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by

Daniel Cane Waldinger

Submitted to the Department of Economics
on May 15, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Economics

Abstract

This thesis contains three chapters which empirically study how dynamic decision
making affects the allocation of public resources.

In the first chapter, I study the problem of allocating public housing. In the
U.S., public housing authorities (PHAs) allocate apartments using a wide range of
choice and priority rules. I evaluate how these allocation mechanisms affect the effi-
ciency and redistribution achieved through assignments. Using waiting list data from
Cambridge, MA, I estimate a structural model of public housing preferences, find-
ing substantial heterogeneity in applicant outside options and preferred apartment
types. Counterfactual simulations suggest that the range of mechanisms used by
PHAs involves a significant trade-off between efficiency and redistribution. However,
some commonly used mechanisms are never optimal.

In the second chapter, joint with Nikhil Agarwal, Itai Ashlagi, Michael Rees,
and Paulo Somaini, I study the allocation of deceased donor kidneys. In the U.S.,
patients on the kidney waiting list are offered organs in order of priority, and may
decline an offer without penalty. This paper establishes an empirical framework for
analyzing the design of these waiting lists. We model the decision to accept an organ
as an optimal stopping problem and use waiting list data to estimate the value of
accepting various kidneys. We then show how to solve for counterfactual equilibria
under different priority rules, and search for mechanisms that improve the match
quality of transplants and reduce organ waste.

In the third paper, joint with Sydnee Caldwell and Scott Nelson, I investigate
how beliefs about risky future income influence households' financial decisions. We
quantify one contributor to income uncertainty by surveying low-income tax fil-
ers' expectations of and uncertainty about their tax refunds, and link the survey
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with administrative tax and credit report data. Households face substantial refund
uncertainty, and both refund expectations and surprises influence financial behav-
ior. Households borrow in anticipation of their tax refunds, and this pattern is less
pronounced for more uncertain households, consistent with precautionary behavior.
Surprisingly, positive refund surprises induce higher debt levels by relaxing down-
payment collateral constraints.

Thesis Supervisor: Nikhil Agarwal
Title: Castle Krob Career Development Assistant Professor of Economics

Thesis Supervisor: Parag Pathak
Title: Jane Berkowitz Carlton and Dennis William Carlton Professor of Economics
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Chapter 1

Targeting In-Kind Transfers

Through Market Design: A

Revealed Preference Analysis of

Public Housing Allocation

1.1 Introduction

In the United States, 1.2 million low-income households live in public housing. Ten-

ants receive a permanent, place-based entitlement to a rent subsidy that can exceed

$10,000 per year. However, this assistance is rationed - in 2012, there were at least 1.6

million additional households on public housing waiting lists nationwide (Collinson et

al., 2015). Public Housing Authorities (PHAs) in each city have wide discretion over

how to allocate available apartments and differ in the choice afforded to applicants

and the priority systems used. Despite the range of policies, there is little empirical

15



or theoretical work on how to design efficient dynamic allocation mechanisms when

redistribution is also an important goal.

The range of choice and priority systems used in public housing allocation may

have large welfare and distributional impacts. In cities such as New York City and

Philadelphia, applicants may choose their preferred housing development; in other

cities such as Los Angeles and Miami, applicants do not have any choice over where

they are assigned. Theoretical work has shown that allowing choice can provide good

match quality for those who receive apartments (Bloch and Cantala, 2017a; Leshno,

2017; Thakral, 2016). However, removing choice may induce applicants with good

outside options to reject mismatched offers and self-select out of the public hous-

ing program, improving targeting (Arnosti and Shi, 2017; Nichols and Zeckhauser,

1982). PHAs also differ in whether priority is given to more or less economically dis-

advantaged households. These priorities directly affect targeting through observed

characteristics that predict disadvantage, but may also limit the ability of applicants

to self-select based on unobserved differences. Ultimately, the effects of these policies

on efficiency and redistribution are an empirical question; they depend on the char-

acteristics of public housing applicants, and the degree of heterogeneity in outside

options and preferred apartment types.

This paper provides empirical evidence on the roles of choice and priority in pub-

lic housing allocation using application data from the Cambridge Housing Authority

(CHA), which administers public housing in Cambridge, MA. Based on applicants'

submitted development choices, I estimate a structural model of public housing de-

mand that quantifies heterogeneity in applicants' preferred developments and in their

overall values of living in Cambridge public housing. In counterfactual simulations, I

use the structural model to evaluate the welfare and distributional impacts of mech-

anisms used by PHAs in other U.S. cities. I find that when applicants have choice

16



over where they are assigned, tenants value their assignments (relative to their out-

side options) as much as they would value cash transfers of $6,500 per year. The

CHA could house more disadvantaged applicants by either removing choice or simply

prioritizing lower-income applicants, as is done in other cities. Both policies result in

lower tenant welfare per dollar spent on the public housing program, but prioritizing

lower-income applicants improves targeting without lowering tenant welfare. As a

result, some combinations of choice and priority are strictly dominated in Cambridge

in a broad class of social welfare functions.

While studies of other centralized matching markets have used choice data to

analyze the behavior and preferences of agents, this type of data is novel in the public

housing context. The application data from Cambridge provide a direct measure of

which households applied for Cambridge public housing and contain rich development

choice information. During the period of study, the CHA allowed applicants to

choose their preferred development in a two-stage process, which I refer to as the

Cambridge Mechanism. In the first stage, an applicant made an initial choice of up

to three developments. The initial choice formed the applicant's choice set in the

second stage, when the applicant made a final choice after learning their position on

the waiting list for each development in their choice set. This position information

allowed applicants to update their beliefs about waiting time before making their

final choices, and I provide descriptive evidence that applicants' final choices were

responsive to this information.

The Cambridge Mechanism does not induce applicants to directly reveal their

preferred housing developments. Instead, applicants face a trade-off between being

housed in their preferred development and being housed more quickly. I propose a

model of development choice that captures this trade-off. Each applicant compares

the indirect flow utility from living in each public housing development to their out-
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side option and chooses their preferred distribution of assignments and waiting times

at each stage of the application process, understanding that their initial choice may

affect the conditions under which the final choice is made. The resulting two-stage

decision problem is a generalized version of the portfolio choice problem considered

in Chade and Smith (2006). An eligible household applies if some public housing

development is preferred to its outside option.

I interpret the distribution of indirect flow utilities using a model that allows

applicants to have heterogeneous tastes for public housing developments and unob-

servably different outside options. Households receive utility from consuming housing

and a numeraire, and maximize utility subject to a budget constraint. If utility is

additively separable in housing and the numeraire, the difference in flow payoffs

between living in each public housing development and the outside option is nat-

urally decomposed into two parts. The first is the household's value of assistance,

a common component across developments which captures the household's value of

the homogeneous aspects of public housing. The second is the household's match

value for the specific development, which captures the heterogeneous aspects of pub-

lic housing and determines an applicant's preferred developments. In estimation, I

make an assumption on the functional form of utility and impose a restriction on dif-

ferences in the value of assistance. Specifically, I assume that unobserved differences

in the value of assistance are driven by heterogeneous outside options rather than

heterogeneous tastes for public housing itself. These assumptions lead to a natural

parameterization of the value distribution and allow welfare gains from assignments

to be compared to the value of cash transfers.

The two types of preference heterogeneity - values of assistance and match values

- are closely related to the market design trade-off between providing good match

quality for tenants and targeting the most disadvantaged applicants. Values of as-

18



sistance determine which applicants a PHA would like to house, while match values

determine how a PHA should match a fixed set of applicants to available apart-

ments. They also determine how applicants will behave under different allocation

mechanisms. Holding match values fixed, applicants with higher values of assistance

will accept apartment offers from more developments and select developments with

shorter waiting times. Holding the value of assistance fixed, applicants with high

match values for specific developments will be willing to wait longer for those devel-

opments. A mechanism which induces applicants to reject mismatched offers may

house more applicants with high values of assistance, with the potential cost that

tenants enjoy lower match values from their assignments. The effect of allocation

policy on targeting, match quality, and total welfare depends on the distribution of

heterogeneity in each dimension.

The application data and structure of the Cambridge Mechanism provide cru-

cial information about both types of preference heterogeneity. Application rates by

income and demographic groups are particularly informative about observable dif-

ferences in values of assistance. Combining American Community Survey (ACS)

data with the Cambridge waiting list data, I estimate that lower-income and non-

white households are much more likely to apply for public housing than other eligible

households. However, some very low-income households did not apply, while some of

the highest-income eligible households did, suggesting that there are also unobserved

differences in values of assistance or match values. The initial development choices

of applicants are informative about these unobserved differences. Since applicants

choose up to three lists, initial choices reveal not only which developments are more

likely to be chosen overall, but also which developments tend to be chosen together.

These patterns reveal match value heterogeneity that can be predicted by observed

applicant and development characteristics, as well as unobserved heterogeneity in
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tastes. With parametric restrictions, initial choices also separate match value het-

erogeneity from unobserved heterogeneity in values of assistance. The final choice

stage informs sensitivity of development choices to waiting times since applicants

receive new information before making their choices. This allows me to estimate a

discount factor in addition to the parameters governing applicants' flow payoffs.

I estimate the development choice model by matching observed choice patterns to

those predicted by the model using the method of simulated moments (McFadden,

1989; Pakes and Pollard, 1989). Implementing the procedure requires two prelimi-

nary steps. First, to measure application rates by income and demographic groups, I

estimate the distribution of potential applicants - including eligible households who

did not apply - by combining ACS data with administrative data on current public

housing tenants in Cambridge. Second, I estimate applicants' beliefs about how each

sequence of development choices affects the distribution of assignments and waiting

times in the Cambridge Mechanism. Estimating beliefs presents a challenge because

the Cambridge Mechanism created interdependence in the waiting time distributions

across lists. As a result, the beliefs of sophisticated applicants are high-dimensional

while data on realized waiting times are sparse. I overcome this problem by as-

suming that applicants' beliefs match the long-run steady state distributions that

the Cambridge Mechanism would generate given observed frequencies of applicant

arrivals and departures, apartment vacancies, and initial and final choices of appli-

cants. This assumption allows me to exploit knowledge of the Cambridge Mechanism

and construct the high-dimensional belief objects by simulation, using the data to

estimate a lower-dimensional set of parameters governing simulation inputs.

Given these inputs, simulating the development choice model presents a com-

putational challenge because the two-stage development choice problem is compu-

tationally burdensome to solve and does not yield closed-form choice probabilities.
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Standard simulation techniques would re-solve the model at each proposed value of

the parameter vector. This is computationally prohibitive in my application. I use

a technique proposed by Ackerberg (2009) that combines a change of variables with

importance sampling and allows me to solve the development choice model once.

The optimization procedure re-weights simulation draws at new parameter values

and minimizes the objective function over a grid of discount factors.

Estimates imply that applicants are moderately patient and exhibit substantial

heterogeneity in values of assistance and match values. The point estimate of the

annual discount factor is between 0.90 and 0.92, suggesting that development choices

will be sensitive to equilibrium waiting times in mechanisms that allow choice. While

observed characteristics strongly predict the value of assistance - particularly income

and race - households also have unobserved differences in their outside options. Con-

ditional on observed characteristics, the standard deviation of a household's outside

option amounts to several thousand dollars of annual unobserved income. Applicants

have strong preferences for specific developments, and would require a median cash

transfer of $1,435 per year to provide the same welfare increase as moving from their

second choice development to their first choice. Given such large heterogeneity in

match values and values of assistance, 31 percent of applicants would accept any

development, while an equal share would only be willing to live in three or fewer

developments. Applicants that would accept any development have much lower ob-

served incomes than other applicants as well as unobservably worse outside options.

As a result, a development choice system that induces offer rejections will filter out

applicants with better outside options but have large welfare costs in terms of match

quality.

Given these estimates, I consider how the development choice and priority sys-

tems used by other PHAs would perform in Cambridge. Because computing the
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equilibrium of the two-stage Cambridge Mechanism is challenging, the counterfac-

tuals focus on a simpler class mechanisms in which applicants make choices in one

stage. The Cambridge Mechanism is closest to a one-stage mechanism in which ap-

plicants apply for one development and all eligible households living or working in

Cambridge have equal priority. I consider what would happen if the CHA moved

to other development choice systems, including ones that induce offer rejections. I

also consider priority systems that offer apartments to either lower- or higher-income

applicants before others. To show what could be achieved if incentive compatibility

constraints were relaxed, I also analyze a full-information benchmark in which the

social planner knows applicants' preferences but has limited foresight about future

apartment vacancies and applicant arrivals and departures.

Under the current priority system in Cambridge, the range of development choice

systems used in practice would have large effects on match quality, targeting, and

total welfare. Removing choice would reduce the average value of an assigned unit,

measured in equivalent cash transfers, from $6,956 to $5,399 per year. Match quality

would fall dramatically; the fraction of tenants living in their first choice develop-

ments would fall from 43 percent to 11 percent. Since lower-income applicants are

more likely to accept a mismatched apartment offer, the incomes of tenants would fall

from $20,509 to $17,535, and tenants would have worse outside options conditional

on their observed characteristics. Since lower-income tenants pay lower rents in pub-

lic housing, cost-adjusted welfare gains fall even more than welfare per assigned unit.

Based on a conservative estimate of the cost of maintaining each Family Public Hous-

ing apartment, cost-adjusted welfare gains would by fall 30 percent if the CHA gave

applicants no choice over their assignment instead of allowing them to choose their

preferred development. In contrast, the effects of prioritizing higher- or lower-income

applicants are mainly distributional: equivalent variation per apartment allocated
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and match quality are similar across priority systems, but income-based priorities

would dramatically change tenant incomes. As a result, cost-adjusted welfare gains

are larger when higher-income applicants are prioritized.

The measure used to summarize welfare gains from assignments - equivalent

cash transfers - implicitly places equal value on cash transfers to households of dif-

ferent incomes. To conclude the paper, I ask which allocation mechanism should be

used depending on one's taste for income redistribution. I argue that social welfare

weights should be monotone in the value of a household's outside option. Following

Atkinson (1970), I consider a class of social welfare functions with "constant relative

inequality-aversion" in which the strength of one's taste for redistribution is summa-

rized by a single parameter. The value to each tenant of their assignment, measured

in equivalent cash transfers, is transformed by a function that depends on the value

of the household's outside option and the planner's degree of inequality aversion.

This class of functions captures a wide range of distributional preferences and has

attractive properties for making interpersonal welfare comparisons. In addition, wel-

fare gains from each counterfactual allocation can be adjusted for changes in total

rent payments, allowing mechanisms to be compared in terms of welfare gains per

dollar of public expenditure.

Within this class of social welfare functions, several combinations of choice and

priority are on the frontier of efficiency and redistribution among the mechanisms

considered. With a low taste for redistribution, it is best to prioritize high-income

applicants, since they are cheapest to house, and ask applicants to choose their pre-

ferred development. With a moderate taste for redistribution, one should prioritize

applicants equally and still allow choice. With a high taste, one should prioritize low-

income applicants, and eventually also limit applicants' ability to choose their pre-

ferred development. In the latter case, some applicants will self-select out by rejecting
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mismatched offers, improving targeting on unobserved as well as observed character-

istics. The one-stage mechanism closest to the Cambridge Mechanism, choosing one

development with equal priority, performs well under a moderate taste for income

redistribution. A social planner would choose this mechanism if it equally valued

transferring two dollars to a household earning $20,000, and transferring one dollar

to a household earning $10,000.

Although the preferred mechanism depends on distributional preferences, certain

combinations of choice and priority used in other cities are strictly dominated for

the Cambridge population. In particular, it is never optimal to prioritize higher-

income applicants while not allowing choice. Intuitively, prioritizing lower-income

applicants yields a targeting improvement comparable to removing choice, but does

so without lowering match quality. Inducing offer rejections is a policy of last resort

to improve targeting once observed characteristics have been used. This implies that

mechanisms used in other cities would not perform well in Cambridge. For example,

Los Angeles prioritizes higher-income applicants but does not give applicants choice.

In Cambridge, there would be a better policy whether one has a high or a low value

of redistribution.

The paper proceeds as follows. Section 1.1 discusses related literature. Section

2 provides institutional background on the public housing program, discusses allo-

cation policies used in practice, and describes the CHA dataset. Section 3 presents

descriptive facts about Cambridge public housing developments, applicants, and their

choices. Section 4 proposes a model of household preferences and development choice.

Section 5 describes the estimation procedure used to recover the distribution of pref-

erences for public housing developments. Section 6 presents the estimation results,

and Section 7 presents results from counterfactual simulations. Section 8 concludes.
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1.1.1 Related Literature

This paper is related to several literatures on means-tested housing assistance, dy-

namic market design, and the economics of in-kind transfers.

The empirical papers most closely related to this work estimate demand for pub-

lic housing using data on assignments (Geyer and Sieg, 2013; Sieg and Yoon, 2016b;

Van Ommeren and Van der Vlist, 2016). To my knowledge, this paper is the first to

use individual-level waiting list data to estimate demand for public housing. Other

empirical work has argued that there is substantial misallocation in the public and

rent-controlled housing sectors (Glaeser and Luttmer, 2003; Thakral, 2016). Con-

sistent with this work, I find that public housing allocation policy can dramatically

affect how tenants are matched to apartments. A complementary literature evalu-

ates the causal effects of receiving housing assistance, and has found that receiving

housing assistance and living in higher socioeconomic status neighborhoods as a child

leads to improved economic outcomes as adults (Andersson et al., 2016; Chetty et

al., 2015; Kling et al., 2007; Ludwig et al., 2013). The subjective values for public

housing estimated in this paper may include households' beliefs about the program's

long-term benefits in addition to immediate changes in disposable income and hous-

ing and neighborhood quality.

The market design trade-off between match quality and targeting has been stud-

ied in the theoretical literature on one-sided dynamic assignment (Arnosti and Shi,

2017; Bloch and Cantala, 2017a; Leshno, 2017; Thakral, 2016). Arnosti and Shi

(2017) show that the relationship between match quality and total welfare is the-

oretically ambiguous and depends on the distribution of agent preferences. This

paper provides empirical evidence on these primitives and their implications for al-

location policy. The trade-off between match quality and targeting is also connected

25



to a literature on targeting and ordeals in public assistance programs (Akerlof, 1978;

Nichols and Zeckhauser, 1982). This literature has highlighted the tension between

providing valuable assistance to those who receive it ("productive efficiency") and

restricting assistance to the households which need it most ("targeting efficiency").

Several recent papers have studied this idea empirically in the context of means-

tested transfer programs of homogeneous items (Alatas et al., 2016; Deshpande and

Li, 2017; Lieber and Lockwood, 2017). This paper explores a related trade-off created

by the heterogeneous nature of public housing and its limited supply.' I also analyze

how applicant priorities, a version of the tags considered in Akerlof (1978), interact

with the screening properties of development choice in public housing allocation.

The structural model and estimation procedure used in this paper draw on tech-

niques in discrete choice demand estimation (Berry et al., 2004; McFadden, 1973,

1989; Pakes and Pollard, 1989). My implementation of the method of simulated

moments uses a change of variables and importance sampling technique proposed

by Ackerberg (2009) to reduce the computational burden in estimation. This paper

also joins a growing literature on revealed preference analysis in centralized matching

markets (Abdulkadiroglu et al., 2017a; Agarwal, 2015; Fack et al., 2015a; Hastings

et al., 2009; He, 2017; Narita, 2016). Along with Agarwal et al. (2017), this paper

is among the first to conduct revealed preference analysis using the choices of agents

in a dynamic assignment mechanism.

'The fact that public housing involves an in-kind transfer of housing rather than cash may also
sacrifice productive efficiency by distorting the housing consumption of those who receive assistance.
Given that only one quarter of eligible households applied for Cambridge public housing during the
period of study, the targeting gains from public housing may be large compared to a cash transfer
of equal value.
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1.2 Institutional Background and Data

Section 1.2.1 provides an overview of the U.S. public housing program, surveys al-

location policies used in practice, and discusses the design trade-offs these policies

entail. Section 1.2.2 describes the Cambridge Housing Authority and the mechanism

it used to allocate public housing during the period of study. Section 1.2.3 describes

the applicant dataset and sample criteria.

1.2.1 Public Housing in the U.S.

The U.S. public housing program subsidizes the rents of 1.2 million low-income house-

holds at an annual cost of $8-10 billion. A Public Housing Authority (PHA) in each

city maintains the stock of public housing developments located in its jurisdiction us-

ing funds allocated by Congress and distributed by the U.S. Department of Housing

and Urban Development (HUD). A public housing tenant pays 30 percent of pre-tax

income toward rent, and is permanently entitled to assistance as long as it complies

with the terms of its lease and remains in its assigned apartment. Public housing and

its private market counterpart, the Housing Choice Voucher program, are unusual in

their benefit generosity: in 2013, participants received an average annual subsidy of

$8,000.2

Due to the combination of limited federal funding, generous per-household bene-

fits, and broad eligibility criteria, demand for public housing greatly exceeds supply.

Congress does not set funding levels to assist all eligible households, but rather to

maintain existing services. New public housing is not being built.3 The income limit
2Based on per-household subsidy from tenant-based vouchers reported in HUD Congres-

sional Justification for FY2015, available at https://www.hud.gov/sites/documents/FY15CJ_
PUB_HSNG_CAPTL_FND. PDF. In 2013, the public housing program served a population with similar
incomes.

3 The majority of new affordable housing is built through the Low-Income Housing Tax Credit
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for eligibility is 80 percent of Area Median Income (AMI), which includes lower-

middle income households as well as the very poorest. As a result, in 2012 there

were approximately 1.6 million households on public housing waiting lists nation-

wide, and nearly 3 million applicants on voucher waiting lists.4

Public Housing Allocation Mechanisms and Design Trade-Offs

The limited supply of public housing creates a dynamic assignment problem for

each PHA. When tenants move out, the PHA must assign vacant apartments to

applicants on a waiting list. PHAs have substantial autonomy over allocation policy.

In particular, they control how applicants are ordered on the waiting list and whether

applicants can choose the developments to which they are assigned. These policy

levers - the priority system and development choice system - can affect which types

of applicants receive assistance and whether they are matched to their preferred

developments. To my knowledge, there is no resource that systematically documents

the current waiting list policies of each of the 3,300 U.S. PHAs. To summarize

allocation policies used in practice, I examined most recent available administrative

plans of 24 PHAs falling into two categories: (1) those with the largest public housing

stocks, and (2) those with public housing stocks and city populations similar to

Cambridge, MA. The priority and development choice systems used by these PHAs

are summarized in Table 1.1.

The allocation policies of surveyed PHAs share several common features. Ap-

(LIHTC), a federal tax expenditure that subsidizes private sector construction of new affordable
housing. This program is administratively separate from the public housing and voucher programs
and has a different rent payment structure, so that tenants with very low incomes receive a smaller
effective rent subsidy than in public housing.

4Public and Affordable Housing Research Corporation (PAHRC), 2015. "Value of Home:
2015 PHARC Report." Based on PAHRC tabulation of the Public Housing Agency Home-
lessness Preferences Survey, 2012. https://www.housingcenter.com/sites/default/files/
waiting-list-spotlight.pdf
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plicants are ordered on a waiting list by priority and then by date of application.

If applicants are allowed to choose a subset of developments to which they can be

assigned, they are placed on waiting lists for their chosen developments. PHAs offer

apartments to applicants living or working in the jurisdiction before other applicants.

There are also federally mandated need-based priorities for certain groups, including

households displaced by natural disasters, victims of domestic violence, and veter-

ans. Apartments are offered to applicants at the top of the waiting list first; if an

applicant rejects without good cause, they are removed from the waiting list and the

next applicant is offered the apartment. A few PHAs allow one or two rejections

before the applicant is removed from the waiting list, but most do not.

Despite these similarities, the development choice and priority systems used by

PHAs exhibit important differences. The key difference across priority systems is

whether households with higher or lower socioeconomic status are given priority.

Some PHAs, including New York City and Los Angeles, give priority to households

with a working member, that are economically self-sufficient, or that have incomes

above 30 percent of the Area Median Income (AMI), a regional income benchmark

that adjusts for household size. Others do just the opposite - the Seattle Housing

Authority prioritizes households below 30 percent AMI, and several other PHAs

prioritize households that are severely rent burdened or at risk of being displaced.

Still other PHAs, including the Cambridge Housing Authority, treat all applicants

living or working in the jurisdiction equally. Income-based priorities can have a large

impact on the income distribution among public housing tenants. This will determine

whether housed applicants have the highest values of living in public housing and,

since lower-income households pay less rent, the fiscal cost of the public housing

program. They also make it harder for applicants to obtain assistance who are not

prioritized but have unusually high values of living in public housing.
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The range of development choice systems across PHAs is equally wide. A devel-

opment choice system gives each applicant a choice set consisting of certain subsets of

developments from which the applicant can receive offers. Several PHAs, including

those in New York City, Seattle, and New Haven as well as Cambridge, require appli-

cants to choose a limited number of developments ("Limited Choice"). As noted in

the dynamic market design literature, asking applicants to commit to their preferred

options tends to achieve good match quality. Applicants will choose their preferred

combinations of assignments and waiting times, and applicants with the highest val-

ues of over-subscribed developments will be more likely to apply for and occupy

them. Other PHAs do not allow applicants to choose developments ("No Choice");

in Miami, Los Angeles, and Minneapolis, applicants must accept the first offer from

any development. Such a mechanism will generate mismatch between tenants and

their assigned apartments, but mismatched offers may filter out applicants with good

outside options, allowing applicants to self-select into public housing based on both

observed and unobserved characteristics. Other PHAs use intermediate development

choice systems. Chicago allows applicants to select a neighborhood but not a specific

development, which reduces spatial mismatch but may still induce offer rejections.

In Boston, applicants may choose any subset of developments ("Any Subset"), al-

lowing them to hedge against waiting time uncertainty. Philadelphia and Baltimore

present applicants with a hybrid option ("Limited or All"): either commit to a few

developments, or accept the first available apartment offer.

PHAs combine development choice and priority systems in different ways. Los

Angeles uses No Choice, but prioritizes applicants that are economically self-sufficient

(High SES). Seattle does the reverse, allowing Limited Choice while prioritizing

Low SES applicants. Minneapolis uses both development choice (No Choice) and

priorities (Low SES) to maximize targeting, while New Haven prioritizes higher-
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income applicants and provides choice. In counterfactuals, I ask what would happen

if the Cambridge Housing Authority adopted different combinations of development

choice and priority systems used in practice.

1.2.2 The Cambridge Housing Authority

The Cambridge Housing Authority (henceforth, CHA) administers the Public Hous-

ing and Housing Choice Voucher programs in Cambridge, MA. Its public housing

stock consists of about 2,450 apartments, evenly split between the Elderly/Disabled

and Family Public Housing programs. Although Cambridge is a low-poverty area

compared to a nationally representative sample of public housing sites, Cambridge

public housing tenants are comparable to those nationwide in terms of socioeco-

nomic status and demographics. In 2014, 74 percent of Cambridge public housing

tenants earned less than 30 percent AMI and 48 percent were headed by an African

American, compared to 72 percent and 48 percent nationwide.

During the period of study - January 1st, 2010 to December 31st, 2014 - the CHA

employed a site-based waiting list system to allocate public housing. The waiting list

for vouchers was closed from 2008 until 2016, while public housing waiting lists were

open from 2008 until 2015. For this reason, I study the public housing program in

isolation. The CHA used a two-stage development choice system for public housing,

which I will refer to as the Cambridge Mechanism.5

5 Every year, each housing authority is required to publish an Admissions and Continued Occu-
pancy Policy (ACOP). The CHA's most recent ACOP for federal public housing can be found here:
http://cambridge-housing.org/civicax/filebank/blobdload.aspx?BlobID=23535
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The Cambridge Mechanism

In the Cambridge Mechanism, applicants select their preferred development - they

have Limited Choice - and all applicants with a household member living or working

in Cambridge receive Equal Priority. The development choice system shares features

with those used in New York City, Seattle, and New Haven; the priority system is

similar to those used in Chicago, Philadelphia, and Boston.

A key difference between the Cambridge Mechanism and many other develop-

ment choice systems is that applicants choose their preferred development in two

stages.6 At initial application, a household is assigned a program (Elderly/Disabled

or Family) and bedroom size and makes an initial choice of up to three developments

from 9 to 13 alternatives. Each development is a building or complex in a distinct

geographic location, and apartments with the same number of bedrooms are mostly

homogeneous within a development. The initial choice forms the applicant's choice

set later on, and the applicant is placed on a waiting list for each chosen develop-

ment. At a later date, the CHA sends the applicant a letter asking them to make

a final development choice. The letter informs the applicant of its current position

on each list in its choice set, allowing the applicant to make its final choice based on

new information. Appendix 1.10.2 provides a formal description of the Cambridge

Mechanism, including when the CHA sends these letters and how it calculates list

position. After making its final choice, the applicant remains on the waiting list for

that development until the CHA makes a single, take-it-or-leave-it offer of an apart-

ment. If the applicant rejects, it is removed from the waiting list and cannot reapply

for one year. The applicant may also be removed if it fails to attend its screening

6 The New York City Housing Authority uses a similar two-stage development choice system.
Applicants first choose a preferred borough, and later choose their preferred development from a
subset of the developments in that borough.
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appointment, produce required documentation, or respond to mail from the CHA.

1.2.3 Dataset and Sample Selection

The main dataset used in this paper, provided by the CHA, contains anonymized

records of all applicants for Cambridge public housing who were active on a wait-

ing list between October 1st, 2009 and February 26th, 2016. The CHA maintains

a database of applicants to manage its waiting lists and comply with HUD regula-

tions. For each applicant, the dataset records household characteristics, development

choices, and the timing and outcome of all events during the application process.

For analysis, I restrict my sample to applicants who had priority for Cambridge

public housing; who applied for 2 and 3 bedroom apartments in the Family Pub-

lic Housing program; and who submitted an application between 2010 and 2014.

Non-priority applicants had virtually no chance of being housed, and are therefore

excluded. Family Public Housing applicants are a more homogeneous group than

Elderly/Disabled applicants. I restrict to 2 and 3 bedroom apartments for sample

size; there are few apartments and applicants for other bedroom sizes. Analyzing

new applications between 2010 and 2014 avoids selection issues because not all pre-

2010 applicants were still on the waiting list in 2010. These restrictions produce a

sample of 1,752 applicants. After omitting 26 irregular applications, 1,726 applicants

remain.

To estimate the distribution of potential applicants during the sample period,

I augment the CHA applicant dataset with a sample of eligible households from

the American Community Survey (ACS). I also use data provided by the CHA on

Cambridge public housing tenants between 2012 and 2014. Appendix 1.10.1 provides

details of the CHA and ACS datasets, and Section 1.5.1 explains how they are used
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to estimate the distribution of potential applicants.

1.3 Descriptive Evidence

This section presents descriptive statistics of Cambridge public housing applicants

and their development choices. These facts illustrate the key economic forces that

will be quantified in the structural model. Cambridge public housing developments

differ in size, location, and expected waiting time. The decision to apply and ap-

plicants' initial development choices reveal heterogeneity in values of assistance and

match values. While observed characteristics strongly predict who applies and which

developments they prefer, much choice behavior is left unexplained. Final choices

reveal that applicants are sensitive to waiting time information, and will choose a

less preferred development in exchange for a shorter expected waiting time.

1.3.1 Cambridge Public Housing Developments

During the period of study, applicants for Family Public Housing in Cambridge chose

among thirteen developments located throughout the city. The location of each de-

velopment is shown in Figure 1-1. There are 3 developments in East Cambridge, 3

in North Cambridge, and 7 near Central Square. Table 1.2 displays characteristics

of these developments. The smallest developments contain just a few apartments

that blend in with the surrounding housing stock,7 while the largest developments

are complexes of several buildings containing hundreds of apartments. Developments

also have different expected waiting times. Average waiting times for housed appli-

cants range from 1.58 to 3.75 years across developments, with smaller developments

7 The "Scattered" waiting list represents three lists: one for scattered sites in Mid-Cambridge
(Central), one for East-Cambridge, and one for River Howard Homes (Central).
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tending to have longer waits. As a result, some applicants faced a trade-off between

their preferred assignment and a shorter expected wait. Developments are less het-

erogeneous in terms the characteristics of their tenants, with similar average incomes

and proportions of African American tenants. 8

1.3.2 Application Decisions and Initial Development Choices

Application rates by income and demographic groups reveal which types of house-

holds value public housing the most relative to their outside options. The first two

columns of Table 1.3 show that only one in four eligible households actually applied

for Cambridge public housing during the sample period. Those who did apply had

much lower incomes and were more likely to be non-white and to already live in Cam-

bridge. The average income of eligible households is $42,219, while that of applicants

is $18,477. This is to be expected; since rent is 30 percent of pre-tax income, a lower-

income household sees larger increases in housing quality and disposable income in

public housing compared to its outside option. Differences by race are also striking:

half of applicant households are headed by an African American, while only one in

five eligible households are. Although income and race strongly predict who applies,

they are not perfectly predictive. Figure 1-2 shows that while application rates fall

steadily as income rises, some of the lowest-income households did not apply and

some high-income households did. Similarly, 25 percent of African American headed

households did not apply.

The remaining columns of Table 1.3 show that most applicant characteristics

are stable over time, but there are a couple of moderate trends. The rate of new
8There are outliers. For example, Roosevelt Mid-Rise has an unusually low average tenant

income and a small fraction of African American tenants. This is because it is a mixed development,
with some apartments for Elderly and Disabled households. Its tenants are older, and as a result
have lower incomes and are more likely to be white.
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applications fell from 415 per year in 2011 to 347 in 2014.' Over time, new applicants

had higher incomes and were more likely to work in Cambridge and have a white head

of household. Applicant income growth is consistent with median income growth in

the Boston area following the Great Recession. Despite the fact that only one in four

eligible households applied for public housing during the sample period, there were

five applicants for each of the 327 apartment vacancies. Demand greatly exceeded

supply in this market.10

Initial development choices suggest that applicants have strong tastes for specific

developments and that their preferences are correlated with observed characteristics.

Table 1.4 presents statistics from initial development choices for all applicants and

broken out by household income and neighborhood of current residence. Applicants

that already live in Cambridge are much more likely to select developments in their

own neighborhoods. The majority of applicants (84 percent) exhaust their initial

choice set and select three housing developments. This rate is lower for applicants

with incomes over $32,000: only 78 percent select three lists, compared to 85 percent

for lower-income applicants. Higher-income applicants also select developments with

slightly longer average waiting times. These patterns are consistent with a model in

which applicants with better outside options are more selective in their development

choices. However, the fact that these differences are not larger suggests the pres-

ence of unobserved heterogeneity in values of assistance." Similarly, specific chosen

'The CHA closed its Family Public Housing waiting lists during the second and third quarters
of 2010. As a result, 2010 saw fewer new applications than subsequent years.

10The number of vacancies is below the long-run average because the CHA began renovating
its public housing stock during the sample period. For a plausible upper bound on the long-run
average, an annual turnover rate of 10 percent per unit would raise the expected number of vacancies
to 540 over a five year period.

"Note that higher-income households who applied for Cambridge public housing are already
a selected sample. This should mute any correlation between applicant characteristics and the
selectivity of their development choices.
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developments are not fully predicted by observed characteristics. The structural

model will quantify heterogeneity in both values of assistance and match values, as

a function of both observed and unobserved characteristics.

1.3.3 Response to Waiting Time Information

This section presents quasi-experimental evidence that applicant choices are sensitive

to information about waiting time. Between 2010 and 2014, Cambridge sent final

choice letters to applicants who were near the top of the list for one of their initial

choice developments. The letter informed applicants of their position on each list and

asked them to make a final development choice. Because of fluctuations in relative list

lengths over time, and also due to Cambridge's algorithm for calculating list position

and sending final choice letters, applicants who made the same initial development

choices but applied on different dates were given different position information when

they made their final choices. Final choices are sensitive to this information: when

an applicant is told a lower list position for one development relative to the others

in their choice set, they are more likely to pick that development.

To test the null hypothesis of no response to waiting time information, I run a

conditional logistic regression that predicts an applicant's final choice as a function of

list position or expected continued waiting time. The sample is applicants who made

a final choice during the period of study, and the outcome is which development they

chose. Since each applicant chose their choice set at initial application, I include as

controls fixed effects for the interaction between each development and choice set.

This isolates the natural experiment in which applicants who made the same initial

choices - and whose development preferences are therefore drawn from the sanie

distribution - are told different waiting times for the same alternatives.

37



Table 1.5 displays coefficient estimates and implied marginal effects from the

conditional logistic regressions of final choice on waiting time information with no

controls; with development fixed effects; and with the full set of development and

choice set interactions. For each set of controls, the specification is run for both list

position and expected continued waiting time. Except for Column (2), coefficient

estimates are precise and show a negative response to list position and continued

waiting time. The response grows stronger with additional controls. The implied

elasticities are large: with full controls, the elasticity of final choice is -1.1 with

respect to list position and -4.1 with respect to continued waiting time.

For a test of the null hypothesis of no response to be valid, position information

must be uncorrelated with development preferences among applicants with the same

choice set who made a final choice. Two conditions are sufficient for this assumption

to hold. The first is that the development preferences of applicants who applied on

different dates but made the same initial choice are drawn from the same distribution.

This would not be true if applicants anticipated fluctuations in waiting times, since

this would influence initial choices. However, given that waiting time fluctuations are

determined by randomness in when apartments become vacant and the decisions of

other applicants, these fluctuations would have been difficult to predict or influence.

The second condition is that response to the final choice letter is uncorrelated with the

specific information in the letter, conditional on the elapsed time since application.

This will be true if applicants become unresponsive for exogenous reasons.

These results simply establish the existence of a response. In structural esti-

mation, moments based on responsiveness to waiting time information will separate

applicants' rate of time preference from heterogeneity in their values of specific de-

velopments.
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1.4 Model of Preferences and Development Choice

Section 1.4.1 presents a development choice model which predicts how eligible house-

holds behave at each stage of the application process given the structure of the Cam-

bridge Mechanism. This model allows me to recover the distribution of preferences

for Cambridge public housing developments based on the application decisions and

development choices of eligible households. Section 1.4.2 provides a micro-foundation

of preferences that links development preferences to households' outside options. In

counterfactuals, I use this model to quantify the welfare and distributional impacts

of alternative waiting list policies.

1.4.1 Development Choice Model

The development choice model provides a rational benchmark through which to

interpret the application decisions of eligible households and development choices

of applicants. In particular, it captures the trade-off applicants may face between

spending less time on the waiting list and being assigned to their preferred housing

development.

Knowing the structure of the Cambridge Mechanism, applicants solve a single-

agent problem and choose their preferred distribution of assignments and waiting

times given their information at each stage of the application process. They have

limited information about the state of the waiting list when making their initial

choices, but update their beliefs based on the position information in their final choice

letters. Because applicants make development choices in two stages and receive new

information in the second stage, the Cambridge Mechanism generates a portfolio

choice problem. I assume that applicants are sophisticated and solve this choice

problem backwards, anticipating that the full set of developments in their initial
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choice may jointly affect the timing of and position information received in the final

choice stage.

The following sections specify the sequence of decisions; information and beliefs

about how choices affect future states; payoffs; and the resulting portfolio choice

problem.

Sequence and Timing of Decisions

An eligible household, indexed by i, makes decisions in the following sequence:

1. Application Decision: Household i receives the opportunity to apply on a ran-

dom date.

2. Initial Choice: If i applies, it immediately chooses up to three developments,

denoted C C {1, ... , J} with |C| < 3. These developments form i's choice set

in the final choice stage, and i is placed on a waiting list for each development

in its initial choice.

3. Final Choice: At a later date, i receives a letter containing i's position on

the waiting list for each development in its choice set. The letter asks i to

make a final choice f E C. Let s denote the number of years between initial

application and the final choice letter, and let p - pj} 3jc denote the vector of

list positions. If i responds to the letter and chooses development f, it remains

on the waiting list until it receives a take-it-or-leave-it apartment offer in f.

Household i may become unresponsive at any point during the application process

and is removed from the waiting list if this occurs. I will assume that attrition

is exogenous to the model; that an applicant cannot anticipate the date it will be

removed; and that removal occurs at a poisson rate a that is equal across applicants.
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Applicants may not fully anticipate the possibility of attrition, and have a subjective

attrition probability & < a.

Applicant Information and Beliefs

An applicant's optimal initial and final choices will depend on its beliefs about how

each possible choice affects the joint distribution of assignments and continued wait-

ing times. Based on institutional features of the Cambridge Mechanism as well as

descriptive evidence, I assume that applicants do not know the state of the queue

when they first apply, but update their beliefs about continued waiting times based

on the position information in their final choice letters." When applicant i makes its

initial choice, it does so with beliefs about the likely date s and position information

p at the final choice stage, which are unknown and whose joint distribution depends

on i's initial choice. Let Gc(s, p) denote the probability that the final choice letter

is sent less than s years after initial application and that the applicant's list position

is no greater than pj for each development j E C. At the final choice stage, s and

p are realized, and i updates its beliefs about the continued waiting time for each

development j E C. Let F,c(t I p) denote the probability that continued waiting

time for list j E C is less than t years given position vector p. Importantly, these

distributions depend on the full set of lists C in an applicant's initial choice. Due to

the algorithm by which the CHA sent out final choice letters, described in Appendix

1.10.2, the full set of lists in C could affect the date and information at the final

choice stage. In addition, because applicants make their final choices based on new

position information, the full set of list positions p may be informative about the

1 2Descriptive evidence from the CHA dataset suggests that applicants are unaware of short
and medium-term fluctuations in list lengths. It is also consistent with the information they are
given at initial application, and with conversations with the CHA. The CHA generally knew which
developments had longer waiting times than others but was unaware of fluctuations.
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expected continued waiting time for each development j c C.

Preferences over Assignments and Waiting Times

Household i receives a payoff that is realized continuously over time and depends

on where it lives. In particular, i's per-period indirect flow utility from living in

development j is vij, and its indirect flow utility from not living in Cambridge public

housing is vio. I will refer to these indirect flow utilities as flow payoffs. Assignments

are believed to be permanent, and anticipated flow payoffs are not time-dependent.

This rules out learning about characteristics of the developments over time or chang-

ing household circumstances. When making development choices, the household

discounts future payoffs at exponential rate p = r + d. This includes both the house-

hold's rate of time preference r, and their beliefs about the rate at which they will

exogenously depart the waiting list, &. There is no direct cost of remaining on the

waiting list, and no fixed cost of beginning or continuing the application process.

The present discounted value to i of being assigned to development j in t years is

1
e-Pt -(vi - vio)

P

Choice Problem

Given beliefs and payoffs, an applicant solves the two-stage development choice prob-

lem backwards. In the final choice stage, applicant i with initial choice C learns its

list positions p and solves

max IE e-pT I p] (vij - vio)
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max I e-"i(vi. - vio)dFj,c(T | p).

Anticipating the final choice stage, applicants make their initial choices to maximize

the expected discounted value of the final choice:

max E CPS max -E ePTJI P (vij - vio)CEjo,1,...,j}3 jEC p I

= max PeS max C (vij - vio)dFc(T I P) dGc(S, P)ce{o,1,...,j}3 jec p 

Finally, since there is no direct cost of applying or remaining on the waiting list,

an eligible household applies for public housing if and only if some development is

preferred to their outside option: maxj vij > vio. Applicants will also continue the

application process if they have not already been removed for exogenous reasons.

As a result, counterfactual mechanisms will affect development choices and waiting

times, but not which households apply or when they would depart before being

offered an apartment.

1.4.2 Utility Model

Because development choices depend on a household's value of living in each de-

velopment relative to their outside option, my empirical strategy will estimate the

distribution of vi = (vil - vio, ... , vii - vio). This section provides a micro-foundation

of payoffs that explicitly links these payoff differences to the value of a household's

outside option. The key assumptions are that utility is additively separable in hous-

ing and non-housing consumption, and that unobserved differences in the value of

living in public housing are driven by outside options. In estimation, I add a restric-

tion on the functional form of utility to parameterize the distribution of vii - vio and
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to compare changes in utility to equivalent cash transfers.

Micro-Foundation of Flow Payoffs

Household i receives utility from consumption of housing h and a numeraire c. The

utility function is additively separable in the two goods:

u(c, h) = ui(c) + u2(h) .

Both ui and u2 are strictly increasing, concave functions. The household has three

characteristics: observed income yi; unobserved income qj; and development-specific

preferences summarized in hedonic indices hi = (hi1 , ... , h2j). Outside of public hous-

ing, a household chooses how much to spend on each good given its budget yi + 71j.

The prices of both goods are normalized to one. The household's indirect flow utility

from its outside option is

vio -max u1 (c) + U2(h) s.t. c + h < y+ (1.1)
c,h

= vo(yi + ni). (1.2)

One can think of unobserved income as capturing resources that relax or tighten the

household's budget constraint, shifting the value of its outside option. An extensive

literature has shown that social ties and alternative living arrangements are an im-

portant economic resource for many low-income households (Desmond and An, 2015;

Stack, 1974). By modeling these resources as part of the budget constraint, I assume

that they are substitutable between housing and the numeraire.

In public housing, household i only has access to observed income yi. Because

it is assigned to a particular apartment, it does not choose how much to spend on
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housing and the numeraire. Instead, pays a fixed fraction T (30%) of income in

rent, spends the remainder on the numeraire, and enjoys housing consumption hij in

development j. The indirect flow utility from living in development j is

Vij - 1((1 - T)yi) + u2(hij) . (1.3)

The difference in flow payoffs is given by

outside option

vi - vio = U((1 -T)y) -vo(yi + r1i) + u 2(hij) . (1.4)

value of assistance match value

This expression decomposes the difference in flow payoffs into two components: the

household's value of assistance and its match value. The value of assistance is com-

mon across developments and depends only on household i's observed and unobserved

income. It can be thought of as the household's value of the homogeneous aspects of

Cambridge public housing. The match value depends on i's taste for the character-

istics of development j; it comes from the heterogeneous nature of public housing.

These two terms capture the mechanism design trade-off between providing better

match quality for housed applicants and housing applicants who want public housing

the most. A mechanism that does not give applicants choice over their assignment

may induce low-value applicants to reject mismatched offers. If this occurs, more

high-value applicants will be housed, with the potential cost that tenants enjoy lower

match values.

This utility model embeds two key assumptions. The first is that utility is ad-

ditively separable in housing and the numeraire. This rules out complementarity

between housing and non-housing consumption, and assumes that the match quality

a tenant enjoys from their apartment does not affect the value of consuming other
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goods. The second assumption is that unobserved income is only available outside

of public housing, and that it is substitutable between housing and the numeraire.

This implies that differences in the value of assistance are driven by households'

outside options rather than the value of public housing itself, and that the value of

the outside option determines the value of cash transfers. These two assumptions

will make it possible to separately identify the value of the outside option from the

financial and other benefits of living in public housing.1

1.5 Empirical Strategy

This section describes the three steps in my estimation procedure. First, I estimate

the distribution of potential applicants for Cambridge public housing, including el-

igible households who did not apply. Second, I estimate applicants' beliefs about

how their choices affect payoffs through the distribution of assignments and waiting

times. Third, given beliefs and the distribution of potential applicants, I estimate

preferences over assignments and waiting times by matching application decisions

and development choices using the method of simulated moments (McFadden, 1989;

Pakes and Pollard, 1989). Solving the two-stage development choice problem is

computationally expensive, and a change of variables and importance sampling tech-

nique proposed by Ackerberg (2009) reduces the computational burden. The final

subsection shows how estimates from the utility model can be interpreted in terms

of equivalent cash transfers.

1 3One would ideally obtain additional data on households' outside options to separate unobserved
differences in outside options and taste for public housing, but such data were not available for this
study.
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1.5.1 Distribution of Potential Applicants

The first decision an eligible household makes is whether to apply for public housing

at all. Application rates by income and demographic groups will be informative

about heterogeneity in the value of assistance. To measure application rates, I need to

estimate the distribution of characteristics of all households that could have applied

for Cambridge public housing during the sample period. This includes households

that did apply and also eligible non-applicants - eligible households that did not

apply and were not already Cambridge public housing applicants or tenants at the

beginning of 2010. This section outlines the statistical procedure used to estimate

the distribution of potential applicants.

Estimating the distribution of potential applicants is not straightforward. The

CHA dataset contains information on households who applied during the sample pe-

riod, but it does not contain households that could have applied but did not. Survey

data can identify households whose characteristics made them eligible for Cambridge

public housing. However, some eligible households were already Cambridge public

housing tenants, and others were on the waiting list but applied before 2010. These

households were not potential applicants during the sample period, and survey data

do not distinguish them from households that could have applied.14

My approach is to combine a sample of eligible households from the American

Community Survey (ACS) with the CHA dataset to determine the distribution of

characteristics among eligible non-applicants. I do this by assigning a probability to

each household in the ACS for whether it appears in the CHA dataset, either as a

tenant or as a past or current applicant. I specify these probabilities as a parametric

14The American Community Survey (used here) does ask whether a household receives housing
assistance. However, a number of studies including Meyer and Mittag (2015) have shown that
these questions tend to understate program participation. To my knowledge, no large survey asks
households whether they are on a waiting list for public housing.
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function of household characteristics, and estimate the parameters by matching the

characteristics of households in the CHA dataset using minimum distance. One

minus each probability is an estimate of the probability that the corresponding ACS

household could have applied for Cambridge public housing during the sample period,

but did not. Using these probabilities, I draw a sample of eligible non-applicants

and combine it with the applicant sample. This procedure is consistent with a

model in which households become eligible for public housing once, choose whether

to apply, and exit the waiting list or tenancy when they are no longer eligible. Though

this model abstracts from the possibility that households might re-apply for public

housing, it captures the key idea that households with higher values of living in

public housing should be more likely to apply.

The ACS publishes a 5 percent sample of U.S. households covering 2010 through

2014, the same period covered by the CHA applicant dataset. 15 It contains infor-

mation on household structure and economic and demographic characteristics that

determine eligibility and priority for Cambridge public housing. In particular, I ob-

serve whether each ACS household lives or has a member working in Cambridge;

whether it meets the income and asset tests; and whether its household structure

qualifies it for a two or three bedroom apartment in Family Public Housing.

I estimate parameters of the probability model by minimum distance. Households

are indexed by b = 1, ... , B and have observed household characteristics Zb. The ACS

assigns each surveyed household a weight Wb based on household b's inverse proba-

bility of being sampled - in other words, Wb is the expected number of households

that b represents. The estimator chooses a parameter vector 6 ACS, which determines

the probability that each household appears in the CHA dataset given their charac-

15Samples from the ACS can be downloaded here: https://usa.ipums.org/usa-
action/variables/group
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teristics through a probit link function. 0 ACS is chosen to match the total number of

households in the CHA dataset; the number of households in six income groups; and

the numbers of households from Cambridge and with African American or Hispanic

household heads. Denote statistics from the Cambridge dataset by mdata, and denote

the contribution of each ACS household to the same statistics by mb. The minimum

distance estimator solves

min (m Acs(OAcs) - mdata) (mAcs(OAcs) - mdata)
OCS

where
B

mAcs(OAcs) = P(Z, OAcs)wbmb
b=1

p(Z0) = Jb(Z'O)

1.5.2 Belief Distributions over Assignments and Waiting Times

The information about preference heterogeneity contained in applicants' development

choices depends on their beliefs about how choices affect payoffs. An applicant solving

the two-stage development choice problem of Section 1.4.1 has beliefs about how each

initial choice affects the date and position information at the final choice stage, and

about continued waiting times for each development given list positions:

{Gc(S, P) , {F,c(Tj I p)}j,p}cec

Because the final choice stage of the Cambridge Mechanism generates interdepen-

dence in waiting times across developments, each possible initial choice may induce

a different set of distributions over final choice states and continued waiting times.
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A major challenge is that data on realized waiting times are sparse, while the beliefs

of sophisticated applicants are high-dimensional. To address this issue, I assume

that applicants have beliefs of a particular form: their beliefs are consistent with

the long run steady state distributions that the Cambridge Mechanism would gener-

ate given empirical vacancy rates, applicant arrival and departure rates, and initial

and final choice frequencies. These empirical quantities can be estimated directly

from application data. Combining these estimates with knowledge of the Cambridge

Mechanism, I simulate steady state outcomes which quantify interdependence across

lists and the option value of the timing and information of the final choice stage. I

assume that applicants have these beliefs when simulating the model in the final step

of estimation.

