
An Information-Theoretic Approach to Estimating Risk
Premia

By

Maziar M. Kazemi

B.A. Economics and Mathematics
Vassar College, 2013

SUBMITTED TO THE SLOAN SCHOOL OF MANAGEMENT IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN MANAGEMENT RESEARCH

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2018

C2018 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:_Signature redacted

r
Certified by: _ Signature

Signature

Department of Management
May 1, 2018

red acted

redacted

Hui Chen
Associate Professor of Finance

Thesis Supervisor

Accepted by:

MASSACHUSEfTS 'INSTITUTE
OF TECHNOLOGY

JUN 15 2018

LIBRARIES
ARCHIVES

Catherine Tucker
Sloan Distinguished Professor of Management

Professor of Marketing
Chair, MIT Sloan PhD Program

1



An Information-Theoretic Approach to Estimating Risk

Premia

Maziar M. Kazemi*

Submitted to the Department of Management

on May 1, 2018 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in

Management Research

Abstract

Evaluation of linear factor models in asset pricing requires estimation of two un-

known quantities: the factor loadings and the factor risk premia. Using relative entropy

minimization, this paper estimates factor risk premia with only no-arbitrage economic

assumptions and without needing to estimate the factor loadings. The method pro-

posed here is particularly useful when the factor model suffers from omitted variable

bias, rendering classic Fama-MacBeth/GMM estimation infeasible. Asymptotics are

derived and simulation exercises show that the accuracy of the method is comparable

to, and frequently is higher than, leading techniques, even those designed explicitly

to deal with omitted variables. Empirically, we find estimates of risk premia that

are closer to those expected by financial economic theory, relative to estimates from

classical estimation techniques. For example, we find that the risk premia on size,

book-to-market, and momentum sorted portfolios are very close to the observed av-

erage excess returns of these portfolios. An exciting application of our methodology

is to performance evaluation for active fund managers. We show that we are able to

estimate a manager's "alpha" without specifying the manager's factor exposures.

*kazemiOmit.edu. This paper has greatly benefited from conversations with the following people: Hui

Chen, Stefano Giglio, Daniel Greenwald, Peter Hansen, Leonid Kogan, Anna Mikusheva, Jun Pan, Adrien

Verdelhan. All remaining errors are my own.
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1 Introduction

Since the foundational paper of Ross (1976) developing the arbitrage pricing theory (APT),

statistical linear factor models have been used by many researchers to model asset returns.

Evaluation of linear factor models of this kind require estimation of two unknown quantities:

the factor loadings and the factor risk premia. Traditionally, factor risk premia for non-traded

assets' have been estimated by regressions of average excess returns on factor loadings. The

coefficients in this framework correspond to the factor risk premia. It can also be shown

(Section (2)) that the factor risk premia, A, equal -RfE[mf] = -EQ[f], where m is a

stochastic discount factor (SDF), f is the vector of factors, Rf is the risk-free return, and

EQ[-] refers to expectation taken under the risk-neutral measure. We will use the preceding

moment condition to estimate factor risk premia.

This paper proposes using techniques from information theory to derive a semi-parametric

estimate of the SDF to directly evaluate the moment condition defining factor risk premia.

Importantly, our method does not require extra economic assumptions aside from those

already implied by APT. That is, we only use the no arbitrage restrictions E[Rim] = Rf,

where Ri is the return on asset i and -RfE[fm] = A, to estimate the SDF. The change of

measure from the natural to the risk-neutral probabilities is the solution of a constrained

minimization problem, where each constraint corresponds to an asset/Euler equation. Thus,

our estimate of the change of measure is semi-parametric: It is a function of the estimated

Lagrange multipliers. The objective function is the Kullback-Leibler Information Criterion

(KLIC) between the risk-neutral and natural probabilities.

Rosenberg and Engle (2002), Jackwerth and Rubinstein (1996), and Ait-Sahalia and Lo

(1998) and Hutchinson, et al (1994) also uncover semiparametric/nonparametric stochastic

discount factors from asset returns, but their methods require option data (the latter paper

does not explicitly uncover the SDF, but it does provide a nonparametric pricing method

for derivatives). The method proposed here does not require that but can easily incorporate

'If the factor is in the asset span then the factors expected excess return is its risk premium. See Cochrane
(2005).
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options into the Euler equations.

The intuition of our technique can be explained as follows. Imagine starting from some

set of natural, or "true," probabilities, 11, ..., T, over T states. Now, suppose one observes

N assets for which the no arbitrage moment conditions must hold. Unless we are in a risk-

neutral world, it will not be the case that E[Ri] = Rf. The technique proposed in this paper

changes each of the wi to a 79 such that EQ[Ri] = Rf, where EQ[.] means expectation under

the 7rQ. The changes in these 7.i are the "smallest" necessary to still satisfy the no arbitrage

constraints, and allow us to price securities as if investors are risk-neutral. That is, we make

sure to incorporate no more information than that enshrined in the no arbitrage constraints.

The SDF which solves this problem can be interpreted as a (locally) minimum variance

positive SDF (Section (3.1)). We use the empirical likelihood as our natural probability

measure, which is justified under Markov chain assumptions.

Stutzer (1995) first proposed using the change of measure implied by minimizing the

KLIC subject to the Euler equations. He focuses on what he calls "information bounds,"

analogous to Hansen-Jagannathan (Hansen and Jagannathan, 1991) bounds. Stutzer (1996)

prices options using similar methods we use here to uncover factor risk premia. Kitamura and

Stutzer (2002) review information theory and econometrics, which includes the mathematical

and statistical theory used here. Ghosh, et al (2016b) use the entropy based method to

compare popular structural SDFs by measuring how "far" they are from ensuring the Euler

equations hold. Similarly, Backus, et al (2014) use entropy to characterize the dispersion

in the SDF. Ghosh, et al (2016a) use the entropy based SDF to try to explain the cross-

section of expected returns. Importantly, Ghosh, et al (2016a) use the estimated SDF in

single-factor model, which differs from our goal since we use the estimated SDF to evaluate

the pricing implications of any factor model.

It is informative to consider the current method of estimating risk premia in a factor

model and to determine why this method may need to be revised, as we have suggested.

The standard method is to use "two-pass" or "Fama-MacBeth" (Fama and MacBeth (1973))
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regressions (see Shanken (1996) for a survey). 2 These regressions exploit the time-series

relationship between each asset's returns and the factors and a cross-sectional relationship

between expected returns and factor risk premia. We will emphasize a key issue in factor

models, omitted variable bias, which renders Fama-MacBeth infeasible, that our estimator

can overcome. The omitted variables should appear in both the time-series and the cross-

sectional regressions. This means that the estimates of the factor loadings and risk premia

will be biased and inconsistent.

