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Abstract

In this work, we develop frameworks to study and design the scattering properties in

two kinds of systems. For the first problem, we find approximate angle/ frequency-

averaged limits on absorption enhancement due to multiple scattering from arrays of
"metaparticles", applicable to general wave-scattering problems and motivated here

by ocean-buoy energy extraction. We show that general limits, including the well-

known Yablonovitch result in solar cells, arise from reciprocity conditions. The use

of reciprocity in the radiative transfer equation (similar to a stochastic regime ne-

glecting coherent effects) justify the use of a diffusion model as an upper estimation

for the enhancement. This allows us to write an analytical formula for the maximum

angle/frequency-averaged enhancement. We use this result to propose and quantify

approaches to increase performance through careful particle design and/or using ex-

ternal reflectors. For the second problem, we develop a design method for multi-grid

frequency selective metasurfaces based on temporal coupled mode theory (CMT). In

particular, we design an elliptic passband filter with a center frequency of 10 GHz,
bandwidth of 10% and relatively good angle dependence.

Thesis Supervisor: Steven G. Johnson
Title: Professor of Applied Mathematics and Physics
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Chapter 1

Introduction

1.1 Motivation and context

Scattering phenomena constitute important problems studied in different fields (elec-

tromagnetics, acoustics, ocean engineering...) [4-7] for various applications including

solar cells [8,9], nanoantennas [101, cancer imaging and therapy [11, 12], water-waves

cloaking and refraction [13,141 and many others. Knowing the physical limitations of

the scattering properties and acquiring an efficient method to design the scattering

response are useful and important tasks. Here, we aim to investigate two specific scat-

tering problems, namely multiple-scattering absorption enhancement and frequency

selective metasurfaces.

In the first problem, we consider a system designed to extract energy from an

incident wave through the use of discrete energy extractors or absorbing films. The

use of scatterers, rough surfaces, or external reflectors (multiple scattering effects

in general) may lead to an enhancement of the total absorption compared to the

isolated absorbers or to the single pass in the absorbing film. This is for example

the case in solar cells where it is commonly known that the use of surface texturing

increases the cell efficiency through total internal reflection [15-22]. Interestingly, a

similar problem also occurs in ocean-wave energy extraction [23, 24]. In this case,

wave energy converters (WEC) (or buoys) are designed to extract energy from ocean

waves through a mechanical oscillating movement. When placing the buoys near each

13



other in an array, the total energy extracted from the array may exceed the energy

extracted from individual buoys due to multiple scattering effects as was discussed

in different studies [1, 2, 25-27]. A more similar problem also arises even in solar

cells, where enhancement can be obtained by scattering particles instead of surface

texturing [28-301. Even though the two problems underly similar physical principles,

they are not completely equivalent since the scattering process is different (surface

texturing vs volume scattering) so that new techniques need to be used.

One of the most influential theoretical results for solar-cell design has been the

Yablonovitch limit [15-22], which provides an approximate bound to how much sur-

face texturing can enhance the performance of an absorbing film averaged over a

broad bandwidth and angular range, and which depends only on the refractive index

of the film. Our principle goal is to derive a similar limit in the ocean-buoy (or general

particle scattering) problem, and use it compare the performance of different array

configurations and scatterers.

A main characteristic of such energy-extraction problems is that they are used

with broadband sources (because of the need to extract large power), so that only the

frequency-averaged response matters. In other kinds of applications, it is rather the

shape of the spectral scattering response that matters. This is the case of frequency

selective surfaces (FSSs) [31-341 which are the equivalent of filters for transmission

lines. FSSs are usually formed by planar periodic arrays of metallic elements on

dielectric substrates. When an electromagnetic wave is incident on such surfaces,

some frequencies are transmitted and others are reflected. In this way, FSSs can

be used to dissimulate communication facilities and can operate as spatial filters for

communication and radar systems. In particular, radomes are bandpass filters that

reduce the radar cross section (differential scattering cross section at the backscattered

angle) of an antenna outside its frequency range of operation. This is obviously very

important for military applications that try to minimize the detection of operating

systems.

Different characteristics, including the filter's order, limit the FSS functionality.

Typical bandpass filters with second-order response have been demonstrated using

14



a-b-

d-

Reflection band

Radar

Transmission band

Radome

Figure 1-1: a- Wave energy converter developed by Ocean Power Technologies (cour-
tesy of Ocean Power Technologies). b- Experimental realization of WEC array [1].
c- Example of use of frequency-selective filter as radome cover for an aircraft. d-
Spherical radome in the French frigate Duquesne (courtesy of Wikipedia).

various designs (e.g. [34]). However, the design of higher-order filters with multiple

poles and zeros remained more elusive. This has usually been demonstrated using

multiple cascaded surfaces [35-40]. The design of a specific response for such multiple

surfaces is more challenging due to the many couplings between the layers. Only in

small number of cases the ideal elliptic filter response was demonstrated, usually

with compromises between filter properties and with a structure that is not easily

scalable [36, 38-40]. One possibility to understand the behavior of multiple-surface

FSSs is the use of temporal coupling mode theory (CMT) [41,42]. In this work, we use

a general and efficient optimization method to design higher order filters (including

elliptic filters) based on CMT.

15
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1.2 Thesis outline

This thesis will be organized as follows:

9 Chapter 2 - Multiple scattering enhancement. This chapter describes

the main results about the multiple scattering enhancement problem. After

defining the problem and previous results, we first show that some previously

known limits (e.g. LDOS limit in solar cells) can be derived directly from

reciprocity constraints (section 2.2). The use of a similar reciprocity argument

within a stochastic regime described by the radiative transfer equation (RTE)

leads to another limit on enhancement within this regime. Such limit includes

both cases of index change and large-absorption (section 2.3). This limit, that

is achieved with an isotropic distribution of interior intensity, justifies the use of

the diffusion model (nearly isotropic solution of RTE) as an upper-estimation for

multiple scattering enhancement. Such solution requires a correction for small

thicknesses to ensure the isotropic condition at small absorption. This analytic

radiative-diffusion solution is then compared to exact full-wave simulation for

ocean buoy arrays (section 2.5). We finally suggest new ways to increase the

enhancement in the ocean-buoy problem using partial reflectors and propose an

optimized structure based on bending membranes placed on the ocean surface

(section 2.6).

* Chapter 3 - Frequency selective metasurfaces. This chapter describes

the results about frequency-selective metasurfaces problem. We first show basic

principles for the single-grid design including an experimental demonstration of

second-order bandpass filter at f = 10 GHz and 10% bandwidth (section 3.2).

Then, we show that a double-grid leads in general to a transmission-zero which

allows us to obtain different designs (section 3.3). This is achieved with an

optimization method based the eigenvalues of the system that are related to

a circuit model. In order to obtain a general design method (for higher order

and asymmetric structures), we develop a general coupled mode theory (CMT)

framework and show how it can be used to design high order filters (section 3.4).

16



We finally use the CMT method to design a triple-grid structure exhibiting a

6h -order passband elliptic filter transmission (section 3.5).
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Chapter 2

Multiple scattering enhancement

2.1 General problem

In this part, we are interested in the general problem of absorption enhancement

through multiple scattering, particularly in the case where multiple scattering is

achieved through the use of discrete scatterers. We consider a system designed to

extract energy from an incident wave through the use of discrete energy extractors

or absorbing films. The problem can be kept general so that waves can be electro-

magnetic, mechanical or of other type. This problem arises in different contexts, and

two specific examples are: solar cells and ocean buoys. Although, they seem to be

problems of different natures, they are based on the same underlying physics: the use

of multiple scattering to increase the absorbed power.

In the solar-cell case, enhancement is achieved through light trapping schemes

[9,201. Original light trapping schemes are based on randomly texturing the surface

of the solar cell (simplified as a dielectric slab with a back reflector) so that the incident

light is scattered at different angles. "Ray" propagating at a large angle have a larger

path (and thus larger absorption) and are even reflected back into the cell due to total

internal reflection at the cell-air interface. This mechanism increases the absorption

compared to the single pass defined as the absorption at normal incidence in the

absence of the back-reflector. In the case of a lambertian surface texture that scatters

light isotropically, the enhancement in the limit of weak absorption is 4n 2 where n is

19



the dielectric index of the cell [15,16]. This result is known as the Yablonovitch limit.

For a general periodic texturing, the limit can be generalized using coupled mode

theory which relates the enhancement to the number of resonance modes [17,18,43].

In this case, the ray-optics result can be recovered in the limit where the period

becomes very large compared to the wavelength. Although, derived in ray-optics

regime, the Yablonovitch limit has proven quite accurate in different regimes when

averaging over a large frequency bandwidth and angular distribution [19,20,22].

On the other hand, wave-energy converters (WEC) that extract energy from

ocean-surface waves [23,24] can face a similar situation. Indeed, one particular type

of WECs are omnidirectional absorbers that are axisymmetric devices around the ver-

tical axis. They are connected to a power-take off (PTO) device that allows energy

extraction through the mechanical movement of the buoy. An interesting feature of

such devices is that they can be placed in proximity of each other and form WEC

arrays, leading to a potential absorption enhancement. Of course, careful design is

crucial to extract a maximum energy, otherwise the performance can be worse than

how the same number of bodies would perform in isolation. So, the problem we are

asking is: given the absorbing/scattering properties of an individual buoy, how much

enhancement can be gained via multiple-scattering effects in the array. Previous

numerical-optimization work [1, 2, 25-27], in particular a recent extensive computa-

tional study on large arrays [2], showed that designing the particle positions could

yield substantial gains, but the goal of this work is to derive a more general result

that is independent of the specific particle arrangement.

2.2 Enhancement and reciprocity

In this first part, we want to show that the use of reciprocity in the full wave equations

can lead to a general rigorous limit on the enhancement that can be achieved. This

will lead to two different limits in each of the electromagnetic and ocean wave case,

since the two problems are slightly different. Although the end results are known,

we want to emphasize that they have the same origin: reciprocity. The ocean buoy

20



result was derived in Ref. 44, while the density of states limit for the solar problem

was rigorously shown only recently in Ref. 45. In the following we give a very different

proof that directly links the result to reciprocity.

2.2.1 Solar cell enhancement

This is an alternative to the derivation in Ref. 45, which differs in that it directly

uses the reciprocity (or generalized reciprocity) from Maxwell's equations. As was also

emphasized in Ref. 45, the result also applies to linear nonreciprocal systems, since the

density of states of transposed-related materials is the same (GE(r, r) = G' (r, r) [6]).

Here for simplicity, we consider a reciprocal system in the derivation. We have

then:

j [Ea x Hb - Eb x Hal dS = [Ea - J - E - Ja]dV (2.1)

If we choose (Ja = soro, E"lc = 0) and (Jb = 0, E nc ejkko-re1), then

Ea = GE(ro, ro)6.

The far field term can be written as: E' = fs(k)LLIa, Ha=( x Es) with r7

and similarly for the far-field of the scattered field "b", so that: fs. [Es x H-

Es xHs] -dS=O.

