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ABSTRACT

With the increasingly competitive landscape of e-commerce and omni-channel delivery execution,
the last mile has emerged as a critical source of opportunity for cost efficiency. Unmanned aerial
vehicles (UAVs) have historically been utilized for military applications, but they are quickly gaining
traction as a viable option for driving improvements in commercial last-mile operations. Although
extensive literature currently exists on vehicle routing problems, research integrating drones as a
supplement to these routing problems is scarce. This thesis explores the feasibility of deploying
drones to the last mile, by modeling the cost of serving customers with one truck and multiple
drones in the context of the traveling salesman problem. The model is constructed with mixed
integer linear programming (MILP) optimization and assessed with a sensitivity analysis of several
key parameters. We find significant median cost savings over TSP of 30 percent in the base case,
and that these effects on savings can diminish to a median 4 percent in the worst case while surging
up to 55 percent in the best case.
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1 Introduction

1.1 Market Scope

In 2016, the cost of the global parcel delivery market amounted to approximately 82 billion

US dollars, with 40 percent being generated in China, Germany, and the United States

(Joerss et al., 2016). Although already large, this market faced significant growth in recent

years and shows no signs of slowing down. Relatively mature markets, such as the US and

Germany, experienced 7 to 10 percent growth in the last few years, which means that this

volume is poised to double over the next decade (Joerss et al., 2016).

Given the vast and growing size of the parcel delivery market, it is crucial for companies

to identify pivotal opportunities to gain the competitive edge. The rapid expansion and

establishment of e-commerce by companies like Amazon are primary drivers and leading

indicators for this growth. In 2015, consumers worldwide spent 1.7 trillion dollars on e-

commerce; this amount is projected to double to 3.5 trillion by 2019 (Lindner, 2015). This

increased demand on online retail consumption has shifted the market landscape from one

that has been previously B2B-dominated to one in which B2C drives over 50 percent of

global volume. To capitalize on this shift, it is important for companies to understand that

over half of global parcel delivery costs are primarily incurred in the last mile (Joerss et al.,

2016). This sculpts a developing environment in which the companies that establish the

most cost efficient last mile logistics operations will dominate the competition.

1.2 The Role of Drones in Last-Mile Delivery

Drone delivery as a method to solve for the last mile was first publicly proposed by Jeff Bezos,

the CEO and founder of Amazon, in an interview conducted in CBS's 60 Minutes (Rose,

2013). Amazon was quickly followed by Google (Madrigal, 2014) and DHL in 2014 (Hern,

2014), Dominoes in 2016 (Reid, 2016), and UPS in 2017. As Figure 1.1 shows, Amazon has

already patented several ideas and developed drones in anticipation of establishing dominance

8



(a) Adjustable arm patent, 2017. (b) Amazon test drone.

(source: geekwire.com) (source: techcrunch.com)

Figure 1.1: Amazon Prime Air investing heavily in drone delivery.

in the field. Last mile solutions with drones have since emerged as a front runner in solving

for this particular challenge, due to the cost-saving nature of its labor and fuel efficient design.

Furthermore, the increasing congestion and density of urban populations leaves trucks with

the challenge of fighting through traffic and idling more often - a challenge from which drones

are wholly exempt. From the delivery company's perspective, the opportunity for significant

operational cost savings itself is enough to justify the pursuit of drone implementation.

1.2.1 Social Responsibility

Societal incentives for integrating drone delivery into industry provide an additional jus-

tification that goes beyond the immediate marginal cost-cutting advantages listed above.

Companies today are facing increasing pressures to commit to sustainable practices and ex-

hibit responsible supply chain behavior (Bateman, 2015). This has led them to re-evaluate

their strategies and respond to consumer preferences by publicly adopting sustainable meth-

ods such as those that reduce carbon emissions. According to Stolaroff et al. (2018), the

proper application of drone-based delivery could reduce greenhouse gas emissions and energy

use in the freight sector by up to 50 percent. This is due in part by the significantly lower

energy consumption rate of electric powered drones, which consumes approximately 0.097

megajoules per mile (MJ/mi) compared to the 11.748 MJ/mi of a typical diesel truck used

9



by companies like UPS (Stolaroff et al., 2018). With drones integrated into the last mile,

the resulting reduction in carbon footprint per package delivered could lead to large cuts in

global transportation-related greenhouse gas emissions - which truck transport is responsible

for 24 percent of today (Stolaroff et al., 2018).

1.2.2 Customer Preferences

Today's consumers have a powerful inclination towards speedy delivery. In a survey con-

ducted by McKinsey in 2016, 20 to 25 percent of consumers indicated that they would pay

significant premiums to receive their packages within the same day (Joerss et al., 2016). In-

creasingly complex customer expectations are also pushing retailers to adapt to meet these

varied customer demands with innovation in delivery (Lee et al., 2016). To overcome this

challenge, many retailers offer several options, with same-day delivery often making it into

the mix. A key advantage offered by drones in this competitive landscape is the speed at

which they can navigate through open airspace as opposed to congested traffic on the roads.

Furthermore, they are able to bypass obstacles such as water or unpaved rural areas to

significantly cut delivery times (Lee et al., 2016). With this newfound capability, Amazon

is exploring offering 30-minute delivery options with drones for lightweight products that

weigh up to 5 pounds - a market segment that accounts for over 86 percent of Amazon's

total offerings (Gross, 2013). These factors, combined with an increasing consumer appetite

for speed, have urged e-commerce players to double down on increasing their offerings and

delivering better fulfillment strategies, including ones with drones.