The rest of this section describes the model of the Cambridge Mechanism, the

construction of simulation inputs, and the construction of belief distributions from

simulation outputs.

Structure of Simulation Inputs

Appendix 1.10.2 provides a formal model of the Cambridge Mechanism. This section

explains the structure placed on inputs that determine assignments. Each day, the

following steps occur:

1. New applicants enter the queue and make their initial development choices.

2. Vacant apartments are offered to applicants who have already made their final

choices.

3. If the number of applicants on a list who have made their final choices falls

below a threshold, the CHA sends final choice letters to a group of applicants
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on that list. Each letter tells the applicant their current list positions and asks

them to make a final choice.

4. Applicants that do not respond to a final choice letter or to an apartment offer

are removed from all waiting lists.

Given this structure, outcomes in the Cambridge Mechanism are determined by

apartment vacancies, arrival and departure dates of applicants, initial and final

choices of applicants, and the CHA's policy for sending final choice letters. Vacan-

cies, applicant arrivals and departures, and initial choices do not depend on the state

of the waiting list and are modeled as independent exogenous processes; however,

the CHA's policy for sending final choice letters and the final choices of applicants

do depend on the current state of the waiting list. I therefore place the following

structure on inputs:

" Calendar time is indexed in days by t E {1, ... , T}. Each list j E {1, ... , J} rep-

resents a development and bedroom size. There are Sj apartments represented

by list j.

* Apartment Vacancies: each vacancy v E {1, ... , V} is associated with a

calendar date t, and a waiting list j,. Vacancies occur independently on each

list at poisson rates. Vacancy rates were unusually low during the period of

study; according to the CHA, the long-run vacancy rate per apartment is once

every 10 years, so the vacancy rate of list j is set to 0.1 * Si.

" Applicant Arrivals and Exogenous Departures: each applicant i E {1, ... , N}

arrives on date tj and becomes unresponsive after date ri if it has not been

housed. Applicants arrive according to a poisson process with arrival rate a.
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Each applicant becomes unresponsive immediately with probability ao, and

departs at an exponential rate a, thereafter.

* Initial Choices: applicant i makes an initial choice C C {1,..., J},|C2 < 3

upon arrival. Since applicants do not know the state of the waiting list when

they apply, their initial choices are independent of the current state.

" Final Choice Letters: the CHA sends final choice letters according to a

rule that depends on the state of each waiting list. For each list j, there is a

sequence of trigger and batch size policies {(Lj,1 , Kj,)}/t 1 for sending letters.

Each day, if fewer than Lj,l applicants on list j have made a final choice, this

triggers a batch of final choice letters to the next Kjl applicants on list j who

have not yet made a final choice. After batch 1 of final choice letters is sent on

list j, pair (Lj,+1 , Kj,+1 ) becomes the next trigger and batch policy.

" Final Choices: applicants who respond to the final choice letter make their

final choice based on their list positions. I use a reduced form model to capture

the sensitivfity of the final choice to this information. Applicant i selects list

j E Ci with probability

exp(pij + 'j)
Emrcj exp(pim + m)

where pim is applicant i's position on list m and m is a fixed effect for list m.
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Construction of Simulation Inputs

The parameters governing inputs are estimated as follows. The annual probability

each apartment becomes vacant is calibrated to 10 percent per year.16 The applicant

arrival rate is simply the mean number of applicants per year during the period of

study. Initial choice probabilities are also taken directly from the data. Departure

parameters were estimated by non-linear least squares using response to the final

choice letter as a function of time since application. The coefficients of the final

choice model were estimated using the specification in Column (3) of Table 1.5,

replacing continued waiting time with the list position number. Each list has its

own distribution of trigger and batch policies, the empirical distribution for the list

during the sample period. Sequences of trigger and batch policies are drawn with

replacement from their empirical distributions on each list during the period of study.

Given these parameters, I draw sequences of inputs and run the Cambridge Mech-

anism until it reaches a steady state. Sequences of apartment vacancies and applicant

arrival and departure dates are drawn independently. Each applicant's departure

date equals its arrival date with probability ao and follows an exponential distri-

bution with mean 1 years otherwise. The applicant's initial choice is drawn with

replacement from the empirical distribution. Finally, I draw a random number for

each applicant that determines which final choice it will make given the choice prob-

abilities implied by its list positions.

16 Due to renovations, the empirical vacancy rate during the sample period was below the long-run
average. This approach also assumes an equal vacancy rate per apartment across developments. In
principle one could estimate a development-specific vacancy rate based on observed tenant move-
outs or the composition of tenants; however, the CHA tenant data do not cover a long enough
period for this approach to be effective.
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Construction of Belief Distributions from Simulation Outputs

To construct the relevant distributions from simulation results, I consider what would

have happened in the simulation to an additional applicant given each choice the ap-

plicant could have made at each stage in the development choice process. For each

initial choice, I take the final choice states that would have resulted from that initial

choice on a random sample of application dates in the simulation as the distribution

Gc (s, p). To model the continued waiting time distributions given position informa-

tion in the final choice stage, Fj,c(T I p), I use a model of continued waiting time

that is flexible across initial choices and parametric in list position. For each list j

and initial choice C, continued waiting time follows a beta distribution whose param-

eters depend on current list positions. These distributions are estimated separately

for each (j, C) pair using a sample of continued waiting times in the simulation.

Appendix 1.10.2 provides details of how these distributions were constructed.

1.5.3 Preferences over Assignments and Waiting Times

Given the distribution of potential applicants and their beliefs, I estimate the dis-

count factor and parameters governing the distribution of flow payoffs using the

method of simulated moments. This section describes the parameterization of flow

payoffs, the moments used in estimation, and the construction and minimization of

the objective function.

Parameterization of Flow Payoffs

For estimation, I choose a homothetic utility function:

u(c, h) = -ylog c + (1 - -y) log h.
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Here -y is the fraction of a household's disposable income that it would spend on

the numeraire if unconstrained. I also parameterize the distribution of unobserved

income qi and tastes for specific development characteristics hi. Let Zi represent

observed household characteristics other than income; let Xi represent observed

development characteristics; and let Xij represent interactions between applicant

and development characteristics. Flow payoffs take the form

outside option

Vij - Vio = 6j + q 1 logy2 - q 2 log(yi + rh) +g(Zi) + E Xijky3k + S Xjmv1m/3O + Eij,

value of assistance k m

match value

(1.5)

where 6j is a development fixed effect that is common across applicants and (vi, Ce)

are individual-specific taste parameters not observed by the econometrician. Note

that # 1/q 2 = 7. The unobserved characteristics are parameterized as

q iid aj id iidni TN(O, 7, -yi, o) Vim 2 N(O, 1) Eij - N(O, 1) (1.6)

In addition to placing parametric structure on the unobservables, this parameteriza-

tion adds development fixed effects and demographic shifters to equation 1.4. The

development fixed effect 6i captures the component of development quality that is

common across households, and can include both observed and unobserved charac-

teristics of the development. The value of assistance may depend on other household

characteristics Z in addition to income. Unobserved income is parameterized so

that at each observed income yi, total income yi +i has full support on the positive

real line and has a conditional expectation that increases in yi. The matching type

contains standard terms in discrete choice demand estimation: tastes for observed
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development characteristics that depend on observed and unobserved household char-

acteristics (Vim), and idiosyncratic tastes for each development (Eij).

The parametric restrictions in equation 1.6 assume independence between values

of assistance and match values conditional on observed characteristics, and also place

restrictions on the correlation structure of match values across developments. These

assumptions are not innocuous for separating unobserved heterogeneity in values of

assistance and match values. As a check for sensitivity to restrictions on match value

heterogeneity, in Section 1.6.3 I examine robustness of parameters governing the value

of assistance to adding random coefficients for development size and location.

Moments and Objective Function

The parameters to be estimated are the discount factor and the parameters governing

flow payoffs:

0 {p, , g(.), 3, 0, U}.

I estimate 0 based on moment conditions

E[(mi - E(mi I Zil60)) | Zi] = 0,

where 0 is the true parameter vector, mi contains features of household decisions,

and Zi contains household characteristics and choice conditions that are determined

outside the model. The method of simulated moments captures these conditions in

a set of moments, indexed by q E {1, ... , Q}, for specific choice features m 4) and

household characteristics Z q):

N (
-(q)() = : (M - [M q) I Zi, 0]) Z 4q)

g (0) N i:=1 Z E Z.
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In estimation, the conditional expectation E(mi Zi, 0) is estimated by simulation,

and the parameter estimate $MsM is chosen to solve

min 9(9)'A 9(0)

where 9(0) (9()(0), ... , 9(Q)(0))' and A is a symmetric, positive-definite weight

matrix. I match the following choice features (mi ) and applicant characteristics

(Z q)) in the data to those predicted by the simulated model:

1. Application Rates by income and demographic groups:

m (= 1M{C # 0}; Z q)= I{(yi, Zi) G y(q) x Z(}

2. Development Shares among applicants' initial and final choices:

list j,
m q =1{j E Ci},

for each

1{j = fi};

3. Covariances between applicant characteristics and characteristics of their ini-

tial development choices:

Mq) = I{Ci / 0} 1
mI li| (q);

j Ci
Z - l {(yi, Zi) E y(q) x Z(}

4. Means and Variances of chosen development size and location within and

between applicants:

I- >ecMi IQc~i j )
Ci| I C I
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5. Means and Variances of Chosen Waiting Times within and between ap-

plicants, by income and demographics. Let 'T be the expected waiting time for

development j from initial application if an applicant's initial choice was only

j. I treat this as another development characteristic and construct moments

analogous to those for other development characteristics:

2
(q) 1 -1 1 -Y2 2  2

m " = E T' E Ti ' T;
|i| =c i 2l )ec ) i l jcci

Z q) =1{(yi, Zi) E y(q) X Z(q)}

6. Final Choice Moments: for all of these, Z = 1.

" The fraction of eligible households who made a final choice:

M ) = 1{fi f 0}

" The mean expected continued waiting time of final choices, given an ap-

plicant's position information:

(q)
mi = 1{fi 0}t

" The relative price index, as an expected continued waiting time ratio, of

the final choice compared to other developments in each apylicant's choice

set. If C = {j, k, m}, and the expected continued waiting times for the

developments are {tj, tk, tm}, then the relative price index for development

j is defined

= [t / _k,1 - t / m,c
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where rik,C is the mean continued waiting time ratio between develop-

ments j and k for applicants who made a final choice from choice set C.

The resulting moments are

mnq = 1{fi # 0}Rf,,c, 1{fi # 0}1{Rf,,c, > 1};

The relative price index captures whether an applicant faced a high or a

low "price" for its final choice fi, compared to other applicants who made

their final choice from the same choice set C. This isolates the natural

experiment created by the Cambridge Mechanism, where applicants who

made the same initial choices are given different waiting time information

when they make their final choices.

* The average and maximum difference in expected continued waiting time

between the chosen and alternative developments:

m = 1{f 0} tf, - I [tk + tm] , 1{fi f 0} (tf, - min{tk, tm})

It is useful to consider which moments are most informative about which param-

eters. Application rates by income and demographic groups reveal heterogeneity in

the value of assistance. Since low-income and non-white households are more likely

to apply for public housing, these groups value living in public housing more on av-

erage. However, not all of these households apply, and the rate at which application

rates fall with income reveals unobserved differences in values of assistance and/or

match values. Initial choices reveal heterogeneity in match values by arguments

similar to those in Berry et al. (2004). Covariances between applicant and chosen

development characteristics - for example, between an applicant's neighborhood of
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current residence and the neighborhoods of its chosen developments - reveal which

applicants systematically prefer which types of developments. The second moments

of chosen development characteristics capture unobserved differences in match values

that depend on development characteristics. In addition, the number of and expected

waiting times for initially chosen developments reveal unobserved heterogeneity in

the value of assistance. Some high income applicants initially choose developments

with short waiting times, while others choose long waiting times or select just one or

two developments. To the extent that this cannot be explained by observed appli-

cant or development characteristics, or idiosyncratic taste shocks, these differences in

behavior suggest that households differ in how much they want public housing over-

all. Development shares reveal which developments are more desirable conditional

on observed characteristics. Finally, combined with the other moments, moments

capturing the sensitivity of the final choice to waiting time information separate the

discount factor from heterogeneity in flow payoffs.

Change of Variables and Importance Sampling

Estimating the conditional expectation E[mi I Zi, 0] presents a computational chal-

lenge because the two-stage development choice problem is computationally burden-

some to solve. A standard simulation procedure would draw unobserved charac-

teristics {(=,,v,'s once, re-solve the development choice problem at each

proposed value of 0 given the implied flow payoffs for each simulation draw, and

construct the conditional expectations

I S
[mi | Zi,01 = - mis(0).

s=1
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This approach was computationally prohibitive in my setting because the develop-

ment choice problem would have to be re-solved thousands of times for each simula-

tion draw. To alleviate this problem, I use a technique proposed by Ackerberg (2009)

that combines a change of variables with importance sampling. The key insight is

that the optimal sequence of choices for an applicant depends only on their flow

payoffs vi {vio, vi 1, ... , vi } and discount factor p. The technique draws flow payoffs

V =1'. ' from an initial (proposal) distribution g(. I Zi); computes the optimal

sequence of choices, yielding features rm(vo, p); and re-weights the simulation draws

according to the density implied by proposed values of 0:

I S P(VS I Zi, 0)
Ei[mi I Zi,0] = -i m(vsp)v.

S i )g(vi I Zi )

Because flow payoffs were drawn from g(. I Zi), each term in the sum is an unbiased

estimate of the true conditional expectation at 0. Evaluating the objective function

at proposed values of 0 amounts to re-weighting the simulation draws. An additional

computational benefit is that the objective function has an analytical gradient in

0 \ {p} when p(. | Zi, 0) is differentiable in 0. An outer grid search over the discount

factor minimizes the objective function in 0.

Details of the simulation, optimization procedure, weight matrix, and standard

errors are provided in Appendix 1.10.2. The optimal weight matrix performed poorly

in my application because the moment functions are highly collinear; I used a di-

agonal weight matrix instead. Standard errors account for sampling error in ap-

plicant decisions and simulation error from estimating the conditional expectation

E[mi Zi, 0]. They do not yet account for estimation error in the distribution of

potential applicants or their beliefs.

61



1.5.4 Equivalent Cash Transfers

The micro-foundation of preferences provides a way to interpret estimates from the

utility model in terms of equivalent cash transfers. I use the concept of equiva-

lent variation (EV), the cash transfer that would produce a welfare change equal

to that of a public housing assignment or re-assignment. In counterfactuals, I use

this concept to quantify welfare gains from alternative policies and to make inter-

personal comparisons based on the social value of cash transfers to different types of

households.

If household i is assigned to development j, one can measure the welfare gain

from their assignment as the cash transfer EV 3 that would make i equally well-off

outside of public housing. This value is defined implicitly by

Vij - Vio = VO(yi + ri + EVj) - vo(yi + 77), (1.7)

where vo(.) is the indirect utility function defined in equation 1.1. Concavity of vo

implies that a household's equivalent cash transfer is increasing in their total income

y2 + qi, holding the change in flow payoffs vij - vio fixed. This is intuitive - higher-

income households should have greater willingness to pay for the same change in

housing quality, for example. Conversely, holding yi + mi fixed, EV is convex in the

change in flow payoffs vij - vio. As a result, households with high indirect flow utility

from their assignments require large equivalent transfers.

Under homotheticity, EV has the following closed form expression:

EVj = (yj + rh) (expviivo- -1) . (1.8)

One can use similar logic to quantify the value of living in one public housing devel-
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opment instead of another. Imagine giving an applicant a choice between living in

two developments, A and B. The applicant can either live in development A at their

current income, or live in development B and receive a (possibly negative) transfer

each year. The transfer EV,AB that would make household i indifferent between the

two options is defined by

ViA -V iB = ((I - T) + EV,AB) U1((1 - T)yi), (1.9)

where u1 is utility from the numeraire as defined in equation 1.3. Equation 1.9 differs

from equation 1.7 because in public housing, disposable income can only be spent on

the numeraire. The EV measure still depends on the household's disposable income,

which is (1 - T)yi instead of y + r. The transformation depends on its sub-utility

function over the numeraire ul (.) rather than the indirect utility function v0 (.). With

homothetic preferences, the closed form expression is

viA~"1iB
EVi,AB (1-) yi (exp A -) . (1.10)

1.6 Estimation Results

This section presents estimates of the distribution of potential applicants, applicants'

waiting time beliefs, and preferences over assignments and waiting times.

1.6.1 Eligible Population

Appendix Table 1.12 presents coefficient estimates from the probit model predicting

the probability that an ACS household was in the CHA dataset as an applicant or

tenant. The point estimates reinforce the discussion of application rates in Section
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1.3.2, with lower-income and non-white households much more likely to appear in

the CHA dataset as either applicants or tenants. Though the individual coefficient

estimates have a great deal of sampling error from the ACS, Figure 1-2 shows that the

pattern of steadily falling application rates by income is consistent across estimates

from bootstrapped ACS samples. In addition, the 90 percent confidence interval for

the coefficient estimate on an African American household head does not contain

zero.

1.6.2 Applicant Beliefs

Selected parameters governing inputs to the Cambridge Mechanism simulation are

shown in Table 1.6. The annual vacancy rate per unit is calibrated to 10 percent,

implying an average of 108 apartment vacancies per year. The applicant arrival rate

was 345 per year during the sample period. Based on response to final choice letters,

24.3 percent of applicants become unresponsive immediately, and attrition occurs at

an annual rate of 24.5 percent thereafter. Coefficients from the final choice model are

also shown. Consistent with the analysis in Section 1.3.3, applicants are less likely

to choose a development with a higher list position.

Table 1.13 shows the mean and standard deviation of average waiting times for

each development in the simulation, and compares them to means in the data. Sim-

ulated waiting times are constructed by averaging realized waiting times across ap-

plicants housed during the simulation. Simulated waiting times match observed

waiting times qualitatively. The largest developments - Jefferson Park, Newtowne

Court, Putnam Gardens, and Washington Elms - have simulated average waiting

times between 1.0 and 3.2 years. The smaller developments, including Mid and East

Cambridge, Lincoln Way, and Jackson Gardens, have longer simulated waiting times
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of 3.9 to 6.2 years. Although the simulation captures which developments have longer

waiting times, the simulated average waiting times are more dispersed than those

observed in the data. The main reason for this is that the Cambridge Mechanism

was not in steady state during the sample period. List closures before and during

the sample period allowed some applicants to be housed quickly. In addition, since

some developments housed only a few applicants, observed average waiting times

have considerable sampling noise. Since applicants had limited information about

list closures and current and future fluctuations in list lengths, a reasonable pol-

icy would have been to form beliefs based on the long-run distribution of outcomes

generated by the Cambridge Mechanism in stcady state.

1.6.3 Preferences over Assignments and Waiting Times

I estimated two specifications of the development choice model. Both specifications

estimate fixed effects for each public housing development, for the race/ethnicity of

the household head, and for whether the household currently lives in Cambridge.

They include the two terms that depend on income: the value of non-housing con-

sumption while in public housing, and the value of the household's outside option.

They also include an indicator for whether an applicant lives in the same neighbor-

hood as each development. Finally, both specifications include the random effect

corresponding to unobserved income available outside public housing. Specification

(2) adds random coefficients for development size and location. Specifications with

random coefficients were less robust but provide a check for sensitivity to restrictions

on match value heterogeneity. For counterfactuals, I use the more stable estimates

from Specification (1). I first summarize the parameter estimates, and then describe

features of the preference distribution that will be relevant for counterfactuals.
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Parameter Estimates

Applicants discount the future at a moderate rate, and are therefore willing to trade

a shorter waiting time for a preferred assignment. The first row of Table 1.7 shows

the estimated annual discount factor, which is 0.90 in Specification (1) and 0.92 in

Specification (2). The estimates suggest that applicants do not fully anticipate that

they might exit the queue before being housed. In Specification (1), standard errors

reject discount rates close to one at a reasonable confidence level.

The parameter estimates governing the value of assistance (Panel A of Table

1.7) show that while income and demographic variables strongly predict the value of

public housing, there are also large unobserved differences. Households would like to

spend just over 60 percent of income on non-housing consumption; the point estimate

on observed income is 0.60 in Specification (1) and 0.63 in Specification (2). These es-

timates are consistent with high rent burdens among very low-income households and

imply that the value of assistance falls rapidly with observed income. Consistently

across the three specifications, households with a non-white head have higher values

of living in public housing, especially African American headed households. Finally,

unobserved income makes a substantial contribution to welfare. The point estimates

of the scale parameter of the truncated normal distribution are between $7,280 and

$7,540. For households with high observed incomes, the scale parameter is close

to the standard deviation of the distribution of unobserved incomes; for households

with low observed incomes, the standard deviation is still several thousand dollars.

The parameters governing match values (Panel B) show substantial heterogeneity

in which developments are preferred. Location is an important source of predictable

heterogeneity, and applicants who already live in Cambridge prefer to remain in their

neighborhoods. However, a substantial component of match values are explained by
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idiosyncratic tastes, with estimated standard deviations of 0.115. Adding random

coefficients for development size and location in Specification (2) has some effect on

the coefficients governing the value of assistance, but the qualitative patterns are

similar.

Features of the Preference Distribution

In counterfactuals, this paper considers the welfare and distributional consequences

of allocation policy, focusing on the trade-off between matching applicants to their

preferred apartments an identifying the most disadvantaged households. This section

summarizes two features of the preference distribution that will drive these counter-

factuals: the value of assigning each applicant to their preferred development, and the

number of developments for which applicants would accept a take-it-or-leave-it offer.

I report statistics based on a sample of applicants drawn from the preference distri-

bution estimated in Specification (1). The features are summarized for all eligible

households, and for two sub-groups with high values of assistance: African American

households, and households with less than $15,000 of observed annual income.

There are large welfare gains from matching applicants to their most preferred

developments. Table 1.8 displays medians and means of the equivalent variation

(EV) from moving an applicant from a lower-ranked choice to their first choice.

Since this exercise involves a comparison between two public housing developments,

EV is calculated using equation 1.10. Across all applicants, the median EV between

an applicant's second and first choice is 8.6 percent of observed income, or $1,425 per

year, which equates to a monthly payment of $119. The mean is even larger, driven

by a long right tail in the distribution. The proportional values are similar among

African American and low-income households, but the dollar values are much lower
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for low-income households. EV from moving an applicant from their last choice to

their first choice development is very large, with a median of $1,679 per month across

all applicants and $578 per month among low-income applicants. A mechanism that

provides lower match quality will have a substantial welfare cost.

Most applicants are only willing to live in some developments, and applicants

with worse outside options are more willing to accept mismatched offers. As a

result, removing choice would induce many applicants to reject mismatched offers,

improving targeting on both observed and unobserved characteristics. Table 1.9

tabulates applicants by the number of developments they find acceptable, showing

the total and observed incomes of each group. Some applicants are quite selective - 33

percent would only be willing to live in three or fewer developments - while 31 percent

of applicants would be willing to live in any development. The latter group has

much lower observed and unobserved incomes than other applicants. The patterns

are qualitatively similar for African American and very low-income households, but

applicants are less selective in these groups. 56 percent of very low-income applicants

and 35 percent of African American applicants would accept any development.

Because the model fits substantial preference heterogeneity in both match values

and values of assistance, mechanisms that affect match quality and targeting may

have large welfare and distributional consequences. A development choice system

that does not allow applicants to choose their preferred development will induce

many applicants to reject offers, but the welfare loss from lower match quality for

those who are housed will be substantial.
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1.7 Evaluating Design Trade-Offs

Using the estimates from Section 1.6, I consider how the development choice and

priority systems commonly used to allocate public housing would perform in Cam-

bridge. I begin by analyzing the effects of these mechanisms on total welfare and

the distribution of housed applicants, and then show how one can apply social wel-

fare weights to decide which mechanism to use depending on one's taste for income

redistribution. This exercise has non-trivial implications for which mechanisms the

CHA should use, ruling out some combinations of choice and priority within a broad

class of social welfare functions.

Section 1.7.1 defines a class of one-stage choice mechanisms that incorporates the

range of development choice and priority systems used in practice, and describes the

specific mechanisms considered. Section 1.7.2 presents results from counterfactual

simulations of these mechanisms and compares them to the Cambridge Mechanism

and to a full information benchmark in which the housing authority knows applicants'

preferences.

1.7.1 Space of Mechanisms

This section formalizes a simple class of mechanisms that captures the key features of

public housing choice and priority systems used in practice. In this class, applicants

make development choices in one stage at initial application, and are ordered on the

waiting list by priority group and then application date. Compared to the two-stage

development choice mechanism used by the CHA, one-stage choice greatly simplifies

equilibrium computation. It is also more common in practice. To isolate the long-

run impacts of policy changes, I analyze counterfactual equilibria in long-run steady

state.
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This rest of this section formalizes one stage choice mechanisms, defines equilib-

rium, explains how allocations are evaluated, and describes the mechanisms explored

in counterfactual simulations.

One-Stage Choice Mechanisms

A one-stage choice mechanism p is defined by two objects:

1. A development choice system C. C 211.-}. Each element of C,, is a subset

of developments from which the applicant may receive apartment offers.

2. A priority system V, : Z -+ {1,..., B} maps applicant characteristics to

a priority group. Applicant i has higher priority than applicant i' in p if

V) ( Zi ) < OP( Zi ).

The mechanism operates on sequences of apartment vacancies, applicant arrivals,

and exogenous applicant departures. Each vacancy v { 1, ... , V} has a date t, and

development j,. Each applicant i {1, ... , N} has arrival date ti, departure date ri,

observed characteristics Zi, and payoff vector vi = (vio, vil, ... , Vij). The mechanism

p runs according to the following algorithm. On each date t,

(i) Each arriving applicant (ti = t) chooses a set of developments Ci E C. and is

placed on the waiting list for each development j E Ci. On each list, applicants

are ordered lexicographically by (, (Zi), ti).

(ii) Each vacancy v with t, = t is offered to the first applicant on list jV. If

the applicant accepts, it is housed and removed from all lists j E Ci. If the

applicant rejects, it is removed from all waiting lists and cannot reapply. This

step is repeated until an applicant accepts or the waiting list is empty. If the

latter occurs, the vacancy is held until the next day.
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(iii) Departing applicants (ri = t) are removed from all lists j E Ci.

Development Choice Problem, Information, and Equilibrium

In one stage choice mechanisms, an applicant's choice problem is simpler than in

a two-stage mechanism. The applicant simply considers, for each possible subset

of developments it can choose, which development is likely to arrive first, and the

distribution of waiting times for the first arrival. Let T be the random variable for

the waiting time for development j if an applicant were only on the waiting list for

j. The realization of T will depend on applicant i's date of application. The joint

distribution FT.,...,T, may depend on the applicant's priority ?,/(Zi). The applicant

solves the following choice problem:

max E ( - vio) (1.11)

wic (0 ( Zi )) =EV,(z[) e PT| Ti = miT x T mi T]pI kcC. O Z) k~

As in the Cambridge Mechanism, applicants do not know the state of the queue

when they apply, but they do know the distribution of outcomes that they face

for each possible choice C c C, given their priority group O/(Zi). As a result, an

applicant's beliefs do not depend on its application date. In equilibrium, beliefs are

consistent with the distributions generated by the mechanism in long-run steady

state given the distribution of potential applicants, the preference distribution p(vi

Zi, OMSM), and given that applicants choose developments according to equation

1.11.
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In the counterfactual simulations, the exogenous departure model is the same as

in the Cambridge Mechanism simulation, as are vacancy rates. Applicant arrivals are

generated using the distribution of potential applicants and preferences estimated in

Section 1.6, and choices are computed given applicants' preferences and beliefs. As

before, potential applicants choose to apply if any development is preferable to their

outside option. Appendix 1.10.3 provides details of how the equilibrium is computed.

The algorithm iteratively updates applicant choices and their implied steady state

waiting time distributions until a fixed point is reached between choices and beliefs.

Evaluating Allocations

Given sequences of inputs, a mechanism W produces an eventual assignment j](i) E

{0, 1, ... , J} for each applicant, with j,(i) = 0 if applicant i is not assigned an apart-

ment. A natural way to summarize the welfare and distributional impacts of a

mechanism is to average characteristics of assigned applicants and their values over

assigned apartments. In long-run steady state, if applicants vacate apartments at an

exogenous, poisson rate, then this provides an estimate of the mean characteristics of

public housing tenants at any given time. A social planner interested in maximizing

the expected discounted sum of future payoffs would be interested in these statistics.

To summarize welfare, I use equivalent cash transfers as a baseline measure:

1 N

W(P)= N E EVijy(i) (1.12)
ji=1 1fj O(i) = 0} i_1

where EVj,(i) is as defined in equation 1.8. To summarize characteristics of housed

applicants, one can do the same for transformations of applicant characteristics:

1 N

1 1j(i) f 1}=

72



To incorporate social welfare weights into welfare calculations, one can transform

equivalent variation from assignments by a function f(Zi, vi, EV) that depends on

applicant characteristics:

N
W((P; f) = EN z{ : f (Zi, vi, EVi, (i)) (1.14)

i=1 1I~i) , 0} i=1

In particular, this formulation allows a social planner to have different marginal

values of transferring one dollar to different households.

Finally, one can compare welfare gains from different mechanisms adjusting for

the total cost of the public housing program under each. This is important when

mechanisms affect the income distribution of housed applicants; since rent in pub-

lic housing is proportional to a tenant's income, the CHA will receive lower rent

payments if it houses lower-income applicants. Administrative documents from the

CHA suggest that the cost of maintaining each Family Public Housing apartment

was close to c = $14, 300 per year.17 Subtracting tenant rent payments from this cost

measure provides a reasonable lower-bound on the full economic cost of the public

housing program in Cambridge. Adjusted for cost, welfare gains are

f)- EN f (Zi, vi, EVi,w(i))
-Zf=1{jv(i) :$ 0}(c - 0.3y2 )

Simulated Mechanisms

The mechanisms used by the 24 surveyed PHAs in Section 1.2 can be modeled

using six development choice systems and three priority systems. I computed the

counterfactual equilibrium that would arise in Cambridge under each combination.

The development choice systems are

17http: //www. cambridge-housing. org/civicax/f ilebank/blobdload. aspx?B1obID=22801
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1. Choose One: C = {{1}, ... , {J}}. Applicants must select one development.

This choice system is closest to those used in Cambridge, New York City,

New Haven, and Seattle, which allow applicants to select a limited number of

developments.

2. Choose Any Subset: C = 2{1. Applicants may choose any subset of

developments, as in Boston and San Antonio.

3. Choose All or One: C = {{1}, ... , {J}, {1, ... , J}}. Applicants may either

wait for their preferred development or take the first available offer from any

development. This choice system approximates the policies used in Philadel-

phia, Baltimore, and Newark.

4. Choose Neighborhood: C {Cnorth, Ceast, Ccentral}- Applicants choose a

neighborhood from which to receive an apartment offer. Importantly, an ap-

plicant cannot choose to wait for their most preferred development.

5. Choose All or Neighborhood: C = {Cnorth, 0 east, Ccentral, {1, ... , J}}. Ap-

plicants may either choose a neighborhood or receive the first offer city-wide.

Chicago uses this development choice system for Family Public Housing.

6. No Choice: C = {{1, ... , J}}. Applicants must accept the first available

apartment in any development; they have no choice over their assignment.

For priority systems, I model priority for higher socioeconomic status households as a

priority for higher-income applicants, and lower socioeconomic status or need-based

priorities as a priority for low-income applicants:

1. Equal Priority: Applicants are treated equally and ordered only by applica-

tion date. Apart from emergency priorities that affect few applicants, several

74

-. ~.



PHAs, including the CHA, use equal priority.

2. Low-Income Priority: Applicants below 30% AMI are offered apartments

first. Among the 24 sampled PHAs, only Seattle uses this exact policy. How-

ever, several PHAs used "need-based" priorities for households that were severely

rent burdened, faced involuntary displacement, or were referred by other agen-

cies that provide public assistance.

3. High-Income Priority: Applicants above 30% AMI are offered apartments

first. This is the explicit policy in New York City and New Haven, and also

captures priorities for working or economically self-sufficient households used

by several other PHAs.

1.7.2 Welfare and Distributional Impacts of Allocation Pol-

icy

I begin by analyzing the effect of development choice systems under equal priori-

ties and then consider the effects of prioritizing higher- or lower-income applicants.

Finally, I show how distributional preferences determine which mechanism should

be adopted in Cambridge. In all cases, results are reported by averaging payoffs

and characteristics of housed applicants over apartments allocated in the simulated

equilibrium of each mechanism, as in equations 1.12 - 1.15.

Effect of Development Choice under Equal Priority

The range of development choice systems used in practice would have large welfare

and distributional impacts in Cambridge. To begin, compare Columns (1) and (6) of

Table 1.10, which show the allocations from "Choose One," which forces applicants
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to choose their preferred development, and "No Choice," which does given applicants

any choice over their assignment (other than the option to reject an apartment offer

and leave the waiting list). Under "Choose One," the average housed applicant values

their assignment as much as a cash transfer of $6,956; under "No Choice," the value

falls to $5,399. Part of this welfare loss is driven by a reduction in match quality.

While 43 percent of housed applicants are assigned to their first choice development

under "Choose One," only 11 percent are under "No Choice." By inducing applicants

with higher incomes and better outside options to reject mismatched offers, "No

Choice" substantially improves targeting. The mean observed income of housed ap-

plicants falls from $20,509 to $17,535, and housed applicants also have worse outside

options conditional on their observed characteristics. Due to lower tenant incomes,

the CHA would receive lower rent payments and therefore incur a higher cost per

unit under "No Choice." Adjusted for cost, "Choose One" produces 84 cents of wel-

fare gains per dollar spent, while "No Choice" produces only 59 cents, a 30 percent

decrease.

The other development choice systems produce allocations in between "Choose

One" and "No Choice" in terms of match quality, targeting, and total welfare.

"Choose Any Subset" and "Choose All or One," which allow applicants to select

several developments as a hedge against waiting time uncertainty, have small effects

on the allocation. This is because in equilibrium, waiting time uncertainty is small

relative to differences in average waiting times across developments. Applicants that

choose several developments are very likely to be housed in the development with

the shortest expected waiting time, and would have picked that development under

"Choose One." In contrast, "Choose Neighborhood" and "Choose All or Neighbor-

hood," which allow applicants to choose their neighborhood but not a specific de-

velopment, do impact assignments. Section 1.6.3 documented that many applicants
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would only accept one or a few developments; in Cambridge, each neighborhood

contains at least three developments. As a result, neighborhood choice still induces

many applicants to reject offers, lowering match quality while improving targeting.

Effect of Income-Based Priorities

Prioritizing higher- or lower-income applicants can dramatically affect targeting with

little change in match quality or in applicants' values of their assigned apartments.

Columns (1) - (6) of Table 1.11 summarize allocations under the three priority sys-

tems - "Low-Income Priority," "High-Income Priority," and "Equal Priority" - each

under "Choose One" and "No Choice." Each choice system produces similar values of

assigned apartments under the three priority systems, measured in equivalent cash

transfers as defined in equation 1.8. Priority also has little effect on match quality.

Under "Choose One," applicants are equally willing to wait for their preferred devel-

opments under each priority system. With "No Choice," applicants are equally likely

to be offered a mismatched apartment, and although low-income applicants are more

willing to accept mismatched offers, the overall effect on match quality is small.

As one would expect, income-based priorities most impact the incomes and out-

side options of housed applicants. Under "Choose One," average incomes are $27,950

under "High-Income Priority" and $13,581 under "Low-Income Priority." Due to the

change in rents paid by tenants, priorities dramatically affect welfare gains per dollar

spent. Under "High-Income Priority, Choose One," applicants value their assign-

ments more than the cost of housing them; in contrast, they value it only two-thirds

as much under "Low-Income Priority, Choose One."

Table 1.11 also illustrates how the priority and development choice systems in-

teract. When higher-income applicants receive priority, development choice has a

77



large effect on targeting - applicants' observed incomes fall by more than 25 percent

moving from "Choose One" to "No Choice," driven by the fact that higher-income

applicants are more likely to reject mismatched offers. When lower-income applicants

are prioritized, moving from "Choose One" to "No Choice" provides much smaller

targeting gains. Using observed characteristics in allocation policy affects the ability

of choice design to screen on unobserved (or unused) characteristics.

Incorporating a Preference for Redistribution

Measuring welfare gains in terms of equivalent cash transfers implicitly places equal

value on transferring resources to households at different points in the income distri-

bution. A housing authority or social planner with a taste for redistribution would

prefer to transfer dollars to a lower-income household. This section incorporates

social welfare weights into comparisons among allocation mechanisms and discusses

implications for the policies of the CHA and other PHAs.

In the preference model presented in Section 1.4.2, a social planner with a distaste

for inequality or a preference for transferring resources to households with higher

marginal utilities of income should apply higher social welfare weights to households

with worse outside options. A household's utility from its outside option is deter-

mined by its total income outside of public housing, - yi + rji. Any monotonically

increasing function f(Qi) corresponds to a social welfare function that dislikes income

inequality. To capture these social preferences in one dimension, I consider a class

of social welfare functions proposed by Atkinson (1970):

f (i, EV; A) =+ EV)![-A -i-E A =/ I

log( i + EV) - log( i) A = 1
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This class of functions captures "constant relative inequality-aversion." It implies

that the social value of transferring one dollar to a household with 1 percent lower

income is approximately A percent greater. An inequality-aversion parameter of

A = 0 implies no taste for redistribution; A = oo corresponds to a social welfare

function that only cares about welfare changes for the agent who is worst off. In

addition to capturing a wide range of social preferences, this class has desirable

properties. For A > 0, social welfare increases whenever resources are transferred

from higher- to lower-income households, and for any A E R income distributions

are ranked identically if all incomes are multiplied by a constant. Within this class

of social welfare functions, one can use equation 1.15 to determine which mechanism

should be used given a PHA's degree of inequality aversion.

Figure 1-3 shows that under the current CHA priority system ("Equal Priority"),

applicants should always have some choice over where they live for any A > 0. The fig-

ure plots the cost-adjusted welfare measures from equation 1.15 for each mechanism,

normalized by welfare under "Equal Priority, Choose One" at a range of inequality

aversion parameters. Consistent with Table 1.10, "Choose One" is preferred with

low inequality aversion. With high inequality aversion, "Choose Neighborhood" is

preferred and actually performs better than "No Choice". In addition, "Choose One

or All" and "Choose Any Subset" perform slightly better than "Choose One" with

moderate inequality aversion. Appendix Figure 1-6 shows that under "Low-Income

Priority," "No Choice" is preferred to "Choose Neighborhood" with high inequality

aversion. When low-income applicants are given priority, completely removing choice

maximizes the rates at which the most disadvantaged applicants are housed. Figure

5 repeats this exercise for priority systems under the "Choose One" development

choice system. When allowing choice, to maximize cost-adjusted welfare the CHA

should prioritize high-income applicants since they can be housed at a low cost. As
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inequality aversion increases, the CHA should begin prioritizing low-income appli-

cants; the social value of welfare gains to lower-income households outweighs the

additional cost of housing them. "Equal Priority" is preferred under moderate levels

of inequality aversion.

Many of the mechanisms used by PHAs are strictly dominated in the Cambridge

setting; there is a better policy for any social welfare function in the class considered.

Figure 6 plots the mechanisms which form the upper envelope of the 18 mechanisms

considered so far. Under low inequality aversion, the CHA should prioritize higher-

income households and allow choice. If the CHA wishes to improve targeting, it

should first prioritize low-income applicants but allow choice, and then, if its taste

for redistribution is sufficiently high, remove choice as well. Prioritizing low-income

applicants targets disadvantaged households without distorting match quality, and

as a result, removing choice is a policy of last resort. A mechanism such as the

one used in Los Angeles, which combines "No Choice" with priority for economically

self-sufficient households, is strictly sub-optimal in Cambridge within this class of

social welfare functions.

Finally, the Cambridge Mechanism is likely to perform well under moderate in-

equality aversion. As discussed in the next section, the mechanism "Equal Priority,

Choose One" is similar to the Cambridge Mechanism, and is nearly optimal among

the mechanisms considered at inequality aversion parameters between 0.9 and 1.4.

If the CHA chose a welfare maximizing mechanism using this class of social welfare

functions, they placed equal social value on transferring between $1.90 and $2.60

to a household earning $20,000 per year, and transferring one dollar to a household

earning $10,000 per year.
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The Cambridge Mechanism and a Full-Information Benchmark

The development choice systems analyzed in the previous sections abstracted from

the two-stage decision problem in the Cambridge Mechanism. The effect of providing

new waiting time information in the second stage may impact total welfare and the

distribution of housed applicants. Column (7) of Table 1.10 summarizes the allo-

cation that the Cambridge Mechanism would produce if applicants had the waiting

time beliefs estimated in Section 1.6.2 and the same preference distribution as in the

other counterfactuals. Since this computation does not enforce consistency between

choices and implied waiting times, the allocation should be viewed as an approxi-

mation to the actual equilibrium that the Cambridge Mechanism would generate in

steady state. Qualitatively, the Cambridge Mechanism is close to "Equal Priority,

Choose One," providing good match quality for tenants and targeting applicants with

slightly worse outside options than the general applicant pool. Due to some incon-

sistencies between the estimated preference distribution and the belief model, the

Cambridge Mechanism performs even better than one-stage choice mechanisms. 18

The average value of assignments is $8,238, or 93 percent of program cost, and 51

percent of housed applicants are assigned to their first choice development.

Another important question is how well the CHA could do if it obtained more

information about applicants. Columns (8) and (9) of Table 1.10 provide a lower

bound on the welfare and targeting gains that would be possible if the social planner

knew current applicants' preferences and outside options, but did not know when

18 The initial choice shares of a couple of developments were not matched perfectly in structural

estimation. These developments are under-subscribed in the counterfactual simulation of the Cam-
bridge Mechanism, but applicants believe at the initial choice stage that those developments have
long waiting times. In equilibrium, applicants would substitute toward the under-subscribed de-
velopments in the initial choice stage, leading to lower match quality. This does not occur in the

simulation because the equilibrium is not recomputed.
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applicants would arrive and depart in the future. The results show that private

information sharply limits what can be achieved. The social planner maximizes

the equivalent variation from assignments in Column (8) and minimizes the out-

side options of housed applicants in Column (9). In both cases, the planner uses a

greedy algorithm, housing the applicant with the highest social value when an apart-

ment becomes available without taking dynamic considerations into account. In the

welfare-maximizing allocation, assignments are valued 61 percent more highly than

under Choose One. The social planner achieves this by selecting non-white house-

holds, which have high values of assistance, with moderately high incomes that make

them require large equivalent cash transfers. The targeting-maximizing allocation

sacrifices match quality and the value of assistance in order to house applicants with

the worst outside options. Many PHAs already use need-based priorities that affect

a small set of applicants. For example, some PHAs prioritize victims of domestic

violence, the homeless, or households that are severely rent burdened or have been

involuntarily displaced. An important question for future research is whether PHAs

could obtain additional information about applicants that strongly predicts their

outside options or preferred developments.

1.8 Conclusion

The allocation of scarce public resources often involves trading off efficiency and other

policy goals, such as fairness or redistribution. This paper empirically studies such

a trade-off in the allocation of public housing. Using data on the choices of public

housing applicants in Cambridge, MA, I estimate a structural model of preferences

for public housing that quantifies heterogeneity in applicants' preferred developments

and in their overall values of obtaining assistance. The empirical strategy exploits
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a trade-off faced by applicants between shorter waiting times and preferred assign-

ments as well as the structure of the allocation mechanism used in Cambridge. I use

the estimated model to simulate counterfactual equilibria under allocation mecha-

nisms that housing authorities use in different U.S. cities, focusing on welfare gains

to tenants and whether the most economically disadvantaged applicants receive as-

sistance.

In Cambridge, applicants exhibit substantial heterogeneity in their preferred de-

velopments and outside options. As a result, the range of choice and priority systems

used in practice would dramatically affect efficiency and redistribution. Mechanisms

allowing applicants to choose their preferred developmcnt provide large welfare gains

to tenants, comparable to cash transfers of more than $6,500 per year. Mechanisms

that do not allow choice would induce many applicants to reject mismatched apart-

ment offers, allowing more disadvantaged applicants to be housed. This would lower

match quality for tenants, and cost-adjusted welfare gains would fall by 30 percent.

The CHA could achieve the same increase in targeting without lowering tenant wel-

fare by prioritizing lower-income applicants and allowing choice. As a result, some

of the mechanisms used in other cities are strictly dominated in Cambridge within a

broad class of social welfare functions. Prioritizing higher-income applicants without

allowing choice, as is done in some cities, is never optimal.

These findings yield concrete policy takeaways for housing authorities. A number

of papers beginning with Nichols and Zeckhauser (1982) have argued that ordeals

can increase the efficiency of public programs by more effectively targeting intended

beneficiaries. My results suggest that PHAs should be hesitant to use choice re-

strictions as an ordeal. Because choice restrictions impose a large cost on tenants, a

policy maker should only use them with very strong preferences for redistribution.

In addition, PHAs already collect household information that is highly predictive
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of need, and they can use this information to improve targeting without creating

inefficient matches for tenants. PHAs should only use choice restrictions as a last

resort after establishing priorities based on these observed characteristics.

This study also raises a number of questions for future work on the design of dy-

namic allocation mechanisms and government-provided housing benefits. Optimal

dynamic mechanisms in settings like public housing allocation are an open theoretical

question. Combined with the revealed preference methods developed here, theoretical

insights into optimal mechanisms could provide policy guidance for PHAs and other

organizations which allocate scarce resources over time. Another direction for fu-

ture work is to study how housing assistance benefits should themselves be designed.

Would it be better to provide less generous public housing benefits but cover more

eligible households? Should housing assistance be provided in-kind through pub-

lic housing, or through private market subsidies as in the Housing Choice Voucher

program? Should the government provide housing-specific subsidies at all? The re-

vealed preference methods developed here, ideally in combination with evidence on

the causal effects of different program designs, may prove useful for answering such

questions.
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1.9 Tables and Figures
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Figure 1-1: Locations of Cambridge Family Public Housing Developments
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Figure 1-2: Application Rates by Income
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The estimated fraction of eligible households that applied for Family Public Housing in

Cambridge between 2010 and 2014, by $10,000 income groups. For each group, the number

of applicants is divided by the number of eligible households as estimated in Section 1.6.1.

The dotted lines give point-wise 90 percent confidence bands obtained from a bootstrap

that re-samples the set of eligible ACS households with replacement.
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Figure 1-3: Welfare Effects of Development Choice

Development Choice Systems under Different Social Welfare Functions
Equal Priority, Cost-Adjusted

Equal Priority, No Choice
Equal Priority, Choose One
Equal Priority, Choose Neighborhood
Equal Priority, One or All
Equal Priority, Neighborhood or All
Equal Priority, Choose Any
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Comparison of cost-adjusted welfare gains produced by development choice systems used

in practice, defined in Section 1.7.1. Applicants have Equal Priority in all mechanisms.

Each point on the x-axis corresponds to a degree of relative inequality aversion. At each

point, cost-adjusted welfare gains from each mechanism are normalized by the value for

Equal Priority, Choose One.
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Figure 1-4: Welfare Effects of Priority

Priority Systems under Different Social Welfare Functions
Choose One, Cost-Adjusted
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Comparison of cost-adjusted welfare gains produced by different priority systems used in

practice. Low-Income Priority offers apartments to applicants below 30% AMI before

other applicants, while High-Income Priority first offers apartments to applicants above

30% AMI. Applicants choose one development in all mechanisms. Each point on the x-axis

corresponds to a degree of relative inequality aversion. At each point, cost-adjusted welfare

gains from each mechanism are normalized by the value for Equal Priority, Choose One.
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Figure 1-5: Preferred Choice and Priority Systems
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mechanism are normalized by the value for Equal Priority, Choose One.
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Table 1.1: Allocation Policies Used in Practice

Public Housing Authority (PHA) Jurisdiction City Population Number of Priority Development Choice
PublUn in 2016 Public Housing System System

Units in 2013

Panel A: PHA's with Largest Public Housing Stock

New York City, NY

Chicago, IL

Philadelphia, PA

Baltimore, MD

Boston, MA

Cleveland, OH (Cuyahoga Metro Area)

Miami, FL

Washington, D.C. *

Newark, NJ

Los Angeles, CA

Seattle, WA

Minneapolis, MN

San Antonio, TX

8,537,673

2,704,958

1,567,872

614,664

673,184

385,809

453,579

681,170

281,764

3,976,322

704,352

413,651

1,492,510

175,000

21,150

15,000

11,250

10,250

10,000

9,400

8,350

7,750

6,900

6,300

6,250

6,200

Mixed

Equal

Equal

Limited Choice

Limited or All

Limited or All

High SES Limited or All

Equal Any Subset

High SES Limited Choice

Equal No Choice

High SES Limited or All

High SES No Choice

Low SES Limited Choice

Low SES

Low SES

No Choice

Any Subset

Panel B: PHA's comparable to Cambridge, MA
(2000-3000 public housing units, 100-200K population)

Cambridge, MA

Rochester, NY *

New Haven, CT

Columbia, SC

Dayton, OH

Syracuse, NY *

Bridgeport, CT *

Kansas City, KS

Macon, GA *

Providence, RI

Worcester, MA *

Augusta, GA *

Yonkers, NY

110,650

114,011

129,934

134,209

140,489

143,378

145,936

151,709

152,555

179,219

184,508

197,081

200,807

2,450

2,500

2,600

2,140

2,750

2,340

2,600

2,050

2,250

2,600

2,470

2,250

2,080

Equal

Equal

Limited Choice

No Choice

High SES Limited Choice

Equal

High SES

High SES

Equal

Mixed

High SES

Equal

Low SES

Equal

Equal

No Choice

Any Subset

No Choice

No Choice

No Choice

No Choice

No Choice

No Choice

Any Subset

Notes: features of allocation mechanisms used by PHAs in 25 cities. PHAs were chosen based on city population and/or the size of
their public housing stocks. * indicates that the PHA's administrative plan was not available online. In these cases, information was
gleaned from the PHA website and application forms. A High SES priority system favors households above 30% of Area Median
Income (AMI), or which are economically self-sufficient or have a working member. A Low SES priority system prioritizes
households below 30% AMI, or which are severely rent burdened or have been involuntarily displaced. A Mixed priority system
prioritizes some (but not all) households of both typeilInd an Equal priority system does not prioritize households based on
socioeconomic status. Under Limited Choice, applicants must choose a small number of developments from which to receive
offers. Under Any Subset, applicants may choose any subset of the developments. Under No Choice, applicants must accept the
first available apartment in any development. Under Limited or All, applicants may either commit to taking the first available
apartment or select a limited number of developments. In Chicago, applicants for Family Public Housing may select a specific
neighborhood, but not developments within a neighborhood.