The proliferation of factor models in the literature speaks to the likelihood that many of

these models are misspecified, missing relevant factors, or simply data-mined (Harvey, et al

(2015)). McClean and Pontiff (2016) note that many factors found to have cross-sectional

pricing ability fare much worse once the academic studies that discovered them are published.

Lewellen, et al (2010) note that it is not difficult for an arbitrary set of factors to seemingly

explain the cross-section of returns. Even without misspecification, Shanken (1992) notes

the need for correcting the errors-in-variables problem inherent in Fama-MacBeth.

This paper is related to the literature on identifying priced factors with model misspeci-

fication. Pukthuanthong and Roll (2014) propose an empirical sorting technique to identify

truly priced factors, as do Harvey and Liu (2015). Bryzgalova (2016) proposes a LASSO

type penalty to avoid inclusion of spurious factors. Kleibergen and Zhan (2014) show that

when macroeconomic factors are projected onto the asset span, these "mimicking portfo-

lios" may lead to spuriously strong inference. Kleibergen (2009) shows that when the factor

loadings are small or the number of test assets is large that Fama-MacBeth test statistics

will be misleading. Kan and Zhang (1999a,b) show that both GMM and Fama-MacBeth

tend to overreject the null that a factor is useless, and interestingly, find this problem to be

exacerbated when T is large. Kan, et al (2013) develop robust to misspecification inference

methods for the cross-sectional regression stage of Fama-MacBeth. These papers do not deal

with omitted variable bias explicitly nor do they exploit the factor premia defining moment

condition, as we do.
2 Though GMM estimates equations jointly, it is susceptible to the same issues as Fama-MacBeth, which

we will detail.

5



Giglio and Xiu (2017) develop a method of three-pass regression to deal with the omitted

variable problem, and the aim of their paper is the most similar to ours. They propose to

relate observed factors to a set of spanning "true" factors through a linear relationship. This

relationship essentially adds a third regression, moving from "two-pass" (Fama-MacBeth) to

"three-pass." Their methodology is thus different than ours. In particular, they exploit the

"blessings of dimensionality" and show that their estimates converge as N, T -+ oo. Our

method only needs large T to converge and shows high accuracy (as measured by root mean

squared error) even when N is very small. As will be seen in the empirical section of this

paper, a well-chosen set of test assets can substitute, sometimes, for a large cross-section.

We run simulations for both large T and small N, and large T and large N. We find that

our estimator delivers consistenly low root mean squared errors in both experiments. Strik-

ingly, even when we model all factors as being observed, our estimation method continues

to perform as well or better than three-pass and Fama-MacBeth. 3

We develop asymptotics for our estimator of the risk premia, allowing us to test the

significance of popular factors used in the literature. We present two derivations of the

asymptotics. The first uses the framework of Kitamura and Stutzer (1997). The second uses

a two-step procedure, first estimating a set of Lagrange multipliers and next estimating the

moment condition defining factor risk premia using the delta method. The former method is

the main one we use in the body of this paper. However, the two-step estimates of the risk

premia are easy to compute and work well as initial guesses for one-step procedure, which

is a numerical optimization problem.

We estimate the risk-premia of the factors in the popular three and five factor models of

Fama and French (1993, 2015) and the four factor model in Carhart (1997), which, relative

to the three factor model, includes a momentum factor. We also estimate the risk premium

of the intermediary leverage factor from Adrian, et al (2014), as an example of a model with

unspanned factors.

We find a statistically significant and positive risk premium for the excess return of the
3 Shanken and Zhou (2007) undertake a detailed simulation study of beta pricing models.
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market. The estimated risk premia for book-to-market, size, and momentum are all positive

and significant and are close to their time series averages. These results are not true for

Fama-MacBeth and three-pass regressions. Similar to Ramponi, et al (2016) we also find

that the profitability and investment factors of Fama and French (2015) are not priced or are

at best weakly significant. We estimate a positive and statistically significant risk premium

for intermediary leverage.

An interesting application of our methodology is to fund manager performance evalua-

tion.4 We show that we are able to estimate the alpha of a fund manager without specifying

the factor exposures of the manager. The intuition is that once we have a measure of the

SDF, knowledge of the factors does not alter the pricing implications we would draw. This is

a very useful fact since a key issue in performance evaluation is that an active fund manager

may manage his risk in such a way so as to load on unobservable factors. Thus, traditional

methods of performance evaluation incorrectly attribute to alpha this manager.

The rest of the paper is organized as follows. Section 2 reviews factor models in asset

pricing and omitted variable bias and describes Fama-MacBeth and three-pass regressions.

Section 3 develops the theory and estimation techniques used in this paper. Section 4 derives

the asymptotic distribution of our estimator. Section 5 presents simulation results. Section 6

presents empirical results. Section 7 discusses our application to fund management. Section

8 concludes.

2 Factor Model Background

Factor models for asset returns take the form:

Rt= + O'ft+i + Et+1 (1)

4This literature is vast. See Ferson (2013) for a review.
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where R is an asset's return, p is its mean, f is a vector of (demeaned) factors, / is a

constant vector of factor loadings, and E is idiosyncratic risk.5 The idiosyncratic risk is

typically taken to be uncorrelated across factors, though some correlation is allowed under

boundedness conditions. Note, importantly, that the factors do not need to be portfolios

or functions of the traded assets. They may be economic factors like GDP growth, or they

may be purely statistical in nature, such as the factors one would estimate via Principal

Component Analysis (PCA).

Let mt be any stochastic discount factor (SDF) (i.e., a time t measurable, positive random

variable, such that 1 = Emt+iRt+i]). Multiply Eq (1) by mt+i and take the expectation:

1 = pE[mt+1] + O'E[mt+ift+1] + IE[Tmt+1Et+].

Noting that E[mt+1] = 1/Rf, where Rf is a risk-free return, and rearranging, we have:

y - R = 3A. (2)

Here, A = -RfE[mt+lft+l] is the factor risk premia. Importantly, the term IE[mt+iEt+1 -0.

The Arbitrage Pricing Theory (APT) of Ross (1976) uses a diversification argument to show

that idiosyncratic risk should receive 0 price.

The typical method of estimating A is via a two-pass regression (Fama and MacBeth,

1973) or with the Generalized Method of Moments (GMM, Hansen, 1982). In either case, the

estimation involves both equations (1) and (2). For example, in a two-pass regression, one

runs time-series regression (1) n times, where n is the number of assets in one's sample. This

generates a fi, i =1, ... , n, for each asset. Next, equation (2) is estimated cross-sectionally

using these /3's as regressors and average excess returns as regressands. The estimates from

this cross-sectional regression, A, are the estimated factor risk premia.

'The model can be written with modification and additional assumptions to include conditional means
and time-varying loadings.