1.2.3 Government Regulation

Although the benefits of using drones for package delivery appear relatively clear, government

regulation has largely lagged behind (Figure 1.2). In the United States, the Federal Aviation

Administration (FAA) has been resistant to the development and testing of commercial

drones within its jurisdiction since adding regulations in 2015 (Heater, 2017). Although

10



technically permitted by the US to test, commercial drone operators are required to maintain

line-of-sight, operate vehicles under 400 feet above ground level (AGL), register each vehicle,

face a limited selection of drone models, and are restricted from flying in many population-

based locations (Romm, 2017). For this reason, the companies that have led research and

deployment of drones for commercial purposes have largely developed their technologies

overseas. Amazon kicked off its research in the United Kingdom (Glaser, 2016) while Google

has based its "Project Wing" operations out of Australia (Madrigal, 2014), and Dominoes

delivered its first pizza by drone in New Zealand (Reid, 2016). However, recent developments

prove optimistic for the US; the White House signed a bill in 2017 overturning the FAA's

previous regulation and citing a direction of loosened legislation towards commercial drone

operation (Heater, 2017). Since then, new licenses have been issued by the FAA and the

agency is estimating that the number of drone operators will exceed that of private pilots

with 450,000 by 2022 (Pasztor, 2018) as depicted in Figure 1.3. Although testing has already

somewhat kicked off in international locations, the United States is now opening up its

Five factors will influence UAS growth.

What Is needed to
support afrrent
and proposed
applications?

What Is the tine-
line for more
applications to
reach maury

Which applications
merit investment?

I

If

in 0--1-

5-

Regulation Technological
capalties

4Lf

infrastructure development,
such as the construction of
landing facilities and charging
hubs, is essential to many uses

Regldations will continue to
determine the viability of
different applications

Improved technological
capabilities will enable new
drone applications

Public acceptance will
increase investment in
drones. especially if compa-
nies address safety concerns

Public Economic Economic divers will
Ptc flC rn ddW- determine whether the

applications will have a viable
vutoe bas

Figure 1.2: Five factors for UAV growth.

(source: McKinsey)
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jurisdiction to serve as a testing ground for drones.

1.2.4 Outlook and Future Prospects

With these recent developments, the integration of drones into last mile delivery is quickly

becoming imminent and in need of a robust foundation of research for operational implemen-

tation. The drone is favorable over a truck for its ability to maintain high speeds in the face of

congested roads, but it is not without its downsides. The feasible boundary in which drone-

based operations can occur are bound by several physical constraints. Two crucial limitations

that guide the framing of this problem are the drone's limited payload capacity of approxi-

mately 5 pounds and range of approximately 10 miles, assuming a speed of 50 miles per hour

(Gross, 2013).

To overcome this constraint and combine drone ca-

pabilities with longer range truck capabilities, Mur- COMMERCIAL DRONES DEPLOYMENT FORECST

ray and Chu (2015) proposed a model in which a sin- 2M

gle drone is attached to a truck and dispatched en- Hig forecast

route to serve customers. This approach has gained 1.5

traction and allows the benefits of both vehicles to

be utilized effectively. On this foundation, the re-
1.0

search community has introduced several angles and

other approaches to the standing literature.

Following the introduction of drones as a pos- 0.5 Bm forecast

sible solution to the last mile .in 2013, several ...o.r.

.....- Low forecast
studies exploring a feasible operational model have

0

emerged. The primary model used to frame 2016 2017 2018 2019 2020 2021

the problem is mixed integer linear programming Figure 1.3: FAA commercial drone

(MILP), with the objective being to minimize the deployment forecast.
(source: hbr.org)

truck's arrival time back to the origin depot. A
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(a) Delivery driver loading package. (b) Drone launch testing from truck.

(source: pressroom.ups.com) (source: ups.com)

Figure 1.4: Real-world drone testing by UPS.

(source: ups.com)

drone, attached to the truck at launch (See Figure 1.4), is then dispatched along the truck's

route to deliver a package before rendezvousing for a package replenishment and re-launch.

1.3 Thesis Plan

In this thesis, we first formulate a mathematical model and define its various components.

The objective function is to minimize cost, which is composed of the fixed and variable costs

of deploying multiple drones as well as the truck's operating fuel and labor costs. This is

done to capture the tradeoff in costs between choosing to serve each customer in the network

with either a drone or the truck. The model allows for multiple drones to be deployed, which

captures the additional potential upside of dispatching more than one drone per truck tour.

This configuration permits the model to explore a larger solution space and provide deeper

insight into deploying the synergistic technology as a whole. Finally, we identify and conduct

a sensitivity analysis on several key parameters that are subject to fluctuate or improve over

time: drone speed and endurance, the number of drones made available, truck speed, and

customer geographic area. As we change these parameters, we measure the effect on cost

savings over TSP with truck only as well as the effect on number of drones used. The results

are used to determine whether drones as a last-mile delivery solution are feasible or favorable

for real-world application.

13



2 Literature Review

This literature review is organized into two sections: Vehicle Routing 2.1 reviews classic

literature on vehicle routing problems (VRP), which is a generalization of the traveling

salesman problem (TSP). Drone Vehicle Routing 2.2 focuses on papers that have integrated

drones into a routing problem.

2.1 Vehicle Routing Problem

Classic VRP research with one truck serves as the logical starting point to establish a foun-

dational understanding for the underlying methodology of drone delivery with truck. VRP

was first introduced by Dantzig and Ramser (1959) as a generalization of the older and

fundamentally applied TSP. TSP can be described as a problem in which a driver must

visit a set of n cities exactly once and travel back to the origin point with the objective of

minimizing either distance or time (Lin, 1965). While TSP is defined as a single tour with

a single vehicle, VRP builds upon this preliminary framework and incorporates additional

complexities such as multiple vehicles and origin points. Many researchers over the years

have proposed a wide range of exact and approximate approaches to find solutions for VRP

and TSP; therefore, the academic environment for these problems has consequently devel-

oped into a robust foundation on which we are able to build upon to establish a preliminary

understanding of vehicle routing with drones.

2.1.1 Exact Methods

Laporte (1992) discusses the challenges and methods of solving vehicle routing problems with

mixed integer linear programming. In his paper, VRP is loosely defined as designing optimal

delivery or collection routes from one or several depots to several customers or cities, subject

to a series of constraints. The exact approach starts by defining the objective as minimizing

total cost or travel time. The decision variables determine which nodes the truck should visit

14



to optimize based on the objective. He goes on to identify several constraints that are crucial

to properly frame the problem: capacity constraints on vehicles or depots, total time or cost

restrictions, and precedence relations that ensure sequential ordering of city visits. Toth

and Vigo (2002) suggest that exact methods can be classified into three parts: direct tree

search methods, dynamic programming, and three integer linear programming algorithms.