We then expand the integrand of the left term in 2.1 to obtain:

/ [Esx Hinc -Einc xHs] = 1 f()ejkr(1+-ko) [(ia.&)(1-E-o)+(a-ko) )rdk

(2.2)

The integral can be evaluated using the method of stationary phase [46]. The

function g(0, 0) = I+ k - o = 1+ cos 0 cos 0o +sin 0 sin O0 cos(0 - 0 0 ) has two extrema

at k0o. The integrand is null at the first, so only the second matters. The Hessian

matrix at -k 0 is given by: [ J . We then conclude that the integral we want

to evaluate is equal to:

1. 1 1 (& j1Jk~ ~~411
sin . / [2(a- b)) - (6a o (1b -o)]fs (- o)r sin Oo = (6a - 6b)fs (-ko)

7 sin 00 /2 kr ( k
(2.3)
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where ea is evaluated at -ko.

We finally conclude from 2.1 that:

-8, - Eb(ro) = 47r(&a -b 6)fs(-o) (2.4)

which is the reciprocity relation relating the far field of a point source at ro in the

direction -ko to the field at ro due to an incoming plane wave from the same direction.

Now, we use the Poynting theorem to compute the far field of the point source:

1 ~ ~ ~ x*.d '1
- f 'f(k)12dk =IRe[Ea x H*] -kdS < - Re[J,* -Ea] = Im[Ea(ro) -5s] (2.5)J a WPLi j

At this point we are able to combine 2.4 and 2.5 to find our main result about

the enhancement. By integrating over all coming angles and polarizations of the "b"

field, we have:

I Ebf| 2 dko = IEb _ &'|2do = 
(47r)2 2 1 -s _ I2dko

eb ebse eb~es

= (47r)2 J Ifs (-ko) 2dko (47r)' Im[Ea(ro) -6r] (2.6)
es es

21 2 1 're 2

(47r)k Tr[ImGE(ro, ro) = (47) 2  2 p(ro)

which relates rigorously the enhancement and the local density of states.

We can use this result to compute the absorbed power and deduce the enhance-

ment compared to the single pass for a cell of surface S and effective thickness d. We

have:

Pabs = ' E2 Ido < Ie"Eo(47r)22Cf p (2.7)
eb

The incident power for the isotropic incidence and the two polarizations is j f I cos 01dQ x

2 x S = r, and the normalized single pass absorption is ad = nd. The enhance-

ment is then given by:

Pabs 2 (p) (2.8)
P2ncad - n p,
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where pv -6 is the free space density of states. This inequality becomes indeed

an equality in the case of negligible absorption.

For a bulk dielectric, we have: p = n pv so that q = 2n2 which is the standard

limit in the absence of a back reflector for isotropic incident light.

For an incoming angular distribution f(0) with a normalized flux (fJ, cos 0If(O)dQ

fI cos01dQ = 27), we then have to multiply the integrand of the first term in 2.6

by f(0) which leads to :

2 (p)E < max f (2.9)
n Pv 0

To reach this limit, the field should be null for any incident angle different than

the one corresponding to the maximum incident amplitude. This immediately gives

the factor of 2 for light incident from only a half-space which can be achieved using

a back reflector.

We also recover the special case of an isotropic incidence within a cone defined by

02 for a bulk medium (f = (0 < 0j)): E =in .

We finally mention that (2.9) becomes an equality for isotropic incidence and

negligible absorption.

2.2.2 Ocean buoy enhancement

We review a straightforward generalization of the result in Ref. 44 for the case of a

general angular distribution. The result is also a consequence of reciprocity, which

shows the similarity with the LDOS limit in solar cells.

The problem of ocean wave energy extraction using oscillating bodies is formally

equivalent to the problem where there are discrete sources of which the amplitude

can in principle be controlled externally (velocity of the body that can be controlled

through an external mechanical mechanism). Considering the effect of the incom-

ing wave and interaction between bodies, the total absorption can be written as a

quadratic function in terms of the amplitudes of the different sources as in [471 for ex-

ample. Maximizing the absorption allows to find the optimal amplitudes as a function
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of the scattered field and the radiated fields from the sources. This gives [47]:

1
Pmax = 1Fe*()R-lFe(6) (2.10)8

where Fe(O) is the force applied on the bodies for an incident wave from the direction

0 and R is the resistance matrix (radiation damping matrix).

One would try to see the effect of the reciprocity relations discussed before on the

maximum absorption in this context. The exact equivalent of equation 2.4 is already

known in the ocean waves problem as the Haskind-Hanaoka formula that relates the

force applied on a body due to an incident wave to the radiated field when the the

body acts as a source [7]. It leads to:

4
Fe,i(0) = -kpgAcgAj(0 + 7r) (2.11)

k

where A is the amplitude of the incident wave, Ai is the far-field amplitude of the

radiation mode i, k is the wavenumber, c9 is the group velocity, p is the water density,

and g is the gravity of Earth.

The use of this formula on the maximum absorbed power by an array of oscillating

bodies leads to the bound on the power absorbed by the array. For a given incident

angular distribution f(0) normalized so that f2 , f(0)dO = 1:

(Pmax) x Pmax(0)dO = max f R- F*iFe,jd0

(2.12)

Using 2.11 and the fact that Rj = pgcg Re( 2 , A*Aj) [47], we conclude that:

(01 a) N 27 max (2.13)
k e

where oN is the maximum absorption cross section of the array, N is the number of

buoys , and M is the number of degrees of freedom for the buoy motion (1-6 [47], e.g.

1 for only heave motion). This result is general and does not depend on assumptions

on the scatterers. It means that the interaction factor ( N o' is bounded by 1
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for isotropic incidence [44]. However, it is important to realize that this only applies

at the resonance frequency [the k where the denominator a' reaches the maximum

(2.13)].

This result is different from (2.9) because the absorption mechanism is not the

same. Here, it's the oscillating bodies (radiative sources) that lead to the absorption,

so increasing the density of states will also increase the power radiated and then

decrease the absorption.

This result obviously holds also for a single scatterer which leads to known limit

on the scattering cross section of a single buoy: -1f O-a,single(O)dO < y. This result

does not depend on the shape of the scatterer. Such result is also known and can be

also derived from an optical theorem (that still relies on Haskind formula).

It is worth mentioning that this result holds for any incident angle for an isotropic

scatterer, but an anisotropic body can lead to an absorption larger than ! at certaink

angles.

Questions:

The previous discussion means that the enhancement due to multiple scattering

effects for an isotropic incidence is 1 at the maximum absorption of the single buoy.

Even though this sets a general limit, it still doesn't say much about what happens

outside the absorption resonance. Can the enhancement factor be larger than 1 for

isotropic incidence? How does the enhancement depend on the scattering properties

of the individual bodies and their spatial distribution?

The Yablonovich limit for solar cells has been derived originally using ray optics

concepts [15, 16] and has been used as a benchmark to compare light trapping en-

hancement. The equivalent formalism in the case of multiple discrete scatterers is the

radiative transfer equations on which we will base our next discussion.

2.3 Radiative Transfer Equation

We consider a medium containing a distribution of random particles with a scattering

cross section o,, an absorption cross section ga, a normalized differential cross section
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p(s, s') and a density no [6]. If the distance between the particles is large enough so

that we can neglect the near field and if the particle separation is random enough

so that we can neglect interferences1 , the total differential cross sections for a set

of particles can be summed and we can define a differential cross section per unit

area/volume as o-rnop(s, s'). Subsequently we can define a scattering, absorption and

extinction cross sections per unit area/volume: Ks = nous, Ka = noea, Ke

Ks + Ka nooe.

Power conservation balance leads to the radiative transfer equation [4,61:

dI(r, ) - VI(r, s) = -Kel(r, s) + rz, dQ'p(s, s')I(r, s') + c(r, s) (2.14)

where e denotes internal sources.

As already discussed before, an estimation of the enhancement can be recovered

from the use of the reciprocity. In this section, we follow the same procedure in a

system described by the specific intensity to derive general reciprocity-based limits.

In the following, we note S the exterior surface bounding the scattering medium

and q the enhancement or interaction factor measuring the total absorption of the

array to that of the same number of isolated particles.

2.3.1 General result for small absorption

The specific intensity at each point and direction is determined by the sources inside

the medium and the incident fields on the surface S. We note G,(r, s; ro, so) the

specific intensity at the point (r, s) with no sources and an incident field: I = 6(r -

ro)6(s - so). Similarly, we note Gp(r, s; ro, so) the specific intensity at the point (r, s)
with no incident field and a source given by e(r, s) = 6(r - ro)6(s - so).

If F(r) = f I(r, s)s ds is the flux at the point r, then from the conservation of

energy we have fs F - fout dr = Pe - Pa, where Pe is the generated power and Pa the

'If we consider a large bandwidth and/or a large incident angle distribution, interference effects
are expected to average out even for a periodic structure as discussed in the main text.
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absorbed power. For a unit source Pe = f e(r, s)drds = 1, so that:

s s fnot>o G,(r, s; ro, so)(s - iit)drds = Pe - Pa < 1 (2.15)

Moreover, from reciprocity, we have 1s - nut IG,(r, s; ro, so) = G.(ro, -go; r, -s)

as for example shown in [48]. This leads then after a simple variable change to

s j>~nu<0 G,(ro, s; r, s)drds < 1.

Now, we can compute the enhancement for a given non-isotropic incident angular

distribution f(0) so that f, f(0) = 1.

q = f(0o)G,(r, 0; o)dOdOo < 2w max f (2.16)
27r 2r 

0 0

The equality can be reached for G,(r, 6; 0) = J0 f (0 - Oj)d6j, where X is

a set containing values of 0 at which f(0o) is maximum. We note the important

fact that the solution leads to isotropic distribution of intensity inside the medium.

In short, this tells you that the best enhancement is achieved when you take the

incident field at the angle corresponding to the maximum intensity and distribute it

isotropically inside the medium.

For isotropic incident field, we have f(0o) = 1/2r so that the maximum enhance-

ment is 1. This is for example achieved when G(r, 0; 00) = for every 00. This

result is compatible with the result in Ref. 44 but is an even stronger statement. The

enhancement factor for isotropic incidence is 1 even outside the absorption resonance.

If the incident field is coming isotropically but only from one half of the space,

then f(Oo) = 3(|60o < 7r/2). So qmax = 2, and one optimal intensity distribution

is: G(r, 0; 0o) = f(0o). This means that the intensity is completely reflected when

coming from the lower half space. Such solution can be simply achieved by using a

back reflector.

We see that to benefit from the anisotropy of the incident field, the structure

has to be asymmetric. If the structure has for example the mirror symmetry, then:

G(r, 0; Oo) = G(r, 0; 7 -Oo) so that f, G(r, 0; 0o)d0o = 1/2 and the maximum enhance-

ment in this case is: q = f2, f, -G(r, 0; 0o)dOdOo = 1.

27



One can use equation 2.16 to compute the maximum enhancement for different

incident angular distributions. If the incident field is isotropic within a cone of angular

spread 20j, then f(0) = -3(10ol < Oj) so that the maximum enhancement is -.

Similarly, if the field is incident along only one direction, the enhancement can in

principle be infinite.

2.3.2 Large absorption

The previous limit can only be achieved in the case of small absorption. A more

practical limit has to include the case of non-negligible absorption. From (2.15) we

see that this requires finding a lower bound on the absorbed power from a point

source. The basic idea in this case is that the intensity that reaches any point is at

least equal to the source power extinct after passing through the medium.

