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Abstract

Over the last few years, we have seen the emergence of several so-called "third-
generation" sequencing platforms, which improve on standard short-read sequencing
that has thus far been at the center of next-generation sequencing. While technolo-
gies developed by Pacific Biosciences and Oxford Nanopore accomplish this goal by
producing physically longer reads, several other technologies take an alternate route
by instead producing "barcoded reads", including 10x Genomics' Chromium plat-
form and Illumina's TruSeq Synthetic Long-Read platform. With barcoded reads,
long-range information is captured by the barcodes, which identify source DNA frag-
ments. As with all sequencing data, alignment of barcoded reads is the first step in
nearly all analyses, and therefore plays a central role. Here, we design and validate
improved alignment algorithms for barcoded sequencing data, which enable improved
downstream analyses like phasing and genotyping, and additionally uncover variants
in regions containing nearby homologous elements that go undetected by other meth-
ods.
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Chapter 1

Introduction

Sequencing has revolutionized the way we approach biology, genealogy and medicine,

as well as a host of other domains. The development of high-throughput sequencing

technologies-called "next-generation sequencing", or NGS-has spurred the develop-

ment of numerous algorithms to better handle the ensuing data deluge. As sequencing

is the most fundamental operation in genomics, transcriptomics, and metagenomics,

efficient and accurate algorithms for handling and analyzing sequencing data are piv-

otal to these fields, and many others. Virtually all analysis pipelines for any kind

of sequencing data begin with alignment, or mapping, of reads (the A/C/G/T DNA

strings produced by sequencers) to a reference genome (a fixed consensus sequence

that roughly corresponds to the average genome, initially constructed via the Hu-

man Genome Project [7]). Reads have typically been on the order of 100 base pairs

(bp) in length, while the human genome is roughly 3 Gbp. The large size of the

human genome, coupled with the fact that reads can have sequencing errors, single-

nucleotide mutations and even insertions or deletions, makes sequence alignment an

algorithmically nontrivial task, and one in which there has been extensive research

[22, 20, 40, 41, 25].

Now we are experiencing a similar phenomenon again as several "third-generation"

[15] sequencing technologies are being developed, giving us a unique opportunity to re-

think and reinvent many of the algorithms designed for standard NGS data to handle

the new data types that third-generation platforms produce. The primary motivation

13



behind third-generation sequencing is to address the shortcomings of standard NGS,
the biggest of which is read length. NGS platforms have typically produced "short-

reads" that are around 100 bp in length, but this short read length has limitations in

many applications:

9 Alignment: A significant fraction of the genome is comprised of repetitive or

homologous elements. Moreover, these elements are often larger than the length

of a short-read, making it difficult or impossible to resolve them with short-

reads. Recent segmental duplications larger than 5 kbp and with over 94%

sequence identity comprise roughly 4.35% of the genome; furthermore, these

regions are phenotypically important [3].

e Structural variation detection: Structural variations are large-scale genomic

events such as duplications, insertions/deletions, inversions and translocations.

These events can be impossible to detect with short-reads alone (often for the

same reasons as above) [8].

9 Phasing: Phasing is the process of separating a sequenced individual's muta-

tions into maternal and paternal haplotypes, which entails determining which

mutations are on the same haplotype, often without the aid of sequencing data

from the parents. As short-reads typically intersect at most one mutation, it

can be difficult or impossible to determine which mutations are on the same

haplotype [35].

Worth noting is the fact that short-read sequencing has been adapted to overcome

some of these obstacles by employing "paired-end sequencing", where two ends of a

roughly 1 kb fragment are sequenced to produce pairs of short reads that are known

to map relatively close to one another, thereby increasing the effective read length.

Nevertheless, the aforementioned downsides all still apply to paired-end reads.

Third-generation sequencing technologies address the issue of read length in two

main ways. The sequencing platforms of Pacific Biosciences and Oxford Nanopore

produce physically much longer reads, on the order of tens of kilobases [15]. On
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Figure 1-1: 10x Genomics' sequencing workflow; taken from Kitzman [19].

the other hand, 10x Genomics' Chromium platform produces "barcoded" short-reads

(also called "linked-reads"), which capture long-range information by virtue of short

barcodes ligated to the start of the reads. In particular, linked-read sequencing works

as follows:

1. Long 10-200 kb DNA fragments are partitioned into droplets such that few

fragments are present in each droplet.

2. The long fragments in each droplet are sheared into pieces with lengths on the

order of several hundred bases.

3. A barcoded bead with a unique, known 16 bp barcode is added to each droplet,

thereby ligating the barcode to the start of each sheared piece.

4. Standard paired-end short-read sequencing is applied to the newly barcoded

pieces, producing barcoded short-reads.

This process is illustrated in Figure 1-1. Notice that, in barcoded read sequencing, a

read's barcode provides a link to the original source fragment from which the read is
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derived, which has several implications. Firstly, since all reads with a given barcode

came from the same source fragment (or, at the very most, few source fragments),

these reads should align near one another; this property enables alignment to regions

inaccessible with short-reads alone, since it is now possible to discern between mul-

tiple alignments of any single read by considering its surrounding reads. Secondly,

since these reads all came from a single fragment, they are naturally on the same

haplotype, and so any overlapping mutations can now be trivially phased (as shown

in Figure 1-1). There are several technologies other than lOx's that employ a simi-

lar barcoded sequencing paradigm, including Illumina's TruSeq Synthetic Long-Read

[27] and Complete Genomics' Long Fragment Read [28] technologies. Even standard

paired-end sequencing is arguably an instance of barcoded read sequencing, since the

two mates of each pair are sequenced from the same unknown longer fragment.

1.1 Alignment and meta alignment

Read mapping has traditionally been an algorithmically easy-to-define problem: for

each read (which until recently would be on the order of at most a few hundred base

pairs), locate the position on some genome to which it aligns such that some metric is

minimized, be it Levenshtein distance, more general edit distance, Hamming distance

or some other related metric (or perhaps not a metric at all in the mathematical

sense). To achieve this aim, virtually all read mappers adhere to some form of the

"seed and extend" paradigm, which generally proceeds in two steps:

" Seed: Short exact or nearly-exact matches ("seeds") of subsequences of the

read (often called k-mers for length-k subsequences) are found in the genome

(which is usually indexed in some way to facilitate this process).

" Extend: Wherever several colinear seeds are found, a proper end-to-end align-

ment of the read and the corresponding genomic region is performed.

