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Abstract

Chromatic localization can be seen as a way to calculate a particular infinite piece
of the homotopy of a spectrum. For example, the (finite) chromatic localization of
a p-local sphere is its rationalization, and the corresponding chromatic localization
of its Adams E2 page recovers just the zero-stem. We study a different localization
of Adams E2 pages for spectra, which recovers more information than the chromatic
localization. This approach can be seen as the analogue of chromatic localization in a
category related to the derived category of comodules over the dual Steenrod algebra,
a setting in which Palmieri has developed an analogue of chromatic homotopy theory.
We work at p = 3 and compute the E2 page and first nontrivial differential of a spectral

sequence converging to b-- Ext* (F3 , F3) (where P is the Steenrod reduced powers), and
give a complete calculation of other localized Ext groups, including b-j Ext*(F3 , F3 [3]).

Thesis Supervisor: Haynes Miller
Title: Professor of Mathematics
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0.1 Notation

We use the following notation extensively in this thesis.

k

M EFN

E[xi,... ,x,]

P[xi,. , X"]

D [i, . . ., x.]

R

A

P

n

Comodr

Stable(F)

Extr

Sp

r*(M)

D

B

K( 1)

R

CO(M, N)

A L R

0,09,90

MPASS

M(n)

Fp (for p odd, specialized to p = 3 in Chapter 4)

cotensor product of F-comodules M, N

Exterior algebra k[xi,... , Xn]/(x, ... , x2)

Polynomial algebra k[xi,... , Xn]

Truncated height-p polynomial algebra k[xi,... , Xn]/( , .. . , xn)

Coaugmentation ideal coker(k --+ R), for a unital k-algebra R

mod-p Steenrod dual P[ 1, 2,....] 0 E[To, i, ... I

Steenrod reduced powers algebra P[ 1 , 2.... ]

Antipode of the generator usually called , (see Notation 4.1.5)

Category of F-comodules (for a coalgebra F)

See Definition 2.1.6

Derived functors of HomComod, (see 2.1)

Any symmetric monoidal model for the category of spectra

Homstable(r)(k, M) (see Notation 2.1.13)

D[ i]

PECDk = k ,. (see Notation 4.1.5)
b1 0  blo

colim(B - B ... ) as an object of Stable(P)

b-1 ExtD(k, k) = E[hio] 0 P[b']

Cobar complex /C (M, N) as defined in Definitions 3.1.5 and 3.1.11

Diagonal, left, and right comodule structures on a tensor product

(see Definition 3.1.1)

See Definition 2.2.2

D-comodule isomorphic to k[( 1]/n+1

9
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Chapter 1

Introduction

The goal of the work described in this thesis is to compute graded abelian groups of

the form

b1 Ext, (F3, M)

where:

" P is the mod-3 Steenrod reduced powers algebra F3 [ 1, 2,...],

*bo E Ext 2(F3 , F3) is the element with cobar representative [(il]+ [(&], and

* M is a P-comodule.

The main focus is the case where M = F3: we describe the E2 page and first nontrivial

differentials of a spectral sequence converging to b-1 Ext*(F3, F3). We also have complete

calculations of bj Ext*(F 3, M) for some other comodules M, and a conjecture about

the general structure of these Ext groups. We will begin by explaining the motivation

for this project by situating it within the larger context of chromatic homotopy theory.

Later in this chapter we will give a summary of our main techniques and results.
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1.1 Motivation: chromatic localizations in Stable(P)

This section is structured as follows: first we will describe a class of objects we would

like to better understand (Adams E2 pages), then we will describe an approximation

technique (chromatic localization) that does not seem to immediately apply to the

desired objects of study, and finally we will describe a way to apply the technique to

the objects of study (by re-constructing the machinery of chromatic homotopy theory

within an algebraic category related to Adams E2 pages). None of the work described in

this section is ours; the main ingredients are the nilpotence and periodicity theorems of

Devinatz-Hopkins-Smith and the work by Palmieri about stable categories of comodules.

Unless explicitly stated otherwise, we will work localized at an odd prime p, which will

eventually be specialized to 3, and write k = Fp.

1.1.1 Adams E2 pages

Given a finite p-local spectrum X, there is an Adams spectral sequence

E2 (X) = Ext *(k, H,(X)) ==> rX^

converging to the p-complete homotopy of X. Here A is the mod-p Steenrod algebra

dual k[ 1, 2, ... -, TO, TI .... ]/(T,) 2 , viewed as a Hopf algebra, and (as will be the case

throughout this document) Ext denotes comodule Ext. For spectra X of interest, such

as the p-local sphere, the E2 page is more computationally tractable than 'rX: the

E2 page is purely algebraic, and can be computed algorithmically in a finite range.

However, for many X of interest, there is no hope of obtaining a closed-form formula for

E2 (X), and its structure encodes deep information about 7r*X. Thus, we are interested

in obtaining information about the structure of graded abelian groups of the form

Ext*A(k, M) for A-comodules M.

Let P = k[ 1, 2, .. .] be the Steenrod reduced powers algebra, and let E be the quotient

12



Hopf algebra k[To, 1 , ... ]/(ri2). Then there is an extension of Hopf algebras P -+ A -+ E,

which gives rise to a Cartan-Eilenberg spectral sequence

E** = Ext* (k, Ext* (k, M)) =- Ext *(k, M).

There is a third grading on this spectral sequence that comes from powers of E which

causes it to collapse at E2 when M has trivial E-coaction-in particular, when M = k,

which corresponds to the case X = S. This motivates us to consider the following goal:

Goal 1.1.1. Study Ext*(k, N) where N is a P-comodule.

1.1.2 Chromatic localization

Now we will review chromatic localization from the perspective of Adams spectral

sequence vanishing lines. The main idea is that, given a finite p-local spectrum X, there

is a localization vn 1wrX of 7rX that can be seen as an approximation to irX in the

sense that vn-wrX is often easier to compute than 7r*X and it agrees with 7r*X in an

infinite region.

Theorem 1.1.2 (Hopkins-Smith [HS98]). There is a filtration of the category Spf" of

p-local finite spectra

5pP" = Co a C 1 2 C2  . ..

such that if X is in Cn and not C,+ 1 , there is a non-nilpotent self-map EkX - X (for

some k) satisfying certain nice properties, which we denote vn. This gives rise to a

non-nilpotent operator vi on every page of the Adams spectral sequence.

If X is in C, and not Cn+,1 , we say that X has type n.

Theorem 1.1.3 (Hopkins-Palmieri-Smith [HPS99]). Suppose X is a finite p-local

spectrum of type n. Then Eo(X) vanishes above a line of slope 1 (which v' acts

13



parallel to), and in the wedge between this line and a lower line of slope IT 1 , we

have

Eoo(X) vnofEw(X)

where vo 1 E00(X) = colim(E,(X) - Eoo(X) .

Chromatic localization is va-localization, and this theorem shows that if we know v-I rX,

we know an infinite amount of information about 7rX. (Of course, since the Vn-periodic

region is defined in terms of Adams filtration, we do not learn 7rkX for any given stem

k.)

Example 1.1.4. The sphere spectrum has type 0, and the first chromatic localization

is *= p--rS,^= -rS 0 Q. Serre [Ser53] proved that irS 0 Q = or0S 0 Q = Q.

Theorem 1.1.3 only makes guarantees for vanishing and periodicity in the E' page of

the Adams spectral sequence, but in this case we can see this illustrated in E2 .

0 20 20 2 40 50 40 70 40 40 10 120 120 132 140 110 140 10 10 2

Figure 1-1: E2 (S) at p =3, with line above which this is p-periodic

The vanishing line has infinite slope, and the line drawn in the picture is the line above

which irS is p-periodic; the only elements in the p-periodic wedge are powers of the

14



class [To] representing the map S - S.

Example 1.1.5. The mod-p Moore spectrum S/p has type 1. At odd primes, Miller

[Mil78, Corollary 3.6] showed that

v ir*(S/p) = P[ql1 ] 9 E[hi,o : i > 1] 9 P[bi,o : i > 1]

(where qi = [Ti]) by computing vi-1E2(S/p) and showing that the spectral sequence

collapses at E2.

These localizations give information about wr*S: given an element x E 7r*(S/p) we can

form an infinite family S - S/p v S/p x S (where the first map is inclusion of the

bottom cell), and similarly one studies infinite v-periodic families in 7r*S for higher n.

1.1.3 Chromatic localization in Stable(P)

Chromatic localization, as described above, gives information about homotopy groups

of spectra, not Ext groups. We will describe an algebraic category Stable(P) and

describe Palmieri's construction of a partial analogue of chromatic homotopy theory in

this category, such that the analogue of chromatic localization gives information about

Ext *(k, M) for P-comodules M, in accordance with Goal 1.1.1.

We will give a fuller summary of the construction and properties of Stable(P) in Section

2.1, but for now define Stable(P) as the category whose objects are unbounded cochain

complexes of injective P-comodules, and whose morphisms are chain complex morphisms

modulo chain homotopy. The idea is that it is a modification of the derived category of

P-comodules D(P), in order for it to be better-behaved for localizations. There is a

functor i : Comodp -+ Stable(P) taking a P-comodule to an injective resolution, and
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the important property is that, similar to D(P), we have

Homstable(P)(i(M),i (N)) c Ext*(M, N)

for M, N in Comodp.

This category has many structural similarities to the homotopy category of spectra

Ho(Sp), and Palmieri [Pal01] proves algebraic analogues of many results in homotopy

theory, including partial analogues of the nilpotence and periodicity theorems mentioned

in Section 1.1.2. Some of these results are summarized in Section 2.3. The analogue

of "homotopy groups"-maps in Ho(Sp) from the unit object to a certain object-is

Homstable(P)(k, X), and if X = i(M), this is Ext*,(k, M). In the analogue of chromatic

homotopy theory in Stable(P), the full set of periodicity operators is difficult to

enumerate explicitly, but it contains powers of the May spectral sequence elements

bts = 0<E <, 1 (P= -) Ps-l ] for s < t. The corresponding chromatic localizations

have the form b- 1 Ext* (k, M), and (if M has the right analogue of "type" to have

bts-periodicity) they agree with Ext* (k, M) in a range of dimensions.

Classically, every p-local finite spectrum X has a unique type n, and only one chromatic

localization v- 1-r,(X) is defined and nonzero. An object of Stable(P) might have an ac-

tion of multiple periodicity elements, and the analogue of the Nishida nilpotence theorem

(which says that every element in Wr*S(p) is nilpotent except for the multiplication-by-p

map) is much more complicated: for example, at p = 3, Ext*(k, k) has an action by at

least two non-nilpotent operators, bio and bil.

Our main focus in this project is to study the Stable(P) analogue of Example 1.1.4

that is, to compute that localization of Ext*(k, k) (the Stable(P) analogue of wr*S) by

the first periodicity operator, namely bio. Slightly more generally, we will discuss the

computation of

b- Ext* (k, M)

for several P-comodules M. This can be thought of as an approximation of Ext*(k, M)

16



in the sense that this agrees with its localization above a line of . We end up

specializing to p = 3; see Section 1.2.1.

1.1.4 Connection to motivic homotopy theory

Another part of the motivation for this project is its potential applications to motivic

homotopy theory; this is part of planned future work.

The element bio E Ext2(k, k) survives the Adams spectral sequence and converges to

1, E 7rS. While #1 is nilpotent (and hence 3i-lrS = 0) by the Nishida nilpotence

theorem, it is non-nilpotent in EXtBP.BP(BP,, BP,), as well as in the homotopy of the

p-complete C-motivic sphere (S"o). So studying its localization gives topological, as

opposed to purely algebraic, information in the context of motivic homotopy theory.

In particular, there is an element T E 7,_ 1 ((Mot)^) in the homotopy of the p-completed

motivic sphere over C such that the realization map from motivic homotopy theory

to classical homotopy theory corresponds to inverting r. That is, the T-periodic

part of 7r.,((So t)^) corresponds to classical homotopy theory, and so recent work

on understanding the unique properties of motivic homotopy theory centers around

studying Cr, the cofiber of multiplication by T. Gheorghe, Wang, and Xu [GWX] show

that Wr.CT a ExtBPBP(BP, BP,), and the motivic Adams spectral sequence for CT

coincides with the algebraic Novikov spectral sequence

E2= Extp(k, Q) =- ExtBP.BP(BP*, BP*)

where Q = Ext*To, .. ](k, k).

The element bio E Ext*(k, Q) converges to #1 in EXtBP*BP(BP, BP*), which acts par-

allel to the vanishing line. So understanding the b10-localization of the E2 page of the alge-

braic Novikov spectral sequence is the first step to understanding -1 1 ExtBP.BP(BP*, BP,) 

/3-r*CT at p = 3. This would be the p = 3 analogue to Andrews and Miller's

17



computation [AM17] of c-- ExtBP.BP(BP, BP,) at p = 2.

1.2 Techniques

1.2.1 Margolis-Palmieri Adams spectral sequence

Our main technique is an Adams spectral sequence constructed in the category Stable(P):

given a monoid object E in Stable(P) and another object X satisfying some finiteness

conditions (see Proposition 2.2.5), there is a convergent spectral sequence

El =7r*,(E ® E 9X) == r*(X)

where 7r**(X) denotes HomStable(P)(k, X), and E is the cofiber of the unit map k -- E.

If, in addition, 7r**(E & E) is flat over ir**(E) (an analogue of the Adams flatness

condition), the E2 page has the form Ext**(*E®E(1*(E), r.,(E ®X)). As this spectral

sequence was first studied by Margolis [Mar83] and Palmieri [Pal01], we call it the

Margolis-Palmieri Adams spectral sequence (abbreviated MPASS).

To study biJ Ext*(k, M), we apply the MPASS in the case where the monoid object E

is

K() :=colim (i(P ED[ 1 ]k) '1 i(P ED[c]k) b -

and X = b-li(M). (In general we use the notation D[x] to denote k[x]/xP.) This satisfies

Adams flatness at p = 3 but not for p > 3 (and the connective version i(P EID[t]k) does

not satisfy Adams flatness at any prime). One reason to expect simpler behavior at

lower primes is that we have

7*(K( 1) 0 K( 1 )) = b-1 Ext*(k, (PcOD 1]k) 0 (P ED[C1 ]k)) ' b-1 Ext*[ (k, P DD[ 1]k)

by the change of rings theorem (Corollary 3.1.10), and the category ComodDCi is

18



simpler at lower primes: every comodule over a height-p truncated polynomial algebra

is a sum of comodules of the form k[x]/x for 1 < i < p, and there are fewer of these

for lower primes. One illustration of the extra simplicity at p = 3 is that there is a

Kiinneth isomorphism for the functor b7-1 Ext* 1 (k, - only for p 3.

1.2.2 Different forms of the MPASS

When doing computations with the MPASS as outlined above, we use the fact that

this spectral sequence coincides starting at E1 with the bio-localized versions of the

following two spectral sequences:

(1) the spectral sequence associated to the filtration of the cobar complex C*(k, M),

where FsC (k, M) consists of elements {[a1 ... jan]m} such that at least s of the

ai's are in ker(P - D[ 1]);

(2) a generalized version of the Cartan-Eilenberg spectral sequence associated to the

map P ED[ ,]k -* P.

For (2), recall that there is a Cartan-Eilenberg spectral sequence

E2 = Ext* (k, Ext*(k, M)) =-> Ext* (k, M)

associated to an extension of Hopf algebras B - A -> C. We present a similar

construction that can be defined if B is only an A-comodule algebra, instead of a Hopf

algebra of the form A Eck; we believe that the construction, with this level of generality,

is new. In Section 3.2, we show that the Cartan-Eilenberg spectral sequence for an

A-comodule algebra B agrees with the B-based MPASS in Stable(A). The filtration

spectral sequence (1) is only defined in the case that B is a subalgebra of A of the form

A ock, and in Section 3.3 we show that this agrees with the Cartan-Eilenberg spectral

sequence (and hence also the MPASS). This generalizes the classical fact that the

filtration spectral sequence in (1) coincides at E1 with the (classical) Cartan-Eilenberg
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spectral sequence.

These spectral sequences are useful at different times. Though not ideal for large-

scale computation due to the lack of structure, the filtration spectral sequence is very

concrete and useful for computing differentials in low degrees. The MPASS is useful

largely because of the form of the E2 term (in the case where flatness is satisfied).

From the Cartan-Eilenberg spectral sequence variant we obtain structure such as power

operations in some cases (see [Saw82]).

1.2.3 Twisting cochains

When computing b-1 Ext*(k, k[ 3]) in Section 6.3, we use a very different technique,

inspired by the theory of twisting cochains, which we feel is worth pointing out here.

The technique applies to computing Ext*(k, k) for a Hopf algebra F, as well as localized

versions of algebras of this form; it is applicable to the case at hand because k[ ]

P lk[Ci, 2 ,... ]/( 3)k and so by the change of rings theorem, we have

b-1 Ext* (k, k [ 3]) b-1 Ext* 3(kI k).

Suppose we wish to show that by Ext*(k, k) 2 H*(Q), where Q is a cochain complex.

The idea is to explicitly construct a map from the cobar complex C*(k, k) to Q, and

then show that the resulting map is a quasi-isomorphism after inverting bio. Recall that

CA(k, k) is a dga where the algebra structure comes from the concatenation product; thus

it is multiplicatively generated by C,'(k, k). So to construct a map 0' : C*(k, k) -> Q*, it

suffices to construct a map 0 : C1r(k, k) -+ Q1, and then extend the map multiplicatively

to all of Cr(k, k). However, one also needs to make sure the resulting map is a chain

map, and one can show (see Proposition 6.3.2) that it suffices to check

dQ(0(x)) = E 0(x')0(x")

20



for all x E C (k, k), where E Zx' o " is the reduced diagonal of x E F.

Once the map 0 has been constructed, one way to show that 0' is a quasi-isomorphism

after inverting bio is to define a filtration on Q* such that 0' is a filtration-preserving

map with respect to the filtration on C*,(k, k) described in Section 1.2.2. This gives

rise to a map of filtration spectral sequences, and the idea is to use knowledge of H*Q

to show the spectral sequences coincide.

1.3 Outline and main results

In Chapter 2, we first give a construction of the category Stable(A) that we are

working in, and explain the properties that makes it a desirable setting. We then

give details about the construction of the MPASS, and review several of Palmieri's

results about the analogues of the nilpotence and periodicity theorems in Stable(A)

and Stable(P). As was sketched in Section 1.1.3, we use this to motivate our quest to

compute b-1 Ext*(k, k), by situating it as the most basic chromatic localization in the

category Stable(P).

Chapter 3 is devoted to setting up a more general version of the Cartan-Eilenberg

spectral sequence and proving the comparison results mentioned in Section 1.2.2. The

key point, which we explain in depth in Section 3.1, involves two isomorphic ways to

construct the cobar complex: one way produces the familiar cobar differential, and

the other way arises from the cosimplicial object associated to a free-forgetful monad

and has a differential x - 1 9 x. The Cartan-Eilenberg spectral sequence for the Hopf

algebra extension B - A --+ C arises from a double complex C*4(k, A) EACB(B, k).

Using the usual construction of the cobar complex, C (B, k) only makes sense if B is a

coalgebra, but if we replace these cobar complexes with the second version, this can

be defined when B is an A-comodule algebra. We show that this coincides with the

MPASS in Theorem 3.2.4. Section 3.3 is devoted to proving the comparison with a
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filtration spectral sequence on the cobar complex, following the classical proof.

In Chapters 4 and 5 we turn to the K(1)-based MPASS for computing b-j Ext*(k, k).

In Section 4.2 we determine the structure of PDD[ 1 ]k as a D[ 1]-comodule in order

to obtain an expression for K((1),,K(( 1) = b-j Ext*](k, ArD[( 1 ]k) as a vector space.

For this computation, we work at an arbitrary odd prime. We find that K( 1 )**K( 1 )

is flat over K(*)*, at p = 3, and so we specialize to p = 3 going forward. In Section

4.3 we prove:

Theorem. The Hopf algebroid (K( 1 )*,, K( 1),,K( 1 )) is an exterior algebra over

)=E[h] 0 P[b1] on generatorsC 2 1 e3, ... where e, is in degree 2 (3 ' + 1).

Corollary. The E2 page of the K( 1 )-based Adams spectral sequence for computing

7,(b--1k) is

Ext*j)* )(K( 1)*,, K( 1 )**) = K( 1)** 0 P[w2 , w3 , . .

where w, = [en] has Adams filtration 1 and internal degree 2(3' + 1).

Using a degree argument, we show (Proposition 5.1.1) that d,(x) = 0 unless r = 4

(mod 9) or r = 8 (mod 9). Chapter 5 is devoted to computing the first differential.

Theorem. The element w 2 is a permanent cycle, and for n > 3, there is a differential

d4 (w,) = b-4h1ow w!_ 1 .

The strategy is to use comparison with the MPASS computing b-j Ext*(k, k), where

P = k [r 1, r to n-2g h1e , ntial (1 C9 -11 C -

It is not hard to reduce to showing the differential d4(Wn) = b -- hiOW2W3_1 in this
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simpler MPASS. The main strategy is: (1) compute enough of the E2 page of the

simpler MPASS to identify classes of interest such as w, and b-ehiowsw_ 1; (2) show

that b- 1 Ext* (k, k) is zero in the stem of blhiowswi_1 (so it is either the source or

target of a differential); (3) show that it is a permanent cycle and, for degree reasons,

wn is the only element that can hit it. For step (2), we calculate part of b-1 Ext* (k, k)

using the dual of the May spectral sequence.

We conjecture the following behavior for d8 in the MPASS converging to b- 1 Ext*(k, k):

if d4(x) = hioy and d4 (y) = h1oz, then ds(x) = b 1oz. Furthermore, we conjecture that

the remaining differentials in the spectral sequence are zero. In Chapter 6, we state the

following more general conjecture:

Conjecture. Let D = k[ 1]/(). There is a functor W : Comodp --> ComodD such

that

b-' Ext *(k, M) b1 Ext*(k, W(M))

and W(k) = k[i 2 , w3 ,.... ] with D-coaction given by /(Qs) = 1 0 iin + , 09i- for

n > 3 and O(i 2) = 1 9 i2.

(Here 'in = b-j'w.) In the remainder of the chapter, we prove two results that support

this conjecture.

Theorem. We have the following:

(1) b-j Ext* (k, k[, , , 4 . b7 Ext1D(k, k[@ 2, b 20]) where V)(i 2 ) = 1 0 ' 2

and 0(b20 ) 1 20 + 1 9 'V;

(2) b-h1 Ext* (k, k[ f]) a b-j Ext* (k, k[h20 , b2 0, W 3, W4 , ... ]/h20 ) where 4 acts trivially

on all the generators.

Compare the conjecture above with the following analogue at p = 2:

Theorem 1.3.1 (Milgram-May [MM81]). Atp = 2, let hio = [(1] andP = F2 . 1
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Then for a P-comodule M we have

10 Ex*(F2,i M) L- h-1 Ext* (2 M).

Note that this theorem is much simpler than the p = 3 case we study; this can be seen

in the fact that the p = 2 MPASS collapses.
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Chapter 2

Homotopy theory in the stable
category of comodules

Let (A, F) be a Hopf algebroid. This chapter will describe a program begun by Margolis

[Mar83] and Palmieri [Pal0l] to study the homotopy theory of F-comodules. The

eventual goal is to set up an analogy between Ho(Sp) and a homotopically nice algebraic

category Stable(F) into which Comodr embeds, such that Extr groups correspond

to homotopy groups in classical homotopy theory. This analogy can be developed to

the point that classical techniques for studying homotopy groups, such as the Adams

spectral sequence, can be imported into Stable(F) and applied for the study of Ext

groups. In the first section, we will define the category Stable(F). In the second section,

we will discuss the analogue of the Adams spectral sequence in Stable(F), which we call

the Margolis-Palmieri Adams spectral sequence. This will be our main computational

tool in the rest of this thesis. In the third section, we discuss the analogue of some

features of chromatic homotopy theory in Stable(F), and explain how this fits our

central problem of computing bio Ext*(k, M) into a larger conceptual framework.
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2.1 The category Stable(F)

It is a general fact about abelian categories (see e.g. [Stal8, Tags 06XQ], [Sta18, Tag

06XS]) that to any abelian category A one can form the derived category D(A) by

inverting the homology isomorphisms in the category K(A) of chain complexes in A

up to chain homotopy, and there is an isomorphism

Ext' (X, Y) :=HOMD(A) (X, Y [i]) C=? H'(HOMK(A) (X, I ))

where I; is an injective resolution of Y. In particular, one can apply this to the

category Comodr of (A, 1F)-comodules (see [Rav86, A1.1.2] for a precise definition of

this category).

Definition 2.1.1. Define Extr(M, N) = HomD(Comodr)(M, N) where M and N on the

right hand side are identified with their image in the derived category. If the context is

clear, we abbreviate D(Comodr) as D(F).

Our eventual goal is to try to use homotopy-theoretic techniques to study Ext groups, and

D(F) is not a bad first guess as a setting for this work. A fair amount of homotopy theory

only depends on the existence of a small number of formal properties of Ho(Sp), such as

the existence of (co)fiber sequences, an invertible suspension functor, and a symmetric

monoidal smash product. Given an arbitrary category with a symmetric monoidal

product (generalizing the smash product) and triangulated structure (generalizing the

(co)fiber sequences of homotopy theory), we are well on our way to at least being able

to write down analogues of many of the major constructions in homotopy theory. The

derived category D(F) fits this criterion: the shift functor gives rise to a triangulation,

and tensor product of chain complexes is symmetric monoidal.

In [HPS97], Hovey, Palmieri, and Strickland consider a set of axioms for Ho(Sp)-like

categories, which they call stable homotopy categories, and develop analogues of classical

homotopy theory in this generality.
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Definition 2.1.2 ([HPS97, Definition 1.1.4]). A stable homotopy category is a symmet-

ric monoidal triangulated category C (such that the symmetric monoidal product is

compatible with the triangulation) along with a set g of strongly dualizable objects of

C such that

Locc (g) ~ C, (2.1.1)

where Locc(9) indicates the localizing subcategory of C generated by g-that is, the

smallest thick subcategory that is closed under filtered colimits in C.