These methods are typically used to solve small instances due to constraints on computing

capability.

2.1.2 Heuristics and Alternative Solving Methods

Although exact algorithms for vehicle routing are precise in their solutions, they cannot be

scaled to real-world size problems due to the NP-hard nature of TSP and VRP. The growth

in number of possible combinations of routes per node is exponential and quickly reaches

over 100 billion with only 15 customer nodes, which equates to equally large demands on

computing power and time. Thus heuristics are introduced to provide reasonably good

solutions in a significantly lower amount of time.

Junger and Thienel (1994) propose the "branch and cut" method for VRP, which is

loosely based on the "branch and bound" method. The quality of solutions that result from

an approximate method such as this is assessed by comparing them to exact solutions and

never being worse than a predetermined fixed fraction of the optimal solution. Although

not always yielding the optimal solution itself, these approximate approaches can perform

exceptionally well in terms of run-time and applicability to large scale problems. The "branch

and cut" method iterates and creates shorter tours from an initial solution by branching into

subproblems and establishing increasingly better lower bounds on the length of the optimal

tour. Each iteration shrinks the feasible space in which a solution can be found for each

branch until the list of subproblems that can be fathomed is empty. Throughout the process,

each subproblem establishes its own local lower bound. This lower bound is compared to

the global lower bound of all iterations and replaced by the global lower bound if the global

15



is more restrictive. Junger and Thienel (1994) find that the "branch and cut" method

consistently yields reasonably good solutions while effectively applying more stringent lower

bound guarantees.

Simulated Annealing (SA) is a heuristic that applies the properties of cooling metal

towards determining solution exploration in the context of complex combinatorial problems

like TSP (Kirkpatrick et al., 1983). The system starts at a high temperature, where particles

are highly fluid, and cools at a constant rate to an eventual equilibrium in which particles

have settled and established a more solid state. In the initial high temperature fluid state,

lower quality solutions are allowed to be explored. As the system cools, the tolerance for

exploring deviations from the global optimum decreases until the system is fully cooled and

a single solution is ultimately identified as the best solution (See Figure 2.1). This eventual

settling of the solution exploration process prevents the heuristic from getting stuck in a

local optimum by committing to a solution too early in the process. By starting with a

1.0

0.4

0.21A

0.0

0.4

0.0

0.0 0.2 OA O O 1.00 0.2 OA 0A 0.8 1.0

Figure 2.1: Simulated Annealing. Results at four temperatures for a clustered 400-city
traveling salesman problem. (source: Kirkpatrick et al. (1983))
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relaxed exploration of global solutions, SA as a heuristic yields solutions relatively close to

optimal.

More recently, a class of nature-inspired optimization approaches to solving complex

problems such as TSP have emerged. Swarm intelligence (SI) based heuristics mimic the

behavior of social creatures such as colonies of ants, flocks of birds, and schools of fish that are

individually unintelligent but driven by population-based self organization to yield efficient

results (Fister Jr. et al., 2013). The ant colony optimization (ACO) heuristic is used by

Yang et al. (2008) to solve for TSP, which emulates the process in which ants forage for

food and leave pheromones to attract others towards a desirable path. Ants, or solutions,

are generated at random, and the use of pheromones is represented by assigning a higher

probability bias towards favorable paths. After many iterations, ACO yields consistently

efficient population-based solutions that perform better than local heuristics such as 2-opt

algorithm (Yang et al., 2008).

2.2 Drone Routing Problem

While a significant amount of literature exists for TSP and VRP, the introduction of drones

into these problems have inspired the development of a dedicated branch of literature. Al-

though the approach is fundamentally identical to classic VRP, drone-based routing problems

must address additional complexities such as coordinated simultaneous movements, unique

vehicle constraints, and new transactional costs.

One approach to this problem involves deploying drones as "sidekicks" to trucks by

launching them from the trucks at the depot or customer nodes, which Murray and Chu

(2015) call the Flying Sidekick TSP (FSTSP). Their approach to drone-based last mile

delivery includes the use of mixed integer linear programming (MILP) to minimize the final

arrival time of the truck and drone back at the origin point, while traveling in tandem to

serve customers 2.2.

Due to the NP-Hard nature of classic TSP problems, FSTSP inherently faces the same
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challenge in terms of scaling to larger practical customer sets using a purely mathemat-

ical MILP approach. With drones integrated into the model, Gurobi requires exponential

amounts of time to solve small instances of even 10 customers. Thus Murray and Chu (2015)

formulate a route and re-assign heuristic to generate efficient results, which serves to capture

decision trade-offs between drone usage and truck usage to serve each customer in order to

yield overall time savings. They do this by defining a list of drone-eligible customers, gener-

ating a solution for the truck-only TSP, and then finally reassigning the route by inserting

drones and assessing time savings. This last step is iterated several times until no more

savings or improvements can be achieved.

Agatz et al. (2015) takes a similar approach in terms of deploying a delivery truck in

collaboration with a drone to solve TSP, but they refer to the approach as TSP with Drone

(TSP-D). Instead of using a route and re-assign algorithm, they expand their MILP upon

larger customer sets by utilizing several fast route first - cluster second heuristics based on

local search techniques. This involves constructing an initial truck-only tour then reassigning

solutions with greedy or exact partitioning algorithms. They find that the resulting objective

(a) Truck only

Figure 2.2: Traditional TSP compared to

(b) Truck and drone

FSTSP with drone. Murray and Chu (2015)
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distance traveled is about 35 percent less with drones than without.

Another variant of TSP-D is proposed as VRPD by Poikonen et al. (2017). They propose

the approach of starting with a close to optimal solution, then improving it by modifying

them to maintain VRPD feasibility and applying local optimization techniques. A second

approach that they take is starting with a relatively good solution then inserting drones to

minimize completion time of the tour.

In an expansion of the previously proposed models with truck and drone, Carlsson and

Song (2017) suggest that the savings yielded from the drone sidekick model equates to

the square root of the ratio of the speed of the truck and the drone. This mathematical

relationship is proposed as a potential method to significantly cut down solve times. A

heuristic is used to assess this theory and produces compelling results, but the lack of using

global optima is an opportunity for future research.