This can be written as:

q<27rmaxf 1- -a h(Ke, S) (2.17)00 1 Ce

where h(a, S) is the absorbed power by an isotropic source in a medium without

scattering and with absorption coefficient a given the geometrical configuration of

the boundary surface S.

Here, we will show that h(a, d) = h(ad) = 1 - 2(1 - re Co Cos dO) for a
___d cof ood)fo

2D slab configuration with thickness d embedded in free space.

Proof: Using the integral equation formulation of the RTE [4], we can write:

Gp(r,0;ro,0)d O f= p(', )Gp(rl,01;ro,0o)p(0,0 1) + _KejrrjjdS
2 s f2, Ir - r|

e-KeIr-r1I e-KeIr-rol
dS1 = ro(O -00)

S r- r |r - rol

(2.18)
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where 0 is the angle for r - ro. So that:

Pa = a G,(r, 0; ro, 00) ddr > - K, 6(0 - 0o)dr = -Fro,0o(re)
S J2 0e s |r-rol ge

(2.19)

The factor Fro,oo(he) depends on the geometry of the boundary of the medium. We

can estimate it for a slab of thickness d. If x is the coordinate of a point inside the

slab, then:

f~/ J 7r/2 cos9Fxo (a) = _/ ae-"ri(0 - Oo)drd0 + _ / ae-ar(0 - Oo)drd0 (2.20)
-r/2 0 JO

Integrated over angles and positions:

1 fd 4

- Fx,odxd60 = 27r - - [1 - g(ad)] (2.21)

where g(y) r!2 e- Cs cos OdO.

This means that the final enhancement over isotropic incidence is:

q f f Gs(x, 0; 00)d0d00dx
J 27 J27 ca I' 4 (1>(2.22)

1 - Pa(x, 0)dOd < 27 - - 27r - [I - g(ad)]
// JJii a4fS f27r O-e ad

Or for given incidence distribution:

q = f(0)G(r,0;00)d0d0 27rmaxf [1- 9"h(Ked) (2.23)
Jr27r 0 Ue _

where h(y) = 1 -2 1 -(Y) is an increasing positive function so that h(0) = 0 and7r Y

h(oo) = 1. For 9-a = 0 or a-, = oo we recover the lossless result. For 7a = 00, we

find that the enhancement is 0 since all the power is absorbed and doesn't reach the

scatterers.
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2.3.3 Change of index

The previous discussion considers a medium with uniform index. A similar result

can be derived in the case of non-uniform index. In this case, the enhancement is

multiplied by the index contrast (or index squared in three-dimensional medium).

This can be again showed using a generalized reciprocity in the RTE. In 2D, d-

becomes more generally n I/n]. With an index n(x) dependent on position x:

sin 0
dO = -dxy s 0 dO -y sin Ods (Snell's law), dx = ds cos0, 0y n'/n (2.24)Cos 0

so:

I(x, 0) I DI I I sin 0nd[ = - sin 0 + - Cos 0 - I Cos ]ds =[ cos - ]ds (2.25)n 00 Ox Ox 00

Now, we find reciprocity constraint by considering two problems with (generally)

different incident intensity and source c and we write RTE for (1) at 0 and (2) at

0 + ir. Reciprocity imposes that p(O + 7r, 0') = p(O + r, 0'). This leads to:

cos 0 - - [I sin0] r=eI1 + p(0, 0')I1 (0')d' + Ei(2.26)

- Cos 0012 - [12 Sin = Ke2 + p(' + 7, )12(0')d' + C2 (2.27)
Dx DO+ 0 07

By multiplying the first equation by I2 and the second by 11, subtracting the result

and integrating over 0, we find after simplification:

/27 0112 . 01
Cos 0 - [sin 0-I 2 + I2 cos 0 + sin D 11 + 12 cos 0

0 27 Ox o 00 27,(2.28)

2 D[1u1 21 0 D[Iu2 cos D2
=]cos 0 x -DO + I1I 2 cos 0] dO = j [EI2 - E2 11]dO

where I2 and 62 are evaluated at 0 -+ r.

This then simplifies to a general reciprocity relation:

jcos00[I1(0)120 - i) []dO = 2r 1(0)12(0 + w) - 62(0 + 7)11(0)]dO (2.29)
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Now, with the definitions in subsection 2.3.1 we conclude (by integrating the

previous equation along x):

os 0G(x, 0 + -r; ', 0') = (cc', 0 + 7r; ', 0') (2.30)
n(x) n() )

This allows to modify equation (2.17) by multiplying the result by the index

contrast (in 3D it is instead the index squared), meaning that an increase in the

index contrast leads to an increase in the enhancement.

However, this result is an artifact of the way the enhancement is defined. As for

example we note in the Yablonovitch result, the n 2 factor comes from the fact that the

single pass a oc 1 decreases with the index. If comparing with the same single pass,

the enhancement is only oc n in 3D. That is also the case in the ocean buoy where

Ua < . 0 I. So, if we simply take the buoys and put them in a higher index medium,

the isotropic enhancement is multiplied by n but the single buoy absorption is reduced

by I so that no real improvement is achieved. As a general rule, the real isotropicn

enhancement is proportional to nd-1 where d is the dimension of the medium.

Even though the index contrast does not have a real benefit for the isotropic

enhancement in 2D, it can still improve the enhancement over a finite range of incident

angles through total internal reflection. We will show this quantitatively later in this

work.

2.4 Diffusion model

The question one wants to answer now is how can we achieve such limits. In general,

such limits may require the use of external elements (such as reflectors). Ideally, one

would like to know what enhancement can be achieved through the sole use of the

scattering effects of the particles/bodies.

We have seen before (2.3.1) that the ideal limit is achieved when the intensity

inside the medium is isotropic at every point. For an incoming plane wave from a

given direction, this cannot be rigorously achieved (continuity of the intensity at the
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boundary). However, we can suppose that the incoherent term is isotropic. The

solution of RTE for a given incident angle can be indeed divided into coherent term

that is simply attenuated due to scattering and absorption, and an incoherent or

diffuse term that is due to multiple scattering. The incoherent term can in principle be

isotropic given the appropriate conditions. In the diffusion approximation we consider

only the zeroth and first order terms in the Fourier expansion (or spherical harmonics

in 3D) of the diffuse intensity: Id = E I,(r) cos(nO + On). Such approximation is

known as the diffusion approximation and is successfully in different domains [4,49].

We note here that we are supposing that Ka and K, are independent of position.

2.4.1 Diffusion equation

Here we reproduce the diffusion equation as in [41 but adjusting the numerical coef-

ficients for a two-dimensional medium.

We first separate the intensity as: I = Ii + Id where Iri is the reduced (coherent)

intensity and I = Id is the diffuse (incoherent) intensity. The reduced intensity is

related to the single scattering and obeys:

d~ri
d -Kenri (2.31)
ds

So from the RTE equations, the diffuse intensity obeys:

ds - -e'd +I J dO'p(6, 0)Id + J, J = dO'p(O, 01)I-i (2.32)

Now, considering the diffusion approximation, we write: Id(r, 0) = U(r)+F(r).s.

This could be seen as a first order series in s. We also note that the diffuse flux is:

f IdS dO = F.

In order to obtain U and F we apply the operators f dO and f dO on (2.32).

This leads to (appendix A.1):

Vr - F = -27rtaU + 2lTrsUri, Ui(r) = dO Iri(r, 0) (2.33)
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1 if
VU I tF + - dO J (2.34)

7r 7f

where Kepi = f dO'p(s, s')[s -'], so that pi = sjt/ie where p is the average of the

cosine of the scattering angle.

Equations (2.33, 2.34) allow to solve for U and F. Combining them, we obtain a

diffusion equation for U:

1 f
V 2 U - K U = -2KtsUri + -- V - dO Js (2.35)

Now we need to add appropriate boundary conditions. Supposing that we have

a reflection coefficient R on the surface, this should be: Id(r, 0) = R(0)Id(r, 7 - 0)

for s directed towards the inside of the medium. However, considering the assumed

formula for Id the condition cannot be satisfied exactly . A common approximate

boundary condition is to verify the relation for the fluxes:

Jfio Id( - fi)dO = f f( R(O)Id( - ft)dO (2.36)

where fi is the normal to the surface directed inwards.

Using the formula for I we obtain:

(1 r2 )2(1 - ri)U + 2 F - t = 0 (2.37)

where r = 2 R(O) cos'(O)dO/ f_ 2 cos'(O)dO.

2.4.2 Solution of the diffusion equation for incident plane wave

Now we solve the diffusion equation considering a plane wave field incident upon a

slab of discrete scatterers: 'incident =Io6(6 - 00). We consider that the medium is

infinite along the y-axis so that we have a plane-parallel problem.

We solve 2.35 using the boundary condition 2.37. We obtain (appendix A.2):

U CUri+[Ae' +Bt -=)], Un =2- s (2.38)27 27
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where:

Ii/Io = i R, 1 = Ri(0o), Y = e -edsec00 C = 2 2tr Ks + r, (2.39)
1 -R1R2y Y2 - (re secoo)2

4i + (Oz1 - 4Kt, -Kdd A -
(a2 - 4 e~d (a2 + 7r2) B

-nt (2.40)
C(1 + R2Y 2)Ci + 7 ( + 2p1 cos Oo)(1 - R 2Y

2 )

[C (1 + 2)a2 - C + 2p cos 60)(1- R 2 )]Y

with: ai = (1 - r')/(1 + r'), tr = re(1 - pi), r= 2rta.

After computing the intensity distribution, we can now compute the absorption

enhancement as q = 27r(U(x) + Urj(x))/Io. The result should be then averaged over

the x component. So if we use the function (x) = (1 - e-x)/x, then from (2.38) we

conclude that:

q(I) = q-) D ((sdd) +C + (2.41)o ((sed sec 6)

where:

DB= , go(0) = (I()(1+2YZ (ed sec 0) (2.42)
1+ 2Y' 1 - R1R 2y

2

2.4.3 Dependence on parameters

We consider here that we have no external reflectors.

The enhancement depends on Ua/o-s, o-snod and p. For a given value of -a/gs, the

enhancement reaches its maximum for an optimal value of u-nod and increases with p

(forward scattering) as in Fig. 2-1. The optimal value of u-snod and the enhancement

decrease with Oa/os. For given cross sections of a single scatterer Ua and a. and a

value for p, there is an optimal value for nod. The optimal enhancement can be then

increased by increasing o- or/and p.

Lower plots in Fig. 2-1 show the optimal value of u-anod as a function -s/-a, and

the inverse.

For a strong absorber (O-a/-s ~ 1), the scattering effects are negligible. The

optimal enhancement ~1 is reached by putting nod ~ 0. If we consider that we
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have N, rows of scatterers with average distances d. and d4 in the x and y axis

respectively, then nod ~ . So for a given number of rows, d should be made large.

When the scattering cross section becomes large, the enhancement increases for an

optimal value of nod.

It should be also noted that the enhancement also decreases with c-anod and that

for a fixed o-anod there is an optimal value for a/oa.

There is no dependence (within our model approximation) on dx. The dependence

on dx appears only for a finite size along the y direction. The small dependence on

dx is compatible with [2].

