
Relaxed Concurrent Ordering Structures

by

Justin Kopinsky

B.S., University of Illinois at Urbana-Champaign (2012)
S.M., Massachusetts Institute of Technology (2014)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

Author Signature redacted
Department of Electr Engineering and C cience

May 23, 2018

Certified by Signature redacted
Nir Shavit

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Signature redacted
A c c e p t e d b y4 j s i A 1 o o z e ' k-esli AOJIolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

MASSACHUSETS INSTITUTE
OF TECHNOLOGY

JUN 18 2018

LIBRARIES
ARCHIVES

Relaxed Concurrent Ordering Structures

by

Justin Kopinsky

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

Efficient implementations of concurrent ordering structures, including stacks, queues,
and priority queues, have long been elusive due to an inherent bottleneck on the 'head'
element. We argue that classical semantics which are easy to support in sequential
settings are stronger than necessary for concurrent applications, and instead define
new semantics for implementing relaxed ordering structures: relaxed structures need
only return elements which are probabilistically near the head element.

This thesis demonstrates the effectiveness of relaxed semantics by formally defining
a notion of k-relaxation which imposes behavior 'similar' to that of a structure which
returns one of the k elements nearest the head uniformly at random. This behavior
is encapsulated by two probabilistic criteria: error boundedness-a bound on the
distance of a returned element from the head-and fairness-a bound on the number
of operations an element has to wait before being returned by some thread.

We design, analyze, and implement k-relaxed algorithms in this model, showing
both that they achieve good values of k in theory and that they exhibit empirically
good performance on applications such as Single-Source Shortest Paths.

Finally, we introduce a general framework for using relaxed structures to schedule
and execute a wide class of problems which can be formulated as a series of task
executions with dependencies between tasks. Our framework provides a case study
demonstrating that applications can use our model of relaxed data structures to
prove that the extra work induced by reordering tasks is low in the settings that
we consider. Empirically, our benchmarks show that the low overhead is more than
offset by increased throughput, resulting in improved performance on tasks such as
Maximal Independent Set compared to an exact scheduler.

Thesis Supervisor: Nir Shavit
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

I would like to thank Professor Nir Shavit for six years of enthusiastic guidance,

always remaining optimistic in all endeavors.

Many thanks to Professor Dan Alistarh, who from the very beginning of the pursuit

of my Ph.D. has provided an incredible amount of support, feedback, and guidance,

practically acting as a second adviser.

Thanks also Professor Erik Demaine for support and guidance over many years of

great courses and research endeavors.

Further thanks to Erik Demaine and also to Julian Shun for serving on my thesis

committee and providing much appreciated feedback.

This thesis is based in part on joint works with Dan Alistarh, Jerry Li, Giorgi Nadi-

radze, and Trevor Brown, and thanks to all of them for great work and enjoyable

collaboration.

Thanks of course to my loving and supportive parents, Mervyn and Ilana Kopinsky.

Finally, many thanks to MIT and the Department of Electrical Engineering and

Computer Science for institutional funding and exceptional support.

6

Contents

1 Introduction

2 Model

2.1 Concurrency .

2.2 Ordering Structures .

2.3 R elaxation .

The SprayList

3.1 The SprayList Algorithm

3.1.1 The Classic Lock-Free SkipList

3.1.2 Spraying and Deletion

3.1.3 Optimizations

3.2 Spray Analysis

3.2.1 Analytic Model

3.2.2 Motivating Result: Analysis on

3.2.3 Complete Runtime Analysis for

3.3 Implementation Results

3.3.1 Throughput

3.3.2 Spray Distribution

3.3.3 Single-Source Shortest Paths . .

3.3.4 Discrete Event Simulation . . .

.

.

.

.

.

.

a Perfect SkipList .

APPROxGETMINo

.

.

.

.

.

4 MULTIQUEUES: Power of Choice Allocations

7

11

27

27

30

31

35

37

37

39

41

42

43

44

47

59

63

64

65

66

69

3

4.1

4.2

4.3

4.4

4.5

4.6

Related W ork

Reduction to Two-Choices Process for Round-Robin

Random Inserts Process Definition

Analysis of the Sequential Process

4.4.1 Equivalence between Rank Distributions . .

4.4.2 Analysis of the Exponential Process

4.4.3 Additional Guarantees on Max Rank

4.4.4 Fairness

4.4.5 Guarantees on Average Rank

Discussion and Future Work

Experimental Results

5 Executing Iterative Algorithms Using Relaxed

5.1 A General Scheduling Framework

5.1.1 Example Applications

5.1.2 Greedy Maximal Independent Set

5.2 A nalysis .

5.2.1 Algorithm 6: The General Case

5.2.2 Algorithm 8: Maximal Independent Set .

5.3 Experimental Results

5.4 Future W ork .

8

Insertions

. . . . 70

. . . . 74

Priority Schedulers

75

77

78

80

96

98

99

105

106

109

111

113

114

115

119

120

123

126

1276 Conclusion

List of Figures

1-1 Our full stack approach to relaxed ordering structures. We give a

model which real implementations can support and which practical

applications can use. 12

1-2 The intuition behind the SPRAYLIST. Threads start at height H and

perform a random walk on nodes at the start of the list, attempting to

acquire the node they land on. 17

1-3 A simple example of a spray. Green nodes are touched by the SPRAY,

and the thread stops at the red node. Orange nodes could have been

chosen for jumps, but were not. 17

1-4 An illustration of the MULTIQUEUE process. On a GETMINO, the

thread looks at two queues and selects the one with a lower label top

element. In this case, the thread looks at queues 2 and 3 and selects

queue 3 (green), rejecting queue 2 (red). 19

1-5 A simple example of Maximal Independent Set. Vertex labels were as-

signed randomly and the lexicographically first MIS is shown; vertices

in the MIS are green and vertices not in the MIS are orange. 21

3-1 Priority Queue implementation performance on a 50% insert, 50%

delete workload: throughput (operations completed), average CAS fail-

ures per DeleteMin, and average Li cache misses per operation. . . . 61

3-2 The frequency distribution of SPRAY operations when each thread per-

forms a single SPRAY on a clean SPRAYLIST over 1000 trials. Note that

the x-axis for the 64 thread distribution is twice as wide as for 32 threads. 61

9

3-3 Runtimes for SSSP using each PriorityQueue implementation on each

network (lower is better). 62

3-4 Work performed for varying dependencies (higher is better). The mean

number of dependants is 2 and the mean distance between an item and

its dependants varies between 100, 1000, 10000. 62

3-5 Minimum value of K which maximizes the performance of the SPRAYLIST

for each fixed number of threads. 68

4-1 Intuition for the average rank bound. The number of bins per stripe

decreases exponentially as the stripes get further from the mean. . . . 102

4-2 Throughput comparison for the (1 + /3) priority queue with 0 = 0.5

and 0.75, versus the original MULTIQUEUEs, the Lind6n-Jonsson im-

plementation, and kLSM. Higher is better. 108

4-3 Mean rank returned (log scale) for the (1+) priority queue, for various

values of 3 on 8 queues and 8 threads. Lower is better. 108

4-4 Running times for single-source shortest path benchmark, using various

versions of the priority queue, and kLSM. Lower is better. 108

5-1 Simple illustration of the process. The blue thread queries the relaxed

scheduler, which returns one of the top k tasks, on average (in brack-

ets). Some of these tasks (green) can be processed immediately, as

they have no dependencies. Tasks with dependencies (red) cannot be

processed yet, and therefore result in failed removals. 115

5-2 MIS algorithm run times on a sparse graph. 125

5-3 MIS algorithm run times on a dense graph. 125

10

Chapter 1

Introduction

High performance, scalable, concurrent data structures have been in increasingly high

demand in the last several decades. In that time, efficient implementations of many

data structures have been developed. On the other hand, there is a large class of

commonly used data structures which can be classified as serving producer-consumer

access patterns that suffer from sequential bottlenecks on the "consumer" threads.

The canonical example of such a structure is the priority queue. Priority queues

store key, value pairs, or elements, and support at least the following operations: IN-

SERT(, which inserts arbitrary pairs into the queue, and GETMIN(, which outputs

the pair with the smallest key (or equivalently, highest priority) and removes it from

the queue. Any concurrent data structure supporting asynchronous INSERT() and

GETMIN() according to priority queue semantics with a standard asynchronous cor-

rectness criterion (typically linearizability [41]) suffers an inherent bottleneck on the

highest priority element. Indeed, if several threads concurrently execute a GETMINO

operation, they necessarily experience a race condition on retrieving the highest pri-

ority element in the queue. Such behavior imposes a seemingly impassable barrier to

scalability.

However, we observe that even if queue operations are linearizable, perhaps the

strongest correctness condition one can ask for, threads might still get reordered after

completing their respective GETMINOs, so that the thread which retrieved the true

smallest key element in the queue stalls, thus appearing to the client application as

11

Implementation= Model IApplication

SPRAYLIST Error Bound Ts uu
I Ij ~ Framework_,

m m Maximal 1
MULTIQUEUE FairnessMail

Independent Set

Figure 1-1: Our full stack approach to relaxed ordering structures. We give a model which
real implementations can support and which practical applications can use.

though the GETMIN() has not yet happened, even while threads which retrieved

elements with larger keys continue running. Thus, we ask whether linearizability or

similarly strong correctness conditions are useful in this setting.

A large body of past work has proposed relaxed semantics for concurrent data

structures, wherein operations are allowed to return items which could not be returned

by a corresponding sequential structure supporting exact correctness, but which are

somehow 'close' to correct. For example, a simple criterion could be that the returned

element must have at most the kth smallest key in the system. Perhaps the first

example of this idea was the relaxed PRAM priority queue of Karp and Zhang [45],
but there have been many proposals since to produce scalable relaxed data structures

on modern architectures, e.g. [1, 6, 9, 36, 39, 46, 49, 58, 64, 65, 67, 68, 74].

However, this line of study has lacked a foundation which is simultaneously prac-

tical and theoretically rigorous. On the one hand, although some formal models have

been proposed, e.g. Quasi-linearizability [1] and the quantitative framework of Hen-

zinger et al. [39], it is not yet clear whether performant structures can be built to

support the semantics of these models, nor whether applications can make use of

these guarantees to bound the overhead they incur when using relaxed structures.

On the other hand, a number of relaxed structures have been proposed which are

empirically scalable [6, 64, 65] but these practical structures did not initially adhere

to any unified formal model of relaxation.

This thesis will build a case for the use of randomized relaxation for priority queues

12

by a three-pronged approach: (1) we propose a model for probabilistically quantify-

ing the relaxation of ordering structures which is both (2) demonstrably applicable

to real, performant, relaxed ordering structures, allowing for theoretically grounded

bounds on the effect of relaxation, and (3) usable by applications to prove at the top

level that the cost incurred by weakening semantics incurs a bounded overhead in the

form of dependency checking and possibly wasted work. We stress that our quantifi-

cation criteria provide an interface between implementation and application, allowing

application designers to abstract the minutae of the distribution of outputs particu-

lar relaxed implementations might provide, instead relying on algorithm designers to

provide simple bounds that applications can make use of.

Figure 1-1 gives a visual representation of our approach. First, we build a model

characterized by two parameterized criteria imposed on relaxed priority queues: <-

error-boundedness and i-fairness. We say that a queue which is both k-error bounded

and k-fair is k-relaxed (equivalently, has relaxation factor k). Intuitively, a k-relaxed

queue should exhibit behavior which is distributionally 'similar to' a queue which

returns an item uniformly at random from the k highest priority items (and indeed,

such a queue is itself k-relaxed); see below for more discussion and see Chapter 2 for

a formal definition. Using this model, we give two implementations of relaxed queues

which satisfy these criteria with good parameters while providing high throughput in

contended executions (in particular, k = O(n log n) when there are n participating

threads): first, the SPRAYLIST, a centralized queue based on asynchronous SkipLists

(Chapter 3), and second, MULTIQUEUEs, a fully distributed algorithm based on clas-

sical 'balls into bins' systems (Chapter 4). Finally, we construct a general framework

to solve problems which can be formulated as an execution of a series of tasks with

known dependencies between tasks (Chapter 5). We give analytical and empirical

results showing that relaxed queues are a good choice of scheduler for such problems

when tasks can be permuted randomly and the dependency graph is sparse. More

interestingly, we show that in the case of Maximal Independent Set and Maximal

Matching, the overhead incurred by correcting for relaxation compared to using an

exact (non-relaxed) scheduler is, surprisingly, negligible: there is no dependence on

13

the size or structure of the input graph, rather only on the relaxation factor k of

the scheduler. It follows that these applications are examples of an ideal use case for

relaxed queues, as they benefit significantly from the increased throughput offered by

relaxed implications while suffering negligibly from the weaker semantics.

In addition to being themselves widely used in applications such as scheduling

and event simulation [51], priority queues can be thought of as generalizing a large

class of structures which we will collectively refer to as ordering structures. Com-

monly used ordering structures include FIFO queues, priority queues, stacks, and

in an abstract sense, counters. There has been a large amount of work on building

performant concurrent implementations of these data structures with exact seman-

tics [18, 28, 29, 31, 32, 40, 47, 51, 52, 53, 56, 57, 61, 62, 70, 72]. Both the SPRAYLIST

and MULTIQUEUE algorithms can be trivially adapted to support Queue or Stack op-

erations and we correspondingly propose that using relaxed implementations of queues

and stacks which are scalable can be similarly beneficial for applications which are

robust to weaker semantics. Indeed, although the Task Queue Framework described

in Chapter 5 is formulated using priority queues for generality, we only make use of

FIFO queue semantics for the cases we analyze, particularly Maximal Independent

Set.

The problem with exact semantics. In the classic, sequential setting, prior-

ity queues are very well understood. Highly efficient, heap-based implementations

are highly optimized and used pervasively in the field [481. Unfortunately, heap-

based concurrent priority queues suffer from both memory contention and sequential

bottlenecks. Heaps are implemented by perfectly balanced binary trees, and every

heap operation must touch and usually modify the root. Because the heap element

with the smallest key is stored in the root, every thread attempting to perform a

GETMIN() operation must modify it. Furthermore, all modifying heap operations

including insertion are implemented by 'percolating' elements up the tree, swapping

values at all levels, inducing more communication even below the root. Modifying

threads inevitably clash with every other thread in the system, creating a seemingly

insurmountable barrier to scalability.

14

Early attempts to improve on heaps in a concurrent setting looked to Skiplists, an

idea which has maintained momentum for many years [18, 51, 53, 70]. SkipLists are

randomized list-based data structures which classically support INSERT and DELETE

operations [61]. A SkipLists is composed of several linked lists organized in levels,

each containing a random subset of the elements in the list below it. SkipLists are

desirable because they allow priority queue insertions and removals without the costly

percolation up a heap or the rebalancing of a search tree. Highly concurrent SkipList-

based priority queues have been studied extensively and have relatively simple imple-

mentations [32, 41, 51, 62]. Unfortunately, concurrent SkipList-based priority queues

which maintains a linearizable [41] (or even quiescently-consistent [41]) order on GET-

MINO operations, must still remove the minimal element from the leftmost node in

the SkipList. Thus, as with heaps, all threads must repeatedly compete to get this

minimal node, resulting in a contention bottleneck and limiting scalability [51].

Recently, there has been another attempt to circumvent thread clashing and con-

tention issues with a technique called flat combining, or just combining [20, 24, 28,

37, 38]. The idea of combining is to have a single thread batch the requests of all

the other threads and execute them itself. Priority Queues implemented using heaps

with combining were shown to significantly outperform state-of-the-art implementa-

tions [37] by effectively immunizing the combining thread from cache invalidations

and synchronization failures induced by other threads. However, due to the inher-

ently sequential nature of the technique, combining-based data structures still don't

scale.

In fact, the situtation is about as bad as it could be: ordering structures are fun-

damentally limited by impossibility results [2, 27] showing that the strong semantics

required by these data structures comes with an inherent lack of scalability. These

theoretical results suggest that in order to achieve truly scalable implementations

of producer-consumer data structures, we need to consider alternative semantics.

To that end, recent work has begun considering relaxed data structure specifica-

tions [39, 68], for which weaker semantics are accepted in a controlled manner in

order to remove the theoretical bottleneck and substantially improve performance in

15

contended workloads. Importantly, allowing relaxed semantics allows data structure

implementations to make effective use of randomization to break symmetry between

threads and thereby reduce contention.

Model. We begin by presenting a model of randomized, relaxed, concurrent ordering

structures. In particular, relaxed ordering structures implement APPROxGETMINO

in place of GETMINO, which might return elements other than the highest priority

element. We give two probabilistic criteria which we use to quantify the strength

of the relaxed semantics of a given implementation. Our criteria are parameterized

by a relaxation factor k so that if a particular implementation satisfies them for a

given k, we say that the implementation is k-relaxed. The model is designed to allow

complex implementations to provide similar guarantees to the 'simplest' specification

of a relaxed queue for which APPROXGETMIN() simply returns an element uniformly

at random from among the k highest priority elements. Such a uniformly random

implementation is e(k)-relaxed in our model.

The first criterion asks how large the error of a relaxed operation might be; that

is, how large the rank of the element returned by APPROXGETMIN() might be (a

key has rank i if there are exactly i - 1 smaller keys in the structure at a given time).

The second criterion asks how long a particular high priority element can remain in

the queue. Even if we can bound the error of an implementation, it might still not be

very useful if the highest priority element is 'starved' while potentially having many

dependents waiting for it to be processed. We will say that an implementation is

k-relaxed if it is both k-error bounded and k-fair, which are respectively defined to

mean that the implementation satisfies a simple tail bound, defined in Section 2.3.

Building off of the model, we will present and analyze two relaxed strategies

for concurrent queues, priority queues, and counters which yield state of the art

performance. We will focus on showing analytically that the relaxation factor as

described by our model is low, while also demonstrating state-of-the-art performance

on practical workloads.

The SPRAYLIST. Our first implementation is the SPRAYLIST, which implements a

relaxed concurrent priority (or FIFO) queue by building off of existing efficient imple-

16

Cleaner

n polylog(n)

Figure 1-2: The intuition behind the Figure 1-3: A simple example of a spray.

SPRAYLIST. Threads start at height H Green nodes are touched by the SPRAY,

and perform a random walk on nodes at and the thread stops at the red node.

the start of the list, attempting to Orange nodes could have been chosen

acquire the node they land on. for jumps, but were not.

mentations of concurrent SkipLists [32, 34, 61, 62]. The main idea of the SPRAYLIST

is to have threads take a controlled random walk down a SkipList, staying near the

front, in order to do a relaxed GETMIN() operation. Instead of threads clashing

on the first element, we allow threads to "skip ahead" in the list, so that concur-

rent operations attempt to remove distinct, uncontended elements. The obvious issue

with this approach is that one cannot allow threads to skip ahead too far, or many

high priority (minimal key) elements will not be removed. Our solution is to have

the GETMIN() operations traverse the SkipList, not along the list, but via a tightly

controlled random walk from its head. We call this operation a spray.

Roughly, at each SkipList level, a thread flips a random coin to decide how many

nodes to skip ahead at that level. In essence, we use local randomness and the random

structure of the SkipList to balance accesses to the head of the list. The lengths of

jumps at each level are chosen such that when there are n threads, the probabilities

of hitting nodes among the first O(n log3 n) are close to uniform. (See Figure 1-2 for

the intuition behind sprays.)

While a GETMIN() in an exact priority queue returns the element with the small-

est key-practically one of the n smallest keys if n threads are calling GETMIN()

concurrently- the SPRAYLIST ensures that the returned key is among the O(n log3 n)

smallest keys, providing error-boundedness, and that each operation completes within

log3 n steps, both with high probability. We also provide fairness guarantees, i.e. that

elements with small keys will not remain in the queue for too long. Chapter 3 gives a

rigorous treatment of SPRAYLISTS, giving methodology which simultaneously achieves

good runtime and relaxation factor, both in theory and on practical workloads.

17

Our proofs are inspired by an elegant argument proving that sprays are near-

uniform on an ideal (uniformly-spaced) SkipList, given in Section 3.2.2. However,

this argument breaks on a realistic SkipList, whose structure can be quite irregular.

Precisely bounding the node hit distribution on a realistic SkipList turns out to be

significantly more involved.1 In particular, we prove that this distribution is close to

uniform on the first O(n log3 n) elements. We can then upper bound the probability

that two sprays collide, and the expected number of operation retries. In turn, this

upper bounds the running time of an operation and the relative rank of returned keys.

The uniformity of the spray distribution also allows us to implement an optimiza-

tion whereby large contiguous groups of claimed nodes are physically removed by a

randomly chosen cleaner thread. The trade-off between relaxed semantics and thread

contention can be controlled via the SPRAY parameters (starting height, and jump

length). We also give a simple back-off scheme which allows threads to "tighten" the

semantics under low contention.

In sum, our analysis gives strong probabilistic guarantees on the rank of a removed

key, and on the running time of a SPRAY operation. Our algorithm is designed to be

lock-free, but the same spraying technique would work just as well for a lock-based

SkipList.

MULTIQUEUES. In a seminal paper [8], Azar, Broder, Karlin and Upfal analyzed the

following elegant load balancing process: we sequentially place b balls into m initially

empty bins, where each ball has two destinations, chosen independently and uniformly

at random. Each ball is placed into the less loaded of its chosen bins. Surprisingly,

the difference between the most loaded bin and the average is O(log log m) with high

probability, and this difference remains stable as the process executes for increasingly

many steps. The strong probabilistic guarantees provided by this process sparked

an impressive amount of follow-up research, combining deep and elegant theoretical

results on extensions of the process and their analyses, e.g. [55, 60] with non-trivial

practical applications [631. In particular, it is known [10, 60] that the gap between

the most loaded bin and average load is 0(log log m), while the gap between the

'We perform the analysis in a restricted asynchronous model, defined in Section 3.2.1.

18

Q1 Q2 Q3 Q4

I 12 3

W10

Figure 1-4: An illustration of the MULTIQUEUE process. On a GETMIN(, the thread

looks at two queues and selects the one with a lower label top element. In this case, the

thread looks at queues 2 and 3 and selects queue 3 (green), rejecting queue 2 (red).

least loaded bin and the most loaded one is bounded by O(log m) in expectation,

independently of how long the process runs.

These results suggest a simple alternative strategy for implementing relaxed con-

current priority queues, obtained by the following MULTIQUEUE strategy [35, 64]. We

start from n queues, each protected by a lock. To insert an element, a thread picks

one of the n queues uniformly at random, locks it, and inserts into it. To remove an

element, the thread picks two queues uniformly at random, locks them, and removes

the element of higher priority among their two top elements. Note that this strategy

can be easily adapted to implement FIFO queues or approximate counters as well.

This strategy is illustrated in Figure 1-4.

Extensive testing [35, 64] has shown that this natural strategy can provide state-

of-the-art throughput, and that the average number of priority inversions is relatively

low. Further variants of this strategy are used to implement general priority sched-

ulers [58] and relaxed concurrent queues [36].

Despite its apparent efficacy, the original MULTIQUEUE proposal demonstrated

promising empirical results but lacked a theoretical grounding for the robustness of

the technique. In fact, it seemed doubtful that MULTIQUEUEs provided bounded

19

relaxation at all. Even with the insight of deleting from the higher priority of two

queues, one still might expect the state of the MULTIQUEUE system to deteriorate

over time, eventually ending up with a potentially unbounded gap between the highest

priority element in the system, and the top element of the 'worst' queue. We rectify

this concern by showing that even in the MULTIQUEUE setting in which elements

are inserted into queues randomly, analogs of the balls into bins results still hold and

MULTIQUEUE APPROXGETMIN() operations exhibit at most 0(nlogn) rank error

with high probability. Chapter 4 covers an analysis of MULTIQUEUEs in a sequential

setting, where queue operations take place atomically. Upcoming work extends the

analysis to a fully asynchronous setting [31, but is beyond the scope of this thesis.

The main technical contribution of the chapter is showing that MULTIQUEUEs

provide surprisingly strong rank guarantees: for any time t > 0 in the execution of the

MULTIQUEUE algorithm, the expected rank of an element removed at time t is 0(n),

while the expected worst-case rank removed at a step is 0(nlogn). These bounds

are asymptotically tight, and hold for arbitrarily large t. Our analysis generalizes

to a (1 + 0) extension of the process, where the algorithm deletes from the higher

priority among two random queues with probability 0 < 0 < 1, and from a single

randomly chosen queue with probability (1 - 3). It also extends to show that the

process is robust to bias in the insertion distribution towards some bins by a constant

factor -y E (0, 1). By contrast, we show that the strategy which always removes from

a single randomly chosen queue diverges, in the sense that its average rank guarantee

evolves as Q Vtn (log n), for time t > n log n.

Application: Task-Queue Framework. Given the now-pervasive nature of par-

allelism in computation, there has been a tremendous amount of research into effi-

cient parallel algorithms for a wide range of tasks. A popular approach has been to

map existing sequential algorithms to parallel architectures, by exploiting their in-

herent parallelism. The deterministic approach, e.g. [12, 13, 14, 15, 44, 691 has been

to study the directed-acyclic graph (DAG) dependency structure in classic, widely-

employed sequential algorithms, showing that, perhaps surprisingly, this dependence

structure usually has low depth. One can then design schedulers which exploit this

20

Figure 1-5: A simple example of Maximal Independent Set. Vertex labels were assigned

randomly and the lexicographically first MIS is shown; vertices in the MIS are green and

vertices not in the MIS are orange.

dependence structure for efficient execution on parallel architectures. As the name

suggests, this approach ensures deterministic outputs, and can yield good practical

performance [14], but requires a non-trivial amount of knowledge about the problem

at hand, and the use of carefully-constructed parallel schedulers [141.