Before checking whether D(F) fits this definition, however, we note that D(F) already

has a problem that needs to be corrected first: while the derived category seems

like a good setting for studying Ext groups, it turns out it is not a good setting for

studying localized Ext groups. In particular, we would like to study groups of the form

x-1 Ext*(A, M) where M is a F-comodule and x E Ext* (A, A) is non-nilpotent, and

one might hope that x-1 Extr(A, M) = HomD(r) (A, x 1 M); this is the same as asking

for the equality

colim (HomD(r) (A, M) A HomD(r)(A, M) A HomD(F) (A, M) ->...) (2.1.2)

= HomD(F) (A, colim(M A M A M -> ... ))

where in the sequence M A M - ... we are identifying M with its image in D(F), i.e.

the class in Ch(F) represented by a F-injective resolution of M. This would hold if the

unit object A were compact, but that is not true in general, and in fact (2.1.2) does

not hold in general, as we show with the following counterexample.

Example 2.1.3. Let (A, F) = (k, E[t]), the exterior Hopf algebra on one generator

over the field k. Then ExtE[t] (k, k) = P[a] where a is the class in homological degree 1,

and k has injective resolution I = (E[t] a E[t] a E[t] -+ ... ) where 0 is the comodule

map taking 1 -+ 0 and t * 1. In D(E[t]) we have

colim(k __' k _a k -... )=colim (12',Ic' I -
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= ... a E[t] a E[t] E[t] - ....

This is acyclic, and hence zero in D(E[t]). So the right hand side of (2.1.2) in this case

is zero, and the left hand side is a-1 ExtE[t](k, k) - k[a'] by definition.

We would like to fix this problem with the derived category and work in a category

such that localized Ext groups can be described as Horn-sets between localized objects.

More precisely, we would like to work in a category A such that:

(1) If M and N are F-comodules, then HomA(M, N) = Extr(M, N).

(2) We have x- 1 Extr(M, N) = Hom(M, x- 1 N).

(3) The category A is a stable homotopy category in the sense of Definition 2.1.2.

The correct choice of A is called Stable(F); there are three equivalent constructions.

First we need some preliminaries. Given a category C, the Ind construction Ind(C) is

designed to force

HomInd(c)(X, colim Y) = colim HomInd(c) (X, Yi)

where colim Y is a filtered colimit. More precisely:

Definition 2.1.4. Given a category C, let Ind(C) be the category whose objects are

diagrams F : D -+ C where D is a small filtered category, and if F : D -* C and

F' : D' -* C are objects, then

HomInd(C) (F, G) = lim colim Homc (F(d), F'(d')).
dED d'ED'

By design, there is a full and faithful embedding C -+ Ind(C) such that objects in the

image are compact in Ind(C). This suggests we define Stable(F) = Ind(D(F)), but

we still need to satisfy (2.1.1). The following lemma provides some intuition for the

definition.
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Lemma 2.1.5 ([BHV15, Lemma 2.15]). If 9 c C is a set of compact generators of C,

then

Ind(Thickc())~ LocThickc(g) (0

Definition 2.1.6 ([BHV15, Definition 4.8]). Let 9 denote the set of dualizable F-comodules,

and let ThickD(v)(g) denote the thick subcategory of D(F) generated by the image of

9 in D(F). Then define

Stable(F) = Ind(ThickD(F) (9))

It turns out that this is equivalent to the following, somewhat more concrete, construc-

tion:

Definition 2.1.7. Define K(Inj F) to be the category whose objects are unbounded

complexes of injective F-comodules, and whose morphisms are chain complex morphisms

modulo chain homotopies.

Since D(F) is cocomplete, the universal property of the Ind construction gives rise to

a functor Stable(F) --* D(F), which can be regarded as a left Bousfield localization

functor. The claim is that this functor factors through K(Inj F)

Stable(F) D(F)

K(Inj F)

and the functor Stable(F) - K(Inj F) induces an equivalence of categories under certain

hypotheses.

Theorem 2.1.8 ([BHV15, Proposition 4.17]). Suppose A is Noetherian, F is flat over

A, and every compact object in the image of Comodr is in ThickD(p) (A). Then there is

an equivalence of categories Stable(F) ~ K(Inj F).
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The conditions on the theorem are satisfied for the Hopf algebroid (R., RR) if R.R

is commutative and R is Landweber exact over MU or over the quotient of BP by a

finite regular invariant sequence (see [BHV15, after Definition 4.14]). Examples of R

satisfying this condition include HFp and BP.

There is a third way of thinking of this category:

Remark 2.1.9. Under a niceness assumption on (A, F) satisfied by Adams Hopf

algebroids, Hovey [Hov04] constructs the homotopy model structure on Ch(F) as a

localization of the projective model structure and shows that its homotopy category

is a stable homotopy category in the sense of Definition 2.1.2. In [BHV15, 4.5] it is

shown that this homotopy category is equivalent to Stable(F) as defined above.

Warning 2.1.10. Let A denote the Steenrod algebra, or more generally any algebra

that can be expressed as a union of Poincar6 algebras. In [Mar83, Chapter 14 1],

Margolis defines an enlargement StMod(A) of the category of A-modules that he calls

the "stable category." Its objects are left A-modules and its morphisms are A-module

morphisms modulo those that factor through a projective module. One might wonder

if this agrees with the dual of the definitions of stable categories of comodules above,

but this is not true in general; see [BK08] for a discussion of the difference between

StMod(kG) and the category K(Inj kG) of chain complexes of injective kG-modules

up to chain homotopy. In particular, StMod(kG) is equivalent to the subcategory of

K(Inj kG) consisting of acyclic complexes.

Theorem 2.1.11 ([HPS97, Theorem 9.5.1], [BHV15, Lemma 4.21]). Under the hy-

potheses of Theorem 2.1.8, Stable(F) is a stable homotopy category in the sense of

Definition 2.1.2, and if M and N are 1-comodules, then

Extr (M, N) '-' Homstable(r)(M, N).
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Moreover, (2.1.2) is satisfied, and hence x- 1 Extr(M,N) = Homstabe()(Mx-1 N),

because all objects in the image of Comodf are compact by definition of Ind.

Remark 2.1.12 (Symmetric monoidal structure). For concreteness, suppose we are

using the K(Inj F) model of the stable category of F-comodules. If X and Y are objects

of Stable(F), it is clear that the symmetric monoidal product X 0 Y should be the

tensor product of chain complexes-that is, (X 0 Y)n =E i Xi 0 Y-but we need to

give it the structure of a chain complex of F-comodules. We define the F-coaction on

Xi 0 Y to be the diagonal coaction, namely

where the F-coaction on Xi and Y are given by b(x) = Z x'x" and 'b (y) = I y'y
A

respectively. We write Xi 0 Y to denote this tensor product as an object of Comodr

with the diagonal coaction, and write X 0 Y for the tensor product of chain complexes

with the levelwise F-comodule structure given by the diagonal coaction.

Notation 2.1.13. The idea is that Stable(F) behaves enough like Ho(Sp) that we

should be able to port over a large amount of classical homotopy theory for the study

of Stable(F). To emphasize this analogy, we adopt the following notation and make the

following observations:

e As k is the unit object in Stable(F), write

7r**(X) = Homstable(r)(k, X)

for an object X of Stable(F). We assume that F is a graded Hopf algebra, and hence

objects of Stable(F) are bi-graded: the first grading in 7r*, will refer to homological

degree from regarding X as a chain complex in K(Inj F), and the second grading

will refer to internal degree. If M is the Stable(F) representative of a F-comodule,

then irs,,(M) = Ext't (k, M).
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* As in topology, write X,,X = 7r,,(X 0 X).

* Notice that the analogue of the homotopy groups of spheres in this category is

Extr(k, k) (self-maps of the unit object). In particular, if F = A, then this is the

E2 page of the Adams spectral sequence for the sphere, and if Y is a (topological)

spectrum, Ir**(H*Y) = ExtA(k, H*Y) is the Adams E2 page for Y. The idea to take

tools originally designed to study (classical) homotopy groups, and construct them

internally in Stable(A) so they can be used to study Adams E2-pages 7r*(H.Y).

In the next section, we will extend this analogy and define a version of the Adams

spectral sequence within the category Stable(F). In Section 2.3 we will extend this even

further and talk about analogues of chromatic homotopy theory in Stable(A).

2.2 The Margolis-Palmieri Adams spectral sequence

Let E be a (classical) ring spectrum and X a finite spectrum, and let E be the cofiber

of the unit map S - E. Recall that the classical Adams spectral sequence

El = E*(E AX) == 7r*XE

is constructed by applying 7Tr(-) to the tower of fiber sequences

-A2
X+ . EAX+ . E AX< ..-

EAX EAEAX E A EA 2 A X

where the fiber sequence

E A A X s+1 A X

-AsEAE AX
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is obtained by smashing

E

with E^F A X on the right.

Proposition 2.2.1. If EE is flat as an Em-algebra, then one can define the structure

of a Hopf algebroid on (E,, E,,E) as follows:

" The left and right units come from applying 7r, to the maps E A S - E A E and

S A E -* E A E, respectively.

" The antipode comes from applying 7r, to the swap map E A E -+ E A E.

" The counitF : r,(E A E) -> 7rE comes from applying 7r, to the multiplication map

on E.

* For the comultiplication, note that there is a natural map EEO E. E, E -+ E,(E A E)

induced by 7rT(E A E) 0 wr,(E A E) --+ -r*(E A E A E A E) A ~ g,(E A E A E). The

flatness condition implies that this map is an isomorphism. Then the coaction on

EE comes from the composition

wr*(E A E) - .r(E A E A E) <- EE EO® E*E

where a is induced by the ring spectrum map E A E -- E A S -+ E -+ E A E A E.

In this flat case, we have

E2 = EXtE.E(E*, EX).

Definition 2.2.2 ([Pal01]). Given a monoid object ("ring spectrum") E in Stable(F)

and another object X in Stable(F), we can define an analogous tower of fibrations

in Stable(F) and apply the functor Homstable(r) (A, -) =7(-), obtaining a spectral

sequence with E1 = E*(E® OX) abutting to 7r*X. We call this the E-based Margolis-

Palmieri Adams spectral sequence for computing rr X, henceforth abbreviated as
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MPASS.

Remark 2.2.3. The unit map X -* E 9 X is given by m '-4 1 0 m. One can check

that this respects the F-coaction since E 0 X is endowed with the diagonal F-coaction

(see Remark 2.1.12).

As in the classical case, if E**E is flat over E*,, then we can define a Hopf algebroid

structure on the pair (E*,, E**E) analogously to Proposition 2.2.1. In this case, the

MPASS has E2 term

E2 = EXtE**E(E, E**(X)).

This Adams flatness condition is satisfied in the following common situation.

Proposition 2.2.4 ([Pal01, Proposition 1.4.6]). Suppose f : (A, F) -+ (A, E) is a

map of Hopf algebroids such that ( := nrw.A is a subalgebra of F, and such that the

E-coaction on (D (defined by composing the F-coaction on (D with f) is trivial. Then

(II, 44F)is flat.

Proof. We have

(D*( = Ext*(A, (F ErA) 0 (F oErA)) c Ext* (A, ForA)

by the variant of the change of rings theorem in Corollary 3.1.10, and by the hypothesis

about the coaction, this is Ext*(A, A) 0 D L @,* 0 (. F

We will eventually use this machinery in the special case where (A, F) = (F3, P), where

P = F 3 [61, 2,...] is the reduced powers; our ring spectrum E will be b- 1 (P [F r F]/ 3),

which does not satisfy the hypotheses of the above proposition, but will end up satisfying

flatness regardless due to special properties of working in characteristic 3.

In the world of classical homotopy theory, in general the Adams spectral sequence
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converges not to 7rX but to the E-completion lr*(X)E. However, in Stable(F), a

connectivity argument shows that the inverse limit of the Adams tower is contractible

in most of the cases we care about, and so in these cases the spectral sequence converges

to ir**(X). More precisely:

Proposition 2.2.5 ([Pal0l, Proposition 1.4.3]). Suppose (A, F) is a Hopf algebra where

A is a field. Let E be a ring spectrum satisfying the following conditions:

* irij(E) = 0 if i < 0 or j - i < 0;

" the unit map q7 induces an isomorphism on 7ro,o;

" p* : 7o, 0E 0 7o,oE -- 7oo induced by the multiplication map [t is an isomorphism;

* the homology of the chain complex E is a finite-dimensional k-vector space in each

bi-degree.

Also suppose X is weakly connective: that is, there exists io and jo such that 7rijX = 0

if i < io or j < Jo. Then the MPASS converges to ,rw* (X).

Remark 2.2.6. There is an alternate construction of the Adams spectral sequence as

the spectral sequence associated to the augmented cosimplicial spectrum

1
7L

X >EAX <EEA X EAX EAEAEAX ... (2.2.1)
71R

(For more about this approach, see [LurlO, Lecture 8] or [Pet16, 3.1].) This is the

cosimplicial spectrum associated to the monad arising from the free-forgetful adjunction

F : SpTz- ModE : U
FXi-+E AX.

One can obtain a spectral sequence in Stable(F) analogously: let E be a monoid object

in Stable(F). Then there is a free-forgetful adjunction Stable(F) ModE as above,

where ModE denotes the category of E-modules in Stable(F), and the free functor sends

X -4 E X. The MPASS is the spectral sequence arising from the resulting augmented
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cosimplicial object.

2.3 Nilpotence and periodicity in Stable(A) and Stable(P)

In this section we continue our review of homotopy theory constructions that can

be performed internally in Stable(F), focusing on analogues of the nilpotence and

periodicity theorems of Devinatz, Hopkins, and Smith, which form an important part

of the foundations of chromatic homotopy theory. First we state the original theorems,

whose setting is the category Sp f of finite p-local spectra for a fixed prime p, and

then discuss partial analogues in Stable(F), focusing on the cases where F is the dual

Steenrod algebra A or the Steenrod reduced powers P. In the last subsection, we discuss

a relationship between some periodicity operators over Stable(A) and the classical

theory of E2 vanishing lines, and show how our project of computing b-1 Extp(k, M)

for P-comodules M can be viewed in a chromatic framework as the first chromatic

localization in Stable(P).

Fix a prime p and let Sp f denote the category of p-local finite (classical) spectra. The

nilpotence and periodicity theorems are about a collection of ring spectra K(n) for n > 0

with K(n), = F_[vf] which detect nilpotent maps, parametrize thick subcategories of

Sp ", and describe vanishing lines in Adams spectral sequences.

Theorem 2.3.1 (Nilpotence theorem, [DHS88, Theorem 1], [HS98, Theorem 3]). The

collection {K(n)},>o detects nilpotence:

(1) Given a p-local ring spectrum R, an element a E rR is nilpotent if and only if

for all 0 < n < oo, K(n),(a) is nilpotent.

(2) A self-map f : EkX -- X (for X in Sp!fl) is nilpotent if and only if K(n)"f is

nilpotent for all 0 < n < o.

(3) A map f : F -* X from a finite spectrum to a p-local spectrum is smash nilpotent
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if and only if K(n),f = 0 for all 0 < n < oc.

There is also a single spectrum BP that detects nilpotence in an analogous sense.

Theorem 2.3.2 (Periodicity theorem, [HS98, Theorem 9]). Given a finite p-local

spectrum X, if K(n),(X) f 0 and K(n - 1),(X) = 0 then there is an essentially unique

self map ZKPI : X -+ X (for some i) such that the induced map K(n),(X) --+ K(n).(X)

is multiplication by vi (or, in the case n = 0, multiplication by a rational number), and

the induced map K(m),(X) - K(m),,(X) is zero for m > n. We call this a vn-map.

Theorem 2.3.3 (Thick subcategory theorem, [HS98, Theorem 7]). The poset of thick

subcategories of Spfi is the system

Sp f=Co C1 2 C2 2 ...

where C, is the subcategory of Spp" generated by the spectra X such that K(n- 1),X = 0.

We say that X has type n if it is contained in C, and not Cn+1 . This filtration gives

information about the Adams spectral sequence:

Theorem 2.3.4 ([HPS99]). If X has type n, then the E.. page of the Adams spectral

spectral sequence Ef'(X) = ,r,(X) has a vanishing line of slope

1 1

|Tn| -1 2pn-2

These theorems touch on deep structure in Spf", and so one does not expect them to

generalize easily to an arbitrary stable homotopy category C in the sense of Definition

2.1.2. In the classical setting, most of the work is in proving the nilpotence theorem, and

the thick subcategory theorem and periodicity theorem follow from it with a somewhat

more formal argument. A version of the thick subcategory theorem in the setting of

stable homotopy categories, assuming the existence of a nilpotence theorem, can be
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found in [HPS97, Corollary 5.2.3], but the hypotheses on the nilpotence-detecting family

are not satisfied in Stable(A); indeed, we will see that the thick subcategory poset is

more complicated than the nilpotence-detecting family.

It is, however, a general fact about stable categories that Adams E, vanishing lines are

related to a thick subcategory classification: an object X has an Adams E, vanishing

line of a given slope if and only if every object in Thick(X) has a vanishing line of that

slope. (In fact, the proof of Theorem 2.3.4 amounts to proving this assertion, and using

the fact from [HS98, 4] that for every n, the finite type n spectrum constructed by

Smith in [Smi92] has the indicated vanishing line on its Adams E2 page.)

There is a large body of work (see [Mar83], [Pal01], [Pa194], [BH17], [Kra18]) focused

on finding analogues of Theorems 2.3.1-2.3.4 in Stable(F) for various Hopf algebroids

(A, F) of interest.

2.3.1 Nilpotence, periodicity, and thick subcategory theorems

for Stable(A) and Stable(P)

Recall that the mod-2 Steenrod dual has the form A= F2 [ 1 , 2,...], and for p > 2 the

mod-p Steenrod dual has the form A = Fp[1, 2 .... ] E[To, T1 ,... ]; for p > 2 recall the

dual Steenrod reduced powers algebra is P = F[1, 2,...]. In this subsection we will

state theorems and conjectures by Palmieri on the structure of the thick subcategory

poset and a nilpotence-detecting family, and describe how a subset of that family relates

to vanishing lines in Adams E2 pages.

For A at p = 2 and P for p > 2, we have both an analogue of BP and of the collection

of K(n)'s. Recall that an elementary Hopf algebra is a tensor product of Hopf algebras

of the form F ,[X]/X 2 and F, [x]/xP' for primitive generator x.

Theorem 2.3.5 (Palmieri, [Pal01, 2.1.7, 5.1.5, 5.1.6, 5.1.7(f)], [Pal96a, 4.2, 4.3], [Pa196b,
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5]). Let p = 2 and let

E(r) = F2[ , ir+1 i +2 .... ]/(r , rp , 2 -... )-

(These are the maximal elementary Hopf algebra quotients of A.) The collection of ring

spectra {A E E(r)F2} detects nilpotence in the same sense as Theorem 2.3.1, except (1)

is an "if" instead of an "if and only if." Furthermore, let C = A/( 2, 1,1,... ); then

A C0 F2 detects nilpotence in Stable(A).

At p > 2, let

Q(r) = Fp[G, G+1, 7r+2,.. ]/(, Ier ).

Then the collection {fP OQ(r)IFp} detects nilpotence in a sense made precise in [Pal96a,

Theorem 4.3]. Let C' = P/(e,2 2, ,... ). Then P Ec'Fp detects nilpotence over P in

a sense made precise in [Pal96a, Theorem 4.2].

(The issue with the other direction of (1) is a finiteness issue-there might be infinitely

many elementary quotients.)

Conjecture 2.3.6 (Palmieri, [Pal01, Conjecture 5.4.1]). Let p > 2. Let Q be the

collection of quasi-elementary quotient Hopf algebras of A (see [Pal01, Definition

2.1.10]), which includes the maximal elementary quotients

E(-1) = E[o, T,...]

E(r) = A/( , ... , , 1 , ,2 ,... ; , T ... , Tr).

Then the collection {A EEFp : E Q} detects nilpotence in Stable(A). Furthermore,

if we write C = A/(P, 2 p , ... ) then A ZcFp detects nilpotence in Stable(A).

The thick subcategory conjecture below is reminiscent of the classical theorem that the

thick subcategories C,, of Sp " are in bijection with the invariant ideals of TrBP.
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Conjecture 2.3.7 (Palmieri, [Pal99, Conjecture 1.4], [Pal01, 6.7.3]). The thick sub-

categories of finite A-modules are in.one-to-one correspondence with radical ideals of

wr**(A ocFp) = Ext* (Fp, Fp) satisfying a finiteness condition that are invariant under

the coaction of A EcFp. In particular, an invariant ideal I gets sent to the full subcate-

gory generated by finite objects X such that I(X) -> I, where I(X) is the radical of

the ideal

{y E 7r*,(A EcFp) : X -+ (A mcFp) 0 X is null}.

For y E 7r, (A ocFp), there is a notion of a "y-map" similar to the classical va-maps,

though with some technical differences (see [Pal0l, Definition 6.2.1, Remark 6.2.2,

Definition 6.2.5, Lemma 6.2.6] for details). The analogue of the periodicity theorem is:

Theorem 2.3.8 (Palmieri, [Pal01, Theorem 6.1.3, Theorem 6.2.4]). Let p = 2 and

let X be a finite object in Stable(A). For every y E 7r**(AmcF2) that maps to an

A-invariant element of 7ir*(AacF2)/I(X), X has a y-map that is central in the ring

[X, X])*. Furthermore, the collection of objects having a y-map (for fixed y) forms a

thick subcategory of Stable(A).

The theorem is only proved at p = 2, in part because there is no known classification of

quasi-elementary Hopf algebras, but one can conjecture analogous behavior for A at

p > 2 and for P.

2.3.2 Vanishing lines

Unlike BP*, the ring 7r*,(A EcF) is very complicated, which is an impediment to

studying periodicity operators y. The Morava K-theory analogues A EQ(,)Fp and

A EE(r)Fp of Theorem 2.3.5 and Conjecture 2.3.6 are much more tractable, though not

as simple as classical Morava K-theories. In particular, for p > 2 every generator in
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E(r) is primitive in the cobar complex CE(r) (IFp, FI), and so we have

7r**(AEzE(r)Fp) = ExtE(r)(Fp, i)

= E[hr+i,j : 1 < i, 0 < j < r] F P[br+i,j, r+i : 1 < i, O <j r].

Moreover, one can show (see [Pal0l, Proof of Proposition 5.3.4]) that for every v" and

bei with s < t, there are powers b'') that lift to 7r.*(A ocFp). In this subsection,

we will discuss spectra that have bts- and vn-maps, and show how this relates to the

classical theory of vanishing lines in (topological) Adams spectral sequence E2 pages.

For s < t, let K((e") := b-(Ao Fp) denote the colimit

F bt ~ bt,

colim (A OD Ps]] A 
- *]FP .

and similarly for K(Tn) v;j(A EE[T]Fp), where EXtA EE[ 1 (FI , ' F) = ExtE[[]-(Fr, F ) =

P(vn). Define the indexing set

T = {{}4s<t U {Tn}n>O

and order them by degree s, defined by

S- pS+C'p _ 1)2

s(-Fn) = I 1= 2 p" - 1.

While the objects K(v) for v E _ do not belong to the nilpotence-detecting family

of Conjecture 2.3.6, they look like Morava K-theories in the sense that they are

non-connective spectra with simple coefficient rings: by the change of rings theo-

rem we have 7r,,(K((tP)) = b- 1 Ext[s (FpI Fp) = E[hts] 0 P[b' 1 ] and 7r,(K(Tn)) =

-1 EXtE[r] (Fp, Fp) = P(vg1 ). More importantly, we will see that they detect spectra

with bts- and vn-maps. Say that X is type d if K(v),X = 0 for all v E _T with s(v) < d

and K(v),X = 0 for (the unique) v E _T such that s(v) = d.
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Theorem 2.3.9 (Palmieri, [Pal01, Theorem 2.4.3]). Let X be a finite object in Stable(A)

of type d. If s($J, ) = d then X has a non-nilpotent bt,-map; if s(m,) = d then X has a

non-nilpotent Vn-map.

By Theorem 2.3.8, the collection of all such X forms a thick subcategory, and by

[HPS99], given a vanishing plane in the MPASS E,, page for one such X, any other

X has a vanishing plane parallel to the first. For every n, Palmieri constructs an

object of Stable(A) with a v,-self map, and shows it has an E2 page vanishing plane

s > -JTr,(s + t) + u ([Pal0l, Theorem 4.4.1]).1 Since Adams filtrations are non-

negative and Et',u converges to rs+t,u(X), this shows that 7rs+t,u(X) = 0 when 0 >

- I r(s + t) + u. This recovers the following classical theorem, which classifies vanishing

lines in (topological) Adams spectral sequence E2 pages, in the case where d = s(Tn)

for some n; the construction and analysis of an (algebraic) object of type s((fj) would

give a proof of the other case.

Theorem 2.3.10 (Miller-Wilkerson, [MW81]). Let M be an A-comodule of type d.

Then Ext"t (F , , M) = 0 for s > d (t - s) + c for some intercept c.

Remark 2.3.11. In topology, a spectrum has a vn-map for only one n. Here, this is

not the case: for example, at p > 3 the Smith complex V(1) has an E. page vanishing

line of slope by Theorem 2.3.4, but has a higher slope vanishing

1 1
line = 1 in its E2 page, parallel to which bio acts non-nilpotently. This

s() - 1 =p 2 - p
illustrates the fact that HV(l) has not only a v2-map inherited from topology, but also

a bio-map. One can see this phenomenon even with the unit object F, in Stable(A): it

has a vo-map inherited from topology, but also a bio-map (see Proposition 2.3.12).

Working over P instead of A, we also have a similar family of "easy" periodicity opera-

tors that come from the nilpotence-detecting families. To compute 7r**(P EQ(r)Fp) -

'Note that our grading convention for Adams spectral sequences is different from Palmieri's: we
are using s to denote Adams filtration, t to denote internal homological degree in Stable(A), and u to
denote internal topological degree. If we write Palmieri's grading as (sp, tp, up) and ours as (s, t, u)
then (sp, tp, up) = (s, u - t, t).

