows there is a map of spectral sequences E,.(k, B) — E,(k, By).

Lemma 5.1.4. It suffices to show that dy(w,) # 0 in E4(k, B).

Proof. Since s(ds(wy,)) =4+ s(w,) = 5, we know that d4(w,) is a linear combination

of terms of the form b higwy, ... wy,. Using the grading u' := u — 6(s + t), we have

u'(wn) = Ul(b%hlo’wkl PN wk5) +6

5
23" —5) = -2+ » 2(3% —5)+6
=1

5
3"+ 18 =) 3M
i=1

Note that k; > 2. Looking at this mod 9, we see that two of the k;’s have to be
= 2, say k; and ky. Then we have 3" = 3% 4 3% 4 3%  The only possibility is
n—1=ks=ky =ks. Soif dy(w,) # 0 then dy(w,) = bl)hiowiw3_,, and checking

internal degrees shows N = —4. O

When we discuss E,.(k, B,) it will be easy to see that there is a class w, € Ey(k, B),)

which is the target of w, € Ey(k, B) along the quotient map.

Ey(k,B) —% E,(k, B)

"

Ey(k,B,) —— E4(k, B,,)

Lemma 5.1.4 says that it suffices to show dy4(wy,) # 0 in E4(k, By,), but it turns out to
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be the same amount of work to show the following more attractive statement.

Goal 5.1.5. There is a differential dy(w,) = +byyhowiws_; in E.(k, By,).

Using the same argument as Proposition 5.1.1, we know that dy = 0 = d3 in E,(k, B,),

so hiowiw?_; is not the target of an earlier differential.

We will use the following strategy to show the desired differential in E,(k, B,):

(1) Calculate Ey(k, By) in a region and identify classes ws, wp—1,w, that are the

targets of their namesake classes under the quotient map Es(k, B) — Ex(k, By).

(2) Show that bjy Ext}, (k, k) is zero in the stem of bjghiowiwS_;. This implies that

biothiowiw? _, either supports a differential or is the target of a differential.

(3) Show that bjghiow?w?_, is a permanent cycle in the MPASS (so it must be the
target of a differential) and show that, for degree reasons, wy, is the only element

that can hit it. By looking at filtrations, we see this differential is a d4.

In order to show (2), we introduce another spectral sequence for calculating byy Ext}, (k, k),
the Ivanovskii spectral sequence (ISS). This is the (bjp-localized version of the) dual of
the May spectral sequence; that is, it is the spectral sequence obtained by filtering the

cobar complex on P, by powers of the augmentation ideal.

In Section 5.2 we will introduce notation and record facts about gradings. In Section
5.3 we will compute E(k, B,,) and the relevant part of Ey(k, By,), and show (1) and (3)
assuming (2). In Section 5.4 we will calculate the relevant part of the ISS and show (2).

Convergence of the localized ISS is discussed in Section 5.5.
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5.2 Notation and gradings

Since most of the work in this chapter consists of degree-counting arguments, we will
now record how differentials and convergence affect the various gradings at play. We
also introduce a change of coordinates on degrees that simplifies degree arguments by

putting byg in degree zero.

MPASS gradings

As mentioned above, when working with MPASS’s we use the grading (s, t, u) where s is
MPASS filtration, ¢ is internal homological degree, and w is internal topological degree,
such that E* = Ext}*(k, B® B""). This has the property that the differential has
the form

. s,t,u s+rt—r+1lu
d,: B> — E™"

and a permanent cycle in ES*“ converges to an element in by Ext3 “*(k, k).

Instead of working with the grading (s,t,u), we perform a change of coordinates by
setting
u i=u—6(s+t)

and track (u/, s) instead. This is more convenient because u/(b1g) = 0 = s(by), so all
classes in a bjp-tower have the same (u/, s)-degree. The differential under the change of

coordinates has the form

. s u’ —6,s47r
d,: EY° — E™

and a permanent cycle in E** converges to an element in by Ext%’(k, k) (where b is

internal topological degree and a is homological degree) with b — 6a = u'.

Definition 5.2.1. Let stem in by} Ext%’(k, k) denote the quantity b — 6a. Then a

. ! .
permanent cycle in E¥-* converges to an element in the u' stem.
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Finally, define

v = u — 6t.

This is only useful for looking at the E; page of the MPASS, as d; fixes u”.

ISS gradings

The Ivanouvskii spectral sequence computing by, Extp, (k, k) is the spectral sequence
obtained by filtering the cobar complex on P, by powers of the augmentation ideal:
for example, [£:€2)€3_;] has filtration 2 +3 = 5. Let E!S° denote the E, page of the

Ivanovskii spectral sequence.

We use slightly different grading conventions: classes have degree (s, t,u) where s is
ISS filtration, t denotes degree in the cobar complex, and u denotes internal topological

degree (as in the MPASS). The differential has the form
dISS . Es,t,u — Es+r,t+1,u
A ° T T
and a permanent cycle in E>“* converges to an element in by Ext%*(k, k).
We will use the change of coordinates
u i=u—6t

which is designed so that «'(b1o) = 0. (This has a different formula from the MPASS
change of coordinates simply because (s, t,u) correspond to different parameters here.)

The differential has the form
IS5 . BYs — EY Ot

and a permanent cycle in E** converges to an element in b7, Ext‘};b(k, k) with v’ = b—6a,
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i.e. an element in the 4 stem.

Note that «' has different formulas for the MPASS and ISS, but in both spectral sequences
u’ corresponds to stem, with the definition given above. Now we will introduce another

grading on P, (for n > 5) preserved by the comultiplication.

Extra grading on P,

Let P, = k[£1,62,&2_5,&n—1,&]/(£3,63,6%7,,€0_1,€3). Note that every monomial in P,

can be written £,z where e € {0,1,2} and z € P,.

Lemma 5.2.2. Forn > 5, P, is a sub-coalgebra of P,.

Proof. This is clear from the comultiplication formulas

Ally) =106 +6®E_+6H®E (5.2.1)
A1) =1®E 1 +6RE _,+61®1

A( 731—2) =1® 62_2 + 52—2 ®1
~ and the assumption n > 5 guarantees that £1,&; # &,-o. ]

Proposition 5.2.3. Let n > 3. There is an extra grading o on P, that respects the

comultiplication, defined by the property that it is multiplicative on P,, and

Proof. First we check that « respects the comultiplication when restricted to P.. Since
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it is defined to be multiplicative on P/, it suffices to check that a(y) = a(Ay) for y as
each of the multiplicative generators. This is clear from the comultiplication formulas

(5.2.1).
Now suppose y = §,_oz where z € P.. We have
Albn—2z) = (1® &2+ &2 ®1)Az = Z (¢ @ 2"€ng+ T'&no @ ")

and the a degrees of both sides agree since P, is a coalgebra. Similarly, if y = £2_,z

for x € P, we have

a(Ay) = a((1®E_, + 2652 ® &ny + £, ® 1)(AZ))
= of Z r® E,zl_éx" + 28p2%' ® En_a” + & _2' @ 2") = a(Az). O

5.3 The E5; page of the bl_oan-based MPASS

The goal of this section is to prove the following:

Proposition 5.3.1. If bjg hiowiw?_, is the target of a differential in the by, By,-based

n—1

MPASS calculating biy Ext}, (k, k), that differential must be

d4 (wn) = ﬂ:bl_04h10wng_1 .

The main task is to calculate enough of Fy(k, B,) to do a degree-counting argument

(Proposition 5.3.9), where

Bn = Pn DDk = k[é-i§2a§n—2>§n—1a§n]/(§?a§§a 312’52—1162)'

As in the calculation of the FE, page of the by B-based MPASS (Section 4.3), the
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Kiinneth formula for the functor by) Ext},(k, —) (Lemma 4.3.5) guarantees flatness of

(b1 B« (b1 Bp) over (byy Bp)ss. So we can use the formula

Ey = EXtE:bl_Uan)ub]_U]Bn((bl_oan)**a (bl_OlBﬂ)**) (5.3.1)

where (bjg Bn)ss = big Exty, (K, Bn) = R and (big Bn)w(bip Bn) = big Extp (R, BS?) =
bio Exty(k, B,) by the change of rings theorem. We will simultaneously determine the

vector space structure and the comultiplication on by Extp(k, By).