To illustrate, let us consider the classic sequential greedy strategy for solving the

maximal independent set (MIS) problem on arbitrary graphs: the algorithm examines

the set of vertices in the graph following a fixed, random sequential priority order,

adding a vertex to the independent set if and only if no neighbor of higher priority

has already been added. This effectively computes the lexicographically first MIS

with respect to the random priority order. Figure 1-5 gives a small example. The

basic insight for parallelization is that the outcome at each node may only depend

on a small subset of other nodes, namely its neighbors which are higher priority in

the random order. Blelloch, Fineman and Shun [141 performed an in-depth study of

the asymptotic properties of this dependence structure, proving that, for any graph,

the maximal depth of a chain of dependences is in fact O(log 2 n) with high probabil-

ity, where n is the number of nodes in the graph. Recently, an impressive analytic

result by Fischer and Noever [301 provided tight e(log n) bounds on the maximal de-

pendency depth for greedy sequential MIS, effectively closing this problem for MIS.

Beyond greedy MIS, there has been significant progress in analyzing the dependency

21

structure of other fundamental sequential algorithms, such as algorithms for match-

ing [14], list contraction [69], Knuth shuffle [69], linear programming [12], and graph

connectivity [121.

On the other hand, some work has already begun employing relaxed schedulers

to do the same job. Starting with Karp and Zhang [451, the general idea is that,

in some applications, the scheduler can relax the strict order induced by following

the sequential algorithm, and allow tasks to be processed speculatively ahead of

their dependencies, without loss of correctness. A standard example is paralleliz-

ing Dijkstra's single-source shortest paths (SSSP) algorithm, e.g. [49, 58, 651: the

scheduler can retrieve vertices in relaxed order without breaking correctness, as the

distance at each vertex is guaranteed to eventually converge to the minimum. The

trade-off is between the performance gains arising from using simpler, more scalable

schedulers, and the loss of determinism and the wasted work due to relaxed priority

order. Lenharth, Nguyen, and Pingali [491 further propose to use relaxed schedulers

for Minimum Spanning Tree, Betweenness Centrality, Maximum Bipartite Matching,

and Belief Propagation, bringing relaxed scheduling to an impressive repertoire of em-

pirically efficacious use cases. This approach is quite popular in practice, as several

high-performance relaxed schedulers have been proposed, which can attain state-of-

the-art results in settings such as graph processing and machine learning [33, 58].

At the same time, despite good empirical performance, relaxed schedulers still lack

analytical bounds, and outputs are not always deterministic. This leads to the nat-

ural question: is it possible to achieve both the simplicity and good performance of

relaxed schedulers as well as the predictable outputs and runtime upper bounds of

the "deterministic" approach?

We answer in the affirmative: we demonstrate that relaxed ordering structures

in fact can execute a range of iterative sequential algorithms deterministically, i.e.

with output uniquely determined by the input, and provably efficiently, providing

analytic upper bounds on the total work performed. Our results cover the classic

greedy sequential graph algorithms for maximal independent set (MIS), matching,

and coloring, as well as algorithms for list contraction and generating permutations

22

via Knuth shuffle. We call this class iterative algorithms with explicit dependencies.

Our key technical result is that, for MIS and matching in particular, we upper bound

the overhead of using a relaxed scheduler by a polynomial term depending only on

the relaxation factor k of the scheduler and which is independent of the input graph

size or structure. Thus, computing MIS on large graphs using a relaxed scheduler

incurs negligible overhead. This analytical result suggests that relaxed schedulers

should be a viable alternative, a finding which is also supported by our concurrent

implementation.

Specifically, we consider the following framework. Given an input, e.g., a graph,

the sequential algorithm defines a set of tasks, e.g. one per graph vertex, which should

be processed in order, respecting some fixed, arbitrary data dependencies, which can

be specified as a DAG. Tasks will be accessible via a relaxed scheduler. This induces

a sequential model,2 where at each step, the scheduler returns a new task.

Assume a thread receives a task from the scheduler. Crucially, the thread cannot

process the task if it has data dependencies on higher-priority tasks: this way, deter-

minism is enforced. (We call such a failed removal attempt by the thread a wasted

step.) However, threads are free to process tasks which do not have such outstanding

dependencies, potentially out-of-order (we call these successful steps.) We measure

work in terms of the total number of scheduler queries needed to process the entire

input, including both successful and unsuccessful removal steps.

We provide a simple yet general approach to analyze this relaxed scheduling pro-

cess, by characterizing the interaction between the dependency structure induced by

a given problem on an arbitrary input, and the relaxation factor k in the scheduling

mechanism, which yields bounds on expected work when executing such algorithms

via relaxed schedulers. Our approach extends to general iterative algorithms, as long

as task dependencies are explicit, i.e., can be statically expressed given the input, and

tasks can be randomly permuted initially.

The work efficiency of this framework will critically depend on the rate at which

2We consider this sequential model, similar to [14], since there currently are no precise ways to
model the contention experienced by concurrent threads on the scheduler. Instead, we validate our
findings via a fully concurrent implementation.

23

threads are able to successfully remove dependency-free tasks. Intuitively, this rate

appears to be highly dependent on (1) the problem definition, (2) the scheduler re-

laxation factor k, but also on (3) the structure of the input. Indeed, we show that

in the most general case, a k-relaxed scheduler can process an input described by a

dependency graph G on n nodes and m edges and incur 0('poly(k)) wasted steps,

i.e. n + 0(1poly(k)) total steps. This result immediately implies a low "cost of re-

laxation" for problems whose dependency graph is inherently sparse, such as Greedy

Coloring on sparse graphs, Knuth Shuffle and List Contraction, which are character-

ized by a dependency structure with only m = 0(n) edges. Hence, in general, such

sparse problems incur negligible relaxation cost when k < n.

Our main technical result is a counter-intuitive bound for greedy MIS: our frame-

work equipped with a k-relaxed scheduler can execute greedy MIS on any graph G

and experience only poly(k) wasted steps (i.e. n + poly(k) total steps), regardless of

the size or structure of G. This result is surprising as well as technically non-trivial,

and demonstrates that for MIS on large graphs, operation-level speedups provided by

relaxation come with a negligible global trade-off. A similar result holds for maximal

matching. Our results suggest that task priorities can be supported in a scalable

manner, through relaxation, without loss of determinism or work efficiency.

We validate our results empirically, by implementing our scheduling framework

in C++, based on a lock-free extension implementation of the MULTIQUEUE algo-

rithm [64]. Our broad finding is that this relaxed scheduling framework can ensure

scalable execution, with small overheads due to contention and verifying task de-

pendencies. For instance, when solving MIS on large graphs, we obtain a scalable

solution, which has 5.7x speedup at 24 threads.

Summary. We give a full stack argument for the effectiveness of relaxed ordering

structures, summarized in Figure 1-1. Our model characterizes ordering structures

by an error bound and a fairness parameter. We show that real implementations

can satisfy these criteria with good relaxation factors by building the SPRAYLIST

and analyzing MULTIQUEUEs. Finally, we demonstrate that this model is useful to

applications by designing the generic Task Queue Framework and instantiating it for

24

Maximal Independent Set, then using our model to get tight bounds on the number

of parallel iterations required for each.

25

26

Chapter 2

Model

In this chapter we will build a model of the relaxed concurrent ordering structures,

defining each term. Section 2.1 covers concurrency, Section 2.2 covers ordering struc-

tures, and Section 2.3 covers relaxation.

2.1 Concurrency

Throughout this thesis, we will consider a standard asynchronous shared-memory

model such as in [7, 41], in which n threads which we will label T1,... , T2, com-

municate through registers. Threads may perform atomic operations such as READ,

WRITE, COMPARE-AND-SWAP and FETCH-AND-INCREMENT. Operations are ap-

plied according to a discrete schedule: at each time step, some thread is chosen to

perform an operation, and it does so atomically. In general, schedules can be arbitrary

and opaque to participating threads, beyond what can be inferred from the return

values of operations. This chapter will formally define all of the above concepts.

To begin the formalization, the fundamental unit of shared memory is a register:

Definition 2.1 (Registers and values). A register is a memory location which con-

tains a value. Registers may have an initial value specified. Threads can perform

specified operations on registers, possibly changing the stored value.

Throughout this thesis, we will primarily concern ourselves with the following

27

operations on a register R:

1. READ(R): return the value stored in R without changing it.

2. WRITE(R, x): change the value stored in R to x (without reading it).

3. FETCH-AND-INCREMENT(R): increment the (integer) value stored in R and

return its old value. We will often abbreviate FETCH-AND-INCREMENT to FAI.

4. COMPARE-AND-SWAP(R, x, y): If the value of R is equal to x, change it to y

and return true. Otherwise, return false. See Algorithm 1 for pseudocode. We

will often abbreviate COMPARE-AND-SWAP(x, y) to CAS.

All modern multi-core processors support these instructions atomically.

Algorithm 1 Pseudocode for the COMPARE-AND-SWAP operation.

Register R with value VR.
function CAS(R,x,y) atomic:

if VR = x then
VR <- Y
return TRUE

else
return FALSE

Processes run algorithms to interact with registers and thereby communicate with

each other:

Definition 2.2 (Shared memory algorithms). A shared memory algorithm is a se-

quence of register operations executed by a single thread, possibly depending on the

outputs of previous operations and possibly depending on the results of random coin

flips.

However, threads cannot depend on being allowed to take interleaving steps in

any sort of predictable fashion. This is true even in practice due to phenomena which

range from microsecond race conditions in the hardware, to varying levels of cache

misses or even page faults, and all the way to system intervention. It is impossible to

model such a chaotic system precisely, so we instead measure asymptotic performance

against an adversary:

28

Definition 2.3 (Adversarial schedulers). As threads execute their algorithms, the

order of thread steps is controlled by an adversarial entity we call the scheduler.

The time t is measured in terms of the number of shared-memory steps scheduled

by the adversary. The adversary may choose to crash a set of at most n -1 threads by

not scheduling them for the rest of the execution. A thread that is not crashed at a

certain step is correct, and if it never crashes then it takes an infinite number of steps

in the execution. For this thesis, we will assume an oblivious adversarial scheduler,

which decides on the interleaving of thread steps independently of the coin flips they

produce during the execution.1

The algorithms we consider are implementations of shared objects:

Definition 2.4 (Shared objects). A shared object 0 is an abstraction providing a

set of methods, each given by a sequential specification.

In particular, an implementation of a method M for object 0 is a set of n algo-

rithms, one for each executing thread. When thread P invokes method M of object

0, it follows the corresponding algorithm until it receives a response from the al-

gorithm. Upon receiving the response, the thread is immediately assigned another

method invocation. We will not distinguish between a method M and its implemen-

tation. A method invocation is pending at some point in the execution if has been

initiated but has not yet received a response. A pending method invocation is active

if it is made by a correct thread (note that the thread may still crash in the future).

For example, a concurrent counter could implement READ and INCREMENT methods,

with the same semantics as those of the sequential data structure.

The standard correctness condition for concurrent implementations is linearizabil-

ity [42]:

Definition 2.5 (Linearization). Consider an execution, E, consisting of invocations

and responses of the methods of a concurrent object 0. A linearization of E is an

'By contrast, one might consider a strong adversary which can adapt its scheduling decisions
based on the results of coin flips threads have made in the past, but we will not be working in such
a model.

29

ordering --<E of the invocations and responses such that, (1) every invocation is im-

mediately succeeded by its response under -<E, (2) the responses are consistent with

the sequential semantics of 0 under -<E, and (3) for every response R preceding some

invocation I in E, R -<E I.

Definition 2.6 (Linearizability). An object, 0 is linearizable if any concurrent exe-

cution of the methods of 0 has a linearization.

In short, linearizability induces a global order on the method calls, which is guar-

anteed to be consistent to a sequential execution in terms of the method outputs. We

will sometimes refer to the linearization point of a method, M, which is the step in

the execution of M in which M is appended to the linearization in question (i.e. the

step at which M is linearized). Notably, each linearization point must occur between

the start and end time of the corresponding method, and in fact we can often point

to a specific line of code (or perhaps a small set of possible such lines) which will

always act as the linearization point of M.

2.2 Ordering Structures

An ordering structure is any object, 0, which maintains a set, S, of (key, value) pairs

and provides at least the following GETMIN() method. For simplicity, we will assume

throughout that values are unique. We will sometimes say that elements with smaller

keys have higher priority and elements with larger keys have lower priority.

GETMIN(): If S is empty, return I. Otherwise, output arg min(k,v)ES k and (possi-

bly) remove it from S.

With just this method, the semantics of S are characterized by how the set of

(key, value) pairs is generated, typically with the help of additional supported op-

erations. Most ordering structures provide an INSERT() method, whose arguments

depend on the semantics of 0, which is used to populate S:

30

INSERT(...): Insert a pair (k, v) into S.

For example, a queue maintains user-input values paired with keys which given by

insertion time while a stack also maintains user-input values, but its keys are negative

insertion time.

A slightly more abstract application of this model allows us to express counters

as an ordering structure. We can think of a counter as initially populated with

S = {(i, i)ji E N}. Incrementing the counter consists of removing the minimum

value (i, i) from S, so that reading a counter can be implemented by GETMINO, i.e.

returning the value of the counter as the smallest value still in S. Note that in this

case, GETMIN() does not remove the value read from S. While this may seem like

a rather roundabout formulation of counters, especially since they would never be

implemented this way, we will see why this is a useful model in Section 2.3 where we

develop a unified set of criteria for relaxed ordering structures.

Importantly, observe that almost all ordering structures can be implemented by a

priority queue. A priority queue is itself an ordering structure which maintains user-

input values paired with user-input keys. Therefore, for any structure 0 for which

(key, value) pairs can be efficiently computed at insertion time, a black box priority

queue is sufficient to implement 0. This is particularly relevant for our purposes as

state-of-the-art relaxed concurrent priority queues such as those discussed in Chap-

ters 3 and 4 also represent state-of-the-art relaxed, concurrent FIFO queues. For this

reason, we will use the terms "priority queue" and "ordering structure" interchange-

ably.

2.3 Relaxation

Recent work, e.g. Henzinger et al. [39], considers relaxed variants of linearizability, in

which methods are allowed to deviate from the sequential specification by a relaxation

factor. Such relaxations appear to be necessary in the case of data structures such as

exact counters or priority queues in order to circumvent strong linear lower bounds

31

on their concurrent complexity [2]. For example, one implementation of a relaxed

concurrent counter might provide read methods which may return a value that is a

constant additive factor ahead or behind the number of update operations which have

been applied (linearized) up to some point in time.

Henzinger et al. [39] proposed a formal model of relaxation for general deter-

ministic data structures. While their model is very powerful, it precludes the use

of randomization. Randomized concurrent data structures have become increasingly

popular [68], due largely to the ability to use randomization to break symmetry be-

tween threads. In fact, randomized concurrent data structures have been shown to

be able to circumvent some deterministic lower bounds, e.g. [26, 591. As relaxed data

structures utilizing randomization will be a focal point of this thesis, we will choose to

instead use a simpler model tailored toward ordering structures which has the desir-

able properties of both being achievable by scalable and performant implementations

of ordering structures and being sufficiently strong that we can get good bounds on

the overhead incurred by algorithms which use structures in our model, as we will

show in Chapter 5.

We say that 0 is a relaxed ordering structure if it implements APPRoxGETMINo:

APPRoxGETMIN(): If S is empty, return I. Otherwise, output some (k, v) c S

and (possibly) remove it from S.

On its own, this operation is not particularly useful because we have not quantified

the distribution of keys returned. To do that, we will first need some terminology.

For a relaxed ordering structure 0 maintaining a (key, value) set S, we say that a

value v has rank i at time t in S if there are exactly i -1 values with smaller keys in S,

denoted by rankt(v) = i. If APPROxGETMIN() outputs v at time step t, then we also

say that rank(t) = rankt(v). If, at some time step, (u1 , vI), (U 2 , v 2) E S with ul < U2

and an APPROXGETMIN() operation outputs (u 2, V2), we say that vi experiences

an inversion. For any fixed value, v, let inv(v) be the total number of inversions

v experiences throughout E (before itself being removed by an APPROXGETMIN()

operation).

32

We quantify a relaxed ordering structure implementing some APPROXGETMIN()

operation with the following two criteria. We say that a relaxed ordering structure is

(p,)-relaxed if it satisfies:

p-Error Boundedness. We say that a relaxed ordering structure 0 is p-error bounded

if, for any invocation of APPROXGETMINO at time t, we have that

Pr [rank(t) > r] < exp (-r/p).

h-Fairness. We say that a relaxed ordering structure 0 is #-fair if, for any value v,

Pr [inv(v) > r] < exp (-r/0).

Intuitively, p-Error Boundedness enforces that APPROXGETMIN() returns ele-

ments with rank O(p) with high probability, while 0-fairness enforces that every

element u sees at most O(#) higher rank elements returned by APPROXGETMIN()

operations before u itself is returned.

In general, it is more convenient to assume a single quantification parameter k, and

so we say that a (k, k)-relaxed ordering structure is simply k-relaxed. The remainder

of this thesis will focus on demonstrating that this proposal is both achievable by

real, performant implementations and useful for realistic applications.

33

34

Chapter 3

The SprayList

In this chapter, we present and analyze the SPRAYLIST, a SkipList-based relaxed

priority queue implementation. We present the SPRAYLIST algorithm, and show

that it is 0(n log3 n) relaxed for a set of parameters which minimizes contention by

enforcing that the probability that a thread attempts to remove any given element is

bounded by 0(1/n).

We compare our performance to that of the quiescently-consistent priority queue

of Lotan and Shavit [531, the state-of-the-art SkipList-based priority queue imple-

mentation of Lind6n and Jonsson [511 and the recent k-priority queue of Wimmer et

al. [73].1 Our first finding is that our data structure shows fully scalable throughput

for up to 80 concurrent threads under high-contention workloads. We then focus on

the trade-off between the strength of the ordering semantics and performance. We

show that, for discrete-event simulation and a subset of graph workloads, the amount

of additional work due to out-of-order execution is amply compensated by the increase

in scalability.

Related Work. The first concurrent SkipList was proposed by Pugh [621, while

Lotan and Shavit [53] were first to employ this data structure as a concurrent priority

queue. They also noticed that the original implementation is not linearizable, and

added a time-stamping mechanism for linearizability. Herlihy and Shavit [411 give a

'Due to the complexity of the framework of [731, we only provide a partial comparison with our
algorithm in terms of performance.

35

lock-free version of this algorithm.

Sundell and Tsigas [70] proposed a lock-free SkipList-based implementation which

ensures linearizability by preventing threads from moving past a list element that has

not been fully removed. Instead, concurrent threads help with the cleanup process.

Unfortunately, all the above implementations suffer from very high contention under

a standard workload, since threads are still all continuously competing for a handful

of locations.

Recently, Lind6n and Jonsson [51] presented an elegant design with the aim of

reducing the bottleneck of deleting the minimal element. Their algorithm achieves

a 30 - 80% improvement over previous SkipList-based proposals; however, due to

high contention compare-and-swap operations, its throughput does not scale past 8

concurrent threads. To the best of our knowledge, this is a limitation of all known

exact priority queue implementations.

Recent work by Mendes et al. [20] employed elimination techniques, speculatively

matching GETMIN() and INSERT() operations, to adapt to contention in an effort to

extend scalability. Still, their experiments do not show throughput scaling beyond 20

threads.

Another direction by Wimmer et al. [731 presents lock-free priority queues which

allow the user to dynamically decrease the strength of the ordering for improved

performance. In essence, the data structure is distributed over a set of places, which

behave as exact priority queues. Threads are free to perform operations on a place

as long as the ordering guarantees are not violated. Otherwise, the thread merges

the state of the place to a global task list, ensuring that the relaxation semantics

hold deterministically. The paper provides analytical bounds on the work wasted

by their algorithm when executing a parallel instance of Dijkstra's algorithm, and

benchmark the execution time and wasted work for running parallel Dijkstra on a set

of random graphs. Intuitively, the above approach provides a tighter handle on the

ordering semantics than ours, at the cost of higher synchronization cost. The relative

performance of the two data structures will depend on the specific application scenario

and on the workload.

36

An interesting vein of research investigates parallel data structures with priority-

queue semantics in the PRAM model, e.g. [19, 23, 45, 67]. We note that, as opposed

to our design, many of these proposals rely on the relative synchrony of threads to

provide ordering semantics. Therefore, a precise comparison with this line of work is

outside the scope of this thesis.

3.1 The SprayList Algorithm

In this section, we describe the SprayList algorithm. The SEARCH and INSERT op-

erations are identical to the standard implementations of lock-free SkipLists [32, 41],

for which several freely available implementations exist, e.g. [32, 34]. In the following,

we assume the reader is familiar with the structure of a SkipList (refer to [61]), and

give an overview of standard lock-free SkipList operations.

3.1.1 The Classic Lock-Free SkipList

Our presentation follows that of Fraser [32, 41], and we direct the reader to these

references for a detailed presentation.

General Structure. The data structure maintains an implementation of a set,

defined by the bottom-level lock-free list. (Throughout this paper we will use the

convention that the lowest level of the SkipList is level 0.) The SkipList is comprised

of multiple levels, each of which is a linked list. Every node is inserted deterministi-

cally at the lowest level, and probabilistically at higher levels. It is common for the

probability that a given node is present at level f to be 2-e. (Please see Figure 1-2

for an illustration.) A key idea in this design is that a node can be independently

inserted at each level. A node is present if it has been inserted into the bottom list;

insertion at higher levels is useful to maintain logarithmic average search time.

Pointer Marking. A critical issue when implementing lock-free lists is that nodes

might "vanish" (i.e., be removed concurrently) while some thread is trying access

them. Fraser and Harris [32] solve this problem by reserving a marked bit in each

37

pointer field of the SkipList. A node with a marked bit is itself marked. The bit is

always checked and masked off before accessing the node.

Search. As in the sequential implementation, the SkipList search procedure looks

for a left and right node at each level in the list. These nodes are adjacent om the

list, with key values less-than and greater-than-equal-to the search key, respectively.

The search loop skips over marked nodes, since they have been logically removed

from the list. The search procedure also helps clean up marked nodes from the list: if

the thread encounters a sequence of marked nodes, these are removed by updating the

unmarked successor to point to the unmarked predecessor in the list at this level. If

the currently accessed node becomes marked during the traversal, the entire search is

re-started from the SkipList head. The operation returns the node with the required

key, if found at some level of the list, as well as the list of successors of the node.

Delete. Deletion of a node with key k begins by first searching for the node. If

the node is found, then it is logically deleted by updating its value field to NULL.

The next stage is to mark each link pointer in the node. This will prevent an new

nodes from being inserted after the deleted node. Finally, all references to the deleted

node are removed. Interestingly, Fraser showed that this can be done by performing

a search for the key: recall that the search procedure swings list pointers over marked

nodes.

Cleaners / Lotan-Shavit GetMin. In this context, the Lotan-Shavit [531 GET-

MIN() operation traverses the bottom list.attempting to acquire a node via a locking

operation. Once acquired, the node is logically deleted and then removed via a search

operation. We note that this is exactly the same procedure as the periodic cleaner

operations in our design, described below.

Insert. A new node is created with a randomly chosen height. The node's pointers

are unmarked, and the set of successors is set to the successors returned by the search

method on the node's key. Next, the node is inserted into the lists by linking it

between the successors and the predecessors obtained by searching. The updates are

performed using compare-and-swap. If a compare-and-swap fails, the list must have

38

changed, and the call is restarted. The insert then progressively links the node up to

higher levels. Once all levels are linked, the method returns.

3.1.2 Spraying and Deletion

The goal of the SPRAY operation is to allow n threads to each emulate a uniform

choice among the k = O(n log3 n) highest-priority items. In doing so, we will show in

Section 3.2 that SPRAY operations can implement APPROXGETMIN() of a k-relaxed

priority queue. To perform a SPRAY, a thread starts at the front of the SkipList, and

at some initial height h. (See Figure 1-3 above for an illustration.)

At each horizontal level f of the list, the thread first jumps forward for some small,

randomly chosen number of steps ji > 0. After traversing those nodes, the thread

descends some number of levels de, then resumes the horizontal jumps. We iterate

this procedure until the thread reaches a node at the bottom of the SkipList.

Once on the bottom list, the thread attempts to acquire the current node. If

the node is successfully acquired, the thread starts the standard SkipList removal

procedure, marking the node as logically deleted. (As in the SkipList algorithm,

logically deleted nodes are ignored by future traversals.) Otherwise, if the thread

fails to acquire the node, it either re-tries a SPRAY, or, with low probability, becomes

a cleaner thread, searching linearly through the bottom list for an available node.

We note that, as with other SkipList based Priority Queue algorithms, the runtime

of a SPRAY operation is independent of the size of the SkipList. This is because,

with high probability, the SPRAY operation only accesses pointers belonging to the

k = O(n log3 n) items at the head of the list.

Spray Parameters. An efficient SPRAY needs the right combination of parameters.

In particular, notice that we can vary the starting height, the distribution for jump

lengths at each level, and how many levels to descend between jumps. The constraints

are poly-logarithmic time for a SPRAY, and a roughly uniform distribution over the

head of the list. At the same time, we need to balance the average length of a SPRAY

with the expected number of thread collisions on elements in the bottom list.