42



ExtQ(,) (F,, F,) we note that every generator ((; of Q(r) is primitive in the cobar com-

plex except A( 2 r+i) = P" 0 ." for i > 1. So we have

7r**(P EQ(r)Fp) = Fp[hr+i,O, hr+j,k, br+i,O, br+jk 1 < i < r 1 < j, 1 < k < r - 1]/(h,+2o,h,+,k)

@~~~~rio Exro(,j2~,(: k)®9 Ext(D ~ ~p ~ (k, k).k)u

Furthermore, I claim brO is non-nilpotent in 7r**(P EQ(r) k) = Ext*g,)(k, k) using the

same argument as Proposition 2. 12, using the comparison Q(r) -+ D[r]. One can

show, as for A, that powers of the periodicity operators bt, lift to 7r**(PocF, ). In

particular, bio is the operator with the lowest degree, and in the next proposition we

show that F, has type s( 1) as an object of Stable(P).

Proposition 2.3.12. Let p > 2. The element b10 = [O<i<p ()[J i] is non-

nilpotent in Ext*p* (Fp, F,) and in Ext** (F,, F,).

Proof. The Hopf algebra maps A -+ D and P -- D give rise to graded ring maps

Ext*A(k, k) -+ Ext*(k, k) and Ext* (k, k) -* Ext* (k, k). Since bio has cobar formula

pO<i<p () 0 in CA(k, k), Cp(k, k), and CD(k, k), these maps take bio to bio,

and hence take by0 to b' 0 for any n. Since bio E Ext*(k, k = E[h1 0] 0 P[bio] is non-

nilpotent, so are bio c Ext2(k, k) and bo C E xtP(k, k). l

Remark 2.3.13. This shows that the unit object F, of Stable(P) has a bio-map. The

main goal of Chapters 4 and 5 is to study b-1 Extp(F3 , F3 ), and by the discussion above,

we can think of this as a chromatic localization of the unit object F3 in the category

Stable(P) with respect to bio, the first periodicity operator acting on F3 -
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Chapter 3

Spectral sequence comparisons

In this chapter we discuss the relationship between three spectral sequences for comput-

ing Ext groups over a Hopf algebra F: the MPASS introduced in the previous chapter,

a particular filtration spectral sequence on the cobar complex of F, and the Cartan-

Eilenberg spectral sequence. In order to define the third spectral sequence, one needs

to start with the data of an extension of Hopf algebras 4 -+ F --+ E; this then produces

a spectral sequence

E*= Ext *(k, Ext* (k, k)) => Ext *(k, k).

If E is a conormal quotient of F, then Palmieri [Pal0l, Proposition 1.4.9] shows that

the Cartan-Eilenberg spectral sequence agrees with the 4-based MPASS. However, the

MPASS is more general than this: given any F-comodule-algebra I-not necessarily a

Hopf algebra-one can study the G-based MPASS computing Extr(k, k). In Section 3.2

we discuss a modification of the construction of the Cartan-Eilenberg spectral sequence

that permits it to be defined in this setting, though (as in the case of the MPASS)

more conditions are necessary to show it has the desired E2 term. We show that this

more general Cartan-Eilenberg spectral sequence coincides with the MPASS at El.

This involves some nuances of the cobar resolution, so we give a careful account of its

construction in Section 3.1.
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Furthermore, it is known [Ada60, 2.3] that the usual Cartan-Eilenberg spectral sequence

coincides with a certain filtration of the F-cobar complex that depends on <1. This

filtration can be defined when (1 is a sub-F-comodule-algebra of F, and in Section 3.3 we

show that the filtration spectral sequence coincides with the Cartan-Eilenberg spectral

sequence defined in Section 3.2.

Our main interest in this setting comes from our desire to study the bJ B-based MPASS

for computing b- 1 Extp(k, k) = Homb- stable(P)(k, k), where B = P DD[ 1 ] k. In Chapters

5 and 6, we will find each of these three computational tools convenient at different

points, and will make use of their equivalence.

Notation 3.0.1. Given a Hopf algebra F and a left F-comodule M, we will write

E m' o m" := 0(m) and E -y' 0 -y" := A(-y) for m E M and 7 C F when there is no

ambiguity which coaction is in play.

We also will need notation for the iterated coproduct F F n+l and coaction M +

FO 09 M; we will write E m(1) .... m(n+l) := on(m) and E 7(1)J ... V-(n+l) := An(-).

(Note that this notation is well-defined because of coassociativity.)

For example, A()Y) = 1 '1 " = E Y(1)h7(2), and E A(7(1))1K(2) = E 7(1)J7(2)|7(3)

We will make extensive use of the following identities, which are part of the definition

of a Hopf algebra.

Fact 3.0.2. Let F be a Hopf algebra with antipode c, comultiplication A, unit Yq, and

coaugmentation E.

(1) (Coassociativity) E (x')' & (x')" 0 x" = E x' 0 (x")' 0 (x" )"

(This fact is used to make the notation above well-defined; in that language, this

just reads X(i) 0 X( 2) 0 X( 3 ) = X X(1) 0 X(2) 0 X( 3)-)

(2) E c(x')x" = E(x) = E x'c(x")
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s)E (X') 0 X"= X

(4) E c(x)'c(x)"= E c(W") c(')

3.1 The cobar complex and the shear isomorphism

3.1.1 Constructing the cobar complex

Let F be a commutative Hopf algebra over k, N a left F-comodule, and M a right

F-comodule. The cobar resolution Dr(N) is a particularly nice F-injective resolution

for N; the cobar complex Cr(M, N) is the complex obtained by applying M Er- to

the cobar resolution. The cohomology of the cobar resolution is Extr(M, N). We

will discuss two isomorphic constructions of the cobar resolution (denoted D*(N) and

* (N)), as they are both common in the literature; the isomorphism connecting them

is the shear isomorphism, which we discuss first.

Definition 3.1.1. Let M and N be left F-comodules, with coaction denoted by 0(m)

m' 0 m" and 7P(n) = E n' 0 n". There are two natural ways to put a F-comodule

structure on their tensor product M 0 N: the left coaction M 0 N --+ F 0 (M 0 N)

is given by m 0 n - im' 0 m" O0 n, and the diagonal coaction is given by m 0 n

> m'n' 0 " 0 n". To distinguish these, we write M 0 N for the tensor product M 0 N

endowed with the left F-coaction, and M 0 N for the diagonal coaction.

For a pair of right F-comodules one can analogously define the right and diagonal
R? 

Acoactions, denoted 0 and 0, respectively.

These constructions agree in the following special case:

Lemma 3.1.2 (Shear isomorphism). If M is a left F-comodule, there is an isomorphism
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A L

S: IF 0 M -* F 0 M given by:

S: a 0 m i S am' 0 M"

S-1: a 0 m - 5 ac(m') 0 m"

where c is the antipode on F. Analogously, if M is a right F-comodule, there is an

isomorphism S, : M 0 F - M 0 F given by:

Sc: m 0 a 5 i' 0 in"a

S-1 : m 0 a E m'/ c(m")a.

Proof. We prove just that the pair (S, S-1) are actually inverses; the statement for S,

is analogous. First we prove that S o S- = 11. We have

S(S-1 (a 09 m)) = S(E ac(m') 0 m")

= ac(in')(in")' 0 (mn")"

= ac(m(1))M(2) 0 m(3 )

= 5a(m(1)) 0 m(2)

=5a 0 in

where the fourth equality is by Fact 3.0.2(2) and the last equality is by Fact 3.0.2(3).

In the other direction, analogous application of Hopf algebra properties yields:

S-1(S(a 0 m)) = S- 1(E am' 0 M")

= 5 am'c((m")') 9 (m")"

= 5 am(1)c(m(2)) 0 M(3 )

= [ aE(m(1)) 0 m( 2)

= aO m. E
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To define the first version D*(N) of the cobar resolution of N, observe there is a free-

forgetful adjunction

U: Comodrf-- Modk : F.

L

The free functor F sends N '-+ F 0 N with unit n - Z n' 0 n" where the F-coaction

on N is written 0 (n) = n n' n n". We can form an augmented cosimplicial object from

the monad FU:

N (3.1.1)

D; (N) = (F0N+P-F 9F( ... )
172

173

The codegeneracies pi are multiplication of the i t and (i + )s' copies of F, and the

coface maps qi are given by insertion of 1 into the ith spot. The second version of the

cobar resolution arises from a second augmented cosimplicial object:

N (3.1.2)

I A 1
L L A L LL L

Dr(N) = (F .. . )

Here the codegeneracies Ei come from applying the coaugmentation E to the ith spot,

and the coface maps A\ : F" 0 N --+ F®+ 1 0 N for 1 < i < n come from applying A

to the ith slot; the last coface map comes from the coaction b : N -÷ F 0 N.

Remark 3.1.3. If N were a right F-comodule, we could have built analogous cosimpli-

cial objects N 0 F®.+' and N 0 F® D IF. To avoid too much notational clutter, we will

use the same notation in these cases: if N is being thought of as a right F-comodule,

the symbol Dr(N) will mean the aforementioned cosimplicial object, and if N is a left
A

IF-comodule, Dr*(N) will mean the cosimplicial object in (3.1.1).
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Definition 3.1.4. The (non-normalized) cobar resolution D*(N) is the associated
AA 

A

chain complex of D;(N) (that is, the complex f®*+ 9 N whose differentials are an
Aalternating sum of coface maps in Dr (N)). Similarly, define D*(N) to be the associated

L

chain complex of Dr (N).

Definition 3.1.5. The (non-normalized) cobar complex CJ*(M, N) is the complex
ALM orD*(N). Similarly, define Cj (M, N) = M Evr D(N).

Remark 3.1.6. The cobar differential most commonly used in cobar computations,

L 

Ae.g. as in [Rav86, A1.2.11], is COf(M, N), not Cjf(M, N) (and Ravenel's Cr(M, N) there

refers to (a normalized version of) CJ(M, N)). Since the differential in Cj(M, N) looks
L

simpler than the one in C(M, N), one might wonder why we don't use the former in

computations instead; one issue is that the complication resurfaces when trying to write
A 

L

down an individual term C,'(M, N) explicitly; by contrast, C'(M, N) - M 0 F®O 0 N

is easy to work with. Another reason the CO(M, N) version is preferred is that it only

uses the coalgebra structure of F.

3.1.2 More on the shear isomorphism

The isomorphism Dr(N) D Dj(N) is given by the iterated shear isomorphism:

A A A A L S AA LLA

Sn : FponM = F "-® (F M) % F® 1"-(F®M) -+ F®n2 O(F®F®M) - ... -+ F®"®M.

We will need an explicit formula for this.

Lemma 3.1.7. The iterated shear isomorphism Sn : F~ 0g M -+ F 0 F®"-1 0 M is

given by

S" : X11 ... Xnm - X1(1)X 2 (I) ... Xn(1)m(1)IX 2 (2) ... Xn( 2)m( 2)1X3 (3) ... Xn( 3 )m( 3)1.. . fm(n+l)-
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The iterated shear isomorphism S,' : M $ FO' -- M 9 p n-1 9 F is given by

Sn : mJXn|. . . m() Im(2 )Xn(l) |m(3)Xf(2)Xfl1() . Im(n+1) (n_)Xf1(n_1) . . . (2) X.

Proof. We prove just the first statement, as the second is analogous. Use induction on

n. If n = 2 this is true by definition of S. Now suppose Sn-1 is given by the formula

above. We can write Sn as the composition

FA A s- r

On "$ M o ( I - M) i)F (F "-- 0 M)

and by the inductive hypothesis the first map sends

x1Ix 2 | ... xnrm F- Z1X2(1)X3(1) . .. Xn(l)M()|X 3 (2 ) ... X( 2 )m(2 ). ... |m(n).

If we write this as xly, then the second map sends this to E XiY(i) IY(2); remembering

that the coaction on y just comes from the first component, this is:

EZZXlX2(1)X3() . . . Xn(1)m(1)IX 2 (2 )X 3 (2 ) . - (2)T(2)1X3(3) . .. Xn( 3)mn( 3 )1 ... |m(n+1)-

Lemma 3.1.8. The iterated inverse shear isomorphism S- : F$ ]F - 1 ®&M -- > p OM

is given by

X- : Xi... JXn~Jm - Z xic(')x'c(')xc(x')J ... x$'c(m')Jm".

The iterated inverse shear isomorphism S;-, : M 0 F®"-1 0 F -+ M 0 F®" is given by

S-"n : MJzl ... .X1 L Em'Ic(m")X'nlc(X' )X'1l ... c(X')Xi.

Proof. Again we only prove the first statement, and again this is by induction on n. If

n = 1, this is the definition of S-1 in Lemma 3.1.2.
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Assume the formula holds for n - 1. Write S-' as the composition

s-(n-1) L a A S-1 A A A
Fo( On-1(&m) -- of(r oM) )ro(ro"oM)

and by the inductive hypothesis the first map sends

X1 IX21. ... JXnjM -- E 31|2C(X'3)|I'3'C(X'4)1. .. . X'nC (M') IM".

If we write this as xly, then the second map sends this to E xIc(y(l)) Y(2), which is

XiC((X2C(X'3)X'3'C(X'4) ... XnC (M')M"/)'1) 1 '2'c(X ' )"11( '/')"Itc( '4)" ./ .I |(X"/)"cfm')" (m")

= Xlc(X 2 (1)c(X 3(2 ))X 3(3)c(X 4 (2))X 4(3) . .. c(m(2))m(3)) IX2(2)C(X 3(1)) X3 (4)c(X 4 (1))l

... 1xn( 4)c(m(1))m( 4)

= I xlc(x 2 (1)E(X 3 (2) ... Xn( 2)m(2))) 1X2 (2)c(X3(l)) 1X3( 3)C(X4(l))I

... 1Xn( 3)c(m(1))m( 3)

- xic(X2(l)) X 2 (2)C(X3 (l)) 1X3 (2)c(x 4(l)). ... IXn( 2)c(m(l)) Im( 2).

Here the first equality uses the fact that Z c(x')Ic(x") = E c(x)"Ic(x)', the second uses

the fact that c(x')x" = E(x), and the third uses the fact that E E(x')Ix" = E Ix. E

Eventually, we will work in a setting where q: F -- E is a map of Hopf algebras, and

(b = F ork. In this situation, we will make extensive use of the following lemma.

Lemma 3.1.9. Let M be a F-comodule. Then IFs M C F 0 M inherits a left

F-comodule structure, and the shear isomorphism S : 0 M -+ F 0 M restricts

to an isomorphism

The shear isomorphism S, : M o F - M 0 r restricts to an isomorphism M 0 -b

M orF.



L

Proof. First we check that the left comodule structure on F 0 M restricts to a comodule

structure on F Er M. I claim that both squares below commute:

F M +1 F 9 F 0 M

bg 1(& 1(go1 101(&0

r (9 E M A01 F (S F (9E 0 M

This comes from coassociativity of F, plus the fact that the coaction F -+ E 0 F comes

from composing the comultiplication on F with the given Hopf algebra map q : F - E.

An element is an element of F 0 M that equalizes the left vertical maps. Given an

element a 0 m E F oEM (i.e. an element that equalizes the left vertical maps), we need

to show that V)(a 0 m) lands in F 0 (F ELEM) (i.e. that this element is in the equalizer

of the right vertical maps). This is given by the commutativity of the diagram.

Write M. for M with the trivial E-coaction. Then we have

D M a (F Ek) D M 2 F Er(k® M) FErM7 .

To show S restricts to a map (D 0 M c F oEMn -÷ F EmM, using the same argument as

above it suffices to find a map f such that both of the squares in the diagram below

commute:

F0M S >F0M

0(&1 10101 0(&1 lgv)

FOEOM f >F ( E(9M

Define f : x 0 y 0 z - Z x(z')' 0 y(z')" 0 z". Checking commutativity of the diagram

uses the fact (from coassociativity of A : F -- F 0 F) that E(z')' o (z')" o z" =

E z' 0 (z")' o (z")".

Finally, we show that S-1 : F ® M - F & M restricts to a morphism F oEM -+ F mrM.
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As before, it suffices to show commutativity of

F 9 M S F (& M

0& Io O(D 10101

F OOM >F (& E o M

for some g. Take g to be the morphism x 0 y 0 z -- E xc(z')' 0 yc(z')" o z". It

is obvious that the square obtained by taking the leftmost of each pair of vertical

arrows is commutative, but the other square needs to be checked. The bottom left

composition applied to a 0 m is CB := E ac((m")')' O m'c((m")')" o (in")" and the top

right composition is CT := Eac(m') 0 1 im". We have

CB = ac(m( 2))' m(1)c(m( 2)" M(3)

= ac(n(3)) n()c(m( 2)) iM(4 )

= c(m( 2))|E(m(l)) m( 3)

= c(m())1|m(2) = CT.

Fact 3.0.2(4)

Fact 3.0.2(2)

El

The change of rings theorem

Ext* (M, F mz N) 2 Ext* (M, N)

is a standard result in homological algebra (see, e.g., [CE99, VI.4]). For future reference

we record the following variant, obtained using Lemma 3.1.9.

Corollary 3.1.10 (Change of rings theorem). Let M be a right F-comodule and N a

left F-comodule, and let 1D = IF azN. Then there is an isomorphism

Ext*(M, 4b 0 N) c Ext*(M, N).
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3.1.3 The normalized cobar complex

Finally, we discuss two useful smaller versions of the cobar complex that turn out to be

chain-homotopic to the cobar complex; they are isomorphic to each other, and are both

referred to as the normalized complex.

Definition 3.1.11. Let A* be a cosimplicial object in an abelian category, with associ-

ated complex A*. Define the subcomplex .MA* of A* and the quotient complex QA* of

A* as follows:

n-1

MA n= ker(s' : An - An-1)
i=0

QAn = A" n im(d' : An-1 -+ A').
i=1

Theorem 3.1.12. There are chain homotopy equivalences )VA* ~ A* ~ QA*, and

there is an isomorphism of chain complexes AfA* = QA*. (In particular, we can write

A* = JVA* D DA* for a contractible complex D*, such that QA* = A*/DA*.)

For a proof of this theorem in the dual (simplicial) case, see [GJ09, Theorem 111.2.1

and Theorem 111.2.4].

L

Remark 3.1.13. Note that JVCr(M, N) is just usual normalized cobar complex M 0
-On A -On AO
F 0N aM (F F ON). There is a resolution F I g N of N, but this is

Q(D;(N)), not f(DF*(N)). Instead, by definition we have

rD"(N) = nker( p n+ 1  N c D,(N)
i=O

where pi multiplies the ith and (i + 1)s' factors of F.

la a A
Since Dr*,(N) is defined to be zero in degrees < 0, we have M\DO (N) = IF oN.
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3.2 The Cartan-Eilenberg spectral sequence

3.2.1 Classical Cartan-Eilenberg spectral sequence

Let F be a Hopf algebra. Given an extension of Hopf algebras

(so in particular J = F Erk), a right F-comodule M, and a left @-comodule N, the

Cartan-Eilenberg spectral sequence for computing Cotorr(M, N) arises from the double

complex (F-resolution of M) Er(-resolution of N). If we use the usual normalized

cobar resolutions KD*(M) and MD*(N), the double complex is

I I
... > (M F® F)mr() o N)- + (M I F) Er(®L + ® N) -*...

drOl tdrgl

.. >(M @I"@F) r(4)N* & @'s N)(-hd (M 0 0 I F) Er)(& T's+" & N)>..

(3.2.1)

The signs come from the usual formula for the tensor product of chain complexes, and

satisfy dvertdhoriz + dhorizdvert = 0. The spectral sequence that starts by taking homology

in the vertical direction first has

E1"t = Cotorl (M, ( & , 0& & N)

a Cotort (M, (F oE k) 0 ® N)

a Cotor (M, 0 N).

where the last isomorphism is by the change of rings theorem. For the spectral sequence

that starts by taking homology in the horizontal direction first, exactness of the functor
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(M ® ro 0) Or - gives

E*', 7t H*((MTo* F)Er(® N)) (M®F o 0 F) Or H*(D ON)

and by the exactness of the resolution 4D 0 T(* 0 N of N, this is concentrated in degree

zero as (M 9 rot F) orN. The E2 page then takes cohomology in the t direction,

obtaining E2 L E,,, Cotorr(M, N). This implies that the spectral sequence that

starts by taking homology in the vertical direction first also converges to Cotorr(M, N).

The Cartan-Eilenberg spectral sequence is the vertical-first spectral sequence, and we

have just shown that it has

E t = Cotor'(M, T08 0 N) ==> Cotors t(M, N).

If 4P has trivial E-coaction, then we have El't = Cotor'(M, N)O®D , whose cohomology

is:

E2 = Cotor4),(k, Cotort (M, N)).

The spectral sequence converges because it is a first-quadrant double complex spectral

sequence (see e.g. [McC01, Theorem 2.15]).

Remark 3.2.1. The E2 page is independent of the G-resolution of N and the F-resolution

of M, but the E page does depend on the D-resolution of N.

3.2.2 Weakening the hypotheses

The goal of this section is to remove the requirement that (D be a coalgebra. More

precisely, let F be a Hopf algebra and D be any F-comodule-algebra. The first issue

with defining an analogue of (3.2.1) is that it is unclear what category N should be in,

seeing as there is no such thing as a P-comodule. Furthermore, the cosimplicial object

D,(N) can't be defined, not just for the aforementioned reason but also because the

coface maps are defined in terms of the coproduct on D. To remedy this, let N be a
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F-comodule, and-because we assumed that (D is an algebra-

analogue DI(N) of D;(N):

N

1(N) = (4 0 N D 0 ( 0 N ) 0 4 $ 4 ( N
772

-we can write down the

(3.2.2)

This is a cosimplicial object in F-comodules which is quasi-isomorphic to N.

It can also be described in a more natural way. Since (D is a monoid object in Comodr,

we can define the category Mod, of 4-modules in Comodr. There is a free-forgetful

adjunction

E : Comodr p- Mod, : U

where FE(N) = 4) 0 N. Then (3.2.2) is the cosimplicial object associated to the monad

UFD.

Definition 3.2.2. In this context, define the Cartan-Eilenberg spectral sequence to be

the spectral sequence associated to the double complex

(JVD* (M))or(AID*,(N)).

The spectral sequence is unchanged starting at E1 if we replace the right-most complex

by a chain-homotopic one, and in Section 3.3 we will find it more convenient to use the

complex
A 

( (3.2.3)

By definition, we have the E1 term

Ei't = Cotorr(M,AF1*(N))
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and it converges to Cotorr(M, N) as with the usual construction of the Cartan-Eilenberg

spectral sequence.

Remark 3.2.3. If 4b did have a coalgebra structure, we can also define the spectral

sequence in Section 3.2.1, and it is clear that these two spectral sequences are isomorphic

via the shear isomorphism.

3.2.3 Comparison with MPASS

Theorem 3.2.4. Given a left F-comodule-algebra 4 and a left F-comodule N, the

Cartan-Eilenberg spectral sequence

'* = H*(D*(k) Er(AfDs(N))) ==> Cotor*(k, N) E Fxt*(k, N)

coincides starting at E1 with the 1-based MPASS

E '* =Ext* (k, P (3 D 0 ® N) => Ext (k, N).

Proof. By Theorem 3.1.12, there is an isomorphism of chain complexes KD,(N) a

QD*(N), so instead of the double complex D*(k) Er(A'D(N)) we may use

Di*,(k) or (Q D*(N)) = (1) 0( N).

Let T* be the total complex, defined by T" = Es+t=n

a filtration FS on this total complex as follows:

a

FsOTn F~t+Eo(4D®(D~ ®3N).
s~t=n

5 SO

59

Fp+1 E( .Vs ON). Define



For the associated graded we have:

A a AFO/FSO+lTn = pFfn-so+1 (I 0 0 N)

H*(FO /FsO+lT*) = Cotor* (k, D 0 N).

By definition, the Cartan-Eilenberg spectral sequence arises from the exact couple

H*(FST*) H*(Fs+1T*) (3.2.4)

H*(Fs/Fs+1T*).

Let Xs denote the image of the complex

A A a
A > AN A I -os 2 N ...

in Stable(F) (that is, a complex of injective comodules quasi-isomorphic to the above

complex). Note that the complex represented by X 0 is a F-comodule resolution for N,

and hence is quasi-isomorphic to N; in general, there is a quasi-isomorphism

A A A
qis A -Os A A - As+1 A -Os A

X ~ .ker(® 9 ( 0 N -0 D 9 N)~ O N. (3.2.5)

We can express (3.2.4) as the exact couple arising from applying Cotorr(k, -) to the

cofiber sequence
-Os+1A

XS+1 _+ XS -+ O T N. (3.2.6)

On the other hand, the MPASS comes from the exact couple obtained by applying the

functor Extr(k, -) to the cofiber sequence

A a

-Os+1 A ®0 S A (&
0N - (P 0 N - D 0 N. (3.2.7)

in Stable(F). There is an isomorphism Ext*(k, M) ~ Cotor*(k, M) for all M, so we

are applying the same functor to the two cofiber sequences. Moreover, there is a map
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of cofiber sequences from (3.2.7) to (3.2.6), and by (3.2.5) this is a quasi-isomorphism;

in particular, the induced map of exact couples is an isomorphism. E

3.3 Cartan-Eilenberg vs. filtration spectral sequence

It is a classical fact [Ada60, 2.3] that the Cartan-Eilenberg spectral sequence associated

to the Hopf extension 1 -+ F -* E computing Cotorr(M, N) coincides with a filtration

spectral sequence on the cobar complex Cr(M, N) defined by

FSC (M, N) = {m[ai I ... janjV E Cn(M, N) : #({ai,... , an} n G) > s}

where

G := ker(F -* E).

As G is an ideal in F and the cobar complex C]!F(k, k) is a ring under the concatenation

product, one can say this filtration of Cj*(M, N) = M & C (k, k) 0 N comes from the

G-adic filtration of C* (k, k). In the previous section, we defined a variant of the Cartan-

Eilenberg spectral sequence that makes sense when (D is an arbitrary F-comodule-algebra.

In this section, we will impose the additional condition that there is an inclusion 4 c* F

preserving the relevant structure, and that we can write 4D = F oEk where F -+ E is a

map of Hopf algebras.

