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Abstract

Chemical and biological systems are increasingly implemented with advanced sensor
systems that collect large amounts of data. For example, a single microarray can
measure thousands of genes and a typical offshore oil platform generates 1 to 2 TB
of data per day. New algorithms are needed to efficiently and effectively use these
datasets to increase predictive capability and improve system understanding. In this
thesis, algorithmic advances to bridge the gap between data and system insights are
addressed in a series of case studies.

In the first case study, the problem of predicting critical quality attributes for
a monoclonal antibody using data from the manufacturing process is addressed. In
this setting, the main challenge is that there is only a limited dataset available for
modeling. To tackle this issue, Monte Carlo sampling was used in conjunction with
an elastic net approach to subset selection.

The second case study is also within the biological domain but considers a dis-
crete outcome. The proposed algorithm addresses two common issues when building
classification models for biological studies: learning a sparse model, where only a
subset of a large number of possible predictors is used, and training in the presence of
missing data. The resulting algorithm leverages expectation-maximization to tackle
both issues simultaneously.

In the third case study, the goal was to identify anomalous operating periods using
production data from an oil and gas well without access to historical examples of such
periods. The proposed approach recasts the problem as a semi-supervised problem
and leverages approaches from the positive and unlabeled literature.

The final case study considers the task of prediction lithium-ion battery cycle life.
Cycle life is defined as the number of charge and discharge cycles the battery under-
goes before 80% capacity fade. Several, difficult to identify factors can contribute to
capacity fade. Even in batteries with the same chemistry, operated using the same
conditions, there is considerable cycle life variability. Therefore, the challenge was to
build a model to capture individual capacity trajectories.
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Each case study is benchmarked using state-of-the-art approaches. In all settings,
the value of data-driven methods is demonstrated.

Thesis Supervisor: Richard D. Braatz
Title: Edwin R. Gilliland Professor
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Chapter 1

Introduction

1.1 Data science for engineering applications

The combination of improved computational power, decreased data storage costs,

advances in algorithms, and new sensor technologies has led to a resurgence of interest

in data-driven methods. Complex systems, which are characterized by a lack of a full

physics-based description and/or high levels of uncertainty, are well-suited for data-

driven approaches because other methodologies aren't readily available. This thesis

focuses on the application of these methods to chemical and biological engineering

problems.

The application of data-driven methods, also referred to as machine learning,

to chemical and biological engineering problems has unique challenges. First, the

datasets are often small because of the cost associated with generating them. Sec-

ond, the cost of making an error is often high, either in financial or safety terms.

Finally, there is typically chemistry/physics/physiology governing the underlying sys-

tem. These factors imply that an ideal modeling approach should be able to work in

settings with small amounts of data, capture the underlying science and result in an

interpretable model. These goals are explored in this thesis.

The next section introduces some of the core concepts of machine learning, which

will be repeated throughout the thesis. In it, statistical learning theory, probabilistic

graphical models, and the bias-variance trade-off are discussed. The final section of
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this chapter provides a summary of the rest of the thesis chapters.

1.2 Overview of the principles of machine learning

Fundamentally, machine learning is a field dedicated to using data to make predictions

and/or improve system understanding. There are many ways to sub-divide the field

to relate various problems. One such sub-division is into supervised, unsupervised,

and semi-supervised problems. In this framework, problems are organized based on

whether or not the prediction task outcomes have been recorded. For instance, the

task of correlating measured genes to an observed phenotype is a supervised problem,

however the task of finding unexpected patterns in oil well monitoring data is an

unsupervised problem. When the dataset is a combination of known and unknown

outcomes, the problem is called semi-supervised.

Within the set of supervised problems, there is another common sub-division into

regression and classification problems. These two classes are differentiated based

on the type of outcome: a continuous outcome gives rise to a regression problem

and a discrete problem gives rise to a classification problem. Often these problems

can be interchanged however one approach is typically better suited to the domain

application than the other.

Another possible division of problems is into parametric and non-parametric mod-

els. Parametric models have a fixed number of parameters and typically make stricter

distributional assumptions. Non-parametric models do not fix the parameters but in-

stead grow with the amount of training data. Therefore, non-parametric models are

more flexible but can be computationally intractable. This poor performance in a

high dimensional setting is often referred to as the curse of dimensionality.

The field of machine learning is still growing. Machine learning draws on ideas

from statistics, probability theory, information theory, and decision theory. Two

common frameworks for analyzing machine learning problems are presented here:

statistical learning theory and probabilistic graphical models.
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1.2.1 Statistical learning theory

Statistical learning theory is one framework for analyzing machine learning problems

with a focus on supervised machine learning problems. A machine learning problem

in the statistical learning theory framework typically has three main components: a

probability space X x Y with probability measure p, a loss function L: Y x y -* [0, oc)

that is a measure of success, and dataset D = {(Xi, yi),. .. , (x., y.)} where the data

are assumed to be independent and identically distributed with respect to p. The

problem is then formulated as an optimization to minimize the expected risk

min S = min / L(y, f (x))dp(x, y) (1.1)
f:x-Y f:X-+Y JXXY

while searching over all possible functions. This problem is intractable and therefore

simplifications are made based on the specific problem of interest. Typically the

functional space is restricted, often to reproducing kernel Hilbert spaces (RKHS),

and the optimization uses the empirical risk as opoosed to the expected risk which is

defined

8 = L(f(xi), yi) (1.2)
n i=1L

where f is a function of the dataset used in training. The complexity of the func-

tions in the RKHS can be controlled using regularization. To perform regularization,

penalty terms are added to the optimization objective.

min 8 + AR(f) (1.3)
f EH

The popular techniques of ridge (Tikohonov) regression, lasso [246], and elastic net

[302] can all be derived from this framework. Each uses a linear regression estimator,

an f2 loss function and regularization penalties on the coefficient vector. In the case

of ridge regression
1

w* = arg min-ly - Xw11 + A Wl1 (1.4)
W n
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Figure 1-1: Examples of the relationships between three random variables that can
be captured by directed acyclic graphs. Examples a-c show possible constraints.
Example d is a fully connected graph and therefore does not have any associated
independence statements. Example e is not acyclic and is therefore not a DAG.

where the prediction function is yj = wTxi, y is an n-dimensional vector of observed

outcomes, X is an n x p matrix of input training data, w is a p-dimensional vector of

coefficient weights, and A is a non-negative scalar. Lasso uses the penalty term AI1w1Ii

and elastic net uses a linear combination of both forms of penalty. All regularization

techniques are used to prevent over-fitting (discussed in Section 1.2.3). In the case of

ridge regression, the model coefficients are biased towards zero. In lasso and elastic

net, because of the functional form of the penalty, the resulting coefficient vector is

more likely to be sparse, i.e. some of the values of w are exactly zero. This implies

that the lasso and elastic net techniques perform model fitting and model selection

simultaneously. These tools are used throughout the thesis.

1.2.2 Probabilistic graphical models

Probabilistic graphical models are a set of tools for machine learning problems. While

not completely distinct from statistical learning theory, given the topics covered in

this thesis, probabilistic graphical models merit their own introduction. Probabilistic
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graphical models exploit the structure of a problem to perform inference and learning

tasks. In this thesis, directed acyclic graphs (DAGs) are used. DAGs are a collection

of nodes, used to represent random variables, and edges, used to represent the rela-

tionships between the random variables (see Fig. 1-1). The DAG imposes constraints

on the family of distributions that can be used to describe the random variables.

DAGs are a class of parametric models. Although there are methods for learning

the structure of a DAG, often the structure is assumed based on the specific applica-

tion. Then, given a dataset, maximum likelihood estimates of the parameters of the

distributions can be made.

0* = arg max Inp(xi 0) (1.5)
i=1

where 0* are the optimal parameters of the distribution, xi, i = 1, ... , are the data,

and IRn 1 Inp(xi10) is the log-likelihood function. In this thesis, DAGs are applied

without full observations, i.e. there is data missing from the training dataset. To find

the maximum likelihood estimate, the likelihood function should be marginalized over

the missing data, zi. The log-likelihood is then

f(0) In p(xi, zi 1) (1.6)

The marginalization is typically intractable and maximum likelihood estimates cannot

be made. Expectation-maximization (EM) is one approach for estimating parameter

values when some data is missing. The complete data log-likelihood is

c = ln p(xi, zi10) (1.7)
i=Z1

but this quantity cannot be computed because zi is not observed. Instead, the ex-

pected complete data log-likelihood is considered

Q(0, 0"-) = E[fc(O) I'D, Ot-1] (1.8)
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The choice of expected complete data log-likelihood is motivated by an analysis of

the log-likelihood function in the presence of missing data (Eqn. 1.6). The likelihood

function can be bounded by applying Jensen's inequality

f (0) ;> EEq(zi) In P (xi, Zi1) 1)

i=1 Z, q(zi)

where q(zi) is a distribution over the missing data. This lower bound can be rewritten

Q(0, q) = [E[ln p(xi, zi16)] + H(qj) (1.10)

where H(qj) is the entropy of qj. It can be shown that the best choice of q(zi), in terms

of finding the tightest lower bound, is p(zilxi, 6). Because 6 is unknown, it is replaced

with the current parameter estimate 0', where t is the iteration step. Plugging this

back into the lower bound gives the expected complete data log-likelihood plus the

entropy term which is not a function of 6.

Q(0, 66- 1) = E[fc(6) D, 6-1] + H(qj) (1.11)

Because the expected complete data log-likelihood provides a lower bound, the second

step of the EM algorithm is to then update the parameter values by maximizing the

value of this bound

6 t+1 = arg maxQ(0, 6 t) = arg max Eqi[lnp(xi, zi6)] (1.12)
0 0

This optimization is guaranteed to change the parameters, 0, such that the likelihood

of the observed data increases (or the function is already at a fixed point). The EM

procedure is only guaranteed to find a local maximum or saddle point (however it has

been observed that many saddle points are unstable). The expectation-maximization

algorithm was introduced in its general form by [561, however applications of the

algorithm can be found in many publications, e.g. [13, 158, 1461. The description

of the EM algorithm provided here is based on Chapter 11 of Machine Learning: A
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Figure 1-2: Depiction of the expected behavior for the calibration, data used to
learn a model, and validation, data used to test a model, datasets. Initially the
error decreases as the model captures the underlying system. The validation data
prediction error increases when the model becomes overfit to the calibration data.
Depiction is based on [93].

Probabilistic Perspective 1169].

1.2.3 Over-fitting and the bias-variance trade-off

A common concern when fitting a data-driven model is overfitting. Overfitting refers

to scenarios where the model has low error for the training data, i.e. the data used to

learn the model, but does not generalize well because the model form is too complex.

Trial 1

Trial 2

Trial 3

I
[

Trial 4

Figure 1-3: A schematic of 4-fold cross-validation. In each trial, a fourth of the data,

indicated in blue, is used for validation. The model complexity is varied during each
trial. The four trials are then averaged and the final model complexity is set based
on the results. Depiction is based on [16].
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In other words, when the model is applied to new data, or testing data, the errors are

much higher than expected based on the training phase. Alternatively, models can

also be underfit, where the model does not have enough complexity to capture the

underlying phenomenon. In this case, errors in both the training data and testing

data are higher than would be achieved with an appropriately selected model.

Cross-validation is one method to select the model complexity. In cross-validation,

the training data is subdivided into calibration and validation sets. The calibration

data is used to set the model parameters and the validation data is used to evaluate

the errors. The calibration data is re-used with varying model complexity and each

time the validation error is recorded. The result typically resembles Fig. 1-2, where

a minimum validation data error is achieved for some complexity value. Often k-

fold cross validation is used, where 1/kth of the data is used for validation and the

remaining data is used for calibration. k-Fold cross validation iterates through each of

the sets and averages the validation errors. An example using 4-fold cross-validation

is shown in Fig. 1-3.

An alternative to cross-validation is Bayesian inference. In Bayesian inference,

prior distributions of the parameters are selected and the final parameter setting is

based on the posterior. The name of this approach is in reference to Bayes' rule (also

called Bayes' Theorem)

P(X= XY=Y)=P(X = xY = Y) P(X = x)P(Y = yX = x) (113)
P(Y = y) E, P(X = x')P(Y = y|X = x')

which combines the definition of conditional probability with the product and sum

rules. In this case, the prior serves as a guard against overfitting. Selecting an

appropriate prior can be difficult and will depend on the amount of system knowledge.

If a probabilistic model is chosen and a suitable prior is available, there may not be

an analytical form of the posterior and sampling methods are typically employed.

Cross-validation is used as the approach to select model complexity throughout this

thesis.
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1.3 Thesis objectives

This thesis explores ways to address some of the particular issues that arise when

applying machine learning approaches to chemical and biological engineering prob-

lems. Each project addresses one or more of the three highlighted challenges: small

datasets, interpretability, and an effort to capture the physical system knowledge.

This is done through a series of applications. The thesis also includes reviews and

tutorials to complement the analysis.

1. Chapter 2 introduces a systematic approach to data pre-processing in the con-

text of understanding which approaches are fit for the modeling purpose. It

focuses on the pharmaceutical industry.

2. Chapter 3 draws on the ideas presented in Chapter 2 and focuses on biophar-

maceutical manufacturing settings where the amount of data available for mod-

eling is often limited. The proposed approach uses sparse regression models and

Monte Carlo sampling. The resulting models are shown to be simpler and more

accurate than principal component regression and partial least squares models,

techniques which are commonly employed in industry.

3. Chapter 4 surveys applications of principal component analysis in the presence

of missing data and demonstrates the advantages and shortcomings of each on

process data from the Tennessee Eastman Simulation.

4. Chapter 5 presents a new technique for binary classification with simultaneous

feature selection. The method is designed such that it can easily be extended

to scenarios where there are missing data by using expectation-maximization.

The approach is demonstrated on three high-dimensional biological datasets.

5. Chapter 6 surveys the processing monitoring literature.

6. Chapter 7 explores an application of semi-supervised learning for production

oil and gas well anomaly detection. The main problem challenge is that there

are no historical examples of anomalies. However, it is shown that by labeling
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a small number of nominal examples, a dramatic improvement in detection is

achieved. The approach is demonstrated on data from the field.

7. Chapter 8 contains models for the accurate prediction of lithium-ion battery cy-

cle life using data from a high-throughput cycling platform. Cycle life prediction

is challenging because a number of capacity fade mechanisms may contribute

to decaying performance. Furthermore, even for batteries with the same chem-

istry, operated in the same conditions, there is considerable variability. The

proposed method achieves accurate prediction by considering the trajectory of

the discharge curve.

Each case study compares the results of the proposed approach with state-of-the-

art methods in the field. These case studies demonstrate the value of data-driven

modeling for engineering applications. Conclusions are presented in Chapter 9.
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Chapter 2

A systematic approach to data

analysis in biomanufacturing

This work originally appeared as: Kristen A. Severson, Jeremy G. VanAntwerp,

Venkatesh Natarajan, Chris Antoniou, Jurg Thdmmes, and Richard D. Braatz. "A

systematic approach to process data analytics in pharmaceutical manufacturing: The

data analytics triangle and its application to the manufacturing of a monoclonal an-

tibody." Multivariate Analysis in the Pharmaceutical Industry. Eds. A.P. Ferreira,

J. C. Menezes, and M. Tobyn. In press. It has been edited to refer directly to Chapter

3 of this thesis.

2.1 Background

Data analytics refers to a set of techniques for transforming and modeling data with

the objectives of discovering useful relationships and supporting decision making.

Although data analytics is sometimes broadly used to include models informed by

conservation equations, constitutive rate expressions, reaction networks, or other first-

principles or mechanistic understanding in addition to experimental data, typically

the term data analytics is used to include only models constructed completely from

experimental data, which is the usage taken here. Big data analytics is a term that is

widely in the data analytics field and is relevant to manufacturing processes [205, 229],
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but has unique challenges that are not discussed here.

Process data analytics (aka process analytics) are those techniques found to be

useful for the analysis of data from manufacturing processes, regardless of whether

the underlying phenomena are primarily biological or chemical. Process data analyt-

ics have become widely applied in the pharmaceutical industry for both chemically

and biologically derived drug products. While models for chemically derived drug

products, commonly referred to as small-molecule drugs, can be constructed using

first-principles understanding (e.g., 1129, 148]), too many molecular species are typi-

cally present in most processes in biologic drug manufacturing - especially in bioreac-

tors and the multiple chromatography columns - to enable a first-principles model of

all of the molecular species. Although significant efforts have been directed towards

increasing the use of, and improving the prediction capability of, first-principles mod-

eling in biologic drug manufacturing (e.g., [97, 149] and citations therein), process

models constructed purely from experimental data are expected to be most widely

used in biologic drug manufacturing for the near future.

Biologic drug products include monoclonal antibodies (mAbs), hormones, growth

factors, fusion proteins, cytokines, therapeutic enzymes, blood factors, recombinant

vaccines, and anticoagulants. Biologic drug products have had double-digit growth

rates for many years, with mAbs being the largest category, constituting approxi-

mately 39% of biologic drug sales [1]. The pharmaceutical industry is expected to

continue to shift towards increased production of biologic drugs, and mAbs in partic-

ular, for the foreseeable future. As the number of products grows, there is interest by

both manufacturers and regulatory bodies to increase the use of models as a way to

increase understanding and to more quickly bring new products to patients [104, 256].

As mentioned, the biopharmaceutical industry has some unique challenges for

achieving process understanding: some of the processes are complex, often datasets

are small and heterogeneous, within a dataset, measurements are usually collected at

different sampling rates [39]. A framework is presented for analyzing experimental

laboratory- and production-scale pharmaceutical manufacturing data using process

data analytic techniques, which is applicable to either small-molecule or biologic drug
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products. Given the increased challenge associated with biopharmaceuticals, the key

steps and points are illustrated for the manufacturing of a monoclonal antibody.

Additionally, common pitfalls and mistakes are identified.

2.2 The data analytics triangle

Mathematical models for pharmaceutical processes can serve a variety of purposes.

When the objective is to make predictions, such as the early identification of bad

batches, or to modify recipes for downstream processes to improve product quality,

the desired models relate critical process parameters (CPPs) to critical quality at-

tributes (CQAs). For such purposes, the models can be dense, in which each CQA is

a function of all of the CPPs, or sparse, in which each CQA is only a function of a

small number of CPPs needed to predict the CQAs. Another purpose of such models

for a process is for use in control, that is, to compute adjustments to the CPPs to move

the CQAs towards desirable values. For such purposes, it can be advantageous, from

a regulatory point of view, to minimize the number of process changes, in which case

sparse models are preferable. A third purpose of mathematical models is to improve

process understanding, which can lead to improved troubleshooting capabilities dur-

ing manufacturing and improved control of the CQAs through long-lasting changes

in process operating protocols. Considering this last purpose, model interpretability

is given priority along with model accuracy, and sparse models are preferable.

Many specific data analytics techniques can be used to construct models to serve

these purposes, and it is common practice for the data analyst to try either a single

or small number of favorite techniques or a try a variety of techniques until a tech-

nique seems to give good results. A more systematic approach is to interrogate the

data to discover which technique or class of techniques to apply. The decision about

which technique to use should be based on the characteristics of the data. Interrogat-

ing the data to determine their characteristics is an efficient approach to direct the

data analyst quickly to the technique(s) most suited to the particular dataset under

consideration.
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When building models from data, it is useful to categorize datasets in terms of

three characteristics: correlation, nonlinearity, and dynamics [229]. After measuring

the extent of each of these characteristics in the dataset, the classes of techniques most

suitable to the dataset are indicated on the data analytics triangle shown in Fig. 2-1.

The next section describes how to measure the extent of correlation and nonlinearity

within a dataset, with examples taken from process development data collected at

the laboratory scale for the manufacturing of a mAb. The extent of dynamics can

be quantified between scalar variables and within single variables using serial cross-

correlation and autocorrelation, respectively, which are available in MATLAB or any

time-series analysis or signal-processing software package. Canonical variate analysis

is a method for characterizing the extent of dynamics that takes all variables into

account (e.g., see [471 and citations therein), and can be used to characterize both

the extent of dynamics and the extent of correlation within a single tool.

The techniques in the data analytics triangle are selected based on the extent of

the three characteristics, with the triangle labeled with representative examples of

the techniques that are most appropriate. For example, consider the vertices of the

triangle. If a dataset contains significant nonlinearity but minimal correlations and

dynamics, then surface response methodology is one of the best techniques for building

the model. If a dataset contains significant correlation but negligible nonlinearity

and dynamics, then techniques such as partial least squares and principal component

regression are some of the best techniques provided that a dense model is desired,

whereas lasso and elastic net are some of the best techniques for the construction

of sparse models from correlated data. If the primary characteristic of a dataset

is dynamic linear relationships between scalar variables, then autoregressive moving

average models are most appropriate.

If a dataset contains two of the three characteristics, then the techniques listed

on the edge connecting the points for the two characteristics are most appropriate.

For example, canonical variate analysis is one of the best techniques for data that

have correlations and dynamics. If a dataset contains significant correlation and

nonlinearity but minimal dynamic character, then nonlinear partial least squares and
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Nonlinearity
RSM:

linear, bilinear, quadratic

NPLS, NPCA, NARMAX, OLS, WLS, MLE,
NPCR minimum variance,

NCVA, OLS, WLS, Bayesian
MLE, minimum

variance, Bayesian

Correlation Dynamics
RCT: PLS, PCR CVA TSA, ARMAX, OLS, WLS,

Regularization: lasso, EN PE/OE, MLE, minimum
variance, Bayesian

Figure 2-1: The data analysis triangle, which maps modeling techniques to data
characteristics. ARMAX autoregressive moving average model, CVA = canoni-
cal variate analysis, MLE maximum likelihood estimation, OLS = ordinary least
squares, NARMAX = nonlinear autoregressive moving average model, NCVA = non-
linear canonical variate analysis, NPLS = nonlinear partial least squares, NPCA -
nonlinear principal component analysis, NPCR = nonlinear principal component re-
gression, PLS = partial least squares (aka projection to latent structures), PCR
principal component regression, WLS - weighted least squares.
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nonlinear principal component analysis are among the best data analytics techniques

for constructing models from the dataset. Techniques most appropriate for datasets

that contain significant nonlinearity, dynamics, and correlations are shown in the

middle of the data analytics triangle. While such techniques are very powerful, a

much higher level of data analytics expertise and larger quantity of data are required

to be able to apply such techniques reliably, and the tendency of overfitting data

is higher when the complexity of the model is higher. More generally, the simplest

model able to describe the characteristics of the dataset should be used.

All models illustrated here are variations on a regression model that finds a vector

of weights, w E RP, which can be used to predict the scalar CQA, y, using the vector

of CPPs, x E RP. The approach for finding w is called ordinary least squares (OLS),

which minimizes the square error in the prediction. For a static linear model, the

vector w is the solution of an optimization with a quadratic objective function,

*=arg min (yi - wTxi) 2  (2.1)
w nl

i1

A static model implies that the model does not contain any dynamics, that is, the

output is an algebraic function of the states without any derivatives or integrals over

time. For data with low correlation and number of well-designed experiments larger

than the number of model parameters (that is, the number of elements of w), Eqn. 2.1

has the unique analytical solution

* = (XTX)-IXTy (2.2)

where X is the n xp matrix of inputs and y is the n-dimensional vector of outputs. The

precise mathematical definition of "well-designed experiments" within this context is

that the matrix inverse in Eqn. 2.2 exists, which is equivalent to the determinant of

XTX being nonzero.

The case study applies a class of methods known as regularization techniques.

Regularization techniques are motivated by the fact that the OLS problem can lead
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to solutions that are over-fit to the dataset, particularly as the number of parameters

p becomes large compared to the number of experiments. To prevent overfitting,

regularization adds penalties to the optimization problem of minimizing the squared

error. Depending of the precise formulation of the penalties, the resulting models will

have different properties. The most desirable penalty would be a so-called fo norm,

which is not actually a norm but has some of its properties, and is defined by

1wlo = the number of non-zero elements in the vector w (2.3)

The desirable characteristic of this penalty is that is penalizes the complexity of the

model without affecting the values of the optimal weight vector w. The Lo norm is

not differentiable, and optimizations that incorporate an o-penalty term are compu-

tationally expensive. To produce optimizations that are much easier to solve numer-

ically, two commonly used alternative penalties are the fi and f2 norms, which is the

sum of the absolute value of the elements of the vector w and the sum of squared

values of the elements of w, respectively.

The 2 case is referred to as ridge regression, also known as Tikhonov regularization

[96] and is formulated as

n p

Wridge = arg min (yi - wTxi)2 + A Z (2.4)
i=1 j=1

where A is a a nonnegative regularization parameter and all other variables are defined

as above. This problem is strictly convex and the closed-form solution can be written

as

wridge = (XTX + AIp)-IXTy (2.5)

where X and y, are the input variable matrix and output variable matrix, respectively,

each mean-centered. By adding the f2 penalty term, the variance of the result is

decreased, which leads to a result that is more stable. To choose the value of A,

often cross-validation strategies are used as described above based on minimizing the
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prediction error, over a grid of A values. Another possible approach is to use a prior

distribution on the value of A, however this is done less frequently in practice.

Optimization using an f, norm as the penalty is referred to as lasso [2461, which

is formulated as

n P

Wiasso = arg min (yi - wTxi)2 + A S |wj (2.6)
i=1 j=1

where A is a nonnegative regularization parameter and all other variables are defined

as above. This penalty is similar to ridge regression, but the objective function is

not strictly convex and the optimal solution typically has some coefficients in the

vector w exactly zero. This approach to generating a sparse model not only prevents

over-fitting but also simultaneously performs model selection, although the resulting

coefficient vector w is biased due to the penalty. Often in practical applications, lasso

is used only to find the model complexity and then OLS is used to find the exact

values of the nonzero coefficients [671. The value of the regularization parameter A is

obtained as in ridge regression, using cross-validation.

Many variations of regularization techniques exist that use different p-norms and

combinations of penalties. The elastic net 13021 has been found to be effective in

biopharmaceutical applications [2281 and is formulated

n

WEN = arg min (yi - w xi)2 + AP,(w) (2.7)

where
p

PQ(w) = 5(1 - a)w' + aWjj (2.8)
j=1

where A is a nonnegative regularization parameter, ce is on the interval (0,1], and all

other variables are defined as above. The elastic net combines the ridge and lasso

penalties. This is desirable for pharmaceutical applications because there are often

more measurements than observations (p > n), and in this case the solution to the

lasso problem is not unique. It is still desirable to do model selection; by combining

both terms the problem is convex and also has solutions that are sparse. Both A
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and a must be chosen to apply the elastic net and this is again done using cross-

validation but using a 2-D grid over A and a values. To better fit the application of

small n additional considerations for over-fitting were added [2281. These additional

considerations also leveraged Monte Carlo trials. The elastic net is applied, with a

fixed a value, many times and the dimensions of the models corresponding to the

lowest validation error are recorded. Then the number of dimensions is decreased by

considering a threshold on the frequency with which a dimension is selected. This

method helps to decrease the dependence of the model on the specific dataset that

was used for training. Using this small dataset, exhaustive best subset selection can

be performed to choose the final model (see Chapter 3 for full details). One of the

most popular methods for quantifying potential over-fitting is to employ Monte Carlo

sampling, which is applied here.

The next section describes the systematic application of data analytics to bench-

scale data for the manufacturing of the same monoclonal antibody and the next

chapter has a similar focus, but uses manufacturing-scale data.

2.3 Application of data analytics to laboratory-scale

experiments

This section describes the application of data analytics to laboratory-scale data gen-

erated by statistical design of experiments (DOE). Data from seven of the mAb

processes were available, as shown in Fig. 2-2. As is common practice, experiments

on the processes were carried out in isolation, without the ability to connect the

experimental data generated among different processes. None of the data involved

time series, so only static models can be constructed. All data were preprocessed by

z-scoring, which standardize the measurement data as

whr = st - b a (2.9)

where xij is the ith observation, xj is the mean, and orj is the standard deviation of
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Figure 2-2: Block diagram showing the steps in the biomanufacturing process [231].
Processes in boldface are included in both the DOE and process datasets. Italicized
processes are included only in the DOE dataset. Normal typeface processes are not
included in either dataset.
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Figure 2-3: Two variables that are highly correlated. The left plot shows the corre-
lation between DNA and pH in the bioreactor (p = 0.76). The right plot shows the
correlation between urea entering and exiting the protein column (p = 0.73).

measurement j, respectively. Z-scoring is useful for measurements of different types,
such as temperature and host cell protein concentration, and prevents numerical

artifacts that can arise when using data of very different scales. Z-scoring is typically

not useful when all of the input variables to a model are of the same type, such as

absorbances at different wavenumbers in an infrared spectra.

When first presented with a dataset, it is desirable to plot the data and perform

a simple correlation analysis. The correlation coefficient is

cov(X, Y)p(X, Y) = v(XvaY) (2.10)
V/var(X)var(Y)

where x and y are any two scalar variables in the dataset.. The correlation coefficient

ranges from [-1, 1] and is a measure of linear correlation only. The correlation coef-

ficient is trivial to compute and is an important first consideration when analyzing

data, because it provides a starting point for analysis and can serve as a check for

surprising behavior. Plotting the data will also serve to highlight surprising behavior

as well as possible data errors.

Fig. 2-3 shows two sets of variables that have significant linear correlations, with
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correlation coefficients larger than 0.7. Fig. 2-3a suggests that the DNA in the biore-

actor at the end of a batch run is reduced by more than a factor of 3 by operating

the bioreactor at a pH of 6.6 instead of about 7.3. Fig. 2-3b shows that the urea

concentration exiting the protein A column varies by about a factor of five for fixed

values of the urea entering the protein A column; not surprisingly, the exiting urea

concentration tends to be lower for lower values of the entering urea concentration.

Nonlinear correlations between variables in the data are also of interest. Data can

be plotted for different nonlinear transformations of variables, whose forms can be

suggested from plots of the original data as in Figure 3 or of z-scored data. Then

correlation coefficients can be computed for the nonlinear transformed data. Here

an alternative approach is presented that is fast to apply when the datasets have

many variables. The approach considers bilinear and/or quadratic forms as candi-

date relationships and is often referred to as response surface methodology (RSM) in

the literature. Quadratic functions are the second-order Taylor series approximation

for any smooth nonlinearity, and provide a reasonable starting point for nonlinear

analysis. To complete this analysis, test statistics can be calculated to answer the

question: for each input-output pair x1 and yi, is y= w2x2 + w 1x 1 + wo a better fit

for the data than yi = wix1 + wo? The test statistic is defined

~i- WiO
TO = (2.11)

%o o-2C,,

where wi is the coefficient that is being tested, wi0 is the coefficient value under the null

hypothesis, a.2 is the variance, which is estimated using the mean-squared error, and

Cii is the ith diagonal element of the covariance of the input data matrix. Consider

the case where the null hypothesis is that the coefficient is zero, HO : wio = 0.

If ItOl > ta/2,n-p, the null hypothesis is rejected, indicating that there is sufficient

evidence in the data to indicate that the coefficient wi is nonzero. The value of ta/2,n-p

depends on the desired confidence level [165]. For the model y1 = w 2x2 + w 1x 1 + wo,

the null hypothesis is that the model is linear and w 2 is the coefficient being tested,

and Ito > ta/2,n- would indicate sufficient confidence in the use of the quadratic
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Figure 2-4: Two pairs of variables that have a statistically significant quadratic co-
efficient at the 95% confidence level. The quadratic regression model is shown as a
dotted line.

model. Fig. 2-4 shows two sets of variables for which the hypothesis testing indicates

that a quadratic model is justified.