39

We now give an overview of the parameter choices for our implementation. For

simplicity, consider a SkipList on which no removes have yet occurred due to SPRAY

operations. We assume that the data structure contains m elements, where m >> k.

Starting Height. Each SPRAY starts at list level H = log n + H0 , for some constant

HO.2 (Intuitively, starting the SPRAY from a height less than log n leads to a high

number of collisions, while starting from a height of C log n for C > 1 leads to SPRAYs

which traverse beyond the first O(n log3 n) elements.)

Jump Length Distribution. We choose the maximum number of forward steps L

that a SPRAY may take at a level to be L = M log3 n, where M > 1 is a constant.

Thus, the number of forward steps at level f is uniformly distributed in the interval

[0, L].

The intuitive reason for this choice is that a randomly built SkipList is likely to

have chains of log n consecutive elements of height one, which can only be accessed

through the bottom list. We wish to be able to choose uniformly among such elements,

and we therefore need L to be at least log n. (While the same argument does not

apply at higher levels, our analysis shows that choosing this jump length Jf yields

good uniformity properties.)

Levels to Descend. The final parameter is the choice of how many levels to descend

after a jump. A natural choice, used in our implementation, is to descend one level

at a time, i.e., perform horizontal jumps at each SkipList level.

In the analysis, we consider a slightly more involved random walk, which descends

D = max(1, [log log nJ) consecutive levels after a jump at level f. We must always

traverse the bottom level of the SkipList (or we will never hit SkipList nodes of

height 1) so we round H down to the nearest multiple of D. We note that we found

empirically that setting D = 1 yields similar performance.

In the following, we parametrize the implementation by H, L and D such that D

evenly divides H. The pseudocode for SPRAY(H, L, D) is given below.

Node Removal. Once it has successfully acquired a node, the thread proceeds to

2Throughout this thesis, unless otherwise stated, we consider all logarithms to be integer, and
omit the floor L-] notation.

40

Algorithm 2 Pseudocode for SPRAY(H, L, D).

function SPRAY(H, L, D)
x +- head > x = pointer to current location > Assume D divides H
fY+- H > f is the current level
while f > 0 do

Choose j, <- Uniform[0, L] > random jump
Walk x forward ji steps on list at height f > traverse the list at this level
f <- f -- D > descend D levels

return x

remove it as in a standard lock-free SkipList [32, 411. More precisely, the node is

logically deleted, and its references are marked as invalid.

In a standard implementation, the final step would be to swing the pointers from

its predecessor nodes to its successors. However, a spraying thread skips this step and

returns the node. Instead, the pointers will be corrected by cleaner threads: these

are randomly chosen DELETEMIN operations which linearly traverse the bottom of

the list in order to find a free node, as described in Section 3.1.3.

3.1.3 Optimizations

Padding. A first practical observation is that, for small (constant) values of D,

the SPRAY procedure above is biased against elements at the front of the list. For

example, it would be extremely unlikely for the first element in the list to be hit by

a walk with D = 1. To circumvent this bias, in such cases, we simply "pad" the

SkipList: we add R(n) dummy entries in the front of the SkipList. If a SPRAY lands

on one of the first K(p) dummy entries, it restarts. We choose R(n) such that the

restart probability is low, while, at the same time, the probability that any given node

in the interval [R(n) + 1, n log3 n] is hit is close to 1/n log 3 n. We note that padding

is not necessary for higher values of D, e.g., D = E(log log n).

Cleaners. Before each new SPRAY, each thread flips a low-probability coin to decide

whether it will become a cleaner thread. A cleaner thread simply traverses the

bottom-level list of the SkipList linearly (skipping the padding nodes), searching for

a key to acquire. In other words, a cleaner simply executes a lock-free version of

41

the Lotan-Shavit [53] DELETEMIN operation. At the same time, notice that cleaner

threads adjust pointers for nodes previously acquired by other SPRAY operations,

reducing contention and wasted work. Interestingly, we notice that a cleaner thread

can swing pointers across a whole group of nodes that have been marked as logically

deleted, effectively batching this part of the removal process.

The existence of cleaners is not needed in the analysis, but is a useful optimization.

In the implementation, the probability of an operation becoming a cleaner is 1/n, i.e.,

roughly one in n SPRAYs becomes a cleaner.

Adapting to Contention. We also note that the SPRAYLIST allows threads to

adjust the spray parameters based on the level of contention. In particular, a thread

can estimate n, increasing its estimate if it detects higher than expected contention

(in the form of collisions) and decreasing its estimate if it detects low contention. Each

thread parametrizes its SPRAY parameters the same way as in the static case, but

using its estimate of n rather than a known value. Note that with this optimization

enabled, if only a single thread access the SPRAYLIST, it will always dequeue the

element with the smallest key.

3.2 Spray Analysis

In this section, we analyze the behavior of SPRAY operations. Our main goal is

to prove that implementing APPROXGETMIN() with SPRAY operations yields a k-

relaxed priority queue for k = O(n log3 n), while at the same time maximizing scala-

bility by showing that it is unlikely for concurrent SPRAY operations to collide. Note

that there is a trade-off here: one could decrease the relaxation factor k but suffer

more collisions and thus higher contention in exchange (ending up with an exact

queue at the extreme), or one could further reduce contention at the cost of weaker

semantic guarantees. We describe our analytical model in Section 3.2.1. We then give

a first motivating result in Section 3.2.2, bounding the probability that two SPRAY

operations collide for an ideal SkipList.

We state and prove our main technical result, Theorem 3.3, which will establish

42

both fairness and collision probability. In essence, given our model, our results show

that SprayLists do not return low priority elements except with extremely small prob-

ability (Theorem 3.2) and that there is very low contention on individual elements,

which in turn implies the bound on the running time of SPRAY (Corollary 3.2).

3.2.1 Analytic Model

As with other complex concurrent data structures, a complete analysis of spraying in a

fully asynchronous setting is extremely challenging. Instead, we restrict our attention

to showing that, under reasonable assumptions, spraying approximates uniform choice

among roughly the first O(n log3 n) elements. We will then use this fact to bound

the contention between SPRAY operations. We therefore assume that there are m >>

nlog3 n elements in the SkipList.

We consider a set of at most n concurrent, asynchronous threads trying to perform

DELETEMIN operations, traversing a clean SkipList, i.e. a SkipList whose height

distribution is the same as one that has just been built. In particular, a node has

height > i with probability 1/ 2i, independent of all other nodes. They do so by

each performing SPRAY operations. When two or more SPRAY operations end at the

same node, all but one of them must retry. if a SPRAY lands in the padded region

of the SkipList, it must also retry. We repeat this until all SPRAYs land at unique

nodes (because at most one thread can obtain a node). Our goal is to show that for

all n threads, this process will terminate in O(log3 n) time in expectation and with

high probability. Note that since each SPRAY operation takes O(log 3 n) time, this is

equivalent to saying that each thread must restart their SPRAY operations at .most a

constant number of times, in expectation and with high probability. We guarantee

this by showing that SPRAY operations have low contention.

On the one hand, this setup is clearly only an approximation of a real execu-

tion, since concurrent inserts and removes may occur in the prefix and change the

SkipList structure. Also, the structure of the list may have been biased by previous

SPRAY operations. (For example, previous sprays might have been biased to land on

nodes of large height, and therefore such elements may be less probable in a dynamic

43

execution.)

On the other hand, we believe this to be a reasonable approximation for our

purposes. We are interested mainly in spray distribution; concurrent deletions should

not have a high impact, since, by the structure of the algorithm, logically deleted

nodes are skipped by the spray. Also, in many scenarios, a majority of the concurrent

inserts are performed towards the back of the list (corresponding to elements of lower

priority than those at the front). Finally, the effect of the spray distribution on the

height should be limited, since removing an element uniformly at random from the list

does not change its expected structure, and we closely approximate uniform removal.

Also, notice that cleaner threads (linearly traversing the bottom list) periodically

"refresh" the SkipList back to a clean state.

3.2.2 Motivating Result: Analysis on a Perfect SkipList

In this section, we illustrate some of the main ideas behind our runtime argument

by first proving a simpler claim, Theorem 3.1, which holds for an idealized SkipList.

Basically, Theorem 3.1 says that, on SkipList where nodes of the same height are

evenly spaced, the SPRAY procedure ensures low contention on individual list nodes.

More precisely, we say a SkipList is perfect if the distance between any two con-

secutive elements of height > j is 2i, and the first element has height 0. On a perfect

SkipList, we do not have to worry about probability concentration bounds when

considering SkipList structure, which simplifies the argument. (We shall take these

technicalities into account in the complete argument in the next section.)

We consider the SPRAY(H, L, D) procedure with parameters H = log n - 1, L =

log n, and D = 1, the same as our implementation version. Practically, the walk starts

at level log n - 1 of the SkipList, and, at each level, uniformly chooses a number of

forward steps between [1, log n] before descending. We prove the following upper

bound on the collision probability, assuming that log n is even:

Theorem 3.1. For any position x in a perfect SkipList, let Fn(x) denote the proba-

44

bility that a SPRAY(log n - 1, log n, 1) lands at x. Then

F. (x) < 1/ (2n).

Proof. In the following, fix parameters H = log n -1, L = log n, D = 1 for the SPRAY,

and consider an arbitrary such operation. Let ai be the number of forward steps taken

by the SPRAY at level i, for all 0 < i < log n - 1.

We start from the observation that, on a perfect SkipList, the operation lands at

the element of index Z>o7 ai2' in the bottom list. Thus, for any element index

X, to count the probability that a SPRAY which lands at x, it suffices to compute

the probability that a (log n + 1)-tuple (ao,... , aiogn) whose elements are chosen

independently and uniformly from the interval { 1,...,log n} has the property that

the jumps sum up to x, that is,

log n-I

S ai2' = x. (3.1)
i=O

For each i, let ai (j) denote the jth least significant bit of a in the binary expansion

of ai, and let x(j) denote the jth least significant bit of x in its binary expansion.

Choosing an arbitrary SPRAY is equivalent to choosing a random (log n)-tuple

(a,... , aiog n) as specified above. We wish to compute the probability that the random

tuple satisfies Equation 3.1. Notice that, for To"n4- a2 = x, we must have that

ao(1) = x(1), since the other a are all multiplied by some nontrivial power of 2 in

the sum and thus their contribution to the ones digit (in binary) of the sum is always

0. Similarly, since all the ai except ao and a, are bit-shifted left at least twice, this

implies that if Equation 3.1 is satisfied, then we must have a1 (1) + ao(2) = x(2).

In general, for all 1 < k < log n - 1, we see that to satisfy Equation 3.1, we must

have that ak(1) + ak_1(2) + ... + ao(k) + c = x(k), where c is a carry bit determined

completely by the choice of ao,. .. , aklI.

Consider the following random process: in the 0th round, generate ao uniformly

at random from the interval {1, ... , log n}, and test if ao(1) = x(1). If it satisfies this

45

condition, continue and we say it passes the first round, otherwise, we say we fail this

round. Iteratively, in the kth round, for all 1 < k < log n - 1, randomly generate

an ak uniformly from the interval {1,... , log n}, and check that ak(1) - ak-1(2) +

... + ao(k) + c = x(k) mod 2, where c is the carry bit determined completely by the

choice of ao, . . . , ak_1 as described above. If it passes this test, we continue and say

that it passes the kth round; otherwise, we fail this round. If we have yet to fail after

the (log n - 1)st round, then we output PASS, otherwise, we output FAIL. By the

argument above, the probability that we output PASS with this process is an upper

bound on the probability that a SPRAY lands at x.

The probability we output PASS is then

log n-2

Pr[pass Oth round] H Pr[pass (i + 1)th roundlAi]
i=O

where Ai is the event that we pass all rounds k < i. Since ao is generated uni-

formly from the interval { 1, 2, ... , log n}, and since log n is even by assumption, the

probability that the least significant bit of ao is x(1) is exactly 1/2, so

Pr[pass Oth round] = 1/2. (3.2)

Moreover, for any 1 < i < log n -- 2, notice that conditioned on the choice of a1, ... , ai,

the probability that we pass the (i + 1)th round is exactly the probability that the

least significant bit of ai+ 1 is equal to x(i + 1) - (ai(2) + . .. + ao(i + 1) + c) mod 2,

where c is some carry bit as we described above which only depends on a,, . . . , a2 .

But this is just some value v E {0, 1} wholly determined by the choice of ao,. .. , ai,

and thus, conditioned on any choice of ao,..., a2, the probability that we pass the

(i + 1)th round is exactly 1/2 just as above. Since the condition that we pass the kth

round for all k < i only depends on the choice ofao,. . . , a2 , we conclude that

Pr[pass (i + 1)th roundlAi] = 1/2. (3.3)

Therefore, we have Pr[output PASS] = (1 / 2) log - 1/n, which completes the proof.

46

r_

3.2.3 Complete Runtime Analysis for APPROXGETMINo

In this section, we show that, given a randomly chosen SkipList, each APPROxGET-

MIN() operation completes in O(log' n) steps, in expectation and with high probabil-

ity. As mentioned previously, this is equivalent to saying that the SPRAY operations

for each thread restart at most a constant number of times, in expectation and with

high probability. The crux of this result (stated in Corollary 3.2) is a characteri-

zation of the probability distribution induced by SPRAY operations on an arbitrary

SkipList, which we obtain in Theorem 3.3. Our results require some mathematical

preliminaries. For simplicity of exposition, throughout this section and in the full

analysis we assume n which is a power of 2. (If n is not a power of two we can instead

run SPRAY with the n set to the smallest power of two larger than the true n, and

incur a constant factor loss in the strength of our results.)

We consider SPRAYs with the parameters H = log n - 1, L = M log3 n, and

D = max (1, log log n). We will assume that all jump parameters are integers, and

that D divides H. The claim is true even when these assumptions do not hold, but

we only present the analysis in this special case because the presentation otherwise

becomes too messy. Let fn be the number of levels at which traversals are performed,

except the bottom level; in particular en = H/D.

Since we only care about the relative ordering of the elements in the SkipList

with each other and not their real priorities, we will call the element with the ith

lowest priority in the SkipList the ith element in the SkipList. We will also need the

following definition.

Definition 3.1. Fix two positive functions f(n), g(n).

" We say that f and g are asymptotically equal, f ~ g, if limn,,, f (n)/g(n) 1.

* We say that f < g, or that g asymptotically bounds f, if there exists a function

h ~- 1 so that f(n) < h(n)g(n) for all n.

47

Note that saying that f ~- g is stronger than saying that f = 6(g), as it insists

that the constant that the big-Theta would hide is in fact 1, i.e. that asymptotically,

the two functions behave exactly alike even up to constant factors.

There are two sources of randomness in the SPRAY algorithm and thus in the

statement of our theorem. First, there is the randomness over the choice of the

SkipList. Given the elements in the SkipList, the randomness in the SkipList is over

the heights of the nodes in the SkipList. To model this rigorously, for any such

SkipList S, we identify it with the n-length vectors (hl,... , h,) of natural numbers

(recall there are n elements in the SkipList), where hi denotes the height of the ith

node in the SkipList. Given this representation, the probability that S occurs is

El 2 -(hi).

Second, there is the randomness of the SPRAY algorithm itself. Formally, we

identify each SPRAY with the (fn + 1)-length vector (ao, ... , a) where 1 < ai <

M log3 n denotes how far we walk at height iD, and ao denotes how far we walk at

the bottom height. Our SPRAY algorithm uniformly chooses a combination from the

space of all possible SPRAYs. For a fixed SkipList S, and given a choice for the steps

at each level in the SPRAY, we say that the SPRAY returns element i if, after doing

the walk prescribed by the lengths chosen and the procedure described in Algorithm

1, we end at element i. For a fixed SkipList S E S and some element i in the SkipList,

we let Fn(i, S) denote the probability that a SPRAY returns element i. We will write

this often as Fn(i) when it is clear which S we are working with.

Definition 3.2. We say an event happens with high probability or w.h.p. for short

if it occurs with probability at least 1 - n-Q(M), where M is the constant defined in

Algorithm 2.

Top Level Theorems

With these definitions we are equipped to state our main theorems about SprayLists.

Theorem 3.2. In the model described above, no SPRAY will return an element beyond

the first M(1 + 1)o-(n)n log n ~ Mn logn, with probability at least 1 - n-(m).

48

This theorem establishes k = O(n log3 n)-error boundedness, stating that sprays

do not go too far past the first O(n log3 n) elements in the SkipList. The proof

of Theorem 3.2 is fairly straightforward and uses standard concentration bounds.

However, the tools we use there will be crucial to later proofs. The other main

technical contribution of this paper is the following theorem.

Theorem 3.3. For n > 2 and under the stated assumptions, there exists an interval

of elements I(n) = [a(n), b(n)] of length b(n) - a(n) ~- Mn log3 n and endpoint b(n) <

Mn log3 n, such that for all elements in the SkipList in the interval 1(n), we have that

1
F,(i, S) ~

Mn log3 n

w.h.p. over the choice of S.

In plain words, this theorem states that there exists a range of elements 1(n),

whose length is asymptotically equal to Mn log3 n, such that if you take a random

SkipList, then with high probability over the choice of that SkipList, the random

process of performing SPRAY approximates uniformly random selection of elements

in the range I(n), up to a factor of two. The condition b(n) < Mn log 3 n simply means

that the right endpoint of the interval is not very far to the right. In particular, if we

pad the start of the SkipList with R(n) = a(n) dummy elements, the SPRAY procedure

will approximate uniform selection from roughly the first Mn log3 n elements, w.h.p.

over the random choice of the SkipList.

Fairness and Runtime Bounds. Given this theorem, we can both establish k =

O(n log 3 n)-fairness and also bound the probability of collision for two Sprays, which

in turn bounds the running time for a APPROxGETMIN() operation,yielding the

following corollaries.

Corollary 3.1. The SPRAYLIST is k = O(n log3 n)-fair.

Corollary 3.2. In the model described above, APPROxGETMIN() takes O(log3 n)

time in expectation. Moreover, for any e > 0, APPROXGETMIN() will run in time

O(log3 n log -1) with probability at least 1 - e.

49

Corollary 3.1 is immediate. The proof of Corollary 3.2 is given in Section 3.2.3.

Combining Theorem 3.2 with Corollaries 3.1 and 3.2 gives the complete SPRAYLIST

picture:

Theorem 3.4. The SPRAYLIST is k-relaxed for k = O(n log3 n) supporting APPROX-

GETMIN() in time O(log 3 n).

Proof of Theorem 3.2

Throughout the rest of the section, we will need a way to talk about partial SPRAYs,

those which have only completely some number of levels.

Definition 3.3. Fix a SPRAY S, (ao,.. ., at) where 1 ai < Mlog 3 n.

" To any k-tuple (bk, ... , bf) for k > 0, associate to it the walk which occurs if,

descending from level enD, we take b, steps at each height rD, as specified in

SPRAY. We define the k-prefix of S to be the walk associated with (ak, ... , af).

We say the k-prefix of S returns the element that the walk described ends at.

" To any (k+1)-tuple (bo,... , bk) for k fn and any starting element i, associate

to it the walk which occurs if, descending from level kD, we take b, steps at each

height rD, as specified in SPRAY. We define the k-suffix of S to be the walk

associated with (ao, ... , ak), starting at the node the (f - k - 1)-prefix of S

returns. We say the k-prefix of S returns the element that the walk described

ends at.

" The kth part of S is the walk at level kD of length ak starting at the element

that the (tn - k + 1)-prefix of S returns.

Intuitively, the k-prefix of a spray is simply the walk performed at the k top levels of

the spray, and the k-suffix of a spray is simply the walk at the bottom k levels of the

spray.

For k > 0, let Ek denote the expected distance the SPRAY travels at the kDth

50

level if it jumps exactly M log 3 n steps. In particular,

Ek = M 2 kD log 3

We in fact prove the following, stronger version of Theorem 3.2.

Lemma 3.1. Let o-(n) = logn/(logn - 1). For any fixed a, the k-suffix of any

SPRAY will go a distance of at most (1 + ao-)(n)EkD+1, with probability at least 1 -

n--Q(M2 log 2
n) over the choice of the SkipList. To prove this we first need the following

proposition.

Notice that setting a = 1/log n and k = f, then gives us the Theorem 3.2. Thus

it suffices to prove Lemma 3.1. First, we require a technical proposition.

Proposition 3.1. For k < logrn and a > 0, the probability that the kth part of a

SPRAY travels more than (1 + a)M2k log 3 n distance is at most (1/n)Q(Ma2 lg 2
n)

Proof. Fix some node x in the list. Let XT be the number of elements with height

at least k that we encounter in a random walk of T steps starting at x. We know

that E(XT) = T/2k. Choose T = (1 + a)M2k log 3 n. Then by a Chernoff bound,

Pr(XT < (1 + a)M log3 n) < n-Q(Ma2 log2n)

Therefore, if we take T steps at the bottom level we will with high probability hit

enough elements of the necessary height, which implies that a SPRAY at that height

will not go more than that distance. E

Proof of Lemma 3.1. Without loss of generality, suppose we start start at the head of

the list, and j is the element with distance (1 +a)o-(n)EkD+1 from the head. Consider

the hypothetical SPRAY which takes the maximal number of allowed steps at each level

rD for r < k. Clearly this SPRAY goes the farthest of any SPRAY walking at levels kD

and below, so if this SPRAY cannot reach j starting at the front of the list and walking

only on levels kD and below, then no SPRAY can. Let x, denote the element at which

the SPRAY ends up after it finishes its rDth level for 0 < r < k and xkD+1 = 0,

and let d, be the distance that the SPRAY travels at level rD. For any r > 0, by

Proposition 3.1 and the union bound, Pr(3k : dr > (1 + a)ED) < n-(Mo 2
log

2

51

Therefore, w.h.p., the distance that this worst-case spray will travel is upper

bounded by

k k

S d, < (1 + a) Er
r=O r=O

< (I + a)u(n)EkD+1.

Outline of Proof of Theorem 3.3

We prove Theorem 3.3 by proving the following two results:

Lemma 3.2. For all elements i, we have

1
F (n, S) ,<

nMlog 3 n

with high probability over the choice of S.

Lemma 3.3. There is some constant A > 1 which for n sufficiently large can be

chosen arbitrarily close to 1 so that for all

1
i E [An log 2 n, 1 Mn log 3 n],I + 1/ log n

we have

1F (n) > 13Mn log n

with high probability over the choice of S.

Given these two lemmas, if we then let I(n) be the interval defined in Theorem

3.3, it is straightforward to argue that this interval satisfies the desired properties for

Theorem 3.3 w.h.p. over the choice of the SkipList S. Thus the rest of this section is

dedicated to the proofs of these two lemmas.

52

Fix any interval I = [a, b] for a, b E N and a < b. In expectation, there are

(b - a + 1) 2 k1 elements in I with height at least k in the SkipList; the following

Lemma bounds the deviation from the expectation.

Proposition 3.2. For any b, and any height h, let Db,h be the number of items

between the (b - k) th item and the bth item in the SkipList with height at least h, and

let Eb,h = (k + 1)2 1-h be the expected value of Db,h. Then for any a > 0,

Pr [IDb,h - Eb,hl > (1 + a)Eb,h] < e- (E,ha
2)

Proof. Let Xi be the random variable which is 1 if the (b - k + i)th item has a bucket

of height at least i, and 0 otherwise, and let X = Ej Xi. The result then follows

immediately by applying Chernoff bounds to X. E

Proof of Lemma 3.2

With the above proposition in place, we can now prove Lemma 3.2.

Proof of Lemma 3.2. Let 1o = [i - M log n + 1,i] and for k> 1 let

Ik = [[i - (1 + a)-(n)E(k-1)D] + 1, i],

and let tk denote the number of elements in the SkipList lying in Ik with height at

least kD. Define a SPRAY to be viable at level k if its (f - k)-prefix returns some

element in Ik, and say that a SPRAY is viable if it is viable at every level. Intuitively,

a SPRAY is viable at level k if, after having finished walking at level kD, it ends up at

a node in Ik. By Lemma 3.1, if a SPRAY is not viable at level k for any 1 < k < f, it

will not return x except with probability n-(MO2 log 2
n) over the choice of the SkipList,

for all k. Thus, by a union bound, we conclude that if a SPRAY is not viable, it will

not return x except with probability n-Q(Ma2 log 2
n) over the choice of the SkipList. It

thus suffices to bound the probability that a SPRAY is viable.

Let tk be the number of elements in Ik with height at least kD. The probability

that the kDth level of any SPRAY lands in Ik is at most tk/(M log3 n), since we choose

53

how far to spray at level kD uniformly at random. By Proposition 3.2 we know that

except with probability e-Q(a 2 (Ek+1)) - n-Q(Ma2 log 2
n), Ik contains at most

(1 + a) 2 u-(n)E(k-l)D2 -kD

- (1 + a)2 Ma-(n) log 2 n

elements with height at least kD. Hence,

tk - I+a2U 1
(M log 3 n) -- log o

except with probability n-Q(Ma2 log 2
n), for any fixed k. By a union bound over all

log n/log log n levels, this holds for all levels except with probability n-Q(Ma2 log
2
n)

Thus, the probability that a SPRAY lands in 1o after it completes but the traversal at

the bottom of the list is

(+

)u () log n/ log log n + ce) log n

except with probability n-Q(Ma 2log2 n). If we choose (1 + a)2 = (1 + so that
log n

a = o-(n) 1 /2 - 1, we obtain that since (log n) loglogn = I. Since o-(n)logn/log log nn

and

2

login - 41

it must be that with high probability, the fraction of SPRAYS that land in 1o is

asymptotically bounded by n- 1. Conditioned its f-prefix returning something in

o, for the SPRAY to return i, it must further take the correct number of steps at

the bottom level, which happens with at most a o fraction of these SPRAYS.