Table 1.2: Developments

Family Public Housing Developments

List Name Mean Waiting # Housed # Units Neighborhood Tenant % Black Applicant
Time Applicants Income Tenants Income

Roosevelt Mid-Rise 1.58 18 77 East $ 18,370 41% $ 13,930
Woodrow Wilson 1.98 2 68 Central $ 21,181 75% $ 15,662

Jefferson Park 2.16 62 284 North $ 27,982 62% $ 16,025

Newtowne Court 2.33 95 268 Central $ 23,368 62% $ 16,619

Washington Elms 2.92 26 175 Central $ 31,795 61% $ 16,237
Putnam Gardens 2.98 36 122 Central $ 22,460 60% $ 16,896

Corcoran Park 3.05 45 153 North $ 26,968 65% $ 17,923
Scattered 3.52 11 88 N/A $ 25,480 63% $ 17,064

Roosevelt Low-Rise 3.55 21 124 East $ 28,929 63% $ 18,040

Lincoln Way 3.72 2 70 North $ 32,528 62% $ 17,960

Jackson Gardens 3.75 9 45 Central $ 22,352 47% $ 17,322

Notes: characteristics of CHA Family Public Housing developments available between 2010 and 2014. Each list reflects a development or
collection of units in Cambridge Family Public Housing. Roosevelt Mid-Rise contains both Family and Elderly/Disabled units. Mean
Waiting Time is the mean waiting time for applicants who were housed during the sample period. Tenant characteristics reflect active
tenant certifications on January 1st, 2014. Applicant characteristics reflect all applicants who selected the list as an initial choice. The
"Scattered" list aggregates three lists that were available until July 2013: Mid Cambridge, East Cambridge, and River Howard Homes. In
July 2013, the CHA combined Mid Cambridge, River Howard Homes, and Woodrow Wilson with Putnam Gardens, and also combined
East Cambridge with Roosevelt Low-Rise. Only Putnam Gardens and Roosevelt Low-Rise were options thereafter, reflecting units from
the combined lists.
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Table 1.3: Applicants

Characteristics of Eligible Population and Applicants

All by Year of Initial Application

Eligible Applied 2010 2011 2012 2013 2014

#Applicants 6828 1726 183 415 407 371 347

Income ($) 42,219 18,477 17,138 17,971 18,718 18,191 19,835

2 Bedrooms 76.5% 69.8% 69.9% 68.9% 69.8% 68.2% 72.6%

3 Bedrooms 23.4% 29.8% 28.4% 30.8% 30.0% 31.8% 27.1%

Lives in Cambridge 49.3% 57.4% 61.7% 55.2% 62.4% 52.6% 57.1%

Works in Cambridge 55.2% 39.7% 28.4% 36.6% 39.8% 44.7% 44.1%

Age Youngest Member 10.5 8.5 8.2 8.2 8.2 8.7 9.0

Age Oldest Member 40.0 36.7 34.7 35.7 36.6 37.7 37.7

# Children 1.25 1.27 1.25 1.39 1.27 1.24 1.16

Child Under 10 60.8% 60.8% 56.8% 56.6% 62.9% 62.0% 64.8%

Household Head Head White 55.2% 36.2% 37.2% 32.3% 38.8% 38.8% 34.3%

Household Head Head Black 19.6% 50.3% 55.7% 54.7% 47.7% 46.6% 49.3%

Household Head Head Hispanic 17.9% 19.2% 17.5% 20.2% 17.2% 20.8% 19.9%

Notes: the applicant sample consists of Family 2-3 bedroom priority applicants who made their initial development choices between 2010 and
2014. Application date is defined as the first date an applicant appears on a waiting list in the status log. Family Public Housing waiting lists were
closed during the second and third quarters of 2010. The eligible population is estimated using the 2010-2014 American Community Survey
(ACS). Households already living in Cambridge public housing, as well as households that applied before 2010 and were still on the waiting list
during the sample period, are not counted as eligible.
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Table 1.4: Initial Development Choices

Initial Choices of Applicants

Selectivity Location

Sub-Group Number of 2 Initial 3 Initial Mean Waiting Number of # Central # East # North
Applicants Choices Choices Time (Years) Units Cambridge Cambridge Cambridge

All 1726 12.1% 84.1% 2.89 145 1.50 0.51 0.79

$0-8,000 466 11.2% 85.0% 2.86 148 1.50 0.52 0.79
$8,000 - 16,000 411 10.7% 85.6% 2.87 145 1.51 0.54 0.77

$16,000 - 32,000 555 10.8% 85.2% 2.89 145 1.50 0.50 0.82
Over $32,000 294 17.7% 78.2% 2.98 142 1.48 0.49 0.77

Central Cambridge 521 9.8% 85.8% 2.89 141 1.68 0.50 0.63
East Cambridge 131 12.2% 84.0% 2.94 136 1.46 0.87 0.47

North Cambridge 338 19.2% 76.9% 2.93 147 1.26 0.37 1.11
Outside Cambridge 736 10.3% 86.1% 2.87 150 1.49 0.52 0.82

Notes: characteristics of initial choices, by applicant characteristics. Initial choice characteristics are first averaged across each applicant's chosen
developments, and then averaged across applicants. Sample is Family 2-3 bedroom priority applicants who made their initial choices between 2010 and
2014. Neighborhood is based on the zip code of the applicant's contact address. East contains zip codes 02141 and 02142; Central contains 02139; North
contains 02138 and 02140; and Outside Cambridge contains all other zip codes.
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Table 1.5: Final Development Choice

Sensitivity of Final Development Choice to Waiting Time Information

No Controls Development Controls Choice Set Controls

(1) (2) (3) (4) (5) (6)

Position on Waiting List -0.0175 -0.0191 -0.0259

(0.0031) (0.0036) (0.0063)
Expected Waiting Time (Years) -0.0639 -4.051 -4.992

(0.279) (0.755) (1.319)

Development FE's X X

Development - Choice Set FE's X X

Implied Own-Price Elasticity -0.657 -0.029 -0.747 -3.511 -1.125 -4.087

(0.145) (0.128) (0.175) (0.669) (7.677) (2.121)

Observations 573 573 573 573 343 343
Notes: estimates from a conditional logistic regression of final development choice on waiting time information from the applicant's final choice letter.
Sample is applicants who made a final development choice between 2010 and 2014. List position is calculated for each applicant/list on the date the
Cambridge Housing Authority sent the final choice letter. Continued waiting time is estimated from realized waiting times after applicants made their
final choices. Columns (1) and (2) have no controls. Columns (3) and (4) include fixed effects for each development. Columns (5) and (6) include as
fixed effects a full set of interactions between the development and the applicant's choice set.



Table 1.6: Inputs to Waiting Time Simulation

Parameter Value

Apartment Vacancies

Annual Vacancy Rate per Unit 0.10
Annual Vacancy Rate Total 108

Applicant Arrivals and Departures

Daily Applicant Arrival Rate 0.945
Annual Applicant Arrival Rate 345

Instant Departure Probability 0.243

Annual Departure Rate 0.245

Final Choice Model

List Position Coefficient -0.019

Fixed Effects

Corcoran Park 0.347

East Cambridge -0.130
Jackson Gardens 0.292
Jefferson Park -0.434

Lincoln Way 0.690
Mid Cambridge 0.265
Newtowne Court 0.073

Putnam Gardens -0.299
River Howard Homes 0.000
Roosevelt Low-Rise -0.604

Washington Elms -0.321

Woodrow Wilson -0.260

Roosevelt Mid-Rise -0.876
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Table 1.7: Parameter Estimates

No Unobserved
Heterogeneity

(1)

Unobserved Taste for
Size and Location

(2)

Annual Discount Rate 0.900 (0.011)

Panel A: Value ofAssistance

Head Is Black
Head Is Hispanic
Lives In Cambridge

Log Of Observed Income
Log Of Observed And Unobserved Income

Scale of R.E. Unknown Income ($10,000)

0.465
0.186
0.042

0.605
-1.000

(0.059)
(0.066)
(0.042)

(0.032)

0.920 (0.079)

0.598
0.141

-0.117

0.628
-1.000

0.728 (0.216)

(0.052)
(0.053)
(0.061)

(0.028)

0.754 (0.149)

Panel B: Match Values

From Same Neighborhood as Development

S.D. Unobserved Taste For Development Size
S.D. Unobserved Taste For Development Central
S.D. Idiosyncratic Shock

S.D. Development Fixed Effects

0.132 (0.045)

0.116 (0.005)

0.102

0.135 (0.069)

0.031
0.055
0.115

0.103

(0.033)
(0.046)
(0.009)

Notes: estimates from the development choice model specified in Section 5.3. Both specifications include
fixed effects for each development. Flow payoff coefficients are normalized by the coefficient on Log of
Observed and Unobserved Income, the value of the household's outside option. The Scale of R.E. Unknown
Income is the scale parameter of the truncated normal distribution governing the distribution of unknown
income.
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Table 1.8: Equivalent Variation to Moving from Lower-Ranked to 1st Choice Development

All Applicants African American Observed Annual Income
Household Head below $15,000

Median Mean Median Mean Median Mean

% Income 8.6% 11.8% 8.2% 11.2% 8.0% 10.8%
1 st Choice instead of 2nd

($/year) 1,435 3,026 1,452 3,147 519 854

% Income 16.5% 19.5% 16.1% 18.7% 15.4% 18.0%
1st Choice instead of 3rd

($/year) 2,957 4,941 3,062 5,195 1,023 1,435

% Income 100.6% 106.1% 99.1% 104.2% 97.3% 102.0%
1st Choice instead of Last

($/year) 20,157 26,231 21,238 28,279 6,935 8,144

Notes: equivalent variation of re-assigning applicants from a less preferred development to their first choice, averaged across a simulated
sample of eligible households that would apply for Cambridge public housing. The simulation uses estimates from Specification (1). "%
Income" is the percentage of observed income a household would require to generate the same welfare increase while remaining in the less
preferred development.
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Table 1.9: Willingness to Accept Mismatched Offers

All Applicants African American Household Head Household Income below $15,000

# Acceptable Developments % Outside Option Observed % Outside Option Observed % Outside Option Observed
Value ($) Income ($) Value ($) Income ($) Value ($) Income ($)

1 17.6 34,083 35,593 13.7 46,292 44,189 6.7 12,784 8,159
2 9.1 31,483 33,652 8.2 40,980 39,951 3.8 12,950 8,714
3 6.7 28,843 31,729 6.2 37,104 37,294 3.4 11,890 7,949
4 4.7 26,722 29,629 4.5 34,269 34,570 2.6 11,523 7,948
5 4.5 25,188 28,244 4.6 30,959 32,086 3.0 11,062 7,820
6 3.8 22,909 25,602 3.7 28,062 27,952 2.7 10,432 7,442
7 3.2 21,724 24,736 3.2 27,737 28,931 2.8 10,979 8,794
8 3.4 19,859 22,927 3.3 25,292 26,696 3.3 9,624 7,741
9 3.2 20,254 23,782 3.4 25,630 27,833 2.6 9,143 7,650
10 3.4 19,268 22,784 3.9 23,337 25,631 3.2 9,911 7,889
11 3.8 17,210 20,527 4.3 20,480 22,164 3.9 9,436 8,164
12 5.2 15,310 18,901 5.7 18,480 20,580 5.8 9,101 8,274
13 31.4 7,629 12,897 35.4 9,022 13,445 56.3 4,859 7,826

Notes: distribution of number of acceptable developments, averaged across a simulated sample of eligible households that would apply for Cambridge public housing. The
simulation uses estimates from Specification (1). Outside Option Value includes a household's observed income and their unobserved income outside of public housing.
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Table 1.10: Effect of Development Choice

Common Development Choice Systems Cambridge Full Information

Equal Priority Equivalent Targeting

Choose Any Choose All or Choose Choose All or Variation Maximizing
Choose One Subset One Neighborhood Neighborhood No Choice Maximizing

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Welfare Gain and Cost ofAllocation

Equivalent Variation ($) 6,956 6,950 6,950 5,904 5,908 5,399 8,238 9,889 5,189
Cost per Unit ($) 8,238 8,242 8,242 8,768 8,764 9,131 8,871 7,878 11,490
Equivalent Variation per $ Cost to Gvt. 0.84 0.84 0.84 0.67 0.67 0.59 0.93 1.26 0.45

Panel B: Targeting

Observed Income ($) 20,509 20,497 20,498 18,745 18,756 17,535 18,400 21,711 9,669
Observed and Unobserved Income ($) 16,732 16,701 16,709 14,735 14,758 13,316 14,337 15,995 6,717
% Highest Need Quartile 35.9% 36.0% 36.0% 39.8% 39.8% 42.2% 41.9% 37.3% 65.5%

Panel C: Match Quality

% Assigned Top Choice 43.3% 42.4% 43.3% 20.0% 20.1% 10.7% 50.6% 30.5% 10.2%
% Assigned Top 3 74.5% 73.5% 74.3% 44.5% 44.6% 29.7% 84.7% 56.7% 27.7%

Panel D: Characteristics of Housed Applicants

Waiting Time (days) 1134 1140 1135 744 744 456 759 112 77
% Black 54.4% 54.5% 54.4% 55.8% 55.8% 56.4% 56.2% 71.4% 46.3%
% Hispanic 21.1% 21.1% 21.0% 20.4% 20.5% 20.6% 21.1% 18.9% 20.3%
From Cambridge 67.7% 67.5% 67.6% 68.4% 68.4% 67.4% 69.4% 70.9% 66.7%

Notes: statistics averaged across assigned apartments in each counterfactual simulation. Cost per unit is calculated based on the CHA's maintenance and operations costs for Family Public Housing
in 2014. Equivalent Variation is calculated as the equivalent cash transfer outside of public housing that would generate the same welfare change for a housed applicant as their assignment. Low-
Income Priority first offers vacant apartments to applicants with incomes below 30% AMI; High-Income Priority does the same for applicants above 30% AMI.
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Table 1.11: Effect of Priority System

Common Choice and Priority Systems Cambridge Full Information

Low-Income Priority High-Income Priority Equal Priority Equivalent Targeting
Variation Maximizing

Choose One No Choice Choose One No Choice Choose One No Choice Maximizing

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Welfare Gain and Cost ofAllocation

Equivalent Variation ($) 6,993 5,407 6,652 5,336 6,956 5,399 8,238 9,889 5,189
Cost per Unit ($) 10,317 10,835 6,006 8,217 8,238 9,131 8,871 7,878 11,490
Equivalent Variation per $ Cost to Gvt. 0.68 0.50 1.11 0.65 0.84 0.59 0.93 1.26 0.45

Panel B: Targeting

Observed Income ($) 13,581 11,855 27,950 20,580 20,509 17,535 18,400 21,711 9,669
Observed and Unobserved Income ($) 10,832 8,939 23,049 15,712 16,732 13,316 14,337 15,995 6,717
% Highest Need Quartile 46.3% 54.3% 22.4% 36.1% 35.9% 42.2% 41.9% 37.3% 65.5%

Panel C: Match Quality

% Assigned Top Choice 41.2% 9.1% 42.8% 11.6% 43.3% 10.7% 50.6% 30.5% 10.2%
% Assigned Top 3 73.6% 26.2% 70.5% 30.5% 74.5% 29.7% 84.7% 56.7% 27.7%

Panel D: Characteristics of Housed Applicants

Waiting Time (days) 670 136 970 447 1134 456 759 112 77
% Black 53.1% 54.9% 57.2% 57.6% 54.4% 56.4% 56.2% 71.4% 46.3%
% Hispanic 18.8% 18.9% 23.2% 21.2% 21.1% 20.6% 21.1% 18.9% 20.3%
From Cambridge 67.6% 66.9% 67.9% 67.7% 67.7% 67.4% 69.4% 70.9% 66.7%

Notes: statistics averaged across assigned apartments in each counterfactual simulation. Cost per unit is calculated based on the CHA's maintenance and operations costs for Family Public Housing
in 2014. Equivalent Variation is calculated as the equivalent cash transfer outside of public housing that would generate the same welfare change for a housed applicant as their assignment. Low-
Income Priority first offers vacant apartments to applicants with incomes below 30% AMI; High-Income Priority does the same for applicants above 30% AMI.



1.10 Appendix

1.10.1 Datasets

CHA Dataset and Sample Selection

The Cambridge Housing Authority maintains a database of applicants and tenants

to manage its programs and comply with HUD regulations. The dataset used in this

paper is based on an extract made on February 26th, 2016. It contains anonymized

records of all applicants for Cambridge public housing who were active on a waiting

list between October 1st, 2009 and February 26th, 2016. This includes all house-

holds who submitted an application after October 2009, and a selected sample of

households who applied before late 2009 and were still on the waiting list.

For each applicant, I observe household characteristics, development choices, and

the timing and outcome of all events during the application process. Household char-

acteristics include family size; the age, gender, and race/ethnicity of each household

member; zip code of current residence; and self-reported household income. The data

also record whether an applicant had priority. Development choices and waiting list

events come from a time-stamped status log that records the status of each appli-

cation over time. This includes the applicant's initial application date; the date it

joined each waiting list; the date it was sent a final choice letter, and if it responded,

its final choice; and the date the applicant was offered an apartment. I also observe

the date and reason if a household was removed from the waiting list.

From the application data, I construct several objects that allow me to interpret

development choices. I infer the set of developments for which each applicant was

eligible based on household structure and application date." I observe waiting times

19To reduce waiting time uncertainty, CHA merged four small waiting lists with larger lists in
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for applicants who were offered apartments, both from initial application and from

the date the applicant made its final choice. I also infer the information each appli-

cant received in their final choice letter by computing the applicant's list position on

the date CHA sent the letter.

For analysis, I restrict my sample to priority applicants for 2 and 3 bedroom

apartments in the Family Public Housing program who submitted an application

between January 1st, 2010 and December 31st, 2014. Non-priority applicants had

virtually no chance of being housed, so it is unclear how to interpret their develop-

ment choices. Family Public Housing applicants are a more homogeneous group than

Elderly/Disabled households, and families with children are of substantial policy in-

terest. I restrict to 2 and 3 bedroom apartments for sample size; the vast majority of

Family Public Housing applicants apply for these units, and data on choices, waiting

times, and list positions from each development are sparse for other bedroom sizes.

Analyzing new applications between 2010 and 2014 avoids selection issues with pre-

2010 applicants since some pre-2010 applicants were no longer on the waiting list at

the beginning of the sample period. These restrictions produce a sample of 1,752

applicants. 26 of these applicants selected more than three developments; omitting

them leaves 1,726 applicants for structural estimation.

American Community Survey

The American Community Survey (ACS) publishes anonymized, household-level

micro-data covering 1 percent of the U.S. population each year. The years 2010-

2014 form a 5 percent sample of U.S. households. The survey collects detailed in-

formation on each household's structure, geography, and economic and demographic

2013. As a result, an applicant's initial choice set depended on its application date.
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characteristics. Data can be downloaded at https : //usa. ipums .org/usa-action/

variables/group.

The ACS contains key household-level information that determines whether a

household could have appeared in my applicant sample, which contains applicants

with priority for 2 and 3 bedroom apartments in Cambridge Family Public Housing.

I begin with the universe of ACS households living in the state of Massachusetts. I

then determine whether each household lived or worked in Cambridge. 20 Cambridge

has its own city code since its population is greater than 100,000. The CITY field

identifies whether each household lives in Cambridge, and place of work for each

working household member comes from the PWPUMA00 field. To determine a

household's bedroom size, I apply the rule used by the CHA based on the age and

gender of each household member and their relation to the household head. I also

identify whether households would have been eligible for the Elderly/Disabled or the

Family Public Housing program based on the age of the oldest household member.

For households composed of three or more generations, I created separate households

for the elderly members and the younger members.2 ' For income eligibility, I divide

the household's total income by the Area Median Income for their household size

and survey year. Other characteristics of eligible ACS households, such as the race,

ethnicity, and gender of the household head, are determined using ACS demographic

variables.

20There are tens of thousands of households with veteran status in Massachusetts, so veteran
status is not counted to determine which households would have had priority for Family Public
Housing in Cambridge. Only a small number of applicants have veteran status, and most already
live in Cambridge.

2'According to the CHA, it is common for Family Public Housing applicants to apply with a
two-generation subset of their current multi-generational household.
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1.10.2 Estimation Details

Waiting Time Beliefs

This section provides details of the simulation-based procedure to estimate applicant

beliefs using knowledge of the Cambridge Mechanism and waiting list data. Since

applicants choose developments in two stages, select multiple developments in the

first stage, and make choices based on new information in the second stage, the wait-

ing lists for different developments move interdependently. A sophisticated applicant

will account for the fact that the combination of developments selected in the first

stage will jointly affect the conditions under which they make their final development

choice in the second stage. They will also update their beliefs about continued wait-

ing times given their positions on all three lists at the final choice stage. This poses

a challenge for estimation since data on realized waiting times given initial choices

and final choice states are sparse. A parsimonious model of dependence across lists

may not be realistic or feasible.

I assume that beliefs are consistent with the steady-state distributions that the

Cambridge Mechanism would generate given applicant arrival and departure rates,

initial and final choice frequencies, and empirical vacancy rates. These empirical

quantities can be estimated directly from application data. Combining these esti-

mates with knowledge of the Cambridge Mechanism, I simulate steady state outcomes

which quantify interdependence across lists and the option value of the timing and

information of the final choice stage.
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Cambridge Mechanism

Between 2010 and 2014, Cambridge ran its public housing waiting lists according

to the following algorithm. Calendar time is indexed t = 1, ... , T. Waiting lists are

indexed by j = 1, ... , J, where a list corresponds to a specific bedroom size apartment

(2 or 3 bedrooms) in a specific development. Applicants are indexed i =1, ... , N,

vacancies by v = 1, ... , V. Applicant i has an arrival date t2 and a latent departure

date ri, and makes initial choice Ci. Vacancy v occurs on date t, on list jv. For

each list j, there is a sequence of trigger and batch size policies {(Lji, Kj,1)}n _ for

sending final choice letters. If fewer than Lj,l applicants on list j have made a final

choice, Cambridge sends final choice letters to the next Kjl applicants on list j who

have not yet made a final choice. The pair (Lj, 1 , Kj,1+1) become the next trigger

and batch policy for list j. xij is applicant i's list j position in its final choice letter,

computed as the total number of applicants on list j with an earlier application date

on the date the letter is sent. Finally, the coefficients for the final choice model are

(O, {(j}).

The Cambridge mechanism proceeds as follows. The simulation begins at t = 0

with empty lists, no vacant units, and an initial trigger and batch policy (Lj,1 , Kj, 1)

for each list. The following occurs in each period t:

(i) Each applicant i with arrival date t2 = t is added to the lists in its initial choice

set (j E Ci).

(ii) Each vacancy v with t, = t is offered to the first applicant on list j, who has

made a final choice. Applicant i is housed in j, and removed from the waiting

list. If no applicants are available, the vacancy is pushed to next period (t, is

moved to t, + 1).
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(iii) For each list j, if the number of applicants who are on list j and have made

their final choice is less than the current trigger Lj,k, the following steps occur:

(a) Cambridge sends final choice letters to the first K,k applicants on list j

who have not made their final choice.

(b) Applicant i responds to the final choice letter if ri > t

(c) If i responds, it chooses list j with probability

exp(o3 ix + j)
EmcC, exp(xim + sm)

(d) If i does not respond, it is removed from all lists m E Ci

(e) The next trigger and batch policy, (Lj,k+1, Kj,k+1), is drawn for next period

Otherwise, (Lj,1 , K,1 ) is held for the next period.

(iv) Each applicant with t2 = t who has already made its final choice is removed

from the list.

Inputs to Simulation

Simulation of the Cambridge Mechanism requires a sequence of applicant arrival

dates t2 and the initial choice C, and departure date ri of each arrival; a sequence

of apartment vacancies with dates t, on list j,; and a sequence of batch and trig-

ger policies {L3 ,k, Kik}K 1 for each list j. I assume that all sequences are drawn

independently and make the following parametric assumptions:

e Applicants arrive at a poisson rate a
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" Each applicant departs immediately with a non-zero probability a, and at

exponential rate a2 after.

" Applicant choices are drawn uniformly from the empirical distribution in the

Cambridge dataset

" Vacancies on each list occur at poisson rate vj = 0.1 * Sj, where S is the

number of units corresponding to list j. The sequences occur independently

across developments and bedroom sizes.

" The sequence of trigger and batch policies is drawn with uniform probability

from its empirical distribution in the Cambridge dataset.

" Final choice probabilities are determined by Specification (3) in Table 4, in

which the latent utility of each option depends on list position and a develop-

ment fixed effect.

Given these primitives, I draw inputs for a 500 year simulation and run the

Cambridge mechanism. Waiting times converged after about 10 years. I used the

last 490 years of the simulation to construct beliefs.

Constructing Belief Objects

The simulation produces the state of all Cambridge waiting lists every day for 490

years. To estimate the relevant distributions governing beliefs, I consider what would

have happened to an additional applicant arriving on each simulation date, for each

sequence of choice the applicant could have made.

To estimate {Gc(Sc, Pc)}cEc, the distribution of final choice states for each ini-

tial choice C, I sample 1000 dates tI, ..., tooo from the simulation. For every C, I
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compute the date sc and position vector Pc that an applicant who applied on date

ts would have received, for s = 1, ... , 1000. These states - {(S, P8)}s=1,...,1000 - form

an empirical measure Oc.

Constructing beliefs {Fj,c(. I PC)}j,c,pc for continued waiting time at final choice

is more complicated. There are over 1800 possible (j, C) initial and final choice

combinations, and for each combination, each position vector Pc induces a different

continued waiting time distribution. Even using the simulation results, there is a limit

to how flexibly these distributions can (and should) be estimated. My approach is to

specify a hierarchical parametric model for the continued waiting time distribution.

I assume that continued waiting time follows a beta distribution

T I j, C, pc ~ Beta(aj,c(Pc), O3 ,c(Pc))

whose parameters depend flexibly on choices j and C and parametrically on positions

Pc. For a (j, C) pair with IC = 3, the position vector Pc enters the beta distribution

parameters as

aj,c(Pc) = exp{7 1p, + 7 2 log(P1) + 7r log(P2 ) + 74 log(p3 )}

3j,c(Pc) = exp{7 5pI + r6 log(pi) + r7 log(P2) + 7 8 log(P3 )}

where the 7 parameters are (j, C)-specific. pi is the position on list j, and P2 and

P3 are the other positions. I found that this parametric specification did a good job

fitting the distribution of realized waiting times from the simulation. The range of

each beta distribution is [0, [max Tj,c]].
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The hierarchical parameters of each beta distribution are estimated as follows:

for computational speed, I take a 5% sample of application dates from the simula-

tion denoted {td}d=1,...,D. For each initial choice C, I calculate the position vector

an applicant would have received in their final choice letter, as well as the contin-

ued waiting time for each list. From this dataset of position vectors and continued

waiting times {pc,d, tCdjd=1,...,D, 7r and the upper bound of the support of the beta

distribution for each j E C are estimated by maximum likelihood.

Development Preferences

Distribution of Flow Payoffs

For household i, the difference in flow payoffs between living in public housing de-

velopment j and the outside option is given by

Vij - vio = 6, + # 1 logy - q2 log(yi + 7i) + g(Zi) + E Xik/3 + XjVimm + E.
k m

where

id U2 Y'0)iid iid
77i ' TN(0, In , y,) Vim N(0, 1) e N(0, 1)

The parameters governing flow payoffs, along with the discount factor, are

0 = {p, 6, 0, g (.), U7, }

Moments

To estimate the parameter vector 0 = {p, 6, /, g(.), n}, I match the following sets of

moments:
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* Application Rates by income and demographics: I currently use the following

characteristics Zj: an indicator equal to 1 for all households; indicators for

annual household income in the ranges of [X, X + 20, 000] for X in $5,000

intervals from $0 to $40,000; indicators for whether the household head is

black and hispanic; and an indicator for whether the household currently lives

in Cambridge. I also match the rate at which all households and households

earning $0420,000 and $20,000-$40,000 choose three developments in their

initial choice.

" Development Shares: There is one moment for the initial and final choice

shares of each of the thirteen developments.

" Covariances between applicant characteristics and characteristics of their ini-

tial development choices. I match the rates at which Cambridge residents select

developments in their current neighborhood of residence. There are separate

moments for Central, North, and East Cambridge.

" Means and Variances of chosen development characteristics within and be-

tween applicants. Each of these moments is constructed for development size

(# units) and whether the development is in North, East, or Central Cam-

bridge. For households that do not apply, all moments are zero.

" Means Variances of Chosen Waiting Times within and between appli-

cants, by income and demographics. The first and second time moments are

interacted with income bins for $0-$20,000, $20,000-40,000, and $40,000+.

" Final Choice Moments are as described in the main text.

111



Importance Sampling and Change of Variables

I estimate the parameter vector 0 based on moment conditions

E[(mi - E(mi I Zil 0 )) I Zi] = 0 ,

where 0o is the true parameter vector, mi contains features of household decisions,

and zj are household characteristics. A standard way to simulate E(mi I zi, 0) in my

setting would be the following:

(i) For each sampled household i, draw preference shocks {7is, Vims, 6is~ii and

realized final choice states given each possible initial choice.

(ii) At each proposed value of 0, compute vis given zi and the simulation draws

Then calculate the optimal choice at each stage given preferences (p, vi,) and

beliefs. This requires solving the two-stage choice problem for each simulation

draw at each proposed value of 0.

(iii) Use choices to construct the conditional expectations

I S
E(mi Izi, 0)= -:Mis

and form moment conditions.

The problem with this procedure is that Step (ii) is computationally expensive.

The optimal choice must be calculated for every simulation draw at each value of

the parameter vector 0. In my application, Step (ii) takes several minutes for a

reasonable number of simulation draws. Furthermore, since the objective function

has no analytical gradient, an effective optimization procedure would need to evaluate

the objective function thousands of times.
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I use importance sampling and a change of variables proposed by Ackerberg (2009)

to avoid repeating Step (ii) for each value of 0. The key insight is that an applicant's

optimal decision sequence only depends on (p, vi) given a choice environment. This

permits a change of variables where instead of drawing {Tis, VimS, ijs}I=1, I draw

(vis, 7is) from a proposal distribution g(v, I zi) and compute the optimal choice for

each vis once for each value of p. Then, to estimate E(m zi, 0), I re-weight the

simulation draws at new parameter vectors 0 -:

I = P(vis, ris Zi, Op)E (mi I zi, 0) = - mis (p, vis)
SS=1 g(vis, 7is I zi)

Since the flow payoffs and unknown income are drawn according to g(. zi), the

above formula provides an unbiased estimate of E(mi I zi, 0). This formulation has

two desirable properties. First and most importantly, once choices mis(p, vis) are

computed, the objective function can be evaluated quickly at each parameter vector

0. Second, the objective function is now differentiable in _,-, which improves the

speed and accuracy of optimization. A grid search over p minimizes the objective

function in a few hours.

My application satisfies the Constant Support assumption required for this simu-

lation procedure to yield valid conditional expectation estimates. Each payoff vector

has full support on RlJ, and unknown income has full support on [0, oc) for all house-

hold characteristics Z and parameter vectors 0.

Simulation Procedure

Constructing the simulated moments involves the following steps:

1. For each eligible household i, draw S flow payoffs {vi, ?is}1 from proposal
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distribution g(. I zi)

2. Compute the optimal initial choice Cis for each simulation draw given vi,

waiting time beliefs, and discount factor p.

3. Draw the following objects pertaining to the final choice stage:

* The date and position information of final selection (sis, pis), drawn from

the distribution Gc, (Sc", Pcs)

" Whether the simulated applicant makes a final choice. To determine this,

I compute the probability that a household would survive until date si,.

Each simulation draw makes a final choice with this probability.

4. If the simulation draw makes a final choice, the choice is computed given (p, vis)

and the continued waiting time distributions Fj,c (T I pis) for J E Cis.

This procedure is repeated for each candidate value of p. Since initial choices may

change as p changes, I must draw final choice states and response indicators for each

value of p, which will determine whether each simulation draw makes a final choice

and, if it does, which development is chosen. To minimize simulation error, for each

simulation draw I draw one final choice state for each possible initial choice and

hold those draws fixed across values of p. This way, if a simulation draw vi, makes

the same initial choice for two different discount factors, it will make its final choice

under the same conditions (and will have the same response indicator).

It is worth emphasizing that the flow payoffs {vi,} are only drawn once. Then,

initial and final choices are computed once for each value of the discount factor. These

choices yield choice features m(p, vi, xi,) which do not need to be re-calculated. I
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will often use mi, for convenience, keeping in mind that choice features may depend

not only on preferences but also on the conditions under which the final choice is

made.

Objective Function and Optimization

Because the moments used in estimation are highly correlated, the optimal weight

matrix performed poorly. The model failed to match moments key for identifying

value of assistance parameters and the discount factor such as overall application

rates and the mean waiting times of initial development choices. Instead, I used a

diagonal weight matrix with elements inversely proportional to the sampling vari-

ance of the corresponding moment functions. I also placed more weight on moments

that are important to match precisely such as application rates, variances of chosen

development characteristics within and between applicants, and the final choice mo-

ments.

The proposal distribution was chosen to broadly fit choice patterns in the data,

such as application rates by group. A large value was chosen for or (V'2). Using a

proposal distribution that is moderately dispersed and centered near the estimated

distribution limits the variance of the importance sampling weights, and hence sim-

ulation error.

The objective function was minimized using the Knitro optimization package in

Matlab. A gradient-based search over the parameters governing flow payoffs was

conducted for a grid of annual discount factors 3 E {1, 0.98, 0.96, ... , 0.5}. To limit

numerical instability in specifications with several random coefficients, the variance
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of each random coefficient was constrained to be less than one million.

Inference

The standard errors in Table 6 account for sampling error in the choices of eligible

households and simulation error in constructing the simulated moments. They do

not correct correct for statistical error in the minimum distance procedure used to

estimate the distribution of eligible households, or for statistical error in the esti-

mated distributions governing applicant beliefs.

The asymptotic variance of the method of simulated moments estimator is

(G'AG)- 1 G'AQAG(G'AG)-

where G = E[Vog(O0)], Q = E[gj(6O)gj(Oo)'], and A is the symmetric positive-

definite weight matrix used in estimation. For a consistent estimate of G, I evaluate

the gradient of the moment functions at 6:

1 N

G = N_ I: VA(6)
Ni=1

Variance in the moment functions comes from two components: sampling error in

applicant choice features mi, and simulation error in E[mi zi, 6]:

1
S

The empirical variance of the moment functions evaluated at 0 provides a consistent
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estimate of Qm:

N N
Rm g i 0s() gi(0)'

Q, can be estimated consistently by

1 N S
QS = N S 1 E(mis() - Mk(0))(mis(0) - Ai

Z=1 s=1

where

mis(0) = m(visfi)PkVis I zi,1 0 h(zi) E = m2i(0)
g (Vis | zi) S=

The variance estimate is

(0'A0)-'A (m+ -Qs AG(G'A)- 1

1.10.3 Counterfactuals: Computational Details

To compute counterfactual equilibria, I drew one sequence of applicant arrivals along

with their departure dates, characteristics, and payoffs, and one sequence of apart-

ment vacancies. For the arrival sequence, I first draw a sequence of characteristics

of potential applicants from the distribution estimated in Section 1.5.1, and then

drew flow payoffs given those characteristics using the estimates from Specification

(1) of the structural model. Apartment vacancies and exogenous departure dates are

drawn from the distributions estimated in Section 1.5.2.

These sequences are used to compute counterfactual allocations under all mech-

anisms. In computing features of the equilibrium and allocation, the first 10 years

were discarded to allow the waiting list to approach steady state. All applicants were
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eligible for all 13 public housing developments, and all waiting lists remained open

during the entire simulation. This abstracts from temporary list closures (which are

common in practice) in order to focus on the long-run effects of choice and priority

in steady state.

To compute equilibria of lottery mechanisms allowing choice, I searched for a fixed

point between applicants' choices and the implied weights {f ((yi))} -. The

algorithm worked as follows. Iteration q begins with a vector of proposed weights

W(q). The following steps then occur:

1. Each applicant's optimal choice is calculated when the applicant believes weights

are given by W(q).

2. The waiting list is run, yielding predicted weights W(q)' with distance D(e) =

|1 W(q)' _ W(q)I|

3. Weights are updated as a convex combination of the proposed and implied

weights:

(q+1) = A(q) W(q)' + (1 - A (q))W(q)

The factor A determines how aggressively the weights are updated. If A = 1, then

the weights implied by applicant choices (r(q)') are taken as the new proposal. If

A = 0, the weights are not updated at all. I began with A( 0) = 1 and lowered it by

50% each time the Euclidean distance between the proposed and implied offer rates

was higher than in the previous iteration (D(q+l) > D(q)). This algorithm converged

quickly, requiring no more than 50 iterations before implied offer rates were less than

0.1% different than proposed rates in every mechanism.

For the Cambridge Mechanism, I did not recompute the equilibrium. Finding a

fixed point of choices and implied waiting time distributions in the two-stage develop-
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ment choice problem would have required re-estimating the full waiting time model

every iteration, which was computationally prohibitive. Instead, I use the fact that

the waiting time model used in estimation was generated by the Cambridge Mecha-

nism to justify simulating outcomes in the Cambridge Mechanism when applicants

have the beliefs used in estimation. This can be viewed as an approximation to

the long-run equilibrium; given preference estimates, the actual equilibrium may dif-

fer if there was misspecification or estimation error in either the waiting time or

development choice models.

In the full-information allocations, the social planner uses a greedy algorithm to

house applicants from the waiting list. When maximizing equivalent variation from

assignments, the planner assigns each vacancy to the applicant with the highest

value currently on the waiting list. This is not the strictly optimal policy because

each applicant has different values for each development; it may be better to save

the highest-value applicant for later and house a lower-value one. Nevertheless, it

is still a useful benchmark. The targeting-maximizing allocation also uses a greedy

algorithm, assigning each vacancy to the applicant with the worst outside option

who is willing to accept the unit.
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Table 1.12: Coefficient Estimates Predicting Probability in CHA Dataset

Point

Estimate

Income $0-$8,000

Income $8,000-$16,000

Income $16,000-$32,000
Income $32,000-$48,000

Income Above $48,000

African American Household Head

Hispanic Household Head

Household lives in Cambridge

2.13
1.64
0.64

-4.98
-6.15
4.98

-0.38
-2.19

90% Confidence

Interval

[0.71 ,16.83]
[0.45 ,13.05]
[-0.14, 6.67]
[-8.6, -1.29]
[-14.69, -2.19]
[2.18 , 15.24]
[-1.49, 6.1 ]
[-7.02 , 0.95]

Notes: coefficient estimates predicting the probability that an eligible

household from the American Community Survey was in the CHA dataset.

The model uses a probit link function and is estimated by minimum

distance. The point estimates use the actual ACS sample. The 90 percent

confidence intervals are bootstrapped by re-sampling the ACS with

replacement and re-running the estimation procedure.
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Table 1.13: Simulated Waiting Times from Initial Application

Simulated Waiting Time Realizations

Simulation Data

Development Mean S.D. Mean # Obs.

Corcoran Park 2.74 1.20 3.05 45

East Cambridge 5.11 1.98 3.52 11

Jackson Gardens 6.14 1.84 3.75 9

Jefferson Park 0.98 1.11 2.16 62

Lincoln Way 3.90 2.19 3.72 2

Mid Cambridge 5.35 2.08 3.52 11

Newtowne Court 2.07 0.95 2.33 95

Putnam Gardens 3.25 1.02 2.98 36

River Howard Homes 6.18 2.17 3.52 11

Roosevelt Low-Rise 2.22 0.87 3.55 21

Washington Elms 2.30 1.39 2.92 26

Woodrow Wilson 4.13 1.69 1.98 2

Roosevelt Mid-Rise 5.03 1.85 1.58 18

Notes: realized waiting times are averaged across all housed applicants in each
development.
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Figure 1-6: Welfare Effects of Development Choice with Low-Income Priority

1.1

Development Choice Systems under Different Social Welfare Functions
Low-income Priority, Cost-Adjusted
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Comparison of cost-adjusted welfare gains produced by development choice systems used

in practice, with priority for households with income below 30% AMI. Welfare gains are

normalized by the value for Equal Priority, Choose One.
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Figure 1-7: Welfare Effects of Choice and Priority, without Cost Adjustment

Priority and Development Choice Systems under Different Social Welfare Functions
Not Cost-Adjusted
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Comparison of welfare gains produced by development choice and priority systems used in

practice. Welfare gains are not adjusted for cost, and are normalized by the gains from

Equal Priority, Choose One.
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Chapter 2

An Empirical Framework for

Sequential Assignment: The

Allocation of Deceased Donor

Kidneys

2.1 Introduction

As of November 1, 2017, there were 96,464 patients on the national kidney wait-

ing list, but only 13,431 deceased donor transplants were performed in 2016.1 Each

transplant improves the expected quality and length of a transplanted patient's life

while saving hundreds of thousands of dollars on dialysis (Held et al., 2016; Wolfe et

al., 1999). Yet, approximately 20% of medically suitable organs extracted for trans-

plantation are wasted in a typical year. Efficiently allocating these scarce resources,

'Source: https: //optn . transplant .hrsa. gov/data/view-dat a-reports/nat ional-data/
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reducing waste, and achieving equitable outcomes are important design objectives in

this context.

The allocation of deceased donor kidneys does not use money because of ethical

considerations and legal restrictions, 3 making traditional price-based market-clearing

mechanisms infeasible. Similar considerations motivate the use of waitlist systems

to ration other deceased donor organs, public housing, nursing homes, child-care,

and child-adoption. Theoretical approaches to designing dynamic assignment mech-

anisms have found that even qualitative trade-offs depend on the distribution of

preferences.4 This paper develops an empirical framework for analyzing waitlist

mechanisms that sequentially assign objects and applies it to study the design of the

deceased donor kidney allocation system. Previous empirical methods for analyzing

assignment systems have been restricted to static choice settings, or have ignored

dynamic considerations that agents face. 5

We make several methodological and empirical contributions. First, we develop

a procedure to estimate agent preferences using data from a dynamic assignment

system, and apply it to waitlist data from New York to estimate payoffs from various

types of transplants. This step is based on an optimal stopping problem faced by

2These goals are articulated by the Organ Procurement and Transplantation Network (OPTN),
a contractor for the Health Resources & Services Administration (HRSA), in their policy docu-
ment titled "Concepts for Kidney Allocation" (OPTN, 2011). A committee that was charged with
reforming the allocation system adopted a new mechanism in 2014. We discuss these reforms in
greater detail below.

3The National Organ Transplantation Act (NOTA) makes it illegal to obtain human organs for
transplantation by compensating donors.

4Agarwal et al. (2018) compare the results in Su and Zenios (2004), Leshno (2017), Arnosti and
Shi (2017), and Bloch and Cantala (2017b) and show by example that optimal design depends on
the nature of preference.

5For example, Kidney Pancreas Simulated Acceptance Module (KPSAM) used by the kidney
allocation committee to evaluate various proposed mechanisms prior to the reforms enacted in 2014
assumes that acceptance decisions on the kidney waitlist do not depend on mechanism used, thereby
ignoring differences in dynamic incentives generated by various mechanisms.
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a patient when she is offered a kidney. Second, we define a notion of steady-state

equilibria for a broad class of assignment systems that is ammenable to computation

and counterfactual analysis. Finally, we use these techniques to describe how various

mechanisms perform on key measures: efficiency, equity, and organ waste.

The existing allocation system used to match deceased donor kidneys with pa-

tients relies on a coarse point system based on donor and patient characteristics and

the patient's waiting time. As soon as an organ becomes available, it is offered to

patients on the waiting list in decreasing order of organ-specific points. The decision

of whether or not to accept an offer remains with the patient and the transplant sur-

geon. The organ is allocated to the highest-priority biologically compatible patient

who accepts it. The patient is removed from the waitlist once she is transplanted.

Otherwise, she may remain on the waitlist and may choose to accept the next organ

she is offered. The priority system does not depend on whether a patient has refused

previous offers. Even though the timing and quality of future offers are uncertain, it

can be optimal to turn down an offer to wait for a more suitable one. Indeed, Agarwal

et al. (2018) provide empirical evidence suggesting that acceptance rates are lower

for patients that are less likely to receive offers in the future. Therefore, consistent

with dynamic considerations, patients with a higher option value of waiting are more

likely to refuse an offer for an organ.

We therefore model an agent's decision to accept an offer as a continuous-time

optimal stopping problem. She accepts the current offer if the value from the object

is higher than the expected value of continuing to wait. The distribution of potential

future offers depends on the mechanism and the strategies of the other agents on

the list. Our empirical strategy uses the probability that an organ of a given type

is accepted by a patient and detailed knowledge of the mechanism to recover the

value of a transplant. This value depends on observed and unobserved patient and
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donor characteristics. Our technique adapts methods based on inverting conditional

choice probabilities in this continuous-time problem (Arcidiacono and Miller, 2011;

Arcidiacono et al., 2016; Hotz and Miller, 1993) to suit dynamic assignment mecha-

nisms. The technique eases computation of the continuation value relative to more

efficient full-solution methods (Pakes, 1986; Rust, 1987, for example) because the

distribution of future offers depends on all characteristics that influence priorities in

the mechanism, and is therefore high-dimensional.

The estimated values from transplanting various donors to various patients are

intuitive. All patients value certain characteristics that are correlated with organ

quality - for instance, we estimate that younger donors are preferred by all patients,

as are immunologically similar matches. However, there is also significant match-

specific heterogeneity in values. For example, we find that older patients place less

value on younger donors as compared to younger patients. Our estimates correlate

well with predicted life-years gained from each transplant, and the fit of our choice

probabilities is significantly better than previous approaches that abstract away from

donor unobserved heterogeneity.

The allocation mechanism can affect match quality because there is substantial

match-specific preference heterogeneity. Moreover, our descriptive results show that

the current mechanism produces significant mismatch on several dimensions. For

instance, young patients are often allocated older donors, while many old patients

receive young donors. Reallocating young donors to young patients could improve

efficiency. There are many other dimensions for reallocation gains. To take a system-

atic approach to finding these gains, we study a few alternative mechanisms. The

first takes a greedy approach to improving efficiency by offering organs to patients

that are predicted to benefit from them most. The second attempts to maximize eq-

uity by offering organs to patients with the most sensitive immune systems, who have
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the most limited transplant opportunities. The 2014 reforms incorporated aspects of

both these designs. Finally, we consider a benchmark random order waitlist in which

patients do not receive priority based on waiting time or other characteristics. This

mechanism encodes a form of procedural fairness and has the additional benefit of

reducing organ waste. We compare the outcomes from these mechanisms to the pre-

and post-2014 assignment systems.

Predicting assignments, welfare and organ waste in these counterfactual mecha-

nisms requires us to solve two technical issues. First, we need to formulate a tractable

notion of equilibrium that is consistent with our estimation procedure and can be

computed. This exercise is challenging because it involves computing an equilibirium

for a dynamic game with many players. An unrestricted state-space could include

the composition of the entire waitlist. The equilibrium stationary distribution of

the resulting system would be extremely high dimensional. To make progress, we

develop a notion of a steady-state equilibrium in the spirit of recent approaches

to simplify this task (Fershtman and Pakes, 2012; Hopenhayn, 1992; Weintraub et

al., 2008). Our approach computes a steady-state distribution of types and a steady-

state queue length. This allows us to find a tractable algorithm that iterates between

solving the value function using backwards induction and computing the steady-state

composition of the queue by forward simulation.

Second, we need to ensure that these counterfactuals are indeed identified. In

dynamic models such as ours, counterfactuals may not be invariant to normalizations

imposed during estimation (see Aguirregabiria and Suzuki, 2014; Kalouptsidi et al.,

2015). Our estimates normalize the payoff of never receiving an assignment to zero.

We formally show that our normalization is appropriate for the mechanism design

counterfactuals we consider if the value of declining all offers remains fixed. In our

empirical context, this assumption is satisfied if the value of remaining on dialysis
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until death, and the value and possibilities of receiving a living-donor transplant do

not change when the deceased donor allocation system is redesigned. We argue that

both these assumptions are reasonable.

Related Literature

The design of scoring rules for organ allocation has been an active area of re-

search in the Medical and Operations Research communities (Bertsimas et al., 2013;

Kong et al., 2010; Su and Zenios, 2006; Su et al., 2004; Zenios, 2004; Zenios et al.,

2000). However, this previous research, as well as the KPSAM acceptance module

(see SRTR, 2015) used by the Scientific Registry of Transplant Recipients (SRTR)

to simulate the effects of various allocation systems, does not empirically model pa-

tients' dynamic incentives to accept or reject an organ offer. As a result, the current

approach taken by SRTR assumes that acceptance decisions do not depend on the

waitlist mechanism. Our empirical evidence suggests that ignoring dynamic incen-

tives may result in biased predictions.

Our paper is related to Zhang (2010), which uses a dynamic model to study

how patients learn about the quality of an organ. It shows that patients lower on

the list are more likely to refuse an organ if patients that are higher have refused

it. The paper argues that this pattern is most consistent with a parametric model

of observational learning. Our approach abstracts away from learning,6 but allows

for unobserved donor heterogeneity to capture correlation in acceptance behavior.

We do this to focus on allocation issues and equilibrium responses when simulating

changes to the offer system.

The methods in this paper contribute to the growing literature on empirical

6 Zhang (2010) uses data from 2002. Anecdotal evidence suggests that the information available
to patients and donors was dramatically better during our sample period (2010-2013). This fact
significantly reduces the scope for observational learning.
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approaches for analyzing centralized assignment systems (see Abdulkadiroglu et al.,

2017b; Agarwal, 2015; Agarwal and Somaini, 2015; Fack et al., 2015b, for example).

These previous approaches have focused on static assignment mechanisms. The only

exception to our knowledge is Waldinger (2017). It presents a model of public housing

choice in which agents face a two-stage decision with a portfolio choice problem in

the first stage. 7 Our methods, in contrast, pertain to an optimal stopping rule that

differs from all these settings.

This distinction between static and dynamic assignment systems is important

because the theory of static allocation systems, e.g. mechanism design approaches to

school choice (Abdulkadiroglu and S6nmez, 2003), is well-developed. Abdulkadiroglu

et al. (2017b) show that, at least in New York City, there is little difference between

various well-coordinated school choice systems. In contrast, Leshno (2017), Bloch

and Cantala (2017b), Arnosti and Shi (2017), and Su and Zenios (2004) arrive at

different conclusions about which sequential offer system performs the best. Their

results depend on the nature of preference heterogeneity. Therefore, estimating these

primitives is essential when designing dynamic allocation mechanisms.

Our work builds on the estimation of dynamic discrete choice models (Hotz and

Miller, 1993; Pakes, 1986; Rust, 1987; Wolpin, 1984), particularly recent develop-

ments in continuous-time versions of these models (Arcidiacono et al., 2016), and

the estimation of dynamic games (Aguirregabiria and Mira, 2007; Bajari et al., 2007;

Pakes et al., 2007; Pesendorfer and Schmidt-Dengler, 2008). Additionally, we em-

ploy a model of beliefs and an equilibrium notion that bears resemblance to concepts

aimed at making the analysis of dynamic games tractable (Fershtman and Pakes,

7This work is also related to a literature that estimates preferences for public housing to answer
questions about how to design an allocation mechanism (see Geyer and Sieg, 2013; Sieg and Yoon,
2016a; Thakral, 2016; van Ommeren et al., 2016). A key difference is that these approaches are
based only on final assignments instead of detailed choice data.
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2012; Hopenhayn, 1992; Weintraub et al., 2008). We discuss the relationship to this

literature when we develop our approach.

2.2 Background, Data and Descriptive Evidence

2.2.1 The Allocation of Deceased Donor Kidneys

Assignment of organs from a potential donor begins after death is declared (brain

or cardiac) and necessary consent for donation has been obtained. The Organ Pro-

curement Organization (OPO) in the donor's area obtains information about the

donor from tests and the donor's medical history. This information is entered into a

system, called UNet, that is used to coordinate across transplant centers. The OPO

staff use UNet to determine the order in which patients will be offered each of the

donor's organs, to transmit information about the donor to the transplant centers,

and to record accept/reject decisions. OPO staff usually contact the surgeons for

several potential recipients simultaneously to solicit their decisions. This process can

take place while the donor is on life-support and before the potential donor's organs

have been extracted in order to maintain organ viability. Once a kidney has been

recovered from the donor, transplant surgeons or patients that were potentially inter-

ested in receiving that kidney may decline based on any new information discovered

during biological testing or examinations of the kidney. These final decisions need

to be made without much delay, usually within an hour. A donor's kidneys are then

allocated to the highest priority patients on the waitlist that were willing to accept

the organs.

To minimize the number of patients that are contacted, UNet first uses the avail-

able donor characteristics to exclude the set of patients that are not biologically
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compatible with the donor. This may occur either because of blood-type incompati-

bility or because the patient's immune system would react negatively to the donor's

tissue-type.8 Next, UNet screens out patients that have listed pre-set exclusion crite-

ria within the system. These are kidneys that are transplantable, but which a patient

has determined to be undesirable because of donor characteristics such as age, health

conditions, and kidney function measures. UNet then orders the remaining set of

patients based first by priority type, and then by the number of points. Finally, it

breaks ties in order of time waited.

