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Abstract

Humans learn language at an early age by simply observing the world around them.
Why can't computers do the same? Conventional automatic speech recognition systems
have a long history and have recently made great strides thanks to the revival of
deep neural networks. However, their reliance on highly supervised (and therefore
expensive) training paradigms has restricted their application to the major languages
of the world, accounting for a small fraction of the more than 7,000 human languages
spoken worldwide. This thesis introduces datasets, models, and methodologies for
grounding continuous speech signals at the raw waveform level to natural image scenes.
The context and constraint provided by the visual information enables our models
to efficiently learn linguistic units, such as words, along with their visual semantics.
For example, our models are able to recognize instances of the spoken word "water"
within spoken captions and associate them with image regions containing bodies of
water. Further, we demonstrate that our models are capable of learning cross-lingual
semantics by using the visual space as an interlingua to perform speech-to-speech
retrieval between English and Hindi. In all cases, this learning is done without linguistic
transcriptions or conventional speech recognition - yet we show that our methods
achieve retrieval scores close to what is possible when transcriptions are available.
This offers a promising new direction for speech processing that only requires speakers
to provide narrations of what they see.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist, CSAIL

3



4



Acknowledgments

I am immensely grateful to my doctoral advisor, Jim Glass, for providing me with the

opportunity, resources, and mentorship that made this thesis possible. Jim has been

an ideal advisor. He is patient and kind when offering guidance, and always manages

to see research problems from a unique angle. When you bring a single seed of an idea

into a discussion with him, he is always able to help you multiply it into a myriad of

fruitful ideas. He makes time for his students whenever they need it, and when he

isn't meeting with his students he is doing everything he can to keep their research

paths clear of roadblocks. He leads the Spoken Language Systems group in a way that

cultivates collaboration, mutual support, and friendship among its members.

I am indebted to the other members of my thesis committee, Victor Zue and

Antonio Torralba, for their razor-sharp insights that helped me to align my thinking to

the big picture when conducting, presenting, and writing about my research. Thank

you so much to Victor for all of the time you have taken to discuss my work, edit

my writing, and impart sage advice as I continue forward in my career. As a speech

researcher, venturing into the realm of vision was stepping outside the bounds of

my expertise; Antonio has been a superb collaborator and guide for me to this new

world. I also want to acknowledge Antonio for helping to craft several of the figures in

Chapters 5 and 6.

Thanks to TJ Hazen for hosting me as an intern at Lincoln Laboratory, for

continuing on to co-supervise my Master's work, and for helping to teach me the

fundamentals of being a good researcher. Thanks to Scott Cyphers for the technical

assistance over the years, and for all of the history lessons. Thanks to Najim Dehak

for teaching me about speaker recognition, and for the energy that he brought to the

SLS offices as well as our social events. Thank you to Marcia Davidson for making

the administrative aspects of my career as a graduate student as painless as possible,

and for the many thought-provoking (and entertaining) conversations we've shared

over the years. Thank you to Rahul Yargop and Mark Hasegawa-Johnson for first

introducing me to, and sparking my interest in research in speech recognition while I

5



was still an undergraduate at UIUC.

Thank you to my academic siblings in SLS . I learned an enormous amount from

you, and greatly enjoyed our time together. Thanks to Ekapol Chuangsuwanich

for being the first person to welcome me to MIT, for teaching me so much about

speech recognition, and for being a great friend. Thank you to Yaodong Zhang and

Hung-An Chang for helping me to get oriented with the SLS computing environment

and software as a first-year graduate student, and for being a great sounding board

for ideas during my Master's work. Thanks to Michael Price, Yonatan Belinkov, Yu

Zhang, Mandy Korpusik, Daniel Li, Wei-Ning Hsu, Stephen Shum, Ian McGraw, Timo

Mertens, and Ann Lee for so many great conversations both in lab as well as over our

many lunches, dinners, bowls of ice cream, and pints of beer together. Thank you to

Mandy, Wei-Ning, and Hao Tang for proofreading this thesis. Their comments were

invaluable, and I hope to be able to return the favor to Mandy and Wei-Ning when

the time comes for them to write their dissertations. I want to acknowledge Tuka Al

Hanai for being my longest running officemate (through 4 different offices!), and for

the many productive research conversations that we shared as a result of that. Thank

you to Ian and Timo for mentoring me when I was a new graduate student, for the

many conversations about research (among plenty of other things), and for helping to

organize a superb reading group. I am thankful for the opportunity to have mentored,

worked with, and published with exceptionally talented undergraduate and MEng

students during my PhD, including Felix Sun, Galen Chuang, Karan Kashyap, Matt

McEachern, and Ken Leidal.

A special thanks goes out to Stephen Shum, not only for introducing me to my

now-wife, but also for being a true friend and great research collaborator.

Thank you to my parents, Frank and Nancy, and my sister, Amy. It has been

difficult to live so far away from you, but our telephone conversations kept me grounded

and made that distance feel a bit smaller. Thank you for your endless love, support,

and counsel.

Thank you to my wife, Sharon. You have loved and supported me through thick

and thin. You are the light of my life, and the best friend I've ever had.

6



Contents

1 Introduction

1.1 P ream ble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Contributions of This Thesis . . . . . . . . . . . . . . . . . . . . . . .

1.3 Chapter Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Background and Related Work

2.1 Acoustic Signal Representation . . . . .

2.2 Automatic Speech Recognition Overview

2.3 Unsupervised Speech Processing . . . . .

2.4 Artificial Neural Networks . . . . . . . .

2.5 Visual Object Recognition and Discovery

2.6 Vision and Language . . . . . . . . . . .

2.7 Machine translation . . . . . . . . . . . .

2.8 Relation of Prior Work to this Thesis . .

3 Datasets and Data Collection

3.1 The Flickr8k Audio Caption Dataset . . . . . . . . . . . . . . . .

3.1.1 Image Captioning Overview . . . . . . . . . . . . . . . . .

3.1.2 Collection of Read Captions via Amazon Mechanical Turk

3.2 The Places 205 English Audio Caption Corpus . . . . . . . . . . .

3.2.1 Dataset Statistics and Analysis . . . . . . . . . . . . . . .

3.2.2 Spoken Captions for the ADE20k Dataset . . . . . . . . .

3.3 Multilingual Extensions to the Places 205 Audio Caption Corpus .

7

21

21

28

30

33

. . . . . . 33

. . . . . . 36

. . . . . . 41

. . . . . . 44

. . . . . . 49

. . . . . . 50

. . . . . . 51

. . . . . . 52

55

56

56

56

59

61

64

64



3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . .

4 Grounding Speech to Images: The Pre-Segmented Case

4.1 Problem setting ...... ........................

4.2 M odel Description ......................

4.2.1 Region Convolutional Neural Networks . . . . . . .

4.2.2 Spectrogram Convolutional Neural Network . . . .

4.2.3 Embedding Alignment Model . . . . . . . . . . . .

4.3 Experimental Data . . . . . . . . . . . . . . . . . . . . . .

4.4 Experim ents . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . .

5 Grounding Speech to Images: The Unsegmented Case

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Audio-Visual Modeling . . . . . . . . . . . . . . . . . . . .

5.2.1 Data Preprocessing and Normalization . . . . . . .

5.2.2 Embedding Vector Models . . . . . . . . . . . . . .

5.2.3 Feature Map (Matchmap) Models . . . . . . . . . .

5.2.4 M odel Training . . . . . . . . . . . . . . . . . . . .

5.3 Experimental Data . . . . . . . . . . . . . . . . . . . . . .

5.4 Image Query and Annotation Experiments . . . . . . . . .

5.4.1 Model Comparison on Full 400k Training Set . . .

5.4.2 Image Architectures and Variable Pretraining . .

5.4.3 Padding Compensation, Activation Functions, an

Initialization . . . . . . . . . . . . . . . . . . . . .

5.4.4 Preliminary Localization Analysis . . . . . . . . ..

5.4.5 Preliminary Analysis of Word Discriminability . .

d Random

5.5 Chapter Summary . . . . . . . . . .

6 Jointly Discovering Words and Objects

6.1 Problem Statement and Motivation . . . . . . . . . . . . . . . . . . .

8

. . . . . . 66

67

. . . . . . 67

. . . . . . 69

. . . . . . 69

. . . . . . 70

. . . . . . 72

. . . . . . 74

. . . . . . 75

. . . . . . 77

79

. . . . . . 80

. . . . . . 80

. . . . . . 81

. . . . . . 82

. . . . . . 85

. . . . . . 87

. . . . . . 88

. . . . . . 89

. . . . . . 90

. . . . . . 93

. . . . . . . 94

. . . . . . 96

. . . . . . . 96

. . . . . . . . . 98

101

101



6.2 Pattern Grounding via Coupled Sliding Windows . . . . . . . . . . . 102

6.3 Sliding Window Grounding and Clustering Experiments . . . . . . . . 105

6.3.1 Clustering Analysis . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Meta-Analysis of Audio Cluster Centroids . . . . . . . . . . . 108

6.3.3 Relation of Learned Clusters to ImageNet Classes . . . . . . . 109

6.4 Pattern Grounding with Matchmap Networks . . . . . . . . . . . . . 111

6.4.1 Speech-prompted Object Localization . . . . . . . . . . . . . . 113

6.4.2 Matchmap Visualizations and Videos . . . . . . . . . . . . . . 114

6.4.3 Clustering of Audio-Visual Patterns . . . . . . . . . . . . . . . 114

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Cross-Lingual Audio-Visual Modeling 119

7.1 Speech to Speech Translation . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 M odels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Experim ents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4.1 Model Training Procedure . . . . . . . . . . . . . . . . . . . . 122

7.4.2 Evaluation: Audio-Visual and Audio-Audio Retrieval . . . . . 124

7.4.3 Experimental Results and Discussion . . . . . . . . . . . . . . 125

7.4.4 Analysis of Audio-to-Audio Matchmaps . . . . . . . . . . . . . 127

7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8 Conclusions 131

8.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3.1 Image and speech synthesis . . . . . . . . . . . . . . . . . . . 133

8.3.2 R obotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3.3 Fusion with other forms of language . . . . . . . . . . . . . . . 134

8.3.4 Speech-to-speech translation . . . . . . . . . . . . . . . . . . . 135

8.3.5 Bilingual to many-lingual . . . . . . . . . . . . . . . . . . . . 135

9



8.3.6 Im ages to videos . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.3.7 New tasks to learn different aspects of language . . . . . . . . 136

8.3.8 Generalization to modalities beyond vision and speech . . . . 136

8.3.9 Fully-segmented models for end-to-end pattern discovery . . . 137

8.3.10 Incorporating an interactive feedback loop . . . . . . . . . . . 138

8.3.11 Deeper analysis of learned representations . . . . . . . . . . . 138

8.4 Closing Statem ent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A Detailed Experimental Results 141

A.1 Relation Between Word Clusters and Imagenet Synsets . . . . . . . . 141

A.2 Additional Sliding Window-Based Pattern Clusters . . . . . . . . . . 141

10



List of Figures

1-1 A schematic diagram of communication between people. . . . . . . . 23

1-2 Depiction of jointly learning audio-visual embedded representations. . 25

1-3 Automatically inferred semantic alignments between speech signals and

visual images. No supervised speech recognition nor any text transcripts

were used in the training of these models; the text is shown solely for

the purpose of analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1-4 Semantic similarity matrix between independent spoken captions in

Hindi and in English describing the same underlying image of a beach.

Red regions indicate alignments between the speech signals which are

inferred by the model to have similar meaning. All similarity scores

were computed directly between speech signals with no knowledge of

the underlying text (and no conventional speech recognition). The

underlying words in Hindi and English are displayed time-aligned along

the axes, allowing us to verify that the model is identifying meaningful

Hindi-English translations directly at the speech waveform level (Shown

at bottom right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2-1 ASR learning scenarios as defined by Glass (2012). . . . . . . . . . . 43

3-1 Audio collection interface for capturing spoken captions on Amazon

M echanical Turk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3-2 Screenshots of the Places English audio caption collection interface. . 60

3-3 Two example Places images and the text transcripts of their associated

captions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

11



3-4 Number of English audio captions collected for each Places 205 scene

category .......... .................................. 62

3-5 Breakdown of audio captions recorded across speakers for the Places

English and Hindi data. For each (x, y) point on the curves, y represents

the sum total number of captions completed by the x most prolific

speakers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3-6 Histograms over Places English caption lengths in words and durations

in seconds.......... .................................. 64

3-7 Histograms over Places Hindi caption lengths in words and durations

in seconds.......... .................................. 65

4-1 Log mel filterbank spectrogram of the word "strategists". . . . . . . . 71

4-2 64 learned filters for the spectrogram CNN . . . . . . . . . . . . . . . 72

4-3 Illustration of the audio-visual alignment model. The inputs are pre-

segmented, and the similarity between each unique pair of (image crop,

spectrogram segment) is reflected in the matrix of dot products. The

overall similarity score between an image and a caption is computed

by taking the column-wise maximum over the dot product matrix (i.e.

over image regions) and then summing the resulting vector (i.e. over

the spectrogram segments) . . . . . . . . . . . . . . . . . . . . . . . . 74

4-4 Some examples of inferred alignments on the Flickr8k data. The

words for each image's caption are stacked to the right of each image,

accompanied by their alignment scores. To keep the images free from

too much clutter, we threshold the scores at 0, displaying a link between

the word and its maximally associated object bounding box only when

its score is positive. Note that the system does not actually see the text

of the caption words - only a spectrogram. We replace the spectrogram

in these figures with the ground truth text for the sake of clarity. . . . 78

12



5-1 The architecture of the NIPS 16 audio/visual neural network with the em-

bedding dimension denoted by d and the caption length by L. Separate

branches of the network model the image and the audio spectrogram,

and are subsequently tied together at the top level with a dot product

node which calculates a similarity score for any given image and audio

caption pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5-2 The audio-visual matchmap model architecture (left), along with an

example matchmap output (right), displaying a 3-D density of spatio-

tem poral sim ilarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5-3 Example search results for the NIPS16 model. Shown on the top is

the spectrogram of the query caption, along with its speech recognition

hypothesis text. Below each caption are its five highest scoring images

from the test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5-4 Example annotation results for the NIPS16 model. Shown on the left

is the query image, and on the right are the Google speech recognition

hypotheses of the five highest scoring audio captions from the test set.

We do not show the spectrograms here to avoid clutter. . . . . . . . . 92

5-5 Examples of ground truth image/caption pairs along with the time-

dependent similarity profile showing which regions of the spectrogram

the model believes are highly relevant to the image. Overlaid on the

similarity curve is the recognition text of the speech, along with vertical

lines to denote word boundaries. Note that the neural network model

had no access to these (or any) transcriptions during the training or

testing phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5-6 t-SNE visualization in 2 dimensions for 1645 spoken instances of 14

different word types taken from the development data. . . . . . . . . 98

13



6-1 An example of our grounding method. The left image displays a

grid defining the allowed start and end coordinates for the bounding

box proposals. The bottom spectrogram displays several audio region

proposals drawn as the families of stacked red line segments. The

image on the right and spectrogram on the top display the final output

of the grounding algorithm. The top spectrogram also displays the

time-aligned text transcript of the caption, so as to demonstrate which

words were captured by the groundings. In this example, the top 3

groundings have been kept, with the colors indicating the audio segment

which is grounded to each bounding box. . . . . . . . . . . . . . . . . 104

6-2 Scatter plot of audio cluster purity weighted by log cluster size vs

variance for k = 500 (least-squares line superimposed). . . . . . . . . 106

6-3 The 9 most central image crops from several image clusters, along with

the majority-vote label of their most associated acoustic pattern cluster 108

6-4 t-SNE analysis of the 150 lowest-variance audio pattern cluster centroids

for k = 500. Displayed is the majority-vote transcription of the each

audio cluster. All clusters shown contained a minimum of 583 members

and an average of 2482, with an average purity of .668. . . . . . . . .111

6-5 Speech-prompted localization maps for several word/object pairs. Read-

ing across from left to right then top to bottom, the queries are instances

of the spoken words "MAN," "CAR,", "CHAIRS", "GRASS", "SEA" and

"MOUNTAINS" extracted from each image's accompanying speech

caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6-6 Figs (a) and (c) show two images and the speech signal. Each color

corresponds to one connected component derived from two matchmaps

(only large segments shown). Figs. (b) and (d) show the image segments

that correspond to each piece of the speech signal. For clarity, we show

at the bottom caption words obtained from transcriptions. . . . . . . 115

6-7 Additional examples of discovered image segments and speech fragments. 115

14



6-8 Clusters (speech and visual) found by our approach. Each cluster is

labeled with the most common word. For each word we show precision

(red), recall (green) and Fl. For the clusters with F1 > 0.5 there are

28 different words discovered in ADE20k. . . . . . . . . . . . . . . . . 116

7-1 A motivating example of how the visual domain might be used as an

interlingua between multiple languages. . . . . . . . . . . . . . . . . . 120

7-2 Illustration of how images, English captions, and Hindi captions are

embedded into a shared space by our models. The triangle of solid

black double arrows represent the 6 possible directions of retrieval. An

example of the margin ranking loss is shown with the embedded Hindi

caption as the anchor point, its paired English caption as the pair

point (solid blue circle) and a randomly selected English caption as the

imposter point (dashed blue circle pointed to by dashed arrow). The

objective function attempts to force the imposter caption to be less

similar to the anchor caption than the paired caption. This can also

be viewed in the context of the retrieval task, in which the solid blue

English caption competes against the dashed blue caption when the

solid green Hindi caption is submitted as a query. . . . . . . . . . . . 123

7-3 HT: "There is big beautiful house. There is a garden in front of the

house. There is a slender road" E:"A small house with a stone chimney

and a porch" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7-4 HT: "This is a picture next to the seashore. Two beautiful girls are

laying on the sand, talking to each other" E:"A sandy beach and the

entrance to the ocean the detail in the sky is very vivid" . . . . . . . 126

7-5 HT: "There are many windmills on the green grass" E:"There is a large

windm ill in a field" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

15



7-6 Example of how speech-to-speech matchmaps are derived from our

models. The element at location (i, j) in the matchmap matrix reflects

the similarity score (e.g. dot product) between the ith frame of the

English network's output and the jth frame from the Hindi network's

output. Segments with high similarity can be spotted visually in the

resulting m atchmap. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7-7 Two examples of audio-to-audio matchmaps for English and Hindi

captions describing the same underlying image. . . . . . . . . . . . . 128

7-8 Two examples of audio-to-audio matchmaps for English and Hindi

captions describing the same underlying image. . . . . . . . . . . . . 129

A-i Additional audio-visual cluster visualizations (1 of 2) . . . . . . . . . 142

A-2 Additional audio-visual cluster visualizations (2 of 2) . . . . . . . . . 144

16



List of Tables

4.1 Image search and annotation results on the Flickr8k test images (1000

images with 5 captions each). . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Isolated word recognition accuracies on our WSJ test set. "FC" stands

for "fully connected". . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Experimental results for image search and annotation on a 120,000

caption subset of the Places Audio data, using variants of the NIPS16

architecture. All models shown used an embedding dimension of 1024. 90

5.2 Recall scores on the heldout set of 1,000 images/captions for the four

matchmap similarity functions considered. Random chance recall scores

are 0.001 for R 1, 0.005 for RA5, and 0.01 for R@10. . . . . . . . . . 93

5.3 Image and caption retrieval results for VGG16 and Alexnet with various

degrees of pretraining. PO corresponds to no pretraining, P1 corresponds

to a pretrained conv1, P2 to a pretrained conv1 and conv2, and so

on (P5 meaning a fully pretrained image network). In the case of the

VGG16 network, each "layer" actually corresponds to each named bank

of convolutions (according to the standard VGG nomenclature). All

networks were trained using the SISA matchmap similarity function. . 94

17



5.4 Various model and training configurations when using the MISA scoring

function and audio padding compensation. 'PT VGG16' indicates

whether or not the image branch is pretrained with the ImageNet

weights, and 'Out Act.' indicates the output activation type. For this

column, 'ReLU' indicates a ReLU on the audio network output, but not

on the image branch which still uses a linear output. For the 'tanh' case,

hyperbolic tangents are used on the output of both network branches. 95

6.1 Examples of the breakdown of word/phrase identities of several acoustic

clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Top 50 clusters with k = 500 sorted by increasing variance. Legend:

IC| is acoustic cluster size, |CI is associated image cluster size, Pur.

is acoustic cluster purity, a 2 is acoustic cluster variance, and Cov. is

acoustic cluster coverage. A dash (-) indicates a cluster whose majority

label is silence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Clustering statistics of the acoustic clusters for various values of k

and different settings of the variance-based cluster pruning threshold.

Legend: IC I = number of clusters remaining after pruning, lXI = number

of datapoints after pruning, Pur = purity, ILI = number of unique

cluster labels, AC = average cluster coverage . . . . . . . . . . . . . . 110

6.4 Speech-prompted and ASR-prompted object detection and localization

IoU scores on the ADE20k data, averaged across the 100 handpicked

word-object pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 Summary of audio-visual retrieval recall scores for English and Hindi

monolingual and multilingual models. . . . . . . . . . . . . . . . . . . 125

7.2 Summary of audio-audio retrieval recall scores for English and Hindi.

Even though the E+-÷I÷÷H configuration is not specifically trained for the

English/Hindi audio-to-audio retrieval tasks, we perform the evaluation

anyway for the sake of comparison. . . . . . . . . . . . . . . . . . . . 126

18



A.1 The 40 lowest variance, uniquely-labeled acoustic clusters paired with

their most similar ILSVRC2012 synset. . . . . . . . . . . . . . . . . . 143

19



20



Chapter 1

Introduction

1.1 Preamble

The ability of human beings to communicate complex ideas to one another through

spoken language is one of our defining characteristics. While animals such as bees

and dolphins are capable of using simple forms of communication, human language is

unique in terms of the range and complexity of ideas that it can be used to convey

(Pinker, 1994). Language is what allows us to cooperate. It allows us to share new

discoveries, so that we can collectively benefit from our individual insights. Language

is how we express our thoughts to one another. By putting our mental state into

words, which are then received by another person, we can induce a new mental state

in that person. Through language, we can connect our brains together across space

and time, forming networks of thought capable of solving problems far more complex

than any one person could on their own.

Throughout our history, we have exploited our mental faculties to compensate for

our physical deficiencies. We crafted tools from stone and metal to withstand the

wear that our hands could not. We domesticated dogs and horses for their speed and

strength, enabling us to hunt, travel, and farm more effectively than we otherwise

could. But for many generations, our only mental collaborators were one another.

The computer is the culmination of our efforts to build a new kind of tool - one that

can help us think. Algorithmic computation has removed the tedium from calculations
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that once had to be done by hand, and to such a great extent the realm of what

problems are "solvable" expanded dramatically (for example, see Appel and Haken

(1977)). But the computer is still an impoverished intellectual partner. Its entire range

of behavior must be completely specified a priori by a human mind, using a language

far less expressive and far more esoteric than our own. Over the past 75 years, a new

scientific field - artificial intelligence (AI) - has coalesced, with the aim of endowing

computers with the capability to learn, think and act in a manner similar to humans.

But in order to realize the computer's full potential as an intellectual partner in this

regard, humans must be able to communicate with computers just as richly as we

communicate with one another.

A prophetic vision of this level of communicative depth can be found in Stanley

Kubrick's 1968 film 2001: A Space Odyssey. HAL 9000 couldn't just hold a conversation

with Dr. Dave Bowman and Dr. Frank Poole. HAL could sense their body language to

infer their emotional state. He understood his environmental surroundings enough to

know that when Dave and Frank entered an EVA pod to have a private conversation,

it was likely because they didn't want him to hear what they were saying. Of course,

that didn't matter much, because HAL could read their lips anyway. HAL's ultimately

nefarious intentions aside, his ability to observe and communicate in a holistic way is

what made him so compelling.