Moreover, if the f-prefix of the SPRAY does not return an element in Io, then the

SPRAY will not hit i, since it simply too far away. Thus Fn(i, S) < 1 , as
nM log P

claimed, as claimed.

El

54

Proof of Lemma 3.3

Proof Strategy. We wish to lower bound the probability of hitting the ith smallest

item, for i in some reasonable interval which will be precisely defined below. For

simplicity of exposition in this section, we will assume that all the endpoints of the

intervals we define here are integers are necessary. While this is not strictly true,

the proof is almost identical conceptually (just by taking floors and ceilings whenever

appropriate) when the values are not integers and much more cumbersome.

Fix some index i. As in the proof of Lemma 3.2, we will again filter SPRAY

by where they land at each level. By defining slightly smaller and non-overlapping

regions than in the proof of Lemma 3.2, instead of obtaining upper bounds on the

probabilities that a SPRAY lands at each level, we are instead able to lower bound

the probability that a SPRAY successfully lands in the "good" region at each level,

conditioned on the event that they landed in the "good" region in the previous levels.

Formally, let I = [i - log3 n, i - 1]. Let S be a spray, chosen randomly. Then if

i - log3 n > 0, we know that if the e-prefix of S returns an element in 1o, then S has

a 1/log3 n probability of stepping to i. Inductively, for all k < f, - 1, we are given

an interval k_1 = [ak-1, bk-1] so that ak1 > 0. Notice that there are, except with

probability n-(Ma 2 lg 2 n), at most M log3 n elements in [bk-i - 1 EkD, bk-1] with

height kD, by Proposition 3.2.

Then, let ak bki1 - IEtk_1)D and bk = ak1 - 1, and let Ik - [ak,bk]. For

all 0 < k < 4 - 1, let tk be the number of elements in Ik with height (k + l)D.

Assume for now that ak > 0. Then, if the (k - 1)-prefix of S returns an element i in

Ik, then every element of Ik_1 of height kD by some walk of length at most M log3 n

at level kD, since there are at most M log3 n elements of height k log log n in the

interval [ak, bk_1] and bk < ak_1. Thus, of the SPRAYS whose (k + 1) prefixes return

an element in Ik, a tk/(Mlog3 n) fraction will land in Ik-1 after walking at height

kD. The following proposition provides a size bound on the Ik.

55

Proposition 3.3. Let Sk = bk - ak + 1. For all k > 2, we have

70 -71 1logn)
EkD 5 sk < 70+-1 2 Ek

log 2n)

with yo= lo " and -,= log n+a+l
wit ' (a+1)(logn+1) a i (a+1)(log n+1)'

Proof. Define k to be the quantity so that sk = kEk. Clearly o = 1, and inductively,

1
Sk = Ek - sk_1

1+Ha
1 (1 4_1)Ek

o+a logn

so

1 1
1+a logn

Homogenizing gives us a second order homogeneous recurrence relation

-- gn k-1
1

+ k-2
log n

with initial conditions (o = 1 and 1 = 1-- - 1. Solving gives us that+a log n

4 =70 +71 (-

Notice that 2k+2 < 2k and 2k+3 > 2k+1 and moreover, 2k+1 < 2k/ for any k, k'.

Thus for k > 2 the maximum of k occurs at k = 2, and the minimum occurs at

k = 1. Substituting these quantities in gives us the desired results. D

Once this result is in place, we use it to obtain a lower bound on the hit probability.

Lemma 3.4. There is some constant A > 1 which for n sufficiently large can be

chosen arbitrarily close to 1 so that for all i E [An log2 n, 1 1 gMnlog3 n], we have

F(n) > 3 with high probability.

This statement is equivalent to the statement in Theorem 3.3.

56

G = 1 I

log n

Proof. The arguments made in Section A.3 are precise, as long as (1) every element

of Ik-i can be reached by a walk from anywhere in Ik at level k of length at most

M log 3 n, and (2) each ak > 0. By Proposition 3.2, condition (2) holds except with

probability n-(o 2 Mlog 2 n) Moreover, each ak 0 is equivalent to the condition that

i log3 n + jEk"_ Sk, but by Proposition 3.3, we have that (except with probability

-O(Ma2 log 2 n)) that

En-1

('Sk _ l0 O log 2 nEk.
k= (k=O

For the choice of a = 1, the first term in this product can be made arbitrarilylog n'

close to one for n sufficiently large, and thus we have that except with probability

-O(a
2 Mlog

2 n)

fn -1

ZSk < AMn log 2 n,
k==1

for some A which can be made arbitrarily close to one for n sufficiently large.

By Propositions 3.2 and 3.3, by a union bound, we have that except with proba-

bility n-O(Ma2 log 2 n)

tk> 2-D '70 - 71 M log3 n
log n

for all k. Thus by the logic above, if we let Hk denote the event that the (k+ 1)-prefix

of the spray is in Ik, we have that the probability that the spray hits i is

in--1

> Pr(spray hits ilHo) (i Pr(Hk_ IIk) Pr(Hfn_1)
(k=1

> 1 -1 tk> 11 M-J g
- log3 n k Mlogn

I [log log n] (T ~ i)
loga n og)n

57

If we choose a 1 1, then one can show thatlog n'

{1 \ E

("O- >-i og n9 - 11

so we conclude that F(n) > 1 with high probability.
-)nlog 3 n

Proof of Corollary 3.2

We have shown so far that on a clean skip list, SPRAY operations act like uniformly

random selection on a predictable interval I near the front of the list of size tending

to Mn log3 n. We justify here why this property is sufficient to guarantee that SPRAY

operations execute in polylogarithmic time. A single SPRAY operation always takes

polylogarithmic time, however, a thread may have to repeat the SPRAY operation

many times. We show here that this happens with very small probability.

Corollary 3.2. In the model described above, DELETEMIN takes O(log3 n) time in

expectation. Moreover, for any e > 0, DELETEMIN will run in time O(log3 n log 1)

with probability at least 1 - c.

Proof. Recall that a thread has to retry if either (1) its SPRAY lands outside of I,

or (2) the SPRAY collides with another SPRAY operation which has already removed

that object. We know by Theorem 3.3 and more specifically the form of 1(n) given

in Lemma 3.4 that (1) happens with probability bounded by 0(1/log n) as n -+ o

for each attempted SPRAY operation since Lemma 3.4 says that there are O(n log2 n)

elements before the start of I(n), and Theorem 3.3 says that each is returned with

probability at most 0(1/n log 3 n), and (2) happens with probability upper bounded by

the probability that we fall into set of size n-I in I, which is bounded by 0(1/ log3 n)

for n sufficiently large by Lemma 3.2. Thus, by a union bound, we know that the

probability that SPRAY operations must restart is bounded by 0(1/log n) < 1/2 for

n sufficiently large. Each spray operation takes log3 n time, and thus the expected

58

time it takes for a SPRAY operation to complete is bounded by

log3 nE 2- = O(log 3 n)
i=0

and thus we know that in expectation, the operation will run in polylogarithmic time,

as claimed. Moreover, for any fixed e > 0, the probability that we will restart more

than O(log(1/E)/ log log n) times is at most c, and thus with probability at least 1 - E,

we will run in time at most O(log3 nlog(I/c)/ log log n). E

3.3 Implementation Results

Methodology. Experiments were performed on a Fujitsu RX600 S6 server with four

Intel Xeon E7-4870 (Westmere EX) processors. Each processor has 10 2.40 GHz cores,

each of which multiplexes two hardware threads, so in total our system supports 80

hardware threads. Each core has private write-back Li and L2 caches; an inclusive

L3 cache is shared by all cores.

We examine the performance of our algorithm on a suite of benchmarks, designed

to test its various features. Where applicable, we compare several competing imple-

mentations, described below.

Lotan and Shavit Priority Queue. The SkipList based priority queue implemen-

tation of Lotan and Shavit on top of Keir Fraser's SkipList [32] which simply traverses

the bottom level of the SkipList and removes the first node which is not already logi-

cally deleted. The logical deletion is performed using a Fetch-and-Increment oper-

ation on a 'deleted' bit. Physical deletion is performed immediately by the deleting

thread. Note that this algorithm is not linearizable, but quiescently consistent. This

implementation uses much of the same code as the SPRAYLIST, but does not provide

state of the art optimizations.

Linden and Jonsson Priority Queue. The priority queue implementation pro-

vided by Lind6n et. al. is representative of state of the art of linearizable priority

queues [51]. This algorithm has been shown to outperform other linearizable priority

59

queue algorithms under benchmarks similar to our own and is optimized to minimize

compare-and-swap (CAS) operations performed by DELETEMIN. Physical deletion

is batched and performed by a deleting thread when the number of logically deleted

threads exceeds a threshold.

Fraser Random Remove. An implementation using Fraser's SkipList which, when-

ever DELETEMIN Would be called, instead deletes a random element by finding and

deleting the successor of a random value. Physical deletion is performed immediately

by the deleting thread. Although this algorithm has no ordering semantics whatso-

ever, we consider it to be the performance ideal in terms of throughput scalability as

it incurs almost no contention.

Wimmer et. al. k-Priority Queue. The relaxed k-Priority Queue given by Wim-

mer et. al. [73]. This implementation provides a linearizable priority queue, except

that it is relaxed in that each thread might skip up to k of the highest priority tasks;

however, no task will be skipped by every thread. We test the hybrid version of

their implementation as given in [73]. We note that this implementation does not

offer scalability past 8 threads (nor does it claim to). Due to compatibility issues,

we were unable to run this algorithm on the same framework as the others (i.e. Syn-

chrobench). Instead, we show its performance on the original framework provided by

the authors. Naturally, we cannot make direct comparisons in this manner, but the

scalability trends are evident.

SprayList. The algorithm described in Section 3.1, which chooses an element to

delete by performing a SPRAY with height LlogpJ + 1, jump length uniformly dis-

tributed in [1, [logpj + 1] and padding length plogp/2. Each thread becomes a

cleaner (as described in Section 3.1.3) instead of SPRAY with probability 1/p. Note

that in these experiments, p is known to threads. Through testing, we found these

parameters to yield good results compared to other choices. Physical deletion is per-

formed only by cleaner threads. Our implementation is built on Keir Fraser's SkipList

algorithm [32], using the benchmarking framework of Synchrobench [341. The code

has been made publicly available [5].

60

Throughput

-0- LoLn Shavit
--*- - dMu oosn

Randm .

-- -I ---

0 10 20 30 40 50 60 70 80

threads

Cache Misses

100# t s r

#go-eds

U

CAS Failures

0.6
0.4-

0 10 20 30 40 s0 1. 70 80

threads

Throughput (Wimmer at. al.)

2.5x 10' - _______________

-5

1.566 10I

10 2h 3'0 #threads

Figure 3-1: Priority Queue implementation performance on a 50% insert, 50% delete
workload: throughput (operations completed), average CAS failures per DeleteMin, and

average Li cache misses per operation.

32 Thread Distribution120III~iIII[

Index Found

60

4 Thread Distribution

200 40 ' 600 ' , 1o0 I 20 , 140 16 186 200

Index Found

Figure 3-2: The frequency distribution of SPRAY operations when each thread performs a
single SPRAY on a clean SPRAYLIST over 1000 trials. Note that the x-axis for the 64

thread distribution is twice as wide as for 32 threads.

61

2.sx 10'

17
2'. 0x106-

0

osolo-

S 10'

- o n Shavt --

-l--Llnden jonsson
-- I-- Random

.46--

1.2 -

0

60-

700 goo 900 1000

00 < -M

Undirected Grid Unweighted

---- X- - spraybst-- Lotansiot

-*- * nden)onsson

E
1
.2

E
1
.2

4000

30DO

2000

0

2000-- - -

1000 - X

0
0 10 20 30 40 50 60 70 80 91

threads

CA Road Unweighted
12DOO -

1501 --
- - U- - tndenjonssn

6000- - - -

4000

2000

0 10 20 30 40 50 60 70 80 91

threads

Livejournal Unweighted
14000 -

L- n
-

-
---10000- - -00-Unden0onsson

10000-li1 U403oo

60000t__/ _

0 10 20 30 40 s0 60 70 80 0

threads

Undirected Grid Weighted

- SproyLst
LotwnShav t

- ---- Undenjonso

0 10 20 30 40 50 60 70 80 90

threads

CA Road Weighted
7000

6000 - - 5Lo6nShvt--
--- 0Undenjo s6

3000 -

1000 - ~

0 10 20 30 40 50 60 70 80 9C

threads

Livejournal Weighted

60000 - - ---Sh _ I
----- Undenjonsso

40000 - - -0 - --0--30000/
20000

0 10 20 30 40 50 60 70 s

threads

Figure 3-3: Runtimes for SSSP using each PriorityQueue implementation on each network
(lower is better).

DES Experiment

1. 4x 10 6-

-a1.2xl06

_ .210 __-[>_-Spray 100

E83.0 x105
- -- 1- - Spray 1000

--- Spray 10k
U 5 _ _ _ _ _ _ _

S6.0x5 -x ,1 Lj 100
--h--d L j 1000tA5

M 4.Ox 10 -Lj 0k
5 _ _ _ _ _ _ti

2. Ox10

0-
0 10 20 30 40 50 60 70 80

threads

Figure 3-4: Work performed for varying dependencies (higher is better). The mean number

of dependants is 2 and the mean distance between an item and its dependants varies

between 100, 1000, 10000.

62

E

I

0

0

I5000 --

0

90

3.3.1 Throughput

We measured throughput of each algorithm using a simple benchmark in which each

thread alternates insertions and deletions, thereby preserving the size of the underly-

ing data structure. We initialized each priority queue to contain 1 million elements,

after which we ran the experiment for 1 second.

Figure 3-1 shows the data collected from this experiment. At low thread counts

(< 8), the priority queue of Lind6n et. al. outperforms the other algorithms by up

to 50% due to its optimizations. However, like Lotan and Shavit's priority queue,

Lind6n's priority queue fails to scale beyond 8 threads due to increased contention

on the smallest element. In particular, the linearizable algorithms perform well when

all threads are present on the same socket, but begin performing poorly as soon

as a second socket is introduced above 10 threads. On the other hand, the low

contention random remover performs poorly at low thread counts due to longer list

traversals and poor cache performance, but it scales almost linearly up to 64 threads.

Asymptotically, the SPRAYLIST algorithm performs worse than the random remover

by a constant factor due to collisions, but still remains competitive.

To better understand these results, we measured the average number of failed

synchronization primitives per DELETEMIN operation for each algorithm. Each im-

plementation logically deletes a node by applying a (CAS) operation to the deleted

marker of a node (though the actual implementations use Fetch-and-Increment

for performance reasons). Only the thread whose CAS successfully sets the deleted

marker may finish deleting the node and return it as the minimum. Any other thread

which attempts a CAS on that node will count as a failed synchronization primitive.

Note that threads check if a node has already been logically deleted (i.e. the deleted

marker is not 0) before attempting a CAS.

The number of CAS failures incurred by each algorithm gives insight into why

the exact queues are not scalable. The linearizable queue of Linden et. al. induces

a large number of failed operations (up to 2.5 per DELETEMIN) due to strict safety

requirements. Similarly, the quiescently consistent priority queue of Lotan and Shavit

63

sees numerous CAS failures, particularly at higher thread counts. We observe a dip

in the number of CAS failures when additional sockets are introduced (i.e. above

10 threads) which we conjecture is due to the increased latency of communication,

giving threads more time to successfully complete a CAS operation before a com-

peting thread is able to read the old value. In contrast, the SPRAYLIST induces

almost no CAS failures due to its collision avoiding design. The maximum average

number of failed primitives incurred by the SPRAYLIST in our experiment was .0090

per DELETEMIN which occurred with 4 threads. Naturally, the random remover

experienced a negligible number of collisions due to its lack of ordering semantics.

Due to technical constraints, we were unable to produce a framework compati-

ble with both the key-value-based implementations presented in Figure 3-1 and the

task-based implementation of Wimmer et. al. However, we emulated our throughput

benchmark within the framework of [731 by implementing tasks whose only function-

ality is to spawn a new task and re-add it to the system.

Figure 3-1 shows the total number of tasks processed by the k-priority queue of

Wimmer et. al.3 with k = 1024 over a 1 second duration. Similarly to the priority

queue of Lind6n et. al., the k-priority queue scales at low thread counts (again < 8),

but quickly drops off due to contention caused by synchronization needed to maintain

the k-linearizability guarantees. Other reasonable values of k were also tested and

showed identical results.

In sum, these results demonstrate that the relaxed semantics of SPRAY achieve

throughput scalability, in particular when compared to techniques ensuring exact

guarantees.

3.3.2 Spray Distribution

We ran a simple benchmark to demonstrate the distribution generated by the SPRAY

algorithm. Each thread performs one DELETEMIN and reports the position of the

element it found. (For simplicity, we initialized the queue with keys 1, 2,... so that

3We used the hybrid k-priority queue which was shown to have the best performance of the
various implementations described [73].

64

the position of an element is equal to its key. Elements are not deleted from the

SPRAYLIST so multiple threads may find the same element within a trial.) Figure 3-2

shows the distribution of elements found after 1000 trials of this experiment with 32

and 64 threads.

We make two key observations: 1) most SPRAY operations fall within the first

roughly 400 elements when p = 32 and 1000 elements when p = 64 and 2) the modal

frequency occurred roughly at index 200 for 32 threads and 500 for 64 threads. These

statistics demonstrate our analytic claims, i.e., that SPRAY operations hit elements

only near the front of the list. The width of the distribution is only slightly super-

linear, with reasonable constants. Furthermore, with a modal frequency of under 100

over 1000 trials (64000 separate SPRAY operations), we find that the probability of

hitting a specific element when p = 64 is empirically at most about .0015, leading

to few collisions, as evidenced by the low CAS failure count. These distributions

suggest that SPRAY operations balance the trade-off between width (fewer collisions)

and narrowness (better ordering semantics).

3.3.3 Single-Source Shortest Paths

One important application of concurrent priority queues is for use in Single Source

Shortest Path (SSSP) algorithms. The SSSP problem is specified by a (possibly

weighted) graph with a given "source" node. We are tasked with computing the

shortest path from the source node to every other node, and outputting those dis-

tances. One well known algorithm for sequential SSSP is Dijkstra's algorithm, which

uses a priority queue to repeatedly find the node which is closest to the source node

out of all unprocessed nodes. A natural parallelization of Dijkstra's algorithm simply

uses a parallel priority queue and updates nodes concurrently, though some extra care

must be taken to ensure correctness.

Note that skiplist-based priority queues do not support the DECREASEKEY()

operation which is needed to implement Dijkstra's algorithm, so instead duplicate

nodes are added to the priority queue and stale nodes (identified by stale distance

estimates) are ignored when dequeued.

65

We ran the single-source shortest path algorithm on three types of networks:

an undirected grid (1000 x 1000), the California road network, and a social media

network (from LiveJournal) [50]. Since the data did not contain edge weights, we ran

experiments with unit weights (resembling breadth-first search) and uniform random

weights. Figure 3-3 shows the running time of the SSSP algorithms with different

thread counts and priority queue implementations.

We see that for many of the test cases, the SPRAYLIST significantly outperforms

competing implementations at high thread counts. There are of course networks for

which the penalty for relaxation is too high to be offset by the increased concurrency

(e.g. weighted social media) but this is to be expected. The LiveJournal Weighted

graph shows a surprisingly high spike for 60 cores using the SPRAYLIST which is an

artifact of the parameter discretization. In particular, because we use Llog p] for the

SPRAY height, the SPRAY height for 60 cores rounds down to 5. The performance of

the SPRAYLIST improves significantly at 64 cores when the SPRAY height increases to

6, noting that nothing about the machine architecture suggests a significant change

from 60 to 64 cores.

3.3.4 Discrete Event Simulation

Another use case for concurrent priority queues is in the context of Discrete Event

Simulation (DES). In such applications, there are a set of events to be processed

which are represented as tasks in a queue. Furthermore, there are dependencies

between events, such that some events cannot be processed before their dependencies.

Thus, the events are given priorities which respect the partial order imposed by the

dependency graph. As an example, consider n-body simulation, in which events

represent motions of each object at each time step, each event depends on all events

from the preceding time step. Here, the priority of an event corresponds to its time

step.

We emulate such a DES system with the following methodology: we initially insert

1 million events (labeled by an ID) into the queue, and generate a list of dependencies.

The number of dependencies for each event i, is geometrically distributed with mean

66

6. Each event dependent on i is chosen uniformly from a range with mean i+ K and

radius vK. This benchmark is a more complex version of the DES-based benchmark

of 151], which in turn is based on the URDME stochastic simulation framework 125].
Once this initialization is complete, we perform the following experiment for 500

milliseconds: Each thread deletes an item from the queue and checks its dependents.

For each dependent not present in the queue, some other thread must have already

processed it. This phenomenon models an inversion in the event queue wherein an

event is processed with incomplete information, and must be reprocessed. Thus, we

add it back into the queue and we call this wasted work. This can be caused by the

relaxed semantics, although we note that even linearizable queues may waste work if

a thread stalls between claiming and processing an event.

This benchmark allows us to examine the trade-off between the relaxed seman-

tics and the increased concurrency of SPRAYLISTS. Figure 3-4 reports the actual

work performed by each algorithm, where actual work is calculated by measuring

the reduction in the size of the list over the course of the experiment, as this value

represents the number of nodes which were deleted without being reinserted later

and can thus be considered fully processed. For each trial, we set 6 = 2 and tested

K = 100,1000, 10000.

As expected, the linearizable priority queue implementation does not scale for any

value of K. As in the throughput experiment, this experiment presents high levels

of contention, so implementations without scaling throughput cannot hope to scale

here despite little wasted work. The SPRAYLiST also fails to scale for small values

of K. For K = 100, there is almost no scaling due to large amounts of wasted work

generated by the relaxation. However, as. K increases, we start to see more scalability,

with K = 1000 scaling up to 16 threads and K = 10000 scaling up to 80 threads.

To quantify the scalability relative to the distribution of dependencies, for each

thread count, we increased K until performance plateaued and recorded the value of

K at which the plateau began. Figure 3-5 reports the results of this experiment. Note

that the minimum K required increases near linearly with the number of threads.

67

Relaxation vs Scaling

I -00

10 20 30 40

Threads
50 60 70

Figure 3-5: Minimum value of K which maximizes the performance of the SPRAYLIST for
each fixed number of threads.

68

E
=

7000 -

6000-

5000-

4000-

3000 -

2000-

1000-

0-
0 80

.

Chapter 4

MULTIQUEUEs: Power of Choice

Allocations

In this chapter, we consider the MULTIQUEUE strategy based on the data structure

of Rihani et al. [64]. We start by instantiating n sequential priority queues, each

of which is protected by a lock. To insert an element, each thread repeatedly picks

a queue at random, and tries to lock it. When successful, the thread inserts the

element into the queue, and unlocks it. Otherwise, the thread either spins on the lock

or re-tries with a new randomly chosen lock.

To delete an element, the algorithm samples two queues uniformly, and reads the

top element from both. It then locks the queue whose top element had higher priority,

removes that value, if it has not changed, and returns it. If the algorithm failed to

obtain the lock, or if the top element has changed, then it releases all locks, and

retries. Algorithms 3 and 4 give pseudocode for INSERT() and APPROxGETMIN()

respectively.

Although MULTIQUEUEs were shown to have fantastic throughput and seem-

ingly reasonable rank error when they were initially introduced [641, it was not clear

whether they provided provable guarantees. While there is a simple argument show-

ing that MULTIQUEUES incur low rank error in the initial state, one might expect

that even with the two-choice optimization applied to deletes, MULTIQuBUEs could

still experience deteriorating state over long executions, possibly leading to rank error

69

proportional to (some function of) execution length. This would be a very undesirable

characteristic and a potential worry for application designers.

This chapter will address that issue, showing rigorously that MULTIQUEUES ex-

hibit O(n log n)-error boundedness and fairness, independent of execution length. Al-

though establishing O(n log n) fairness is relatively straightforward, the O(n log n)-

error boundedness result is quite technical and will be the main focus.

Algorithm 3 MULTIQUEUE INSERT()

repeat
i +- UniformRandom(1, n)

until try-lock(Qj) successful

Qj.INSERT()(e)
Qj.unlock()

Algorithm 4 MULTIQUEUE GETMIN()

repeat
i +- UniformRandom (1, n)
j +- UniformRandom(1, n)
if Qj. min > Qj. min then

swap(i, j)
until try-lock(Qj) successful

Qj.GETMIN()(e)
Qj.unlock()

4.1 Related Work

The first instance of a distributed data structure implementation using a similar

approach to the one we consider is probably the parallel branch-and-bound framework

by Karp and Zhang [45]. In their construction, each thread is assigned a queue, and

elements are inserted randomly into one of the queues. Each thread removes from its

own queue. This critically relies on the synchronicity of PRAM threads to achieve

bounds on average rank and maximum rank difference. It is easy to see that thread

delays can cause the rank difference to become unbounded.

70

Rihani et al. show via a basic balls-into-bins argument that, initially, before

any elements are removed, the expected rank cost is 0(n), and the max cost is

0(n log n) with high probability. However, this claim is not sufficient to establish a

relaxation parameter k under which MULTIQUEUEs are k-relaxed, since the state of

the MULTIQUEUE system might deteriorate over time. Our argument is significantly

more general, since it applies to any time in the execution of the process.