Often there are many coefficients tested in an RSM analysis; therefore, the analyst

must be cognizant of that fact that some relationships will be statistically significant

by random chance, which is called a false positive. The expected value of the number

of false positives can be found by multiplying the number of models that are tested by

1-confidence level, but does not enable the identification of which specific relationships

are false positives. However, an estimate of the number of false positive relationships

can inform modeling decisions in later analysis. A matrix of input-output pairs can

be used to organize the RSM analysis. Each column of the matrix corresponds to

an input set by the experimentalist and each row corresponds to a measured output.

Each entry in this matrix is either the to value or the a-level at which the higher order

term would not be statistically significant, which is a choice made by the analyst. This

matrix enables a quick scan to identify variables that are likely to be related by static

nonlinear relationships, such as for the two pairs of variables related in Fig. 2-4.

Testing the statistical significance of sets of variables is also sometimes of interest.
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In this case, a partial F-test is performed using the statistic

Fo SSR(WX 2)/r (2.12)
MSE

where

SS(xw 2 ) wTXTy - TXT (2.13)

MSE - y y - wTXTy (2.14)
n - p

w = wi (2.15)
W2

and the dimension of w, is r and the dimension of w is p. Here the null hypothesis

is that w, = 0. If FO > F ,, then there is sufficient confidence that at least one

of the variables in w, is nonzero [165].

Adding additional terms, such as quadratic terms, to a model is a specific exam-

ple of the larger problem of feature selection. Feature selection refers to the problem

of determining the best representation of the data for modeling purposes. Com-

mon features that are considered in biopharmaceutical modeling include bilinear and

quadratic terms and nonlinear transformations such as the logarithm. Feature selec-

tion can sometimes be motivated by plotting variables against each other, as discussed

above, or from an understanding of the underlying phenomena or prior knowledge.

The feature selection problem is more complicated in scenarios where the quantity of

data is limited. At a minimum, to solve the regression, the complete feature matrix

must be full rank. As a rule of thumb, the number of experiments should be at least

1.5 times the number of coefficients in the model to be fit. Having more data than

the minimum allows the model to be cross-validated as a check for over-fitting, a

scenario in which the predictions of the model are much less accurate when applied

to new datasets than for fit of the model outputs to the data used to fit the model.

In other words, over-fitting has occurred when the model error is low for the dataset

used to build the model but is high for new data points. An over-fit model has not
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captured the underlying phenomena well but instead is a good representation of a spe-

cific dataset used to fit the model. Testing for over-fitting is typically carried out by

cross-validation, which is the evaluation of the model's performance on data that were

not used for model building. Robust cross-validation involves numerous iterations in

which each iteration consists of three steps: calibration, validation, and testing. Di-

viding the data into three parts, first models of increasing complexity (feature sets)

are fit. Then each of the models is tested on the validation data, and used to compute

a cross-validation error. Typically, the cross-validation error will first reduce as the

model complexity increases and more accurately describes the underlying phenomena

until then increase as the model begins to fit noise and biases in the specific training

dataset. The optimal model complexity is that which minimizes the cross-validation

error. Once this model form has been selected, the final model calibration is carried

out using both the fitting and validation datasets. The testing dataset is used to

characterize the error of the model, by using data that has been unseen by the model.

The manner in which the dataset is divided into these three parts will depend on the

quantity of data that is available. Ideally, the data are divided into three equal parts.

When insufficient data are available for this division to be feasible, often the testing

set is excluded and additional measures to prevent over-fitting are incorporated into

the model calibration step.

The above ideas were applied to the individual processes with feature sets that

included linear, bilinear, and quadratic terms. Models were built using response sur-

face methodology (RSM) as well as elastic net with Monte Carlo sampling (ENwMC)

[2281. For this case study, RSM was applied as is common in practice, to construct a

sparse model without using Monte Carlo sampling.

For illustrative purposes, consider the application of the data analytics techniques

from the cation exchange column, which included six independent inputs, to model

the host cell protein (HCP) concentration exiting the column. The objective is to

construct a quadratic function between the six inputs and one output that has good

generalizability, that is, produces accurate predictions when applied to data not used

to fit the model. The total number of coefficients in such a quadratic model is 28,
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which is larger than the number of experiments, which was 24. As such, it is impossible

to directly apply ordinary least-squares to determine the values of the coefficients,

because there is an infinite number of choices of the 28 coefficients that is able to

exactly fit the data. This observation motivates the construction of sparse models, in

which most of the coefficients in the quadratic model are set to zero.

For such datasets, special care must be taken to avoid overfitting the models.

Random sampling is an effective approach for the evaluation of such models. To test

the generalizability of each model, 12 experiments are randomly chosen to calibrate a

model of the resulting structure. Using the remaining 12 experiments, the prediction

error is calculated. These two steps were repeated 1000 times to produce statistically

stable results and the test error was averaged to determine the mean squared error

for the testing data, which is the metric for comparing the relative value of different

models. This procedure approximates the full distribution of the testing error by

subsampling the available data. The preferred method would be for the dataset to be

large enough that subsampling would not be needed, but the dataset was not large

enough so the subsampling procedure is a reasonable strategy.

The RSM model had nearly a factor of two lower prediction errors when applied to

the data used to fit the models (see Table 2.1), whereas the ENwMC model gave nearly

a factor of two more accurate predictions when applied to conditions not used to fit the

model. The ENwMC model also had lower complexity, which is a common occurrence

when robust cross-validation procedures are applied. The differences between the

MSEs of calibration and testing demonstrate the importance of testing for over-fitting

to ensure model generalizability.

In the next chapter, data analytics are applied to manufacturing-scale experi-

ments.

2.4 Conclusions

This chapter illustrates some key points to consider when applying process data an-

alytics. First, data analytics techniques should be selected based on the specific
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Table 2.1: Models for host cell protein (HCP) exiting the cation exchange column
using two different techniques. Both the average error of calibration and testing are
reported.

Modeling Model MSE of MSE of
technique result calibration testing

HCP = 175 - 1.83(Load HCP) - 16.5(Elution pH)
RSM - 0.22(Elution NaCl) + 0.31(Load HCP)(Elution pH) 1.4 x 103 9.2 x 103

+ 2.4 x 10-3(Load HCP)(Elution NaCl)

ENwMC HCP = -247 - 1.25(Load HCP) + 0.27(Load HCP) 2.3 x 103 5.5 x 103
(Elution pH) + 0.39(Elution pH)(Elution NaCl)

scenario and data availability. The important data characteristics to consider are

correlation, nonlinearity, and dynamics. Once these characteristics have been iden-

tified using the discussed methods, the data analytics triangle can be used a guide

for making this selection. As part of identifying characteristics, plotting the data is

recommended to check for expected behaviors and possible data errors.
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Chapter 3

Sparse modeling for

biopharmaceutical manufacturing

This work originally appeared as: Kristen Severson, Jeremy G. VanAntwerp, Venkatesh

Natarajan, Chris Antoniou, Jdrg Thdmmes, and Richard D. Braatz. Elastic net with

Monte Carlo sampling for data-based modeling in biopharmaceutical manufacturing

facilities. Computers & Chemical Engineering, 80:30-36, 2015.

3.1 Introduction

The U.S. biotechnology sector has had double-digit growth rates in recent years [106].

In 2012, sales of biologics were approximately $63.6 billion, with monoclonal antibod-

ies (mAbs) representing the largest fraction of this market with approximately 39%

of sales 11]. Modeling of the manufacturing process is one possible way to both sup-

port the growing biologics market as well as decrease costs via improved control and

understanding of process operations. Modeling can play an important role in under-

standing, controlling, and optimizing the process steps used in these processes [2541.

The U.S. Food and Drug Administration and International Conference on Harmo-

nization recommend modeling in the development of biologics to estimate variability,

provide process understanding, and establish a control strategy [177, 104].

Process modeling techniques can be grouped into two broad categories: first-
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principles and data-based. This article focuses on data-based modeling, which is more

often applied in (bio)pharmaceutical manufacturing facilities. Data-based models

have been applied to cell culture characterization [161, 123, 2021, quality control

[207, 42], process monitoring [202, 203, 204, 24], and downstream operations [202]. A

drawback of current data-based methods applied in the biopharmaceutical industry

is that the models that are produced are not easily interpretable because they rely

on subspaces that do not have direct physical meaning.

With this motivation, a successful biopharmaceutical model would achieve three

goals: (1) model accuracy, (2) model simplicity, and (3) model interpretability. These

aims have the caveat of using only a small amount of heterogeneous data, as data

for biopharmaceutical manufacturing are typically both heterogeneous and relatively

limited compared to most mature industries such as in chemicals, refining, petro-

chemicals, and pulp and paper.

One way to achieve these goals is through the identification of the input variables

in the process that exhibit the largest effects on the output variables. It is common

in the biopharmaceutical industry for a dataset to have more measurements, p, than

observations, N. Most measurements are only taken once in a single batch moving

through the production process and few replicates are performed due to time and

cost constraints. The construction of predictive models from such data sets can be

made even more challenging because the collected data are typically highly correlated

between batches, that is, the data sets are highly ill-conditioned. Regularization

methods have been identified as possible approaches for such problems because of

their ability to simultaneously handle input selection and model estimation [181].

This article first provides some background on regularization methods, specifically

the lasso and elastic net. Modifications are then introduced to better handle small

heterogeneous datasets. Finally, the methodology is evaluated for a manufacturing-

scale process in the biopharmaceutical industry and the results are compared to other

data-based modeling techniques used in the industry.
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3.2 Background on regularization

The simplest form of regression finds a vector of weights, 3 C RP, that can be used to

predict the scalar output y using the vector in inputs, x E RP. The basic approach

to finding 13 is called ordinary least squares (OLS). The OLS problem is formulated

to minimize the error:

N

Err(O) N(yi - xT) 2  (3.1)
i=1

which has the solution:

3 OLS = (XTX)-1XTy (3.2)

where X E RNxP and XTX is invertible. Applying this method can lead to over-

fitting of the model, especially as the number of input variables (p) grows large.

Regularization techniques are one method to prevent over-fitting.

Lasso [2461, also known as f, regularization, is an optimization formulation for

parameter estimation that solves

1 N p

/lasso =arg min - E (yi - i3 - xT3) 2 + AZ 10j (3.3)
0 "3 2 Ni=1j=1

where N is the number of experiments, yi is the ith scalar response, xi C RP is

the data vector at observation i, A is a nonnegative regularization parameter, #0 is a

scalar parameter, and # E RP is a vector of model parameters. By adding the penalty

term to the objective, the size of the coefficient vector is effectively constrained, which

helps to prevent wild fluctuations of the coefficient vector that can be due to fitting

noise in the data. The penalty is equivalent to the f-norm on the coefficient vector,

hence the name.

The lasso technique is useful to choose the subset of predictors (xi) that exhibit

the strongest effect on y because solutions to the lasso are sparse vectors, that is,

the models only include a subset of the possible inputs ("dense" refers to models that

include all possible inputs; these terms do not refer to the quality of data within
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Figure 3-1: Representation of parameter selection using the lasso considering the con-
strained optimization problem. The blue regions represent the constraints imposed by
the penalty terms and the red ellipses are the contours of the least squares error func-
tion. The solution often lies on a vertex of the constraint, causing some parameters
to be exactly zero 193].

each type of measurement). Because of the 41 constraint, solutions to the lasso can

be thought of as lying on a vertex point of the feasible region, leading to certain

coefficients to be exactly zero [93, 201] (see Figure 3-1 for a simple representation).

The elastic net (EN) [302] is an optimization formulation for parameter estimation

that is formulated as:

1N
OEN = arg min 2N (Yi _ _ XTi) 2 + APc(L) (3.4)

where

p a., 1 / + ad#3| (3.5)Pawf) = E 2 3
j=1

N is the number of experiments, yj is the ith scalar response,xi E RP is the data

vector at observation i, A is a nonnegative regularization parameter, #0 is a scalar

parameter, 3 E RP is a vector of model parameters, and a is on the interval (0, 1].

Although the elastic net is very similar to the lasso, there are some key differences.

The EN is particularly useful when the number of predictors (p) is greater than the

number of observations (N). If the lasso is applied to a data set where p > N, the

solution is not unique. By adding a second term, the problem becomes convex even
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2a = 0.2

Figure 3-2: Penalty constraint contours for constant values of E, 1/3 Ijq (left two plots,
ridge regression and lasso penalties) and Z3 (a#3j + (1 - a) I 1) (right plot, elastic net
penalty) [93].

when p > N [3021.

EN is also better at handling data where the inputs are correlated. Lasso is only

able to select up to N predictors and will not reveal grouping relationships. Instead,

the lasso will choose one of the correlated variables, and in highly correlated cases,

can switch between variables in the set. However, the EN formulation uses a strictly

convex penalty function and will guarantee that equal weighting is given to inputs

that are identical [302]. Figure 3-2 compares the penalty constraint contours for ridge

regression which uses a quadratic penalty, lasso, and EN. EN can produce models that

are sparse and can handle correlated data. These points are illustrated here using

a simple four-dimensional case study where x1 and x 2 are specified then x 3 and x 4

are calculated to equal x1 and x 2, respectively, with a small amount of random noise.

The parameter traces in Figure 3-3 show how EN groups the variables where the lasso

uses one variable from each grouped set. The group is very robust to the selection

of values of the penalty term A. By including the grouped variables in the elastic

net, the noise in the grouped measurements can be averaged in the calculation of the

predictions produced by the model. Lasso selects a sparser model for a given value

of A, but at the cost of not being able to average noise from what are essentially

duplicate measurements of the same variable.

The next section details the data-based modeling algorithms employed in this

article, which are largely based on the elastic net but also draw on other algorithms.
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Figure 3-3: Elastic net (left) compared to lasso (right) for highly correlated input
data. The left axis shows the value of the model parameter (,3), the upper x-axis
shows the degrees of freedom (df) in the model, and the lower x-axis is the value of
the penalty term A.

3.3 Elastic net with Monte Carlo sampling (ENwMC)

To effectively use the regularization technique on a small dataset, a multistep proce-

dure is proposed. This procedure draws on ideas from previously proposed lasso and

elastic net algorithms, notably, bolasso [10], two-stage estimation 167], and relaxed

lasso [1601, but differs in its exact implementation. The scalar model form is

y(x) = xT#, (3.6)

where x E RP, 3 E RP, and the value of p is not known a priori. For small data

sets typically common in the biopharmaceutical industry, there is often insufficient

physical or data-based evidence to support a more complicated model. If there is

sufficient evidence to support a more complicated nonlinear model, then nonlinear

algebraic transformations can be applied to the values of x or y to generate nonlinear

models using the same algorithms described in this article.

The first step in ENwMC is an application of the elastic net (4), using leave-one-

out cross validation to choose the value of is. In leave-one-out cross validation, all but
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one of the experimental observations are used to fit the model, then the remaining

experiment is used to calculate the error (1). This step is repeated for each possible

set and then averaged. The procedure is performed for many possible combinations

of the regularization parameters a and A, where a E (0,1] and A captures the convex

behavior of the error. Because a is the weighting between the f 2 - and f 1-norm

penalties and the goal is a sparse model, a value of a close to 1 is preferable. Therefore

a is chosen based on a tradeoff between model dimensionality and prediction error.

In some cases, this choice is trivial, as a higher value leads to a more accurate model.

Once the value of a is fixed, a test for over-fitting is performed using k-fold cross

validation. Using Monte Carlo samples [1631, the data are portioned into a validation

set containing (1/k) proportion of the data and a calibration sct containing the rest.

The elastic net, with a fixed a, is then performed and the input variables correspond-

ing to the minimum error are recorded. This step is repeated many times to converge

to the distribution of models over the possible calibration and validation sets. The

frequency with which each variable is selected is then calculated. In further analysis,

only the variables that were selected above a threshold frequency are considered.

The subset of selected variables is considered for inclusion in a model using best

subset selection. The error of all possible ordinary least squares models of size

m E 1, 2, ... , p where p is now the dimensions that were chosen based on the thresh-

old, is calculated. A model from this set is then selected based the tradeoff between

increasing dimensionality and decreasing error. Increasing the number of dimensions

included in the model will decrease the prediction error but trivial gains in prediction

for additional dimensions likely represent over-fitting, which should be avoided. This

tradeoff is easily visualized by plotting the prediction error against the model dimen-

sions to create a Pareto curve (see Figure 3-4). Plots of this type will often exhibit

an "elbow." The elbow corresponds to the model dimensionality that optimally com-

promises between model size and prediction error. The result of this step is the final

model.

When dealing with limited data, it is important to generate model statistics that

accurately quantify the prediction errors and ensure that the models generated by
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Figure 3-4: Example of a Pareto curve illustrating the tradeoff between model sparsity
(horizontal axis) and model accuracy (vertical axis) for host cell protein (HCP) exiting
the anion exchange column. In this instance, three input variables are used in the
final model.

different data-based methods are compared on a sound statistical basis. Especially

relevant are the prediction interval of the model and the covariance of the coefficients.

Because of the sensitivity of the model coefficients to the data, Monte Carlo sampling

is used, in a similar manner as before. The variance of the prediction is calculated by

1 

= (3.7)

NN-n8 nmc

where n, corresponds to the number of observations used in the calibration set. The

pre-factor accounts for the fact that only a fraction of the data are used to calibrate

the models. The 95% confidence interval of each prediction is equal to twice the

square root of the variance of the prediction.

The covariance of the model coefficients is calculated by

cov(3) = I 1 ((yi )2 FTF)-1 (3.8)
wN - nh

where
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F =ay (3.9)

N is the number of experiments, no is the number of coefficients in the model, F is

the ith row of F and F is the matrix of data used to build the model.

Within this algorithm, there are many fitting parameters that will vary based on

the specific application. Specifically these parameters include the number of Monte

Carlo trials, the fraction of the data used for validation in the second step, and the

threshold frequency. The number of Monte Carlo trials should be large enough to

capture the distribution but not so large that computational resources are wasted.

In the case study below, 1000 Monte Carlo samples were used. The value of k in

k-fold cross validation will depend on the number of available experiments. A value

of k = 2 provides a strong degree of validation but cannot be applied to very small

data sets. In the case study below, k 3 was used. The number of models that

are considered in the best subset selection step scales as 2m, and therefore should

be chosen such that this step is computationally reasonable. In the study below, the

threshold was 50%, i.e., any input variable that had a non-zero coefficient in 50% of

the Monte Carlo samples was included in the best subset selection.

3.4 Case study

The methodology is evaluated using a dataset from Biogen Idec that involves 18 pro-

duction batches, each containing 40 measurements, of an antibody manufacturing

process. Of the 40 measurements, 14 were outputs and models were constructed for

each output. The measurements spanned four process steps, shown in Figure 3-5. All

variables were z-scored, that is, mean-centered around zero and scaled by their stan-

dard deviation. All measured variables are numerical so the data are homogeneous

in type but are heterogeneous in time scale. A detailed discussion of different types

of data heterogeneity that arise in bioprocesses is available 139].
For all of the variables downstream of the bioreactor, either "modular" models can

be constructed, which include only the variables exiting the previous unit operation as
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N Bioactor C ColumExchange Exchannge
olumnColumn Column

Figure 3-5: Simplified flowsheet of the antibody production process. The bioreactor
size was 2000L and was operated in the fed-batch mode. The column loadings were
typical of an antibody purification process 1231].

Table 3.1: Summary of the ENwMC modeling results for all of the output variables in
the process. All statistics are reported in scaled units 11901. HCP is host cell protein
and HMW is high molecular weight impurities.

Unit Num. of Input Num. of 95% Pred
Uperni Output Dimension Vars Used in Possible Input SSE 95%ered.

Operation Final Model Vars Interval

GO Product Quality 3 20 3.41 0.591
Final Titer 3 20 5.40 0.836

Bioreactor DNA 4 20 5.20 0.944
Host Cell Protein 6 20 1.67 0.775

DNA 4 26 2.71 0.616
Protein A HCP 4 26 1.92 0.565
Column Total Impurity 5 26 2.40 0.810

HMW 4 26 1.11 0.424
Cation HCP 4 32 1.96 0.576

Exchange Total Impurity 2 32 7.18 0.951
Column HMW 3 32 0.32 0.201
Anion HCP 3 37 1.20 0.452

Exchange Total Impurity 4 37 2.48 0.679
Column HMW 2 37 0.23 0.166

well as the inputs to that unit operation, or "full process" models can be constructed,

which include all of the upstream variables. In all cases, the full process models

were of higher predictive accuracy than the modular process models, so only the full

process model results are reported here. Table 3.1 reports the 14 outputs, the error

and prediction interval for each of the 14 models. For some representative models,

Figures 3-6-3-7 provide plots of measurements, predictions, prediction intervals, and

residual plots.

The ENwMC modeling technique consistently chose a small number of predic-

tors (third column in Table 3.1), which meets the goals of model simplicity and in-
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Final Model for Final Titer (y )
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Figure 3-6: Final model, with prediction intervals (95% confidence level) and residual
plot, for final titer, exiting the bioreactor.
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Final Model for HCP (y 1 )
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Figure 3-7: Final model, with prediction intervals (95% confidence level) and residual
plot, for HCP, exiting the anion exchange column.
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terpretability. Analysis of the scaled model coefficients showed clear relationships

between the set of input variables and the corresponding output. The accuracy

of the model was compared to two chemometrics techniques widely used in the

(bio)pharmaceutical industry: principal component regression (PCR) and partial

least squares (PLS, also known as projection to latent structures). Unlike regulariza-

tion techniques, PCR and PLS reduce the dimensionality of the regression problem by

truncating variance within the data and then performing regression. These chemo-

metrics techniques lead to dense, rather than sparse, models and are described in

[250, 29] . The number of principal components and latent variables for each model

were selected using leave-one-out cross validation.

Table 3.2 shows the results of the comparison. In a majority of the cases, the

proposed methodology outperforms the chemometrics techniques. The variable with

the largest difference between the three data-based modeling techniques is the HMW

exiting the cation exchange column, where the ENwMC model has nearly a factor of

three lower percent error. In terms of variance of the prediction, the elastic net with

Monte Carlo sampling outperformed PCR and PLS for all but one output variable,

in some cases by more than a factor of two. For example, the ENwMC model has

about a factor of six lower prediction variance than the two chemometrics methods

for the HMW exiting the cation and anion exchange columns. For the one variable in

which PCR and PLS gave lower predictive variation than ENwMC, which was DNA

exiting the bioreactor, the differences between all three methods was very small (0.201

to 0.223). Further, the ENwMC model produces sparse models with few predictors,

which is much more useful when trying to make the fewer number of changes in

operations to control a process variable than the chemometrics models, which use all

of the measurements as predictors.

Although the ENwMC has more hyper-parameters than PLS or PCR, experience

so far has indicated that the algorithm can be largely automated. If simple heuristics

are used to choose the number of trials, the CV partitioning, and the threshold, the

user needs only to choose a and the final model dimensionality. If desired, a can

be chosen a priori, which would leave only the model dimensionality to be chosen,
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which is the same decision that would need to be made for a PCR or PLS model. The

computational cost is larger to implement ENwMC, but the cost is not a practical con-

sideration when using modern personal computers for the small datasets encountered

in many industrial systems such as this biomanufacturing example.

3.5 Conclusions

The elastic net with Monte Carlo sampling algorithm combines the benefits of the

elastic net algorithm for simultaneous model selection and parameter estimation with

the power of Monte Carlo sampling to counteract likely over-fitting of data to create

an accurate, interpretable, and simple process model. This data-based modeling

algorithm has potential for biopharmaceutical applications or any dataset that is small

and heterogeneous and for which first-principles models are unavailable. ENwMC

is demonstrated to produce more accurate predictions than chemometrics methods

for a data set collected from a manufacturing-scale biopharmaceutical facility, while

identifying a small number of process variables that can be used in closed-loop control.

Although the models here are data-based and statistical in nature, they can still

provide insight into the process and are particularly useful when only limited amounts

of data are available.
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Table 3.2: Comparisons of percent error and scaled variance for PCR, PLS, and ENwMC modeling techniques. The bold number
marks the model with the best performance for each variable.

Unit
Operation

' 'T

Output Dimension Percent error using...
PCR PLS ENwMC

GO Product Quality 1.7% (4) 1.8% (1) 1.5% (3)

Bioreactor Final Titer 9.5% (4) 6.7% (2) 10% (3)
DNA 60% (4) 62% (1) 62% (4)

Host Cell Protein 12% (6) 10% (2) 9.0% (6)
DNA 137% (4) 73% (1) 102% (4)

Protein A HCP 19% (6) 12% (3) 12% (4)
Column Total Impurity 21% (4) 18% (1) 11% (5)

HMW 103% (6) 105% (1) 60% (4)
Cation HCP 16% (9) 26% (2) 20% (4)

Exchange Total Impurity 25% (5) 23% (2) 21% (2)
Column HMW 54% (3) 51% (1) 18% (3)

Anion
Exchange
Column

HCP 43% (7) 43% (2) 42% (3)

Variance of the prediction using...
PCR PLS ENwMC
0.146 (4) 0.148 (1) 0.087 (3)
0.281 (4) 0.287 (2) 0.178 (3)
0.209 (4) 0.201 (1) 0.223 (4)
0.258 (6) 0.210 (2) 0.150 (6)
0.151 (4) 0.143 (1) 0.095 (4)
0.268 (6) 0.202 (3) 0.080 (4)
0.286 (4) 0.256 (1) 0.164 (5)
0.117 (6) 0.092 (1) 0.045 (4)
0.226 (9) 0.132 (2) 0.083 (4)
0.323 (5) 0.348 (2) 0.226 (2)
0.058 (3) 0.063 (1) 0.010 (3)
0.189 (7) 0.140 (2) 0.048 (3)
0.228 (4) 0.227 (3) 0.115 (4)

11MW 0% () 20 (4) 8% () 0.67 (9 0.00 (4 0.0 2

c J

Total Impurity 21% (4) 11% (3) 13% (4)
HMW 30%c (9)' 20% (4) 18%o (2) 0.067 (9) 10.050 (4) 0.007 (2)
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Chapter 4

Probabilistic principal component

analysis and missing data

This work originally appeared as: Kristen A. Severson, Mark C. Molaro and Richard

D. Braatz. Methods for applying principal component analysis to process datasets with

missing values. Special Issue on Process Data Analytics, Processes, 5:38, 2017.

4.1 Introduction

Principal component analysis (PCA) is a widely used tool in industry for process

monitoring. PCA and its variants have been proposed for process control [153], iden-

tification of faulty sensors [641, data preprocessing 11441, data visualization [123],

model building [2921, and fault detection and identification [1281 in continuous as

well as batch processing [173, 1741. PCA has been applied in a variety of industries

including chemicals, polymers, semiconductors, and pharmaceuticals. Classic PCA

methods require complete observations; however, often online process measurements

or laboratory data have missing observations. Causes of missing data in this context

include sensor failure, changes in sensor instrumentation over time, different sampling

rates, merging of data from different systems, and samples that are flagged as poor

quality and subsequently dropped from storage [107]. The nonlinear iterative partial

least squares (NIPALS) algorithm was an early approach for handling missing process
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data when applying PCA 151, 285]. The problem started to gain more attention in

the late 1990s [171, 88] and, because of the ubiquity of missing data, many PCA al-

gorithms that can handle missing data have been proposed since. This article reviews

these approaches and provides guidance to practitioners on which methods to apply.

A framework for analysis in the presence of missing data has been available since

the mid 1970s [2091, which introduces categories of missingness and explains when

missingness can be ignored. Three categorizations of missingness are (1) missing

completely at random (MCAR), (2) missing at random (MAR), and (3) not missing

at random (NMAR) [141]. These categories can be described using the missing-

data indicator matrix, M, which is of the same size as the data matrix X where

Mij = 1 if Xjj is missing and 0 otherwise. The MCAR assumption applies when the

independence statement

f (MIX, #) = f (Mi#), V X, #, (4.1)

is true, where f is a probability density, variables to the right of I indicate the con-

ditioning set, and # are unknown parameters. MCAR implies that the missingness

is not a function of the data, regardless of whether the data points are observed or

missing. The MAR assumption applies when the independence statement

f (MIX, #) = f (MIXobs, #), V Xmis, 0, (4.2)

is true. MAR implies that the missingness depends on the observed data. NMAR is

assumed when neither of these criteria apply [1411.

Recently, access to large amounts of process data have been enabled by improved

sensor technology, the Industrial Internet of Things, and decreased data storage costs.

Due to an increasing number and diversity of measurements [194J, data with missing

elements will become increasingly common. When working with a dataset, the first

step is to identify which data are missing and why. If the missingness mechanism

is MCAR or MAR, a model for the missingness mechanism is not needed and is re-

ferred to as ignorable when performing inference. To perform inference, the quantity
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of interest is the likelihood, which is the probability of the observed data, given the

distributional parameters. If the MAR assumption holds, the likelihood is propor-

tional to the probability of the observed data given the true parameters and therefore

it is not necessary to model the missingness [141]. However, when data are NMAR

and the missingness mechanism is not taken into account, algorithms can lead to

systemic bias and poor prediction [141]. Conclusive tests for determining the appro-

priate missingness categorization do not exist, and so the categorization is selected

based on process understanding. The conclusions of missingness categorization de-

pend on the specific scenario, but some typical examples for the process industry are

presented here to provide guidance to practitioners. MCAR is applicable to data that

are missing due to random sensor failure or mishandling of the data. MAR applies

to scenarios where data are acquired sequentially, for example, a quality test that is

only performed based on the results of previous testing. NMAR applies to measure-

ments that are not recorded due to censoring, where the value is outside of limits of

detection [107].

4.2 Methods

4.2.1 Introduction to PCA

Principal component analysis is a technique for dimensionality reduction. Pearson

[188] and Hotelling [99] are typically attributed with the first descriptions of the tech-

nique [1181. Hotelling described PCA as the set of linear projections that maximizes

the variance in a lower dimensional space. For a data matrix X E RdX where d is

the number of measurements and n is the number of samples, the linear projection

described by Hotelling can be found via the singular value decomposition (SVD),

X = UEVT, (4.3)

where U E R dXd and V E R"X" are orthogonal matrices and E E Rdx is a pseudo-

diagonal matrix. The linear projection matrix P E Rdxa, also called the matrix of
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loading vectors, is defined by the columns of U that correspond to the largest a

singular values. The principal components, also called the scores, are defined as

T = PTX (4.4)

or as the first a rows of EVT. Equivalently, P can be found by solving the eigenvalue

decomposition of the sample covariance matrix,

1
S = -XXT = UAUT, (4.5)

n

where the diagonal matrix A = ETE, with P defined as the columns of U that

correspond to the largest a eigenvalues.

Pearson [188I described PCA as the optimal rank a approximation of a data matrix

X for a < d using the least-squares criterion. Here, the observed data are modeled as

xk = Pti +A (4.6)

where ii is the reconstruction of a column of the previously defined data matrix X,

P is again an orthogonal matrix, ti is the score and is equivalent to a column of the

previously defined matrix T, and p is the mean of the observed data such that the

reconstruction error
n

C =Z |xi -kill (4.7)
i= 1

is minimized.

PCA can also be described as the maximum likelihood solution of a probabilistic

latent variable model [248, 208]. This formulation is referred to as PPCA. PPCA

assumes the data are modeled by a generative latent variable model,

xi = Pt + P + ei, (4.8)

where the variables are defined as above and Ei is the error. The distributional
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assumptions are

tj ~ JV(Oj, ) (4.9)

Ei ~. (O, ,2Id) (4.10)

xi t K~(Pt + f, o2Id) (4.11)

xi Af(pu, ppT + U 2 Id) (4.12)

where Ik is the k x k identity matrix, .A(p,, E) indicates a normal distribution with

mean p and covariance E, and all other terms are defined as above. Tipping and

Bishop [248] and Roweis [208] independently proposed finding the maximum likeli-

hood estimates of the distributional parameters via expectation maximization (EM).