Further expansion on the FSTSP and TSP-D is conducted by Minh Ha et al. (2018)

by applying two separate heuristics and optimizing the MILP by minimizing cost. In their

min-cost TSP-D model, the variable cost incurred for the truck is distinguished between

traveling cost and waiting cost for when it must rendezvous with the drone. The heuristics

used for their approach are the greedy randomized adaptive search procedure (GRASP) and

TSP-LS, which yield an average 30 percent savings when optimizing cost compared to an

average 20 percent savings when optimizing time.

In another approach to solving large-scale practical networks for the truck and drone

tandem TSP, Luo et al. (2017) apply and test two heuristics that they call HI and H2. On

customer sets scaling up to 200 nodes, they set the objective to minimize total routing time.

H1 involves creating an initial solution using targets (customers) then splitting them to reas-

sign. H2 involves starting with a solution using feasible rendezvous nodes, then reassigning.

While both approaches yield similar objective function results, H2 takes significantly less

time as more customer nodes are introduced into the system (Figure 2.3).

Genetic algorithm (GA) and k-means clustering are classic heuristic approaches that
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Figure 2.3: Comparing Hi and H2 heuristic results. Luo et al. (2017)

have been used extensively on TSP. In order to optimize the TSP with drone, Ferrandez

et al. (2016) start with an initial solution, then execute mutations and crossovers to mix

the potential solutions. They then accept the best solutions to move forward to the next

iteration. K-mean clustering involves identifying features by which to split customers, and

then minimizing the mean deviation across clusters. Findings suggest that the use of drones

in tandem with trucks are only beneficial when the drone is at least twice the speed of the

truck and when at least two drones are used.

Similarly, Chang and Lee (2018) use k-mean clustering and nonlinear programming to

assign shift-weights to areas around the depot. A truck then travels through these determined

areas and dispatches drones to serve customers in the respective zones. The combined method
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proves effective as they yield lower service times compared to pure TSP without k-means

clustering.

Genetic algorithm is also used by Savuran and Karakaya (2015), but they focus on

maximizing target coverage by the drone's range. The genetic operators in this case are

local search methods that serve to achieve this objective. They find improvements over

classic GA of 11 to 21 percent and 75 to 260 percent over other heuristics.

Though not directly applicable to commercial drone delivery to customers, emergency

medical response is another notable field in which the viability of drone utilization is being

researched to cut delivery times and mitigate risk. Advancements in this field are likely to

be highly correlated with growth in the commercial last mile sector. Because traditional

air transport through fixed or rotary aircraft is a high-risk operation, drones can replenish

hospitals or deliver crucial medical supplies directly to remote locations without gambling

the lives of crew or the patients (Thiels et al., 2014). Although further research for feasibility

in different use-cases is required, the potential for high impact is undeniable. This unique

application outlines the versatility of problems that can be solved or improved by introducing

drones into many systems, even beyond TSP for last-mile delivery.
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3 Methodology

3.1 Overview

This section first introduces and describes the mathematical model then describes the selec-

tion of key parameters and the design of test instances relative to real-world applications.

The method of solving is described by outlining the establishment of the optimality gap.

The foundation for the model is based on mixed integer linear programming (MILP), with

the objective of minimizing total cost. The outcome is optimized by determining the binary

decisions for each node to be visited by truck or drone as well as the order of visitation. A

sensitivity analysis is then conducted in order to determine how trade offs are made as key

parameters are adjusted.

3.2 The Traveling Salesman Problem with Multiple Drones

3.2.1 Model Notation

This section first briefly explains the notation used to define the mathematical model. For

mixed integer linear programming (MILP), indexes are set to independently track truck and

drone movements according to Manhattan distance instead of Euclidean. Sets are defined to

constrain feasible nodes from which the truck or drone can depart from, arrive to, or serve

a customer at. One set defines the number of drones that are available to be deployed per

truck tour. The largest set is N, which contains all nodes and starts and ends with the

depot (cO, c +1). Variables are set to define moving relationships between the inputs and the

model. Parameters are established to scale the magnitude of each variable's overall effect on

the objective of the model and ultimately to assess model sensitivity.

In order to formulate the problem and frame the environment, the following notation is

defined in Table 3.1:
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Table 3.1: Mathematical Model Notation.

Indexes
h, i, j, k, 1, m, o: Represents Node of Network, Total c + 1
n: Represents Deployed Drones
Sets
N: {O,1,... ,c+1}: Set of all nodes in problem
NO: {o,1,...,c}: Set of all nodes that can be departed from
N+: {1,2,.. .,c+1}: Set of all nodes that can be arrived to
C: {1,2, ... ,c}: Set of all customers
D: {1,...,n}: Set of available drones for deployment
Parameters
minD: Drone Endurance Time (min)
mphD: Drone Speed (mph)
mphT: Truck Speed (mph)
SL: Drone Launch Setup Time (min)

sR: Drone Retrieval Time (min)
A: Customer Grid Area (mi2 )
CF: Variable Operating Cost for Truck Fuel (USD/min)
CL: Variable Operating Cost for Truck Labor (USD/min)
CE: Variable Operating Cost for Drone Electricity (USD/min)
FD: Fixed Cost of Deploying Unique Drone per Tour (USD)
M: Linking Constraint
Variables
7: Travel Time
t: Arrival Time
x: Binary, Customer Served by Truck
y: Binary, Customer Served by Drone
z: Binary, Drone Deployed
p: Binary, Tour Order Sequencing
U: Binary, Sub-tour Elimination

3.2.2 Assumptions

The following operating conditions are assumed:

e Only one truck can be used per tour, while several drones can be dispatched in the

same tour. Only one tour can be run at a time.

* Both the drone and truck are set to travel Manhattan distance instead of Euclidean as

a method to emulate movement on road networks to avoid obstacles (Figure 3.1).
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" The drone may only visit one customer node per dispatch from the truck, while the

truck may visit more than one customer before rendezvousing with the drone.