Let E,** denote this filtration spectral sequence, and let E,** denote the generalized

Cartan-Eilenberg spectral sequence. We will show that these agree starting at r = 1.

As a double complex spectral sequence can be viewed as a filtration spectral sequence

on the total complex, it suffices to show the following:

Theorem 3.3.1. There is a filtration-preserving chain map

0: e (M A FA+ 1) r (AfD(N)) - C"(M, N)
s+t=n
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A

whose induced map of spectral sequences E,* E,** is an isomorphism on E1 .

Corollary 3.3.2. We have an isomorphism E,** E,** for r > 1.

Definition 3.3.3. Define W as the composition

A A SSR

0: (M 0 F t+) .(((os+1 N) c (M® F o F) Er (F 0 F0 0 N)

SM 9 F s+t o N

where the second map e is defined to be

(mlail ... latla) 0 (b~bil ... bsln) -> E(ab)mT aij ... at~bil ... bsln.

Define 6 to be the restriction of W to (M 9 FOt+1) or (KDs (N)).

In Lemma 3.3.6, we will show that this restriction lands in (MOFot+1) or (F oEG(s) or-N),

where

G(s) := Gr... E hG.
S

We will see that ES'*(M, N) is easy to describe (and in particular it is easy to show that

0 induces an isomorphism Eg'*(M, N) 2 E '*(M, N)), and most of the work involves

identifying E"'*(M, N) (for s > 0) with Eg'*(M, N') for a different comodule N', in a
A

way that is compatible with a similar identification for E,*. More precisely, we will

show that there is a map 3 of chain complexes making the following diagram commute.

'a A 'a A

(M 0 F®*) EvrKD,(G(s) E N) Eg'*(M, G(s) orN) - > E '*(M, G(s) orN)

(M 0 F@*) mr Ds(N) EO'*(M, N) 0 > E'*(M, N)
(3.3.1)

It suffices to show the following:
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(1) 0 is a filtration-preserving chain map;

(2) S-1 gives rise to an isomorphism A(D'(G(s) orN) -* KDs(N);

(3) there exists a chain equivalence / making the diagram commute;

(4) 0 is a chain equivalence for s = 0.

(1) says we have written down a filtration-preserving map between total complexes,

and (2)-(4) allow us to use the diagram to show that 0 is a chain equivalence for all

s > 0. We prove (1) in Lemma 3.3.4 and Corollary 3.3.7, (2) in Corollary 3.3.8, (3) in

Corollary/ Definition 3.3.11, and (4) in Proposition 3.3.13.

Both the structure of the proof and the entirety of (2), the hardest part, are taken

from an argument attributed to Ossa appearing as [Rav86, A1.3.16], showing that

the classical Cartan-Eilenberg spectral sequence coincides with the filtration spectral

sequence under discussion. The only new part we offer is the translation, via iterated

shear isomorphisms, to the generalized Cartan-Eilenberg spectral sequence as defined

in Section 3.2.

Lemma 3.3.4. 0 is a chain map @s+t=n(M F 't+) EDs(N) --+ C(M, N).

Proof. Since S and S, are maps of chain complexes of F-comodules, there is an induced

map on the tensor product of chain complexes

(M ® F*+1 ) & (<D *+1 0 N) -- (M o F*+l) 9 (po*+1 & N)

and since these are maps of chain complexes of F-comodules, this passes to a map on

the cotensor product

(M 9 F®*+1) Er (<Do*+1 9 N) -+ (M O F*+) Er(F*®*+1 o N).
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Then 0 is formed by post-composing with the map

e : (M 9 F t+1) Eir (FOs+® D N) -+ M O Ft+s 0 N

which takes m[ai ... lat]at+1 Obo[bil ... l -bs]n E E(at+ibo)m[a I. ... latbil ... lb,]n. To see

this is a chain map, it suffices to check the following diagram commutes.

(Mo pt+1) []r(s+' 9N) 9* M t 0 79 F 9 ON
d double

complex dcobar

(M (g r(t+1) E,r (&s+2 0 N) 1(9E(&1 ) M 9 IFot s+l (9 N
(9 (M 0 ]p01+2) .. (]p s+1 (D N)'

This requires keeping track of signs: the double complex differential is drO1+(-1)t1d4,

or more explicitly:

ao[ail . . . at]at+1 9 bo[bi ... Ibs]bs+l Z (-)'ao[... I a'Ia '' ... ]at+, g bo[bi I ... lbs]bs+1
i

+ Z(1)+tao [a,. ... lat]at+ i bo[. .. b'I b'' I . ]bs+1

and the cobar differential is

ao[ail ... latbil ... lbs]bs+l Z(-1)ao[a. ... Ia'j a'I ... Jbil ... lbs]bs+1

+ Z(-1)t+ao [a1 ... atibi ... jb'\b'| ... bs]bs+1.

In particular, notice that, on the bottom left composition, the terms corresponding to

ao[... a't+ 1,]a" 1 S bo[... ]bs+1 cancel in M 0 Ft+s+1 9 N with the terms corresponding

to a.[. . .]at+, 0 b' [b'o' ... ]bs+1- 1:

While Wis not filtration-preserving, we will show that its restriction to (M$F t+1) KDr NDs

is.

Lemma 3.3.5. The iterated shear isomorphism S : f1*1 0 N '-+ I7*+1 0 N restricts
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to an isomorphism of chain complexes

S : * N -+ F r ... orF EiN.
*+I

(3.3.2)

Proof. For any F-comodule M, by Lemma 3.1.9 the shear isomorphism gives an

isomorphism (D 0 N - F mEN, and iterating the shear map gives an isomorphism

S+l® 9 N * F oE ... oEF oEN.

s+1
E

a .
Lemma 3.3.6. The iterated shear map S :FOs+1 0 N FO+1 0 N restricts to an

isomorphism Z;(s (N)

Proof. It suffices to check the inclusions S 1 (F or G(s) or N) C AD-s(N) and S (AD(M)) c

F orG(s) orN. For the first inclusion, use Lemma 3.1.8 to observe that

(3.3.3)

and for 1 < i < s we have

/pi (E ac(g') jg'c(g6)jg6'c(g') .... Ig//c(n')|n") = j ac(g')Ig"c(g')| . .. Igi'_ jc(g1)g1'c(g'+1| -. -n

= ac(g')g'c(g) .. . Igi'_E(g)c(g'+jI ... In"

which is zero since gi E G (and so gi k). This shows (3.3.3) is in .AD8 (N).

For the other direction, let xOi ... IXrIn E .ADs(N)

have

C 40s+l 0 N. By Lemma 3.1.7, we

S(xol... xs~n) = xo(l)xl() ... xs(1)n(13|Xi(2)... Xs(2)n(2)IX2(3) . . n(3)I ... n(s+ 2 ).

(3.3.4)

The goal is to show that each component Xk(k+1)Xk+1(k+1) ... Xs(k+1)n(k+1) is in G for

1 < k < s. Since 4D is a left F-comodule, if x c (D then Aj(x) = x(1)f |.. .x(j) and so

x(j) E D. By assumption, all of the xi's are in 4, and since (3.3.4) involves the iterated
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coproduct A'+l(xi) = XimI ... xi(i+l) for every i, we have xi(i+l) E CD. If we could

guarantee Xk(k+1) were in (D, then we would be done (since G = NI). Instead, we show

that the terms where Xk(k+1) = 1 sum to zero.

The terms where Xk(k+1) = 1 are:

O (1) X1(1) ... Xk_1(1)Xk(1) ... (I)n() . Jzk-2(k_1)Xk-1(k_1)Xk(k_1) ... (3.3.5)

1Xkl(k)Xk(k)Xk+1(k) ... Xk+1(k+1)Xk+2(k+l) ... n(,+2)

The assumption that xol ... x, is in AfD,(M) implies that XklXk = 0 (this is where

we use the fact that k > 1), and hence

0 = Ak(Xk-lXi) = .e_1(1)Xk(1). . . 1X 1 (k_1)Xk(k-1) Xk_1(k)Xk(k).

Observing how A(Xk_1Xk) is embedded in (3.3.5), we have (3.3.5) = 0. E

Corollary 3.3.7. 0 is filtration-preserving.

Proof. This is a direct consequence of Lemma 3.3.6. 3

Corollary 3.3.8. There are isomorphisms

KDO)(G(s) oE N) = 4 0 (G(s) r N) s F oEG(s) oE N ADs),(N).

This gives the left vertical isomorphism in (3.3.1).

Our next task is to define the map 3 in (3.3.1) and show it is a chain equivalence. Most

of the work for that is done in Lemma 3.3.10; the next lemma is helpful for that, and

the result is summarized in Corollary/ Definition 3.3.11.

Lemma 3.3.9. For fixed s, there is an isomorphism of complexes Fs/Fs+1Cr(M, N) =

Eo'*(M, N) c M o E '*(M, E) ErN.
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In particular, Eo'*(M, N) only depends on the E-coaction on N, not the full F-coaction.

We will abuse notation by writing Eo'*(M, N) where N has a E-coaction and not a

F-coaction (specifically, we do this for N = G).

Proof. We begin by showing that FS/FS+1Cr(M, N) only depends on the E-coaction

on N: given x = m[yi| ... 1-y|]v in FsCr(M, N), the term m[j ... 71v']v" in d(x) is

in Fs+l if v' G G. So, if we write /(v) = E v'|2' for the coaction ' : N -- E & N, we

can say that d(x) = Em [7I. ... 1yn v']v" in Fs/Fs+Cn+l(M, N).

We have an isomorphism #/: N E E N of E-comodules, where the coaction on the

right hand side is - 9 v or' a0" 9 v. This shows that the following diagram commutes

Eo'(M, N) E,'t(M, E) EiEN

d {d

EOs't+l(M, N) EO9t+l(M, E) ErN

and so there is chain complex isomorphism EO'*(M, N) Eo'*(M, E) oEN for every

S. D]

Lemma 3.3.10 ([Rav86, A1.3.16]). The map

6 : Eo"l*(M, G) EO8'* (M, E)

n[ail ... .-s_]g m [ail ... .las 11|g']g".

is a chain equivalence, where E g' 0 g" is the image of g C G along the map F A
F 0 F -+ IF E.

Proof. We introduce a second filtration FS which is defined only on Cr(M, F):

FsCn (M, F) = {m[ 1 ... L-y4-y : at least s of {Y7,... , are in G}.

'This is off by one from the grading convention used in [Rav86, A1.3.16].
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There is a short exact sequence of complexes

0 -+ Fs/s+1C*(M, F) -- Ps /Fs+1C*(M, F) -÷ Ps/FsC*(M, F) -- 0. (3.3.6)

Unlike F, the new filtration F preserves the contracting homotopy on Cr*,(M, F) given

by m[yi I... |-yi * E(-y)m[y 1j ... 7n-1j-yn. So F*Cr(M, F) is contractible, and so is

the quotient complex F*/F*+C(M, F). The short exact sequence (3.3.6) gives rise to

a long exact sequence in cohomology, and contractibility of the middle complex means

that the boundary map

6: H*(FS/FC*(M, F)) -- H*(Fs/Fs+1C*+1(M, F)) (3.3.7)

is an isomorphism. We will identify Fs/FsC*(M, F) and Fs/Fs+C*+1(M, F) with the

source and target of the desired map in the lemma statement, and show that 6 can be

lifted to a map on chains.

Levelwise, we can write

Fs lC"i(M, F) = Fs+1C(M, F) + FsC"(M, G) (3.3.8)

but this is an abuse of notation-as G is not a F-comodule, C(M, G) is not a complex

(but we can still talk about Cf (M, G) C C (M, F) as a sub-module). We will see that

this will cease to be a problem upon passing to the associated graded E0 .

For each n, we have

FS/FSC*(M, F) a (FsC (M, F) + FS-C(M, G)) /FsC(M, F)

S Fs-1/FC.(MG)

Fs/s+1C*+l(M, F) a FSCP (M, F)/(Fs+1C(M, F) + FsCj(M, G))

- (FsCn(M, F)/Fs+lCn(M, F)) /FsCn(M, G)

Y Fs/Fs+1C(M, E).

(3.3.9)

(3.3.10)
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While FsC (M, G) is not a complex, Lemma 3.3.10 shows that Fs-/FsC(M, G) is a

complex, and the isomorphisms Fs/FsCr(M, F) ! Fs-1/FsCn(M, G) and Fs/Fs+1C*+1(M, F) a

FS/FS+1C(M, E) extend to isomorphisms of complexes. I claim the boundary map

(3.3.7) can be identified as the map

H*(Fs-/FC*(M, G)) H* (Fs/Fs+1C*(E, N))

m [ail .... Ian1-- m[ail .... Ian 1g']9"

where Z g'Ig" is the image of g under the right E-coaction. As the boundary map, this is

just given by the cobar differential, but in order for m[a, ... Ian]g to be a cycle, the sum

of all the terms except the one in the formula for 6 is in FSCnZ+(M, F). Furthermore, I

claim this can be extended to a map on chains:

6 : Fs-1/FsC*(M, G) -+ Fs/Fs+1C*(E, N)

m[ai ... lan]g - m[aiJ ... lanlg']g".

It suffices to show that the image of m[ail... an]g E FSC*(M, G) lies in Fs+1C (M, E),

and this holds because g" is the (s + 1)" term in G.

Using Lemma 3.3.9, we can write this as a map

E"-l'*(M, C(s) eN) ~ Es'*(M, E) EN = EO''*(M, EoEN) 2-' Eo'*(M, N)
=EO8-' (M, G) EiE 0

mn[ai I . .. Jan1g V1 Em[ai l ... Iang']g1V1 E m[ail ... IanJg1v.

Corollary/ Definition 3.3.11. Iterating 6 gives rise to a chain equivalence

E '*(M, G(s) oEN) Eo'* (M, G(s - 1) mrN) A ... . Es'*(M, N)

sending

mn[al .... Ian1|. .. 1 s m[ail ... l.|Ingil ... .Ig,]v.
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Let 0 denote this composition.

It is now easy to see that (3.3.1) commutes. Our final task is to show (4) after (3.3.1);

first we need an easy lemma.

Lemma 3.3.12. Let F be a Hopf algebra and M be an F-comodule. Then the coaction

7P : M -- F nr M is an isomorphism with inverse T : F ErM -> M sending a 0 ma

E(a)m.

Proof. First we check that the coaction 4 lands in the cotensor product F Er M: we need

to check that 0(m) = E m'0m" lands in the kernel of A91 -100 : FOM -- FooM.

But Z(m')' 0 (M')" 0 M" - E m' o (MI")' (m")" = 0 by coassociativity.

Next, we check that T is an inverse. We have TO(m) = T(E m' 0 m") = E E(i')".

This is equal to m by Fact 3.0.2(3). For the other composition, we have OT(a 0 m) =

E E(a)m' 0 m". Since a 0 m is in F ErM, we have Z a 0 m' 09 m" = E a' 0 a" 0 in.

Applying E - 1 0 1 to this, we have E E(a)m' 0 m" = E(a')a" 0 m a 0 m. So

o T = 1. l

A

Proposition 3.3.13. 0 induces an isomorphism E,'* E '*.

Proof. First notice that we have an isomorphism

F /Fl(M F9 1 N) -Mo 9 E N

since m[-1|... 1ys]v is in F' if any of the yi's are in G. On the other hand, we have

H* (E'*) = H*((M 0 Ft+ 1) or, (4) 0 N)) = Cotor*(M, 4D 0 N) a Cotor* (M, N)

by the change of rings isomorphism. In the rest of this proof we make this isomorphism
A

more explicit, enough to see that the isomorphism El, --+ Er" is induced by 0.
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Since the shear map F $F --+ F IF commutes with the map F oF q4q-+ E 0 E, we have

a commutative diagram

(M o F0t+1) Er1(<D ® N)

I 
Oqt2l® 2

(M o FOt+1 ) Er (F Er N) - > (M E Et+1) Er (F oEN) > (M E Elt +1 ) nEN
Soe-e-1 St+1 E

F0/F1(M 0 Ft 0 N) >M 9 O N

Note that the left vertical composition is 0, by definition. The middle horizon-

tal composition is the chain equivalence inducing the change of rings isomorphism

Cotor*(M, F mEN) 2 CotorE(M, N). By Lemma 3.3.12, the right vertical map is

Sj+1 0 T, an isomorphism. So the bottom left vertical map is a chain equivalence. The

top left vertical map is an isomorphism, so 0 is a chain equivalence. E
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Chapter 4

The E2 page of the K(i)-based
MPASS

Unless otherwise indicated, henceforth we will work at p = 3, and let k = IF3. We also

let D = k[ 1]/ 3 throughout.

4.1 Overview of the K(,)-based MPASS

Our goal is to compute 7r*(b-'k) = b- Extp(k, k) using a MPASS based at

K( 1) := b-'B where B:= PDDk.

Since B is an algebra, K( 1 ) is a ring object in Stable(P). At p = 3 we will show that

K(( 1),,K(( 1) is flat over K( 1 ),,, and so the E2 term is:

E2 = ExtK( 1).K( 1)(K( 1),, K( 1 )**) ==> 7r**(b-k) = b- Ext* (k, k).

This flatness property does not hold at higher primes; this is the main reason this

problem is significantly more tractable at the prime 3.

In Section 4.4 we will show that this spectral sequence converges, and in Section 4.5 we
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will show that Ext,(k, k) agrees with its bio-localization above a line of slope !. The

bulk of the chapter, in sections 4.2 and 4.3, is devoted to determining the structure of

the Hopf algebroid

(K((1),,, K( 1 )**K( 1 )) = (b-j Ext*,(k, B), b- Ext* (k, B ® B))

Y (b-j Ext*(k, k), b ExtD(k, B))

(where the last isomorphism is by the change of rings theorem) in order to determine

the structure of the E2 page. The coefficient ring K( 1 )** is easy to compute using the

change of rings theorem:

= b Ext,(k, B) = b- Ext* (k,PEDk)

= b-1l Ext*(k, k) = E[h1 o] 0 P[b"j]

where h1o is in homological degree 1 and bio is in homological degree 2. It will be useful

to have notation for this coefficient ring:

R := E[hio] ® P[b']. (4.1.1)

Our goal is to show the following:

Theorem 4.1.1. The ring of co-operations K( 1 )**K( 1 ) is flat over K( 1 )**, and

moreover there is an isomorphism of Hopf algebras

K( 1)*,K( ,) = K( i)** D E[e2, e3, ..

for generators en in homological degree 1 and internal degree 2 (3n + 1). That is, en is

primitive, and K( 1 )**K( 1 ) is exterior as a Hopf algebra over K( 1)**.

Corollary 4.1.2. The E2 page of the K( 1)-based Adams spectral sequence for com-
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puting Ir.*(b--1k) is

E* R & P[w 2,w3 ,...]

where wn, has Adams filtration 1 and internal degree 2(3' + 1).

Remark 4.1.3. The generator w 2 is a permanent cycle, and converges to go

(hio, hio, hil) C Ext*(k, k). We will see in Chapter 5 that the other w,,'s support

differentials, so it is less easy to see how these generators connect to familiar ele-

ments in the Adams E 2 page. One useful heuristic is that w, = (hio, hio, hn- 1,1 ) over

p/( 3, 9, 39, . .. )

Remark 4.1.4. As B is a P-comodule algebra, there is a Hopf algebroid (B, B 0 B)

in Stable(P), where the comultiplication is given by

BOB - B®B®BL(BOB)&B(BOB).

The Hopf algebroid above is given by applying b--7r**(-) = b-1 Ext* (k, -) to this one.

Notation 4.1.5. We have chosen to define B as a left P-comodule. It can be written

explicitly as F3 [Z, 2 ,i .. .]. To simplify the notation, everywhere in the remaining

chapters of this thesis we will redefine the symbol n to mean the antipode of the usual

n. Thus, going forward, we will have A ($n) = Z2j, =n i , and B = F3[, (2, ,. ].

4.2 D-comodule structure of B

In this section we work at an arbitrary prime p. We will write k = Fp, D = Fp[ 1]/( ,

and B = PEDk = F[,2,, .. ] (using the convention of Notation 4.1.5). Note that

B is an algebra and a P-comodule, but not a coalgebra. Let V' denote the D-coaction

B - D & B that comes from composing the P-coaction B --+ P 0 B with the surjection

P -D.
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Definition 4.2.1. If we write

O(x) = 1 ( + @ (9 a2 + + a,_,

for some ai's, define

0(x) a1.

For example, since A( ,) = 1 0 'n + 1 0 + ... we have a( ,) = Pj, and

( 1) = 0. One can show using coassociativity that ak = klai. As 1 is dual to

Pl in the Steenrod algebra, the operator 0: P -+ P is dual to the operator P _, Pv

given by left Ps-multiplication. In particular, (PO)P = 0 implies (P = 0.

Lemma 4.2.2. We have D(xy) = D(x)y + x&(y).

Proof. We have

A(xy) = A(x)A(y) = (10 x+ 0(&1x+...)(10y +1 i0 y +...)

= 1 xy + 1 ® (y0x + xy) +....

The structure theorem for modules over a PID says that modules over Dv r D

decompose as sums of modules isomorphic to Fp[ 1]/ ' for 1 < i < p. Dually, we have

the following:

Lemma 4.2.3. Let M(n) denote the D-comodule F I[ ]/( 1 . Then every D-comodule

splits uniquely as a direct sum of D-comodules isomorphic to M(n) for n < p - 1.

Note that M(0) S Fp and M(p - 1) - D.

The goal of this section is to prove the following proposition.

Proposition 4.2.4. Define the indexing set 6 to be the set of monomials of the form
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H n 1 e such that 1 < ej < p - 2, and for X C .4, write x (X) = j and e (X) e.

Then there is a D-comodule isomorphism

B ® M(e(X))j(x) ( F
X&$ j=1

where F is a free D-comodule and M(e)gc := &p{(ie, (i, ... , a} M(e ).

If e < p - 1 then M(e)ge is a sub-D-comodule of B with dimension e + 1. By the

Leibniz rule (Lemma 4.2.2) we have

M(e + Pp)e_ Pf - ]F_{ e~pf I ,(e p ae ( e npf}I M e o IFPnf}I

for e < p - 1. For any collection of ej E N, define

T( l . . . ne) := M(ei) ei 0 ... 9 M(ed) ed. (4.2.1)

This is a sub-D-comodule spanned (as a vector space) by monomials of the form

ak, ( .... akd ((ed). Clearly, B = Emoomials T(( .. . (;e), but this is not a direct sum
H n. EB

decomposition-any given monomial appears in many different summands. To fix this,

we will study the poset of T(X)'s, and find that B is a direct sum of the maximal

elements of that poset.

Notation 4.2.5. Define the notation

(These are not formal products; they only make sense if ej = 0 = fi for all but

finitely many i.) For example, we have (X ; 1) X for any monomial X, and

(1; n) = = &($). Expressions K2 ;Z 2f) represent elements of

B c P, and conversely every element of B has a representation of this form (note that
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= (1 ; 2)). Monomials in B do not have unique expressions of the form (X ; Y):

for example, (K - ; 1) = (1 ; $n).

Lemma 4.2.6. There is a bijection

{monomials in B} ( { K e2 2( ; 1 2 ei <P- 1 .

Say that a bracket expression is admissible if it is of the form on the right hand side.

Proof. Given a monomial, the admissible bracket expression is the one with the greatest

number of terms on the right-hand side. El

Lemma 4.2.7. If X is a monomial with admissible bracket expression Kn c ; H r f
and Y is a monomial in T(X), then Y (up to invertible scalar) has admissible expression

K1 e-- H i ; H{ i+ci) for a set of ci > 0 that are zero for all but finitely many i.

The idea is that Y is obtained from X by moving terms from the left to the right.

Proof. If e < p - 1 then we have

By dfio X phe -= 0 an

By definition, X =HJ ivh. where el = 0, and

Y = (fJakje+pf+j - fJ(ak+e1Pf1i1
__ ( 1e -kj+pkj+1 ip+1

(ei - ki)!

(eK - kJ)J

using the fact that O'p = 0. So we can take ci = ki in the lemma statement.

Definition 4.2.8. For monomials X and Y, write X > Y if Y E T(X).
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It is easy to check that this makes the set of monomials into a poset, and that X > Y

if and only if T(X) D T(Y).

Lemma 4.2.9. Suppose W is a monomial with admissible bracket expression ( 1 ; H i).

Let W = ( iH ; fl i) where ci = min{ei + fi, p - 1} and di = fi - (ci - ei ). Then

W is the maximal object > W.

Proof. Let X be an arbitrary monomial, written in its unique admissible bracket

expression. Then X > W if and only X can be obtained from W by moving terms in

W from the right to the left side of the bracket expression. Note that W is the bracket

expression obtained by moving as many terms to the left as possible while still keeping

the resulting expression admissible. This implies W is maximal. El

Define an equivalence relation on monomials where X ~ Y if X Y.

Lemma 4.2.10. There is a direct sum decomposition B ~ T(X).
eq. class
reps. X

Proof. I claim that T(X) = Fp{Y : X ~ Y}; this follows from the fact that, by

definition, T(X) is generated by Y such that Y < X. So the direct sum decomposition

comes from partitioning monomials into their equivalence classes. El

Let J be the set of admissible bracket expressions X such that X = X. By Lemma

4.2.9 we have the following.

Lemma 4.2.11. J is the set of admissible bracket expressions KH gli ; H f ) such

that ei < p -i and if ei < p -i then f, = 0.

Lemma 4.2.12. If X = (Hei ; H {) is an admissible expression, there is an iso-

morphism of D-comodules T((HQ ; 1)) ~ T(X).
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Proof. By Lemma 4.2.7, every Y in T(X) has a bracket expression obtained from X by

moving terms from the left to the right, so the right hand side of the bracket expression

for Y is divisible by , and so Y is divisible by u (1; H fi) = Hf_ . So

multiplication by u gives a map T((H C ; 1)) -+ T(X), and moreover from the above

description of Y E T(X) it is easy to see that this is a bijection. Finally, since a(u) = 0,

this is an isomorphism of D-comodules. l

Lemma 4.2.13. If X = (l (i ; H (fi) is an admissible expression such that ek = p-I

for some k then T(X) is a free D-comodule.