EM is a general framework for learning parameters with incomplete data which itera-

tively updates the expected complete data log-likelihood and the maximum likelihood

estimates of the parameters [56]. In PPCA, the data are incomplete because the prin-

cipal components, ti, are not observed. Typically, tj are referred to as latent variables,

as opposed to missing data, because they cannot be observed. Generally, EM is only

guaranteed to converge to a local maximum, but Tipping and Bishop [248] showed

that EM converges to a global maximum for PPCA. To apply EM to PPCA, first

the observed data are mean-centered using the sample mean. Then the algorithm

alternates between calculating the conditional expectations of the latent variables,

(t,) = W-lpT(x, - A), (4.13)

(titT) = U2W-1 + (t,)(t,) T, (4.14)

where W = pTp + U2Ia, and updating the parameters

n n ~1

P E=(x, - p)(ti) E (titT) (4.15)

o2 _- 2 - (t)TpT(Xi - [t) + tr((titT)PTP) (4.16)
jn z 1 lx 11
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Before application of the PCA algorithm, each measurement (i.e., row when X E

RdX") in the data matrix is typically mean centered around zero and rescaled to have

standard deviation equal to one. For all PCA implementations, it is necessary to

choose the latent dimension a, and several approaches exist. Scree plots [35] visualize

the singular values in decreasing order and look for an "elbow" or "gap" and truncate at

that point. The percent variance explained approach considers the variance, defined as

the square of the corresponding singular value, of each loading vector and truncates

at a specified threshold, often 90% or 95%. Cross-validation strategies choose a such

that the reconstruction error of a held-out set is minimized. In the PPCA framework,

the negative log-likelihood of a validation set can also be used. Parallel analysis [981

compares the scree plot of the data matrix to that of a random matrix of the same

size and thresholds at the crossing point. Donoho and Gavish [57] propose an optimal

threshold based on the asymptotic mean-squared error.

4.2.2 PCA methods for missing data

To apply an algorithm to a dataset with missing data, the simplest approaches are

complete case analysis, in which only samples that have all of the measurements

are used in analysis, and mean imputation, in which missing elements are replaced

with the sample mean. These techniques can lead to large amounts of data loss or

bias and are undesirable. Because complete case analysis and mean imputation first

address missing data and then proceed with modeling, these techniques are referred

to as two-step procedures. More advanced two-step procedures exist, such as multiple

imputation [217], as well as two-step procedures that are designed for certain types

of missingness, such as lifting [134] which is applied to multi-rate missingness. Here,

the focus is on methods that integrate missing data handling and model building for

PCA. All of the PCA methods in the previous section assume that the data matrix

is complete, however in practice, the data matrix may not be complete and several

approaches have been proposed for finding the principal components in the presence

of missing data.

Grung and Manne [88] proposed an alternating least-squares type of approach.
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Their algorithm is initialized by computing the singular value decomposition where

missing values have been filled in using the sample mean. The algorithm then alter-

nates between minimizing

C = Z(1 - Mij) (Xi - Ztikpjk) 2  (4.17)
ij k

with either fixed scores T, or fixed loadings P where Mij = 1 if Xjj is missing and

zero otherwise. The first set of update equations are

T T (418
ti = xi Ai(Ai Aj)-1 (4.18)

where t2 is the ith column of T, xi is the ith column of X, and Ai is a d x a matrix

with elements Ajk = (1 - Mij)pjk. The second set of update equations is

pT = (BTBj)- 1BxT, (4.19)

where p3 is the jth row of P, xj is the jth row of X, and Bj is a n x a matrix with

elements Bi -- tik(1 - Mij). To address the estimation of p, Grung and Manne [88]

suggest augmenting the model with an additional loading vector with a corresponding

principal component equal to all ones. This approach leverages the reconstruction

error derivation of the PCA problem and uses the change in the reconstruction error

as the convergence criteria.

Another approach is to start from the SVD derivation of PCA. The origin of this

method is unclear, with Troyanskaya et al. 12531 and Walczak and Massart j2701 both

studying alternating algorithms utilizing the SVD. The algorithm is initialized as

before, using mean imputation. The singular value decomposition is then performed

and the data matrix is reconstructed. The missing elements are replaced using the

reconstructed elements and the algorithm continues until convergence. Convergence

is again based on the reconstruction error of the observed data. This approach is

referred to as SVDImpute here.

Imtiaz and Shah [1071 alter SVDImpute to account for measurement error by
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combining the ideas of SVD-based imputation with bootstrap re-sampling, which is

referred to as PCA-data augmentation (PCADA). In this approach, when replacing

the missing elements with the reconstructions, the estimates are augmented with

residuals from the observed data. The residuals are defined as

R4= X. - (4.20)

and the missing data estimates are

kmis - $!IT + Rk (4.21)

where k is a random integer between 1 and n. The reconstruction estimates using

X2 S are then used in the next iteration. To calculate the SVD, K bootstrap datasets

are created by randomly drawing samples from the reconstructed data. The loading

matrix is then calculated from

1K
P = K Pk (4.22)

k=1

with P then used in the reconstruction step. Convergence is based on the reconstruc-

tion error of the observed data, which is not guaranteed to decrease at each iteration

due to the stochastic nature of the algorithm.

Another approach to performing PCA in the presence of missing data utilizes

the PPCA formulation. The EM framework is amenable to problems with missing

data and the framework as applied to PPCA can be extended to account for missing

observations [249]. In the E-step, the expectation of the complete-data log-likelihood

is taken with respect to the conditional distribution of the unobserved variables given

the observed variables. Two approaches to this expectation calculation have been

proposed in the literature. Ilin and Raiko [105] propose using an element-wise version

of PPCA and taking the expectation using T as the unknown variables, i.e. missing
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data, and P, p, and or 2 as the parameters. The resulting update equations are

(ti) = WT pj (xi3 - P), (4.23)

(titT) = U2W - + (ti)(ti)T (4.24)

where Wi = EjE. pjpT+ 2 a,

= S (Xi3 - p7Ktj)), (4.25)

p= (5(tit[T)) ((ti)(xij -- P)), (4.26)
iEo3  iEMj

2(O) 1 ((Xij - p (ti) - Pi ) 2 + pT o 2w-Ip), (4.27)
#()ijEO

o = 1 - M is the observed data indicator matrix, and #(-) represents the number of

observed elements in the set. Alternatively, the unknown variables can be taken to

be T and the missing elements of the data matrix X [156, 293]. The resulting update

equations are
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(t2) =WTi- E P (Xij - ) (.8
jeoi

P (ti) + ttj

xzj

if Mi = 1

if Mi 2= 0

(tit7) =a 2W- 1 + (t,)(t,)T

j2(pjW -p ) + (xij)(xik)

o 2 (1 + p W- 1p ) + (xij)(Xik)

(xi xik)

XijXik

if Mi = Mik = 1,

if Mij = Mik = 1,

if Mi= 1,

(xt) = 
2 p=W

xi (t,)T

where Wi T + OZ2I, and

tr ((xixT) - 2(xitT)PT - 2p(xi)T + 2p (ti)TPT + P(titT)PT + ppT

Performing PPCA using this conditioning set is referred to here as PPCA-M.

Bayesian PCA (BPCA) is a variation on the PPCA approach [151. A limitation of

PPCA is that the method can be prone to overfitting 1105], which BPCA attempts to

prevent by using a prior distribution on the parameters. Conjugate priors are used for
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(4.30)

(xixT)k =T

Vj # k

Vj = k

Mik = 0

if Mi = 0, Mik = 1

if Mij Mik = 0

+ (x,)(t,) T if Mi = 1

(4.31)

(4.32)
if MiJ = 0

1

n

P = ((xiti)T

n

Z(x) - P(ti)

2 _

nd~

-1

(titT)

(4.33)

(4.34)

(4.35)
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p and o 2 and a hierarchical prior is used for P. When the PPCA problem is modified

in this way, the E-step no longer has a closed form and variational approaches are

preferred [170]. Oba et al. [1761 extended the BPCA method to cases with missing

data.

The last approaches for PCA in the presence of missing data presented here are

from the matrix completion literature. In matrix completion, sometimes also referred

to as robust PCA, elements of a matrix are corrupted and the goal is to recover a low

rank reconstruction. If the corrupted elements are treated as missing, this is exactly

the same problem as has been discussed, however the problem is often framed directly

as the optimization

minimize flA Il, subject to Ai3 = Xij, (i, j) E 0, (4.36)
A

where | |, denotes the nuclear norm of a matrix, which is the sum of the singular

values of the matrix, Xij are the observed elements in the data matrix, and 0 is

the set of observed indices. An approach for solving this problem is singular value

thresholding (SVT) [331, which solves

minimizeIIA|I , subject to Po (A) = Po(X), (4.37)
A

where Po is the orthogonal projector onto the span of matrices vanishing outside

of 0. Cai et al. 1331 propose an alternating algorithm that approximately solves

(4.37) which results in a matrix that is sparse and low rank. A second approach for

the matrix completion problem is the inexact augmented Lagrange multiplier method

(ALM) [140], which solves

minimizeIIA I J, subject to A + E = X, Po(E) = 0, (4.38)
A

where Po is a linear operator that also is zero outside of 0. ALM was proposed to

solve the more general problem of a corrupted matrix without knowledge of which

entries are corrupted but can also be applied in this setting.
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4.3 Case study

The performance of the different techniques are compared in several case studies. Two

types of simulations are considered: one based on distributional assumptions and one

based on a chemical process simulation.

4.3.1 Simulations of Gaussian data

The design of the distributional-assumption simulations is based on the study by

Ilin and Raiko 1105] and uses data from multivariate Gaussian distributions. The

distributional assumptions follow the development of the PPCA model. While data

that exactly follow the model are idealized, the assumptions approximately hold for

data that have been pre-processed using standard methods. That is, data that have

been pre-processed by sub-sampling and z-scoring approximately have independent

and identically distributed multivariate Gaussian (symmetric) distributions. This

type of pre-processing can introduce error in the presence of missing data, particularly

if missingness is due to censoring. Therefore, this analysis lays a foundation of the

best-case results.

The loading matrix P is modeled using a random orthogonal matrix of size d x

a where a = 4 and the columns of P rescaled by 1, ... , a. p is modeled using

a standard normal distribution. Two scenarios are considered. In the first, n >
d. Specifically, the dataset is n = 1000 samples from a 10-dimensional Gaussian

distribution described by (P, ppT + 2ld) where a2 = 0.25. In the second scenario,

the opposite case is considered, d > n, and n = 100 samples from a 200-dimensional

Gaussian distribution described by N(p, ppT + U2 Id) where a2 = 0.25. For each of

the scenarios, 20 simulations are used, each with four types of missingness, described

below.

Ten PCA approaches were tested: mean imputation (MI), alternating least squares

(ALS) as implemented by MATLAB's pca command, alternating least squares (Al-

ternating) as implemented by Ilin and Raiko [105], SVDImpute as implemented by

Ilin and Raiko [105], PCADA as implemented by the authors, PPCA as implemented

80



by MATLAB's ppca command, PPCA-M as implemented by the authors, BPCA as

implemented by Oba et al. [1761, SVT as implemented by Cai et al. [33], and ALM

as implemented by Lin et al. [1401. All approaches were implemented in MATLAB,

used a convergence tolerance of 10-6, and were limited to 1000 iterations. Alter-

nating, SVDImpute, PCADA, BPCA, SVT, and ALM use relative change in the

reconstruction error as the convergence criteria. ALS uses relative change in the re-

construction error as well as the relative change in the parameters are the convergence

criteria. PPCA and PPCA-M use the relative changes in the negative log-likelihood

and parameters as the convergence criteria.

To evaluate performance, two metrics were used: the root mean square error

(RMSE), and the subspace angle between the true and recovered principal component

loadings. The RMSE is defined

n d

RMSE = E j (.i - i2j)2 (4.39)

and is reported for only the missing data. The full definition of the subspace angle is

provided in the Appendix 4.5. A subspace angle of 0 implies that the subspaces are

dependent, which is the desired result here. The maximum value of the subspace angle

is !. In all analysis, the subspace angle is calculated using the MATLAB function

subspace.

4.3.2 Tennessee Eastman problem

The Tennessee Eastman problem (TEP) is a benchmark dataset that models an in-

dustrial chemical process [58]. The benchmark contains datasets both under nor-

mal operation as well as during several process faults. The process consists of five

major units: reactor, condenser, compressor, separator, and stripper. There are 8

components, 41 measured variables, and 11 manipulated variables. Several control

structures have been proposed for plant-wide control of the TEP. The datasets can

be found online [210] and utilize "control structure 2" as described by Lyman and
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Geogakis [1511. Unlike the Gaussian data simulations, the latent dimension a is un-

known. To determine a, parallel analysis was used. Three missingness mechanisms

were considered, as described below, and 20 simulations were used for each. The same

10 approaches for PCA as described above were implemented with a small change to

the mean imputation approach. Because the data are collected in time, the last mea-

surement before and the first measurement after the missing data point are averaged

and used to fill-in. The learned model is then used in two tasks: reconstruction of

a test dataset and fault detection. For the fault detection problem, the Q statistic,

defined as

Q = rTr, r = (Id - ppT)xi (4.40)

was used. The Q statistic, also known as the squared prediction error, has been well

studied in the area of fault detection [110, 285, 127, 211]. To determine the detection

threshold, the tenth largest value of Q on the nominal test set was used [2111.

To evaluate the performance, three metrics were used: the RMSE on a held-

out test of nominal data, the detection time, and whether or not a false detection

occurred. Two faults are chosen for analysis: Fault 1, which is a step change in A/C

feed ratio in stream 4, and Fault 13, which is a slow drift of the reaction kinetics. In

both cases, the testing dataset is used and the faults are introduced at t = 160. The

mean detection time is defined as the average detection time for all models in which

the detection time is greater than 160 and the number of false detections is defined

as the number of models where there is a detection before 160. For a given model,

either a detection time or a false detection time is recorded.

4.3.3 Addition of missing data

Four types of missingness were considered: random, sensor drop-out, multi-rate, and

censoring. The types of missingness were chosen based on the authors' experience

with realizations of missing data in process datasets. Random, sensor drop-out, and

multi-rate missingness are all MCAR but have different patterns: random exhibits no

pattern, sensor drop-out is correlated in time, and multi-rate has a known frequency

82



X1  X2  X3  X4 X5 XXi X2  X3  X4  X5  X6

(a) (b)

XI X2 X X4 X5 X X1 X2 X3 X4 X5 X6

UN

N

(c) (d)

Figure 4-1: Possible realizations of the investigated missingness mechanisms: (a)
shows random missingness; (b) shows sensor failure which results in missingness that
is correlated in time; (c) shows multi-rate data, and (d) shows censored data.

of missingness in time. Censor missingness is NMAR. Examples of the patterns are

shown in Figure 4-1. In all cases, a full dataset is generated or obtained and mea-

surements are removed to represent the missing data mechanism. For instance, in

the censoring case, a random set of variables is selected to be censored from above

or below. The censoring level for each variable is then iteratively updated until the

desired level of missingness is achieved. The location of the code used to introduce

missing can be found in the Supplementary Materials. Missing data are introduced

at levels of 1, 5, 10, and 15% for the Gaussian datasets. The multi-rate pattern is not

considered for the 1% missingness level for the Gaussian datasets. The TEP is natu-

rally a multi-rate missing data problem at a level of 21% [211]. TEP is individually

combined with random, sensor drop-out, and censored missingness to total 25%.

4.3.4 Results

The results of the Gaussian simulations are shown in Figures 4-2-4-4. SVDImpute and

the probabilistic methods (PPCA, PPCA-M, and BPCA) performed the best overall.
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As the missingness level increased, the probabilistic models performed slightly better,

except for SVDImpute performing better for censored data at low levels of missing-

ness. PCADA never outperformed SVDImpute. ALS and the alternating methods

both suffered from finding local optima and performed very poorly, as evidenced by

the large standard deviations. ALM failed to converge in many cases, and some-

times in all cases, as in the d > n scenarios. The SVT approach fell in the middle

while never outperforming the best approaches. For d > n, most approaches did only

slightly better than mean imputation whereas significant improvements were observed

for n > d, especially in the censoring case.

For the TEP, the results of the reconstruction task are shown in Figure 4-5. For

all missingness types, ALS and SVDImpute performed well. ALM failed to converge

and Alternating and BPCA had poor results. PPCA, PPCA-M, and SVT performed

moderately well, but were more affected by censoring than ALS and SVDImpute. The

minimum, average, and maximum number of PCs used in the models, as determined

by parallel analysis can be found in Table 4.1. The number of PCs chosen by SVDIm-

pute, PPCA, and BPCA were very consistent whereas Alternating and PCADA had

widely varying number of PCs. Across all methods, the amount of variability in the

number of PCs is larger in the censoring case. The results of the fault detection task

are in Tables 4.2 and 4.3. For Fault 1, ALS and SVD had the best performance over-

all, with low detection times and few false detections. MI performed well in terms

of detection time but had many false detections. PCADA and BPCA performed the

worst overall. For Fault 13, SVT performed the best in the random and drop-out

cases, whereas SVDImpute performed the best for the censoring case. PCADA and

BPCA again performed the worst overall. ALM was excluded from analysis as no

model was learned during the training phase.

4.4 Discussion

Overall, the best technique to apply PCA in the presence of missing data can depend

on the scenario. Several criteria should be considered when choosing an approach,
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Figure 4-2: Average RMSE of the missing data with standard deviation for the Gaus-
sian cases. In the d > n case, ALM never converged to a solution.
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In the d > n case, ALM never converged to a solution.
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(a) RMSE of the TEP test data for the ran-
dom missingness case. The mean and stan-
dard deviation for alternating and BPCA
are 1.10 x 10 5 (3.89 x 105) and 7.19 x 10 3

(83), respectively.
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(b) RMSE of the TEP test data for the drop-
out missingness case. The mean and stan-
dard deviation for alternating and BPCA
are 2.01 x 10 (4.54 x 104) and 7.16 x i03

(161), respectively.
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(c) RMSE of the TEP test data for the cen-
sor missingness case. The mean and stan-
dard deviation for alternating and BPCA
are 3.98 x 106 (1.13 x 107) and 7.2 x 103
(685), respectively.

Figure 4-5: Average RMSE and standard deviation of the fully observed TEP test
set. In all cases ALM failed to converge.
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Table 4.1: The minimum, average, and maximum number of PCs chosen using parallel analysis for each method over 20
realizations of the missing data. Each missingness type is combined with the naturally arising multi-rate missingness to total
25% missing data. ALM never converged and therefore no results are reported.

MI ALS Alt. SVD. PCADA PPCA PPCA-M BPCA SVT ALM

Random
Min 2 3 1 3 1 3 4 3 4 -
Avg 2.95 3.2 4.15 3 2.55 3 4.3 3 4.95 -
Max 3 4 7 3 4 3 5 3 5 -

Drop
Min 1 3 1 3 1 3 3 3 4 -
Avg 3.15 3.3 4.15 3 2.65 3 4.05 3 4.9 -
Max 4 4 6 3 5 3 5 3 5 -

Censoring
Min 1 3 1 2 1 2 1 2 1 -
Avg 3 3.5 3.65 2.9 2.6 2.85 3.3 2.9 1.65 -
Max 4 5 7 3 7 3 5 3 4 -

00



Table 4.2: The mean detection times for each of the methods and missingness types. Cases are
resulted in a false detection (e.g., a detection prior to t = 160).

marked by "-" where every trial

MI ALS Alt. SVD. PCADA PPCA PPCA-M BPCA SVT

Fault 1
Random 163.1 163 163 163 - 163.8 163.1 - 171.0
Drop 163 163 - 163 - 163.7 163.4 - 170.5
Censor 163.1 163.2 163 163.5 - 163.2 163.4 - -

Fault 13
Random 182 181.8 210 182 - 180.3 183.2 - 174
Drop 182 181.4 - 181.3 - 182.3 179.3 - 174.5
Censor 180.3 181.9 411 184.9 - 185 189.7 - -



Table 4.3: The number of false detections for each of the methods and missingness types.

MI ALS Alt. SVD. PCADA PPCA PPCA-M BPCA SVT

Fault 1
Random 0 0 19 0 20 2 0 20 0
Drop 9 0 20 0 20 1 1 20 1
Censor 5 3 19 3 20 6 9 20 20

Fault 13
Random 7 3 19 1 20 4 4 20 0
Drop 11 4 20 5 20 5 4 20 0
Censor 12 9 19 8 20 19 17 20 20



such as the amount of missing data, the missingness mechanism, and the available

computational resources. The computational complexity per iteration for each of the

algorithms can be found in Table 4.4, which should only be used as a guideline since

the exact implementation will affect computational cost. For instance, SVT 133] and

ALM [1401 recommend using the Lanczos algorithm to compute the singular values.

The Lanczos algorithm is iterative and has reported speed-up of 10 x vs. traditional

calculation of the full SVD. The Lanczos algorithm returns the singular values that are

larger than a certain threshold, which works well in the SVT and ALM frameworks.

On the other hand, Lin et al. 1140] report that the full SVD computation is faster for

scenarios where greater than 0.2d of singular values are required. While experience

indicates that a is significantly lower than d in applications, if no bound on a is known

a priori, then the full SVD is typically calculated during procedures to select a, which

impacts the computational cost. The probabilistic frameworks have the convenient

relation that

2 
1 d

orML d a S A (4.41)
j=a+1

which can be used to estimate the percent variance without calculating the full SVD.

Another benefit of the probabilistic frameworks is that they are generative and there-

fore provide parameters for estimation. For all analysis, the test data have been

treated as fully observed, which may not be true in practice as new data may be

subject to the same type of missingness as the data used in model building. If the

data are subject to NMAR missingness, these parameters may not be useful. Note

also that the probabilistic approaches can have slow convergence.

The difference in the results of the two ALS approaches also highlights the im-

portance of the exact implementation. Both methods are using the same underlying

algorithm but differ in the implementation of the update steps and convergence crite-

ria. Empirically, this results in the Alternating algorithm finding local optima more

often as the amount of missing data increases for the n > d case and the ALS

algorithm finding local optima more often for d > n.

It may be surprising that the robust PCA methods (SVT and ALM) did not
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Table 4.4: The computational costs of each of the methods where d is the number of
measurements, n is the number of samples, a is the latent dimension, and k is the
number of bootstrap samples.

ALS / Alternating / PPCA / BPCA SVDImpute / SVT / ALM

O(a2 dn + an + a3 d) O(min(nd2 ,,r 2 d))

PCADA PPCA-M

O(min(knd2 , knr 2 d)) O(na3 + nda2 )

perform better, but it is important to recognize that these methods were developed

for cases with very low rank solutions, a large number of missing values, and ran-

dom missingness. These assumptions are well suited to some applications such as

computer vision and imaging but do not necessarily fit the assumptions of missing

data in process datasets. A benefit of SVT and ALM is that they can be applied to

problems where the location of the corrupt (missing) data is unknown. In the event

that additional information is known about the measurement error, methods such as

maximum likelihood PCA (MLPCA) [277, 51 or heteroscedastic latent variable model

(HLV) [206] can be applied to leverage that information. MLPCA is suited to sce-

narios where the error covariance matrix is known and the errors are correlated or

uncorrelated. HLV is suited to scenarios the measurement error is evolving in time.

Both algorithms can be applied to scenarios with missing data.

Without additional problem information, we recommend SVDImpute for perform-

ing PCA in the presence of missing data for industrial datasets. SVDImpute can be

viewed as an implementation of EM [1051. In this view, the missing observations are

treated as the unknown variables and P, P, 0 2 , and T are the model parameters. The

corresponding cost function, for only terms involving the parameters, is

dri2, 1 ~2 - I _' i
C = - log 27ro - 2 (2 Z(xi - 2o) _ -j)2 + 0 2 ) (4.42)

ijEO ijEM

where xij are the imputed values from the SVD. This cost function forces the imputed

terms to be near the observed terms which helps to prevent overfitting [105]. A
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drawback of SVDImpute is that there are many possible reconstructions that will

achieve the same result for the observed data, and different results for the missing

data, which implies a dependence on the initial guess [105].

In the event that the testing data will also have missing elements, PPCA or

PPCA-M is recommended. PPCA-M performs slightly better in the TEP but has

higher storage costs during model training. Both result in generative parameters that

can be used during the testing phase.

In summary, for missing data problems, the most important step is to determine

why some data are missing. If censoring is occurring and not accounted for, the re-

sults will be biased. Approaches that incorporate understanding about the underlying

mechanisms are likely to perform the best. Expectation maximization frameworks are

an important tool in missing data problems and can be applied generally if distribu-

tional assumptions are made.

4.5 Definition of the subspace angle

To compute the subspace angle between matrices A E RnX" and B C RXp, where

rank(A) > rank(B), compute the orthonormal basis of each matrix using the singular

value decomposition. Then compute the projection

P = B - A(A T B). (4.43)

The subspace angle, 0, is defined by

sin 0 = min(1, 1P 11) (4.44)

where 11 is the 2-norm. See [17] and [276] for additional information on subspace

angles.
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Chapter 5

Learning sparse classification models

in the presence of missing data

This work originally appeared as: Kristen A. Severson, Brinda Monian, J. Christo-

pher Love and Richard D. Braatz. A method for learning a sparse classifier in the

presence of missing data for high-dimensional biological datasets. Bioinformatics,

33:2897-2905, 2017. It has edited to include the supplemental information in the

main text.

5.1 Introduction

The recent "-omics" revolution in the biomedical sciences, fueled by the decreasing

cost of high-throughput technologies and an increased desire for large numbers of

measurements for valuable clinical samples, has led to the prevalence of wide datasets

- that is, datasets with many more measurements per sample than samples. These

datasets can be generated by technologies such as microarrays and RNA-Seq, ChIP-

Seq, and proteomic and metabolomic techniques (e.g., mass spectrometry, multiplexed

molecular assays). Such methods are gaining widespread popularity due to their

potential to unearth new molecular targets for diagnosis and treatment, and due to

the possibility of discovering combinations of molecular features that contribute to a

disease state.
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However, having many more measurements than samples leads to ill-conditioned

datasets and can introduce statistical inference challenges. Two common problems

arise when attempting to build models from wide datasets: the dataset is not full rank,

which limits the applicable numerical approaches, and a high-dimensional model may

be difficult to interpret. Both of these issues have led to interest in learning sparse

models, where the number of predictors in the final model is a subset of the training

dataset.

Because of the prevalence of this problem, there are many techniques for learning

a sparse model. In this work, we focus on classification models, which are of particular

interest in the biomedical field due to the goal of stratifying classes of patients (e.g.,

healthy vs. not healthy) or treatment conditions (e.g., treated vs. untreated). One

way to learn a sparse classification model is via the nearest shrunken centroids (NSC)

approach 12471. This method finds a subset of predictors by penalizing, or "shrinking",

the class centroids. This technique was shown by [273] to be equivalent to applying

an f1 penalty to the class means. This approach is easy to implement and has a

nice visual explanation. One limitation is that the method is required to assume

a diagonal structure for the covariance matrix to avoid ill-conditioning. Another

approach is sparse discriminant analysis (SDA) [52]. This technique simultaneously

performs model fitting and feature selection, finding the k discriminant vectors /k by

solving

minimize||Y6k - X 11|2 + Y!k/k + AI/3kfl
/3 kOk

subject to - 0TYTYOk = 1
nk

k(TyTy 6 = 0, Vl < k

where Y is an n x K matrix of indicator variables of the class, X is an n x p data matrix,

Q is a positive-definite matrix, and A and -y are nonnegative tuning parameters. This

minimization is then solved iteratively.

A limitation of both of these approaches is their ability to handle missing, data.

Missing data are common in biological and social data. For example, technical issues
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may invalidate some results of an assay, a person may drop out of a longitudinal

study, a hospital may only run some diagnostic tests given the time and availability of

medical equipment, or respondents may skip certain questions in a social survey [78].

In the UC Irvine Machine Learning Repository, over 20% of the datasets have missing

values. Simple techniques to handle missing data involve complete case analysis,

where samples with missing data are ignored, or mean imputation, where the missing

data are filled in using the observed data mean. These techniques waste data and/or

introduce bias.

To address these limitations, the literature contains a significant amount of work

on data imputation, particularly for microarray datasets. [253] did one of the first

studies and found that k-nearest neighbors (KNN) significantly improved on complete

case analysis and mean imputation. More complex techniques have been presented by

[176, 23, 179, 121, 226, 274, 122]. 127] surveyed these results to help practitioners de-

cide which methods to use. The work presented here is fundamentally different than

any of these techniques because it performs missing data imputation and model build-

ing simultaneously. This simultaneous approach allows for consistent assumptions in

the imputation and model-building phases, and decreases the number of algorithm

decisions the analyst must make. The work of Blanchet and Vignes [19] also considers

simultaneous model building and handling of missing data, but does not support a

sparse model, which is a key feature of the proposed methodology. To tackle the two

issues simultaneously, an expectation-maximization procedure is proposed.

The expectation-maximization (EM) framework is a way to handle instances of

missing data by iteratively updating the expected complete data log-likelihood and

the maximum likelihood estimate of the model parameters [56]. Although EM is

a local optimization technique, the likelihood can only improve at each step and

the method has been applied to many problems. The challenge of using EM is to

choose an appropriate model for the data. In this work, we build on probabilistic

principal component analysis, a technique that uses EM to find the principal subspace,

by adding sparsity-inducing priors. This method allows the learning of a subset of

predictors, even in the presence of missing data. The resulting classifier is a linear
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discriminant analysis model.

The proposed expectation-maximization sparse discriminant analysis (EM-SDA)

algorithm addresses the intersection of these ideas to be able to tackle high-dimensional

datasets that may have missing elements. The proposal is foremost meant to be able

to handle expected characteristics of biological datasets, red which include correlation

amongst the measurements (protein, genes, etc.) and missing elements. The model

assumes a symmetric distribution, which can typically be approximated via an ap-

propriate scaling. Scaling becomes more difficult in the presence of missing data so

this model is most well-suited to high-throughput assays where many measurements

are performed using the same instrument and therefore the data have similar scaling.

Critical care or clinical trial datasets may be more challenging to work with because

of the variety of scales, however, if past information and/or intuition of scaling is

available, this method would also be appropriate. As is often important in biologi-

cal settings, the resulting predictions are probabilities, which are useful when more

than a yes or no answer is preferred. Because the model is generative, it is also able

to make predictions on new samples that also have missing elements by performing

imputation.

Section 2 introduces the proposed methodology, including procedures for cases

with and without missing data. Section 3 presents simulation and case studies using

synthetic and real datasets. Section 4 contains discussion and conclusions.

5.2 Approach

5.2.1 Background

Principal component analysis (PCA) is a widely used technique for dimensionality

reduction. PCA constructs a linear projection that maximizes the variance in a lower

dimensional space [99] and is also the optimal rank a approximation of a matrix

X E R"XP for a < p based on the least-squares criterion [188]. An alternative view of
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PCA as a generative latent variable model [248, 2081 is

xi = Wt + P + ei (5.1)

where xi are the p-dimensional observations, tj is the a-dimensional latent variables,

W E RPX" are the factor loadings, p is a constant whose maximum likelihood esti-

mator is the mean of the data, and Ej is the error. The corresponding distributional

assumptions are

ti ~ f(O, Ia)

Ei ~*. Ar(0, U21 P)

xi I ti - /(Wti + pi, 21I)

xi ~K (p, WWT + u 2 )

where Ik is the k x k identity matrix. The model parameters 0 = [W, P, a2] are

found using an expectation-maximization approach 1561, which is computationally

more expensive than solving the PCA problem directly using the singular value de-

composition but has the benefit of being able to handle missing data [105, 156, 2931.

Generally, EM is only guaranteed to converge to a local maximum of the likelihood

[561; however, [248] show EM must converge to a global maximum for the PPCA

problem.