2.4.4 Case of small absorption

We have seen that the best case for the normal incidence is achieved for small ab-

sorption and large scattering. We will then check analytically the ideal case of zero

absorption (ha = 0)2

In this case C = -2 cos 02, and:

- (a2 + 7r )X1 + (a,+ X2(1 + R2Y)D (1 + R2Y)Do(o, iid, $trd) td + ) 2xtd (2.43)
2Fxtrd (a, + a2) + 2a 1 2

where:

2 cos200(l + R 2Y 2)ai + I cos 0o(1 - 2Y2)
[ [2 cos 2 o(1 + R 2 )a2 - cos 0o(1 - R 2 )]Y J

When Ksd -+o* (Y=O), we immediately have Do = cos Oo(0 + cos 0) and then 3:

q = T1 cos 0( + cos 00) (2.45)
4a,

One can show that the average enhancement over an isotropic incidence still gives

1 and is compatible with the results discussed in section 2.3. We can also show that

in this case we have a perfect isotropic diffuse intensity (F = 0).

2Note that this can be achieved by decreasing either o-a (which is not useful in practice) or nod
31f R2 - 1, the result will be multiplied by 2.
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With no external reflectors, the maximum enhancement at 00 = 0 is q = I+ 7r/4

which corresponds to the upper limit within this model.

The external reflectors can for example be achieved using a change of index at

the boundaries which leads to total internal reflection. This gives: oz = 1/(2n -

1 I - sin-' ) where n is the index contrast. This increases the enhancement

at normal incidence that will be infinite when n - oo (q(0o = 0) ~n).

2.4.5 Asymmetry factor

The asymmetry factor derived from the previous derivations is p = ui, where in

general pi = f2 cos(iO)p(0)dO (where we take p(O, 0') = p(O - 0')). Since the diffusion

result depends only on vS, va and pi, it can be seen as approximating the differential

scattering cross section by: p(O - 0') = 1[1 + 2p1 cos(0 - 0')].

The Delta-Eddington approximation [50] allows to incorporate the second moment

of p by including the forward scattering peak using a "delta function" term so that:

p(0, 0') = A26(0 - 0') + 2[1 + 2pcos(0 - 0')] where p = (P1 - P2)/(I - P2). This

approximation matches the Fourier decomposition of p up to the second term. By

incorporating this expression in the RTE (2.14), one recovers a second RTE with p

replaced by ![1 + 2p cos(0 - 0')] and o-, replaced by U,(1 - P2). So the diffusion

approximation can be made more accurate by replacing p by (i - P2)/(1 - P2) and

Os by -,(1 - P2). This is known as the Delta-Eddington approximation [50].

In a three-dimensional medium, Pi = f7 P(cos 0)p(cos 0)dQ where Pi is the Zth

Legendre polynomial.

2.4.6 Correction for small thickness

It is known that the diffusion approximation is not accurate for a small thickness. For

example, one can check from the previous diffusion solution in the case of negligible

absorption that the enhancement for isotropic incidence is not always 1 (unless for

large thickness /scattering). However, one can easily see that for isotropic incidence

(with unit intensity) and no absorption, the isotropic solution 1 is an exact solution
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of the RTE equations and verifies the boundary conditions. The problem is that the

diffusion model assumes that the diffuse term is almost isotropic, while the coherent

term is not so that the total intensity is not isotropic.

Here we intend to keep the simplicity of the diffusion approximation by simply

rescaling the diffuse to take into account higher order terms:

qc(0) = qo(0) (,[ D ({Ndd) -)+C] +1) (2.46)
(Ked sec 0)

where rq is defined so as to keep the enhancement equal 1 for no absorption. In this

case:

7r -f-/2 (1 + (2))d-f(q6l + q6 ) d6

f/ 2 [q ()DD ((,) ed,0 d)+qD (O,Ked, tKd)]1/(Ked sec0) - 2cos2 Q(q + q0)d
(2.47)

Superscripts refer to the boundary that is facing the incident wave.

One can show that for Ked -- oo, we have rj -+ 1 and we recover the standard

diffusion results.

We will see that such simple correction gives reasonable results compared to full-

wave simulations.

2.4.7 Inhomogeneous distribution of scatterers

At this stage, since all previous results are for homogeneous distributions, an in-

teresting question to ask is if we can improve the results using an inhomogeneous

distribution of scatterers. We will already say that the answer is no (as long as you

are using one type of discrete scatterers). With an inhomogeneous distribution, the

spatial variations of the intensity inside the "slab" will change, but the average in-

tensity remains constant. In an other way, the energy absorbed by each individual

particle changes, but averaging over all particles the result is the same as with an

homogeneous distribution with the same averaged density.

For simplicity, we consider that we have no reflectors. We confirmed this result
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numerically, but here we give a general proof for our statement.

Proof: We start first by writing the diffusion equation with an inhomogeneous

distribution. In this case, equations (2.33) and (2.34) remain valid but the diffusion

equation becomes:

1 1
V 2 U - U=_'r F= ' - 2KtKsUri + -V ] dO J (2.48)

Where:

Uni = 2 e" 00 Kep1, KtrFx = -7rU' + dO J -R

(2.49)

So: V. f dO J= (Kep1)'e-fcsecoo - (Kpl)2e-f esecoo. This leads to:

U" - rKU - -U = t ep1cosSo - (Kepi)'cos o + K]e-es*"" ] (2.50)
Ktr r Ktr

Now, if we assume that we are using a single type of scatterers (no defined in the

beginning of this section is variable, but a-, and -a are constant), the previous equation

simplifies to:
/ K2

U" - "' U' - r U = Kdeft'eseco (2.51)
no 7F

If we write Kd = noo-d and 1Kg nou9 , we can rewrite the previous equation as:

no - n o U = -e (2.52)
no

By integrating over x, we finally find:

a d FnoU U'(d) U '(0) g noe-o-,c O f0

o .no(d) no(0) 2 (2.53)
_ U'(d) U'(0) 1 (1 -

9 (I + Casec 00 0 no
. n(d) n(0) j ro-e sec Oo

This is the main equation that shows that the enhancement q = Jo noU/ fo no de-

pends only on the total density feno, U'(0)/no(0) and U'(d)/no(d). To finish the
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proof, we next show that U'(O)/no(O) and U'(d)/no(d) depend only on dino. This is

done by writing the boundary conditions and an another relation from the differential

equation (2.52). Boundary conditions (2.37) can be written as:

4U(O) - 7rU'()+ 1 cos O = 0 (2.54)
-trno(0O) Utr

4U(d) + 7U'(d) ae- Cos ooe-or*sec"0fono 0 (2.55)
-trno (d) -tP,

If we note g = - J-dU, then from (2.51) one can easily show that:

g' + nocdg =- C -" eseco 0no (2.56)

This first order linear differential equation can be readily solved, leading to:

g(x) = -7d fox no [o) - j 9 lO ae sec 00 no egdJ nody

2 (o sec 0-Or) fo'no _ i
=e ef no (O) ec 0 - J (2.57)

2 - 2
_ c e -ce - sec00 oxno + [g(0) 9 e -e0 - fo] no
7r [-, sec Oo -: a-d] 1 7 -a SCC 00 - ad]

This final equation allows us to write:

U' - -d noU = Anoe-'e s*eco ox no + Bnoe-"d fo no (2.58)

We can finally use the last equation to solve for U. After simplification, we obtain:

-(Od+e sec Oo) fono _ 1 e1-2Ufo no _ I
U(x) = e dro o FU(o) -- A - B2d - (2.59)

-(d + rel sec 0v 2U-d

Equations (2.58) and (2.59) give two independent equations relating values of U at 0
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and d:

U'(d) a 2  Fccfdn fdl
U(d ) - dU (d ) =9 e-or sec 00 0a no _ C--ds 0e no

rno(d) rr(sec 0oe -- Ud) e OO-eTdfI
T____ - OrdU)d) L (2.60)

+ [U()- dU(O)] e -0d o no
no (0)

U(d) =-U(0) (ea dfno + U'(0)e Ud nn
2 2 Udno(0)

+ 9 (e0sd eco2" - eo- sec 0f0 lno) (2.61)
[U-2 seC2g _0 - 2

7~e d eJo-e'dofO
+ (Ce-d noo e aOrd0no)

279d [Oe sec 0-- 9-d]

We conclude from all this that equations (2.54), (2.55), (2.60), and (2.61) give

four linear independent equations (first two are from boundary conditions and last

two independent from boundary conditions) that relate U(0), U(d), U'(0)/no(0) and

U'(d)/no(d) and depend only on the single particle properties (different -'s) and

on jo no (and not the spatial variations of no). This concludes our proof that the

total enhancement for an inhomogeneous distribution of particles is the same as an

homogeneous distribution with the same averaged density.

2.5 Quantitative comparison with full-wave simula-

tions

We now compare our results with full wave simulation for ocean buoys from Ref. 2.

Each ocean buoy is a truncated cylinder with radius a = 0.3, draft H = 0.2, water

depth h = 1 and with heave (vertical) motion. Buoys are also submitted to damping

and string forces. Similar to Ref. 2, we only retain the restoring coefficient (pgA with

p density of water, g Earth's gravity and A water plane surface) for the spring force,

and the damping force is chosen so as to ensure that the absorption cross section

reaches its maximum (1/k, k wavevector). We do not show the detailed derivation to

compute single-scattering properties since that is already known (e.g. Ref. 2,51,52).
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Figure 2-2: a- Example of full wave simulation for ocean buoys scatterers at resonance
[2]. b- Left: Scattering/absorption cross sections for a truncated cylinder buoy with
radius a = 0.3, draft of 0.2 and water depth of 1. Example of broadband incoming
ocean flux. Right: Anisotropy parameters p 1, P2 .
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Briefly, this is done by decomposing the incident and scattered field into cylindrical

Bessel functions and finding the coefficients through appropriate boundary conditions

on the surface of the cylinder. The radiated part requires to compute the velocity

of the buoy that is recovered from Newton's law (e.g. Ref. 2). The absorption cross

section is then proportional to the square of the velocity.

Cross sections are shown in Fig. 2-2. The ocean-power flux spectrum plotted in

Fig. 2-2 is chosen as Brentschneider spectrum that is used for fully developed seas.

The angular distribution is chosen to be cosine-based (Cos 2
S 0) 13].

We see that at the resonance c-8/-a ~ 1, so that q is expected to be smaller than

1 at least around resonance) and the optimal structures tends to have large dy. Such

tendencies are compatible with the full-wave simulations.

We choose the spacings to obtain the optimal value of enhancement averaged over

the given spectral and angular distribution for a periodic structure with 3 rows [2].

The results for the random and periodic structures are shown are shown in Fig. 2-3

along with Monte Carlo simulation to solve the exact RTE equation.

In Fig. 2-3, our corrected model agrees to < 2% accuracy with exact solutions

for random arrays at 0 < 800, as long as the results are frequency-averaged. The

importance of frequency averaging is shown by the q frequency spectrum shown in

the inset for 0 = 0'. For an ensemble of random structures, this spectrum exhibits a

large standard deviation (gray shaded region), due to the many resonance peaks that

are typical of absorption by randomized thin films [17,19], but the frequency average

mostly eliminates this variance and matches our predicted q(0). Precisely such an

average over many resonances is what allows the Yablonovitch model to accurately

predict the performance of textured solar cells even though it cannot reproduce the

detailed spectrum [19,431.