A patient's priority type and points for each kidney depend on both donor and

patient characteristics. Broadly speaking, priorities are based on geography and

a few patient and donor characteristics, while the points system takes into account

tissue-type similarity, pediatric patients, patient sensitization, and waiting time. The

detailed priority system during our sample period (2010 - 2013) is described in policy

section 8 in OPTN (2014).' There are many different priority types motivated by

both equity and efficiency concerns. For example, the highest priority for young and

healthy donors (referred to as standard criteria donors in the mechanism) is given

8 The immune system tags foreign objects (antigens) with antigen-specific antibodies so that
white blood cells (leukocytes) can defend against them. A patient's immune system will attack any
antigen for which she has an antibody. Each donor has up to 6 specific types of human leukoctye
antigen (HLA) proteins out of a set of hundreds of possible types. Each patient has antibodies
to some subset of these HLA antigens. A transplant recipient's immune system will attack the
donor's kidney and reject the organ if the recipient has an antibody to one of the donor antigens. A
recipient is tissue-type compatible with a donor's kidney if she has no antibodies corresponding to
the donor's antigens (Danovitch, 2009). A transplant between certain incompatible patient-donor
pairs has become possible due to development of desensitization technologies (see, e.g., Orandi et
al., 2014), but compatible transplants are preferred.

9 0n December 4, 2014, the kidney allocation rules were modified (see Israni et al., 2014; OPTN,
2017, for details). We chose not to study data for a period prior to the reform to rule out anticipatory
effects of the change and to avoid using post-reform data because agents may be adapting to the new
system. Reports from the United Network for Organ Sharing (UNOS) that track transplantation
rates after the adoption of the new system show the existence of short-term transition dynamics
(termed "bolus-effects" in these reports) immediately following the reform (Wilk et al., 2017).
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to patients with perfect tissue-type matches. Such matches are rare but particularly

valuable because the organ is likely to function for longer. Priority is also given

to patients in the same local area as the donor, to patients with sensitive immune

systems, 10 and to pediatric patients. Donors that are not accepted by candidates

in the local area are offered to patients in the broader geographic region and then

to all patients, nationwide. Within each priority group, patients are awarded points

based on the number of years they have waited for a kidney, the extent to which a

patient's tissue type matches the donor's, and whether they are pediatric patients.

The priority system is simpler for less healthy donors, also referred to as expanded

criteria donors (ECD). The system offers these donors according to geography with

points for waiting time and for tissue-type similarity. These donors are only offered

to patients that have actively decided to consider such offers.

2.2.2 Data and Descriptive Analysis

This study uses data from the Organ Procurement and Transplantation Network

(OPTN). The OPTN data system includes data on all donor, wait-listed candidates,

and transplant recipients in the US, submitted by the members of the Organ Pro-

curement and Transplantation Network (OPTN). The Health Resources and Services

Administration (HRSA), U.S. Department of Health and Human Services provides

oversight to the activities of the OPTN contractor. We restrict attention to data

on the kidney waitlist and the acceptance decisions of all patients in the New York

Organ Donor Network (NYRT) between January 1st, 2010 and December 31st, 2013.

NYRT is the largest donor service area (DSA), in terms of number of patients, that

'0Specifically, patients with a Calculated Panel Reactive Antibodies (CPRA) greater than 80%
get higher priority than patients with a CPRA between 21% and 79%, followed by the remaining
patients.
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used the standard allocation rules in the United States prior to 2014.11

The primary dataset on the waitlist, the Potential Transplant Recipient (PTR)

dataset, contains the offers made and patient decisions. This dataset is drawn from

the records generated by UNet, which is the backbone software system used to coor-

dinate offers and decisions. In addition, we obtained detailed information on patient

and donor characteristics that are collected in the Standard Transplantation Analy-

sis and Research (STAR) dataset. Fields in the STAR dataset are populated based

on information gathered in UNet as well as forms submitted by transplant centers

after a transplant is performed.

Patients and Donors

Table 2.1 shows the 9,917 patients that were registered with NYRT at some point

during our sample period. Panel A shows the state of the waitlist on January 1st of

each year in our sample and summarizes a subset of important patient characteristics.

Our dataset includes rich information on patient health status, including important

indicators of kidney health (e.g. total serum albumin), patient health (e.g. body

mass index, age), and medical history (e.g. diabetes, years on dialysis). The average

patient on the list has waited for a little over two years, with the overall waiting time

increasing over time. A variable that will be important in our descriptive analysis

is a patient's immune sensitization as measured by the patient's Calculated Panel

Reactive Antibodies (CPRA). A patient's CPRA is the percentage of donors in a

representative sample with whom she is tissue-type incompatible. This measure is

"See Hart et al. (2017) for a map of DSAs in the United States. As mentioned above, except
in cases of perfect tissue-type matching, allocation takes place based on geography, with DSAs
constituting the smallest unit. A little less than half of DSAs used rules that were different from
the baseline rules. We identified the DSAs that use non-standard rules via a special request for
administrative documentation on the various rules in use.
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calculated from blood tests conducted to determine the set of antigens to which a

patient has an immune response. The average CPRA is about 12%, which indicates

that there is a bit more than a one-in-ten chance that a patient is tissue-type in-

compatible with a randomly chosen donor. The standard deviation is large because

there are many patients with extremely low or extremely high CPRA.

Panels B describes the patients that join and leave the waitlist during our sample.

The list is growing; the number of new patients joining exceeds the number leaving.

Panel C shows the reasons for departure from the list and the characteristics of

patients by the stated reason for departure. The most common reason for depature

is receiving a deceased donor transplant. The average patient has waited for 3.08

years before receiving a deceased donor. The second most common reason is that the

patient either dies or becomes "too sick to transplant." These patients are 61.5 years

old on average, compared to 54.3 years for patients who received deceased donor

transplants. The third most common departure reason is receiving a live donor

transplant, which is more likely for younger patients and often occurs within the

first year on the waitlist. Finally, some patients leave for other or unknown reasons

including a move outside the NYRT area.

Table 2.2 summarizes the rich set of donor characteristics used in our study.

These include donor age, cause of death, relevant medical history (diabetes, hyper-

tension), and the leading indicator of donor kidney function (donor creatinine). Panel

A presents the statistics for all donors recovered within NYRT during our sample

period. Just under 200 donors are recovered from the NYRT area each year, which

is only one-seventh of the number of patients joining the waitlist in NYRT. There-

fore, there is significant scarcity in organ supply within the region. The refusal rate

remains high despite this scarcity. Across donors, the mean number of biologically

compatible offers that met the pre-set screening criteria is over 430, but the median is
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much lower, at 27. The mean is an artifact of a skewed distribution whereby undesir-

able kidneys are rejected by a large number of patients. Indeed, over 20% of donors

have at least one of their viable kidneys discarded. Organs from these donors were

refused by an average of almost 1,500 patients. The mean and median amongst the

group of donors for which each of their viable kidneys was accepted are 151.25 and 15

respectively. 2 These columns also show that our observable donor covariates (age,

cause of death, and donor creatinine) are correlated with discards in the expected

ways. The last two sets of columns show that a number of donors were ultimately

offered outside NYRT. For these donors, only about 0.3 kidneys were transplanted

per donor, indicating that many kidneys were discarded. This is consistent with the

hypothesis that donors that are not accepted within the local area are likely to be

undesirable.

In addition to donors recovered within the local area, NYRT patients are also

offered donors from other parts of the country. Indeed, panel B shows that a total

of 1,470 donors were offered to patients registered with NYRT in the average year.

Because most of these donors were recovered elsewhere in the country but offered

to NYRT patients after a large number of refusals, these donors are likely to be

undesirable. It is therefore not surprising that they see a very large number of offers

and high discard rates. Again, the relatively poor quality of these donors is captured

by our observable characteristics. For example, compared to donors recovered from

NYRT, the average donor offered is older, less likely to have died of head trauma,

more likely to be diabetic or hypertensive, more likely to be an undesirable donor

(ECD) or be donating after cardiac death (DCD), and more likely to have a high

creatinine level. The average donor offered to NYRT patients ultimately donates

12 1n some cases, donors have only one viable kidney for donation. For this reason, the number
of transplanted kidneys amongst donors with no discards is less than 2.
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only 0.75 kidneys.

Taken together, these statistics suggest that the supply of desirable donors in

NYRT is scarce and that patients have to wait several years before receiving a trans-

plant from a desirable donor. Moreover, our dataset contains rich information pre-

dictive of the likelihood that a donor is refused.

Waitlist, Offers and Acceptance Rates

We now describe the waitlist system, the offers made and the acceptance rates. Over-

all, patients receive many offers and reject most of them. This is because desirable

kidneys are accepted quickly, while less desirable kidneys are offered to many patients

before being accepted or discarded. A patient's likelihood of receiving a high-quality

offer rises as her waiting time increases. However, the priority system is not well

approximated by a first-come first-served queue. Throughout the paper, we only

consider potentially transplantable offers by excluding any offers where the donor

had antigens that were unacceptable to the patient, or was blood type incompatible.

Figure 2-2 plots waiting time against position on the list. We only consider

patients for whom the donor met the screening criteria. The horizontal axis is the

(donor-specific) position of a patient and the vertical axis is the average waiting time

for patients at that position. The shaded region depicts the 95% confidence intervals

for the means. A decrease in mean waiting time is apparent as we go down the

list. This should be expected given that the system awards priority to patients that

have waited longer. Nonetheless, these statistics do not directly speak to whether

the system is well approximated by a first-come first-served queue. We calculated

the fraction of times a pair of patients that were offered the same donor is ordered

identically on the list for the next donor they are both offered. We found that this
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fraction is 81.5%. This fraction would be 100% in a first-come first-served system,

while in a random priority system it would be about 50%. Therefore, while waiting

time is an important determinant of priority, the deceased donor kidney allocation

system is not well approximated by a first-come first-served system.

Figure 2-1 shows the fraction of offers accepted by the (donor-specific) position

of the patient. The acceptance rate in the first few positions is much higher than

later positions, but is still only between 15 and 20 percent. As we go down the

list, only about 1% of offers are accepted. This sharp decline near the top occurs

for two reasons. The first reason is that for some donors, the first few offers are

made to patients with a perfect tissue-type match. This feature of the priority

system generates a high acceptance rate near the top because offers of an organ with

a perfect tissue-type match are rare and extremely valuable. The second reason,

which is the predominant one, is that desirable kidneys are likely to be accepted

near the top of the list and not offered to many patients. In contrast, undesirable

kidneys are offered to many patients in an attempt to place them. This causes the

overall acceptance rate (as a fraction of offers) to be extremely low as we go down

the list because of the changing composition of donor quality. It also results in

an extremely large number of offers for each patient, although most offers are of

undesirable organs. It is important to remember that the majority of offers are from

very undesirable donors when interpreting these low acceptance rates.

Table 2.3 shows the rate at which patients receive offers and the overall accep-

tance rates. Panel A shows all feasible offers, including offers that did not meet the

patient's pre-set criteria. It shows that a typical patient receives about 220 offers per

year. On average, the offer rate from donors recovered in NYRT is much lower, about

40 offers per year. Recall that donors that were recovered elsewhere are typically un-

desirable. The panel also shows that patients with sensitized immune systems - that
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is, patients with CPRA above 80% - receive many fewer offers from transplantable

donors even though the system gives them higher priority. In panel B, we study the

offers thatmet the pre-set criteria. The typical patient still gets such an offer every

3 to 4 days. However, a typical patient only receives approximately two offers per

month from donors recovered within NYRT. Panel C restricts to offers within the

first 10 positions, that is, offers from donors that are likely to be desirable. These

offers are rare, and the typical patient can expect to receive less than one such offer

each year.

The table also shows interesting patterns of acceptance behavior. The acceptance

rates in panel C are much higher than those in panels A and B. Within each panel,

we can see that offers from desirable donors are more likely to be accepted. For

example, the acceptance rate is higher for kidneys recovered in NYRT, and much

higher for kidneys with a perfect tissue-type match. Finally, the last two columns

show that acceptance decisions are correlated with kidney quality as predicted by a

measure of life-years from transplantation (LYFT) proposed by Wolfe et al. (2008).

These LYFT estimates are the predicted median quality-adjusted life-year gains for

a patient using survival models of patient life with and without a functioning kidney

transplant. The columns show that the average offer has an LYFT gain of about 5

years, but the average accepted offer has a higher LYFT. Additionally, LYFT is higher

for the top 10 offers that met the screening criteria. However, these differences are

perhaps smaller than expected, and not all differences are consistent. For example,

offers in panel B have a lower LYFT than offers in panel A. This suggests that the

LYFT model may be missing some characteristics that should be included in the

model.
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Evidence on Mismatch

Table 2.4 looks at the outcomes from the mechanism and provides suggestive evidence

of mismatch between donors and transplanted patients. Panel A shows the outcome

in terms of whether or not a patient receives a transplant. Pediatric patients are

very likely to be transplanted, either with a deceased donor kidney or through a

living donor. The priority given to these patients is likely an important contributing

factor. Adult patients are less fortunate, but interestingly, among adults there is no

signficant gradient in transplant probability with age. The chances of receiving a live

donor, however, does fall with age. Panel B describes the age of the transplanted

donor for those that receive a kidney through the deceased donor waitlist. We see that

pediatric patients are very likely to receive a transplant from a young donor. Again,

older patients are less fortunate. Although there is some assortative matching by age,

signs of age mismatch remain. Many patients above the age of 65 continue to receive

kidneys from young adults and middle-aged donors. One concern in interpreting

these numbers is that a kidney transplanted to an older patient may be undesirable

for other reasons. Panel C focuses on a subset of donors with no clear medically

undesirable characteristics such as diabetes, cardiac death, high creatinine levels or

hepatitis C. The qualitative patterns of age mismatch persist.

Evidence on Response to Dynamic Incentives

An important assumption in our framework is that agents respond to dynamic incen-

tives. One implication of this assumption is that patients for whom the option value

of waiting is lower should be less selective. Agarwal et al. (2018) present descriptive

evidence consistent with dynamic incentives using data from all areas of the United

States. They find that highly sensitized patients who are immunologically compat-
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ible with fewer donors - and who can therefore expect to receive fewer offers in the

future - are more likely than less sensitized patients to accept an offer of a given

quality. We replicated their research strategy using data from patients registered

in NYRT and found similar patterns. We briefly describe the strategy and results

below.

The ideal experiment compares two identical population of patients that face

different option values for exogeneous reasons. However, we are not aware of such

variation in the context of kidney allocations. Instead, Agarwal et al. (2018) use the

likelihood that a patient is biological compatibility with a randomly chosen donor,

as measured by the Calculated Panel Reactive Antibody (CPRA), to study how

variation in option values affect acceptance decisions. A patient that is likely to be

biologically compatible with a large number of donors should have a high option

value of waiting, and therefore be more selective.

We replicate their findings for NYRT and show that, as predicted by the pres-

ence of dynamic incentives, CPRA is negatively correlated with offers for compatible

organs and positively correlated with acceptance rates (Figures 2-6a and 2-6b in the

Appendix). This pattern is robust to rich controls for patient priority and indica-

tors of the value of an offer, for example, patient and donor characteristics, match

characteristics, interactions of CPRA with tissue-type similarity (Table 2.10 in the

Appendix).

The main concern is that immune sensitization also influences the value from

a transplant. Patients develop sensitive immune systems primarily through blood

transfusions and prior transplants. Therefore, these patients are more likely to be

frail, making a transplant risky. These risks are less likely to be justified unless the

donated organ is of high quality. Taken together, these results are consistent with

dynamic incentives being an important driver of acceptance decisions.
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2.3 A Model of Decisions in a Waitlist

This section presents a model of agents' decisions in a waitlist mechanism that will

form the basis of our empirical strategy. We begin by defining a class of sequential

assignment mechanisms and the primitives governing agents' decisions while on the

waitlist. Agents and objects arrive according to exogenous processes, and each object

is offered to agents on the waitlist in order of an agent-object-specific priority score

until the object is accepted by an agent or rejected by everyone. We then provide

assumptions on agents' payoffs and beliefs, as well as the evolution of the state space,

which lead to a tractable optimal stopping problem from the agent's perspective.

Though the model is motivated by the structure of our application, it may be useful

in other settings in which items are offered sequentially to agents, including other

organ allocation settings.

2.3.1 Notation and Preliminaries

Consider a sequential assignment mechanism in which objects (indexed by j E J C

N) are offered to agents (indexed by i E I C N) waiting on a list. Let xi and a

respectively denote observed and unobserved characteristics of agent i; likewise, let

z3 and rjm respectively denote observed and unobserved characteristics of object j;
and let ti denote the amount of time the agent has been waiting on the list. We

assume that agents observe all characteristics.

Objects may be incompatible with some agents. Let cij = 1 if object j is com-

patible with agent i, and 0 otherwise. Incompatibility can arise due to biological

reasons in the organ allocation context but they may arise due to other restrictions

(e.g. legal) in other contexts.

Time is continuous. Objects and agents arrive at poisson rates A and -y, re-
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spectively. The characteristics of each arriving agent (x, a) are independent and

identically distributed (iid) according to the cumulative distribution function (CDF)

Fx,.. Similarly, each object's characteristics (z, r7) are drawn iid from CDF Fz,,

upon arrival. We assume that each object must be assigned before the next ob-

ject is offered. The poisson arrival process and continuous time together imply that

simultaneous arrivals are zero probability events.

2.3.2 Mechanisms and Primitives

Mechanisms

We consider sequential assignment mechanisms that use a priority score. The mech-

anism allocates each object as it arrives:

" Step 1 (Ordering): The priority score sij= s (ti; xi, zj) is calculated for all

agents on the waitlist. Ties in s (ti; Xi, z), if any, are broken using a known tie-

breaking rule. For example, ties could be broken either uniformly at random

or by t.13

" Step 2 (Offers): Each agent may decide to accept or reject the object, with

acceptance denoted by aij = 1. The mechanism may solicit decisions from

multiple agents simultaneously. A mechanism does not make offers to agents

that are known to be incompatible with the object.

" Step 3 (Assignment): The object(s) are allocated to agents with the highest qj

priorities for whom aij = 1, where qj is the number of copies of the object. An

object cannot be allocated to an incompatible agent.

131f ties are broken by ti, it must be that no two agents have the same value. Since time is
continuous and agent arrivals are governed by a poisson process, simultaneous arrivals will be
zero-probability events, and ti strictly orders any two patients with probability one.
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* Step 4 (Arrivals and Departures): An agent is removed from the waitlist once

an object has been assigned to her. Other agents may join or leave the list.

Within the set of general offer-based waitlist systems, the primary restriction in the

class considered here is on the order in which offers are made. Specifically, we as-

sume that an agent's priority does not depend on the other agents in the market.

This is adequate for estimation using the deceased donor kidney allocation system

in place during our sample period. Moreover, such mechanisms are a natural class

to consider because they are simple and transparent to implement, and minimize the

complexity of communication between agents and the mechanism designer. Indeed,

all deceased-donor organ allocation mechanisms as well as systems considered by the

kidney allocation committee during their deliberations prior to the 2014 reform were

priority-based offer mechanisms." In counterfactual analysis, we will compare assign-

ments that result from various mechanisms that obey this structure to benchmark

optimal assignments. An analysis of pseudo-market market mechanisms (Hylland

and Zeckhauser, 1979), which is not trivial even in static assignment settings with

priorities (He et al., forthcoming), is left for future work.

Typical administrative datasets from such assignment systems containinforma-

tion on all characteristics used to determine the priority score s (ti; xi, zj) because

the characteristics are used to make offers. This allows a researcher to calculate the

order in which any object would be offered. Our empirical exercises required us to

develop computer code for this purpose, and we were able to verify the output of our

code using administrative records of the offers that were made during our sample

period.

One complication in the context of the allocation of deceased donor kidneys is
14 fBased on an examination of committee reports and public comments downloaded from

https://optn.transplant.hrsa.gov/members/committees/kidney-committee/.
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that organs must be allocated within a certain time-frame that depends on the

condition of the organ and various logistical factors. Limited manpower at the Organ

Procurement Organization (OPO) can limit the number of patients that can be

contacted and offered the organ. We treat the maximum number of offers that can

be made for each object as exogeneous.

Payoffs

There are three types of primitive payoffs in the model. The first is the (expected)

flow payoff from remaining on the list, di (t). In our application, di (t) is best inter-

preted as the payoff from living without a functioning kidney, which includes dialysis

for most patients. The second is the (expected) net-present value from from depar-

ture without an assigment, Di (t). In our application, departures occur due to live

donor transplants, death, or transfers to other listing centers (Table 2.1).15 We view

Di (t) as incorporating any of those reasons. Finally, we have the (expected) net

present value of agent i being assigned a compatible object j after waiting t periods,

denoted 17i (t).

Two economic implications of the payoffs in our model are worth noting. First,

we abstract away from costs of considering an offer. These costs are likely small

relative to the value of transplants and the flow costs of remaining on dialysis. Sec-

ond, we assume that agents only value their own outcomes and not those of others.

This assumption is commonly made in theoretical and empirical work on assignment

mechanisms (e.g. Abdulkadiroglu et al., 2017b; Agarwal and Somaini, 2015). This re-

1 5In this case, we can represent the value from a departure as a weighted average over the value
from the various events, i.e. Di (t) = Ek Pik (t) Dik (t) where k denotes the type of depature

(e.g. obtaining a live donor, death etc.) and Pik (t) is the probability of each type of depature
conditional on a departure occuring. The formulation is agnostic about the sources of these payoffs.
For example, the net present value of death can include any bequest motives.
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striction may be violated if surgeons value the outcomes of other patients, especially

those that they might be treating. NYRT has a total of 10 transplant hospitals

staffed with many more kidney transplant surgeons. This limits common agency

problems that surgeons might face. The payoffs can be interpreted as accruing to

the patients if surgeons act in the best interest of each patient.

Our empirical framework makes the following assumptions on these payoffs:

Assumption 1. (i) The (expected) net present value of an assignment is additively

separable in a payoff shock E

F2i (t) = F (t, xi, ai, z, m7j) + E6 t. (2.1)

(ii) The random variable Egi is independent of (t, xi, ai, zj, qj) with a known, non-

atomic distribution with cdf G.

(iii) The expected flow payoffs from waiting di (t) and the expected payoff from

departing without an assignment Di (t) depend only on (xi, a, t).

Restrictions on Eij imposed in Assumptions 1(i) and 1(ii) are common in the

dynamic discrete choice literature. They will allow us to use an approach based on

an inversion technique due to Hotz and Miller (1993). The comparison with other

methods and specific functional form assumptions on G, F (-), and the distribution

of Tb are discussed in section 2.4 below. Our framework can also be applied to other

parametric forms for G.

Assumption 1 (iii) and the restriction on F (.) exclude unanticipated time-varying

persistent agent-level unobserved heterogeneity. The assumption simplifies the evo-

lution beliefs about the expected payoffs of waiting. We discuss analytical challenges

in relaxing this assumption once we have laid out our estimation approach in section

2.4.
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Arrivals and Departures

Agents arrive stochastically, and may depart the list prior to assigment. We make

the following assumption on the arrival and departure processes:

Assumption 2. (i) Departures prior to assignment and arrivals are governed by

poisson processes that are independent of the waitlist.

(ii) The departure rate is non-negative, and given by 6i (t) = 6 (t; xi, a2 ). Further,

each agent has a terminal date T < oc at which departure occurs for sure.

In our application, we assume that patients die on or before their 100-th birthday.

T therefore corresponds to the waiting time for a patient on the day she turns 100

years of age. 16

The primary economic restriction for our purposes is that departures prior to

assignment and arrivals do not depend on the design of the kidney waitlist. Table

2.1 shows that the most common reason for departure without a deceased donor

transplant is death or patients becoming "too sick to transplant." It seems safe to

assume that these events are not responsive to the design of the kidney waitlist.

The second most common reason is receiving a living donor transplant. Departures

due to this reason are exogeneous if patients leave the deceased donor list once they

have found a compatible living donor and do not respond to the design of the kidney

waitlist. This assumption is motivated by the fact that living donors are medically

superior to deceased donors and produce better transplant outcomes in terms of

patient and graft survival. Living donor superiority is partly driven by the higher

medical quality of living donor kidneys, and also by the fact that living donation

16It is fairly straightforward to extend the framework to allow for agents that could remain on
the list forever, Tj = oc. This generalization will primarily change computational techniques and
require that the value function for each patient approaches a constant. We restrict our attention
to the finite time-horizon case for simplicity of exposition.
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allows for a better planned transplant. For example, patients receiving a living

donor transplant can proactively start immunotherapy. OPTN and SRTR (2011)

report the rate of late graft failure for transplanted patients by donor type (living

or deceased). This measures the time at which half of the transplanted patients are

alive with with the kidney still functioning. The rate of late graft failure for adult

patients transplanted in 1991 was 14.7 years for deceased donor kidneys, compared

to 26.6 years for living donor kidneys." Finally, a minority of patients depart for

other reasons, in most cases for undisclosed reasons or because they move residences.

Similarly, we assume that agent arrivals do not depend on the design of the

waitlist. During our sample pcriod, patients could register as soon as they were

qualified based on medical criteria.18 Therefore, it is in a patient's interest to join

the waitlist as soon as possible. This feature of the priority system motivates our

assumption that arrivals do not depend on the state of the waitlist or the allocation

mechanism. In counterfactuals, we consider priority systems that do not change how

waiting time is calculated.

2.3.3 Individual Agent's Problem

Agents on the waitlist who receive an offer of an object must decide whether to accept

it or wait for a future offer. This results in an optimal stopping problem from the

1 7Some of this difference may be due to selection into who receives each type of transplant. Hart
et al. (2017) report the unconditional chances of graft failure 10 years after transplantation. This
statistic for adults transplanted with a deceased donor kidney in 2005 is 52.8%, whereas it is only
37.3% for those that received a living donor. They report that 5-year patient survival differences
for living donor and deceased donor recipients are large even when broken down by patient age or
primary diagnosis (compare figures KI 79 and KI 80 with figures KI 82 and KI 83 from Hart et al.
(2017)).

18This feature is shared for all DSAs, including NYRT, that used standard allocation rules during
our sample period. A patient was qualified for registration once they had begun dialysis or had a
glomerular filtration rate (GFR) below 20mL per minute.
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perspective of the agent (Pakes, 1986; Rust, 1987). We follow a common estimation

strategy in dynamic games by considering an agent's optimal decision rule given the

strategies played by agents that generated the data (Bajari et al., 2007; Pakes et

al., 2007). Solving for counterfactuals will require a notion of equilibrium, which we

discuss in section 2.6. This section starts by describing a general formulation of this

single-agent problem before making simplifying restrictions.

Beliefs

To make an informed decision about whether to accept an offer, an agent must form

beliefs about the organs she may be able to obtain in the future if she declines the

current offer. Recall that the kidney waitlist offers organs to patients in sequence of

their priority scores as long as the kidney remains viable for transplantation. The

organs are allocated to the highest priority agents that are compatible with and

accept the organ. At the end of the allocation process, each organ j effectively has a

cutoff priority s*, such that only an agent with priority at least s* would have received

the organ if she accepted it. This score depends on the decisions of all agents on the

list at the time, their compatibility, and the number of offers that can be made for

the object. Agent i can expect to obtain a compatible kidney that arrives at time ti

as long as her score, s (ti; xi, zj), exceeds s*. Therefore, it is sufficient for an agent to

form beliefs over the probability distribution of s* in order to decide which organs

are likely obtainable in the future.

Let

H (s; Fi,t) = P (s; < Fi,, , j) (2.2)

denote the belief for the CDF of s* given the information set Fi,t and the organ

characteristics zj and r2 . In this notation, the probability that agent i can obtain a
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compatible organ j (i.e. cij = 1) is given by Hj (s (ti; xi, zj) ; Ji,t). This representation

relies on knowledge of the mechanism as a waitlist that uses scoring rules to order

agents in the market.

In principle, these beliefs could depend on the history of offers previously received

(and rejected) by the agent as well as information about the other agents on the

waitlist at a given time. However, there are several reasons, discussed below, why

beliefs are unlikely to be sensitive to such information. We therefore assume that an

agent's belief about the distribution Hj (s; Fi,t) does not depend on Ti,t:

Assumption 3. Each agent i's belief that an object with characteristics (zj, 'r) is

compatible and will be available to her after a waiting time of t is given by

w (ti; zj, Ty, xi) = H (sij; zj, 71j) x P (cij = I zj, xi) ,

where H (-; zj, m) is the conditional distribution of the cutoff s given (zj, %), and

sij = s (ti; z, xi).

This assumption embeds three key restrictions. First, it assumes that beliefs

are not sensitive to short-term variation in the set of other agents currently on the

waitlist. The primary threat to this restriction is that some surgeons may be treating

multiple patients on the kidney waitlist or may learn about other patients from their

colleagues. This concern in mitigated by the large number of transplant hospitals

and surgeons in the NYRT area. Second, it abstracts away from inference about the

likelihood of receiving future offers based on the agent's past offers. This restriction

is motivated by the institutional features and empirical observations discussed below.

Finally, it assumes that the probability that an organ is compatible depends only

on observables and is independent of the cutoff. This restriction is appropriate in
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our context because surgeons list the proteins and blood-types that are known to be

incompatible with the patient.

Our assumption on beliefs about s* is a reasonable approximation if assessments

about which organs are likely to be available are based primarily on a surgeon's

extensive experience treating patients. It also eases the analysis relative to beliefs

of the form in equation (2.2) because it dramatically reduces the dimension of the

information set, and therefore the state space, in the dynamic problem. It is well

known that this curse of dimensionality can complicate analysis and estimation in

dynamic models (see Pakes and McGuire, 2001, for example).

Descriptive Evidence

In addition to the tractability provided by Assumption 3, the institutional and em-

pirical features of our setting suggest it provides a reasonable model of beliefs and

acceptance behavior. To begin with, there are several reasons why recent history

should have limited predictive power for future offers. First, it is unrealistic that

surgeons have detailed information about patients on the waitlist that are not un-

der their care. Privacy concerns preclude surgeons from obtaining such information.

Second, the set and order of patients on the waitlist varies significantly across donors,

limiting the ability of patients to predict future offers based on recent experience. We

calculated the fraction of times any two patients are prioritized in the same order for

two randomly chosen donors. We find that the priorities do not preserve the order of

patients 18.5% of the time. A random order would place this number at 50%. This

calculation focuses only on cases where both patients are compatible with the two

donors. Including incompatibility would indicate even less persistence. Last, but

not least, we directly test for autocorrelation in cutoffs s* across organs ordered by
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the date on which they arrived. One would expect non-zero serial correlation across

these cutoffs if the offers a patient observed contained information about the likeli-

hood of receiving future offers. We were not able reject the null hypothesis of zero

autocorrelation across a range of partitions of donors (Table 2.11 in the Appendix) .19

Taken together, the evidence suggests that the set of patients competing for an organ

is far from perfectly predictive of future cutoffs.

We also test whether recent offer history predicts current acceptance behavior,

and fail to find evidence that it does. The logic of our test is as follows. Suppose that

a patient sees a string of unexpectedly frequent or high-quality offers. If the patient

updates her beliefs based on recent history, she should infer that she faces relatively

little competition from other patients on the waitlist and can expect a better offer

set in the near future. As a result, the patient should become more selective - less

likely to accept an organ of a particular quality - if her recent offer history is better.

In contrast, if the patient does not update her beliefs based on recent history, recent

offers should have no predictive power for current acceptance behavior.

We test this hypothesis by constructing an offer-specific variable for the number of

years since the patient's most recent offer. We include this variable as an additional

predictor in the acceptance regressions presented in section 2.2. Under the null

hypothesis of no updating, the coefficient on time since last offer should be zero.

Under the alternative of updating based on recent history, we expect a positive

coefficient because patients who have waited a long time since their last offer expect

lower continuation values, and should therefore be more likely to accept an offer of

a given quality.

Table 2.5 presents coefficient estimates from several specifications that include

'91n fact, the p-values of the test statistic across relatively fine partitions are close to uniformly
distributed.
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measures of the patient's recent offer history. The first two columns include time since

last offer as a predictor in the standard acceptance regressions. Without controlling

for current offer characteristics, the estimated coefficient on time since last offer is

positive and statistically significant; however, with additional controls the coefficient

becomes much smaller and statistically insignificant. This suggests that recent offer

rates do not predict current acceptance behavior.

Of course, time since last offer may not fully capture the value of a patient's recent

offers, leading to a lack of power or omitted variables bias.2" For example, beliefs may

be formed not only based on the most recent offer, but the last several, and a test

based on the time since the previous offer may be underpowered. Columns (3) and (4)

show that when time since last offer is averaged across a patient's two and five most

recent offers, the coefficient estimate on average time since last offer remains positive

but statistically insignificant. There may also be other reasons why time since last

offer is not the most relevant proxy for the value of a patient's recent offers. Column

(5) includes inactive time in the time since last offer variable, with little change in

the estimated coefficient. Column (6) includes controls for donor characteristics of

the previous offer. This has almost no impact, and the coefficient estimates on donor

characteristics are statistically insignificant. Finally, it is possible that our test does

not consider the relevant set of offers. Column (7) restricts the analysis to offers

from ideal donors, and column (8) restricts to donors recovered in NYRT. In these

two specifications, the time since last offer coefficient is statistically insignificant and

actually becomes negative. Taken together, there is no evidence that patients adjust

20Note that many sources of bias, such as patient unobserved heterogeneity and measurement
error, would bias our estimates toward finding a positive coefficient on time since last offer. For
example, suppose our controls for patient priority were imperfect. In this case, some patients would
be unobservably higher-priority and, as a result, more selective. For these patients, we would
observe lower times since last offer and lower acceptance rates for a given kidney, generating a
positive ommitted variables bias.
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their acceptance behavior based on the recent offers they have experienced. We are

therefore comfortable with the restrictions embedded in Assumption 3.

The simplification of the state space in Assumption 3 is similar in spirit to equilib-

rium concepts that have been introduced to make the estimation of dynamic games

more tractable. These concepts simplify the state space by abstracting away from

aggregate uncertainty in the composition of competitor types (Hopenhayn, 1992;

Weintraub et al., 2008) and by modeling beliefs as being based on past experience

(Fershtman and Pakes, 2012). Despite these simplifications, xi continues to be a

high-dimensional object because, in addition to aspects that influence payoffs, it

contains all characteristics that influence priorities or determine whether or not any

given object j is compatible. Fortunately, these sources of dependence can be de-

termined using the data. This will allow us to estimate our model tractably even

though the state space is high-dimensional.

Value functions

We assume that agents make optimal accept/reject decisions by comparing the net

present value of an object with the value of waiting. Holding the strategies of other

agents fixed, she decides to remain on the list instead of accepting object j if Fij (t) =

F (t; xi, a , Z, 77j) +Eit is less than V (t) = V (t; xi, ai). Vi(t) is the value of continuing

to wait conditional on the agent's current waiting time t and her observed and

unobserved characteristics (xi and ai) that affect payoffs and information. To derive

an expression for the value of waiting, consider an agent's value of waiting for another

infinitesimal duration At given her current waiting time t. With a discount rate of

p, the discrete approximation to the Hamilton-Jacobi-Bellman Equation defining the
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value of waiting at time t can be written as:

(i) =M 1+1 [di (t) At + 6(t) AtDi (t)

+ AAt frij (t) E max { (t + At) , Fi4 (t)} dF

+ (1 - (3, (t) + Ai (t)) At) (t + At) + o (At)],

where Ai (t) = A f Wij (t) dF is the rate at which agent t expects to receive an offer, the

operator E takes expectations over the idiosyncratic payoff shocks Eijt in equation

(2.1), and, with a slight abuse of notation, iri4 (t) = i (t; xi, zj, 77j). The leading

fraction represents discounting due to time preferences. The first term is the flow

payoff from remaining on dialysis during the At periods following t. The second

term is the expected probability of departure during this period multiplied by its

value. The third term represents the value for a kidney arriving. The fourth term

denotes the value of waiting in period t + At in the case when no offer arrives and

an exogenous departure does not occur.2 ' Taking the limit as At -+ 0 under mild

continuity conditions yields the differential equation

(p + 6i (t)) V (t) = di (t)+63 (t) Di (t)+A wij (t) E max {0, Pij (t) - V (t)} dF+i (t)

(2.3)

This differential equation defining V (t) has a unique solution that is determined

by the terminal condition (Ti) = Di (Ti) because as t -+ T, the probability of

receiving additional offers in the remaining time vanishes. This equation shows an

intuitive result that values depend on the flow payoffs while waiting on the list, the

2 'The last term, which has not been fleshed out, includes the payoff in the event that multiple
donors or objects arrive, or that a donor arrives and the patient departs, within At. These events
have probability of order o (At). Therefore, the remainder is of order o (At) as long as all expected
payoffs are bounded.
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possibility of and value from exogeneous departures, and the option value of potential

offers.

Normalization and Simplifying the Value Function

A typical dataset from a sequential assigment mechanism such as ours only con-

tains information about accept/reject decisions. As is well understood, data on ac-

tions alone may not be sufficient for identifying all primitives of a dynamic discrete

choice model, and the payoff from a particular action in each state must be normal-

ized (Magnac and Thesmar, 2002). However, Aguirregabiria and Suzuki (2014) and

Kalouptsidi et al. (2015) point out that such normalizations may not be innocuous

because answers to some counterfactuals can be sensitive to the normalization used.

This fact poses a potentially serious problem for empirical analysis if one is interested

in answering questions that depend on primitives that are not identified from choice

data.

Fortunately, the counterfactuals involving changes in the mechanism are identified

under Assumptions 1 (iii) and 2(i). Intuitively, the trade-offs between accepting an

offer and waiting should only depend on payoffs relative to the value of not being

assigned. This quantity is defined by the differential equation

Oi (t ) = di (t) + 6i (t) Di (t ) +Us) (t )

and the terminal condition 0 (T) = Di (Ti) . Under Assumptions 1(iii) and 2(i),

this value of not being assigned does not depend on the waitlist. Therefore, measuring

Vi (t) and Fij (t) relative to Oi (t) should sufficient to analyze decisions and welfare

under the current and alternative mechanisms. Appendix 2.8.2 formally shows that

this is indeed the case.
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With this in mind, we normalize the net present value of refusing all offers in the

future, O (t), to zero at all t. It is straightforward to show that this normalization

implies that di (t) + 6, (t) Di (t) = 0 for all t and that Di (Ti) = 0. Equation (2.3)

now simplifies to

(p + 6i (t)) Vi (t) = A J rij (t) E max {0, Fij (t) - Vi (t)}I dF + 1i (t)

As can be seen, the advantage of this particular normalization is that the set

of primitives that need to be estimated is greatly reduced. We no longer need to

estimate the flow payoffs from remaining on the list or the net present value of

departing. Going forward, we interpret Fij (t) and Vi (t) as values relative to never

receiving an assignment.

The solution to differential equation above is

V (t; xi, ai) = J exp (-p (T - t)) p (T It; Xi, ai) (A wr (T; Xi, z, q) ' (T, xi, , z, 77) dFz,) dT,

(2.4)

where

p (Trt; Xi, ao) = exp - 6 (T'; Xi, ai) dT'

is the probability that agent i departs the list prior to T conditional on being on the

list at t and

(T, Xi, a , z, 7) = E max {0, F (T, Xi, ai, z, 71) + 8 ijt - V (T; xi, ao)}

is the incremental value to agent i of receiving an offer of an object with character-

istics (z, r) at time T, with expectations taken over Eijt. We have explicitly reintro-

duced agent and object characteristics into the notation because this equation will
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form the basis of our empirical strategy. This solution is based on the boundary

condition limtT, V (t; xi, ac) = 0 (Ti; xi, a2 ) = 0 because the probability of receiving

an additional offer vanishes as t -* Ti.

Discussion

In addition to the normalization, the simple form of the value function and the agent's

problem results from two key features of the model. First, the agent's decisions can

be seen as an optimal stopping problem because agents are removed from the list

once they obtain an assignment. That T is finite is inessential because an identical

expression holds for a boundary condition of the form limt, Vi (t) = 0 by setting T

in equation (2.4) to infinity. Learning about the likelihood of receiving future offers

or costs of considering an offer could also be incorporated within the framework

of an optimal stopping problem, but would significantly complicate the model and

subsequent analysis. We leave these extensions for future work.

Second, Assumptions 1-3 and the form of the mechanism together imply that

there are no unforeseen state transitions. Beliefs and payoffs only depend on time-

invariant characteristics (xi, ai) and a deterministically evolving state t. This may

not be appropriate in some sequential assignment settings, including the allocation

of deceased donor livers in which a patient's current health status also determines

priority. It may possible to use techniques in Arcidiacono et al. (2016) to extend

the model to incorporate stochastic changes in patient health status in a continuous

time model as long as these transitions are observed discrete state jump processes.

This modification would introduce incentives for waiting based on potential changes

in unobserved health-status, further complicating the analysis.
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2.4 Estimation

Equation (2.4) expresses the endogeneous value function V (t; xi, ai) as a solution to

a fixed point problem. The two leading techniques for estimating dynamic choice

models of this type are the conditional choice probabilities (CCP) approach (Aguirre-

gabiria and Mira, 2007; Arcidiacono and Miller, 2011; Hotz and Miller, 1993) and the

full-solution or nested fixed point approach (Miller, 1984; Pakes, 1986; Rust, 1987;

Wolpin, 1984). We employ the CCP approach because it affords a computationally

tractable estimator that allows us to use detailed knowledge of the mechanism. This

section begins by laying out our preferred approach and the empirical specification

before discussing alternatives in section 2.4.2.

2.4.1 A CCP Approach for Sequential Assignments

The primitives that we estimate are patient departure rates, 6 (t; xi); the distribution

of donor types, F,,; and transplant values F (t, Xi z, r). These primitives are esti-

mated in four steps, detailed below. First, we estimate departure rates offline using

observed patient departures. Second, we estimate conditional choice probabilities

from patient accept/reject decisions. We use these estimates and the Hotz-Miller

inversion to solve for b (T, xi, a, Z, 7) in equation (2.4). Third, we estimate the dis-

tribution of donor types, F, and offer probabilities, 7r, based on the set of donors

and priority score cutoffs observed in our data. In the final step, we recover trans-

plant values F (t, xi, z, rq) by solving for each patient's value function at each date by

evaluating equation (2.4).

There are two types of primitives that we do not estimate. First, our empirical

specifications abstract away from patient-level unobserved heterogeneity ai, and we

omit this term from the notation going forward. We are currently working on includ-
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ing this source of heterogeneity. However, since our dataset contains rich patient-

level information, including all covariates that influence priority on the waiting list

and several other payoff relevant characteristics, estimates without patient-level un-

observed heterogeneity are likely to be good approximations. Second, we set the

discount rate p to a fixed value of 5% per year. As is well known, time preferences

are not identified from observed choices alone in dynamic discrete choice models

(Magnac and Thesmar, 2002). We are currently assessing robustness of our results

to larger values of the discount rate.

Step 1: Estimating Departure Rates

A patient's continuation value on the waiting list depends on how long she can expect

to continue waiting before an exogenous departure. Our dataset contains information

on how long each patient is observed on the list without a transplant, and their reason

for departure. We can therefore construct a censored measure of the length of time

a patient would remain on the list without a transplant. Censoring occurs if the

patient is transplanted, or if she is still on the list at the end of the sample period.

These censored measures can be used to estimate departure rates independently of

payoffs because Assumption 2 implies that, conditional on patient characteristics,

departure from the list prior to assignment is exogenous.

We estimate a censored Gompertz proportional hazards model in which the rate

of departure takes the form

6i (t) = 6o (t) exp (xj,3), (2.5)

where 6o (t) is a baseline hazard function and xi are observed patient covariates. We

include the same set of patient covariates xi that we use in I'(-). The Gompertz
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hazards model assumes that

6o (t) = 61 exp(62 t)

which allows for the hazard rate to change with t. This parametric approach has the

advantage of allowing for a simple expression for the survival function p (TIt; Xi).

Step 2: CCP Representation and Gibbs Sampling

Consider the probability that agent i refuses an offer of kidney j at time t. Assump-

tion 1(i) implies that this probability is given by

Pi= G (V (xi, #j t) - F (xi, zj, 77, t)) ,

where G is the CDF of Eijt. This quantity is referred to as the conditional choice

probability (CCP) of refusing an offer, given xi, /J, zj, m5 and t. For now, assume

that Pijt is known. Proposition 1 of Hotz and Miller (1993) shows that for any known

distribution G that satisfies Assumption 1(ii), there is a known function V) such that

where the dependence of 0 on G has been suppressed for simplicity. Substituting

4 (Pijt) for 4 (T, Xi, a2, z, T) in equation (2.4), the value function can be re-written in

terms of the CCPs as

V (t; xj) = J exp (-p (T - t)) p (Trt; Xi) (A J 7ri (7) 4 (Pijt) dF) dT. (2.6)
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Therefore, if Pij can be estimated, the only remaining unknowns in this equation are

Irir (T) and F. We can then recover F (Xi, zi, 7, t), the value of a transplant, without

directly solving the integral equation (2.4).

In our application, we assume that Eij ~ N (0, 1) .22 The variance of this term

serves as our scale normalization. Further, we assume that F (-) is additively sepa-

rable in m and approximate

V (Xi, t) - F (Xi, zj, 95, t) x(Xi, zj, t) 0 + ij, (2.7)

where x (-) is a flexible set of functions with interactions. We include dummies in

xi and zi for categorical variables and piecewise linear splines for their continuous

elements, as well as linear splines in t. The bases in these categorical variables and

splines are interacted with each other. Donor unobserved heterogeneity is parame-

terized as m ~ N (0, o.), with a variance to be estimated.

Because agents make an accept/reject decision, they solve a binary choice prob-

lem. We estimate the parameters (0, or) using a Gibbs' sampler (McCulloch and

Rossi, 1994), which yields a posterior distribution with a mean that is asymptot-

ically equivalent to the maximum likelihood estimator (see van der Vaart, 2000,

Theorem 10.1 (Bernstein-von-Mises)). 23

Identification of these parameters is intuitive. The parameter 0 is identified by

based on the relationship between the covariates and the probability of acceptance.

The variance, a,, of the donor-specific unobservable is identified because many donors

2 2Therefore, G = <D is the CDF of the standard normal. This give us a simple expression for
evaluating 4 (Pijt) because in this case 0 (P) = <0 (<D-' (P)) - (1 - P) <b (P).

23 The Gibbs' sampler obtains draws of 9 and u, from a sequence of conditional posterior distri-
butions using a Markov chain given dispersed priors and an initial set of parameters (00, cr). The
invariant distribution of the Markov chain is the posterior given the prior and the data. Details
on the implementation, including burn-in procedures and convergence diagnostics, are in Appendix
2.8.2.
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have two kidneys offered to patients. The correlation between the number of offers

made for the first and second kidneys reveals the importance of unobserved donor

quality. If o is large, then conditional on the observables xi, zj, and t, an early

acceptance of the first kidney from a donor indicates that the second acceptance

should soon follow. In constrast, if a is small, then the position of the first accep-

tance should have little information about the second. The intuition is similar to

those for results on the identification of measurement error models (see Kotlarski's

theorem in Hu and Schennach, 2008; Rao, 1992).

Step 3: Simulating the Mechanism

With an estimate of (6, o ), our next objective is to use equation (2.6) to recover

IF (xi, zj, 77j, t; Oo) = V (xi, t; 9o) - X (xi, zj, t) 6o. To do this, we only need to estimate

the inner integral in equation (2.6),

W (Xi, t; 00) = fir (t; xi) 4' (Pijt) dF,

= E 1{fcij = I}I (s (t; zizj) > s*11xi, t

because p is fixed and we have consistent estimates of p (r; t, xi), 6 and A. Expec-

tations, in this expression, are taken over donor characteristics (z, q) drawn from F

and the cutoffs s*. The second equality is implied by the definition of 7rij (t) given

in Assumption 3.

We estimate this quantity by first determining the set of donors that patient i

would have been offered had the donor arrived when the patient had waited for t

periods. Recall from our discussion in Section 2.3.3 that an agent receives an offer

for object j if she is compatible cij = 1 and her priority score exceeds s . Therefore,
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we constuct the sample analog

1 J
(Xi, t; 0) = 1 {cjj = 1}1 s(t;x i,z) > s}P(Pi*t) (2.8)

j=1 jO

where the Pi3t is replaced with Pijt = G (x (Xi, zi, t) + 77j), and J indexes a donor

in our sample and the observed threshold priority for that donor, s. Knowledge of

the mechanism allows us to compare the patient's priority score, s (t; xi, zj), with

s* directly. Further, our dataset contains rich information on donor proteins and

patient immune system characteristics that allow us toaccurately determine whether

Cej = 1.24

It is worth emphasizing the importance of Assumption 3 in substituting the ex-

pectation with the sample average. Under a richer information set Fi,t (as defined

in equation 2.2) that conditioned on the history of offers received by a patient or

the configuration of the list, we would only be able to use the subset of donors that

were offered to a patient under exactly the same circumstances when calculating the

second approximation above. It is easy to see why this would restrict the sample

size and limit our ability to accurately estimate 7ij (t). Second, our model of beliefs

plays an important role in approximating the expectation in the expression above

with the sample analog. Specifically, it relies on the assumption that the beliefs

of agents do not depend on the history of observed offers. Therefore, the realized
24 A patient must be both blood type and tissue type compatible for a transplant to take place

(Danovitch, 2009). The allocation system requires patients to list unacceptable donor antigens, i.e.
donor protein types with which the patient's immune system is likely to react. The allocation system
runs a "virtual crossmatch" with these data, which we mimic. However, before transplantation a
crossmatch is conducted using blood from the donor and patient in case the virtual crossmatch
yielded a false result. We observe the rate of positive crossmatches in the data using instances where
a kidney was accepted because of a negative crossmatch, but the transplant did not occur because
the final crossmatch was positive. We use this conditional probability of a positive crossmatch
instead of 1 {cj = 1} in the expression above. Also, due to the possibility of false negatives in the
"virtual crossmatch," we sometimes observe an acceptance that does not result in a transplant.
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decisions of other agents are independent of i's presence and i's priority score. If our

belief structure conditioned on a finer information set, then a simple sample analog

would need to condition on the subset of histories where other agents' information

were unchanged. This is because any changes in the choices of other agents could

affect s*.

Theorem 1 in the Appendix 2.8.2 shows that, for each xi, t, ilV (Xi, t; 0) is a V J

consistent estimator of W (xi, t; 0o) under conditions formalized in Assumption 4, also

in Appendix 2.8.2. The main requirement is on the serial dependence of the value of

offers to a patient. Specifically, we require that the dependence of a potential future

offer on the organ that has arrived today diminishes with the time-horizon for the

future offer. The other conditions for the result are technical regularity conditions

on the primitives, and the use of a well-behaved estimator for 6 0.

Step 4: Estimating F

The final step recovers V (t; xi) and F (t, xi, zj, 71) . First, we estimate V (t; xi) for

every time t in the dataset when patient i received an offer. We substitute the sample

analog for 7ri (t) in equation (2.8) into equation (2.6). Then, we use the estimated

departures model for p (TIt; xi), and the observed donor arrival rate to estimate A.

Finally, the integral with respect to T is calculated numerically by evaluating the

integrand at a large number of points. Details of this procedure for computing

V (t; xi) are provided in Appendix 2.8.2. Once V (t; xi) is calculated, we recover F (-)

by inverting G:

F (t, xi, zj, qj) = V (t; Xj) - G-1 (V t)

This quantity can be calculated for any value of (t, xi, zj) .
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2.4.2 Discussion

Comparison with Full-Solution Approaches

An alternative to the CCP approach is to use a full-solution or nested fixed point

approach. The full solution approach would parametrize F (.) directly in terms of

Or, recover the value function by solving the fixed point in equation (2.4), and opti-

mizing a statistical loss function (e.g. maximimum likelihood) to obtain an estimate

Or. Compared to the CCP approach outlined above, the primary advantage of this

approach is to avoid directly parametrizing the (endogenous) difference in equation

(2.7), F (.) - V (.), in terms of x (-). Aside from the appeal of using an implied func-

tional form for V (.) that is consistent with the primitives, the approach also uses

the data more efficiently.

However, this full-solution approach is well known to be computationally bur-

densome when the state space is large (see Arcidiacono and Miller, 2011; Hotz and

Miller, 1993). The high dimensionality of the state space remains a problem in the

deceased donor allocation context despite the simplified model of beliefs. Specifically,

the simulation in equation (2.8) computes the compatibility and priority score for

each patient and donor using all the variables that enter the assignment mechanism

and detailed information about the immune response of a patient to each potential

donor. A full-solution or nested fixed point method would require us to separately

solve for the value function using equation (2.4) for each patient at every single offer.