Evidently, both of these steps can be approached in a number of ways, and a multitude

of useful heuristics have been developed for each.
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A major point of deviation between algorithms in the seed step, for example, is

exactly how to index to the genome so as to find the seeds quickly. One class of

algorithms (e.g. tools like BWA [22] and Bowtie2 [21]) makes use of an FM-index

data structure [13], which is based on the Burrows-Wheeler transform, for finding

seeds. FM-indices are largely appealing for their low memory footprint; for example,

an FM-index of the entire human genome can be stored in around 5 GB or so, despite

the human genome itself being 3 GB. A second class uses hash tables to map seeds

to positions in the genome (e.g. tools like SNAP and CORA); these approaches

typically use substantially more memory but are much faster [41, 40]. Beyond these,

different algorithms use various heuristics for choosing seeds, spacing seeds (i.e. seeds

do not necessarily need to be contiguous, and it has been shown that non-contiguous

or "spaced" seeds can actually be superior [23]), when to "extend" and so on. The

extend step is typically comprised of some form of dynamic programming for aligning

the read to the genomic region found in the seed step, such as Needleman-Wunsch

or Smith-Waterman. As it is a key kernel in most alignment algorithms, much work

has been done on developing highly-optimized dynamic programming alignment code,

often using SIMD instructions to boost performance [42]. CORA [40] can additionally

skip the extension phase entirely in many cases by clever preprocessing of the reference

genome.

Hence, we have an arsenal of tools and algorithms for efficient base-level alignment

in that, given a (short) DNA sequence, we can efficiently locate its "optimal" align-

ment within a larger reference genome. Nevertheless, additional complications arise

as sequencing technologies continue to advance, and to provide us with richer data

types that go beyond just sequence. For instance, virtually all short-read sequenc-

ing technologies nowadays produce paired-end reads (i.e. two short reads that are

known to have been sequenced from a single longer DNA fragment); we can align the

individual reads of each pair ("mates") using our framework above, but how do we

incorporate the knowledge that the reads are in fact part of a pair? Most alignment

tools employ a set of heuristics for handling paired-end data, by penalizing alignments

where the mates map too far or too close to one another given the distribution of
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insert sizes between them. This approach has worked well for paired-end data, where

we only need to reconcile alignments for two reads at a time. For barcoded read se-

quencing technologies like 10x Genomics' or Illumina's TruSeq Synthetic Long-Read

platform, however, we must account for many more reads at a time, and therefore

require more principled approaches.

We can think of this process of incorporating the additional information given by

our sequencing data type into the alignment process as a kind of meta alignment;

we still need base-level alignments as a starting point, but we augment them with

this additional information (e.g. barcodes) to produce more accurate results. The

framework for barcoded read alignment presented here is an instance of this idea.

1.2 Third-generation sequencing

As sequencing technologies continue to advance beyond the initial introduction of

next-generation sequencing (NGS), we have begun to see the emergence of so-called

"third-generation" sequencing platforms, which seek to improve on the standard

short-read sequencing that has thus far been at the heart of most next-generation

sequencing [26]. Several organizations are at the center of this new sequencing rev-

olution, including Pacific Biosciences [11], Oxford Nanopore [39] and 10x Genomics

[43]. While the former two have developed sequencing technologies that produce much

longer physical reads (e.g., 10kb-200kb) at typically higher error rates, the latter is

an example of a barcoded sequencing technology, which typically produce short-reads

(up to 300bp) with low error rates [15].

At a high level, barcoded sequencing is any sequencing method where long DNA

fragments are sheared, and the sheared pieces have some identifier ("barcode") re-

lating them back to the source fragment. These barcodes can be explicit (a physical

barcode is ligated to each sheared piece, e.g. as in 10x sequencing) or implicit (the

fragments are distributed to identifiable wells, e.g. as in Illumina's TruSeq Syn-

thetic Long-Read sequencing, henceforth referred to as TruSeq SLR). These sheared

pieces are then sequenced using standard short-read sequencing, thereby producing
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barcoded short-reads (Figure 2-la). Other barcoded seqeuncing technologies include

Illumina's Continuity Preserving Transposition technology (CPT-seq), Complete Ge-

nomics' Long Fragment Read technology, Drop-seq, and CEL-Seq2 [43, 27, 24, 16, 1].

Because they help identify the original source fragment, these barcodes implicitly

carry long-range information, which can have a significant impact on alignment and

many downstream analyses such as structural variation [43] detection and phasing.

Barcoded reads have several advantages over physically long reads. Firstly, and

perhaps most importantly, barcoded read sequencing is substantially cheaper than

long-read sequencing as discussed above; whereas PacBio's and Oxford Nanopore's

sequencing platforms currently cost anywhere from $750-$1000 per GB of data, bar-

coded sequencing is a comparatively cheaper add-on to standard short-read sequenc-

ing, and therefore bears the same cost (e.g., 10x sequencing costs $30 per GB plus

a $500 overhead per sample) [15]. Secondly, the error profile of barcoded reads is

very similar to that of standard short-reads (roughly 0.1% substitution errors), which

enables us to augment the tools and algorithms that have been developed for regular

short-reads to handle their barcoded counterparts. By contrast, long-read sequencing

(e.g. PacBio or Nanopore) typically produces high rates of erroneous indels (ranging

from 12-13%), which presents a challenge when trying to use preexisting algorithms.

These differences are summarized in Table 1.1. Beyond these advantages, barcoded

reads are compatible with doing hybrid-capture exome sequencing, where introns are

not sequenced (which is not possible with long-read sequencing technologies, as a

contiguous long-read cannot only sequence the exons in a gene). This is a very sub-

stantial additional cost-advantage for barcoded reads (exome sequencing can mean a

10-20 fold reduction in sequencing cost over whole genome sequencing) [33]. These

and other benefits have led to the recent proliferation of barcoded sequencing tech-

nologies for various use cases; for example, 10x and TruSeq SLR sequencing for whole

genome sequencing, as well as Drop-seq and CEL-seq2 for single-cell RNA-seq, 10x

for single-cell VDJ sequencing and so on [43, 27, 24, 16, 1]. A comprehensive re-

view of many of these methods is available [44]. Furthermore, barcoded sequencing

is also playing a greater role in downstream applications such as the generation of
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Technology Error profile Cost per GB

13% indel $1000

O 12% indel $750

0.1% subst. $30

Table 1.1: Comparison of PacBio's (top), Oxford Nanopore's (middle) and 10x Ge-
nomics' (bottom) sequencing technologies [15]. Note that 10x also has a $500 per-
sample overhead.

transcriptomic profiles [5].