It is not hard to see the influence of science fiction AIs like HAL on the devices that

dominate the consumer computing market today. You would be hard-pressed to find

a person who hasn't asked Siri about the weather, told Alexa to turn on some music,

or followed the spoken directions from Google Maps while driving. The technologies

of automatic speech recognition (ASR), spoken language understanding (SLU), and

test-to-speech synthesis (TTS) have progressed far enough to become a part of our

everyday lives. In May of 2016, Apple's Siri had over 48.7 million unique users in the

U.S. alone (Perez, 2017). Speech and language technology is no doubt one of the great

success stories of artificial intelligence and machine learning.

That said, the technology is far from mature. While your favorite computerized

personal assistant can tell you the weather, perform a web search, dictate a text
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message, or give you directions, it can't yet hold an open-ended conversation with

you. You can't teach it new words, or to speak a new language just by talking to it -

despite the fact that nearly every one of us learned language in that manner when we

were babies. It can't grasp the significance of a joking wink, an indifferent shrug, or an

eyebrow raised in skepticism. It can't understand the signing of a deaf user. It can't

appreciate the universal truths conveyed by a piece of music or art. It can't watch

you bake cookies and let you know that you've forgotten to add the chocolate chips,

or help you decipher the assembly diagrams that accompany your IKEA furniture.

The reality is that our current technologies have barely modeled the tip of the

iceberg that is holistic communication. Consider the pipeline depicted ,in Figure 1-1:

Y
Mental content to
be communicated
Emotions
Perceptions
Intentions
Preferences
Instructions
Explanations --
Memories
Stories
Predictions

Sender

Environmental context

Spoken Language .
Gestural Language "

* Sign Language U A.V,.

Body Language
Written Language ,. .p C

Illustration
Communication Music
channels -----

-*0$

Recipient*E***1
K -r1E

Diu.4

Figure 1-1: A schematic diagram of communication between people.

The many modes of communication such as speech, writing, illustration, etc. serve

as the channels to transmit information from the mind of one person to another. No

one mode is capable of capturing the full range of the human consciousness by itself.

Each mode constitutes a lossy projection that can reflect only certain aspects of our

thinking. It is by employing multiple modes of communication in conjunction with

one another that we are able to infer another person's thoughts with the highest
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possible fidelity. And of course, neither thought nor communication ever exist within

a vacuum; both are immoderately influenced by our surrounding environment.

To appreciate how tightly coupled these modes are to one another and their

environmental context, think about the last time you watched a how-to video on

YouTube to learn a new skill - such as cooking a meal or changing your car's oil.

Would you have been able to learn that skill without the benefit of both the spoken

narration and the visual demonstration? Why are Skype, Google Hangouts, Apple

FaceTime, and other means of teleconferencing so popular when the telephone has

been in use since the 19th century? Why haven't we all adopted texting as our sole

means of communication and stopped speaking to one another altogether? Why do we

still appreciate illustration, music, and all other forms of artwork if written language is

sufficient to express our deepest meditations? It speaks volumes that the most popular

artistic medium of our time - cinema - attempts to reflect the human experience as

fully as possible by weaving together drama, language, and music into a greater whole.

Historically, modality has served as one of the primary dividing lines between the

sub-disciplines of machine learning: speech processing, natural language processing,

computer vision, robotic locomotion, and so on. This is partly because each of

these problem domains requires domain-specific knowledge to effectively model. It is

also due to the historic limitations of computational processing power, data storage

capacity, data collection capability, and our mathematical models themselves. Within

the last decade, these technological barriers have all but disappeared. The latest

GPU architectures offer over 100 teraflops of computational power on a single card

(Carbotte, 2017), and the cost of disk storage on modern hard drives is pennies per

gigabyte (Klein, 2017). Wireless internet access is ubiquitous worldwide, and as of

2018 more than a third of the world's population owns a smartphone (Statista, 2018).

Deep neural networks have proven themselves capable of seamlessly integrating inputs

from disparate modalities into unified models. As the Internet of Things continues to

expand and integrate a greater variety of sensory capabilities, so do the opportunities

for large-scale, distributed, multimodal data collection. We need new ways of making

sense of this ever-growing flood of data, not only to gain new insights today but also
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to preserve our knowledge for future generations. The fruit is ripe for the picking; the

time to bridge the gaps between the various sub-disciplines of artificial intelligence is

now.

Direct association

- Direct disassociation

- Indirect association
(implies learning of
meaningful invariances)

Embedding
space

Figure 1-2: Depiction of jointly learning audio-visual embedded representations.

Because the intrinsic nature of the world is multimodal - because as humans

we absolutely rely on many communicative modes to express ourselves - the next

generation of machine learning methodologies will need to treat all modalities as first-

class citizens. This means moving beyond cascaded, isolated, unimodal system blocks

that filter out all information that they cannot individually model. It instead means

unified models that draw inferences according to the complex and interdependent

relationships of its inputs as well as its context, because there is much to be gained

by doing so. Multimodality offers robustness to noise via information redundancy; it

reduces the sample complexity of learning problems via information complementarity;

and it enables completely new learning paradigms by allowing parallel modes to

co-supervise one another, offering solutions to problems which previously had none.
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Figure 1-3: Automatically inferred semantic alignments between speech signals and

visual images. No supervised speech recognition nor any text transcripts were used in

the training of these models; the text is shown solely for the purpose of analysis.

This thesis defines - and offers solutions for - several of these new problems, serving

as a small step towards the lofty goal of a holistic learning agent. As a starting

point, we consider the joint learning of semantic representations for speech audio and

visual images. Our conceptual underpinning is the notion of a multimodal embedding

space (Figure 1-2). We employ this idea to construct end-to-end models that directly

associate what they hear with what they see, without the need for conventional

speech recognition or text transcripts. These models are not only able to learn to pick

out word-like patterns in continuous speech, but also to semantically associate these

patterns with objects, colors, and textures in natural image scenes (Figure 1-3). This

association allows our models to perform tasks such as semantic image search from

spoken queries, without the need for supervised speech recognition.

We go on to demonstrate that our approach is language-agnostic by successfully

applying it to Hindi as well as English, and hypothesize that these multimodal

correspondence learning techniques could therefore serve as the keystone for building

spoken language systems across a multitude of languages that do not rely on expert

annotation. Such systems would be a boon for the overwhelming majority of human
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languages, 98% of which simply do not support supervised speech processing technology

due to the lack of expensive, expert-annotated corpora (Lewis et al., 2016; Google,

2018).

Finally, we consider the problem of learning semantic correspondences directly

between Hindi and English speech. By learning the Hindi and English words that

refer to the same underlying visual objects, we show that our models can leverage the

visual domain as an interlingua, enabling them to learn translations between Hindi and

English speech without the need for text transcriptions (Figure 1-4). These techniques

may be able to serve as a basis for speech translation systems that can accommodate

resource-poor languages, and even languages which lack a formal writing system.

PHOTOGRAPH

HOWCASING

TH -W - t = "between the sea"

EAN

ONT Beach, ocean

AE WWF ="beach here"

LOOKS

MOUNTAIN

,ND
LIE tT ="mountain"

Figure 1-4: Semantic similarity matrix between independent spoken captions in Hindi

and in English describing the same underlying image of a beach. Red regions indicate

alignments between the speech signals which are inferred by the model to have similar

meaning. All similarity scores were computed directly between speech signals with

no knowledge of the underlying text (and no conventional speech recognition). The

underlying words in Hindi and English are displayed time-aligned along the axes,
allowing us to verify that the model is identifying meaningful Hindi-English translations

directly at the speech waveform level (Shown at bottom right).

Our society is increasingly flooded with multimodal data streams as smart devices,

home automation systems, and mobile/wearable computing devices continue to become
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more ubiquitous and richer in their sensing capability. This thesis demonstrates that

the synergistic modeling of just two modes of communication - speech audio and

still-frame natural images - gives rise to compelling new learning problems, as well as

their solutions. In doing so, it lights a path towards a future in which these multimodal

data streams could be leveraged to build intelligent computing systems that are able

to communicate with humans in much more varied, and therefore much richer ways

than they do today.

1.2 Contributions of This Thesis

This thesis makes the following specific contributions:

1. Introduction of models capable of mapping complex visual images and

unsegmented, continuous speech into a shared, semantic vector space.

We introduce a more advanced modeling framework based on deep convolutional

neural networks that is capable of learning the semantic association between

unsegmented images and their spoken captions. We show that these models

can embed entire image frames and entire spoken captions as fixed points in a

high dimensional, multimodal vector space. In this space, semantic relationships

are preserved via vector operations such as the inner product. This enables

high-level semantic similarity between image scenes and their captions to be

computed via vector operations in the embedding space, which we utilize to

perform semantic image search from spoken queries.

2. Demonstration that the internal representations learned by the mod-

els recognize and associate individual words and objects. We explore

two distinct ways of extracting localized segments containing word-like units

and object-like image regions: 1) using coupled sliding windows imposed upon

the input, and 2) extracting connected components from 3-dimensional spatial-

temporal association maps derived from the neural model's internal feature maps.

We demonstrate that in both cases, the extracted patterns can be grouped into
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very pure clusters using simple algorithms (such as k-means), suggesting that

the representations learned by the networks capture a significant amount of

high-level linguistic abstraction.

3. Demonstration of the language-agnostic nature of the models. Using

an additional spoken caption dataset collected in Hindi, we train a set of audio-

visual association networks. We show that the caption-to-image (and vice versa)

retrieval scores achieved by the Hindi model are close to those achieved with a

similarly sized English dataset, suggesting that our approach is indeed language

agnostic.

4. Demonstration of the models' ability to learn cross-lingual semantics.

In addition to training Hindi-language variants of the audio-visual association

models originally trained on English, we train a triplet model that utilizes a

shared image model in conjunction with an English speech model and a Hindi

speech model. We demonstrate that such a network can not only perform

image/caption retrieval in either language alone, but also can retrieve the Hindi

caption associated with the image associated with an English query caption

(and vice versa). While the cross-lingual speech-to-speech retrieval scores we

achieve are lower than the speech-to-image and image-to-speech scores, they

are many times better than chance and suggest a promising new direction for

speech-to-speech translation research.

5. Collection of a very large, multilingual spoken caption dataset. Over

the course of this thesis work, we collected 40,000 read captions for the Flickr 8k

dataset (Rashtchian et al., 2010), over 400,000 spontaneous spoken captions for

the Places 205 dataset (Zhou et al., 2014), and nearly 10,000 spoken captions

for the ADE20k dataset (Zhou et al., 2017) (all in English). We additionally

collected nearly 100,000 spoken captions for the Places 205 data in Hindi.
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1.3 Chapter Guide

The remaining chapters of this thesis cover the following material:

" Chapter 2 contains a literature review, as well as relevant algorithmic background.

" Chapter 3 Gives an overview of the datasets used throughout this thesis, including

a detailed account of how we went about collecting them.

" Chapter 4 introduces the problem of learning an alignment model between visual

objects and individual words within a spoken caption. The setting is constrained

by the availability of an oracle word segementation and an off-the-shelf visual

object detection system.

" Chapter 5 removes the proverbial "training wheels" from the problem setting

of Chapter 4 by doing away with the segmentation in both the speech and

visual input modalities. In this chapter, models for learning a high dimensional,

multimodal vector embedding space are introduced. Arbitrary images and

acoustic waveforms can be mapped to points in the embedding space, and vector

operations can recover their semantic similarities and differences.

" Chapter 6 describes methodologies for using the models introduced in Chapter

5 to localize visual objects within a larger image frame, as well as individual

linguistic units (approximately at the word-level) within a spoken caption. The

representations learned for individual object-like and word-like units are shown

to be useful not only for clustering together distinct instances of the same

underlying word/object, but also for capturing semantic relatedness within and

across the modalities.

" Chapter 7 applies the models and methods presented in Chapter 5 to a second

language, Hindi. We not only demonstrate the language-agnostic property of

our models, but also show that the representations learned can be used infer

semantic similarity between English and Hindi speech.
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Chapter 2

Background and Related Work

In this chapter, we describe relevant background material related to acoustic speech

signal representations, automatic speech recognition, unsupervised speech processing,

artificial neural networks, visual object discovery, machine translation, and multimodal

modeling of vision and language.

2.1 Acoustic Signal Representation

All of the models introduced in this thesis function on input data from two modalities:

visual images, represented as 2-D arrays of RGB pixels, and audio waveforms of human

speech, represented as 1-D arrays of discrete samples. This section details the data

pre-processing techniques that we apply to the audio waveforms, before any modeling

is performed.

Human speech is produced by a complex process which at its core involves a sound

source and an adjustable filter. The sound source derives its energy from airflow out

of the lungs, which either creates a periodic signal by vibrating the vocal folds (in

the case of voiced speech, such as vowels) or flows freely as turbulent white noise

(in the case of unvoiced speech, which includes most consonants). The vocal tract -

comprised of the throat, oral cavity, and nasal cavity - forms a cascade of acoustic

tubes which filter the signal produced by the sound source. This filter is adjustable in

the sense that our muscles can move our tongue, jaw, and lips about, open or close our
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velum to couple or decouple our nasal cavity to our oral cavity, etc. Depending upon

the configuration of these articulators, the acoustic filter formed by our overall vocal

tract shape produces perceptually different sounds when excited by a sound source.

A full treatment of the acoustic theory of speech production is beyond the scope of

this thesis, so we direct interested readers to Stevens's Acoustic Phonetics (Stevens,

2000). What is of immediate relevance to us is the fact that the speech signal can

be represented as a continuous time waveform x(t), whose properties at a particular

moment in time (such as sustained resonances at particular frequencies, moments of

silence, quick bursts of wideband energy, etc) are reflective of the underlying speech

sound being articulated.

Because digital computers cannot perform computations directly on continuous

time signals, we convert x(t) into a digital signal by first sampling its amplitude at

discrete time intervals nT, and then quantizing this amplitude, resulting in the discrete

sequence x[n]. T represents the sampling period, the length of which determines the

maximum bandwidth which can be captured by x[n] according to the Nyquist sampling

theorem. Most of the salient information in the speech signal is contained in the band

below 8 kHz, and so oftentimes a sampling frequency f, = I = 16kHz is used (which

is the case for all experiments contained in this thesis).

Because a single sample cannot convey enough information by itself to indicate

what the vocal tract is doing at a particular point in time, short-time windows of

consecutive samples are extracted from x[n] in order to perform a short-time Fourier

analysis. In Automatic Speech Recognition (ASR) systems, these windows typically

span between 10 and 50 milliseconds in length, with 25 milliseconds being the most

commonly used duration. Some overlap is allowed between consecutive windows so

as to produce smoothly varying frames - the most common value for 25 ms windows

is 15 ms, giving rise to a 10 ms time shift between consecutive windows. Because

the speech signal is relatively periodic and stationary at short timescales (such as

within the duration of a single frame), mapping each frame into the frequency domain

results in a simpler basis for analysis purposes. This operation of windowing the signal

followed by applying a Fourier transform to each window individually is known as the
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Short Time Fourier Transform (STFT), and is discussed in depth in Oppenheim and

Schafer's Discrete Time Signal Processing (Oppenheim and Schafer, 2009).

In a practical ASR system, before we apply the STFT, it is advantageous to remove

the DC component of the signal,

IN
xo[n] = x[n] - N E x[n'], (2.1)

and then to apply pre-emphasis filtering in order to flatten the spectrum, counteracting

the lowpass response of the glottal excitation:

xp[n] = xo[n] - 0.97xo[n - 1] (2.2)

After pre-emphasis, the STFT is computed according to:

DO

X[m,w] = x[n]w[n - mR]e-j'n (2.3)
n=-00

where -7r < w < 7r indexes the frequency axis (with -r corresponding to half the

sampling rate), the integer variable m indexes the STFT frames, R is the shift between

frames (in samples), and w is the window function which performs the selection of

the samples to include in the window. An important part of computing the STFT is

the particular choice of w. The multiplication of the window h with the signal x in

the time domain manifests itself as a convolution in the frequency domain, in effect

"smearing" the true spectrum of x with the Fourier representation of h. The shape of

h in the time domain determines its shape in the Frequency domain, and so a large

number of window functions have been proposed over the years, each with distinct

properties and trade-offs (such as frequency resolution vs. the height of the spectral

"noise floor" introduced by the window's smearing effect, known as spectral leakage).

The most typical window function used in ASR feature extraction front ends is the

Hamming window.

X[m, w] is a complex-valued signal, capturing information regarding both the
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magnitude and phase of the frequency components of x[n]. It is generally accepted

that phase information has little perceptual importance in audition as compared to

the actual distribution of energy across the frequency axis. Therefore, we transform

the complex spectrum into the power spectrum:

X[mw] = |X[m,wH| 2  (2.4)

The power spectrum is then "bucketed" by a set of L triangular, bandpass filters which

are nonlinearly spaced along the frequency axis. This warping, known as the Mel

scale, reduces the dimension of the power spectrum by grouping together different

frequency components which are perceived to be nearly the same by humans (Moore,

1997). The so-called "Mel-frequency spectral coefficients" Xmfsc are computed as:

00

Xmfsc[m,l] = XP[m,w]Vi[k], (2.5)
k=-oo

where V, denotes the 1 1h mel filter. Finally, the energies contained within each mel filter

are converted to the dB scale. We later refer to this representation as log mel-filterbank

features:

Xlmf[m,l = 10 logg0 Xmfs[m,l] (2.6)

For ASR systems, XImf is generally taken one step further by applying the discrete

cosine transform (DCT), resulting in mel-frequency cepstral coefficients (MFCCs)

(Davis and Mermelstein, 1980). In ASR systems, the MFCCs are typically truncated

or "liftered" to the first 13 coefficients. However, for the experiments in this thesis, we

take XImf to represent the speech audio signal. For all experiments in this thesis, we

compute 40 MFSCs for every 10 milliseconds of speech audio.

2.2 Automatic Speech Recognition Overview

The methodological underpinning of modern speech recognition systems is the noisy

channel model first put forth by Shannon and Weaver (1949). Shannon and Weaver's
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work focused on mathematically characterizing the information flow through noisy

communication networks, but the same theory was later applied to the problem of

speech recognition by Fred Jelinek's team at IBM in the 1970s and 80s (Jelinek, 1976).

Under the noisy channel model, an acoustic waveform A is heard, and the listener's

job is to recover the underlying word sequence W which gave rise to A (possibly being

corrupted by noise in the process). Inference of W given A can be performed using

Bayes' rule, resulting in the so-called "fundamental equation of speech recognition":

P( A|W)P(W )W argmaxP(WIA) = argmax (2.7)
w w P(A)

Where W* represents the recognition hypothesis - the best guess of W under the

statistical models P(AIW) and P(W). The P(A) term in the denominator is typically

ignored, since it does not depend on W.

In ASR jargon, P(AjW) is typically called the acoustic model because it tells us

how likely an acoustic waveform A is given some word sequence W. If you had a

recorded waveform of somebody speaking the word "cat," then a good acoustic model

would assign a high likelihood score to the expression P(Alcat) and a low score to

P(Adog). The second term in the numerator, P(W), is typically called the language

model because it provides an a priori probability of how likely a person is to speak a

word sequence W in the first place. Even a very strong acoustic model would have

difficulty differentiating between the phrases "how to recognize speech" and "how to

wreck a nice beach" due to the fact that the phrases are similar sounding and give rise

to similar waveforms. Of course, any English speaker knows that the former phrase

simply makes more sense than the latter. This knowledge is encoded by P(W), whose

job it is to assign a relatively higher probability to "how to recognize speech" and a

lower probability to "how to wreck a nice beach".

Using statistical fitting techniques such as maximum likelihood (ML) to estimate

P(AIW) and P(W) requires large collections of audio recordings of people speaking,

along with parallel text transcriptions of the speech. The necessary size of the dataset

depends on the task at hand. For recognizing read speech from the Wall Street
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Journal, a standard task in the speech community, the core training set is comprised

of approximately 80 hours of transcribed speech (Paul and Baker, 1992), and word

error rates (WERs) of below 4% are now possible on this task. This is a relatively

restricted task, however: the language is fluent, the audio clean and free of noise, and

the vocabulary restricted (a few tens of thousands of words). Real-life speech is full

of disfluencies, irregularities, background noise, and a wide-ranging vocabulary. The

prevailing strategy for coping with these types of complexities is best captured by

Robert Mercer's famous quote, "There's no data like more data," (Jelinek, 2004). In a

recent paper, the team responsible for the Google Home speech recognition system (Li

et al., 2017) used a core training dataset of 18,000 hours worth of speech audio, with

an additional 4,000 hours of adaptation data. This allowed them to achieve a WER of

approximately 5% - clearly, a far more difficult task than the Wall Street Journal!

There is a third model component that does not appear in Equation 2.7: the

pronunciation lexicon. Of course, it is possible to model P(AIW) at the word level,

estimating a different density for every unique word in the recognizer's vocabulary.

Doing so, however, fails to take advantage of one of the remarkable properties of spoken

language: namely, that the spoken forms of all words in a language are themselves

made up of strings of phonemes - elementary acoustic units such as the /r/ in the

words raft and car. These phonemes are used across all words in a language, and a

typical language possesses an inventory of merely dozens of different phonemes - as

compared to many thousands or even millions of different words in its vocabulary.

Modeling P(AIW) where W represents strings of phonemes (or more commonly,

phones; acoustic-phonetic realizations of the more abstracted phonemes) means that

the acoustic model needs to estimate only a few dozen densities rather than millions

(this is a slight oversimplification, as state-of-the-art recognizers compensate for the

co-articulatory effects of neighboring phones by modeling tuples of phones, which

brings the number of densities that must be modeled into the few thousands). In

order for an acoustic model to function at the level of phones rather than words, a

pronunciation dictionary - the lexicon - must provide a mapping between words and

their phonetic spellings. This mapping can be represented as a conditional probability
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distribution P(SIW), where a sequence of words W allocates a probability mass to a

sequence of subword units S. Of course, in many cases words only have one or two

pronunciations, making P(SIW) a highly constrained distribution. Equation 2.7 can

be rewritten to include the lexicon by marginalizing over all subword unit sequences

consistent with a word hypothesis W (we also drop the unnecessary P(A) term):

W =argmaxj(P(AIS)P(S|W)P(W) (2.8)
W S

When it comes time to apply a trained ASR model to the task of recognizing a new

speech utterance, the maximization is typically solved using a decoding algorithm

such as Viterbi search, combined with an n-best search such as A* when a set of

likely hypotheses is desired (Soong and Huang, 1991). Finite state transducers (FSTs)

are often employed to represent the search graph, because they enable each building

block of the recognizer (acoustic model, lexicon, language model) to be specified

individually, independent of one another (Pereira et al., 1994). The FST composition

operation allows these individual FSTs to be combined into a composite FST search

graph on the fly. This makes it very straightforward to unplug certain system blocks

from a recognizer pipeline and replace them with a different block - for example, an

ASR system designed to handle weather-related queries might use a language model

that places a large amount of probability mass on weather-related words. In an FST

framework, this recognizer could easily be adapted to a different domain, such as

restaurant search, by replacing the language model FST with a restaurant-specific

language model, and then re-composing the search graph.