Moreover, it would require such a solution to be computed for each guess of Or used

within the optimization routine.25

2 5Essentially no two patients are identical because the mechanism awards points whenever a donor
and a patient have overlapping antigens, and because immune responses to donors are idiosyncratic.
There are about 2.85 million offers in our dataset, making this problem extremely computationally
expensive. One approach to simplifying the problem, as done in our counterfactual analysis, is to
evaluate the value function for each patient on a discrete grid of times. Because we have just under
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The CCP approach avoids these complications and allows us to respect the de-

tails of the mechanism. The main cost is some loss in efficiency because we di-

rectly estimate the difference in equation (2.7), and parametrize this difference in

terms of the functions x (-). The latter cost is mitigated by using flexible functional

forms. Nonetheless, our implementation does impose some continuity across con-

tinuous states and limits interactions because a fully non-parametric approach is

prohibitive given the dimensionality of the state space.

Unobserved Heterogeneity

Our current empirical specifications omit the patient unobserved heterogeneity terms

aj. The main complication in relaxing this assumption is that unobserved hetero-

geneity may affect both departure rates 6i (t) as well as the conditional choice prob-

abilities. Such dependence would require us to estimate the hazard rates and choice

probabilities simultaneously. An approach by Arcidiacono and Miller (2011) could

be adapted to do so in the case when cz takes on discrete values. One may fur-

ther argue that unobserved heterogeneity may be time varying if unobserved patient

health is stochastic. Recent work by Connault (2016) provides a path forward in this

case under certain assumptions. We believe that abstracting away from unobserved

heterogeneity still yields useful results because our dataset contains a very rich set

of patient characteristics.

Our model does include donor-level unobserved heterogeneity through q. One

motivation for doing this is the pattern of sharply declining acceptance rates by

position documented in figure 2-1. The observable characteristics included in the

model do not explain all of this sharp decline or the composition of offers, especially

10,000 patients, even a grid with 100 points for each patient would require solving for approximately
1 million instances of the value function at each guess of Or.
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at lower positions on the waitlist. We will, however, compare model fit with and

without such unobserved heterogeneity in the next section.

2.5 Parameter Estimates

This section describes our estimates of patient departure rates, conditional choice

probabilities, the value function, and the value of transplantation.

2.5.1 Departure Rates

Table 2.6 presents estimates from hazard models of departures from the kidney wait-

list prior to transplantation. We estimated several specifications that involve different

parametric assumptions and sets of controls. Across specifications, we estimate an

increasing baseline hazard of departure, consistent with patients progressively be-

coming less healthy over time. Column (1) presents a Gompertz model with no

covariates. The estimated value of log (61) is -8.351 per day, and 62 = 3.6 x 10-4.

Column (2) presents a Weibull hazards model in which 60 (t) = 6t-1, showing quali-

tatively similar patterns. In column (3), we examine how patient covariates correlate

with departure rates when added to the baseline Gompertz model. Adding covariates

does not change the pattern of increasing baseline departure rates, but the estimates

reveal significant heterogeneity across patients. For example, diabetic patients de-

part at higher rates. Patients with blood type A are more likely to depart than

patients with blood type 0, perhaps because of better live donor transplant oppor-

tunities. Among pediatric patients, older patients are less likely to depart, perhaps

because they are better able to tolerate dialysis. However, as patients get older,

the departure rates begin to increase with age. Columns (4) and (5) estimate corre-
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sponding Weibull and Cox proportional hazards models with the same set of patient

covariates. Point estimates for these coefficients remain stable across assumptions on

the baseline hazards, including the non-parametric Cox proportional hazards model.

Figure 2-7 in the appendix compares the estimated survival curves from columns (3)

and (5) and shows that the Gompertz hazards model yields a survival curve that is

very similar to the non-parametric Cox proportional hazards model. We therefore

feel comfortable using the model in column (3) for our analysis.

2.5.2 Estimated CCPs

We estimated three specifications for the conditional choice probability of accepting

an offer. Our choice sample consists of all offers made to NYRT patients between

2010 and 2013, including those screened out by pre-set criteria set by a patient. All

specifications include the rich set of patient and donor observed characteristics sum-

marized in tables 2.1 and 2.2. The first specification includes all of these baseline

variables, but does not include donor unobserved heterogeneity (rI) or the state vari-

able time t. The second specification adds donor unobserved heterogeneity, and the

third specification adds waiting time interacted with a variety of characteristics. We

explain the choice of baseline characteristics, and then describe the estimates.

The baseline characteristics common across specifications, as well as linear splines

and interactions among these variables, were chosen by surveying the medical litera-

ture. Specifically, we use covariate and spline specifications from the KPSAM model,

which was used by the kidney allocation committee to predict the outcomes of vari-

ous allocation systems. 26 We also include any covariates that were part of the LYFT

26 We obtained the KPSAM module from the Scientific Registry of Transplant Recipients (SRTR),
which contains the specification of the KPSAM acceptance model. Our dataset contained all but
one of the variables used in that model. Visit https://www.srtr.org/requesting-srtr-data/
simulated-allocation-models/ for a description of the various simulated allocation models and
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model of Wolfe et al. (2008). Following KPSAM and our earlier observation that

donors from other DSAs are less desirable, we include interactions of donor and pa-

tient characteristics with whether the donor was recovered in NYRT. In addition,

we include patient-donor specific variables that capture match-specific heterogene-

ity, e.g. whether there are two DR antigen mismatches. We specify piecewise linear

splines for continuous covariates and interact them with a variety of indicator vari-

ables.

Table 2.7 presents select parameter estimates from the three specifications. Table

2.12 in the appendix shows the full set of estimated coefficients. The estimated

coefficients on observed donor characteristics are intuitive and fairly robust across

specifications. For example, offers from donors older than 50 years of age are less

likely to be accepted than offers from 35 to 50 year-old donors. Kidneys from younger

donors are even more likely to be accepted. These differences are larger for donors

recovered in NYRT. A perfect tissue type match is very desirable, much more so

than a young donor. Also intuitive are our estimates that offers of kidneys with

more antigen mismatches (A, B or DR) are less desirable and that regional and

national offers are less likely to be accepted.

In the second specification, the estimated standard deviation of donor unobserved

heterogeneity is 1.03. The implied change in acceptance rate from a one standard

deviation increase in r/ is therefore half the difference between a kidney recovered

inside NYRT and one recovered outside NYRT. The third specification shows that

acceptance rates fall rapidly with waiting time in the first few years before stabilizing

after year three. We will interpret this time path later when we discuss the value

function and values of transplantation.

Figure 2-3 describes the fit of these models. The first panel mimics the fit of

the procedure to request these modules.
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acceptance rates by position described in figure 2-1, but includes offers that did not

meet pre-set screening criteria. This panel shows that including donor unobserved

heterogeneity much better captures the sharp decline in acceptance rates. The first

specification does not even accurately capture the average acceptance rate across the

first 20 positions. Instead, it implies a steady decline as the composition of donor

observables changes moving down the list.27 The second panel of figure 2-3 describes

the fit of acceptance rates by time waited. Not surprisingly, the third specification

does the best job of capturing changes in acceptance rates over time.

Taken together, we feel comfortable with the fit of the CCPs in the third model

and use that as our preferred specification. All results that follow use estimates from

this specification.

2.5.3 Estimated Value Functions V and NPV of Transplan-

tation r-

Table 2.8 presents estimates of the projection of V and F on x (-) for our preferred

specification, which includes both donor unobserved heterogeneity and time waited.

The projection coefficients for both F and V are intuitive. For example, younger

donors are more valuable, and donors with antigen mismatches are less valuable.

Similarly, donors that were recovered outside NYRT are less desirable. We also see

that the value of a transplant decreases with waiting time. This rate of decline

grows rapidly during the first few years, and then stabilizes in a steady decline

after year three. One reason for this decline is that patient health deteriorates on

dialysis, making an eventual transplant less useful. The table also shows that there is

2 7It appears that previous approaches, including the KPSAM model, have arbitrarily truncated

the offer sequence for each donor by dropping all offers below a specific position on the list.

172



significant donor-level unobserved heterogeneity, equivalent to a standard deviation

of 1.25.

The units in these estimates are in terms of standard deviations of Eig in equation

(2.1). Therefore, they are indicative of probabilities of accepting or rejecting an offer

with given observed characteristics, but are not directly comparable across patients.

Sequential assignment mechanisms can re-assign offers from some patients to others.

Motivated by this fact, we convert the estimated values of the payoffs and value

functions into a measure of equivalent number of offers. Specifically, for each patient,

we calculate a multiplier that equals the marginal value of a one-time offer made to

an agent at the time of registration:

i = fP (cij = IIzj, xi) E max {0, F (0, xi, zj, 77j) + Eij - V (0; xi)} dF.

We then transform the payoffs Fij (t) and Vi (t) by dividing them by i.

We compute i for each patient by randomly sampling from the set of donors

that were procured within NYRT. This is the set of donors for whom the mechanism

could have been modified by NYRT's organ procurement organization through an

application to the OPTN. Moreover, donors from NYRT are usually preferable to

donors from outside NYRT, and are therefore more representative of an average

donor whose organs a patient would seriously consider accepting.

This transformation to Equivalent Offers (EO) treats the marginal value of an

average offer at the time of registration, given the current mechanism, equally for all

agents. Therefore, EO expresses all payoffs and values as a multiple of the marginal

value of an average offer at the time of registration. Differences in F across two

kidneys or patients or differences in V across two mechanisms in EO units is a

multiple of this marginal value. For small changes, the units approximate the number
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of average offers an agent is willing to forego in a trade-off between two kidneys or

two mechanisms. This feature makes EO similar in spirit to Equivalent Variation

at the time of registration, yielding a measure of payoffs that is interpretable across

agents for small changes in the environment.

Figures 2-4a and 2-4b present a more intuitive description of our estimates for

F in terms of EO. The plots show how the value of transplant varies across specific

patient and donor characteristics, holding all remaining characteristics fixed. Figure

2-4a shows that patients across all age groups prefer younger donors. However, the

relative value of a young donor decreases with patient age. A patient under the age

of 55 is willing to forego over 0.5 equivalent offers in order to obtain a kidney from a

30 year old donor as opposed to a 60 year old donor. This number is less than 0.4 for

a patient over the age of 65. This result is intuitive because older patients typically

have a lower remaining life expectancy after any transplant. Therefore, they place

less value on receiving an organ that is likely to function for a very long period of

time.

Similarly, Figure 2-4b shows that a kidney with a perfect tissue type match is

especially valuable to patients. Patients are willing to forego between five and ten

equivalent offers, depending on donor age, in order to obtain a kidney with no tissue-

type mismatches. This result is also intuitive because an organ with a perfect tissue-

type match is less likely to cause an adverse immune response, thereby increasing

the life-years afforded by the transplant.

2.6 Evaluating Design Trade-Offs

This section begins by outlining an equilibrium concept for counterfactual analysis

in which agents play optimal type-symmetric strategies and have consistent beliefs.
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This concept leads to a tractable procedure to compute equilibrium outcomes under

counterfactual allocation rules. We describe this procedure, and then present results

from alternative mechanisms.

2.6.1 Equilibrium Concept

We now define an equilibrium concept for counterfactual analysis. The concept is

intended to capture a large pool of agents waiting for offers and making optimal

decisions. Agents have type x E X, and objects have type z E (. For computational

reasons, we will treat X and ( as finite sets, but the definition is agnostic regarding

their cardinalities.

Agents follow type-symmetric accept/reject strategies, o : R x R+ - {0, 1},

indexed by x E X. The first element of the domain is the payoff of being assigned

a particular object, F, and the second element is time waited, t E R+. We exclude

strategies that depend on richer information because beliefs are restricted to satisfy

Assumption 3. Consistent with our approach during estimation, these beliefs will be

based on an equilibrium CDF of the priority score cutoff for each object type z E

denoted Hz : R -+ [0, 1].

We model the composition of the queue using a single steady state composi-

tion. A distribution over queue compositions would be extremely high dimensional,

making the equilibrium concept intractable. Specifically, the queue composition will

be governed by a probability density function, m, defined on the set X x [0, T] .28

This density governs the distribution of agents of each type and how long they have

waited. We write m (t) to denote the density on x x t. The length of the queue is

denoted by N.
2 8We assume that the density m is defined with respect to the Lebesgue measure on the Borel

sets formed from X x [0, T], where X is a finite set.
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Definition 1. A steady state equilibrium consists of an accept/reject strategy o-*,

beliefs r*, a queue size N*, and a probability measure m* such that the following

conditions hold:

1. Optimality: For each agent of type x E X and an offer with net present value

o0 (F, t) = 1{F ;> Vx (t; 7r*)} ,

where V (t; 7r*) is the net present value

following the strategy o after t.

for type x of declining the object and

2. Consistent beliefs: For each (t, x, z) ,

r* (t; x, z) = H,* (sx, (t)) x P (ci. = I Ix, z),

where H,* (s) is the probability that the object is available only to agents above

the score s if N* agents are drawn iid from m*, and they follow strategy o*.

3. Steady State: m* and N* satisfy the balance conditions

(a) For each x E X, m* (t) satisfies

rn% (t) = -mx (t) rx (t) and mx (0) oc -yx,

where '-y is arrival rate of type x, and rx (t) is the equilibrium departure

rate of type x at waiting time t.

(b) N* is the smallest value of N E N such that Ex - < N EZ,t m* (t) rx (t)

The first condition assumes that each agent makes optimal decisions at each point

in time given her beliefs, assuming that she continues to make optimal decisions in
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the future. The value from declining an offer is given by the Hamilton-Bellman-

Jacobi equation defined in section 2.3.3. The second condition imposes that agents

have correct beliefs for a large waitlist. It writes agent beliefs about future offers as

the product of the steady state distribution of cutoffs and exogenous compatibility

realizations. The cutoff distribution H,* is the distribution of cutoffs that arise when

agents use strategies -* and N* agents are drawn from a distribution governed by

m*.29 The final condition determines the composition of agent characteristics on the

list. The left-hand side in part (a) is the change in the density of agents of type

i who have waiting time t. The right-hand side term is the rate of departure for

those agents. Departures occur for both exogenous reasons and because agents are

removed from the waiting list once they are assigned. The strategy o-* and the offer

rate of objects, given by 7r*, determine the endogenous departures. The agent arrival

rate 72 is exogenous, and in the context of our application, it will only be positive

for agents with zero waiting time since patients begin to accumulate waiting time

once they enter the queue. Part (b) determines the equilibrium queue length. The

term Ex - is the total (exogenous) arrival rate of patients in the queue. This term

must not be larger than the total equilibrium departure rate. The total equilibrium

depature rate is the product which is the of the queue length and the departure rate

for the average patient, Ez mx (t) rx (t). The condition imposes the constraint that

N* is an integer.

2.6.2 Computing Equilibria

We compute equilibria using an algorithm that iteratives between computing the

value function and optimal deicisions, and the steady-state of the waitlist. A de-

29 1n contrast with a direct continuum approximation with no aggregate uncertainty, this specifi-
cation allows for H.* to be non-degenerate.
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tailed description with expressions for each step of the procedure and pseudocode is

provided in Appendix 2.8.3. The following discussion provides a simplified descrip-

tion of the key steps.

In addition to the primitives, the algorithm uses a discrete time grid t to, ... , t, t1+ 1 , ... , T,

an abitrary initial beliefs wr 0 , and a sample of patients and donors as inputs. An equi-

librium is computed by iterating through the following steps for k > 1:

1. Compute the value function Vk (t), given beliefs 7rk-1, via backwards induction:

V7 (t1 ) exp (-p(T - t 1))pi (Tti) A rk-1 (t; x, z) 1E max {V (tl+1) , F (T; x, z) + E dF

The inner integral in the above expression is approximated by sampling a subset

of donors. This calculation also yields patient departure rates Kk (t).

2. Compute the queue composition mk via forward simulation:

i(t1) OC _Yx exp - K' (T') d-r' dT.

3. Compute -rk (t; x, z), which is the probability that an agent of type x is offered

an object of type z using the queue composition and the accept/reject strategies

o- F(, t) = I F; Vk (t).

4. For step k > 1: Terminate if the change in value functions and queue length/compositions

between iterations - sup 1 V (t1) - xfk- (t1) , sup m (Li; x) - m- 1 (t) , -

Nk-1 - are uniformly below a right tolerance level. If these conditions are not

satisfied, repeat steps 1-4.

If this algorithm terminates, the resulting accept/reject rules yield an equilibrium

(up to the threshold tolerance). Because the equilibrium we compute may not be
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unique, we tried different starting values for r0. Our experiments at the estimated

parameters do not indicate that multiplicity is a concern.

To keep the computational burden manageable, the results we present below are

based on a type space given by a random sample of 500 patients and donors drawn

from our dataset. Further, we discretize time into quarter-years.

2.6.3 Results on Alternative Mechanisms

As mentioned earlier, a new deceased donor organ allocation system was adopted

in December 2014. The mandate of the kidney committee, as laid out by the U.S.

Department of Health and Human Services, was to find mechanisms that balanced

the goals of providing equitable outcomes for patients, efficiently using available or-

gans, and minimizing organ waste. This section compares three mechanisms aimed

at achieving each of these goals. We also compare the mechanisms to the two mech-

anisms used prior to and following the 2014 re-design.

Following the design parameters considered by the kidney allocation committee,

our exercises focus on sequential offer mechanisms in which patients and surgeons

may refuse an offer. 30  One justification for this restriction is to respect patient

and doctor discretion. Additionally, we restrict attention to mechanisms that use a

scoring rule si3 (t) to order patients waiting for a transplant and break ties uniformly

at random among patients with the same score. This is the class of mechanisms for

which the algorithm described above can be used to compute an equilibrium.

We consider the following five mechanisms:

1. Pre-2014: This mechanism was used during our sample period and will be
300ur examination of the meetings of the kidney allocation committee indicate that they did

not consider alternatives in which doctors were mandated to accept particular organs, or in which
rejections were in any way penalized.
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the point of reference for comparing other mechanisms.

2. Post-2014: In December 2014, the kidney allocation mechanism switched to

a system that awards greater priority to patients that are extremely difficult

to match. This change was motivated by the idea that these patients have

few opportunities for transplantation and are likely to accept most organs.

Therefore, giving them additional priority could reduce overall organ waste in

addition to achiving equitable outcomes for sensitized patients. Additionally,

patients with the top 20% of predicted post-transplant survival probabilities

are given priority for organs in the lowest quintile of graft failure risk. The

primary motivation is to offer high-quality kidneys to patients that are likely

to benefit from them most.

3. Random Order: One concern of the kidney committee has been to maintain

a transparent and procedurally fair offer system. A natural candidate for such

a system is one that randomizes the order of patients each time a donor arrives.

In this mechanism, we set si (t) = 0 for all i, j, and t. When the waiting list is

long, this system also has the potential advantage of incentivizing patients to

accept more offers because they may be at the bottom of the queue when future

organs arrive. Another natural candidate, which we are working on, resembles

a first-come first-served system that only prioritizes patients according to how

long they have waited.

4. Hard-to-match: Partly due to fairness considerations, the reforms prioritized

patients that were very hard to match. An extreme version of this is to adopt

a system in which priority is solely determined by immune sensitization. This

system is likely to reduce waste because highly sensitized patients should accept
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offers even with relatively high priority. These patients also have fewer options

for receiving a living donor transplant. In this mechanism, we divide patients

into 10 equally sized bins based on their CPRA, setting si3 (t) to 10 for those

in the highest bin and 1 for those in the lowest bin.

5. Match Value: The final mechanism attempts to maximize efficiency by using

a greedy waitlist procedure. For each donor, it divides patients into 10 equally

sized bins based on our estimated Fij (t). si3 (t) is set to 10 for those in the

highest bin and to 1 for those in the lowest bin.

Figure 2-5 and table 2.9 show our results. The figure shows that the 2014 reforms are

predicted to do little in terms of improving patient welfare. However, it is predicted

to slightly decrease kidney discard rates. The directions of these effects are theo-

retically ambiguous, since some patients received higher priority while others receive

lower priority post-reform. In contrast, random order and mechanisms that prioritize

patients that are hard to match substantially decrease kidney discard rates but at

signifcant costs to patient welfare. The mechanism that prioritizes patients based

on match value performs better than either the pre- or the post-2014 mechanism in

terms of patient welfare and discard rates.

Table 2.9 describes the allocations in greater detail. Panel A shows the effects for

all patients while panels B and C show the effects for adults younger than and older

than age 55, respectively. The table shows that the change in overall value is corre-

lated with the observed characteristics of donors allocated through the mechanism.

For instance, Match Value results in the allocation of donors that are similar on the

primary observed dimensions as the post-2014 priorities. However, panels B and C

shows that the mechanism allocates more desirable donors as measured by age, head

trauma, or hypertension to younger patients. The pre- and post-2014 mechanisms
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are very similar to each other in these dimensions. On the other hand, random or-

der and priorities for hard-to-match patients are less likely find the highest-benefit

patient for each donor, and lead to lower patient welfare.

2.7 Conclusion

Although the deceased donor kidney allocation system was reformed in 2014, there

is much scope for improvement. The previous design process was assisted by a

simple simulation model that did not account for the dependence of accept/reject

rules on agents' incentives. This paper develops an empirically tractable method

for estimating the value of various assignments in dynamic assignment systems and

shows how to compute equilibria of counterfactual mechanisms. Our preliminary

results show that there exist mechanisms that both improve match quality and reduce

organ waste. Both the pre- and post-2014 reforms are worse on these dimensions.

These techniques and insights are more broadly applicable. Many resources, in

addition to deceased donor organs of all types, are rationed via sequential offer mecha-

nisms or waitlists. Previous theoretical approaches have not provided sharp guidance

on how to organize these waitlists. The scope for empirical work on improving these

systems is large and unexplored.

In ongoing work, we are exploring the comparison these mechanisms to a socially

optimal assignment and finding mechanisms motivated by the resulting allocations.

We are also working on comparing the predictions from our optimal stopping based

approach to naive calculations in which the decision rules are not sensitive to the

waitlist mechanism. Finally, we are working on comparing the predicted transplants

from our approach to comparing the pre-2014 mechanism to the post-2014 mechanism

with the observed outcomes in recent years.
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Table 2.1: Patients Characteristics

Patient Stocks, Arrivals, and Departures

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Panel A: Patient Stocks

January 1, 2010 January 1, 2011 January 1, 2012 January 1, 2013

Number of Patients 4018 4252 4481 4632

Years on List 2.00 1.81 2.20 1.84 2.27 1.88 2.37 1.94

Years on Dialysis 3.24 3.64 3.32 3.76 3.23 3.73 3.24 3.62

Prior Transplant 14.7% 35.4% 14.3% 35.1% 14.1% 34.9% 13.9% 34.6%

Current Age 53.6 13.4 54.0 13.3 54.0 13.4 54.1 13.4

Calculated Panel Reactive Antibodies (CPRA) 9.6% 25.8% 11.0% 26.8% 13.2% 29.1% 14.2% 30.1%

Body Mass Index (BMI) at Arrival 27.8 5.9 27.5 5.7 27.7 6.0 27.9 5.8

Total Serum Albumin 4.0 0.6 4.0 0.6 4.0 0.6 4.1 0.6
Diabetic Patient 39.7% 48.9% 39.9% 49.0% 40.0% 49.0% 40.4% 49.1%

Body Mass Index (BMI) at Arrival 27.8 6.0 27.9 5.9 27.9 6.0 28.0 5.9

On Dialysis at Arrival 76.1% 42.6% 73.5% 44.1% 71.3% 45.3% 69.6% 46.0%

Panel B: Patient Arrivals and Departures

Year 2010 Year 2011 Year 2012 Year 2013

Number of Patients Arriving 1434 1563 1549 1353

Number of Patients Departing 1145 1274 1325 1278

Age at Departure 54.3 15.4 54.6 15.0 54.7 15.2 54.3 15.0

CPRA at Departure 9.7% 25.6% 11.4% 26.8% 12.8% 28.4% 13.5% 29.6%

Years on Dialysis at Departure 3.49 3.76 3.61 3.74 3.50 4.00 3.33 3.76

Panel C: Departures by Reason

Received Deceased Received Live Donor Died or Too Sick to Departed for Other
Donor Transplant Transplant Transplant Reason

Number of Patients 2141 1009 1091 781

Years on Dialysis 4.04 3.90 1.13 2.19 4.60 4.01 3.43 3.72

Years on Waitlist 3.08 2.21 0.93 1.11 3.05 2.07 2.85 1.93

Age at Departure 54.3 15.2 47.7 15.4 61.5 12.2 53.7 14.1

Notes: 9,917 patients were active on the NYRT waiting list at some time between January 1st, 2010 and December 31st, 2013. Panel A contains statistics
for patients registered in NYRT on January 1st of each calendar year. Panel B contains statistics for patients who joined the NYRT waiting list (arrivals)
and who were removed from the waiting list (departures) during each calendar year. Panel C classifies departures by reason. "Departed for Other Reason"
includes transfers to non-NYRT transplant centers and miscellaneous departure reasons. Patients who received transplants at a non-NYRT center are
included in the Received Deceased Donor Transplant and Received Live Donor Transplant categories.
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Table 2.2: Donor Characteristics

Donors

All Any Kidney(s) Discarded Last Offer Category

Yes No Local or Perfect Non-Local, Some
Tissue Type Match Tissue Type Mismatch

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Panel A: Donors Recovered in NYRT, By Number of Organs Allocated or Category of Last Offer
Number of Donors Per Year 196 44.75 151.25 161 35
Median Number of Offers per Donor 27.0 496.0 15.0 14.0 1217.5
Number of Offers per Donor 431.3 1422.0 1472.7 2662.0 123.1 341.6 72.5 136.6 2081.4 2822.5
Number of Kidneys Transplanted per Donor 1.55 0.78 0.35 0.48 1.90 0.42 1.81 0.51 0.35 0.73
Donor Age 43.4 17.8 56.0 14.2 39.7 17.1 41.0 17.0 54.6 17.4
Cause of Death -- Head Trauma 26.1% 44.0% 11.7% 32.3% 30.4% 46.0% 29.3% 45.6% 11.4% 31.9%
Cause of Death -- Stroke 43.1% 49.6% 60.9% 48.9% 37.9% 48.5% 39.6% 48.9% 59.3% 49.3%
Diabetic Donor 13.8% 34.5% 25.1% 43.5% 10.4% 30.6% 10.6% 30.8% 28.6% 45.3%
Hypertensive Donor 37.2% 48.4% 60.9% 48.9% 30.2% 46.0% 31.8% 46.6% 62.1% 48.7%
Expanded Criteria Donor (ECD) 29.7% 45.7% 58.1% 49.5% 21.3% 41.0% 23.3% 42.3% 59.3% 49.3%
Donation after Cardiac Death (DCD) 9.1% 28.7% 12.3% 32.9% 8.1% 27.3% 8.7% 28.2% 10.7% 31.0%
Donor Creatinine 1.3 1.5 1.5 1.2 1.3 1.6 1.2 1.4 1.8 1.9

Panel B: All Donors, By Number of Organs Allocated or Category of Last Offer 00
Number of Donors Per Year 1465.75 906.75 559 201.25 1264.5
Median Number of Offers per Donor 725.0 1200.0 239.0 15.0 987.5
Number of Offers per Donor 1617.3 2560.9 2196.6 2990.7 677.7 1123.7 87.6 160.6 1860.8 2677.0
Number of Kidneys Transplanted per Donor 0.75 0.90 0.21 0.41 1.64 0.76 1.76 0.54 0.59 0.84
Donor Age 48.0 18.5 52.6 15.7 40.6 20.2 41.1 17.2 49.1 18.4
Cause of Death -- Head Trauma 19.2% 39.4% 15.4% 36.1% 25.4% 43.6% 28.3% 45.1% 17.8% 38.2%
Cause of Death -- Stroke 48.1% 50.0% 55.1% 49.7% 36.8% 48.2% 40.0% 49.0% 49.4% 50.0%
Diabetic Donor 20.4% 40.3% 25.0% 43.3% 12.8% 33.5% 10.3% 30.4% 22.0% 41.4%
Hypertensive Donor 53.6% 49.9% 63.1% 48.3% 38.3% 48.6% 33.2% 47.1% 56.9% 49.5%
Expanded Criteria Donor (ECD) 44.7% 49.7% 54.5% 49.8% 28.8% 45.3% 23.5% 42.4% 48.0% 50.0%
Donation after Cardiac Death (DCD) 12.6% 33.2% 13.9% 34.6% 10.4% 30.6% 9.3% 29.1% 13.1% 33.8%
Donor Creatinine 1.5 1.3 1.6 1.2 1.5 1.5 1.2 1.3 1.6 1.3

Notes: Panel A consists of all deceased kidney donors (784) recovered in NYRT and offered to NYRT patients between January 1st, 2010 and December 31st, 2013. Panel B
includes all donors (5,683) offered to NYRT patients during the same period, including donors recovered outside NYRT. Offers exclude cases in which the donor did not meet the
patient's pre-determined criteria for acceptable donors, or in which the patient was bypassed by the waitlist system due to operational considerations that did not involve an active
choice by the patient or her surgeon.



Table 2.3: Rates of Receiving and Accepting Offers

Offers to NYRT Patients

Number of Offer & Acceptance Rates Life Years From Transplantation
Patients (LYFT)

All Donors NYRT Donors Perfect Tissue Type Match All Donors

Annual Rate % Accepted Annual Rate % Accepted Annual Rate % Accepted Mean Offered Mean Accepted

Panel A: All Offers

All 9917 218.4 0.15% 40.1 0.73% 0.094 10.6% 5.30 6.16

Peak CPRA < 0.80 8864 234.5 0.10% 42.8 0.49% 0.093 9.3% 5.29 6.07

Peak CPRA >= 0.80 1053 83.1 1.03% 17.3 4.39% 0.103 15.8% 5.60 6.31

Panel B: Offers that Met Screening Criteria

All 9917 104.1 0.34% 23.5 1.35% 0.051 21.8% 4.89 6.16

Peak CPRA < 0.80 8864 112.3 0.22% 25.1 0.89% 0.049 19.7% 4.86 6.07

Peak CPRA >= 0.80 1053 35.8 2.51% 9.8 8.11% 0.068 29.0% 5.38 6.31

Panel C: Offers Within the First 10 Positions that Met Screening Criteria

All 9917 0.8 25.38% 0.8 26.68% 0.021 48.3% 7.32 8.32

Peak CPRA < 0.80 8864 0.8 15.79% 0.8 16.61% 0.019 51.1% 7.57 8.89

Peak CPRA >= 0.80 1053 0.9 44.10% 0.9 46.24% 0.038 43.6% 6.83 7.93

Notes: there were 2,850,572 offers made to NYRT patients between January 1st, 2010 and December 31st, 2013. Panel C restricts to the first 10 NYRT patients in each donor's
offer sequence. An offer Met Screening Criteria if the offer satisfied a patient's pre-determined criteria for acceptable donors. "Annual Rate" columns report annual offer rates
computed by patient and then aggregated across patients. "Offered" and "Accepted" columns report average characteristics across offers or accepted offers. Peak CPRA is the
highest level of Calculated Panel Reactive Antibodies (CPRA) recorded for each patient during the period of study.
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Table 2.4: Evidence on Mismatch

Match Characteristics

Patient Age Patient Age Patient Age Patient Age Patient Age
0-17 18-34 35-49 50-64 65+

Share of Patient Population 2.2% 11.1% 27.2% 41.5% 18.0%

Share of Deceased Donor Transplants 4.7% 9.6% 26.1% 41.9% 17.7%

Share of Ideal Donor Transplants 6.7% 9.8% 26.6% 39.8% 17.1%

Panel A: Outcomes of all Patients

Received Deceased Donor Transplant 47.9% 19.2% 21.3% 22.4% 21.9%

Received Live Donor Transplant 19.4% 18.6% 11.5% 8.9% 6.5%

Still Waiting 28.9% 48.6% 50.4% 48.8% 44.0%

Died or Too Sick to Transplant 1.9% 4.1% 6.8% 12.9% 20.0%

Departed for Another Reason 1.9% 9.5% 10.1% 7.0% 7.6%

Panel B: Donor Age and Quality

Donor is Ideal 97.0% 70.2% 69.7% 64.9% 66.2%

Donor Age 0-17 23.8% 14.6% 7.2% 4.3% 4.5%

Donor Age 18-35 73.3% 37.6% 26.7% 17.3% 12.9%

Donor Age 35-49 3.0% 30.2% 34.9% 28.7% 17.7%

Donor Age 50-64 0.0% 16.6% 29.2% 42.1% 52.0%

Donor Age >= 65 0.0% 1.0% 2.0% 7.6% 12.9%

Panel C: Donor Age, Ideal Donors

Donor Age 0-17 23.5% 17.4% 9.5% 5.8% 5.6%

Donor Age 18-35 73.5% 38.9% 23.7% 17.2% 11.2%

Donor Age 35-49 3.1% 26.4% 33.9% 22.5% 14.7%

Donor Age 50-64 0.0% 16.0% 30.6% 45.1% 51.8%

Donor Age >= 65 0.0% 1.4% 2.3% 9.4% 16.7%

Panel A sample is all NYRT patients on the waiting list between January 1st, 2010 and December 31st, 2013.
For other panels, the sample is NYRT patients who received deceased donor transplants between 2010 and
2013. An ideal donor has no history of diabetes; had a non-cardiac death; has creatinine below 3; and is
Hepatitis C negative.
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Table 2.5: Acceptance Rate by Past Offer Rates

Dependent Variable: Current Offer Accepted

All Offers Ideal Donors NYRT Donors

(1) (2) (3) (4) (5) (6) (7) (8)

Time Since Last Offer (Years) 0.0372 0.00227 0.00217 -0.000324 -0.00948
(0.00875) (0.00787) (0.00786) (0.00505) (0.00663)

Time Since Last Two Offers (Years) 0.00646
(0.00880)

Time Since Last Five Offers (Years) 0.0151
(0.0118)

Time Since Last Offer, Including Inactive Periods 0.00421
(0.00514)

Last Offer Donor Age -0.00000369
(0.00000304)

Last Offer from Diabetic Donor -0.0000854
(0.000116)

Last Offer from Expanded Criteria Donor -0.000174
(0.000116)

Last Offer from Donation after Cardiac Death 0.00000289
(0.000119)

Variables Affecting Priority X X X X X X X

Patient Characteristics X X X X X X X

Donor and Match Characteristics X X X X X X X

Listing Center Fixed Effects X X X X X X X

Observations 2793098 2831262 2831262 2821641 2793098 2831262 1083686 526233

R-squared 0.098 0.097 0.097 0.099 0.098 0.099 0.133 0.116

Mean Acceptance Rate 0.15% 0.15% 0.15% 0.15% 0.15% 0.15% 0.25% 0.73%

Mean Time Since Last N Offers 0.005 0.005 0.005 0.005 0.005 0.005 0.012 0.023

S.D. Time Since Last N Offers 0.016 0.016 0.011 0.008 0.019 0.016 0.028 0.048

Notes: estimates from a linear probability model of offer acceptance as a function of the patient's recent offer history. Time Since Last N Offers measures the average
number of years since the patient's previous offers, averaged over their last N offers. Time Since Last Offer, Including Inactive Periods counts inactive days as well as active
days on the waitlist. Column (1) considers all offers and includes no controls for current offer characteristics. Columns (2) - (8) control for current patient, donor, and match
characteristics. Column (6) includes controls for donor characteristics of the patient's previous offer. Column (7) restricts to offers from ideal donors, and Column (8)
restricts to NYRT donors. Controls are as described in the notes for Table 5. An ideal donor has no history of diabetes; had a non-cadiac death; has creatinine below 3; and is
Hepatitis C negative.
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Table 2.6: Survival Model Estimates

Patient Survival Model Coefficient Estimates

No Controls With Controls
Gompertz Weibull Gompertz Weibull Cox

(1) (2) (3) (4) (5)

Diabetic Patient

Bloodtype A Patient

Bloodtype 0 Patient

Zero cPRA

cPRA > 80

Age (at Registration)

Age - 18 if Age>=18

Age - 35 if Age>=35

Age - 50 if Age>=50

Age - 65 if Age>=65

Prior Transplant

Body Mass Index (BMI)

Missing BMI

BMI >= 18.5

BMI >= 18.5

BMI >= 30

Total Serum Albumin

Missing Total Serum Albumin

Total Serum Albumin >= 3.7

Total Serum Albumin >= 4.4

On Dialysis at Listing

Log(Days on Dialysis at Lising)

Constant -8.322
(0.0285)

188
-10.71
(0.159)

0.294
(0.0386)

0.160
(0.0523)

0.0976
(0.0457)

0.0933
(0.0507)

-0.260
(0.0775)

-0.00476
(0.0255)

0.00966
(0.0298)

-0.00252
(0.0126)

0.0193
(0.00865)

0.0320
(0.0102)

-0.0216
(0.0641)

-0.0109
(0.00757)

0.339
(0.230)

0.0888
(0.138)

-0.0587
(0.0575)

0.0383
(0.0698)

-0.242
(0.0650)

-0.849
(0.222)

-0.0623
(0.0696)

0.121
(0.0602)

-0.813
(0.0767)

0.124
(0.0110)

-7.546
(0.496)

0.290
(0.0385)

0.157
(0.0523)

0.0872
(0.0457)

0.102
(0.0508)

-0.214
(0.0769)

-0.0103
(0.0255)

0.0135
(0.0296)

-0.00376
(0.0126)

0.0219
(0.00864)

0.0327
(0.0102)

0.0308
(0.0636)

-0.0120
(0.00757)

0.275
(0.230)

0.0521
(0.138)

-0.0521
(0.0575)

0.0372
(0.0697)

-0.248
(0.0650)

-0.791
(0.222)

-0.0543
(0.0696)

0.121
(0.0602)

-0.859
(0.0768)

0.126
(0.0111)

-9.984
(0.517)

0.300
(0.0384)

0.165
(0.0524)

0.0889
(0.0457)

0.103
(0.0507)

-0.212
(0.0770)

-0.0145
(0.0255)

0.0193
(0.0296)

-0.00649
(0.0125)

0.0246
(0.00864)

0.0331
(0.0102)

0.0463
(0.0637)

-0.185
(0.102)

-0.112
(0.0445)

-0.0538
(0.0453)

-0.249
(0.0420)

-0.0240
(0.0456)

-0.868
(0.0766)

0.124
(0.0110)

Constant (delta(2)) 0.000347 0.000418
(0.0000188) (0.0000206)

Constant (delta) 0.313 0.350
(0.0153) (0.0157)

Observations 9917 9917 9917 9917 9917



Table 2.7: Conditional Choice Probability Estimates (select co-efficients)

Conditional Choice Probability of Accepting an Offer

Calculated Panel Reactive Antibody (CPRA)

Log Years on Dialysis at Registration

Donor Age < 18

Donor Age 18-35

Donor Age 50+

Expanded Criteria Donor (ECD)

Donation from Cardiac Death (DCD)

Perfect Tissue Type Match

2 A Mismatches

2 B Mismatches

2 DR Mismatches

Regional Offer

National Offer

Non-NYRT Donor, NYRT Match Run

Log Waiting Time (years)

Log Waiting Time Over 1 Year

Log Waiting Time * Over 2 Years

Log Waiting Time * Over 3 Years

NYRT Donor * Donor Age < 18

NYRT Donor * Donor Age 18-35

NYRT Donor * Donor Age 50+

Patient Age * Donor Age < 18

Patient Age * Donor Age 18-35

Patient Age * Donor Age 50+

Patient Age - 35 if Age >= 35 * Donor Age 18-35

Patient Age - 35 if Age >= 35 * Donor Age 50+

Donor Unobservable Std. Dev.

Idiosyncratic Shock Std. Dev.

Acceptance Rate

Number of Offers

Base Specification

(1)

0.32 (0.07)

-0.08 (0.01)

0.46 (0.13)

0.76 (0.17)

-1.13 (0.35)

-0.17 (0.02)

-0.12 (0.03)

2.45 (0.32)

-0.02 (0.02)

0.01 (0.02)

-0.09 (0.02)

-1.00 (0.06)

-1.15 (0.05)

0.94 (0.02)

-0.01

0.12

-0.26

-0.01

-0.02

0.03

0.02

-0.01

1.00

(0.07)

(0.05)

(0.04)

(0.00)

(0.01)

(0.01)

(0.01)

(0.01)

Unobserved Heterog.

1.03

1.00

0.150%

2840937

(2)

0.24

-0.09

0.06

0.09

-0.64

-0.50

-0.44

2.96

-0.02

-0.03

-0.10

-2.22

-2.43

1.78

0.35

0.28

-0.38

-0.01

0.00

0.01

0.00

0.01

(0.23)

(0.09)

(0.01)

(0.21)

(0.24)

(0.43)

(0.07)

(0.08)

(0.44)

(0.02)

(0.03)

(0.02)

(0.17)

(0.11)

(0.05)

(0.20)

(0.13)

(0.11)

(0.00)

(0.01)

(0.01)

(0.01)

(0.01)

1.25

1.00

0.150%

2840937

(0.24)

0.150%

2840937
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Waiting Time + UH

(3)

0.09 (0.13)

-0.09 (0.01)

-0.04 (0.20)

-0.09 (0.27)

-0.58 (0.47)

-0.53 (0.08)

-0.52 (0.07)

2.95 (0.46)

-0.03 (0.02)

-0.03 (0.03)

-0.10 (0.02)

-2.42 (0.19)

-2.64 (0.12)

1.94 (0.06)

-0.18 (0.06)

-0.02 (0.07)

-0.24 (0.13)

0.17 (0.12)

0.37 (0.22)

0.27 (0.17)

-0.45 (0.12)

0.00 (0.00)

0.01 (0.01)

0.01 (0.01)

-0.01 (0.01)

0.01 (0.01)



Table 2.8: Estimated Value of Waiting and Transplantation (select co-efficients)

S.D. Idiosyncratic Shock

S.D. Donor Unobserved Heterogeneity

S.D.

S.D. Within Donor

S.D. Between Donors

190

1.00
1.25

2.62

1.63

2.05

1.13

Notes: coefficients and standard deviations are reported in reported in Standard
Deviations of the Idiosyncratic Shock. Specification includes waiting time
predictors and donor unobserved heterogeneity.

Calculated Panel Reactive Antibody (CPRA)

Log Years on Dialysis at Registration

Donor Age < 18

Donor Age 18-35

Donor Age 50+

Expanded Criteria Donor (ECD)

Donation from Cardiac Death (DCD)

Perfect Tissue Type Match

2 A Mismatches

2 B Mismatches

2 DR Mismatches

Regional Offer

National Offer

Non-NYRT Donor, NYRT Match Run

Patient Age

Patient Age - 18 if Age >= 18

Patient Age - 35 if Age >= 35

Patient Age - 50 if Age >= 50

Patient Age - 65 if Age >= 65

Log Waiting Time (years)

Log Waiting Time * Over 1 Year

Log Waiting Time * Over 2 Years

Log Waiting Time * Over 3 Years

NYRT Donor * Donor Age < 18

NYRT Donor * Donor Age 18-35

NYRT Donor * Donor Age 50+

Patient Age * Donor Age < 18

Patient Age * Donor Age 18-35

Patient Age * Donor Age 50+

Patient Age - 35 if Age >= 35 * Donor Age 18-35

Patient Age - 35 if Age >= 35 * Donor Age 50+

Value of a
Transplant

4.02

-0.30

0.49

0.83

-1.35

-0.53

-0.51

2.73

0.02

0.05

-0.05

-2.80

-3.02

2.03

0.18

-0.29

0.15

-0.06

-0.09

-0.33

0.83

-0.01

4.54

0.17

0.18

-0.66

-0.01

-0.02

0.03

0.01

-0.02

Patient Value
Function

0.74

-0.41

0.22

-0.22

0.04

-0.01

-0.21

-0.74

-0.45

-0.25

0.01



Table 2.9: Outcomes from Various Mechanisms

Reduction in Average Life

Mechanism Steady State Fraction Years From
Queue Size Discarded Transplanta

tion

Pre-2014 Priorities 5953 0.0% 5.13 0.83 0.90 -0.07 1.82 0.11 0.56
Post-2014 Priorities 5984 -0.1% 5.17 0.55 0.61 -0.07 1.82 0.11 0.56
Random Order 4154 8.6% 7.57 -0.45 -0.25 -0.20 2.66 0.23 0.48
Hard-to-match 4461 6.9% 7.60 -0.43 -0.17 -0.25 2.47 0.20 0.49
Match Value 4898 5.2% 5.64 1.07 1.20 -0.13 2.33 0.17 0.51
Optimal 4911 3.2% 7.39 0.19 0.39 -0.19 2.14 0.16 0.53
Optimal (no fit) 4375 6.9% 7.83 -0.03 0.13 -0.16 2.49 0.21 0.49
Pre-2014 Priorities [Naive] 7032 -7.4% 6.24 0.36 0.07 0.28 1.14 0.06 0.64
Post-2014 Priorities [Naive] 7044 -7.4% 6.16 0.22 -0.06 0.29 1.14 0.06 0.64
Random Order [Naive] 7154 -8.6% 8.70 0.45 0.11 0.34 1.03 0.05 0.65
Hard-to-match [Naive] 6743 -8.3% 10.93 -0.03 -0.37 0.34 1.06 0.06 0.65
Match Value [Naive] 7363 -9.1% 5.69 2.18 1.82 0.36 0.98 0.05 0.65
Optimal [Naive] 6767 -7.8% 8.71 0.59 0.30 0.30 1.10 0.06 0.64
Optimal (no fit) [Naive] 6780 -8.1% 9.24 0.72 0.44 0.28 1.08 0.06 0.64

Pre-2014 Priorities 5953 0.0% 17.88 2.85 2.80 0.05 15.77 0.97 0.56
Post-2014 Priorities 5984 -0.1% 18.86 2.64 2.60 0.04 16.58 1.01 0.56
Random Order 4154 8.6% 14.76 0.54 0.53 0.01 6.42 0.56 0.48
Hard-to-match 4461 6.9% 14.77 0.48 0.48 0.00 5.76 0.47 0.49
Match Value 4898 5.2% 15.43 2.62 2.57 0.04 6.62 0.49 0.51
Optimal 4911 3.2% 16.87 1.91 1.88 0.04 13.25 0.99 0.53
Optimal (no fit) 4375 6.9% 16.85 2.19 2.15 0.04 8.37 0.70 0.49
Pre-2014 Priorities [Naive] 7032 0.0% 16.32 3.96 3.90 0.07 6.11 0.32 0.64

Post-2014 Priorities [Naive] 7044 0.0% 16.28 3.94 3.89 0.05 4.76 0.25 0.64



Figure 2-1: Acceptance Rate by Position
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Note: Sample is offers made to NYRT patients between 2010 and 2013, excluding
offers that did not meet a patient's pre-set donor screening criteria. Positive cross-
matches are counted as acceptances. The shaded region represents pointwise 95%
confidence intervals around the mean.
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Figure 2-2: Waiting Time by Position
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Note: Sample is offers made to NYRT patients between 2010 and 2013, excluding
offers that did not meet a patient's pre-set donor screening criteria. The black line

plots the mean waiting time among offered patients in each position group.
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Figure 2-3: Model Fit

(a) Fit by position
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Figure 2-4: Value of Transplant by Donor Age

(a) Patient Age
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Figure 2-5: Mechanism Comparisons
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2.8 Appendix

2.8.1 Data Appendix

Data Description

Our data on patients, donors, transplants, and offers are based on information sub-

mitted to the Organ Procurement and Transplantation Network (OPTN) by its mem-

bers. The main dataset on the waitlist is the Potential Transplant Recipient (PTR)

dataset, which contains the sequences of offers made to patients on the deceased

donor kidney waitlist, their decisions, and their reasons for refusal. Detailed informa-

tion on patient characteristics, donor characteristics, and transplant outcomes come

from the Standard Transplantation Analysis and Research (STAR) dataset. UNOS

also provided supplemental information for our analysis, including the ordering of

distinct match runs conducted for the same deceased donor; the transplant centers

of donors and patients in our dataset; and dates of birth for pediatric candidates,

who joined the waitlist before turning 18 years of age.

The data contain unique identifiers that allow us to link the offer and acceptance

data to patient and donor characteristics. Each deceased donor has a unique identi-

fier. Similarly, each patient registration generates a unique patient waitlist identifier.

Because patients may move to different transplant centers or be registered in multiple

centers simultaneously, some individual patients have multiple waitlist id's. Where

appropriate, we de-duplicate offers so that each patient can receive at most one of-

fer from each donor. The patient history file also contains a unique patient record

identifier corresponding to a particular state of the patient on the waitlist, including

the patient's CPRA, activity status, and pre-set screening criteria. Each offer in the

PTR dataset contains the identifiers for the donor, the patient registration, and the
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patient history record that were used in the match run.

The PTR dataset contains all offers made to patients on the deceased donor

kidney waitlist. Information include identifiers for the donor, patient, and patient

history record that generated the offer; the order in which the offers were made; each

patient's acceptance decision; and if the offer was not accepted, a reason for rejecting.

Each offer record also contains certain characteristics of the match, including the

number of tissue type mismatches.

The STAR dataset contains separate files on deceased donor characteristics, pa-

tient characteristics and transplant outcomes, and patient histories. The patient and

donor characteristics from these tables are used to estimate our models of acceptance

behavior, departure rates, and life years gained from transplantation (LYFT). We

also use these characteristics to replicate the mechanism and determine each patient's

compatibility with and priority score for each deceased donor in our sample.

Sample Selection

This section explains the selection of patients, donors, and offers used in our struc-

tural model. We consider patients who were registered in NYRT and actively waiting

for a deceased donor kidney between January 1st, 2010 and December 31st, 2013.

Our donor sample includes all U.S. deceased kidney donors whose organs were allo-

cated according to the standard mechanism. Our offer sample includes valid offers

from all deceased donors to NYRT patients during this period recorded in the PTR

data, as well as offers that were not made because of pre-specified screening criteria.

The next section discusses our replication of the offer mechanism, which we used to

determine offers that were refused through these screening criteria, as well as the

waiting time each patient would need to have access to each compatible donor. The
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remainder of this section discusses the details of how we selected our samples of

donors, patients, and offers that met screening criteria.

Because NYRT patients may be offered donors from across the U.S., our proce-

dure first constructs a nationwide sample of deceased donors, patients, and offers that

meet our sample criteria. We then restrict the sample to NYRT and omit certain

donors and patients who received non-standard treatment in the mechanism.

Our U.S. sample of deceased kidney donors comes from the intersection of donor

identifiers in the PTR and STAR deceased donor files. Patients were active on

the deceased donor kidney waitlist after 2010 and were not jointly registered for a

pancreas transplant. Patient registration date and activity status were determined

from the patient history file. We also exclude patients who departed the waitlist for

reasons which indicate that they did not ultimately need a transplant. We exclude

patients who were transplanted in another country, whose condition improved, or

who could no longer be contacted. These departure reasons are recorded in the

STAR patient and transplant outcome dataset.

We then determine which offers were valid and could have been accepted by

and transplanted into the patient; patients' acceptance decisions; and the resulting

priority score cutoffs in each match run.

We first exclude offers that are not valid. In certain cases, patients are bypassed

when a donor is allocated to a specific recipient outside of the standard allocation

rules. This can occur if the donor is an armed service member; if the donor specified a

particular recipient (directed donation); if there is a medical emergency or expedited

placement attempt; or if organ sharing among DSAs generates a "payback" in which

one DSA allocates a kidney from another DSA as if it were recovered in its own service

area. There are also cases in which a patient is offered a tissue type incompatible

donor, or a donor that did not meet the patient's pre-specified screening criteria. We
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identify these cases using a refusal reason code provided in the PTR data. In some

cases, there is also text specifying specific circumstances justifying a rejection, which

we parse to identify invalid offers in cases where the refusal code does not provide

a specific reason. Finally, some offers are refused due to technological constraints if

the patient needs a specific organ laterality or requires multiple simultaneous organ

transplants. We do not consider these cases to be genuine refusals, and omit them

from the offer dataset.

Next, we created an algorithm to de-duplicate offers and acceptances within and

across match runs, and to determine the true priority score cutoff for each donor in

each match run. For some donors, multiple match runs are conducted, and these

match runs can include offers to overlapping sets of patients. A specific kidney (e.g.

the left kidney) may also be accepted in multiple match runs. Finally, a patient can

have multiple offers recorded from the same donor, even in the same match run. Our

algorithm assumes that later match runs take precedence over earlier ones (using the

match run numbers provided by OPTN), and that the last observed match run in

which an organ is placed takes that organ out of circulation for subsequent match

runs. After de-duplication, there were 11,428,540 offers nationwide that met patient

screening criteria. The U.S. sample contains 30,079 donors and 226,000 patients.