" Drone travel is limited by the flight-time limit, or endurance minD-

* If a drone rendezvous with a truck at node k, the drone can then be re-launched from

node k. However, after this point, the drone or truck cannot return to node k.

" Drone launch and rendezvous can only occur at the depot or customer node. This

transaction cannot occur en route between nodes.

* Once the drone visits the depot again at any point after the truck has initiated the

tour, the drone is removed from the tour.

" Drones are considered fully autonomous, which means that their operation does not

incur any additional labor costs.

3.2.3 Mathematical Model

The Traveling Salesman Problem with Multiple Drone (TSP-MD):

MinCost = tC+1 (CF + CL) + Yijkn(Tij
iCNo jEN kEN+ nED

S Xio = 0
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i7NJ
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3.2.4 Model Description

The objective function (1) is to minimize total cost, which considers operational costs per

minute spent as well as the fixed cost associated with introducing each additional drone.

The truck variable costs account for fuel and labor expenses per minute, while the drone

variable costs account for electricity expenses per minute.

Constraint (2) prevents the truck from returning to the origin depot.

Constraint (3) ensures that all customer nodes are visited exactly once, by either a drone

or a truck.

Constraints (4) and (5) ensure that the truck departs and returns to the depot exactly

one time.

Constraints (6) and (31) eliminate sub-tours from the model by ensuring that for the truck

and drones, node i will be visited before node k. This is accomplished by implementing the

routing variable, ui, which tracks the sequence in which nodes are visited.

Constraint (7) synchronizes the truck's departure node with its next movement's depar-

ture node.

Constraints (8) and (9) ensure that each drone can only be launched up to one time from

each node and that it can rendezvous only up to one time from each node, respectively.

Constraint (10) ensures that if a drone is launched at node i and arrives to node k, the

truck must be assigned to both nodes. Similarly, constraint (11) ensures that if a drone is

launched from the origin depot and arrives at node k, then the truck must be assigned to

node k. Furthermore, constraint (12) ensures sequential integrity so that if a drone departs

node i and arrives to node k, the truck must visit i before it visits k.

Constraints (13) and (14) coordinate the time at which the truck and a drone are launched

from node i. Similarly, constraints (15) and (16) coordinate the time at which the truck

and a drone arrive to node k. A single drone may not be launched multiple times from
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the same node, but these constraints allow for multiple drones to be launched or arrived

simultaneously.

Constraint (17) accounts for the truck's travel time from node h to k when considering

its effective arrival time at node k (tk). Furthermore, it accounts for the additional time

accrued from drone launch setup (sL) if a drone launches from node k when calculating tk.

Similarly, the constraint will account for drone retreival time (SR) when a drone rendezvous

at node k.

Constraint (18) accounts for a drone's travel time from node i to j when considering

its effective arrival time at node j. This constraint does not consider SL becuase the drone

arrival time will be synchronized with that of the truck (constraints 13 and 14), which already

accounts for SL.

Similarly, constraint (19) accounts for a drone's travel time from node j to k when

considering its effective arrival time to node k. However, in this case the retrieval time of

the drone sR must be considered due to the possibility that the truck may arrive to node k

prior to the drone's arrival.

Constraint (20) incorporates the drone's flight endurance parameter. This constraint

only applies when a drone travels from nodes i to j to k and ensures that the sum of the

two legs are less than or equal to e. M is a big enough number that must exceed the final

arrival time of the model and serves as the linking constraint.

Constraint (21) through (23) ensures that the proper values of pij for the truck are

determined so that sequential integrity is upheld. Furthermore, it disregards the movements

of the drone and ensures ordering within the truck path only.

Constraint (24) ensures that the drone's arrival time to future nodes does not precede

that of a prior visit.

Constraints (28) to (33) specify the decision variables. Xij, Yijkn, and pij are defined as

binary and can only equal 0 or 1. The arrival times tj and tl are ensured to be positive with

non-negative constraints (32) and (33).
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3.3 Baseline Parameters

We selected the following baseline parameters to establish a practical scenario in terms of

average historical costs and current available technologies. Unless otherwise stated in the

sensitivity analysis, all parameters default to the baseline values listed below (Table 3.2):

3.3.1 Truck Variable Costs

Labor cost CL is 25.10 US dollars per hour (BLS, 2018), which is the national average hourly

wage for an express delivery service driver and converts to 0.418 US dollars per minute. The

burn rate is 10.2 miles per gallon for a standard diesel delivery truck at city speeds (Stolaroff

et al., 2018). The average speed of travel mphT is 25 miles per hour (Corps, 2009) due to

the prevalence of stop-and-go traffic within densely populated areas. The fuel cost is 3.04

US dollars per gallon based on 2018 average diesel costs in the United States (EIA, 2018b),

which converts to 0.124 dollars per minute. Considering all of the above listed truck variable

costs, the total operating cost is base-lined at 0.485 US dollars per minute.

3.3.2 Drone Variable Costs

The cost of electricity is 0.12 US dollars per kWh (EIA, 2018a), as this was the national

average cost in the United States as of 2018. We used the standard energy conversion rate

of 1 Joule per 3.6 x 10-6 kWh to convert the burn rate into Joules. Thus the resulting value

of 96,560 Joules per mile (Stolaroff et al., 2018) is used to represent cost of drone usage over

Table 3.2: Baseline Costs. Fixed and variable costs with baseline parameters: drone speed 35
miles per hour, drone endurance 30 minutes, and truck speed 25 miles per hour.

Truck Variable Costs
Labor Cost 0.124 USD/minute
Fuel Cost 0.418 USD/minute
Drone Variable Costs
Electricity Cost 0.002 USD/minute
Drone Fixed Cost
Deployment Cost 1.136 USD
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time. The average speed mphD is 35 miles per hour, which accounts for stopping and turning

to follow the road network and avoid obstacles. The endurance minD is base-lined at 30

minutes per drone. Considering the above listed drone variable costs, the total operating

cost is base-lined at 0.002 US dollars per minute.