Now we turn our attention to the specific types of statistical models which are

typically employed in ASR systems. Given an acoustic waveform represented as a

finite series of feature vectors (such as the previously described MFCCs or MFCSs)

A =x 1 , x2 , ... , XT and a subword unit sequence S = si, s2, . . , SN, P(A S) is generally

modeled using a Hidden Markov Model (HMM) (Baker, 1975). Each subword unit

is modeled by its own small HMM, typically consisting of 3 states to model the

beginning, middle, and end of the unit. These individual HMMs are then concatenated
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to represent the unit sequence S. The acoustic frames are treated as the state emissions

(or observations), and their densities are usually represented by either a set of Gaussian

Mixture Models (GMM) (Bilmes, 1998) or a Deep Neural Network (DNN) (Mohamed

et al., 2012). A front-end acoustic feature extraction scheme, such as the one detailed

in Section 2.1, is necessary to first convert a recorded waveform to the vector series A.

A straightforward way to represent P(SIW) is with a table of weighted key-value

pairs, in which each key (a word, in this case) maps to a set of different values (the

phone or subword unit sequence that spells the word), each with an associated weight

or probability. For example, consider the trivial ARPABET lexicon below:

cat 1.0 /k/ /ae/ /t/

dog 1.0 /d/ /ao/ /g/

tomato 0.7 /t/ /ah/ /m/ /ey/ It/ /ow/

tomato 0.3 /t/ /ah/ /m/ /aa/ /t/ /ow/

The lexicon is generally handcrafted by a linguist. Some alternative approaches are to

use a graphemic lexicon (Killer et al., 2003) or to learn a set of pronunciations in a

data-driven fashion (Badr et al., 2011; McGraw et al., 2013)

P(W) is typically represented with a count-based n-gram model. Under this model,

the probability of a word sequence is factorized into the product of the probabilities

of each individual word in the sentence, each conditioned on all the words which

appeared before it; in other words,

P(wi, w 2, W 3 , - - - =, O - P(wl)P(w2 I W1)P(w3 Iw, 2 ) ... P(wkI, W2, . , wk--1)

In practice, to cope with the combinatorially large number of possible word histories,

an n-gram model truncates the history and considers only the previous n - 1 words.

For example, a bigram model would make the assumption that

P(W1, W2, W3, OWk) -- P(wi)P(w 2 wi)P(w 3 W 2 ) . . . P(wklwk-1)
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Estimating n-gram probabilities is accomplished via simple counting, i.e.

P(w 2 |w1) = CW1,W2

CW1

where CWI,W2 represents the number of times the two word sequence w1 , w 2 appears

in the data, and Cw1 represents the number of times that w, appears in the data

overall. Of course, raw count based estimation has several undesirable properties,

such as zero probabilities assigned to unseen n-grams. To compensate for this,

smoothing techniques are applied to the empirical count based distribution, with

Kneser-Ney smoothing (Kneser and Ney, 1995) being a popular, time-tested technique.

More recently, recurrent neural network (RNN) language models have been shown to

outperform n-gram language models in a variety of tasks, including speech recognition

(Schwenk and Gauvain, 2005). However, due to the difficult nature of incorporating

them into the ASR decoder, a first pass recognition is usually performed with an

n-gram model to produce an N-best list of recognition hypotheses (or a decoding

lattice), which is then rescored with an RNN LM.

The preceding summary does not detail the great number of algorithmic bells and

whistles that are necessary to achieve cutting edge performance in a real-world system;

for the reader interested in an overview of those techniques, we recommend Yu and

Deng's Automatic Speech Recognition: A Deep Learning Approach (Yu and Deng,

2014) or Huang et al's Spoken Language Processing (Huang et al., 2001) as further

reading.

2.3 Unsupervised Speech Processing

While conventional ASR systems have a long history and have recently made great

strides thanks to the revival of deep neural networks, their reliance on highly supervised

training paradigms has essentially restricted their application to the major languages

of the world, accounting for a small fraction of the more than 7,000 human languages

spoken worldwide (Lewis et al., 2016). The main reason for this limitation is the
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fact that these supervised approaches require enormous amounts of very expensive

human transcripts. Moreover, the use of the written word is a convenient but limiting

convention, since there are many oral languages which do not even employ a writing

system. In contrast, infants learn to communicate verbally before they are capable

of reading and writing - so there is no inherent reason why spoken language systems

need to be inseparably tied to text.

The completely supervised learning scenario described above is at one end of a

spectrum defined by Glass (2012), shown in Figure 2-1. As the spectrum is traced

from left to right, less and less supervision and annotation is available. Early speech

recognition systems required very high levels of annotation, including time-aligned

phonetic transcriptions of the speech, phonetic pronunciation dictionaries, etc. A

respectable amount of effort has been made to fill in the "data-based" region of the

spectrum, employing techniques such as grapheme-based acoustic models (Killer et al.,

2003) or automatic sub-word unit learning (Rabiner et al., 1989). Recent end-to-end

deep neural network (DNN) models for speech recognition such as the Listen, Attend,

and Spell (LAS) sequence-to-sequence (seq2seq) model (Chan et al., 2016) or the

EESEN model based on connectionist temporal classification (CTC) (Miao et al., 2015)

also operate within this realm. These networks directly map the acoustic signal to

letters or words, allowing the network's learned internal representations and recurrent

structure to absorb the roles traditionally held by the lexicon and HMM acoustic

models. Impressive as these results are, the data-based models are still unable to do

away with the albatross of parallel text transcriptions. The most vexing challenge to

the dominant, supervised ASR paradigm is the observation that nearly every human

who has ever lived developed the ability to carry a simple conversation by the time they

were approximately two years old. This is an enormously complex task; an infant must

acquire a phoneme inventory and word lexicon, learn to segment continuous speech

signals by identifying word boundaries, learn syntactic and grammatical structure,

and learn how language semantically relates to the world at large (Jusczyk, 1997).

Studies in developmental psychology have presented evidence that human infants do

not learn to perform this multitude of abilities one-by-one in a sequential nature, but
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Figure 2-1: ASR learning scenarios as defined by Glass (2012).

rather simultaneously and gradually (Dupoux, 2016). This learning doesn't come to a

halt once a child has learned to talk - the inherent ability to learn new words on the

fly and even acquire additional languages stays with us for our entire lives (Bloomfield,

1933; Chomsky, 1986).

While the neurological mechanisms underlying human language abilities are not

yet understood, the ability to learn so much with so little (in the way of annotation,

transcription, etc. employed in computer ASR systems) can be seen as a "proof of

concept" of a far more efficient, organic, and robust language learning framework than

the current state-of-the-art ASR pipeline - represented by the lower-right end of the

spectrum shown in Figure 2-1. This proof of concept - human beings - has served as

the inspiration for many researchers in the field of spoken language processing, who

have developed a growing body of work utilizing unsupervised or weakly/distantly

supervised machine learning algorithms for speech processing (sometimes called "zero

resource" speech processing). Much of the interest in this topic was sparked by Park

and Glass' pioneering work on segmental dynamic time warping (S-DTW) (Park

and Glass, 2005, 2008), an algorithm which is able to discover clusters of repeated

speech patterns, typically corresponding to word-like units, directly from the acoustic

waveform without any form of transcription. Many subsequent efforts extended these

ideas (Jansen et al., 2010; Jansen and Van Durme, 2011; Dredze et al., 2010; Harwath

et al., 2012; Zhang and Glass, 2009). Alternative approaches based on Bayesian

nonparametric modeling (Lee and Glass, 2012; Ondel et al., 2016; Kamper et al.,
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2016) employed a generative model to cluster acoustic segments into phoneme-like or

word-like categories, and related works aimed to segment and cluster either reference

or learned phoneme-like tokens into higher-level units (Johnson, 2008; Goldwater et al.,

2009; Lee et al., 2015).

Although neural networks have dramatically pushed the state of the art forward in

supervised ASR applications, their application in the unsupervised (or zero-resource)

speech processing community has been more modest. Generally, they have been used

to learn acoustic feature representations which better capture the underlying linguistic

content and are (hopefully) more invariant to sources of undesirable variation, such

as noise, speaker or channel characteristics, etc. Notable examples of this are Zhang

et al. (2012); Renshaw et al. (2015); Kamper et al. (2015); Thiolliere et al. (2015).

However, to the best of our knowledge there has so far been no other application of

deep neural networks to directly discover high-level lingusitic units (such as at the

word level) from within continuous speech at the raw signal level. This could be in

part due to the difficult nature of defining a suitable neural network architecture and

objective function for the task. Even the neural approaches for learning unsupervised

frame-level representations rely upon targets derived from an S-DTW based pattern

discovery step (Kamper et al., 2015).

2.4 Artificial Neural Networks

Although neural networks as a class of models have a very long history (McCulloch

and Pitts, 1943), they fell out of favor with the advent of statistical machine learning

models (Bishop, 2011) and kernel methods such as SVMs (Cortes and Vapnik, 1995).

The basic formulation of a single hidden layer neural network is surprisingly simple.

Given an input vector x, a parameter matrix A and bias vector b, a suitable nonlinear,

scalar function f() and an output vector , the relationship between x and is

expressed as:

f (Ax + b) (2.9)
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Historically, the most iconic choice of f() has been the sigmoid function:

1
f(z) 1 + _e (2.10)f 1 + e-

Many other nonlinearities (or "activation functions") have been proposed, the most

popular of which nowadays is arguably the rectified linear unit (ReLU):

f(z) = max(0, z) (2.11)

Training a neural network is framed as a numerical optimization problem, in which

a dataset of (x, y) pairs is given. The task is to find the specific values of A and b

which result in the predicted value y = NN(x) (where NN( represents application of

the network to input x) being "close" to the true value y according to a loss function

loss (y, Q). Standard tasks in machine learning, such as classification and regression,

are easily realized with this scheme. For example, a vector regression network can

be trained when y is a real-valued, continuous vector and loss(y, Q) = !IIy - QH2

Classification is most often performed by using a special "softmax" layer immediately

before the output:
exp(vi) (2.12)

Ej exp(vj)

where v represents the output vector of the final hidden layer of the network. For

classification, the most common loss function and label representation is to choose y as

a 1-hot vector of length equal to the number of classes (where the element representing

the target class is 1 and all other elements are 0) and use the cross entropy loss:

loss(y,y) = yilog(i) (2.13)

Gradient descent methods are the de-facto family of optimization algorithms used

in training DNNs, with the backpropagation algorithm (Liannainmaa, 1970; Werbos,

1982; Rumelhart et al., 1986) providing an efficient way to calculate the gradient of

the loss function with respect to the network parameters, given a particular set of

45



(x, y) pairs. When the set of (x, y) pairs at each update step is a randomly sampled

subset of the full training set, the optimization is dubbed stochastic gradient descent

(SGD) (Bottou, 2010).

Between 2006 and 2012, a special class of neural networks began to gain popularity.

These networks came to be known as deep neural networks (DNNs), taking their name

from the fact that they are formed by stacking multiple single layered neural networks

on top of one another. For example, a two hidden layer network can be expressed as:

y = f (A 2f (Aix + bi) + b2 ) (2.14)

Of course, there is no limit to the number of layers which can be consecutively stacked,

and many current architectures utilize far more than two layers! Arguably, one

factor that prevented DNNs from finding widespread use before this time is the fact

that training them is, in general, a challenging, unstable, and poorly understood

optimization problem. Among the insights that are credited with the renewal of

interest in DNNs is the layer-wise pretraining scheme introduced by Hinton et al.

(2006). Although the layer-by-layer generative pretraining step is no longer widely

used, it shed light on how some of the pitfalls which tend to befall DNNs can be avoided

in practice. One example of this is the "vanishing gradient" (or the related "dying

ReLU") problem, which arises when the weight vector associated with a particular

neuron ("neuron" referring to a single dimension of the output of a particular hidden

layer in the network) takes on a value for which nearly all inputs x (at least those seen

in the training data) result in a very large or very small value, so that the neuron's

nonlinearity becomes "stuck" very deeply in its saturation region. At this point, the

output of the neuron is nearly flat, and thus the gradient of the output with respect to

the neuron's weight vector (as well as its input) is close to zero. The subtext of Hinton

et al. (2006) is that the initial setting of the weight vector of every neuron of the

network must be set such that the expected value of the neuron's activation is outside

the saturation region of the activation function. Today, this is often accomplished

with careful parameter initialization (Glorot and Bengio, 2010) rather than generative
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layer-wise pretraining. The initialization issue is only one of many DNN training

difficulties that have been addressed recently, others including faster training via

massively parallel hardware architectures such as GPUs, and very large datasets such

as Deng et al. (2009).

The basic fully-connected, feedforward network architecture described above is

a flexible and general purpose model. However, a large number of more specialized

architectures exist which are well-suited for certain problem domains. Two well-known

variants are recurrent neural networks (RNNs) and convolutional neural networks

(CNNs) (LeCun et al., 1998). In this thesis, we make extensive use of convolutional

networks, which we describe here. Recall that in the case of a fully connected network,

the ith row of the A matrix for some given layer, ai (and the corresponding element

of its b vector, bi), represents the weight vector of the Zth neuron in that layer. The

output of that neuron is simply f(aTx + bi) - the inner product of the weight vector

with the layer's input x, offset by the bias bi. Every single element of x is taken into

account in computing the single scalar output of the neuron. In certain cases, the

input data may be known to have special properties which can be exploited. Consider

the case in which the input to a neural network is a natural image of size H pixels tall

by W pixels wide, with D color channels (typically 3 in the case of an RGB image).

We can write this input as a 3rd order tensor x E 7HxWxD Intuitively, most images

will obey the following two properties:

1. Individual pixels within images are often highly correlated with their neighbor-

ing pixels. Most objects, backgrounds, etc. appearing in natural images are

comprised of only a few colors. Furthermore, discontinuities in the image space

still exhibit local structure - for example, boundaries between objects tend to be

locally linear.

2. Patterns in images are often translation invariant. Panning the image frame

horizontally or vertically does not change the content of the image (unless it

moves outside of the frame), only its position within the frame.
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One way to take advantage of these properties is to restrict the input dependence of

each neuron within a layer to a small patch of neighboring pixels (addressing property

1), and to re-apply the neuron to a large set of patches across the image (addressing

property 2). Mathematically, this is expressed as a 2-dimensional convolution of a

kernel image (the neuron's weight matrix) across the vertical and horizontal dimensions

of the layer's input. When D,t such convolutional kernels are applied in parallel to

the same input spanning Di, channels, they are said to form a convolutional layer

producing an output feature map v E 7 HexWexD. The exact values of H, and W,

depend on how many kernel patches can fit within the bounds of the input for a given

stride. It is common (though not without exception) to use a stride of 1 (consecutive

applications of the kernel are spaced 1 pixel apart) and to add zero padding around

the border of the input so that H, = H and W, = W. In its basic form, a 2nd order

convolution of Dut kernels each of height Hk by width Wk is expressed as follows:

Di, Hk-1-Wk-1

v[h, w, dcl.t] f bd0. + 1 E ( Cd0u [hk, Wk, di.]x[sh * h + hk, Sw * W + Wk,d]

di,=O hk=O Wk=

(2.15)

where Cdo., represents the weight matrix of the do kernel, bd,., is the bias of the djth

kernel, sh is the vertical stride, s, the horizontal stride, f() represents the nonlinear

activation function of the neuron. Because images contain many pixels, the raw data

space is of very high dimension and thus difficult to model directly. For this reason,

convolutions are usually applied in an alternating fashion with a form of spatial

downsampling. Max pooling is the most commonly used variant, which uses a spatially

strided window (with height Hk, width Wk, vertical stride Sh, and horizontal stride

sm) to extract the maximum activation of each channel within that window:

Hk-1 Wk-1
vP 00 1[h, w,d] = max max v[sh * h + hk, sw * w -wk, d] (2.16)

hk=O Wk=O

Mean (or average) pooling is another variant, which replaces the within-window

maximum with the within-window average. For a deeper discussion of neural network
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architectures, we direct interested readers to Goodfellow et al. (2016).

2.5 Visual Object Recognition and Discovery

Classification of visual objects (or other patterns) is a longstanding problem within the

computer vision community, with the MNIST handwritten digit task being a classic

and widely known example (LeCun et al., 1998). Recent progress in the field has

been driven in part by recurring challenge competitions such as ISLVRC Russakovsky

et al. (2015). Since 2012, the task has been dominated by deep convolutional neural

networks (CNNs), popularized by Krizhevsky et al. (2012). Since that time, improved

variants of the basic CNN architecture have continued to push the state of the art

(Simonyan and Zisserman, 2014; He et al., 2015). While classification asks the question

of "what", object detection and localization (also part of the ISLVRC suite of tasks)

address the problem of "where". Generally these localization systems are trained

using handcrafted bounding box annotations for the training data (Girshick et al.,

2013; Redmon et al., 2016), however other works investigate weakly-supervised or

unsupervised object localization (Bergamo et al., 2014; Cho et al., 2015; Zhou et al.,

2015; Cinbis et al., 2016).

A large body of research has also focused on unsupervised visual object discovery,

in which case there is no labeled training dataset available. One of the first works

within this realm is Weber et al. (2010), which utilized an iterative clustering and

classification algorithm to discover object categories. Further works borrowed ideas

from textual topic models (Russell et al., 2006), assuming that certain sets of objects

generally appear together in the same image scene. More recently, CNNs have been

adapted to this task (Doersch et al., 2015; Gu6rin et al., 2017), for example by learning

to associate image patches which commonly appear adjacent to one another.
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2.6 Vision and Language

Multimodal modeling of images and text has been an extremely popular pursuit in

the machine learning field during the past decade, with many approaches focusing on

accurately annotating objects and regions within images. For example, Barnard et al.

(2003) relied on pre-segmented and labelled images to estimate joint distributions over

words and objects, while Socher and Li (2010) learned a latent meaning space covering

images and words learned on non-parallel data. While these approaches focused on

improving the identification of visual objects from a pool of predefined classes, other

research has studied the problem of aligning text to the images or videos they describe.

For example, Kong et al. (2014) took visual scenes with high level captions, parsed

the text, detected visual objects, and then aligned the two modalities with a Markov

random field. Lin et al. (2014) aligned semantic graphs over text queries to relational

graphs over objects in videos to perform natural language video search. Matuszek

et al. (2012) employed separate classifiers over text and visual objects that shared the

same label sets.

A related problem is that of natural language caption generation. While a large

number of papers have been published on this subject, recent efforts using deep neural

networks (Karpathy and Li, 2015; Vinyals et al., 2015; Fang et al., 2015) have made

tremendous progress and generated much interest in the field. In Karpathy and Li

(2015), Karpathy uses a refined version of the alignment model presented in Karpathy

et al. (2014) combined with an off-the-shelf RCNN object detection network (Girshick

et al., 2013) to produce training exemplars for a caption-generating RNN language

model that can be conditioned on visual features. Through the alignment process, a

semantic embedding space containing both images and words is learned. Other works

have also attempted to learn multimodal semantic embedding spaces, such as Frome

et al. (2013) who trained separate deep neural networks for language modeling as well

as visual object classification. They then embedded the object classes into a dense

word vector space with the neural network language model, and fine-tuned the visual

object network to predict the embedding vectors of the words corresponding to the

50



object classes. New problems within the intersection of language and vision continue

to be introduced, such as object discovery via multimodal dialog (de Vries et al., 2017),

visual question answering (Antol et al., 2015), and text-to-image generation (Reed

et al., 2016).

2.7 Machine translation

The final chapter of this thesis studies multilingual audio-visual models, and explores

how the visual space can act as an interlingua for cross-lingual speech retrieval - high-

lighting potential connections to machine translation (MT). Machine translation is a

well-established problem, and with the advent of neural models is currently undergoing

a revolution comparable to those in speech recognition, computer vision, and natural

language processing at large. At first dominated by statistical methods combining

count-based translation and language models (Koehn et al., 2013), the current state-

of-the-art paradigm relies upon neural sequence-to-sequence with attention models

(Bahdanau et al., 2015) operating on dense lexical representations ("word vectors")

(Mikolov et al., 2013; Pennington et al., 2014). However, new ideas continue to be

introduced, including models which take advantage of shared visual context (Specia

et al., 2016). The motivation behind these ideas has much in common with our own

- that is, representations of language in machine learning models can be enriched

with information from the visual domain. However, these approaches still operate

on text data, whereas we propose to build models that can be applied directly to

untranscribed acoustic waveforms.

Speech-to-speech translation has been a longstanding dream for researchers, world

travelers, and the international business community. Current state-of-the-art ap-

proaches at their core rely on text-to-text translation models, with a speech-to-text

preprocessing step and a text-to-speech postprocessing step (for example, Microsoft

Translator). Recently, Weiss et al. (2017) published an effort to move beyond that

paradigm, and achieved remarkable results in implementing translation between speech

audio in the source language and written text in the target language. Weiss' model

51



is completely end-to-end, and does not require the speech recognition preprocessing

step; however, it still relies upon expert-crafted text transcriptions of the translations

of the source speech into the target language, and would still require a text to speech

postprocessing module in order to be capable of speech-to-speech translation. The

approach that we propose would not require this translation and transcription, instead

relying on the visual space to provide a shared anchor between speech audio in both

the source and target languages.

2.8 Relation of Prior Work to this Thesis

Although all of the works cited above are in one way or another relevant to our

own, the research contained within this thesis represents an entirely new direction

that is distinct from any previously published work. While the speech and vision

communities have both studied unsupervised pattern discovery within their respective

modalities, these tasks have never been performed jointly together as we do in this

thesis. Leveraging multiple modalities in this way allows us to perform speech pattern

discovery far more efficiently than ever before. While current state-of-the-art, speech-

only algorithms such as S-DTW run in O(N 2 ) time, our model training and grounding

can be completed in O(N) time. We demonstrate this in Chapter 6 by performing

pattern discovery on over 522 hours of audio data, by far the largest published speech

pattern discovery experiment to date.

Not only do our methods scale linearly, but the representations learned are richer

than unimodal representations by virtue of capturing cross-modal semantics. The

visual semantics in turn serve as a bridge to learn lexical semantics across discovered

patterns, exemplified by the fact that the pattern clusters corresponding to "lake" and

"pond" neighbor one another in the embedding space because they tend to be used to

describe similar visual patterns (see Chapter 6). Another byproduct of our learning

procedure is that the representations learned by intermediate layers of our networks

can themselves serve as frame-level acoustic representations for other tasks; Drexler

and Glass (2017) showed that these representations are competitive with (and in
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several cases outperform) other popular unsupervised acoustic modeling approaches.

Finally, in Chapter 7, we present the first ever successful results for unsupervised

cross-lingual semantic speech retrieval. We believe that the methods we introduce

could be adapted for machine translation, potentially opening the door for MT systems

that do not require directly parallel corpora, perhaps even in a direct speech-to-speech

context.

This chapter has discussed relevant background work in automatic speech recogni-

tion, unsupervised speech processing, artificial neural networks, vision and language,

visual object discovery, and machine translation. In the next chapter, we give an

account of the datasets used throughout the remainder of this thesis.
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Chapter 3

Datasets and Data Collection

In this chapter, we describe the datasets that will be used throughout this thesis.

We describe in detail how we went about collecting data, and analyze the overall

properties of our datasets. Specifically, we introduce four datasets of spoken audio

captions. The Flickr8k audio caption dataset is a small-scale pilot dataset based on

the previously published Flickr8k image corpus (Rashtchian et al., 2010) which we use

to train proof-of-concept multimodal modals in Chapter 4. The Places English audio

caption dataset is a much larger-scale dataset which forms the basis of Chapters 5

and 6. It is based upon the previously published Places 205 (Zhou et al., 2014) image

datset. The ADE20k audio caption dataset is a second small-scale dataset that we

collect, based upon the ADE20k image dataset (Zhou et al., 2017). These images

contain dense pixel-level object annotations, allowing us to perform a fine-grained

analysis of our models. Finally, we discuss the Places Hindi audio caption dataset,

also based upon the Places 205 images, which we utilize to train cross-lingual models

in Chapter 7.
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3.1 The Flickr8k Audio Caption Dataset

3.1.1 Image Captioning Overview

Our first efforts towards data collection were inspired by contemporary research work

being done on natural language image captioning. What makes image captioning

datasets compelling is the fact that they make use of natural language, rather than

contrived annotations of image regions using a fixed, closed set of label categories.