As with virtually all sequencing data, the first step in the analysis pipeline for bar-

coded reads is typically alignment. While barcoded reads can, in theory, be aligned

by a standard short-read aligner (e.g., CORA [40], BWA [22], Bowtie2 [21]), this

would fail to take advantage of the information provided by the barcodes. An al-

ternative approach [27] is to assemble the reads for each particular barcode and to

treat the result as a single "synthetic long-read". While this strategy works well for

technologies like TruSeq SLR, in which source fragments are generally sequenced with

high coverage, it is not practical when fragments are shallowly sequenced as with 10x,

which achieves high coverage not by having high per-barcode coverage but rather by

having many barcodes. Also worth noting is the fact that TruSeq SLR's sequencing

fragments at high coverage inflates their sequencing costs to be on par with PacBio's

and Oxford Nanopore's, whereas 10x circumvents this high cost via shallow fragment

sequencing [15].

Currently, the state-of-the-art in terms of barcoded read alignment employs "read

clouds"-groups of reads that share the same barcode and map to the same genomic

region-to choose the most likely alignment from a set of candidate alignments for

each read [4]. Intuitively, read clouds represent the possible source fragments from

which the barcoded reads are derived. The read cloud approach to alignment effec-

tively begins with a standard all-mapping to a reference genome to identify these

clouds, followed by an iterative update of reads' assignments to one of their possible
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alignments, guided by a Markov random field that is used to evaluate the probabil-

ity of a given read-to-cloud configuration (taking into account the alignment scores,

clouds, etc.). Notably, in this framework, clouds are inherently fixed entities to which

some number of reads are assigned at any given point, which does not take into ac-

count the fact that reads can have suitable alignments in several different clouds.

Since this information can be valuable in downstream analyses like genotyping, phas-

ing, and structural variation detection, we wish to account for it.

Confounding barcoded read alignment is the fact that multiple fragments can

share the same barcode; it is in general not possible to infer the source fragment of a

read (and thus its correct alignment within a reference genome) merely by looking at

its barcode. In order to deduce the correct placement of a read, and thus its unknown

source fragment, all possible alignments of that read need to be examined. Even then,

it can be difficult to determine the correct alignment, particularly in homologous

regions of the genome that result in multi-mappings within a single cloud.

Here, we propose a general paradigm for barcoded read alignment that newly em-

ploys a probabilistic interpretation of clouds: EMerAld, or EMA for short (Figure 2-

1). Our two-tiered statistical binning approach enables the more accurate placement

of reads in and within read clouds, which is the critical step in barcoded read align-

ment. The two tiers consist of: (i) a novel latent variable model to probabilistically

assign reads to clouds, which introduces the notion of clouds as distributions over

generated reads rather than simply fixed groups of reads; and (ii) newly exploiting

expected read coverage (read density) to resolve the difficult case of multiple align-

ments of reads within clouds. The idea and subsequent observation of the fixed read

density distribution within source fragments is novel to EMA and can be utilized by

many barcoded read analysis tools: for example, an assembler might use our idea to

model the distance between reads within the same source fragment and thus break

ties, if any. Note that these ambiguous alignments account for a large fraction of the

rare variants that currently cannot be resolved and are of great interest to biologists

[17, 34, 12].
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Chapter 2

A New Framework for Aligning

Barcoded Reads

General barcoded read sequencing begins with splitting the source DNA into long

fragments (10-200kb) where each such fragment is assigned some barcode (e.g. a

short 16bp DNA sequence in lOx sequencing). These fragments are sheared and

each sheared piece has the assigned barcode ligated to it (or, alternatively, resides

in an identifiable well), whereupon standard short-read sequencing is applied to the

sheared pieces. As a result, barcoded reads have the same low error rates as typical

Illumina whole-genome sequencing reads. An idealization of this process is illustrated

in Figure 2-1a.

2.1 Standard data preprocessing

The first stage in the alignment process is to preprocess the data and to identify

the barcodes. Currently, EMA uses an in-house 10x barcode preprocessor, which

extracts and corrects the barcodes from the raw data. Data from many other barcoded

read technologies (e.g. TruSeq SLR) can be preprocessed in a more straightforward

manner, as the barcodes are given as well identifiers for each read, meaning the

preprocessing stage consists of a simple demultiplexing step.

For 10x data preprocessing we largely follow the same practices used by 10x Ge-
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nomics' WGS software suite, Long Ranger [14]. The purpose of this preprocessing is

to:

e extract the barcode from the read sequence,

* error-correct the barcode based on quality scores and a list of known barcode

sequences,

e and group reads by barcode into "barcode buckets" to enable parallelism during

alignment.

In summary, in the barcode extraction stage, we remove the 16bp barcode from

the first mate of each read pair, and trim an additional 7bp to account for potential

ligation artifacts resulting from the barcode ligation process during sequencing (the

second mate shares the same barcode as the first mate). Subsequently, we compare

each barcode to a list B of known barcodes to produce a per-barcode count, and

compute a prior probability for each known barcode based on these counts. Note

that this list is designed such that no two barcodes are Hamming-neighbors of one

another. Now for each barcode b not appearing in B, we examine each of its Hamming-

1 neighbors b' and, if b' appears in B, compute the probability that b' was the true

barcode based on its prior and the quality score of the changed base. Similarly, for

each b appearing in B, we consider each Hamming-2 neighbor b' and compute the

probability that b' was the true barcode in an analogous way (to account for the

possibility that two errors changed the actual barcode to another also in B). Lastly,

we employ a probability cutoff on the barcodes, and thereby omit the barcodes of

reads that do not meet this cutoff. Any read not carrying a barcode after this stage

is aligned with a standard WGS mapper such as CORA [40] or BWA [22].

While in standard read alignment parallelism can be achieved at the read-level,

for barcoded read alignment we can only achieve parallelism at the barcode-level.

Therefore, the last preprocessing step is to group reads by barcode into some number

of buckets. Each such bucket contains some range of barcodes from B, which are all

grouped together within the bucket. This enables us to align the reads from each

bucket in parallel, and to merge the outputs in a post-processing step.
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We note that the Hamming-2 search takes a substantial fraction of the total time,

but is often unnecessary: on a large 980GB lOx dataset, only 276 out of almost 1.5

billion reads are affected by the Hamming-2 correction (amounting to < 0.0001%

overall effect). Thus, it is safe to skip the Hamming-2 correction step. Nevertheless,

we applied Hamming-2 correction on all our datasets for the sake of consistency with

Lariat. Finally, EMA offers a parallelized barcode correction implementation, which

significantly speeds up the overall pipeline.

2.2 A new model

Here we employ a latent variable model for determining the optimal assignment of

reads to their possible clouds. A "cloud" is defined to be a group of nearby alignments

of reads with a common barcode, thereby representing a possible source fragment [4].
We consider all the reads for an individual barcode simultaneously, all-mapping and

grouping them to produce a set of clouds for that barcode (Figure 2-1b). The clouds

are deduced from the all-mappings by grouping any two alignments that are on the

same chromosome and within 50kb of one another into the same cloud, which is

the same approach employed by Lariat (for TruSeq SLR or CPT-seq data, we use

15kb as a cutoff; this is a tuneable parameter that can be adjusted depending on the

underlying technology). While this heuristic works well in the majority of cases, it

can evidently run into issues if, for example, a single read aligns multiple times to

the same cloud. We address such cases below, but assume in the subsequent analysis

that clouds consist of at most one alignment of a given read.