3.3.3 Drone Fixed Cost

The fixed cost FD for the drone is computed by taking the acquisition cost of a drone and

spreading it over a specified payback period of 2 years. This is the time span allotted by the

FAA after which a drone certificate of authorization expires (FAA, 2016). We assume 1,500

US dollars for drone acquisition as well as 365 available days of usage per year. The drone is

assumed to be used twice per day and down for scheduled maintenance for 5 percent of the

year. All factors considered, we base-lined to 730 total uses of the drone per year. A single

use is defined as deployment within a single delivery truck tour. We use an annuity applied

per use and discounted at 10 percent annually to determine the fixed cost per iteration. The

fixed cost FD per drone deployment is 1.13 US dollars.

3.4 Test Instances

3.4.1 Geographic Representation

Test instances were generated to simulate a typical city TSP route in which a single delivery

driver's tour would be contained to a sub-section of a densely populated city. Ten customers

were randomly plotted on a 100 square mile region (10 mile x 10 mile), with the distribution

center always located on the bottom left corner as depicted in Figure 3.2. This considers

that the distribution center is likely located outside of the city where real estate prices are

relatively cheaper, and that the truck would be traveling from this external point into the

city. Because the truck would be used exclusively to make the first movement from the depot

to the concentrated delivery area, we excluded this line haul movement from all calculations

and focused on the relevant trade-offs that would be made within the area in which drones
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Figure 3.2: Sample Customer Set in NYC. A depiction of a depot in NYC relative to the
geographic location of customers in the city. Although the customers are out of reach from drones

at the depot, a delivery truck can serve to bring them closer within deployable range.

are available for deployment. To represent movement within a city environment in which

many obstacles exist on the fringes of the road network, both the truck and drone are set

to travel on the Manhattan metric. Thus instead of moving directly from point to point

as a Euclidean space would dictate, the drone and truck are set to travel along roads in

a squared-off manner. A total of 170 test scenarios were generated, each containing 10

customers distributed across the aforementioned 100 square foot region.

3.4.2 Optimality Gap

Due to the NP-hard nature of TSP, solve times for TSP-MD consequently exceed several

hours for 10-customer problems and grow exponentially with each additional node added.

32



100%1

80%

C.

0%

20%
010%20%.

Instances

Figure 3.3: Optimality Gap. This gap is determined by comparing the total cost savings of a
TSP-MD tour in a 10-customer network with that of a 9-customer network. The former is limited

to a solve time of 30 minutes while the latter is solved to optimality. The resulting difference, or
gap, depicts a worst-case scenario that defines an upper limit to the true optimality gap of the

10-customer solve.

Although heuristic solutions are often applied to solve such problems at quicker speeds and

good enough accuracy, we decided instead to streamline our analysis with the mathematical

model by limiting to 30 minute solve times. Five resulting instance solutions per scenario

were then compared to those of 9 customer node problems which were solved to optimality

in order to determine a worst-case gap. These 9 customer node problems were generated

by taking the respective 10 customer node instance and removing a single customer node

in order to keep the potential gap minimal. We found the resulting optimality gap across

instances to be relatively small (Figure 3.3), with an average gap of 3 percent and an overall

maximum observation of 10 percent.

3.5 Sensitivity Analysis

Given that future technology and costs are bound to fluctuate from the baseline established

in section 3.3, we conducted a sensitivity analysis to identify threshold circumstances in

which the applicability of drones in TSP are significantly affected. Each test instance was

then solved with the MILP mathematical formulation described in 3.2 for the varying set of
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circumstances.

3.5.1 Key Parameter Selection

In order to truly understand the effect of drones on last-mile delivery, a wide range of

scenarios must be explored. Our analysis starts with the establishment of the base case,

which we determined to be the following: two available drones that travel at an average 35

miles per hour with 30 minute endurance, an average truck speed of 25 miles per hour, and a

grid area of 100 square miles. These values are kept constant as each parameter is fluctuated

to represent the use cases depicted in Table 3.3. We determined these particular parameters

to be key due to the following reasons:

3.5.2 Drone Speed

Although commercial drones are legally limited to fly up to 100 miles per hour (Feist, 2018)

and rotary vehicles are technically capable of flying up to 60 miles per hour (Thiels et al.,

2014) under delivery conditions, true average travel speeds are likely to be much lower in

Table 3.3: Key Parameters for Sensitivity Analysis.

Parameter available drones endurance drone speed truck speed grid area
of Interest D (minD) (mphD) (mphT) (A)

20 25
Speed/Endurance 2 30 35 25 100

40 45
1

Available Drones 2 30 35 25 100
3

5
10

Truck Speed 2 30 35 15 100
20
25

100
Grid Area 2 30 35 25 225

400
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practice. Delivery drones would be able to sustain a more stable and high-endurance flight

when traveling at speeds between 25 and 45 miles per hour.

3.5.3 Drone Endurance

The drone's endurance is largely dependent on existing battery technology as well as the rate

of energy consumption which is primarily determined by the speed of travel. Gross (2013)

suggests that drones are capable of staying in the air for 30 minutes, but many factors

can bring this value down to something closer to 20 minutes while emerging technological

advancements could potentially bring it up to 40.

3.5.4 Number of Drones Available

With varying availability of drones in the model, the usage and utilization is expected to

vary. In real-life scenarios, the upper bound to this parameter is likely determined with a

trade off between capacity of packages in the delivery truck and added efficiency with drones.

We determine 2 available drones to be a reasonable base case scenario.

3.5.5 Truck Speed

In highly populated urban locations, average truck speeds can range from 10 miles per hour

to 30 miles per hour (Gorzelany, 2017). In order to capture the dynamic effect on cost

savings as truck speed varies, we set a baseline of 25 miles per hour and explore speeds down

to 5 miles per hour in increments of 5.

3.5.6 Geographic Customer Grid Area

Although the premise of this study is focused on dense urban areas, the effects of serving

wider geographic locations are worth exploring. Outside of a city, a single delivery truck

may be responsible for a tour covering up to 15 or 20 square miles of customer area. This

extends the case to potentially apply towards suburban and rural situations.
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4 Computations and Results

This section presents our findings from computational iterations of the model proposed in

section 3.2. All algorithms were implemented in Python 2.7.5 and conducted on an Apple

Macbook Pro with a 3.1 GHz Intel Core i5 processor and 8 GB RAM running macOS Sierra

in 64-bit mode. Mixed integer linear programming (MILP) models were solved with Gurobi

version 8.0.0. As mentioned previously in Section 3.5, the following sensitivity analysis will

assess tradeoffs between the key parameters: drone speed and endurance, number of drones

available, truck speed, and geographic customer area.