These seminal works on neural image captioning (Karpathy and Li, 2015; Vinyals

et al., 2015) utilized a number of datasets which contain images alongside human-

generated text captions, such as Pascal, Flickr8k (Rashtchian et al., 2010), Flickr30k

(Young et al., 2014), and MSCOCO (Lin et al., 2015). However, all of these datasets

include text captions only, and no speech audio. Because of its manageable size and

ubiquitousness in the previous literature, we choose to use the Flickr8k as the starting

point for our data collection, soliciting human subjects to record themselves reading

the Flickr8k captions out loud.

Collecting read speech in this manner offers two advantages. First, speech recog-

nition can be used as an automatic quality control mechanism. When embedded in

a computerized collection interface, it can provide instantaneous feedback to a user

when their speech was too noisy, corrupted, or did not match the target caption text.

Second, the text captions can function as a ground truth transcription for each spoken

caption, enabling more meaningful analysis to be performed on the speech audio.

3.1.2 Collection of Read Captions via Amazon Mechanical

Turk

Flickr8k contains approximately 8,000 images captured from the Flickr photo sharing

website, each of which depicts actions involving people or animals. Each image was

annotated with a text caption by five different people, resulting in a total of 40,000

captions. To collect these captions, Rashtchian et al. (2010) turned to Amazon's

Mechanical Turk (AMT), an online service which allows requesters to post "Human
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Intelligence Tasks" (HITs). These HITs are then made available to anonymous,

non-expert workers, or "Turkers", who can choose to complete the tasks for a small

amount of money. We utilized AMT to collect spoken audio recordings for each of the

40,000 captions from the Flickr8k dataset. We use the Spoke JavaScript framework

(Saylor, 2015, Available at https://github.com/psaylor/spoke) as the basis of our audio

collection HIT. Spoke is a flexible framework for creating speech-enabled websites,

acting as a wrapper around the HTML5 getUserMedia API while also supporting

streaming audio from the client to a backend server via the Socket.io library. The

Spoke client-side framework also includes an interface to Google's SpeechRecognition

service, which can be used to provide near-instantaneous feedback to the Turker.

Figure 3-1 displays a screenshot of the audio collection interface we used in our

HITs. A set of 10 random captions are displayed to the user, who can click the

start/stop button to record their speech while they read each caption out loud. A

playback button allows the Turker to listen to their own recordings and diagnose any

problems with their microphone or environment. Spoke pipes the audio to the Google

recognizer, checks the recognition result against the prompt, and notifies the user if

their speech could not be recognized accurately. The Turker is then given the option

to re-record the errorful caption. The HIT cannot be submitted until all 10 captions

have been successfully recorded. During collection, we utilized a very simple metric

for verification - 60% or more of the caption words must appear in the recognition

result, regardless of ordering. We found this to be both lenient and sufficient - users

rarely complained about the system correctly recognizing their speech, and 95.7%

of the collected utterances were easily aligned to their caption text using our Kaldi

(Povey et al., 2011) forced alignment system. The majority of the utterances flagged

as unalignable were either empty or cut short, which we believe may have been due to

client-server connection issues; the problematic utterances were recollected by another

round of HITs. We paid the Turkers 0.5 cents per spoken caption, resulting in at

total cost of just over $200 including Amazon's service fee. We collected speech from

183 unique Turkers, with the average worker completing 218 captions. There were

a handful of Turkers who completed far more than the average number of captions,
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To complete this task, you must
* be a native English speaker
* be using a computer equipped with a microphone
* and be using a Chrome browser

If your microphone is on and working, the volume meter at the right should move as you speak (after
you grant permission for the site to use your microphone). Underneath the microphone volume meter
you can see whether you are connected to server for recording. If you become disconnected, please
continue recording after a connection is reestablished.

You will be presented with 10 sentences (or sentence fragments). For each sentence, please:

" Ensure you are in a quiet room.
Press the button next to the sentence and then read the sentence out loud exactly as it is
written. During recording, the record button will be replaced with a stop button; end the recording
by pressing the CM button next to the sentence.

" Please read the sentence naturally.
. After you record a sentence, we will process the recording. If it is acceptable, it will be marked as

or . Otherwise, the sentence will be marked with a and you must redo the
recording of that sentence to complete the task.

After all 10 sentences have been accepted, the submit button at the bottom of the page will be
enabled.

Please record each of the sentences below.

Two dogs play in the grass

a man and woman wearing Mickey Mouse ears in a
crowd

3.

A woman poses with sunglasses shaped like dollar
signs and a silver suitcase labelled LUCKY full of bills

Figure 3-1: Audio collection interface for capturing spoken captions on Amazon
Mechanical Turk.

with the highest number collected from a single worker being 2,978.

To further verify the integrity of our collected audio data, we split the 40,000

utterances into a 30,000 utterance training set, a 5,000 utterance development set, and

a 5,000 utterance testing set, covering a 8,918 word vocabulary. Our splits correspond

with the training, validation, and testing splits given by Rashtchian et al. (2010).

We then used Kaldi to build a large vocabulary speech recognition system, adapting

the standard Wall Street Journal recipe for a GMM/HMM + LDA + MLLT + SAT

system for our data. We employed the training set to train the acoustic and language

models, the CMU pronunciation lexicon, and the development set to tune the acoustic
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and language model weights. The final word error rate of our system on the test set

was 11.67%, providing another indication that our data is relatively high quality. In

order to preprocess the Flickr8k data for our CNN, we employ this recognizer to force

align the audio to the ground truth text transcripts and segment the audio at the

word level.

3.2 The Places 205 English Audio Caption Corpus

The experiments detailed in Chapter 4 that make use of the Flickr8k Audio Caption

data demonstrate the feasibility of learning visually grounded representations of speech

audio. However, they also highlight the fact that even with 40,000 captions, there

is a very significant gap between the recall scores that can be achieved by using the

speech audio models (0.179 image R 10, and 0.243 caption RA10) and models which

utilize the textual representations of the captions (0.49.0 image R 10, and 0.567

caption R 10). This suggests that, not surprisingly, learning from speech audio is

more difficult than learning from text, and so a much larger dataset of audio captions

is needed in order to close this performance gap.

With this in mind, we set about collecting a second, much larger dataset of spoken

image captions. Collecting captions for an existing dataset much larger than Flickr8k,

such as MSCOCO, was a possibility we considered. However, MSCOCO has several

drawbacks. Its captions are relatively short, averaging approximately 10 words per

caption. Additionally, the number of object categories (80) is rather limited. Finally,

we made a strategic decision to collect open-ended, spontaneous spoken captions

instead of having users read text captions aloud. There are significant prosodic

differences between read speech and spontaneous speech (Howell and Kadi-Hanifi,

1991), and we wanted to challenge our models to cope with the more realistic domain

of spontaneous speech.

We ultimately decided that the Places 205 dataset (Zhou et al., 2014) would serve

our purposes. Places205 contains over 2.5 million images categorized into 205 widely

varied scene classes, such as beaches, stadiums, grocery stores, bedrooms, and city
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streets. This variety, combined with the scene-level focus of the images, provides

an enormously rich taxonomy of visual object types appearing in many different

contexts. We also hoped that the combination of rich visual scenes and free-form

caption collection would provide us with much longer spoken captions compared to

datasets like Flickr and MSCOCO. We were not disappointed, as on average the Places

captions we collected contained 21 words - twice as many as MSCOCO.
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dhe ae to iem yu maa iier.hoei Underneath Ire ,Micitem votluimi iter yaU cari se Wheit y ae connected R)
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Please record a descriaon of each image below.

Figure 3-2: Screenshots of the Places English audio caption collection interface.

To collect audio captions, we again turned to Amazon's Mechanical Turk service.

We used a modified version of the Flickr8k audio collection interface based on the Spoke

JavaScript framework (Saylor, 2015, Available at https://github.com/psaylor/spoke)

as the basis of our HITs. Instead of displaying text to a Turker and asking them to

read it aloud into their microphone, four randomly selected images are shown to the

user, and a start/stop record button is paired with each image. The user is instructed

to record a free-form spoken caption for each image, focusing on describing the salient

objects in the scene. The backend sends the audio off to the Google speech recognition

service, which returns a text hypothesis of the words spoken. Because we do not

have a ground truth transcription to check against, we use the number of recognized

words as a means of quality control. If the Google recognizer was able to recognize
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a minimum number of words (8 to 12 worked well for us), we accept the caption. If

not, the Turker is notified in real-time that their caption cannot be accepted, and is

given the option to re-record their caption. Each HIT cannot be submitted until all 4

captions have been successfully recorded. Two screenshots of our collection interface

are displayed in Figure 3-2. Turkers were paid $0.03 per caption. At the time of

writing, we have collected approximately 415,000 captions, equally sampled across

the 205 different scene categories from the Places 205 dataset. Approximately 10,000

of these captions were drawn from the ADE20K dataset (Zhou et al., 2017). These

images are drawn from the same 205 Places scenes, but are also accompanied by object

segmentation and annotation masks. These annotations enable richer experimental

analysis to be performed. To give the reader a concrete idea of what our data looks

like, two example image/caption pairs are shown in Figure 3-3.

(a) "It's two women talking in a garden they
are surrounded by many trees many flower-
ing perennials and there's a pathway in the (b) "Young boy standing on a tire swing he's
garden." wearing a black and white striped shirt."

Figure 3-3: Two example Places images and the text transcripts of their associated
captions.

3.2.1 Dataset Statistics and Analysis

We analyzed some basic properties of the Places audio caption data, which we present

here. The Places 205 image scene database has a relatively even balance across

all 205 categories, and we were careful to maintain this property when collecting
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audio captions. Figure 3-4 displays the number of captions collected for each scene

category. The overwhelming majority of scene categories have approximately 2,000

audio captions each, with the scene category posessing the smallest number of captions

still totaling at over 1,500.

Image/Caption Frequency Across Scene Categories

2000

1750-

12 1500-

0 12501

U 1000-

500

250 --

0
0 25 50 75 100 125 150 175 200

Places Scene Index

Figure 3-4: Number of English audio captions collected for each Places 205 scene

category

We next analyzed the breakdown of the captions across unique speakers. While

we do not have a ground truth speaker identity for each caption, Amazon Mechanical

Turk logs a unique string tag for each worker, allowing us to deduce which captions

were submitted by the same worker. We make the reasonable assumption that each

worker constitutes a unique speaker (it is possible the multiple users would share

the same account, but anecdotal listening to a sampling of the captions indicated to

us that this is not likely to be common), and then we total the number of captions

completed by each worker. Figure 3-5a displays these totals in the form of a cumulative

distribution of captions across speakers. We can see that while we collected speech

from approximately 3,000 unique Turkers, the overwhelming majority of the captions

were recorded by a small fraction of those Turkers; the 100 most prolific workers

account for approximately 80% of the captions, and the 10 most prolific workers
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Breakdown of Captions Across Speakers
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Figure 3-5: Breakdown of audio captions recorded across speakers for the Places

English and Hindi data. For each (x, y) point on the curves, y represents the sum

total number of captions completed by the x most prolific speakers.

account for approximately one-third of the captions. While in an ideal world we would

prefer a more uniform distribution across speakers, the tendency for a majority of

HITs to be completed by a small group of "power users" is a widely-known property of

the Mechanical Turk platform (Adda and Mariani, 2010; Fort et al., 2011). Imposing

a cap on the maximum number of HITs a single user can complete therefore makes

collecting large datasets far less feasible.

We also examined the lexical properties of the captions in several ways. Overall,

the vocabulary size of the entire caption dataset was found to be 43,953 unique words.

Figure 3-6 displays a histogram of the number of words per caption, as estimated by

the Google ASR transcriptions. The mode of the distribution is around 12 words,

however there are a long tail of captions with significantly longer lengths, which

pulls the average number of words per caption to approximately 20. Because our

experiments in subsequent chapters do not leverage knowledge of these transcriptions

but require truncation or padding of the waveforms themselves to a uniform size (for

computational efficiency reasons inherent to training neural networks on existing GPU

hardware with existing toolkits), we are also interested in assessing the distribution

over caption durations. A marginal histogram over caption durations in seconds is

displayed in Figure 3-6. Nearly all captions are under 20 seconds in duration, while the
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majority are under 10 seconds. The practical effects of truncation to these durations

will be explored later in Chapter 5.

Histogram over caption lengths (word counts) Histogram over caption durations (seconds)
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Figure 3-6: Histograms over Places English
seconds.
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3.2.2 Spoken Captions for the ADE20k Dataset

The ADE20k (Zhou et al., 2017) dataset is comprised of approximately 20,000 image

scenes accompanied by dense (pixel-level) object annotation. Approximately 10,000

of the images belong to the same scene categories found in the Places 205 dataset;

the remainder are drawn from a broader set of scene labels. We utilized our AMT

interface to collect spoken captions for the 10,000 images belonging to the Places 205

categories in order to form a dataset with both word-level (in the case of the speech)

and object level (in the case of the images) annotation for the purpose of pattern

analysis. These experiments are detailed in Chapter 6.

3.3 Multilingual Extensions to the Places 205 Audio

Caption Corpus

A central claim of this thesis is that our models are language-agnostic, and should

therefore work equally well on non-English languages. To provide evidence in support

of this claim, we ported our collection interface to additional languages including

64

or



-1

Hindi, Spanish, and Arabic. At the time of writing, the Spanish and Arabic caption

collection efforts are still in their infancy; however, we have collected over 100,000

Hindi captions. In initial attempts at soliciting captions from Hindi-speaking Turkers,

we translated the whole of the HIT instructions into Hindi and posted them on AMT.

However, we found that very few workers completed these tasks, possibly because

Hindi-speaking Turkers are accustomed to using the AMT website (which includes

searching for HITs to complete) in English. Once we changed the instructions for the

HIT back to English, but included additional verbage instructing the Turkers to speak

their captions in Hindi, we found that workers started to complete the HITs at a much

more rapid pace.

We performed a similar analysis of the Hindi data as we did for the English data,

with histograms over utterance lengths in words and durations in seconds shown in

Figure 3-7, and a breakdown of the captions across speakers shown in Figure 3-5b.

We see similar trends with respect to caption lengths and durations, although the

Hindi caption vocabulary size is considerably smaller at 19,226 unique words. This

is not unexpected, as we have collected over four times as many English captions as

Hindi captions. Notably, the breakdown of captions across Hindi Turkers is even more

skewed, with 10 Turkers responsible for contributing the vast majority of the captions.
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Figure 3-7: Histograms over Places Hindi caption lengths in words and durations in
seconds.
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3.4 Chapter Summary

In this chapter, we provided an overview of the datasets studied throughout this

thesis. Specifically, we presented our English audio caption corpora to accompany the

Flickr8k, Places 205, and ADE20k datasets, and a Hindi audio caption corpora for

the Places 205 dataset. In the next chapter, we present our first exploratory efforts

into joint modeling of vision and speech audio.
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Chapter 4

Grounding Speech to Images: The

Pre-Segmented Case

In Chapter 3, we described in detail the datasets used throughout this thesis. This

chapter describes our primordial foray into joint audio-visual modeling - a "proof-of-

concept" using the Flickr8k audio caption dataset. We first enumerate the modeling

assumptions we make, and then present an audio-visual alignment model that makes

use of pre-segmented inputs. The model is trained to discriminate which image is

described by a specific caption, and vice versa. We finish with experimental results for

image and caption retrieval, and also provide some visualizations. These experimental

results were promising enough for us to embark on a much more ambitious quest to

collect data, which culminated in the Places English, Hindi, and ADE20k English

datasets. These datasets, as well as the lessons learned from this chapter, form the

foundation for the models at the heart of this thesis, found in Chapter 5.

The contents of this chapter were first published in Harwath and Glass (2015).

4.1 Problem setting

Conventional automatic speech recognition (ASR) systems utilize training data in the

form of speech audio with parallel text transcriptions. The text transcriptions provide

an extremely strong supervisory signal that enables the recognizer to learn which
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invariant features of the acoustic signal distinguish one word from another. Of course,

transcriptions are expensive to create, as well as restrictive - an ASR system cannot

recognize a word that is out of its vocabulary. We are interested in investigating to

what degree it is possible to replace those transcriptions with contextually relevant

images. Such data could conceivably be far easier to collect, while still offering enough

constraint for a model to learn to recognize words. This training paradigm also opens

the door for richer linguistic representations to be learned by endowing words with

visual semantics.

Given a dataset comprised of image scenes with accompanying spoken audio

captions, we propose the first of several models developed in this thesis that are

capable of learning to associate images with their spoken descriptions. This model

relies on a pair of convolutional neural networks (CNNs), one for images and another

for speech, along with an alignment and embedding model. The outputs of the

networks provide fixed-dimensional representations of variable-sized visual regions and

spoken words, which are then mapped into a shared semantic embedding space. This

allows us to align the words in the captions to the objects and regions they refer to in

the image scene. This is an exceptionally difficult problem, and thus we make several

simplifying assumptions:

1. The spectrograms of the spoken audio captions are pre-segmented at the word

level via forced alignment to a ground truth transcription using a supervised

ASR system.

2. A pre-trained neural network capable of providing embedding vectors of spec-

trogram segments is also available. This network was pre-trained to perform

isolated word classification on a separate speech corpus, but here we remove the

final classification layer.

3. A pre-trained Region-Convolutional Neural Network (R-CNN) (Girshick et al.,

2013) based upon the VGG architecture (Simonyan and Zisserman, 2014) trained

on the ILSVRC12 (Deng et al., 2009) corpus is available to produce object

proposal regions. This network is also able to produce embedding vectors

68



capturing the visual semantics of those regions; however, its final classification

layer has also been removed.

We will revisit these assumptions in Chapter 5 and onwards, where they will be

removed or largely weakened.

4.2 Model Description

Our goal here is to be able to represent examples of spoken words, alongside examples

of visual objects, as points in a high dimensional vector space. For example, in this

vector space, we would like different spoken examples of the word "dog" to neighbor

one another, and also to neighbor image crops containing dogs. In order to do this,

we require some means to transform variable sized image crops as well as variable

duration audio waveforms into fixed dimensional vector representations. Further,

we also require some way of coaxing these vectors into taking on the property that

semantically similar images and words neighbor one another. To achieve this, we

employ two separate neural network architectures, one for images and one for audio,

which we then marry together with an embedding alignment model.

4.2.1 Region Convolutional Neural Networks

In order to detect a set of candidate regions in an image which are likely to contain

meaningful objects, we use the Region Convolutional Neural Network (RCNN) model

(Girshick et al., 2013). The RCNN object detector works by first using selective search

(Uijlings et al., 2013) to build a large list of proposal regions, typically numbering in

the thousands for a given image. Each proposal region is then fed into a CNN object

classifier, which is used to extract the activations of the penultimate layer of neurons

in the network. These activations form a fixed-dimensional (4096 in Girshick et al.

(2013), as well as our work) feature vector representation of each proposal region. A

set of one-versus-all support vector machines are then used to calculate detection

scores over some set of classes for each region, and highly overlapping regions with
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similar classification scores are merged. Finally, the remaining set of regions can be

ranked in order of their maximum classification score across all classes. In our work,

we follow Karpathy and Li (2015) and take the top 19 detected regions along with

the entire image frame, resulting in 20 regions per image. We use the d, = 4096

dimensional RCNN feature vectors to represent each region, which we will refer to as

V = {vili = 1...20}

4.2.2 Spectrogram Convolutional Neural Network

Previous efforts (Karpathy and Li, 2015; Vinyals et al., 2015) to perform semantic

alignment of text to objects in image scenes have benefited from the fact that text

is naturally segmented into words, and all instances of the same word share the

same orthography. On the other hand, segmenting continuous speech into words is

nontrivial, and different spoken instances of the same underlying word will inevitably

differ in not only their duration, but also in their acoustic feature representations

as influenced by factors such as the microphone and speaker characteristics and the

context in which the word was spoken.

While a speech recognition system is a reasonable solution for building a spoken

interface for natural language image retrieval systems such as the one described

in Karpathy and Li (2015), in this chapter we are more interested in investigating

the potential of neural networks to learn meaningful semantic representations which

operate directly on the feature level. However, tasking our system with also performing

word segmentation on the audio stream significantly complicates the problem at hand.

We choose to take a step back from the text-based framework by pre-segmenting

each spoken caption into a sequence of audio waveforms, each containing a single

ground-truth word, and then throwing away the word identity of each segment.

In Bengio and Heigold (2014), the authors trained a CNN isolated word recognizer

and utilized it for N-best recognition hypothesis re-ranking; here, we propose to use a

similar CNN to model the spectrogram of each isolated word in the image captions.

Standard CNNs expect their inputs to be of a fixed size, so in order to accommodate

our variable duration words we follow Bengio and Heigold (2014) and choose to embed
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their spectrograms in a fixed duration window, applying zero-padding and truncation

when necessary. While Bengio and Heigold (2014) found that a 2 second window was

sufficient to capture the duration of 97% of the words in their corpus, in our case a 1

second long window is long enough to capture 99.9% of the words appearing in the

dataset used for the experiments in this chapter.

To create the spectrogram representing each word, we begin by performing forced-

alignment of the audio to its ground truth text transcription in order to determine

word boundary information. Next, we apply a standard 25 millisecond window with a

10 millisecond shift to each word utterance, extracting log energy filterbank features

for each window using 40 filterbanks spaced along the Mel scale, as described in

Section 2.1. Finally, we either pad with zeros or truncate equally on both sides to

force the spectrogram to have a width of 100 frames, or 1 second. Figure 4-1 shows an

example of what the input data to the network looks like for an instance of the word

"strategists". From this point onwards, we treat our spectrograms as 40 pixel-tall by

100 pixel-wide grayscale images.

Figure 4-1: Log mel filterbank spectrogram of the word "strategists".

We rely on the Caffe (Jia et al., 2014) toolkit to train our networks and extract

the word spectrogram features. Our CNN architecture is as follows:

1. Pixel-by-pixel mean image spectrogram subtraction, with the mean spectrogram

estimated over the entire training set;

2. Convolutional layer with filters sized 5 frames by 40 features with a stride of 1,

vertical padding of 1 pixel on both the top and bottom, and 64 output channels

with a ReLU nonlinearity;

3. Local response normalization of width 5, o = 0.0001, and 3 = 0.75;
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4. Max pooling layer of height 3, width 4, vertical stride 1, and horizontal stride 2;

5. Two fully connected layers of 1024 units each, with a dropout ratio of 0.5 and

ReLU nonlinearities;

6. A softmax classification layer

Figure 4-2: 64 learned filters for the spectrogram CNN.

To extract vector representations for each word in some image caption, we feed the

word's spectrogram through the network and discard the softmax outputs, retaining

only the activations of the dw = 1024 dimensional fully connected layer immediately

before the classification layer. For a given caption, we will refer to these vectors as

W = {w3 I... N,,}, where N, is the number of words appearing in the caption.

4.2.3 Embedding Alignment Model

Given an image-caption pair and their corresponding object detection boxes and word

spectrograms, our task is to align each word with one of the detection boxes found in

the image. Note that these detection boxes are far from error-free, but we use them

anyway with the hopes that the most salient objects in each image will be captured

by a few of the detection boxes. Additionally, this model makes the assumption that

each word is independently associated with one (and only one) detection box in the

image. Obviously, this reflects an impoverished model of language which limits what

can be learned. Nevertheless, we hope to at least capture linkages between salient

objects and the words which reference them. To perform the matching, we adopt

the transform model from Karpathy et al. (2014) but with the objective function
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presented by Karpathy and Li (2015). However, we replace the text modelling side of

Karpathy's models with our word spectrogram CNN, enabling us to align the image

fragments directly to segments of speech audio. We provide a brief overview of the

alignment model and objective here.