Proof. By definition, we have T(X) = ®M(e),-i, and M(ek) ek a M(p - 1) e D by

assumption. Rearranging terms and using the shear isomorphism, we have T(X) e
A A L A

D ® ®i$kM(ei) e D & 04kM(e )n , which is free. l

By Lemmas 4.2.12 and 4.2.13, we have:

Corollary 4.2.14. If X = (H j" ; Hf {i) is an admissible bracket expression in Jo

such that fi # 0 for any i, then T(X) is free as a D-comodule.

Proof of Proposition 4.2.4. From Lemma 4.2.10 we have B c ()x', T(X), and by

Corollary 4.2.14 there are free D-comodules F and F' such that

B @ T((X ;1)) 1F) = F T(X) F
(x ; 1) C V (X ; 1) E-f

T(X) F
(X 1) s-t.
ei(X) p-2

@ T(X) ( F'
Xe A

XEA

M(ei(X))x,(x) D F'. l
XGA i
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We conclude with a useful lemma that simplifies checking relations in certain bio-local

Ext groups of interest.

Lemma 4.2.15. Let I(n) = ((fl, ({ , ... )B. Then I(p - 1) is contained in the

free part of B according to the decomposition in Proposition 4.2.4. In particular,

if x E Ext*(k, P EDI(p - 1)) then x = 0 in b-j Ext* (k, P EDB).

Proof. Consider an arbitrary monomial q =- in I(p-). If X has an admissible

expression Fi Q; H f) then q has an admissible expression KH ; z+ H .l

By Lemmas 4.2.10 and 4.2.13, it suffices to show that q = (H (f ; 1fl ) satisfies

Ck = p -i for some k. Using the formula for q in Lemma 4.2.9, we have cn+1 = p -i.

Corollary 4.2.16. Let I(n) be as in Lemma 4.2.15. If x E Ext* (k, POD (PDI(P -

1))), then x is zero in b-1 Ext* (k, PO D(PEDI(P - 1)))

4.3 Hopf algebra structure

Convention 4.3.1. Unless indicated otherwise, we will work at p = 3 in this section

(and everywhere hereafter in this thesis). The reason for making this simplification is

the simplicity of the structure of ComodD and the Kunneth formula (Lemma 4.3.5),

which imply that K( 1 )**K( 1 ) = b- 1 ExtD(k, B) is flat (in fact, free) over K( 1 )** =

b-j Ext* (k, k). All of these points are discussed in Section 4.3.1.

4.3.1 Vector space structure of K(1)**K( I) at p = 3

Using the shear isomorphism (Corollary 3.1.10), we have

K( 1)**K( 1) := Extp(k, K( i)**K( 1 )) a b-1 Extp(k, B 0 B)
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L bj Extp(k, P -DB) a bij ExtD(k, B).

The main result of the previous section allows us to write

bij ExtD(k, B) - b-' Ext*(k, 0
d

M(ei),- (@ F) (4.3.1)
el .. d i=1

ei<p-
2

d

®b1j ExtD(k, M(ei) ei)

e<p-2

at all primes.

There is a formula that allows us to decompose the tensor products 0 M(ei) into a

sum of the basic comodules M(n), but in general it is rather complicated:

Theorem 4.3.2 (Renaud, [Ren79, Theorem 1]). At all primes,

M(r) 0 M(s) a (r - c)M(p - 1) + M(s - r + 2i - 2) for c = r

p - S

if r + s < p

otherwise.

At p = 3, however, the only D-comodules are M(O) = k, M(1), and M(2) = D, and it

is easy to see directly that M(1) & M(1) 2 D e EY'I0k. (Here we use bigraded notation

for the shift for consistency with viewing these objects in Stable(D), so EOI'I1 denotes

a shift of 0 in the homological dimension and I in internal degree). In particular,

k{x, x} 0 k{y, } ! k{xy, 8(x)y + xa(y), &(x)&(y)} k{0(x)y - xO(y)}.

After inverting bio, free comodules become zero, and the only basic types of comodules

are M(0) = k and M(1).

Remark 4.3.3. We will repeatedly use the fact that Ext*D(k, D) is a 1-dimensional
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k-vector space in homological degree 0 and zero otherwise, and for i E {0, 1}, Ext* (k, M(i))

is 1-dimensional in homological degree > 0. As bio is the generator of Ext2(k, k)

we have bD Exto(k, D) = 0, and b-j Ext* (k, M(i)) is a 1-dimensional k-vector space

in every dimension. Furthermore, for any D-comodule M, the localization map

Ext*D(k, M) - b-1 Ext*(k, M) is an isomorphism in homological degree > 0.

Lemma 4.3.4. In Stable(D), we have an isomorphism

b-olM(1) Cl E-1,211 l b--jM(0).

Proof. A representative for M(1) in Stable(D) (i.e., an injective resolution for it) is

0 -- D I O21ID I Z0'lIlD I EO5K1ID ..., and so bpJM(1) colim(M(1)

E2,-bIboIM(1) - ... ) is represented by

. . . _*o,-l|D - D E ,2 I|ID E Z lID -* ....
hom.deg.O

Similarly, b-j 1M(0) is represented by

__ -2 1 a a a

--- -+ EZ,- 2IaD + D EOI1'D 3I1ID - ....
hom.deg.O

and so there is a degree-preserving isomorphism b--jM(1) -> E-1,21Ib- M(0). l

(At arbitrary primes, the formula b-jM(n) L E--(P)I1Ib-M(p - 2 - n) holds for

the same reason.) Therefore, if M is a D-comodule, then b-M C Stable(D) is a sum

of shifts of the unit object k a M(0). Remembering that Stable(D) was constructed

so that Homstable(D)(k, b-jM) = b-j ExtD(k, M), we obtain the following Kunneth

isomorphism:

Lemma 4.3.5. If M and N are D-comodules, then

b-0 ExtD(k, M 0 N) L b-j Ext* (k, M) 0 b-j Ext* (k, N).
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This only works at p = 3, and is the essential reason we have made the simplification of

working at p = 3.

Applying this to (4.3.1) we have the following.

Corollary 4.3.6. We have an isomorphism

b-J Ext*(k, B) a 9 b-J Ext* (k, d, 2 1|Ik
monomials

nj ... nd

where Z-a2dkIn... nd is the copy of Z-,2I61Ik isomorphic to W=_1 M()C, under

Lemma 4.3.4. In particular, K( 1 )**K( 1 ) = b-j Ext* (k, B) is free over K(1)** =

b-' ExtD(k, k).

So bj ExtD(k, B) has R-module generators in bijection with monomials of the form

(n, ... (na (where ni # nj if i $ j). Now we will be more precise in choosing these

generators.

Lemma 4.3.7. Suppose N is a D-comodule algebra with sub-D-comodules k{x, ax} Y

M(1) and k{y,&y} O M(1).

(1) The image of Extb (k, k{x, x}) in Extb (k, N) is generated by e(x) = [&1]x -

[2]&x.

(2) We have

e(x) - e(y) = bio(yix - xay)

in the multiplication Ext*(k, N) S Ext* (k, N) --+ Ext* (k, N) induced by the

product structure on N. In particular, e(x) 2 = 0.

(3) If the multiplication map embeds k{x,Dx} 0 k{y, &y} in N injectively, then

b-- Ext 2 (k, k{x, ax} 9 k{y, ay}) c b-j Ext2 (k, N) is a 1-dimensional vector

space with generator e(x) - e(y).
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Since ExtQ(k, M) = b- Ext (k, M) for i > 0, note that this also gives a generator of

b- 1 ExtB (k, N).

Proof. Since Ext1(k, M(1)) is a 1-dimensional k-vector space, for (1) it suffices to show

that e(x) is a cycle that is not a boundary. Indeed, since dx = [ f]&x and d(Dx) = 0,

we have d(e(x)) = -[ 16 1 ]jax + [ 11]ax = 0, and e(x) is not in d(C%(k, k{x, ax})) =

d(k{x, &x}).

For (2), we use a special case of the cobar complex multiplication formula in [1i78,

Proposition 1.2]:

Fact 4.3.8. The multiplication Cj 9 (k, M) 9 CD(k, N) -÷ CD2(k, M 9 N) is given by

[Mm ( [W]n E [0(9 m'w](m" 9 n).

Thus the product CL(k, N) 9 CD1(k, N) -- C%(k, N 0 N) A* C2(k, N) takes [ ]m 0

[w]r n >[ 0 m'w]m"n. Using this formula, we have:

e(X) . e(y) = [ X] . [ Iy] - [ i1X] . [ 18y]

- [ ax] [ 1 jy] + [( |(x] . [( &1y]

[1|x] - [6y] = [lv'6i]x"y = [|1 1]Xy + ['1i ](ax)y

[ |X] . [ 2 1y] = Z[ 2' ]Xlx"y = [&1]x y

[t2I18x] [ Ijy]= [ (ax)'] (a/x)"y = [((X)Y

[21x] . [2 1ay] = Z[ 2j (ax)'](x)"&y = [ 21 2](xqy

d([C2]Xy) = 2[ 11 1]xy - [( 1i]((x)y - [(216]xay - [ 21 2]aXay

e(x) - e(y) + d([ 2]Xy) = [ 11$](1x)y + [(I|i](ax)y - [6|( ]X y - [ 2 1]Xay

bio((ax)y - xoy)
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For (3), note that there is a decomposition of D-comodules

k{x, 8x} 0 k{y, ay} k{xy, x~y, (Ox)y, (Ox)(ay)}

= k{xy, (9x)y + xay, (ax) (ay)} e k{(x)y - x(ay)}

and since Ext*'(k, D) = 0, the quotient map

b-1 Ext2 (k, k{x, &x} 0 k{y, Ox}) b- 1 Ext2 (k, k{x(y - (e9x)y})

is an isomorphism. By (2), e(x) - e(y) is a generator of the latter Ext group. E

Lemma 4.3.9. Suppose N is a D-comodule algebra with sub-D-comodules k{x, ox} l

M(1) and k{y} - k.

(1) The image of ExtD(k, k{y}) in ExtoD(k, N) is generated by y.

(2) We have

e(x) _ y = [$]xy - [2](Ox)y = y. e(x).

(3) If the multiplication map embeds k{x, 0x 0 k{y} in N injectively, then e(x) -y

is a generator of the 1-dimensional vector space b-1 Extj(k, k{x,&x} 0 k{y}).

Proof. (1) is clear. (2) follows from the cobar complex multiplication formulas

Cg(k, M) & CL(k, N) -+ CL(k, M ® N)

CDL(k, M) 0 Cg(k, N) -- CL(k, M 9 N)

For (3), note that k{x, Dx} 0 k{y} = k{xy, (&x)y}. Note that (ax)y = O(xy). From

Lemma 4.3.7, b--1 Ext'(k, k{xy, a(xy)}) is generated by e(xy) = [( 1]xy - [2]0(xy) =

Ee(x) - y
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Definition 4.3.10. Define e, := e((a) as the chosen generator of b-J Extb(k, M(1)).

Lemma 4.3.11. Under the change of rings isomorphism

b-' ExtD(kB) a b-- Extp(kPEaB)

the image of e(x) in Ext' (k, PEDB) has cobar representative

[1](1 x) - [([](1 ax) + [ E P® (P EDB).

Proof. The change of rings isomorphism ExtD(k, M) 2 Extp(k, P EDM) works as

follows: since P is free over D, the functor PED- is exact, and so given an in-

jective D-resolution M -- X* for M, the complex P EDM -+ P DX* is an injective

P-resolution. So we have ExtQ(k, M) a Cotor (k, M) = H2 (k EDX), which agrees

with Extp(k, P ODM) 2 Cotor (k, PEDM) = Hi(k op(PEDX*)) 2 Hi(kEDX).

In particular, Extp(k, P EDB) can be computed by applying k op- to the resolution

PED CD(k, B) = (PEDB -- PED(D o B) -+ PED(D & D oB) -+...). (4.3.2)

By Lemma 4.3.7, e(x) has representative [1 1]X-- [12]Dx E Do D 9B in the D-cobar

resolution for B, and so its representative in (4.3.2) is 1|1|141X - -1|1|a(9X.

But we wanted a representative in the cobar complex Cp(k, P EDB), so we will write
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down part of an explicit map from the P-cobar resolution for P EDB to (4.3.2):

PaDB PEDB

1 _ _ _ 1
P 0 (P DB) >P&B

P®P®(PaDB)-: PODB

I t
P0P0 2 ((PaDB) -P® 0D 2 B

I I

By basic homological algebra, the map f* exists and is unique, so to find f0 and f'
it suffices to find P-comodule maps that make the first two squares commute. In

particular, one can check that the maps

f4(alb c) = e(b)alc

f1 (alblcld) = e(c)abld

make the diagram commute, and z := [1j(1Ix) + [1|1 ]( 1jx) - [1I 2](1I(x) is a cycle

Ein P O P (PODB) such that (k Ep f)(z) = e(x).

4.3.2 Multiplicative structure

Proposition 4.3.12. The summand

. M(1)g) c b-1 Extd (k, B)

is generated by the product en ... end.
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Proof. Since

{ EdO b-01 Ext% (k, 0 M(1) ) d is even

Ed-l0 big Ext1(k, 0 M(1) ,) d is odd,

it suffices to show that b-j Ext( M o.. .0M(l)d) is generated by bod/ 2 enl

when d1is even, and b-D Extb(k, M(1) 1 0... .M(1)) is generated by boe .eld

when d is odd. We proceed by induction on d. The base case d = 1 is by definition.

Case 1: d is even. The tensor product M(1)n 0o.. .OM(l)nd is isomorphic to M(1)e

F for a free summand F. By Lemma 4.3.7, b-1 Ext2(k, (M(1 ... M(1) )

M(1)g d) is generated by e(x)-eld where e(x) is a generator of b-1 Ext (k, M(1)g0 . .

M(l)n ). By the inductive hypothesis, we can take e(x) = b ( d-2 )/ 2 enl...end. So

then b1 e(x)en = b-0 2 en ... efl is a generator for b-j Ext (k,...M(1)g ).

Case 2: d is odd. In this case, M(1)G 0... 0 M(1) nd is isomorphic to k e F for a

free summand F. By Lemma 4.3.9, b-1 Extb(k, (M(1) 0... 0 M(1)n ) 0 M(1)n)

is generated by y - efl where y is a generator of b-1 ExtD(k, M(1) 1 0... 0 M(1)n).

By the inductive hypothesis, we can take y = b (d-1 )/2  ... efdl. El

Recall we defined R = b- 1 EXtD(k, k) = E[hio] 0 P[bij].

Corollary 4.3.13. There is an R-module isomorphism b-1 Ext*(k, M(1)g 1 0 ...

M(1)gnd) ' R{eni ... end} where the generator en, ... end is in degree d.

Corollary 4.3.14. The map R 0 E[e2 , e3 ,...] -+ b1j Ext* (k, B) is an isomorphism of

R-algebras.
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4.3.3 Antipode

The antipode is the map induced on Ext by the swap map r : B 0 B -- B 9 B.

Recall (see Lemma 3.1.9) there is a shear isomorphism SM : B 0 M -- P EDM sending

a 0 m -- E am'0 m". It has an inverse S 4 : a 0 m - E ac(m') 0 m". In order to be

able to apply Lemma 4.2.15, we now obtain an explicit formula for the induced map

T' := SB 0 TO S~l : PDDB -+ P ODB. This map is:

S- I SB

P DDB T. PDDB

E Xc(y') y" > E y"jXc(y')

Xly E y" C W'y)'I X Cy')"

Using coassociativity we have

T'(X 0 y) = iy" / c(y')' x"c(y')"

= j x'y"c((y')")Ix"c((y')')

= zXy( 3)C(y(2 ))|X"C(y(l))

= zX'E(y( 2))Ix"c(y(l))

= Zx' "c(y).

Fact 3.0.2(4)

Fact 3.0.2(2)

Fact 3.0.2(3)

Since (K((1),,, K(,1),,K(( 1)) is a Hopf algebroid, the antipode is multiplicative, so to

determine it, it suffices to show:

Proposition 4.3.15. We have:

(1) c(h) = h

(2) c(e,) = -en.

Proof. The antipode is given by the map r' : Ext* (k, P EDB) -- Ext* (k, P EDB)
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induced by 7', defined so that w'([xi I... . X8 ]m) = [jI ... XS]r'(m). Since h = [(1]( 11) E

ExtiP(k, P ODB), we have c(h) = r',(h) = h. For (2), we need an explicit formula for

the antipode in the dual Steenrod algebra:

Fact 4.3.16 ([Mil58, Lemma 10]). asdfasdf Let Part(n) be the set of ordered partitions

of n, f(a) the length of the partition a, and o-j(a) = E', a be the partial sum. Then

we have:
f(a)

C ( n) =(1/4 Q
aEPart(n) i=1

In particular, if n > 2 then c( n) -n + _ (mod Pp P) and c( n 1 ) - _

(mod P P).

Recall (Notation 4.1.5) that we have defined , to be the antipode of its usual definition,

so here we have A(n) = _, 0 P. (Since the antipode is a ring homomorphism,

the formula in Fact 4.3.16 is the same in either case.)

Combining this antipode formula with the formula for en in Lemma 4.3.11 we have:

r'(e) = T'[* ]1|n - [ 2y](1|3_1) + [ 1]( 11 3_1))

[ 1](Ic( n)) - [ 2](Ic( i_1)) + [ 1](1I[c(%i_1) + 1 jic((ji))

=[ ](-1Ijn + 1I1i_1nj + 1|A) - [ 2](-1b_ 1 + 1|B)

+ [(](-(|(-1 + 1|C - 1|11- + 11D)

=-en + [ 1](1|A + 1|C + 11D) - [ 2 ](11B)

for A, B, C, and D in P9 P = 1(3). By Lemma 4.2.15 these terms are zero in bio-local

cohomology, and c(en) = T'(en) = -en. E

Corollary 4.3.17. We have 'IL =R m; that is, the Hopf algebroid (K( 1)**, K( 1)**K( 1))

is, in fact, a Hopf algebra.
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Proof. One of the axioms of a Hopf algebroid is c o iR = rL. Since 77L is just the

inclusion of R into b- ExtD(k, B), its image is invariant under the antipode c.

4.3.4 Comultiplication

To define the comultiplication map b-j Extp(k, B 0 B) -- b-1 Extp(k, B 0 B)@ 2, first

consider the maps

Extp(k, B 0 B) **+ Extp(k, B 0 B ® B) <- Extp(k, B 0 B) 0 Extp(k, B 0 B)

where a* is the map on Ext induced by a : B 2 -> BO3 with a: a 0 b a 01 0 b, and

0 is defined as the map in the factorization

Ext p(k, BA2 ) 0 Extp (k, B®2 ) Kfnneth Extp(k, B®2 0 B 2 ®- Extp(k, B03)

Extp(k, B 2) OExtp(k,B) Extp(k, B 2)

(4.3.3)

It follows from the shear isomorphism Extp(k, B ® M) 2 ExtD(k, M) and the Kiinneth

isomorphism for bio-local cohomology over D (Lemma 4.3.5) that 3 is an isomorphism

after inverting bio, and we define the comultiplication map on b-j Extp(k, B 0 B) by

A := -1 o a.

In particular, flatness of K(( 1),,K((1 ) over K(1),., implies that (K( 1)**, K( 1),,K(,))

is a Hopf algebroid using the definitions of comultiplication, antipode, counit, and

unit above. In a Hopf algebroid, the comultiplication is a homomorphism, and so to

determine A explicitly it suffices to determine A(en). We prove this in Proposition

4.3.19. Lemma 4.3.11 gives an expression for e, in Ext4(k, P LDB), so we prefer to

calculate A : b- 1 Extp(k, B A B) -+ b- 1 Extp(k, B 0 B)®2 after composing with the
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shear isomorphism; that is, there is a commutative diagram

b-- Extp(k, B (9A B) '* ) b--Extp(k, B B B): b-1jExtp(k, B 9 B)O2

(SB ). ((10SB)OSB®B)* sB ®SB

b-- Extp(k, -EDB) 1* : b- Extp(k, PD D(P ODB)) 4 b--1 Extp(k, P LDB)2

and we will show that c'(e,) = '(1 0 e, + e, 0 1) in b-h 1 Extp (k, P ED (PDB)). (We

have chosen to use an extra application of the shear isomorphism on the middle term

in order to apply Corollary 4.2.16.)

Lemma 4.3.18. If a E ExtP(k, PZDB) has cobar representative [a 1 |... as](plq), we

have

a'(a) = [ai ... as](plq'lq")

#'(1 (9 a + a (9 1) = [al l ... I a,](E p'lp" Iq + p q 11)

in ExtP (k, P D (PDB)).

So to check that a is primitive after inverting bio, it suffices to check

[a l . .. la,(plq'lq") - [al . .. las](E p'lp"lq + pqll) = 0 (4.3.4)

in b-1 Extp (k, PLID(DB)).

Proof. By definition, a' is the map induced on Ext by the composition

PE DB > B 9 B B 9 B 9 B ED D(B B) PEDPEDB).

On elements, we have:

Xlyi ) E c(y')|y"i J zc(y')J1|y" - Ezc(y' (y")' 11|(y")"y

((Y"/)"t)((y"I)") = Y ly' /y

93

t

i ) c(y') (y")' I



where the last equality is a coassociativity argument similar to the one at the beginning

of Section 4.3.3. That is, we have a'(x 0 y) = 1x 0 y' 0 y", which implies

a*([ail . . las](plq)) = Z [a l . . .las(pq'lq")

The map 0' comes from the bottom composition in

Ext p(k, B 2 )®2 Kinneth > Extp(k, B®2 A B®2 ) (-®p@-)* Extp(k, B®3)

(SB )O(SB )* I (SBO SB)* I(SBB )*
Extp (k, P [DB) 2 net Extp (k, (PEODB) 0 (P [DB)) -* Extp (k, P D (P ODB)).

We will only give an explicit expression for 3' on elements of the form 1 0 a and

a 0 1, where 1 denotes the unit 1 0 1 E Exto (k, P [DB) and a = [ail . .a,](p 0 q) c

Extsp(k, P [DB). In [Mi178], there is a full description of the Kiinneth map K on the level

of cochains, but here all we need are the maps K : Co(k, M)oC (k, N) --+ Cp(k, MON)

and K : C (k, N) 0 Co(k, M) -+ C (k, M o N). The former sends m O [aI ... la,]n -

[ail ... las](m 0 n) and the latter sends [ail ... la,]n 0 m '-- [ail ... las](n 0 m). In

particular, K(1 0 a) = [aI. ... las](1|1|p~q) and K(a 0 1) = [ai . . . las](plql11) in

Exts (k, (P ODB) 0 (P ODB)).

To determine /3', it remains to determine the map - : (P ODB)0(P [DB) - P OD(P ODB)

induced by - 0 M 0 -. This is accomplished by calculating the effect of shear isomor-

phisms as follows:

(B 9 B) 0 (B 0 B) B 3

S - 1 (S -

(P1DB) 0 (P[nDB)

tSBOB

D P IDSB
PED (B 0B) - P D (P1DB)
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E xc(y') y" 0 zc(w') w" > Z xc(y') y"zc(w') W"

E xc(y') (y")'z'c(w')'(w")'
Xly 0 zjW O(y"/)"/z//c(W')" //g (W"/)"/ i E Z Iz'yz"1W.

= E xz'lyz"c(w') 1w"
That is, 7 (x Iy 0 zIw) = Zxz'lyz" w, which implies

'(1 0 a + a® 1) = -y*K(1 0 a + a ® 1)

= y 7 ([a, I . .. jas] (I II pjq + pjq I1|1))

= [ail ... Ia.]y(1 1|pjq + pjqI1|1)

[a1|I ... |as] ( E p'|p"|Iq + p I q| I .

Proposition 4.3.19. The element e, is primitive.

Proof. We need to check the criterion (4.3.4) for a = e,. Recall we had the formula

en=[ 1](11 n) - [ 2](11|i_j) + [ J1)((1|(_1)EC,( DB

from Lemma 4.3.11. It suffices to check that a'(en) - 0'(1 9 en + en ® 1) is zero in

b-0
1 Extp(k, P ED(P DB)). Using Lemma 4.3.18 we have:

a'(6n) -'( en + en (I J)=((]1A~n) - [n]1Ai1 (](|~_)

- (i](1l1ljn + 1nl1) - [ 2](11li_1 + 1|(3_1|1)

+ [J1](1l1|i _1 + 11i _1 + 1|_1 11))

1 J E |i| -jg3 [ 2| E jj|(j?|(~ + [(1 ] E 1|(ij?|(+

i+j=f i~j=n-I i+j=n -1
2<j<n-1 1<i<n-2 1<j<n-2

But all the remaining terms in the difference are in CP(P ED(P EDI(3))) so by Corollary

4.2.16 they are zero in bio-local cohomology. E

Putting together Lemma 4.3.14, Proposition 4.3.15, Corollary 4.3.17, and Proposition
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4.3.19, we have the following:

Theorem 4.3.20. The map R 0 E[e2 , e 3,...] -+ bj Ext*(k, B) is an isomorphism of

Hopf algebras. That is, the Hopf algebroid (K( 1 )**, K( 1 )**K( 1 )) is an exterior Hopf

algebra over R on the generators e 2, e 3 ,... where e, has internal degree 2 (3n + 1).

4.4 Convergence

The convergence argument will only rely on the form of the E1 page of our spectral

sequence. Recall B = P EDk and K( 1) = b-'B. By the definition of the MPASS

(Definition 2.2.2), we have Ef'* = b- K( 1)**(K((1)Os) = b-J Extp(k, B 0 1Ps). By

the change of rings theorem, this is b-1 ExtD(k, BS)

Proposition 4.4.1. The b 10-localized K( 1)-based MPASS

b-j ExtD(k, 0 ) -:- b-jExtp(k, k)

converges.

The proof is a slight modification of [Pal0l, Proposition 4.4.1, Proposition 4.2.6].

We use the following grading convention: x E E"' is an element in Extp(k, B® B )

with internal degree u. Note b10 E Ec ' .