In addition to [64], variants of this approach have also been considered in other

contexts, for instance for relaxed queues [36] and priority schedulers [58].

Technical Overview. A tempting first approach at analysis is to reduce to classic

"power of two choices" processes, e.g. [8, 60], in which balls are always inserted into

the least loaded of two randomly chosen bins. A simple reduction between these two

processes exists for the case where labels are inserted into the queues in round-robin

fashion (see Section 4.2 for details). However, this reduction breaks if elements are

inserted uniformly at random, as is the case in real systems. Another important

difference from the classic process is that elements are labelled, and so the state of the

system at a given step is highly correlated with previous steps. For instance, given

a queue Q whose top element has label f, if we wish to characterize the probability

that the next label on top of Q is a specific value f' > f, we need to know whether the

history of elements examined by the algorithm (in other queues) contains element l'.

Such correlations make a standard step-by-step analysis extremely challenging.

We circumvent these issues by relating the original labelled process to a continuous

exponential process, which reduces correlations by replacing integer labels with real-

valued labels. In this process, on every "insertion", we insert a new label whose value

equals that of the latest inserted label in that bin (or 0 for the first insertion), plus an

exponential random variable of mean n. Intuitively, we wish to simulate the integer

label insertion process with the same mean n, while removing correlations but using

continuous label values to prevent label clashes and reduce correlations. Once this

insertion process has ended, we replace each (real-valued) label with its rank among

all (real-valued) labels.

We relate these two processes by the following key claim: the rank distributions

71

for the original process and for the exponential process are identical. More precisely,

for any queue i and rank j, the event that, after insertion, the label with rank j

is located in queue i has the same probability in the original process and in the

exponential process (and all such events are independent in both processes).

Given this fact, we can couple the two processes as follows. We first couple

the insertion steps such that each bin contains the same sequence of ranks in both

processes. We then couple the removal steps so that they make exactly the same

sequence of random choices. Under this coupling, the two processes will pay the same

rank cost. Thus, it will suffice to characterize the rank cost of the exponential process

under our removal scheme.

This is achieved via two steps. The first is a potential argument which carefully

characterizes the average value of labels on top of the queues, and the maximum

deviation from the average by a queue, at any time t > 0. This part of the proof

is very technical, and generalizes an analytic approach developed for weighted balls-

into-bins processes by Peres, Talwar and Wieder [60]. Specifically, if we let xi(t)

be the difference between the label on top of queue i at time t and the mean top

label across all queues, then the total potential of the system at time t is defined as

j= [exp(ozix/n) + exp(-axi/n)].

The key claim in the argument is showing that the expected value of this poten-

tial is bounded by O(n) for any step t. This is done by a careful technical analysis

of the expected change in potential at a step, which proves that the potential has

supermartingale-like behavior: that is, it tends to decrease in expectation once it sur-

passes the O(n) threshold. It is interesting to note that neither of the two exponential

factors in the definition of the potential satisfies this bounded increase property in

isolation, yet their sum can be bounded in this way.

The O(n) bound on the total potential provides a strong handle on the maximum

deviation from the mean in the exponential process. The last step of our argument

builds on this characterization to show that, since label values cannot stray too far

either above or below the mean, the ranks of these values among all values on top

of queues cannot be too large. In particular, the average rank of elements on top of

72

queues must be O(n), and the maximum rank is O(n log n). The rank equivalence

theorem implies our main claim.

The analytic framework we sketched above is quite general. It can be extended

to showing that this implementation strategy is robust to insertion bias, i.e. that it

guarantees similar rank bounds even if the insertion process is biased (within some

constant -y < 1) towards some of the bins. Further, it also applies to the (1 + 3)

variant of the process, where each removal considers two randomly chosen queues

with probability 3 < 1, and a single queue otherwise. Formally, the expected cost at

a step is O(n/0 2), and the expected maximum cost at a step is 0(n log n/0).

Balls-into-bins Processes. In the classic two-choice balanced allocation process,

at each step, one new ball is to be inserted into one of n bins; the ball is inserted

into the less loaded among two random choices [8, 54j. In this setting, it is known

that the most loaded bin is at most O(log log n) above the average. The literature

studying extensions of this process is extremely vast; we direct the reader to [631 for

a survey. Considerable effort has been dedicated to understanding guarantees in the

"heavily-loaded" case, where the number of insertion steps is unbounded [10, 60], and

in the "weighted" case, in which ball weights come from a probability distribution [11,

711. In a tour-de-force, Peres, Talwar, and Wieder [60] gave a potential argument

characterizing a general form of the heavily-loaded, weighted process on graphs. The

second step in our proof, which characterizes the deviation of weights from the mean

in the exponential process, builds on their approach. Specifically, we use a similar

potential function, and the parts of the analysis are similar. However, we generalize

their approach to the case of biased insert distributions, and our argument diverges

in several technical points: in particular, the potential analysis under unbalanced

conditions is different. The first and third steps of our argument are completely new,

as we consider a more complex labelled allocation process.

73

4.2 Reduction to Two-Choices Process for Round-

Robin Insertions

Process Description. As a warm-up result, we will consider the following simple

process: we are given n queues, into which consecutively labeled elements are inserted

in round-robin order: at the tth insertion step, we insert the element with label t into

bin t (mod n). To remove an element, we pick two queues at random, and remove

the element of lower label on top of either queue. We measure the cost of a removal

as the rank of the removed label among labels still present in any of the queues.

Reduction. We will associate a "virtual" bin Vi with each queue i. Whenever an

element is removed from the queue i, it gets immediately placed into the corresponding

virtual bin. Notice that in every step we are removing the element of minimum label,

which, by round-robin insertion, corresponds to the queue having been removed from

less times than the other choice. Alternatively, we are inserting the removed element

into the less loaded virtual bin, out of two random choices (implicitly breaking ties

by bin ID). This is the classic definition of the two-choices process [81, which has been

analyzed for the long-lived case in e.g. [10]. One can prove bounds on the rank of

elements removed using the existing analyses of this process, e.g. [10, 60].

The Reduction Breaks for Random Insertions. Notice that the critical step in

the above argument is the fact that, out of two random choices i and j, the less loaded

virtual bin corresponds to the queue which has lower label on top. This does not hold

in the random insertion case; for instance, it is possible for a bin to get two elements

with consecutive labels, which breaks the above property. Upon closer examination,

we can observe that in the random insertion case, the correlation between the event

that queue i has lower label than queue j and the event that queue i has been removed

from less times than queue j exists, but is too weak to allow a direct reduction.

74

4.3 Random Inserts Process Definition

We are given with n priority queues, labeled 1, . . . , n. To insert, we choose queue i

with probability 7ri E (0, 1), and insert into that queue. We assume that ZiU 7ri = 1,

and that the bias is bounded, i.e. there exists a constant '. E (0, 1) such that, for

any queue i, 1 - L g < 1 + -y. To remove, with probability 0 < 3 < 1, we pick

two queues u.a.r., and remove the element of minimum label among the two choices,

and with probability (1 - /) remove from a random queue. We call such a process a

(1 + /)-sequential process. When omit / when unimportant or clear from context.

At any point in the execution, we define the rank of any element to be the number

of elements currently in the system which have lower label than it (including itself), so

the minimal rank is 1. Our goal is to show that the ranks of the elements returned by

the random process are small, throughout the entire execution. We will restrict our

attention to executions which never inspect empty queues, and no priority inversions

on inserts are visible to the removal process. Formally:

Definition 4.1. An execution of the sequential process is prefixed if except with

negligible probability (i.e. probability less than n-'(1)), the sequential process never

inspects an empty queue in a remove, and no remove sees an insert with lower priority

than one that is inserted later in the same queue.

There are many natural types of executions which are prefixed. For instance, a

common strategy in practice is to insert a large enough "buffer" of elements initially,

so as to minimize the likelihood of examining empty queues. More formally, since in

each iteration we touch a queue with probability at most 1 + O(!) and only remove

one element at a time, by Bernstein's inequality, any execution of length T whose

first T/2 + gn - w(log n) operations are inserts, and which contains no inserts after

this time, or which only inserts larger labels after this point, will be prefixed.

For the rest of the paper, we will tacitly assume that no remove inspects any

empty queue in the sequential process, and that no priority inversions are visible

to the removal process, and condition on the event that this does not happen. By

Markov's inequality, as long as we only consider prefixed executions, then for any

75

sequence of operations of length poly(n), this will change the max rank or average

rank of the operations by at most a subconstant factor.

The process diverges when 3 = 0.

An important remark is that # > 0 is a necessary condition for good behavior.

To see this, we will prove another warm-up theorem:

Theorem 4.1. The expected maximum rank guarantee of the process which inserts

and removes from uniform random queues in each time step t evolves as Q(Vtn log n),

for t = Q(n log n).

Proof. First, notice that we can apply the reduction in Section 4.2 to obtain that the

maximum number of elements removed from a queue is the same as the maximum

load of a bin in the classic long-lived random-removal process. (This holds irrespective

of the insertion process, since we are performing uniform random removals.) The

maximum load of a bin in the classic process is known to be e (t/n + logn),

with high probability, for t > n log n [60].

Let the queue with the most removals up to time t be Q. For any other queue

Qj with less removals, let f(Qj) be the difference between the number of elements

removed from Q and the number of elements removed from Qj. Notice that the

expected number of elements removed from a queue up to t is t/n. Hence, it is easy

to prove that, with probability at least 1/2, there are at least n/4 queues which have

had at most t/n elements removed. Hence, for any such queue Qj, f(Qj) ;> log n.

Hence, in expectation, Ej f(Qj) = Q(tn log n).

We say that an element is light if its label is smaller than the label of the the top

element of Q. By symmetry, we know that each element counted in EZ f(Qj) is light

with probability > 1/2. Putting everything together, we get that, in expectation, we

have Q(tn log n) elements which are light, i.e. of smaller label than the top label of

Q. This implies that the expected rank of Q is Q(tn log n), as claimed.

1-

76

4.4 Analysis of the Sequential Process

The goal of this section is to prove the following theorem:

Theorem 4.2 (see Corollary 4.1 and Corollary 4.2). Fix a bias bound y. In any

prefixed (1 + 0) sequential process, for 3 = Q('y), and for any time t > 0, the max

rank of any element on top of a queue at time t is at most O(1(nlog n+ nlog)),

and the average rank at time t is at most Q(n/32).

The Exponential Process. For the purposes of analysis, it is useful to consider

an alternative process, which we will call the exponential process, in which each

bin independently generates real-valued labels by starting from 0, and adding an

exponentially-distributed random variable with parameter Ai = 1/7i to its previous

label. More precisely, if wi(t) is the label present on top of bin i at time t, then the

value of the next label is wi(t+ 1) = wi(t) +exp(/ri). Once we have enqueued all the

items we wanted to enqueue, we proceed to remove items by the two-choice rule: we

always pick the element of minimum rank (label value) among two random choices.

At any step, and for any v E R, we define rank(v) to be the number of elements

currently in the system with label at most v. At each step, we pay a cost equal to

the rank of the element we just removed.

Proof Strategy. The argument proceeds in three steps. First, we show that, perhaps

surprisingly, after all insertion steps have been performed, the rank distribution of

the exponential process is the same as the rank distribution of the original process

(Section 4.4.1). With this in place, we will perform the following coupling between

the two processes:

Given an arbitrary number M of balls to be inserted into the n bins, we first

generate M total weights across the n queues in the exponential process, so that each

bin has exactly the same number of elements in both processes. We then replace each

(real-valued) generated weight with its rank among all weights in the system. As we

will see, for any rank j and queue i, the probability that the ball with rank j is in

bin i is exactly the same as in the simple process, where queue i has probability of

insertion 7ri. More precisely, if we fix an increasing sequence of ranks rl, r2 , .. ., the

77

probability that bin i contains this exact sequence of ranks is the same across the two

processes. Hence, we can couple the two processes to generate the same sequence of

ranks in each bin.

For the removal step, we couple the two processes such that, in every step, they

generate exactly the same 3 values and random choice indices. Since the ranks are

the same, and the choices are the same, the two processes will remove from exactly

the same bins at each step, and will pay the same rank cost in every step.

Hence, it will suffice to bound the expected rank cost paid at a step in the expo-

nential process. Since this is difficult to do directly, we will first aim to characterize

the concentration of the difference between the weight (value) on top of each bin and

the average weight on top of bins, via a potential argument (Section 4.4.2). This will

show that relatively few values can stray far from the mean. In turn, this will imply

a bound on the average rank removed (Section 4.4.5).

In the following, we use the terms "queue" and "bin" interchangeably.

4.4.1 Equivalence between Rank Distributions

Let wi be the probability that a ball is inserted into bin i. This section will be dedi-

cated to showing that the distribution of ranks in the exponential process where bin

i gets weights exponentially distributed with mean 1/wi is identical to the distribu-

tion of labels in the original process, where the ith bin is chosen for insertion with

probability 7j.

Theorem 4.3. Let Ij<_ be the event that the label with rank i is located in bin j, in

either process. Let Pre[Ij,_i] be its probability in the exponential process, and Pr,[I<_i]

be its probability in the original process. Then for both processes Iy÷i is independent

from Ij,, for all i # i' and

Pr[Ij,_] = Pr[Ijgj] = 7y.
C 0

Proof. That Pro[Igjs] = w3 and that I j, Ij<_i are independent for i / i' in the

original process both follow immediately by the construction of the sequential process.

78

We now require some notation. Let f(i) be the label with rank i in the exponen-

tial process, and let b(i) be the bin containing e(i). We will employ the following

memoryless property of exponential random variables:

Fact 4.1. Let X - Exp(r). Then, for all st > 0, we have Pr[X > s + t] = Pr[X >

s] Pr[X > t].

Fix an arbitrary i > 1, and let L = f(i - 1) be the label of the (i - 1)th element.

For each bin i, we isolate the two consecutive weights between which L can be placed.

More precisely, for each bin 1 < j < n, denote the smallest label larger than L in bin

j by fj,>L and let the largest label in Bj smaller than L be j,<L. By construction of

the exponential process, fj,>L = j,<L + X, where Xj is an exponentially distributed

random variable with mean 1/7rj. Furthermore, by assumption we have that fj,>L > L,

so X, > L - e3 ,<L. Then by the memoryless property above,

Pr[j,>L > fj,<L + Sjfj,>L > L] Pr[Xj > sjXj > (L - fj,<L)]

Pr[Xj > (L - fl,<L) + (s - L)fX > (L - fj,<L

= Pr[X, > s - L]

Let Aj = fj,>L - L, observing by the above that Az is positive and distributed

exponentially with mean 7ri. Furthermore, since the X, are independent, the Aj are

as well. Consider the event that fe,>L is the smallest label larger than L in the system;

that is f(i) = fj,>L and b(i) j. This occurs if Aj < A' for all j' 4 j, i.e. if Aj is

the smallest such value among all bins. In turn, this occurs with probability

j Pr[Aj = t]flks3 Pr[Ak > t]dt = j rj exp (-t7) Hk$3 exp (-trk) dt
00 n

= 'Tri exp -t Fk dt =,rj.
k=1

79

4.4.2 Analysis of the Exponential Process

In the previous section, we have shown that the rank distributions are the same at the

end of the insert process. The coupling described in Section 4.4, by which we inspect

the same queues in each removal steps, implies that two processes will produce the

same cost in terms of average rank removed. Hence, we focus on bounding the rank

of the labels removed from the exponential process at each step t. Our strategy will

be to first bound the deviation of the weight on top of each queue from the average,

at every step t, and then re-interpret the deviation in terms of rank cost.

Notation. From this point on, we will assume for simplicity that, at the beginning

of each step, queues are always ranked in increasing order of their top label. If pi is

the probability that we pick the ith ranked bin for a removal, and 3 is the two-choice

probability, then it is easy to see that the (1 + 3) process guarantees that

1 + 2(1 i-1) 1~
n n n n_

Further, notice that, for any 1 < m < n, we have, ignoring the negligible 0(1/n2)

factor, that
m

i1 1

For any bin j and time t, let wj(t) be the label on top of bin j at time t, and let

xj(t) = wj(t)/n be the normalized label. Let p(t) = j_1 xj(t)/n be the average

normalized label at time t over the bins. Let yi(t) = xi(t) - p(t), and let a < 1 be a

parameter we will fix later. Define

n n

Z1(t) = exp (ozyj(t)) , and T (t) = exp (-ayi(t)).
j=1 j=1

Finally, define the potential function

r'(t) = (P(t) + IF(t).

Parameters and Constants. Define c = 1. Recall that the parameter -y > 0 is16~

80

such that, for every 1 < i < n, 1- -E , 1 +7]. Next, let c > 2 be a constant, and

6 be a parameter such that

1+6- 1 +7+ ca(1+K-) 21- +-ca (+) 2 (4.1)-- Y - ca (I1+7_)2

In the following, we assume that the parameters a, #3, and 7 satisfy the inequality

-= 6 >= . (4.2)
16

We assume that the insertion bias -y < 1/2 is small, and hence this is satisfied by

setting # = Q(7) and a = E(0).
The rest of this section is dedicated to the proof of the following claim:

Theorem 4.4. Let _5= (P1, P2,... IPn) be the vector of probabilities, sorted in increas-

ing order. Let e = /16, and c > 2 be a small constant. Let a, /, y, 6 be parameters

as given above, such that e > 6. Then there exists a constant C(e) = poly({) such

that, for any time t > 0, we have IE[F(t)] < C(c)n.

Importantly, n-Error Boundedness is an immediate corollary of Theorem 4.4.

Theorem 4.5. There exists a constant c such that Pr [yn(t) > rcn log n] < exp(-r).

Therefore, the MULTIQUEUE process is O(n log n)-Error Bounded.

Proof. In order for APPROXGETMIN() to return an item larger than r(cnlogn) at

time t, that item needs to be at the top of a queue at t, i.e. yn(t) > rcn log n. But

E[F(t)] > exp(arc log n) Pr [y, (t) > rcn log n]

C(e)n > exp(arc log n) Pr [yn(t) > rcn log n]

exp(log n(-arc + 1)) > Pr [yn(t) rcn log n]

Picking c > 2/a gives that, for r > 2, Pr [yn(t) > rcn log n] < exp(-r), and so

MULTIQUEUEs are cn log n = O(n log n)-error bounded as claimed. Ei

81

Potential Argument Overview. The argument proceeds as follows. We will begin

by bounding the change of each potential function T and 4, at each queue in a step

(Lemmas 4.1 and 4.2). We then use these bounds to show that, if not too many

queues have weights above or below the mean (Yn/4 < 0 and Y3n/4 ;> 0), then (D and

T respectively decrease in expectation (Lemmas 4.3 and 4.4). Unfortunately, this

does not necessarily hold in general configurations. However, we are able to show

the following claim: if the configuration is unbalanced (e.g. Yn/4 > 0) and 1D does

not decrease in expectation at a step, then either the symmetric potential T is large,

and will decrease on average, or the global potential function F must be in 0(n)

(Lemma 4.5). We will prove a similar claim for T. Putting everything together,

we get that the global potential function F always decreases in expectation once it

exceeds the 0(n) threshold, which implies Theorem 4.4.

Potential Change at Each Step. We begin by analyzing the expected change in

potential for each queue from step to step. We first look at the change in the weight

vector yW (yi, y2, .- , y=). (Recall that we always re-order the queues in increasing

order of weight at the beginning of each step.) Below, let -, be the cost increase if

the bin of rank j is chosen, which is an exponential random variable with mean 1/7rj.

We have that, for every rank i,

Yi(t-1) -yi(t) + i (1 - 1/n), with probability pi(if the rank i queue is picked)

Yi(t) - 7-, if some other bin j f i is chosen.

The Change in (D at a Step. We prove the following bound on the expected

increase in 4 at a step.

Lemma 4.1. For any bin rank i,

n

E [AzX y(t)] < & ((1 + 6)p - 1) exp (ayj(t)) .
i=1

Proof. Let Ii (t) exp (czyj(t)). We have two cases. If the bin is chosen for removal,

82

then the change is:

A4)i := 41i(t + 1) - Pi(t)

a
= exp -(yi

n
a

= exp -nyi (0)

+ si 1 - -)))
a

exp -s 1 -
(n

- exp -yi(t)

1) -
ftJ'

- 1).

Taking expectations with respect to the random choices made on insertion, that is,

the value of ,j, we have

E, [exp
1
ft

(a) 7ri

7r n (1))1

(b)

<;
a

7rin (
+ C

(7rin (1
1))2

n

for some constant c > 1. Step (a) follows from the observation that the expectation we

wish to compute is the moment-generating function of the exponential distribution at

(I- -), while (b) follows from the Taylor expansion. (We slightly abused notation in

step (a) by denoting with 7i the insert probability for the ith ranked queue, according

to the ranking in this step.)

The second step if if some other bin j i is chosen for removal, then the change is:

= exp (2 (y (t) - rj)) - exp (yj(t)) exp (2y2 (t)) (exp (-n) - 1).

Again taking expectations with respect to the random choices made on insertion, i.e.

the value of rj, we have

Wj+ C,
1

grn2

7r n2
+ -

7r n2

83

(an (

-- 1n

Ej exp Kj C2I (_

a
<1-

-7ryi 2

2

+ (2)
7rn2

Therefore, we have that

a

7rin (

+E 1

()2)
+ C - -C 2

,rin7rin

n

j=1

0(1n
j=1

- C (27r n)2)

- -Y - ca (1 +)2)

If we denote for convenience

S= az (1 -- Y - ca (1 + Y)2) , and recall that 6 :=
1 + ' + ca (1 + _)2

1 -Y - Ca (1+7)2

then we can rewrite this as

& (+) -- 1 I)

The Change in T. Using a symmetric argument, we can prove the following about

the expected change in T.

Lemma 4.2.

n exp (--ayi(t)) .

Proof. Case 1: If the bin is chosen, then the change is:

84

-)n (1
a

7--
3rn2

+2
+ (--212)P

'rin2

F1

6) -Pi)

+C
(7rin

+ (_+ + Ca (I1+ _)2) api-

E [A41 I Y(0)] <

nE [A~i]/'Di(t)

E [Alp I Y(0)1

= 'I'(t + 1) - 'I'(t)

- exp -- y~)

a
= exp -- yit)

(n

+ Ai (I

(
--)) -
n

a
- Ai I -
n 1)exp

Taking expectations with respect to the random choices made on insertion, we

have

-A --) 1
= C

1+g(1- i)

(I-
1 2

n

1))2

n

-) + ---
n 7rin

- + -
n 7Tin

<z
7in

a

7ri n

Case 2: If some other bin j # i is chosen, then the change is:

A Wi = exp (- (yj(t) - Aj)) - exp (-2yi(t)) =

= exp (- yi(t)) (exp ()
- 1).

Again taking expectations with respect to the random choices made on insertion,

we have

1
1- 2

a
= i rjn2

a

<1+
-- 7rj n2

+ r(C2) + ..

2

Therefore, we have that

85

Ei [exp (

exp -n -YiW)

-1)

Ej exp Aj 2n

E[Aq'i] < - (1) + (1)2 P

nxri n nxri n

+ (1+ +c 2p
j 4i n2 n2 Ii

a C' 2 n

n~ri n~r n j n

api(1-7 ca(+_)2)P + (+_+aC(n

2

1+ -) 2)

1
n

D

Bounds under Balanced Conditions. Let us briefly stop to examine the bounds

in the above Lemmas. The terms (pi(i + 6) -) are decreasing in i, and in fact

become negative as i increases. (The exact index where this occurs is controlled by

13 and 6.) The exp (ayi(t)) terms are increasing in i. Bins whose weight is below the

mean (i.e., yi(t) < 0) have a negligible effect on 4D, since each of their contributions

is at most 1. At the same time, notice that the contribution of bins of large index i

will be negative. Hence, we can show that, if at least n/4 bins have weights below

average, then the value of <D tends to decrease on average.

Lemma 4.3. If Yn/4 0, then we have that

JE [GD(t + 1) y) YM 1- - 61 (Db(t) + 1.
3n)

Proof. We start from the inequality

n /
E [A4 I|y(t)] < (+ 6)pi - exp (ayj(t))

nni=1
Ww nb di 6) pi exp (yit)) - nt).

We will now focus on bounding the first term (without the constants). We can rewrite

86

n n/4-1 n

S pi exp (ayi(t)) = E pi exp (ayi(t)) + 5 pi exp (aoyj(t)) .
i=1 i=n/4

(4.3)

Since Yn/4 < 0, the first term is upper bounded by 1. For the second term, notice

that
n 3n/4

pi exp (aCyi(t)) = Pn-j+1 exp (ayn-j+1(t)).
i=n/4

(4.4)
j=1

The p terms are non-decreasing in j, while the y terms are non-increasing in j.

Further, note that
3n/4

Yexp(aynj+1(t)) <j.
j=1

(4.5)

The whole sum is maximized when these non-increasing terms are equal. We therefore

are looking to bound
n

S p exp (ay (t)) _
i=n/4

4p n

i=n/4

(4.6)

Notice that
n/

i=n/4

n/4-1

i= 1

Hence we have that

E [A | y(t)] <& (1 pi exp (ey(t)) -+ v)

(1+6)]

[(1 - -- 4(t) (t) + (1 + 6)]n 3 n

[(t)
46

n 3

- 6 (t) +
_n

< -d(1+3) +1,3 n

87

it as:

-4 + e 3
4

(4.7)

n(t

4E

-3

41 3 1

3n 4 n

where in the last step we have used the fact that 6 < e. Hence, we get that

D

A similar claim holds for T, under the condition that there are at least n/4 bins with

weight larger than average.