Remark 5.3.2. By the definition of the MPASS (Definition 2.2.2), the change of rings

theorem, and the Kiinneth formula mentioned above, we have
ES*(k, B,) = byl Exti(k, B, ® Bo') = big Exty(k, Bo) 2 bjg Extp(k, B,)®*
and so the coproduct on by Ext} (k, B,) coincides with d, on E,™*.

We can write B, as a tensor product

By, = k[&2,€31/(£3, ) ® kl€n2]/€_s ® kl€n—1, &0 o)/ (-1, Enl2) ® kln, En1]/ (5, 6ns)

illustrated in Figure 5-1.

a2
= € af6n s

&2 gn—an—l fn

Figure 5-1: Illustration of the decomposition of B, into tensor factors

Since we have a Kiinneth formula for b5 Ext},(k, —), it suffices to apply this functor to

each of the four factors of B,, above.
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Factor 1: k[é, &7]/(&5.€))
We can explicitly see that this breaks up as a D-comodule as

Hlea, €11/(€5,€1) = b{1} @ k{6, 61} @ k{85, 6160, 1) & MENE, 160} @ K{€9E3)

=k ~M(1) =D =M(1) =k

(5.3.2)
(Recall M (1) was defined to be the D-comodule k[£]/&7, and every D-comodule is
a sum of copies of k, M(1), and D.) As a module over R := E[hy] ® P[biy], this
is generated by a class e; = e(&;) in by Extp(k, k{&, £3}), a class foo = e(€3€2) in
bl Extl (k, k{€3€2,£5¢,}), and a class ¢y in by Ext)(k, k{£8¢2}). As by Exty(k, D) =

0, we may ignore the free summands.

Using Lemma 4.3.7, we can give explicit representatives for the classes in byy Ext},(k, k[&2, £3]/(€3, €7))

coming from the decomposition (5.3.2):

e = e(&) = [61]6 — (616} € Bxt(k, k[, £71/(63,€7))
fao 1= e(£}63) = [&1]6€] + €167

662
ca = &85
satisfying relations e2 = 0 = f2) and bjgca = €2 fa0.

Lemma 5.3.3. The classes e, and fao are primitive in the coalgebra byy Ext}(k, By).

Proof. By the results of Section 3.3, we can interpret the MASS as a filtration spectral
sequence on the cobar complex Cp, (k, k), where [a;]...]|as] is in filtration n if > n a;’s
- are in B, P,. The elements ey and fy correspond to elements in F*/F2C%, (k, k) with
the same formulas, and by Remark 5.3.2 it suffices to show that d;(e2) = 0 = d1(fa0)
in the filtration spectral sequence. One checks explicitly that deobar(€2) = 0, so it is a

permanent cycle. This is not true of fa, but we can write down explicit correcting
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terms in higher filtration:

foo = fao = [E2]€3] + [63162] — [E162|&2E3] + [G1E31€3] + [E3621€5) + [€216260] + [&1lE3€3)

and then check that degpar(fao) = [€3]€6]€3] + [€3|€3|¢8]. This has filtration 3, and so
di(fa0) = 0. O

So we've proved:

Proposition 5.3.4. There is an isomorphism of Hopf algebras

bio Extp(k, k[€:,£51/(£3,€7)) = R® Eles, fa
where es and foq are primitive.

We can summarize the degree information as follows:

element s|t|u |u"=u—6t]a

1 00 0 0 0

hio 0(1] 4 =2 0

bio 02|12 0 0

ea = [61)€2 — [€11€} 111]20 14 0
fao = [&1]€9€5 + [€7]€362 | 1| 1 | 48 42 0
c2 = 163 10|56 56 0

Factor 2: k[, 2|/& ,

This decomposes as k{1} & k{&,_2} ® k{£2_,} so we have three R-module generators:
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element | s | ¢ o W=u—6t |«
1 010 0 0 0
£as | 10| 23~2-1) | 23*2-1) |0
2 11]0]2.23"2—1)|2-23"2—-1) | 0

As a Hopf algebra we have

bio Extp(k, k[6n—2]/£)_5) = R® D[én_s].

Factor 3: k[&,1,&3 ,)/(&_,,€27,)

Similarly to (5.3.2), for the third factor of B,, we have a D-comodule decomposition

k[éﬂ*hfﬁ—ﬂ/(gn 1 )Nk{1}®k{£n 1, 72}1@:%{6121 15n— 21§n 15 2}@k{€n 1 }@F

=k =M(1) ~M(1) =k

where F' is a free D-comodule, which gives the following R-module generators of

blO EXtD(k k[&n 1 ]/(‘53 13£ )) :

element s|t U u" =u— 6t o

1 00 0 0 0

en—1 1= [&]fn_ - [€21€3_, 11 2(3"1 +1) 2(371 — 2) 3
= [€1)én_1621 2 + [€F]én—18225 | 1] 1 2(3n+1 — 21) 2(3n+! — 24) 27
Zp-1 = €n_1€n_2 10| 2(3™ +31 —26) | 2(3** +3*~1 —26) | 30

Lemma 5.3.5. e, is a permanent cycle in E.(k, B,). In particular, di(e,—1) = 0.

Proof. Use the filtration spectral sequence interpretation of the MPASS described in
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the proof of Lemma 5.3.3, where ¢,,_, has representative

[€11€n—1] — [€F160 5]

in Cp,(k,k). It is clear that this is a cycle in Cp, (k, k), hence a permanent cycle in the

spectral sequence. O

Pactor 4: bl&,.& /(&£ )

n?
There is a D-comodule decomposition

kl€n: €n-1/ (0, €n1)
= K1} © k{60, 61} O HEL 160 1) OHELLEL 160} D HEL1ED)

=k =~M(1) =D =~M(1) e

The non-free summands lead to R-module generators of by Ext}, (k, k[€,,€3_,]/(€3,€2_)))

which have representatives (in order):

element s|t u u’ =u— 6t o

1 01]0 0 0 0

en = [&1]6n — [€3]60 1 1)1 2(3" +1) 2(3" - 2) 9
fao = [60€3_,€2 — [EHE3 6 [ 1] 1] 2031-3) | 23" —6) |27
By S=fD P 1/0[2(3" 43" —8)| 23" +3"—8) |36

Corollary 5.3.6. There is an isomorphism of R-modules

big Extp(k, By) = R{1, ey, fao,c2} @ R{1, 12,62 _,}

® R{l: €n—1,Yn-1, zn—l} & R{l, €n, fn,[]y cn.}-

We have already computed part of the Hopf algebra structure on by, Extp(k, B,) =
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E}*(k, B,) but do not need to finish this; we just need one more piece of information.

Lemma 5.3.7. e, is primitive in byy Extp(k, B,)

Proof. Write ¥(e,) = 3, c[zi|yi], where ¢ € R and z;,y; € by, Extp(k, B,). As the
cobar differential preserves the grading a (see Proposition 5.2.3) and ¥ can be given
in terms of the cobar differential (see e.g. Remark 5.3.2), ¢ also preserves a. Since
ale,) =9, in order for dy(e,) to have a = 9, we need a(z;) + a(y;) = 9. Looking at «
degrees in the above charts of R-module generators in bl_o1 Extp(k, B,), the only options
are for e, | z; or y;, or for e2_, | x; or y;. But €2_; = 0 by Lemma 4.3.7, and so the

only option is for e, to be primitive. O

Combining Lemmas 5.3.3, 5.3.5, and 5.3.7 we have:

Corollary 5.3.8. In b, Extp(k, B,), the elements ea, fa, en_1, and e, are exterior

generators in the Hopf algebra sense—they are primitive and square to zero.

3

Now we have computed enough of E,(k, B,) to show Proposition 5.3.1. If byghjow2w3_,

(which is in degree & = 9, v/ = 2(3"—8), and u = 2(3"+1)) is the target of a differential,
it must be a d, for r < 4 (since the target is in filtration 5), and the source of that
differential must have degree @ = 9, v’ = 2(3" — 5), and u = 2(3" + 1). Thus it suffices

to prove Proposition 5.3.9.