5.2.2 Motivation

Let xi C RP be a vector of measurements for observations i = 1, ... , n. Let yj E {0, 1}

be the class label of sample i, which is observed. The classification problem is to

perform supervised training to learn a model to predict the class of a new sample. To

solve this problem, a linear discriminant analysis (LDA) model is used. Because the

number of samples, n, may be less than the dimension of the sample, p, the model

is required to be sparse. Often when LDA is applied to datasets of this type, one of

two simplifying assumptions is made: the covariance matrix has a diagonal structure,
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as in NSC, or a regularization penalty of the form AIp is added, as in SDA. The use

of EM allows for a structured covariance approximation [156]. Under the generative

latent variable model described by eqn. 5.1, the marginal covariance is WWT+ or2 1p.

Specifying this covariance requires estimating pa + 1 - a(a - 1)/2 parameters: pa

parameters for W where a < p and 1 parameter for a 2 . The a(a - 1)/2 term

is because W is scaled to have orthogonal columns, each with unit length, which

restricts the degrees of freedom [161. An estimation of the covariance matrix in the

full data space requires the estimation of p(p + 1)/2 parameters, therefore using the

latent variable model greatly decreases the number of parameters that need to be

estimated. A relaxation of the diagonal matrix constraint is desirable because the

data are often known to be correlated but with too few measurements to reliably

estimate the full covariance. An example is gene microarray data in which genes that

participate in a pathway are expected to be correlated [2831.

The LDA model makes distributional assumptions about the data, specifically

Y ~ Binomial(7r)

X|Y = c ~ N(p , E),

which is specified fully by the prior probability 7r, class means itC, and the shared

covariance E. Here, the uninformative prior of 7r = 0.5 is used but the model could

be extended to incorporate prior class information. The method described here learns

the class means and covariance to build the classifier. The dataset is modeled in a

latent space using PPCA [248, 208] and a sparsity-induced prior is used for the means

[72, 1821.

5.2.3 Problem formulation

The data are assumed to be modeled as

i = Wti + PC + 6i (5.2)
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where x, PI, e ERP, t, c ja, W E RP x i represents the experiment index, and c

represents the class of the observation. This PPCA formulation is typical with the

small change that pC = ft + A' where ft is the total mean and A' is the class-specific

deviation. Therefore the distributions of x are

xilti, y = c ~ K(Wtj + A + Ac, o21P)

xilyi = c ~V(jj + Ac, WWT + U2I,)

The class superscripts are dropped for convenience but the analysis assumes that all

observations have class-specific means and shared covariance. A prior is set for A as

AIT ~ J(0, T)

rj ~ Gamma 1, IL)

where T = diag(Tr), which is chosen because [72, 169]

p (,Aj Iy) = r(,Aj; 0, rj)Ga r ; 1, 7 drj

= exp( -- yA) = Laplace (Ai; (,

and the Laplace distribution is known to lead to sparse solutions [169].

5.2.4 Expectation maximization

In EM, the algorithm alternates between calculating the expected complete-data log-

likelihood and the maximum likelihood estimate of the parameters. For this problem,

the parameters are 0 = [W, p, A, ,2] and the missing data are [ti, T] (in Section 5.2.6,

this set is augmented to include missing observations from the dataset). The observed

data are xi and the hyperparameter for the prior on T, -Y.
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For the case where there is no missing data, the complete data log-likelihood is

f(W, a, A, a2 x, i, t, y, yi) = Inp(ti) + Inp(xi ti, W, A, A, o.2)

+lnp(AIT) + Elnp(r ) (5.4)
j=1

The E-step requires the conditional distribution of the unobserved variables given

the observed variables and the current values of the parameters. Given the condi-

tioning set, the distribution of T is independent of the distribution of ti:

p

qj(ti, T) = p(ti xi, W, i, A, O.2 ) HP(j p _ , A) (5.5)
j=1

where Tr only appears in the complete data log-likelihood as its inverse in terms that

involve the parameters. Therefore, we are only concerned with (1/r), conditioned

on the current values of A3 and -y. [182] derive the expression

p(1/TjJA, y) = IG , 7T2 (5.6)

where IG is the inverse gamma distribution.

The expected complete data log-likelihood function is formed using the posterior

distribution qi(ti, r) and the complete log-likelihood function

n

E [f(W, p, A, o.2 xi, t, , y, y)] = J q(ti, T)

(In p(ti) + In p(xi ti, W, p, A, or2 ) + ln p(AIT) (5.7)

+ E1n p(ri-) )dtidx'dr
j=1

Using the factorization of qj, the definitions of the distributions, and the dropping of
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terms that do not depend on 0, this equation can be rewritten as

[f(W, y,,xti, )T)c Z- ln (Iu)Ip - Eqj (T)[A TT-]
2 2 (5.8

1
2o.2 Eq2 tj)[xi - yi - A - Wti)T(x -- / - A - Wt)]

To implement the result, the E-step requires the calculation of the expectations:

(ti) = (U 21, + WTW)-lWT (xi - P- A) (5.9a

(titT) = U2 (U 2a + WTW)- 1  (ti)(ti)T (5.9b

Ka (5.9c

And the M-step requires the update equations:

new- = x -A -W(tj) (5.10a
nh

i= 1

(5.10b)n

i=~1

n

W" ne= (x -
T] (titT)]

.. _i= 1_

(5.10c)

2 new I taceXi - 2(p + A)xT + W(tit7)W T

+ 2(p + A - xi)(ti)TWT + (p + A)(ft + A)T

T = diag(lA3 l/Y).

(5.10d)

(5.11)

It should be noted that the natural update equation for Anew is

Anew = (I +a 2T-1)-1 x, - -- W(ti)

i=1

(5.12)
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However, when implementing the update step, T-1 = diag((1/Tr)) = diag(Y/ldjA)

would have a numerical issue since many elements of A are expected to go to zero.

To avoid this numerical issue [72, 169], the alternative update equation

n

A new = T(or2 1IP + T)-' 1 xi -t-w(ti) (5.13)
i=1

is implemented as described above [225].

The algorithm alternates between the E- and M-steps until a convergence criterion

is satisfied based on the change in the negative log-likelihood (NLL) of the observed

data. The change in NLL is the typical convergence criterion, but is rather expen-

sive to calculate, which may motivate another criterion such as the change in the

parameters or a fixed number of steps. Additionally, because the NLL decreases at

each step, the NNL could be calculated intermittently to reduce computational cost

without risk of moving away from the optimum. Once the algorithm converges, the

learned parameters are used to train the classifier.

Cross-validation should be used to select the value of the latent dimension, a, and

the parameter governing sparsity, 'y. To test for convergence of the algorithm, the

observed data negative log-likelihood (NLL) should be monitored. The observed data

NLL is

f= i ln 27r + In WoWoT + a. 211

122

+ - p" - Ao)T(W WoT + .2I1 0 )(-i O )] (5.14)

+ ln27r -pln + E In 7+ + 72
kE)C j=1 - .

As the algorithm proceeds, many of the elements of T = diag( 3 ) will go to zero,

which represents a change in the degrees of freedom that needs to be reflected in the

observed data NLL. The value of p should correspond to the length of the non-zero

elements along the diagonal of T. Additionally, only the corresponding values of A

should be used.
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Figure 5-1: The cross-validation plots for the penalty parameter y and the latent
dimension a. The vertical dotted line indicates the selected value for the final model
calibration.

To choose the values of the latent dimension a and the sparsity tuning parameter

7, a cross-validation strategy is recommended. The training dataset is partition into

two parts: a 1/k proportion of the dataset for validation and the remaining data for

training. For the presented work, k was selected as 5. The performance on the held-

out validation set is used to select the values. Fig. 5-1 shows an example as applied

to the Golub et al. dataset.

5.2.5 Classification model

LDA models are specified by two parameters, w E Rk and the scalar b, where k is

the dimension of the vector of means whose class-specific deviations are non-zero,

w = E-'(P1 - P2), (5.15)

E is the marginal covariance of the discriminating variables which can be read from

the full covariance matrix, and

1 T^-1 1 5.-1b = Al E tt1+ p_2 A2 (5.16)
2 2
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Predictions are then made from

Y = wTxi + b. (5.17)

A value of y greater than 0 indicates class 1, otherwise class 2 is indicated. Its value

can be converted back into a probability measure

1
P(yj = lix = xj) = 1 + exp(-wTxi - b) 1 + exp(-9) (5.18)

To decrease the bias of the estimator, the EM procedure can be used for model

selection, and the final model is trained without a penalty term. Whether or not this

step is possible depends on data availability.

5.2.6 Extension to missing data
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Figure 5-2: Examples of the various types of missingness
one of the simulation datasets with 5% missing data.
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Missing data are typically described by three categories: missing completely at

random (MCAR), missing at random (MAR), and not missing at random (NMAR)

[209]. Each of these categories has a precise definition, however robust tests do

not exist to determine which mechanism is applicable to a particular scenario and

instead auxiliary problem information is used to inform which model applies. Our

analysis focuses on the types of missingness that we have observed in practice for

high-throughput biological assays.
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First, randomly missing measurements throughout the dataset, perhaps due to

inappropriate sample handling or image corruption, are considered. No pattern to

the missingness is assumed for this case (Fig. 5-2a). Second, missing measurements

that are subject to a pattern are considered. Patterned missingness may represent

local scratches or, as is sometimes the case in clinical settings, that some patients

provided smaller samples, i.e. less volume of blood, and a rank-ordered list of assays

are performed until there is no sample remaining (Fig. 5-2b). Finally censoring is

considered, where values that meet a certain threshold are missing. An example

could be species concentrations that are below a limit of detection (Fig. 5-2c). If

censoring is a known issue, other imputation techniques, such as those that generate

low or high values based on prior information, may be more appropriate as the validity

of the inference is no longer guaranteed [1411. However, the example remains relevant

as the analyst may not realize that censoring is occurring.

To account for the introduction of missing data, let xi C RP be a vector of mea-

surements for observations i = 1,... , n which may have elements that are missing.

Any observation xi can be permuted such that xi = [xO; x']. The superscript nota-

tion denotes the elements of the ith observation which are missing (m) and observed

(o). These elements are a function of the observation, i.e., m = m(i), however this

explicit dependence is dropped for simplicity.

The joint distribution is augmented to include these missing elements. To describe

the joint distribution of ti and xT, a new variable

zi = , (5.19)
x"

is defined where p(zjx?, W, o 2 , t , yi) is a Gaussian distribution described by the in-

formation form of the multivariate Gaussian distribution,

I[ + _WTW -lWmT
AZ = 47 01 (5.20)

- W"' I m

107



+ Am)y WOT(x -o -aA.) - )W"' (5.21)
1 (,iim + m)

Using these factors, the mean and covariance of the posterior distribution can be

defined by

o 2(o. 2 Ia + WoTWo)~

La 2 W"n(or2a + WoTW)~l

o 2 (U2 1a + WoTW)-lWm

a 2 (Im + Wm (o2la + WoTWo)-iWmT)l

[
(1 + woTWO)-lW"T(x" -,o)

Wm(ti) + pm ]

(5.22)

(5.23)

The complete data log-likelihood does not change in this scenario but the E- and

M-steps change because of the new distribution with which the expectation is taken

with respect to:

(t2 ) = (U 2 Ia + W" W)-W"T(X - 0 - AO)

(tjt) = Or2 (0r 2 + WoTWo)-l + (ti) (ti)T

(xM) = WM (ti) + P + AM

(x xT) = u2 (Im + W m(OJa + WoWO)-lWmT)

+ (xm)(xm")T

(x;tT) = o.Wm(Or2a + WOTWo)- 1 + (xm")(ti)T

(5.24a)

(5.24b)

(5.24c)

(5.24d)

(5.24e)

(5.24f)

In the M-step, the parameters are updated by

new =Z(xI ) - W(ti) - A
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Anew = T(a 2 1 + T)- 1  (xi) - W(ti) - (5.25b)

n n==1

w w = n T) ( t)T (i) (5.25c)

.2 new = 1 trace[ (xix) - 2(xitT)WT - 2(p + A)(xi)T
i=1 (5.25d)

+ 2(pI + A)(ti)TWT + W(tit7)WT + (P + A)(, + A)T

Note that (xi) is a concatenation of the expectations for the missing elements and

the observed values. Building the final model follows the same approach as in the

full data case. Re-estimation of the parameters may or may not be reasonable in this

case, depending on how much data are missing. In the event of missing data in the

test case, the generative model can be used to impute the relevant elements.

5.3 Case study

5.3.1 Simulation

.p pmble Dd.3I OvutppflnI Det.mt

- 0.1
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-I 0 1 2 3 4 -2 . 0 1 2
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Figure 5-3: The results of the two-dimensional simulation. In both cases, the correct
two discriminating variables are discovered by EM-SDA.

EM-SDA is first tested by application to synthetic data. In all cases, the dataset

has 100 'experiments' and 2000 'measurements' where half of the experiments are

assigned to class 1 and the other half are assigned to class 0. The data are mod-

eled using class-specific means for the discriminating variables and zero means for
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the remaining data. The data are modeled using a shared covariance with a latent

dimension of 5. The error and factor loadings, as described in eqn. 1, are scaled to

control class overlap. To determine the covariance matrix, first a matrix of size p x a

is generated where each element is uniformly distributed between [-1, 1]. The QR

decomposition is applied to orthogonalize the result which is then rescaled. The full

covariance matrix is calculated by E = WWT + u2 I2,. The rescaling and value of a2

are selected to meet the overlap criteria. This step specifies the class-specific means

and covariance. The observed data are then simulated using these parameter is a

multivariate normal distribution, conditioned on the class.

In the first application, the true model has a two-dimensional (2D) decision bound-

ary, so that it can be visualized easily. No missing data is added and two cases are

considered: separable and overlapping classes. The results of learning the decision

boundary using EM-SDA and 5-fold cross validation are shown in Fig. 5-3. In both

cases, EM-SDA correctly identifies the two discriminating variables from the 2000

measurements. For the separable case, NSC is unable to differentiate between a ID

and 2D model, whereas EM-SDA always correctly chooses the 2D model. SDA is

less successful in finding the true discriminating variables. In the separable case, the

model has 3 variables, 1 true and 2 spurious, and in the overlap case, the model has 9

variables, 2 true and 7 spurious. EM-SDA is better able to handle these cases where

the measurements are correlated.

The second part of the simulation study focuses on the missingness mechanism

(random, patterned, and censored) and level (i.e., percent of data missing). Five

datasets were generated and 20 discriminating variables were randomly chosen. Over-

lap was specified such that the true LDA model would achieve at least 95% accuracy

but never 100%, i.e. the data are not separable. Missingness is introduced using

random, patterned, and censored assumptions into each of the cases at 5% and 15%.

Cases without missing data are also tested. To train the model, 70 of the experiments

are used with a 5-fold cross-validation strategy. The remaining 30 experiments are

used as held-out test set. In all instances, test error refers to the model error as

applied to samples not used during the training phase.
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Table 5.1: Results for a simulation study in which EM-SDA is compared to NSC and SDA. In all analyses, the SDA results
are generated by running the public code, available at http://www.imm.dtu.dk/projects/spasm/ [236] and the NSC results are
generated by running the public R package PAMR [247]. For the missing data cases, the benchmark algorithms are combined
with k-nearest neighbors imputation. The table contains the average for the five trials and standard deviation, in parenthesis.

EM-SDA NSC SDA
0% 5% 15% 0% 5% 15% 0% 5% 15%

Test AUC
Full 0.95 (0.04) 0.80 (0.23) (0.01)
Random 0.94 (0.07) 0.92 (0.08) 0.79 (0.20) 0.79 (0.23) 0.96 (0.03) 0.98 (0.01)
Patterned 0.94 (0.05) 0.97 (0.09) 0.77 (0.22) 0.77 (0.17) 0.95 (0.03) 0.95 (0.04)
Censored 0.97 (0.05) 0.91 (0.08) 0.79 (0.24) 0.77 (0.27) 0.95 (0.04) 0.73 (0.30)

Number of true dimensions found
Full 6.8 (1.64) 6.0 (1.58) 5.4 (3.78)
Random 6.4 (1.52) 5.8 (1.30) 4.6 (1.52) 4.6 (2.61) 5.2 (4.49) 5.4 (1.95)
Patterned 6.8 (1.10) 6.0 (2.55) 5.4 (2.88) 4.6 (1.82) 5.6 (2.70) 5.2 (3.96)
Censored 5.8 (1.64) 5.0 (1.73) 3.6 (2.30) 4.2 (2.49) 5.4 (2.79) 2.4 (0.89)

Number of false dimensions found
Full 2.6 (3.78) 1.6 (2.07) 4.2 (3.03)
Random
Patterned
Censored

2.2 (2.59) 2.8 (1.79)
2.2 (3.35) 3.6 (2.88)
4.2 (4.49) 4.2 (4.76)

0.8
2.0
0.4

(1.10)
(2.35)
(0.55)

2.8
0.6
5.8

(5.72)
(0.89)
(6.26)

2.0
2.6
6.0

(3.03)
(1.82)
(5.79)

6.0
2.4
9.6

(5.15)
(3.36)
(8.96)



Table 5.1 compares the results to the NSC and SDA approaches combined with

k-nearest neighbors (KNN) imputation. The area under the receiver operator curve

(AUC) for the test data, the number of true discriminant variables, and the number

of false discriminant variables selected by the model were chosen as the appropriate

evaluation metrics. The best scores possible are 1, 20, and 0, respectively. In nearly

all cases, the NSC method had the lowest AUC, the lowest number of true dimen-

sions, and the fewest false dimensions. EM-SDA and SDA had similar AUC results,

with EM-SDA having significantly better performance for censored data with high

proportion of missing data. EM-SDA also found fewer spurious predictors than SDA

in most cases.

5.3.2 Applications

To assess performance on real data, EM-SDA is applied to three publicly available

biomedical datasets. The first, [85], is a landmark study classifying two types of

leukemia, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)

using microarray-based gene expression data. The dataset has 72 samples, which are

pre-assigned as train (38 samples, 27 ALL) and test (34 samples, 20 ALL), and 7129

measurements per sample. The preprocessing methodology described by [631 was

followed. The second dataset, Ramilo et al. [199], also utilizes gene expression mi-

croarrays, but for a different application: classifying patients with acute infections of

different pathogens, specifically E. coli infection and S. aureus infection. The dataset

contains 59 samples, each with 211 measurements. The data was split into training

(20 samples, 10 E. coli) and testing (39 samples, 18 E. coli) and the preprocessing

methodology described by [1991 was followed. Finally, a third dataset, Higuera et al.

[94] was chosen because it uses a different technology and reports missing data, unlike

the first two. This dataset classifies rescued and failed learning in trisomic mice based

on protein expression levels from reverse phase protein arrays. The dataset has 240

samples each with 77 protein measurements. The dataset was split into training (120

samples, 67 rescued learning) and testing (120 samples, 68 rescued learning) and the

preprocessing methodology described by [94] was followed.
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For the gene microarray datasets, missing data were artificially introduced. [253]

cite many possible reasons for missing data in microarrays such as insufficient res-

olution, image corruption, or scratches and dust on the slide. All of the presented

missingness mechanisms could be applicable to microarray datasets, and therefore all

three were tested. The protein expression dataset has missing data due to technical

artifacts [94]. 2.4% of the data is missing; however, of the 77 protein measurements,

only 9 have missing data and therefore the dataset follows the patterned assumption

and only the patterned mechanism was tested.

To fit the models, both the latent dimension and the value of the regularization

parameter 7 must be chosen. A 5-fold cross-validation strategy was used to deter-

mine the values for these hyper-parameters. The values were chosen by considering

the negative log-likelihood of the validation set, the dimension of the final model, and

the prediction error. Here, a strong preference is given towards sparsity. The Supple-

mental Information provides additional details on the cross validation procedure.

To compare with EM-SDA, both imputation and classification algorithms must

be chosen. As in the simulation study, NSC and SDA were selected as the classifi-

cation algorithms. Using the results of [27] which surveys the imputation literature

for microarray data, the imputation benchmarking algorithms were chosen as KNN,

Bayesian PCA (BPCA) [176], and local least squares (LLS) [121]. Mean imputation is

also included as a baseline technique. For the majority of cases considered, complete

case analysis is not reasonable and is not presented here.

Table 5.2: Results for the non-missing (full) cases for the leukemia and infection
problems. The results of 1851, 1247], and 1199] are directly from their publications.

Application Method Train Error Test Error Number of genes
[85] 3/38 4/34 50

. NSC 1/38 2/34 21
Leukemia SDA 0/38 2/34 5

EM-SDA 1/38 1/34 4
[1991 1/20 6/39 30
NSC 1/20 6/39 26

Infection SDA 0/20 11/39 9
EM-SDA 0/20 5/39 7
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Figure 5-4: The EM-SDA model predictions for the full dataset cases. The dotted line
shows the decision boundary at 50%. In the leukemia problem, there is one misclassi-
fied point in each of the training and testing datasets. In the infection problem, there
are zero and five misclassified points in the training and testing datasets, respectively.

Table 5.3: Results for the trisomic mice classification with patterned missingness
[941. The 2.4% case is the original dataset and the 10% case demonstrates the effect
of additional missing data. NSC and SDA each use KNN as the imputation technique.

Patterned 2.4% Patterned 10%

Method Train Test Number Train Test Number
Error Error of proteins Error Error of proteins

NSC 35/120 31/120 15 31/120 31/120 8
SDA 5/120 4/120 9 11/120 8/120 9
EM-SDA 2/120 3/120 14 6/120 5/120 12

The model is then applied to the test data. The results for the full datasets are

shown in Fig. 5-4 and compared to the originally proposed model and the NSC and

SDA approaches in Table 5.2.

For both leukemia and infection, EM-SDA improved the classification accuracy

on the test data while using a smaller subset of genes.

The results for the missing data are shown in Tables 5.3, 5.4, and 5.5. EM-SDA

provided about a factor of ten and a factor of two reduction in the sum of training

and testing errors for patterned missingness for trisomic mice, compared to NSC and

SDA, respectively (Table 5.3). EM-SDA also outperformed the other methods for

patterned missingness for leukemia (Table 5.4). For the other missingness patterns,
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Table 5.4: Results for the four missing data cases as compared to benchmark approaches for sparse classification for the leukemia
classification problem [85].

Random 1.5% Random 15% Patterned 18% Censored 20%

Method Train Test Number Train Test Number Train Test Number Train Test Number
Error Error of genes Error Error of genes Error Error of genes Error Error of genes

NSC MI 2/38 3/34 7 1/38 3/34 6 2/38 2/34 4 2/38 6/34 9
NSC KNN 1/38 3/34 7 1/38 3/34 5 2/38 2/34 4 3/38 5/34 9
NSC LLS 2/38 2/34 7 4/38 3/34 6 1/38 2/34 5 11/38 14/34 11
NSC BPCA 1/38 2/34 8 1/38 1/34 8 2/38 5/34 5 1/38 6/34 11
SDA MI 0/38 2/34 7 0/38 4/34 7 0/38 2/34 4 19/38 21/34 5
SDA KNN 0/38 2/34 5 0/38 2/34 9 0/38 8/34 5 19/38 14/34 8
SDA LLS 0/38 2/34 7 2/38 2/34 2 2/38 2/34 2 11/38 14/34 9
SDA BPCA 0/38 2/34 6 0/38 2/34 3 0/38 7/34 4 1/38 9/34 3
EM-SDA 0/38 2/34 7 2/38 4/34 5 1/38 1/34 4 4/34 6/34 4
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EM-SDA performed similarly to the best of the other methods, often with fewer

genes. In the censored case, some methods such as LLS fail to generate reasonable

imputations and cannot be used in the modeling phase.

EM-SDA NSC SBA
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Figure 5-5: Overlap and biological significance of the genes that are selected for
the various leukemia classification cases. NSC and SDA are combined with BPCA
for imputation. Shaded cells indicate that a particular gene was selected and the
intensity of the cell represents the leukemia-relevant score based on an independent
literature review.

In addition to prediction accuracy, consistency and biological relevance are impor-

tant to consider. Consistency is defined as the amount of gene overlap between the

missing and non-missing cases for a given method. Specifically, biological significance

of each classifier was assessed by a score derived from Pubmed search results. The

score is the number of results for "gene/protein name" +I "problem domain" squared

divided by the total number of results for the gene/protein. The problem domain

terms are: leukemia, infection, and Down syndrome/memantine/cognitive where "/"

refers to OR statements. The score is then log-scaled. A "-" indicates that there were

no results for that gene/protein.

Fig. 5-5 shows the genes that are selected and a relevance metric for the leukemia

classification in EM-SDA, SDA with BPCA, and NSC with BPCA. Generally, SDA
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Table 5.5: Results for the four missing data cases as compared to benchmark approaches for sparse classification for the infection
classification problem [199].

Random 1.5% Random 15% Patterned 15% Censored 11%

Method Train Test Number Train Test Number Train Test Number Train Test Number
Error Error of genes Error Error of genes Error Error of genes Error Error of genes

NSC MI 2/20 14/39 2 1/20 9/39 5 1/20 7/39 25 1/20 10/39 13
NSC KNN 2/20 13/39 2 1/20 11/39 3 2/20 15/39 1 1/20 21/39 1
NSC LLS 2/20 12/39 3 1/20 10/39 7 1/20 7/39 24 10/20 18/39 3
NSC BPCA 2/20 15/39 1 1/20 8/39 9 1/20 10/39 15 1/20 8/39 34
SDA MI 0/20 12/39 12 1/20 10/39 12 0/20 14/39 17 0/20 11/39 13
SDA KNN 1/20 14/39 5 1/20 12/39 13 0/20 12/39 15 1/20 13/39 9
SDA LLS 0/20 11/39 12 0/20 9/39 13 2/20 16/39 6 - -
SDA BPCA 1/20 11/39 12 0/20 13/39 5 0/20 13/39 12 0/20 21/39 11
EM-SDA 1/20 7/39 5 2/20 8/39 4 0/20 8/39 5 1/20 10/39 5

I,
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Figure 5-6: Genes that were selected for the various infection cases. NSC and SDA
are combined with BPCA for imputation. Shaded cells indicate that a particular gene
was selected and the intensity of the cell represents the infection-relevant score based
on an independent literature review. The dashes represent genes that were selected
but were not found during the literature review.
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Figure 5-7: Proteins that were selected for the various trisomic mice cases. NSC and
SDA are combined with KNN for imputation. Shaded cells indicate that a particular
protein was selected and the intensity of the cell represents the trisomy-relevant score
based on an independent literature review.
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has the most trouble with consistency, although the results are improved when a more

advanced imputation technique (BPCA) is used. NSC and EM-SDA have similar

success for consistency in the random and patterned cases. For the censored case, the

problem is much more challenging. NSC and KNN performs well for the leukemia

dataset but fails for the infection dataset. In both censored cases, EM-SDA does well

in terms of classification error but does not recover the same set of genes. EM-SDA

identifies two genes of high biological relevance - CXCR4 and MPO - for nearly all

levels and types of missingness that were missed by SDA and only identified by NSC

in one case. EM-SDA also had the highest average score for biological relevance,

but did not find the gene with highest individual score of all identified genes, CD33.

Similar figures for the infection and trisomic mice problems are in Fig. 5-6 and 5-7,

respectively.

5.4 Discussion

The goal of this study was to develop and evaluate a new method for simultane-

ous imputation and classification of high-dimensional, correlated data where some

measurements may be missing. To achieve these goals, an expectation maximization

framework was adopted. The resulting methodology, EM-SDA, was tested using both

synthetic and real data for varying levels and mechanisms of missing data. EM-SDA

demonstrated low classification error for sparse models in all settings and was shown

to be particularly successful when the missingness is patterned.

Compared to the other methods, one advantage of EM-SDA is its ability to handle

missing data. Another advantage seen in the case study is that EM-SDA found nearly

the same models as if data were not missing. Its use of the structured covariance

approximation avoids the nonphysical assumption that different measurements are

independent. Because the model is generative, it can also be used when test cases

have missing elements by imputing the maximum likelihood estimate. A limitation

of EM-SDA is its computational cost. For the case where no data are missing, the

computational cost per iteration is O(np2) and the memory storage is O(na2). When
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data are missing, the computational cost per iteration is O(nrha) and the memory

storage is O(np2 ) where iTh is the maximum number of elements that are missing for

any sample. The increase in memory for the missing data case is due to the need

to store the expected value of the outer product of the missing data. Expectation

maximization is known to be slow to converge. A possible way to speed up convergence

would be to use adaptive overrelaxed EM (AEM) [215]. As the fraction of missing

data increases, EM is known to take smaller steps, in which case AEM can lead to

large speedups [215].

EM-SDA has been demonstrated to be successful for all of the types of missingness

studied. EM-SDA is particularly recommended when the missingness is patterned or

if missingness is likely to occur in test samples. EM-SDA is well suited to wide, corre-

lated biological datasets, such as microarray data, RNA-Seq data, patient metadata,

and proteomic data. As more of these datasets are generated and subjected to rig-

orous statistical analyses, new models that can both systematically handle missing

data and yield simple, interpretable, and accurate results will become increasingly

valuable.
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Chapter 6

Survey of Industrial Process

Monitoring

This work originally appeared as: Kristen Severson, Paphonwit Chaiwatanodom and

Richard D. Braatz. Perspectives on process monitoring of industrial systems. Annual

Reviews in Control, 42:190-200, 2016.

6.1 Introduction

Process monitoring is an important component in the long-term reliable operation of

any automated controlled system. To distinguish between different types of disrup-

tions on operations, this chapter adopts the definitions of [109]. A disturbance is

an unknown and uncontrolled input acting on a system. A fault is an unpermitted

deviation of at least one characteristic property or parameter of the system from the

acceptable/usual/standard operating conditions. A failure is a permanent interrup-

tion of a system's ability to perform a required function under specified operating

conditions. Traditional control systems are designed to return the system to normal

operations in the presence of disturbances but not in the presence of faults or failures.

Fault-tolerant control (FTC) systems refer to control systems that have been designed

to explicitly account for some class of specified faults in the closed-loop system. FTC

systems must act in the time between a fault and a system failure.
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In chemical systems, a fault is an extreme event such as catalyst deactivation,

valve blockage or compressor failure. Due to the increasing complexity of facilities,

faults are inevitable and occur more often. Monitoring is complicated by recycle

streams that cause bidirectional interactions as well as by control systems which can

mask the effect of faults. Additionally faults will commonly occur together, known

as multiple faults (see Fig. 6-1). However, even a relatively simple modern facility, in

terms of its operations, will have a large sensor network which can be used for process

monitoring (see Fig. 6-2). The key of fault detection and diagnosis (FDD) is how to

use these sensors effectively to minimize the impact of faults.

FauIt 11- Fault 2

induced faults

Fault 1 1Fault 2

masked faults

Figure 6-1: The four classes

Fault 1 Fault 2

independent faults

Fault I Fault 2

dependent faults

of multiple faults [45].

Many process monitoring systems are implemented in the form of a loop that

consists of fault detection, fault isolation, fault identification, and process recovery

(see Fig. 6-3). Sometimes the combined steps of fault isolation and identification are

referred to as fault diagnosis. The steps are to progressively determine: (1) whether

a fault occurred, (2) the location and time of the fault, (3) the magnitude the fault,

and (4) how to reverse the effects of the fault [83].

Process monitoring has been a growing field for nearly a half century. Relevant

works on process monitoring in the 1970s include the application by [1591 of systems
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and statistical decision theory to dynamic systems, the review paper by [280] on

publications up to the mid 1970s, and the textbook by [95]. Over the years, much

of the literature has been focused on particular applications including to aerospace,

chemical, nuclear, and automotive systems [101]. The growing complexity and degree

of integration in these systems has increased the possibility that faults occurring

locally somewhere in a system can have their effects propagate to other parts of the

system, and has made the consequences of designing a poor process monitoring system

greater, therefore making the design of process monitoring systems more challenging.

As such, many reviews have been published over the last twenty years, e.g. [4, 74,

101, 109, 108, 193, 211, 258, 259, 260, 290].