6 Use of GMM allows one to bypass extra steps needed to correct the standard errors of the I estimate in
a two-pass regression. The issue arises because the f3's are themselves estimates of true values. GMM treats
both equations symmetrically, so one can simply "read off" the correct standard error from the variance-
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2.1 Omitted Variables in Factor Models

The preceding discussion has taken the factors, f, as given. However, the choice of factors

is not obvious. Given this uncertainty, it is likely that many proposed factor models are

incorrect and have omitted variables. Aside from the usual effects of omitted variables in

regression models (e.g., biased estimates), having omitted variables in the factor model,

equation (1), affects equation (2) and hence the estimate for the factor risk premia.

To see this, let us assume we estimate a one factor model, while in reality there is an

omitted second factor. 7

Rt = p + 01fit + Et, whereEt= /32f2,t + et. (3)

The Ordinary Least Squares (OLS) estimate of /1 is:

^ Cov(fi,t, Rt) _ J fi,t (p + /1ifi,t + /32f2,t + et) Et fl,tf2,t E fitet
0 - Var(fi,t) Et f2 1+3 Et f2t tf

It is the second term on the right that causes problems. In the absence of omitted variable

bias, that term would not be there, and ^1 would be unbiased. However, when we estimate

Eq.(2) using the above 1 we are introducing the omitted variable bias in two ways: First, by

using an inconsistent and biased estimate of 1, and second, by having omitted variables in

Eq.(2), too. That is, #2 is missing as a regressor in the cross-sectional regression. It follows

that the estimated risk premia will differ from those estimated in the correct specification.

Giglio and Xiu (2017) introduce a new method of estimating factor risk premia using

three-pass regressions. They assume that the observed factors, gt, are a linear combination

of the true factors plus noise and possible measurement error:

gt = + r'ft + Vt (4)

covariance matrix.
7Technically, there is a difference in the effects on our estimates if the factors in the error are priced or

not. That is, it is possible to have an error term which has a factor structure, but whose factors do not carry
risk premia. This distinction is not important for our discussion here.
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where is the measurement error, and vt is the noise. If there are 6 true factors and only 4

observed factors, then rj is 4 x 6. This formulation is general enough to incorporate situations

where gt is simply a subset of the true factors or a linear combination of all of them (set

17 equal to the concatenation of the identity matrix and a matrix of zeros of appropriate

dimensions).

As the name suggests, three-pass uses the information in the three equations (1), (2),

and (4) and principal components analysis to estimate the factor risk premia and overcome

the issue of omitted variables bias, and, as the number of assets tends to infinity, is able to

identify the factor loadings and factor risk premia.

3 Estimation of Entropy-Based Risk Neutral Probabil-

ities

Consider the classic asset pricing equation:

E[Rm] =1

where we assume stationarity (and ergodicity) of returns and the SDF, allowing us to drop

time subscripts in the unconditional expectation. Dividing through by E[m] = 1/Rf:

E R M = R1.
IE[M]]

Since m/E[m] is strictly positive and integrates to 1, we can define a probability measure Q,

absolutely continuous with respect to P (the "natural" probabilities), such that:

m dQ
E[m] dP
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We call Q the risk-neutral measure since:

EQ[R] = Rf.

That is, the risk-neutral measure allows us to price assets as if investors were risk-neutral

(i.e., the SDF is a constant).

To make this formulation applicable, let us move to a discrete state setting. That is,

Rf't = E Rt+ r(s) 7r(s) (5)

where S is the set of possible states, 7rQ(s) is the risk-neutral probability of state s, 7T(s) is

the natural probability of that state, and Rt+1 (s) is the return in that state. Notice, that

in this discrete setting, m/E[m] = dQ/dP = 7rQ(s)/7r(s). The goal here is to use no more

information than equation (5) to estimate the risk-neutral probabilities.

This is a form of a linear inverse problem and can be solved as:

min I(7Q117), subject to equation (5) (6)
71-Q

where I(7wQ|ir) is the Kullback-Leibler Information Criterion (KLIC):

(7rQ, 7r) = FQr(s) log (wQFS) (7)

or more generally:

I(QHP) = flog dQ.

This optimization problem asks what minimal adjustment to the natural probabilities is

needed to -ensure the Euler equation holds. The size of this adjustment is measured by

the KLIC. Brown and Smith (1990) provide theoretical justification for this minimization,-

and in particular, show convergence of the observed outcome frequency to the solution of

minimization problem (for discrete probabilities). The next subsection provides some further
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economic motivation for why we might be interested in minimizing the KLIC between the

risk-neutral and natural probabilities.

The solution to problem (6) is known (Csiszar, 1975):

dQ e-(Rt+1-Rf)

dP E [ey(Rt+1-Rf)

If there were N constraints of the form (5), then we would have:

dQ eNI -j(Rjt~j Rf)(8)
dP - E 1 eZ=1(Ri,t+1-Rf)

Here -y is a vector of Lagrange multipliers which solves the dual problem (Ben-Tal, 1985):

-= arg min E [e j=(R1t+1Rf). (9)

In sample, one would solve:

= argmin - e'(Rt+1Rf)
Y t=1

And the estimated Radon-Nikodym derivative would be:

(1N, i =(Ri,t+ 1 -Rf)dQ i-(10)
dP XT=1 7rt eE -1 (Rj,t+1 -Rf )

This change of measure is also known as exponential tilting.

3.1 Positive Variance Bound

Why do we care about the SDF which minimizes the KLIC from the natural probabilities?

As we shall show, in the space of strictly positive SDFs, the KLIC minimizing one (locally)

achieves the lowest variance. That is, we identify what might be called a positive, variance

bound (Hansen and Jagannathan, 1991).
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We fix the conditional mean of the SDF, which pins down the risk-free rate, Et[mt+1] =

l/Rt, and we consider the space of positive SDFs. Recall the relation between the Radon-

Nikodym derivative of the risk-neutral measure with respect to the natural measure and the

SDF: 8

dQ) mt+1 -R~~t,
dP) iEt[mt+i1 = Rftmt+1

Consider the change of measure, (V) * which minimizes the KLIC from the natural

probabilities. Let 4 be any other change of measure with the same conditional mean fordP

the SDF. Eq. (5) holds (more generally than in the discrete state setting in that equation)

for both changes of measure, so they are both associated with different SDFs. We have: 9

FdQ dQ [(dQ * dQ *
[dP dP1 [- dP , dP)

Substitute in the respective SDFs:

RftIt[mt+i [ln(mt+1) - ln(R,t)]] > RtEt[m*+1 [ln(m*+1) - ln(Rf,t)]].

The risk-free rate is the same for both SDFs by assumption. The equation above simplifies

to:

Et[mnt+1 ln(mnt+1)] ;> Et[mn*+1 ln(m*+1

Take a first-order Taylor expansion of ln(mt+i) around mt+1 1.10

ln(mt+1) ~ mt+l - 1.