Let V = {vili = 1 ... 20} be the set of dj-dimensional vectors representing the

activations of the penultimate layer of the RCNN for each detected image region.

Also let V {w j. .. N,} be the dw-dimensional vectors representing the similar

activations of the spectrogram CNN on each of the Nw words in the spoken caption.

The job of the alignment model is to map all of the v E V and w E W vectors into a

shared, h-dimensional space where semantically related words and images have a high

similarity.

The alignment model is two-faceted, with separate transforms applied to the

image vectors as well as the word spectrogram vectors. We use an affine transform,

y = WimageV + bimage to map an image vector v into the h-dimensional semantic

embedding space. To map a word spectrogram vector w into that same embedding

space, we use a nonlinear transform, X = f(WaudioW+baudio) where f (z) is some element-

wise nonlinear function. For the experiments in this chapter, we set f(z) = max(0, z).

Motivated by the assumption that the spoken caption 1 for a given image k should

contain words which directly reference objects in the image, Karpathy's objective

function tries to assign a high similarity to matching image-caption pairs by "grounding"

each word vector to one or more image fragment vectors. The inner product similarity

between a given word embedding and an image fragment embedding is used to measure

the degree of grounding, and each word in caption 1 is given a score according to its

maximum similarity across all image fragments from image k. An overall image-caption

similarity score is then computed by summing the scores of all words in the caption,

thresholded below at 0:

Ski = Zmax(O, yfxt), (4.1)
ti iEgk

where gi denotes the set of image fragments in image 1, and gk is the set of word

spectrograms in caption k.
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In Karpathy and Li (2015), the authors use a max margin objective function

which forces matching image-caption pairs to have a higher similarity score than

mismatched pairs, by a margin. Given that Skk denotes the similarity between a

matching image-sentence pair, the cost is defined as:

C(O) =E [Z max(O, Skl - Skk + 1)
k 1 (4.2)

+ max(, Slk - Skk + 1)] .

In practice, we use stochastic gradient descent to optimize this cost function in terms

of the parameters 0 = {Wm, bin, Wd, bd}. Figure 4-3 illustrates our full model.

Sum over words to get
overall similarity score

Max over
regions

Matrix of
dot products

Image CNN between
embedding

--- vectors

Object proposals pre-computed
with R-CNN

Oracle segmented spectrogram

Figure 4-3: Illustration of the audio-visual alignment model. The inputs are pre-
segmented, and the similarity between each unique pair of (image crop, spectrogram
segment) is reflected in the matrix of dot products. The overall similarity score
between an image and a caption is computed by taking the column-wise maximum
over the dot product matrix (i.e. over image regions) and then summing the resulting
vector (i.e. over the spectrogram segments)

4.3 Experimental Data

The experiments in this chapter make use of the 40,000 spoken captions collected for

the Flickr8k Audio Caption corpus, described previously in Chapter 3. Because the
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Flickr8k corpus contains a small number of images and captions relative to datasets

such as Imagenet (Deng et al., 2009), we follow the example of Karpathy and Li

(2015) and use the off-the-shelf RCNN provided by Girshick et al. (2013) trained on

ImageNet to extract the 4096-dimensional visual object embeddings. Similarly, we

employ supervised pretraining for the word spectrogram CNN using the Wall Street

Journal SI-284 split (Paul and Baker, 1992). This set contains roughly 82 hours of

speech, from which we extracted all instances of words occuring at least 10 times

in the data. This gave us a total of 612,108 words covering a vocabulary of size

6,010, which we split 80/20 into training and testing sets. We used this data to train

our word spectrogram CNN using the 6,010 word vocabulary as our output targets.

Even though this training is supervised, 6,749 of the unique words appearing in the

Flickr8k transcriptions (75% of the vocabulary) do not appear in the training set for

the spectrogram CNN.

4.4 Experiments

We use stochastic gradient descent with a learning rate of le-6 and momentum of 0.9

across batches of 40 images to train our embedding and alignment model, and run our

training for 20 epochs. Training is performed using the standard 6,000 image train

set from the Flickr8k data, using the accompanying 30,000 captions. At each batch,

we randomly choose to use only one of the five captions associated with each image.

We tried several different settings for h, the dimension of the semantic embedding

space, and found that values between 512 and 1024 seemed to work well, in line with

Karpathy et al. (2014). We also found that it was necessary to normalize the w vectors

to unit magnitude in order to prevent exploding gradients.

To evaluate the alignment and embedding model, we follow the example of Karpathy

and Li (2015); Karpathy et al. (2014); Socher et al. (2014) and use our model to

perform image retrieval and annotation. Image search is defined as choosing a caption

from the test set and then asking the system to find which image belongs with the

caption. Image annotation is the opposite problem: choosing an image from the test
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set without its caption, and then asking the system to search over all the captions

in the test set and find one of the five which belongs with the image. We report

recall@10 as our evaluation metric, or the probability that the correct result is found

in the top 10 returned hits. Table 4.1 details the results of our system ("Spectrogram

CNN"), as well as a comparison to replacing the word spectrogram embeddings with

200-dimensional word vectors taken from Huang et al. (2012). We also compare to

Socher et al. (2014) and Karpathy et al. (2014). While our text + word vector system

outperforms Karpathy et al. (2014), the model is more similar to the refinements made

in Karpathy and Li (2015) but with a single layer word embedding network rather

than a bidirectional recurrent neural network. Karpathy and Li (2015) reports high

recalls on the Flickr30k data (50.5 search and 61.4 annotation), but does not include

any results on the Flickr8k data. Although our spectrogram CNN does not perform

nearly as well as any of the systems with access to the ground truth text, it massively

outperforms a random ranking scheme. This is in spite of the fact that not only does

the spectrogram CNN system not have direct access to the ground truth word identity

of the caption words, but also that the CNN word embedding vectors are of dimension

1024 rather than 200. We believe that these results are quite promising, and with

more training data we expect to see substantial improvements. Figure 4-4 displays

several alignments of Flickr8k images to their captions inferred by our system. While

by no means perfect, our system reliably aligns salient objects in the images with their

associated caption words.

We also trained several different word spectrogram CNNs with varying configura-

tions. Table 4.2 displays the top-1 and top-5 accuracies of a few of these networks.

A two-layer conventional DNN with 1024 units per layer and ReLU nonlinearities

achieved a classification accuracy of 75.5%, while adding a third layer brought that

number even lower to 69.5%. We speculate that our training set is not large enough

to train such a network. However, replacing the first fully connected layer with a

64-unit convolutional layer boosted the accuracy to 84.2%. We also trained a network

with two convolutional layers and one fully connected layer and achieved similar

results to the network with only a single convolutional layer. We also explored varying
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Model Search RA10 Annotation RA10

Socher et al. (2014) 28.6 29.0
Karpathy et al. (2014) 42.5 44.0

Text + word vec 49.0 56.7
Spectrogram CNN 17.9 24.3

Table 4.1: Image search and annotation results on the Flickr8k test images (1000
images with 5 captions each).

Model Top-1 Acc. Top-5 Acc. 3
DNN, 2x1024 FC 75.5 93.9
DNN, 3x1024 FC 69.5 91.4

CNN, 1x64 Conv + 2x1024 FC 84.2 97.4

Table 4.2: Isolated word recognition accuracies on our WSJ test set. "FC" stands for
"fully connected".

the size and shapes of the convolutional filters, pooling layers, and dimension of the

fully connected layers, but the network achieving 84.2% accuracy reflects our best

performance. Although these networks show a wide range of top-1 accuracies, it is

interesting to note that their top-5 accuracies are all in excess of 90%. Figure 4-2

displays the 64 filter responses from the first layer of our network.

4.5 Chapter Summary

In this chapter, we have presented our first efforts to construct a model which can

learn a joint semantic representation over spoken words as well as visual objects.

At training time, the model only requires weak labels in the form of paired images

and natural language spoken captions. Our system aligns salient visual objects in

the images with their associated caption words, in the process building a semantic

representation across both modalities. We evaluate our model on the Flickr8k image

search and annotation tasks, and compare it to several systems with access to the

ground truth text. Encouraged by our findings, in the next chapter we "remove the

training wheels," so to speak, by intoducing improved models which are able to cope

with unsegmented audio and visual inputs.
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Figure 4-4: Some examples of inferred alignments on the Flickr8k data. The words

for each image's caption are stacked to the right of each image, accompanied by their

alignment scores. To keep the images free from too much clutter, we threshold the

scores at 0, displaying a link between the word and its maximally associated object

bounding box only when its score is positive. Note that the system does not actually

see the text of the caption words - only a spectrogram. We replace the spectrogram

in these figures with the ground truth text for the sake of clarity.
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Chapter 5

Grounding Speech to Images: The

Unsegmented Case

In Chapter 4, we considered learning a joint embedding and alignment model for the

purpose of associating images and spoken captions describing those images. Recall

that the model described in Chapter 4 relied upon the following assumptions:

1. The spectrograms of the spoken audio captions were pre-segmented at the word

level,

2. A neural network pre-trained in a supervised fashion to perform isolated word

recognition was used to extract initial embeddings for the spectrogram segments,

3. The images were pre-segmented into object proposal regions with a R-CNN

(Girshick et al., 2013) network, which was also used to extract embeddings for

said regions, that was pre-trained in a supervised fashion.

In this chapter, we do away with these assumptions and develop models capable

of learning directly from unsegmented images and waveforms. Although some of

the experiments to follow assume that an image network pre-trained on a separate

supervised classification task is available, we also investigate what is possible to learn

in a completely unsupervised fashion.
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Portions of the work presented in this chapter were first published in Harwath

et al. (2016); Harwath and Glass (2017).

5.1 Introduction

In this chapter, we introduce novel neural network architectures for the purpose of

learning high-level semantic concepts across both the audio and visual modalities.

Like the networks described in Chapter 4, the models presented here operate on

contextually correlated streams of sensor data from multiple modalities, namely a

visual image accompanied by a spoken audio caption describing that image. Unlike the

networks from Chapter 4, these models are designed to operate on entire images and

their captions. This alleviates the need for pre-segmentation of the inputs, but we show

that the models are still able to learn meaning from continuous speech. We validate

this experimentally by performing semantic image and caption retrieval. Finally, we

conduct preliminary analysis that suggests that the networks are implicitly learning

to localize important words, as well as discriminate between them.

5.2 Audio-Visual Modeling

In the simplest sense, all of our models are designed to calculate a similarity score for

any given image and caption pair, where the score should be high if the caption is

relevant to the image, and low otherwise. It is similar in spirit to "Siamese" models

which attempt to learn a similarity measure within one modality (Chopra et al., 2005).

In general, neural Siamese models consist of three components: a feature extraction

network (sometimes called an embedding network), a distance function, and a loss

function. At training time, two exemplars are sampled from the training set and

passed through the embedding network to extract a representation for each exemplar.

The scoring function computes the distance (or similarity, depending on how the

loss function is formulated) between the representations, typically using standard

measures such as cosine distance, Euclidean distance, or Kullback-Leibler divergence.
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It is also possible to learn the distance function by using a second neural network

whose inputs are a pair of embedding vectors and whose output is a scalar value.

The final component of the model is the loss function, whose job is to provide a

top-level gradient that can be backpropagated into the rest of the model. The loss

function encodes our expectations as to whether two input exemplars should have a

high distance between them (e.g. the inputs are pictures of faces from two different

people) or should have a low distance between them (e.g. the inputs are two different

pictures of the same person's face).

Unlike the Siamese model setting, in which a shared embedding network can be

used for both inputs, here we are dealing with inputs from multiple modalities that

cannot necessarily be well-modeled using a single network. Therefore, our models

employ separate branches for visual inputs and for audio inputs. Broadly speaking,

the branches can be trained to represent an input (an image or a caption, depending

on the branch in question) two different ways:

1. Embedding Vector Models: The output representation takes the form of a

vector. This vector encodes its entire input (image or audio caption) as a single

point in a high dimensional space. Hence, the vector captures a holistic view of

its input, but localized information is lost.

2. Feature Map Models: The output representation takes the form of an Nh

order tensor (N = 2 for audio captions, N = 3 for images), or feature map. This

feature map encodes localized representations of its input; each output unit's

receptive field with respect to the input can be recovered.

We next describe our data preprocessing steps, and then discuss the specific architec-

tures that we have developed for both of the above cases.

5.2.1 Data Preprocessing and Normalization

To preprocess our images, we follow the same scheme used by the VGG16 network

Simonyan and Zisserman (2014). Because the VGG network was pre-trained on the
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ImageNet ILSVRC12 (Deng et al., 2009) dataset for several of our experiments, the

mean pixel value of that dataset is first subtracted from each input image. Next,

the standard deviation of each of the three color channels is computed across the

ILSVRC12 dataset, and the color channel of each pixel of an input image is divided

by the corresponding standard deviation. The image is then resized proportionally so

that its smallest dimension is equal to 256. We then we take a random 224 by 224

crop for training, or the center 224 by 224 crop for testing.

We use a log mel-filterbank spectrogram to represent the spoken audio caption

associated with each image. Generating the spectrogram transforms the 1-dimensional

waveform into a 2-dimensional signal with both frequency and time information. For

a detailed explanation of this feature extraction procedure, we refer the reader to

Section 2.1. In a manner similar to how the images are preprocessed, we compute

a single scalar mean value by averaging over all frames and frequency bins across

all caption spectrograms in the training set. We compute a corresponding standard

deviation statistic as well. The mean is subtracted from each pixel (time-frequency

bin) of an input spectrogram, and then the resulting value is divided by the standard

deviation. This differs from the spectrogram normalization scheme used in Chapter

4, where we computed a mean spectrogram across the entire training set. In order

to take advantage of the additional computational efficiency offered by performing

gradient computation across batched input, we force every caption spectrogram to

have the same size. We do this by fixing the spectrogram size at L frames (1024

to 2048 in our experiments, respectively corresponding to approximately 10 and 20

seconds of audio). We truncate any captions longer than L, and zero pad any shorter

captions; approximately 66% of the captions used in the experiments in this chapter

were found to be 10 seconds or shorter, while 97% were under 20 seconds.

5.2.2 Embedding Vector Models

In the case of the embedding vector model, the final layer of each branch outputs

a vector of activations. This vector should capture the overall semantic content of

its input image or caption, in a way that allows the semantic similarity between two

82



Image/Caption Similarity Score

Dot Product

d

rvoctlonUnearP

VGG 16 (No softmax)

Mean or max pooling "
across entire caption + L2
normalization 1024 filters

Convolution of width 25
+ ReLU

512 filters
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Figure 5-1: The architecture of the NIPS16 audio/visual neural network with the
embedding dimension denoted by d and the caption length by L. Separate branches
of the network model the image and the audio spectrogram, and are subsequently tied
together at the top level with a dot product node which calculates a similarity score
for any given image and audio caption pair.

inputs to be computed using vector operations (such as the inner product). One

variant of the general architecture we use is illustrated in Figure 5-1 (henceforth

referred to as the NIPS16 architecture, as it was first published in (Harwath et al.,

2016)). The VGG16 network effectively forms the bulk of the image branch; we

remove the softmax classification layer, and keep the bottom portion of the network

up through the f c2 layer. At that point, we need to have a means of mapping the

4096-dimensional outputs of f c2 into a d-dimensional vector space that the images

and audio will share. For this purpose we employ a simple linear transform, allowing

us to arbitrarily specify any dimension for the shared embedding space.

The audio branch of our network is also convolutional in nature and treats the

spectrogram as a 1-channel (grayscale) image. However, speech spectrograms have

a few interesting properties that differentiate them from images. While it is easy

to imagine how visual objects in images can be translated along both the vertical
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and horizontal axes, the same is not quite true for words in spectrograms. A time

delay manifests itself as a translation in the temporal (horizontal) direction, but a

fixed pitch will always be mapped to the same frequency bin on the vertical axis.

The same phone pronounced by two different speakers will not necessarily contain

energy at exactly the same frequencies, but the physics is more complex than simply

shifting the entire phone up and down the frequency axis. Following the technique we

previously employed in Chapter 4, we size the filters of the first layer of the network

to capture the entire 40-dimensional frequency axis. This means that the vertical

dimension is effectively collapsed out in the first layer, and so subsequent layers are

only convolutional in the temporal dimension. After the final layer, we pool across the

entire caption in the temporal dimension (using either mean or max pooling). Some

form of normalization is also possible to apply at this point; we use L2 normalization

in our models.

In addition to the NIPS16 architecture displayed in Figure 5-1, we also experiment

with the deeper audio branch presented in (Harwath and Glass, 2017), which we will

refer to as the ACL17 architecture:

1. Convolution: Channels=128, Width=1, Height=40, ReLU

2. Convolution: Channels=256, Width=11, Height=1, ReLU

3. Maxpool: Width=3, Height=1, Stride=2

4. Convolution: Channels=512, Width=17, Height=1, ReLU

5. Maxpool: Width=3, Height=1, Stride=2

6. Convolution: Channels=512, Width=17, Height=1, ReLU

7. Maxpool: Width=3, Height=1, Stride=2

8. Convolution: Channels=d, Width=17, Height=1, ReLU

9. Meanpool over entire caption

10. L2 normalization

During training and testing, we compute a similarity score between an arbitrary

image and caption by performing a forward pass of the inputs through their respective

branches, and then computing the inner product of their output embedding vectors.
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5.2.3 Feature Map (Matchmap) Models
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Figure 5-2: The audio-visual matchmap model architecture (left), along with an exam-
ple matchmap output (right), displaying a 3-D density of spatio-temporal similarity.

In the NIPS16 and ACL17 architectures, the embedding vector representing an

image is derived by flattening the convolutional feature map output by the conv5 layer

of the VGG16 network, and then sending these outputs through several fully-connected

layers. One problem with this approach is that it is difficult to recover associations

between any neuron in the fully connected layers and the spatially localized input

stimulus which was responsible for its output. While the convolutional units in VGG16

all have spatial receptive fields which are simple to derive, the receptive field for the

units in the flully connected layers is effectively the entire input image.

Rather than encapsulating the semantics of the entire image scene within a single

embedding vector, an alternative approach is to use only convolutional and pooling

layers in the image model. We do this by retaining only the layers up through conv5

from the VGG16 network, discarding pool5 and everything above it. For a 224 by

224 pixel input image, the output of this portion of the network would be a feature

map across 512 channels, spanning 14 by 14 superpixels. Each superpixel location

within the map possesses a receptive field that can be related directly back to the

input. In order to map the image into the shared embedding space, we apply a 3 by 3,
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d channel, linear convolution (no nonlinearity) to the conv5 feature map.

The audio branch of the network can be adapted to output a feature map in a

similar way. We borrow this branch from the ACL17 architecture previously described,

but remove the final L2 normalization as well as the preceeding meanpooling operation

over the entire caption. For an input spectrogram represented by T frames each

containing 40 filterbank energies, the output of this modified audio branch will thus

be a d-dimensional feature map across 1 temporal superframes. We make one further

small modification to the ACL17 model by introducing an initial batch normalization

loffe and Szegedy (2015) layer that operates on the spectrogram input. We allow this

layer to handle the spectrogram-space normalization, and thus do not manually apply

mean and variance normalization to the spectrograms in this case.

We refer to the combination of the feature map-based audio and image branches

as the matchmap model, visualized in Figure 5-2. To compute the overall similarity

between an image and caption using the matchmap model, a simple inner product

will no longer suffice; we require a function that takes as input the visual and audio

feature maps and outputs a scalar score. We next describe three suitable ways of

doing so.

Let I represent the output feature map output of the image network branch,

A be the output feature map of the audio network branch. Our first step is to

compute a 3rd order tensor M such that M,c,t = IT .At,.. Here we use the colon (:)

to indicate selection of all elements across an indexing plane; in other words, Ir,c,: is a

d-dimensional vector representing the (r, c) superpixel coordinate of the image feature

map, and At,: is a d-dimensional vector representing the tth superframe of the audio

feature map. In other words, each element of M represents the dot product between a

specific superpixel output by the final convolutional layer of the image network, and a

specific superframe output by the audio network. Because M reflects the localized

similarity between a small image region (possibly containing an object) and a small

segment of audio (possibly containing a word), we refer to M as the matchmap tensor

between and image and an audio caption. Once we have computed a matchmap tensor

M, we consider three ways of deriving a similarity score from it.
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The first possibility is to compute the average of all elements of M. We call this

similarity scoring function SISA (sum image, sum audio):

Nr Nc Nt

SISA(M) = 1NENEE M,,ct (5.1)
NrNcNt r=1 c=1 t=1

As it is not completely realistic to expect all words within a caption to simultaneously

match all objects within an image, we consider computing the similarity between

an image and an audio caption using several alternative functions of the matchmap

density. By replacing the averaging summation over image patches with a simple

maximum, MISA (max image, sum audio) effectively matches each frame of the

caption with the most similar image patch, and then averages over the caption frames:

Nt

MISA(M) = 1- max(M,c,t) (5.2)
Ner,cNtt=1 '

By preserving the sum over image regions but taking the maximum across the audio

caption, SIMA (sum image, max audio) matches each image region with only the

audio frame with the highest similarity to that region:

Nr Ne

SIMA(M) = 5 ) )c max(M,,t) (5.3)
NrNc r=1 c=1

5.2.4 Model Training

For either of the model types described above (embedding vector or matchmap), we

are able to compute a score S reflecting the similarity between an arbitrary image

and an arbitrary caption. In the case of the embedding vector models (NIPS16 and

ACL17), we accomplish this with an inner product; in the case of the matchmap

model, we employ one of SISA, MISA, or SIMA. Regardless of how we compute S,

we want this score to be high for ground-truth pairs - that is, images and captions

that go together - and low otherwise. We therefore specify a margin-based ranking

objective function (Bromley et al., 1994) which compares the similarity scores between

matched image/caption pairs and mismatched pairs. We will consider the case in

87



which this objective is optimized with batched stochastic gradient descent. Each

minibatch consists of B ground truth pairs, each of which is paired with one impostor

image and one impostor caption randomly sampled from the same minibatch. Let

S denote the similarity score between the jth ground truth pair, Sj be the score

between the original image and the impostor caption, and S be the score between

the original caption and the impostor image. The loss for the minibatch as a function

of the network parameters 0 is defined as:

B

L(O) = max(0, Sj - SP+ j) + max(0, Sj. - SP +,q) (5.4)
j=1

This loss function was encourages the model to assign a higher similarity score to

a ground truth image/caption pair than a mismatched pair by a margin of ' (we

generally fix q = 1 in our experiments). In Karpathy et al. (2014) the authors used

a similar objective function to align images with text captions, but every single

mismatched pair of images and captions within a minibatch was considered. Here, we

only sample two negative training examples for each positive training example, which

we found led to more stable training.

5.3 Experimental Data

We perform experiments on a dataset of over 400,000 spoken image captions from

the Places205 Audio Caption dataset (Zhou et al., 2014) described in Chapter 3,

corresponding to over 1,000 hours of speech data. A held-out set of 1,000 image/caption

pairs is used for validation.

Because we lack ground truth text transcripts for the data, we used Google's

Speech Recognition public API to generate proxy transcripts which we use when

analyzing our system. Note that the ASR was only used for analysis of the results,

and was not involved in any of the learning. To estimate the word start and end times

for our analysis figures, we used Kaldi (Povey et al., 2011) to force align the caption

audio to the ASR-derived transcripts. Given the difficult nature of our data, these
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transcripts are by no means error free. To get an idea of the error rates offered by the

Google recognizer, we manually transcribed 100 randomly selected captions and found

that the Google transcriptions had an estimated word error rate of 23.17%, indicating

that the transcriptions are somewhat erroneous but generally reliable.