Lemma 4.4.2. Let M be a bounded-below graded D-module and suppose um = minfu(x)

x e M}. If x E Ext*(k, M) is a nonzero element of degree (s, t, u) and x | 0, then

u > um + 6t - 2.

Proof. First we check the cases when M 2 k, M(1), or D.
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Case 1: M a k. Let y be the generator of M, in degree (t, u) = (0, u(y)). We have

Ext* (k, k{y}) = E[hio] 9 P[bio] 0 k{y} where h1o is in degree (t, u) = (1, ) = (1, 4)

and bio is in degree (t, u) = (2, 12). The minimum degree element is y, so um u(y).

Every element has the form hiob' y or bioy for n > 0, and both of these satisfy

u > uM + 6t - 2.

Case 2: M - M(1). Write M = k{y, Oy}, where Dy is in degree (0, u(Dy)) and ay is in

degree (0, u(ay) + 4). By Lemma 4.3.7(1), Ext *(k, M) = JFp[bio] 0 k{y, e(y)} where

e(y) is in degree (t, u) = (1, u(Dy) + 8). The minimum degree element is 1y, and all

the elements satisfy u > uM + 6t.

Case 3: M a D. Here, ExtD(k, M) a k has degree (t, u) (0, um) and ExttD(k, M) = 0

for t > 0.

In general, a homogeneous element x E M is a sum xi for xi E Mi where Mi is

a summand of the above type, and by definition, uM, > uM. So u(x) = u(xi) >

um, + 6t - 2 > um +6t - 2.

Proposition 4.4.3. There is a vanishing plane in the E1 page of our spectral sequence:

E 't'' = 0 if u< 12s + 6t -2.

Proof. Recall E1,,* = Ext',(k, PEDB ) ExtD(kB The element in B of smallest

internal degree is ', which has u = 12. Therefore x E B0g has u > 12s. By Lemma

4.4.2", if x E Es'" has degree (s, t, u), then u > 12s + 6t - 2. E

Corollary 4.4.4. The differential d, : Estu - Es+r,-r+l,u is zero if r > 1(u - 12s -

6t - 4).

Proof. Given x E E',t'1 , dr(X) E EI''t = Es+rt-r+l,u will be zero because of the
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vanishing plane if 12s' + 6t' - 2 - u' > 0. But

12s'+ 6t' - 2 - u' = 12(s + r) + 6(t - r + 1) - 2 - u = (12s + 6t + 4 - u) + 6r

which is > 0 for r as indicated.

Corollary 4.4.5. There is a vanishing line in Ext* (k, k): if x E Ext'u(k, k) and

u - 6t' + 2 < 0 then x = 0.

Proof. Permanent cycles in E''"" converge to elements in Extpi'"(k, k). Any such x

would then be represented by a permanent cycle in E"'i'u with u - 6(s + t) + 2 < 0 <

6s (since Adams filtrations are non-negative), which falls in the vanishing region of

Proposition 4.4.3. El

Note that bio E Extp (k, k) acts parallel to this vanishing line; this is an illustration of

the Stable(P) version of Theorem 1.1.3.

Proof of Proposition .4. 1. The non-localized spectral sequence converges by Proposi-

tion 2.2.5. There are two things that can go wrong with convergence of a localized

spectral sequence: (1) a bio-tower of permanent cycles is not in bI-Eo because the

tower is split into infinitely many pieces in the spectral sequence, connected by hidden

multiplications; (2) a bio-periodic tower supports a differential to an infinite sequence

of torsion elements, and hence this differential is not recorded in b- 1E,. (The reverse of

(2), where a sequence of torsion elements supports a differential that hits a bio-tower,

cannot happen: if d,(x) = y and b' x = 0 in Er, then 0 = d,(b' x) = b' d,(x) = b' y.)
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Figure 4-1: Illustration of (1): this represents a bio-tower in rX

For (1), suppose x has degree (sr, t, uX). If there were no multiplicative extensions,

then b 0x would have degree (sr, Itx + 2i, ux + 12i). But multiplicative extensions cause

it to have the expected internal degree u and stem s + t, but higher s. That is, bt X

has degree (sx + ni, tx + 2i - ni, ux + 12i) for some ni > 0, and because this scenario

involves the existence of infinitely many multiplicative extensions, the sequence (ni) is

increasing and unbounded above. This causes us to run afoul of the vanishing plane

(Proposition 4.4.3) for sufficiently large i:

12s + 6t - 2 - u = 12(sx + ni) + 6(tx + 2i - ni) - 2 - (ux + 12i)

= 12sx + 6tx - 2 - u' + 6ni

which is > 0 for i > 0.

For (2), the scenario is, more precisely, as follows: we have a bio-periodic element

x E Ext*(k, k), and a sequence of differentials dr,(b'Ox) = y$ / 0, where every yi is

bio-torsion. The sequence (ri)i must be increasing and bounded above: if bioy = 0

then d,, (bni X) = bnjyi = 0, and so if bijX is to support a differential di, we must have

rn > ri. Note that the condition on r in Corollary 4.4.4 is the same for all b' X. So

some of the ri's will be greater than this bound, contradicting the assumption that

dr,(b'ox) # 0. ElI
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4.5 Identifying the b 10-periodic region

In this section, we determine a line of slope 1 above which Ext*(k, k) is bio-periodic.

Our main input is the following theorem, which Palmieri states for the Steenrod dual

A instead of P, as we do below. The only difference is that, over A, one must also take

into account the objects K(rT), which do not come into play over P. (This reasoning

follows from the discussion in [Pal0l, 2.3.2].)

Recall in Section 2.3.2, we defined s( "{) = lpl f'I = ps+l(pt - 1) and discussed how

this related to vanishing lines on Adams E2 pages.

Theorem 4.5.1 ([Pal0l, Theorem 2.3.1]). Suppose X is a spectrum in Stable(P)

satisfying the following conditions:

(1) There exists an integer io such that 7i,*X = 0 if i < io,

(2) There exists an integer jo such that ri,jX = 0 if j - i < Jo,

(3) There exists an integer i1 such that the homology of the cochain complex X

vanishes in homological degree > i1 . (In particular, this is satisfied if X is the

resolution of a bounded-below comodule.)

Suppose d = s( ) (with so < to) has the property that K($j),,(X) = 0 for all (s, t)

with s < t and s(gJS) < d. Then 7,*X has a vanishing line of slope d: for some c,

7ijX = 0 when j < di - c.

As elsewhere in this thesis, we abuse notation by identifying a P-comodule with its

image in Stable(P), and here we take that one step further by writing k/b1 0 for the

cofiber in Stable(P) of bio E Ext 2(k, k), thought of as a map k -- k in Stable(P). We

will make use of the cofiber sequence

k bio k[2] -+ k/b10 [2] (4.5.1)
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and its induced long exact sequence

-. - Ext '(k, k) - Extp 2 ,t+ (k, k) -+ Ext' +2 ,t 1 (k, k/bo) -- Exts+lt(k, k)

Exts';t+12 (k,k[2])

(4.5.2)

(Here we use Ext**(k, k/biO) to denote Homstable(P)(k, k/bio).)

Claim 4.5.2. The object k/b1 0 satisfies the conditions of Theorem 4.5.1 for d = 24.

Proof. First we check the three homotopy boundedness conditions.

(1) k satisfies the condition for io = 0, so (4.5.2) shows that k/bio satisfies the condition

for io = 0.

(2) k satisfies this condition for jo = 0, so by (4.5.2), k/bo satisfies the condition for

jo = 0.

(3) k/bo is (the resolution of) the 2-cell complex k bA k.

Now we check the main condition in Theorem 4.5.1 with d = 24 = s( 2). Since 1 is the

first (f< with s < t and 2 is the second, we just have to check K( 1 )**(k/bo) = 0. This

is essentially by construction: consider the long exact sequence of (4.5.1) in K(( 8 )**:

K(({ )*, * -l+2,, -1 K(('8 )*+2,*+12(k/b1o).

Since (PDD[ 1]k)** = B** E[hio] 0 P[bio], the non-connective version K( 1 ) =

b-- (P OD[ 1 ] k) has K( 1 )** a E[hio] 0 P[bfo], i.e. multiplication by b1o is an is6morphism

K( )s,* --+ K( 1)s+2,*+ 12 for all s, and so the LES shows K( 1 )**(k/bio) = 0. EZ

Thus, we can use Palmieri's theorem to conclude that there exists some c such that

7wS,t(k/bio) = 0 when t < 24s - c. Going back to (4.5.2), we see that multiplication by
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bio is an isomorphism in this range; more specifically, from the exact sequence

Extsi ~(k, k/bio) - Extsp'(k, k) - Extf2,t (k, k) - Ext 2t~(k, k/bio)
0 if t+12<24(s+1)-c 0 if t+12<24(s+2)-c

we see that Exts"(k, k) -+ Extp 2,t+ (k, k) is an isomorphism if t < 24s + 12 - c, or

equivalently 1(t - s) + -- (c - 12) < s. If x C Ext't(k, k) is nonzero with s, t satisfying

this condition, then so is b k x for every k. Therefore:

Proposition 4.5.3. The localization map Extst(k, k) -÷ b-- Extsf(k, k) is an isomor-

phism in the range s > - s) + c' for some constant c'.

In [Pal0l, 2.3.5(c)], Palmieri gives an explicit expression for the constant c, which allows

us to calculate the y-intercept in the above line to be c' ~ 6.39.
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Chapter 5

Computation of d4

Notation 5.0.1. As in all of the computational parts of this thesis, we are working at

p = 3. Recall we have set

* D = k[1|?

*K(1) = b-'B where B = PED k, and

* R = (1) = E[hio] ® P[b j].

Finally, recall from 4.1.5 that we have established the convention that the symbol (

means what is usually called : that is, we have

i+j=n

This makes it easier to talk about B = P EDk, which can be written k[ ,2, 3,...]

with the above unconventional notation.
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5.1 Overview of the computation

In the previous chapter, we've shown that the K( ,)-based MPASS computing b-' Extp(k, k)

has the form

E*= E[hio] 0 P[biEb,1w2 ,w,... ==- b-jExt*(k, k)

where s(wn) = 1, t(w,) = 1, and u(wn) = 2(3" + 1). (Recall s is Adams filtration,

t is internal homological degree, and u is internal topological degree, so E",tu -

Extpu(k, B ®B(9)

Proposition 5.1.1. If r > 2 and r 0 4 (mod 9) or r 0 8 (mod 9), then d, = 0.

Furthermore, if we let W+ P[b j,w2, w 3 ,... ] and W- = W+{h10 }, then

d4+9n(W+) C W- d4+9n(W-) = 0

d8+9n(W+) = 0 d8+9n(W-) C W+.

Proof. This is a degree argument, so we simplify to considering d,(x) where x is a

monomial.

Case 1: x = Wk1 ... Wkd and d,(x) = bfwn1 ... Wl,. I claim this is not possible

because t(d,(x)) has the wrong parity. Recall that t(wn) = 1, t(bio) = 2, and t(d,(x)) =

1 -r+t(x). But here we have t(d,(x))+r-t(x) = (2N+d+r) +r-d = 2N+2r 0 1

(mod 2).

Case 2: x = Wk1 ... Wkd and d,(x) = b'h10 wn1 ... wnd. We will measure degree

using u' := u - 6(s + t); this has the property that u'(bio) = 0, u'(hio) = -2, and

U'(Wk) = 2 (3k - 5) for all k. Furthermore u'(d,(x)) = u'(x) - 6. Using the fact that
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U'(w,) = 2(3" - 5), u'(hio) = -2, and '(bio) = 0, this equality becomes

d+r d

Z 2(3ni - 5) - 2 = Z2(3 k -5)- 6
i=1

d+r

j=1

d

3fli - 3 =5r -2
i=1 j=1

Since ni, kj > 2 for all i, j, taking this mod 9 gives 0 = 5r -2 (mod 9), so r = 4 (mod 9).

Case 3: x = h1owk1 ... Wk and dr(x) = bOWn - -n

t'(x) - 6 becomes:

d+r

2(3 n -5)
i=1

As in Case 2, U'(dr(X)) =

d+r d

E 3fi - - 5r -4
i=1 j=1

and taking this mod 9 yields r - 8 (mod 9).

Case 4: x = hlowk1 ... Wkd and dr(X) = b'h 1 own1 ... Wndi,. This can't happen for the

same reason as Case 1. ED

So the next possibly nontrivial differential is d4.

Proposition 5.1.2. We have the following:

dr(hi0 ) = 0 for r > 2

dr(W 2 ) = 0 for r 2

d4 (w3 ) = kbj-0h1OW5

d4 (w4 ) = kb 2 3h1oww.

Proof. The first two facts can be seen directly in the cobar complex Cp(k, k), using the
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cobar representatives hio = [i1] and w2 = [l1 2] - [ 2|( ], which are permanent cycles.

The differentials on w3 and w 4 were deduced from the chart of Ext*(k, k) up to the

700 stem that appears as Figure 4-2 (generated by the software [Nas]). In Proposition

4.5.3, we showed that Ext*(k, k) agreed with b-1 Ext* (k, k) in the range of dimensions

depicted in the chart. Thus we know which classes in E2 = R 0 P[w2, W3 ,... ] in this

range of dimensions die in the spectral sequence, and, using multiplicativity of the

spectral sequence, this forces the differentials above. El

The goal of this chapter is to prove the following:

Theorem 5.1.3. For n > 5, there is a differential in the MPASS

d4 (wn) b -4h1 w2w_ 1 .

Since the spectral sequence is multiplicative and d4 (hiO) = 0, this determines d4.

The main idea is to use comparison with the MPASS computing b 1 Extp, (k, k), where

Pn = k[ 1, 6), G-2, Gn-1, Gn]/(O?, ( 21 C -11 (Z-

(The idea is that this is the smallest algebra in which the desired differential can be

seen.) This is a quotient Hopf algebra of P by the classification of such (see [Pal01,

Theorem 2.1.1.(a)]). Here's a picture:

6 6 (2~-2621E

Let B = P nDk and Bn = Pn ODk. There is a b-lBn-based MPASS computing

b- 1 Extp p(k, k), which we will denote E,(k, Bn). Let E,(k, B) denote the b--7lB-based
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MPASS for b-1 Extp(k, k) discussed above. Then the diagram

I I
-7 -> n D

shows there is a map of spectral sequences E,(k, B) - E,(k, Bn).

Lemma 5.1.4. It suffices to show that d4 (wn) = 0 in E4(k, B).

Proof. Since s(d4 (wn))= 4 + s(wn) 5, we know that d4 (wn) is a linear combination

of terms of the form b Nhiowk1 ... Wk 5 . Using the grading u' := u - 6(s + t), we have

U'(wn) = u'(bi'hlOwk, ... Wk 5 ) + 6

2(3" - 5) =
5

-2 + Z2(3 ki -5)+6

5

3n + 18 = Z3ki

i=1

Note that ki > 2. Looking at this mod 9, we see that two of the ki's have to be

= 2, say k, and k2 . Then we have 3" = 3k3 + 3k4 + 3k*. The only possibility is

- 1 = =k4 = k5 . So if d4 (wn) 7 0 then d4 (wn) = b Nhiow1w2_ 1 , and checking

internal degrees shows N = -4.

When we discuss E,(k, Bn) it will be easy to see that there is a class w, E E2 (k, Bn)

which is the target of wn E E2(k, B) along the quotient map.

E4 (k, B) d4 ) E4 (k, B)

E4(k B ) d4 ( E4(k, Bbt)

Lemma 5.1.4 says that it suffices to show d4 (Wn) = 0 in E4(k, Bn ), but it turns out to
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be the same amount of work to show the following more attractive statement.

Goal 5.1.5. There is a differential d4 (w,) = b-hi ow2w _1 in Er(k, Bn).

Using the same argument as Proposition 5.1.1, we know that d2 = 0 = d3 in Er(k, Bn),

so hiow2w _1 is not the target of an earlier differential.

We will use the following strategy to show the desired differential in E,(k, B"):

(1) Calculate E2(k, B,) in a region and identify classes w 2 , W.-I, wn that are the

targets of their namesake classes under the quotient map E2 (k, B) -* E2 (k, B").

(2) Show that b-1 Ext* (k, k) is zero in the stem of b-jh1 ow2w3_1. This implies that

b-4hi0 w1w2_ 1 either supports a differential or is the target of a differential.

(3) Show that b- hiow2w3_ 1 is a permanent cycle in the MPASS (so it must be the

target of a differential) and show that, for degree reasons, wn is the only element

that can hit it. By looking at filtrations, we see this differential is a d4.

In order to show (2), we introduce another spectral sequence for calculating b-1 Ext* (k, k),

the Ivanovskii spectral sequence (ISS). This is the (bio-localized version of the) dual of

the May spectral sequence; that is, it is the spectral sequence obtained by filtering the

cobar complex on Pn by powers of the augmentation ideal.

In Section 5.2 we will introduce notation and record facts about gradings. In Section

5.3 we will compute E1 (k, Bn) and the relevant part of E2 (k, Bn), and show (1) and (3)

assuming (2). In Section 5.4 we will calculate the relevant part of the ISS and show (2).

Convergence of the localized ISS is discussed in Section 5.5.
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5.2 Notation and gradings

Since most of the work in this chapter consists of degree-counting arguments, we will

now record how differentials and convergence affect the various gradings at play. We

also introduce a change of coordinates on degrees that simplifies degree arguments by

putting bio in degree zero.

MPASS gradings

As mentioned above, when working with MPASS's we use the grading (s, t, u) where s is

MPASS filtration, t is internal homological degree, and u is internal topological degree,

such that ES"t" = Exttpu(k, B 0 B O). This has the property that the differential has

the form

dr : Es,t,u _- Ers+r,t-r+l,u

and a permanent cycle in Er,Au converges to an element in b- Extp+t"u(k, k).

Instead of working with the grading (s, t, u), we perform a change of coordinates by

setting

U' := U - 6(s + t)

and track (u', s) instead. This is more convenient because u'(bio) = 0 = s(bio), so all

classes in a bio-tower have the same (u', s)-degree. The differential under the change of

coordinates has the form

dr : Eu',s -' E'-6,s+r

and a permanent cycle in Eu''' converges to an element in b-1 Ext" b(k, k) (where b is

internal topological degree and a is homological degree) with b - 6a = u'.

Definition 5.2.1. Let stem in b-1j Ext,b(k, k) denote the quantity b - 6a. Then a

permanent cycle in Eu, converges to an element in the a' stem.
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Finally, define

u" := u - 6t.

This is only useful for looking at the E1 page of the MPASS, as di fixes u".

ISS gradings

The Ivanovskii spectral sequence computing b-1 Extpn (k, k) is the spectral sequence

obtained by filtering the cobar complex on Pn by powers of the augmentation ideal:

for example, [6162i-16 has filtration 2 + 3 = 5. Let Er{SS denote the E, page of the

Ivanovskii spectral sequence.

We use slightly different grading conventions: classes have degree (s, t, u) where s is

ISS filtration, t denotes degree in the cobar complex, and u denotes internal topological

degree (as in the MPASS). The differential has the form

diss : E,-,tu Es+r,t+l,u

and a permanent cycle in Es"u converges to an element in b- 1 Ext"u(k, k).

We will use the change of coordinates

U' :=u - 6t

which is designed so that u'(bio) = 0. (This has a different formula from the MPASS

change of coordinates simply because (s, t, u) correspond to different parameters here.)

The differential has the form

dIaS : Eu',s _ Eu'-6,s+r

and a permanent cycle in E,"u', converges to an element in b-1 Ext" b (k, k) with u' = b-6a,
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i.e. an element in the u' stem.

Note that u' has different formulas for the MPASS and ISS, but in both spectral sequences

U' corresponds to stem, with the definition given above. Now we will introduce another

grading on Pn (for n > 5) preserved by the comultiplication.

Extra grading on Pn

Let P' = k[ 1, 21 U3-2 n-l, n]/(12 -21 C-, 3 9 ). Note that every monomial in Pn

can be written n- 2x where e E {0, 1, 2} and x E P'.

Lemma 5.2.2. For n > 5, P' is a sub-coalgebra of Pn.

Proof. This is clear from the comultiplication formulas

(5.2.1)A( n) = @( + 1 (9 n_1 + 2 0 CA-2

A( n-1) = 1 0 (-i + ®@ -2 + n-1 01

(_ 1 0 n-2 + n-2 0 1

and the assumption n > 5 guarantees that I, 2 # n-2. nZ

Proposition 5.2.3. Let n > 3. There is an extra grading a on Pn that respects the

comultiplication, defined by the property that it is multiplicative on P', and

Z( 1) = a( 2) = a(Gf-2) = 0,

n(-2) = a( n-1) = 3,

OZ(n) = 9,

a( _Ix) = a(x) for e E {0, 1, 2} and x E P'.

Proof. First we check that a respects the comultiplication when restricted to P'. Since
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it is defined to be multiplicative on P, it suffices to check that a(y) = a(Ay) for y as

each of the multiplicative generators. This is clear from the comultiplication formulas

(5.2.1).

Now suppose y = n-2X where x E P. We have

A (n- 2x) = (1 0 'n-2 + 'n-2 0 1)Ax = (x' 0 x"n- 2 + X'n- 2 9 x")

and the a degrees of both sides agree since P is a coalgebra. Similarly, if y = n-2x

for x E P, we have

a(Ay) = a((1 0 '-2 + 2fn-2 0 'n-2 + (n-2 0 1)(9 x))

a( x' 0 2 x" + 2(-2x' 0 In2x + 2 2x' 0 x" ) = a(Ax ). E

5.3 The E2 page of the b-Bn-based MPASS

The goal of this section is to prove the following:

Proposition 5.3.1. If b -- h 1Ow2wI_ 1 is the target of a differential in the b--Bn-based

MPASS calculating b-J Ext(k, k), that differential must be

d4 (wn) = b -- h1ow w 1 .

The main task is to calculate enough of E2(k, Bn) to do a degree-counting argument

(Proposition 5.3.9), where

Bn = Pn EDk 2, n-2, n-1 n (n 21 nLP-

As in the calculation of the E2 page of the b-B-based MPASS (Section 4.3), the
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Kunneth formula for the functor bj ExtD(k, -) (Lemma 4.3.5) guarantees flatness of

(b-Bn),,(b-B) over (bj'Bn),.. So we can use the formula

(5.3.1)

where (byjBn )* = b-1 Ext* (k, Bn) = R and (bBn)(bBn) = bI Ext,(RB 2 )

b-j Ext* (k, Bn) by the change of rings theorem. We will simultaneously determine the

vector space structure and the comultiplication on b-1 ExtD(k, B)

Remark 5.3.2. By the definition of the MPASS (Definition 2.2.2), the change of rings

theorem, and the Kunneth formula mentioned above, we have

Es"'*(k, Bn) b- 1 Ext* (k, Bn 9 B-) a bj Ext* (k, 1 n) 1 b-1 ExtD(k, Bn)®s

and so the coproduct on b- Ext*(k, Bs) coincides with d 1 on

We can write Bn as a tensor product

Bn = k[62 , ]/( ,) k[n--2]/- 2 & k[ n_ 1, C-2/(C-1, 1 - 2) 0 k[ n, (%_1]/( n, n_1

illustrated in Figure 5-1.

92

n-2 'n-I

n,-2 n-1

Figure 5-1: Illustration of the decomposition of B, into tensor factors

Since we have a Kunneth formula for by1 ExtD(k, -), it suffices to apply this functor to

each of the four factors of B , above.
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Factor 1: k[, ']/(2, 1)

We can explicitly see that this breaks up as a D-comodule as

k[ 2, 1]/ 2, )1 k{I1} (1 k{{2,(} k{ sf2, (1 k k{ff2} (D k{ I?}
1~ 2 1 1___ 2 1 L1

k M(1) D M(1) k

(5.3.2)

(Recall M(1) was defined to be the D-comodule k[[1]/ , and every D-comodule is

a sum of copies of k, M(1), and D.) As a module over R := E[hio] & P[b:j], this

is generated by a class e 2 = e( 2) in b-01 Extb(k, k{ 2, ( }), a class f2o = e(( 3 ) in

b10 Extb(k, k{ j2}), and a class c2 in b-1 Ext4D(k, k As b-1 Ext* (k, D)

0, we may ignore the free summands.

Using Lemma 4.3.7, we can give explicit representatives for the classes in b- 1 Ext*(k, k 32, /( ))

coming from the decomposition (5.3.2):

e2 := e( 2) = [ 1]k2 - [11 C Ext*(k, k[ 2 , 1]/(, ))

f2o := C( 3 2) = [ i] 3 2 + [ 2] 6(

C2 = 1

satisfying relations e2 = 0 = fj0 and bioc2 = e2 2 0 .

Lemma 5.3.3. The classes e 2 and f2o are primitive in the coalgebra b-1j Ext* (k, B").

Proof. By the results of Section 3.3, we can interpret the MASS as a filtration spectral

sequence on the cobar complex Cp (k, k), where [aiI ... la,] is in filtration n if > n ai's

are in BPs. The elements e 2 and f2o correspond to elements in F1/F2 Cp (k, k) with

the same formulas, and by Remark 5.3.2 it suffices to show that di(e2) = 0 = d1(f20 )

in the filtration spectral sequence. One checks explicitly that dcobar(e2) = 0, so it is a

permanent cycle. This is not true of f2o, but we can write down explicit correcting
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terms in higher filtration:

f2o =2o : [(2|] + [(|2] - [ 16232(] + [ 1 21 3] + [ U 126] + [ |2 [] + [ 2 3]

and then check that dcobar(f20) = [ 3I 61 3] + [ 31 316] . This has filtration 3, and so

d1 (f2) = 0.

So we've proved:

Proposition 5.3.4. There is an isomorphism of Hopf algebras

b-' ExtD(k, k[62, 3]/( 3, )) a R 0 E[e2, f20]

where e2 and f2o are primitive.