Proposition 5.3.9. The only element in Es(k, B,) with s < 4, a =9, v’ = 2(3" - 5),
and u=2(3"+ 1) is Tw,.

Proof. There is a map R ® Eles, fa0, €n_1,€n] ® D[€n_s] — bjg Extp(k, B,) that is an

isomorphism on degree u” < 2(3"*! — 24) and induces a map on cobar complexes

Chobles. fen-ren@Dlen—z) (B B) = Cyor gy 1 5,y (1 B).
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I claim the map of cobar complexes is an isomorphism in degree u” < —2 4 2(3**! —
24) + 14(s — 1). One can see this by noting that a minimal-degree element in
C:fol ExtD(kan)(R, R) not in the image is hig[yn_1les]. .. |ea], in degree —2 + 2(3"+ —
24) + 14(s — 1). (We use u” degree here because it is additive with respect to multi-
plication within by Extp(k, B,) = E}"*, whereas v’ degree is additive with respect to

multiplication of cohomology classes in H*E; = Ej.) Note that the desired degrees
u”’ =u' 4 6s = 2(3" — 5) + 6s fall into the region described here for every s.

Now we look at the map induced on Ext in this region. Since d, differentials increase
u” degree by 6(r — 1) (they preserve v and decrease t by r — 1) and increase s by r,
differentials originating in the region u” < —2 + 2(3"*! — 24) + 14(s — 1) stay in the
region, but there might be differentials originating outside the region hitting elements
in the region. Instead of showing that the map on Ext is an isomorphism in a smaller
region, note that this is already enough for our purposes: we want to check that

Exty—1 byt (k, B,) (£ B) is zero in particular dimensions, and it suffices to check that in

EXtR®E[€2,f207€n— 1,n]®D[€p ~2] (R’ R) .

We have
EXtR@E[ez,fzo,en_l,en]®D[§n72] (R7 R) = R ® P[wZa b201 bn—2,0, Wn—1, wn] ® E[hn-—Q,O]

where w; = [e;], bao = [f20], and Extpie, ,(R, R) = R® Elhn_20] ® P[by_2,]. Degree

information is as follows:
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element | s | t u o o'
Wo 1)1 20 8 0
bao 111 48 36 0

hao |1]0]2(3"2-1)|2(32~1)]|0
bnoso | 210|231 =3)|2(38"1-3)|0
Wp—1 | 1]1]2@"1+1)[231-5)1(3
w, |1|1] 2(8*+1) | 2(3"—=5) |9
hio 0|1 4 -2 0
b1o 012 12 0 0

Of course, w, has the right degree. Any other monomial with the right degree must be
in R® Plwz, bag, bp—20, Wn—1] ® E[hn_20], and it is clear from looking at o degree above
that it must have the form w3_,z (where z € R ® Plwa, byg, bp_20] ® E[hn_20]). Since
u'(wi_)) = 2(3" — 15), we need u/(z) = 20, which is not possible using w, in degree
8, by in degree 36, iy in degree —2 (where h3, = 0), and h,_20 and b,_»0 in higher

degree.

So the element must be +bYw,,, and by checking u degree we see that the power N has

to be zero. O

5.4 Degree-counting in the ISS

Recall that byghpowiw?_, has o = 9 and v’ = 2(3" — 8); if it were a permanent cycle,
it would converge to an element of by Ext%} (k, k) with stem b — 6a = 2(3" — 8) (see

Definition 5.2.1) and @ = 9. The goal of this section is to prove:

Proposition 5.4.1. The sub-vector space of byy Ext}, (k, k) consisting of elements in

stem 2(3" — 8) and a =9 is zero.
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We will prove this using a (localized) Ivanovskii spectral sequence (ISS) computing
bio Extp (k, k). In our case, the ISS is constructed by filtering the cobar complex for
P, by powers of the augmentation ideal. For example, [€,] is in filtration 1, and in the

Milnor diagonal

dcobar([gn]) = [éllgfz—l] + [§2|§9—2],

[€11€3_,] is in filtration 4 (since [£;] is in filtration 1 and [£3_,] is in filtration 3), and
[€2]€2_,] is in filtration 10. In general, all of the multiplicative generators &1, &, £n_g, En1,&n
are primitive in the associated graded, i.e. they are in ker dy. To form the b,¢-localized
spectral sequence, take the colimit of multiplication by b;9. In Section 5.5 we show that

the (localized and un-localized) ISS converges in our case.

SO we ha've EO = D[gla ‘Eio)) 52) gn—?a 63-—2& 6791,—27 gn*la 62—1) é-n] and

185 : +1
E1°7 = Elhyi, hao, hn_sj, hn_1, hno) ic01y ® Plbly, bi1, b2o, bp—2,5, bn—1,is bno) €01 -
7€10,1,2) 1€40,1,2)

Here h;; = [€¥'] has filtration 3/ and bi; has filtration 3’*'. To help with the degree-
counting argument in Proposition 5.4.1, here is a table of the degrees of the multiplicative

generators of the E| page.

element | s |t u uv=u—6t | a
hio 1|1 4 -2 0
b1o 312 12 0 0
h11 3|1 12 6 0
b1y 9 |2 36 24 0
hag 11 16 10 0
bag 3|2 48 36 0

hnoao | 1 |1]2B@™2-1) | 23" 2-4) | 0
baao | 312|203 1—3) | 231 -9) | 0
hnoa1 | 3| 1] 203™1=3) | 23" —6) | 3
boon | 9 |2] 23°—9) | 2(3"—15) | 9




Pmos | 9 | 1| 2(3"=9) | 2(3"—12) | 9
boosa | 27| 2| 2(3M —27) | 2(3"+1 — 33) | 27
hmo1o | 1 |1]2@3"1—=1) | 2(3~1—4) | 3
booto | 32| 2B"=3) | 23*-9) |9
hno11 | 3 [1] 2(3"=3) | 2(3"—6) |9
a1 | 9 |2 2(3m1—9) |2(3n —15) | 27

hmo | 11| 23"=1) | 23"=4) | 9

buo | 32| 231 =3) | 23"t —9) | 27

Proof of Proposition 5.4.1. The argument has two parts:

(1) show that (up to powers of biy) the only generators in EIY in degree (v =

2(3” - 8), = 9) are h10h20hn—2,2 and h10h11h20bn—2,1;
(2) show that those elements are targets of higher differentials in the byo-local ISS.

From looking a degrees we see that no monomial in E; in degree (v' = 2(3" —8),a = 9)
can be divisible by b,_22, b,_11, Or b,p, and moreover by looking at u’ degree we see
it is not possible for b,_10, hn_11, Or h,o to be a factor of such a monomial. The
only monomial of the right degree divisible by h,_ is bX)hioh20hn—22. Any remaining

elements of the right degree are in
Elh1o, h11, h2o, Bn—2,0, hn—2,1, hn—-1,0] ® P[big, bi1, b20, bn—2,0, bu—2,1]-

Of these generators, only hn_3,1, hn—1,0, and by_2; have @ > 0. Since h2_,, = 0= hZ_,,,
a monomial with a = 9 needs to be divisible by b,_5;. If W/ (b, z) = 2(3" — 8)
then u/(z) = 14, and the only possibility is x = bl,hi1gh11hg. (Here we are using the
assumption n > 5 to determine that u'(h,_z0) = 2(3""2 — 4) > 46, and the elements

following it in the chart have greater degree).
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This concludes part (1) of the argument; for (2) it suffices to show

do(h10h20bn—1,0) = h1ohaoh11bpn—21 — bioh1oh2ohn—22 (5.4.1)
do(broh1ohno) = —biohiohaohn—22. (5.4.2)

First, I claim that hjohso is a permanent cycle; it is represented by [£;]€2] — [€2|€3] = w,
which we’ve seen is a permanent cycle in the cobar complex. The class b,_1 ¢ has cobar

representative [&,-1]€2_,] + [2_,|é.-1] and

bn-10 = [Ena1l& 1] + [60_1|€n—1] — [€16n—11En—180 ] + [267 1163 5]
+ [E26n-11E5 o) + [E16n—1E5 o) + [611E2 165 _5) € (F3/FH)CE, (K, k).