As notation, we will denote by c the set of alignments contained in a given cloud.

We restrict our analysis to a single set of clouds C = {c 1 , c2 , . .. , c} that corresponds

to a connected component in the disjoint-set over clouds induced by alignments, as

shown in Figure 2-1b (i.e. two clouds ci and c3 will be connected if there is a read that

has an alignment to both ci and cj). Conceptually, the clouds in C can be thought

of as alternate possibilities for the same latent source fragment. By definition, for

any given read aligning to some cloud in C, we will have to consider only the clouds
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in C when determining the best alignment for that read, so we focus on each such

set of clouds separately. Note that we make the same implicit assumption made by

Lariat: namely that distinct fragments sharing a common barcode (i.e. fragments

in the same droplet/well) do not overlap on the genome. In reality, there is nothing

preventing this from happening, but we can see that it occurs rarely since fragments

are effectively sampled uniformly from the entire genome. If we partition the 3Gb

genome into 100kb bins (as a reasonable upper bound on mean fragment length) and

assume a droplet/well contains about 10 fragments (also a reasonable bound), we can

observe that only about 1 - H (i - 3Gb/lOOkb ~ 0.15% will contain overlapping

fragments, where (as an approximation) we assume fragments overlap if they are

contained in the same bin. By comparison, about 5-6% of all 1Ox reads are usually

left without a barcode after standard barcode correction, so the additional 0.15% is

rather marginal.

For C = {c1, ... , cn}, let Ci denote the event that cloud ci represents the true

source fragment. Since the clouds c1 , . . . , c, are different possibilities for the same

source fragment, we have Pr(Ci n Cj) = 0 (i # j) and I1(Ci) = 1 (where

1(-) E {0, 1} is an indicator for the specified event). We assume uniform priors on

the clouds so that Pr(Ci) = - (while it is possible to devise a prior that takes into

account features such as cloud length, we observed a large variance between clouds

in our datasets that renders this unhelpful). Now, a cloud ci can be conceptualized

as an entity that generates some number of reads Ki, parameterized by some weight

Oci, so that we can say Ki - Cloud(O, 2 ) for some unknown "cloud" distribution over

generated reads. We make the key assumption that, in expectation, Pr(Ci I Oc) cx

Ki oc c for all ci E C. In other words, if a cloud is expected to have generated a

large number of reads, then the probability that the cloud represents a true source

fragment is high. Let 6 = (Oc ... , Oc) be the vector of cloud weights. We assume the

cloud weights are normalized so that Pr(C | Oc,) = Oc,, and that they are drawn from

a uniform Dirichlet distribution so that 6 ~ Dir(1). Consider now the probability

7r,c, that a read r truly originates from cloud ci (denoted as an event by F,,cj) given

the cloud parameters 6 (i.e. F,,c, 6 - Ber(yr,c,), where Ber(p) is the Bernoulli

26



distribution with parameter p). By Bayes' rule, we can say:

Yr,c = Pr(Fr,ci 10) = Pr(O I Fr,c2) Pr(Frcs),
Zc

where Zcs (and variants thereof) are normalization constants that are the same for

each c E C. Since r,,c, occurs if and only if C, occurs, we have

'Yr,c =I Pr(O I Cj) Pr(Fr,c ).Zc

Applying Bayes' rule again to Pr(6 I Cj) and using the fact that both Pr(O) and

Pr(Ci) are uniform, we obtain

1 Pr(6) Pr(Cj 10) 1Pr(C, 0) Pr(F6,, 2 )Yr,ci = Zc Pr(Ci) Pr(rcc) = Z C Z )

where Zb = [Pr(Cj)/ Pr(O)]Zc. Note that Pr(Fr,ci) is a prior on the probability

that r aligns to ci that is not dependent on the barcode, but rather only on edit

distance, mate alignment, and mapping quality as in standard short-read alignment.

Henceforth, we refer to Pr(F,,c) as -yi"c2, so that F,c, ~ Ber( (c)

Now we can form a prior 9("~') = (o, . (.. , ), which is intuitively the initial vector

of cloud weights. If we are given a set of alignment probabilities and a "current" 0

estimate 6(= (&,. .*. ,? ) (initially t = 0), we can iteratively compute a better

estimate 60(t+) using the fact that Oci c< Ki in expectation:

0(t 1) = 1 (K) = E 1(Fr,c ) 0(t

ci (E Frc

1 , Pr(r,c I 0()

where R is the set of reads mapping to any cloud in C, and the -i factor ensuresR7I
that ZceC Oc = 1. This latent variable model formulation naturally leads to an

expectation-maximization algorithm-one of the widely used ways of maximizing
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likelihood in such models-for determining the cloud weights and, thereby, the fi-

nal alignment probabilities '-*y. An implementation of this algorithm is given in

Algorithm 1.

Algorithm 1 Barcoded read alignment via expectation-maximization
Require: R, C

Ensure: 7,*c for each r c R, c c C

yc$<- Pr(r c), V r E R, c E C

for t E 0,1, ... , T- 1} do
(t(O) 1

E step: -4,c <-Pr(r E ci 10 )) Vr E R, c E C

M step: 0 (t+1) (Z ) Vr E R

end for

*- 7) Vr C R, c E C

Each of the described variables is summarized in Table 2.1, and their interactions

with each other in Figure 2-2. Once we determine the final alignment probabilities

through this method (as in Figure 2-1d), we use them to compute mapping qualities

("MAPQs"), which are a standard per-alignment metric reported by all aligners and

are frequently used by downstream analysis pipelines. Specifically, we take the MAPQ

to be the minimum of the alignment probability, the barcode-oblivious alignment

score and the MAPQ reported by BWA-MEM's API (which is used in EMA's current

implementation to find candidate alignments). Importantly, we also report the actual

alignment probabilities determined by EMA via a special standard-compliant SAM

tag, so that they are available to downstream applications.

2.3 An analogy to Gaussian mixture models

To make this process more intuitive, consider an analogy to Gaussian mixture models

(GMMs), as shown in Figure 2-3. The EM algorithm for GMMs is relatively straight-

forward: given current estimates of the parameters of each Gaussian distribution,
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Variable Description

C set of all clouds in connected component
R set of all reads mapping to some cloud in C

6 = (0c1, ... , O,) vector of cloud weights
Ki number of reads generated by cloud ci

rr,ci event that read r truly originates from cloud ci
'Yr,ci Pr(Frc 10)

Y C Pr(Fc,) (prior based on edit distance, mate, etc.)