At first glance, our model does not agree in Fig. 2 with the performance of the

optimized periodic array from Ref. 2: the periodic array, which was optimized for

waves near normal incidence, is better at 0 near 0' and worse elsewhere. However,

when we also average over 0 (from a typical ocean-wave directional spectrum [3]),

43



the result (shown as a parenthesized number in the legend of Fig. 2-3) matches the

corrected diffusion within 5%. If we average over all angles assuming an isotropic

distribution of incident waves, the results match within 1%. Similar results have been

observed for thin-film solar cells, in which an optimized structure can easily exceed

the 4n2 Yablonovitch limit for particular incident angles, but the Yablonovitch result

is recovered upon angle-averaging [18,19,22, 431.

Interestingly, we also note note that behavior for isotropic incidence (s = 0) is

compatible wit our results from section 2.3. The isotropic q does not exceed 1 at

every wavelength for random structures. For periodic structure, the isotropic q have

large oscillations as a function of wavelength (still limited but very far from the 1

limit from eq. 2.13), but still averages to 1 over a broad-bandwidth.

2.6 For larger enhancements

2.6.1 General discussion

After presenting a coherent framework for the maximum enhancement that also allows

an analytical estimation of the enhancement for random structures with quantitative

precision, we are now interested to know how can we increase the enhancement.

- Scattering cross section: We see that there is a margin of improvement that can

be achieved by increasing the scattering cross section through a new design of the

WEC. In Fig. 2-4-b, we see that we may achieve a 10% increase in enhancement by

increasing the scattering with a factor of 4 for s = 4. Periodic structures are expected

to increase with comparable rates.

- Use of reflectors/concentrators: The use of external reflectors can also increase

the efficiency as already discussed in sub-section 2.4.4. They can be used as back-

reflectors or also as concentrators.

Angle-dependent reflectors can for example be achieved by building a low-index

tension/bending in front of and behind the absorbers which can lead to near-zero

index [53, 54]. This will lead to a total internal reflection at certain angles and will
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Figure 2-4: a- Effect of a change in the index contrast and scattering cross section

on the bandwidth-averaged factor q, for the same array in Fig. 2-3. We tune the
index ni along a strip surrounding the array, with no being the index of the array's
ambient medium. We suppose that the buoy has new scattering cross section da, but
keep the same absorption cross section. b- Same as (a) but keeping the same index
contrast (no = ni). Inset: Optimal enhancement (continued line)/spacing (dashed
line) between bodies as a function of increasing cross section.

increase the enhancement. Note that this increase of enhancement comes at the

expanse of incident waves at large angles that will be reflected.

Fig. 2-4.a shows the expected increase of enhancement due to index contrast.

Enhancement can reach very high values given a large index contrast.

Other methods can include Bragg reflectors [55], wave focusing using seabed fea-

tures [56] or periodic cylinder arrays for effective lens [14].

- Inhomogeneous scatterers: Another possibility would be to use different types of

scatterers (with different resonant frequencies) to span the (large bandwidth) incident

spectrum. The enhancement of such inhomogeneous systems can be computed using

effective scattering/absorption cross sections by weighting the cross section of each

type by its own density. This will in principle reduce the maximum value of the

absorption without changing its integral over the frequency spectrum which will allow

to obtain a larger enhancement without much reduction of the (isolated) absorbed

power. However, in general, each type has a different frequency-averaged absorption

(related for example to the 1/1 limit for each buoy) which will make it difficult to
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have a better total absorbed power compared to simply using the best type. of buoys

among this inhomogenous distribution

Another advantage for the use of inhomogeneous scatterers is that it allows to reduce

the distance between the bodies for the optimal distribution since the maximum value

of the effective absorption cross section over the spectrum is reduced (cf. 2.4.3).

2.6.2 Optimization

As a specific example, we use a strip with low-index surrounding the bodies. This

can be for example achieved using tension and/or bending membranes (basically thin

elastic films) on the surface of water. The dispersion relation is then given by (e.g.

Ref. 57):

2 1 + Ct(kh)2 + Cb(kh)4

W = gk tanh(kh) + m. kh tanh(kh)62)

Ct and Cb represent the tension and bending coefficients respectively, and m rep-

resents the mass of the membrane. For simplicity, here we will take Ct = 0 and

m = 0. By matching the free surface amplitude and its derivative on the two bound-

aries, we compute the transmission and reflection coefficients. The dispersion relation

(2.62) allows to compute, for a given frequency w, the corresponding wavevector in

the region covered by the membrane which leads to the index of this region relative

to the free-surface region. Using the index of the membrane-covered area, we can

then compute the transmission using appropriate boundary condition (continuity of

free-surface amplitude and its derivative for uniform water depth). The transmission

through the finite-sized membrane is computed using T-matrix formulation. The

reflection coefficient used for the diffusion model is the fraction of reflected power.

For practical purposes, we limit thicknesses to the double of the water depth and

Cb to 2 for both front and back membranes. We optimize the average q, for an angular

distribution with s = 4 and the same density of buoys we have chosen before. Results

are shown in Fig. 2-5.

We know that the only constraint on the index contrast is how much we are

interested in out-of-normal incidence angles. For the back membrane that doesn't see
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any incident waves, the ideal value is an infinite contrast (or perfect back-reflector).

Since an increase in Cb leads to an increase in the index contrast, the optimal value

here is 2 (within our constraints). For the front membrane, a balance is to be chosen.

If only interested in normal incidence, the ideal solution again will be infinite contrast.

In our case (finite angular range), there is however an optimal value (that seems to be

typically constant around 0.05 and independent of C2). The values of membranes'

thicknesses are dictated by wave effects. A relatively large thickness is required in

order to get total internal reflection (otherwise, the wave leaks through evanescent

modes).

The optimal solution (imposing Cb < 2) is shown in Fig. 2-5-c. We also compared

our corrected diffusion model to exact solution of RTE through Monte Carlo simula-

tions. We notice that our model gave an upper-estimation of the result within ~ 8%.

We also notice substantial increase in enhancement (by a factor of 2) compared to the

case without use of reflectors. Such results show that the use of external membranes

can be a very promising way to increase ocean buoy multiple-scattering enhancement.
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Chapter 3

Frequency selective metasurfaces

3.1 Context

Frequency selective surfaces (FSSs) [31-331 are periodically structured surfaces de-

signed to transmit (or reflect) electromagnetic waves (in general at microwave fre-

quencies) within a restricted bandwidth, thus operating as filters. They can be used

for example as spatial filters [58-601 or radar absorbers [61,62].

Standard frequency selective surfaces are usually composed of a periodic metallic

grid, with different possible unit-cell designs, placed between two dielectric substrates.

When the period of the structure is substantially smaller than the wavelength, the

FSS can be qualified as a metasurface and usually exhibits a better performance in

terms of angle dependence. For a typical choice of the unit cell, we obtain a single

resonance at some selected frequency, so that the FSS behaves indeed as a pass/stop-

band filter. As can be expected from the behavior around a single resonance, the filter

shows a second-order response (two complex-conjugated poles - Lorentzian function

in terms of frequency). Higher order filters can for example be achieved through the

use of multiple cascaded surfaces [35-40]. Different important properties are to be

considered while designing FSSs, in particular: order and type of the filter, stop band,

rejection value, and angle dependence.

While the design of a single surface is relatively easy due to the small numbers of

parameters [33], the design of a specific response for multiple surfaces remains more
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challenging due to the many couplings between the layers. Only in small number of

cases the ideal elliptic filter response was demonstrated, usually with compromises

between filter properties and with a structure that is not easily scalable [36,38-40].

One possibility to understand the behavior of multiple-surface FSSs is the use

of temporal coupling mode theory (CMT) [41,42]. Our goal is to use a systematic

method for the design of FSSs through the use of CMT and to demonstrate high

order filters with "good" properties.

3.2 Single grid

We show in Fig. 3-1 some examples of the unit cells for the metallic grids we will be

studying in this work. They have the symmetry that guarantees the same behavior

for the two different polarizations at normal incidence. In the following, and unless

otherwise stated, we will use the unit cell further to the left in Fig. 3-1.

The transmission spectrum of the structure can be understood by the equivalent

circuit model in Fig. 3-1-c (where Z represents the free space impedance and R

models eventual losses in the metal and dielectric - the lossless limit corresponds

to R -+ oo), valid when the wavelength is large compared to the period (and as

long as the dielectric slab is thin so that we can neglect transmission line effects)

[31,63,641. The capacitance C originates from the opening in the metal that leads

to charge accumulation, and the inductance L originates from the current flowing

around the opening. The presence of L and C in parallel leads to a resonant behavior.

The transmission spectrum can be computed through T = 2V0 u. The factor 2 is a

normalization coefficient since in the absence of the structure we have = Z =
V,,, 2Z 2-

We obtain then:

Y 1 1/Qr
T(w) = 2 Y 1,(3.1)

(YLC -)+Y 1 -L c _1 Ilt+ ( -

where we defined wO = Q 1 =Z L(radiation Q), Qa R (absorption Q)

and Q' = Qj' + Q;- (total Q).
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Figure 3-1: a- Examples of unit cells. The grey area represents the metal. b-
Schematic showing the FSS embedded in a dielectric slab. c- Equivalent circuit model.

As expected, the transmission spectrum is a Lorentzian with half-maximum band-

width g which is typical for systems with a single resonance. The maximum trans-

mission is IT(wo)1 2 
= (1)2. So, the main effect of losses (finite value of Qa) is to

reduce the maximum transmission and increase the half-maximum bandwidth. This

behavior, predicted by the single resonance model, is only modified when the fre-

quency becomes close the first diffraction order at w = !-c where c is the speed of

light.

Although there are analytical values for the expressions of L and C (e.g. 163]),
they are only valid in the limit of very large wavelength (and they are derived in

the case of ID metallic strips which makes them even more inaccurate). The general

dependence of L and C on the parameters can still be intuited from their physical

origin. Typically, the capacitance C increases with d, and ediel and the inductance L

decreases with l. In order to find a high-Q (small bandwidth) resonance, one may

need a large dielectric constant. In this case, the mode is confined in the structure

which worsens the effects of absorption losses (from the dielectric or the metal) and
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Figure 3-2: Left: Experimental setup. Right: Transmission spectrum from experi-
mental measurement and numerical simulation. Values for the designed metasurface:
a, = 10.16mmrn,, c= 7.19mm, d, = 9.906mm, tdiel = 1.52mm, Ediel = 4.3(1 + 0.015i)
(FR-4).

decreases the transmission peak. In general, a compromise needs to be made.

In the absence of losses, the values of wo and Q, fully characterizes the trans-

mission spectrum and can be directly recovered from the eigenvalue problem (since

the eigenvalue in this case is given by wo(1 + i h)). This allows a relatively easy

optimization of the structure. When metal losses can be neglected (for relatively

small Q, say of order 10), dielectric losses can be incorporated quantitatively through

C -+ C(1 + i tan 6) where tan 6 is the tangent loss of the dielectric material.