5.4 Image Query and Annotation Experiments

To objectively evaluate our models, we adopt the same image search and annotation

task used in Chapter 4, applied to our held-out validation set of 1,000 image/caption

pairs. This task serves to provide a single, high-level metric which captures how well

the model has learned to semantically bridge the audio and visual modalities.

All of the models used in the following experiments were trained on NVIDIA Titan

X GPUs. Typical training times ranged between several days and 2 weeks depending

upon the size of the dataset and number of training epochs used. In nearly all cases,

we set our minibatch size to 128, used a constant momentum of 0.9, and ran SGD

training until convergence (typically reached within 50 to 200 epochs). We found

that an initial (batchsize-normalized) learning rate of 0.001 worked well in most cases,

using a decay schedule that decreased the learning rate by a factor of 10 every 30

epochs. We found that an embedding dimension of d = 1024 worked well, and the

retrieval performance was not overly sensitive to the exact setting of d. Good settings

for d were found to be between 768 and 2048.

We experimented with many different variations on the NIPS16 model architecture,

as it was the first model we developed. These variations included the number of

hidden units, number of layers, filter sizes, embedding dimension, and embedding

normalization schemes. When only the acoustic embedding vectors were L2 normalized,

we saw a consistent increase in performance. However, when the image embeddings

were also L2 normalized (equivalent to replacing the dot product similarity with a

cosine similarity), the recall scores suffered. In Table 5.1, we show the impact of

various truncation lengths for the audio captions, as well as using a mean or max

pooling scheme across the audio caption. We found that truncating the captions
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to 20 seconds instead of 10 only slightly boosts the scores, and that mean and max

pooling work about equally well. These experiments reflect the use of an image branch

pre-trained on ImageNet, with fixed weights during our multimodal training (in other

words, only the audio branch and the final projection layer of the image branch were

trained). Some example search and annotation results are displayed in Figures 5-3

and 5-4.

Model Variant Search Annotation
Pooling Caption
type length (s) RA1 R 5 RA10 RAI R 5 RA10

Mean 10 .056 .192 .289 .051 .194 .283
Mean 20 .066 .215 .299 .082 .195 .295
Max 10 .069 .192 .278 .068 .190 .274
Max 20 .068 .223 .309 .061 .192 .291

Table 5.1: Experimental results for image search and annotation on a 120,000 caption
subset of the Places Audio data, using variants of the NIPS16 architecture. All models
shown used an embedding dimension of 1024.

5.4.1 Model Comparison on Full 400k Training Set

In Table 5.2, .we display the recall scores on the full Places Audio dataset for the

NIPS16, ACL17, and three variants of the matchmap model. We also compare against

a text-based matchmap model that operates on the ASR transcripts of the captions.

The text-based model replaces the speech audio branch with a CNN that operates

on word sequences. The text branch uses a 200-dimensional word embedding layer,

followed by a 512 channel, 1-dimensional convolution across windows of 3 words with

a ReLU nonlinearity. A final convolution with a window size of 3 and no nonlinearity

maps these activations into the 1024 multimodal embedding space. All of the models

detailed in Table 5.2 utilize an image network pre-trained in a supervised fashion on

ImageNet.

There are several key takeaways from the results in Table 5.2. First, a deeper audio

network (ACL17) seems to offer significant improvements over the NIPS16 architecture,

especially for audio caption retrieval. Similarly, the presence of the additional fully
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"a small room which has a white piano in the corner there's a fireplace next to that and then there's a couch next to the"

I* r

"this is a photo of a girl standing in front of a lighthouse the little girls wear blue print dress she has blonde hair and blue eyes the lighthouse"

"photograph showcasing a pool at some sort of a tropical resort and that backdrop is a bunch of tropical trees and what appears to be a

if

"a large full of grassy field with the sun rising on the left"

Figure 5-3: Example search results for the NIPS16 model. Shown on the top is the
spectrogram of the query caption, along with its speech recognition hypothesis text.
Below each caption are its five highest scoring images from the test set.
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many cars are parked in the large parking lot there a large residential
neighborhood with many apartment buildings

a sidewalk in front of the building there are bushes and a car parked

several green trees along a street with many parked cars

three cars are parked next to each other there's tar everywhere

car one on down the line in a factory assign sale and stop the first
<spoken noise> is

a white building with red doors and a black roof that has a tree
growing up the side with red flowers

the front of an affluent home it is a ranch style house in front
of the house there are several large spreading trees

this is a picture of someone's home in the blue house with white
chairs in the front on the porch it also has a nice view of the street

there is a red building the red building is in front of a green lawn
the lawn has been mowed recently

there's a fence in front of the house

is inside of a store and the grocery store there is a display with
lots of bread on it

and either looking man standing behind the counter of some sort
of restaurant with several ingredients in view

a woman holding ice cream in a cup with a spoon is standing In a candy
shop she has short blonde hair

the front counter of an organic meat store with some animal carcasses
hanging for display

photograph of a woman taking a <spoken-noise> of herself inside
of the shoe store

Figure 5-4: Example annotation results for the NIPS16 model. Shown on the left is
the query image, and on the right are the Google speech recognition hypotheses of the
five highest scoring audio captions from the test set. We do not show the spectrograms
here to avoid clutter.
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Caption to Image Image to Caption
Model R 1 RU5 R 10 Rd1 R 5 R 10

NIPS16 .148 .403 .548 .121 .335 .463
ACL17 .161 .404 .564 .130 .378 .542

Matchmap SISA .142 .368 .510 .118 .344 .489
Matchmap MISA .166 .413 .559 .135 .369 .499
Matchmap SIMA .131 .360 .493 .130 .356 .467

ASR SISA (Text) .167 .457 .603 .168 .432 .553
ASR MISA (Text) .226 .500 .638 .177 .442 .563
ASR SIMA (Text) .180 .462 .617 .205 .469 .598

Table 5.2: Recall scores on the heldout set of 1,000 images/captions for the four
matchmap similarity functions considered. Random chance recall scores are 0.001 for
R 1, 0.005 for RA5, and 0.01 for RA10.

connected layers of the VGG16 network used in the ACL17 architecture boost the

caption recall scores (as compared to the matchmap model which lacks these layers).

This indicates that the compact vector representation used by the ACL17 model

may do a more effective job at capturing the holistic semantics of its inputs than the

distributed representations learned by the matchmap models. Finally, we notice that

the ASR text-based models outperform the speech-based models across the board -

but not by an enormous margin. This indicates that our speech-based models are

indeed learning to implicitly recognize words and their semantics - a phenomenon

which we explore further in Chapter 6.

5.4.2 Image Architectures and Variable Pretraining

We also investigate the effect of using a different image architecture, Alexnet (Krizhevsky

et al., 2012), as well as varying the degree of the visual pre-training. In the case

of Alexnet, we discard the fully connected layers of the network, only keeping the

convolutional architecture up through conv5 and before the final pooling layer. We

vary the degree of visual pre-training by only using pre-trained weights up to a certain

convolutional layer, randomly initializing all weights above that layer. Table 5.3

details the results of these for both the VGG16 and Alexnet. VGG16 outperforms

Alexnet across the board, which is perhaps unsurprising given the fact that VGG16 is
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a far deeper network. In the case of both architectures, every additional pretrained

layer increases the overall performance of the network by a significant amount. That

said, both networks are able to achieve significantly better than chance (15 to 20

times better) recall scores even with no pretraining whatsoever. This indicates that

completely unsupervised learning of both modalities is indeed possible.

Caption to Image Image to Caption
Model RA1 RA5 R10 RA1 RA5 R 10

VGG16 P0 .030 .119 .200 .030 .110 .188
VGG16 P1 .045 .185 .289 .048 .160 .259
VGG16 P2 .074 .222 .334 .067 .203 .314
VGG16 P3 .082 .259 .384 .073 .226 .356
VGG16 P4 .118 .316 .445 .083 .276 .400
VGG16 P5 .142 .368 .510 .118 .344 .489

Alexnet PO .019 .074 .151 .016 .088 .149
Alexnet P1 .049 .164 .256 .045 .139 .235
Alexnet P2 .066 .192 .284 .048 .170 .293
Alexnet P3 .060 .203 .297 .048 .183 .294
Alexnet P4 .069 .213 .330 .060 .204 .302
Alexnet P5 .076 .249 .356 .075 .238 .332

Table 5.3: Image and caption retrieval results for VGG16 and Alexnet with various
degrees of pretraining. P0 corresponds to no pretraining, P1 corresponds to a pretrained
convi, P2 to a pretrained convi and conv2, and so on (P5 meaning a fully pretrained
image network). In the case of the VGG16 network, each "layer" actually corresponds
to each named bank of convolutions (according to the standard VGG nomenclature).
All networks were trained using the SISA matchmap similarity function.

5.4.3 Padding Compensation, Activation Functions, and Ran-

dom Initialization

Given that we have just shown that learning both the image network and audio

network simultaneously and completely from scratch (i.e. no pre-training of the

VGG16 network on ImageNet) is possible but with worse performance, we detail

some preliminary strategies for bridging the gap. By placing a hyperbolic tangent

nonlinearity at the overall output of the image branch, as well as replacing the final

ReLU belonging to the audio branch with a hyperbolic tangent, we can restrict the
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possible range of values that the inner product between embedding vectors will take

to the interval [-d, d]. We hypothesize that this constraint may help to make learning

more stable when starting from a randomly initialized image network. It is also possible

to counteract the effect of the zero-padding when using the Matchmap networks by

only computing the matchmap up until the last output frame that does not correspond

to the padded portion of an audio input. This removes the artifact of the padding

during the similarity scoring; to fully take advantage of this, we extend the maximum

caption length to 2048 frames, capturing the full duration of approximately 97% of

our captions. The effect of these changes in the case of a pre-trained image branch as

well as a randomly initialized image branch are displayed in Table 5.4. As the fully

randomly initialized training case is part of our ongoing work, the models in Table

5.4 do not yet reflect an exhaustive set of experiments. We do note that significant

gains can be had for the fully unsupervised training case with the addition of the

tanh nonlinearities, padding compensation, and MISA scoring function, relative to

the configuration detailed in Table 5.3. Table 5.4 also contains the highest scoring

overall network within this thesis, which utilized an embedding dimension of 2048,

ReLU nonlinearities, the MISA scoring function, and padding compensation. More

experiments are necessary in order to determine the individual importance of each of

these architecture modifications.

Caption to Image Image to Caption
d PT VGG16 Out Act. RAI RA5 RA10 RA1 RA5 R 10

1024 No tanh .108 .287 .404 .073 .229 .327
2048 Yes tanh .200 .449 .584 .115 .352 .482
2048 No tanh .099 .269 .370 .063 .193 .300
2048 Yes ReLU .193 .486 .611 .161 .412 .553
2048 No ReLU .092 .250 .351 .066 .200 .299

Table 5.4: Various model and training configurations when using the MISA scoring
function and audio padding compensation. 'PT VGG16' indicates whether or not
the image branch is pretrained with the ImageNet weights, and 'Out Act.' indicates
the output activation type. For this column, 'ReLU' indicates a ReLU on the audio
network output, but not on the image branch which still uses a linear output. For the
'tanh' case, hyperbolic tangents are used on the output of both network branches.
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5.4.4 Preliminary Localization Analysis

While image and caption retrieval is a useful task in and of itself, our ultimate goal is

to discover object-like patterns in the images, and word-like patterns in the speech.

Even better, we would like to be able to semantically relate these individual patterns

to one another. At the time we published the NIPS16 model architecture in Harwath

et al. (2016), we had not yet developed any way of doing this. However, in that

paper we performed some preliminary analysis of the NIPS16 model by computing

time-dependent similarity profiles for image/caption pairs. This was done by removing

the final pooling layer from the spectrogram branch of a trained NIPS16 model, leaving

a temporal sequence of vectors reflecting the activations of the top-level convolutional

units with respect to time. We computed the dot product of the image embedding

vector with each of these vectors individually, rectified the signal to show only positive

similarities, and then applied a 5th order median smoothing filter. This filter is

simply to present a smoother curve for visual analysis, as it is otherwise quite jagged.

We time aligned the recognition hypothesis to the spectrogram, allowing us to see

exactly which words overlapped the audio regions that were highly similar to the

image. Figure 5-5 displays several examples of these similarity curves along with the

overlaid recognition text. In the majority of cases, the regions of the spectrogram

which have the highest similarity to the accompanying image turn out to be highly

informative words or phrases, often making explicit references to the salient objects

in the image scenes. This suggested that our network is in fact learning to recognize

audio patterns consistent with words using zero linguistic supervision whatsoever, and

perhaps even more impressively is able to learn their semantics.

5.4.5 Preliminary Analysis of Word Discriminability

To further examine the high-level acoustic representations learned by the NIPS16

networks, we extracted spectrograms for 1645 instances of 14 different ground truth

words from the development set by force aligning the Google recognizer hypotheses

to the audio. We did a forward pass of each of these individual words through the
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Figure 5-5: Examples of ground truth image/caption pairs along with the time-
dependent similarity profile showing which regions of the spectrogram the model
believes are highly relevant to the image. Overlaid on the similarity curve is the
recognition text of the speech, along with vertical lines to denote word boundaries.
Note that the neural network model had no access to these (or any) transcriptions
during the training or testing phases.
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audio branch of our network, leaving us with an embedding vector for each spoken

word instance. We performed t-SNE (van der Maaten and Hinton, 2008) analysis on

these points, shown in Figure 5-6. We observed that the points form pure clusters,

indicating that the top-level activations of the audio network carry information which

is discriminative across different words.

Figure 5-6: t-SNE visualization in 2 dimensions for 1645 spoken instances of 14
different word types taken from the development data.

The combination of the above two observations - namely, that the NIPS16 net-

work was able to localize salient words within the caption spectrograms, as well as

discriminate between different manually-extracted words - served as our inspiration for

developing methods for automatic pattern discovery and grounding that we explore in

the next chapter.

5.5 Chapter Summary

In this chapter, we presented a family of deep neural network architectures capable

of learning associations between natural image scenes and accompanying free-form
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spoken audio captions. The networks do not rely on any form of conventional speech

recognition, text transcriptions, or expert linguistic knowledge, but are able to learn to

recognize semantically meaningful words and phrases at the spectral feature level. We

show that this learning can take place with contextual information derived from the

images as the only form of supervision, although pre-trained visual network weights

from the VGG16 network improve performance. We presented experimental results

in which the networks were used to perform image search and annotation tasks, as

well as some preliminary analysis geared towards understanding the kinds of acoustic

representations are being learned by the network. In Chapter 6, we will augment

these models with the ability to perform automatic segmentation and clustering of

audio-visual patterns.

99



100



Chapter 6

Jointly Discovering Words and

Objects

In the previous chapter, we presented neural models capable of learning semantic

associations between visual images and spoken descriptions of those images. This

chapter makes use of those models for the joint discovery of word-like acoustic patterns

and object-like visual patterns. We introduce two distinct methods for pattern

discovery, and then chronicle a suite of experiments using those methods.

Portions of the work presented in this chapter were first published in Harwath and

Glass (2017).

6.1 Problem Statement and Motivation

Recall that in Chapter 4 we introduced a highly-scaffolded neural model for learning

associations between spoken words and visual objects. While the models presented

were able to consistently learn these associations, this came at the cost of significant

pre-training and lexical pre-segmentation of the audio signals. In Chapter 5, we

removed most of this scaffolding, and presented models capable of learning audio-

visual associations at the granularity of entire images and entire utterances. While

these models relied on far less pre-training and no pre-segmentation, they did not

possess a mechanism for producing localized alignments between an image and a
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caption; in other words, they were unable to identify the exact moment in time in

which a speaker said the word "dog" and associate it with the minimal crop of an

image scene containing a dog and little else.

In this chapter we introduce two distinct techniques for performing audio-visual

pattern discovery. The first employs coupled sliding windows applied to images and

spectrograms as an input pre-processing step, which are then fed into vector embedding

networks of the type described in Chapter 5 to produce localized audio-visual semantic

groundings. We show that this method is effective at deriving a "picture dictionary"

- clusters of visual objects and the snippets of speech containing words that refer

to them. However, one downside of the sliding window approach is that it requires

many thousands of forward passes through the embedding network. The second

technique we present utilizes the matchmap networks introduced in Chapter 5 to

produce audio-visual groundings with a single forward pass. We show that connected

components can be extracted from these matchmaps and clustered into word-object

categories with high purity.

6.2 Pattern Grounding via Coupled Sliding Windows

Although we have trained our ACL17 multimodal network to compute embeddings at

the granularity of entire images and entire caption spectrograms, we can easily apply

it in a more localized fashion. In the case of images, we can simply take any arbitrary

crop of an original, full-size image and resize it to 224x224 pixels. The audio network

is even more trivial to apply locally, because it is entirely convolutional and the final

mean pooling layer ensures that the output will be a 1024-dim vector no matter the

extent of the input. The bigger question is where to locally apply the networks in

order to discover meaningful acoustic and visual patterns.

Given an image and its corresponding spoken audio caption, we use the term

grounding to refer to extracting meaningful segments from the caption and associating

them with an appropriate sub-region of the image. For example, if an image depicted

a person eating ice cream and its caption contained the spoken words "A person is
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enjoying some ice cream," an ideal set of groundings would entail the acoustic segment

containing the word "person" linked to a bounding box around the person, and the

segment containing the word "ice cream" linked to a box around the ice cream. We

use a constrained brute force ranking scheme to evaluate all possible groundings (with

a restricted granularity) between an image and its caption. Specifically, we divide the

image into a grid, and extract all of the image crops whose boundaries sit on the grid

lines. Because we are mainly interested in extracting regions of interest and not high

precision object detection boxes, to keep the number of proposal regions under control

we impose several restrictions. First, we use a 10x10 grid on each image regardless

of its original size. Second, we define minimum and maximum aspect ratios as 2:3

and 3:2 so as not to introduce too much distortion and also to reduce the number of

proposal boxes. Third, we define a minimum bounding width as 30% of the original

image width, and similarly a minimum height as 30% of the original image height. In

practice, this results in a few thousand proposal regions per image.

To extract proposal segments from the audio caption spectrogram, we similarly

define a 1-dimensional grid along the time axis, and consider all possible start/end

points at 10 frame (pixel) intervals. We impose minimum and maximum segment

length constraints at 50 and 100 frames (pixels), implying that our discovered acoustic

patterns are restricted to fall between 0.5 and 1 second in duration. The number of

proposal segments will vary depending on the caption length, and typically number

in the several thousands. Note that when learning groundings we consider the entire

audio sequence, and do not incorporate the 10sec duration constraint imposed during

training.

Once we have extracted a set of proposed visual bounding boxes and acoustic

segments for a given image/caption pair, we use our multimodal network to compute a

similarity score between each unique image crop/acoustic segment pair. Each triplet of

an image crop, acoustic segment, and similarity score constitutes a proposed grounding.

A naive approach would be to simply keep the top N groundings from this list, but in

practice we ran into two problems with this strategy. First, many proposed acoustic

segments capture mostly silence due to pauses present in natural speech. We solve
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Figure 6-1: An example of our grounding method. The left image displays a grid
defining the allowed start and end coordinates for the bounding box proposals. The
bottom spectrogram displays several audio region proposals drawn as the families of
stacked red line segments. The image on the right and spectrogram on the top display
the final output of the grounding algorithm. The top spectrogram also displays the
time-aligned text transcript of the caption, so as to demonstrate which words were
captured by the groundings. In this example, the top 3 groundings have been kept,
with the colors indicating the audio segment which is grounded to each bounding box.

this issue by using a simple voice activity detector (VAD) which was trained on the

TIMIT corpus(Garofolo et al., 1993). If the VAD estimates that 40% or more of any

proposed acoustic segment is silence, we discard that entire grounding. The second

problem we ran into is the fact that the top of the sorted grounding list is dominated

by highly overlapping acoustic segments. This makes sense, because highly informative

content words will show up in many different groundings with slightly perturbed start

or end times. To alleviate this issue, when evaluating a grounding from the top of

the proposal list we compare the interval intersection over union (IOU) of its acoustic

segment against all acoustic segments already accepted for further consideration. If

the IOU exceeds a threshold of 0.1, we discard the new grounding and continue moving

down the list. We stop accumulating groundings once the scores fall to below 50% of

the top score in the "keep" list, or when 10 groundings have been added to the "keep"
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list. Figure 6-1 displays a pictorial example of our grounding procedure.

After the grounding procedure, we are left with a small set of regions of interest in

each image and caption spectrogram. We use the respective branches of our multimodal

network to compute embedding vectors for each grounding's image crop and acoustic

segment. We then employ k-means clustering separately on the collection of image

embedding vectors as well as the collection of acoustic embedding vectors. The last

step is to establish an affinity score between each image cluster I and each acoustic

cluster A; we do so using the equation

Affinity(I, A) = 1 ia -Pair(i, a) (6.1)
icI aEA

where i is an image crop embedding vector, a is an acoustic segment embedding vector,

and Pair(i, a) is equal to 1 when i and a belong to the same grounding pair, and 0

otherwise. After clustering, we are left with a set of acoustic pattern clusters, a set

of visual pattern clusters, and a set of linkages describing which acoustic clusters are

associated with which image clusters. In the next section, we investigate these clusters

in more detail.

6.3 Sliding Window Grounding and Clustering Ex-

periments

6.3.1 Clustering Analysis

For these experiments, we utilized a 220,000 image/caption subset of the Places

Audio data. We trained the model on this data, and also performed the grounding

and pattern clustering steps on the same data. This resulted in a total of 1,161,305

unique grounding pairs. For evaluation, we wish to assign a label to each cluster

and cluster member, but this is not completely straightforward since each acoustic

segment may capture part of a word, a whole word, multiple words, etc. Our strategy

is to force-align the recognition hypothesis text to the audio, and then assign a label
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Figure 6-2: Scatter plot of audio cluster purity weighted by log cluster size vs variance
for k =500 (least-squares line superimposed).

string to each acoustic segment based upon which words it overlaps in time. Any

word whose duration is overlapped 30% or more by the acoustic segment is included

in the label string for the segment. We then employ a majority vote scheme to derive

the overall cluster labels. When computing the purity of a cluster, we count a cluster

member as matching the cluster label as long as the overall cluster label appears in

the member's label string. In other words, an acoustic segment overlapping the words

"the lighthouse" would receive credit for matching the overall cluster label "lighthouse".

A breakdown of the segments captured by the "ocean" cluster and the "castle" cluster

is shown in Table 6.1. We investigated some simple schemes for predicting highly

pure clusters, and found that the empirical variance of the cluster members (average

squared distance to the cluster centroid) was a good indicator. Figure 6-2 displays a

scatter plot of cluster purity weighted by the natural log of the cluster size against

the empirical variance. Large, pure clusters are easily predicted by their low empirical

variance, while a high variance is indicative of a garbage cluster.