Table 2.1: Description of all variables used in mathematical formulation of described
latent variable model.

we compute the probability of each point belonging to each distribution (E step),

then recompute the distribution parameters themselves based on these probabilities

(M step). EMA's optimization algorithm is completely analogous: we first compute

probabilities of each read belonging to each cloud (E step), then recompute the cloud

weights based on these probabilities (M step).

2.4 Read density optimization

While the 50kb-heuristic described above is typically effective at determining the

clouds, it does not take into account the fact that a single read may align multiple

times to the same cloud (which can occur if a cloud spans two or more homologous

regions). In such cases, rather than simply picking the alignment with lowest edit

distance within the cloud, as is the current practice, we propose a novel alternative

approach that takes into account not only edit distance but also read density. We

take advantage of the insight that there is typically only a single read pair per 1kb

bin in each cloud; the exact distribution of read counts per 1kb bin is shown in

Figure 2-4. Now consider the case where one of our source fragments spans two highly

similar (homologous) regions, and thereby produces a cloud with multi-mappings, as

depicted in Figure 2-1c. If we pick alignments solely by edit distance, we may observe

an improbable increase in read density (as shown in the figure). Consequently, we

select alignments for the reads so as to minimize a combination of edit distance and

abnormal density deviations.
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Specifically, consider any cloud with multi-mappings consisting of a set of reads

R = {ri,... , rn}, and denote by Ar the set of alignments for read r C R in the

cloud. Additionally, let ar C Ar denote the currently "selected" alignment for r.

We will initially partition the cloud, spanning the region from its leftmost to its

rightmost alignment, into the set of bins B = {b,. . . , bn} of equal width w, where

each bin bi covers the alignments whose starting positions are located in the interval

[i - w, (i + 1) - w), as shown in Figure 2-1c. In practice, we set w to 1kb. Denote

by Cb, the random variable representing the number of reads in bin bi, where Cb, is

drawn from the bin density distribution CloudBin(i). Lastly, let 1a, denote the prior

probability that alignment ar is the true alignment of read r based on edit distance

and mate alignments alone. Our goal is to maximize the objective:

[Uar - (ca-Z1a

..rER . .bEB rcR

where a is a parameter that dictates the relative importance of the density prob-

abilities compared to the alignment probabilities. We determine the distribution

CloudBin(i) of each Cb, beforehand by examining uniquely-mapping clouds that we

are confident represent the true source fragment. Taking the logarithm, this objective

becomes:

J(ari, .... , ar) = 0log9 N, + E log Pr Cb, = I(ar c bi))
rER bE B rcR

We optimize J through simulated annealing by repeatedly proposing random changes

to ar and accepting them probabilistically based on the change in our objective (the

corresponding algorithm is described in Algorithm 2.
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Algorithm 2 Read density optimization via simulated annealing
Require: R; A, Vr c R

Ensure: a* V r E R

ar - random(Ar) V r E R

Z+ JAa,1,. .. , arn )

for k E {1,... , K} do

r' <- random({r E R : |Ar I > 1})

a' +-random(Ar \ {ar})

z'/< J(ar . , ar', .- , arn)

if z' > z or exp - > random([O, 1)) then

ar < a/

z +- z'

end if

end for

a* <- a, Vr C R

In Algorithm 2, K is the number of simulated annealing iterations, and T(-) de-

fines the annealing schedule (which can be taken to be an exponentially decreasing

function). We apply the preceding latent variable optimization algorithm to deduce

optimal alignments between clouds and, if necessary, use this statistical binning algo-

rithm to find the best alignments within a given cloud.
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Barcoded read sequencing

Source fragments Paired-end
Sourcefragms sequence . barcoded

reads

EMA Tier 1: Latent variable model
compute alignment

probabilities

S Induced
Genom disjoint-set

RT1_ 17 1over clouds
Clouds Aignments

compute cloud weights

EMA Tier 2: Density optimization Final alignments

Read density L Read Alignment Probability
distribution 0.3

- -0.7
0.7

1kb refine - 0.2

Genome 0.6

Figure 2-1: Overview of EMA pipeline. (a) Idealized model of barcoded read se-
quencing, wherein some number of unknown source fragments in a single droplet/well

are sheared, barcoded and sequenced to produce barcoded reads. (b) EMA's "read
clouds" are constructed by grouping nearby-mapping reads sharing the same barcode;

these clouds represent possible source fragments. EMA then partitions the clouds into
a disjoint-set induced by the alignments, where two clouds are connected if there is a

read aligning to both; connected components in this disjoint-set (enclosed by dashed
boxes) correspond to alternate possibilities for the same unknown source fragment.
EMA's latent variable model optimization is subsequently applied to each of these
connected components individually to deduce each of the potentially many fragments
sharing this barcode. (c) EMA applies a novel read density optimization algorithm
to clouds containing multiple alignments of the same read to pick out the most likely
alignment, by optimizing a combination of alignment edit distances and read densities
within the cloud. The green regions of the genome are homologous, thereby resulting
in multi-mappings within a single cloud. (d) While the read density optimization
operates within a single cloud, EMA's latent variable model optimization determines

the best alignment of a given read between different clouds, and produces not only
the final alignment for each read, but also interpretable alignment probabilities.

32



(F

(0)

rci

n =ICI

0 (A,, . . , 6c) ~ Dir(1)

Ki 16 ~ Cloud(Oc)
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17r,ci 10 Ber(-yr,j

Figure 2-2: Graphical representation of EMA's latent variable model involved in
barcoded read alignment. 6 denotes the vector of cloud weights; Ki denotes the
number of reads generated by cloud ci E C; r,,, denotes whether read r E R maps
to cloud ci, and -,c is a prior on this event based on barcode-oblivious information
like edit distance, mate alignment, etc.
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Figure 2-3: A comparison between EMA's latent variable model optimization (top)
and a Gaussian mixture models' (bottom). In the former, we are trying to decide
between two clouds for a particular read, while in the latter we are trying to decide
between two Gaussian distributions. In both cases, the E step of the EM algorithm
consists of computing membership probabilities based on distribution parameters or
cloud weights, while the M step consists of updating these parameters/weights based
on the just-computed probabilities.
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Figure 2-4: Distribution of the number of reads in a 1kb window within a cloud (first
row shows the distribution of two 10x data samples, while the bottom row shows
TruSeq SLR's and CPT-seq's distribution). We only consider the clouds in which
no reads have multiple alignments within the cloud. The box plots correspond to
different bin offsets within the cloud.
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Chapter 3

Applying the EMA Framework

3.1 Experimental setting

We first compared the performance of EMA against Lariat [14] (10x's own aligner

and a component of the Long Ranger software suite) and BWA-MEM [22] (which

does not take advantage of barcoded data, and was therefore used as a baseline for

what can be achieved with standard short-reads). In order to benchmark the quality

of the aligners, we examined downstream genotyping accuracy, alignments in highly

homologous regions, and downstream phasing accuracy.