Here we show an example of structure with fo=10GHz and Qt = 10 and tan 6 ~

0.015. The physical grid was built using standard PCB techniques. The experimental

measurement (using a network analyzer) shows a very good agreement with simula-

tions (Fig. 3-2). (The small difference is due to incertitude on the dielectric constant

of FR-4 from the manufacturer.)

3.3 Double grid

3.3.1 General behavior

The single grid offers only few possibilities for design, since the transmission shape is

already determined (Lorentzian leading to an attenuation of -20dB/decade). In order

to get different type of filters or to add the possibility of electrical tunability (through

52



the use of materials whose properties can be tuned electrically such as liquid crystals

or strontium barium titanates), a multi-grid system is required. In this section, we

start by considering a symmetric double grid system.

One way to understand the behavior of the two grids system is to use the equivalent

circuit model. The two grids can be again modeled through resonant LCs. The

propagation between the grids can be modeled as a transmission line that is equivalent

to a simple inductor L 2 in the case of small separation (actually, there is also a

mutual inductance between the loops of the metallic grids that we also incorporate

in L 2 ). Finally, a new interesting feature appears in the case of metallic grids which

is the presence of a capacitance C2 between the two metasurfaces. This leads to

the emergence of a resonant L 2C2 with an important consequence: at the frequency

W2 - L 1 C' the resonant L 2C2 becomes an open leading to a zero in the transmission

function.

We can immediately compute the transmission from the circuit model (Fig. 3-3-a).

This leads to:

T() = jb2 3.2)
(1 + jbi)(1 + j(bi + 2b2 ))

where bi = Z(Ciw - )

As expected, T(w 2 )= 0. Also, the transmission function has two poles (plus their

opposite-conjugate) so that in general we expect to have two transmission maxima

(we show later conditions under which this is true). It is interesting to extract the

eigenvalues of the transmission function by decomposing the transmission in (3.2) as:

1/2 1/2
1 + jbi 1+ j(bi + 2b2 )

By comparing each term to the single-grid transmission in (3.1), we can extract the

effective circuit parameters for each mode:

L1 1 2
i 2 ; L 2(- L2), Ce = 2(C1 + 2C2) (3.4)2Lij Li L 2

53



leading to:

w1,eig W1, Q,eig = 2Q, (3.5)

2 2/
2 W W2  Q2, [Q2  4Q2  2 W+W

W2,eig = 4 Q1W2' + 4 + 2 + QiQ2] (3.6)
1+2 0 1+2 \W 2  W 1

Q 1 W 2  Q2 WI

We used the subscripts "eig" to remind that those are the values to be found using

an eigensolver (a point to be discussed soon). An interesting point to be mentioned is

that the first eigenvalue depends only on the resonant grids and not on the coupling.

In the following, we will drop the "eig" rotation so that wi, Qj refer to the eigen-

values.

We can simplify the transmission function (3.2) and write it in a CMT-like form

assuming the the frequency w is close enough to the eigenfrequencies so that b

2Q (w - wo). In this case:

F 1  __ __2_ _T~o I -(3.7)
J(w - wi) +1 F, j(W - W2)+ F2

where F, = i.

The formulation in (3.7) is the same as the standard result from CMT for two

coupled resonances (e.g. Ref. 42). The main difference here is that the two resonances

have different values of F which is different from the typical assumption that both

resonances have the same decay rate. This is what leads to the presence of a zero in

the transmission function at a frequency larger or smaller than both eigenfrequencies.

With this simplified formula, we can find the frequencies at which ITI = 1. We

find:

W = 2 P + W2 V (Us - U)2)2 - 417172] (3.8)

We see that in general we have two transmission maxima, as long as we have

(PI - W2 ) 2 > 4F1 F 2. Once this condition is not verified, we obtain a single transmission

peak that is strictly below 1 as illustrated in Fig. 3-3-b.
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Figure 3-3: a- Schematic of a symmetric double grid and the corresponding circuit
model. b- Example of transmission spectra from the CMT circuit model that shows
both cases of double and single peak. c- Extracted values of Ci, Li through fitting
of the transmission function. Structure corresponds to: a, = 16mm, l = 0.1ac,
d, = 0.9975ac, Ediel = 1. (The corresponding single grid gives (f, Q) ; (10GHz, 10)).
d- Example of the transmission function from electromagnetic simulation and the
corresponding fit using the circuit-model transmission (d=2mm).

3.3.2 Dependence of the coupling parameters

In order to check the validity of the circuit model, we compute the transmission at

normal incidence using an electromagnetic frequency-domain solver (COMSOL), then

we fit the result to the previous analytic formula from the circuit model. Results are

shown in Fig. 3-3-c and Fig. 3-3-d. We assume that the impedance is equal to the

free space impedance (Z = 376Q).

We first note that the circuit model allows a very good fit of the transmission

spectrum for different values of the metasurface. We also note that C1 and L1 are

not affected by the distance between the two grids (unless d is very small) which is
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expected since those values are related to the individual grids. We also note that

1/C2 and L2 increase (mainly linearly) with the distance d between the grids. This

can be understood from the physical origin of those parameters. C2 represents the

capacitance between the metallic grids so that C2 Oc . Also Ld o, L 2 is related to the
transmission line between the grids so that for small spacing L 2 c d.

An important point to mention here is that the zero-transmission frequency verifies

j2 = LO a , meaning that the frequency of the transmission zero mainly

depends on the dielectric material between the two grids. This will have important

consequences as we will see later.

3.3.3 Design

The presence of the transmission-zero offers new design opportunities with much

better attenuation rates (better than the typical -40dB/decade for a fourth-order

filter). Ideally, one would like to use two zeros to obtain a symmetric pass-band filter.

This requires the use of a three-grids structure and will be discussed in next sections.

However, it is first important to check the flexibility given by this type of structures

through the design of specific filters. The transmission formula given previously (for

a symmetric structure) allows a very efficient optimization method. In fact, values

of (fi, Fj) extracted from an eigensolver fully characterize the transmission spectrum

through equation (3.7). So in order to design a given filter, one needs to define

the target filter and the corresponding eigenvalues then use an adequate root finder

algorithm to find the structure that gives the required eigenvalues. As perviously

indicated, losses can eventually be incorporated through C -+ C(1 + iacdjej) (in case

where metallic losses are negligible). Here, we mainly use COMSOL's eigensolver and

typical MATLAB's nonlinear-solver algorithm.

Design results with materials widely used in PCBs are shown in Fig. 3-5.
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3.4 General CMT formulation

As we saw in the two-grids case, the use of the eigenvalues allow an efficient optimiza-

tion method. However, for scalability, we need to develop a general framework. For

N grids, one can use a circuit model as previously, compute the transfer function, find

eigenvalues numerically (results are not in closed-form anymore), then optimize for

those values. However, two issues are present. First, it is not clear how to define the

wanted filter. Actually one would like to directly find the required values for a stan-

dard filter (Elliptical, Chebyshev, Inverse Chebyshev, Butterworth) with parameters

taken from filter theory (e.g. [651). Second and more importantly, the eigenvalues

are not enough to fully characterize a general filter. In the previous two-grids result,

the symmetry of the system allows to determines the expansion coefficients in equa-

tion (3.7). In general, some information about the symmetry of the eigenmodes is

required. In the following, we will develop a general result to solve these issues.

A CMT formulation for multiple resonances have been proposed in [42]. However,

it does not specifically discuss the case of asymmetric systems. Also, the modes used

are not the final eigenvalues (given by the eigensolver) but the original uncoupled

modes. A recent paper [661 showed independently a result similar to the one that we

use here with some noticeable differences that we will mention later.

3.4.1 CMT from Maxwell's equations

General notions: Maxwell's equations can be compactly written as:

dF
= LeF + J (3.9)

E 0 IVx -/
whereF= ,Le= [ andJ=

.H Vx 0 0
One needs to add appropriate boundary conditions. For a scattering problem, we

use a radiation boundary condition: IrI2T (V x +ikx) E -* 0 for r -+ oc where n is

the dimension of the problem.
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For such boundary conditions, the problem is non-hermitian using the conjugated

inner product (fV EE-E'*+PoH-H'*). However, it is symmetric using the unconjugated

product ((F, F') = fV cE - E' - poH . H'), since1 :

(F, LF ) = E - (V x H') + H - (V x E') + (E' x H - E x H') - (3.10)

The surface term is cancelled from the boundary condition (H k x E g ) and

we obtain (F, LEF') = (LeF, F').

The eigenfunctions of this problem are usually called quasi-normal modes as they

diverge in the far-field and their conjugated norm is infinite. Several properties have

been shown for those modes in some particular geometries [67-70]. However, the

divergence of the norm is not an issue in one-dimensional geometries (or geometries

with translational symmetry that can be decomposed into plane waves at infinity)

since the unconjugated product is finite. In this case, for a given quasi-normal mode

we have: E = f(k)eikx + o(1) and H = k x E .6- + o(1). So even for a complex k,

we still have cOE - E - pOH - H - 0 and the unconjugated product is finite.

The use of the uncojugated product is actually equivalent to the formulation with

an additional surface integral in Ref. 67,69. Even though this result (the fact that

there is no problem in normalizing quasi-normal modes in ID) seems trivial, we are

not aware of it been mentioned in literature. The situation is different when scattering

from finite-size objects in 2D or 3D since the additional terms are no longer o(1) and

diverge. In those cases, quasi-normal-modes can be normalized by surrounding the

structure by a Perfectly Matched Layer (PML) and using the unconjugated product.

In this case, the problem with the PML can be seen as a closed system that is also

symmetric which justifies the use of the unconjugated product [70,711.

CMT formulation: We can now use the unconjugated inner-product to expand

the scattered field in terms of quasi-normal modes. We consider a plane-wave incident

field Fin, verifying: -ZoFinc = T = LEFinc (where Cb refers to the background).

'Using the relation: V - (F x G) = G x (V x F) - F x (V x G).

59



The total field (with scattering) verifies d(Fjnc+Fsca) Le(Finc+Fsca). So, Fsca verifiesdt

Maxwell's equations with an effective current:

dFsca 
-j

dt = LeFsca+ Jinc, Jinc = j -iW(6-Eb)Einc = -iwAcEinc (3.11)
L [o

The main CMT assumption is that we can decompose the scattered field into a

finite number of quasi-normal modes: Fsca = Ei ajFj so that LEFi = -iwiFi. This

assumption is usually valid only inside the scatterer (e.g. [67]). The quasi-normal

modes are orthogonal under the unconjugated product since:

-iw (Fi, Fj) = (Fi, LEFj) = (LFi, Fj) = -iwi(Fi, Fj) (3.12)

We also normalize Fj so that (Ft, Fj) = 1. From equation (3.11), we have then:

da
dt = _iwiai + (Fi, Jinc) (3.13)

We assume that the incident field can be decomposed into exciting "port modes"

so that Finc = Em S+Fm, where Fm is the exciting field due to an incident wave

from port m in the absence of the scatterer.

In the far-field, F m = F++En cmnF where F' are the input/output port modes

that verify orthogonality conditions: (F+, F- )s. = fs.(E+ x H - E x HE) -k -

JmI, (F+, Fm)s. = 0 and (F-, Fm)s. = 0. From the decomposition, we then re-write

equation (3.13) as:

= -i.jaj + Kmis+ (3.14)dt

where Krni = (F,J) = iW fV Ac(Em - El).