This article does not review the entire process monitoring field which, according to

the Web of Science in March 2015, has had over 34,000 publications since the 1970s.

This article provides some perspectives on the current state of process monitoring

systems as well as current challenges and promising future directions for the field.

6.2 Process monitoring - background

Modern process monitoring systems are designed based on a model of some form

that is developed using process data. The model allows process operators to make

informed decisions about whether or not there is a fault. Different fault detection

methods provide information of different quality and quantity to the fault diagnosis

steps. In this section, each step in the process monitoring loop is presented.

6.2.1 Fault detection

The design of a fault detection system generally begins with the development of a

model that characterizes the normal operating signature of a process. Faults are then

typically defined as a deviation from this normal operation above a threshold. As

such, the design of a fault detection system can be described as consisting of two

steps: building a process model and choosing metrics to test for faults. Active fault

detection and identification is an exception to this pattern and is discussed later in
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the section on process monitoring.

Many types of process models have been employed in fault detection. Principal

component analysis (PCA) is one of the most commonly applied fault detection meth-

ods for industrial systems. PCA is a linear dimensionality reduction technique that

produces lower dimensional representations of the original data that maximize the re-

tained variance [99, 1181. In the absence of noise and disturbances, data from normal

operating conditions operate in a much lower dimensional manifold due to physical,

chemical, and biological constraints such as Euler's laws of motion, stoichiometry in

chemical and/or metabolic reaction networks, and mass, energy, molar species, and

fluid momentum balances. In the presence of noise and disturbances, the data from

normal operating conditions will approximately lie within a lower dimensional man-

ifold, and data-based dimensionality reduction techniques such as PCA attempt to

construct the manifold purely from data.

Variance is a useful metric for fault detection, since it is often reasonable to as-

sume that an outlier as compared to historical operation would indicate a fault. PCA

calculates a set of orthogonal vectors, called loading vectors, ordered by the amount

of variance explained in each loading vector direction using a singular value decom-

position. This set of vectors is then truncated, retaining the columns corresponding

to the largest singular values. New observations can then be projected into lower

dimensional space using the reduced set of loading vectors. The aim of this dimen-

sionality decrease is to keep systematic variations while removing random variations

[281]. The technique can be extended to nonlinear systems by using kernel functions

within the PCA formulation [48]. PCA has been applied in a variety of fields includ-

ing (bio)pharmaceutical manufacturing [89, 123, 126, 255], the chemicals industry

[174, 3011, and semiconductor manufacturing [431.

Partial least squares (PLS, aka projection to latent structures) is another linear di-

mensionality reduction technique [2861 widely applied for fault detection in industrial

systems. PLS maximizes the covariance between the input and output data in the re-

duced space [81]. Unlike PCA, PLS does not have a closed-form solution but instead

uses an iterative algorithm such as NIPALS [2841. PLS is widely applied in the chem-
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icals, petrochemicals, and refining industries [211, 300] and in pharmaceutical and

biologic drug manufacturing [123, 228]. The low cost of entry of chemometrics (PCA,

PLS) methods and the lack of dynamic models for most plant operations are the

main reasons for their dominance in these industries. Both their current heavy usage

and the ever-increasing quantity of real-time data [205j suggests that chemometrics

methods will continue to dominate those industries for the foreseeable future.

An alternative to fault detection methods that rely on dimensionality reduction

are methods based on state-space models. The most commonly used model is the

discrete-time linear stochastic state-space model

Xk+1 = Fxk + Guk + Wk (6.1)

yk = Hxk + Auk + Bwk + ek (6.2)

where k is the sampling index; x, u, and y are the system states, inputs, and outputs,

respectively; and w and e denote the sensor and process noise of the system 1130,

235]. Such models are typically constructed from subspace identification techniques,

such as canonical variate analysis (CVA) [131], multivariable output-error state-space

(MOESP) [261, 262, 263, 264, 265], and numerical algorithm subspace-based state-

space system identification (N4SID) [2571. The subspace identification techniques

most applied to industrial systems is CVA, which was pioneered by Akaike [21 and

promoted and further developed by Larimore [1311. The objective of CVA is to

identify a linear combination of past inputs and outputs that are most predictive

of future outputs. CVA relies on minimizing the prediction error using a singular

value decomposition of the covariance matrix for past inputs and outputs. CVA has

been reported to produce near maximum-likelihood solutions [119]. Another type

of identification technique uses fuzzy rule-based models. In this approach, fuzzy

clustering techniques are used to partition the data into linear subsets [2511. This

approach was originally proposed for modeling and control and then extended to fault

diagnosis [233].

Another class of fault detection models relies on graphical models, which are typ-
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Figure 6-4: An example of a decision tree as applied to a process for maintaining

octane number of a gasoline product adapted from [12].

ically directed and often lumped into the broader class of knowledge-based methods.

These methods employ some form of expert knowledge in their construction. A de-

cision tree is a type of graphical model developed via inductive learning that aims

to map measured data to classes of operating conditions. These models are able

to describe normal and abnormal operations during complicated startup, shutdown,

and changeover procedures (such systems are often called mixed continuous-discrete

systems or hybrid systems). Feature selection and extraction are important consider-

ations for the success of decision trees and are facilitated by process understanding.

A benefit of this approach is that a well-developed graphical model has an easily in-

terpreted physical meaning (e.g., see Fig. 6-4), and that the same model can be used

in fault identification and diagnosis 1121.

Several other types of graphical models have also been applied in the field, with

representative examples being causal maps, Petri nets, bond graphs, and neural net-

works. A causal map is a directed graph where the nodes represent process variables

and the directed edges represent cause-and-effect relationships [47]. A model of this
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type has a clear physical interpretation, and can be constructed from a piping and

instrumentation diagram or process flow diagram embedded in the distributed con-

trol system. A Petri net is a graphical model that is suitable for modeling transi-

tions/events that may occur in the operation of the system and is most well-suited to

graphs that have parallel or concurrent events [1681. The graph consists of transitions,

places, and arcs in which nodes can be transitions or places (marked with different

symbols, typically bars and circles) and arcs connect nodes of different type only.

Petri nets were first introduced by [1891 and conferences and several tutorials helped

popularize the technique [168]. [269] was one of the first researchers to apply Petri

nets to fault detection applications, which was followed by a large number of studies

(e.g., see [26, 32, 240] and citations therein). Rather than focus on transitions, a bond

graph is a graphical representation of a physical dynamical system that represents its

energy flows [25]. Bond graphs were first introduced by 1187], and examples of the

application of bond graphs to fault detection include [71, 1471. A neural network is

a graphical model that is characterized by input, output and hidden nodes. When

applied to fault diagnosis problems, often the input nodes represent the measurement

space, the hidden nodes represent the feature space, and the output nodes represent

the decision space [2581. Examples of the application of neural networks can be found

in [124, 167, 166].

Once the model has been determined, a metric for detecting faults is required.

In PCA, PLS, and related models, faults are usually detected using the T2 statistic,

which is the Euclidean norm of the deviation of an observation vector from its mean

in the reduced space, scaled by its variance. A fault is detected when the T2 value

exceeds a specified threshold. Alternatively, the Q statistic (also known as standard

prediction error or SPE), which measures the total sum of variations in the residual

space, can also be used to identify faults. In extensive simulations, the Q statistic has

been observed to be usually more effective at detecting faults than the T2 statistic [471.

The explanation for this observation is that most faults push the process operations

outside of the normal linear relationships between variables rather than magnify the

extent of operation within the normal linear relationships between variables. Some
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researchers have used a weighted combination of Q and T' statistic [2941.
For knowledge-based models, faults are detected if the measured variables result

in a prediction of a fault, based on the model.

If a state-space model is used, fault detection typically occurs via a similar residual

generation, which compares model predictions and measurements (often referred to

as output estimation approaches). Alternatively, the difference between nominal and

estimated parameters has been used to detect faults (often referred to as parameter

estimation approaches). In the particular case of CVA, a series of different statistics

have been proposed for fault detection [44, 1201. In state-space models, fault detection

and diagnosis are closely coupled, as discussed below.

6.2.2 Fault isolation

Once the fault has been detected, the next step is to determine the location of the

fault. One fault isolation method widely used in industrial systems is the contribution

chart. Contribution charts are typically used in concert with dimensionality reduction

techniques, such as PCA and PLS. The contribution chart projects the data back

into the higher dimensional observation space, which can be used by an operator

to identify which process variables are deviating from their historical values. This

approach exploits correlations between variables to reduce the effects of process and

sensor noise on identifying which observation variables are most likely associated with

the fault.

As an example, a contribution chart of the TE process is shown in Fig. 6-5, both

in the form of a classic contribution chart at one time instance and in the form of

a 2D contribution map with the contributions in each column as a function of time

in the form of a color map. The 2D contribution map, introduced by [301], allows

the operator to visualize the dynamic propagation of the effects of a fault on the

observation variables through the facility. The 2D plot shows which deviations are

suppressed by the various control systems and which deviations are persistent. The

variables which have deviations can be compared to the process flow diagram or piping

and instrumentation diagram to better track down the location of the root cause of
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the fault. The ability to visualize the data so that the fault can be located is a crucial

element for the success of a method. Methods that allow for easy interpretation of

the data are much more valuable in industrial application.

An alternative to the classic contributions chart, referred to as reconstruction-

based contribution chart, has been proposed [3]. This method finds the contribution

of each monitored variable to the fault detection metric, for example T2 . An example

is given where the reconstruction-based contribution chart provides an accurate fault

isolation while the classic contribution chart cannot.

6.2.3 Fault identification

Fault identification can be very challenging if fault detection and isolation have been

carried out using PCA or PLS, as the quality of information that can be extracted

from models constructed from normal operating data is limited. If the training data

has been characterized from past experience into normal operating conditions and

specific faulty conditions, then Fisher discriminant analysis (FDA) is a dimensionality

reduction method that can be used for fault identification.

FDA maximizes the separation (aka scatter) among different classes while mini-

mizing the scatter within each class [62]. The formulation of the problem is

v = arg min T (6.3)
v#O v S"v

where
P

Sb = Z nj(Nj - XXj - X)T, (6.4)
j=1

P
SW=Z Z (x -j R)(xi - Xi)T, (6.5)

j=1 xiEXj

X E R m , x is the total mean vector, Rj is the mean vector for class j, nj is the number

of observations in class j, and p is the number of classes, and sufficient data have been

collected that the matrix S, is nonsingular. For FDA to be well-defined, at least two

sets of characterized data are required (e.g., normal operating conditions and data
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collected during one fault).

FDA models can be more specific about which fault is occurring, if they have been

trained using multiple fault classes and that set is comprehensive. Often the amount

of faulty data is limited in practice and each fault will require its own investigation

once the fault isolation step using the contribution chart is complete.

Another data-based fault diagnosis technique that attempts to reduce the dimen-

sionality of the problem is support vector machines (SVMs). SVM methods find a

separating hyperplane which is specified by a number of support vectors (samples).

These support vectors typically represent a small subset of the complete dataset used

for analysis. The separating hyperplane is oriented in such a way as to maximize the

distance, called the margin, between the plane and the nearest point of each class

[16]. SVMs can be formulated using a kernel, which is amenable to feature selec-

tion. This technique has gained increased interest in the past 15 years due to efficient

optimization formulations [1921. Since then, SVMs have been tested in mechanical

engineering applications [279, 9] and semiconductor manufacturing [154]. Like FDA,

SVM is typically trained with labeled target data and therefore requires data that

have been collected during past faults and, for best results, specific faults must be

associated with each data set. Both FDA and SVMs are ineffective for fault diagnosis

if data have not been collected during past fault states.

Most fault diagnosis methods based on state-space models assume that the fault

is either additive or multiplicative [41, 1251. An additive fault is assumed to be well

represented in terms of a vector added to the fault-free state-space equations, whereas

a multiplicative fault is assumed to be well represented by a deviation in a parameter

in the state-space matrices; for this reason, multiplicative faults are also commonly

referred to as parametric faults.

Multiplicative faults can be diagnosed by determining which online parameter

estimates have the largest deviations from nominal values. This method is sufficiently

general to be applicable to nonlinear dynamical systems. A weakness of this method

is that it requires that the data are sufficiently rich in information to be able to

accurately estimate parameters online. Fault diagnosis occurs via the link between
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the parameters and the physical system. If the model parameters are not tied to

physical parameters, diagnosis abilities are limited. In particular, deviations in the

elements of state-space models constructed from subspace identification methods are

not tied to any physical parameters, so this approach provides little value for such

models.

Observer-based methods are most commonly used for diagnosing additive faults.

In observer-based methods, the residuals between estimated and measured outputs

are used for detection and diagnosis. As an example, consider the full-order state

estimator

Xk+1 Akk + Buk + H(yk - Yk) (6.6)

Yk = Cik (6.7)

where x is the predicted state, 9 is the predicted output, y is the measured output,

and the observer gain H is chosen to satisfy design criteria such as stability, fault

sensitivity, and robustness. For a linear process with additive faults, the residuals are

AXk+1 = (A - HC)AXk + (Bf - HDf)fk (6.8)

+(Bd - HDd)dk

rk = AYk = CAXk + Dffk + Dddk (6.9)

where AXk is the state estimation error. The residuals are a function of both the

faults and disturbances. In large-scale systems, disturbances can be significant, which

motivates the use of transformed output errors as the residual,

rk = WAYk. (6.10)

where the matrix W is designed such that the residuals are insensitive to disturbances

but sensitive to faults. One common method for designing both matrices H and W

is the unknown input observer (UIO) method. This method attempts to design the

observers such that the effects of disturbances approach zero asymptotically [234].
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The isolation and identification steps then occur via a structured residual set, where

structured implies that each residual is designed to be sensitive to only one particular

fault 141].

The above approach generalizes directly to nonlinear dynamical systems and to

models with explicit uncertainty descriptions-the latter known as robust observer-

based fault diagnosis methods [831. A challenge in applying the latter methods to

industrial systems is that the requirement of having accurate models of the nominal

system, the faults, the disturbances, process noise, and the structure of the model

uncertainties.

6.2.4 Process recovery

The end goal of all process monitoring is process recovery, where the process is re-

turned to its normal operation. Most FDD methods will require manual intervention

once a fault has been diagnosed. Fault-tolerant control (FTC) refers to a control sys-

tem that automatically performs process recovery, that is, without real-time human

intervention [184, 282, 2961.

The objective of FTC can be interpreted as treating faults as if they are distur-

bances, to return the system to acceptable operation either via retuning or restructur-

ing the control system [152]. FTC can generally be divided into two methodologies:

passive and active. In passive FTC, the process monitoring system observes the pro-

cess data and decides if a fault has occurred, using methods as described in Section 2,

with the fault classes known a priori. The control system is designed with redundan-

cies so that it is not necessary to reparameterize or restructure the controller during

faulty operation. If there is more than one system fault possible, this approach often

leads to a conservative controller design with slow closed-loop performance 11151.

In active FTC, depending on what conditions are detected, the controller is re-

configured for that scenario (see Fig. 6-6). A major challenge of active FTC is the

coordination of the process monitoring and control systems [196]. Furthermore, most

FTC design methods assume that faults are detected and isolated correctly and in-

stantaneously, to allow for computational tractability 11961.
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Figure 6-6: Architecture of an active FTC, adapted from [115].

Some recent algorithms combine active FDD with active FTC. Active FDD uses

a test signal, called an auxiliary input, to generate data that enables more effective

determination of whether a fault has occurred or, if a fault has been detected, which

fault has occurred. This approach addresses one of the major issues of passive FDD,
which can have difficulties identifying faulty conditions because the process can mask

faults, particularly if the process is under control 11721. One method of active FDD

is set based, which aims to find the separating inputs which guarantee fault diagnosis

[172, 195, 222, 2231. This technique has been combined with model predictive control

to guarantee diagnosability given input and state constraints for linear systems [196].
These methods are formulated for discrete-time models. Unlike the generalization of

many results from discrete-time models to continuous-time models, the generalization

of these results to continuous-time models would be challenging.

6.2.5 Comparisons of classical methods

Each process monitoring method has advantages and disadvantages. The data-based

dimensionality reduction techniques of PCA and PLS are easy to implement for fault

detection and isolation but of limited value for fault identification. Graphical models

have the ability to incorporate expert knowledge, which is a positive if such infor-

mation is available, but also require expert knowledge in their construction, which is

a negative if such information is not available. State-space models require a lot of
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investment to develop and maintain for an industrial system, but have the potential

for including very precise information on faults and disturbances in fault diagnosis

procedures. The research area of process monitoring is still very active as researchers

aim to tackle some of the drawbacks of various methods.

6.3 Challenges and opportunities

In the past twenty years, the quantity of data that can be collected and processed for

industrial processes has greatly increased. The development of new tools such as smart

and wireless sensors, the Internet of Things, smart devices, and smart manufacturing

has allowed the amount of available data to grow exponentially [194]. Although

FDD methods are often categorized as model-, data-, or knowledge-based, all FDD

models require process data for validation and successfully utilizing this data is a

key challenge and opportunity for the continued improvement of process monitoring.

This section presents challenges in the field that could be addressed using this new

data and methods tailored to such data.

Increasingly, these new datasets are referred to as Big Data. Big Data is charac-

terized by four characteristics referred to as the 4 V's: velocity, volume, variety, and

veracity [103]. These characteristics will be referenced throughout the section.

Although this section focuses on methods, it is useful to first comment about data

infrastructure. Because the very large size of the data (volume), and the quick rate

at which data are collected (velocity), new data systems are required. Data-centric

architectures and distributed storage and processors need to be used for the value of

Big Data to be realized [194]. In other words, the data are useless if the data can-

not be accessed and processed reliably with reasonable computational cost. Waiting a

longer time to access the data and compute a useful result from the data is not always

an option, as the time available for making decisions based on the data is constrained

by the time in which such decisions would be useful. This consideration is especially

important in process monitoring, as faults need to be detected and diagnosed quickly

enough that damage to the system is limited. A technology for improving access to
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Big Data is Hadoop [1781, which is a distributed file system and distributed comput-

ing framework specifically designed to handle Big Data. All modules in Haddop are

designed to automatically handle any computer hardware failures, such as crashes

of processors within computer clusters, with minimal disruption on the calculations

applied to the data. More recently, Spark, an open-source processing engine devel-

oped at UC Berkeley, has been gaining popularity as an additional tool for Big Data

analytics [55].

6.3.1 Utilizing new data sources

Beyond needing to handle a "black-box" of data as described above, new methods are

required to handle new features (variety) of Big Data datasets. One of these features

is high-dimensional data. In high-dimensional data, it is often the case that there are

many more measurements per sample than samples, which can lead to ill-conditioning.

Methods such as PCA address ill-conditioning by projecting the data into a lower

dimensional space. However, with the increase in the new of measurements, there

may be motivation to select a subset and not a subspace. A subset may allow for a

decrease in the number of sensors which can be desirable to decrease maintenance and

data storage costs. To find subsets, several avenues exist such as subset selection via

optimization, penalty methods, and greedy methods. One approach is to use mutual

information as the selection criteria for a greedy approach 12671. A drawback of the

greedy approach is the lack of optimality guarantees. Mutual information is also not

necessarily the best metric. Research is needed in this area to better understand

tradeoffs between the number of sensors and the accuracy of the model. This issue

is inherently intertwined with design of experiments for new process development.

Experiments should be planned with process monitoring in mind such that the most

valuable data can be extracted for the lowest cost while still considering standard

operations. The issue of the connection of data-based monitoring and process design

has not yet been solved.

Another feature of Big Data is the presence of higher-order tensors associated with

new types of measurements such as real-time spectroscopic imaging or video. Instead
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of vectors or matrices, a single "measurement" can consist of third-, fourth-, or higher-

order tensors. An example would be an inline imaging system used to characterize the

shape properties of crystals in fluid flow (see Fig. 6-7), in which a single measurement

at a time instance is a second-order tensor (aka matrix), with the two dimensions

being space along horizontal and vertical axes, with each pixel being a grey-scale value

between 0 and 255. Typically such data are collected at many frames per second at

time scales much faster than the process time scales, with few particles per image.

To obtain statistically reliable measurement, each measurement is treated as a video

collected from seconds to minutes, which consists of many individual images (aka

frames). This measurement constitutes a third-order tensor with the third dimension

being the time axis over a short period of time. For color imaging systems, the order

of the tensor increases by one, with the additional dimension being the color axis

for red, green, and blue. The data are stored as a number between 0 and 255 for

red, green, and blue at each pixel, for a two-dimensional array of pixels that make

up an image. When the measurement is video over a short time period, a single

measurement is a fourth-order tensor (that is, two physical dimensions, color, and

time). Stacking the data into vectors and then applying PCA and PLS methods is

suboptimal in practice, and such methods ignore the inherent correlations and internal

structure that such datasets possess, such as that neighboring images in a video have

dominant signals being shifted slightly in space as particles move. The quality of

model predictions based on such data would be improved if higher order correlations

and internal structure were explicitly exploited by the methods.

A related feature of Big Data is heterogeneity. New data sources are increasingly

heterogeneous in terms of types and time scale. For instance, some data in the

bioprocess industry are collected online, such as dissolved oxygen in a bioreactor as

a function of time, while other data are collected offline, such as cell density [39].

Both sets of data provide valuable information about the status of the bioreactor,

and new methods are needed for efficient integration. Some level of integration can

be obtained via similarity scores and kernel transformations [391, but a lot of research

is needed to generate optimal methods. Methods developed to apply to Big Data
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Figure 6-7: An in-line stereomicroscope image for the monitoring system of a crys-
tallization process in which particles are in liquid slugs that flow down a tube 11161.
Many such images are collected each second in real-time video. This type of data
highlights the high-order structures occurring in modern datasets.

need to be able to handle rare-event data well. In fault detection, because the goal is

often to find an anomaly, careful attention must also be given to data cleaning. Data

cleaning is a process of removing faulty data while still retaining unexpected values.

If an analysis does not take care in handling data cleaning, the behavior of interest

can be overlooked.

6.3.2 Semi-supervised and online learning

Another challenge deals with using all available data. Here, specifically, the interest

lies in using unlabeled data that is readily available from operations. Particularly

in industrial applications, it is not reasonable, for safety or financial concerns, to

purposely generate faulty data for training process monitoring algorithms. Therefore,

datasets to be used for process monitoring are inherently unbalanced and methods

attempt to characterize nominal operations without access to faults. In a best-case

scenario, a small subset of the data is labeled as associated with some fault, but most

data are not. In this setting, a state-space model using either parameter or prediction

residuals may be successful, but such models are expensive to develop and maintain

for complex industrial systems. Data-based methods such as PCA may be successful,

but have limited capability for fault identification. Therefore semi-supervised and
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online learning methods should be a focus of future research.

Unsupervised learning refers to model building without knowledge of the true

value of the output. Clustering and density estimation are common examples of

unsupervised learning [16]. The opposite approach is supervised learning, where the

targets are known. Supervising learning is ideal, but typically unreasonable in fault

detection applications for the aforementioned reasons. Semi-supervised learning is

in-between, where some but not all targets are known. In online learning, sometimes

also referred to as sequential learning, the model is continually updated as additional

data become available [16, 169]. These methods are more suited to the constraints

of the fault detection problem. Some work in these areas is already being done. In

[1171, the set of features that characterize faults are calculated online as new data

are streaming. The approach requires limited to no prior fault information. [117]

apply the approach to the monitoring of stamping tonnage signal analysis and are

able to detect faults related to shut height, which is a common process variable in

these operations. Another example is [298], who also develop a technique that adapts

over time. In their work, a small set of labeled data to train the model, i.e. semi-

supervised. [79] also uses a semi-supervised approach, although for the goal of process

modeling and not fault detection.

Semi-supervised, unsupervised, and online learning methods are gaining increased

focus in the machine learning literature. The fault detection and diagnosis commu-

nity would benefit from leveraging results from the machine learning community,

by tailoring the methods to the specific needs of FDD problems. Some examples

of methodologies for utilizing unlabeled data are support vector machines (SVM)

[219, 287] and Parzen density estimates [183]. Many advances have been made more

recently in deep learning [1321 and the leveraging of such advances in FDD would be

interesting.

6.3.3 Addressing process uncertainty

Another challenge is most closely related to data veracity. Reliable process moni-

toring can often be limited due to process uncertainties, which inhibit interpretation
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of process data [34]. Much of the past work has focused on deterministic bounded

uncertainties, while some newer work has shifted that focus towards formulations

that utilize probability distributions to characterize the uncertainties. For example,

[299] consider uncertainty in the inputs and parameters of linear systems and propose

reducing the robust fault detection problem to a standard H, model-matching prob-

lem. The central concept of the work is to find a robust fault detection filter. As an

example of handling probabilistic uncertainties, [1621 proposed one such system that

treats probabilistic uncertainties in the parameters and initial conditions of a nonlin-

ear system, and utilizes polynomial chaos theory for uncertainty propagation. The

input design is then performed using a constrained nonlinear optimization. Readers

interested in robust process monitoring methods are encouraged to read the papers

cited in the above publications.

6.4 Hybrid methods

The next generation of process monitoring systems need to meet a variety of needs

including reliability, ability to handle uncertainty, and ability to utilize large quan-

tities of data. An important technique for handling these demands is the use of

hybrid methods that capture the strengths of different methods while minimizing

their weaknesses. This section highlights some examples of hybrid models.

One example is the approached used by [44] as applied to the Tennessee Eastman

benchmark problem. Their technique aimed to improve upon PCR/PLS which ignores

information on process connectivity by instead using a causal map and a modified

distance metric. A causal map is easily developed in many chemical applications using

existing process flow or piping and instrumentation diagrams. This causal map is a

type of graph that can then be combined with information theory and multivariate

statistics to measure changes in the distributions of variables and in relationships

between distributions of causally related variables. Furthermore, because the directed

graph is directly related to the process, fault propagation could be visualized in real

time (see Fig. 6-8 for an example of this visualization).
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Figure 6-8: Visualization of a fault propagation using the Tennessee Eastman bench-
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Another example of a hybrid method is the CVA-FDA method proposed by [114].

This method was implemented to tackle the challenge of fault identification and di-

agnosis in the presence of data overlap. This work was also applied to the Tennessee

Eastman benchmark. Initially FDA was applied to the problem but it was determined

that the data had too much serial correlation for FDA to provide good separation.

Therefore, drawing from the state-space literature, the authors first applied CVA then

FDA to handle the serial correlations and then perform fault diagnosis and identi-

fication. Using this technique decreased the misclassification rate by approximately

40% compared to using FDA alone [114].

A third example of the power of hybrid methods relates to active FDD. Active

FDD methods are largely either stochastic or set-based. Stochastic methods provide

convenient descriptions but do not provide guarantees, whereas set-based methods

compute hard bounds but are often based on worst-case uncertainty. Hybrid meth-

ods were proposed by [2241 and [157] to compromise between these two methodologies

by using model uncertainties described by pdfs of finite support but also guaranteed

correct diagnosis at a given time, N, while maximizing the probability of correct di-

agnosis at some earlier time (see Fig. 6-9). These approaches provide better flexibility

compared to using purely stochastic or purely deterministic approaches.

Many other examples of hybrid approaches are described in the literature, e.g.

[44, 45, 46, 112, 113, 155, 212]. The process monitoring field has been increasingly

focused on complex and high-value processes over the past 40 years. Hybrid systems

show the most promise for being able to handle the fault scenarios that arise in such

systems.

6.5 Conclusions and future directions

This chapter provides an overview of process monitoring methods and introduces

the major challenges facing the next generation of techniques. The article advocates

for the use of hybrid methods to address these challenges in modern and complex

facilities and provides some examples of how hybrid methods have been successful
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in past studies. The process monitoring field would benefit from increased sharing

of data for the comparative evaluation of process monitoring systems. The machine

learning community has benefited greatly from the availability of public data sources,

for example, the Wall Street Journal corpus used for speech recognition and natu-

ral language processing 1185], the PASCAL challenge for image recognition 1701, and

the MNIST dataset for digit recognition 11331. The FDD community is also heavily

dependent on data. Robust and implementable models need real process data for

training and testing. The Tennessee Eastman chemical manufacturing facility meets

this need in many ways [471. However, the community would benefit from additional

data, particularly real data or from a different manufacturing setting such as phar-

maceutical manufacturing or oil well data. Progress in process monitoring systems

would benefit from the availability of public datasets for comparative studies to focus

on the most promising directions in algorithm development.
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Chapter 7

Anomaly Detection and Diagnosis

using Semi-supervised Models for

Industrial Time-Series Data

7.1 Introduction

Anomaly detection commonly refers to the task of finding unexpected patterns or

behaviors [37]. Anomaly detection is a challenging task because of the lack of recorded

past anomalous events and their rare occurrences. Recently, in industrial systems,

the amount of available data has increased, due to factors such as improved sensor

technology, decreased storage costs, and the Internet of Things [1941. One potential

use for these data is to improve anomaly detection systems.

Typically, the anomaly detection problem is performed using a two-step approach.

First, training data, either known or assumed to be nominal, are used to develop a

distance or probability metric. Second, a threshold is set for determining if a new point

is sufficiently different so as to be labeled anomalous [241]. Because only nominal data

is used, these approaches are referred to as one-class classification, or unsupervised.

In the event known examples of anomalies are available, two-class, or supervised,

approaches can be employed instead. When both labeled and unlabeled data are
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used in model training, the approach is call semi-supervised [38]. One sub-class of

semi-supervised methods is positive and unlabeled (PUL) approaches. PUL describes

the type of dataset, also called presence-only datasets, where information concerning

the labels of one class is available for some data and the rest of the labels are unknown.

The characterization of habitats for the presence or absence of a particular species

is one example of PUL data, where it is easy and provable to label the presence of

an animal but difficult to guarantee its absence [275]. A similar situation occurs in

industrial systems where anomalous operations are rare and difficult to label and

labeling requires an expert. Given these similarities, a framework that leverages

results from the PUL literature was proposed for the anomaly detection problem.

In this article, a framework for anomaly detection and diagnosis (ADD) for indus-

trial operational systems is presented. The ADD task is achieved using a Neyman-

Pearson (NP) classification model built using a feature transformation of the raw time

series data. An application of the approach is demonstrated using oil and gas well

production data and is compared to the performance of one-class approaches.

7.2 Background

7.2.1 Semi-supervised models for anomaly detection

Blanchard et al. [181 proposed a novelty (anomaly) detection technique for applica-

tions where the dataset contains labeled examples from the nominal class as well as

an unlabeled sample of potentially both nominal and anomalous examples. The re-

sulting model uses a likelihood ratio test which is trained using the Neyman-Pearson

criterion

max PD subject to PF a (7.1)
H(.)

where PD is the detection probability, PF is the false detection probability, and a is a

user-specified level. H(.) is a decision rule based on a likelihood ratio test. Blanchard

et al. [181 show that the nominal and unlabeled samples can be treated as two classes

and the optimal test of size a is the same for the test of nominal vs. unlabeled and
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nominal vs. anomalous. To characterize the likelihoods, a kernel density estimate is

proposed using a Gaussian kernel. The resulting model is of the form:

(1 if M EM -x~aId > A

f W -n =x)(1i0''d (7.2)
0 otherwise

where AJ(. Ip, E) is a multivariate normal distribution with mean A and covariance

matrix E, o- is the kernel bandwidth, Id is an identity matrix of size d, and the first m

samples are labeled nominal and the remaining n samples are unknown. The model

requires choosing two bandwidths, -x for the unlabeled sample and o for the nominal

sample, and a.

In the event that there are no anomalous samples in the unlabeled set, the pro-

posed model performs no better than random guessing. To account for this possibility,

a uniform sample can be appended to the unlabeled set, which will cause the model

to perform similar to a level set estimation, i.e. one-class classification 118].