We ran each tool on four 10x H. sapiens datasets for NA12878, NA24149, NA24143

and NA24385, and used the corresponding latest NIST GIAB [46, 45] high-confidence

variant calls as a gold standard for each. For both EMA and BWA, we performed

duplicate marking after alignment using Picard's MarkDuplicates tool (URL: https:

//broadinstitute.github.io/picard/), with barcode-aware mode enabled in the

case of EMA; Long Ranger performs duplicate marking automatically. Genotypes

were called by GATK's HaplotypeCaller [29, 9] with default settings, while phasing

was done by HapCUT2 [10] in barcode-aware mode. Genotyping accuracies were com-

puted using RTG Tools [6]. We also ran EMA and Lariat on a much higher coverage

NA12878 dataset ("NA12878 v2") to test genotyping accuracy at high coverage as

well as scalability.

To test EMA's improvements on other barcoded read sequencing technologies, we
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ran EMA and BWA on a NA12878 TruSeq SLR dataset [4] as well as a NA12878

CPT-seq dataset [2]. All analyses in this thesis were performed with respect to the

GRCh37 human reference genome.

3.2 Downstream genotyping accuracy

EMA's genotyping accuracy surpassses that of other aligners (Figure 3-1). We found

that for each of the four 10x H. sapiens datasets, EMA produced 30% fewer false pos-

itive variant calls compared to Lariat, and produced fewer false negative calls as well.

Interestingly, BWA-MEM (which does not take barcodes into account) performed

marginally better than Lariat here. Nevertheless, EMA also outperforms BWA-MEM,

attaining the fewest false positive and false negative variant calls between the three

aligners on each dataset. To verify that EMA's superior accuracy scales to higher

coverage datasets, we tested it on a high-coverage NA12878 dataset (Figure 3-2).

EMA attains an even more substantial improvement on the high-coverage dataset,

eliminating nearly 37% of Lariat's false positives and 6% of its false negatives. Full

genotyping results are given in Appendix A.

When run on TruSeq SLR and CPT-seq data, we did not observe any significant

differences in genotyping accuracy between EMA and BWA. This finding is likely due

to the fact that these platforms divide the source fragments into just 384 and 9128

wells ("barcodes"), respectively, limiting the utility of the barcodes in unambiguous

regions of the genome, which is primarily what our NIST GIAB gold standard con-

sists of. However, for both technologies, we did observe improvements in resolving

ambiguous regions of the genome, which we detail below.

Overall, we found that typically ~20% of all reads in our various datasets had

multiple suitable alignments and were therefore able to be targeted by EMA's two-

tiered statistical binning optimization algorithm. These are precisely those reads

that are most challenging to align, and can occur in clinically important regions of

the genome, as we next demonstrate.
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Figure 3-1: Genotyping accuracy for each aligner. The top half shows true positives as
a function of false positives for alignments produced by EMA (green), Lariat (blue)
and BWA-MEM (red) on the well-studied samples NA12878, NA24149, NA24143
and NA24385. Genotype confidences are determined by the GQ ("genotype qual-
ity") annotations generated by GATK's HaplotypeCaller. The bottom half contains
cumulative histograms of false positives (top row) and false negatives (bottom row)
throughout chromosome 1 for each dataset, for both EMA (blue) and Lariat (red).
EMA achieves more than a 30% average improvement over the other methods in
terms of eliminating erroneous variant calls.
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Figure 3-2: Genotyping accuracy for EMA as compared to Lariat on a high-coverage
NA12878 10x dataset. The top plot shows true positives as a function of false posi-
tives, and the bottom two plots are cumulative histograms of true and false positives
throughout chromosome 1. We note that EMA's improvement is even more substan-
tial with higher coverage.
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3.3 Alignments in highly homologous regions

Among the principal promises of barcoded read sequencing is better structural varia-

tion detection, which invariably requires resolving alignments in homologous regions.

One of the most important such regions is the CYP2D region in chromosome 22,

which hosts CYP2D6-a gene of great pharmacogenomic importance [17]-and the

two related and highly homologous regions CYP2D7 and CYP2D8. The high ho-

mology between CYP2D6 and CYP2D7 makes copy number estimation and variant

calling in this region particularly challenging. Indeed, the majority of aligners mis-

align reads in this region. The difficulty is especially evident in NA12878 which, in

addition to the two copies of both CYP2D6 and CYP2D7, contains an additional

copy that is a fusion between these two genes [38], as well as CYP2D7 mutations

that introduce even higher homology with the corresponding CYP2D6 region. Espe-

cially problematic is exon/intron 8 of CYP2D6, where many reads originating from

CYP2D7 end up mapping erroneously (see Figure 3-3 for a visualization). Even the

naive use of barcoded reads is not sufficient: both homologous regions in CYP2D

are typically covered by a single cloud. For example, Lariat performs no better than

BWA in this region (Figure 3-3). For these reasons, we chose to evaluate EMA in

CYP2D to benchmark its accuracy in such highly homologous regions.

As can be seen in Figure 3-3, EMA's statistical binning strategy significantly

smooths out the two problematic peaks in CYP2D6 and CYP2D7. This technique

enabled us to detect three novel mutations in CYP2D7 (Figure 3-3) which exhibit high

homology with the corresponding region in CYP2D6. Thus all reads originating from

these loci get misaligned to CYP2D6, especially if one only considers edit distance

during the alignment (as Lariat and BWA do). Such misalignments are evident

in the "peaks" and "holes" shown in Figure 3-3. We additionally cross-validated

this region with the consensus sequence obtained from available NA12878 assemblies

[18, 30, 32], and confirmed the presence of novel mutations. Notably, we found similar

enhancements in other clinically important and highly homologous genes: C4 and

AMY1A, as depicted in the same figure.
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In addition, the copy number derived from EMA's alignments in this problematic

region (spanning from exon 7 up to exon 9 in CYP2D6 and CYP2D7) was closer

to the "expected" copy number by 20% compared to the copy number derived from

Lariat's alignments (we used Aldy [31] to obtain this data). We further ran Aldy on

our high-coverage NA12878 v2 dataset, where it correctly detected the *3/*68+*4

allelic combination on both EMA's and Lariat's alignments, and EMA's overall copy

number error over the whole region was around 4% better than Lariat's. Finally,

statistical binning did not adversely impact phasing performance in this region, as we

were able to correctly phase CYP2D6*4A alleles in our NA12878 sample from EMA's

alignments (Appendix A).