Ranking a set of k = 500 acoustic clusters by their variance, Table 6.2 displays

some statistics for the 50 lowest-variance clusters. We see that most of the clusters
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Word Count Word Count

ocean 2150 castle 766
(silence) 127 (silence) 70

the ocean 72 capital 39
blue ocean 29 large castle 24
body ocean 22 castles 23

oceans 16 (noise) 21
ocean water 16 council 13

(noise) 15 stone castle 12
of ocean 14 capitol 10

oceanside 14 old castle 10

Table 6.1: Examples of the breakdown of word/phrase identities of several acoustic
clusters

are very large and highly pure, and their labels reflect interesting object categories

being identified by the neural network. We additionally compute the coverage of each

cluster by counting the total number of instances of the cluster label anywhere in the

training data, and then compute what fraction of those instances were captured by

the cluster. There are many examples of high coverage clusters, e.g. the "skyscraper"

cluster captures 84% of all occurrences of the word "skyscraper", while the "baseball"

cluster captures 86% of all occurrences of the word "baseball". This is quite impressive

given the fact that no conventional speech recognition was employed, and neither

the multimodal neural network nor the grounding algorithm had access to the text

transcripts of the captions.

To get an idea of the impact of the k parameter as well as a variance-based cluster

pruning threshold based on Figure 6-2, we swept k from 250 to 2000 and computed a

set of statistics shown in Table 6.3. We compute the standard overall cluster purity

evaluation metric in addition to the average coverage across clusters. The table shows

the natural tradeoff between cluster purity and redundancy (indicated by the average

cluster coverage) as k is increased. In all cases, the variance-based cluster pruning

greatly increases both the overall purity and average cluster coverage metrics. We also

notice that more unique cluster labels are discovered with a larger k.

Next, we examine the image clusters. Figure 6-3 displays the 9 most central image
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Figure 6-3: The 9 most central image crops from several image clusters, along with

the majority-vote label of their most associated acoustic pattern cluster

crops for a set of 10 different image clusters, along with the majority-vote label of

each image cluster's associated audio cluster. In all cases, we see that the image crops

are highly relevant to their audio cluster label. We include many more example image

clusters in Figures A-1 and A-2 in Appendix A.

6.3.2 Meta-Analysis of Audio Cluster Centroids

In order to examine the semantic embedding space in more depth, we took the top 150

clusters from the same k = 500 clustering run described in Table 6.2 and performed

t-SNE (van der Maaten and Hinton, 2008) analysis on the cluster centroid vectors.

We projected each centroid down to 2 dimensions and plotted their majority-vote

labels in Figure 6-4. Immediately we see that different clusters which capture the

same label closely neighbor one another, indicating that distances in the embedding

space do indeed carry information discriminative across word types (and suggesting

that a more sophisticated clustering algorithm than k-means would perform better).

More interestingly, we see that semantic information is also reflected in these distances.

The cluster centroids for "lake," "river," "body," "water," "waterfall," "pond," and "pool"

all form a tight meta-cluster, as do "restaurant," "store," "shop," and "shelves," as well

as "children," "girl," "woman," and "man." Many other semantic meta-clusters can be
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TCcJ |Cil Pur. U
2 CoV. Trans |CC| Cil Pur. o2 Cov.

- 1059
desert 1936

restaurant 1921
black 4369

bridge 1654
castle 1298

- 2349
table 3765

window 1890
water 5868
flower 3906

sky 4306
golf course 1678

tree 4098
forest 1752
people 3624

field 2603
people 4074

people walking 918
mountain 3464

- 1976
water 3102

- 2918
station 2063

building 6791

3480
2896
2536
2387
2025
2887
2165
2165
2795
3204
2587
6055
3864
3758
3431
2275
3922
2286
2224
3239
3158
2948
3459
2083
3450

0.70
0.82
0.89
0.64
0.84
0.72
0.31
0.94
0.85
0.90
0.92
0.76
0.44
0.89
0.80
0.91
0.74
0.92
0.63
0.88
0.28
0.90
0.08
0.85
0.89

0.26
0.27
0.29
0.30
0.30
0.31
0.33
0.33
0.34
0.35
0.35
0.36
0.36
0.36
0.37
0.37
0.37
0.38
0.38
0.38
0.39
0.39
0.39
0.39
0.40

0.67
0.71
0.17
0.25
0.74

0.23
0.21
0.27
0.67
0.34
0.63
0.13
0.56
0.14
0.25
0.17
0.25
0.29

0.14

0.62
0.21

snow
kitchen

mountain

skyscraper
tree

bridge
ocean

windmill
river
beach
wall

street
field

lighthouse
church

baseball
car

shower
wooden

tree
snow
rock

night
chair

city

4331
3200
4571
843
5303
2779
2913
1458
2643
1897
3158
2602
3896
1254
2503
2777
3442
1271
3095
3676
2521
2897
3027
2589
2951

3480
2990
2768
3205
3758
2025
3505
3752
3204
2964
3636
2385
3261
1518
3140
1929
2118
2206
2723
2393
3480
2967
3185
2288
3190

0.85
0.88
0.86
0.84
0.90
0.81
0.87
0.71
0.76
0.79
0.84
0.86
0.74
0.61
0.86
0.66
0.79
0.74
0.63
0.89
0.79
0.76
0.44
0.89
0.67

0.26
0.28
0.30
0.30
0.30
0.32
0.33
0.33
0.35
0.35
0.35
0.36
0.36
0.36
0.37
0.37
0.38
0.38
0.38
0.39
0.39
0.39
0.39
0.39
0.40

0.45
0.76
0.38
0.84
0.16
0.41
0.71
0.76
0.62
0.64
0.23
0.49
0.37
0.83
0.72
0.86
0.27
0.82
0.28
0.11
0.24
0.26
0.59
0.22
0.50

Table 6.2: Top 50 clusters with k = 500 sorted by increasing variance. Legend: ICI
is acoustic cluster size, JC is associated image cluster size, Pur. is acoustic cluster
purity, a2 is acoustic cluster variance, and Cov. is acoustic cluster coverage. A dash
(-) indicates a cluster whose majority label is silence.

seen in Figure 6-4, suggesting that the embedding space is capturing information that

is highly discriminative both acoustically and semantically.

6.3.3 Relation of Learned Clusters to ImageNet Classes

Because our experiments revolve around the discovery of word and object categories,

one question to address is the extent to which the supervision used to train the

VGG network constrains or influences the kinds of objects learned. Because the

1,000 object classes from the ILSVRC2012 task (Russakovsky et al., 2015) used to

train the VGG network were derived from WordNet synsets (Fellbaum, 1998), we

can measure the semantic similarity between the words learned by our network and
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o2 < 0.9 a2 < 0.65
k |C1 JXJ Pur ILI AC JCl lXi Pur ILI AC

250 249 1081514 .364 149 .423 128 548866 .575 108 .463

500 499 1097225 .396 242 .332 278 623159 .591 196 .375

750 749 1101151 .409 308 .406 434 668771 .585 255 .450

1000 999 1103391 .411 373 .336 622 710081 .568 318 .382

1500 1496 1104631 .429 464 .316 971 750162 .566 413 .366

2000 1992 1106418 .431 540 .237 1354 790492 .546 484 .271

Table 6.3: Clustering statistics of the acoustic clusters for various values of k and

different settings of the variance-based cluster pruning threshold. Legend: ICI =

number of clusters remaining after pruning, IXI = number of datapoints after pruning,

Pur = purity, ILI = number of unique cluster labels, AC = average cluster coverage

the ILSVRC2012 class labels by using synset similarity measures within WordNet.

We do this by first building a list of the 1,000 WordNet synsets associated with the

ILSVRC2012 classes. We then take the set of unique majority-vote labels associated

with the discovered word clusters for k = 500, filtered by setting a threshold on their

variance (a2 < 0.65) so as to get rid of garbage clusters, leaving us with 197 unique

acoustic cluster labels. We then look up each cluster label in WordNet, and compare

all noun senses of the label to every ILSVRC2012 class synset according to the path

similarity measure. This measure describes the distance between two synsets in a

hyponym/hypernym hierarchy, where a score of 1 represents identity and lower scores

indicate less similarity. We retain the highest score between any sense of the cluster

label and any ILSVRC2012 synset. Of the 197 unique cluster labels, only 16 had a

distance of 1 from any ILSVRC12 class, which would indicate an exact match. A

path similarity of 0.5 indicates one degree of separation in the hyponym/hypernym

hierarchy - for example, the similarity between "desk" and "table" is 0.5. 47 cluster

labels were found to have a similarity of 0.5 to some ILSVRC12 class, leaving 134

cluster labels whose highest similarity to any ILSVRC12 class was less than 0.5. In

other words, more than two thirds of the highly pure pattern clusters learned by our

network were dissimilar to all of the 1,000 ILSVRC12 classes used to pretrain the VGG

network, indicating that our model is able to generalize far beyond the set of classes

found in the ILSVRC12 data. We display the labels of the 40 lowest variance acoustic
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Figure 6-4: t-SNE analysis of the 150 lowest-variance audio pattern cluster centroids
for k = 500. Displayed is the majority-vote transcription of the each audio cluster.
All clusters shown contained a minimum of 583 members and an average of 2482, with
an average purity of .668.

clusters labels along with the name and similarity score of their closest ILSVRC12

synset in Table A.1 in Appendix A.

6.4 Pattern Grounding with Matchmap Networks

In the previous section, we demonstrated how coupled sliding window techniques

could be applied to images and spectrograms as an input pre-processing step, and

then fed into our embedding vector networks (such as ACL17) to produce localized

audio-visual semantic groundings. One downside of the sliding window approach is

that it requires many thousands of forward passes through the embedding network;

a second downside is that it is only capable of producing bounding box groundings,

rather than complex shapes. In this section, we will describe an alternative approach

which does not have these shortcomings. Instead, we use a matchmap network that

accepts the entire image and entire caption spectrogram as inputs, and directly outputs

a 3-dimensional tensor representing the semantic similarity between a (row, col) spatial
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Figure 6-5: Speech-prompted localization maps for several word/object pairs. Reading
across from left to right then top to bottom, the queries are instances of the spoken
words "MAN," "CAR,", "CHAIRS", "GRASS", "SEA" and "MOUNTAINS" extracted
from each image's accompanying speech caption.

position within the image and an instant in time t within the caption (the M tensor

previously described). Computing this matchmap is therefore is done in a single

forward pass through the network. Furthermore, we will demonstrate that meaningful

localizations within the matchmaps emerge naturally as a byproduct of training with

the ranking-based objective function (Equation 5.4); they do not require any localized

labelling or annotation of the training data. Unless otherwise noted, the variant

of the Matchmap networks used for the following experiments utilized the MISA

scoring function, acoustic input truncation or padding to 1024 frames with no padding

compensation, a ReLU audio output and linear image output, a VGG16 image branch

pre-trained on ImageNet, and d = 1024.
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6.4.1 Speech-prompted Object Localization

To evaluate our models' ability to associate spoken words with visual objects in a

more fine-grained sense, we use the spoken captions for the ADE20k dataset (Zhou

et al., 2017). The ADE20k images contain pixel-level object masks and labels - in

conjunction with a time-aligned transcription produced via ASR, we can associate

each matchmap cell with a specific visual object label as well as a word label. These

labels enable us to analyze which words are being associated with which objects. We

do this by performing speech-prompted object localization. Given a word in the speech

beginning at time t, and ending at time t2 , we derive a heatmap across the image by

summing the matchmap between t, and t2. We then normalize the heatmap to sit in

the interval [0,1], threshold the heatmap, and evaluate the intersection over union (IoU)

of the detection mask with the ADE20k label mask for whatever object was referenced

by the word. Because there are a very large number of different words appearing in

the speech, and no one-to-one mapping between words and ADE20k objects exists,

we manually define a set of 100 word-object pairings. We choose commonly occurring

(at least 9 occurrences) pairs that are unambiguous, such as the word "building" and

object "building," the word "man" and the "person" object, etc. For each word-object

pair, we compute an average IoU score across all instances of the word-object pair

appearing together in an ADE20k image and its associated caption. We then average

these scores across all 100 word-object pairs and report results for each model type

in Table 6.4. We also report the IoU scores for the ASR text-based baseline models

described in Section 5.4. Finally, we compare to the IoU score achieved by using

the ACL17 and sliding window approach. While we have already demonstrated the

effectiveness of the sliding windows for discovering meaningful patterns, the lower IoU

scores on this task show the advantages of the matchmap techniques for extracting

more accurate object masks. Figure 6-5 displays a sampling of localization heatmaps

for several query words.
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Sim. Function Speech IoU Text IoU

SISA .2025 .2177
MISA .2282 .2364
SIMA .1831 .1975

ACL17 Sliding Window .1548 -

Table 6.4: Speech-prompted and ASR-prompted object detection and localization IoU
scores on the ADE20k data, averaged across the 100 handpicked word-object pairs.

6.4.2 Matchmap Visualizations and Videos

We can visualize the matchmaps in several ways. The 3-dimensional density shown in

Figure 5-2 is perhaps the simplest, although it can be difficult to read as a still image.

Instead, we can also extract volumetric connected components from the density and

simultaneously project them down onto the image and spectrogram axes; visualizations

of this are shown in Figures 6-6 and 6-7. For all visualizations, we found it necessary

to apply a small amount of post-processing to the raw matchmaps in the form of

thresholding and smoothing. The raw matchmaps can appear somewhat fragmented,

so we first apply a sliding max-pooling window with a size of 8 frames across the

temporal dimension of the raw matchmap. Next, we normalize the matchmap scores to

fall within the interval f0, 1] and sum to 1. Finally, we keep only the cells comprising

the top p percentage of the total mass within the matchmap, setting all others to zero.

In practice, we found that p values between 0.15 and 0.3 produced attractive results.

It is also possible to treat the matchmap as a stack of masks overlayed on top of

the image, which can then be played back as a video. By using the matchmap score

to modulate the alpha channel of the image across time, it is possible to dynamically

highlight the regions of the image being referred to by the audio caption at a specific

point in time. To synchronize the streams, the matchmap video playback should be set

at 12.5 frames per second so that it temporally aligns with the speech audio playback.

6.4.3 Clustering of Audio-Visual Patterns

The final experiment we consider is automatic discovery of audio-visual clusters from

the ADE20k matchmaps. Once a matchmap has been computed for an image and

114



Train tracks run into a mountain trees on the sides of the track

a) b)

Photo of a girl the little girl
MAL standing in front wear

of a lighthose
d)

the lighthouse in background is
the white

Figure 6-6: Figs (a) and (c) show two images and the speech signal. Each color
corresponds to one connected component derived from two matchmaps (only large
segments shown). Figs. (b) and (d) show the image segments that correspond to each
piece of the speech signal. For clarity, we show at the bottom caption words obtained
from transcriptions.

Figure 6-7: Additional examples of discovered image segments and speech fragments.
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Figure 6-8: Clusters (speech and visual) found by our approach. Each cluster is

labeled with the most common word. For each word we show precision (red), recall

(green) and Fl. For the clusters with F1 > 0.5 there are 28 different words discovered

in ADE20k.

caption pair, we smooth it with a max pooling window of size 8 across the temporal

dimension before binarizing it according to a threshold. In practice, we set this

threshold on a matchmap-specific basis to be 1.5 standard deviations above the mean

value of the smoothed matchmap. Next, we extract volumetric connected components

and their associated masks over the image and audio. We average pool the image and

audio feature maps within these masks, producing a pair of vectors for each component.

Because we found the image and speech representations to exhibit different dynamic

ranges, we first rescale them by the average L2 norms across all derived image vectors

and speech vectors, respectively. We concatenate the image and speech vectors for

each component, and finally perform Birch clustering (Zhang et al., 1996) with 1000

target clusters for the first step, and an agglomerative final step that resulted in 149

clusters.

To derive a label for each cluster, we first compute a precision for each word as the

fraction of components assigned to the cluster whose audio masks overlapped (perhaps

partially) with an instance of the word in question. We then compute the recall for
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each word by dividing this number of occurrences by the total number of times the

word appeared anywhere in the ADE20k captions. Taking the harmonic mean of the

precision and recall results in an F1 score, which we use to rank the words in each

cluster, taking the top word label to represent the cluster.

Over the 149 clusters, we found an average F1 score of .323. Figure 6-8 displays

a plot of the top clusters and their scores, which we can use to roughly gauge how

many and what kinds of concepts are being learned by our models. Of course, the

number of words and concepts reflected here are specific to the ADE20k dataset which

is dramatically smaller than the full training set; therefore Figure 6-8 should be taken

as an underestimate of what the model has learned.

6.5 Chapter Summary

In this chapter, we first described an algorithm for extraction of audio-visual groundings

from the images and spoken captions using coupled sliding windows. We showed that

these groundings could be clustered with high purity in terms of their underlying

lexical/semantic content. We performed experiments which showed that semantic

relationships between the words learned by our networks are reflected by vector

distances within the multimodal embedding space. By comparing the words learned

by our network to the ImageNet training labels, we found that the concepts discovered

by our models generalize far beyond the label set used to pre-train the image branch

of our networks.

Then, we explored the use of our matchmap neural networks for directly learning

the semantic correspondences between speech frames and image pixels. We did this by

evaluating their ability to perform speech-prompted object localization, audio-visual

pattern discovery, and real-time, speech-driven, semantic highlighting.

In the next chapter, we generalize our networks beyond the English language, and

consider the case in which we have captions from two different languages describing the

same set of images. We will show that multilingual learning not only helps retrieval

performance on both languages, but also enables the model to learn word-level and
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phrase-level translations between the languages, by using the visual domain as an

interlingua.
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Chapter 7

Cross-Lingual Audio-Visual Modeling

In the previous three chapters, we presented models and experiments that explored the

learning of semantic correspondences between speech and visual images. We showed

that learning a very rich shared embedding space is indeed possible, and can be

done without any conventional supervised speech recognition models or even any text

transcriptions. This suggests that our approach should be language agnostic; however,

thus far our experiments have only been performed on English speech. In this chapter,

we present evidence that our approach is indeed language agnostic by applying it to

Hindi speech. We also demonstrate that the visual space can act as an interlingua

for cross-lingual speech-to-speech retrieval, suggesting that visual grounding may be

helpful for automatic speech-to-speech translation.

7.1 Speech to Speech Translation

A classic science fiction depiction of speech to speech translation is the Babel Fish

from Douglas Adams' The Hitchhiker's Guide to the Galaxy. This small fish forms a

symbiotic relationship with its host by living in their ear and telepathically translating

any spoken language in the universe. While the Babel Fish is clearly outside the

realm of plausibility, it is hard not to notice its parallels with modern speech-to-speech

translation technologies such as Microsoft Translator or Skype Translator (Lewis, 2015).

The current state-of-the-art in speech-to-speech translation is a highly engineered

119
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Figure 7-1: A motivating example of how the visual domain might be used as an
interlingua between multiple languages.

approach that relies on first performing conventional ASR on the source speech,

text-based MT to generate a translation in the target language, and Text-To-Speech

(TTS) synthesis to generate the output speech in the target language. All of these

constituent technologies are very resource-needy, and moreover creating an MT model

between each pair in a set of N languages would require O(N2 ) parallel translation

corpora. Here, we ask whether the visual domain can act as a kind of "Rosetta Stone"

for cross-lingual learning (Figure 7-1). If cross-lingual semantics could be learned

without directly parallel translation corpora, and instead be learned via description or

narration of a common set of images or videos, then this would dramatically reduce

the data cost of creating massively multilingual systems. We present preliminary

experiments in this chapter which show that our audio-visual models may hold promise

in this regard.
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7.2 Experimental Data

We make use of the Places English and Hindi audio caption datasets (detailed in

Chapter 3). We only use the subset of the English data for which we also have a

Hindi caption, resulting in a total of 85,480 triples (image, English caption, Hindi

caption). We divide this data into a training set of 84,480 image/caption triplets, and

a validation set of 1,000 triplets. This set of English captions on average contain 19.3

words and have an average duration of 9.5 seconds, while the Hindi captions contain

an average of 20.4 words and have an average duration of 11.4 seconds.

7.3 Models

Let our dataset be represented by N triples, (1, A', AfH), where i is the ith image,

AfE is the acoustic waveform of the English caption describing the image, and AfH is

the acoustic waveform of the Hindi caption describing the same image. We consider

a functional mapping F(Ij, AsE, Af') + (ef, eE, ef) where ef, eE, eH E Rd; in other

words, a mapping of the image and acoustic captions to vectors in a shared, high-

dimensional embedding space. Within this space, our hope is that visual-linguistic

semantics are manifested as arithmetic relationships between vectors, which enables

applications such as semantic retrieval. We implement this mapping using the CNN

model architectures described in Chapter 5, but with three networks rather than two:

one responsible for embedding the image, one for the English caption, and one for the

Hindi caption.

We apply the Matchmap-VGG16 variant of the image network architecture and

the Matchmap audio network architecture, with a shared embedding dimension of

d = 2048 (which we found was more amenable to cross-lingual learning). We use

the same data pre-processing steps outlined in Chapter 5, with the spectrogram size

fixed at 1024 frames. However, for the experiments in this chapter we do not use the

Matchmap-based similarity scoring functions. Instead, we apply global mean pooling

to the outputs of the image and audio networks to derive a trio of 2048 dimensional
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embedding vectors.

7.4 Experiments

7.4.1 Model Training Procedure

The objective functions we use to train our models are all based upon the same margin

ranking criterion used throughout this thesis (Bromley et al., 1994). However, in this

chapter we generalize beyond audio-to-visual matching and consider audio-to-audio

matching as well. We define a more general form of the margin ranking objective

function:

rank(a, p, i) = max(0,,q - s(a, p) + s(a, i)) (7.1)

where a is the anchor vector, p is a vector "paired" with the anchor vector, i is an

"imposter" vector, s( denotes a similarity function, and T is the margin hyperparameter.

For a (a, p, i) triplet, the loss is zero when the similarity between a and p is at least rJ

greater than the similarity between a and i; otherwise, a loss proportional to s(a, i)

is incurred. This objective function therefore encourages the anchor and its paired

vector to be "close together," and the the anchor to be "far away" from the imposter.

In all of our experiments, we fix q = 1 and let s(x, y) = XTy

Given that we have images, English captions, and Hindi captions, we can apply the

margin ranking criterion to their neural embedding vectors 6 different ways: each input

type can serve as either the anchor point, or as the paired and imposter points. For

example, an image embedding may serve as the anchor point, its associated English

caption would be the paired point, and an unrelated English caption for some other

image would be the imposter point. We can even form composite objective functions

by performing multiple kinds of ranking simultaneously. We consider several different

training scenarios:

1. English +-+ Image

2. Hindi +4 Image

3. English *-+ Hindi
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Figure 7-2: Illustration of how images, English captions, and Hindi captions are
embedded into a shared space by our models. The triangle of solid black double
arrows represent the 6 possible directions of retrieval. An example of the margin
ranking loss is shown with the embedded Hindi caption as the anchor point, its paired
English caption as the pair point (solid blue circle) and a randomly selected English
caption as the imposter point (dashed blue circle pointed to by dashed arrow). The
objective function attempts to force the imposter caption to be less similar to the
anchor caption than the paired caption. This can also be viewed in the context of the
retrieval task, in which the solid blue English caption competes against the dashed
blue caption when the solid green Hindi caption is submitted as a query.

4. English + Image ++ Hindi

5. Hindi +-* English + Image +-* Hindi

In each scenario, ++ denotes a bidirectional application of the ranking loss function to

every tuple within a minibatch of size B, e.g. "English +-* Image" indicates that the

terms Z7 rank(e, ef, ej) and Ei' rank(ef, e, e[) are added to the overall loss,

where k # j and 1 5 j are randomly sampled indices within a minibatch. This is

similar to the criteria used in Gella et al. (2017) for multilingual image/text retrieval,

except we randomly sample only a single imposter per (a, p) pair. An illustrative

example of the embedding and retrieval framework is displayed in Figure 7-2.