7.2.2 Previous work

Much of the industrial process monitoring literature has focused on the related prob-

lem of fault detection in a supervised setting, e.g. [46]. However there are some

examples of unsupervised and semi-supervised approaches. One-class support vector

machine (SVM) [219] and support vector data description (SVDD) [242, 243] are two

techniques that have been applied in the process monitoring field e.g. [291, 230, 154].

In one-class SVMs, the objective is to learn a hyperplane that separates the nominal

data from the origin with the maximum margin. In SVDD, the objective is to learn

an enclosing boundary of the nominal dataset. Both approaches are amenable to

kernelized feature space and can be solved as a quadratic program. Alternatively, the

probability distribution of the dataset can be characterized, for instance via a Parzen

density estimate [1831. To make predictions, a threshold is set and data points with

probability below the threshold are labeled anomalous.

Semi-supervised approaches are less common in industrial process monitoring.
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Monroy et al. [164], Yan et al. [288], and Ge et al. [80] all propose approaches

that utilize unlabeled data to improve process monitoring performance, however, it

is assumed that the labeled dataset contains nominal and faulty data. The case

of positive and unlabeled data has been applied in other areas. As noted in the

introduction, PUL has been applied to habitat modeling [2751. Other applications

of PUL include document classification [68, 142], learning gene regulatory networks

[36], and land cover classification [137].

7.3 Approach

Applying the semi-supervised anomaly detection method to time series data has three

main steps: (1) transformation to feature space, (2) training the NP classification

model, and (3) setting the threshold. Each of these steps is described in detail below.

7.3.1 Feature space transformation

Feature-based approaches to analysis with time series data have been previously pro-

posed in the literature (e.g. [76, 77, 102, 80, 75]). A feature can utilize univariate

data, f : R' R, or multivariate data, f : R' n -+ R. Because time-series data are

correlated, feature-based approaches can assist in approximating independent and

identically distributed data, an assumption of many data-driven techniques. Feature-

based approaches also provide a methodology for handling multivariate time series

with different scales without pre-normalizing. In this work, an expert feature set using

non-overlapping time windows is proposed for the oil and gas well monitoring task.

The choice of feature space will depend on the application area. Once the features

are computed they are scaled using robust sigmoid scaling

1
= (7.3)

1 - exp 1 IQR

where t is the median and IQRX is the interquartile range using only the training

data. The scaling parameters are then applied to the testing data. Robust sigmoid
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scaling is chosen so that each feature has approximately the same range.

7.3.2 Semi-supervised anomaly detection

As described in the background section, Neyman-Pearson classification models use

likelihood ratio tests as the decision rule where the threshold is determined based on

a specified false positive rate. Here, the likelihood is estimated using a Parzen density

estimate with a Gaussian kernel. To train the model, the bandwidths of the Gaussian

kernel densities must be estimated for the nominal and unknown classes. The kernel

density estimate is given by

A~x) = nd k.,( ' (7.4)
i1

where d is the dimension of the vector x, n is the number of samples, and k, is the

kernel parameterized by - [2321. The Gaussian kernel is

k,(u) = (27r)2 exp (- uu (7.5)

A cross-validation strategy is adopted to choose the bandwidths by maximizing the

positive and unlabeled learning performance (PULP) metric [90]. PULP is defined as

PULP(Sn, t) = E F(kjs,} - 1In, t, i) (7.6)
n + I1

where F is the cumulative hypergeometric function, S : {si, s2 , ..., sn} is the sorted list

of the classifier outputs, n is the total number of samples, t are the labeled samples,

and k{s,i 1 is the number of hits, given that those items are predicted to be positive

[90]. PULP is chosen over other metrics such as the area under the receiver operator

curve because PULP has been shown to be more robust when applied to settings with

non-random sampling, which is likely the scenario in process monitoring, where data

are correlated in time. Additionally, in PUL settings, the labeled nominal samples

are likely not chosen randomly, as some samples can be labeled more confidently than
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others 190].

7.3.3 Threshold setting

Using the results of Blanchard et al. [18], the threshold learned from the surrogate

problem should be applicable to the underlying anomaly detection problem. However,

because the application area is high-dimensional, the threshold-setting approach of

Zhao et al. [297] is adopted here. m 2 examples of the labeled nominal data, SO, are

not used in the model training phase. The learned likelihood ratio test f is applied

to this data. The threshold is set to be f(k) (SO), which is defined as the k-th order

statistic of f(SO). k is defined as

k(a, 6, n2 ) = min([(M 2 + 1)A0, 6(n 2 )1, n2 ) (7.7)

where [xl is the smallest integer greater than or equal to x and

Aa,6(M2) =

1 + 26i(1 - a) + 1 + 46(1- a)af (7.8)

2(6fn + 1)

where in = M 2 + 2, a is the user defined level of probability of false detection, and

6 E (0, 1) is user-defined. Zhao et al. [2971 use 6 = 0.05 in their work and the same

value is adopted here.

7.3.4 Model visualization

One limitation of non-parametric density estimates is their ability to be interpreted.

Interpretability is important in ADD problems because an intervening action must

be selected. Motivated by control charts [193, 3011, an approximated visualization of

the contributions of each feature can be found by applying a log transformation and
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WHP
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Figure 7-1: Schematic of the six sensors implemented on the case study well. Tem-
perature and pressure are measured at the bottomhole and wellhead. Acoustic mea-
surements are measured prior to the manifold. HP and LP are high pressure and low
pressure, respectively.

Table 7.1: Features used in the PUL model as well as the one-class benchmarks.
General features are applied to all sensors.

General Features BHP-only Features
Standard deviation Peak separation from uniform

Skewness MSE of third order polynomial fit
Kurtosis Range
Entropy Amplitude of sine fit

Burstiness [841 Period of sine fit
Coarsened rate of change 1761 Goodness of sine fit

ACC-only Features Multivariate Features
Minimum BHT-BHP Mutual Information
Maximum BHP-WHP Mutual Information

Jensen's inequality to the model. The resulting equation is

1 _ 1 9
E E Xj_ ij2 2nx Xj- ij)2> logA (7.9)

j=1 - 2mui=1 Z=I

Because Eqn. 7.9 is an approximation, this equation is used only for visualization and

not for prediction.
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Figure 7-2: Data from each of the sensors for the well as well as the valve positions.

7.4 Case study

The anomaly detection approach is demonstrated using data from a production oil

and gas well. The well scenario exhibits many of the characteristics of the PUL

framework. The success of the oil and gas well depends on continuous operation and

therefore it is critically important to identify anomalies. Modern wells are deployed

with sensor systems that collect data continuously in time [54]. It is challenging to

assess when the well is in a anomalous state but somewhat simpler to assess 'good'

performance.

To implement the approach, early production data is assumed to have some num-

ber of unlabeled anomalies and is used in the training phase. To account for the

possibility of no anomalies, a uniform sample is appended to the unlabeled set, fol-

lowing the hybrid approach recommended by Blanchard et al. [18]. 10% of the data

is labeled nominal based on sensor measurements and operator logbook information.

Because of the unique characteristics of each well, both in terms of operation strategy

and sensor deployment, it is recommended that a different model is trained for each

well utilizing early production data (approximately six months).

A schematic of the sensor system is shown in Fig. 7-1. Measurements are aver-

aged over a fixed two-minute sampling interval for the bottomhole pressure (BHP)

and temperature (BHT), the wellhead pressure (WHP) and temperature (WHT),
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Figure 7-3: Prediction results for the oil and gas well using the proposed methodology.
All points above the black threshold indicate anomaly predictions. Data before the
first vertical line is used in training and all remaining data is for testing. Anomalies
are predicted prior to all three of the major well events: the start of the gas lift, water
breakthrough and the deferral date.
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Figure 7-4: Prediction results for the oil and gas well with a Parzen density model.
All points above the black threshold indicate anomaly predictions. Data before the
first vertical line is used in training and all remaining data is for testing. Although
the general trend is similar to the PUL model, this prediction has a greater number
of false positives and fewer true positives.
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Figure 7-5: Heatmap of the feature values for each prediction day. As in Fig. 7-3,
the vertical lines correspond to the end of the training data, the start of the gas lift,
water breakthrough, and the deferral date, from left to right.
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and acoustic sensors (ACCI and ACC2). Sensor data from one year of production

are shown in Fig. 7-2. The feature set is applied and scaled as described in section

3.1. The specific features used in this application are listed in Table 7.1. The two

bandwidth parameters and threshold are trained using the first six months of oper-

ational data. 10% of the data is labeled: half is used to tune the bandwidths using

the PULP metric and a 3-fold cross validation strategy and the other half is used to

set the threshold as described in section 3.3 with a = 0.05 and 6 = 0.05. The results

of the model are shown in Fig. 7-3.

The model predicts anomalous behavior prior to all of the major well events, as

shown in Fig. 7-3. Points above the black line indicate anomaly predictions. This

particular well has three major events: start of the gas lift, water breakthrough, and

deferral date. The gas lift alters the bottomhole pressure in an effort to improve well

production. Gas lift startup indicates a reaction by the well operators to decreasing

well performance. Water breakthrough occurs when water enters the well bore and is

determined based on total water production. A deferral indicates the need to suspend

production to allow for an intervention. It is therefore appropriate that the model

would predict anomalous conditions prior to each of these events.

To compare performance, Parzen density models and support vector data descrip-

tions (SVDDs) were applied to the feature data. Several variations of model training

were considered: (1) the full training dataset with a specified percentage of outliers,

(2) the principal components of the full training data set with a specified percentage

of outliers, (3) only the labeled nominal examples in the training data set with no

outliers, and (4) the principal components of the labeled nominal examples with no

outliers. For cases (1) and (2), the percentage of outliers was required for training

and defined as the percentage of data points where the well is not in the desired

operational mode. Applying this rule to the dataset results in an outlier percentage

of 40%. Note that only the percentage of outliers is need for training and particular

data points do not need to be labeled. For cases (2) and (4), the number of prin-

cipal components was required and was selected via parallel analysis [98], where the

singular values of the data matrix are compared to the singular values of a random
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matrix of the same size. The number of principal components is equal to the floor of

the crossing point.

Several evaluation metrics for the models are presented in Table 7.2. The true

positive rate (TPR) is the number of correct anomaly predictions divided by the

number of true anomalies and the false positive rate (FPR) is the number of incorrect

anomaly predictions divided by the number of true nominal points. The F1 score is

the harmonic mean of the precision and recall and is defined as

F1 = (7.10)
2TP + FP + FN

where TP, FP, and FN are the number of true positives, false positives, and false

negatives, respectively. Area under the receiver operator curve (AUC) is the integral

of all possible TPR and FPR values if the threshold was varied over its domain. The

maximum and desired value for AUC is 1 and random guessing is expected to result

in an AUC of 0.5. To calculate the TPR only the 3 month period prior to the deferral

date was considered to be anomalous. This is a conservative approach, as other well

operation periods were likely anomalous however the deferral was the largest event

the well experienced over the time period available. The FPR is based only on the

testing period.

The proposed methodology has the highest AUC and TPR. Several of the esti-

mators using the full feature space are also able to achieve the highest AUC however

struggle to set an appropriate threshold which results in a high false positive rate.

The SVDD with PCA feature transformation using only the nominal data has the

lowest false positive rate, but also has a comparatively low true positive rate. The

results of the nominal Parzen model using PCA as the features is shown in Fig. 7-4.

While the shape is similar to the proposed methodology, the shifts are less dramatic,

resulting in a lower AUC.

The results of the visualization technique described in Section 3.4 is shown in

Fig. 7-5. The model contribution of each feature is presented as a heat map The

diagnosis step considers which feature values have significant deviations and maps
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Table 7.2: Comparison of metrics for the proposed PUL model and one-class classi-
fication models. The percentage indicates the target amount of data to be predicted
as an anomaly during the training phase.

Methodology AUC TPR FPR F1
Proposed PUL Model 0.94 1 0.31 0.61
Parzen, 40% 0.94 1 1 0.32
Parzen + PCA, 40% 0.89 1 0.78 0.38
SVDD, 40% 0.88 0.96 0.59 0.44
SVDD + PCA, 40% 0.64 0.54 0.31 0.38
Parzen, 0% 0.94 1 1 0.32
Parzen + PCA, 0% 0.84 0.89 0.4 0.50
SVDD, 0% 0.94 1 0.58 0.45
SVDD + PCA, 0% 0.74 0.59 0.23 0.46

those deviations back to sensor measurements. This provides operators with a starting

point for root cause analysis. As historical data on features grows, past experience

combined with clustering of these anomaly signatures can assist in improved root

cause and corrective action determination.

7.5 Conclusions

The proposed positive and unlabeled methodology has two main strengths: the ability

to utilize unlabeled data during training and the ability of the feature space transfor-

mation to capture the status of the well. It is common in industrial applications to

have historical data that is very difficult to label. Unlike some applications, expert

analysis is required for labeling, which is time-consuming and error-prone. However,

labeling a small number of nominal data points is much more reasonable. The fea-

ture space transformation allows the model to capture important characteristics of

the data. The proposed feature set is determined based on input from oil and gas

well operation experts, which can be limiting. Future work will consider automation

of this task to make the approach even more flexible.

Finally, the model is very fast and easy to calculate. Training the model requires

setting only four parameters: two bandwidths, a and 6, the latter two are related

to the threshold calculation. The approach avoids assumptions on the distribution
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of anomalies. The visualization tool also provides users with a starting point for

diagnosis, which is ultimately the goal in anomaly detection problems.
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Chapter 8

Data-driven modeling enables

quantitative cycle life prediction for

lithium-ion batteries

This work has been submitted as: Kristen A. Severson, Peter M. Attia, Norman Jin,

Zi Yang, Nicholas Perkins, Michael Chen, Muratahan Aykol, Patrick K. Herring,

Stephen J. Harris, William C. Chueh, and Richard D. Braatz. Data-driven modeling

enables quantitative cycle life prediction for lithium-ion batteries.

8.1 Introduction

Lithium-ion batteries are desirable for use in a variety of applications because of their

high energy and power densities and long cycle lives [87, 69, 150, 218, 1751. However,

long cycle life implies delayed feedback of battery performance during development

and manufacture. Early prediction of cycle life would accelerate this feedback loop as

well as enable accurate estimation of battery life expectancy for applications including

consumer electronics and electric vehicles. However, the task of predicting capacity

fade and/or cycle life for lithium-ion batteries is challenging. Lithium-ion batteries

often have nonlinear aging profiles as a function of cycle number and wide variability,

even when controlling for operating conditions [14, 91, 186, 220, 221]. Furthermore,
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Figure 8-1: Top: Discharge capacity for the first 1000 cycles of the A123 MIA
LFPlgraphite cells used in analysis. The trajectories cross each other, indicating
a nonlinear trend in capacity fade. The color of each curve is scaled based on the
battery's cycle life, as in done throughout the manuscript. Middle: A detailed view
of a, showing only the first 100 cycles. A clear ranking of cycle life has not emerged
at this point. Bottom left: Cycle life as a function of discharge capacity at cycle 100.
The correlation coefficient of capacity at cycle 100 and log cycle life is 0.54. Bottom
right: Cycle life as a function of the slope of the discharge capacity curve for cycles
95 to 100. The correlation coefficient of this slope and log cycle life is 0.54.
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many mechanisms can contribute to capacity fade in lithium-ion batteries, such as

side reactions at the electrode/electrolyte interface, loss of active material, resistance

increase, and issues related to the composite electrode such as changes to current

collector, porosity, binder, etc. 1180, 8, 268, 28]. These effects occur heterogeneously

within a cell and may interact 192, 135, 11].

Many studies have considered the task of predicting cycle life in lithium-ion batter-

ies using physics-driven models. Bloom et al. [211 and Broussely et al. 1281 performed

some of the first studies of modeling capacity fade in lithium-ion batteries by fitting

empirical models to predict the percentage power and capacity loss. Since then, many

semi-empirical studies have been conducted to capture different capacity fade phe-

nomenon during cycling [197, 239, 50, 49, 295, 214, 272, 198, 191, 66, 53] and storage

[139, 65, 2381. The key challenge in applying physics-based modeling to lithium-ion

batteries is capturing the many degradation length scales, ranging from atoms and

interfaces (A-nm) [266, 82, 86, 2891 to electrodes and cells (pm-cm) [271, 138, 73].

The complexity of battery degradation has hindered development of accurate models

of cell lifetime.

Data-driven approaches are an alternate technique for cycle life prediction. Re-

cently, advances in computational power and data generation have enabled machine

learning techniques to accelerate progress in a variety of fields, including materials

discovery for energy storage [111, 2271. Data-driven approaches to battery lifetime

prediction have used data from standardized initial reference tests [14] and initial

cycling [91, 143, 100] and storage [245] data. However, many studies are limited

by small sample sizes (<10) and typically rely on the inherent cell-to-cell variation

in cycle life for identical operating conditions. Furthermore, these analyses have

focused on using capacity as a function of cycle number (Q(n)) to inform predic-

tions, disregarding the voltage-capacity relation (V(Q)) within each cycle. Other

measurements, such as high-precision coulombic efficiency [30, 31] and impedance

spectroscopy [40, 252], have demonstrated predictive capability but require special-

ized characterization equipment.

In this study, we were particularly interested in the early prediction setting, where
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the goal is to use a small number of cycles to accurately predict the cycle life. Specif-

ically, we set out to use information from the first 100 cycles to predict the number

of cycles to 80% state of health (SOH) for cells with lifetimes of up to 2300 cycles.

A dataset of 84 commercial cells cycled to failure was generated using a variety of

fast-charging conditions. We then developed feature-based models resulting in predic-

tion errors ranging from 5% to 15%. Our model performs well for cycle lives ranging

from 150 to 2300 without incorporating diagnostic cycles. These results illustrate

the utility of data-driven prediction models to accelerate the development of energy

storage technologies. Similar data-driven methods are broadly applicable for complex

systems that lack a full first-principles characterization.

8.2 Data generation

Because of the large number of capacity fade mechanisms and intrinsic variability

of lithium-ion batteries, we expect the space that parameterizes capacity fade to

be high dimensional. To probe this space, 84 commercial lithium-iron-phosphate

(LFP) jgraphite cells from A123 were tested in a temperature-controlled environmental

chamber under a variety of charging conditions but identical discharging conditions.

The study used commercial high-power LiFePO 4/graphite A123 APR18650M1A cells.

These batteries have a nominal capacity of 1.1 Ah and a nominal voltage of 3.3 V.

The manufacturer's recommended fast-charging protocol is 3.6C constant current -

constant voltage (CC-CV), which charges to 80% in 13.3 minutes.

Data collection was performed using a 48-channel Arbin LBT battery testing po-

tentiostat. The tests were performed at 30 C in an environmental chamber (Amerex

Instruments). Cell surface temperatures were recoded by stripping a small section of

the plastic insulation and contacting a type T thermocouple to the bare metal casing

using thermal epoxy (OMEGATHERM 201) and Kapton tape.

The charging protocols were varied amongst the cells but the discharge policy

remained constant. Cells were charged from 0% to 80% SOC with various one- and

two-step policies. The charging times ranged from 9 to 13.3 minutes. An internal

166



resistance measurement was obtained at 80% SOC. All cells charged from 80% to

100% SOC with a uniform IC CC-CV charging step to 3.6V and a current cutoff of

C/50. All cells were discharged with a CC-CV discharge at 4C to 2.OV with a current

cutoff of C/50.

By varying the charging protocol, the dataset captures a wide range of cycle lives,

from approximately 150 to 2300 (average cycle life of 692 with a standard deviation

of 362). Voltage, current, temperature, and internal resistance (IR) at 80% state

of charge are measured. The dataset has approximately 58,000 cycles. Fig. 8-1

shows the discharge capacity as a function of cycle number for the first 1000 cycles,

where the color denotes the cycle life. Immediately this dataset demonstrates the

limitations of using only discharge capacity and cycle number for prediction. The

correlation between the discharge capacity at the 100th cycle as well as the trend of

capacity fade near cycle 100 have low correlation with final cycle life (p = 0.54). Given

the limited predictive power of these models, we instead investigated a data-driven

approach that leverages a larger set of cycling data which includes the full voltage-

capacity relation, as well as additional measurements including internal resistance

(IR) and temperature.

8.3 Machine learning approach to capture cell-to-

cell variability and domain knowledge

To utilize the dataset, we proposed a feature-based approach and a linear model. In

this paradigm, features, or transformations of the raw data, are generated and used

in a regularization framework. The final model uses a linear combination of a subset

of the proposed features to predict log cycle life. Ideally, the specific features in this

linear model can be related back to underlying electrochemical phenomenon.

The modeling goals included in both model fitting, selection of the coefficient

values, and model selection, selection of the model structure. To perform both of

these tasks simultaneously, the elastic net approach was used [302]. While the lasso
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[246] would also result in a sparse model, elastic net is preferred when there are high

correlations between the features, which is the case in this application. To choose

the value(s) of the hyper-parameter(s), cross-validation is recommended. Here 4-fold

cross validation and Monte Carlo sampling is applied.

The dataset is divided into two equal pieces referred to as the training and testing

data. The training data is used to choose the hyper-parameters a and A and determine

the values of the coefficients. The training data is further subdivided into calibration

and validation sets for the cross-validation procedure. The testing data is then used

as a measure of generalizability because it is data that has not been used to learn the

model coefficients or form. To standardize the voltage-capacity data across cells and

cycles, all 4C discharge curves were fit to a spline function and linearly interpolated.

These uniformly-sized vectors enabled straightforward data manipulations.

Features were proposed based on domain knowledge of battery operation and

degradation, e.g. a dependence on temperature, as well as an interest in capturing

individual cell variability. To do this, several features were based on the difference of

discharge capacity as a function of voltage between two cycles. Capacity as a function

of voltage was of particular interest because it is a high-fidelity and rich data source

and is an effective data source for degradation diagnosis [22, 20, 59, 237, 213, 60, 61,

7, 61. Unlike the single capacity measurement, as in Fig. 8-1, the difference is a vector

with units of capacity. Summary statistics were then applied to this difference, e.g.

minimum, mean, and variance. An example is shown in Fig. 8-2 using the 100th and

10th cycles.

A clear linear trend emerges between the summary statistics of the difference

of the voltage-capacity curves during discharge for 100th and 10th cycles (referred

to as AQ(V) throughout this chapter). Because of the high predictive power of

,AQ(V) on its own, we investigate models using only this feature, features using only

discharge information, and features using the entire dataset. This progression is

used to consider the setting where measurements such as surface temperature are

not available and quantify the improvement when such additional measurements are

added. The complete set of 20 candidate features can be found in Table 8.1.
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Figure 8-2: Discharge capacity curves for 100th and 10th cycles for a representative
cell. b, Difference of the discharge capacity curves at the 100th and 10th cycles as a
function of voltage for 84 cells. c, Cycle life plotted as a function of the variance of
the difference on a loglog axis. In all plots, the colors are determined based on the
final cycle lifetime. In c, the color is redundant with the y-axis.

8.4 Results

The complete dataset of 84 cells is divided into two subsets, referred to as training

and testing. The training data (41 cells) is used to select the model form and set the

values of the coefficients, and the testing data (43 cells) is used to evaluate the model

performance. Many possible divisions of the data are possible; a 50-50 split is used

to have a large amount of data to test the model's performance on unseen data. Two

metrics are used to evaluate performance: root-mean-squared error (RMSE), units of

cycles, and average percent error. RMSE is defined

nRMSE= Z(y, ~2 (8.1)

where y, is the observed cycle life, yj is the predicted cycle life and n is the total

number of samples. Average percent error is defined

%err = - x 100 (8.2)
n i1 yi

where all variables are defined as above. The error metrics for the various models are

reported in Table 8.2.

We present three models to predict cycle life using increasing feature set sizes.
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Figure 8-3: Observed and predicted cycles to 80% SOH for several implementations of
the feature-based model. The training data are used to learn the model structure and
coefficient values. The testing data are used to assess generalizability of the model.
The vertical dotted line indicates when the prediction is made in relation to the
observed cycle life. The in-lay shows the histogram of residuals (predicted - observed)
for the test data. Left: model using only the log variance of AQ. Center: model using
six features based only on discharge cycle information, described in Table 8.1. Right:
model using the nine features, described in Table 8.1. Because some temperature
probes did not maintain contact during experimentation, four cells are excluded from
the full model analysis.

The first model, denoted var[AQ(V)I, does not consider subset selection and uses

only the log variance of AQ(V) for prediction. Surprisingly, using only this single

feature results in a model that has less than 15% error. The second model only con-

siders information derived from measurements of voltage and current during discharge

(columns 1 and 2 of Table 8.1) and is denoted discharge model. The third model con-

siders all available data (all columns of Table 8.1) and is denoted full model. These

models select a subset of the available features using the elastic net. As expected,

for increasing model complexity, the error decreases, see Table 8.2 and Fig. 8-3. The

specific features and model coefficients used in the full model can be found in Fig. 8-4.

8.5 Discussion

We observe that AQ(V)-based features have high predictive performance, while mod-

els using only Q(n)-based features perform poorly. We rationalize this observation

by investigating degradation modes that do not immediately result in capacity fade
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Table 8.1: Features considered for the various model implementations. The simplest
model uses only the log variance of AQ(V) and does not consider model selection.
More complex models are considered using only discharge information (first two sec-
tions) as well as additional measurements (all sections).

Features var[AQ(V)] Discharge Full
Minimum / /
Mean

AQ(V) Variance V/ / /
Skewness V/
Kurtosis V/
Value at 2V
Slope of Q(n), cycles
Intercept of the linear fit to Q(n),
cycles 2-100

Q(n) features Slope of Q(n), cycles 91-100
Intercept of the linear fit to Q(n),
cycles 91-100
Discharge capacity, cycle 2 V/ V/
Max discharge capacity -
discharge capacity, cycle 2
Discharge capacity, cycle 100
Average charge time, first 5 cycles V/
Maximum temperature,
cycles 2-100

Other features Minimum temperature,
cycles 2-100
Integral of temperature over time,
cycles 2-100
Internal resistance, cycle 2
Minimum internal resistance

Internal resistance, cycle 100-2

Table 8.2: Model metrics for the results shown in Fig. 8-3. Train and test refer to
the data used to learn the model and evaluate model performance, respectively. One
battery in the test reaches 80% SOH rapidly and does not match other observed
patterns. Therefore the parenthetical test results correspond to the exclusion of this
battery.

RMSE (cycles) Mean Percent Error

Train Test Train Test
AQ model 103 138 (138) 14.1% 14.7% (13.2%)
Q v. N model 76 91 (86) 9.8% 13.0% (10.1%)
Full model 51 118 (100) 5.6% 14.1% (7.5%)
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Figure 8-4: Nine features used in the predictive model described in Table 8.1. The
coefficient value for the feature in the linear model is in the title of plot. The training
and testing batteries are represented by circles and squares, respectively. Each of the
features has been z-scored based on the training data.

yet still manifest in V(Q). The degradation mode(s) also results in the aggressive,

nonlinear capacity fade at high cycle number.

Capacity fade mechanism determination has relied primarily on a popular elec-

trochemical analysis technique which considers numerical derivatives of the voltage-

capacity relation, dQ/dV = f(V) and dV/dQ = f(Q), and their evolution with cy-

cling [22, 20, 237, 213, 60, 61, 7, 6]. Dubarry et al. map six degradation modes in

LFP~graphite cells to their resultant shift in dQ/dV and dV/dQ for diagnostic cycles

at C/20 [60]. Only one degradation mode - loss of active material of the delithiated

negative electrode (LAMdeNE) - results in a shift in V(Q) with no change in capac-

ity. This behavior is observed when the negative electrode is oversized relative to the

positive electrode, as is typical in commercial lithium-ion batteries. Thus, a loss in

delithiated negative electrode changes the potentials at which lithium ions are stored

without changing the overall capacity [60, 7].

As LAMdeNE continues, the negative electrode capacity will eventually fall below

the lithium-ion inventory remaining in the cell. At this point, the negative elec-

trode will not have enough sites to accommodate lithium ions during charging, in-

ducing lithium plating [7]. Since plating is largely irreversible, the capacity loss
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Figure 8-5: Results of four cells that were tested with periodic slow diagnostic cycles.
From left to right, the plots are dQ/dV using slow cycling, dV/dQ using slow cycling,
dQ/dV using fast cycling, and AQ(V) using fast cycling. The solid black line is the
first cycle (cycle 10 for fast cycling), the dotted black line is cycle 101 or 100 (fast and
slow, respectively), and the colored thick line is the end of life cycle (80% SOH). For
AQ(V), a dotted grey line is added every 100 cycles. The patterns observed using slow
cycling are consistent with LAMdeNE and LLI. The features are smeared during fast
charging. The log variance AQ(V) model trained using the high-throughput dataset
is able to predict lifetime within 10%. At the time of submission, only the 6C and
8C experiments had concluded.
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will accelerate. Thus, LAMdeNE shifts V(Q) without affecting Q(n) and induces

rapid capacity fade at high cycle number. Furthermore, LAMdeNE, in conjunction

with loss of lithium inventory (LLI), are widely reported as the dominant degra-

dation modes in commercial LFPlgraphite cells operated under similar conditions

[135, 213, 60, 7, 6, 145, 2161.

To investigate if LAMdeNE is a contributing degradation mode in our experiments,

additional experiments were performed with varied charging rates (2C, 4C, 6C, and

8C) and constant discharge rates (4C), incorporating slow cycling at cycles 1, 100,

and end of life (80% SOH). dQ/dV and dV/dQ of diagnostic cycles (C/10) at n=1

and n=100 and AZQ 1 -1 1o(V) during 4C discharge are compared. The results for four

cells are displayed in Fig. 8-5. The shifts in dQ/dV and dV/dQ observed in diagnostic

cycling are consistent with LAMdeNE and LLI operating concurrently [60, 7, 6]. This

supports the hypothesis as to why models using V(Q) have lower errors than models

using only Q(n). The var[AQ(V)J model developed above predicts cycle life of these

batteries within 15%. Furthermore, we expect that this method is valuable for any

degradation mode that does not immediately manifest in Q(n) but does impact the

V(Q) relationship, such as high-voltage cathode materials undergoing voltage fade

[82, 244, 2781.

AQ(V) has many advantages for cycle life prediction over differential methods like

dQ/dV and dV/dQ despite using the same V(Q) data. AQ(V) does not require pe-

riodic slow diagnostic cycles, instead using high rate discharge data. Slow diagnostic

cycles are unrepresentative of batteries' use cases and induce a temporary capacity re-

covery that interrupts the trajectory of capacity fade (see Fig. 8-6) [200, 136]. dQ/dV

applied to the high rate data shows only very small changes as compared to AQ(V)

in the first 100 cycles and the individual features are difficult to discern. AQ(V) also

avoids the use of numerical differentiation, which reduces the signal to noise ratio

and thus the predictive power. Numerical derivatives also require selecting values for

parameters such as step size, which can have significant impacts on the qualitative

interpretation of patterns.

Additional analysis was performed to understand the impact of the cycle indices
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Figure 8-6: Discharge capacity curves for batteries with periodic slow charging. A
slow charging protocol is employed at cycle 100, resulting in an increase in discharge
capacity.

chosen for AQ(V). Linear models using only the variance of the difference Qj(V) -

Qj (V) were investigated and displayed in Fig. 8-7. The model is relatively insensitive

to the indexing scheme after cycle 80.

Relative indexing schemes based on cycles in which a specified capacity fade was

achieved were also investigated. In the relative indexing paradigm, indices are chosen

based on the relative capacity decrease. There are three primary choices for the

baseline capacity: the nominal capacity of the cell reported by the manufacturer, the

initial capacity of the cell, or the maximum capacity of the cell. The nominal capacity

of the cells used in analysis is 1.1 Ah. Many cells never reached this level, meaning

it is not a useful baseline. Most of the cells experience an initial increase in capacity,

which if used for scaling, delays the point at which the first decrease is observed. This

leave the maximum of the relative capacity benchmark as the best option.