Computing the cobar differential on this class (and remembering that £)_; = 0 in P,),

we see that dg(bn_l,o) = hllbn—Q,l - blohn_gyg. So
dQ(hIOhQObn—l,O) = thhQO dg (bn-—l,O) = thhQO(hllbn~1,l - bthn—2,2)'

We have hiph,o = [&1|6] — [€2|€3_,] = wn, € F?/F? and there is a cobar differential

deobar ([€116n] — [611€7-1]) = —[611€216n o] + [671671€n ).

This 1mphes (542) (We didn’t check that hlohgohllbn_g’l and hlohgoblohn_g’g survive
to the Fg page, because that is not necessary: we only have to check that these elements
die somehow in the spectral sequence, and if they have already died before the Eqy page,

then that is good enough for this argument.) O

5.5 ISS convergence

It is easy to see that the (unlocalized) ISS converges: it is based on a decreas-

ing filtration of the cobar complex that clearly satisfies both (), F*Cp,(k, k) = {0}
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and |J, F°Cp,(k, k) = Cp,(k,k). In the rest of this section, we will check that the
bio-localized ISS converges; this boils down to the fact that it has a vanishing line
parallel to byg. Let E!S denote the E, page of the unlocalized ISS and b;, E!% denote
the F, page of the localized ISS.

Lemma 5.5.1. There is a slope § vanishing line in E{*S in (u, s) coordinates. That

is, if © € E{%% has s(z) > ju(z) then z = 0.

Proof. In Section 5.4 we computed the F, page:
E{%S = Q) Elhy) ® Plby)
(3,7)el

where I = {(1,0), (1,1),(2,0), (n—2,0), (n—2,1), (n—2,2), (n—1,0), (n—1,1), (n, 0)}.

These generators occur in the following degrees:

element u s u/s

hij 23 —1)37 | 3 |2(3 —-1)
bi; 2(30 —1)37+1 | 37+ 1 2(30 — 1)

So we have ¥ > 2(3' — 1) = 4, which proves the lemma. Note that bjo, in degree

(u=12,s = 3), acts parallel to the vanishing line. O

Here is a picture:
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Differentials are vertical: d, takes elements in degree (u,s) to degree (u, s+ r).

Proposition 5.5.2. The byg-localized 1SS converges.

Proof. There are two ways convergence could fail:

(1) There could be a bjp-tower z in E55 that does not appear in bj) Ew because it

is broken into a series of bjp-torsion towers connected by hidden multiplications.
3 -
5
g biox
R

"
3
. blox
Cp2
bioz

°
& blo.fL‘

T

(2) There could be a byg-tower x in by ELS that is not a permanent cycle in EZ5S
because there it supports a series of increasing-length differentials to bjo-torsion

elements (so these differentials would be zero in by, E!5).

s ||

. ;
Bz

I blg.'L'
T

In both of these cases, it is clear from the pictures that these cannot happen if there is

a vanishing line of slope equal to the degree of byg.

(Notice that the reverse of (2) can’t happen—the by tower x can’t be hit by a differential
originating at a bjo-torsion element y, because d,(bYy) = bl d.(y) = bz # 0 which

implies b}y # 0 for all N.) O
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Remark 5.5.3. The same proof shows that the ISS for by, Extp(k, k) converges; in
particular, the vanishing line in Lemma 5.5.1 goes through even with more h;;’s and

bi;’s in the E; page.
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Chapter 6

Conjectures and Examples

Recall we have been using the following notation: B = Popk, K(&) = by B, and
R = by Ext}(k, k) = P[b)] ® E[hy]. Furthermore, we maintain the convention, as
used in the last two chapters, of silently applying the antipode to the generators &, of
P,so A(&) = 32,,20.6 ® Sfi instead of >, ., §;’i ® & as is the customary definition
of the symbol &,.

6.1 Conjectures

In the previous two chapters, we studied the K (&;)-based Adams spectral sequence
Ey = Extiee,).. x(er) (K (§1)wes K (€1)) = by Extp(k, k).

We showed that the E, page is isomorphic to R ® Plws, ws, .. .| and showed that the
first nonzero differential is d,(w,) = bjg hiow?w3_,. By a degree argument (Proposition
5.1.1) we know that d, = 0 (for r > 2) unless r =4 (mod 9) and r = 8 (mod 9). We

conjecture that dg is the only other nonzero differential. More precisely:

Conjecture 6.1.1.
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(1) If d4(CE) = hloy and d4(y) = hloz, then dg(hloit) = hl[)Z.

(2) d. =0 for r > 8.

Evidence for this conjecture includes the fact that it agrees with bjg-periodic range
of the computer calculation of Ext}(k, k) up to the 700 stem (see Figure 4-2). See
Figures 6-3—6-5 for charts depicting these differentials. In the range of the pictures,
the differentials are known, not conjectured, because they can be deduced from the
aforementioned chart of Ext}(k, k). Conjecture 6.1.1, together with information about
multiplicative extensions, allows one to conclude that byy Extp(k, k) has a particularly

attractive form.

Proposition 6.1.2. Suppose Conjecture 6.1.1 holds. Then there is an isomorphism on

the level of vector spaces
bio Exth(k, k) = by Ext}, (k, k[Wy, W3, . . .])

where the D-coaction on W, is given by ¥(W,) = 1 @ W, + & ® Wiw:_, forn >3 and
Y(wy) = 1 ®@wsy. This is an isomorphism of R-modules if, for every differential dy(x) =
hioy such that y is a permanent cycle, there is a hidden multiplication hig - (h10x) = bioy

in byy Exth(k, k).

Proof. We begin by determining the isomorphism on the level of vector spaces. Given
any D-comodule M with coaction ¢ : M — D ® M, let 0 : M — M denote the
operator defined by ¥/(m) = 1@m+£&; ®d(m) — 2 ® 9*(m) (see Definition 4.2.1). Then
there is a resolution D 2 D LN D2 . for k, and applying —opM gives rise to a
complex M 5 M E M ... whose cohomology is Cotorp(k, M) = Ext},(k, M), and
bis Ext},(k, M) is the cohomology of the periodic complex - - - — M S MmME M.
Let W, = bjgwy, and let W = k[, W3, . ..]. Note that ds(w,) = hyowiw3_,. We will
show thét the E term in the MPASS is isomorphic to the cohomology of W* : ... —
waiwiw...
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We have Fy = R® Plwg,ws,...] ¥ RQ W. Write B, = W+ & W~, where Wt =
W ® P[] and W~ = W+ {hys}. By Proposition 5.1.1, we know that elements in W+
could be the source of a d differential or the target of a dg differential, and vice versa
for W~. Using Conjecture 6.1.1(2), the E, page of the MPASS is obtained by taking
the cohomology of Ey by d4 and dg, and in fact this is

Eo = ker(ds|w+)/im(ds|w-) @ ker(dg|w- )/ im(da|w+). (6.1.1)
By Conjecture 6.1.}1(1), there is a map f of chain complexes

3 82 3
— W » W » W

J{f?n Jrf2n+1 lf2n+2

s W{B Y~ W { bl )~ Wb 2

where the vertical maps are the obvious isomorphisms. By construction the cohomology
of the top complex is by Extp(k, W), and by (6.1.1), the cohomology of the bottom

complex is F.