Lemma 4.4. If Y3n/4 ;> 0, then we have that

Eo[4(t + 1)|1Y(0)t (- th) i + 1.

Proof. We start from the inequality

n
E [AA' I y(t)]

3n/4

E & (1

q =1 1

+6) -
n - Pi)

exp (-ayi(t))

exp (ayit) +

1+6)_ - P exp (-ayM(t))

The second term is upper bounded as

+6)
nt

- A) < a(1 n
i=3n/4 1

Pi < 1.

We therefore now want to bound

3n/4

& (1+ 6)! - Pi exp (-ay(t)) .n

We again notice that the first factor is non-decreasing, whereas the second one is non-

increasing. Hence, the sum is maximized when the non-decreasing terms are equal.

88

1 1
i=3n/4+ 1

-3n~t + 1

16i

E [<D(t + 1)|1yMI) _ 1 I

At the same time, we have that

3n/4

exp (-2yi M) _ T.

Hence, it holds that

3n/4

& (1 + A) - P exp (-ayM(t))
4T3n/4

n 3n3E/

1 + 1 4E

n n 3)

= T - ((1 +4)-6
n 3)

- n 3

where in the last step we have used the fact that 6 < c. Therefore, we get that

E[IF(t + 1) 1yWt) < (I -6E) XF + I,

as claimed.

Bounds under Unbalanced Conditions. We now analyze unbalanced config-

urations, where there are either many bins whose weights are above average (e.g.,

Yn/4 > 0), or below average (Y3n/4 < 0). The rationale we used to bound each poten-

tial function independently no longer applies.

As an aside, we will demonstrate an unbalanced configuration where, for example,

1 does not decrease in expectation: Consider a configuration in which the first bin in

the ordering has weight W, while all other bins have weight kn+W, where k is a large

integer parameter. The average weight is W + k(n - 1), and hence yi = -k(n - 1),

and yj = k. For instance, for k = e(log log n), we get that 1(t) = E(n log n).

89

Critically, in this configuration, the value of JD will increase in expectation: with

probability 2/n, we hit queue 1 and increase its value by n, reducing the difference

from weights on top of the other queues. Otherwise, with probability 1 - 2/n, we hit

one of the other queues, and increase its value by n. This increases the discrepancy

between the queue costs. It follows by calculation that the expected value of 4D in-

creases in expectation. Note that the process will eventually leave such local maxima,

by taking out all the extra elements on top of queue 1, but this process takes Q(n2)

steps.

Fortunately, we can show that, one of two things must hold: either the other

potential T is larger and does decrease in expectation, or the global potential F is

bounded by 0(n).

Lemma 4.5. Given e as above, assume that yn/ 4 (t) > 0, and E[zA\] > -66l(t).

Then either 4D < - or F = 0(n).

Proof. Fix A = 2/3 - 1/54 for the rest of the proof. We can split the inequality in

Lemma 4.1 as follows:

An

E [A(b y(t)] & ((1 + 6)p - exp (ay (t)) + (4.8)

iz=zl

S((I + 6),j exp (ozyj(t)) . (4.9)
i=An+1

We bound each term separately. Since the probability terms are non-increasing and

the exponential terms are non-decreasing, the first term is maximized when all pi

terms are equal. Since these probabilities are at most 1, we have

An

6 (1 + 6)pi - exp (ay(t)) ((1 + 6){ - 1) <b<An. (4.10)

The second term is maximized by noticing that the pi factors are non-increasing, and

are thus dominated by their value at An. Noticing that we carefully picked A such

90

that
1 4c

n n

we obtain, using the assumed inequality 6 < c, that

+ 6)pj -) exp (ayi(t)) < & (- 4E)

By the case assumption, we know that E [Az4y(t)] ;

bounds (4.9), (4.10), and (4.11), this yields:

- 1 D<AnA

-64(t). Combining the

- >An > --- (tn 3n

Substituting >xA = 4b - (<An yields:

(3E - Es3i mpliit + fi 1 - I + -E obtan.

For simplicity, we fix C(E) = - 0 (),to obtain

C(O)I<A. (4.12)

Since we are normalizing by the mean, it also holds that B =

Yi<O(-yj). Notice that

yi incr.

41n < An exp (ayAn)
yiincr. aB

< An exp (I-An (4.13)

We put inequalities (4.12) and (4.13) together and get

(D(t) < AnC(c) exp _c , (4.14)

Let us now lower bound the value of T under these conditions. Since Yn/4 > 0, all

the costs below average must be in the first quarter of y. We can apply Jensen's

91

i=An+1

(P >An
K - 'b A . (4 .1 1)

Let B= E,,oyi.

- ((I+
n

inequality to the first n/4 terms of T to get that

n/4 n
S> exp (- ayi) ;> n exp -a .Y

4 n/4

We now split the sum E/ yi into its positive part and its negative part. We know

that the negative part is summing up to exactly -B, as it contains all the negative

yj's and the total sum is 0. The positive part can be of size at most B/4, since it is

maximized when there are exactly n - 1 positive costs and they are all equal. Hence

the sum of the first n/4 elements is at least -3B/4, which implies that the following

bound holds:

(3B/4) n3
Xi> - exp - /4 > - exp a- 3 . (4.15)

- 4 n/4 4 n

If 1 < 6T, then there is nothing to prove. Otherwise, if 1 > 'T, we get from (4.15)

and (4.14) that

c n e x p C e 3 B T < 4 (t) < A n C () e x p e

Therefore, we get that:

e p aB (- 1 < 4A 1
n 1 - A ee

Using the mundane fact that 3 - 1 = 3/19, we get that

exp -B <0 (4. (4.16)
(n - El

To conclude, notice that (4.16) implies we can upper bound F in this case as:

4 +
E

92

Mrwn - , , - -- " ' " , ' - - I 17' -'-- r-1 -- ,

6 AnC(E) expn
C ((I - A)n)

<0 (14-A)

= 0 poly n).

FEZ

We can prove a symmetric claim for T by a slightly different argument.

Lemma 4.6. Given c as above, assume that ya < 0, and that E[AT'] > - 6'. Then

either T < '<D or F = O(n).

Proof. Fix A = A2 = 1/3 + 1/54. We start from the general bound on AT from

Lemma 4.2. We had that

n

E [Ap I y(t)] & ((I +

An-1

+ En& (1+6)

i=An

1

& a
< ((1 + 6) - (I + 46)) q<A + (1 + 6) ;>An

n n
3ae
K- 'P<An+
n n

Using the assumption, we have that

E[AT y(t)] - (T - n) + 16) >.
3nn - n

We can re-write this as

1 + 6 + 3e
3E -- E 3

93

)- Pi exp (- eyi M))

- A) exp (- ayi M))

- A) exp (-Cym M))

However, we also have that

x;>_ < (1 - A)n exp (-ayAn) < (1 - A)n exp .aB

At the same time, since Y3n/4 < 0, we have that

D > exp 3oB.
4 (n

If T < f4b, we can conclude. Let us examine the case where T > -I'.

everything together, we get

en 3aB
-- exp <
44 (n)

6 aB
-) < q < C(C)4;>'A < (1 - A) nC(E) exp .
4 - -(nA

Alternatively,

(3

16
E< -6)1

16 1 + 6 + 3c
-A)=(1- A)

6 3e-c/3

Therefore,

paB
exp --) <0 1 .

To complete the argument, we bound:

F' + 4 < (I (1 - A) C(c) exp
aB
nA)

n < 0 .
C 22

Endgame. We now finally have the required machinery to prove that IF satisfies a

supermartingale property:

94

Putting

aB
exp --

(n

F-

4)

0 62()

Lemma 4.7. There exists a constant c such that

E[F(t + 1)Iy(t)] < I - F(t) + C, where C is a constant in 0 poly .

Proof. Case 1: If Yn/4 < 0 and Y3n/4 > 0, then the property follows by putting

together Lemmas 4.3 and 4.4.

Case 2: If Y3n/4 Yn/4 > 0. This means that the weight vector is unbalanced, in

particular that there are few bins of low cost, and many bins of high cost. However,

we can show that the expected decrease in T can compensate this decrease, and the

inequality still holds. Notice that Lemmas 4.1 and 4.2 imply that E[A&] < I(t)

and E[AT] < !4'(t), respectively.

If E[A4] < -j (t), then the claim simply follows by putting this bound together

with Lemma 4.4. Otherwise, if E[A] > -E&41(t), we obtain from Lemma 4.5 that

either (< 'T or F = 0(n). In the first sub-case, we have that

E[AF] = E[A4] + E[AT1]

<-F(t) +1 -(t)
n 3n

-W(t)+ C4f(t)
3n 4n

< --- e 1 - 36 (t) +I< --- (1+ -- (1- - r(t)
~3n 4 -3n 4) 4

&
4n

as claimed.

In the second sub-case, we know that F < Cn, for some constant C. Hence, we can

get that

E[Al] =E[A] +(a) or=O(n)
E[AF1 = E[A] + E[AI] < -F < 2C&,

n

where in step (a) we used the upper bounds in Lemmas 4.1 and 4.2, respectively. On

95

the other hand,

C- F(t)
4n

1) > 3C& > E[AF].
4)

Case 3: If Yn/4 Y3n/4 < 0. This case is symmetric to the one above. E

The intuition behind the above bound is that F will always tend to decrease once it

surpasses the E(n) threshold. This implies a bound on the expected value of F, which

completes the proof of Theorem 4.4.

Lemma 4.8. For any t > 0, E[4F(t)] K 4n.

Proof. By induction. This holds for t = 0 by a direct computation: see Lemma 4.7

for the argument. Then, we have

E[(t + 1)] = E[E[F(t + 1) JF(t)]]

< E I - F(t) + C

4C I
- e 4n
4C

< -.~

D

4.4.3 Additional Guarantees on Max Rank

We can use the characterization of the exponential process to prove the following:

Lemma 4.9. If Wmax(t) is the maximum bin weight at time t and wmin(t) is the

minimum, then

= 0 -n(log n + log c).

Proof. Let Xmax(t) = Wmax(t)/n and xmin(t) = Wmin(t)/fn.

(4.17)

By definition, we have

exp(a(Xmax(t)-[(t))) < F(t) and exp(cz(p(t)-Xmin(t))) < F(t). Therefore a(Xmax(t)-

96

E [Wmax(t) - Wmin(t)

>C- '1Cn=C I-
-4n

Xmin(t)) < 2log F(t). Thus, we have

(a) (b)
E[a(Xmax(t) - xmin(t))] < 2E[log 1(t)] < 2 log(E[F(t)]) = O(log n + log C),

where (a) follows from Jensen's inequality and (b) follows from Theorem 4.4. Simpli-

fying yields the desired claim. E

We will show that this implies the following theorem:

Theorem 4.6. For all t > 0 we have E[max rank(t)] = 0 (In(log n + log C)).

Proof. We will need the following fact about exponential disitributions:

Fact 4.2. Let X 1, X 2 ,... be independent and Xi - Exp(A) for all i. Let Y =

Ek<i Xk. Fix any interval I C [0, oo) of length m. Then, #{i : Y E I} - Poi(mA).

Let 1(t) = [Wmin(t), Wmax(t)], and let Lj(t) be the number of elements in bin j in

I(t) at time t. Then, by memorylessness and Fact 4.2, for all bins j except the bin Jmax

containing wmax(t), the number of labels in I(t) in bin j before any deletions occur

is distributed as Poi(III/n). In particular, the expected number of elements after

t rounds is bounded by Ex~poi(III/n) [X] = III/n. Moreover, for the bin containing

Wmax(t), by definition, at time t it contains exactly one element in I, namely, Wmax(t).

Hence, we have

E[max rank(t)] < IEI(t) IEE Lj (t) I(t)
- _ j=1

<_ EI(t) [1 + (n - 1)|II/n]

=0 -n(log n + log C))

by Lemma 4.9. E

By plugging in constants as in (4.1) and (4.2), we get:

Corollary 4.1. For all t > 0, and any = Q(-):

E[maxrank(t)] = 0 n(log n + log 1/I).

97

4.4.4 Fairness

Having established O(n log n) error boundedness in Theorem 4.5, we can show that

MULTIQUEUEs are O(n log n)-fair relatively straightforwardly.

Theorem 4.7. The MULTIQUEUE algorithm is O(n log n) fair.

Proof. By Theorem 4.5, MULTIQUEUEs are r = cn log n-error bounded, for some

constant c. We will show that MULTIQUEUEs are 4K-fair. We need to bound the

probability that an element u suffers at least 4Kr inversions by O(exp(-r)). We

will proceed by taking a union bound over three possible bad events, at least one of

which must occur for u to suffer 4Kr inversions. In particular, we will show that it

is unlikely that any of the following occurs: (1) u suffers an inversion before u itself

is rank rr, (2) if u E Qj, then at the time a becomes rank rr, there are more than

2Kr/n elements of smaller rank in Qj, or (3) after u becomes rank rr, more than 4rK

queues with a higher rank top element than Qj are deleted from before Qj is deleted

from 2Kr/n times.

Early inversions. Let E1 be the event that u suffers any inversions before becoming

rank rr. Notice that the largest rank element which could have been deleted so far

is upper bounded by the largest element which is already at the top of some queue.

Thus in order for El to occur, there must exist a queue Qj whose top element has

rank greater than u, i.e. rank at least Kr. By Theorem 4.5,

Pr[E] < Pr [yn(t) > Kr] < exp(-r).

Depth. Let E2 be the event that there are more than 2Kr/n elements of smaller

rank in Qj when u has rank rr. Since elements of smaller rank than u are distributed

among queues independently, the number of smaller rank elements in Qj is binomially

distributed with mean Kr/n = E(r log n), so a standard Chernoff bound gives

Pr [E2] = Pr [X > 2E[X]] < exp(- (E[x])) = exp(- 3(r log n)) < exp(-r).

98

Waiting time. Finally, let the random variable X be the number of times that

queues with a higher rank top element than Qj (which we call 'worse' queues than

Qj) are deleted from before Qj is deleted from 2ir/n times, starting from when a

becomes rank Ir. Let E3 be the event that X > 4,r. Note that it is impossible for

u to suffer an inversion if a queue with a lower rank top element than Qj is deleted

from, so E3 is a necessary event for u to suffer more than 4tr inversions, given E1 , E2.

The probability of some queue worse than Qj being deleted from is at most npi, since

the pi are decreasing with rank of top element. Thus X is upper bounded by a

random variable X' distributed according to a negative binomial parameterized by

2'ir/n successes and success probability 1/n. Notably, E[X'] = 2'r. As above, a

standard Chernoff bound on negative binomial distributions gives

Pr [X > 2ir] < Pr [X' > 2ir]

- Pr [X' > 2E[X']]

< exp(-E(E[X']))

-= exp(-O(rn log n))

< exp(-r).

Union bounding, the probability that a suffers more than 4Kr inversions is bounded

by Pr [E1] + Pr [E2] + Pr [E3] = O(exp(-r)), as required.

By definition, Theorem 4.5 and Theorem 4.7 imply O(n log n)-relaxation:

Theorem 4.8. The MULTIQUEUE algorithm is O(n log n)-relaxed.

4.4.5 Guarantees on Average Rank

We now focus on at the rank cost paid in a step by the algorithm. Let A = log C/a.

For real values s > 0, we "stripe" the bins according to their top value, denoting by

b>,(t) the number of bins with wj(t) > (s + A)n + y at time t, and let b<_,(t) be the

99

number of bins with wj (t) < p - (s + A)n at time t. For any bin j and interval I, we

also let fp,(t) be the number of elements in j at time t with label in I. Finally, let

pj,, denote the PDF of wj(t) given [it.

First, we use the bounds on IF to obtain the following bounds on the quantities

defined previously:

Lemma 4.10. For any time t, we have that IE[b>,] < nexp(-as) and that E[b<_,] <

n exp(-as).

Proof. Recall that <J(t) = 1 exp (a (xi(t) - p)) and that E [Ib(t)] < Cn. By lin-

earity of expectation, we have

E[1D(t)] > E[b>, exp(a(s + A))] = C exp(as) - E[by,],

which implies the claim. The converse claim follows from the bound on 'I(t). E

This lemma gives us strong bounds on the tail behavior of the wj. We show that

this implies a bound on the average rank, in two steps. First, we show that this

implies a bound on the rank of p:

Lemma 4.11. For all t, we have E[rank(p(t))] < 0 ((A + 1/a 2)n).

Proof. For any bin j, we have

E ~f ,(_OCP1(t) 1-t] = j_,E0 [fj,] ,P, w3 (t) = x] - pj,,(x)dx

<jIEXPoi(t-x)n[I + Xjp, wj(t) = x] -pj,,(x)dx

--(I + p - x) -pj,,(x)dx = -E[(1 + - wj(t))1IW(t) IL2P'
_ n n

1
- (1 + E[(p - wj(t))12,(t) ,5,]) .n

where (a) follows because after we've conditioned on the value of wj(t), the values of

the remaining labels in bin J is independent of p and we can apply Fact 4.2. Therefore,

100

(a)

< E[rank(p - An)] + (A + 1)n

Ij=1

n J -
=E IE[tj,(wj(t),/L-An](t)IP,Wjy(t)]

_ j=1

(b)

(c)
K

I+ -EA

1
+

1<1I+-
n

(d)

K 1 + Z(k + 2)n exp(-ak) + (A + 1)n
k=1

< 1+ _ 2n + (A+ 1)n,
(cc e- 1)2

where (a) follows from Lemma 4.13, (b) follows from Fact 4.2, (c) follows from Lemma

4.13, and (d) follows from Lemma 4.10. Notice that for a small we have el -

O(1/a 2). Simplifying the above then yields the claimed bound.

The following simple lemma bounds the initial potential:

El

(P - w (t) + 1)

+ (A + 1)n

I+ (A+ 1)n

Lemma 4.12. We have that 1(0) = O(n).

Proof. In the initial state, the values xi(0) are independent exponentially distributed

random variables with mean 1/(n7r). Now,

exp (a

= E exp
(a

wi(0)
n

(Xi (o)

= E exp (axi(0) (I1
1 -

EZXj))]

exp (- Xj (0))

101

we have

E[rank(p)]

+ (A + 1)n

(p - wj(t))1w.(t)<;-An + (A + 1)n
_j=1

(k + 2)nE, [b<_i] + (A + 1)n
k=1

')) rij:/

=E
n

EE [fj, (_o,p__Anlt Wi|]

EP
k=1 wj (t)CE[p-(k+1+ A)n,p-(k+ A)n]

E[4)(0)] = E [-11(0)))

p-kn

p-24n

CL

p~LDDDD DD D 7
P+k D EDDEE EEEEE

DDEDDDDDDWWDDI
Figure 4-1: Intuition for the average rank bound. The number of bins per stripe decreases

exponentially as the stripes get further from the mean.

= E exp axi(0) 1 - E exp (-nX((0))]

where the last line follows from the (pairwise) independence of the xi. All terms in

the right hand side are now exactly moment generating functions of the wi evaluated at

some point. Since the moment generating function of an exponential with parameter

A evaluated at t is well known to be A/(A - t), we can compute:

1 1

n~r n j,4jfl7rj fl

< 1 1 -Y- _I
1 + Yw

The argument for TI(O) is symmetric, replacing a with -a.

1

Finally, we show that this implies:

Theorem 4.9. For all t, we have E [_ E rank3 (t) 0 (A + n.

Intuitively, the previous lemma controlled the ranks of all queues with w(t) <

102

Figure 4-1 gives some visual intuition: the number of bins in each stripe should

decrease exponentially as the stripes move away from the mean. By using a similar

"striping" argument, except on the interval [p, oc), we can show the same for the other

side, which gives the desired bound.

To prove Theorem 4.9, we will need the following technical lemma:

Lemma 4.13. For any interval I = [a, b] which may depend on p, we have E[rank(b)-

rank(a)p] < n(b-a + 1).

Proof. We first show that if I does not depend on p, then E[rank(b) - rank(a)|t] <

n(b - a). By Fact 4.2 we have

n

E[rank(b) - rank(a)lp] E 1: [t ,[ab] At

= E EX-Poi(ba) [XI At]

= n(b - a)

To conclude the proof, we now observe that p depends on at most n elements, namely,

those on top of the queues, and that if we remove those elements, then the remaining

elements behave just as above. Thus, by conditioning on y, we increase the rank by

at most an additional factor of n. D

We now prove Theorem 4.9:

Proof. By Lemma 4.11 and Lemma 4.13, we have that

E[rankj (t)Iwj (t) < p(t) + An] < 0 ((A + 1/a 2)n) + (A + 1)n

= 0 ((A + 1/a2)n)

Let Ik = [p + (A + k)n, p + (A + k + 1)n] be the kth "stripe". We have

E rank (t) =E E[rankj (t)Ipt] +
Sim (t)<;p+An

E [rank (t)Ip]
wj (t) >p+An

103

E E[rank3 (t)pj]
w, (t)<p+An

+ E E[rankj(ft +
j+1 wj(t)>p+An

(a) iN n
<O A-+ 2n 2)+I E

a /j=1

An) + fj,(gw,(t)) Ip, wj (t)]

EI+ j(p, (t)
-wj (t) >p+An

(b)
<0 A

< 0 (A

W A
< 0(

where (a) follows by Lemma 4.11, (b) follows by Lemma 4.13, and (c) follows from

Lemma 4.10. Thus

EE rankj (t) =0 A + 12)n
. i=1

as claimed. ED

We now show how these imply bounds for our removal processes. The actual rank

choice at time t is always better than a uniform choice in expectation, since it uses

power of two choices. If we consider an (1 +) process, where we only do two choices

with probability = (-/), we obtain the following, by setting parameters as in (4.1)

and (4.2) :

Corollary 4.2. For all t, if we let / = Q(-y), and we let r(t) denote the rank of the

removed element at time t, then

E[r(t)] =0 logC + I n =0

104

)f2) E F n

+ '2)n +EE 1 (wj (t)- it+)
j=1 wj(t)>p+An

+ 12n 2 + E E J: (wj(t) -p+1)
j=1 k=O wj(t)EIk

+ n + n I(A + k + 2)nE [b>k]
k=o

+) n 0 + 2 n .)

4.5 Discussion and Future Work

We have provided tight rank guarantees for a practically-inspired randomized priority

scheduling process. Moreover, we showed that this strategy is robust in terms of its

bias and randomness requirements. Intuitively, our results show that, given biased

random insertions into the queues, the preference towards lower ranks provided by

the two-choice process is enough to give strong linear bounds on the average rank

removed. We extend our analysis to a practical algorithm which improves on the

state-of-the-art MULTIQUEUES in Section 4.6.

Tightness. The bounds we provide for the two-choice process are asymptotically

tight. To see that the 0(n) bound is tight, it suffices to notice that, even in a best-case

scenario, the rank of the kth least expensive queue is at least k. Hence, the process

has to have expected rank cost Q (n). The tightness argument for) (n log n) expected

worst-case cost is more complex. In particular, it is known [60, Example 21 that

the gap between the most loaded and average bin load in a weighted balls-into-bins

process with weights coming from an exponential distribution of mean 1 is 0(log n)

in expectation. That is, there exists a queue j from which we have removed 0(log n)

fewer times than the average. We can extend the argument in Section 4.4.5 to prove

that there exist 8(n) queues which have 8(log n) elements of higher label than the

top element of queue j. This implies that the rank cost of queue j is E(n log n), as

claimed. We conjecture that the dependency in #3 for the expected rank bound on

the (1 + /3) process can be improved to linear.

Relation to Concurrent Processes. On first glance, it might seem that a simple

lock-based strategy should be linearizable to the sequential process we define in Sec-

tion 4.3. For example, we could lock both queues that are to be examined (locking

in order of their index to avoid deadlock and restarting the operation on failure) and

declare the linearization point to be the point at which the second lock is grabbed.

While this does linearize to some relaxed sequential process, it turns out that our

upper bounds fail to hold for subtle reasons when concurrency is introduced.

Consider the extreme execution in which thread 0 grabs the locks on some two

105

queues, say Qj, Qj, and then hangs for a long time. Meanwhile, all the other threads

complete many operations while thread 0 holds these locks, and all operations will

have to retry if they try to grab locks on Qj or Qj. In this case, many delete operations

will be performed, none of which can delete from Qj or Qj. Such an execution could

produce arbitrarily bad rank errors.

The simple locking strategy fails to be distributionally linearizable due to, e.g., the

counter-example execution above. We would like to ask if there is a distributionally

linearizable strategy, yet there appears to be an inherent limitation. Consider three

threads i, j, k performing DELETE operations in lock-step. No matter what strategy

is used, if some two threads, say i, j, try to delete from the same queue Q, at least

one, say j, will necessarily be delayed. As a result i and k will finish their operations

while j takes longer, causing i and k to be linearized before j (this can be forced by

e.g. an insertion to Q while j is delayed). As a result, an additional constraint has

been introduced which requires that the first two DELETE operations to complete in

this execution cannot have deleted from the same queue, a constraint which is not

present for the sequential process.

While beyond the scope of this thesis, upcoming work [31 closes this gap, showing

that MULTIQUEUEs still retain O(n log n)-relaxation, even in a fully asynchronous

setting against an adversarial scheduler, albeit with a (large) constant factor blow up

in the number of queues required by the analysis.