Substitute this into the previous equation and cancel the risk-free rate which reappears to

'Technically, we are using the density process for the change of measure, not the change of measure itself.
91(QIIP) =f In ddQ = f In dQQd =E !-In

10This is not ad hoc. Consider the equilibrium form of an SDF: mt+l = , where Ut is marginal
utility of consumption in period t. Thus, an expansion mt+1 = 1 is the same as taking an expansion around
Ut+1 = Ut. This is the same log approximation used to derive a linear relationship between asset returns
and consumption growth in the C-CAPM with CRRA utility.

13



derive:

Et [m ] ;>Et [mn*2 ] .(1

Since the mean of the SDFs is the same, Eq. (11) implies that the variance of m* 1 is the

smallest among all positive positive SDFs. Note that positivity is implicit in our use of

KLIC. That is, by associating the linear pricing function with a change of measure (i.e.,

with a normalized strictly positive random variable), we ensure that the SDF is positive.

This is not a property shared by the classical linear projection SDF (see Cochrane (2005)

for textbook details).

Backus, et al (2014) show that the (one-period) entropy of the SDF is associated with a

lower bound on mean excess returns. This is in line with the intuition we have emphasized.

The lower bound for mean excess returns implied by an arbitrary SDF will be higher than

that of our KLIC minimizing one. Recall that the Hansen-Jagannathan bound links standard

deviations of the SDF with mean excess returns as well: Higher mean excess returns imply

a larger lower bound for the standard deviation of the SDF.1 "

3.2 Don't Factor Models Already Imply an SDF?

Recall that a statistical factor model is equivalent to a SDF that is affine in the factors.

One may ask how we can have an exponential tilting change of measure and an affine-in-

factors SDF simultaneously. If we were in a complete markets setting, this indeed would be

impossible.

The combination of (i) exponential tilting change of measure, (ii) returns are generated

by a factor model, and (iii) markets are complete is mutually incompatible. This is because

of positivity, which the exponential tilting change of measure possesses but which affine SDFs

do not. Thus, there cannot be complete markets, since (i) and (ii) are essentially different

"1 We cannot make the exact chain of implication:

Olt (mt+1) = sup ;> - Rf - at (mt*+1)Rf,tat (Rt+i)

because the bound is achieved by the linear projection of the SDF onto the asset span. As mentioned above,
this projection need not be positive, as the SDFs we are comparing must be.
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SDFs.

One may then wish to compare the spanned components of these SDFs. That is, in

incomplete markets, a SDF can be decomposed as:

A = Ms,t + Et.

where Ms,t is in the asset span and Et is orthogonal to the asset span. However, this will

not work either since both factor models and exponential tilting only give the researcher

the "left-hand side." For example, the Ms,t component will not necessarily take the special

functional form we derived above for exponential tilting. Of course, all SDFs assign the

same value to spanned payoffs. Thus, there is no contradiction in using exponential tilting

to recover risk premia in the presence of a factor model.

3.3 The Natural Probabilities

Having considered the question "Why do we care about minimizing KLIC?" we now ask

"How can we operationalize the theory?" A natural follow-up question to ask is "What are

the natural probabilities?" That is, what is P? Stutzer (1996) advocates using the empirical

likelihood. This changes the more abstract notion of state s to period t in a sample of, say,

T, returns. So, for example, equation (5) becomes:

T _Q (t)1
Rf tT T

There are two main reasons to use the empirical likelihood as the natural probabilities.

First, if the underlying data generating process is an ergodic Markov chain, the empirical

likelihood is a consistent estimator of the invariant distribution of the chain. It is also the

fastest converging non-parametric, consistent estimator.

Second, using the empirical likelihood reduces the KLIC distance'" to Shannon's Entropy,

1
2 KLIC is not really a distance measure in the formal sense of the word since it is not symmetric, that is,

I(Q||P) # -(PIIQ) necessarily.
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and thus the optimization problem satisfies the maximum entropy principle. It formalizes

the notion of starting from complete randomness and using only the information in equation

(5) to determine the new probability measure. This can be seen by writing out the KLIC

objective function:

T T T

I (ir, T- 1 1Tx 1 ) = rt In T7rt) = Z rt In 7rt + ln(T) Zw rt.
t=1 t=1 t=1

By definition of a probability measure:

T

Ert = 1
t=1

so:
T

I (7r, T b'1Tx1) Z 7rt ln 7rt + ln(T).
t=1

The final term on the right does not depend on 7rt, and so minimizing the KLIC in this case

is equivalent to minimizing Ett ln lrt, which is equivalent to maximizing - EZt ln -F. This

expression is the definition of the entropy of 7r. Notice that Eq.(10) can then be written as:

- irte 'Rt 1 e T'Rt+1

since 7rt = T- cancels out between the numerator and denominator.

The use of KLIC as the objective function has an axiomatic foundation in Hobson (1971).

That paper shows that if a function satisfies certain properties, then it must be proportional

to KLIC. These properties are (i) the function should be equal to zero if and only if the

two arguments of I(.1||) are the same; (ii) a mere relabeling or rearrangement of the states

should not change the value of the function; (iii) if a probability measure 7r assigns positive

probability to m states, and probability measure -r* assigns positive probability to n <

m states, then I (7r*|7r) should be increasing in m (and decreasing in n); (iv) there is a

complicated "composition rule" which is beyond the scope of this paper.
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4 Asymptotics

This section presents the asymptotics of our estimator of the factor risk premia using an

application of the results of Kitamura and Stutzer (1997). The Appendix contains a proof

showing the asymptotics of the estimator when estimation is done in two steps: First, the

Lagrange multipliers, y, are estimated, and second, the moments condition A = -EQ[ftl is

estimated using the delta method.

Kitamura and Stutzer (1997) write the Euler equations as:

EQ [F(13, )] = 0

where each element of the column vector F, F, is an Euler equation. The new parameter

here, 13, is a vector of parameters we might be interested in estimating. Considering the

Euler equations in the previous sections (that is, the excess returns on assets over the risk-

free rate), and assuming the risk-free rate is known, we have the 1 = 0, since EQ[Ri-R] = 0,

does not rely on any parameters beyond the Lagrange multipliers.

However, note that our moment condition of interest, A = -EQ [ft], can also be included

in their definition of F(O, y). Thus, we can "stack" the factor risk premia equations with

excess return constraints and call this new vector F(O, -y), where 3 = A. Kitamura and

Stutzer show that the estimator solves the following problem:

(AT, 7'T) = arg max min K eYF(tA) (12)
0 t=1

where
K

F(t, A) = 2 F(xt-k, A)
k=-K

and Xt = (R', ft), K -* oc as T -- oc, and K 2/T -* 0. Here K is a smoothing parameter.