We can summarize the degree information as follows:

element s i u // = u - 6t a

1 0 0 0 0 0

hio 0 1 4 -2 0

bio 0 2 12 0 0

e2 =[[1]2-[(1] 3 1 1 20 14 0

f2o = [(,](3(2 + [ ]flK62 1 1 48 42 0

C 2 1 0 56 56 0

E

Factor 2:

This decomposes as k{1} E k{ n-2} Q kn2} so we have three R-module generators:
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element s t u u" = U - 6t a

1 0 0 0 0 0

n-2 1 0 2(3n-2 - 1) 2(3n-2 - 1) 0

n-2 1 0 2.2(3-2 1) 2-2(32 1) 0

As a Hopf algebra we have

b1j ExtD(k, k[ n-2]/- 2 ) a R 9 D[ n- 2].

Factor 3:

Similarly to (5.3.2), for the third factor of Bn we have a D-comodule decomposition

k{1} e k{k 1 , '!_2} f k{ 1(U2, 2ni k EF kj I M( I k

where F is a free D-comodule, which gives the following R-module generators of

b-1 Ext* (k, k[ n-1, n2/(%1 Z2)

element s tj u U = u - 6t a

1 0 0 0 0 0

_:=['f_ -[ 1 1 2(3n-1 + 1) 2(3n1 - 2) 3

yn-i [, 1]'_ 2 2 + [12](f-1 n2 1 1 2(3n+1 - 21) 2(3 n+ - 24) 27

Zn_1 :=n_1gin2 1 0 2(3n+1 + 3n-1 - 26) 2(3n+1 + 3n 1 - 26) 30

Lemma 5.3.5. en_1 is a permanent cycle in E,(k, Bn). In particular, di(en_1) = 0.

Proof. Use the filtration spectral sequence interpretation of the MPASS described in

118

k[ n_1, n-2]/(71 7-2)

k[21 2/ (C-1, i 2-2)



the proof of Lemma 5.3.3, where en_, has representative

[ 1|(n_1] - [ |2]

in Cp. (k, k). It is clear that this is a cycle in Cpn (k, k), hence a permanent cycle in the

spectral sequence.

Factor 4:

There is a D-comodule decomposition

k[ , _]/( 2, 9-_1)

k{} I I k{{a I 3_1} k{n2, M_1n ,
k M()D

k{ (n3 _ 1 n _)}
L-M(1)k

The non-free summands lead to R-module generators of b-1 Ext*( , ( -1(, (-1)

which have representatives (in order):

element s tI u ] u"= - 6t a]

1 0 0 0 0 0

en- [(]_ 1 1 2(3" + 1) 2(3n - 2) 9

fo := - [ 1 1 1 2(3n+1 - 3) 2(3n+1 - 6) 27

: _ 2 1 0 2(3n+1 + 3n - 8) 2(3n+1 + 3n - 8) 36

Corollary 5.3.6. There is an isomorphism of R-modules

bi-1j ExtD(k, Bn) c R{1, e 2 , f2o, c2 } 0 R{1, n-2, n-2}

0 R{1, en- i yn_1, z-1} 0 R{1, en, fnO, cn}.

We have already computed part of the Hopf algebra structure on b-1 EXtD (k, Bn) =
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Ef*(k, B,) but do not need to finish this; we just need one more piece of information.

Lemma 5.3.7. e, is primitive in bj ExtD(k, Bn)

Proof. Write 4(en) = E c[xilyi], where c E R and xi, yi E b-1 ExtD(k, B). As the

cobar differential preserves the grading a (see Proposition 5.2.3) and V) can be given

in terms of the cobar differential (see e.g. Remark 5.3.2), b also preserves a. Since

a(en) = 9, in order for di(en) to have a = 9, we need a(xi) + a(yi) = 9. Looking at a

degrees in the above charts of R-module generators in bj ExtD(k, B,), the only options

are for en I xi or y , or for e_ 1_ xi or yi. But e_1 = 0 by Lemma 4.3.7, and so the

only option is for en to be primitive. E

Combining Lemmas 5.3.3, 5.3.5, and 5.3.7 we have:

Corollary 5.3.8. In b-1 ExtD(k, Ba), the elements e 2 , f2o, e,-1, and e, are exterior

generators in the Hopf algebra sense-they are primitive and square to zero.

Now we have computed enough of E2 (k, Bn) to show Proposition 5.3.1. If b-4h1 owsw2 1

(which is in degree a = 9, u' = 2(3" -8), and u = 2(3'+ 1)) is the target of a differential,

it must be a d, for r < 4 (since the target is in filtration 5), and the source of that

differential must have degree a = 9, u' = 2(3' - 5), and u = 2(3' + 1). Thus it suffices

to prove Proposition 5.3.9.

Proposition 5.3.9. The only element in E2(k, B,) with s < 4, a = 9, u' = 2(3' - 5),

and u = 2(3" + 1) is w,.

Proof. There is a map R 0 E[e2 , f2o, en- 1 , e.] 9 D[n- 2] --> b-0
1 ExtD(k, Bn) that is an

isomorphism on degree u" < 2 (3 n+1 - 24) and induces a map on cobar complexes

CR0E[e2 ,f20,enIen]OD[n-2 ( R-' ExtD(k,Bn)(R, R).
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I claim the map of cobar complexes is an isomorphism in degree u" < -2 + 2 (3 n+1 -

24) + 14(s - 1). One can see this by noting that a minimal-degree element in

C> Ext(k,Bf)(R, R) not in the image is h1o[ynIe 2 l ... le2], in degree -2 + 2(3n+1 _

24) + 14(s - 1). (We use u" degree here because it is additive with respect to multi-

plication within b- 1 ExtD(k, Bn) = E'*, whereas u' degree is additive with respect to

multiplication of cohomology classes in H*E1 = E2.) Note that the desired degrees

U" = '+ 6s = 2(3n - 5) + 6s fall into the region described here for every s.

Now we look at the map induced on Ext in this region. Since d, differentials increase

u" degree by 6(r - 1) (they preserve u and decrease t by r - 1) and increase s by r,

differentials originating in the region u" < -2 + 2(3n+1 - 24) + 14(s - 1) stay in the

region, but there might be differentials originating outside the region hitting elements

in the region. Instead of showing that the map on Ext is an isomorphism in a smaller

region, note that this is already enough for our purposes: we want to check that

Extb_1 ExtD(k,B) (R, R) is zero in particular dimensions, and it suffices to check that in

Ext R®E[e2 ,f2 o,e ,en]D[n - 2] (R R).

We have

Ext R®E[e2 ,f 2o,en-1,en] D[&n- 2 ](RI R) R 0 F[W2, b20, bn- 2,O, wn-i, wn] 0 E[hn- 2,0 ]

where wi = [el], b20 = [f20], and ExtD[ n- 2](R, R) = R 0 E[hn- 2 ,o] 0 P[bn- 2 ,o1. Degree

information is as follows:
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element js t U U' _

W2 1 1 20 8 0

b20 1 1 48 36 0

hn- 2 ,0  1 0 2(3n-2 - 1) 2(3n-2 - 1) 0

bn- 2,0  2 0 2(3n-1 - 3) 2(3n-1 - 3) 0

wn_ 1  1 1 2(3n-1 + 1) 2(3n1 - 5) 3

wn 1 1 2(3"+1) 2(3n-5) 9

hio 0 1 4 -2 0

bio 0 2 12 0 0

Of course, wn has the right degree. Any other monomial with the right degree must be

in R 0 P[w2 , b20, bn- 2 ,O, Wn-1]0 E[hn - 2,o), and it is clear from looking at a degree above

that it must have the form w3_x (where x E R 0 P[w2 , b20 , b - 2,0 ] 9 E[h - 2,0 ]). Since

3'(w_1 ) = 2(3" - 15), we need u'(x) = 20, which is not possible using w 2 in degree

8, b20 in degree 36, h1o in degree -2 (where ho = 0), and ha- 2,o and bn- 2,0 in higher

degree.

So the element must be b'wn, and by checking u degree we see that the power

to be zero.

N has

5.4 Degree-counting in the ISS

Recall that b -- hi 0w1w2_1 has a = 9 and u' = 2(3" - 8); if it were a permanent cycle,

it would converge to an element of bj-1 Ext"p (k, k) with stem b - 6a = 2(3" - 8) (see

Definition 5.2.1) and a = 9. The goal of this section is to prove:

Proposition 5.4.1. The sub-vector space of b-17 Ext* (k, k) consisting of elements in

stem 2 (3 " - 8) and a = 9 is zero.
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We will prove this using a (localized) Ivanovskii spectral sequence (ISS) computing

b-1 Extpn (k, k). In our case, the ISS is constructed by filtering the cobar complex for

Pn by powers of the augmentation ideal. For example, [ n] is in filtration 1, and in the

Milnor diagonal

dcobar([n]) = [61 -1] + [ 21-2],

[ 11i_14] is in filtration 4 (since [ ,] is in filtration 1 and [ 4_j] is in filtration 3), and

[ 2|C-2] is in filtration 10. In general, all of the multiplicative generators 61, 2, n-2, n-1, n

are primitive in the associated graded, i.e. they are in ker do. To form the bio-localized

spectral sequence, take the colimit of multiplication by bio. In Section 5.5 we show that

the (localized and un-localized) ISS converges in our case.

So we have EO D[ 1, 1 ,2, n- 2, -21, C9- 1, nL1, n] and

EfSS = E[hi, h20 , hn-2,j h 12,i, knO iE{O,1} 9 P[b j, bjj, b20 bn-2,, bn,, b,O] E{o}
jE{ 0,1,2} jE{ 0,1,2}

Here hij = [ 7j] has filtration 33 and bi. has filtration 3j+1. To help with the degree-

counting argument in Proposition 5.4.1, here is a table of the degrees of the multiplicative

generators of the El page.
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element [s] t u U' = u - 6t a

hio 1 1 4 -2 0

bio 3 2 12 0 0

hi 3 1 12 6 0

bi 9 2 36 24 0

h20 1 1 16 10 0

b20 3 2 48 36 0

hn- 2 ,0  1 1 2(3n-2 - 1) 2(3n-2 - 4) 0

bn-2,0  3 2 2(3n-1 - 3) 2(3n-1 - 9) 0

hn- 2 ,1  3 1 2(3n-1 - 3) 2(3n-1 - 6) 3

bn- 2 ,1 9 2 2(3" - 9) 2(3n - 15) 9



Proof of Proposition 5.4.1. The argument has two parts:

(1) show that (up to powers of bio) the only generators in EfS in degree (u' =

2(3" - 8), a = 9) are hioh2ohn- 2,2 and hiohilh2 obn- 2 ,1 ;

(2) show that those elements are targets of higher differentials in the bio-local ISS.

From looking a degrees we see that no monomial in E1 in degree (u' = 2 (3n - 8), a = 9)

can be divisible by bn- 2 ,2 , bn_1 ,1 , or bn,O, and moreover by looking at u' degree we see

it is not possible for bn_ 1,0 , hn_1 ,1 , or hn,O to be a factor of such a monomial. The

only monomial of the right degree divisible by hn- 2,2 is b Nhioh2ohn- 2 ,2 . Any remaining

elements of the right degree are in

E[hio, hil, h20, hn- 2,0 , hn- 2,1, hn_ 1,0] 0 P[b"j, bil, b20, bn- 2,0, bn- 2,1].

Of these generators, only hn- 2 ,1 , hn-1,0 , and bn- 2,1 have a > 0. Since hn_2,= 0 = h_1,,

a monomial with a = 9 needs to be divisible by bn- 2 ,1. If u'(bn- 2,x) = 2(3" -- 8)

then u'(x) = 14, and the only possibility is x = bNh1 0h 1 h20. (Here we are using the

assumption n > 5 to determine that u'(hn- 2,o) = 2(3n-2 - 4) > 46, and the elements

following it in the chart have greater degree).
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hn- 2,2  9 1 2(3" -- 9) 2(3n - 12) 9

bn- 2 ,2  27 2 2(3n+1 - 27) 2(3n+1 - 33) 27

hn_1,0  1 1 2(3n1 - 1) 2(3 n1 - 4) 3

bn- 1,0  3 2 2(3n - 3) 2(3" - 9) 9

hn- 1 ,1  3 1 2(3" - 3) 2(3n - 6) 9

bn_1 ,1  9 2 2(3n+1 - 9) 2(3n+1 - 15) 27

hnO 1 1 2(3" - 1) 2(3n -4) 9

bn,O 3 2 2(3n+1 - 3) 2(3n+1 - 9) 27



This concludes part (1) of the argument; for (2) it suffices to show

d9 (hioh2obn_ 1,0 )= hioh2ohj bn-2,1- biohloh2ohn-2,2 (5.4.1)

d9 (bioh1ohn0 ) = -biohloh2ohn-2,2. (5.4.2)

First, I claim that hi0h20 is a permanent cycle; it is represented by [1|2] - [ W2]=

which we've seen is a permanent cycle in the cobar complex. The class bn_1,o has cobar

representative [ 1n- _1]+ [ 2_11n_1] and

bn_1,0 = [ n-1j(%_1] + [$_1|jn-1] - [1 n_1-fl-1 % -2+ [+1n_|C-2

+ [(In-1 + [| In-16-21 + [(1|E1ai C-21 E (F3/F4)C (k, k).

Computing the cobar differential on this class (and remembering that (n-3= 0 in Pa),

we see that d9 (bn_ 1,0 ) hubn-2,1- b 1ohn- 2,2. So

d9(hioh2ob_1,0) = hioh 2o d9 (bn_ 1 ,0 )= hioh20(h1 1bn_ 1,1 - bohn-2,2)

We have h1ohnO [i] - [nE F2/F3 and there is a cobar differential

dcobar([ il n] -- ICI1 ]) = -[ 112 n-2] + [ n-2-

This implies (5.4.2). (We didn't check that hi0h2ohjbn- 2,1 and hioh 2obiohn- 2,2 survive

to the E9 page, because that is not necessary: we only have to check that these elements

die somehow in the spectral sequence, and if they have already died before the E9 page,

then that is good enough for this argument.) E

5.5 ISS convergence

It is easy to see that the (unlocalized) ISS converges: it is based on a decreas-

ing filtration of the cobar complex that clearly satisfies both f, FCp, (k, k) = {0}

125



and U, FsCp,(k, k) = Cp,(k, k). In the rest of this section, we will check that the

bio-localized ISS converges; this boils down to the fact that it has a vanishing line

parallel to bio. Let E4ss denote the E, page of the unlocalized ISS and b-Ess denote

the E. page of the localized ISS.

Lemma 5.5.1. There is a slope - vanishing line in EfSS in (u, s) coordinates. That

is, if x E EfSS has s(x) > lu(x) then x = 0.

Proof. In Section 5.4 we computed the E1 page:

ESS = ( E[hij] 0 P[bij]
(ij) EI

where I = {(1, 0), (1, 1), (2, 0), (n -2, 0), (n - 2, 1), (n - 2, 2),

These generators occur in the following degrees:

So we have ' ;> 2(31 - 1) = 4, which proves the lemma.S =

(u = 12, s = 3), acts parallel to the vanishing line.

(n -i, 0), (n- 1, 1), (n, 0)}.

Note that bio, in degree

Here is a picture:

5.

2

0

0 4 8 12 16 U
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element u I s u/s

hij 2(3' - 1) 3 j 3i 2(3' - 1)

bij 2 (3i - 1)3 +1 3j+1 2 (3i - 1)

1



Differentials are vertical: d, takes elements in degree (u, s) to degree (u, s + r).

Proposition 5.5.2. The b1 0-localized ISS converges.

Proof. There are two ways convergence could fail:

(1) There could be a bio-tower x in EISs that does not appear in b-lEOC because it

is broken into a series of bio-torsion towers connected by hidden multiplications.

b 5 x

~0

10

01 blox
0' box

x

(2) There could be a bio-tower x in b- EISS that is not a permanent cycle in EISS

because there it supports a series of increasing-length differentials to bio-torsion

elements (so these differentials would be zero in bj E'ss).

b10z { {lz

bioy

Y b xi box
x

In both of these cases, it is clear from the pictures that these cannot happen if there is

a vanishing line of slope equal to the degree of bio.

(Notice that the reverse of (2) can't happen-the bio tower x can't be hit by a differential

originating at a bio-torsion element y, because d,(b'y) = b'd,(y) = b'x $ 0 which

implies b'y # 0 for all N.) El
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Remark 5.5.3. The same proof shows that the ISS for b-1 Extp(k, k) converges; in

particular, the vanishing line in Lemma 5.5.1 goes through even with more hij's and

bij's in the E1 page.
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Chapter 6

Conjectures and Examples

Recall we have been using the following notation: B = P zDk, K( 1) = b-1B, and

R = b--1 Ext* (k, k) = P[bzj] 0 E[hio]. Furthermore, we maintain the convention, as

used in the last two chapters, of silently applying the antipode to the generators " of

P, so A (&) = E g, i 0 j instead of Y 0 ci as is the customary definition

of the symbol .

6.1 Conjectures

In the previous two chapters, we studied the K( 1)-based Adams spectral sequence

E2 = Ext* ((),,K( 1)**) -=> b-1l Ext* (k, k).

We showed that the E 2 page is isomorphic to R 0 P[w 2, w3 , ... ] and showed that the

first nonzero differential is d,(wn) = b--1h1ow2w3i . By a degree argument (Proposition

5.1.1) we know that d. = 0 (for r > 2) unless r = 4 (mod 9) and r = 8 (mod 9). We

conjecture that d8 is the only other nonzero differential. More precisely:

Conjecture 6.1.1.
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(1) If d4 (x) = hioy and d4 (y) = hioz, then ds(hiox) = hioz.

(2) dr = 0 for r > 8.

Evidence for this conjecture includes the fact that it agrees with bio-periodic range

of the computer calculation of Ext*(k, k) up to the 700 stem (see Figure 4-2). See

Figures 6-3-6-5 for charts depicting these differentials. In the range of the pictures,

the differentials are known, not conjectured, because they can be deduced from the

aforementioned chart of Ext*(k, k). Conjecture 6.1.1, together with information about

multiplicative extensions, allows one to conclude that b-1 Extp(k, k) has a particularly

attractive form.

Proposition 6.1.2. Suppose Conjecture 6.1.1 holds. Then there is an isomorphism on

the level of vector spaces

b-'1 Ext* (k, k) b-'lExt* 2k , 3, - - -

where the D-coaction on iin is given by /b(iOn) = 1 0 iiin +1 0 GiT _1 for n > 3 and

S(i12) = 10 ii 2 . This is an isomorphism of R-modules if, for every differential d4 (x) =

h1oy such that y is a permanent cycle, there is a hidden multiplication h1o -(h1ox) = b1oy

in b-1 Ext*(k, k).

Proof. We begin by determining the isomorphism on the level of vector spaces. Given

any D-comodule M with coaction V : M -* D 0 M, let 9 : M -* M denote the

operator defined by 0(m) = 1 g m+(19(m) - 0 8 2 (m) (see Definition 4.2.1). Then
a a2  a

there is a resolution D -+ D -+ D -+ ... for k, and applying - EDM gives rise to a

complex M - * M + M a whose cohomology is CotorD(k, M) Ext*(k, M), and
a M a2b- Ext* (k, M) is the cohomology of the periodic complex - -- M -+ -+ M -+ .

Let ii = b--w, and let W = k[iT2 , i3, ... ]. Note that d4 (iin) = hiii_ 1. We will

show that the E.. term in the MPASS is isomorphic to the cohomology of W* : --

a a2
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We have E2 = R & P[w 2, W 3 , ... ] R W. Write E2 = W+ ( W-,where W+

W 0 P[b':'] and W- = W+{h}io. By Proposition 5.1.1, we know that elements in W+

could be the source of a d4 differential or the target of a d8 differential, and vice versa

for W-. Using Conjecture 6.1.1(2), the E, page of the MPASS is obtained by taking

the cohomology of E2 by d4 and d8 , and in fact this is

E,,, ker(d4|w+)/ im(ds8w-) 0 ker(ds8w- )/ im(d4 |w+). (6.1.1)

By Conjecture 6.1.1(1), there is a map f of chain complexes

... - W a >W W a

f
2

n {f2n+1 {f2n+2I d 4  d +1d
.. . - W{ 0} -* > W{hi0 by0} -" W{b10} 

where the vertical maps are the obvious isomorphisms. By construction the cohomology

of the top complex is b-1 ExtD(k, W), and by (6.1.1), the cohomology of the bottom

complex is E,.

Now we check that this respects the R-module structure, assuming the extra hypothesis.

We will just check that it commutes with multiplication by h1o. Note that the powers

of bio and h1o on the bottom row refer to names in the MPASS E2 page. If W =

[x] E W 2n is a cycle then hiow is represented by [x] E W 2n+1 . So fln+l(hiow) =

[hiob nX] hio[b nx] = hiofin (w). The other case is a bit more complicated. If

v = [y] E W 2n+1 is a cycle then h1ov is represented by [8y] E W 2n. We need to

show that f2n+2 (hiov) = [bn+ 1 (0y)] can be represented as h1o -[hiobn y] = h- (

From the commutativity of the diagram we have d4([bn y]) = [hiob 0 y] = hio[bn ay],

and [bn0(y] is a permanent cycle because ( 2y = 0 by assumption. From the assumption

about hidden multiplications, we have hio - [hiobn y] = bio[bn ay] as desired. E

Remark 6.1.3. One can try to show the hidden multiplication by use of Massey

products. First, one would like to use the Massey product convergence theorem (see
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[Rav86, A1.4.10]) to show that the E5 Massey product (hio, hio, [b 0ay]) converges to

a Massey product in b-' Extp(k, k). The crossing differentials hypothesis is automati-

cally satisfied (assuming Conjecture 6.1.1): this says that there can be no nontrivial

differentials d, with r > 4 hitting classes in the same stem as hio[b'e9y], and this is

true because any such differential would be a d8 , which only hits classes with u' 0

(mod 4) (that is, classes whose E2 representatives are in k[w 2 , W 3 ,...], as opposed to

k[W2, W3,.... ]{h1O}). However, to use the Massey product convergence theorem, we also

need to show that (hio, hio, [by0Oy]) is strictly defined in b- 1 Ext* (k, k), in particular

that there is no nonzero hidden multiplication h1o - [b 0ay].

If this can be shown, then the Massey product shuffling relations

hio , [hiob ny] = hio (hio, hio, [b" ay]) = (hio, hio, h1o) [boy]

in b-1 Ext* (k, k) give rise to the desired hidden multiplication.

The expression in Proposition 6.1.2 is the k = M case of the following more general

conjecture.

Conjecture 6.1.4. There is a functor W : Comodp -* ComodD such that for any

P-comodule M, we have

b-' Ext *(kI M) bi Ext * (kW ).

We do not have a conjecture for the form of W(M) in general, though we believe it to

be related to the MPASS E2 page.

Remark 6.1.5. Since b D Ext*(k, W(M)) a bj Ext*(k, P DW(M)), it is tempting

to guess that the isomorphism in Conjecture 6.1.4 comes from a map M - P EDW(M).
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However, I claim that this cannot be true for M = k. There is a free-forgetful adjunction

U: Comodp - ComodD : F

where the free functor F takes M -+ P EDM. Given a D-comodule W(k), this shows

that every P-comodule map k -> P EDW(k) factors through the adjunction unit

k -> P ZDk. So the supposed isomorphism b-- Ext*(k, k) -> b-j Ext* (k, PEDW(M))

factors through b10 Ext*(k, PDEDk) bp Ext*(k, k) = E[hio] 0 P[b'i], which is clearly

false in light of what we know about b- Ext*(k, k).

In the remainder of this chapter, we present two simpler, but complete, calculations

which provide evidence for 6.1.4. In Section 6.2, we show that

b1-01 Ext*(k, k[(, (, , 4 . . .1) bi- Ext* (k, k[i 2 , b20])

where b (i2) = 1 0 i 2 and 0 (b 20 ) = 1 0 b20 + 1 0 'J4. (We actually compute

b-j Ext* .3)(k, k), which is isomorphic to the left hand side due to the change of

rings theorem corresponding to the fact that P klei 21/(9,d)k c k[ 3,1 ,1 ,4, ... ].) In

Section 6.3, we compute

b-- Ext* (k,k[(]) = b-j Ext*(kk[h 2ob2oG3 , i 4 ,. .. / )

where the generators h 20, b20, and @,, have trivial D-coaction. To summarize, our

conjectural functor W should satisfy:
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6.2 Localized cohomology of P(1)

Let P(1) = k[1, 2]/ (P 2 ,). Henderson [Hen97], building on work of Liulevicius

[Liu62], computes Ext*P( 1) (k, k) at all odd primes. In this section we will compute

b-0 Ext*( 1)(k, k) at p = 3; as Ext*(1)(k, k) at p = 3 was already bio-periodic, we recover

Henderson's result on the vector space level, but the multiplicative structure is much

simpler after inverting bio.

The main goal of this section is to prove the following.

Proposition 6.2.1. There are classes i 2 in internal degree 8 and b20 in internal degree

36 such that there is an isomorphism

b0 Ext(1) (kI k) - b-1 Ext* (k, k[iT2, 20])

where 0(b20) = 10 20 + 1®0i and 4( 2) = 10 2 .

Since Pop(I)k = k[ ,1,(3, 4,. by the change of rings theorem we have the

following.
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M W(M)/free D-comodule summands

k k[i 2,3, .. ] (conjectural)

(en =1 oEn+ @2@3sii_ (n > 3)

k[h20, b20 , i 3, 1 4, ... ]/(h 22)
trivial D-coaction

#b(b2 1) = lob 20 + @u4

B = k0[,61,61,... k
P 0
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Corollary 6.2.2. There is an isomorphism

b-' Extp(k, k[ 9, 31 , 3,4, ...]) b-' ExtD 2 , 2 201

where V)(b 20) = 1®b20 + 1®iiii and @( 2) = 1®' 2 .

We approach this computation the way we approached the computation of bio Ext*(k, k)

in previous chapters. That is, we set

B1 = P(1) Dk 2

and begin by computing the E 2 page of the b-JB1-based MPASS. First, note that

(bioB1)* = b-01 Ext*(1 )(k, B1 ) = b- Ext* (k, k) = R.

Lemma 6.2.3. The E2 page of the b-jB1-based MPASS is

E2 = Rok[ 2,b20]

where w2 has degree (s, t, u) = (1, 1, 20) and b20 has degree (s, t, u) = (1, 1, 48).