Two possible indexing schemes using the capacity scaled to its maximum value

were investigated. In the first scheme, a fixed number of cycles after the maximum

is achieved was used. The results of this procedure are shown in Fig. 8-8. The errors

of the resulting models do decrease in a similar pattern to Fig. 8-7, however the

improvements in predictive power take longer to develop and do not go as low as

observed in the fixed indexing scheme.
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Figure 8-7: RMSE error, in cycles, for training and testing datasets using only the log
variance of AQ(V), where the discharge cycles that are used in analysis are varied.
These errors are averaged over 20 random partitions of the data into equal training and
testing datasets. The errors are relatively flat after cycle 80, suggesting a minimum
of 80 cycles are needed before the AQ(V) features can be used for prediction.
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The second indexing scheme considers choosing each of the indices based on when

a particular relative capacity fade is achieved. Fig. 8-9 shows an example of the scaled

capacity curves as well as the selection of the cycle corresponding to a relative capacity

of 0.995. For the dataset, more than 250 cycles have passed before 99.5% capacity

fade is reached for all of the cells. Therefore, immediately this type of indexing scheme

delays when predictions can be made. The errors for the resulting models are shown

in Fig. 8-10. The colorbar is set such that it matches Fig. 8-7. Immediately it can

be seen that the relative indexing scheme models have higher error than the fixed

indexing scheme models.

Initially, this result may seem surprising, however the relative indexing scheme

has the effect of collapsing the trend that differentiates the cells by rescaling. It is

therefore unsurprising that fixed indexing schemes are better suited to the prediction

task. Relative indexing schemes did not result in improved predictions. Furthermore,

because the discharge capacity initially increases, specified decreases in capacity take

longer to develop in terms of cycles than fixed indexing.

As noted above, the model errors in Fig. 8-7 are relatively flat after cycle 80.

We hypothesize that the insensitivity of the model to the indexing scheme implies

linear degradation with respect to cycle number. This trend is further validated by

the model coefficients shown in Fig. 8-11. Linear degradation with respect to cycle

number is assumed for the LAM modes in the work of Dubarry et al. [601 and Ans6an

et al. [7].

There are some challenges to using AQ(V) with this dataset. The increases in

error around cycles j = 55 and i = 70 are due to temperature fluctuations of the

chamber (see Fig. 8-12 for information on experimental temperature). Temperature

does have an effect on AQ(V), but the relationship is non-obvious. Occasional data

handling issues, which appear as stripes in Fig. 8-7, also occur due to glitches in the

potentiostat's database, but these types of concerns would apply to any data-driven

method.

177



1.1

1.09

1.08

el1.07En

1.06

1.05

1.04
80 100

K :

X -

Qdifference model using
variable indexing

350

6300

250

200

150

350

300

V)

2250

- 200

150
80 100 120

Prediction cycle, j
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Figure 8-9: Example of the selection of indices for applying the AQ(V) features
using the relative discharge capacity curves. Each discharge capacity is scaled by the
maximum discharge capacity value (shown in Fig. 8-8). The xiA2 s indicate the cycle
corresponding to a relative discharge capacity of 0.995.
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Figure 8-10: Results of an alternate indexing scheme for the AQ(V) features. The
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Relative capacity is determined by dividing the discharge capacity trajectory by the
maximum capacity achieved by the battery. The model uses the variance of AQ(V).
RMSE values greater than 400 are thresholded to improve readability.
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Figure 8-11: Value of the coefficients corresponding to the results in Fig. 8-7. The
model is Yk = w x Xk + b where 9k is the predicted cycle life for battery k, Xk is the
AQ(V) feature for battery k, w is the coefficient and b is an offset term.
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Figure 8-12: The average temperature for each of the batteries over the first 150
cycles. The spike in temperature observed in batch 1 corresponds to the decrease in
performance observed in Fig. 8-7.
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8.6 Conclusion

Data-driven modeling has an important role to play in diagnostics and prognostics of

lithium-ion batteries. In this work, large, varied datasets enabled greater insight into

the variety of observed behaviors. We presented early prediction models using fast

(15 minute) discharge data for cycle life of commercial LFPlgraphite batteries. The

models have errors of 5-15% using data from the first 100 cycles for batteries with

lifetimes ranging from 150 to 2300 cycles. This prediction is done without performing

slow diagnostic cycles. The value of using the full discharge curve as opposed to only

the capacity was demonstrated through the use of AQ(V) for quantitative prediction

of cycle life. The success of the model is rationalized by demonstrating consistency

with LAMdeNE and LLI as the main degradation modes, which are not reflected in

trends of Q(n). This method is most valuable for any degradation mode that does

not immediately manifest in Q(n) but does impact the V(Q) relationship. This work

illustrates the potential of data-driven modeling for accelerating the development

and deployment of lithium-ion batteries, a critical technology for renewable energy

applications.
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Chapter 9

Conclusions

This thesis presents methods for applying machine learning techniques to chemical

and biological engineering applications. Particular challenges of these applications

were addressed, namely, small datasets, an interest in an interpretable model, and

incorporation of physical system knowledge. Four case studies as well as tutorials and

surveys were reported.

Chapter 3 was an application to the biopharmaceutical industry. The challenges

were a small dataset and an interest in an interpretable model. Often in the biophar-

maceutical industry, PCA or PLS models are used, which leverage a combination

of all input data. Here, elastic net models were used instead to choose a subset of

variables, resulting in a simpler, and therefore more interpretable model. The issue

of overfitting small datasets was also addressed. For a majority of the outputs, the

elastic net models had lower errors.

Chapter 5 presented a new method for learning a sparse (i.e. interpretable) model

using high-dimensional datasets where some data may be missing. Missing data is

a common challenge when working with real data. It is argued that, instead of a

two step approach where data are first imputed and then used for modeling, both

tasks can be handled simultaneously by employing expectation-maximization (EM).

The particular model assumptions were based on domain expertise. Gene and pro-

tein datasets were studied. Because of the expected correlations amongst genes and

proteins that participate in the same pathway, it is argued that the structured covari-
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ance, i.e. a covariance that lies on a lower-dimensional linear manifold, is a reasonable

assumption. Furthermore, it is argued that the differential expression of only a few

genes/proteins differentiates the two classes, which motivates a subset. Using these

assumptions, the EM steps are derived. The resulting procedure is applied to three

datasets and shown to outperform competing techniques. In future work, it would be

of interest to use the factor model instead of PPCA for applications with heteroge-

neous data.

Chapter 7 demonstrated the usefulness of semi-supervised approaches for anomaly

detection. Anomaly detection problems are typically framed as unsupervised. Here,

it is shown that superior performance can be achieved by labeling a small number of

nominal samples. The approach is evaluated using production oil and gas well data.

Because of the heterogeneity of the dataset and expected shifts over the course of the

well's operation, a feature-based approach was proposed. This technique avoids the

need to pre-normalize the data. The model uses these features in a Neyman-Pearson

test and a kernel density estimate is used to estimate the distribution. Interpreting

this class of models is not straightforward. Therefore, a model approximation is

proposed to rewrite the model in terms of feature contributions. This tool supports

diagnosis of the root cause. For the test case, the model predicts all three well events.

Chapter 8 presented a novel feature transformation to be used in the cycle life

prediction for lithium-ion batteries. A major challenge in cycle life prediction is the

observed variability, even when accounting for chemistry and operating conditions.

The proposed feature subtracts discharge curves from early and late operation and is

able to characterize the battery's performance over time. Models using this feature,

as well as other features that incorporate temperature and charge time information,

are demonstrated on real data from a high-throughput cycler.

Machine learning methods have an important role to play in complex engineering

systems. Machine learning methods are particularly well suited to situations where

there is either not enough information to build a first-principles model and/or a large

amount of parametric uncertainty because of their ability to make limited assumptions

and/or generate probabilistic predictions. This thesis provides insight on how to build
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and adapt methods for chemical and biological engineering.

185



186



Bibliography

[1] S. Aggarwal. What's fueling the biotech engine - 2012 to 2013. Nature Biotech-
nology, 32:32-39, 2014.

[21 H Akaike. Canonical correlations analysis of time series and the use of an
information criterion. In Advances and Case Studies in System Identification,
pages 27-96. Academic Press, New York, 1976.

[31 C. Alcala and S. J. Qin. Reconstruction-based contribution for process moni-
toring. In Proceedings of the IFAC World Congress, pages 7889-7894, 2008.

141 C. F. Alcala and S. J. Qin. Analysis and generalization of fault diagnosis
methods for process monitoring. Journal of Process Control, 21(3):322-330,
2011.

[51 D. T. Andrews and P. D. Wentzell. Applications of maximum likelihood prin-
cipal component analysis. Analytica Chimica Acta, 350:341-352, 1997.

16] D. Ansedn, M. Dubarry, A. Devie, B. Y. Liaw, V. M. Garcia, and J. C. Viera.
Operando lithium plating quantification and early detection of a commercial
LiFePO4 cell cycles under dynamic driving schedule. Journal of Power Sources,
356:36-46, 2017.

[71 D. Ansein, M. Dubarry, A. Devie, B. Y. Liaw, V. M. Garcia, J. C. Viera, and
M. Gonzilez. Fast charging technique for high power LiFePO4 batteries: A
mechanistic analysis of aging. Journal of Power Sources, 321:201-209, 2016.

181 P. Arora, R. E. White, and M. Doyle. Capacity fade mechanisms and side reac-
tions in lithium-ion batteries. Journal of the Electrochemical Society, 145:3647-
3667, 1998.

[91 L. M. R. Baccarini, V. V. Rocha E Silva, B. R. De Menezes, and W. M. Cam-
inhas. SVM practical industrial application for mechanical faults diagnostic.
Expert Systems with Applications, 38(6):6980-6984, 2011.

[10] F. R. Bach. Bolasso: Model consistent lasso estimation through the bootstrap.
In International Conference on Machine Learning, pages 33-40, 2008.

187



[111 T. C. Bach, S. F. Schuster, E. Fleder, J. MUller, M. J. Brand, H. Lorrmann,
A. Jossen, and G. Sextl. Nonlinear aging of cylindrical lithium-ion cells linked
to heterogeneous compression. Journal of Energy Storage, 5:212-223, 2016.

[121 B.R. Bakshi and G. Stephanopoulos. Representation of process trends - IV. In-
duction of real-time patterns from operating data for diagnosis and supervisory
control. Computers & Chemical Engineering, 18(4):303-332, 1994.

[13] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique
occuring in the statistical analysis of probabalistic functions in Markov chains.
The Annals of Mathematical Statistics, 41:164-171, 1970.

[14] T. Baumh6fer, M. Briihl, S. Rothgang, and D. U. Sauer. Production caused
variation in capacity aging trend and correlation to initial cell performance.
Journal of Power Sources, 247:332-338, 2014.

[151 C. M. Bishop. Variational principal components. In International Conference
on Artificial Neural Networks, pages 509-514, 1999.

[16] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
2007.

[17] A. Bj6rck and G. H. Golub. Numerical methods for computing angles between
linear subspaces. Mathematics of Computation, 27:579-594, 1973.

[18] G. Blanchard, G. Lee, and C Scott. Semi-supervised novelty detection. Journal
of Machine Learning Research, 11:2973-3009, 2010.

[19] J. Blanchet and M. Vignes. A model-based approach to gene clustering with
missing observation reconstruction in a Markov random field framework. Jour-
nal of Computational Biology, 16:475-486, 2009.

[201 I. Bloom, J. Christophersen, and K. Gering. Differential voltage analyses
of high-power lithium-ion cells: 2. Applications. Journal of Power Sources,
139:304-313, 2005.

121] I. Bloom, B. W. Cole, J. J. Sohn, S. A. Jones, E. G. Polzin, V. S. Battaglia,
G. L. Henriksen, C. Motloch, R. Richardson, T. Unkelhaeuser, D. Ingersoll, and
H. L. Case. An accelerated calendar and cycle life study of Li-ion cells. Journal
of Power Sources, 101:238-247, 2001.

[221 I. Bloom, A. N. Jansen, D. P. Abraham, J. Knuth, S. A. Jones, V. S. Battaglia,
and G. L. Henriksen. Differential voltage analyses of high-power lithium-ion
cells: 1. Technique and application. Journal of Power Sources, 139:295-303,
2005.

[231 T. H. Bo, B. Dysvik, and I. Jonassen. LSimpute: Accurate estimation of missing
values in microarray data with least squares methods. Nucleic Acids Research,
32:e34, 2004.

188



[241 D. Bonne, M. A. Alvarez, and S. B. Jorgensen. Data driven modeling for moni-
toring and control of industrial fed-batch cultivations. Industrial & Engineering
Chemistry Research, 53:7365-7381, 2013.

[25] M. Borutzky. Bond graph modelling and simulation of multidisciplinary systems
- An introduction. Simulation Modelling Practice and Theory, pages 3-21, 2009.

[261 R. Boubour, C. Jard, A. Aghasaryan, E. Fabre, and A. Benveniste. A Petri
net approach to fault detection and diagnosis in distributed systems. Part I:
Application to telecommunication networks, motivations and modelling. In
Proceedings of the IEEE Conference on Decision and Control, pages 720-725,
1997.

[271 G. N. Brock, J. R. Shaffer, R. E. Blakesley, M. J. Lotz, and G. C. Tseng. Which
missing value imputation method to use in expression profiles: A comparative
study and two selection schemes. BMC Bioinformatics, 9:12, 2008.

[281 M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev, and R. J.
Staniewicz. Aging mechanism in Li ion cells and calendar life predictions. Jour-
nal of Power Sources, 97-98:13-21, 2001.

[291 A. J. Burnham, R. Viveros, and J. F. MacGregor. Frameworks for latent variable
multivariate regression. Journal of Chemometrics, 10:31-45, 1996.

[30] J. C. Burns, G. Jain, A. J. Smith, K. W. Eberman, E. Scott, J. P. Gardner,
and J. R. Dahn. Evaluation of effects of additives in wound Li-ion cells through
high precision coulomtry. Journal of the Electrochemical Society, 158:A255-
A261, 2011.

1311 J. C. Burns, A. Kassam, N. N. Sinha, L. E. Downie, L. Solnickova, B. M.
Way, and J. R. Dahn. Predicting and extending the lifetime of Li-ion batteries.
Journal of the Electrochemical Society, 160:A1451-A1456, 2013.

[32] M. P. Cabasino, A. Giua, and C. Seatzu. Fault detection for discrete event
systems using Petri nets with unobservable transitions. Automatica, 46:1531-
1539, 2010.

[33] J. F. Cai, E. J. Candes, and Z. Shen. A singular value thresholding algorithm
for matrix completion. SIAM Journal of Optimization, 20:1956-1982, 2010.

[341 S. L. Campbell and R. Nikoukhah. Auxiliary Signal Design for Failure Detec-
tion. Princeton University Press, New Jersey, 2004.

[35] R. B. Cattell. The scree test for the number of factors. Multivariate Behavioral
Research, 1:245-276, 1966.

[361 L. Cerulo, C. Elkan, and M. Ceccarelli. Learning gene regulatory networks from
only positive and unlabeled data. BMC Bioinformatics, 11:228, 2010.

189



137] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. A CM
Computing Surveys, 41:15:1 - 15:58, 2009.

[381 0. Chapelle, B. Sch6lkopf, and A. Zien. Semi-supervised Learning. MIT Press,
Cambridge, 2006.

[391 S. Charaniya, W. S. Hu, and G. Karypis. Mining bioprocess data: Opportunities
and challenges. Trends in Biotechnology, 26(12):690-699, 2008.

[401 C. H. Chen, J. Liu, and K. Amine. Symmetric cell approach and impedance
spectroscopy of high power lithium-ion batteries. Journal of Power Sources,
96:321-328, 2001.

[411 J. Chen and R. J. Patton. Robust Model-based Fault Diagnosis for Dynamic
Systems. Springer, Boston, 1999.

142] Z. Chen, D. Lovett, and J. Morris. Process analytical technologies and real time
process control a review of some spectroscopic issues and challenges. Journal
of Process Control, 21:1467-1482, 2011.

1431 G. A. Cherry and S. J. Qin. Multiblock principal component analysis based
on a combined index for semiconductor fault detection and diagnosis. IEEE
Transactions on Semiconductor Manufacturing, 19(2):159-172, 2006.

144] L. H. Chiang and R. D. Braatz. Process monitoring using causal map and
multivariate statistics: Fault detection and identification. Chemometrics and
Intelligent Laboratory Systems, 65:159-178, 2003.

[451 L. H. Chiang, B. Jiang, X. Zhu, D. Huang, and R. D. Braatz. Diagnosis of
multiple and unknown faults using the causal map and multivariate statistics.
Journal of Process Control, 28:27-39, 2015.

[46] L. H. Chiang, E. L. Russell, and R. D. Braatz. Fault diagnosis in chemical
processes using Fisher discriminant analysis, discriminant partial least squares
and principal component analysis. Chemometrics and Intelligent Laboratory
Systems, 50:240-252, 2000.

[47] L. H. Chiang, E. L. Russell, and R. D. Braatz. Fault Detection and Diagnosis
in Industrial Systems. Springer, London, 2001.

1481 S. W. Choi, C. Lee, J. M. Lee, J. H. Park, and 1. B. Lee. Fault detection and
identification of nonlinear processes based on kernel PCA. Chemometrics and
Intelligent Laboratory Systems, 75:55-67, 2005.

[491 J. Christensen and J. Newman. Effect of anode film resistance on the
charge/discharge capacity of a lithium-ion battery. Journal of the Electrochem-
ical Society, 150:A1416-A1420, 2003.

190



[501 J. Christensen and J. Newman. Cycable lithium and capacity loss in li-ion cells.
Journal of the Electrochemical Society, 152:A818-A829, 2005.

[511 A. Christoffersson. The One Component Model with Incomplete Data. PhD
thesis, Uppsala University, 1970.

[52] L. Clemmensen, T. Hastie, D. Witten, and B. Ersboll. Sparse discriminant
analysis. Technometrics, 53:406-413, 2011.

[53] Andrea Cordoba-Arenas, S. Onori, Y. Guezennec, and G. Rizzoni. Capacity
and power fade cycle-life model for plug-in hybrid electric vehicle lithium-ion
battery cells containing blended spinel and layered-oxide positive electrodes.
Journal of Power Sources, 278:476-483, 2015.

[541 M. F. Da Silva, K. M. Muradov, and D. R. Davies. Review, analysis and
comparison of intelligent well monitoring systems. In SPE Intelligent Energy
International, pages 1-20, 2012.

1551 databricks. Apache Spark, 2016.

[56] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 39:1-38, 1977.

[57] D. L. Donoho and M. Gavish. The optimal hard threshold for singular values
is 4/V3. Technical report, Stanford University, 2013.

158] J.J. Downs and E. F. Vogel. A plant-wide industrial process control problem.
Computers L Chemical Engineering, 17:245-255, 1993.

[59] M. Dubarry, V. Svoboda, R. Hwu, and B. Y. Liaw. Incremental capacity anal-
ysis and close-to-equilibrium OCV measurements to quantify capacity fade in
commercial rechargeable lithium batteries. Electrochemical and Solid-State Let-
ters, 9:A454-A457, 2006.

1601 M. Dubarry, C. Truchot, and B. Y. Liaw. Synthesize battery degredation modes
via a diagnostic and prognostic model. Journal of Power Sources, 219:204-216,
2012.

[611 M. Dubarry, C. Truchot, and B. Y. Liaw. Cell degradation in commercial
LiFePO4 cells with high-power and high-energy designs. Journal of Power
Sources, 258:408-419, 2014.

[621 R. 0. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John
Wiley and Sons, New York, 1973.

[63] S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination meth-
ods for the classification of tumors using gene expression data. Journal of the
American Statistical Association, 97:77-87, 2002.

191



[641 R. Dunia, S. J. Qin, T. F. Edgar, and T. J. McAvoy. Identification of faulty sen-
sors using principal component analysis. AIChE Journal, 42:2797-2812, 1996.

[651 M. Ecker, J. B. Gerschler, J. Vogel, S. Kabitz, F. Hust, P. Dechent, and
D. U. Sauer. Development of a lifetime prediction model for lithium-ion bat-
teries based on extended accerlated aging test data. Journal of Power Sources,
215:248-257, 2012.

166] M. Ecker, N. Nieto, S. Kdbitz, J. Schmalstieg, H. Blanke, A. Warnecke, and
D. U. Sauer. Calendar and cycle life study of Li(NiMnCo)02-based 18650
lithium-ion batteries. Journal of Power Sources, 248:839-851, 2014.

[67] B. Efron, T. Hastie, I. Johnstone, and Tibshirani R. Least angle regression.
The Annals of Statistics, 32:407-451, 2004.

168] C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled
data. In ACM SIGKDD International Conference on Knowledge Discovery in
Data Mining, pages 213-220, 2008.

[691 V. Etacheri, R. Maron, R. Elazari, G. Slitra, and D. Aurbach. Challenges in the
development of advanced Li-ion batteries: A review. Energy & Environmental
Science, 4:3243-3262, 2011.

170] M. Everingham, L. Van Gool, C. Williams, and A. Zisserman. The pascal
visual object classes (voc) challenge. International Journal of Computer Vision,
88(2):303-338, 2005.

[71] P. J. Feebstra, P. J. Mosterman, G. Biswas, and P. C. Breedveld. Bond graph
modeling procedures for fault detection and isolation of complex flow processes.
Simulation Series, 33:77-84, 2001.

[721 M. A. T. Figueiredo. Adaptive sparseness for supervised learning. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 25:1150-1159, 2003.

[73j D. P. Finegan, E. Tudisco, M. Scheel, J. B. Robinson, 0. 0. Taiwo, D. S.
Eastwood, P. D. Lee, M. Di Michiel, B. Bay, S. A. Hall, G. Hinds, D. J. L.
Brett, and P. R. Shearing. Quantifying bulk electrode strain and material
displacement within lithium batteries via high-speed operando tomography and
digital volume correlation. Advanced Science, 3:150332, 2016.

[74] P. M. Frank and X. Ding. Survey of robust residual generation and evaluation
methods in observer-based fault detection systems. Journal of Process Control,
7(6):403-424, 1997.

[751 R. Fujimaki, T. Yairi, and K. Machida. An approach to spacecraft anomaly
detection problem using kernel feature space. In ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, pages 401-410, 2005.

192



[761 B. D. Fulcher and N. S. Jones. Highly comparative feature-based time-
series classification. IEEE Transactions on Knowledge and Data Engineering,
26:3026-3037, 2014.

177] B. D. Fulcher, M. A. Little, and N. S. Jones. Highly comparative time-series
analysis: The empirical structure of time series and their methods. Journal of
the Royal Society Interface, 10:20130048, 2013.

[78] P. J. Garcia-Laencina, J. L. Sancho-G6mez, and A. R. Figueiras-Vidal. Pattern
classification with missing data: A review. Neural Computing and Applications,
19:263-282, 2010.

[791 Z. Ge and Z. Song. Semisupervised Bayesian methods for soft sensor modeling
with unlabeled data samples. AIChE Journal, 57:2109-2119, 2011.

[801 Z. Ge, S. Zhong, and Y. Zhang. Semisupervised kernel learning for FDA model
and its application for fault classification in industrial processes. IEEE Trans-
actions on Industrial Informatics, 12:1403-1411, 2016.

[81] P. Geladi and B. R. Kowalski. Partial least-squares regression: A tutorial.
Analytica Chimica Acta, 185:1-17, 1986.

f82] W. E. Gent, L. Kipil, Y. Liang, Q. Li, T. Barnes, S.-J. Ahn, K. H. Stone,
M. McIntire, J. Hong, J. H. Song, Yiyang Li, A. Mehta, S. Ermon, T. Tylisz-
cak, D. Vine, J.-H. Park, S.-K. Doo, M. F. Toney, W. Yang, D. Prendergast,
and W. C. Chueh. Couling between oxygen and redox and cation migration
explains unusual electrochemistry in lithium-rich layered oxides. Nature Com-
munications, 8:2091, 2017.

[83] J. J. Gertler. Fault Detection and Diagnosis in Engineering Systems. Mercel
Dekker, New York, 1998.

[841 K. Goh and A. Barabasi. Burstiness and memory in complex systems. Euro-
physics Letters, 81:1-5, 2008.

[85] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.
Lander. Molecular classification of cancer: Class discovery and class prediction
by gene expression monitoring. Science, 286(5439):531-537, 1999.

[86] J. B. Goodenough and Y. Kim. Challenges for rechargeable Li batteries. Chem-
istry of Materials, 22:587-603, 2010.

[87] J. B. Goodenough and K.-S. Park. The Li-ion rechargeable battery: A perspec-
tive. Journal of the American Chemical Society, 135:1167-1176, 2013.

[88] B. Grung and R. Manne. Missing values in principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 42:125-139, 1998.

193



1891 J. C. Gunther, J. S. Conner, and D. E. Seborg. Fault detection and diagnosis in
an industrial fed-batch cell culture process. Biotechnology Progress, 23(4):851-
857, 2007.

[901 S. Hajizadeh, Z. Li, R. P. B. J. Dollevoet, and D. M. J. Tax. Evaluating clas-
sification performance with only positive and unlabeled samples. In Structural,
Syntactic, and Statistical Pattern Recognition, pages 233-242. Springer, Berlin,
2014.

[911 S. J. Harris, D. J. Harris, and C. Li. Failure statistics for commercial lithium ion
batteries: A study of 24 pouch cells. Journal of Power Sources, 342:589-597,
2017.

192] S. J. Harris and P. Lu. Effects of inhomogeneities - nanoscale to mesoscale -
on the durability of Li-ion batteries. The Journal of Physical Chemistry C,
117:6481-6492, 2013.

[93] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, 2nd edition, 2013.

[94] C. Higuera, K. J. Gardiner, and K. J. Cios. Self-organizing feature maps identify
proteins critical to learning in a mouse model of Down syndrome. PLOS One,
10:e0129126, 2015.

[951 D. M. Himmelblau. Fault Detection and Diagnosis in Chemical and Petrochem-
ical Processes. Elsevier, New York, 1978.

[961 A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12:55-67, 1970.

[971 M. S. Hong, K. A. Severson, M. Jiang, A. E. Lu, J. C. Love, and R. D. Braatz.
Challenges and opportunities in biopharmaceutical manufacturing and control.
In International Conference on Chemical Process Control, 2017.

[98] J. L. Horn. A rationale and test for the number of factors in factor analysis.
Psychometrika, 30:179-185, 1965.

[99] H. Hotelling. Analysis of a complex of statistical variables into principal com-
ponents. Journal of Educational Psychology, 24:417-441, 1933.

[100] C. Hu, G. Jain, P. Tamirisa, and T. Gorka. Method for estimating the ca-
pacity and predicting remaining useful of lithium-ion battery. Applied Energy,
126:182-189, 2014.

[1011 I. Hwang, S. Kim, Y. Kim, and C. E. Seah. A survey of fault detection, iso-
lation, and reconfiguration methods. IEEE Transactions on Control Systems
Technology, 18(3):636-653, 2010.

194



[1021 R. J. Hyndman, E. Wang, and N. Laptev. Large-scale unusual time series
detection. In IEEE International Conference on Data Mining Workshop, pages
1616-1619, 2015.

11031 IBM. The four v's of big data, 2016.

[104] ICH. Pharmaceutical Development Q8(R2), 2009.

1105] A. Ilin and T. Raiko. Practical approaches to principal component analysis in
the presence of missing values. Journal of Machine Learning Reserach, 11:1957-
2000, 2010.

[1061 Imarc. Global biopharmaceutical market report and forecast, 2012.

[1071 S. A. Imtiaz and S. L. Shah. Treatment of missing values in process data
analysis. The Canadian Journal of Chemical Engineering, 86:838-858, 2008.

[1081 R. Isermann. Model-based fault-detection and diagnosis - Status and applica-
tions. Annual Reviews in Control, 29:71-85, 2005.

11091 R. Isermann and P. Ball6. Trends in the application of model-based fault detec-
tion and diagnosis of technical processes. Control Engineering Practice, 5:709-
719, 1997.

[1101 J. E. Jackson and G. S. Mudholkar. Control procedures for residuals associated
with principal component analysis. Technometrics, 21:341-349, 1979.

11111 A. Jain, K. A. Persson, and G. Ceder. Research update: The materials genome
intiative: Data sharing and the impact of collaborative ab initio databases. APL
Materials, 4:053102, 2016.

[112] B. Jiang, D. Huang, X. Zhu, F. Yang, and R. D. Braatz. Canonical variate
analysis-based contributions for fault identification. Journal of Process Control,
26:17-25, 2015.

[113] B. Jiang, X. Zhu, D. Huang, and R. D. Braatz. Canonical variate analysis-based
monitoring of process correlation structure using casual feature representation.
Journal of Process Control, 52:109-116, 2015.

[1141 B. Jiang, X. Zhu, D. Huang, J. A. Paulson, and R. D. Braatz. A combined
canonical variate analysis and Fisher discriminant analysis (CVA-FDA) ap-
proach for fault diagnosis. Computers & Chemical Engineering, 77:1-9, 2015.

[115] J. Jiang and X. Yu. Fault-tolerant control systems: A comparative study be-
tween active and passive approaches. Annual Reviews in Control, 36(1):60-72,
2012.

195



[116] M. Jiang, Z. Zhu, E. Jimenez, C. D. Papageorgiou, J. Waetzig, A. Hardy,
M. Langston, and R. D. Braatz. Continuous-flow tubular crystallization in slugs
spontaneously induced by hydrodyanmics. Crystal Growth & Design, 14:851-
860, 2014.

[1171 J. Jin and J. Shi. Automatic feature extraction of waveform signals for in-process
diagnositic performance improvement. Journal of Intelligent Manufacturing,
12:257-268, 2001.

[118] I. T. Jolliffe. Principal Component Analysis. Springer, New York, 2nd edition,
2002.

[1191 B. C. Juricek, D. E. Seborg, and W. E. Larimore. Identification of the Ten-
nessee Eastman challenge process with subspace methods. Control Engineering
Practice, 9(12):1337-1351, 2001.

[120] B. C. Juricek, D. E. Seborg, and W. E. Larimore. Fault detection using canoni-
cal variate analysis. Industrial & Engineering Chemistry Research, 43:458-474,
2004.

[121] H. Kim, G. H. Golub, and H. Park. Missing value estimation for DNA mi-
croarray gene expression data: Local least squares imputation. Bioinformatics,
21:187-198, 2004.

[1221 H. Kim and H. Park. Sparse non-negative matrix factorizations via alternating
non-negativity-constrained least squares for microarray data analysis. Bioin-
formatics, 23:1495-1502, 2007.

[123] A. 0. Kirdar, J. S. Conner, J. Baclaski, and A. S. Rathore. Application of
multivariate analysis toward biotech processes: Case study of a cell-culture
unit operation. Biotechnology Progress, 23(1):61-67, 2007.

[124] J. Korbicz, J. M. Kosielny, Z. Kowalczuk, and W. Cholewa, editors. Fault
Diagnosis: Models, Artificial Intelligence, Applications. Springer-Verlag, Berlin,
2004.

[1251 J. M. Koscielny and Z. M. Labeda-Grudziak. Double fault distinguishability in
linear systems. International Journal of Applied Mathematics and Computer
Science, 23:395-406, 2013.

[1261 T. Kourti. The Process Analytical Technology initiative and multivariate pro-
cess analysis, monitoring and control. Analytical and Bioanalytical Chemistry,
384:1043-1048, 2006.

[127] J. V. Kresta, J. F. MacGregor, and T. E. Marlin. Multivariate statistical process
monitoring of process operating performance. Canadian Journal of Chemical
Engineering, 69:35-47, 1991.

196



[128] W. Ku, R. H. Storer, and C. Georgakis. Disturbance detection and isolation by
dynamic principal component analysis. Chemometrics and Intelligent Labora-
tory Systems, 30:179-196, 1995.