Now we check that this respects the R-module structure, assuming the extra hypothesis.
We will just check that it commutes with multiplication by h;o. Note that the powers
of bjgp and hjp on the bottom row refer to names in the MPASS E; page. If w =
[z] € W?" is a cycle then hjgw is represented by [z] € W+l So f2+l(hjgw) =
[hiobTyz] = hyo[bTyz] = hiof?(w). The other case is a bit more complicated. If
v = [y] € W?"*! is a cycle then hjgv is represented by [dy] € W2". We need to
show that f2"*2(hjov) = [b]5 ' (0y)] can be represented as hig - [h10bTy] = hio- f2H1(v).
From the commutativity of the diagram we have d4([b%y]) = [h1007y] = h10[b7,0Y],
and [b7,0y] is a permanent cycle because &%y = 0 by assumption. From the assumption

about hidden multiplications, we have hiq - [h10b7,y] = b10[b},0y] as desired. O

Remark 6.1.3. One can try to show the hidden multiplication by use of Massey

products. First, one would like to use the Massey product convergence theorem (see
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[Rav86, A1.4.10]) to show that the E5 Massey product (hyo, hio, [b7,0y]) converges to
a Massey product in byy Extp(k, k). The crossing differentials hypothesis is automati-
cally satisfied (assuming Conjecture 6.1.1): this says that there can be no nontrivial
differentials d, with r > 4 hitting classes in the same stem as h1o[b7,0y], and this is
true because any such differential would be a dg, which only hits classes with v’ =

(mod 4) (that is, classes whose E, representatives are in kws, ws, . . .|, as opposed to
k[wa, w3, . ..]{h1o}). However, to use the Massey product convergence theorem, we also
need to show that (hyg, hio, [B7,0y]) is strictly defined in b5 Extp(k, k), in particular

that there is no nonzero hidden multiplication hyg - [b7,0y].

If this can be shown, then the Massey product shuffling relations

hio - [R10bioy] = hio (hao, hao, [Bo0y]) = (hio, hio, hao) [bTo0Y]
in b7y Ext}h(k, k) give rise to the desired hidden multiplication.

The expression in Proposition 6.1.2 is the k = M case of the following more general

conjecture.

Conjecture 6.1.4. There is a functor W : Comodp — Comodp such that for any

P-comodule M, we have

bis Exth(k, M) = by Ext}(k, W(M)).

We do not have a conjecture for the form of W(M) in general, though we believe it to

be related to the MPASS E, page.

Remark 6.1.5. Since byy Ext}(k, W(M)) = by, Extp(k, PupW (M)), it is tempting

to guess that the isomorphism in Conjecture 6.1.4 comes from a map M — PopW (M).
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However, I claim that this cannot be true for M = k. There is a free-forgetful adjunction
U : Comodp S Comodp : F

where the free functor F' takes M — PopM. Given a D-comodule W (k), this shows
that every P-comodule map & — PopW (k) factors through the adjunction unit
k — Puopk. So the supposed isomorphism b}, Ext}(k, k) — big Ext}h(k, PopW (M)
factors through by Extp(k, Popk) = byy Ext}(k, k) = E[hio] ® P[bi}], which is clearly

false in light of what we know about by Ext}h(k, k).

In the remainder of this chapter, we present two simpler, but complete, calculations

which provide evidence for 6.1.4. In Section 6.2, we show that
bl—Ol EXt:‘I‘:’(k? k[gi gga €3a &4y - ]) = bi_Ol EXtB(k7 k[ﬁg,ggo])

where ¢(ws) = 1 ® wy and ¢(520) =1® 520 + & ® wy. (We actually compute
bio Ext,’;[&y&] /(Ei’,E%)(k’ k), which is isomorphic to the left hand side due to the change of
rings theorem corresponding to the fact that POy, ¢,1/(e0,e)k = K[€7, 65, &3, 64, -+ ].) In

Section 6.3, we compute
bid Exti(k, KIEL]) = bid Bxtyy (K, klToao, bao, @, @i, . 1/By)

where the generators hog, by, and w, have trivial D-coaction. To summarize, our

conjectural functor W should satisfy:
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M W (M)/free D-comodule summands

" k[ws, w3, . ..] (conjectural)
Y(Wn) = 1 Q@ Wn + &1 QWEWS_; (n>3)

k[ﬁzo,gm, W3, Wy, . . . ]/(E2 )

kle}] .

trivial D-coaction

k [’&72 ) 520]

k[ﬁ?’637§3,€4, .. ]

P(b20) = 1@ bo + &1 @ Wh

sz[g%aé-?:&%"'] k
P 0

6.2 Localized cohomology of P(1)

Let P(1) = k[&1,&)/( P 7). Henderson [Hen97], building on work of Liulevicius
[Liu62], computes Extp;)(k, k) at all odd primes. In this section we will compute
bio Exth)(k, k) at p = 3; as Extpy(k, k) at p = 3 was already byo-periodic, we recover
Henderson’s result on the vector space level, but the multiplicative structure is much

simpler after inverting byq.

The main goal of this section is to prove the following.

Proposition 6.2.1. There are classes wy in internal degree 8 and 520 in internal degree

36 such that there is an isomorphism
big Exthy (k, k) 2 big Ext}y (k, k[, ba))

where w(gzo) =1Qby+ & ® wy and (W) = 1 @ Wy.

Since Popmk = k[€7,€3,&3,&4,...], by the change of rings theorem we have the

following.
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Corollary 6.2.2. There is an isomorphism
b;ol EXtP(ka k[&?a é—g’ §3a 547 s ]) = bl_O1 EXtD(kv k[lﬁj%’gZO])

where ’w(gzo) =1 ®520 + 51 & 1’1721 and Ip(?ﬂg) =1Q® 17)2.

We approach this computation the way we approached the computation of b;o Extp (%, k)

in previous chapters. That is, we set

B, = P(1)opk = k[¢7, &]/(€1, &)

and begin by computing the E, page of the by B;-based MPASS. First, note that
(b10B1)sx = big Extp((k, B) = by Ext}(k, k) = R.

Lemma 6.2.3. The E, page of the by, Bi-based MPASS is
E2 = R &® k[UJQ, bgo]

where we has degree (s,t,u) = (1,1,20) and by has degree (s,t,u) = (1,1, 48).

These generators relate to those in Proposition 6.2.1 by w, = byy wq and 520 = by, bao; for
most of the computation we find it easier to work with classes with actual representatives
in the non-localized cobar complex. Recall that s is Adams filtration, ¢ is internal
homological degree, and u is internal topological degree, so E;*" = by, Exti’;(‘l)(k, B ®

—®s

Bl )-
Proof. This is the same calculation as Proposition 5.3.4. O

In Section 3.3 we showed that the MPASS coincides with a filtration spectral sequence

on the cobar complex, which is in this case given by

F*Cpuy(k, k) = {{ar] .. |an] = #({ar, ..., an} NB1P(1)) > s}.
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We can pick out some obvious permanent cycles in this spectral sequence:

hio = [&1] huy = [¢]] bu = [€7161] + [1167]

We use the underlined versions as above to refer to explicit classes in the cobar complex,
while the non-underlined versions, e.g. hj, refer to their cohomology classes. By the
spectral sequence comparison result, the permanent cycles above have to correspond to
classes in the MPASS; we clarify this relationship in the next lemma. It is clear that
hig here represents the same class as hyg in the MPASS coefficient ring (B} ).«. We have

the same formula for w; as in the by Extp(k, k) case, namely

Wy = [§1|52] - [fﬂfiq’]

and by observing their cobar representatives, it is clear that both wy, and hy¢ are

permanent cycles.

It is clear from its cobar representative that w, is a permanent cycle, as is hqg.
Lemma 6.2.4. There are relations in Extp(k, k):

bfo[bﬁ] = twj.
bm[@] = thjow;

Proof. These are Massey product relations in Extp(k, k). First observe that our

formula wy = [£1]&] — [€2|€3] implies that wy = (hio, R1o, h11). Using Massey product

shuffling relations we have:

w% = <h10, th, h11>2 == (h107 th, <h'10, h107 hll) hll)
==+ (hIO» tha th (hlo, hll) hll))
==+ (th» th’ h10> (hIOa hlla h11>
h10w2 = th <h10, tha h11> == <h107 th» th) hll = :tblohll-
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wi = wy - wh = % (h1o, hao, k1) - bo (R0, P11, ha1)
= by (h1o (h10, P, har) s han, han)
= +byo ((R10, h10, h10) P11, P11, R11)
= 202, (h11, h11, ha1) = £b2b1y

We need to check Massey product indeterminacy: we need to show that all the Massey
products above are strictly defined. For (hjg, hio, h11), we need to show there are no
cycles in the degree of [¢7] (which hits h?,) and [£5] (which hits hyghy;). It suffices
to check using Lemma 6.2.3 that there are no elements in F, that could converge
to these elements—that is, that there are no elements in E; with the given stem
v = u—6(s+t). For (hig,hig, (h10, h10, h11) h11) we need to check the degree of
(€3] and ws[&,]; for (hig, hiy, h11) we need to check the degree of [€;] and [¢]; for
(h10, h1o, P10 (h1o, ka1, hi1)) we need to check the degree of [€2] and by, w3[¢?]. All of

these can easily be seen as there are not very many classes in these low degrees.