4.6 Experimental Results

Setup and Methodology. We implemented a (1 + /) priority queue based on

the MULTIQUEUE implementation from the priority queue benchmark framework

of [74], and benchmarked it against the original MULTIQUEUE (0 = 1), the Linden-

Jonsson t511 skiplist-based implementation, and the kLSM deterministic-relaxed data

structure [741, with a relaxation factor of 256, which has been found to perform best.

The MULTIQUEUE uses efficient sequential priority queues from the boost library.

Tests were performed on a recent Intel(R) Xeon(R) CPU E7-8890 (Haswell architec-

106

ture), with 18 hardware threads, each running at 2.5GHz. The tests for mean rank

returned use coherent timestamps to record the times when elements are returned at

each thread. We use these in a post-processing step to count rank inversions. This

methodology might not be 100% accurate, since the use of timestamps might change

the schedule; however, we believe results should be reasonably close to the true values.

For the throughput experiments, we consider executions consisting of alternating

insert and GETMIN() or APPROXGETMINo operations, for 10 seconds. Experiment

outputs are averaged over 10 trials. Removals on empty queues do not count towards

throughput. Since we are interested in the regime where queues are never empty,

we insert 10 million elements initially. Threads are pinned to cores, and memory

allocation is affinitized. The single-source shortest paths benchmark is a version of

Dijkstra's algorithm, running on a weighted, directed California road network graph.

Results. Figure 4-2 illustrates the throughput differential between the various im-

plementations, As previously stated, the MULTIQUEUE variants are superior to other

implementations (except at very low thread counts). Of note, the variants with 3 < 1

improve on the standard implementation by up to 20%. Since throughput figures are

not conclusive in isolation, we also benchmarked the average rank cost in Figure 4-3.

(The y axis is logarithmic.) Note that the increase in average cost due to the further 3

relaxation is relatively limited. Results are conformant with our analysis for 3 > 0.5.

The apparent inflection point at around 3 = 0.5 could be explained by the c > 6

bias assumptions breaking down after this point, or by non-trivial correlations in the

actual execution which mean that our analysis no longer applies.

Finally, Figure 4-4 gives a running times for a single-source shortest path bench-

mark, using a parallel version of Dijkstra's algorithm. We note that the relaxed

versions with / < 1 can be superior in terms of running time to the version with

3 = 1, by up to 10%. The version with / = 0 (not shown) is the fastest at low

thread counts, but then loses performance at thread counts > 8, probably because of

excessive relaxation.

107

I.

Throughput

L4
x---x linden' e-

12+--+ksm256
-- beta =1. 0

a --A beta=0.75
10 *-+beta=0.5 -

0r 2 4 . 10 12 14 16 1
#threads

Figure 4-2: Throughput comparison for
the (1 + 3) priority queue with / = 0.5

and 0.75, versus the original
MULTIQUEUEs, the Lind6n-Jonsson

implementation, and kLSM. Higher is
better.

*10

Quality

65536.0
A, -A multiq, 8 threads/queues

klsm256
16384.0

4

4096.0

1024.0

S256.0

2 64.0

16.0

.0 0.2 0.4 0.6 0.8 1.0
3

Figure 4-3: Mean rank returned (log scale)
for the (1 + 3) priority queue, for various

values of # on 8 queues and 8 threads.
Lower is better.

Single-Source Shortest Paths Benchmark

14

beta=1.0
- beta=0.2

12-- beta=0.4
beta=0.75
dksm

2 4 6 8 10 12 14 15
#Threads

Figure 4-4: Running times for single-source shortest path benchmark, using various

versions of the priority queue, and kLSM. Lower is better.

108

a

3

Chapter 5

Executing Iterative Algorithms Using

Relaxed Priority Schedulers

In this chapter, we describe how to execute generic problems which can be formu-

lated in terms of a 'Task-Queue'. In particular, we consider problems which can be

described as a set, S, of tasks, a dependency graph G = (V, E) with V = S repre-

senting dependencies between tasks, and a permutation 7r on S which represents an

ordering between tasks. Generally, we will think of G as being inherently undirected

but edges have an orientation induced by r; that is, if ir(n) < r(v), then an edge

e = (U, v) is directed from u to v.

This formulation encompasses a large class of problems, including greedy graph

algorithms (coloring, independent set, matching, etc.), Dijkstra's algorithm for short-

est paths, List Contraction, and discrete time simulations (e.g. n-body simulation).

See Section 5.1 for details.

We will argue that all Task-Queue based problems can be executed correctly by

a relaxed scheduler, provided that G is explicit (or at least supports sufficient edge

queries). Furthermore, we show that when w is uniformly random (as in many greedy

algorithms) and G is sparse, i.e. |EJ = o(IVI2), the overhead incurred by potential

dependency violations due to the relaxed nature of the scheduler is negligible, in that

it depends only on the relaxation factor k of the scheduler, and not the number of

tasks.

109

Surprisingly, we also show the counter-intuitive result that greedy Maximal In-

dependent Set and Maximal Matching have exploitable substructure which allows

them to be executed by k-relaxed schedulers with negligible overhead (i.e. overhead

proportional only to k), irrespetive of the size or structure of G. This result offers a

compelling argument for the use of relaxed schedulers and their characteristic high

throughput over exact schedulers in the context of Maximal Independent Set and

Matching.

Related Work. The ideas in this chapter are in part inspired by the line of research

by Blelloch et al. [12, 13, 14, 44, 691, as well as [21, 22, 301, whose broad goal has

been to examine the dependency structure of a wide class of iterative algorithms, and

to derive efficient scheduling mechanisms given such structure.

At the same time, there are several differences between these results and our

work. First, at the conceptual level, [14, 69] start from analytical insights about the

dependency structure of algorithms such as greedy MIS, and apply them to design

scheduling mechanisms which can leverage this structure, which require problem-

specific information. In some cases, e.g. [14], the scheduling mechanisms found to

perform best in practice differ from the structure of the schedules analyzed. By

contrast, we start from a realistic model of existing high-performance relaxed sched-

ulers [64], and show that such schedulers can automatically and efficiently execute

a broad set of iterative algorithms. Second, at the technical level, the methods we

develop are different: for instance, the fact that the iterative algorithms we consider

have low dependency depth [12, 14, 691 does not actually help our analysis, since a

sequential algorithm could have low dependency depth and be inefficiently executable

by a relaxed scheduler: the bad case here is when the dependency depth is low (log-

arithmic), but each "level" in a breadth-first traversal of the dependency graph has

high fanout. Specifically, we emphasize that the notion of prefix defined in [14] to

simplify analysis is different from the set of positions S which can be returned by the

relaxed stochastic scheduler: for example, the parallel algorithm in [14] requires each

prefix to be fully processed before being removed, whereas S acts like a sliding window

of positions in our case. The third difference is in terms of analytic model: references

110

such as [14] express work bounds in the CRCW PRAM model, whereas we count

work in terms of number of tasks processing attempts. Our analysis is sequential,

and we implement our algorithms on a shared memory architecture to demonstrate

empirically good performance.

To our knowledge, the first instance of a relaxed scheduler is in work by Karp

and Zhang [45], for parallelizing backtracking strategies in a (synchronous) PRAM

model. This area has recently become extremely active, with several such schedulers

(also called relaxed priority queues) being proposed over the past decade, see [4, 6, 9,

36, 53, 58, 64, 66, 74] for recent examples. In particular, we note that state-of-the-art

packages for graph processing [58] and machine learning [33] implement such relaxed

schedulers.

Parallel scheduling [16, 17] is an extremely vast area and a complete survey is

beyond our scope. We do wish to emphasize that standard work-stealing schedulers

will not provide this type of work bounds, since they do not provide any guarantees

in terms of the rank of elements removed: the rank becomes unbounded over long

executions, since a single random queue is sampled at every stealing step [4]. To

our knowledge, there is only one previous attempt to add priorities to work-stealing

schedulers [43], using a multi-level global queue of tasks, partitioned by priority. This

technique is different, and provides no work guarantees.

5.1 A General Scheduling Framework

We now present our framework for executing task-queue based sequential programs,

whose pseudocode is given in Algorithm 5. We assume a permutation 7r which dictates

an execution order on tasks. If u is the ith element in 7r, we will write r(i) = u and

f(u) = i (f for label). Algorithm 5 encapsulates a large number of common iterative

algorithms on graphs, including Greedy Vertex Coloring, Greedy Matching, Greedy

Maximal Independent Set, Dijkstra's SSSP algorithm, and even some algorithms

which are not graph-based, such as List Contraction and Knuth Shuffle [12]. We

show sample instantiations of the framework in Section 5.1.1.

111

Algorithm 5 Generic Task-Queue Framework

Require: Dependency Graph G = (V, E)
Require: Vertex permutation 7r
Require: Instantiated exact priority queue, Q

Q &- vertices in V with priorities 7r(V)
for each step t do

// Get new element from the buffer
Vt +- Q.GetMinO
Process(v)
if Q.empty() then

break

Algorithm 6 Relaxed Scheduling Framework

Require: Dependency Graph G = (V, E)
Require: Vertex permutation 7r
Require: Instantiated k-relaxed priority queue, Q

Q -- vertices in V with priorities 7r(V)

for each step t do
// Get new element from the buffer
Vt <- Q.ApproxGetMin()
if vt has an unprocessed predecessor then

Q.insert(vt, 7r(vt)) // Failed; reinsert
continue

else
Process(v)

if Q.empty() then break

112

Algorithm 6 gives a method for adapting Algorithm 5 to use a relaxed queue,

given an explicit dependency graph G = (V, E) whose nodes are the tasks, and

whose edges are dependencies between tasks. Importantly, given the dependency

graph G, Algorithm 6 gives the same output as Algorithm 5, irrespective of the

relaxation factor k. Unlike Algorithm 5, Algorithm 6 is inherently parallel, correctness

is maintained even when iterations of the for loop are executed concurrently, regardless

of the scheduling of iterations. As usual, we write JVJ = n and JEJ = m. We assume

that the permutation 7r represents a priority order so that an edge e = (u, v) c E

means that v depends on u if f(v) > f(u) and vice-versa. In the former case, we say

that v is a successor of u and u is a predecessor of v.

Our main result regarding Algorithm 6, proven formally in Section 5.2.1, argues

that if 7 is chosen uniformly at random from among all vertex permutations, then

Algorithm 6 completes in at most n + O('poly(k)) iterations (compared to exactly

n for Algorithm 5). This result demonstrates that provided G is not too dense, the

"cost of relaxation" is low for the class of problems which admit uniformly random

task permutations. Notably, this class includes all of the problems mentioned above,

except for Dijkstra's algorithm (since there, 7r needs to respect the ordering of nodes

sorted by distance from the source).

5.1.1 Example Applications

Applying the sequential task-queue framework of Algorithm 5 only requires an imple-

mentation of Process(v). Implementing the relaxed framework in Algorithm 6 further

requires G (either explicitly or via a predecessor query method). We now give exam-

ples for Greedy Vertex Coloring and List Contraction.

Greedy Vertex Coloring. Vertex Coloring is the problem of assigning a color

(represented by a natural number) to each vertex of the input graph, G, such that

no adjacent vertices share a color. The Greedy Vertex Coloring algorithm simply

processes the vertices in some permutation order, 7r, and assigns each vertex in turn

the smallest available color. The implementation of Process(v) for Greedy Vertex

113

Coloring needs to determine the color of v, which can be done as described below:

Algorithm 7 Vertex processing subroutine for greedy graph coloring

Require: Input Graph G = (V, E)

Require: Permutation 7r

Require: Partial coloring c: V -4 N

function PROCESS(V)

S - 0

for all (u, v) E G, s.t. f(u) < f(v) do

S <- S U {c(u)}

c(v) <- miniEN i S

Since the underlying dependency graph is just the input graph with edge orienta-

tions given by 7r, this is all that needs to be provided.

List Contraction. List Contraction takes a doubly linked list, L, and iteratively

contracts its nodes. Contracting a node v consists of setting v.next.previous <-

v.previous and v.previous.next +- v.next, effectively removing v from the list. List

Contraction is useful, e.g., for cycle counting. Although List Contraction is not in-

herently a graph problem, we can still construct a dependency graph G whose nodes

are list elements and with an edge between elements which are adjacent in L. Then

a predecessor query on v consists of checking whether either v.next or v.prev is an

unprocessed predecessor. Process(v) can be implemented with just the two steps of

contraction above (possibly along with the metrics the application is computing).

5.1.2 Greedy Maximal Independent Set

We give a variant of Algorithm 6 adapted for Greedy Maximal Independent Set

(MIS), which makes use of some exploitable substructure. In particular, once some

neighbor, u, of a vertex v is added to the MIS, then v can never be added to the

MIS, at which point v's dependents no longer have to wait for v to be processed.

Algorithm 8 implements MIS in the framework of Algorithm 6 while also making use

of this observation. Interestingly, Algorithm 8 can also be used to find a maximal

114

Figure 5-1: Simple illustration of the process. The blue thread queries the relaxed

scheduler, which returns one of the top k tasks, on average (in brackets). Some of these

tasks (green) can be processed immediately, as they have no dependencies. Tasks with

dependencies (red) cannot be processed yet, and therefore result in failed removals.

matching by taking the input graph G of the matching instance and converting it to

a graph G', where G' has a vertex for each edge in G and the edges are defined in

the straightforward way. (One can view matching as an "independent set" of edges,

no two of which are incident to the same vertex.) Like Algorithm 6, Algorithm 8

is inherently parallel; any concurrent scheduling of the iterations of the for loop will

result in correct output.

Algorithm 8 Relaxed Queue MIS

Require: Graph G = (V, E)
Require: Vertex permutation 7r

Require: Instantiated k-relaxed priority queue, Q
Q <- vertices in random order, all marked live

for each step t do
// Get new element from the buffer

Vt <- Q.ApproxGetMin(
if vt marked dead then

continue

else if vt has a live unprocessed predecessor then

Q.insert(vt, 7r(vt)) // Failed; reinsert
continue

else
Add vt to MIS
Mark all of vt's neighbors dead

if Q.empty() then
break

5.2 Analysis

In this section, we will bound the relaxation cost for the general framework (Algo-

rithm 6) and for Maximal Independent Set (Algorithm 8). Algorithm 6 is easier to

115

analyze and will serve as a warmup. Note that in both cases, n iterations are required

to process all nodes and are necessary even with no relaxation. Thus, we can think of

the "cost" of relaxation as the number of further iterations beyond the first n, which

can be equivalently counted as the number of re-insertions performed by the algo-

rithm. We will sometimes refer to executing such a re-insertion as a "failed -delete"

by Q.

Our primary goal will be to bound the number of iterations of the for loops in

Algorithm 6 and 8 when running them sequentially with a k-relaxed priority queue.

Although the initial analysis is sequential, the algorithms are parallel: threads can

each run their own for loops concurrently and correctness is maintained. The difficulty

in extending the analysis to the asynchronous setting is that it is not clear how to

model failed deletes of dependents of a node that is being processed. The likelihood of

such deletes depend on particulars of both the problem (i.e. how long processing and

dependency checking steps actually take) and the thread scheduler and so are hard to

model in our generic framework. Instead, we show empirically that our bounds hold

in practice on a realistic asynchronous machine where threads run the loops fully in

parallel.

The theorems we will prove are the following. Given a dependency graph G

(V, E) with IVI = n vertices and |El = m edges, we first bound the number of

iterations of Algorithm 6:

Theorem 5.1. Algorithm 6 runs for n + 0 (M) poly(k) iterations in expectation.

By contrast to Algorithm 6, we show that using a relaxed queue for computing

Maximal Independent Sets on large graphs has essentially no cost at all, even for

dense graphs! In particular, Algorithm 8 incurs a relaxation cost with no dependence

at all on the size or structure of G, only on the relaxation factor k:

Theorem 5.2. Algorithm 8 runs for n + poly(k) iterations in expectation.

Before delving into the individual analyses, we first consider some key character-

istics of a particular relaxed queue which will be at play, and quantify them in terms

of the fairness and rank error of Q. We will assume that Q is k-relaxed as defined

116

in Section 2.3: i.e., Q provides exponential tail bounds on the rank error and on the

number of inversions experienced by an element, in terms of the parameter k. In the

context of this analysis, rather than trying to ground one's intuition in actual relaxed

queue constructions such as the SPRAYLIST or MULTIQUEUEs, it may help to instead

think of a queue which returns a uniformly random element of the top-k at each step

as the "canonical" k-relaxed Q. See Figure 5-1 for an illustration. With this in mind,

we first prove two technical lemmas parameterized by k.

First, we characterize the probability that, for some edge e = (u, v) in the depen-

dency graph where u is a predecessor of v, u experiences an inversion on or above v

before being processed.

Lemma 5.1. Consider running Algorithm 6 (or Algorithm 8) using a k-relaxed queue

Q on input graph G = (V, E) and random permutation ir. For a fixed edge e = (u, v),

the probability that u experiences an inversion on or above v during the execution is

bounded by O(k 2 log k/n).

Proof. We begin by proving a few immediate claims.

Claim 5.1. At any time t, the probability of removing the element of top rank from

Q is at least 1/k.

Proof. By the rank bound, we have that Pr[rank(t) > 2] < (1/e) 2 /k < 1 - 1/k. It

therefore follows that Pr[rank(t) = 1] > 1/k. E

Let tu be the first time when u experiences an inversion, and let Ru be its rank at

that time. Since an element of rank > u must be chosen at tu, we have that, for any

C> 1,

Pr[Ru f] < exp(-e/k).

In particular, Pr[Ru > ck log k] < (1/k)C, for any constant c > 1. That is, u has rank

< ck log k at the time where it experiences its first inversion, w.h.p. in k. We now

wish to bound the number of removals between the point when u experiences its first

inversion, and the point when u is removed. Let this random variable be Ak. By

117

Claim 5.1, the top element is always removed within 0(k) trials in expectation, and

hence we can show that

ZAk > (c + 2)k 2 log k, with probability at most 1/k ,

for c > 1, by bounding the time until all elements with rank > u get removed, and

connecting with the negative binomial distribution.

We now wish to know the probability that one of these steps is an inversion

experienced by u on or above v. Fix a step t, and pessimistically assume that u is at

the top of the queue at this time. Node v has lesser priority than u, chosen uniformly

at random. Let j be the position of v, noting that Pr[j = 7r(u) + f] = 1/n, for any

integer f > 1.

Fixing j, we have that the probability that u experiences an inversion on or above

V is < (1/e)i/k. Fixing Ak, and bounding over all choices of j, we have that the

probability that v is chosen is < Et () = 0(1/n).

Finally, bounding over all possible values of Ak and their probabilities, we get

that the probability that u experiences an inversion on v during the execution is at

most 0(k 2 log k/n). E

Observe that the calculations done above are robust to conditioning on f(u) =

t, f(v) > t everywhere except that the second case in the first line of computation

becomes unnecessary and the value of Pr [f(v) < f(u) = r] is 0(r/(n - t)) (rather

than 0(r/n)). This gives Corollary 5.1.

Corollary 5.1. Consider running Algorithm 6 (or Algorithm 8) using a k-relaxed

queue Q on input graph G = (V, E) and random permutation 7r. For a fixed edge

e = (u, v), the probability that u experiences an inversion on or above v during the

execution conditioned on f(u) = t, f(v) > t is bounded by 0(k 2 log k/ (n - t)).

Secondly, we will quantify the expected number of priority inversions incurred by

an element, u, of Q once u's dependencies have been processed-that is, the number

of elements of Q with lower priority than u which are returned by GetApproxMin()

before u is.

118

Lemma 5.2. Consider running Algorithm 6 (or Algorithm 8) using a k-relaxed queue

Q on input graph G = (V, E). For a fixed node u, if u is a root at some time t, at most

O(k) other elements of Q with lower priority than u are deleted after t in expectation.

Lemma 5.2 follows immediately from the fairness bound provided by Q.

We stress that these two lemmas quantify the entire contribution of (the ran-

domness of) the relaxation of Q to the analysis. The major burden of the analysis,

particularly for MIS, is instead to manage the interaction between the randomness

of the permutation 7r (which is not inherently related to the relaxation of Q) and the

structure of G. Equipped with these lemmas, we are ready to do just that.

5.2.1 Algorithm 6: The General Case

The following theorem shows that the relaxed queue in Algorithm 6 has essentially

no cost for sparse dependency graphs with m = O(n) and still completes in 0(nk)

iterations even for dense dependency graphs when m = O(n2). For example, The-

orem 5.1 demonstrates that task-queue based problems which are inherently sparse

such as Knuth Shuffle and List Contraction [12] incur only negligible "wasted work"

when utilizing a k-relaxed queue with k < n. Furthermore, graph problems with edge

dependencies such as greedy vertex coloring incur a cost proportional to the sparsity

of the underlying graph. Although the result is not technically challenging, it is tight

up to factors of k.

Theorem 5.1. For a dependency graph G = (V, E) with |V = n vertices and IE| m

edges, Algorithm 6 runs for n + 0 (E) poly(k) iterations in expectation.

Proof. If a vertex u has no predecessor in Q at some time t, we call u a root. We will

compute the expected number of failed deletes directly as follows: Whenever a failed

delete occurs on a node w, charge it to the lexicographically first edge, e = (u, v),

for which u and v are both unprocessed and e(v) < e(w) (i.e., with possibly v = w).

Note that (1) such an edge must exist or else a failed delete could not have occurred,

(2) the failed delete must represent a priority inversion on u, and (3) u must be a root

(because e is lexicographically first). The first time an edge e is charged, we call e

119

the active edge until u is processed. Since u is a root for the duration of e's status as

active edge, by Lemma 5.2, u only experiences O(k) priority inversions in expectation

while e is active, which upper bounds the number of failed deletes charged to e.

Let Ae be the event that edge e = (u, v) ever becomes active. Ae can only

occur if u experiences an inversion on or above v during the execution, which is

bounded by O(k 2 log k/n) by Lemma 5.1. Thus, the total expected cost of e is at

most E[c(e)] = Pr [Ae] E[c(e)I A] = 0(k3 log k)/n = poly(k)/n. There are m edges so

the total cost across all edges is E () poly(k) as claimed.

Briefly, to see that Theorem 5.1 is tight (up to factors of k), consider executing a

greedy graph coloring problem on a clique. In this case, at any step, only the highest

priority node can ever be processed, and for each such node, u, it takes O(k) delete

attempts before u is processed. Thus in total, the algorithm runs for 0(nk) iterations.

5.2.2 Algorithm 8: Maximal Independent Set

Theorem 5.2. Algorithm 8 runs for n + poly(k) iterations in expectation.

Proof. Denote the lexicographically first MIS of G with respect to w as MIS,. We

first identify the key edges in the execution of Algorithm 8. We will say an edge

e = (u, v) is a hot edge w.r.t. 7r if u is the smallest labeled neighbor of v in MIS,.

Note that if (u, v) is a hot edge, v is not in MIS, and u has a smaller label than v.

Let H be the event that e is a hot edge w.r.t. 7r. Importantly, H depends only on

the randomness of 7r and not on the randomness of the relaxation of Q. We make

two key observations about hot edges that will allow us to prove the theorem:

Claim 5.2. There is exactly one hot edge incident to each vertex v E V \ MIS,, and

therefore the total number of hot edges is strictly less than n.

This is clear from the condition that u is the smallest labeled neighbor of v in

MIS, and the fact that if v is not in the MIS,, v must have at least one neighbor

in MIS, or else MIS, isn't maximal.

120

Claim 5.3. A node w is only re-inserted by Algorithm 8 if there is at least one hot edge

e = (u, v) with u a root and f(w) ;> f(v) (with possibly v = w). If e is such an edge,

we say e is active. Furthermore, at least one active hot edge satisfies f(u) < f(w)

If w is re-inserted, then w must be live and adjacent to some smaller labeled live

vertex u. Either u is a root, in which case (u, w) is the claimed hot edge, or else u

must be adjacent to an even smaller labeled live vertex. In the latter case, we can

recurse the argument down to u and eventually find a hot edge. In either case, both

nodes incident to the discovered active hot edge will have a label no greater than w's.

Proof Outline. The strategy from here is a follows: whenever a failed delete occurs

on a node w, we will charge it to an arbitrary hot edge e = (u, v) with u a root

and f(w) < f(v) (of which there must be at least one by Claim 5.3). Similar to

Theorem 5.1, we will say that e is active during the interval between the first time

a experiences an inversion on or above v and the time u is processed. We say that

the cost, c(e), of an edge, e, is the number of failed deletes charged to it (which is

notably 0 unless e is both hot and, at some point, active). We then separately bound

(1) the expected number of active hot edges which ever exist over the execution of

Algorithm 8 and (2) the expected number of failed deletes charged to an edge, given

that it is an active hot edge. Combining these will give the result.

In order to quantify the distribution of hot edges, we will need one more definition.