In order to find the scattering coefficients, we need to use a near-to-far field trans-

formation since the expansion we used is only valid inside the scatterer. We can

do this by using a reciprocity relation. We start by rewriting the problem in the
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background medium. We have:

dF = LEbFsca + Jeff, Jeff = Jinc + (Lc - LEb)Fsca
dt

where:

Eb
jeff = -- iAEEinc + AC4 V X Hsca

= -- iwAeEinc + AE[-ijEsca - iw-Einc]
E E

(3.16)
=iWAE[Esca + Eincl

Now, we apply Lorentz reciprocity [6] to the two following solutions in 6b: (ja

jeff, Ffic = 0, Fa = Fsca) and (jb = 0, Fb C = F+, Fb = F'), so that:

V (3.17)(Ea - jb - Eb -ja) = JSo (Eax Hb- Ex Ha) = (FaFb) S,,

By writing Fsca =Em tmF; in the far-field (T-matrix expansion) and using

orthogonality of the "port mode" we obtain:

(3.18)sanM + aiD- =Z aD - jef En n
Tn

where:

anm =w j Ae(E e - E)
V ni

D= Ae(E' - Ej)
fV n (3.19)

We can finally conclude that the scattering coefficients given by sn = tn +

Em Cnms+ are:

sn = [Cnm + Cxnm] S + EDna (3.20)

where we remind that Dni= Kni = iw f Ac(E" - El), anm = w fy Ac(E' - E'm) and

cnm are the background scattering coefficients.

Equations (3.14) and (3.20) form the basic CMT equations.

The coefficients of the matrix D are given through a volume integral. We can

change them to surface integral by applying the previous reciprocity principle to the
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volume outside the scatterer. In this case, the volume integral is 0 (all currents are

zero outside scatterer), and we simply have:

0 = (Fa, Fb)s0 - (Fa, Fb)s. = aj(Fj, F')so - tn,= aD - tn (3.21)
n n

where So is the minimal surface enclosing the scatterer. With this notation we have

then:

sn = Cms> CI + ai (3.22)

where D' = (Fj, F')so.

We can relate (3.18) and (3.21) by noting from Maxwell's equations that:

-iwAeEinc =WCEsca + V x Hsca = j(W - wi)cEias (3.23)

So (3.18) becomes n = Ej aji fy[wAe + e(w - wi)](Ee . Ej) (the integration is only

inside the scatterer). Comparing this to (3.21) we conclude that:

Dni = Dri + i(W - Wi) e(Ee - E) (3.24)

We note indeed that for large Q (wi close to real axis) and w close to resonance

frequencies, we have D ~ D'. This is basically due to the fact that AcEinc (term that

leads to a) becomes negligible compared to AeEsca in the expression of jeff, since

high-Q resonances strongly confine the field inside the scatterer.

3.4.2 Phenomenological CMT

In the previous section we explained the rigorous origin of the CMT from Maxwell's

equation and gave the expression of the coupling coefficients through volume/surface

integrals. However, having to compute volume integrals is usually to be avoided and

the coupling coefficients depends in general on the exciting frequency w. Since we are

interested in a relatively narrow bandwidth, a common assumption in the CMT is to

take constant coupling coefficients. This rather brutal approximation can still lead
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to good results as long as we have high-Q resonances and we are interested in small

frequency-range around those resonances.

The previous CMT equations can be written in matrix form as:

da= -a + K a, s_ = Cs+ + Da (3.25)
dt_

where Q is a diagonal matrix. We also reminds that the matrix C represents the

scattering matrix of the background medium without the scatterer. Here we consider

a lossless system. From conservation of energy and reciprocity: C+C = I and Ct = C.

We try then to find general conditions on D, K and C so that the scattering matrix

verifies energy conservation and reciprocity.

For excitation with frequency w, the scattering matrix is given by:

S = C+ D(i(w - Q))-Kt  (3.26)

We first show (appendix B) that a necessary and sufficient condition for S to be

unitary is:

CD* = -KM* (3.27)

where Mil =_ Dpi*DpI
i(W*-Wi)

This immediately allows to write the scattering matrix as S = TC, with:

Dpi[DM-']*.
T = I - D(i(w - Q))- 1 M 1 D+ q=I- [? D (3.28)

pq

With this new formulation, we show (appendix B) that T depends only on wi and

the ratios Dpi/Dqi (that physically mean the ratios of power injected into each port

by mode i).

To impose reciprocity (S symmetric), additional constraint on C is required.

In the following we restrict ourselves to two ports.

We note Tpq = ITpqei 3p, Cpq = IC" IeiO and (ICiI = r, IC211 = t).

Since T is unitary (TT+ = SS+ = I), we have in particular IT2 1 1
2 + |T1112 -
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|T12j2 + IT, 12 = IT12 2 + IT22 12 = 1, so that IT21 | = IT12 1 and 1T111 = IT22 1 (the same

result applies to S). We also have a12+Ca 2 1-a 11 --a 22  ir and #12+# 21--#5 11 -- 22  r.

From this we write:

i 

_ -1 0T1 ! +T2Iei(21 011 O22-a21)] ei(a21 +011)Iiei

S21 = ea+u ['rIT211|+ tIT22|e~ -, ~ n-n I I +uS21 Iei

- i(C12 022) [T!+tIlei(01222+a11-a12)1(29S12 = ega+n [rIT21|+ t|T22|e~ *, 1-n (3.29)

= e i(12++22) [rIT21 1 + tjT22 le-i(021-11+a2-a2) -i(a12 022) IS 21|eiA

So, S 2 1 =S 1 2 is verified if and only if:

#22-11=- 2A+(Z21-a12), tanA = IC2 1 |1T221 sin(0 21 - q5l + a22 + a 21 )
ICn|IT21i + IC21 ||T221 cos(021 - Oil + a22 + a 21)

(3.30)

The choice of the phase difference between C21 and Ci needs to obey (3.30) which

makes it in general dependent on w and on the resonances. In the specific case where

|C211 = 0, (3.30) simply becomes #22 -011 _ a 21 - a 1 2 . Furthermore, if the modes

are symmetric (D2i= D1 ) then T2 1 =T 1 2 (so a21 = a12) which leads to 011 0u22

that is indeed the condition to be expected in such case.

Equations (3.28) and (3.30) constitute the main equations for the phenomeno-

logical CMT. First, the eigenvalues (wi) are computed and the ratios D2 i/Di, are

computed from the eigen-fields. This can for example be done using the surface

integral form in (3.21) (without having to normalize the eigen-fields since only the

ratios matter). It turns out that in general (but not always), when the structure is

relatively thin compared to the wavelength, one can simply compute the ratio of the

amplitudes at ports placed at equidistance from the scatterer (of course this becomes

ill-defined when the scatterer is large). Those values allow immediately to compute

the T matrix.

The matrix C is then approximated depending on the physical system (for example

considering the system with an effective index). But then a phase is added/ subtracted

from #22/11 so that to ensure (3.30).

Finally, the typical CMT only includes wi with positive real part since this the
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only one that matter close to the resonance. If still we want to check the result it

gives in a broader bandwidth, we add the eigenvalues -w*. The corresponding eigen-

fields are the complex-conjugate of the previous modes, so the corresponding ratios

are conjugated.

As opposed to studies similar to Ref. 42 that require computing the transmission

before extracting the CMT coefficients which beats the purpose of this method, our

formulation does not have free parameters that need to be computed a posteriori. The

formulation presented here is also different from the result in Ref. 66 since we impose

the unitarity of the scattering matrix which wasn't the case in the other work. It

turns out that the result given in Ref. 66 can sometimes lead to a transmission much

larger than 1 in amplitude for some complex D ratios; a result that is obviously not

physical. On the other hand, imposing a symmetric scattering matrix for more than

two ports may not be guaranteed in our method. We also present here an accurate

way to compute the D ratios which was not specified in Ref. 66.

3.4.3 Metasurface and filter design

Back to our structure, we can first say that in the absence of resonances (due to

e*o 0
opening in metal) we have perfect reflection, so that C [ C . In this case,

il eq

Spq = Tqe . So as long as we are only interested in the magnitude of the scattering

coefficients, we do not need to impose conditions on C.

Now, in order to design a given (standard) filter, we need to find the required

complex eigenvalues (or poles) (wi) and the amplitude ratios (D22 /D1 3). Note that we

are interested in metallic metasurfaces whose transmission is 0 at w - 0 and w - oC,

so the only standard filters than can be designed are: Elliptic (2 x (2m + 1) order),

Chebychev, Inverse Chebychev (2 x (2m + 1) order), and Butterworth.

The poles are immediately recovered from a simple partial fraction decomposition.

Also, in order to get a maximum transmission of 1, we need |D2i/D = 1 (can be

checked numerically, necessarily but not sufficient condition). A specific phase for
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D2i/D1, is then required to get the wanted filter. For example, if all D2i/D1l are equal

to 1, the zeros of the transfer function lie inside the passband (similar to what was

for example mentioned in Ref. 42). It turns out that what gives the best accuracy for

the standard filters (that have zeros at frequencies outside the passband) is to choose

D2i/D = 1 by alternating "+" and "-" for resonances in increasing order of real

frequency.

Now using this design rule, equipped with an eigensolver and root-finding algo-

rithm, we can efficiently design various filter responses.

3.5 Triple grid

We now use the previous method to design three-grids structures. We use both the

first and second unit cells shown in Fig. 3-1 (labelled respectively "+" and "x"). For

the design, we choose a 6th-order passband elliptic filter with two different parameters

for each unit cell:

o Unit cell "+": Passband ripple (0.25dB), stopband attenuation (25dB) and

passband edge frequencies (9.55GHz, 10.45GHz). The corresponding eigenfrequencies

are (in GHz): 10.50 + 0.143i, 9.982 + 0.399i, 9.502 + 0.130i.

o Unit cell "x": Passband ripple (0.25dB), stopband attenuation (18dB) and

passband edge frequencies (9.6GHz, 10.45GHz). The corresponding eigenfrequencies

are (in GHz): 10.50 + 0.112i, 10.01 + 0.418i, 9.554 + 0.102i.

The required D ratios (D2 /Dii) are (1, -1, 1) as indicated previously.

The previous method allows an efficient design method, but still requires some

physical understanding of the system to get the correct filter. For example:

o In order to get zero transmission at two different frequencies, the structure

cannot be symmetric, since the zeros come from the capacitance/inductance

between two adjacent grids and the zero-transmission frequency is given by
1 c from the analysis in section 3.3. So the structure requires two

different dielectrics for the inter-layers.
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* One needs to be sure that there are no other modes inside the frequency range

of interest that can affect the transmission spectrum. A particular example is

the possible "waveguide modes" that can appear when the outside thicknesses

and/or dielectric constants are large. So one needs to minimize those to push

such modes to higher frequencies.

Using Rogers dielectric materials, we find two structures shown in Fig. 3-6 and

Fig. 3-7.