For the second relation, use Massey products similarly:
brolhu1] = (P10, hao, hio) 11 = thio (hao, hao, h11) = Fhiows. 0
Lemma 6.2.5. There are differentials:

d3(bso) = £bighiows
dS(bgo) = F bf03w§b20
ds(b3,) = 0.

Proof. We will use the following cobar representative for bag:

by = [&1€5] + [621€2] — [E1621€:67] + [EE1ET] + [€7€:2160] + [6716260] + [E11€3€1] (6.2.1)
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in F'/F2Cpy(k, k). One can check directly that

dcobar(bﬂ) =-h 1|b11- (622)

The first differential then follows from Lemma 6.2.4, and the second and third follow

from the first by multiplicativity. O

Lemma 6.2.6. b3 is a permanent cycle.

Proof. May [May70] constructed Steenrod operations on the cohomology of a Hopf
algebra; this is functorial, and the Steenrod operations on Extp;)(k, k) are the image
of the operations on Ext}(k, k) along the quotient map Ext} (k, k) — Extp)(k, k).
Sawka [Saw82] shows that double complex spectral sequences (such as the Cartan-
Eilenberg spectral sequence) commute with Steenrod operations. In particular, using

[Saw82, Proposition 2.5(3)] we have

d7(bgo) = d7(P1b20) = P1d3(b20) = Pl(_hllbll)
= PO(—hu)Pl(bll) = —h/12b?1

which is zero since h1 = [€]] is zero in Cp(1y(k, k). This shows that d7(b3,) = 0, which
is all that we need for now; by the time we get to the E; page, it will be easy to check
(see e.g. Figure 6-2) that there is no room for higher differentials. O

So
Ey = k[b, wa, b35]{1, h1o, hiobao, h1ob3g }/ (hws, hbyow3).

Furthermore, higbyg has a cobar representative

€1lbao — &albua

which is a permanent cycle.
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o

O H N W ks OO0 NN o O

0 8 16 24 32 40 48 56 64 72 80 88 96 104112

Figure 6-1: Ej3 page, with coordinates (u', s) (note that byg is at (0,0))

Lemma 6.2.7. dg(hiob3,) = tbjouws

Proof. Let by be as in (6.2.1) and let y = [£7|€%]. One can compute that

dcobar(@) = _@|ﬁ

dcobar(b_2_0_ - y) = _@|@

Since y € F? and by € F"', we see that (by — y)|hio|bao € F?/F? is a representative for

bag. Then we have:

d((b2o — y)lhaolbao — buale(€2)lbao — (b2 — ¥)l82lbur)
= —bu|hu|hiolb2 — (b20 = ¥)|haolhai [b1s

+ bu1|ha1|hiolbao + biife(€2) [P [bry

+ bu1 |11 [€2]b11 + (b2 — ¥)|Raolhan b1

= bulhu|&lbu + bue(€2)|hu[bn
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and this is a representative for b3, (hy1, hig, h11) which can be written :tbfgswg by Lemma

6.2.4. ]
10
9
8
7
6
5
4 /
3 hbi, «& b3,
2
1 hw Wo hbag
0 | hee'l
0 8 16 24 32 40 48 56 64 72 80 88 96 104112

Figure 6-2: E; page

So we have
E7 = (k[wa]/w§ & (k[ws]/wy){hi0} @ (k[wa]/w5){hiobao}) ® k[b]

and we have seen that all these classes are permanent cycles.

Proof of Proposition 6.2.1. Set Wy = by, wq and Egg = bjg by. Using Lemmas 6.2.5 and
6.2.7, there is an obvious analogue of Proposition 6.1.2 with the (d3,ds) pair here in
place of the (d4,ds) pair there, and it suffices to show the condition about hidden
multiplications. By Remark 6.1.5, it suffices to show that (hjg, h1o, [b],0y]) is strictly
defined in bjy Extp,(k, k) whenever dy(z) = hio(dy). Looking at Figure G-1, we see

there is no room for such hidden multiplications. O
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6.3 Localized cohomology of a large quotient of P

In this section we will show:

Theorem 6.3.1. Let Dy = k[&1,&,...]/(€3). Then
0 Exth, (k, k) = E[hyo, hao] ® Plbiy, bao, w3, wy, . . . ].
In particular, one can write
bio Extp, (K, k) = by Exty(k, k[hao, bao, ws, wy, . .. ]/ (h3)

where all the generators hag, bag, w,, are D-primitive.

It is interesting that D, ., seems reasonably close to P in size, and yet the computation of
its byp-local cohomology is much simpler. In particular, attempting to apply the methods
in this section (especially the explicit construction in Lemma 6.3.7) to computing

bio Exth(k, k) quickly results in an intractable mess.

The strategy is to explicitly construct a map from the cobar complex Cp, _(k, k) to
another complex which is designed to have the right cohomology, and then show the map
is a quasi-isomorphism. Note that the cobar complex is a dga under the concatenation
product, so every element is a product of elements in degree 1. Thus if our target
complex is a dga, it suffices to construct a map out of Cbl,oo(k’ k) = Dj o, and then
extend the map to all of Cp, (k, k) by multiplicativity. In order to ensure the resulting
map is a map of complexes, there is a criterion that the map on degree 1 needs to

satisfy:

Proposition 6.3.2. Let I' be a Hopf algebra over k, Q* be a dga with augmentation
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k— Q* and 6 : T — Q' be a k-linear map such that

do(8(z)) =) _6(z')6(z") (6.3.1)

for all z € T, where 3. o' ® 2" is the reduced diagonal A(z). Then there is a map of
dga’s f : Ci(k, k) — Q* sending [a1] ... |a,] to []6(a:).

Proof. We just need to check that f commutes with the differential; that is, we have to

check the following diagram commutes:

Ci(k, k) —— Q"
deobar dQ

Cpti(k, k) Lo @t

For n = 1, this is precisely what the condition (6.3.1) guarantees. Commutativity for

n > 1 follows from the Leibniz rule. The map on n = 0 is the augmentation. ()

Remark 6.3.3. This is an example of the more general construction of twisting cochains;

see [HMS74, §I1.1]. A morphism 6 satisfying (6.3.1) will be called a twisting morphism.

The target of our desired twisting morphism will be the complex bl‘olfj *®@ W’ where
o W' = klws,wy,...]|, with u(w,) = 2(3" — 1), is in homological degree zero with zero
differential, and
o U =UL*&)®UL* (&) C Chierer) (ks k) where the sub-dga UL*(z) C Cp (K, k)

is defined below.

Definition 6.3.4. Given a height-3 truncated polynomial algebra Dlz], let UL*(x) be
the sub-dga of C’B[x](k, k) multiplicatively generated by the elements a = [z], 8 = [z?],
and v = [z|2?] + [z®|z]. This inherits from Cpy,(k, k) the differentials d(a) = 0,
d(B) = —a?, and d(v) = 0, along with the relations a8 + Ba = v, a® = 0, and 8% = 0.
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Remark 6.3.5. This is (up to signs) the p = 3 case of a construction due to Moore:
let UL* be the dga which has multiplicative generators a,...,a,—1 in degree 1 and

ta,...,tp in degree 2 with d(a;) = ¢;, subject to

al=t, a? =0 for i # 1 a =0 aia; = —aja; for 4,7 # 1
ajal = —ala]- + tj+1 aitj = tjai titj = tjti.

This is a dga quasi-isomorphic to, and much smaller than, Cyj/.»(k, k). It also has the

nice property that t, (which, in the case x = &;, represents byg) is central.