To demonstrate the generalizability of our paradigm to other similar barcoded

sequencing technologies, we tested it on TruSeq SLR and CPT-seq data, where the

bin distributions follow a similar pattern as 10x's. We alone were able to detect the

same novel CYP2D7, C4 and AMY1A variants in a NA12878 TruSeq SLR dataset

(even with shallow coverage), and to detect the CYP2D7 variants in an NA12878

CPT-seq dataset, as shown in Figure 3-4.

3.4 Downstream phasing

We applied the state-of-the-art phasing algorithm HapCUT2 [10], which supports

1Ox barcoded reads, to phase (i.e. link variants into haplotypes) the variants called

by GATK for both EMA's and Lariat's alignments. We evaluated our results with

the phasing metrics defined in the HapCUT2 manuscript (Table 3.1). EMA provides

more accurate phasings with respect to every metric in comparison to Lariat.

3.5 Computational efficiency

Runtimes and memory usage for each aligner are provided in Table 3.2 for our small

and large NA12878 datasets. These times include alignment, duplicate marking and

any other data post-processing (e.g. BAM sorting/merging). The reported memory
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Figure 3-3: Positive effect of EMA's statistical binning in the clinically important
genes CYP2D6, CYP2D7, C4 and AMYlA. The top image (light green) shows the
read coverage for the region around exon/intron 8 of CYP2D6 (top row) and CYP2D7
(bottom row). Spurious coverage peaks (i.e. increases in observed coverage likely to be
false) in CYP2D6 are shaded black. EMA is clearly able to remove the problematic
peaks and correctly assign them to CYP2D7. The bottom portion of the image
(gray) shows the newly assigned mappings to CYP2D7: EMA's alignments agree
with the assembly consensus sequence (observe the insertion and two neighboring
SNPs detected by EMA). By contrast, both Lariat and BWA-MEM aligned virtually
no reads to this region, and were thus unable to call these mutations. Analogous
images are given below for C4 and AMYlA. We observed the same effects in both
the normal and high-coverage NA12878 samples.
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CYP2D locus (chr22) in TruSeq SLR NA1 2878
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C
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CYP2D locus (chr22) in CPT-seq NA1 2878
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Figure 3-4: Positive effect of EMA's statistical binning on TruSeq SLR data (top
three slides) in the clinically important genes CYP2D6, CYP2D7, C4 and AMY1A,
showing that EMA's alignments agree with the assembly consensus sequence. By
contrast, BWA-MEM aligned virtually no reads to these regions, and was thus unable
to call these mutations. The last slide shows CPT-seq results in the CYP2D region,
which are similar to those of the lOx and TruSeq SLR datasets.
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Sample Tool Switch errors Mismatch errors Flat errors N50

NA12878 EMA 12,796 14,163 538,169 111,392,359
Lariat 13,001 14,705 609,858 92,447,569

NA24385 EMA 10,240 14,110 377,957 115,423,711
Lariat 10,472 14,655 429,896 115,423,711

Table 3.1: Phasing results for EMA and Lariat on NA12878 and NA24385. Bold
type indicates best results. Error metrics indicate the number of "incorrect" phasings
compared to the GIAB gold standard; N50 metrics are based on the length of the
phase blocks (bp). Switch errors refer to incorrect phase switches between the actual
and predicted haplotypes; mismatch errors refer to incorrectly phased heterozygous
variants; flat errors refer to the minimum Hamming distance between the actual and
predicted haplotypes [10].

NA 12878 NA12878 v2
Tool Time (hh:mm) Mem./core (GB) Time (hh:mm) Mem./core (GB)

EMA 14:58 (10:40) 5.4 28:30 (17:45) 8.7
Lariat 21:49 (12:45) 7.0 54:53 (26:01) 8.2
BWA-MENI 14:49 (9:52) 5.5

Table 3.2: Runtime and memory usages on two NA12878 datasets (first is about
287GB of raw data, while v2 is about 823GB). Numbers in parenthesis indicate the
performance of the aligner alone (i.e. without sorting, merging or duplicate marking).
For the small dataset, each mapper was allocated 40 Intel Xeon E5-2650 CPUs A
2.30GHz. For the large dataset, each was allocated 48 Intel Xeon E5-2695 CPUs A
2.40GHz. Memory measurements include only the actual aligner's memory usage and
do not include the memory requirements of pre- and post-processing steps, as they
are virtually the same for all methods. Note that BWA-MEM was used only as a
baseline on the smaller dataset.

usages are per each instance of the given mapper. We found that EMA scales better

than Lariat: specifically, we observe a 1.5 x speedup on our smaller dataset and a

nearly 2x speedup on our larger one, over Lariat's runtimes. We ran EMA on a total

of four high-coverage datasets and have observed that EMA scales linearly in the size

of the dataset (Table A.1, Appendix A).
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Chapter 4

Discussion and Future Directions

EMA's unique ability to assign interpretable probabilities to alignments has several

benefits, the most immediate of which is that it enables us to set a meaningful con-

fidence threshold on alignments. Additionally, these alignment probabilities can be

incorporated into downstream applications such as genotyping, phasing and struc-

tural variation detection. We demonstrate this feature here by computing mapping

qualities based on these probabilities, which consequently enhance genotyping and

phasing. Nevertheless, specialized algorithms centered around these probabilities are

also conceivable.

Moreover, EMA is able to effectively discern between multiple alignments of a read

in a single cloud through its read density optimization algorithm. This capability ad-

dresses one of the weaknesses of barcoded read sequencing as compared to long-read

sequencing; namely, that only a relatively small subset of the original source fragment

is observed-and more specifically, that the order of reads within the fragment is not

known-making it difficult to produce accurate alignments if the fragment spans ho-

mologous elements. By exploiting the insight that read densities within a fragment

follow a particular distribution, EMA more effectively aligns the reads produced by

such fragments, which can overlap regions of phenotypic or pharmacogenomic impor-

tance, such as CYP2D, C4 or AMY1, as we demonstrated. In summary, EMA's first

tier (latent variable model) helps resolve the case of distant homologs, and its second

tier the case of proximal homologs, both of which have confounded existing methods.
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There are several promising future directions to explore. For example, while

here we presented and validated a particular model for barcoded read alignment,

we can still conceive of different more general models. We could learn the patterns

of read alignments within clouds with, say, a support vector machine or neural net-

work trained on uniquely-mapping clouds, and use that to discern between clouds for

multi-mapping reads. This idea may prove advantageous because it has the poten-

tial to learn subtle properties of clouds that are difficult to capture explicitly, like

the fragment length distribution or read density distributions. One could conceiv-

ably train such a model for each of the different barcoded read sequencing platforms,

thereby learning their subtle characteristics, and even integrate the data from several

platforms to further enhance downstream analyses. As for the read density opti-

mization component of EMA, it would be interesting to incorporate copy number

information into the optimization problem, since copy number should actually affect

the density distributions (e.g. high copy number would shift the distribution to the

right), although our analysis did show that CNV detection already got slightly better

as a result of employing this algorithm. Beyond these enhancements, integrating the

density optimization into the latent variable model EM algorithm would also be a

step forward, and could lead to more meaningful probabilities for reads mapping to

nearby homologs.