[1291 R. Lakerveld, B. Benyahia, R. D. Braatz, and P. I. Barton. Model-based design
of a plant-wide control strategy for a continuous pharmaceutical plant. AIChE
Journal, 59:3671-3685, 2013.

[1301 W. E. Larimore. System identification, reduced-order filtering and modeling via
canonical variate analysis. In Proceedings of the American Control Conference,
pages 445-451, 1983.

[131] W.E. Larimore. Canonical variate analysis in identification, filtering, and adap-
tive control. In Proceedings of the IEEE Conference on Decision and Control,
pages 596-604, 1990.

[1321 Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436-444,
2015.

[133] Y. LeCun, C. Cortes, and C.J.C. Burges. The MNIST database of handwritten
digits, 1998. Available for download at http://yann.lecun.com/exdb/mnist/,
retrieved on May 22, 2015.

[1341 J. H. Lee and A. W. Dorsey. Monitoring of batch processes through state-space
models. AIChE Journal, 50:1198-1210, 2004.

[135] M. Lewerenz, A. Marongiu, A. Warnecke, and D. U. Sauer. Differential volt-
age analysis as a tool for analyzing inhomogeneous aging: A case study for
LiFePO4Igraphite cylindrical cells. Journal of Power Sources, 368:57-67, 2017.

[1361 M. Lewerenz, J. Miinnix, J. Schmalstieg, S. Kdbitz, M. Knips, and D. U. Sauer.
Systematic aging of commercial LiFePO4Igraphite cylindrical cells including a
theory explaining rise of capactiy during aging. Journal of Power Sources,
345:254-263, 2017.

11371 W. Li, Q. Guo, and C. Elkan. A positive and unlabeled learning algorithm
for one-class classification of remote-sensing data. IEEE Transactions on Geo-
science and Remote Sensing, 49:717-725, 2011.

[1381 Y. Li, S. Meyer, J. Lim, S. C. Lee, W. E. Gent, S. Marchesini, H. Krishnan,
T. Tyliszcak, D. Shapiro, A. L. D. Kilcoyne, and W. C. Chueh. Effects of particle
size, electronic connectivity, and incoherent nanoscale domains on the sequence
of lithiation in LiFePO4 porous electrodes. Advanced Materials, 27:6591-6597,
2015.

11391 B. Y. Liaw, R. G. Jungst, G. Nagasubramanian, H. L. Case, and D. H. Doughty.
Modeling capacity fade in lithium-ion cells. Journal of Power Sources, 140:157-
161, 2005.

197



[1401 Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with adap-
tive penalty for low rank representation. In Advances in Neural Information
Processing Systems, pages 612-620, 2011.

[141] R. J. A. Little and D. B. Rubin. Statisical Analysis with Missing Data. John
Wiley & Sons, New Jersey, 2nd edition, 2002.

[1421 B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu. Building text classifiers using
positive and unlabeled examples. In ICDM Data Mining, pages 179-186, 2003.

[1431 D. Liu, J. Pang, J. Zhou, Y. Peng, and M. Pecht. Prognostics for state of
health estimation of lithium-ion batteries based on combination Gaussian pro-
cess function regression. Microelectronics Reliability, 53:832-839, 2013.

[144] J. Liu. On-line soft sensor for polyethylene process with multiple production
grades. Control Engineering Practice, 15:769-778, 2007.

[1451 P. Liu, J. Wang, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge,
H. Tataria, J. Musser, and P. Finamore. Aging mechanisms of LiFePO4 bat-
teries deduced by electrochemical and structural analyses. Journal of the Elec-
trochemical Society, 157:A499-A507, 2010.

[1461 S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Infor-
mation Theory, 28:129-137, 1982.

[147] C. B. Low, D. Wang, S. Arogeti, and M. Luo. Quantitative hybrid bond graph-
based fault detection and isolation. IEEE Transactions on Automation Science
and Engineering, 7:558-569, 2010.

[148] Scale-Up Systems Ltd. DynoChem, 2017.

[149] A. E. Lu, J. A. Paulson, N. J. Mozdzierz, A. Stockdale, F. N. Ford Versypt,
K. R. Love, J. C. Love, and R. D. Braatz. Control systems technology in
the advanced manufacturing of biologic drugs. In Proceedings of the IEEE
Conference on Control Applications, pages 1505-1515, 2015.

1150] J. Lu, T. Wu, and K. Amine. State-of-the-art characterization techniques for
advanced lithium-ion batteries. Nature Energy, 2:17011, 2017.

11511 P. R. Lyman and C. Georgakis. Plant-wide control of the Tennessee Eastman
problem. Computers & Chemical Engineering, 19:321-331, 1995.

[1521 J. MacGregor and A. Cinar. Monitoring, fault diagnosis, fault-tolerant control
and optimization: Data driven methods. Computers & Chemical Engineering,
47:111-120, 2012.

[153] J. F. MacGregor and T. Kourti. Statistical process control of multivariate
processes. Control Engineering Practice, 3:403-414, 1995.

198



[1541 S. Mahadevan and S. L. Shah. Fault detection and diagnosis in process data us-
ing one-class support vector machines. Journal of Process Control, 19(10):1627-
1639, 2009.

[1551 M. Maki, J. Jiang, and K. Hagino. A stability guaranteed active fault-tolerant
control system against actuator failures. In Proceedings of the IEEE Conference
on Decision and Control, pages 1893-1898, 2001.

[1561 B. M. Marlin. Missing Data Problems in Machine Learning. PhD thesis, Uni-
versity of Toronto, 2008.

11571 G. R. Marseglia, J. K. Scott, L. Magni, R. D. Braatz, and D. M. Raimondo.
A hybrid stochastic-deterministic approach for active fault diagnosis using sce-
nario optimization. In Proceedings of the IFAC World Congress, pages 1102-
1107, 2014.

1158] J. Max. Quantizing for minimum distortion. IRE Transactions on Information
Theory, 6:7-12, 1960.

[1591 R.K. Mehra and J. Peschon. An innovations approach to fault detection and
diagnosis in dynamic systems. Automatica, 7(5):637-640, 1971.

[160] N. Meinshausen. Relaxed lasso. Computational Statistics & Data Analysis,
52:374-393, 2007.

1161] S. M. Mercier, B. Diepenbroek, M. C. F. Dalm, and R. H. Wijffels. Multivariate
data analysis as a PAT tool for early bioprocess development data. Journal of
Biotechnology, 167:262-270, 2013.

[162] A. Mesbah, S. Streif, R. Findeisen, and R. D. Braatz. Active fault diagnosis for
nonlinear systems with probabilistic uncertainties. In Proceedings of the IFA C
World Congress, pages 7079-7084, 2014.

[1631 N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American
Statistical Assocation, 44:335-341, 1949.

[164] I. Monroy, R. Benitez, G. Escudero, and M. Graells. A semi-supervised approach
to fault diagnosis for chemical processes. Computers & Chemical Engineering,
34:631-642, 2010.

[1651 D. C. Montgomery and G. C. Runger. Applied Statistics and Probability for
Engineers. John Wiley & Sons, Hoboken, NJ, 5th edition, 2011.

[166] M. Mrugalski. An unscented Kalman filter in designing dynamic GMDH neural
networks for robust fault detection. International Journal of Applied Mathe-
matics and Computer Science, 23:157-169, 2013.

[1671 M. Mrugalski. Advanced Neural Network-Based Computational Schemes for
Robust Fault Diagnosis. Springer, Cham, 2014.

199



[168] T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of
the IEEE, volume 77, pages 541-580, 1989.

1169] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press,
Cambridge, MA, 2012.

[170] R. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Learning in Graphical Models, pages 355-368.
Springer, Netherlands, 1998.

[1711 P. R. C. Nelson, P. A. Taylor, and J. F. MacGregor. Missing data methods in
PCA and PLS: Score calculations with incomplete observations. Chemometrics
and Intelligent Laboratory Systems, 35:45-65, 1996.

1172] R. Nikoukhah. Guaranteed active failure detection and isolation for linear dy-
namical systems. Automatica, 34(11):1345-1358, 1998.

[1731 P. Nomikos and J. F. MacGregor. Monitoring batch processes using multiway
principal component analysis. AIChE Journal, 40:1361-1375, 1994.

[1741 P. Nomikos and J. F. MacGregor. Multivariate SPC charts for monitoring batch
processes. Technometrics, 37:41-59, 1995.

11751 B. Nykvist and M. Nilsson. Rapidly falling costs of battery packs for electric
vehicles. Nature Climate Change, 5:329-332, 2015.

[1761 S. Oba, M. Sato, I. Takemasa, M. Monden, K. Matsubara, and S. Ishii. A
Bayesian missing value estimation method for gene expression profile data.
Bioinformatics, 19:2088-2096, 2003.

[1771 U. S. Department of Health & Human Services. Guidance for industry, process
validation: General principles and practices, 2011.

[1781 0. O'Malley et al. Apache Hadoop, 2016.

[179] M. Ouyang, W. J. Welsh, and P. Georgopoulos. Gaussian mixture clustering
and imputation of microarray data. Bioinformatics, 20:917-923, 2004.

[1801 M. R. Palacin and A. de Guibert. Why do batteries fail? Science, 351:1253292,
2016.

[181J S. Pampuri, A. Schirru, G. Fazio, and G. De Nicolao. Multilevel lasso applied
to virtual metrology in semiconductor manufacturing. In IEEE International
Conference on Automation Science and Engineering, pages 244-249, 2001.

[182] T. Park and G. Casella. The Bayesian lasso. Journal of the American Statistical
Association, 103:681-686, 2008.

[183] E. Parzen. On estimation of a probability density function and mode. The
Annals of Mathematical Statistics, 33:1065-1076, 1962.

200



[1841 R. J. Patton. Fault-tolerant control systems: The 1997 situation. IFAC Sym-
posium on Fault Detection, Supervision and Safety for Technical Processes,
3:1033-1054, 1997.

[185] D. B. Paul and J. M. Baker. The design for the Wall Street Journal-based CSR
corpus. In Proceedings of the Workshop on Speech and Natural Language, pages
357-362, 1992.

1186] S. Paul, C. Diegelmann, H. Kabza, and T. Wener. Analysis of ageing inho-
mogeneities in lithium-ion battery systems. Journal of Power Sources, 239,
2013.

[1871 H.M. Paynter. Analysis and Design of Engineering Systems. MIT Press, Cam-
bridge, MA, 1961.

11881 K. Pearson. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh and Dublin Philosophical Magazine and Journal of Science,
2:559-572, 1901.

[189] C. A. Petri. Kommunikation mit automaten. PhD thesis, Bonn: Institut fUr
Instrumentelle Mathematik, 1962.

11901 J. Pieracci, L. Perry, and L. Conley. Using partition designs to enhance purifi-
cation process understanding. Biotechnology and Bioengineering, 107:814-824,
2010.

1191] M. B. Pinson and M. Z. Bazant. Theory of SEI formation in rechargeable
batteries: Capacity fade, accelerated aging and lifetime prediction. Journal of
the ELectrochemical Society, 160:A243-A250, 2013.

[192] J. C. Platt. Sequential minimal optimization: A fast algorithm for training
support vector machines. Technical Report MSR-TR-98-14, Microsoft Research,
Cambridge, MA, 1998.

[193] S. J. Qin. Statistical process monitoring: Basics and beyond. Journal of Chemo-
metrics, 17:480-502, 2003.

[194] S. J. Qin. Process data analytics in the era of Big Data. AIChE Journal,
60:3092-3100, 2014.

11951 D. M. Raimondo, R. D. Braatz, and J. K. Scott. Active fault diagnosis using
moving horizon input. In Proceedings of the European Control Conference, pages
3131-3136, 2013.

[1961 D. M. Raimondo, G. R. Marseglia, R. D. Braatz, and J. K. Scott. Fault-tolerant
model predictive control with active fault isolation. In Proceedings of Conference
on Control and Fault-Tolerant Systems, pages 444-449, 2013.

201



[1971 P. Ramadass, B. Haran, R. E. White, and B. N. Popov. Mathematical modeling
of the capacity fade of Li-ion cells. Journal of Power Sources, 123:230-240, 2003.

[198] V. Ramadesigan, K. Chen, N. A. Burns, V. Boovaragavan, R. D. Braatz, and
V. R. Subramanian. Parameter estimation and capacity fade analysis of lithium-
ion batteries using reformulated models. Journal of the Electrochemical Society,
158:A1048-A1054, 2011.

11991 0. Ramilo, W. Allman, W. Chung, A. Mejias, M. Ardura, C. Claser, K.M.
Wittkowski, B. Piqueras, J. Banchereau, A.K. Palucka, and D. Chaussabel.
Gene expression patterns in blood leukocytes discriminate patients with acute
infections. Blood, 109:2066-2077, 2007.

12001 M. Rashid and A. Gupta. Effect of relaxation periods over cycling performance
of a Li-ion battery. Journal of the Electrochemical Society, 162:A3145-A3153,
2015.

[2011 M. Rasmussen and R. Bro. A tutorial on the lasso approach to sparse modeling.
Chemometrics and Intelligent Laboratory Systems, 119:21-31, 2012.

[202] A. S. Rathore, N. Bhushan, and S. Hadpe. Chemometrics applications in biotech
processes: A review. Biotechnology Progress, 27:307-315, 2011.

12031 E. Read, J. T. Park, R. Shah, B. S. Riley, K. A. Brorson, and A. S. Rathore. Pro-
cess analytical technology (PAT) for biopharmaceutical products: Part II con-
cepts and applications. Biotechnology and Bioengineering, 104:276-284, 2010.

[2041 E. Read, R. Shah, B. S. Riley, J. Park, K. A. Brorson, and A. S. Rathore. Pro-
cess analytical technology (PAT) for biopharmaceutical products: Part I con-
cepts and applications. Biotechnology and Bioengineering, 105:285-295, 2010.

[2051 M. S. Reis, R. D. Braatz, and L. H. Chiang. Big data challenges and future
research directions. Chemical Engineering Progress, 112(3):46-50, 2016.

[206] M. S. Reis and P. M. Saraiva. Heteroscedastic latent variable modelling with
applications to multivariate statistical process control. Chemometrics and In-
telligent Laboratory Systems, 80:57-66, 2006.

12071 Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent.
A review of near infrared spectroscopy and chemometrics in pharmaceutical
technologies. Journal of Pharmaceutical and Biomedical Analysis, 44:683-700,
2007.

[2081 S. Roweis. EM algorithms for PCA and SPCA. In Advances in Neural Infor-
mation Processing Systems, pages 626-632, 1998.

[2091 D. B. Rubin. Inference and missing data. Biometrika, 63:581-592, 1976.

202



[2101 E. L. Russell, L. H. Chiang, and R. D. Braatz. Tennessee Eastman Problem
Simulation Data. http://web.mit.edu/braatzgroup/links.html, 1998. accessed
on April 12 2017.

[211] E. L. Russell, L. H. Chiang, and R. D. Braatz. Data-driven Techniques for Fault
Detection and Diagnosis in Chemical Processes. Springer, New York, 2000.

[2121 E. L. Russell, L. H. Chiang, and R. D. Braatz. Fault detection in industrial
processes using canonical variate analysis and dynamic principal component
analysis. Chemometrics and Intelligent Laboratory Systems, 51:81-93, 2000.

[2131 M. Safari and C. Delacourt. Aging of a commercial graphite/LiFePO4 cell.
Journal of the Electrochemical Society, 158:A1123-A1135, 2011.

1214] M. Safari, M. Morcrette, A. Teyssot, and C. Delacourt. Life-prediction meth-
ods for lithium-ion batteries derived from a fatigue approach I. Introduction:
Capactiy-loss prediction based on damage accumulation. Journal of the Elec-
trochemical Society, 157:A713-A720, 2010.

[215] R. Salakhutdinov and S. Roweis. Adaptive overrelaxed bound optimization
methods. In Proceedings of the Twentieth International Conference on Machine
Learning, pages 664-671, 2003.

1216] E. Sarasketa-Zabala, F. Aguesse, I. Villarreal, L. M. Rodriguez-Martinez, C. M.
L6pez, and P. Kubiak. Understanding lithium inventory loss and sudden per-
formance fade in cylindrical cells during cycling with deep-discharge steps. The
Journal of Physical Chemistry C, 119:896-906, 2015.

[2171 J. L. Schafer. Multiple imputation: A primer. Statistical Methods in Medical
Research, 8:3-15, 1999.

1218] 0. Schmidt, A. Hawkes, Gambhir A., and I. Staffell. The future cost of electrical
energy storage based on experience rates. Nature Energy, 2:17110, 2017.

1219] B. Sch6lkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson.
Estimating the support a high-dimensional distribution. Neural Computation,
13:1443-1471, 2001.

[2201 S. F. Schuster, T. Bach, E. Fleder, J. Miller, M. Brand, G. Sextl, and Jossen A.
Nonlinear aging characteristics of lithium-ion cells under different operational
conditions. Journal of Energy Storage, 1:44-53, 2015.

[2211 S. F. Schuster, Martin J. Brand, P. Berg, M. Cleissenberger, and A. Jossen.
Lithium-ion cell-to-cell variation during battery electric vehicle operation. Jour-
nal of Power Sources, 297:242-251, 2015.

[2221 J. K. Scott, R. Findeisen, R. D. Braatz, and D. M. Raimondo. Design of
active inputs for set-based fault diagnosis. In Proceedings of American Control
Conference, pages 3561-3566, 2013.

203



12231 J. K. Scott, R. Findeisen, R. D. Braatz, and D. M. Raimondo. Input design for
guaranteed fault diagnosis using zonotopes. Automatica, 50:1580-1589, 2014.

12241 J. K. Scott, G. R. Marseglia, L. Magni, R. D. Braatz, and D. M. Raimondo. A
hybrid stochastic-deterministic input design method for active fault diagnosis.
In Proceedings of the IEEE Conference on Decision and Control, pages 5656-
5661, 2013.

[225] S. R. Searle. Matrix Algebra Useful for Statistics. John Wiley & Sones, 1982.

[226] M. S. B. Sehgal, I. Gondal, and L. S. Dooley. Collateral missing value impu-
tation: A new robust missing value estimation algorithm for microarry data.
Bioinformatics, 21:2417-2423, 2005.

12271 A. D. Sendek, Q. Yang, E. D. Cubuk, K.-A. N. Duerloo, Y. Cui, and E. J. Reed.
Holistic computational structure screening of more than 12000 candidates for
solid lithium-ion conductor materials. Energy & Environmental Science, 10:306-
320, 2017.

[228] K. Severson, J. G. VanAntwerp, V. Natarajan, C. Antoniou, J. Th6mmes, and
R. D. Braatz. Elastic net with Monte Carlo sampling for data-based modeling
in biopharmaceutical manufacturing facilities. Computers & Chemical Engi-
neering, 80:30-36, 2015.

1229] K. A. Severson and R. D. Braatz. The data analytics triangle. In AIChE Spring
National Meeting, page 480093, 2017.

[230] H. J. Shin, D.H. Eom, and S.S. Kim. One-class support vector machines -
An application in machine fault detection and classification. Computers L
Industrial Engineering, 48:395-408, 2005.

[231] A. Shukla and J. Thdmmes. Recent advances in large-scale production of mon-
oclonal antibodies and related proteins. Trends in Biotechnology, 28:253-261,
2010.

[232] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chap-
man and Hall, New York, 1986.

1233] S. Simani. Residual generator fuzzy identification for automotive diesel engine
fault diagnosis. International Journal of Applied Mathematics and Computer
Science, 23:419-438, 2013.

[234] S. Simani, C. F. Fantuzzi, and R. J. Patton. Model-based Fault Diagnosis in
Dynamic Systems Using Identification Techniques. Springer, New York, 2003.

[235] A. Simoglou, E. B. Martin, and A. J. Morris. Statistical performance monitoring
of dynamic multivariate processes using state space modelling. Computers &
Chemical Engineering, 26(6):909-920, 2002.

204



[236] S. Sjostrand, L. H. Clemmensen, R. Larsen, and B. Ers-
boll. SpaSM: A Matlab Toolbox for Sparse Statistical Modeling.
http://www2.imm.dtu.dk/projects/spasm/, 2004-2016.

[237] A. J. Smith, J. C. Burns, and J. R. Dahn. High-precision differential capacity
analysis of LiMn204/graphite cells. 14:A39-A41, 2011.

[238] A. J. Smith, N. N. Sinha, and J. R. Dahn. Narrow range cycling and storage of
commercial Li ion cells. Journal of the Electrochemical Society, 160:A235-A242,
2013.

[239] R. Spotnitz. Simulation of capacity fade in lithium-ion batteries. Journal of
Power Sources, 113:72-80, 2003.

1240] V. S. Srivinvasan and M. A. Jafari. Fault detection/monitoring using time
Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, 23:1155-
1162, 1993.

[2411 D. M. J. Tax. One-class Classification. PhD thesis, Delft University of Tech-
nology, 2001.

[242] D. M. J. Tax and R. P. W. Duin. Suport vector domain description. Pattern
Recognition Letters, 20:1191-1199, 1999.

12431 D. M. J. Tax and R. P. W. Duin. Support vector data description. Machine
Learning, 54:45-66, 2004.

12441 M. M. Thackeray, Sun-Ho Kang, C. S. Johnson, J. T. Vaughey, R. Benedek,
and S. A. Hackney. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes
for lithium-ion batteries. Journal of Materials Chemistry, 17:3112-3125, 2007.

[245] E. V. Thomas, I. Bloom, J. P. Christophersen, and V. S. Battaglia. Statistical
methodology for predicting the life of lithium-ion cells via accelerated degrada-
tion testing. Journal of Power Sources, 184:312-317, 2008.

[246] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 58:267-288, 1996.

12471 R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multi-
ple cancer types by shrunken centroids of gene expression. Proceedings of the
National Academy of Sciences, 99:6567-6572, 2002.

[248] M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis.
Technical report, Aston University, 1997.

[249] M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61:611-622, 1999.

205



[250] T. Togkalidou, R. D. Braatz, B. K. Johnson, 0. Davidson, and A. Andrews.
Experimental design and inferential modeling in pharmaceutical crystallization.
AIChE Journal, 47:160-168, 2001.

[2511 T. Tomohiro and M. Sugeno. Fuzzy identification of systems and its application
to modeling and control. IEEE Transactions on Systems, Man and Cybernetics,
15:116-132, 1985.

[2521 U. Tr6ltzsch, 0. Kanoun, and H.-R. Triinkler. Characterizing aging effects of
lithium-ion batteries by impedance spectroscopy. Electrochimica Acta, 51:1664-
1672, 2006.

[253] 0. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani,
D. Botstein, and R. B. Altman. Missing value estimation methods for DNA
microarrays. Bioinformatics, 17:520-525, 2001.

[254] E. Tziampazis and A. Sambanis. Modeling of cell culture processes. Cytotech-
nology, 14:191-204, 1994.

[255] C. Undey, S. Ertung, and A. Qinar. Online batch/fed-batch process performance
monitoring, quality prediction, and variable-contribution analysis for diagnosis.
Industrial & Engineering Chemical Research, 42:4645-4658, 2003.

1256] U.S. Department of Health and Human Services. Guidance for industry, process
validation: General principles and practices, 2011.

1257] P. Van Overshcee and B. De Moor. N4SID: Subspace algorithms for the iden-
tification of combined deterministic-stochastic systems. Automatica, 30:75-93,
1994.

[258] V. Venkatasubramanian, R. Rengaswamy, and S. N. Kavuri. A review of process
fault detection and diagnosis. Part II: Qualitative models and search strategies.
Computers & Chemical Engineering, 27:313-326, 2003.

1259] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin. A review of
process fault detection and diagnosis. Part III: Process history based methods.
Computers & Chemical Engineering, 27:327-346, 2003.

[260] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. Kavuri. A review of
process fault detection and diagnosis. Part I: Quantitative model-based meth-
ods. Computers & Chemical Engineering, 27:293-311, 2003.

12611 M. Verhaegen. Identification of the deterministic part of MIMO state space
models given in innovation form from input-output data. Automatica, 30:61-
74, 1993.

[262] M. Verhaegen. Subspace model identification. Part III: Analysis of the ordinary
output-error state space model identification algorithm. International Journal
of Control, 58:555-586, 1993.

206



[2631 M. Verhaegen. Application of a subspace model identification technique to
identify LTI systems operating in closed loop. International Journal of Control,
29:1027-1040, 1994.

1264] M. Verhaegen and P. Dewilde. Subspace model identification. Part I: The
output-error state space model identification class of algorithms. International
Journal of Control, 56:1187-1210, 1992.

[2651 M. Verhaegen and P. Dewilde. Subspace model identification. Part II: Analy-
sis of the elementary output-error state space model identification algorithm.
International Journal of Control, 56:1211-1241, 1992.

[2661 P. Verma, P. Maire, and Novik. A review of the features and analyses of the
solid electrolyte interface in Li-ion batteries. Electrochimica Acta, 55:6332-6341,
2010.

[2671 S. Verron, T. Tiplica, and A. Kobi. Fault detection and identification with a
new feature selection based on mutual information. Journal of Process Control,
18:479-490, 2008.

[2681 J. Vetter, P. Novak, M. R. Wagner, C. Veit, K.-C. Moller, J. 0. Besenhard,
M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche. Ageing
mechanisms in lithium-ion batteries. Journal of Power Sources, 147:269-281,
2005.

[2691 N. Viswanadham. Fault detection and diagnosis of automated manufacturing
systems. In Proceedings of the IEEE Conference on Decision and Control, pages
2301-2306, 1988.

[2701 B. Walczak and D. Massart. Dealing with missing data: Part I. Chemometrics
and Intelligent Laboratory Systems, 58:29-42, 2001.

[2711 T. Waldmann, S. Gorse, T. Samtleben, G. Schneider, V. Knoblauch, and
M. Wohlfahrt-Mehrens. A mechanical aging mechanism in lithium-ion batteries.
Journal of Electrochemical Society, 161:A1742-A1747, 2014.

[2721 J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge,
H. Tataria, J. Musser, and P. Finamore. Cycle-life model for graphite-LiFePO4
cells. Journal of Power Sources, 196:3942-3948, 2011.

1273] S. Wang and J. Zhu. Improved centroids estimation for the nearest strunken
centroid classifier. Bioinformatics, 23:972-979, 2007.

[2741 X. Wang, A. Li, Z. Jiang, and H. Feng. Missing value estimation for DNA
microarray gene expression data by support vector regression imputation and
orthogonal coding scheme. BMC Bioinformatics, 7:32, 2006.

12751 G. Ward, T. Hastie, S. Barry, J. Elith, and J. R. Leathwick. Presence-only data
and the EM algorithm. Biometrics, 65:554-563, 2009.

207



[2761 P. A. Wedin. On angles between subspaces of a finite dimensional inner product
space. In B. Kagstrom and A. Ruhe, editors, Matrix Pencils, Lecture Notes in
Mathematics 973, pages 263-285. Springer, 1983.

1277] P.D. Wentzell, D. T. Andrews, D. C. Hamilton, K. Faber, and B. R. Kowalski.
Maximum likelihood principal component analysis. Journal of Chemometrics,
11:339-366, 1997.

[278] M. S. Whittingham. Ultimate limits to intercalation reactions for lithium bat-
teries. Chemical Reivews, 114:11414-11443, 2014.

12791 A. Widodo and B.-S. Yang. Support vector machines in machine condition
monitoring and fault diagnosis. Mechanical Systems and Signal Processing,
21:2560-2574, 2007.

12801 A. S. Willsky. A survey of design methods for failure detection in dynamic
systems. Automatica, 12:601-611, 1976.

[2811 B. M. Wise, N. L. Ricker, D. F. Veltkamp, and B. R. Kowalski. A theoretical
basis for the use of principal component models for monitoring multivariate
processes. Process Control and Quality, 1:41-51, 1990.

[2821 M. Witczak. Fault Diagnosis and Fault-Tolerant Control Strategies for Non-
Linear Systems: Analytical and Soft Computing Approaches. Springer, Cham,
2014.

12831 D. M. Witten and R. Tibshirani. Penalized classification using Fisher's linear
discriminant. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73:753-772, 2011.

[284j H. Wold. Path models with latent variables: The NIPALS approach. In H. M.
Blalock, A. Aganbegian, F. M. Borodkin, R. Boudon, and V. Capecchi, edi-
tors, Quantitative Sociology: International Perspectives on Mathematical and
Statistical Modeling, pages 307-357. Academic Press, New York, 1975.

[285] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemo-
metrics and Intelligent Laboratory Systems, 3:37-52, 1987.

[2861 S. Wold, A. Ruhe, H. Wold, and W.J. Dunn III. The collinearity problem
in linear regression. The partial least squares (PLS) approach to generalized
inverses. SIAM Journal on Scientific and Statistical Computing, 5(3):735-743,
1984.

[2871 L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class sup-
port vector machines. Association for the Advancement of Artificial Intelligence,
5:904-910, 2005.

208



[2881 Z. Yan, C. Huang, and Y. Yao. Semi-supervised mixture discriminant moni-
toring for chemical batch processes. Chemometrics and Intelligent Laboratory
Systems, 134:10-22, 2014.

[2891 X.-G. Yang, Y. Leng, S. Ge, and C.-Y. Wang. Modeling of lithium plating
induced aging of lithium-ion batteries: Transition from linear to nonlinear aging.
Journal of Power Sources, 360:28-40, 2017.

[2901 S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang. A comparison study
of basic data-driven fault diagnosis and process monitoring methods on the
benchmark Tennessee Eastman process. Journal of Process Control, 22:1567-
1581, 2012.

[2911 A. Ypma, D. M. J. Tax, and R. P. W. Duin. Robust machine fault detection
with independent component analysis and support vector data description. In
Neural Networks for Signal Processing, pages 67-76, 1999.

[292] H. Yu and J. F. MacGregor. Multivariate image analysis and regression for
prediction of coating content and distribution in the production of snack foods.
Chemometrics and Intelligent Laboratory Systems, 67:125-144, 2003.

12931 L. Yu, R. R. Snapp, T. Ruiz, and M. Radermacher. Probabilistic principal com-
ponent analysis with expectation maximization (PPCA-EM) facilitates volume
classification and estimates the missing data. Journal of Structural Biology,
171:18-30, 2012.

[2941 H. H. Yue and S. J. Qin. Reconstruction-based fault identification using a
combined index. Industrial & Engineering Chemistry Research, 40:4403-4414,
2001.

1295] Q. Zhang and R. E. White. Capacity fade analysis of a lithium ion cell. Journal
of Power Sources, 179:793-798, 2008.

[2961 Y. Zhang and J. Jiang. Bibliographical review on reconfigurable fault-tolerant
control systems. Annual Reviews in Control, 32:229-252, 2008.

[2971 A. Zhao, Y. Feng, L. Wang, and X. Tong. Neyman-Pearson classification un-
der high-dimensional settings. Journal of Machine Learning Research, 17:1-39,
2016.

[298] Y. Zhao, R. Ball, J. Mosesian, J.F. de Palma, and B. Lehman. Graph-based
semi-supervised learning for fault detection and classification in solar photo-
voltaic arrays. IEEE Transactions on Power Electronics, 30:2848-2858, 2015.

[2991 M. Zhong, S. X. Ding, J. Lam, and H. Wang. An LMI approach to design robust
fault detection filter for uncertain LTI systems. Automatica, 39:543-550, 2003.

13001 D. Zhou, G. Li, and S. J. Qin. Total projection to latent structures for process
monitoring. AIChE Journal, 56(1):168-178, 2010.

209



[3011 X. Zhu and R. D. Braatz. 2D contribution map for fault detection. IEEE
Control Systems, 33(4):72-77, 2014.

[3021 H. Zou and T. Hastie. Regularizationn and variable selection via the elastic
net. Journal of Royal Statistical Society: Series B (Statistical Methodology),
67:301-320, 2005.

210