Notation 6.3.6. Denote the generators of UL*(§;) by a1 = [&], az = [€}], and
bio = [£1|€2] + [€2|&1], and the generators of UL*(&;) by q1 = [&2], g2 = [€2], and by =
[€2]€2] + [£2]€;). (This definition of by and by does, of course, match up with the image
of big and byg along Extp(k, k) — Exthe, ,16)> and even Extp(k, k) — Extp, (k. k).)
Note that

H*(U) = H*(Cpye, & (k. k) = Elh1, hao] ® Plbao, baol.

So our target complex bl_olﬁ ® W' has cohomology

H* (bl U @ W) = H*(b2U) @ W' = E[hyo, hag] ® P[b), byg] @ W'

6.3.1 Defining 0 : D; . — b;iU @ W’
The definition of the map 0 : D) o, — by, U@ W is quite ad hoc, and will be done

in several stages. The map will arise as a composition Dy o, — D' — U oW —

bio U* ® W', where the first map is the natural surjection to

D’ = k[§1,§2, . ]/(6??5%537 i )
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and the last map is the natural localization map; the main goal is to construct a map
D — U*@W' satisfying the twisting morphism condition, and we begin by constructing

a map out of a slightly smaller coalgebra.
Lemma 6.3.7. Let
C= k[glaégag&g% . ]/(5%)537&37 cee )

There is a twisting morphism 0 : C — UL}(&,) @ W'.

Proof. For n,m,k > 3, make the following definitions:

0(&) = a
6(¢1) = as

0(6asy) = ~arwy,

0(€n) = azwy,

9(515}7{_1) = —Q2Wn

0(&16n) =0
0(En—16m—1) = B2WnWm

0(énbm-1) =0
0(&ném) =0
0(¢162-1) =0
0(&1&n_16mr) =0
0(&n-16m1&i-1) =0

It is a straightforward computation with the cobar differential to check that each of

these does not violate the twisting morphism condition
d(6(z)) = Y_6(z') - (") (6.3.2)
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where A(z) = 3" 2’ ® 2”. (Note that, in C, we have A(£3_)) = 0 and A(£,) = &|€2_,.)

Now it suffices to prove the following.

Claim 6.3.8. Defining 0(X) = 0 for all monomials X except the ones listed above

defines a twisting morphism.

Define a (non-multiplicative) grading p on C' where

p(D)=0 p&)=1 p(6)=2 p(& ) =1 p&y_1)) =2 p(&) =2 p(&) =4

for n > 3, and p([], €73%) = S p(%) + p(€3%) (where a;, b; € {0,1,2}). The reason

for considering this grading is the following;:
Claim 6.3.9. Writing A(z) = > 2’ ® 2", we have p(z') + p(z”) < p(z).

Proof of Claim 6.3.9. If X = [[&€%*® for a;,b; € {0,1,2}, consider the collection
TIx = {€% 1 a; # 0U{€>® : b; # 0}. Use induction on n := #J. If n = 1, then it suf-
fices to check explicitly the Milnor diagonal of each of the terms {&,£%, &3 |, €8 | &, &2}

(In fact, we find p(z) = p(z’) + p(z”) for each of these terms.)

For general monomials a, b, we have

p(ab) < p(a) + p(b). (6.3.3)

By definition, if z and y are products of non-overlapping subsets of Zx, then

p(zy) = p(z) + p(y). (6.3.4)

Write X = zy where z € Jx and y is a product of terms in Jx (different from z).

145



Since A(zy) = 3 z'y/|z"y" it suffices to prove p(z'y’) + p(z"y") < p(zy). We have

", "

p(z'y") + p(a"y") < p(2') + p(y") + p(z") + p(y")

< p(z) + p(y)

Il

p
p(xy)

where the first inequality is by (6.3.3), the second inequality is by the inductive
hypothesis, and the last equality is by (6.3.4). O

So the monomials in C with degree 1 are £; and &2_, for n > 3, the monomials with
p-degree 2 are £2, &, &€3_,&2 |, and £, | for n,m > 3, and the monomials with degree
3are £2€3 1, &1€3 1631, €163, 1& 1, &i&n, and &) &y for n,m > 3. Notice that 0
has already been defined for these monomials above. So it remains to show that € can
be defined consistently for monomials with p > 4. In particular, we will show using

induction on p degree that we can define §(z) = 0 if p(x) > 3 while preserving the

twisting morphism condition (6.3.1).

Since we have already checked above that we can define 6(z) = 0 on the monomials x
with p(z) = 3, let p(z) = n > 3 and assume inductively that we have already defined
O(y) = 0if 3 < p(y) < n—1. Any monomial y with p(y) = 0 is in k (and hence
6(y) = 0), so we can assume that p(z’) < p(z) and p(z”) < p(z). So by the inductive
hypothesis we have Y 6(z') - §(z") = 0, and so we can set 6(z) = 0 without violating
(6.3.1). O

Lemma 6.3.10. One may extend 8 constructed in Lemma 6.3.7 to a twisting morphism

D — Ul W' by defining:

0(&2) = o
9(55) =
0(&x) =0  forzeC
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0(¢2x) =0 forz e C

where C is the cokernel of the unit map k — C.

Proof. Note that &, is primitive in D', and C is a sub-coalgebra of D’, so we need to
define 6 on &C and £3C. It is straightforward to check that 6(&;) = ¢q; and 0(£3) = g2
is consistent with (6.3.1).

If x = &y for y € C then every ¥/, 4" in Ay is in C, and

D6 0(z") =) (0(&y) - 0y") +0(y) - (&)
= 0(&)0(y) +0()0(&) + D (0(&y) - 0(") +0(y) - 0(&x9"))

Yy gk
= qf(y) + 0o+ Y (0(&y)-0(") +0(y) - 0(&y")).
Yy ¢k
Since 0(y) € UL'(&1) ® W’ and g, anti-commutes with the generators a; and ay of
UL (&), we have q;6(y) +6(y)q, = 0. Thus defining 8(£,y) = 0 does not violate (6.3.1).

Similarly, if z = &2y for y € C, then

D6 -0(") = (0(&5Y) - 0(y") +20(&y) - 6(&”) + 6(y') - 6(€3y"))
= 0(62)0(y) + 20(&)0(62y) + 20(&2y)0(E2) + 0(y)0(&3)
+ ) (8(&3y) - 0(y") + 20(6ay) - 6(6ay") + 6(¥) - 6(E39"))

Yy ¢k
= 6(8)0(y) + 0WA(ED) + Y (0(&3y)0(y") + 6(y)0(&3y"))
vy ¢k
where in the third equality we use the fact that 0 = 6(&y) = 0(&2y') = 0(&y") (for
v, y" ¢ k). Again, 0(&2)0(y) + 0(y)0(€2) = q20(y) + 0(y)g which is zero since 6(y) is in
UL (&) @ W' and g, anti-commutes with the generators a; and as of UL (). So it is
consistent with (6.3.1) to define §(£2y) = 0. O
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Now precompose with the surjection ¢ : D; o — D' to obtain a twisting morphism
0:Dioo— D U ' QW.

This remains a twisting morphism because it is a coalgebra map—in particular, ¢ com-
mutes with the coproduct—and so d(0(q(z))) = >_ 6(q(z)")0(q(z)") = >_ 6(q(z'))0(q(z")).

So by Proposition 6.3.2 we get an induced map
0 :Cp, (kk)— T @W

by extending # multiplicatively using the concatenation product on the cobar complex.

6.3.2 Showing 6 is a quasi-isomorphism via spectral sequence

comparison

Our goal is to show:

Theorem 6.3.11. The map 0’ : Cp, _(k, k) — U* ® W' induces an isomorphism in

cohomology after inverting big. In particular, there is an isomorphism

big Ext},, (k. k) 2 E[hio, hao] ® P[biy, bao] ® W'

To show this, we define filtrations on C}, _(k, k) and on U* ® W' in a way that makes
@' a filtration-preserving map; this induces a map of filtration spectral sequences. We
compute the F, pages of both sides and show that ' induces an isomorphism of Ej

pages, hence an isomorphism of E, pages.

Let By oo := k[£2,&3,...] = D1 Opk. Define a decreasing filtration on C’,f)lyoo(k, k)
where [a1]...]a,] is in F*C}, (k. k) if at least s of the a;’s are in ker(Dy,0c — D) =

FLOODLOO. Define a decreasing filtration on U oW by the following multiplicative
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grading:
® |a1] = |ag| = |bi| = 0
* |a| =gl =1
o |by| =2
o |w,|=1.