As we usher in the next wave of next-generation sequencing technologies, bar-

coded read sequencing will undoubtedly play a central role, and fast and accurate

methods for aligning barcoded reads, such as EMA, will ultimately prove invaluable

in downstream analyses.
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Appendix A

Full Results

Genotyping accuracies were determined using RTG Tools' "vefeval" utility after geno-

typing with GATK's HaplotypeCaller. The full results are shown in Table A.2. We

used the latest NIST GIAB high-confidence variant calls as a gold standard.

EMA runtimes on four high-coverage lOx samples are given in Table A.1. Read

density distributions for lOx, TruSeq SLR and CPT-seq data are given in Figure 2-4.

A.1 CYP2D analysis

The copy number of each intron and exon in the CYP2D region was obtained by

running Aldy [31] on both Lariat's and EMA's alignments. We calculated the absolute

difference from the estimated copy number for exon 7, intron 7, exon 8 and intron 8 (in

both CYP2D6 and CYP2D7), and the expected coverage (obtained from [38]: 2 for

CYP2D6 and 3 for CYP2D7 regions). This difference is 5.51 for EMA's alignments,

and 8.22 for Lariat's, implying an improvement of 20% if one uses EMA. Similarly,

on our NA12878 v2 dataset, the overall difference (on all exons and introns) is 7.16

if one uses EMA and 8.25 for Lariat, implying 4% overall improvement.

Furthermore, phased data from both Lariat's and EMA's alignments correctly

linked CYP2D6*4A mutations together (i.e. chr22:42,524,947 C>T, chr22:42,525,811

T>C, chr22:42,525,821 G>T and chr22:42,526,694 G>A).
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Sample Size (GB) Time (hh:mm)
NA12878 823 17:45
NA19238 483 11:57
NA19240 677 14:25
NA24385 658 14:55

Table A.1: EMA runtimes on four high-coverage 10x datasets. EMA was allocated
48 Intel Xeon E5-2695 CPUs A 2.40GHz. These timings do not include the pre- and
pose-processing steps.

A.2 Other barcoded sequencing technologies

EMA needed around 6 hours on a 48-core machine to complete on three shallowly-

sequenced TruSeq SLR NA12878 lanes (accession: BioProject PRJNA287848). We

also ran BWA-MEM on the same dataset. We were not able to successfully run the

RFA aligner on this dataset.

On a CPT-seq NA12878 dataset (accession: BioProject PRJNA241346), EMA

needed approximately 42 hours to complete on a 48-core machine. The reason for the

increased runtime is CPT-seq's short 50bp read length, which results in significantly

more multi-mappings than 10x's and TruSeq SLR's >100bp reads. The short length

of the reads makes it much harder to properly utilize our binning technique; despite

this, EMA managed to properly align reads in the problematic CYP2D region.
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NA 12878
Tool True pos. baseline True pos. call False pos. False neg. Prec. Sens. F

EMA 3,614,882 3,614,969 354,829 76,274 0.911 0.979 0.944
Lariat 3,613,361 3,613,447 507,666 77,795 0.877 0.979 0.925
BWA-MEM 3,613,352 3,613,443 489,605 77,804 0.881 0.979 0.927

NA24149
Tool True pos. baseline True pos. call False pos. False neg. Prec. Sens. F

EMA 3,336,661 3,336,864 465,629 135,047 0.878 0.961 0.917
Lariat 3,335,495 3,335,714 679,025 136,213 0.831 0.961 0.891
BWA-MEM 3,335,801 3,336,008 613,494 135,907 0.845 0.961 0.899

NA24143
Tool True pos. baseline True pos. call False pos. False neg. Prec. Sens. F

EMA 3,394,171 3,394,389 478,930 112,730 0.876 0.968 0.920
Lariat 3,390,938 3,391,148 679,881 115,963 0.833 0.967 0.895
BWA-MEM 3,391,744 3,391,964 617,525 115,157 0.846 0.967 0.903

NA24385
Tool True pos. baseline True pos. call False pos. False neg. Prec. Sens. F

EMA 3,375,423 3,375,593 416,442 137,178 0.890 0.961 0.924
Lariat 3,374,059 3,374,236 624,103 138,542 0.844 0.961 0.899
BWA-MEM 3,374,670 3,374,845 539,915 137,931 0.862 0.961 0.909

NA12878 v2 - high coverage
Tool True pos. baseline True pos. call False pos. False neg. Prec. Sens. F

EMA 3,639,349 3,639,452 282,534 51,512 0.928 0.986 0.956
Lariat 3,636,020 3,636,121 446,111 54,841 0.891 0.985 0.936

Table A.2: Full genotyping results. Best results are shown in bold.
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Appendix B

Implementation

A visualization of the EMA pipeline is given in Figure B-1. The following parameters

for EMA were used in the various experiments:

Parameter Description

T number of EM iterations 5

a density probability weight 0.05

in statistical binning

EMA uses BWA-MEM's C API to find candidate alignments just as Lariat does.

EMA's full code is available at http://ema.csail.mit.edu.

B. 1 Versions and parameters

Versions and parameters for other tools used in the various experiments are given in

Table B.1.
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Figure B-1: EMA pipeline. Raw FASTQs are split into buckets by barcode during
preprocessing, then each bucket is processed by a separate instance of EMA in parallel
(e.g. using GNU Parallel [37]). A special bucket containing non-barcoded reads is
processed with BWA-MEM. The resulting BAM files are subsequently marked for
duplicates and merged to produce a single, final BAM file as output. EMA is also
multithreaded, so multiple processors can be used to work on a single barcode bucket.
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To ol/Dataset Version Parameters
Long Ranger

BWA

GATK HaplotypeCaller

HapCUT2

Picard MarkDuplicates

Samtools

RTG Tools

NIST GIAB

2.1.6

0.7.15

3.8.0

default

default

default

eb3b64b linked-read mode

2.9.2

1.3.1

3.8.4

3.3.2

READONEBARCODETAG=BX

READTWO_BARCODETAG=BX

n/a

n/a

n/a
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