Under regularity conditions (see their paper), it can be shown that

/T (I - A*) d N(0, V)
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where A* the true risk premia and V = (D'S-D) '. Here:

D E~ [F(x, A*)] ONxNf

-9 -_INf x Nf_

where INfxNf is the Nf x Nf identity matrix, and Nf is the number of factors. Lastly,

00

S = EE [F (xt, A*) F (xt-j, A*)']
j=-00)

which can be estimated by the method of Newey and West (1987).

In order to identify the correct mini-max solutions to Eq.(12), it is important to start

with a "close" guess. By examining graphs of the objective function, we have observed that

the function is non-convex on regions of the parameter space. A choice of initial guess which

worked in every simulation run is the one proposed in the Appendix. This estimate is also

computationally fast to estimate.

5 Simulation Results

This section compares the performance of two-pass, three-pass, and the exponential tilting

methods in a set of simulation studies. The risk-free rate is set to the average monthly

risk-free rate from 1963-2017. The number of simulations in each experiment is 1,000. The

true number of factors generating returns is five. We calibrate these factors to the five Fama-

French factors (Fama and French (2015)). The true betas are generated from a multivariate

normal random variable with mean and covariance matrix calibrated to the estimated load-

ings of the 25 book-to-market sorted portfolios from Kenneth French's website on the five

factors. 13

The first set of results assumes all factors are known, so omitted variable bias is not

a problem. The factors are demeaned for simplicity. If they were not, we would have an

13 We ran a simulation where the loadings came from a Beta(0.5,0.5) distribution as well as a simulation
where there is 0 true cross-sectional dispersion in betas. The results are qualitatively unchanged.
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additional term in the data generating process for returns. This process is:

5

Ri,t = Rf + 3jj (fj,t + 7j) + ui,t (13)
j=1

where ui,t is iid noise. To confirm that Eq.(13) leads to a "beta-pricing" model as desired,

pass the expectations operator through to get:

5 5

Ri- Rf - Z: 13j(IE[fj,t] + -yj + E [ui~]- j7
j=1 j=1

since both fjt and uit are mean 0.

In the second set of simulations, we assume the observed factors are:

t = rift

where

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0)

That is, we assume only the first three factors are observed, even though the returns were

generated by all five.

Table (1) shows root mean squared errors (RMSEs) for two different pairs of periods,

T, and assets, N, when all five factors are observed. The first panel shows results for

T = 1000 and N = 25. Fama-MacBeth actually outperforms three-pass in RMSE for all

factors. Exponential tilting and Fama-MacBeth are comparable, with the former having

smaller RMSEs for two of the five factors. The first panel of Table (2) shows the bias for

the same simulations. Interestingly, almost all factors are estimated with a slightly negative

bias. More importantly, the bias is small for all estimators.

The second panels of Tables (1) and (2) show RMSEs and biases when T = 600 and

N = 200. The main thing to note is that all estimation methods now have smaller RMSEs.

19



Three-pass has the largest improvement between panels. Exponential tilting's performance

improved enough so that the RMSE of that procedure is now less than or equal to the RMSE

of Fama-MacBeth for three of the five factors.

Table 1: RMSE, All Factors Observed

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
T=1000, N=25

Three-Pass 0.00375 0.00151 0.00185 0.00287 0.00234
Fama-MacBeth 0.00208 0.00051 0.00060 0.00100 0.00152
Exponential Tilting 0.00039 0.00069 0.00137 0.00164 0.00219

_ T=600, N=200
Three-Pass
Fama-MacBeth
Exponential Tilting

0.00194
0.00140
0.00017

0.00040
0.00026
0.00033

0.00043
0.00034
0.00049

0.00031
0.00040
0.00045

0.00164
0.00088
0.00102

This table shows the root mean squared error for each factor in 1000 simu-

lations. The top panel corresponds to the case when T = 1000 and N = 25,
while the bottom panel corresponds to the case when T = 600 and N = 200.

Each row corresponds to estimation technique and each column corresponds

to a factor.

Table 2: Bias, All Factors Observed

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

T=1000, N=25

Three-Pass -0.00349 -0.00145 -0.00162 -0.00286 -0.00230
Fama-MacBeth -0.00060 -0.00007 -0.00006 0.00002 -0.00045
Exponential Tilting 0.00029 -0.00060 -0.00130 -0.00161 -0.00217

1 T=600, N=200

Three-Pass
Fama-MacBeth
Exponential Tilting

-0.00180
-0.00110
0.00003

-0.00035 -0.00030
-0.00013 -0.00005
-0.00018 -0.00028

-0.00011
0.00003

-0.00014

-0.00163
-0.00069
-0.00090

This table shows the average bias in estimation for each factor in 1000 simu-

lations. The top panel corresponds to the case when T = 1000 and N = 25,
while the bottom panel corresponds to the case when T = 600 and N = 200.

Each row corresponds to estimation technique and each column corresponds

to a factor.

Now we consider the case where only the first three factors are observed. The top

panel of table (3) shows RMSEs for T = 1000 and N = 25. First, note that the RMSEs

for Fama-MacBeth, as expected, have increased. The RMSEs for three-pass are virtually
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unchanged, and the RMSEs for exponential tilting are literally unchanged. This latter

findings is expected. A factor's estimated risk premium using exponential tilting is unaffected

by the other factors being priced. The other factors do matter for the covariance matrix of

estimated risk premia, as can be seen in the previous section. The top panel of table (4)

shows that the biases are still slightly negative but very small.

The bottom panel of table (3) shows RMSEs when T = 600 and N = 200. Once again,

three-pass experiences the biggest improvement, whereas Fama-MacBeth actually delivers

slightly higher RMSEs for two of the factors compared to the top panel. Exponential tilting,

as expected, delivers the same small RMSEs from the bottom panel of Table (1).

It is instructive to the note that the first factor (the "market factor") has the highest

covariance with omitted factors, and hence Fama-MacBeth has highest RMSE for this esti-

mate. The third factor has low covariance with the omitted factors, and so Fama-MacBeth

delivers a RMSE comparable to those of three-pass and exponential tilting. The main take-

away is that exponential tilting has good performance under a variety of scenarios: both

with and without observing all factors and under situations where N < T.