4.1 Drone Speed and Endurance

When varying drone speed and endurance simultaneously, drone speed immediately emerges

as the more significant parameter in terms of percent savings gained over TSP. A 10 mile
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Figure 4.1: Percent cost savings over TSP across drone speed and endurance. The
y-axis measures savings earned when drones are deployed compared to the same TSP tour with

truck only.

30 min 40 min

36

C-4



per hour increase from 25 to 35 yields an improvement of over 20 percent in cost savings

while an increase in 10 minutes of endurance leads to an improvement in the range of only

2 to 4 percent of average savings (Figure 4.1).

Although this upward trend driven by drone speed appears to lose its impact when the

speed moves from 35 miles per hour to 45, Figure 4.2 suggests that this is explained by

a constraint on the number of drones available for deployment. The maximum number of

drones available is reached for all cases at 35 miles per hour drone speed, and this maximum

is maintained as the speed moves to 45 miles per hour. While the utilization per drone does
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Figure 4.2: Drone usage across drone speed and endurance. The left axis corresponds
with the stacked bars, which measures the frequency that a particular number of drones is
deployed per instance as a percentage of all instances in the same use case. The right axis

corresponds with the lines, which measures each drone in the instance's utilization in terms of
average number of customers served per drone.

37

[
25 mph

Speed / Endurance
35 mph

U)C

-
C

0

C

CE0

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
20 min 30 min 40 min 20 min 30 min 40 min .



increase slightly as depicted as average number of customers served per drone by the line

graph in Figure 4.2, the limit is reached for this metric as well at 30 minutes of endurance

and drone speed of 45 miles per hour.

Another interesting trend exists when drones are set to travel at 25 miles per hour and

the endurance changes from 30 minutes to 40 minutes. The drone utilization decreases

with this parameter change, which suggests that the costs savings earned from increasing

the number of drones deployed is traded off for slightly less utilization per drone. While

number of times in which 2 drones is deployed increases from 40 percent to 80 percent

as drone endurance increases from 30 minutes to 40 minutes, drone utilization drops by

approximately 0.2 customers per drone.

4.2 Number of Drones Available

As the number of drones available for deployment is

increased, the percent savings over TSP intuitively fol-

lows the same trend. As Figure 4.3 shows, increasing

availability from 1 drone to 2 drones yields an over 10

percent increase in savings over TSP. However, the rel-

ative gain is significantly reduced to only 3 percent as

the third drone is introduced into the model.

Figure 4.4 shows a sharp decline in utilization per

drone across all scenarios, falling by approximately one

customer per deployed drone. When two drones were

made available instead of only one drone (Figure 4.5),

this lower per-drone utilization is offset by the increased

amount of work that could be completed with the added

drone throughout the network. However, when the

model moved to 3 available drones, there were not
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Figure 4.3: Percent savings over
TSP across number of drones

made available.
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Figure 4.4: Drone usage over TSP across number of drones made available. The left
axis corresponds with the stacked bars, which measures the frequency that a particular number of

drones is deployed per instance as a percentage of all instances in the same use case. The right
axis corresponds with the lines, which measures each drone in the instance's utilization in terms of

average number of customers served per drone.

enough customers to serve with the newfound capac-

ity. Because there are only 10 customer nodes in the network and 7 serviceable by drones,

the three-drone instances were constrained by the lack of density of customers.
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A Depot

Figure 4.5: Sample test instance where two drones are deployed.
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4.3 Truck Speed

Changes in truck speed showed a relatively uninterrupted and consistent trend upward as

the average truck speed decreased in increments of five. The cost savings over TSP increases

by approximately 10 percent as truck speed moves from 25 to 20, and by approximately 7

percent as truck speed moves from 10 to 5. The savings improvements from the baseline

start relatively large and slowly diminish as truck speed is marginally decreased.

The steady trend can be explained by the significant disparity in the savings trade off be-

tween deploying a drone to serve a customer when truck speeds are relatively low. Although

the number of drones deployed stayed constant at two per instance, the utilization per drone

increased steadily as the truck speed decreased (Figure 4.7). When the average truck speed

reaches its minimum of 5 miles per hour, the average number of customers served by each

drone reaches its maximum of approximately 3. This observation represents the highest

Truck Speed
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Figure 4.6: Percent cost savings over TSP across truck speeds. The y-axis measures
savings earned when drones are deployed compared to the same TSP tour with truck only.
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Figure 4.7: Drone usage across truck speeds. The left axis corresponds with the stacked
bars, which measures the frequency that a particular number of drones is deployed per instance as
a percentage of all instances in the same use case. The right axis corresponds with the lines, which
measures each drone in the instance's utilization in terms of average number of customers served

per drone.

average drone utilization attained throughout the entirety of this study.

The significant trade off in savings gains between serving customers with a slow moving

truck compared to serving them with a drone is apparent when the cost of labor is considered.

Labor cost is an important parameter to consider because we assumed in Section 3.2.2 that

the drones are autonomous and therefore incur no labor costs to operate. The trade off

between using a truck versus a drone to serve customers in this case is compelling enough

to overcome the majority of other factors that constrains other parameters, such as limited

availability of drones and low density of customers.
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4.4 Geographic Customer Grid Area

While the base case parameters intend to simulate drone operation in a dense and geograph-

ically tight urban location, the effects of the same application in larger areas representative

of suburban populations is highly relevant. Although the cost savings are clear in the 100

square foot use case, the government regulations mentioned in Section 1.2.3 may prove to be

more difficult to overcome in highly populated city areas. Therefore the exploration of larger

geographic customer areas representative of rural and suburban populations is worthwhile.