We then implement the sample restrictions for NYRT. We consider all patients

who were registered in NYRT and had active status sometime between January 1st,

2010 and December 31st, 2013. At this stage, we exclude patients who received

a transplant through non-standard allocation rules. This includes cases of medical

urgency, an expedited placement attempt, a multi-organ transplant, or a military

or directed donation. 68 patients were excluded because they received deceased

donor kidney transplants for these reasons, leaving 9,917 patients in our NYRT

sample. We also exclude the donors whose organs were placed according to these

200



reasons, even if the organs were allocated to non-NYRT patients. The NYRT offer

sample contains valid offers from the sample of deceased donors to the sample of

NYRT patients. There are 1,281,024 such offers. These offers and patient acceptance

decisions determine the priority score cutoff in each match run for each donor's

available organs.

Replicating the Mechanism, Offer Dataset

Knowledge of the mechanism allows us to determine the set of offers that were

declined through pre-set screening criteria, as well as the waiting time required for

a particular patient to have access to a particular donor. These are essential for

correctly modeling patient acceptance behavior and transplant opportunities under

the current and counterfactual mechanisms. We wrote compute code to replicate the

standard deceased donor kidney allocation rules in place between January 1st, 2010

and December 31st, 2013.

For each deceased donor and match run, the algorithm begins with all concurrent

patient waitlist history records. It first determines which patients are incompatible

with the donor due to their blood type and tissue type match. We use blood type

and human leukocyte antigen (HLA) equivalence tables followed by the OPTN, as

well as the donor's HLA antigens and the current unacceptable antigens listed by

each patient. Next, we check whether the donor met each patient's screening criteria.

Finally, we determine the priority score of each patient given their CPRA, waiting

time, geography, age, and number of HLA and DR mismatches with the donor. Given

the priority score, we can calculate whether the patient was above the priority score

cutoff for the donor. We can also determine the amount of additional waiting time

(which may be infinite) after which the patient's priority score would exceed the
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donor's cutoff.

From the simulation, we obtain a set of offers predicted by our simulation of

the mechanism. These are pairs of donors and patients where the patient met the

priority score cutoff and was blood and tissue type compatible with the donor. Some

of these offers met the patient's screening criteria, while others did not. Those that

did should appear in the PTR data. This provides a check on the performance of our

mechanism code. Table 2.17 tabulates offers appearing in our filtered PTR data and

those predicted by simulation. The vast majority of offers in the PTR data (93.1%)

were predicted by our simulation. However, a substantial fraction of offers predicted

by the simulation (29.6%) are not in our PTR offer sample.

Tp estimate the patient acceptance model, we take as our offer sample the union

of the PTR offer dataset and the set of offers that the simulation predicts were filtered

due to the patient's screening criteria but which would otherwise have appeared in

the PTR data. In a final step, we de-duplicate offers at the patient level, since a

patient registered at multiple centers will occasionally receive multiple offers from the

same donor. The final offer sample contains 2,850,572 offers: 1,267,531 PTR offers,

and 1,583,041 predicted offers that were "screened out." The fTR offers include the

88,366 offers that were not predicted by our simulation but which appear in the PTR

data, and exclude the 502,239 offers predicted by the simulation but which did not

appear in PTR. Offers that were screened out are interpreted as rejections since the

patient deemed the donor's characteristics unacceptable.

To calculate patient value functions, we store all compatible patient and donor

pairs, including patients who did not meet the donor's priority score cutoff.
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Imputing Missing Donor DR Antigens

A donor's HLA antigens are needed to determine tissue type compatibility with

transplant candidates as well as kidney points, which are in turn essential for repli-

cating the mechanism. A limitation of our data is that we only observe a donor's

DR antigens if one of their kidneys or pancreas was transplanted into a patient. In

this case, they appear in the KIDPAN (patient/transplant) dataset. If no organs

were placed, a donor's antigen information is recorded in the deceased donor file for

kidney/pancreas donors. The deceased donor file lists the donor's HLA antigens at

the A and B loci, but not at the DR locus.

We either obtain or impute a donor's missing DR antigens from two sources. First,

some deceased donors had a liver, lung, or part of their intestine transplanted even

though their kidneys and pancreas were not transplanted. The equivalent transplant

files for these additional organs are part of the STAR dataset, and we take the donor's

DR antigens directly from those files.

Second, for deceased donors who had no organs transplanted, we use the reported

number of DR mismatches in the PTR offer dataset to impute the donor's DR anti-

gens. Because we observe all patients' HLA antigens, the number of DR mismatches

between a donor and patient is informative about the donor's antigens. For example,

if a donor-patient pair has zero DR mismatches, the patient's tissue type limits the

donor's antigens to a few possibilities." A two DR mismatch pair also restricts the

donor's DR antigens, though less so than a zero mismatch. Since deceased donors

"In the zero DR mismatch case, the donor may not share the patient's exact DR antigens because
of HLA equivalences. Some distinct HLA proteins are equivalent in the sense that a patient with
one DR antigen may desensitize it to several DR antigens. UNOS publishes HLA equivalence
tables for measuring HLA mismatches, and a separate table for equivalent unacceptable antigens.
Furthermore, even ignoring equivalences, a zero DR mismatch donor could be homozygous at the
DR locus.
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whose organs are not transplanted are usually offered to many patients, we can

combine information across all offers to make an educated guess of the donor's DR

antigens.

We use the following imputation algorithm. For each donor without DR antigen

information, we take all of the donor's offers in the PTR data. Based on these offers,

the recorded number of DR mismatches, and the patient's DR antigens and listed

unacceptable antigens, we calculate a score for each DR antigen that the donor might

have. We dock one point from a DR antigen's score for each PTR offer it contradicts

in the following cases:

* The offer has zero DR mismatches, and the antigen is not equivalent to one of

the patient's DR antigens

" The offer has two DR mismatches, and the antigen is equivalent to one of the

patient's DR antigens

" The antigen was listed as unacceptable by the patient

For each donor, we take the two DR antigens with the highest scores. Ties are broken

in favor of the antigens that appear most frequently among donors for whom DR

antigens are recorded.

Life Years From Transplantation (LYFT)

This section describes the methodology used to estimate Life Years From Transplan-

tation (LYFT), a measure of the medical benefits, in terms of quality-adjusted life

years, provided by a deceased donor kidney transplant. We follow the methodology

of Wolfe et al. (2008) and define LYFT by the following formula:
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LYFT = 1.0 * (Median Survival With Functioning Graft)

+0.8* (Median Survival After Graft Failure)

-0.8 * (Median Survival Without Transplant)

LYFT compares a patient's predicted survival with and without a kidney trans-

plant, weighing years with a functioning kidney more highly than years without one.

The comparison is in terms of median predicted survival time in each possible state.

See Wolfe et al. (2008) for a discussion of alternative definitions.

Following Wolfe et al. (2008), we estimate three survival models: (1) survival of

a patient who remains on the deceased donor kidney waiting list; (2) survival of a

patient after receiving a deceased donor kidney transplant; and (3) survival of the

functionality of a transplanted deceased donor kidney. From each survival model,

we can predict the median survival time for any patient or patient-donor pair. This

allows us to construct LYFT for any patient-donor pair.

The rest of this section discusses our implementation of the LYFT measure. We

discuss how to construct median survival times from a Cox proportional hazards

model; describe the specification of the survival models, including sample and co-

variate selection; and describe how the survival curves are extrapolated when data

are limited.
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Estimating Median Survival Times

Our survival models use a Cox proportional hazards specification, allowing a flexible

baseline hazard as a function of time and proportional effects of covariates on the

hazard rate:

A(x, t; #) = ho(t) exp x'O

where A(x, t;,3) is the predicted hazard rate, x are covariates such as patient

and donor characteristics, t is the number of years since the beginning of a spell

(in our case, joining the waiting list or receiving a kidney transplant), and ho(.) is

a flexible baseline hazard function. Given an estimate of / and characteristics x,

median survival beginning at t = 0 is tmed(x; /) such that

SO(tmed(x;/3)) = 0.5expx'

where So(t) = exp (- f' ho(t)dt) is the baseline survival function. Therefore

median survival time can be written as

tmed(x; 3 ) = S' (0.5;x'

Implementation of Cox Proportional Hazards Models

We estimated the Cox proportional hazards models in STATA using the stcox com-

mand. This section describes sample selection, covariate selection, and the definition

of survival time for each model.

The sample for the waiting list survival model consists of all patients registered

for a kidney transplant in the UNOS system between 1988 and 2014, for a total of
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519,624 spells. The patient data contain mortality information for patients who died

while still registered on the waiting list, and also from the Social Security Death

Master File (SSDMF) for patients who departed the waiting list before death. The

SSDMF records all patient deaths through 2011 but is incomplete thereafter. The

beginning of a spell is defined as a patient's registration date, and the end of a spell

occurs when a patient departs the waitlist. Waitlist survival time is censored if the

patient departed the waitlist for a reason other than death, or at the end of 2011

(whichever occurred first). The sample for the graft and post-transplant survival

models consists of all patients who received a deceased donor kidney transplant

between 1988 and 2011, for a total of 153,479 (154,363) spells. Each spell begins

at the time of transplantation, and ends when the graft fails or the patient dies.

Survival times are censored at the end of 2011.

Covariates were chosen as in Wolfe et al. (2008). These variables are a subset of

those used in our structural model and are specified in the same way here. Covariates

in the waitlist survival model include patient characteristics at listing that predict

health status: diabetes status, CPRA at registration, whether the patient received

a previous transplant, dialysis time at registration, patient age at registration, body

mass index, total serum albumin, and blood type. We also include indicators for the

registration date in five-year intervals to account for technological changes over time

that led to improved survival for dialysis patients.

For the graft and post-transplant survival models, we include patient and donor

characteristics at the time of transplantation, as well as characteristics pertaining

to the match. Patient characteristics at transplantation include patient age, waiting

time, CPRA, diabetes status, body mass index, and total serum albumin. We also

include indicators for a previous transplant, dialysis time at registration, blood type,

and whether the patient was also on the pancreas waiting list. Donor characteristics
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include donor age, cause of death, gender, creatinine level, hypertensive status, and

an expanded criteria donor (ECD) indicator. Match characteristics include the num-

ber of A, B, and DR mismatches; geographic match; and blood type compatibility;

interactions between geography and donor age, and geography and number of HLA

mismatches; interactions between zero HLA mismatches and geography, patient age,

and CPRA; interactions between patient waiting time and geography, patient age,

and CPRA; and interactions between patient and donor age. We also include indi-

cators for the date of transplantation in five-year intervals to account for improved

post-transplant survival over time.

Table 2.14 displays coefficient estimates from each of the three Cox proportional

hazards models. Coefficient estimates generally go in the expected direction - for

example, diabetic and highly sensitized patients have lower survival rates both on

the waiting list and after transplantation. Younger donors, local donors, and perfect

tissue type matches predict longer post-transplant survival. In addition, falling coef-

ficient estimates on the time period indicators show that overall, survival rates have

been improving over time both on the waiting list and after transplantation.

Survival Curve Extrapolation

The mapping from a patient-donor pair's hazard ratio, exp x', to predicted median

survival time depends on the baseline survival curve So. However, for some covariate

values with low hazard ratios, predicted median survival times exceed the range of the

baseline survival curve that can be estimated from the data. We therefore extrapolate

the baseline survival curve for each model out to 40 years, parameterizing the log

survival probability as a linear function of time:
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log(So(t)) = at

Figure 2-8 compares the baseline survival curves from the model to the extrap-

olated curves. For each survival model, the parameter a is estimated by ordinary

least squares using the baseline survival curve in the range of survival times observed

in the data.

Construction of Median Survival Times and LYFT

For each estimated survival model, we construct a fine grid of hazard ratio values

r = exp x'3 and calculate the median survival time for each value r given the baseline

survival function So. With this grid, we can map any covariates x to the closest

hazard ratio r and the corresponding median survival time, tmed(X; p). To predict

median continued survival without a transplant at the time of a kidney offer, the offer

date must be taken into account, since the baseline hazard function in the waitlist

survival model depends on the patient's total time on the waitlist. In other words,

we must condition on the fact that the patient has already survived for s years on

the waitlist. Median survival on the waitlist, tmLd(X, s; ,) is therefore a function of S

and given by the formula

exp{log So(tW' (X, s;3)) - log So(s)} = 0.5expx'3

We construct an inverse map from r to median survival time at a grid of waiting

times s E 0, 100, 200, ... , 5000. When we calculate LYFT for a particular match x and

patient waiting time s, we round the hazard ratio and waiting time to the nearest

values in this grid. Letting tGd(x; 3) denote graft survival and tTXa(x; ) denote

post-transplant survival, the final LYFT formula is

209



LYFT(x, s; 3) = 1.0*tTXd(x; 0.)-.2*max[0, tTXd(X; )--tGR (x; 0)] -0.8*tLd(x, s; /3)

2.8.2 Estimation

Normalization

In this section, we show that the model described in Section 2.3.3 yields the same

decision-rules as a model in which di (t) + 62 (t) Di (t) = 0 and the net present value of

a transplant is fij (t) -0O (t) . To do this, the next proposition first derives implication

on any assignment rule.

Proposition 1. Let pij (t) be the conditional probability that i is assigned object j

given that j arrives in period t. Let V (t; p) be i's value of the assignment rule p.

1. For any assignment rule p, Fij (t) - Vi (t; p) =f 7i (t) - (t; p) where f7iX (t) =

1i7 (t) - O (t) and

(p+ 6(t)) i (t;p) = A pij (t) (fii (t) - (t;p)) dF + Vi (t;p)

with boundary condition 1Vi (T;p) = 0.

2. For any two assignment rules p and p', V (t; p) - Vi (t; p') = i (t; p) - (t; p')

Proof. Part 1: First, we verify that i (t; p) = V (t; p) - O (t) satisfies the differential

equation above. Note that

(p + 6 (t)) Vi (t;p) = di (t) +6i (t) Di (t) + A Jp23 (t) (Fi (t) - Vi (t;p)) dF + i (t;p)
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Therefore,

V (t;p) - O (t) = AI pi (t) (f i (t) - (Vi (t; p) - O (t))) dF + ( (t; p) - O (t)) .

Hence, W (t; p) satisfies the necessary differential equation. It is straightforward to

check that' 1 (Ti; p) = Oi (T) = Di (T) showing that the solution with the boundary

condition i (Ti; p) = 0 satisfies the requirements of the proposition.

Part 2: Observe that

(t; p) - (t; p') A pij (t) (Fij (t) - (t; p)) dF + 1 (t; p) - 1 (t; p')

= A pij (t) (vi (t) - W (t; p)) dF + i (t; p) - Vi (t; p')

=Vi (t; P) - Vi (t;ip').

Refer to the model with O (t) = 0 for all t and the related value function i (t; p)

and the payoffs fi (t) as the normalized model. Part 1 shows that the normalized

model also yields Fri (t) - (t; p) as the difference in the value of acceping j relative to

the value waiting if one expects assignments according to p. In particular, the result

holds for pij (t) = rir (t)1 {F2 (t) - (t) > 0}. Therefore, the normalized model

yields an identical choice rule and value function relative to no assignment.

Part 2 shows that the normalized model yields an identical difference in value

functions between any two assignment rules as the original model. This is useful for

evaluating both alternative mechanisms as well as for solving for equilibria. To see

this, consider any action space At and strategy o-i (t; j) -+ At. The action space need

not be binary and may depend on time. For example, to consider a counterfactual
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with multiple wait-lists we can define the action set as the choice of list at birth and an

accept/reject decision thereafter. As the notation indicates, each action can depend

on the currently offered object, if any. As long as the analyst can then evaluate the

assignment rule pij (t; -) as a function of the strategy profile a = (o-, O-i), the result

says that the normalized model can be used to determine the difference in values.

To solve for equilibria, we would need to evaluate deviations (i, o-_i) and compare

Vi (t; p (ox, Ou-)) - Vi (t; p (ai, a-i)) - i (t; p (oi, Ohi)) - 1Ki (t; p (ail ali))

To identify the value function relative to the current mechanism, we would need

to compute

Vi (t;p(o)) -- Vi (t; P) = i (t; p (a*)) - Vi (t; A)

where P denotes the assignment probabilities under the factual mechanism and p (-*)

denotes the equilibrium assignment probabilities in an equilibrium of the counterfac-

tual mechanism.

Details on the Estimator

Gibbs' Sampler

The sampler is initialized at any value of 00, a0 and guesses for r and yg9 corre-

sponding to observed decisions such that yjt > 0 if and only if agent i accepted

object j in period t. We then sample from the conditional posteriors and draws of y
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given the previous draws. The sampler iterates through the following sequence

y8+1|S a;

?+71 y,+l 0

as+l s+1 ~s+1

a-8+1 Is+1

where the conditioning on the priors and the observables is implicit, ys and 77' are

vectors with components y, and qj, and yj+1 is a vector that stacks ysti across all

it. The first two steps involve data augmentation to simplify the sampling problem

of the key parameters in the next step. Each of these steps involves draws from

a closed-form distribution if the prior distribution on o, is specified as an inverse-

Gamma distribution and the prior for 0 ~ N (0, EO) . With these priors, the first

step involved sampling from a truncated normal, the second and third steps involve

sampling from a normal distribution and the final step involves sampling from an

inverse-Gamma.

Computing the Value Function

Numerical integration using. 400 draws from exponential distribution. from to to T.

Re-use draw for any other t and reweight.

Given t, for each patient i, we compute the value of continuing is given by equation

(2.6). Using equation (2.8), the sample analog of the value of continuing is given by

Vi (t) = A exp(-pT)p(T +tlt;xi 1W (xi,T +t; ) dT.
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We numerically approximate this integral. First, we re-write Vi (t) as follows:

Vi (t) = A T exp (-p (T - t)) p (Trt; Xi) - E 1 {cij = 1} 1 {s (T; Xi, zj) > s}4 ') (Pj-r) dT
j=1

I J Ti
-A-j 1 {cI = 1} exp (-p (T - t)) p ( It; Xi) 1 {s (T; xi, zi) > s*} IV (PjrT) dT

j=1 i

1 Ti
A 1 1 {cij = I I exp (-p (T - t)) p (r t; Xi) 0 (PiT) dr,

j=1 -ijt

where rjj = inf T > t : s (T; xi, zj) > s}*, with Tit = T if s (T; xi, zj) < s* for all

7< Ti.

For each i and j, we approximate the integral above using B = 40 equally spaced

points q = b for b = 1, ... , B on the unit interval. Let Tb - F- (qb; p, TibT)B + I
where F (A; p, rI, T) is the cumulative distribution function of an exponential ran-

dom variable with parameter p that is truncated between Tijt and T. We therefore

compute the value function as

i (M = 1 {cj, = 1} - Ip (TrtIt; Xz) Tib (j .
P j=1 B =1 Pjj

This procedure ensures that there are B points of evaluation for each possible donor

and patient-time pair. The numerical performance is superior to an alternative that

approximates the integral in equation (2.6) as a sum over a fixed set of draws because

some patient, donor, time combinations may have a very small window of availability,

[Zrjt ITi]

214

.1 1-T- -- - I - "Mm"W"W"Mr-, I 1_1



Auxiliary Models

Positive Crossmatch Probability

Not all accepted offers result in transplantation. Even after a provisional acceptance,

additional testing may yield a positive crossmatch indicating that the patient is likely

to reject the donor's kidney. These transplants are not executed, and if possible

the organ is placed with another patient. To compute patient value functions and

conduct counterfactual simulations, we must account for positive crossmatches. We

therefore estimate a probit model to predict probability that a patient has a positive

crossmatch with an organ they have accepted. We include as predictors interactions

between the patient's CPRA and the number of HLA mismatches with the donor.32

Coefficient estimates and standard errors are displayed in Table 2.13. Higher CPRA

is associated with a higher positive crossmatch probability, as are more DR or HLA

mismatches. In addition, CPRA and tissue type matches interact: high CPRA

patients have an additional benefit, in terms of the normal index, from fewer HLA

mismatches. This is intuitive: patients with more sensitized immune systems may

be more likely to test positive against foreign antibodies, even if they have not tested

positive in the past.

Maximum Number of Offers

Our data contain cases in which one of a donor's organs is discarded before being

offered to all compatible patients. This usually occurs for two reasons. First, the

organ may become unsuitable for transplantation if it remains outside donor's body

for too long. Second, the organ may be accepted by a patient in another OPO. We call
32 Using a predictive model in counterfactuals assume that test results are not manipulated, and

therefore would follow the same distribution under counterfactual mechanisms. Conversations with
transplant surgeons support this assumption.
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these events "timeouts." Timeouts are driven by a combination of unobserved factors,

including whether the organ remained in the donor's body during the offer process;

the rate at which offers were made, which depends on patient/surgeon response times;

the kidney's rate of physical deterioration once outside the body; and decisions of

patients outside NYRT.

We model the maximum number of offers that can be made for a given donor

using a censored exponential hazards model. Duration is the number of observed

offers that met pre-specified screening criteria. Censoring occurs if a donor's organs

are placed, or if they are discarded after being offered to all compatible patients.

The hazard function is given by

A, (z) = A, exp (z3) (2.9)

where z are characteristics of the donor, 3 is a vector of coefficients, and AO is the

constant baseline hazard rate. We allow the timeout hazard to depend on geography

and indicators of donor quality. Specifically, we control for whether the donor is an

expanded criteria donor (ECD); the donor's cause of death (DCD); and whether the

donor was recovered in NYRT, as well as interactions among these variables. The

estimated timeout hazards are inputs to the structural model.

Consistency of W (xi, t; 6)

We now show that W (Xi, t; $) is a consistently estimates the quantity

W (Xi, t; H) ,ri (t) (PitZ) dF

=Hj,,7, (s (t; xi, Z)) IP (cij = 11|zj, xi; 0) 0 (xi, Z, 17, t; 0) dFz,,7-
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To do this, we need to introduce some notation. Define

gj (0) =IP (ci = Izj, xi; O) (xi, z, 7u, t; 0) 1 {s (t; xi, z) > s}.

For a vector x = (XI, .. . , XK) , we write X (IX , .. . , XK -

Finally, we index objects according to the order in which they arrive in our sample.

Therefore, (zj, iq) denotes the observed and unobserved characteristics of the j-th

donor that arrived. Therefore, the data on (z3 , i5, s;) generates a sequence of object

arrivals.

We make the following assumptions on g9 (0):

Assumption 4. (i) (zj, mq) is drawn i.i.d. with cdf F

(ii) gj (0o) is weakly stationary33 with E|_ gm < oc, where Cov (gj (0) , gj-k (00))

7k.

(iii) Oj is \/]Z-consistent, i.e.($J - 0) 0 (J-1/2)

(iv) There exists an m (z) with finite second moments, such that |g (zj; 0) - g (zj; 0') <

mn (zj) - 10 -- O'|.

Part (i), in our empirical context, assumes that the characteristics of the donor

are drawn independently each time a donor arrives. Part (ii) assumes that, at 00,

the offers and their values for any given patient type xi, at any given time t, fol-

lows a weakly stationary process. That is, the covariance in these values across any

two donors falls as they are further apart in the sequence. Given part (i), the only

potential source of dependence between g3 (0o) and gk (0) is that the characteris-

tics of donor j may affect the state of the waitlist for donor k because of patient

decisions. However, we expect that this dependence to fall as these donors become

3 3The process {g3 } is weakly stationary if (i) E [gj] does not depend on j, and (ii) CoV (gj, gj-k)
exists, is finite and depends only on k, and not j.
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further apart in their arrival sequence. Part (iii) assumes that Oj is consistently es-

timated at a rate that is at least as fast as the square-root of the number of donors.

These parameters govern the conditional choice probabilities and the probability of a

crossmatch failure at biological testing. Part (iv) is a regularity condition, assuming

that g (zj; 0) is Lipschitz continuous at each z, with a sufficiently bounded second

moment. Proposition 2 shows that this property is satisfied under more primitive

conditions stated in Assumption 5.

We now show that for each xi, t,W = 0g (0) is a V7 -consistent estimator

of W (xi, t; 0) under this assumption.

Theorem 1. Fix xi, t. If Assumption 4 is satisfied, then

W (Xi, t; 00) gj (0) = 0 (j-1/2)
j=1

Proof. For each xi, t, Assumption 4(i) implies that

E [gj (0o)] = Pc (zj, xi; Oo) 'b (xi , zj, ij, t; Oo) 1 {s (t; xi, zj) > s}

= E [pc (z, Xi; 0) ? (Xi, zj, qj, t; 90) E [ {s (t; xi, zj) > s, z} , zq

= E [ pc (zj, xi; 6O) 'b (xi, zj, nj, t; Oo) Hzj,,q (s (t; xi, z3))zj, qj

= W(Xi, t; 60) ,

where the equalities are a result of the law of iterated expectations, and the definitions

of Hj,,, (s) and W (xi, t; 6O) .
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Because W (xi, t; 0) = E [gj (0o)], Chebychev's inequality implies that,

(Xi, t; 0) -
1
-7

Var .1 g (0))
gj (00) > <

j=1

Assumption 4(i) and Proposition 6.8 in Hayashi (2001) implies that

(1
lim Var 7E g (0) = K.

Therefore, we have that

W (xi, t; 0) - 1 J
S=1

g, (0) = 0p (J-1/2) .

Lemma 1 implies that

W (xi, t; 0o) -
1 J

j=z1

= Op (j-1/2) 1

as requirements (i) and (ii) of Lemma 1 are part of Assumption 4(iv), requirement

(iii) is equivalent to Assumption 4(iii), and requirement (iv) is proved in equation

(2.10). El

Fix xi, t. Suppose that (i) g (z; 0) is Lipschitz continuous for each

zj with the Lipschitz constant m (zj) E R K i. e. Ig (z ; 0) - g (3 ; 0)1

10 - OoI, (ii) m (zj) has finite second moments, (iii) Oj - 0o = O, (J-1/2) , and (iv)

$E g (zj; 0o) - E [g (zj; 00)] =O O (J-1/2), then

1
7 g (zj; $g) - E [g (zj; 0,)] = 0, (J-1/2)
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Proof. Because g (zj; 0) is Lipschitz continuous in 0, we have that

Var(Ig (zj;0) - g(z; Oo)1) < |0 _ |T E (M(zj)mn(Zj1|001 ,

where xT is the transpose of the vector x. Therefore, because |0 - 01 = 0, (J1/2)

with probability approaching 1,

Var (g (zj; 0) - g (z; Oo)) < VmKJ-',

for some finite constant K > 0, where VM = E (Ek,k' mk (zj) Mk' (zj)) and mik (zi)

is the k-th component of iM (zj). By the covariance inequality, with probability ap-

proaching 1,

Cov (g (zi; &^) - g (z; 0), g (zk; OJ) - g (zk; 0)) < VmKJ--.

Therefore, with probability approaching 1,

Var g (z; ^J) - g (z3 ; 0))

1 J J

=E E Cov
k=1 j=1

- g (zk; 0o)) < VMK.

By Chebychev's inequality,

g (zj; 0j) - E [g (zj; i)] - j(zj;60) +E
3
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Therefore,

g (zj; 0j) - E [g (z; J) - g (zj; o) + E [g (zj; 0o)] = 0 P (j-1/2)

But, we know that j g (zj; 0o) - E [g (zj; Oo)] =, (j-1/2). So, it must be that

1 
;

3 g(j J
- E [g (zj; $j) = O(J-1/2) . (2.11)

Lipschitz continuity of g (zj; 0) and the Cauchy-Schwarz inequality imply that.

E [g (z; OJ) - g (zj; Oo) E [m (z) - 0 - Oo

< VMVE [0j - o - 1 - o .

Because Oj belongs to the compact set e, and Oj - 00 = 0 (J-1/2), we have that

jE [10-j - . Oj - 0o] = O (j-1/2). Together with the assumption that VM =

E (Zk,k' mk (zj) Mk' (zi)) is finite, we have that

E [g (zj; 0j) - g (z; Oo)] = 0 P (J-1/2) .
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Finally, equation (2.11) and (2.12) together imply that

1
-g (z; 6) - E [g (zj; Oj)

g (z; i) - E [g (z; Oo)] + E [g (z; Oo)]- E [g (z; j)

< g (zj; O$j) - E [g (zj; Oo)] + E [g (zj; Oo) - g (zj; $0

=OP (j-1/2)

Lipschitz continuity of g (z; 0)

We now show primitive regularity conditions under which Assumption 4(iv) is satis-

fied. Recall that gj (0) = P (cij = Izj, xi; 0) (i, z, i, t; ) 1 s (t; xi, zj) > s}. Fix

Xi, t and omit it from the notation for simplicity.

Assumption 5. (i) b (zj, gq; 0) = E [max {0, X (zj) - 0 + iq + E}] where E has cdf FE

(ii) There exists m (z) C Rko with finite fourth moments such that for all 0, 0',

a. P (cij = Izj; 0) - P (cij = Izj; 0')| m (zj) - 10 - O'l

b. IX (z)| I m (z) .

Part (i) follows from the definition of 0 (zj, 71; 0) and the parametrization of the

conditional choice probabilities in our model. It is repeated simply to keep this

exercise self-contained. Part (ii) is a regularity condition that assumes lipschitz

continuity of primitives, with sufficiently small lipschitz constants.

Proposition 2. If Assumption 5 is satisfied, then for all 0,0' e e, |gj (0) - gj (0)I

i;n (zj) - |0 - 0'| , where fn (zj) has finite second moments.

222

_Wa N'9PJ1RW 'RF ' M ;N' OR RF "I



Proof. First, we show that for all 0, 0' E 1 kb (zj, qj; 0) - V) (zj, nj; 0')l 1 m (zj) -

10 - 0'j. Define -y (x) = E [max {0, x + r + E}] = f_, (x + 7 + E) dF,. Libniz's rule

implies that

7y' () = J 71dF = 1- F(-x-r) 1.

Therefore, -y (x) is Lipschitz continuous with constant 1. Hence, Assumption 5(i) and

(ii)b., and Lemma 3 imply that

kb (zj, r7j;0) - 0 (zi, r7;0')l 1 X (Zi) - 0 - 0' 1 m (zj) - 10 - 0' 1. (2.13)

Equation (2.13), Assumption 5(ii)a. and Lemma 2 imply that Igj (0) - gj (0)1 <

2 (m (z) * m (z)) - 10 - 0'l . Assumption 5(ii) implies that fn (z) = 2 (m (z) * m (z)),

where * is the hadamard (or component-wise) product, has finite second moments.

Lemma 2. Suppose that there exists a function m (z) such that (i) 2 (z) < m (z) and

Ix(z,) - x (z,') < m(z)-10 - O'j, and (ii) sup Ij (z,0)I < m (z) andsupo Ix (z,0)I

m (z). Then,

1, (z, 0) X (z, 0) - 2 (z, 0') X (z, 0')l 1 2 (m (z) * m (z)) - 10 - 0'l,

where * is the hadamard (or component-wise) product.

Proof. Suppose that |, (z, 0) - (z, 0')I 1 rn (z) - 10 - O'l and |x (z, 0) - x (z, 0')l 1
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m (z) - 10 - 6'l . Consider

(z, 6) X (z, 6) - 2 (z, 6') x (z, 6')1

= li (z, 6) X (z, 6) - 2 (z, 6) X (z, 6') + 2 (z, 6) x (z, 6') - 2 (z, 6') x (z, 6')

< ki (z, 6) (X (z, 6) - x (z, 6'))1 + (i (z, 6) - 2 (z, 6')) X (z, 6')1

< jj (z,O I) m (z) - 10 - 6'l + lX (z, 0')| I f(z) - 10 - O'l

<2m2 (z) 6 - 6' f.

Suppose that |, (z, 6) - (z, 6')| 1 < (z) 16 - 6'l and Ix (z, 6) - x (z, 0')l 1 m (z)

10 - 6'l. Consider

li (z, 6) x (z, 6) - 2 (z, 6') x (z, 0')I

= (z, 6) X (z, 6) - 2 (z, 6) x (z, 6') + 2 (z, 6) x (z, 6') - 2 (z, 6') x (z, 6')I

< |i (z, 6) (x (z, 6) - X (z, 6'))1 + |(i (z, 6) - 2 (z, 6')) x (z, 0')|

<-l (z, 0) 1mT (z) - 10 - O'l + IX (z, O')j m (z) - 10 - O'l

<2(m (z) *Tm (z)) - |6 - 6'|.

Lemma 3. Suppose that (i) R : -+ R is Lipschitz continuous with constant K <

oc, and (ii) for each z, there exists m (z) E RK such that |, (z, 6) - j (z, 6') 1 K

m (z) - 16 - 6'f, then I, (i (z, 6)) - 4 ( (z, 6'))| Km (z) 6 - 6'l. In particular, if

, (z, 6) = X(z) .6 where x (z), 6 C RKo, then 4 (i (z, 6)) -4, (i (z, 6'))| < K Ix (z)-

6-6'|.

Proof. The first part follows definitionally because Lipschitz continuity of 4, implies
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that

4' (C (z, 0)) -4' ( (z, 6'))| I Kj j(z, 0) - , (z, 0')| I Km (z) - 0- 'l .

For the second part, note that

x (Z) - (0 - 0') < Ix (z1 - 10 - O'l

F

2.8.3 Computational Details

We start with a pseudo-code for the algorithm that solves for a steady-state equilib-

rium. It has three key steps. These steps are described in detail after the pseudo-

code.
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Algorithm 1 Steady State Equilibrium

1: Inputs: Patient and donor characteristics, scoring rule s, parameters F, J, p,
and patient age grid {tO, ... , tL = T}. Let tjo be the arrival time for patient of
type x.

2: Outputs: V*, lr*, m*, N*
3: Initialize k = 0 and beliefs 7r'(t) for all x and t E {to,... , T}
4: repeat
5: Vk +- Backwards Induction(7rk, IKk)
6: +X ( - 6x (ti) + A E, iri~(ti)P(F(ti; x, z) + e > V,(t1))
7: mk - Forward Simulation(K) > Waitlist Composition
8: N - [Ex Ax/ ZE,t, m(ti),'x(t) r> Waitlist Size: Definition 1, part 3(b)
9: 7rk _ Compute Offer Probabilites(Vk, ik, Nk) > Offer Probabilities

10: k - k +1
11: until k > 1, ||Vk - Vk-II1c < E, 1mk - mk-1|11 0 < E, and Nk = Nk-- >

Convergence
12: V* +- Vk, m* & ink, N* <- Nk, * +- k

13: function BACKWARDS INDUCTION(7r,;)

14: for all x do
15: Set V(T) = 0
16: Compute wx(T) using equation (2.14)
17: for all x and tj = T to tjo do
18: Compute Vxk(t) using equation (2.15)
19: if tj < T then
20: Compute wx(ti) using equation (2.14)
21: end if
22: end for
23: end for
24: return V(tj) for all x and tjE {to, . .. ,T}
25: end function
26: function FORWARD SIMULATION(K)

27: for all x do

28: MX (tio) - Ax
29: for all t = tjo+1 to T do
30: mX(t1+1) <- mX(ti) exp(-rx(ti)(tl+1 - ti))
31: end for
32: end for
33: m(tl) +- m(t1)/ ZEXG ,... mtL} i(T) for all x and t

34: return mx(ti) for t E {to, ... ,T}
35: end function
36: function COMPUTE OFFER PROB ITIES(mk, Vk, Nk)
37: pa(ti; X, z) +- P(I,(t1 ; X, z) + E > V T)) for all x, t
38: for all s = max s(tj; x, z) to min s(ti; x, z) do

39: Compute 7r using equation (2.17)
40: end for
41: return 7rk

42: end function



Value Function Computation (Backwards Induction):

To ease notation, define

w~ (t) = kr (t; z) Emax {O, F (t; x, z) + E - Vx (t)} dF. (2.14)

Conditional on continuing at time t, the duration until the arrival of the next organ

in the list is an exponential random variable with parameter A. Therefore, for any

h > 0, we have that

Vx (t)= n Ae-A P+(t+)) [w (t+T)+V (t+T)] dT+VX (t+h)e 0

The first term represents the expected value conditional on the donor arriving be-

tween t and t + h, and thesecond term represents the value conditional on no arrival.

For a small h and T E (0, h), approximate 6x (t + T) = 6X (t), wx (t + T) = wx (t), and

VX (t + T) = V (t + h). We get that

Vx (t) ~ A j -(p6-(t)+A)T [Wt (t) + Vx (t + h)] dT + e-(P+(t)+A)hx (t + h)

A ) + + -(p+6x(t)+A)h V (t + h)
p + 6x (t) + A p + 6| + A

V(t)A ( - e(-(P+t 1())+)(t+ )) A + (p + 6x (ti)) e-(P+6V((+A)(+1-) 1 )p +6( (ti~) + A A + 6x(t) + A

(2.15)

Offer Probabilities, 7ro,z (t):

In what follows, we fix a particular agent i with priority score s. Ties are broken

randomly, and it is therefore without loss of generality to consider each agent's

tiebreaker to be drawn from a uniform distribution on the unit interval. Let 1 - a
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be the tie-breaker for agent i.

An agent receives an offer if i) the total number of acceptances by agents that

are ranked higher than agent i is strictly less than the number of copies of the object

available, and ii) the total number of offers that can be made for the object is larger

than the total number of agents that are ranked higher than agent i. The first of

these is governed by the acceptance behavior of agents and the priority rule. The

second is governed by the model specified in equation (2.9). This model is equivalent

to an exponential hazards model with equal probability of failure before the next

offer is made.

We compute the probability of accepting an offer by considering waitlists that

are composed of N agents drawn randomly drawn with distribution governed by m.

For each agent drawn from m, consider two mutually exclusive events:

1. Event F: The agent drawn is ordered above i and an offer cannot be made

because the a failure occurs as in equation (2.9). The probability of this event

is given by

PF (s, a) = (mH (s) + cmL (s)) PO,

where Po is the probability of a failure ocurring, mH (S) = El,, M (t; X) 1 {S (t; X) > 81

is the probability an agent with a higher priority (group H) is drawn, mE (s) is

the probability an agent with a priority equal to s (group E) is drawn, and a

represents the probability that an agent with an equal score has a higher draw

of the tie-breaker.

2. Event A: The agent drawn is ordered above i, an additional offer can be made

because the maximum number of offers is not exceeded (there is no failure as

in equation (2.9)), and the drawn agent accepts the offer. The probability of
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this event is given by

pA (sa) = mH(S) P(S) (1 -P0) mE(s) apE (s) (1 -P0)-

The first term represents the case when an agent with a higher priority (group

H) is drawn. The probability of acceptance by such an agent is given by

1
p (s) = Z m (t; x) 1 {s (t; x) > s} P (F (t; X) + E > VX (t)) .mH (s) t,x

The second term represents the probability that an agent with priority score s

is drawn. The term pA (s) is defined analagously as pA (s).

If either of these two events occur, then agent i's chances of receiving an offer are

reduced. In the first case, one less object is made available. In the second case, agent

i can no longer receive an offer. In all other cases, the chances that i receives an offer

are not diminished by the agent just drawn.

These two events define a multinomial random variable with parameter (PF (S a), pa (S, a)

Let X = (XF, XA) be a random variable that denotes the total number of events

of type F and A from N trials.

In this notation, an object is available if XF = 0 and XA < q, where q is the

total number of copies of the object. In addition, for i to receive an offer, it must be

the case that there is no failure right when i is approached. Hence, the probability

that i receives an offer is given by

pO P (XF = 0, XA < qs, a) da, (2.16)

where we have integrated over the tie-breaker a, and explicit conditioning on N is
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subsumed for simplicity.

The term P (XF = 0, XA < qs, a) is cumbersome as it depends on the number

of draws of each type from a multinomial distribution. We approximate this term

for large N and small pA and pF using Theorem 1 in McDonald (1980). Specifi-

cally, define two independent Poisson random variables yF and yA with parameters

(NpF (s, a) , Npa (s, a)) . Theorem 1 in McDonald (1980) implies that:

: |IP (X = z) - P(Y = z)I < 2N (pF
zEN

2

(sa) + pA ( 2 a))
2

Therefore, the expression in equation (2.16) yields 7rz,2 (t):

F - Ofs(t;XZ)
7O)Ip(yA < qfs (t; x, z)

P (YA < qa,s) = e-NpA(Sa) (NpA
q'<q q

and

p (yF = Of a, S) -NpF(s,c)

The convergence of the integral in equation (2.16) by equation (2.17) is guaranteed

by the dominated convergence theorem.

The expression in equation (2.17) can be simplified and solved for analytically.

We use that solution in our algorithm.

Waitlist Size/Composition (Forward Simulation), m, N:

We use r, (t) and A., to update the queue composition. Solving the ODE in
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Definition 1, part 3(a), we get that for any h > 0,

m (t + h) = m (t) exp - hk) (t + T) dr,

where mx (0) oc Ax. Appoximating ,' (t + T) = ix (t + h) for all T E (0, h), we have

that

Finally, we scale the output so that mx (ti) is a probability measure.

The size of the waitlist, N, is determined by part 3(b) of Definition 1.
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Table 2.10: Evidence of Response to Dynamic Incentives

Dependent Variable: Offer Accepted

(1) (2) (3) (4) (5) (6) (7)

Calculated Panel Reactive Antibodies (CPRA) 0.0155*** 0.00879*** 0.00838*** 0.00773*** 0.00783*** 0.00815*** 0.0709***
(0.000769) (0.000893) (0.000884) (0.000836) (0.000838) (0.000866) (0.0131)

Variables Affecting Priority X X X X X X
Patient Characteristics X X X X X
Donor and Match Characteristics X X X X
Interaction between CPRA and # HLA Mismatches X
Excluding Zero HLA Mismatch Offers X
Restricting to Top 10 Offers X

Mean Acceptance Rate 0.150% 0.150% 0.150% 0.150% 0.150% 0.146% 4.962%
Observations 2840937 2840937 2840937 2840937 2840937 2840048 45723
R-squared 0.003 0.006 0.009 0.099 0.099 0.016 0.266

Notes: Estimates rrom a linear probability model of otter acceptance on patient Calculated Panel Reactive Antibodies (CPRA). CPRA is the recorded
CPRA, on a [0,1] scale, at the time the offer was made. Column 1 controls only for a CPRA=0 indicator. Column 2 adds controls affecting patient
priority: indicators for CPRA>=0.2 and CPRA>=0.8; waiting time indicators and linear controls for 1-3, 3-5, and >5 years; and an indicator for patient
age < 18. Column 3 adds controls for patient characteristics, and Column 4 adds controls for donor and match characteristics (detailed below).
Column 5 adds interactions between CPRA indicators and # HLA mismatches. Column 6 restricts to offers that are not perfect tissue type matches.
Column 7 restricts to the first ten offers for each donor. Patient controls are indicators for age 18-35, 35-50, and 50-65; linear controls and indicators
for dialysis time 1-3, 3-5, 5-10, and >10 years; blood type and diabetes indicators; and health status at listing. Donor controls are linear age; linear
creatinine with indicators for 0.6-1.8 and >1.8; and indicators for diabetes, cardiac death (DCD), and expanded criteria donor (ECD). Other controls
are predicted Life Years from Transplantation (LYFT); linear # HLA mismatches; indicators for zero HLA mismatch, 0 and 1 DR mismatch, identical
blood type, offer year, and local donor; linear controls for (+) and (-) age difference; and interactions between local and zero-HLA mismatch, and local
and donor age. Finally, separate coefficients on donor age are estimated for: donor over 40, pediatric patient; donor over 55, patient age 18-35; and
donor over 60, patient age 35-50 and over 50. Standard errors, clustered by donor, are in parentheses. *** Significant at 0.1% ** Significant at 1% *
Significant at 5%

Cq
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Table 2.11: Cutoff Rank Autocorrelation Tests

Testing for Serial Correlation in Donor Cutoffs

Donor Type N Autocorrelation p-value
Statistic p-au

Panel A: Donor Category

Standard Criteria, Age < 35 1065 2.01 0.55

Standard Criteria, Age >= 35 1598 1.99 0.46

Cardiac Death, Age < 35 178 2.02 0.56
Cardiac Death, Age >= 35 404 2.01 0.51
Expanded Criteria 2462 1.95 0.10
Expanded Criteria or Cardiac Death 156 2.12 0.78

Panel B: Donor Category and Origin

Standard Criteria, Age < 35; NYRT 234 2.09 0.74

Standard Criteria, Age < 35; non-NYRT 831 1.91 0.08
Standard Criteria, Age >= 35; NYRT 252 1.99 0.49

Standard Criteria, Age >= 35; non-NYRT 1346 2.01 0.60

Cardiac Death, Age < 35; NYRT 15 1.91 0.43

Cardiac Death, Age < 35; non-NYRT 163 2.25 0.95

Cardiac Death, Age >= 35; NYRT 50 2.51 0.97

Cardiac Death, Age >= 35; non-NYRT 354 2.08 0.77
Expanded Criteria; NYRT 227 2.16 0.88

Expanded Criteria; non-NYRT 2235 1.99 0.41

Expanded Criteria or Cardiac Death; NYRT 6 2.63 0.83

Expanded Criteria or Cardiac Death; non-NYRT 150 2.16 0.83

Panel C: Standard Criteria NYRT Donors, by Age and Blood Type

Standard Criteria, Age < 35; Blood Type 0 117 1.98 0.45

Standard Criteria, Age < 35; Blood Type B 37 1.70 0.20

Standard Criteria, Age < 35; Blood Type AB 5 1.50 0.25
Standard Criteria, Age < 35; Blood Type A 75 1.74 0.11
Standard Criteria, Age >= 35; Blood Type 0 131 1.87 0.24

Standard Criteria, Age >= 35; Blood Type B 32 2.00 0.49

Standard Criteria, Age >= 35; Blood Type AB 7 1.86 0.45

Standard Criteria, Age >= 35; Blood Type A 82 1.98 0.46

Notes: results from tests for autocorrelation of donor cutoffs in the NYRT sample
based on the rank version of von Neumann's ratio statistic (Bartels, 1982). Each
donor's cutoff is the priority score above which a patient would have received an offer
from that donor, which is determined by the last patient in the donor's offer sequence.
The rank of each donor's cutoff is its order statistic among the cutoffs of donors of the
same type, with ties broken by a rando mber. The autocorrelation statistic for each
donor type is computed for the observ quence of donor cutoff ranks. Each p-value
is the fraction of 1,000 randomly sampled permutations of donor arrival sequences for
which the rank autocorrelation statistic is below that observed in sample.



Table 2.12: Conditional Choice Probability Estimates (Detailed) -

Conditional Choice Probability of Accepting an Offer

Base Specification Unobserved Heterog. Waiting Time + UH

(1) (2) (3)

Constant -3.65 (0.02) -4.44 (0.04) -4.52 (0.04)

Patient Diabetic -0.05 (0.02) -0.02 (0.02) 0.00 (0.02)

Calculated Panel Reactive Antibody (CPRA) 0.32 (0.07) 0.24 (0.09) 0.09 (0.13)
CPRA >= 80% 0.36 (0.05) 0.19 (0.07) 0.14 (0.11)
CPRA = 0% 0.01 (0.03) 0.12 (0.04) 0.10 (0.04)
Patient had Prior Transplant 0.08 (0.02) -0.07 (0.03) -0.13 (0.04)

Log Years on Dialysis at Registration -0.08 (0.01) -0.09 (0.01) -0.09 (0.01)
Donor Age < 18 0.46 (0.13) 0.06 (0.21) -0.04 (0.20)
Donor Age 18-35 0.76 (0.17) 0.09 (0.24) -0.09 (0.27)
Donor Age 50+ -1.13 (0.35) -0.64 (0.43) -0.58 (0.47)

Donor Cause of Death Anoxia -0.02 (0.02) -0.09 (0.06) -0.07 (0.07)
Donor Cause of Death Stroke 0.00 (0.02) 0.04 (0.07) 0.03 (0.06)

Donor Cause of Death CNS 0.11 (0.10) -0.24 (0.29) -0.20 (0.37)
Donor Creatinine 0.5-1.0 -0.02 (0.04) 0.05 (0.10) 0.04 (0.11)
Donor Creatinine 1.0-1.5 -0.01 (0.04) 0.04 (0.11) 0.03 (0.12)

Donor Creatinine >= 1.5 -0.09 (0.04) -0.16 (0.10) -0.17 (0.12)

Donor Pancreas Offered 0.30 (0.03) 0.44 (0.09) 0.48 (0.10)
Patient awaits Pancreas -2.42 (1.03) -10.35 (0.89) -5.97 (1.52)

Expanded Criteria Donor (ECD) -0.17 (0.02) -0.50 (0.07) -0.53 (0.08)
Donation from Cardiac Death (DCD) -0.12 (0.03) -0.44 (0.08) -0.52 (0.07)
Donor Male 0.03 (0.02) 0.05 (0.04) 0.06 (0.04)

Donor History of Hypertension -0.01 (0.02) -0.02 (0.06) -0.02 (0.06)

Perfect Tissue Type Match 2.45 (0.32) 2.96 (0.44) 2.95 (0.46)

2 A Mismatches -0.02 (0.02) -0.02 (0.02) -0.03 (0.02)

2 B Mismatches 0.01 (0.02) -0.03 (0.03) -0.03 (0.03)
2 DR Mismatches -0.09 (0.02) -0.10 (0.02) -0.10 (0.02)

ABO Compatible -0.40 (0.06) -0.41 (0.08) -0.46 (0.09)

Regional Offer -1.00 (0.06) -2.22 (0.17) -2.42 (0.19)

National Offer -1.15 (0.05) -2.43 (0.11) -2.64 (0.12)

Non-NYRT Donor, NYRT Match Run 0.94 (0.02) 1.78 (0.05) 1.94 (0.06)

Patient Blood Type A -0.22 (0.02) -0.30 (0.06) -0.34 (0.07)
Patient Blood Type 0 -0.42 (0.02) -0.44 (0.06) -0.42 (0.06)
Patient on Dialysis at Registration -0.50 (0.05) -0.68 (0.06) -0.68 (0.06)
Patient Age 0.02 (0.01) 0.05 (0.01) 0.05 (0.01)
Patient Age - 18 if Age >= 18 -0.02 (0.01) -0.04 (0.01) -0.04 (0.01)

Patient Age - 35 if Age >= 35 0.01 (0.01) 0.00 (0.01) -0.01 (0.01)

Patient Age - 50 if Age >= 50 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Patient Age - 65 if Age >= 65 -0.01 (0.00) -0.01 (0.00) -0.01 (0.00)
Log Waiting Time (years) -0.18 (0.06)
Log Waiting Time * Over 1 Year -0.02 (0.07)

Log Waiting Time * Over 2 Years -0.24 (0.13)

Log Waiting Time * Over 3 Years 0.17 (0.12)

Patient BMI at Departure -0.01 (0.03) -0.03 (0.04) -0.02 (0.04)

Patient BMI - 18.5 if BMI >= 18.5 0.01 (0.03) 0.04 (0.04) 0.02 (0.04)

Patient BMI - 25 if BMI >= 25 0.00 (0.01) -0.01 (0.01) -0.01 (0.01)

Patient BMI - 30 if BMI >= 30 0.00 (0.01) 0.00 (0.01) 0.00 (0.01)

Patient Serum Albumin (0.03) -0.08 (0.04) -0.08 (0.04)

Serum Albumin - 3.7 if >= 3.7 0.02 (0.05) 0.03 (0.06) 0.00 (0.07)
Serum Albumin -4.4 if >= 4.4 0.04 (0.05) 0.09 (0.06) 0.10 (0.07)

Perfect Tissue Type Match * Prior Transplant -0.16 (0.19) 0.03 (0.27) 0.05 (0.28)

Perfect Tissue Type Match * Diabetic Patient 0.01 (0.16) 0.05 (0.22) 0.06 (0.23)

Perfect Tissue Type Match * Patient Age -0.01 (0.01) -0.02 (0.01) -0.02 (0.01)

Perfect Tissue Type Match * CPRA 1.25 (0.34) 1.78 (0.48) 2.01 (0.50)

Perfect Tissue Type Match * CPRA above 80% -0.76 (0.29) -0.54 (0.41) -0.51 (0.43)

Perfect Tissue Type Match * ECD Donor -0.52 (0.16) -0.59 (0.24) -0.63 (0.24)

Perfect Tissue Type Match * DCD Donor -0.42 (0.32) -1.08 (0.46) -1.12 (0.47)

Perfect Tissue Type Match * NYRT Donor 0.64 (0.18) 0.17 (0.26) 0.17 (0.27)
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Perfect Tissue Type Match * ABO Compatible
Donor Pancreas Offered * Patient awaits Pancreas
NYRT Donor * 2 A Mismatches
NYRT Donor * 2 B Mismatches
NYRT Donor * 2 DR Mismatches
NYRT Donor Donor Age < 18
NYRT Donor * Donor Age 18-35
NYRT Donor * Donor Age 50+
Patient Age * Donor Age < 18
Patient Age * Donor Age 18-35
Patient Age * Donor Age 50+
Patient Age - 35 if Age >= 35 * Donor Age 18-35
Patient Age - 35 if Age >= 35 * Donor Age 50+
Log Waiting Time * Prior Transplant
Log Waiting Time * Patient Diabetic
Log Waiting Time * Patient Age
Log Waiting Time * CPRA
Log Waiting Time * CPRA >= 80
Log Waiting Time * Patient Serum Albumin
Log Waiting Time * Patient BMI at Departure
Log Waiting Time Patient Blood Type A
Log Waiting Time * Patient Blood Type 0
Patient BMI Missing
Patient Serum Albumin Missing

Donor Unobservable Std. Dev.
Idiosyncratic Shock Std. Dev.