We trained all models with stochastic gradient descent using a batch size of 128

images with their corresponding captions. All models except the audio-to-audio (no
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image) were trained with the same learning rate of 0.001, decreased by a factor of

10 every 30 epochs. The audio-to-audio network used an initial learning rate of 0.01,

which resulted in instability for the other scenarios. We divided training into two

"rounds" of 90 epochs (for a total of 180 epochs), where the learning rate is reset back

to its initial value starting at epoch 91, and then allowed to decay again. We found this

schedule achieved better performance than a single round of 90 epochs, especially for

the training scenarios involving simultaneous audio/image and audio/audio retrieval.

7.4.2 Evaluation: Audio-Visual and Audio-Audio Retrieval

To evaluate our models numerically, we turn again to the audio-visual retrieval task,

but with a new twist. We also evaluate direct audio-to-audio retrieval between English

and Hindi, which we view as a weak form of speech-to-speech translation. We therefore

explain the retrieval task in more general terms here. Imagine that we have a library

L of M target vectors, L = t1 , t 2 ,. ... , tM. Now assume that we are given a query

vector q which is known to be associated with one of the target vectors, but we do not

know exactly which one; our goal is to retrieve this target from the library. Given a

similarity function s(q, t) (defined as s(q, t) = qTt in our experiments), we rank all of

the target vectors in descending order of their similarity to q, and retrieve the top

scoring 1, 5, and 10 target vectors. If the correct target vector is in the retrieved

set, a hit is counted; otherwise, we count the result as a miss. With a set of query

vectors covering the entire library (that is, a set of M vectors containing every target

vector's associated query vector), we can compute recall scores over the entire query

set for each retrieval set size. Recall that the five training scenarios detailed above

consider 6 distinct pairwise directions of ranking during training; for example, we can

consider the case in which an English caption is the query and its associated image is

the target and vice-versa, or the case in which a Hindi caption is the query and the

English caption associated with the same underlying image is the target. We apply

the retrieval evaluation task to those same directions, and for each model report the

relevant recall at the top 1, 5, and 10 returned results.
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7.4.3 Experimental Results and Discussion

Audio-visual retrieval recall scores on the 1,000 exemplar validation set are displayed

in Table 7.1, while Table 7.2 displays the audio-audio results. In the tables, "English

caption" is abbreviated as E, "Hindi caption" as H, and "Image" as I. All models

were trained with two consecutive rounds of 90 epochs, though in all cases they

converged before epoch 180. Random chance recall scores for all cases are RL1 = .001,

R 5 = .005, RQ10 = .01. We found that a small amount of relative weighting was

necessary for the H&*E++I+-H loss function in order to prevent the training from

completely favoring audio/image or audio/audio ranking over the other; weighting

the E+-+H ranking loss 5 times higher than that of the Ei-I and H++I losses produced

good results. In all cases, the model trained with the H+*-E -1I H loss function is the

top performer by a significant margin. This suggests that the additional constraint

offered by having two separate linguistic accounts of an image's visual semantics can

improve the learned representations, even across languages. However, the fact that the

E -+I4-+H model offered only marginal improvements over the E+-I and H-I models

suggests that to take advantage of this additional constraint, it is necessary to enforce

semantic similarity between the captions associated with a given image.

E -+ I I -- E H -+ I I - H
Model 1 5 10 1 5 10 1 5 10 1 R5 10

E÷+I .065 .236 .367 .086 .222 .343 - - - - - -

H+I - - - - - - .061 .185 .303 .064 .186 .277
E+4I++H .062 .248 .360 .077 .247 .350 .066 .205 .307 .078 .208 .306

H+4E÷-+I÷÷H .083 .282 .424 .080 .252 .365 .080 .25 .356 .074 .235 .354

Table 7.1: Summary of audio-visual retrieval recall scores for English and Hindi

monolingual and multilingual models.

Perhaps most interesting are our results on cross-lingual speech-to-speech retrieval.

We were surprised to find that the E÷+H model was able to work at all, given that

the retrieval was performed directly on the acoustic level without any linguistic

supervision. Even more surprising was the finding that the addition of visual context

by the H÷÷E"I++H model approximately doubled the audio-to-audio recall scores
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E-+H H-+E
Model 1 5 10 1 5 10

E+H .011 .042 .075 .013 .059 .104
E++I++H .005 .012 .018 .004 .016 .027

H++E+-+I++H .034 .114 .182 .033 .121 .203

Table 7.2: Summary of audio-audio retrieval recall scores for English and Hindi. Even
though the E++I+-*H configuration is not specifically trained for the English/Hindi
audio-to-audio retrieval tasks, we perform the evaluation anyway for the sake of
comparison.

across the board, as compared to the E+-*H model. This suggests that the information

contained within the visual modality provides a strong semantic grounding signal

that can act as an "interlingua" for cross-lingual learning. Three randomly selected

examples of audio-to-audio retrieval are shown below: first the text transcriptions of

three Hindi captions, followed by the transcriptions of their top-i retrieved English

captions using the H++E+I+H model. The English result is denoted by "E:", and the

approximate Hindi translation of the query is denoted by "HT:". Note that the model

has no knowledge of any of the ASR text shown below; the text is strictly for analysis

purposes.

HT: "There is big beautiful house. There is a garden in front of the house. There is a
slender road"
E:"A small house with a stone chimney and a porch"

HT: 'This is a picture next to the seashore. Two beautiful girls are laying on the sand,
talking to each other"
E:"A sandy beach and the entrance to the ocean the detail in the sky is very vivid"

Ot Msrr W Rit TA WR4 fi afirIt k 7*- t3,q r;rr Mqqrwr

HT: "There are many windmills on the green grass"
E:"There is a large windmill in a field"
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7.4.4 Analysis of Audio-to-Audio Matchmaps

Our audio-to-audio caption retrieval results indicate that our models are learning

some form of cross-lingual semantics between English and Hindi. A natural question

to consider is whether localized regions of cross-lingual semantic similarity can be

recovered, and whether the underlying spoken words contained within these intervals

constitute reasonable word-level (or phrase-level) translations. Removing the final

mean pooling layers from the audio networks enables us to compute a 2-dimensional

audio Matchmap (or more simply, a similarity matrix) between the English and Hindi

captions (belonging to the same underlying image), in a manner similar to how we

computed audio-visual Matchmaps in Chapter 5. Figure 7-6 depicts an example of

this; assuming that the output of the English audio network is a matrix of size (NE, d)

and the output of the Hindi audio network is a matrix of size (NH, d), we take the

dot product of each English frame with each Hindi frame to produce a matrix of size

(NE, NH).

English

HindiOi

Figure 7-6: Example of how speech-to-speech matchmaps are derived from our models.

The element at location (i, j) in the matchmap matrix reflects the similarity score

(e.g. dot product) between the ith frame of the English network's output and the jth

frame from the Hindi network's output. Segments with high similarity can be spotted

visually in the resulting matchmap.
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subway, station, tracks - ~ffjtRF= "railway station"

lot of people - Wz-45(~IT= "many people"

(a)
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I
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mountain

I
= "mountain"

(b)

Figure 7-7: Two examples of audio-to-audio matchmaps for English and Hindi captions
describing the same underlying image.
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SNOW

COMING
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STOREFRONT

THAT
HAS

WINDOWS

storefront - tc5SBM-5FF= "a small shop"

WNING

(a)
r" * e Wr wo " M Pz *

Elderly man sitting *-- cicfIT q7 *3T = "person sitting on a chair"

Patio deck - ~5T * ITW = "outside the shop"

(b)

Figure 7-8: Two examples of audio-to-audio matchmaps for English and Hindi captions
describing the same underlying image.

Visual inspection of these matrices reveals regions of low similarity (blue) and

regions of high similarity (red). Figures 7-7 and 7-8 display a series of these Matchmaps

with the force-aligned text of the captions displayed along the edges of each Matchmap.
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Alongside each example, we manually extract the words underlying each high similarity

region, along with an approximate English translation of the Hindi text. In nearly

all cases, the high similarity regions do in fact reflect semantic translations between

individual words (as well as short phrases). We have not yet performed a large-scale

analysis of the quality of these translation alignments. However, we believe that it

should be possible to automatically extract them for that purpose, which we plan to

pursue in the near future.

7.5 Chapter Summary

In this chapter, we applied our audio-visual association models to both English and

Hindi captions, along with their paired visual images. The successful application

to Hindi provides evidence of the language-agnosticism of these models. We also

showed that multilingual variants of our models can outperform their monolingual

counterparts for speech/image association. Finally, we performed experiments on

direct audio-to-audio retrieval between Hindi and English, suggesting that a shared

visual context can contribute dramatically to the learning of cross-lingual semantics.

Future experiments should analyze whether any sort of alignment can be inferred

between the English and Hindi speech, and if these alignments correspond to word

or phrase-level translations. We believe that the approaches presented in this work

are a promising early step towards speech-to-speech translation models that would

not require any form of annotation beyond asking speakers to provide narrations of

images, videos, etc. in their native language.

The next and final chapter summarizes the contributions of this thesis, enumerates

topics for future work, and offers a closing statement.
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Chapter 8

Conclusions

8.1 Thesis Summary

This thesis has chronicled the story of our investigations into joint modeling of

speech audio and visual images. Chapter 4 documented our exploratory efforts and

presented a proof-of-concept model capable of aligning pre-segmented audio and

images. Encouraged by those results, we embarked on the collection of a far larger

dataset and developed more refined models that did not require pre-segmentation of

either input modality. This work was detailed in Chapters 5 and 6, and represents the

first published successful efforts for unsupervised speech-to-image learning directly at

the waveform level. Finally, in Chapter 7 we demonstrated the language agnosticism

of our modeling approach. We collect a second set of spoken captions in Hindi

and successfully applied our audio-visual models to them. We then went beyond

monolingual modeling and showed that multilingual models could achieve superior

performance for image/caption retrieval tasks. Finally, we presented experimental

evidence that cross-modal learning could dramatically improve cross-lingual learning.

8.2 Thesis Contributions

We reiterate a summary of the contributions made by this thesis here:

1. Introduction of models capable of mapping complex visual images and
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unsegmented, continuous speech into a shared, semantic vector space.

We introduce a more advanced modeling framework based on deep convolutional

neural networks that is capable of learning the semantic association between

unsegmented images and their spoken captions. We show that these models

can embed entire image frames and entire spoken captions as fixed points in a

high dimensional, multimodal vector space. In this space, semantic relationships

are preserved via vector operations such as the inner product. This enables

high-level semantic similarity between image scenes and their captions to be

computed via vector operations in the embedding space, which we utilize to

perform semantic image search from spoken queries.

2. Demonstration that the internal representations learned by the mod-

els recognize and associate individual words and objects. We explore

two distinct ways of extracting localized segments containing word-like units

and object-like image regions: 1) using coupled sliding windows imposed upon

the input, and 2) extracting connected components from 3-dimensional spatial-

temporal association maps derived from the neural model's internal feature maps.

We demonstrate that in both cases, the extracted patterns can be grouped into

very pure clusters using simple algorithms, suggesting that the representations

learned by the networks capture a significant amount of high-level linguistic

abstraction.

3. Demonstration of the language-agnostic nature of the models. Using

an additional spoken caption dataset collected in Hindi, we train a set of audio-

visual association networks. We show that the caption-to-image (and vice versa)

retrieval scores achieved by the Hindi model are close to those achieved with a

similarly sized English dataset, suggesting that our approach is indeed language

agnostic.

4. Demonstration of the models' ability to learn cross-lingual semantics.

In addition to training Hindi-language variants of the audio-visual association

models originally trained on English, we train a triplet model that utilizes a
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shared image model in conjunction with an English speech model and a Hindi

speech model. We demonstrate that such a network can not only perform

image/caption retrieval in either language alone, but also can retrieve the Hindi

caption associated with the image associated with an English query caption

(and vice versa). While the cross-lingual speech-to-speech retrieval scores we

achieve are lower than the speech-to-image and image-to-speech scores, they

are many times better than chance and suggest a promising new direction for

speech-to-speech translation research.

5. Collection of a very large, multilingual spoken caption dataset. We

collected 40,000 English captions for the Flickr 8k dataset (Rashtchian et al.,

2010), over 400,000 English captions for the Places 205 dataset (Zhou et al.,

2014), nearly 10,00OEnglish captions for the ADE20k dataset (Zhou et al., 2017),

and nearly 100,000 Hindi captions for the Places 205 dataset.

8.3 Future Directions

The work presented in this thesis is highly exploratory, and thus the possibilities for

future work are incredibly fertile. We enumerate several promising directions here.

8.3.1 Image and speech synthesis

Given that our models are able to associate natural image scenes with spoken audio

captions describing those scenes, a natural follow-up question to ask is whether there

might be a way to actually generate an image given a spoken description, or vice-versa.

It has already been shown to be possible to generate images from a text caption (Reed

et al., 2016), so generating images from spoken audio captions may not be out of the

question. Going in the other direction, it may even be possible to directly generate

spoken audio captions given a visual input.
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8.3.2 Robotics

Robots represent a computational engine coupled to physical hardware enabling them

to interact with the real world in a meaningful way. They are therefore by nature

multimodal devices, and a natural application of the work presented in this thesis.

A robot with microphones and cameras would be sufficiently equipped to apply our

models and algorithms as-is; however, many robots also utilize sensory inputs beyond

sound and vision, such as touch sensors. These additional inputs could conceivably

add even more contextual richness to the modeling framework. Perhaps the most

compelling aspect of incorporating our technology into robotic systems is the robot's

potential for movement and environmental interaction. Visually grounded navigation

("Follow the red brick road until you reach a grove of four trees and then turn left.")

and referential commands ("Pick up the brown box next to the door and put it down

on top of the green shelf on the other side of the room.") are perfect examples of this.

8.3.3 Fusion with other forms of language

An interesting application to consider is how our models might be applied for a

conventional ASR task. Given that the models learn quite rich linguistic representations

from the audio-visual training scheme, it is worth considering whether a large portion

of that information could be transferred to a supervised task such as ASR. Were

that the case, it is not unreasonable to assume that such a model might require less

transcribed training data than a conventional model, since it has already learned

relatively robust and invariant acoustic representations of speech.

While making the link with digitized text would enable ASR, learning from images

of printed text may enable our models to perform optical character recognition (OCR),

or even to learn human handwriting. In this same spirit, videos depicting sign language

accompanied by spoken translations could be used to learn correspondences between

spoken and signed words.
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8.3.4 Speech-to-speech translation

While only dealing with speech retrieval and not true translation, Chapter 7 provided

evidence that the common contextual grounding offered by the visual domain can

act as an effective interlingua between two languages. If these ideas could scale, it

is conceivable that a true speech-to-speech translation system could be developed

without the need for any text transcriptions or manually aligned corpora whatsoever.

The implications here are enormous; current translation datasets rely upon bilingual

humans to provide gold-standard direct translations from text in the source language

to text in the target language. There are many languages worldwide with less than

a million speakers (Lewis et al., 2016), and many which do not even have a stable

orthography. Expert bilingual translators for every possible language pair are in

short supply, and thus their services are expensive. If it were possible to create a

machine translation engine that only relied on narrations of images, videos, etc. in

each language it was designed to handle, it would completely alleviate the need for

manual translations and present an enormous technological breakthrough. While

a speech-based system would also do away with the need for text transcriptions

all-together, the idea of visually grounding translations could conceivably be applied

to text-based MT systems as well.

8.3.5 Bilingual to many-lingual

In Chapter 7, we demonstrated that the addition of a second language to our audio-

visual association models offered performance improvements over a monolingual model;

it is conceivable that an N-lingual model might offer additional gains. We also believe

that our methods have the potential to enrich "hub and spoke" models of machine

translation that rely upon an interlingual representation to translate between language

pairs for which no training data is available. When a resource-rich language, such

as English, is used as a translation interlingua, there is an opportunity for linguistic

subtleties to be lost. It is possible that linguistic representations enriched with

multimodal semantics may be able to better preserve these subtleties.
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8.3.6 Images to videos

All of the work we have done thus far has utilized still frame images as the visual

context. However, still frames do not capture the full scope of the world, as they

cannot show dynamics or movement. The pattern clusters detailed in Chapter 5

contain mostly nouns, a few adjectives, and few verbs or adverbs. If we desire a

complete characterization of language, then one logical route to learning verbs and

adverbs is to model videos depicting actions.

Videos also represent a vast ocean of pre-existing data that could be exploited for

learning. Movies, television broadcasts, YouTube videos, and so on generally contain

soundtracks that are in some way related to their visual content. The nature of this

relation is varied: during a cooking show, often times the host describes exactly what

they are doing as they are doing it. In an action movie, the environmental sounds

of car engines and explosions may dominate. In both cases, however, meaningful

correspondences exist between the modalities.

8.3.7 New tasks to learn different aspects of language

In the same way that videos may enable our models to learn different parts of

speech, such as verbs and adverbs, it is also worth considering whether other forms of

spoken narration would lead to richer representations of language in other ways. For

example, spatial relations do not appear to be well-modeled by our current scheme. An

appropriate dataset that places a focus on object relations (along with an appropriate

model and objective function) may be one way to tackle this. Datasets such as CLEVR

(Johnson et al., 2017) may be able to facilitate this kind of learning.

8.3.8 Generalization to modalities beyond vision and speech

There is no reason why our models need be limited only to speech and still-frame

images. The audio modality carries far more information than just language, including

environmental sounds, which could likely be modeled via the techniques presented

in this thesis. Beyond that, there are many more sensory modalities which might be
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merged together to learn even more holistic representations of the real world. For

example, in a robotics application, input from touch sensors could be correlated with

audio and visual information.

8.3.9 Fully-segmented models for end-to-end pattern discov-

ery

The first methodology for audio-visual pattern discovery detailed in Chapter 5 took

the form of a post-processing algorithm to extract clusterable localizations from an

already-trained non-segmental model. We then attempted to push these models further

towards an end-to-end style architecture, an approach which is gaining popularity

in the deep learning community. By end-to-end, we mean that the model would

completely encapsulate all of the computation necessary to produce a desired output,

without any model factorization via system blocks or any post-processing steps. In

our case, one possible desired output would be a full segmentation and labelling of all

speech audio and all visual images within our dataset. Even the matchmap models

from Chapter 5 do not achieve this, as they rely on a connected component analysis

of their thresholded outputs followed up by a conventional clustering step. What

makes segmentation and clustering difficult in an end-to-end neural architecture is

the fact that boundary variables and clustering assignments are by nature discrete,

and therefore non-differentiable. Because all of the widely used training algorithms

for deep neural networks are variants of gradient-based hill climbing algorithms, non-

differentiability presents a serious hurdle for training. One possibile route around

this problem is to allow the network to make discrete decisions during the forward

pass, but to use a differentiable surrogate function during the backward pass. A good

example of this idea applied to word segmentation in character strings was presented

in (Chung et al., 2017); similar ideas could potentially be applied to spectrograms

for our purposes. What makes this approach appealing is the fact that the model

would output a complete characterization of its inputs. Currently, our models "pick

out" salient patterns within their inputs, while ignoring the rest. Humans are able to
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characterize everything they see and hear, and so our models should be able to as well.

These approaches may also enable the modeling of long-term linguistic dependencies,

another currently impoverished aspect of our models.

8.3.10 Incorporating an interactive feedback loop

This work was inspired in part by unsupervised speech processing algorithms such as

S-DTW (Park and Glass, 2008) and Lee and Glass' generative model of speech (Lee

and Glass, 2012). What sparked the ideas that lead to this thesis was the observation

that while algorithms like S-DTW have only the speech audio signal to work with,

humans are able to take advantage of many rich sources of information at once. The

advances made by thesis represent the addition of only one of these additional sources

of information - vision, and in a still-frame context at that. There are many aspects of

human learning that go beyond the paradigm we investigate here. One aspect that we

believe is significant is the feedback loop of interactivity. Humans are not only able to

observe their environment, but are also able to take action to change it. This feedback

is also manifested in dialog between multiple agents; the primary purpose of language

is to enable us to communicate with other humans, and so it is worth asking to what

degree a computer can model human language without being capable of dialog.

8.3.11 Deeper analysis of learned representations

The speech representations learned by our models were analyzed by (Drexler and

Glass, 2017), who provided evidence that different levels of linguistic abstraction were

modeled by different layers in our audio networks. For example, the representations at

the lowest layers of the network were more speaker-dependent than the upper layers,

and also captured phonetic information as opposed to semantic information, which

was more concentrated at the upper layers. However, many simple questions, such as

"how many words does the network know?" do not have straightforward answers. A

deeper analysis of the representations learned by our models - both in the acoustic

and visual space - may lead to new insights and improved models.
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8.4 Closing Statement

As a technology, automatic speech recognition has gone from science fiction to tangible

reality in under 50 years. It has become a ubiquitous and essential part of many

people's lives, and a lucrative product in the portfolio of many companies. Similar

advancements has been achieved by natural language processing, computer vision,

and many other machine learning subfields. In nearly all cases, however, the learning

algorithms (as well as the data) that power these applications are unimodal. They are

completely isolated from one another. They do not take advantage of the incredibly

rich web of reciprocal context that exists in the world that humans are immersed in.

Our computing systems continue to grow in computational power and storage capacity.

The sensors and devices that facilitate data collection continue to grow smaller, more

ubiquitous, and more integrated into our daily lives.

We thus have an incredible opportunity before us to create machine learning

systems that treat all modalities as first-class citizens. Humans learn to communicate

across many modalities with enormous flexibility, robustness, and ease. The fact

that these skills are learned organically via immersion and interaction is one of most

astounding and unique aspects of our nature. Endowing computers with this ability to

learn to communicate would enable them to realize their full potential as intellectual

partners to humans, bringing us tremendous benefit as we march forward into the

future.
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Appendix A

Detailed Experimental Results

A. 1 Relation Between Word Clusters and Imagenet

Synsets

Table A.1 displays the 40 lowest variance acoustic clusters (detailed in Section 6.3.3)

paired with their closest ILSVRC12 synset label.

A.2 Additional Sliding Window-Based Pattern Clus-

ters

Figures A-1 and A-2 display additional "picture dictionary" cluster visualizations from

the procedure detailed in Section 6.3.1.
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Figure A-1: Additional audio-visual cluster visualizations (1 of 2)
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Table A.1: The 40 lowest variance,
most similar ILSVRC2012 synset.

uniquely-labeled acoustic clusters paired with their
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Cluster
snow
desert

kitchen
restaurant
mountain

black
skyscraper

bridge
tree

castle
ocean
table

windmill
window

river
water
beach
flower
wall
sky

street
golf course

field
lighthouse

forest
church
people

baseball
car

shower
people walking

wooden
rock
night

station
chair

building
city

white
sunset

ILSVRC synset
cliff.n.01
cliff.n.01

patio.n.01
restaurant.n.01

alp.n.01
pooltable.n.01
greenhouse.n.01

steelarch bridge.n.01
daisy.n.01
castle.n.02
cliff.n.01
desk.n.01

cashmachine.n.01
screen.n.03

cliff.n.01
menu.n.02
cliff.n.01

daisy.n.01
cliff.n.01
cliff.n.01

swing.n.02
swing.n.02
cliff.n.01

beacon.n.03
cliff.n.01

church.n.02
streetsign.n.01

baseball.n.02
freight _car.n.01

swing.n.02

(none)
(none)

toilettissue.n.01
streetsign.n.01

swing.n.02
barber _chair.n.01
greenhouse.n.01

cliff.n.01
jean.n.01

street _sign.n.01

Similarity
0.14
0.12
0.25
1.00
0.50
0.25
0.33
0.50
0.14
1.00
0.14
0.50
0.20
0.33
0.12
0.25
0.33
0.50
0.33
0.11
0.14
0.17
0.20
1.00
0.20
1.00
0.17
1.00
0.50
0.17
0.00
0.00
0.20
0.14
0.20
0.50
0.50
0.12
0.33
0.11
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Figure A-2: Additional audio-visual cluster visualizations (2 of 2)
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