We find that increases in the area in which customers are geographically dispersed result

in a negative trend in terms of percent savings over TSP as show in Figure 4.8. The effect was

similar in magnitude and inverse to the impact derived from changes in drone endurance, as
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Figure 4.8: Percent cost savings over TSP across customer grid areas. The y-axis
measures savings earned when drones are deployed compared to the same TSP tour with truck

only.
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changes in distance can be similarly represented as limited range from customer to customer.

In terms of drone usage, we find that the maximum number of available drones is utilized in

the 100 and 225 square mile instances (Figure 4.9).

However, in the 400 square mile case, the number of times that two drones are deployed

decreased by 30 percent to 70 percent while each drone experiences a slight increase of 0.2

more customers on average. For 10 percent of observations in the 400 square mile customer

grid, zero drones are deployed in the tour. This sharp drop off in drone utilization as shown

in Figure 4.9 can be attributed to insufficient range relative to the size of the grid; the drone

is constrained to 17.5 miles of total travel - less than 50 percent of the grid - at the baseline

speed of 35 miles per hour and endurance of 30 minutes. This can also be translated to
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Figure 4.9: Drone usage across customer grid areas. The left axis corresponds with the
stacked bars, which measures the frequency that a particular number of drones is deployed per

instance as a percentage of all instances in the same use case. The right axis corresponds with the
lines, which measures each drone in the instance's utilization in terms of average number of

customers served per drone.
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a range of only 8.75 miles if a drone is expected to dispatch from and return to the same

origin point. The effect of this range constraint is further amplified by the flight path of

the drones, which is restricted to over road networks as modeled with Manhattan distance

(Section 3.2.2). Although this same range restriction is not fully realized in the case of city

applications where the relative grid area can be 100 square miles or less, the negative effects

of the constraint are high in magnitude and quickly noticeable as the geographic space scales

in size.

4.5 Discussion

Our findings show that the cost savings for TSP with drones is significant across several

potential scenarios. In the realistic case of integrating a tour with the base case determined

in Section 3.3, we computed a median cost savings of 31 percent over TSP with truck only. As

the endurance improves, we find that this savings increases marginally due to the relatively

sufficient range in a restricted 10 mile x 10 mile grid. However, the impacts from speed

increases were significant - yielding up to 10 percent cost savings improvements per 10 miles

per hour increase. We found that increasing the number of drones available shows promise

in terms of improving savings, but the benefits can only be fully realized as the number of

customers increases due to limitations on utilization per drone when there are not enough

customers to serve. Average truck speed had the largest effect drone use, as the savings

surged by over 25 percent from 30 to 55 as truck speed moved from 25 to 5. When we

increased the geographic grid area of customers, we found that drone usage in terms number

of drones used dropped sharply due to limited relative range and capability of the base case

drone.

Overall, the effect of drones is positive and relatively significant in all tested scenarios.

Although there are clear use cases that have emerged as an ideal starting point to initi-

ate testing or real-life application with the objective of highest possible gain, all scenarios

generated considerable savings over TSP with truck only.
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5 Conclusion

Last-mile delivery stands to face significant cost reductions and operational improvements

with the integration of drones. We conducted a sensitivity analysis which varied parameters

such as number of drones available for deployment, drone speed and endurance, truck speed,

and geographic customer area - all which supported the notion that the benefits heavily

outweigh the costs across the board when it comes to drone delivery. Our findings show

that under a wide range of potential scenarios, the use of drones as a supplement to delivery

trucks in the traveling salesman problem yields a minimum 4 percent savings over TSP with

truck only. The most negative impact on savings comes from low endurance and speed of

the drone as well as large geographic customer areas. However, these savings depict the

results of the worst case of the scenarios that we tested. In more realistic scenarios, we find

a median 30 percent savings over TSP and up to 55 percent savings in the best case.

We find that the largest positive impact came from diminishing average truck speed,

which improved cost savings over TSP by an average 4 to 10 percent with each 5 mile per

hour decrease in assumed average truck speed. However, although savings improve as truck

speed is modeled to be lower, the inclusion of a truck in the model is still crucial. In all

scenarios, the truck serves essentially as a moving depot that brings drones into deployable

range of otherwise inaccessible customers.

5.1 Future Research

There are several notable topics that would be interesting to explore in terms of impact

to drone usage in TSP. One is the trade off between truck capacity and number of drones

available per tour. Optimization of this decision can potentially define an industry standard

on how any drones that each delivery truck should carry. Another interesting topic of future

research is the feasibility of each drone being able to carry more than one package and serve

more than one customer at a time. Once this is determined to be feasible, the upside to
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drone development and usage in the last-mile can be explosive. Finally, future optimizations

and models should work to include the capability of drones to launch and rendezvous with

the truck at a point other than a network node. Because the drones are assumed to be

autonomous in the first place, this operational function is feasible within the boundaries of

technological capabilities today.

Although the mathematical model defined in Section 3.2.3 can solve simple problems

in polynomial time, the NP-hard nature of the traveling salesman problem causes it to

become exponentially complex with each additional node. Thus complex sets exceeding

approximately 10 nodes require extensive solving time and ultimately make the math model

impractical for real industry use.

To solve this complication, several heuristics stand out as potential candidates to explore.

Swarm intelligence (SI) is a class of heuristics inspired by the naturally occurring behavior

of collective organisms such as schools of fish, flocks of birds, colonies of ants, or swarms

of bees (Karaboga and Basturk, 2006). Because these creatures behave in strict accordance

with others in their group, the resulting population-based approach is significantly less likely

to get stuck in local optimums. Genetic algorithm is another effective heuristic that has

been applied by Ferrandez et al. (2016) and Savuran and Karakaya (2015) on this specific

problem, but still faces immense opportunity in terms of unexplored approaches.

Regardless of the method in which future research unfolds in terms of exploring the oppor-

tunities associated with using drones in the last mile, disruption is imminent. With a recent

and rapidly growing demand for better last-mile solutions and technological advancements

exceeding commercial applications, very little stands in the way of drone-based delivery be-

coming a commonality. While our findings show specific use-cases in which drones help yield

immense cost savings over TSP with truck only, the overall benefits observed across a wide

range of residual scenarios are still compelling enough to attract significant investment into

research and growth of the field.
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