Acceptance Rate
Number of Offers
Number of Donors
Number of Patients

-0.02 (0.17)
2.48 (1.12)
0.06 (0.03)
0.02 (0.03)

-0.04 (0.03)
-0.01 (0.07)
0.12 (0.05)

-0.26 (0.04)
-0.01 (0.00)
-0.02 (0.01)
0.03 (0.01)
0.02 (0.01)

-0.01 (0.01)

-0.35 (0.54)
-0.15 (0.11)

1.00

0.150%
2840937

5863
9917

0.05 (0.24)
10.53 (1.04)
0.03 (0.04)
0.00 (0.05)

-0.02 (0.04)
0.35 (0.20)
0.28 (0.13)

-0.38 (0.11)
-0.01 (0.00)
0.00 (0.01)
0.01 (0.01)
0.00 (0.01)
0.01 (0.01)

-0.90 (0.68)
-0.31 (0.13)

1.03 (0.23)
1.00

0.150%
2840937

5863
9917

0.09 (0.25)
6.12 (1.60)
0.03 (0.04)

-0.01 (0.05)
-0.01 (0.04)
0.37 (0.22)
0.27 (0.17)

-0.45 (0.12)
0.00 (0.00)
0.01 (0.01)
0.01 (0.01)

-0.01 (0.01)
0.01 (0.01)
0.03 (0.02)

-0.03 (0.02)
0.00 (0.00)
0.13 (0.08)
0.02 (0.08)
0.01 (0.01)
0.01 (0.00)
0.01 (0.03)

-0.02 (0.03)
-0.50 (0.70)
-0.24 (0.14)

1.25 (0.24)
1.00

0.150%
2840937

5863
9917

235



Table 2.12: Value of Transplant Estimates (Detailed)

Estimated Value of a Transplant

Base Specification Unobserved Heterog. Waiting Time + UH

(1) (2) (3)

Constant -3.24 -1.32 -1.45
Patient Diabetic -0.30 -1.19 -1.01
Calculated Panel Reactive Antibody (CPRA) 2.37 5.45 4.02
CPRA >= 80% 0.65 -3.32 -1.71
CPRA = 0% -0.28 -1.12 -0.82
Patient had Prior Transplant 1.51 3.63 4.77
Log Years on Dialysis at Registration -0.14 -0.31 -0.30
Donor Age < 18 0.47 0.49 0.49
Donor Age 18-35 0.83 0.53 0.83
Donor Age 50+ -1.10 -1.10 -1.35
Donor Cause of Death Anoxia -0.03 -0.09 -0.08
Donor Cause of Death Stroke 0.01 0.02 0.02
Donor Cause of Death CNS 0.18 -0.05 -0.09
Donor Creatinine 0.5-1.0 -0.06 -0.03 0.00
Donor Creatinine 1.0-1.5 0.02 -0.04 -0.03
Donor Creatinine >= 1.5 -0.13 -0.25 -0.23
Donor Pancreas Offered 0.38 0.76 0.53
Patient awaits Pancreas -2.80 -11.77 -7.72
Expanded Criteria Donor (ECD) -0.15 -0.51 -0.53
Donation from Cardiac Death (DCD) -0.11 -0.47 -0.51
Donor Male 0.00 0.08 0.07
Donor History of Hypertension 0.01 -0.01 -0.01
Perfect Tissue Type Match 2.38 2.45 2.73
2 A Mismatches -0.07 0.05 0.02
2 B Mismatches 0.07 0.07 0.05
2 DR Mismatches -0.06 -0.01 -0.05
ABO Compatible -0.32 1.50 1.91
Regional Offer -1.36 -3.02 -2.80
National Offer -1.52 -3.24 -3.02
Non-NYRT Donor, NYRT Match Run 1.26 2.64 2.03
Patient Blood Type A -0.03 0.99 1.29
Patient Blood Type 0 -0.23 0.24 0.15
Patient on Dialysis at Registration -0.85 -2.19 -2.25
Patient Age 0.02 0.15 0.18
Patient Age - 18 if Age >= 18 -0.05 -0.20 -0.29
Patient Age - 35 if Age >= 35 0.04 0.08 0.15
Patient Age - 50 if Age >= 50 -0.01 -0.06 -0.06
Patient Age - 65 if Age >= 65 -0.03 -0.11 -0.09
Log Waiting Time (years) -0.33
Log Waiting Time * Over 1 Year 236 0.83
Log Waiting Time * Over 2 Years -0.01
Log Waiting Time * Over 3 Years 4.54

Patient BMI at Departure -0.15 -0.63 -0.57
Patient BMI - 18.5 if BMI >= 18.5 0.11 0.54 0.54
Patient BMI - 25 if BMI >= 25 0.07 0.20 0.14
Patient BMI - 30 if BMI >= 30 -0.02 -0.12 -0.12

Patient Serum Albumin 0.01 0.54 0.55
Serum Albumin - 3.7 if >= 3.7 -0.05 -0.62 -0.59



Serum Albumin - 4.4 if >= 4.4 0.17 1.00 0.89
Perfect Tissue Type Match * Prior Transplant -0.12 -0.22 -0.60
Perfect Tissue Type Match * Diabetic Patient -0.02 0.35 0.10
Perfect Tissue Type Match * Patient Age -0.01 -0.02 -0.02
Perfect Tissue Type Match * CPRA 0.35 -0.53 0.95
Perfect Tissue Type Match * CPRA above 80% -1.40 -0.77 -2.91
Perfect Tissue Type Match * ECD Donor -0.60 -0.66 -0.82
Perfect Tissue Type Match * DCD Donor -0.61 -1.31 -1.40
Perfect Tissue Type Match * NYRT Donor 0.56 0.18 0.23
Perfect Tissue Type Match * ABO Compatible 0.01 -1.48 -1.83
Donor Pancreas Offered * Patient awaits Pancreas 2.49 10.12 6.07
NYRT Donor * 2 A Mismatches 0.15 0.09 0.07
NYRT Donor * 2 B Mismatches -0.02 -0.08 -0.06
NYRT Donor * 2 DR Mismatches -0.02 0.00 0.02
NYRT Donor * Donor Age < 18 -0.07 0.02 0.17
NYRT Donor * Donor Age 18-35 0.10 0.17 0.18
NYRT Donor * Donor Age 50+ -0.42 -0.77 -0.66
Patient Age * Donor Age < 18 -0.01 -0.01 -0.01
Patient Age * Donor Age 18-35 -0.02 -0.01 -0.02
Patient Age * Donor Age 50+ 0.03 0.02 0.03
Patient Age - 35 if Age >= 35 * Donor Age 18-35 0.02 0.00 0.01
Patient Age - 35 if Age >= 35 * Donor Age 50+ -0.01 -0.01 -0.02
Log Waiting Time * Prior Transplant 2.07
Log Waiting Time * Patient Diabetic -0.30
Log Waiting Time * Patient Age 0.00
Log Waiting Time * CPRA 2.91
Log Waiting Time * CPRA >= 80 -3.23
Log Waiting Time * Patient Serum Albumin -0.06
Log Waiting Time * Patient BMI at Departure 0.01
Log Waiting Time * Patient Blood Type A 0.28
Log Waiting Time * Patient Blood Type 0 0.18
Patient BMI Missing -3.01 -12.64 -12.28
Patient Serum Albumin Missing 0.43 2.81 1.97

Donor Unobservable Std. Dev. 1.03 1.25
Idiosyncratic Shock Std. Dev. 1.00 1.00 1.00
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Table 2.12: Net Present Value Estimates (Detailed)

Value Function

Constant
Patient Diabetic
Calculated Panel Reactive Antibody (CPRA)
CPRA >= 80%
CPRA = 0%
Patient had Prior Transplant
Log Years on Dialysis at Registration
Patient awaits Pancreas
Patient Blood Type A
Patient Blood Type 0
Patient on Dialysis at Registration
Patient Age
Patient Age - 18 if Age >= 18
Patient Age - 35 if Age >= 35
Patient Age - 50 if Age >= 50
Patient Age - 65 if Age >= 65
Log Waiting Time (years)
Log Waiting Time * Over 1 Year
Log Waiting Time * Over 2 Years
Log Waiting Time * Over 3 Years
Patient BMI at Departure
Patient BMI - 18.5 if BMI >= 18.5
Patient BMI - 25 if BMI >= 25
Patient BMI - 30 if BMI >= 30
Patient Serum Albumin
Serum Albumin - 3.7 if >= 3.7
Serum Albumin - 4.4 if >= 4.4
Log Waiting Time * Prior Transplant
Log Waiting Time * Patient Diabetic
Log Waiting Time * Patient Age
Log Waiting Time * CPRA

Log Waiting Time * CPRA >= 80
Log Waiting Time * Patient Serum Albumin
Log Waiting Time * Patient BMI at Departure
Log Waiting Time * Patient Blood Type A
Log Waiting Time * Patient Blood Type 0
Patient BMI Missing
Patient Serum Albumin Missing

Base Specification

(1)
0.46 (0.00)

-0.19 (0.00)
1.76 (0.00)
0.42 (0.00)

-0.17 (0.00)
1.08 (0.00)

-0.06 (0.00)
-0.18 (0.01)
0.13 (0.00)
0.06 (0.00)

-0.33 (0.00)
-0.01 (0.00)
-0.01 (0.00)
0.03 (0.00)

-0.01 (0.00)
-0.02 (0.00)

-0.1
0.07
0.04

-0.02
0.04

-0.05
0.11

(0.00)
(0.00)
(0.00)
(0.00)
(0.00)
(0.00)
(0.00)

-2.02 (0.03)
0.4 (0.01)
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0.69

Unobserved Heterog.

(2)

3.14 (0.00)
-1.11 (0.00)
4.75 (0.01)

-3.38 (0.01)
-1.1 (0.00)
3.26 (0.00)

-0.22 (0.00)
-1.39 (0.01)
0.72 (0.00)
0.08 (0.00)

-1.53 (0.00)
0.06 (0.00)

-0.11 (0.00)
0.08 (0.00)

-0.06 (0.00)
-0.1 (0.00)

-0.54
0.46
0.18
-0.1
0.56

-0.63
0.92

(0.00)
(0.00)
(0.00)
(0.00)
(0.00)
(0.01)
(0.01)

-10.99 (0.07)
2.85 (0.01)

R-Squared 0.46 0.77

Waiting Time + UH

(3)
3 (0.00)

-0.94 (0.00)
3.46 (0.01)

-1.81 (0.01)
-0.79 (0.00)
4.59 (0.00)
-0.21 (0.00)
-1.62 (0.01)

0.8 (0.00)
-0.24 (0.00)

-1.6 (0.00)
0.09 (0.00)
-0.2 (0.00)

0.14 (0.00)
-0.06 (0.00)
-0.08 (0.00)
-0.51 (0.01)
0.93 (0.00)
0.05 (0.01)
4.31 (0.01)
-0.5 (0.00)
0.48 (0.00)
0.12 (0.00)

-0.11 (0.00)
0.57 (0.00)

-0.59 (0.01)
0.81 (0.01)
1.88 (0.00)

-0.27 (0.00)
0 (0.00)

2.81 (0.01)
-3.23 (0.01)
-0.06 (0.00)
0.01 (0.00)
0.55 (0.00)
0.44 (0.00)

-11 (0.07)
2.02 (0.01)

0.46 0.77R-Squared



Table 2.13: Positive Crossmatch Model

Dependent Variable: Positive Crossmatch

CPRA

0 or 1 HLA Mismatches

2 or 3 HLA Mismatches

0 DR Mismatches

CPRA * (0 or 1 HLA Mismatches)

CPRA * (2 or 3 HLA Mismatches)

Constant

Observations

1.605

(0.0667)

-1.259

(0.416)

0.131

(0.0798)

-0.512

(0.0873)

-0.600

(0.575)

-0.578

(0.159)

-0.459

(0.0267)

4283

Notes: coefficient estimates from a probit
regression of positive crossmatch on patient CPRA
and the number of HLA mismatches. The sample
is all offers accepted by NYRT patients between
2010 and 2013. Positive crossmatches are
identified by the appropriate refusal code in the
PTR data. CPRA is measured on a [0,1] scale.
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Table 2.14: Survival Model Estimates for LYFT Calculation

Survival Model Coefficient Estimates

Waiting List Functioning Graft After Transplantation

(1) (2) (3)

0.5990
0.0063
-0.0432
-0.0156
0.0505
-0.0080
0.0007
-0.0016
0.1560

-0.0540
-0.6640
0.0050
0.0269
0.0251

-0.5240
-1.9060
-0.0550
0.6880

-0.3600
0.1150

Patient Diabetic
Calculated Panel Reactive Antibodies (CPRA)
CPRA=0%
Patient Age
Patient Age - 18 if Age >= 18
Patient Age - 35 if Age >= 35
Patient Age - 35 if Age >= 35
Patient Age - 35 if Age >= 35
Patient had Prior Transplant
Patient BMI at Departure
Patient BMI missing
Patient BMI - 18.5 if BMI >= 18.5
Patient BMI - 25 if BMI >= 25
Patient BMI - 30 if BMI >= 30
Patient Serum Albumin
Patient Serum Albumin missing
Serum Albumin - 3.7 if >= 3.7
Serum Albumin - 4.4 if >= 4.4
On Dialysis at Registration
Log Years on Dialysis at Registration
Regional Donor
National Donor
Patient Blood Type A
Patient Blood Type 0
ABO Compatible
Expanded Criteria Donor (ECD)
Donation after Cardiac Death (DCD)
Male Donor
Donor Pancreas Offered
Donor Creatinine 0.5-1.0
Donor Creatinine 1.0-1.5
Donor Creatinine >= 1.5
Donor History of Hypertension
Donor Age < 18
Donor Age 18-35
Donor Age 50+
Donor Cause of Death Anoxia
Donor Cause of Death Stroke
Donor Cause of Death CNS
NYRT Donor * Donor Age < 18
NYRT Donor * Donor Age 18-35
NYRT Donor * Donor Age 50+
NYRT Donor * 2 A Mismatches
NYRT Donor * 2 B Mismatches
NYRT Donor * 2 DR Mismatches
Perfect Tissue Type Match
Perfect Tissue Type Match * Diabetic Patient
Perfect Tissue Type Match * Prior Transplant
Perfect Tissue Type Match * Patient Age
Perfect Tissue Type Match * CPRA
Perfect Tissue Type Match * ECD Donor
Perfect Tissue Type Match * DCD Donor
Perfect Tissue Type Match * NYRT Donor
Log Waiting Time (years)
Log Waiting Time * Over 1 Year
Log Waiting Time * Over 2 Years

(0.009)
(0.0239)
(0.0141)
(0.0066)
(0.0076)
(0.0029)
(0.0019)
(0.003)
(0.0115)
(0.0175)
(0.318)
(0.0188)
(0.0053)
(0.004)
(0.0138)
(0.0471)
(0.0328)
(0.0386)
(0.032)
(0.0049)

0.0959 (0.0119)
0.0151 (0.0108)
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0.2910
0.2050

-0.0184
0.0289

-0.0578
0.0318
0.0199
0.0101
0.1670

-0.0031
0.0396
0.0074
0.0183
-0.0080
-0.1820
-0.6270
-0.0009
0.2370
-0.3530
0.0810
0.0154
0.0119
0.0132
0.0181
0.0278
0.0974
0.0512
-0.0522
-0.0635
-0.0244
0.0283
0.0466
0.1040
-0.3250
-0.1080
0.0149
0.0279
0.0753
-0.0084
0.0474
0.0331
0.0176
-0.0399
-0.0779
-0.0111
-0.3850
0.0548
0.0441
0.0043
0.0311
0.0575
0.1520
-0.0478
0.0017
0.1910
-0.0076

(0.0102)
(0.0254)
(0.0114)
(0.0041)
(0.0048)
(0.0026)
(0.0019)
(0.0031)
(0.0141)
(0.0121)
(0.22)
(0.0133)
(0.0051)
(0.0043)
(0.0223)
(0.0762)
(0.0462)
(0.0434)
(0.0421)
(0.0066)
(0.0239)
(0.0215)
(0.0122)
(0.0122)
(0.021)
(0.0171)
(0.0214)
(0.0089)
(0.0103)
(0.0116)
(0.0107)
(0.0146)
(0.0116)
(0.0467)
(0.0662)
(0.105)
(0.0138)
(0.0109)
(0.0445)
(0.0275)
(0.0235)
(0.0233)
(0.02)
(0.0205)
(0.0208)
(0.06)
(0.0319)
(0.0401)
(0.0011)
(0.0503)
(0.0432)
(0.097)
(0.0434)
(0.0151)
(0.0255)
(0.038)

0.5220
0.1390

-0.0065
0.0522

-0.0296
0.0171
0.0024
0.0054
0.1990
-0.0483
-0.8500
0.0402
0.0218
0.0021
-0.2560
-0.9080
-0.0326
0.3410
-0.5120
0.1060
0.0284
0.0158
0.0297
0.0232
0.0042
0.0649
0.0162
-0.0167
-0.0518
-0.0131
0.0211
0.0134
0.0485
-0.2020
-0.0039
0.0857
0.0084
0.0579
0.0308
0.0400
0.0362
0.0364
-0.0248
-0.0671
-0.0248
-0.2060
0.0358
0.0534
0.0021
0.0632
0.0708
0.1770

-0.0592
-0.0579
0.2470
0.0044

(0.0118)
(0.0322)
(0.0139)
(0.0089)
(0.0101)
(0.0042)
(0.0024)
(0.0033)
(0.0182)
(0.0197)
(0.359)
(0.0212)
(0.0063)
(0.0052)
(0.0275)
(0.0937)
(0.0588)
(0.0562)
(0.0553)
(0.0087)
(0.0291)
(0.0263)
(0.015)
(0.015)
(0.0256)
(0.0208)
(0.0273)
(0.011)
(0.0128)
(0.0143)
(0.0132)
(0.0181)
(0.0142)
(0.0705)
(0.129)
(0.195)
(0.0173)
(0.0135)
(0.0533)
(0.0339)
(0.0289)
(0.0284)
(0.0245)
(0.0251)
(0.0256)
(0.0838)
(0.0362)
(0.0499)
(0.0015)
(0.0621)
(0.0516)
(0.117)
(0.0516)
(0.0215)
(0.0319)
(0.0479)



Log Waiting Time * Over 3 Years 0.4810 (0.34) -0.2530 (0.489)
Log Waiting Time * Patient Diabetic -0.0037 (0.0071) -0.0004 (0.0082)
Log Waiting Time * Prior Transplant 0.0113 (0.0097) 0.0124 (0.0124)
Log Waiting Time * Patient Age 0.0000 (0.0002) 0.0007 (0.0003)
Log Waiting Time * CPRA 0.0060 (0.0148) 0.0066 (0.0186)
Log Waiting Time * Patient Blood Type A 0.0074 (0.0088) 0.0143 (0.0108)
Log Waiting Time * Patient Blood Type 0 -0.0123 (0.0086) -0.0084 (0.0106)
Log Waiting Time * Patient Serum Albumin -0.0054 (0.0018) -0.0073 (0.0023)
Log Waiting Time * Patient BMI at Departure 0.0002 (0.0004) 0.0009 (0.0005)
Donor Pancreas Offered * Patient awaits Pancreas 0.1280 (0.136) 0.4470 (0.15)
Patient Age * Donor Age < 18 0.0037 (0.0009) 0.0021 (0.0013)
Patient Age * Donor Age 18-35 -0.0025 (0.002) -0.0037 (0.0039)
Patient Age * Donor Age 50+ 0.0052 (0.0032) 0.0002 (0.0058)
Patient Age - 35 if Age >= 35 * Donor Age 18-35 0.0038 (0.0026) 0.0036 (0.0044)
Patient Age - 35 if Age >= 35 * Donor Age 50+ -0.0087 (0.0037) -0.0022 (0.0063)
2 A Mismatches 0.0876 (0.0173) 0.0380 (0.0212)
2 B Mismatches 0.1070 (0.0178) 0.0535 (0.0218)
2 DR Mismatches 0.0937 (0.018) 0.0801 (0.0221)
Patient Registered 1988-1989 - (.)
Patient Registered 1990-1994 1.0070 (0.0218)
Patient Registered 1995-1999 0.8690 (0.0186)
Patient Registered 2000-2004 0.5210 (0.013)
Patient Registered 2005-2009 0.2430 (0.0115)
Transplanted 1988-1989 -- (.) -- (.)
Transplanted 1990-1994 1.0060 (0.0354) 1.0430 (0.0474)
Transplanted 1995-1999 0.8120 (0.0319) 0.8050 (0.0435)
Transplanted 2000-2004 0.6090 (0.0295) 0.5860 (0.0408)
Transplanted 2005-2009 0.3370 (0.0289) 0.3230 (0.0401)

Observations 519624 153479 154363

Notes: coefficient estimates from Cox proportional hazard models of patient survival on the waiting list, survival of a functioning graft, and patient
survival after transplantation. The sample for waiting list survival is all patients in the UNOS database registered between January 1st, 1988 and
December 31st, 2014. The sample for post-transplant and graft survival is patients who received a transplant between January 1st, 1988 and
December 31st, 2011. Survival on the waiting list is censored on December 31st, 2014 for patients who received a transplant before or were still
alive on that date. Patient and graft survival after transplantation are censored on December 31st, 2011 for patients who received another
transplant or if the patient was still alive or the graft remained functional on that date.
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Table 2.14: Conversion to Life Years from Transplantation (LYFT) Units

Value of Characteristics for a Representative Patient and Donor

Life Years From Kidney Utility in
Transplant (LYFT) Kidney Utility LYFT Units

Perfect Tissue Type Match 6.28 2.18 2.64

Zero DR Mismatches rather than Two 1.32 0.12 0.15

ABO Identical rather than Compatible 0.16 -1.27 -1.54

Local Donor rather than National 1.36 2.66 3.22

Donor Age 45 rather than 55 2.40 0.61 0.74

Donor not Hypertensive 1.20 0.02 0.02

Not a Donation after Cardiac Death (DCD) 1.88 1.05 1.26

Donor died of Head Trauma, not Anoxia 0.24 0.07 0.09

Donor Creatinine 0.5-1.0 rather than above 1.5 0.69 0.22 0.26

Notes: Reports the value of changing one offer characteristic for a representative patient-donor pair in
terms of Life Years from Transplant (LYFT); kidney utility; and kidney utility mapped to LYFT units using
the regression coefficient of LYFT on Gamma with patient by year fixed effects, for local offers only. The
representative patient is 45 years old, non-diabetic, and unsensitized. The representative donor is 45
years old and from NYRT. The patient and donor are of identical blood type and have 5 tissue type
mismatches.
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Figure 2-6: Offer and Acceptance Rate by cPRA
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Figure 2-7: Comparing Hazard Rates for Gompertz and Cox Proportional Hazards
Models

Cumulative Hazard Rates
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Figure 2-8: Extrapolation of Baseline Survival Curves

(a) Survival without a Kidney Transplant
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Table 2.15: Patient Sample Restrictions

Number of Patients Registered

Patients Registered in NYRT Between 2010 and 2013 15063

Excluding Candidates for a Pancreas 14499

Excluding Candidates Who Did Not Need a Transplant 13950

Excluding Inactive Candidates 9985

Excluding Candidates Receiving Non-Standard Allocations 9917

Notes: candidates who did not need a transplant include patients who departed the waitlist
because they refused transplantation, received a transplant in another country, could not be
contacted, or had an improved condition. Candidates receiving non-standard allocations
include placements from military or directed donations, expedited placement attempts, and
medical emergencies.
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Table 2.16: Offer Sample Restrictions

Number of Offers

All PTR offers in U.S. sample 61038882

NYRT Patients 4516460

Offers made between January 1st, 2010 and December 31st, 2013 2883287

Excluding non-genuine refusals 1880672

Excluding offers after the donor's cutoff 1318961

Excluding patients and donors receiving non-standard allocations 1281024

Notes: non-genuine refusals include offers in the Potential Transplant Recipient (PTR)
dataset which did not meet the patient's pre-set screening criteria; for which the patient or
transplant surgeon was unavailable; or where the transplant could not occur for medical
reasons. Non-standard allocations include placements from military or directed donations,
expedited placement attempts, and medical emergencies.
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Table 2.17: Fit of Mechanism Code: Predicted Offers

In PTR Data

No Yes Total

Predicted by No 14,907,971 88,366 14,996,337
Simulation Yes 502,239 1,192,658 1,694,897

Total 15,410,210 1,281,024 16,691,234

Notes: comparison between offers predicted by simulation of the
mechanism and offers appearing in the PTR dataset. Offers not in
either dataset set include compatible patient-donor pairs where the
patient did not meet the donor's priority score cutoff, or where the
donor did not meet the patient's pre-set screening criteria.
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Chapter 3

Tax Refund Expectations and

Financial Behavior

3.1 Introduction

Income uncertainty is thought to play a central role in household finances. While pre-

tax income volatility is often emphasized as a source of this uncertainty, households

may also have substantial uncertainty about their income tax. For low-income indi-

viduals, tax-linked transfer payments, including payments from the Earned Income

Tax Credit (EITC), comprise a substantial portion of annual income.1 Quantifying

and understanding uncertainty about income taxes is therefore critical for under-

standing the role of transfer payments through the tax system in household finances,

the potential consequences of changes to the tax system, and the effects of income

uncertainty on consumption and financial decisions more broadly.

In this paper, we study what low- and moderate-income households do and do not

'For instance, in our sample, the mean refund totals nearly eight percent of annual income
(roughly one month of earnings).
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know about their income tax refunds before they file taxes. We then examine how

financial behavior responds to expectations of future tax refunds, refund uncertainty,

and surprises in realized tax refund amounts. We do so using a unique combination

of (1) administrative tax records, (2) a linked panel of consumer credit reports, and

surveys to measure both (3) expectations of tax refunds before tax filing and (4)

consumption behavior after tax refund receipt. One key innovation in our setting is

our direct measurement of taxpayers' beliefs about the probability distribution over

their own future tax refund amounts. These expectations data allow us to study

the amount of, and the effects of, income tax uncertainty on consumption without

making strong assumptions about the sources of taxpayers' uncertainty.

We start by showing that taxpayers have correct mean expectations about their

refund .on average, but also face substantial uncertainty. This self-reported uncer-

tainty accurately tracks "true" uncertainty, as measured by the difference ("surprise")

between realized and mean expected tax refund amounts. We examine sources of re-

fund uncertainty. Surprises are driven by changes in income and family structure in

ways that are consistent with households misunderstanding how marginal tax rates

change at different parts of the earned-income tax credit schedule. Nevertheless, we

also find that much of this uncertainty is not explained by observables or by changes

in household circumstances.

We then show that household consumption and borrowing behavior depends on

expectations about tax refund amounts, refund uncertainty, and refund surprises.

Households borrow a moderate amount out of their expected tax refunds: for each

dollar of expected refund, households repay roughly 15 cents in debt shortly after

tax refund receipt. Households also exhibit precautionary behavior in borrowing out

of future tax refunds, as these borrowing and repayment patterns out of expected

tax refunds are less pronounced for households that report being more uncertain
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about their refunds ex-ante. To our knowledge, this is some of the first evidence

of precautionary behavior (prudence) among a low-income population in the US.

This finding contrasts with prior work which has interpreted the combination of

high income volatility and low savings rates as evidence against the existence of

precautionary behavior among low-income households (Carroll et al., 2003).

Finally, we examine the link between tax refund surprises and debt, and find that

surprises in tax refund amounts are not used to repay debt. In fact, we find that larger

refund surprises lead to increases in overall debt, an effect that is entirely driven by

higher balances on installment loans such as auto loans. This pattern implies a

medium-run marginal propensity to consume (MPC) out of windfall income above

one. One explanation for this stark finding is that refund surprises may be used to

relax collateral constraints for newly financed durable purchases. We find suggestive

evidence from a follow-up survey on durable consumption choices to corroborate this

interpretation.

There are two primary advantages to our empirical approach. First, we obtain rich

data on household balance sheets before and after the resolution of tax-related income

uncertainty: administrative data on all reported income and nearly all financial

liabilities, as well as survey-based measures of real and financial assets. Such data are

particularly difficult to assemble for lower-income populations. Second, we directly

elicit individuals' uncertainty about the component of future income risk driven by

tax refund uncertainty. This stands in contrast to much of the existing literature that

looks for evidence of precautionary behavior in response to uncertainty; we know of

one notable exception (Jappelli and Pistaferri, 2000).

One substantial caveat to our approach is that we, like most researchers who use

U.S.-based data, have relatively poor data on households' real and financial assets.

All of our asset measures are survey-based, whereas we have administrative data on
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income and debt liabilities. Perhaps reassuringly, the low-income population in the

United States has elsewhere been shown to hold low levels of financial and real assets,

a finding that we corroborate in our survey measures. A second important caveat

is that, while we analyze differences in financial behavior within groups that are at

similar stages in the life-cycle (age, income, and family structure), there nevertheless

may be important unobservable differences across individuals within these groups -

for example, in unobservable labor income risk - that we cannot control for and that

are correlated with tax-relevant uncertainty.

Related Literature This paper contributes to at least three distinct literatures.

First, we contribute to a large empirical literature in macroeconomics on house-

hold consumption, savings, and borrowing decisions. This work studies how house-

holds respond to income uncertainty ex-ante, and how households react to income

surprises ex-post. A robust theoretical literature predicts that households will save

precautionarily - maintaining a "buffer stock" - in the presence of future income

uncertainty (Carroll, 1996; Deaton, 1991; Kimball, 1990), and calibration exercises

suggest that the role of precautionary motives in saving over the life-cycle is substan-

tial (Carroll and Samwick, 1998). However, other empirical work has found limited

evidence for precautionary behavior (Dynan, 1993), especially among low-income

households (Carroll et al., 2003). This latter result stems from substantial labor

income uncertainty faced by low-income households coupled with low observed sav-

ings rates. Much of the empirical work testing for precautionary motives uses labor

income uncertainty implied by income processes imputed using observables such as

age and occupation (Carroll and Samwick, 1998; Dynan, 1993; Skinner, 1988). One

notable exception uses self-reported uncertainty measured through a survey, as we

do (Jappelli and Pistaferri, 2000). We believe we are the first paper to link such
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survey-based measures of uncertainty to administrative data on income and borrow-

ing.

Another vein of empirical macroeconomics research studies how consumers re-

spond to windfall income surprises. Most closely related to our study of tax refund

surprises is a set of papers analyzing responses to tax rebates (Agarwal et al., 2007;

Baugh et al., 2018; Broda and Parker, 2014; Johnson et al., 2006; Parker et al., 2013).

These papers find, as we do, high marginal propensities to consume (MPCs) out of

such windfall income. Of particular note is Parker et al. (2013), which finds that up

to 60 percent of tax rebate payments are used to purchase durables, and especially

vehicles, within 3 months of rebate receipt. These findings are consistent with our

result that positive refund surprises are used to finance durable purchases.

Second, we contribute to a growing literature on the limits of taxpayers' under-

standing of the tax code and on the consequences of tax complexity for individuals

and firms. Several recent papers have shown that individuals and firms fail to take

full advantage of the credits and refunds for which they are eligible. Part of this is

likely due to hassle costs: individuals may rationally choose not to invest the time or

money required to optimize their tax benefits (Benzarti, 2017). Among low-income

EITC filers, like those in our sample, part of this failure to optimize may be due to

lack of information about the tax system (Aghion et al., 2017; Chetty et al., 2013;

Zwick, 2018). Prior research has shown that many individuals are unaware of EITC

program rules and that lack of information has real consequences for earnings behav-

ior (Chetty and Saez, 2013; Chetty et al., 2013; Romich and Weisner, 2000; Smeeding

et al., 2000). We contribute to this literature by directly quantifying the amount of

uncertainty faced by our population of low-income tax filers, and by linking this

uncertainty to actual consumption decisions.

Third, we contribute to a diverse literature on the measurement and reliability
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of subjective expectations data (Manski, 2004). Following the pioneering work of

Engelberg et al. (2009), we elicit not just point forecasts or mean expectations, but

individuals' subjective probability distributions over future events. These methods

have previously shown success in measuring inflation expectations (Armantier et

al., 2016), income expectations among college students (Zafar, 2011), and income

expectations in a developing country (Delavande et al., 2011). Elicited expectations

have been shown to affect financial behavior in lab settings (Wiswall and Zafar,

2014). Our contribution is to link probabilistic income expectations with a panel of

administrative data to study how financial behavior responds to such expectations in

a "real world" (non-lab) setting, and to demonstrate success of these survey questions

even in a low-income, relatively low-education U.S. population.

The rest of the paper proceeds as follows. The next section describes the empiri-

cal setting and data. Section 3.3 describes how we translate our survey measures of

beliefs into probabilistic distributions and compares these distributions to actual re-

fund amounts. Section 3.4 shows how refund expectations, uncertainty, and surprises

translate into consumption and borrowing decisions. Section 3.5 concludes.

3.2 Data and Empirical Setting

In this section we describe our data and empirical setting. We first provide institu-

tional background on the setting, a clinic that provides free income tax preparation

services in Boston. We then describe our administrative (tax and credit) and survey

(expectations, assets, and consumption) data sources. We conclude by describing

the characteristics of our sample.
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3.2.1 Boston Tax Sites

Our data come from a Volunteer Income Tax Assistance (VITA) tax preparation

center operated by the Boston Tax Help Coalition and the Boston Office for Financial

Empowerment (OFE). The City of Boston runs over 30 free tax preparation centers,

which annually serve more than 13,000 clients. Our data come from one of the largest

of these centers, Dorchester House.

Boston residents are eligible to receive these free tax preparation services if they

worked in the prior year, earned less than $54,000, and do not own their own business.

Eligible individuals who come to the tax site ("clients") typically go through three

separate stations. First, they complete an intake survey, which includes questions

on demographics, use of city services, savings behavior, and credit usage. Next,

clients are offered a free "financial check-up" from a trained volunteer referred to

as a "financial guide." The financial guides offer the client a free credit report and

provide information on other city services for which the individual may be eligible.

Finally, the client is sent to a tax preparer who electronically prepares and submits

the individual's tax return.

We partnered with the Boston OFE to field a survey of clients' expectations about

their tax refund (detailed in Section 3.2.3) at the second of these three stations,

together with the financial guide. This survey came before clients filed taxes, and

so measures their pre-filing uncertainty about their tax refund. At this stage, clients

also provided consent for their tax, credit, and survey information to be used for

research purposes. Figure 3-1 describes the flow of clients through Dorchester House

in more detail.

Two operational features of the financial check-up stage deserve mention. First,

because of financial guide shortages and constrained tax site operating hours, many
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tax filers skipped the financial check-up during busy periods. As a result, we obtained

consent from only 60 percent of tax filers. However, among clients who completed

the financial counseling session our consent rate was 96 percent. Therefore, we do

not believe that tax filer consent was a major source of selection into our research

sample.

Second, the OFE implemented a separate randomized controlled trial as part

of the financial check-up wherein clients were randomly assigned to a more or less

detailed check-up. Those assigned the more detailed check-up were given an in-depth

explanation of their credit report, as well as financial advice and referrals to a variety

of services provided by the City of Boston and state and federal organizations. Those

assigned to the less detailed check-up also received their credit report, but no detailed

financial advice or referrals. In our analysis of consumption responses in Section 3.4,

we control for treatment status at the financial check-up stage. 2

3.2.2 Administrative Tax and Credit Data

We obtain administrative tax returns for consenting clients who filed their taxes

at Dorchester House. These data include information on income, family structure

(filing status and number of dependents), and refund amount. For individuals who

previously used the city's tax preparation services, we are able to link these returns

to those from earlier years. We have two years of returns for 69 percent of the tax

filers in the credit and expectations survey sample.

2 An OFE analysis of the randomized controlled trial finds balance across treat-
ment assignment on a range of taxpayer characteristics. The report can be accessed at
https://owd.boston.gov/wp-content/uploads/2017/07/DES-89-Financial-Check-up-Evaluation-
2017-Web.pdf?utmsource=Office+of+Workforce+Development&utmcampaign=699487e955-
EMAILCAMPAIGN_2017_07_24&utm medium=email&utm term=0_f071f9ca69-
699487e955-226050949
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We merge these administrative tax records with a short panel of consumer credit

reports for clients who provided consent during the financial check-up. We have four

reports for each individual in our sample: one that was pulled when they visited the

tax site, and three that were pulled one, two, and six months later. The one and

two month credit reports measure changes in debt levels soon after tax filing. For

clients who receive their refund by direct deposit, both the first and second-month

follow-up credit reports show loan balances after tax refund receipt; for clients who

receive their tax refund by paper check, the first of these two credit reports likely

show balances from prior to refund receipt. The six month report allows us to observe

longer-run deleveraging and new loan originations (e.g. auto loans) that may not

have been reported in time for the one and two month follow-ups.

3.2.3 Expectations and Consumption Surveys

We supplement these administrative data sets with three distinct surveys. These

surveys provide information on taxpayer demographics and assets, refund expecta-

tions, and consumption before and after refund receipt. Our first source of survey

data is the demographics and assets survey individuals completed when they arrived

at Dorchester House. From this survey we obtain information on a client's gender

and level of education (high school degree or some college), and on a client's savings

behavior. The response rate for this survey was high: of the 1,186 individuals who

filed taxes at Dorchester House during the spring 2016 season, 995 completed the

survey. A copy of the survey is provided in Appendix 3.7.2.

We obtain information on tax filers' expectations and uncertainty about their

refunds from a short four-question survey. Tax filers completed this survey after

they had been paired with a financial guide, but before they filed their taxes and
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learned their actual refund amount. We elicited beliefs in two ways. First, we directly

asked each filer how much they expected their refund to be, and their qualitative

certainty that the refund would fall within $500 of this amount. Second, we provided

individuals with a set of six bins, and asked them the probability that their refund

would fall within each bin. A copy of the survey is provided in Appendix 3.7.3. We

discuss how we translate the answers to these questions into probabilistic beliefs in

Section 3.3.

Finally, we merge these expectations with data from a second consumption sur-

vey designed to measure saving and consumption behavior before and after refund

receipt. While we obtain substantial information on consumption from the panel of

credit reports - for example, the presence of new auto loans or pay-down of debt -

these reports do not contain information on durable purchases or on the timing of

purchases relative to refund receipt. They also contain no information on savings.

The response rate to our consumption survey was 46 percent (291 out of 625 filers in

our sample), which is high compared to similar phone-based surveys. 3 The consent

language and questions are provided in Appendix 3.7.3.

3.2.4 Descriptive Statistics

Table 3.1 presents descriptive statistics from our sample of low-income Boston tax

filers. Column 1 includes all 995 tax payers who visited Dorchester House and com-

pleted the in-take survey during the spring 2016 tax season. The average adjusted

gross income (AGI) in this sample is $21,603, and the mean refund size is $1,765.

Thirty-eight percent of filers receive the Earned Income Tax Credit (EITC). Most

filers are unmarried, but only 28 percent file as a single head of household, and 34
3For example, Allcott and Kessler (2018) obtain an 18 percent response rate to a phone survey

of energy usage, a higher rate than they expected.
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percent have dependents (including married filers). Eighty percent of filers have a

high school degree, but only 15 percent have attended college. The average age is 41

years old.

The remaining columns restrict the sample to the subsets for which we have

credit reports, the expectations and consumption surveys, and tax returns from the

prior year (2015). Column 2 reports statistics from the 714 filers in the credit report

sample. Tax filers in this sample are highly leveraged with very low savings rates.

The average filer has roughly $9000 in installment debt, $1700 in credit card debt,

and $500 in savings. Average savings is less than one third of the average refund

amount, and less than 5 percent of average debt. The mean FICO score for those

with credit reports is 664, below the 2016 U.S. average of 700. The credit report

sample is similar to the asset survey sample in terms of age, gender, education, family

status, AGI, and refund amounts.

These economic and demographic variables remain stable across columns 3-5,

suggesting that attrition across surveys is largely unrelated to tax status or demo-

graphic characteristics that could bias our results. Column 3 restricts to the 625 tax

filers in the credit sample who completed the expectations survey. The vast majority

(557) of these filers also completed the asset survey. Column 4 restricts to the much

smaller sample of 291 filers who completed the follow-up consumption survey. De-

spite a 46 percent response rate, households that did and did not respond are nearly

identical in terms of their average characteristics. Column 5 restricts to tax filers

with expectations and credit reports who filed their taxes with the City of Boston in

the previous year (2015).

Table 3.1 shows that refund amounts are large relative to income, savings, and

debt levels. The mean refund of $1,776 is approximately eight percent of the average

individual's adjusted gross income and is triple the average individual's savings at
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tax filing. In addition, we show in section 3.3 that tax filers face a large degree

of uncertainty about their refunds. This suggests that tax refunds and uncertainty

about them can have important implications for financial behavior in this population.

3.3 Tax Refund Expectations and Realizations

We surveyed Dorchester House tax filers to elicit their beliefs about the tax refund

they would receive after filing. Since consumption responses to refund amounts may

depend on both mean expectations and uncertainty, our survey elicited both aspects

of filers' beliefs through a probabilistic survey question. This section describes the

belief survey; explains how we converted survey responses to smooth belief distribu-

tions; and compares beliefs to realized refund amounts and surprises. Although tax

filers reported substantial uncertainty about their refunds, their mean expectations

were, on average, correct. In addition, filers reporting greater uncertainty saw larger

refund surprises. This suggests that most tax filers had an accurate sense of the

refund amount they could expect to receive, and also had an accurate sense of the

uncertainty they faced. However, there is evidence of (mean) inaccurate expecta-

tions particularly among tax filers whose incomes or family status changed relative

to past years, suggesting that tax filers are imperfectly aware of after-credit tax rates

at different points in the income tax schedule.

3.3.1 Belief Elicitation Survey

The survey was administered at the beginning of the financial counseling session at

Dorchester House, which took place prior to the tax preparation session. We view

this as the ideal time to survey program participants on their refund expectations:
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tax filers had not yet received any information about their refunds. However, tax

filers had collected their tax documents, come to the tax site, and filled out a detailed

economic and demographic survey for use during the tax preparation session.

The final question in this survey elicited probabilistic refund expectations. Re-

spondents were asked the percent chance that their refund would fall in each of six

bins: negative (they would have to pay taxes), $0-$500, $500-$1,000, $1,000-$2,500,

$2,500-$5,000, over $5,000. We asked for points in a cumulative density function

rather than moments such as the mean and standard deviation because subjective

probabilities are easier to understand and calculate. In addition, probabilistic sur-

vey questions can provide richer information about beliefs. We would have ideally

constructed bins around each filer's point estimate to obtain comparable uncertainty

measures across households. The need to conduct the survey quickly made this ap-

proach too difficult to implement, so we used fixed intervals. Nevertheless, we show

in the next section that the fitted distributions accurately capture both expected

refund amounts and uncertainty.

Appendix Table 3.9 describes features of the elicited belief distributions. The

first column presents statistics for all tax filers in our main analysis sample, and

the remaining columns disaggregate those statistics into subgroups. Forty percent of

respondents put nonzero probability on three or more bins, while 60 percent did so

on only one or two bins.

3.3.2 Fitting Belief Distributions

To summarize beliefs and to quantify both mean expectations and uncertainty, we

convert each probabilistic elicitation into a smooth probability distribution following

Engelberg et al. (2009) (hereafter EMW). Our goal is to use all information available
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in respondents' subjective probabilities and to smooth between points of the cumu-

lative density function in a reasonable way. We fit a distribution which depends on

the number of bins on which the respondent placed positive probability. Single bin

reports are fit with a scalene triangle; the support is the full bin, and the mode is the

point estimate. In this case, we depart from EMW by using additional information

from the respondent's point estimate, fitting a scalene triangle rather than an isosce-

les triangle. Meanwhile, two-bin reports are fit with an isosceles triangle with the

widest possible support that is consistent with the probabilities for each bin. These

sets of assumptions uniquely pin down a distribution for one- and two-bin responses.

For three or more bins, we follow EMW in fitting a beta distribution to the reported

quantiles. Triangle and beta distributions are appropriate for our setting because

they have finite support, and because beta distributions can match a wide range of

distributional shapes that might be implied by probabilistic survey questions. 4 The

maximum refund amount was a little below $20,000, and the lowest refund amount

was about -$500. We take these two values as the endpoints of the support of the

highest (over $5,000) and lowest (negative) bins.

The triangle distributions are exactly identified and fit using analytical formu-

las. To fit the beta distributions, we follow EMW and minimize the sum of squared

differences between the reported cumulative probabilities at each point in the dis-

tribution's support and those of a beta distribution with the same support. Let

X denote the support points of the response to the probabilistic survey question.

Let Z denote a beta-distributed random variable governed by parameters (a,#3) and

normalized to have support on X. Finally, let p, denote the reported cumulative

probability at each point x E X. We find the (&i, /3) for the elicited distribution

from each individual i which solves

4We also depart from EMW by not constraining the estimated beta densities to be single-peaked.
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min E [px, -P(Z < ,)]2

The fitted distributions reveal large variation in the expected refund amounts

and uncertainty across tax filers. Appendix Table 3.9 shows that the average mean

expectation is $1,970, and the average standard deviation is $740. The average

coefficient of variation is 0.50 - so refund uncertainty is, on average, large relative

to the expected amount. These averages mask an enormous amount of variation

across tax filers in their refund expectations. The standard deviation across tax

filers of their mean expectations is $2,850, and the standard deviation of subjective

uncertainty (where uncertainty is measured using the standard deviation of each tax

filer's fitted distribution) is $1,019.

It is illustrative to compare self-reported measures of qualitative and quantitative

uncertainty as a validity check on these survey responses . Table 3.2 summarizes the

coefficients of variation of respondents' belief distributions depending on whether

they were "very sure," "somewhat sure," or "not sure at all" about whether their

refund would be within $500 of their point estimate. The most uncertain individuals

have much larger coefficients of variation. Two-way t-tests of equal means strongly

reject equal quantitative uncertainty for any two qualitative responses. The next

subsection provides additional evidence that the quantitative measures of uncertainty

meaningfully capture tax filers' subjective beliefs.

3.3.3 Beliefs and Realizations

Our unique institutional setting allows us to compare applicants' refund expectations

to what they actually received. This comparison shows not only that applicants have

correct mean expectations, but also that they understand the degree of uncertainty
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they face, at least on average.

Figure 3-2 compares mean expectations from survey responses to actual refund

amounts. Mean expectations closely track realized amounts. The slope of the re-

gression line is close to one, though beliefs are slightly attenuated: those with the

most extreme realizations had slightly less extreme expectations. The strongly linear

relationship between expected and actual refund amounts does not imply that tax

filers faced little uncertainty, or that any individual had unbiased beliefs. Rather, it

shows that beliefs tracked realized refund amounts on average, suggesting that the

probabilistic survey question does contain meaningful quantitative information.

Figure 3-3 performs a similar exercise for the degree of self-reported uncertainty.

It compares the magnitude of each tax filer's refund "surprise"-the difference between

the realized and expected refund amounts-to the fitted standard deviation of their

belief distribution. There is a clear linear relationship between subjective uncertainty

and realized absolute errors.5 Thus, tax filers face substantial refund uncertainty,

and furthermore they seem to be aware of the degree of uncertainty that they face.

The next section investigates the determinants of refund uncertainty and shows that

some but not all of the variation in refund uncertainty across individuals can be

explained by observed characteristics.

3.3.4 Predictors of Refund Uncertainty and Surprises

In this section we investigate the predictors of refund uncertainty and the magnitude

and direction of refund surprises. We find that current income and family structure

are highly predictive of refund uncertainty, while demographic variables such as age,

5Note that the slope of the line should not necessarily be one - a standard deviation is the
square root of the expected squared error, not the expected absolute error - and the conditional
expectation function need not be linear.
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gender, and education are less predictive. Filers whose income or family structure

changed from previous years are also more uncertain, but tax filers whose situation

did not change still report substantial uncertainty. Furthermore, the characteristics

that predict greater uncertainty are also associated with larger surprises, suggesting

that these relationships reflect real differences in uncertainty across tax filers. Even

after controlling for demographic characteristics and changes in tax situation there

is substantial variation in both uncertainty and surprises.

To analyze determinants of subjective refund uncertainty, we first regress three

of measures of refund uncertainty on a range of economic and demographic charac-

teristics. Our specifications take the form

y = XiI + ci (3.1)

where y is a measure of uncertainty, and Xi includes sociodemographic variables

capturing age, education, and gender; demographic variables including marital sta-

tus and number of dependents; and dummy variables for each quartile of adjusted

gross income (AGI). Results from a series of these regressions are shown in Table

3.3. Columns 1-3 use the standard deviation of the household's parametric belief

distribution as the measure of uncertainty, yi; columns 4-6 use the absolute value of

the refund surprise (refund amount - mean expectation); and columns 7-9 use the

size of the refund surprise.

Column 1 shows that the number of dependents and income quartile are quite

predictive of refund uncertainty, as measured by the standard deviation of beliefs.

Tax filers in the third and fourth income quartiles report greater uncertainty, as

do households with more dependents. These differences are large: for example, an

additional dependent is associated with $449 more in refund uncertainty (as measured
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by the standard deviation of an individual's fitted belief distribution), and filers

in the third AGI quartile report over $600 greater uncertainty than filers in the

first quartile. In contrast, the demographic variables capturing age, education, and

gender are less predictive of uncertainty.6 These patterns are consistent with a

model in which cognitive limitations and total experience with the tax system are

less important determinants of refund uncertainty than economic characteristics that

directly determine tax liabilities.

Columns 2 and 3 add several variables related to changes in financial and family

status: whether the filer received unemployment insurance payments in the past

year; whether their filing status changed, e.g. from single to married; the (absolute

or level) change in their AGI; and the (absolute or level) change in the number of

dependents. The sample size in these columns is lower, reflecting the fact that we

only observe these changes for filers who filed at a Boston tax site in previous years.

Column 2 controls for indicators for, and magnitudes of, these year-to-year changes,

while column 3 replaces absolute changes with level (signed) changes.

Our results in these two columns provide mixed evidence on whether changes

in financial and family status contribute to refund uncertainty. In column 2, the

magnitude of change in AGI is positively related to uncertainty but not statistically

significant. Households that experienced an increase in the number of dependents

actually report significantly lower refund uncertainty, but there is no significant corre-

lation between uncertainty and the absolute change in number of dependents. These

results however are noisy enough to be consistent with taxpayer uncertainty being

partially driven by changes in financial or family situations, which may result from

how after-credit tax rates depend directly on family size and structure as well as

6 The coefficient on the indicator for age > 50 is negative and marginally significant, but this
pattern disappears after adding controls for change in filing status.
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income. In both columns 2 and 3, the coefficient estimates on third quartile of AGI

and number of dependents remain statistically significant and of similar magnitudes

as seen previously in column 1.