These generators relate to those in Proposition 6.2.1 by @ 2 = b-jw 2 and b 20 =b7b2 0 ; for

most of the computation we find it easier to work with classes with actual representatives

in the non-localized cobar complex. Recall that s is Adams filtration, t is internal

homological degree, and u is internal topological degree, so E"'t" = bj' Extt) (k, B1 0

B,)

Proof. This is the same calculation as Proposition 5.3.4. E

In Section 3.3 we showed that the MPASS coincides with a filtration spectral sequence

on the cobar complex, which is in this case given by

FSC*,) ((k, k) = {[a, I ... Ia.] : #({ai, ... , an} A B1P(i)) > s}.
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We can pick out some obvious permanent cycles in this spectral sequence:

hio= [] h11 := [ 3] b_ := [(3l ] + [ 61 3]

We use the underlined versions as above to refer to explicit classes in the cobar complex,

while the non-underlined versions, e.g. hio, refer to their cohomology classes. By the

spectral sequence comparison result, the permanent cycles above have to correspond to

classes in the MPASS; we clarify this relationship in the next lemma. It is clear that

hio here represents the same class as hio in the MPASS coefficient ring (B1),,. We have

the same formula for w 2 as in the b--01 Extp(k, k) case, namely

W2 = [61(2] - [ 1|]

and by observing their cobar representatives, it is clear that both w 2 and hio are

permanent cycles.

It is clear from its cobar representative that w2 is a permanent cycle, as is hio.

Lemma 6.2.4. There are relations in Ext*P(l)(k, k):

blo[b11 ] = W.

Proof. These are Massey product relations in Ext*() (k, k). First observe that our

formula w2 = [ 2] - [[ ] implies that w2 = (hio, hio, hil). Using Massey product

shuffling relations we have:

= (hio, hio, h11) 2 = g (hio, hio, (hio, hio, hil) hil)

= (hio, hio, hio (hio, hil, h1 1))

= + (hio, hio, hio) (hio, hil, hil)

hiOW2 = hio (hio, hio, hil) = (hio, hio, hio) hl = t boh1 .
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W= - = (hio, hio, hil) - bio (hio, hil, hil)

= bo (hio (hio, hio, hil) , hil, hil)

- bio ((hio, hio, hio) hil, hil, hil)

= bo (hil, hil, hl) = tb ob

We need to check Massey product indeterminacy: we need to show that all the Massey

products above are strictly defined. For (hio, hio, h11 ), we need to show there are no

cycles in the degree of [ 2] (which hits h20 ) and [p2] (which hits h1oh1 1 ). It suffices

to check using Lemma 6.2.3 that there are no elements in E2 that could converge

to these elements-that is, that there are no elements in E2 with the given stem

U' = u - 6(s + t). For (hio, hio, (hio, hio, hil) hil) we need to check the degree of

[(2] and w 2 [ 2]; for (hio, h1 , h1 ) we need to check the degree of [2] and [ 6]; for

(hio, hio, hio (hio, hil, h1 1)) we need to check the degree of [(2] and b- lW2[ 2. All of

these can easily be seen as there are not very many classes in these low degrees.

For the second relation, use Massey products similarly:

bio[hi] = (hio, hio, hio) hil = thio (hio, hio, hil) = h1 Ow 2. E

Lemma 6.2.5. There are differentials:

d3 (b20 ) = kb-3 h OW4

d3(b'0 ) = T b-3mW4b 20

d3(b'0) = 0.

Proof. We will use the following cobar representative for b20 :

b20 = [ 2|1\] + [I|2] -- [6122 ] + [ 1i' 2 |b] + [ i2| I] + [|216 ] + [1| 2 3 (6.2.1)
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in F1/F 2 Cp(i)(k, k). One can check directly that

dcobar(b 2 0) = -hnb_ . (6.2.2)

The first differential then follows from Lemma 6.2.4, and the second and third follow

from the first by multiplicativity. E

Lemma 6.2.6. b 3 is a permanent cycle.

Proof. May [May70] constructed Steenrod operations on the cohomology of a Hopf

algebra; this is functorial, and the Steenrod operations on Ext*(I)(k, k) are the image

of the operations on Ext*(k, k) along the quotient map Ext*(k, k) -- Ext*()(k, k).

Sawka [Saw82] shows that double complex spectral sequences (such as the Cartan-

Eilenberg spectral sequence) commute with Steenrod operations. In particular, using

[Saw82, Proposition 2.5(3)] we have

d7 (bio) = d7 (Plb20 ) = Pld3(b 20 ) = Pl(-hi bu)

= P 0(-hj1 )P1(b 1 ) = -h12bj1

which is zero since h12  [Q] is zero in Cp(l)(k, k). This shows that d7 (b0 ) = 0, which

is all that we need for now; by the time we get to the E7 page, it will be easy to check

(see e.g. Figure 6-2) that there is no room for higher differentials.

So

E4 = k[b:', w2 , b30]{1, hio, hiob20, hiob 0}/(hw , hb2 w4).

Furthermore, hi0 b20 has a cobar representative

1|b2o - 12|bn

which is a permanent cycle.
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10
9

8
7

6

5
4

3
2
1
0

...........-

hb b0

Ww 2 b20 b201

h I

0 8 16 24 32 40 48 56 64 72 80 88 96 104112

Figure 6-1: E3 page, with coordinates (u', s) (note that bio is at (0, 0))

Lemma 6.2.7. d6 ( h1 0 b20 ) = kb-W8

Proof. Let b20 be as in (6.2.1) and let y = [ 6 I []. One can compute that

dcobar(b20) = -hilbii

dcobar(b20 - y) = -bi1lhi1.

Since y E F2 and b20 c F1 , we see that (b 20 - y)Ih1 o lb2o e F2/F 3 is a representative for

b2 0 . Then we have:

d((b~o - y)lhiob1 - biiLc(6)Ib2 - (b 20 - y)l61b2I)

= -bulhnholb2o - (b20 - y)lhiolhijbjj

+ bnllhulh1olb2o + bnilc(62)hu lbn1

+ bjjjh11 |62 |bji + (b2o - y)|hiojhujb

- bgjhi|l2|bn + bjjlc(|2)jh11 b11
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and this is a representative for bhi (hil, hio, hil) which can be written b -5 w by Lemma

6.2.4.

hb b 3hb0 201

hw W 2  hb20

hi 1

0 8 16 24 32 40 48 56 64 72 80 88 96 104112

Figure 6-2: E7 page

So we have

E = (k[w 2]/w2 ( (k[w2 ]/w/ ){h1o} E (k[w 2]/w2){h1ob2o}) 0 k[b20]

and we have seen that all these classes are permanent cycles.

Proof of Proposition 6.2.1. Set @i 2 = b-jw 2 and b20 = b-1b20. Using Lemmas 6.2.5 and

6.2.7, there is an obvious analogue of Proposition 6.1.2 with the (d3 , d6) pair here in

place of the (d4 , d8) pair there, and it suffices to show the condition about hidden

multiplications. By Remark 6.1.5, it suffices to show that (hio, hio, [b ay]) is strictly

defined in b2j Ext*((k, k) whenever d4 (x) = h1o(Oy). Looking at Figure 6-1, we see

there is no room for such hidden multiplications. E
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6.3 Localized cohomology of a large quotient of P

In this section we will show:

Theorem 6.3.1. Let D1,c = k [ , 2, . . . ]/(). Then

b- 1 Ext* (k, k) 2 E[hio, h20] 0 P[btj, b20, W3, W4, ...

In particular, one can write

b7-j Ext*D (k, k) b1 ExtD(k, k[h 20, b2 0, W3 , W4 ,. . .]/(h

where all the generators h20, b20, wn are D-primitive.

It is interesting that D1 , seems reasonably close to P in size, and yet the computation of

its bio-local cohomology is much simpler. In particular, attempting to apply the methods

in this section (especially the explicit construction in Lemma 6.3.7) to computing

b-1j Ext* (k, k) quickly results in an intractable mess.

The strategy is to explicitly construct a map from the cobar complex CD,, e (k, k) to

another complex which is designed to have the right cohomology, and then show the map

is a quasi-isomorphism. Note that the cobar complex is a dga under the concatenation

product, so every element is a product of elements in degree 1. Thus if our target

complex is a dga, it suffices to construct a map out of C' (k, k) = D1,,, and then

extend the map to all of Ch. (k, k) by multiplicativity. In order to ensure the resulting

map is a map of complexes, there is a criterion that the map on degree 1 needs to

satisfy:

Proposition 6.3.2. Let F be a Hopf algebra over k, Q* be a dga with augmentation
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k -+ Q*, and 6 : r -* Q1 be a k-linear map such that

dQ(0(x)) = ZO(x')0(x") (6.3.1)

for all x E F, where E x' 0 x" is the reduced diagonal A(x). Then there is a map of

dga's f : C*(k, k)- Q* sending [a1. .an] to Ht0(ai).

Proof. We just need to check that f commutes with the differential; that is, we have to

check the following diagram commutes:

Crn(kI k) Q"

dcobar {Q
Cn+1 (k, k) > !.Qn+1

For n = 1, this is precisely what the condition (6.3.1) guarantees. Commutativity for

n > 1 follows from the Leibniz rule. The map on n = 0 is the augmentation. 0

Remark 6.3.3. This is an example of the more general construction of twisting cochains;

see [HMS74, 11.1]. A morphism 0 satisfying (6.3.1) will be called a twisting morphism.

The target of our desired twisting morphism will be the complex b'J U* 0 W', where

SW'= k[w 3 , w4 ,...], with u(wn) = 2 ( 3 n - 1), is in homological degree zero with zero

differential, and

SU* := UL*(1) 0 UL*( 2 ) c C[ (k, k) where the sub-dga UL*(x) C C*[ 1 (k, k)

is defined below.

Definition 6.3.4. Given a height-3 truncated polynomial algebra D[x], let UL*(x) be

the sub-dga of C [xl(k, k) multiplicatively generated by the elements a = [x], [X2,

and X = [xk2] + [x2
1x]. This inherits from C 1x (k, k) the differentials d(a) = 0,

d(O) = -o2, and d(7) = 0, along with the relations ac + Oa = -, a3 = 0, and #2 = 0.
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Remark 6.3.5. This is (up to signs) the p = 3 case of a construction due to Moore:

let UL* be the dga which has multiplicative generators a,, ... , ap_ 1 in degree 1 and

t2, ... , tP in degree 2 with d(ai) = ti, subject to

t2 a = 0 for i r I a = 0 aiaj = -ajai for i,j#1

a.a 1 = -a 1 aj + tj+1 aitj = tjai titj = tjti.

This is a dga quasi-isomorphic to, and much smaller than, Ck[, 1 /,P(k, k). It also has the

nice property that t, (which, in the case x = 1, represents b1o) is central.

Notation 6.3.6. Denote the generators of UL*( 1) by a, = a2  [a2], and

bo=[i] [ ], and the generators of UL*( 2 ) by qi = [p2], q 2 = [s2], and b20 =

[ 212] + [ 2I2]. (This definition of bio and b20 does, of course, match up with the image

of bio and b20 along Ext*(k, k) -> Ext* and even Ext*(k, k) -* Ext* (k, k).)

Note that

H*(U) = H*(CD[ l, 21(k, k)) = E[hio, h20] 0 P[bio, b20].

So our target complex b-CJU 0 W' has cohomology

H*(b--JU ® W') = H*(biJU) 9 W' = E[h1 0, h2 0] o P[btj, b20] @W'.

6.3.1 Defining 0: D1,c - bj1U 0 W'

The definition of the map 0 : Dl,, - b-ilU* 0 W' is quite ad hoc, and will be done

in several stages. The map will arise as a composition D1,, -D -> U* 0 W' -

b- 17U* 0 W', where the first map is the natural surjection to
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and the last map is the natural localization map; the main goal is to construct a map

D' -+ U* 0 W' satisfying the twisting morphism condition, and we begin by constructing

a map out of a slightly smaller coalgebra.

Lemma 6.3.7. Let

C =k[ 1, (3, 3, 4, ... I/( ( 2 39 , --- )

There is a twisting morphism 0: C -+ UL i1) 0 W'.

Proof. For n, m, k > 3, make the following definitions:

O(W) = a,

0( 2) = a2

(f_1) = -aiWn

0( n) = a2 wn

0( 1 3_1) = -a2Wn

0( 1=n) 0

0( 3_1gi1) a2Wnsm

(nG_)= 0

( = 0
0( n3g (_1) =0

0( 3_g3a _g3_1) =0

It is a straightforward computation with the cobar differential to check that each of

these does not violate the twisting morphism condition

d(0(x)) = [ 0(x') -0(x") (6.3.2)
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where z(x) = x' O x". (Note that, in C, we have 3(_1.) = 0 and A(n) =)

Now it suffices to prove the following.

Claim 6.3.8. Defining 0(X) = 0 for all monomials X except the ones listed above

defines a twisting morphism.

Define a (non-multiplicative) grading p on C where

p(1) = 0 p( i) = 1 p( ') = 2 p(-ji) = 1 p( ) = 2 p( 2) = 4

for n > 3 and p(He $ji+ 3bi) -- E ( ) + p(bi) (where aj, bi E {0, 1, 2}). The reason

for considering this grading is the following:

Claim 6.3.9. Writing A(x) = Lx' Ox", we have p(x') + p(x") < p(x).

Proof of Claim 6.3.9. If X = aj+3bj for a , bi E {0, 1, 2}, consider the collection

Ix = ai : 0}U{i : b 0}. Use induction on n := # If n = 1, then it suf-

fices to check explicitly the Milnor diagonal of each of the terms { 1, , 1, ,' (2}.

(In fact, we find p(x) = p(x') + p(x") for each of these terms.)

For general monomials a, b, we have

p(ab) ; p(a) + p(b). (6.3.3)

By definition, if x and y are products of non-overlapping subsets of 7x, then

p(xy) = p(x) + p(y). (6.3.4)

Write X = xy where x E 3x and y is a product of terms in 7x (different from x).
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Since A(xy) = E x'y'lx"y" it suffices to prove p(x'y') + p(x"y") 5 p(xy). We have

p(x'y') + p(x"y") p(x') + p(y') + p(x") + p(y")

< p(x) + p(y)

= p(xy)

where the first inequality is by (6.3.3), the second inequality is by the inductive

hypothesis, and the last equality is by (6.3.4).

So the monomials in C with degree 1 are 1 and 3_1 for n > 3, the monomials with

p-degree 2 are (, n, n and 1 nj for n, m> 3, and the monomials with degree

3 are _1 _ n-1(i_1(G, , and _1'm for n, m > 3. Notice that 0

has already been defined for these monomials above. So it remains to show that 0 can

be defined consistently for monomials with p > 4. In particular, we will show using

induction on p degree that we can define 0(x) = 0 if p(x) > 3 while preserving the

twisting morphism condition (6.3.1).

Since we have already checked above that we can define 9(x) = 0 on the monomials x

with p(x) = 3, let p(x) = n > 3 and assume inductively that we have already defined

0(y) = 0 if 3 < p(y) < n - 1. Any monomial y with p(y) = 0 is in k (and hence

0(y) = 0), so we can assume that p(x') < p(x) and p(x") < p(x). So by the inductive

hypothesis we have E 0(x') - 0(x") = 0, and so we can set 0(x) = 0 without violating

(6.3.1). E

Lemma 6.3.10. One may extend 0 constructed in Lemma 6.3.7 to a twisting morphism

' --+ U 1 0 W' by defining:

0(2) = q1

0(( 2) = 2

0( 2x ) = 0 for X G
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( 2x) = 0 for x EC

where C is the cokernel of the unit map k -- C.

Proof. Note that 2 is primitive in D', and C is a sub-coalgebra of D', so we need to

define 0 on 2C and 2C. It is straightforward to check that 0((2) = 1 and 9(c) =

is consistent with (6.3.1).

If x = Y for y E C then every y', y" in Ay is in C, and

O(x') - 0(x") = (6(2y') -O(y") + O(y') - 0( 2d"))

= 0( 2)0(y) + O(y)O( 2) +

= q1(y) + (y)qi + S
y' ,y"k

S(0(2y') - O(y") + O(y') - 0(2Y"))

(0(6 2 y') - O(y") + O(y') - 0(2Y")) -

Since 0(y) E UL( 1 ) & W' and qi anti-commutes with the generators a, and a2 of

UL ( ) , we have q10(y) + (y)qi = 0. Thus defining 0( 2y) = 0 does not violate (6.3.1).

Similarly, if x = 2y for y E C, then

5 (x') . (x") = (O($2y') -(y") + 20(2y') - 0(2y") + 0(y') . 0( 2y"))

= O( 2)(y) + 2 0(2)0(2Y) + 2 0( 2Y)O(62) + O(y)( 2)

+ 5 (0((y') -(y") + 20(2y') -0(2Y") + O(y') (

= 6( 2)(y) + 0(y)0( 2) + (( 2y')6(y") + 6(y')9( y"))

where in the third equality we use the fact that 0 = 0(2y) = 0(2y') = 0(2y") (for

y', y" k). Again, 0( 2)O(y) + 0(y)O( 2) = q2 6(y) + O(y)q 2 which is zero since 0(y) is in

UL'( 1 ) 0 W' and q2 anti-commutes with the generators a, and a2 of ULI( 1 ). So it is

consistent with (6.3.1) to define ( 2y) = 0. D
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Now precompose with the surjection q: D1,, -+ D' to obtain a twisting morphism

6: Di,, - D'--+ U1 9 W'.

This remains a twisting morphism because it is a coalgebra map-in particular, q com-

mutes with the coproduct-and so d(9(q(x))) = E 6(q(x)')6(q(x)") = 6(q(x'))6(q(x"))

So by Proposition 6.3.2 we get an induced map

6' : Ch (k, k) - U* 9 W'

by extending 6 multiplicatively using the concatenation product on the cobar complex.

6.3.2 Showing 0 is a quasi-isomorphism via spectral sequence

comparison

Our goal is to show:

Theorem 6.3.11. The map 6' : C, (k, k) -- U* 0 W' induces an isomorphism in

cohomology after inverting b10 . In particular, there is an isomorphism

b--' Ext*c (k, k) - E[hio, h20] 9 P[bj 1, b20] 0 W'.

To show this, we define filtrations on Ck. (k, k) and on U* 0 W' in a way that makes

6' a filtration-preserving map; this induces a map of filtration spectral sequences. We

compute the E2 pages of both sides and show that 6' induces an isomorphism of E2

pages, hence an isomorphism of E) pages.

Let B1,, := k[ 2 ,3,...] = D1,ooE]Dk. Define a decreasing filtration on C 1'(k, k)

where [a1 ... lan] is in FsCh, (k, k) if at least s of the ai's are in ker(D1,) -+ D) =

B1,,D1,.. Define a decreasing filtration on U* 0 W' by the following multiplicative
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grading:

" |ail = la2 | =lbio = 0

" |qi = 1q2=

" 1b 201 = 2

* lWn| = 1.

Looking at the definition of 0 in Lemma 6.3.7 and Lemma 6.3.10, it is clear that 0 is

filtration-preserving, and hence so is 0'.

It is a consequence of the work in Section 3.3 that the b-jB1,-based MPASS for

computing b--0j Ext, (k, k) coincides with the bio-localized version of this filtration

spectral sequence on Ch. (k, k). Our next goal is to calculate the E2 page of (the

bio-localized version of) the filtration spectral sequence on C, (k, k), and using this

correspondence we may instead calculate the MPASS E2 term

(6.3.5)

So we need to compute b-- ExtD(k, B1,) and its coalgebra structure. The correspon-

dence of spectral sequences further gives that

E'* = b-' Ext* (k, B1,o) b--H*(FIF2C (k, k)) (6.3.6)

and the reduced diagonal on bp ExtD(k, B1,o) coincides with di in the filtration spectral

sequence.

Proposition 6.3.12. As coalgebras, we have

b ExtD(k, B1,,) a b-E[e3, e 4 ,...] 0 D[12 ]

i.e. e, and 2 are primitive and A() = 262 0 $2.
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Proof. The first task is to determine the D-comodule structure on B1,. Let V) denote

the D-coaction induced by the D-coaction on P, and a : B1,, -+ B1,, denote the

operator defined by V$(x) =1 x + 1 0 ax - ' & (2x (see Definition 4.2.1). For

example, a((n) = (i_-, ( 3_1) = 0, and a satisfies the Leibniz rule.

We have a coalgebra isomorphism B1,, , D[ 2] 0 k[3, 61 4, ... Since 1, 2 and 2

are all primitive, D[ 2] splits as D-comodule into three trivial D-comodules, generated

by 1, 2, and 2 respectively. So it suffices to determine the D-comodule structure of

As part of the determination of the structure of b-1 Ext*(k, B) in Section 4.2, we

showed that there is a D-comodule decomposition

B T(( nl ... nf ; 1)) e F
Cnl .. nd

n4>2 distinct

where F is a free D-comodule and T((,nl ... ; 1)) is generated as a vector space

by monomials of the form all ( ,fl)... a&d(&'d ) for Ei c {0, 1}. I claim the surjection

f B -+ k[Q, 6, 4,...I takes F to another free summand: this map preserves the

direct sum decomposition into summands of the form D, M(1), and k, and the image

of a free summand D must be either 0 or another free summand (just as there are no

D-module maps k = k[x]/(x) -+ D or M(1) = k[x]/(x 2) - D, there are no D-comodule

maps D -- k or D -* M(1)).

Furthermore, I claim that f acts as zero on summands T(( , ... ; 1)) where

some ni = 2, and is the identity otherwise. In the first case, every basis element

O"*(92) fjg a'j ( n) in T(( nl ... .nd ; 1)) has the form 2 fji a'j ( nj) E .-k 2 6 41 .1

or 3 H35 aj ( n3 ) Ec - k [,3, 4, ... ., and these are sent to zero under f. If instead

ni > 2 for every i, then every term ae1( l) ... (2d) is in k and so f
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acts as the identity. So we have shown that there is a D-comodule isomorphism

e T((Ef. .. (; 1)) e F') 9 (ki e k e k2)

ni 3 distinct

where F' is a free D-comodule. So we have

b-' Ext*(k, B1,c)) b-1 Ext* (k, T(( n, n 1)) 0 k{1, 2, dl})

ni>3 distinct

a b-1 Ext* (,T(n... a; 1))) (9 k{I1, 2,1$}

nj2 3 distinct

By Proposition 4.3.7, b-1 Ext%(k, T(((a1 ... ; 1))) is generated by en1 ... enl, where

en = [1](n - [2 (E b-' ExtbD(k, T(( ; 1)))

is primitive. The map B -- B1,oc gives rise to a map of MPASS's, and in particular a

map bD Exto(k, B) -* b-j Ext* (k, B1,oo) of Hopf algebras over b-1 Ext* (k, k) sending

en - en for n > 3, and e2  -4 h1o - 2. In particular, we have

b 1 Ext*(k, B1,,,) 2 E[hio, e3 , e4 , . ..] P[b 1 ] 0 k{1, 2, } (6.3.7)

and en E byj ExtD(k, B1,oo) is primitive. To find the coproduct on the elements 2 and ,

use (6.3.6), in particular the fact that the (reduced) Hopf algebra diagonal corresponds to

d, in the filtration spectral sequence. In particular, 2 E by Ext*(k, B1,o) corresponds

to the element [ 2] c F1 /F 2 CL1 (k, k), and we have dcobar([2]) = [ i3] which is zero

in CD (k, k), so 2 is primitive. Similarly, the cobar differential on C,(k, k) shows

2()=2) 2 0 2. Thus the tensor factor k{1, 2, } is, as a coalgebra, a truncated

polynomial algebra. This finishes the determination of the coalgebra structure of

b-j Ext* (k, B1,,,) in (6.3.7). D
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The E2 page (6.3.5) of the MPASS is the cohomology of the Hopf algebroid

(b-1 Ext* (k, k), b-J Ext*(k, B1 ,co)) = (E[hio]®P[bl], E[hio, e3, e4 , ...

so we have:

Corollary 6.3.13. The MPASS E2 page is:

E2 E[h1 0 , h20] P[bil, b20, w 3, , ...

Proposition 6.3.14. The map 0' induces an isomorphism of E2 pages.

Proof. We first calculate the E2 page of the filtration spectral sequence on CQ (k, k),

and observe it is isomorphic to the E2 page of the MPASS we calculated in Corollary

6.3.13. Then we show that the map 0' induces this isomorphism.

In the associated graded, there is a differential do(a 2)= -al, but the corresponding

differential on q2 is a dl. So the filtration spectral sequence UEr computing H*(b-jU* 9

W') has E0 page

UEo 2 b--UL*(1) 0 UL*(Q 2) 0 W

with differential do(ui 0 u 2 0 w) = d(u1 ) 0U2 0 w. So

UE1 f H*(b-JUL*( 1)) 0 UL*( 2) 9 W' e E[h10] 9 P[b:j] & UL*(62 ) o W'

and the only remaining differential is generated by d1(q 2) = -q2, so

UE2 E F[h1o] o P[b ] o H*(UL*( 2)) 9 W' = E[h1 0, h20] 9 P[bj, b20] 0 W'.

Then Er E2 for r > 2.

To show that 0' is an isomorphism, it suffices to show that 0'(hio) = hio, 0'(bio) =bo,
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O'(h20 ) = h20, 0'(b20) = b20, and 0'(w,) = blown for n > 3. We use the fact that O'

extends 0 multiplicatively using the concatenation product in the cobar complex. So

'(a I .... Ian]) = H 0 (ai), and we have:

= 0'([ ]) = O(W1) = ai

= 0'([ 11 2] + [ i1]) =

= 6'( [2]) = 0(2) =ql

= 0'( [2] + [ |2]) =

= 0'([ 1|(n] - [( |(i_1])

O( J)O( ) + ( 2)0( 1) = ala2 + a2ai = bio

0 ((2) 0 ( )

= ala2 wn

+ 0 (G2)0((2) = q1q2 + q2q1 = b20

+ a2aiwn = b1own.

Since 0' : Ch. (k, k) -* U* 0 W' induces an isomorphism of spectral sequences,

it induces an isomorphism in cohomology, completing the proof of Theorem 6.3.11.

isomorphism
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