We see that the structures agree very well with the ideal filter, within a frequency

range around the passband region. For both structures, a mode appears at higher

frequencies (~ 17GHz for "+" and ~ 13GHz for " x") which changes the filter behavior

and affects a little the position of the zeros. Also, the main effect of the loss (dielectric

and metal losses) in this case is to reduce of the transmission peak, but the general

properties of the filters remain, including a good stopband attenuation.

About angle dependence: The method that we presented here does not tell what

happens for angles of incidence different than the angle for which the structure was

optimized (normal incidence in our case). The achievment of good angle-dependence

properties depends mainly on the choice of the unit-cell design. For completeness, we

show the angle dependence properties of our (lossless) designed filters in Fig. 3-6 and

Fig. 3-7. We notice that there are mainly two issues: (1) the eigenfrequencies change

at large angles which can "shift" the passband region of the filter (and eventually

change the bandwidth), (2) some high-Q "spikes" appear in the transmission spectrum.

Such "spikes" originate from other infinite-Q modes that can be found at normal

incidence. The quality factor Q of those modes becomes finite at large angles (due

to symmetry breaking) which leads to those "spikes" that appear in the transmission

spectrum. As can be noted from the transmission plots, the "x" exhibits a much

better performance in terms of the frequency shift of the eigenmodes. The general

properties of the filter (including the passband region) are retained even at 30' for

both polarizations. This angle independence is due to the fact that the resonant modes

supported on adjacent "x" openings couple less than modes supported on adjacent
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"+" openings and thus, in a tight-binding sense, the bending of the corresponding

bands is smaller for the "x" configuration. However, this structure still exhibits the

presence of infinite-Q modes inside and close to the pass-band region which leads to

"spikes" in the transmission spectrum at large angles. In our case, those "spikes" do

not affect much the performance of the filter at 300 as can be seen in Fig. 3-7. The

angle dependence properties of the actual "x" structure with dielectric and metal

losses is finally reported in Fig. 3-8.

Still, the "x" has smaller stopband attenuation and stopband range compared to

the "+" due to the presence of the mode at higher frequency at normal incidence which

we mentioned before. In general different compromises have to be made using different

possible unit cells. For each unit cell, higher order filters can still be designed using

the method presented here. We leave a more detailed comparison between different

specific unit cells for future work.
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Figure 3-6: Unit cell "+": a, = 9.380mm, dc = (0.849,0.939, 0.971)ac, 1c =(0.142,
0.025, 0.251)ac, E = (1, 6.15,3.48,6.15), tdiel = (-, 1.519, 0.675, 0.2)mm. Materials
(ROGERS Corporation): R04350B [c = 3.48, tan 6 = 0.0038] and R04360G2 [E =
6.15, tan 6 = 0.0038]. TE refers to incident wave with electric field parallel to the
structure. TM refers to incident wave with magnetic field parallel to the structure.
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the structure. TM refers to incident wave with magnetic field parallel to the structure.
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Chapter 4

Conclusion and future work

In this thesis, we studied two scattering problems. In the first, we were interested in

how much enhancement can be achieved through multiple scattering effects (in partic-

ular using discrete scatterers) over a large frequency bandwidth; while in the second

we worked on the design of high order frequency selective filters in the microwave

band.

We discussed different limits on the enhancement and showed that they are all

based on fundamental reciprocity constraints. Our reciprocity argument justifies the

use of the diffusion model as an approximate limit for broad-band/ angle averaging

and allows the use of a correction term in the thin-film limit. Our analytical results,

applied to the ocean-buoy energy extraction problem, compare very well with exact

wave simulations and allowed us to propose and quantify the expected enhancement

using new possible methods. In particular, the use of external membranes covering

parts of the water surface show encouraging optimized results. As a next step, we can

develop numerical codes to solve the full wave problem in the presence of membranes

and compare the result to our estimations. We can also apply the results to multiple

scattering problems in electromagnetics, especially for solar cell enhancement through

embedded dielectric/plasmonic scatterers.

We also studied the general topology consisting of cascaded metasurfaces and

showed how it can be used to obtain high order filters with zeros (on the real axis)

for the transmission spectrum. We then developed a general CMT framework to
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compute the scattering matrix using only the eigen-frequencies/ modes and showed

how it can be used to design general high order filters. Using this method we designed

elliptic passband filters with a center frequency of 10GHz and bandwidth of 10%. In

particular, the filter in Fig. 3-8 shows a good performance for angles up to 30'. The

next step will be to understand the benefits/limits of different unit cells. For example,

the method presented here does not tell us wether a filter with a certain bandwidth can

be physically designed given a specific choice of the unit cell type. We are currently

comparing the performance of different types of unit cells and studying the limits

imposed by each type on the bandwidth and angle dependence of the filter.
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Appendix A

Diffusion model

A.1 Derivation of the diffusion equation

For the first operator, we obtain:

+1 s - Vr(F -s)= -Ke27rU + I
so

V, -F = -27saU + 27n8

dOd6'p(s, s')Id +

rj, U (r) =

dOdO'p(s, s)Iri

/ dO Ij.(r, s)

For the second operator, we use (A.2) to obtain:

7rVrU + JdO 9[ - Vr(F -KeF +

To compute f dO' p(s, s')s' let's assume s = k. Also, for a particle with cylindrical

symmetry, we have: p(s, s') = p(', 0) = p(O' - 9) = p(O - 0'). So:

J d ' p(s, s)s' = J dO'p(O') [cos 0'k + sin 0'S = 9I (A.4)
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We note: repi = f dO'p(s, s')[s - s'], so that pi = ksp/e where y is the average of the

cosine of the scattering angle. Then:

1 I
- dO 9 dO' p(g, 9')F -

7F
1

S' = -eP1 SdO (A.5)

Now to estimate f dO s[s -V,(F -s)] we assume for example that F is along the x-axis.

So:

Id 9[9 -Vr(F - 9)] =( J dO g[cos 02
XF + sin 0 cos OyF] = 0

We finally conclude from (A.3) that:

VU 1- ,F
1

+ - I dO Js,
where: Ktr = Ke(1 - Pi)

A.2 Solution of diffusion equation

The reduced intensity obeys to:

coOdIn_ eTiCOS 0 = -d,d.,,

Iri(x = d, 0 + 7) = R2 Iri (X= d, 0),

Iri(x = 0, 0) = (1 - R1 )IO(O - 0),
(A.8)

(|01 < r/2)

(r I -(e- ,xsec Ooj(0 - 0) + R 2e-Ke(x-2d)sec00j (O - O0 - 7)),

Un 1 = -(KexsecOo + l2e (x-2d) sec0 o
2ir

where: I1/Io = E = 1 ,

(A.9)

Ri = Rj(00 ). We also need to compute J:

dO' p(O, 0')Iri(x, 0') - Ii(e-nexseco p(O, 0o) + A2 eke(x-2d)sec oop(O, Oo + 7r))

(A.10)
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then :

J(x, 0) =



then:

J dO J(x, 0)s I=1
dO (eC-xsec op(O, 0)+R2 ere(x- 2 d) sec Oop(0, Oo+7r)) [cos OR+sin Oy]

(A.11)

We can compute the integral as: f do p(0 - 0) cos0 = f dO p(0)cos(0 + O0) =

KePI cos 0 Similarly for the other integral, so that:

SdO J(x, 0)9 = IiKepi(e-'x sec o[cos 0o + sin OOS] - R 2e e (x 2d) [cos O0c 1+ sin 09: ])

and then:

V JdO J(xO)s= -2wrUrie-Kexsecoo KP 2 (A.12)

The diffusion equation (2.35) becomes then:

V2U U 2Uri[Kt,s + e2i] = -2K U (A.13)

where: K = KtrKs + KeiP. The solution for U can be written as U = UH + Up, where:

2K2

Up = 2 - 2 Uri = CUri
d- (K, sec Oo)2

UH 1 ,[Ae dX + Bed(x-d)]
27

(A.14)

(A.15)

The coefficients A and B can be computed using the boundary conditions (2.37). We

can compute F from (A.7). We note ai = (1 - r' )/(1 + r'). The boundary conditions

at x= 0, d (4aoU(x= 0) + F(x= 0) =0 , 4a2 U(X= d) - Fx(x = d) = 0) become:

Cei + [ (a2 - 4K)e-d

[
(a1 - 7)e-rad A

(Ce2 + )r- B

C(1 + 2Y 2 ) + 7K ( C + 2pi cos Oo)(1 - R 2 Y 2 )

[C(1+ 2)a2 - K ( C +2P1 cos 00)(1 - 2 )]Y4,cos 0 I
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where:

C = 2 KtrIs + 2,P1

Kd - (Ke sec 0o)2
(A.17)

A.3 Radiative-diffusion in 3D

The coefficients given in section 2.4 change for a three-dimensional medium. In this

case: K = 3"iahtr and C = 3[trs + K0Pi1/[KS - (KesecO) 2].

D is given through boundary conditions by D = A+B, where:
1fi-2 Y'

FZa1 + -

S(a 2 - -

(a1 - rd )e-Kdd A

(Ce2 + r-4-) B-r (A.18)
C(1 + R 2 Y 2)ai + je(_ +3p1 cos0)(1 - R2 Y2)

C1 + J2)a2 - + 3p, COS 0)(1- f2)]Y

with: ai = (1 - r')/(1 + r'), r = f R(0) cosP(6)dQ/ f cosP(0)dQ.

4r - f(q) + q0 )dQ

f[ql D) (0, red, rtd) + q D (0, ed, Ktd)]/ (ve sec 0) - 3 cos2 0(q0l +

with:

(1 + R2Y)Do(0, hed, trd) = (a2 + d)X1 + (a1 + rtrd)X2

Krd (a'l + a 2 ) + 2ala 2

where:

3 COS20(1+ J2Y2)a+ 2 cos 0(1 - i2y2)

[3 COS2 0(1 + R2 )a2 - 2 cos 0(1- N2)]y
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Appendix B

Phenomenological CMT

B.1 Unitarity

We have S = C + D(i(w - Q)) -K' = C + DdK' with C+C = I and C = C, so:

S+S = I + K*d+D+C + C+DdKt + K*d+D+DdKt (B.1)

We compute the coefficient (p, q) of this matrix. The second and third terms are

equal to:
K* D *Ckq

k - )
+ y Ck*pDkiKqi

k,2i w -Wi)

(B.2)

The last term is equal to:

K*DD* Kqi

l kk -
(B.3)

By decomposing it into simple elements through 1 - 1 1. +

] and after a change of index (I and 1), this last term becomes:

Z Kqj ZE D*1 Dk*K w D k1 i) K,*1 -i(W - Wj) i(W* - Wj)
. K* D D q

z W -o) I~ o - '

In order to verify the unitarity of S matrix, necessary and sufficient conditions
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are:

D ) =1 - CkDi,
k

Such conditions are equivalent to:

K*M = -C+D,

with Mi Di . The two relations

D D= -
Z*w - w1) 'q

KM' = - CD*

are equivalent since M = M+.

B.2 Dependence of matrix T

Suppose that D' = a Dpi. In this case, Mij = aja*Mij. By noting that:

a*
jij = a 6i

1
=AMikaakMI|

k

we have M '= M--' 1  . So that:23 23 ace
a

*' *a = D M * 1 D a* = Dpi[DM-]*

(B.8)

and then T = T'.
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