Table 3: RMSEs, Two Factors Unobserved

Factor 1 Factor 2 Factor 3
T=1000, N=25

Three-Pass 0.00375 0.00151 0.00185
Fama-MacBeth 0.00446 0.00103 0.00060
Exponential Tilting 0.00039 0.00069 0.00137

T=600, N=200
Three-Pass 0.00194 0.00040 0.00043
Fama-MacBeth 0.00489 0.00105 0.00056
Exponential Tilting 0.00017 0.00033 0.00049

This table shows the root mean squared error for each
factor in 1000 simulations. The top panel corresponds
to the case when T = 1000 and N = 25, while the
bottom panel corresponds to the case when T = 600
and N = 200. Each row corresponds to estimation
technique and each column corresponds to a factor.
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Table 4: Bias, Two Factors Unobserved

Factor 1 Factor 2 Factor 3
T=1000, N=25

Three-Pass -0.00349 -0.00145 -0.00162
Fama-MacBeth -0.00425 -0.00093 -0.00015
Exponential Tilting 0.00029 -0.00060 -0.00130

T=600, N=200
Three-Pass -0.00180 -0.00035 -0.00030
Fama-MacBeth -0.00484 -0.00103 0.00045
Exponential Tilting 0.00003 -0.00018 -0.00028

This table shows the average bias in estimation for each
factor in 1000 simulations. The top panel corresponds
to the case when T = 1000 and N = 25, while the
bottom panel corresponds to the case when T = 600
and N = 200. Each row corresponds to estimation
technique and each column corresponds to a factor.

6 Empirical Results

6.1 Main Results

For our main empirical tests, we estimate the risk premia of the factor in the popular three,

four, and five factor models of Fama and French (1993), Carhart (1997), and Fama and French

(2015), respectively. We also estimate the risk premium for the intermediary leverage factor

of Adrian, et al (2014), which is a non-traded factor.

The three factor model includes RMRF, the excess return of the market over the risk-free

rate, SMB, the excess return of small capitalization stocks over large capitalization ones,

and HML, the excess return of high book-to-market ("value") firms over low book-to-market

("growth") ones.1 4 The four factor model adds the excess return of a momentum portfolio:

previous "winners" over "losers." The five factor model adds two new factors to the three

factor model: profitability and investment.

It is important to realize that the factors, aside from intermediary leverage, are themselves

portfolios of stocks. Thus, their risk premia should be their expected returns. That is, the

14 See Kenneth French's website for a detailed description.
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risk premia of the value factor, HMLt, is E[HMLt]. We can compare our estimates of the

risk premia to the realized average return, HMLt. This last quantity need not be exactly

equal to the true expectation, but only serves as a benchmark. For non-traded factors, we

have no such benchmark.

The data depend on the model being tested (due to data availability). For the three

and four factor models, the data are monthly from 1927:01-2017:06. For the five factor

model, the data are monthly from 1963:07-2017:06. For the intermediary leverage model,

the data are quarterly from 1968:Q1-2009:Q4. Our test assets consist of 80 portfolios: 25

portfolios sorted on value and market cap, 25 portfolios sorted on value and momentum, and

30 industry portfolios. All return data, including excess return factor data, are from Kenneth

French's website. The intermediary leverage factor data are from Tyler Muir's website.

Table (5) shows estimated risk premia and the associated t-statistics for each factor

using Fama-MacBeth, three-pass, and exponential tilting. For the factors which are excess

returns, the factor's average return is also listed. The average returns and risk premia have

been multiplied by 100 to make them interpretable as percentages. The standard errors

of the sample means have been adjusted for possible auto and cross-correlation using the

method of Newey and West (1987).

Exponential tilting finds a positive and significant risk premium for the market excess re-

turn in every factor model. The risk premium estimates barely change across models. Three-

pass never assigns a significant risk premium to the market, and Fama-MacBeth sometimes

assigns a positive risk premium and sometimes a negative one. Exponential tilting consis-

tently delivers positive and significant risk premia for SMB and HML with risk premia close

to their observed average excess returns. Both three-pass and Fama-MacBeth estimate a risk

premium close to the observed average excess return for SMB, but this is not the case for

HML, where signs and significances change from model to model. Momentum is assigned a

positive and significant risk premium by all three methods, but exponential tilting estimates

a risk premium closest to observed empirical average excess return. Fama-MacBeth finds

risk premia closest to the empirical excess returns for the profitability and investment fac-

23



tors, but these factors are at best weakly significant across estimation techniques. Lastly, all

three methods find a strongly significant and positive risk premium for intermediary lever-

age, though the estimate from Fama-MacBeth is almost eight times larger than those of

three-pass and exponential tilting.

Taken together, these results show that exponential tilting estimator delivery empirically

and theoretically plausible estimates of factor risk premia.

The appendix contains a GMM application of exponential tilting. That is, we note that

the first-order condition for the Lagrange multipliers and A = -E [ft(dQ/dP)] are moment

conditions that can be included along with the usual moment conditions used to estimate

factor models via GMM:

E [Ei,t] = E [Ej,tfj] = 0, i 1, ... , N, j = 1, ... , Nf (14)

where Nf is the number of factors. The results are similar. When we include only the moment

conditions implied by exponential tilting, we estimate risk premia close the empirical average

excess returns. However, once we include the moment conditions in (14), the estimates of

the risk premia change and are further from the excess returns. This is because A now needs

to approximately satisfy (14) as well, which is not a valid moment condition if the model is

misspecified.

6.2 The Information in Excess Return Factors

Excess return factors, such as those in the four factor model, are supposed to explain the

returns of portfolios using other portfolios (the factors). We may try to formalize this idea

by essentially reversing the process we have used in the previous subsection.

Since these factors are excess returns, we may use them as the test assets in constructing

our change of measure. That is, our Euler equations now take the form:

EQ [ft] = 0
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where ft is either RMRF, SMB, HML, or MOM. Now, instead of estimating factor risk

premia, we are interested in evaluating the risk-neutral expectation of an arbitrary portfolio,

Rt. We know that:

EQ [R t]= Rf

for any given portfolio. We take the risk-neutral expectation of the 80 portfolios from the

previous subsection. By doing this we are asking if the information in the returns of the four

excess return factors is enough to accurately estimate the risk-neutral change of measure,

where accuracy is judged by how closely this change of measure brings the expectation of a

portfolio's return to the risk-free rate.

Figure 1 displays the results. Each bubble represents EQ[Rt] for one of the 80 portfolios.

The red line is the average risk-free rate over the sample (monthly from 1927:01-2017:06).

The filled in diamond is the average over all 80 risk-neutral expectations, (1 /80) E% E8 [R,]

While there is some dispersion, the most of the bubbles are clustered around the red line.