A natural question is whether the tax filers who reported greater uncertainty

actually saw higher variance in their refund surprises. Columns 4-6 of Table 3.3

repeat the regressions in columns 1-3 with the absolute value of the tax filer's refund

surprise as the dependent variable. Almost all variables which significantly predict

refund uncertainty in columns 1-3 significantly predict absolute errors in the corre-

sponding specification in columns 4-6, with the same sign and similar magnitudes.

Number of dependents and income quartile remain the main predictors of refund

surprise magnitudes, while demographic variables are less predictive. In addition,

changes in AGI and changes in the number of dependents are significantly predictive

of surprise sizes. Column 5 shows that tax filers with larger AGI changes saw larger

surprises (30 dollars of uncertainty per 1,000 dollar change in AGI), as did filers with

changes in number of dependents (1,000 dollars of additional uncertainty). In addi-

tion, surprise size is predicted by the direction of these changes. Households with

increases in AGI and dependents actually saw smaller surprises. Taken together,

these results suggest that different household types accurately assess the uncertainty

they face as a result of unchanging family characteristics, but they may not fully

update their beliefs or their subjective uncertainty based on changes in income and

family structure.

Finally, columns 7-9 of Table 3.3 regress the surprise amount, rather than the

magnitude, on the same sets of predictors to investigate whether certain types of

households systematically over- or under-estimate the size of their tax refunds be-

liefs. Consistent with the finding in section 3.3.3 that expected refund amounts track

realizations, most of the coefficient estimates on current tax filer characteristics are
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statistically insignificant. In particular, current AGI and number of dependents,

which were predictive of refund uncertainty and surprise magnitudes, do not system-

atically predict the direction of mistakes. Though the coefficients on the second and

third income quartiles are marginally significant in column 7, they become insignifi-

cant after controlling for the change covariates.

That said, there is one demographic variable which significantly predicts bias:

married tax filers systematically overestimate their refund amounts by $1,000 relative

to unmarried filers. Additionally, we find in columns 9 that changes in financial or

family status are predictive of under- or over-estimates: filers whose AGI rose had

lower surprises, while filers with an increase in their number of dependents saw higher

surprises. In particular, tax filers whose incomes rose overestimated their refund

amounts by 3 cents per each dollar of change in AGI, whereas filers underestimated

their tax refund by more than 700 dollars for each additional dependent relative to

the previous year. This is consistent with tax filers underestimating the slope of

their refund with respect to characteristics: for example, the EITC claw-back rate

as incomes rise and the generosity of EITC or child-tax credit benefits for additional

dependents.

The above discussion yields several takeaways regarding tax refund expectations.

First, the relationship between uncertainty and variables directly relevant to a house-

hold's tax liability, but not sociodemographic variables, suggests that uncertainty

about how financial characteristics map to tax liabilities is common across a range

of households with varied levels of sophistication and experience. Second, the types

of households who report greater uncertainty also see larger refund surprises. Third,

current taxpayer characteristics do not predict the direction of mistakes, with the ex-

ception of marital status; however, tax filers do not fully update about how changes

in income and family structure affect their tax liabilities. A final observation is that
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even this broad set of tax filer attributes fails to explain all of the variation in un-

certainty. The R-squared in column 3 - the highest across specifications - is 0.358,

leaving substantial unexplained variation.

3.4 Borrowing and Consumption Responses to Tax

Refunds

In this section we study how individuals' borrowing and consumption behavior

around the time of tax filing responds to their expectations about, and actual real-

izations of, their tax refunds. In our sample of low-income tax filers, we find that

roughly 15 cents per dollar of expected tax refund is used to repay revolving debt

after tax refund receipt. In contrast, the unexpected ("surprise") component of tax

refunds has a precisely estimated near-zero effect on revolving debt repayment. These

results are consistent with individuals borrowing out of their expected tax refunds to

smooth consumption over the course of the year, while also having a high propensity

to consume out of windfall income in the form of tax refund surprises. Furthermore,

we find that individuals exhibit precautionary behavior in their willingness to bor-

row out of expected tax refunds, as post-refund debt repayment is significantly more

pronounced for individuals who report being more certain of their refund amount

ex-ante.

Further exploring the effects of tax refund surprises, we find that surprises have a

significantly positive effect on installment debt balances: unexpectedly high refunds

lead to higher installment debt levels. This result is consistent with tax refunds partly

being used to fund down payments for newly financed durable purchases, such as new

auto loans. We use our follow-up survey of consumption behavior to corroborate this
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possible mechanism, finding that individuals with higher tax refund surprises indeed

more frequently report that they bought a new car or initiated home repairs after

tax filing. Summing the effects of refund surprises across both installment balances

and revolving balances, we estimate that an additional dollar of refund surprise leads

to an additional 40 cents of debt. While noisy, this estimate is significantly greater

than zero and suggests a mechanism whereby medium-run MPCs can lie above 1

when windfall income is used to relax collateral constraints for new borrowing.

Finally, we test whether ex-ante uncertainty about tax refunds affects individuals'

propensity to consume out of tax refund surprises. If individuals behave precaution-

arily and if the consumption function is concave in cash on hand, as predicted under

a broad set of conditions (Carroll and Kimball, 1996; Zeldes, 1989), then individuals

with more ex-ante uncertainty should have lower propensities to consume out of tax

refund surprises. Our results are consistent with this prediction in sign, but under-

powered, and we fail to reject the null that MPCs out of surprises are the same for

different levels of ex-ante uncertainty.

3.4.1 Revolving Debt Repayment

We begin by examining financial behavior around tax filing by studying revolving

debt balances.7 These loans are sensible to examine first, as their balances are most

readily adjustable over a short time horizon; we defer until section 3.4.2 a discussion

of less easily adjustable installment debt.8

Using the linked panel of credit report data, we calculate the change in each

'Revolving debt includes all loans with a flexible repayment schedule and an open line of credit
that can be used flexibly over time and over purchases, including credit cards, retail store cards,
and home equity lines of credit (HELOCs).

8Installment debt includes all loans with a fixed repayment schedule. These loans are often used
to fund one-time purchases, including car loans, student loans, and mortgages.
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tax filer's revolving debt balance between the credit report drawn just prior to tax

filing and credit reports at subsequent two-month and six-month horizons. These

provide short- and medium-run measures of responses to tax refunds. We then

regress these two-month and six-month changes on three features of tax filers' beliefs

and realizations of tax refunds: (1) their expectation of their tax refund amount,

(2) their uncertainty about their tax refund amount as measured by the standard

deviation of their elicited subjective probability distribution over refund amounts,

and (3) the surprise in their realized tax refund relative to their expected refund.

Debt changes are signed so that a negative change is a decrease in debt levels. Refund

surprise is defined as realized tax refund minus expected tax refund; thus, a positive

surprise is "good news" for the tax filer. We estimate regressions of the form

A = a + 1Lpi + 2surprisei + 039i + yZi + r/ (3.2)

where i indexes a tax filer; Abi denotes change in balances; pi is i's mean expected

refund; oa is their subjective standard deviation; and surprisei is their refund surprise.

The vector Zi controls for a range of interacted tax filer characteristics because

household debt paths may differ at different stages of the lifecycle. We include fully

interacted fixed effects for age group, income quartile, marital status, and whether

an individual has dependents.' These interaction terms aim to absorb differences in

levering or deleveraging over time that are due to differences between, for example,

a young unmarried parent in the middle of our sample's income distribution, and

a married elder at the bottom of our sample's income distribution. All residual

variation is within a set of individuals who have similar lifecycle circumstances. 10 We

9 We group individuals into three age bins based on whether they are younger than 25, between
26 and 50, or over 50.

"The most notable omission from these lifecycle controls is arguably the variability of individuals'
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also add controls for whether an individual received their refund by direct deposit

or by paper check, and for an individual's treatment status in the randomized trial

being conducted simultaneously at the tax site as discussed in section 3.2.1.

Table 3.4 reports estimates from specifications without and with lifecycle controls

at a two-month horizon (columns 1 and 2) and a six-month horizon (columns 3 and

4). Column 1 indicates that for every dollar of expected tax refund, our sample

repays roughly 15 cents in revolving balances after refund receipt. These estimates

remain stable and significantly different from zero across both horizons and with the

inclusion of lifecycle controls. These results quantify how revolving lines of credit are

used to transfer a moderate share of expected tax refunds forward in time to fund

earlier consumption.

Turning to the second row of the table, we see that surprises in tax refunds

are not used to repay revolving debt. After including lifecycle controls (columns

2 and 4), we can reject more than 13 cents of refund surprise being put toward

revolving debt repayment at a two-month horizon, and 21 cents at a six-month

horizon. Considering the low savings levels in our sample (see section 3.2.4) this

suggests that households have a marginal propensity to consume (MPC) of close to

one out of cash on hand." This is consistent with existing evidence of high MPCs

from windfall income among low-income consumers (Jappelli and Pistaferri, 2014).

We further explore such propensities to consume in section 3.4.2.

In the final row of the table we test for the presence of precautionary behavior in

labor income. In future work, additional data cleaning of individuals' self-reported industry and/or
occupation, together with our data on age, income level, and history of unemployment insurance
receipt, will make it possible to impute a measure of labor income uncertainty using data such as
the Panel Study of Income Dynamics (PSID) or Current Population Survey (CPS) for long-run or
short-run income risk, respectively.

"Note that a coefficient of -1 on refund surprise would indicate an MPC of zero; tax filers would
then be spending their entire refund surprise to pay down debt rather than changing consumption.
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borrowing out of tax refunds. If tax filers are less certain of their tax refund amount

ex-ante, they may borrow less of their expected refund before filing. We find that

revolving balances are repaid less after refund receipt for more uncertain tax filers;

for every dollar of standard deviation in a tax filer's subjective beliefs about their tax

refund amount ex-ante, we estimate 35 to 40 cents less is used to repay debt ex-post.

This pattern is consistent with uncertain tax filers precautionarily taking on less

debt prior to filing their taxes. The estimated relationship between uncertainty and

debt changes remains stable across both horizons and with the inclusion of lifecycle

controls, although standard errors become larger at the six-month horizon. In dollar

terms (results not shown), we estimate that having above-median refund uncertainty

predicts roughly $275 less repaid toward revolving debt after refund receipt.

3.4.2 Installment Debt Repayment and Durable Consump-

tion

We now turn our attention from revolving debt balances, such as credit card borrow-

ing, to non-mortgage installment debt such as auto loans, retail loans, and student

loans. We conduct the same analyses as in table 3.4 for installment debt instead of

revolving debt, again estimating equation 3.2 with and without taxpayer controls at

two-month and six-month horizons. We present these results in table 3.5.

We find that higher (more positive) tax refund surprises lead to relative increases

in installment debt. The effect of surprises on installment debt is near zero at a

two-month horizon, but at a six-month horizon each additional dollar of tax refund

surprise leads to an additional 65 cent increase in installment debt. This estimated

effect remains stable as lifecycle controls are added in column 4. We reject a zero

effect on installment debt changes in columns 3 and 4 with 95% and 90% confidence,
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respectively.

Other coefficient estimates for installment debt are noisier than for revolving

debt. While we estimate that an even larger share of expected refunds are used for

installment debt repayment than for revolving debt repayment, the estimates are not

significantly different from zero or from the revolving debt estimates at reasonable

confidence levels." Similarly, the effect of uncertainty on borrowing behavior for

installment debt cannot be distinguished from zero or from the estimated effects for

revolving debt.

The result that positive refund surprises lead to rising installment balances is

intriguing. We corroborate this relationship visually in figure 3-4, using a binned

scatter plot to show conditional means of the dependent variable across bins of re-

fund surprise after partialling out the controls in column 4 of table 3.5. The visual

evidence strongly confirms the relationship between refund surprises and changes in

installment debt. Across large and small, positive and negative surprises, an approx-

imately linear relationship holds between surprises and installment debt changes,

confirming that this pattern is not driven by non-linearity or outliers.

Given that installment debt is less adjustable over short horizons than revolving

debt - it has a fixed repayment schedule, and taking out additional debt typically

must coincide with a new purchase - this result suggests that positive tax refund

surprises may be used to fund down payments on newly financed durable purchases.

Conversely, a negative tax refund surprise may make an anticipated durable purchase

no longer possible due to collateral constraints. This mechanism is illustrative of a

case where medium-run MPCs out of windfall income can in fact be above 1, when

"Greater rates of borrowing out of tax refunds through installment rather than revolving debt
would be consistent with optimal consumption smoothing behavior when installment debt interest
rates are lower than revolving debt interest rates (and when installment borrowing is sufficiently
fungible to substitute for revolving debt).
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such income is used to relax collateral constraints for new durable financing.

To investigate the durable purchases explanation, table 3.7 examines the relation-

ship between tax refund surprises and self-reported durable purchases in the follow-up

durable consumption survey we conducted approximately two months after tax fil-

ing. See section 3.2 for a survey description. This table follows a similar format to

tables 3.4 and 3.5. While the coefficient estimates are not statistically significant

at conventional levels, they are consistent (p = 0.263) with the interpretationthat

higher refund surprises lead to a greater likelihood of new durable purchases after

refund receipt.

To conclude this section, we pool both revolving and installment debt balances

together and estimate the effects of tax refund expectations, uncertainty, and sur-

prises on overall non-mortgage debt balances. We estimate the same specifications

as in tables 3.4 and 3.5, but with the total change in installment and revolving debt

balances as the dependent variable.1 3 Estimates for these specifications are shown in

table 3.6. A moderate amount of each dollar of expected refund is used to repay debt

shortly after refund receipt, suggesting that individuals use both revolving and in-

stallment debt to smooth consumption by borrowing out of refunds ex-ante. We also

find evidence that individuals behave precautionarily in borrowing out of tax refunds,

as this borrowing is less pronounced for individuals with more uncertainty ex-ante.

However, unlike in our specification using only revolving debt, these differences are

not statistically significant. Finally, we again find that more positive refund surprises

lead to significantly higher total debt at a six-month horizon. Our preferred estimate

when including lifecycle controls in column 4 is an additional 38 cents of total debt

13Individuals are included in this regression sample if they ever have either revolving loans or
installment loans over our panel horizon, so the sample differs from that in our analyses of revolving
debt and installment debt alone.
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for each additional dollar of refund surprise. The modest amount of deleveraging

on revolving debt does not overwhelm the larger, positive effect on installment debt

balances. On net, positive surprises appear to lead to higher indebtedness in the

medium term.

3.4.3 Further Tests of Precautionary Behavior

In this final subsection, we study the relationship between ex-ante uncertainty about

tax refunds and individuals' later consumption out of tax refund surprises. This

provides a further test of precautionary behavior. Here, we test a central prediction

of the buffer stock consumption-savings model: the consumption function should be

concave in cash on hand (Carroll and Kimball, 1996; Zeldes, 1989).

The logic of our test is that conditional on other characteristics, refund uncer-

tainty is an instrument for initial debt levels. Suppose two tax filers have identical

characteristics, mean refund expectations, and refund surprises, but have different

levels of refund uncertainty at filing. With a precautionary savings motive, the filer

with greater uncertainty should enter tax season with lower debt or higher assets

to maintain a buffer against lower-than-expected tax refund realizations. Since the

two filers are identical after refund uncertainty is realized, they should have the same

consumption function, but the measured MPC" will e evaluated at different wealth

levels. As a result, we should estimate a negative interaction between refund surprise

and uncertainty after controlling for mean expectations and mean tax filer charac-

teristics. We implement this test by adding an interaction between refund surprise

and the subjective standard deviation of ex-ante expectations to equation 3.2:

"Precisely, we measure changes in debt balances, and invoke the low levels of saving (in either
real or financial assets) in our sample to translate from changes in debt balances to consumption.
See also section 3.2.
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Abj = a + /1p/i + 2surprisei + /30-i + 4 surprisei x o-i + 7Zj + r/ (3.3)

Estimates from these specifications are shown in Table 3.8. Each pair of columns

shows changes in debt at two-month and six-month horizons, and the three pairs

of columns respectively show results for revolving debt, non-mortgage installment

debt, and both debt categories together. The estimates are noisy, but we generally

estimate negative signs on the interaction term that are consistent with precautionary

behavior having induced lower MPCs. We conclude that this test for precautionary

behavior is underpowered in our setting.

3.5 Conclusion

This paper uses a rich dataset linking administrative tax and credit data to surveys

on taxpayer expectations and consumption behavior to shed new insight on low-

and moderate-income households' choices to pay down debt, save, and consume. We

showed that simple questions about an individual's expected tax refund can be used

to generate rich probabilistic distributions that are informative about both mean

expectations and uncertainty. We then showed that, in our sample of low-income

filers, individuals face substantial uncertainty about the size of their tax refund.

This is true despite the fact that annual refunds make up a substantial part of in-

dividuals' annual income and is true even for individuals whose tax situation has

not changed since they last filed. Finally, we showed that refund expectations and

surprises influence household financial decisions after tax filing. Filers use roughly

15 cents per dollar of expected tax refund to repay revolving debt after tax refund
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receipt. In contrast, refund surprises are not used to pay down debt, but rather,

lead to higher borrowing through installment credit such as auto loans, consistent

with MPCs potentially lying above one due to relaxed collateral constraints for fi-

nanced durables. Post-refund debt repayment is most pronounced for less uncertain

individuals, suggesting precautionary behavior.

There are two key limitations to our work. First, because of the small size of

our sample, we are unable to generate precise estimates of the impact of uncertainty

on consumption decisions. In particular, while our results are in line with buffer-

stock consumption theory's predictions about how uncertainty should affect ex-ante

borrowing out of expected refunds and ex-post propensities to consume out of sur-

prises, our estimates remain somewhat noisy, especially in our tests for heterogeneous

MPCs. Second, because we focus on individuals who take advantage of the city of

Boston's free tax preparation services, our results may be specific to this population

of low-income filers. The fact that these individuals sought out city services suggests

that they may already be in a distressed financial situation. As a result they might

be more responsive to income surprises than other individuals with similar incomes.

However, the fact that they were aware of the city's services and were able to gather

their paperwork and, in many cases, file their taxes months ahead of the deadline,

suggests that they may be more conscientious on average. This would suggest that

they may be less uncertain than the average taxpayer with their demographic char-

acteristics.

One possible direction for future work would be to study how uncertainty and

expectations evolve over time. While we were only able to collect one year of expec-

tations data, it would be interesting to examine whether individuals' beliefs about

their refunds become more precise if they file similar returns for several years. A

second possibility would be to consider a broader sample of tax filers, who may have
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higher incomes or who may not not take advantage of free government-provided tax

filing services. Finally, given the recent changes to the U.S. tax code, a complemen-

tary question is how taxpayers update their beliefs about their tax liabilities when

the tax code itself - in addition to their own financial status - has changed.
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3.6 Figures and Tables
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Figure 3-1: Dorchester House Tax Site Flow

BTONEL Dorchester House Tax Site Flow Chart ITAXH

Client Enters
Tax Site

Greeter
1. Signs client in to the site

Waiting Area 2. Gives client necessary paperwork

Other Services Client fills out IRS intake
Santander, etc. form, EITC survey, and

1. site-specific paperwork.

... if client IS NOT interested in ... if client IS interested in
having credit report pulled... having credit report pulled...

... If FCU packet is BLUE...

Financial Check-up Credit Report Check Up
1. Client will be checked for: Client and Financial Guide

1. Necessary tax preparation complete the "Credit
documents Report Check Up" page

2. EITC survey completion
II. Clients will be offered:

1. Site specific services
2. Service referrals
3. Credit advising
4. Voter registration
a. Savings bond purchase

M 2T Survey Questions MIT Su Questions
Client completes MIT Client completes MIT
survey questions, with help survey questions, with help
from MIT researchers and from MIT researchers and
financial guide financial guide

Tax preparation
>1Tax preparer should offer

savings bond purchase.

Quality Check

S te Coordinator performs
quality check

Note: This figure shows the steps a Dorchester House tax client would go through upon
arriving at the center.
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Figure 3-2: Expected Versus Actual Refunds
Note: This figure plots a binned scatterplot of mean expectations against actual refund
amounts. The expected refunds are the means of the distributions calculated using the
procedure described in Section 3.3.
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Figure 3-3: Refund Uncertainty and Refund Surprises
Note: This figure plots the size of the refund "surprise" (actual refund - mean expectation)
against the standard deviation of beliefs.
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Figure 3-4: Refund Surprises and Changes in Installment Debt
Note: This figure plots a binned scatterplot of 6-month changes in installment balances
against tax refund surprises. Surprises are defined as realization minus expectation, such
that a positive surprise is "good news" for the tax filer. These data are plotted after
partialling out the other controls included in column 4 of Table 3.5.
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Table 3.1: Descriptive Statistics

Consumption, Past Year Taxes,
Asset Survey Credit Report Expectations and Expectations, and Expectations, and

Sample Sample Credit Reports Credit Reports Credit Reports

(1) (2) (3) (4) (5)

Female 0.64 0.62 0.62 0.61 0.63

Age 40.91 40.92 40.71 40.50 42.15

(15.66) (15.69) (15.85) (16.24) (15.62)

Adjusted Gross Income ($) $21,603 $21,535 $21,572 $21,092 $23,784
($15,962) ($15,924) ($15,988) ($16,152) ($15,938)

Has Dependents 34% 33% 33% 32% 36%

Filing Status
Married 10% 9% 8% 9/0 6%

Single Head of Household 29% 28% 28% 28% 32%

Filed Schedule C 6% 6% 7% 8% 6%

Refund Size $1,765 $1,677 $1,635 $1,605 $1,849

($2,406) ($2,413) ($2,384) ($2,484) ($2,446)

Received EITC 38% 37% 35% 33% 36%

EITC Refund (If >0) $1,769 $1,724 $1,760 $1,777 $1,940

($1,686) ($1,644) ($1,671) ($1,749) ($1,724)

Chose Direct Deposit 59% 60% 59% 56% 62%

Total Savings Balance $518 $525 $524 $603 $540
($562) ($568) ($572) ($599) ($578)

High School or Above 80% 83% 83% 84% 85%

Some College or More 15% 16% 15% 15% 17%

FICO Score 664 664 671 668

(86) (87) (87) (87)

Credit Card Balances ($) $1,732 $1,672 $1,548 $1,840

($4,888) ($4,845) ($3,994) ($5,493)

Installment Balances ($) $9,205 $9,171 $9,306 $10,396

(non-mortgage) ($22,500) ($22,046) ($22,264) ($24,202)

Has Mortgage 4% 4% 5% 5%

Observations 995 714 625 291 424

Obs. with Asset Survey 995 626 557 253 383

Note: This table provides descriptive statistics on our population of low-income tax filers.

The first column includes all individuals who visited Dorchester House and responded

to the demographics and asset survey. The second column restricts the sample to the

population for whom we have both initial and follow-up credit reports. The third column

includes individuals who have both credit re2pts and completed expectations surveys. The

fourth column includes individuals with credit reports, completed expectations surveys,
and consumption surveys. The fifth column includes individuals who additionally could

be matched to the preceding year's tax return by virtue of being return clients. In each

column, gender, savings balance, and education are provided for the subset of individuals

in that column who also completed the asset survey.



Table 3.2: Comparison of Qualitative and Quantitative Uncertainty

Qualitative Uncertainty Quantitative Uncertainty

Coefficient of Variation p-Value from t-test for Equality
of Means

N Mean S.D. Not Sure Somewhat Sure

Not Sure at All 149 0.79 3.73
Somewhat Sure 254 0.45 0.65 0.00038
Very Sure 215 0.38 0.66 0.00002 0.00000

Note: This table compares the coefficient of variation calculated for the parametric belief

distributions to the qualitative uncertainty responses. The sample includes all individuals

who responded to the expectations survey.
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Table 3.3: Correlates of Refund Uncertainty and Surprises

Elicited Standard Deviation of Refund Magnitude of Refund Surprise Refund Surprise
Amount

(1) (2) (3) (4) (5) (6) (7) (8) (9)

25 or Younger 62.90 -93.53 -66.94 1934 304.2 485.8 297.0 398.8 487.4
(108.2) (161.9) (160.3) (209.0) (317.4) (315.8) (271.9) (434.9) (4303)

Olderthan 50 -171.2* -134.7 -130.1 -166.6 136.2 79.31 308.7 222.2 143.8
(98.69) (126.3) (123.8) (190.3) (247.9) (244.2) (247.6) (339.6) (332.7)

Any College -24.99 -33.90 -2.697 101.3 143.9 151.1 204.2 172.0 33.05
(83.72) (113.3) (112.2) (161 9) (222.9) (221.8) (210.6) (305.4) (302.2)

Female -79.07 -89.00 -77.56 -51.55 -149.0 -162.2 157.5 229.0 204.9
(87.97) (124.4) (121.4) (170.4) (244.4) (239.7) (221.6) (334.9) (326.5)

Has Dependent 347.8** 545.5** 516.7** 676.8** 1162.6*** 823.1** -172.1 -466.4 -504.0
(168.0) (219.0) (211.2) (323.5) (428.8) (415 7) (420.8) (587.5) (566.4)

Number of Dependents 448.7*** 321.0** 377.9*** 494.9*** 296.4 663.2*** 312.2 565.7* 455.8
(90.97) (126.7) (118.1) (175.1) (248.0) (232.4) (227.7) (339.8) (316.7)

Married 143 1 309.1 390.6 184.2 198.3 227.0 -967.3** -1383.6** -1598.6**
(159.8) (261.7) (254.7) (312.1) (512.2) (500.9) (406.0) (701.7) (682.5)

AGI in 2nd Quartile 88.16 67.49 53.96 330.5 281.1 4070 558.0* 696.2 891.5*
(113.1) (171.1) (170.2) (218.5) (334.9) (334.8) (284.3) (458.9) (456.2)

AGI in 3rd Quartile 608.8*** 489.7*** 480.2*** 1000.8*** 925.2*** 1031.3*** -686 8** -422.3 -112.2
(115.2) (168.4) (169.8) (222.6) (330.4) (334.8) (289.5) (452.7) (456.2)

AGI in 4th Quartile 289.4** 174.5 187.6 501.4** 93.67 304.4 -460.5 154.8 485.7
(118.3) (174.4) (178.1) (228.2) (341.2) (350.3) (296.8) (467.5) (477.3)

Received U1 in Past Year 27.56 28.98 -336.2 -278.9 752.2 758.6
(221.5) (216.7) (433.5) (426.2) (593.9) (580.7)

Change in Filing Status -121.1 -228.1 -723.6 54.14 -43.27 69.35
(266.0) (187.6) (520.7) (369.1) (713.4) (502.9)

Magnitude of Change in AGI ($1,000) 8.298 28.48** -6.706
(6.555) (12.83) (17.58)

Any Change in Number of Dependents -130.7 1011.5** 173.3
(235.8) (461.5) (632.3)

Change in AGI ($1,000) -1.726 -22.53** -28.01**
(5.206) (10.24) (13.95)

Change in Number of Dependents -296.3*** -517.3*** 736.2***
(92.90) (182.8) (249.0)

Constant 256.3** 292.9* 280.2 326.7 124.1 154.7 -592.7** -873.7* -899.1*
(114.5) (177.3) (172.1) (220.6) (347.4) (338.8) (286.9) (476.0) (461.6)

N 463 268 268 460 267 267 460 267 267
R-squared 0.348 0.333 0.358 0.222 0.281 0.301 0.072 0.083 0.118

Ie
00
00

Note: This table reports estimates from ordinary least
filer characteristics. The sample in columns 1, 4, and

squares regressions of refund uncertainty and surprises on tax
7 is all Dorchester House tax filers who completed the assets

and beliefs surveys. The sample in the remaining columns is the subset of those tax filers who could be linked to the
previous year's tax return by virtue of being a repeat client. The Elicited Standard Deviation of Refund Amount

(columns 1-3) is the standard deviation of the parametric belief distribution fit to each tax filer's probabilistic survey
question response, described in Section 3.3.2. Magnitude of Refund Surprise (columns 4-6) is the absolute value of
the difference between each tax filer's refund amount and the mean of their parametric belief distribution. Refund
Surprise (columns 7-9) is the (signed) level of the same quantity. AGI is Adjusted Gross Income as reported on the
tax return. Change in Filing Status is an indicator for whether a household's filing status changed from the previous
year of filing. Standard errors are in parentheses. * p < .1 ** p < 0.05 *** p < 0.01



Table 3.4: Impact of Refund Surprise on Revolving Debt Balances

Dependent Variable: Change in Revolving Debt ($)

2-Month Follow-Up 6-Month Follow-Up

(1) (2) (3) (4)

Mean Expectation ($) -0.150*** -0.103* -0.145** -0.142*
(0.0457) (0.0569) (0.0671) (0.0826)

Surprise ($) -0.0677* -0.0393 -0.0831 -0.0831
(0.0370) (0.0462) (0.0546) (0.0674)

S.D. of Beliefs 0.395** 0.378** 0.377* 0.358
(0.154) (0.168) (0.226) (0.243)

Controls for Taxpayer Characteristics X X

R-Squared 0.042 0.198 0.021 0.204
N 302 302 301 301

Note: This table reports estimates from ordinary least squares regressions of changes in
revolving debt balances on tax filer expectations, refund surprises, and characteristics. The
sample in all columns is individuals with non-missing data on demographics as measured in
the asset survey, expectations, and an open revolving loan observed at any point during the
sample period. Balances of zero are assigned to loans reported as closed with no balance. In
columns 1 and 2, the dependent variable is the change in revolving debt between the week
of tax filing and the two-month credit report follow-up. Column 1 controls for the mean
and standard deviation of each tax filer's parametric belief distribution, fit as described
in Section 3.3.2, as well as their refund surprise. Column 2 adds controls for tax filer
characteristics. Columns 3 and 4 repeat these specifications for the six-month change in
revolving debt. Tax filer characteristics are fully interacted bins of age less than 25, 25-50,
and over 50; adjusted gross income (AGI) quartile; marital status; and an indicator for any
dependents. Standard errors are in parentheses. * p < .1 ** p < 0.05 *** p < 0.01
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Table 3.5: Impact of Refund Surprise on Installment Debt Balances

Dependent Variable: Change in Installment Debt ($)

2-Month Follow-Up 6-Month Follow-Up

(1) (2) (3) (4)

Mean Expectation ($) -0.128 -0.233 -0.0231 -0.303

(0.150) (0.196) (0.325) (0.416)

Surprise ($) 0.0599 0.0318 0.676** 0.659*

(0.125) (0.158) (0.272) (0.338)

S.D. of Beliefs -0.353 -0.146 -0.539 -0.374

(0.478) (0.527) (1.036) (1.115)

Controls for Taxpayer Characteristics X X

R-Squared 0.036 0.218 0.043 0.260

N 216 216 215 215

Note: This table reports estimates from ordinary least squares regressions of changes in in-
stallment debt balances on tax filer expectations, refund surprises, and characteristics. The
sample in all columns is individuals with non-missing data on demographics as measured
in the asset survey, expectations, and an open non-mortgage installment loan observed
at any point during the sample period. Balances of zero are assigned to loans reported
as closed with no balance.. In columns 1 and 2, the dependent variable is the change in
installment debt between the week of tax filing and the two-month credit report follow-up.
Column 1 controls for the mean and standard deviation of each tax filer's parametric belief
distribution, fit as described in Section 3.3.2, as well as their refund surprise. Column
2 adds controls for tax filer characteristics. Columns 3 and 4 repeat these specifications
for the six-month change in installment debt. Tax filer characteristics are fully interacted
bins of age less than 25, 25-50, and over 50; adjusted gross income (AGI) quartile; marital
status; and an indicator for any dependents. Standard errors are in parentheses. * p < .1
** p < 0.05 *** p < 0.01
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Table 3.6: Impact of Refund Surprise on Non-Mortgage Debt Balances

Dependent Variable: Change in All Non-Mort. Debt ($)

2-Month Follow-Up 6-Month Follow-Up

(1) (2) (3) (4)

Mean Expectation ($) -0.163** -0.106 -0.223 -0.348
(0.0772) (0.0960) (0.206) (0.255)

Surprise ($) -0.0194 0.0303 0.384** 0.382*
(0.0641) (0.0813) (0.172) (0.217)

S.D. of Beliefs 0.183 0.165 0.673 0.789
(0.256) (0.272) (0.683) (0.723)

Controls for Taxpayer Characteristics X X

R-squared 0.024 0.158 0.021 0.167
N 352 352 351 351

Note: This table reports estimates from ordinary least squares regressions of changes in
total non-mortgage debt balances on tax filer expectations, refund surprises, and character-
istics. The sample in all columns is individuals with non-missing data on demographics as
measured in the asset survey, expectations, and an open revolving or non-mortgage install-
ment loan observed at any point during the sample period. Balances of zero are assigned to
loans reported as closed with no balance.. In columns 1 and 2, the dependent variable is the
change in debt between the week of tax filing and the two-month credit report follow-up.
Column 1 controls for the mean and standard deviation of each tax filer's parametric belief
distribution, fit as described in Section 3.3.2, as well as their refund surprise. Column 2
adds controls for tax filer characteristics. Columns 3 and 4 repeat these specifications for
the six-month change in debt. Tax filer characteristics are fully interacted bins of age less
than 25, 25-50, and over 50; adjusted gross income (AGI) quartile; marital status; and an
indicator for any dependents. Standard errors are in parentheses. * p < .1 ** p < 0.05
*** p < 0.01
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Table 3.7: Impact of Refund Surprise on Durable Purchases

Dependent Variable: Survey-
Reported Durables Purchase

2-Month Follow-Up

(1) (2)

Mean Expectation ($) 0.0000143 0.0000197

(0.0000138) (0.0000176)
Surprise ($) 0.00000182 0.00000873

(0.0000118) (0.0000148)
S.D. of Beliefs -0.0000228 -0.0000398

(0.0000442) (0.0000476)

Controls for Taxpayer Characteristics X

R-squared 0.003 0.127

N 443 443

Note: This table reports estimates from ordinary least squares regressions of an indicator

for durable purchases between tax filing and the two-month follow-up consumption survey.

Controls are tax filer expectations, refund surprises, and characteristics. The sample in all

columns includes individuals with non-missing data on demographics as measured in the

asset survey, expectations, and a response to the follow-up consumption survey conducted

approximately two months after tax refund receipt. Column 1 controls for the mean and

standard deviation of each tax filer's parametric belief distribution, fit as described in

Section 3.3.2, as well as their refund surprise. Column 2 adds controls for tax filer charac-

teristics. Tax filer characteristics are fully interacted bins of age less than 25, 25-50, and

over 50; adjusted gross income (AGI) quartile; marital status; and an indicator for any

dependents. Standard errors are in parentheses. * p < .1 ** p < 0.05 *** p < 0.01
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Table 3.8: Testing Concavity of the Consumption Function

Dependent Variable Change in Change in Change in
Revolving Debt Installment Debt All Non-Mort. Debt

Horizon 2-Mo. 6-Mo. 2-Mo. 6-Mo. 2-Mo. 6-Mo.

(1) (2) (3) (4) (5) (6)

Surprise ($) -0.0697 -0.112 0.0839 0.922** 0.0291 0.541**

(0.0569) (0.0833) (0.197) (0.422) (0.102) (0.272)
Surprise * S.D. of Beliefs 0.0000395 0.0000376 -0.0000639 -0.000319 0.00000151 -0.000190

(0.0000431) (0.0000628) (0.000144) (0.000305) (0.0000735) (0.000196)
S.D. of Beliefs 0.409** 0.387 -0.197 -0.627 0.166 0.622

(0.172) (0.249) (0.540) (1.141) (0.280) (0.743)

Controls for Taxpayer Characteristics X X X X X X
Controls for Mean Expectation X X X X X X

R-squared 0.200 0.205 0.219 0.264 0.158 0.170
N 302 301 216 215 352 351

Note: This table reports estimates from ordinary least squares regressions of changes in
debt balances on tax filer expectations, refund surprises, and tax filer characteristics. The
sample in all columns is individuals with non-missing data on demographics as measured
in the asset survey, expectations, and an open loan (either revolving loan, installment
loan, or either type of loan, depending on the column) observed at any point during the
sample period. Balances of zero are assigned to loans reported as closed with no balance.
In columns 1 and 2, the dependent variable is change in two- and six-month revolving
debt balances, respectively. Both columns control for the mean and standard deviation of
each tax filer's parametric belief distribution, fit as described in Section 3.3.2, as well as
their refund surprise, an interaction between the surprise and belief standard deviation,
and tax filer characteristics. Columns 3 and 4 repeat these specifications for changes in
installment debt balances, and columns 5 and 6 do the same for all non-mortgage debt.
Tax filer characteristics are fully interacted bins of age less than 25, 25-50, and over 50;
adjusted gross income (AGI) quartile; marital status; and an indicator for any dependents.
Standard errors are in parentheses. * p < .1 ** p < 0.05 *** p < 0.01
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3.7 Appendix

3.7.1 Appendix Tables and Figures
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Table 3.9: Elicited Beliefs by Tax Filer Group

Features of Probabilistic Survey Question Responses

Full Sample Has Dependents Marital Status Adjusted Gross Income (AGI) Education

Yes No Married Single Above $20,000 Below $20,000 Some College No College

Number of Bins with Positive Probability
1 Bin 22.2% 24.0% 21.4% 28.3% 21.7% 24.7% 20.1% 21.2% 23.0%
2 Bin 38.8% 39.9% 38.3% 32.6% 39.3% 34.4% 42.5% 37.3% 39.9%
3 Bin 20.3% 14.2% 23.2% 13.0% 20.9% 18.1% 22.1% 18.7% 21.5%
4 Bin 11.8% 12.0% 11.7% 13.0% 11.7% 13.9% 10.1% 14.5% 9.8%
5 Bin 5.5% 8.2% 4.2% 8.7% 5.2% 6.9% 4.2% 6.6% 4.6%
6 Bin 1.4% 1.6% 1.3% 4.3% 1.2% 1.9% 1.0% 1.7% 1.2%

Qualitative Uncertainty
Very Sure 34.4% 30.6% 36.3% 48.0% 33.2% 29.9% 38.4% 32.4% 35.8%
Somewhat Sure 40.6% 47.6% 37.2% 34.0% 41.2% 43.2% 38.4% 40.2% 41.0%
Not Sure at All 23.8% 21.4% 25.1% 18.0% 24.3% 25.5% 22.4% 25.9% 22.4%

Quantitative Responses
Point Estimate 1,758 3,466 921 2,336 1,708 2,377 1,202 1,753 1,762
Minimum -364 1,071 -1,048 -304 -369 -75 -607 -527 -244
Maximum 5,922 10,885 3,557 7,783 5,758 7,851 4,300 6,344 5,610

Features of Parametric Distribution
Mean 1,970 4,211 902 2,891 1,889 2,817 1,258 1,995 1,952
Median 2,073 4,225 1,047 2,768 2,011 2,889 1,386 2,089 2,061
Std. Dev. 740 1,475 390 1,052 713 1,023 502 803 693
Coefficient of Variation 0.50 0.33 0.58 0.35 0.51 0.37 0.61 0.57 0.45

Notes: This table reports responses to the beliefs survey. All statistics are means within each group. The last panel
contains statistics based on the parametric distributions fit to the probabilistic survey question described in Section
3.3.
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Table 3.10: Parametric Belief Distributions

Features of Elicitations under Alternative Parametric Assumptions and Sample Restrictions

Baseline Uniform Lower Bound Upper Bound Omitting Only Omitting 50-50
Top/Bottom Bin Reports

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Mean 1,970 2,850 2,312 3,297 1,098 1,418 3,527 5,212 1,566 2,047 2,061 2,992
Median 2,073 3,369 2,066 3,171 996 1,456 3,179 5,413 1,713 2,874 2,179 3,554
Std. Dev. 740 1,019 2,312 2,976 631 885 799 1,075
Minimum 548 1,261 525 1,251 353 816 553 1,315
Maximum 5,247 6,765 5,922 7,333 4,641 6,111 5,698 7,093

Notes: This table reports features of parametric belief distributions under alternative assumptions. Statistics are
aggregated across all tax filers in the main analysis sample. The first pair of columns contains statistics based on the
parametric distributions fit to the probabilistic survey question described in Section 3.3. Uniform assumes a uniform
distribution within each bin with nonzero probability. Lower (Upper) bound calculates the lowest (highest) value of
each tax filer's subjective mean and median expectation that is consistent with their subjective probabilities. The
last two pairs of columns implement sample restrictions using the baseline parametric assumptions.
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3.7.2 Survey Appendix

On-Site Survey

1U
EU OCCE*P~jD0 NOT WRITE iw This AREA==000==OOUO =000 00 000 000 02403

M

BS.-T 2015 BOSTON TAX HELP SURVEY
BOSTON
TAX HELP The overall purpose of this survey is to inform how the services and resources available in the
COA LITION community can be improved. Your answers will be added with the answers we receive from othersurveys. We will never share your personal information with anyone without your permission.

FEDERAL RESERVE
BANK OF BOSTON'"

- USE A NO. 2 PENCIL ONLY - Make solid marks that fill the oval completely
- Erase cleanly any marks you wish to change

1. GENDER? 2. ARE YOU A VETERAN? 3. ARE YOU REGISTERED TO VOTE?0 Female 0 Male 0 Yes 0 No 0 Yes 0 No

-I

WIN

U

4. HOW WOULD YOU DESCRIBE YOUR RACE OR ETHNICITY? (please mark all that apply)o Asian/Pacific Islander 0 Hispanic/Latino 0 White 0 AfricanO Black/African American 0 Native American C Caribbean C Other
5. HOW FLUENT ARE YOU IN ENGLISH?

Please rats from 0 (beginner) to 5 (natIve speaker): Beginner (ID CD CD CD OD UD Native Speaker
6. WHAT IS THE HIGHEST LEVEL OF EDUCATION YOU HAVE COMPLETED? (please mark one)o 0-8 grades 0 High School grad or GED 0 Associate's Degree 0 Some graduate schoolo 9-12 grades (no diploma) 0 Some college 0 Bachelors Degree 0 Graduate degree
7. DO YOU WANT TO CONTINUE YOUR EDUCATION OR VOCATIONAL TRAINING? (please mark all that apply)o Yes, but I don't have enough time 0 Yes, but I am not sure investing in additional education or training will pay off for me0 Yes, but I don't have enough money to cover all the cost 0 No, I am all set
S. LAST YEAR, WHAT BENEFITS DID YOU OR YOUR FAMILY RECEIVE? (please mark all that apply)0 WIC 0 SNAP/food stamps 0 TAFDC 0 Child Care Vouchers O SSI 0 SSDI 0 None

9. HOW MANY MONTHS WERE YOU EMPLOYED LAST YEAR? Part-time: 0 0 0 4-6 07-9 0 1Q-12

10. WHICH OF THE FOLLOWING BEST DESCRIBES YOUR HOUSING STATUS? (please mark one)o Rent, no subsidy 0 Rent, public housing 0 Living with family or friends 0 Homeless, in shelter 0 Own a home with a mortgage0 Rent, Section 8 0 Rent, other subsidy 0 Assisted Living Facility 0 Homeless, no shelter 0 Own a home with 02 mortgage
11. DID YOU LOSE YOUR HOUSING THROUGH EVICTION OR FORECLOSURE IN THE LAST YEAR? (please mark all that apply)0 Yes, foreclosure 0 Yes, eviction 0 No

12. DID YOU FILE TAXES LAST YEAR (2014)? 0 Yes 0 No If No, Then Skip To 15.
13. Did you receive a refund for the 2014 tax year?

O Yes, and it was more than $1,000 O No If No, Then Skip To 15.
0 Yes, and it was less than $1,000 0 Don't Remember

14. if you received a refund, were you able to use It as you intended?
0 Yes, pretty much as I had planned
0 No, I had planned to save more of my refund
0 No, I had planned to use it for something else but ended up spending most of it on bills
0 I did not have any specific plans for the refund
0 I don't remember

15. if you get a tax refund this year, what do you plan to do with the money? (please mark all that apply)
0 Buy groceries 0 Pay bills 0 Home improvement0 Pay child expenses (including K- 12 school fees) 0 Pay medical bills 0 Pay for college0 Buy a car 0 Pay moving expenses 0 Save for college0 Car repairs/expenses 0 Pay down debt 0 Save for retirement0 Save for emergencies 0 Go on vacation 0 Other

16. DO YOU HAVE A BANK ACCOUNT?
0 Checking & Saving 0 No, but I am interested in one If No, Then Skip To 21.
0 Just checking 0 No, not interested If No, Then Skip To 21.
0 Just savings

17. if you have bank account(s), with whom do you bank? (please mark all that apply)
0 Bank of America 0 TD Bank 0 Capital One 360
0 Citibank 0 One United 0 Century Bank
0 Citizens 0 Santander 0 Webster First Financial
0 City of Boston Credit Union 0 Cathay 0 Other
0 East Boston Savings/Mt Washington 0 Mass State es Credit Union
0 Eastern 0 Metro Cre0' ,n

'SAN__ Mark Rft.0EM-2mN0-1&:*54= AMse PLEASE CONTINUE ON BACK lli!F



1 . Did you pay an overdraft fee in the 19. if you have bank account(s), how much money d you regulay
post 12 months? keep in it them) all together?

0 Yes. once 0 Yes, more than once 0 No 0 $0 0 $1 - $100 0 $101 - $500 0 $501 - $ 1,000 0 More than $ 1,000
20. On a monthly basis, how much money do you egulaly put into savings?

4 O $ Between $1 -$50 C Between $51 -$100 More than $100
f you have a bank accoun, Then Skip To 22.

21. f you do not have bank account(s), why not? (please mark all that apply)
0 Overfuraft fees 0 Goes against my religious beliefs Locations or hours a not good for me
2 Other fees o don't think I can get an account Isn't really worth ito L don't trust them 0 They don't speak my language 0 Other

22. IN THE EVENT OF A FINANCIAL HARDSHIP, DO 23. in 2014 did you have a fiend or relative that bowed
YOU KNOW ANYONE LIKELY TO LOAN YOU $200 $20 or more from you because of a financial hardship?
OR MORE IF YOU ASKED? (please mark one)
0 No, Nobody 0 Yes, Maybe 3 or 4 people 0 Yes, and I expect to get paid backo Yes, Maybe I or 2 people n Yes, Maybe 5 or more people Yes, and I do not expecot opaid back

24. DO YOU HAVE ONE OR MORE CREDIT CARDS?
o Yes, one credit card l No, but I want a credit card i t no, Then Skip To 28.o Yes, more than oneased CN Od a credit card pif no, Then Skip To 28.

25. How much do you usually pay each month on your highest balance casd?
c The full balance ( More than the minimum payment The minimum payment 0 Less than the minimum payment

2 o. What is your current outstanding balance on all credit cards?
SLess than $ e1,000 o $1,000 - $5,000 $5000 -$0,000 More than $ 10000 o Unsure

27. What the interest yo te you are chaged on your c dit card with the highest balance?
cf you are unsure, please approximate.

0 Less than 10% 0 10% -14.9% 0 15% -19.9% 0 More than 20% 0 Don't Know (Can't even guess)

28. DID YOU EXPERIENCE ANY OF THE FOLLOWING IN THE LAST YEAR (2014) WITH CREDIT CARD(S)?
(please mark all that apply)
0 Missed a credit card payment r Credit Limit increased 0 1 don't knowo Went over the credit card limit 0 Interest Rate changed I Did not have a credit card in the last year (2014)o Credit Limit decreased 0 Offered a credit card to pay a medical expense

29. Did you use a credit card in the last year (2014) for any of the following reasons because you had no access to
cash to pay for them? (please mark all that apply)
0 Medical Bills o Prescriptions 0 Groceries a Utilities Phone 0 Did not have a credit card in the last year (2014)

30. DO YOU KNOW WHAT A CREDIT SCORE IS?
C No Yes, I know bu it is not important for me o Yes, I know and it is important for me

31. How would you 32. How easy do you 33. How often do you 34. How do you got your
rate your cedit think it Is to improve got your credit credyo M rportc
score? your crdit score? reC D es c gusov nceck ertco
C Very Bad Very Easy Never If lle C, Then S aip To 35. Request it by mail through
C Bad o Easy o Less than once per year AnnualCredar Report.com
0 Fair 0 Neutral 0 Once per year 0 Access it online for a fee
0 Good 0 Hard 0 More than once per year 0 A different method
0 Very Good 0 Very Hard 0 Through the tax sites

35. DURING 2014, DID YOU DO ANY OF THE FOLLOWING? (please mark all that apply)
0 Attend a credit counseling session 0 Purchase a Money Order 0 Take a class on personal finances
C Experience a financial crisis o Purchase a US Savings Bond C Take a loan from a payday lender
0 Filed a credit report complaint 0 Received a court order for debt 0 Take out a loan from a bank
0 Lose a job collection 0 Use a Check Casher (Western Union, PL$,
0 Open a checking account 0 Received a notice for debt you MoneyGram, etc.)
0 Open a retirement account don't owe 0 Use Direct Deposit (paycheck, gov't check, etc.)
0 Open a savings account 0 Received threatening phone calls 0 Used a pre-paid debit card with fees
0 Pay a bill over the intemet for debt collection 0 Used mobile banking on a smartphone

36. WOULD YOU LIKE HELP WITH ANY OF THE FOLLOWING? (please mark all that apply)
0 Emergency/short termn loans 0 Low cost-prepaid cards 0 Continuing education
C Foreclosure help/prevention C Helping me work with my bank C Employment
C Small business loans C Budgeting help
C Credit advising C Debt Management

Thank you for your participation
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3.7.3 Expectations Survey

The expectations survey consisted of four questions, printed below. The survey was

administered by the financial guides at Dorchester House. Along with the answers

to these four questions, financial guides recorded each individual's tax client number

so that the survey could be linked to the other data we collected.
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1) If you get a tax refund this year, how much do you think it will be? Please choose an amount:

(Financial Guide volunteer: please write $500 above this number, and $500 below this number, in
the two blank lines in the question below)

2) How sure are you that your refund will be between $ and $ ? Please circle one:

NOT SURE AT ALL SOMEWHAT SURE

3) Suppose you want to make some extra money by working more hours next week. Do you think you
could you get your manager/supervisor to schedule you for more hours?

YES

NO

I AM NOT WORKING RIGHT NOW

I AM NOT PAID HOURLY

4) We have one final question about your tax refund. Below we show six possible amounts that your
refund could be (for example, "between $1000 and $2500"). For each of the six possibilities, please
say what is the "percent chance" that you think your refund could be that amount:

Could my refund be... (Please Enter % Chance for Each)
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VERY SURE

Over $5000 %

Between $2500 and $5000 %

Between $1000 and $2500 %

Between $500 and $1000 %

Between $0 and $500 %

Negative: I will owe taxes %



Follow-Up Survey

The follow-up survey was conducted via phone by a Dorchester House volunteer.

After introducing herself and reading the consent statement, the volunteer went

through a pre-specified script and coded the answers into a spreadsheet. Individuals

who completed the survey were mailed a $10 gift card.

Consent Statement: The survey information will be stored securely at the City

of Boston's Office of Financial Empowerment, will be kept confidential, and will only

be accessed by OFE employees. The information will also used as part of ongoing

research with researchers at MIT. All survey questions are voluntary and you can stop

the survey at any time. Participation will not affect your eligibility for city services.

The survey should take about 4 minutes. To thank you for your participation, you

will be given a $10 gift card at the end of the survey.

Questions

1. Have you made any of the following large purchases in 2016?

(a) Car or motorcycle

(b) Large household appliance, for example a dishwasher, refrigerator, or
clothes dryer

(c) A major repair to your home or the place you live

(d) Television or computer

(e) Car repairs

(f) Wedding, funeral, or party expenses

(g) [Repeat for each of the items purchased:]

i. About when was it that you purchased? How certain are you of this
date?
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ii. How much did it cost?

iii. How did you pay for it? (cash/check/credit...)

2. Have you faced any unexpected expensive life events, such as job loss, job
change, or medical bills, in 2016?

(a) [Repeat for each event:]

i. About when did happen? How certain are you of this date?
ii. If applicable: how much did the expense cost, and how did you pay

for it?

3. About what time did you receive your tax refund this year?

(a) How long was it after you first came to Dorchester House to file taxes?

4. Did you use your tax refund to put more money in a savings or checking
account?

5. OK, now I have just one last question about the things we've discussed so far.

(a) [Repeat for each large purchase or life event in Questions 1 and 2:]

i. Do you recall if was before or after you got your tax refund?
ii. Do you recall if that was before or after you came to Dorchester House

to file taxes?
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