Looking at the definition of # in Lemma 6.3.7 and Lemma 6.3.10, it is clear that @ is

filtration-preserving, and hence so is €.

It is a consequence of the work in Section 3.3 that the by, B; .-based MPASS for
computing by, Extp, . (k, k) coincides with the bjp-localized version of this filtration
spectral sequence on C'Bl,oo(k, k). Our next goal is to calculate the E5 page of (the
bio-localized version of) the filtration spectral sequence on C5, 1,00(]“7 k), and using this

correspondence we may instead calculate the MPASS FE, term

S _ 3—1 S
Ey” = byg Exty Ext*b(k,Bl,w)(

bis Exth(k, k), big Exth(k, k). (6.3.5)

So we need to compute by Ext},(k, B; o) and its coalgebra structure. The correspon-

dence of spectral sequences further gives that
Ey" = by Extyy(k, Byeo) = byg HY(F'/F2Cy,, (K, k) (6.3.6)

and the reduced diagonal on by, Ext}(k, B} o) coincides with d; in the filtration spectral

sequence.
Proposition 6.3.12. As coalgebras, we have
big Exth(k, B1 o) = by Eles, €4, . . .| @ D[&)]

i.e. en and & are primitive and A(£2) = 26, ® &;.
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Proof. The first task is to determine the D-comodule structure on B; . Let 1 denote
the D-coaction induced by the D-coaction on P, and 0 : By o — Bj denote the
operator defined by ¥(z) = 1 ® z + £, ® 9z — £ ® 9%z (see Definition 4.2.1). For
example, 9(&,) = €3_;, 8(&3_,) = 0, and I satisfies the Leibniz rule.

n—1s

We have a coalgebra isomorphism B; o, = D[] ® k[€3,€3,&4, ... ]. Since 1, &, and &3
are all primitive, D[£;] splits as D-comodule into three trivial D-comodules, generated

by 1, &, and &2 respectively. So it suffices to determine the D-comodule structure of

k[§§a€37§4a e ]

As part of the determination of the structure of by, Ext},(k, B) in Section 4.2, we

showed that there is a D-comodule decomposition

B @ T{w - &) ®F

&ny ..,gnd
n;>2 distinct

where F' is a free D-comodule and T'(({, ...&n, ; 1)) is generated as a vector space
by monomials of the form 9°1(&,,)...0%(&,,) for €; € {0,1}. I claim the surjection
f: B — k[£3,&,&,...] takes F to another free summand: this map preserves the
direct sum decomposition into summands of the form D, M (1), and k, and the image
of a free summand D must be either 0 or another free summand (just as there are no
D-module maps k = k[z]/(z) — D or M(1) = k[z]/(x?) — D, there are no D-comodule
maps D — k or D — M(1)).

Furthermore, I claim that f acts as zero on summands T((&, -..&,, ; 1)) where
some n; = 2, and is the identity otherwise. In the first case, every basis element
0 (€2) T30 9% (6n,) In T((Gns - - Gny 5 1)) has the form & T, 5,0 (6, ) € E1-hlED . &4,
or & [1,4 0% (&) € € - K[€3,€3,64, - - -], and these are sent to zero under f. If instead
n; > 2 for every i, then every term 9°(&,,)...8%(&,,) is in k[€3,&3,€4,...] and so f
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acts as the identity. So we have shown that there is a D-comodule isomorphism

Bioo=( @D Tlm- i D) & F) & (k@ ke @ kg)

Enl ~~§nd
n; >3 distinct

where F’ is a free D-comodule. So we have

bio Exth(k, Bio) 2 @D big Exth, (k, T((&ny - -&ny 5 1) @ k{1,62,63})

€ny --bng
n; >3 distinct

@ bl_ol EXt/*D (va(<£nl ttt g'n,d ) 1))) ®k{17§27£§}

&nq-fng
n; >3 distinct

I

By Proposition 4.3.7, big Ext%(k, T((&n, ... &, ; 1)) is generated by ey, ... e,,, where

en = [61]6n — [671€n 1 € bio Extp(k, T((6a 5 1))

is primitive. The map B — B o, gives rise to a map of MPASS’s, and in particular a
map biy Exth(k, B) — by Ext}(k, By ) of Hopf algebras over by Ext}(k, k) sending

en > e, for n > 3, and ey — hig - &. In particular, we have
bio Exth(k, Bioo) = Elhig, €3, ¢4, ...] @ P[bi)] ® k{1, &, €3} (6.3.7)

and e, € by Ext}(k, By «) is primitive. To find the coproduct on the elements &, and €2,
use (6.3.6), in particular the fact that the (reduced) Hopf algebra diagonal corresponds to
dy in the filtration spectral sequence. In particular, &, € by Ext},(k, By o) corresponds
to the element [&,] € F'/F2CL (k. k), and we have deopar([€2]) = [£1]€7] which is zero
in C*Dl,oo(k’ k), so & is primitive. Similarly, the cobar differential on C’Blm(k, k) shows
A(£2) = 26, ® &. Thus the tensor factor k{1,&,,£2} is, as a coalgebra, a truncated
polynomial algebra. This finishes the determination of the coalgebra structure of

bio Exth(k, B1oo) in (6.3.7). O
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The E, page (6.3.5) of the MPASS is the cohomology of the Hopf algebroid
(bio Extp(k, k), big Extp(k, Bioo)) = (Elhio]®P[big], Elhao, €3, €a, - .. |0 Plbig | D[Ea])
so we have:
Corollary 6.3.13. The MPASS E; page is:
E3* 2 E[hyo, hao] ® Plbiy, bao, w3, wy, . . ..

Proposition 6.3.14. The map 0 induces an isomorphism of Ey pages.

Proof. We first calculate the E, page of the filtration spectral sequence on C7, 1m(lc, k),
and observe it is isomorphic to the Ey page of the MPASS we calculated in Corollary

6.3.13. Then we show that the map €' induces this isomorphism.

In the associated graded, there is a differential dy(ay) = —a?2, but the corresponding
differential on g5 is a d;. So the filtration spectral sequence YE, computing H *(bl_olfj *®
W’) has Fy page

YEo 2 big UL*(&) @ UL* (&) @ W'

with differential do(u; ® us ® w) = d(uy) ® us ® w. So

UEy = H*(biq UL*(£1)) ® UL*(&2) @ W' =2 E[hy] ® Plbig] @ UL* (&) @ W'
and the only remaining differential is generated by d;(g2) = —¢2, so

UE, = E[hyo) ® P[bi) @ H*(UL*(&)) ® W' = E[hyo, hao] ® Pbiy, bao) @ W'.

’fhen E. =2 FE, forr > 2.

To show that € is an isomorphism, it suffices to show that 6'(hyg) = h10, €' (b10) = b1,
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0'(hao) = hag, 0'(bao) = bao, and 0'(w,) = byow, for n > 3. We use the fact that ¢’
extends € multiplicatively using the concatenation product in the cobar complex. So

0 ([a1]...]an]) = [16(a;), and we have:

0 (hio) = 0'([&1]) = (&) = ax

0'(bio) = 0'([611€7] + [€1161]) = 6(£1)6(ED) + 0(E1)0(&1) = araz + asar = bg
0'(hao) = 0'([2]) = 0(&) = @

0/ (b2o) = 0'([€2183] + [€31€2]) = 0(£2)6(&3) + 6(£3)0(E2) = 142 + goqn = bao

0'(wn) = 0'([&1]€n] — [€11€n-1]) = @raowy + azarw, = bigwy. 0

Since ¢' : Cp, (k. k) — U* ® W' induces an isomorphism of spectral sequences,

it induces an isomorphism in cohomology, completing the proof of Theorem 6.3.11.

isomorphism
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Figure 6-3: E4 page of the K(&;)-based MPASS, with d4 differentials shown
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Figure 6-4: Ej page of the K(&;)-based MPASS
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Figure 6-5: E., page of the K(&;)-based MPASS
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