The diamond is at 0.32% per month while the red line is at 0.28% per month. These results

suggest that in future applications of this estimation methodology, researchers may not need

a large-cross section of assets to estimate the change of measure. This is in line with the

simulation results in previous section, where we showed that even when using only 25 assets,

exponential tilting had small estimation errors on average.
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Figure 1: Estimated Risk-Free Rates
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Table 5: Estimated Risk Premia of Factors from the Literature

Farna-MacBeth Three-Pass Exponential Tilting

Factor Ave. Ret T-Stat RP T-Stat RP T-Stat RP T-Stat

Fama and French (1993) RMRF 0.65310 3.73110 -0.67646 -2.92017 -0.09483 -0.36244 0.96467 7.32051
SMB 0.21605 2.09680 0.24331 2.33859 0.25663 2.64404 0.24583 4.74175
HML 0.38891 3.31280 0.13163 1.12948 -0.10345 -1.13599 0.34154 4.86921

Carhart (1997) RMRF 0.65310 3.73110 0.01429 0.06342 -0.09483 -0.36244 0.96453 7.31942
SMB 0.21605 2.09680 0.18777 1.80572 0.25663 2.64404 0.24583 4.74177
HML 0.38891 3.31280 0.32690 2.84410 -0.10345 -1.13599 0.34155 4.86930
MOM 0.65627 4.77420 0.75224 5.00811 0.26497 1.94579 0.61114 5.50304

Fama and French (2015) RMRF 0.51886 2.84100 -0.35990 -1.16438 0.10488 0.45991 0.93805 6.77514
SMB 0.25591 1.97810 0.28618 2.34681 0.24729 1.82596 0.24778 3.20319
HML 0.34750 2.62750 0.03115 0.25528 0.12520 0.97995 0.34579 4.29604
RMW 0.24725 2.40290 0.16176 1.09431 0.09362 1.29856 0.00475 0.06116
CMA 0.29360 3.21810 0.33250 1.64405 0.09183 1.09767 0.13032 1.86241

Adrian, et al (2014) Leverage

This table shows estimated risk

NA 8.37409 2.89948 1.14305 2.14876 1.45719 2.34564

premia and t-statistics for popular factor models from the literature as estimated
by using Fama-MacBeth regressions (columns 4-5), three-pass regressions (columns 6-7) and exponential tilting

(columns 8-9). The left column identifies the paper whose factor model is being tested. The next column lists the
identity of each factor. The third column lists the average return of the factor if the factor is an excess return
portfolio. Standard errors for the mean excess returns were calculated using the method of Newey and West
(1987). All other standard errors are calculated using the method implied by the column heading. All risk premia
and average returns have been multiplied by 100 to make the numbers interpretable as percentages.
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7 Application to Fund Manager Performance Evalua-

tion

In this section, we detail a key application of our estimation methodology. Performance

evaluation of asset managers is a long-researched question and coming up with a robust way

to assess a manager's performance is important for investors deciding how to allocate their

money. A manager is said to generate alpha if his or her portfolio has excess returns above

and beyond those implied the portfolio's exposure to the priced factors. That is, manager

i's alpha is defined to be:

zi = E [Rj] - Rf - /3jA.

Using a sample of fund returns, we could calculate:

where A are the estimated factor risk premia which are estimated from a set of test assets

and 3O are estimated by a time-series regression of fund i's returns on the factors. It follows

that the econometrician needs to take a stand on what the appropriate factor model for the

manager is.

We see here another instance in which omitted variables (missing factors) can cause

problems in our estimation goals. By an appropriate choice of securities, an active fund

manager can influence how his portfolio loads on certain factors. For example, as an extreme

case, the manager may have a significant loading (beta) on only one risk factor. If this factor

is unobserved by the econometrician, the risk premium on that factor will be measured as

alpha. More formally, consider a situation where there are two true factors generating

returns, but the fund manager's portfolio only loads on the second factor:

Ri,t = Rf + Oi,1 (fi,t + A) + /i,2 (f2,t + A2 ) + u2 ,t.
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Now consider the "alpha" of the manager if we believed there was only one factor, fl:

ai = E [ Ri] - Rf -- Oj,1j = E [ Ri] - Rf

since we have assumed the manager's returns only load on the second factor. But using our

factor model above, we see:

E[Rj] = Rf + Oi, 1,A+ i,2A2

since the fi and error term are mean zero. Thus, in reality,

Using our exponential tilting measure, we circumvent the omitted factor problem by

estimating the risk-neutral change of measure directly from asset returns. Recall (see, e.g.

Cochrane (2005)) that a factor model for returns implies a SDF which is affine in the factors.

Thus, if the econometrician already knows the SDF, knowledge of the factors does not change

the price he or she would assign to a security or portfolio. To see how this affects our measure

of a fund's alpha, take the risk-neutral expectation of the example two factor model we used

above, but explicitly include an a term (it may be 0, positive, or negative):

E-[Ri] = Rf + oz + /3i,1 (EQ[fi,,] + A1) + /3 i,2 (EQ [f2,t] + A2 ).

But, recall that -EQ[f] = A for any factor priced f. Thus,

IEQ[Ri1 = Rf + oz.

Therefore, once we are able to estimate the risk-neutral expectation of a portfolio's return,

we will be able to estimate the portfolio's alpha. This is the exact same problem we tackled

in previous sections. That is, instead of estimating the (negative) risk-neutral expectation
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of a factor and calling this the factor's risk premium, we are estimating the risk-neutral

expectation of a manager's excess returns and calling this his or her alpha.

We quickly evaluate the merits of this proposed procedure in a simulation exercise. We

use the same setting as in the section on simulation above. Now, we also add a manager

whose returns only load on the fifth factor. For simplicity, we take his beta on this factor

to be one. As in the section on simulation, we assume only the first three factors are

observed. We regress the manager's returns on the three observed factors to get an estimate

of = KI, /2, A,3 . We then estimate the manager's alpha as = - Rf - /\ where

the factor risk premia are estimated by classic Fama-MacBeth. We also use exponential

tilting to estimate i = EQ [Ri] - Rf. Table (6) shows the RMSE and mean alpha over

500 simulations using the two methods. The manager in this exercise has no alpha, however

notice that the mean alpha estimated using Fama-MacBeth is 0.41% a month (the simulation

is calibrated to monthly data). That translates to an alpha over 4% a year. Exponential

tilting estimates an average alpha of less than 1/4 of that. Also, the RMSE is two times

smaller for exponential tilting.

Table 6: Simulation Results for Esti-
mates of Manager's Alpha

Method RMSE Mean Alpha
R - Rf -FA 0.0043 0.41
EQ[R] - Rf 0.002 0.0978

This table shows the RMSE and mean
estimated alpha over 500 simulations.
The top row shows the estimated alpha
using Fama-MacBeth. The second row
shows the estimated alpha using expo-
nential tilting. The mean alpha has
been multiplied by 100.

8 Conclusion

This paper has developed and evaluated a new method for estimating factor risk premia.

The theory built on results from information theory, casting the estimation problem into a
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simple set of moment conditions defining the factor risk premia. These moment conditions

are valid whether or not the model is missing certain factors. Building on the work of

Kitamura and Stutzer (1997), we derived asymptotic standard errors for the estimates of

the risk premia. Simulation exercises showed that the accuracy of our estimation method

("exponential tilting") was comparable, and frequently higher, than that of Fama-MacBeth.

Finally, empirical results showed that exponential tilting delivers estimated risk premia that

are in line with those predicted by financial economic theory. For example, the risk premia

of excess return factors are very closed to their observed average excess returns.