Fix e = (u, v) and let Ge be the subgraph of G induced by V' = V \ {u, v} and let

Wre be 7r restricted to V'. Let Le,t be the event that neither u nor v has a neighbor

w E MIS,,, with fi,, (w) < t. Informally, Le,t is the event that both u and v are still

live in G after running Algorithm 8 with an exact queue (k = 1) for t - 1 iterations

but with u, v excluded from Q. Like He, Le,t depends only on 7r and not on the

randomness of the relaxation of Q; furthermore, Le,t is independent from f(u) and

f(v). Using this definition, we can compute:

Pr [He] = Z Pr [Le,t] Pr [f(u) = t] Pr [f (v) > f(u) I(u) = t]
t

121

I n - t
= Pr [Le,t] n-.t

Pr [He (u) = t] Pr [f(u) = t]
Pr [e~u) = t He] P[e

Pr [H,]

Pr [Let] Pr [f(v) > t[f(u) = t] Pr [f(u) t]

Pr [He]

Pr [Le,t] - I

Et, Pr [Le,ti] n-
Pr [Le,t] (n - t)

E Pr [Le,t'] (n - V)

Next, we use the above formulations to bound the probability that a hot edge e is

ever active. Suppose we are given that e is a hot edge and f(u) = t. Then e becomes

active if and only if u suffers an inversion on or above v before u is processed by

the algorithm. Let A, be the event that e becomes active. At this point, we might

wish to apply Lemma 5.1 directly, but unfortunately it is not clear that Pr [Ae] is

independent from He, which we will need. However, note that He entails f(v) > f(u)

but given only that, f(v) is otherwise independent from He. Thus, if we condition on

f(u) = t and f(v) > f(u), then f(u) is fixed and f(v) is (conditionally) independent

from He, and therefore Ae also becomes (conditionally) independent from He. Now

we can apply Corollary 5.1, giving

k' log k
Pr [Ae e(U) = t, He] Pr [Ae, (u) = t, f(v) > f(u)] = 0 (.n-k

Then:

Pr [Ae He] = Pr [t(u) = t|He] Pr [Ae|l(u) =t, He]

t

Pr [Le,t] (n - t) 0(k' log k) - k) Et Pr [Le,t]

Et, Pr [Le,t,] (n - t') n - t lg , Pr [Le,t] (n - P)

Observe that for fixed e = (u, v), Pr [Le,t] is decreasing in t. In particular, for any

permutation 7r in which the event Le,,t occurs, Le,t- occurs also, but the reverse is

122

not true. Let p = - Et Pr [L,,]. Using Chebyshev's sum inequality, we obtain:

Pr [A, He] < O(k2 0 (k log k) V -0 (k 2 logk
Et, p(n -)E,(n -t) n

Finally, since u is a root and we only charge e for failed deletes on nodes with a

larger label than v, and therefore a larger label than u as well, the number of times

we charge e is upper bounded by the total number of priority inversions suffered

by u while a root, which, by Lemma 5.2, is given by O(k) in expectation. Thus

E[c(e)|Ae, He] = O(k).

Combining all the parts, we have a final bound on the total cost:

E [c(e) = Pr [He] Pr [AejHe] Pr [c(e)jAe, He]

- EPr [He] - (k2 logk -0(k))

- 0 (klogk)E [#{He}]
n

Claim 5.2 k3 log k
< 0 n

(n

= O(k3 log k)

= poly(k)

5.3 Experimental Results

Synthetic Tests. To validate our analysis, we implemented the sequential relaxed

framework described in Algorithm 6, and used it to solve instances of MIS, match-

ing, Knuth Shuffle, and List Contraction using a relaxed scheduler which uses the

MULTIQUEUE algorithm [64], for various relaxation factors. We record the average

123

number of extra relaxations, that is, the number of failed removals during the entire

execution, across five runs. Results are presented in Table 5.1. We considered graphs

of various densities with 103 and 104 vertices. The results appear to confirm our

analysis: the number of extra iterations required for MIS is low, and scales only in

K and not IV + IE1. There is some variation for fixed K and varying IVI+ I E1, but

it is always within a factor of 2 for our trials and does not appear to be obviously

correlated with VI + JEJ.

k

IV| |Ej 4 8 16 32 64
10000 14.5 57.0 122.5 272.0 557.0

1000 30000 3.0 31.0 94.5 264.0 488.0
100000 6.0 36.5 115.5 265.5 517.5

10000 12.0 44.5 180.5 415.5 862.0
10000 30000 14.5 59.0 171.5 387.0 825.5

100000 13.5 56.0 140.0 295.0 517.5

Table 5.1: Simulation results for varying parameters of Maximal Independent Set. k is the
relaxation factor, n is the number of nodes and m is the number of edges. The number of

extra iterations is averaged over 2 runs.

Concurrent Experiments. In addition to our sequential simulation, we imple-

mented a concurrent instance of our scheduling framework, using the MultiQueue [641

relaxed priority queue data structure. We assume a setting where the input, that is,

the set of tasks, is loaded initially into the scheduler, and is removed by concurrent

threads. We use lock-free lists to maintain the individual priority queues and we hold

pointers to the adjacency lists of each node within the queue elements, in order to be

able to efficiently verify whether a task still has outstanding dependencies.

We compared to the exact scheduling framework using the "Wait Free Queue as

Fast as Fetch-and-Add" [75]. Since there could still be some reordering of tasks due to

concurrency, we elect to use a backoff scheme wherein if an unprocessed predecessor

is encountered, we use the x86 built-in pause instruction to back off and wait for the

predecessor to process. In practice this rarely occurs.

Setup. Our experiments were run on an Intel Haswell machine with 4 sockets, 18

124

cores per socket and 2 hyperthreads per core, for a total of 36 threads per socket,

and 144 threads total. The machine has 512GB of RAM. We pinned threads to avoid

unnecessary context switches and to fill up sockets one at a time. Hyperthreading is

used for threads beyond the first 18 per socket. The machine runs Ubuntu 14.04 LTS.

All code was compiled with the GNU C++ compiler (G++) 6.3.0 with optimization

level -03. Experiments are performed on graphs with 106 and 108 nodes and 10'

edges. Our experiments were bottlenecked by graph generation and loading time so

as a matter of practicality we were limited to 109 edges. This is sufficient for long

runs on a sparse graphs, but unfortunately our dense graph trials were short (< .1

seconds for max thread counts). The number of queues is 4x the number of threads.

We tested thread counts which are a multiple of 6 up to 36 (saturating one socket),

and then multiples of 36 beyond that. We ran four trials for each data point and

took the average run time. In all cases, the standard deviation was less than 5% of

the mean.

MIS Sparse (1O^8 nodes, 1O^9 edges) MIS Dense (1 OA6 nodes, 10^9 edges)
60 x MutiQueue Walt-Free Queue - Sequential Baseline 06 x MutlQueue Wait-FreeQueue Sequential Baseline

40 04

20 5 0.2

............0- L. . . .0 36 72 108 144 0 36 72 108 144

Threads Threads

Figure 5-2: MIS algorithm run times on Figure 5-3: MIS algorithm run times on
a sparse graph. a dense graph.

Discussion. Figures 5-2 and 5-3 show that our framework using a relaxed scheduler

scales with respect to the time to compute MIS over the target graph all the way

up to max thread count. The exact framework using the fast wait-free queue also

scales on one socket, but plateaus as soon as we add additional sockets (beyond 36

threads on our machine). At max thread count of 144 threads/72 cores, the relaxed

scheduler is ~ 29 x faster than optimized sequential code, - 5.7x faster than the exact

scheduler using 144 threads, and ~ 4.2 x faster than the peak performance of the exact

scheduler, occurring at 36 threads (i.e. saturating one socket). An investigation of the

overheads shows that the number of failed removals is extremely small (less than 0.01%

125

of all removal attempts); this suggest that most of the overheads versus sequential are

in the scheduler structure, and in the slower per-thread queue performance, since we

optimize for concurrency. The sequential algorithm is significantly faster at 1 thread,

likely because it is highly optimized for the sequential setting, whereas the concurrent

algorithms have several consistency checks that are superfluous in sequential runs.

5.4 Future Work

From a theoretical perspective, the natural next step would be to tighten the poly(k)

bound on failed deletes, both for the generic algorithm and for MIS; in fact, we

conjecture that the poly(k) bounds in both Theorems 5.1 and 5.2 can be replaced

with e(k). However, proving such a bound seems to require a deep understanding

of the interplay between the structure of G and the effects of the randomness of a

k-relaxed queue, which we had to take care in our analysis to keep separate. Also

of interest is to discover more applications, and perhaps more instances like MIS in

which the bound in Theorem 5.1 can be improved on.

126

Chapter 6

Conclusion

We have argued for randomized relaxed concurrent data structures, showing that

they are able to bypass inherent sequential bottlenecks in exchange for rank error

with provable bounds. We have demonstrated their effectiveness in the setting of

concurrent ordering structures, providing a definition which quantifies relaxation in a

way which is both achievable by concrete algorithm and useful for application design.

Implementations: The SPRAYLIST provides flexible relaxation in the form of a

centralized, versatile data structure with provable guarantees. In addition to its or-

dering properties, the SPRAYLIST can easily be augmented to support any standard

Skiplist operations as needed by the application (SEARCH(, GETMAX(, etc.). We

have demonstrated that the SPRAYLIST significantly outperforms exact concurrent

queues both in raw throughput, and on realistic benchmarks such as Shortest Paths

and Maximal Independent Set. On the flip side, there are still significant commu-

nication costs incurred when GETMIN() is highly contended and batch deletes are

frequent.

On the other hand, the MULTIQUEUE algorithm offers an even more light weight,

low overhead, distributed data structure while still providing guarantees similar to

the SPRAYLIST. Although MULTIQUEUEs are not as versatile as the SPRAYLIST

(for example, it is very difficult to search for a specified key) and can't adapt their

semantics to contention, these shortcomings are made up for by increased throughput.

Threads executing the MULTIQUEUE algorithm incur no communication costs once

127

the initial TRYLOCKO is successful, and can thereafter use blazingly fast, state-of-

the-art sequential algorithms for the underlying queue operations.

The key open question in this sphere is whether the benefits of the SPRAYLIST

and MULTIQUEUEs can be achieved simultaneously: is there a relaxed, concurrent

ordering structure which is adaptive: providing strong semantics when contention

is low, versatile: able to support all operations that applications could reasonably

require, and low overhead: minimizing memory accesses and communication costs.

Such a structure represents the holy grail of the field.

On a local level, there are still a few gaps in the analysis for the SPRAYLIST and

MULTIQUEUEs. First, it would be valuable to verify that the given bounds are robust

to fully arbitrary schedules with arbitrary interleavings of inserts and deletes. For

MULTIQUEUEs in particular, it would be good to reduce the large constant number

of queues currently required for the analysis to work. Another important step would

be to improve the bounds on rank error or provide matching lower bounds showing

that no randomized relaxed concurrent data structure can do better than Q(n log n)

rank error without incurring significant slowdown on contended workloads (i.e., with

runtime o(n') per operation in an n-thread execution). In addition to these sorts

of improvements, one might also hope to find a simpler and perhaps more elegant

argument for why the bounds that we've shown hold.

Applications: Given our proposed definition of k-relaxation, we have shown that

k-relaxed queues can correctly execute any problem that can be formulated as a

task queue, and that these executions are guaranteed to be efficient as long the

underlying dependency graph is not dense. This property makes relaxed queues ideal

for computing problems with inherently sparse dependency structures, such as List

Contraction, since the overhead incurred due to relaxation is negligible. Moreover, we

gave the surprising result that Maximal Independent Set and Maximal Matching can

also be computed with negligible overhead irrespective of the size or structure of the

input graph. These results collectively demonstrate that the increased throughput of

relaxed ordering structures more than makes up for their weaker semantics in realistic

settings.

128

The obvious question to ask is whether there are further problems which are

well-suited for using relaxed structures, either inherently or by exploiting some sub-

structure to eliminate dependencies, as we did with Maximal Independent Set. For

example, while we were able to achieve good performance executing Dijkstra's Algo-

rithm on realistic graphs, we currently lack any theoretical grounding to say when

Dijkstra's algorithm can be executed efficiently using relaxed structures, and indeed

we do not expect relaxed queues to perform well if the input graph is selected adver-

sarially, e.g. in the case of graph which is just a single long path. Finding conditions

under which the amount of wasted work incurred due to relaxation while running

Dijkstra's algorithm is low would certainly be of interest.

With respect to our analysis of task-queue problems, there is still the open ques-

tion of tightening the polynomial factors of k that we use to bound the number of

dependency violations. In particular, our current analysis only manages to bound the

number of failed deletes by k, but we conjecture that a linear bound, that is, 0(k),

is possible.

On the experimental side, we believe that relaxed data structures are reaching a

point of sufficient maturity to be used more prominently in commercial production

systems. Accordingly, a thorough comparison of relaxed and exact data structures in

the context of a large scale application would be of great value.

129

130

-~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .-... -..99 9'ft's 1 9MW 9%2;81-mga

Bibliography

[1] Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-linearizability: Relaxed
consistency for improved concurrency. In International Conference on Principles
of Distributed Systems, pages 395-410. Springer, 2010.

121 Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Rachid
Guerraoui. Tight bounds for asynchronous renaming. J. A CM, 61(3):18:1-18:51,
June 2014.

[3] Dan Alistarh, Trevor Brown, Justin Kopinsky, Jerry Li, and Giorgi Nadiradze.
Distributionally linearlizable data structures. Under Submission to SPAA 2018,
2018.

[4] Dan Alistarh, Justin Kopinsky, Jerry Li, and Giorgi Nadiradze. The power of
choice in priority scheduling. arXiv preprint arXiv:1706.04178, 2017. To appear
in PODC 2017.

[5] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. Spraylist. https:
//github. com/jkopinsky/SprayList.

[6] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The spraylist: A scal-
able relaxed priority queue. In 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2015, San Francisco, CA, USA,
2015. ACM.

[71 Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simula-
tions, and advanced topics, volume 19. John Wiley & Sons, 2004.

[81 Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. Balanced allocations.
SIAM journal on computing, 29(1):180-200, 1999.

[91 Dmitry Basin, Rui Fan, Idit Keidar, Ofer Kiselov, and Dmitri Perelman. Caf6:
Scalable task pools with adjustable fairness and contention. In Proceedings of
the 25th International Conference on Distributed Computing, DISC'11, pages
475-488, Berlin, Heidelberg, 2011. Springer-Verlag.

[10] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold V6cking. Bal-
anced allocations: The heavily loaded case. In Proceedings of the Thirty-second
Annual ACM Symposium on Theory of Computing, STOC '00, pages 745-754,
New York, NY, USA, 2000. ACM.

131

[11] Petra Berenbrink, Tom Friedetzky, Zengjian Hu, and Russell Martin. On
weighted balls-into-bins games. Theor. Comput. Sci., 409(3):511-520, Decem-
ber 2008.

[12] Guy E Blelloch. Some sequential algorithms are almost always parallel. In
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA, pages 24-26, 2017.

[13] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Julian Shun. Inter-
nally deterministic parallel algorithms can be fast. In ACM SIGPLAN Notices,
volume 47, pages 181-192. ACM, 2012.

[14] Guy E Blelloch, Jeremy T Fineman, and Julian Shun. Greedy sequential maxi-
mal independent set and matching are parallel on average. In Proceedings of the
twenty-fourth annual ACM symposium on Parallelism in algorithms and archi-
tectures, pages 308-317. ACM, 2012.

[15] Guy E Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in random-
ized incremental algorithms. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 467-478. ACM, 2016.

[16] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiser-
son, Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. Journal of parallel and distributed computing, 37(1):55-69, 1996.

[17] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded compu-
tations by work stealing. Journal of the ACM (JA CM), 46(5):720-748, 1999.

[18] Anastasia Braginsky, Nachshon Cohen, and Erez Petrank. Cbpq: High perfor-
mance lock-free priority queue. In European Conference on Parallel Processing,
pages 460-474. Springer, 2016.

[19] Gerth Stolting Brodal, Jesper Larsson Trdff, and Christos D. Zaroliagis. A par-
allel priority queue with constant time operations. J. Parallel Distrib. Comput.,
49(1):4-21, 1998.

[20] Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. The adaptive priority
queue with elimination and combining. In International Symposium on Dis-
tributed Computing, pages 406-420. Springer, 2014.

[21] Neil Calkin and Alan Frieze. Probabilistic analysis of a parallel algorithm for
finding maximal independent sets. Random Structures & Algorithms, 1(1):39-50,
1990.

[22] Don Coppersmith, Prabhakar Raghavan, and Martin Tompa. Parallel graph
algorithms that are efficient on average. In Foundations of Computer Science,
1987., 28th Annual Symposium on, pages 260-269. IEEE, 1987.

132

[23] N. Deo and S. Prasad. Parallel heap: An optimal parallel priority queue. The
Journal of Supercomputing, 6(1):87-98, March 1992.

[24] Dave Dice, Virendra J Marathe, and Nir Shavit. Flat-combining numa locks.
In Proceedings of the twenty-third annual ACM symposium on Parallelism in
algorithms and architectures, pages 65-74. ACM, 2011.

[25] Brian Drawert, Stefan Engblom, and Andreas Hellander. Urdme: a modular
framework for stochastic simulation of reaction-transport processes in complex
geometries. BMC Systems Biology, 6(76), 2012.

[26] Wayne Eberly, Lisa Higham, and Jolanta Warpechowska-Gruca. Long-lived, fast,
waitfree renaming with optimal name space and high throughput. In Interna-
tional Symposium on Distributed Computing, pages 149-160. Springer, 1998.

[27] Faith Ellen, Danny Hendler, and Nir Shavit. On the inherent sequentiality of
concurrent objects. SIAM J. Comput., 41(3):519-536, 2012.

[28] Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the combining syn-
chronization technique. SIGPLAN Not., 47(8):257-266, February 2012.

[29] Panagiota Fatourou and Nikolaos D. Kallimanis. Highly-efficient wait-free syn-
chronization. Theory Comput. Syst., 55(3):475-520, 2014.

[30] Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized
greedy mis. In Proceedings of the Twenty-Ninth Annual A CM-SIAM Symposium
on Discrete Algorithms, pages 2152-2160. SIAM, 2018.

[31] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In
Proceedings of the 23rd annual ACM symposium on Principles of Distributed
Computing (PODC' 04), pages 50-59, New York, NY, USA, 2004. ACM Press.

1321 Keir Fraser. Practical lock-freedom. PhD thesis, PhD thesis, Cambridge Univer-
sity Computer Laboratory, 2003. Also available as Technical Report UCAM-CL-
TR-579, 2004.

[33] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: distributed graph-parallel computation on natural
graphs. In OSDI, volume 12, page 2, 2012.

[34] V. Gramoli. More than you ever wanted to know about synchronization: Syn-
chrobench. In Proceedings of the 20th Annual ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), 2015.

[351 Jakob Gruber, Jesper Larsson Trdff, and Martin Wimmer. Brief announcement:
Benchmarking concurrent priority queues. In Proceedings of the 28th A CM Sym-
posium on Parallelism in Algorithms and Architectures, SPAA '16, pages 361-
362, New York, NY, USA, 2016. ACM.

133

[36] Andreas Haas, Michael Lippautz, Thomas A. Henzinger, Hannes Payer, Ana
Sokolova, Christoph M. Kirsch, and Ali Sezgin. Distributed queues in shared
memory: multicore performance and scalability through quantitative relaxation.
In Computing Frontiers Conference, CF'13, Ischia, Italy, May 14 - 16, 2013,
pages 17:1-17:9, 2013.

[37] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and
the synchronization-parallelism tradeoff. In Proceedings of the twenty-second
annual ACM symposium on Parallelism in algorithms and architectures, pages
355-364. ACM, 2010.

[38] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Scalable flat-
combining based synchronous queues. In International Symposium on Distributed
Computing, pages 79-93. Springer, 2010.

139] Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and Ana
Sokolova. Quantitative relaxation of concurrent data structures. In Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL '13, pages 317-328, New York, NY, USA, 2013.
ACM.

[40] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A simple opti-
mistic skiplist algorithm. In Proceedings of the 14th international conference on
Structural information and communication complexity, SIROCCO'07, pages 124-
138, Berlin, Heidelberg, 2007. Springer-Verlag. http: //dl. acm. org/citation.
cfm?id=1760631.1760646.

[41] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan
Kaufmann, 2008.

[42] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463-492,
July 1990.

[43] Shams Imam and Vivek Sarkar. Load balancing prioritized tasks via work-
stealing. In European Conference on Parallel Processing, pages 222-234.
Springer, 2015.

[44] Mark C Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel
Sanchez. Unlocking ordered parallelism with the swarm architecture. IEEE
Micro, 36(3):105-117, 2016.

[45] R. M. Karp and Y. Zhang. Parallel algorithms for backtrack search and branch-
and-bound. Journal of the ACM, 40(3):765-789, 1993.

[46] Christoph M Kirsch, Hannes Payer, Harald R6ck, and Ana Sokolova. Perfor-
mance, scalability, and semantics of concurrent fifo queues. In International
Conference on Algorithms and Architectures for Parallel Processing, pages 273-
287. Springer, 2012.

134

I! "r r , I I I ; -I I .- .-.I I -I I . .1 -1 1 - I I I I I I I I 1 -11 , -, .-1 .. 1- 11,111, . , .I I I I I ..1. 1 - m-m r-1 , I 1 1. 1 1.., 11 -1-1 . "I " - - "I'll" , - I I I "1 7 1 1 1 1 , I

[47] Doug Lea, 2007. http://java.sun.com/javase/6/docs/api/java/util/
concurrent/ConcurrentSkipListMap.html.

[481 Charles E Leiserson, Ronald L Rivest, Clifford Stein, and Thomas H Cormen.

Introduction to algorithms. The MIT press, 2001.

[49] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Priority queues are

not good concurrent priority schedulers. In European Conference on Parallel

Processing, pages 209-221. Springer, 2015.

[50] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset

collection. http: //snap. stanf ord. edu/data, June 2014.

[511 Jonatan Linden and Bengt Jonsson. A skiplist-based concurrent priority queue

with minimal memory contention. In Principles of Distributed Systems, pages

206-220. Springer, 2013.

[521 Yujie Liu and Michael Spear. Mounds: Array-based concurrent priority queues.

In Parallel Processing (ICPP), 2012 41st International Conference on, pages

1-10. IEEE, 2012.

[531 Itay Lotan and Nir Shavit. Skiplist-based concurrent priority queues. In Parallel

and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th
International, pages 263-268. IEEE, 2000.

[54] Michael Mitzenmacher. The power of two choices in randomized load balancing.

IEEE Transactions on Parallel and Distributed Systems, 12(10):1094-1104, 2001.

[551 Michael David Mitzenmacher. The Power of Two Random Choices in Random-

ized Load Balancing. PhD thesis, PhD thesis, Graduate Division of the University

of California at Berkley, 1996.

[561 Adam Morrison. Scaling synchronization in multicore programs. Commun. A CM,
59(11):44-51, October 2016.

[571 Adam Morrison and Yehuda Afek. Fast concurrent queues for x86 processors.

SIGPLAN Not., 48(8):103-112, February 2013.

[58] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastruc-

ture for graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP '13, pages 456-471, New York, NY, USA,
2013. ACM.

[59] Alessandro Panconesi, Marina Papatriantafilou, Philippas Tsigas, and Paul

Vitdnyi. Randomized naming using wait-free shared variables. Distributed Com-

puting, 11(3):113-124, 1998.

[60] Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced allocations

and the 1 + beta-choice process. Random Struct. Algorithms, 47(4):760-775,
December 2015.

135

[61] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Commu-
nications of the ACM, 33(6):668-676, 1990.

[62] William Pugh. Concurrent maintenance of skip lists. 1998.

[63] Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two random
choices: A survey of techniques and results. Combinatorial Optimization, 9:255-
304, 2001.

[641 Hamza Rihani, Peter Sanders, and Roman Dementiev. Brief announcement:
Multiqueues: Simple relaxed concurrent priority queues. In Proceedings of the
27th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
'15, pages 80-82, New York, NY, USA, 2015. ACM.

[65] Konstantinos Sagonas and Kjell Winblad. The contention avoiding concurrent
priority queue. In International Workshop on Languages and Compilers for Par-
allel Computing, pages 314-330. Springer, 2016.

[66] Konstantinos Sagonas and Kjell Winblad. A contention adapting approach to
concurrent ordered sets. Journal of Parallel and Distributed Computing, 2017.

[67] P. Sanders. Randomized priority queues for fast parallel access. Journal Par-
allel and Distributed Computing, Special Issue on Parallel and Distributed Data
Structures, 49:86-97, 1998.

[68] Nir Shavit. Data structures in the multicore age. Commun. ACM, 54(3):76-84,
2011.

[69] Julian Shun, Yan Gu, Guy E Blelloch, Jeremy T Fineman, and Phillip B Gib-
bons. Sequential random permutation, list contraction and tree contraction are
highly parallel. In Proceedings of the twenty-sixth annual ACM-SIA M symposium
on Discrete algorithms, pages 431-448. SIAM, 2014.

[70] Hikan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority
queues for multi-thread systems. Journal of Parallel.and Distributed Computing,
65(5):609-627, 2005.

[71] Kunal Talwar and Udi Wieder. Balanced allocations: The weighted case. In Pro-
ceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing,
STOC '07, pages 256-265, New York, NY, USA, 2007. ACM.

[72] Orr Tamir, Adam Morrison, and Noam Rinetzky. A heap-based concurrent prior-
ity queue with mutable priorities for faster parallel algorithms. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 46. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

[731 M. Wimmer, D. Cederman, F. Versaci, J. L. Trsff, and P. Tsigas. Data structures
for task-based priority scheduling. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP 2014),
2014.

136

[74] M. Wimmer, Gruber J., J. L. Trdff, and P. Tsigas. The lock-free k-lsm relaxed
priority queue. In Proceedings of the 20th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP 2015), 2015.

[751 Chaoran Yang and John Mellor-Crummey. A wait-free queue as fast as fetch-
and-add. SIGPLAN Not., 51(8):16:1-16:13, February 2016.

137