It goes without saying that there are many more factor models which could be subjected

to the techniques developed in this paper. For example, it would be important to know how a

comprehensive list of "priced" and "unpriced" factors, as determined by exponential tilting,

compares to similar lists, as determined by the recent literature on model misspecification.

Similarly, the application to performance evaluation can be taken to the data. For example,

mutual funds have consistently been found to under-perform certain benchmarks. It would

be interesting to see if our methodology further confirms this result.
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A Alternate Proof of Asymptotics

This section derives asymptotics for the risk premia when the estimation procedure is done

sequentially. That is, first we estimated the Lagrange multipliers using the excess return

Euler constraints. Then we estimate the factor risk premia as a function of these Lagrange

multipliers using the delta method. The standard errors in this section may differ from those

derived in the body of the paper due to the two-step nature of this estimation procedure. If

the first-order approximation inherent in the delta method leaves out non-negligible variation

in estimates of the Lagrange multipliers, then the standard errors will be understated. 15 The

advantage of the method presented here is that it is computationally faster than the one in

the body. In fact, the point estimates for the risk premia from the method in the Appendix

and very close to the ones estimated by the one-step procedure. Thus, we use the two-step

estimates as our "guesses" when initializing the one-step procedure.

Recall that the Lagrange multipliers in the entropy minimization problem can be solved

as

arg min n e't
7 t=1

where y is an N x 1 vector of multipliers, R' is an N x 1 vector of excess returns, and N

is the number of returns/Euler equations. This problem is convex, so the minimization is

151 thank Anna Mikusheva for this insight.
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well-defined. The first-order condition is:

T ERt' 't = 0.
t=1

We may follow standard extremum estimator arguments.16 Take a mean value expansion

around the population solution, -Yo, of the first order condition:

0 = R t + R 'e ' (15)
t=1 t=1

where - is a convex combination of -yo and 9-.

Assumption A.1

vIT; T R 'e R

t=1

d + N(0, Q)

where

)Q = E
j=-00 I'1

Also,

R R e - E[R' R teCJRI
t=1

= B.

Rearranging Eq. (15) and multiplying through by V', we have:

-1

RRe'Re
.t

[VI
.T

Taking T -- oc, we have: 1 7

VT(- - o) d N (* , B-1B1').

16See, e.g., Singleton (2009) for details.
17We use the method of Newey and West (1987) to estimate Q.
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Next, recall that our estimator for the factor risk premia is:

~1 (t Q
T = (--ft) dP

t=1 )

where

# ZT e7RR

and ft is a K x 1 vector of factors. This estimator is a function of -, and so we apply the

Delta Method. Define:

ft)dQ _=1(-ft )eC'Re

T Tt=1

where the change of measure is evaluated at the -y.

Notice that

d'(yo) =4 Z(-ft)R' e Rj T
t=1 t=

[T 
0

t=1 _

T

The term T t=I_ Rt e0Rt after the minus sign goes to 0 as T -+ oc, since this converges to

the population first order condition for -yo. We use the following assumption:

Assumption A.2

[4
-ft)Re e 0

t=1 _t=1

eY6R0yR t 1 D

where
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Thus an application of the Delta Method to d ( A) =, yields:

A = A + d' ( ) ( 0-). (17)

Rearranging Eq. (17), multiplying by vT, and taking T -* oc we find:

/T (- - A 4 N (0, DB- 1 Q (B1)' D) .

B GMM Estimation of Exponential Tilting

The methodology used in this paper used two sets of moment conditions to estimate two

sets of parameters: the Lagrange multipliers, -y, and the prices of risk, A. Though we did

not use the Lagrange multipliers directly in any tests, it is necessary to estimate them since

the estimate of the change of measure is a function of -/.

The moment conditions were the first-order conditions for the Lagrange multipliers:

T~

E[ Rey'Rj

and risk-premia moments:
T dQ

A =-E Eft .~[Z=1 dP J
We can use these moment conditions in a GMM framework that includes the typical moment

conditions used to estimate the factor loadings and risk premia in factor models. To remind

ourselves of what these are, recall that the factor model can be written as:

N

Ri,t+l = R, + E (fj,t+l + Aj) 13i'+ Ei't+1
(j=1
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for each asset i. We impose:

E [Ei,t] = E [fjt+1Ei,t+i1 = 0, Vi, j.

We will use the same N = 80 portfolios we used in the main empirical section in the body

of the paper. As factors, we choose the three factors of Fama and French (1993). In total,

we have N moment conditions from the first-order conditions for the Lagrange multipliers,

Nf = number of factors (3 Fama-French factors in this example) moment conditions from the

definition of factor risk premia, and N + Nf N moments from the original GMM formulation

of the factor model.

As a first check, we estimate the factor risk premia using only the moments implied by

exponential tilting. That is, we have N + Nf moments corresponding to the N Lagrange

multipliers and the Nf factor risk premia.

We use two-step GMM where the initial weight matrix is the identity and the second

weight matrix is the inverse of the moment covariance matrix estimated in the first step.

Panel A of Table 7 displays the estimated risk premia when the only moment conditions

used are the first-order conditions for the Lagrange multipliers and moment conditions defin-

ing factor risk premia. The first two columns include the average excess returns of the three

traded factors and t-statistics where the standard errors are corrected for correlation using

the Newey-West procedure with 10 lags. We first notice that the estimated risk premia are

close to the average excess returns. Panel B shows the estimated risk premia when we also

include the standard GMM moment conditions for factor models. While the risk premia

remain significant, we see that they are further from average excess returns in the first col-

umn. Note that A, the factor risk premia, appear in all the moment conditions except for the

Lagrange multipliers' first-order conditions. Thus, requiring them to satisfy the standard

GMM moment conditions changes the estimates.
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Table 7: GMM and Exponential Tilting

Panel A: Exponential Tilting Moments Only

Factor Mean Excess Return T-Stat Estimated Risk Premium T-Stat

RMRF 0.65 3.7311 0.7 42.7766
SMB 0.22 2.0968 0.24 16.2249
HML 0.39 3.3127 0.34 16.9321

Panel B: Full Set of Moments

Factor Mean Excess Return T-Stat Estimated Risk Premium T-Stat

RMRF 0.65 3.7311 0.56 71.3301
SMB 0.22 2.0968 0.38 32.3745
HML 0.39 3.3127 0.45 36.0392

Panel A shows the mean excess return and t-statistic on each of the three traded factors.
Standard errors are corrected for correlations using the Newey-West procedure with 10 lags.
The risk premia are estimated using two-step GMM where the moment conditions are the
first-order conditions for the Lagrange multipliers and the moment condition defining the
factor risk premia. Panel B estimates risk premia using the same moment conditions as in
Panel A and also includes the moment conditions E[E,i] = Elfitsi'd = 0 V i, j.
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