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Abstract

The increasing prevalence of digitized clinical data creates new opportunities to use machine
learning to unlock clinical insights, and ultimately improve healthcare delivery. However,
while data from Electronic Health Records (EHRs) have become common, they present
unique challenges. Clinical data are noisy, sparse, irregularly sampled, and often biased in
their recording of health state and care patterns. Further, much of the most important
information used by care staff is recorded in unstructured text notes that are not easily
deciphered by non-experts.

In this work, we present machine learning methods that distill large amounts of text-based
clinical data into latent representations. These representations are then used to predict a
variety of important outcomes. In particular, we focus on prediction tasks that can provide
evidence-based risk assessment and forecasting in settings with guidelines that have not
traditionally been data-driven. We consider several abstractions for clinical narrative text,
and evaluate their utility on common predictive tasks, such as mortality and readmission.
We argue that a "good" representation will improve performance on these tasks and that
multiple representations may be necessary, as different models excel on differing tasks.

We present three case studies in which we use representations of clinical text to improve
performance of clinical prediction tasks. First, we augment predictive models that used
baseline clinical features by including features from clinical progress notes [31].These features
are derived using Latent Dirichlet Allocation (LDA) and incorporated as features using per-
patient topic membership. Notably, this representation has the benefit of interpretable topics
over which each patient can be represented as a distribution.

Second, we explore the expressive power of clinical prose by evaluating the performance
of several common models on both downstream clinical tasks and their ability to identify
information contained in patients' notes [7]. This stands in contrast to much prior work that
positions the utility of a given model solely with respect to its ability to improve downstream
clinical performance. Such extrinsic evaluations are blind to much of the insight contained
in the notes, thus motivating the need for intrinsic evaluations.

Finally, we use the text-based metadata associated with EHR encodings to allow the
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transfer of predictive models from one database to another [35]. Existing machine learning
methods typically assume consistency in how semantically equivalent information is encoded.
However, the way information is recorded differs across institutions and over time, often
rendering potentially useful data obsolescent. To address this problem, we map database-
specific representations of the information to a shared set of semantic concepts, thus allowing
models to be built from or transition across different databases.

Thesis Supervisor: Peter Szolovits
Title: Professor of Electrical Engineering and Computer Science

4



Acknowledgments

Following many endeavors, it becomes apparent that three phrases should have been said

more often than they were: "Thank you," "I'm sorry," and "I love you." And so, I would like

to acknowledge some people who deserved to hear them far more frequently.

I thank my family for their love and support. My father, Otto Naumann, has always kept

an excellent sense of humor about graduate studies, and made getting a second Ph.D. look

effortless while I was still working toward a first. My mother, Heidi Shafranek, has offered

unwavering encouragement, and her commitment to helping me see beyond work has been

essential. My siblings, Ambrose and Siena, make me incredibly proud, and inspire me to

constantly work harder in order to be the older brother that they deserve.

Moving to Boston meant seeing some people less often than I would have liked. Among

them, Emily Sneeringer has endured more cross-country flights than anyone should. She's

met me with unconditional patience, and encouraged me to continue even when I was unsure.

Moving also brought new friends, who have made living here wonderful. Jonathan Battat

made me feel immediately welcome and found a place for us to call home. Nora Kelleher,

Tom Pollard, and Jessica Liu have kept that same place filled with happiness. Jen Gong has

been an incredible collaborator and friend, especially as we approached submission deadlines

that always came later than I was led to believe.

Marzyeh Ghassemi has been the best officemate, collaborator, and friend imaginable

regardless of how long she claims it took us to first talk. She's provided immense support

and the place she holds will be empty. She and her husband, Eric Munson, have supplied

uncountable meals, and her children Raziyeh, Abbas, and Somayeh are an infinite source of

happiness.

Finally, I thank my advisor, Peter Szolovits, and my thesis committee members, John

Guttag and Anna Rumshisky. Their support, flexibility, and advice made this experience

fulfilling.

5



6



Contents

1 Introduction

1.1 Challenges of EHR Data

1.2 Challenges of Clinical Text

1.3 Contributions . . . . . . .

1.4 Organization . . . . . . .

2 Background

2.1 Acuity Scores . . . . . . .

2.2 D ata . . . . . . . . . . . .

2.2.1 MIMIC-I . . . . .

2.2.2 MIMIC-Il . . . . .

2.3 Clinical NLP Tools . . . .

3 Representations for Predicting Clinical

3.1 Overview . . . . . . . . . . . . . . . . .

3.2 Related Work . . . . . . . . . . . . . .

3.3 M ethods . . . . . . . . . . . . . . . . .

3.3.1 Data and Pre-Processing . . . .

3.3.2 Structured and Derived Features

3.3.3 Topic Inference . . . . . . . . .

3.3.4 Prediction . . . . . . . . . . . .

Outcomes 31

. . . . . . . . . . . . . . . . . . . . . 32

. . . . . . . . . . . . . . . . . . . . . 33

. . . . . . . . . . . . . . . . . . . . . 34

. . . . . . . . . . . . . . . . . . . . . 36

. . . . . . . . . . . . . . . . . . . . 37

. . . . . . . . . . . . . . . . . . . . . 37

. . . . . . . . . . . . . . . . . . . . . 38

3.4 Results

7

17

19

20

21

22

25

25

26

27

28

28

40



3.4.1 Qualitative Enrichment . . . . . . . . . . . . . . . . .

3.4.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . .

3.5 D iscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Representations for Predicting Intrinsic Note Information

4.1 Overview

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Related Work . . . . . . . . . . .

D ata . . . . . . . . . . . . . . . .

Methods . . . . . . . . . . . . . .

4.4.1 Bag of Words . . . . . . .

4.4.2 Word Embeddings . . . .

4.4.3 Recurrent Neural Network

Experimental Setup . . . . . . . .

Results. . . . . . . . . . . . . . .

Discussion . . . . . . . . . . . . .

Conclusions . . . . . . . . . . . .

5 Representations for Predicting Outcomes Across Changing EHR

5.1 O verview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 R elated W ork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 M ethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3.1 Bag-of-Events Feature Representation . . . . . . . . . . . . .

5.3.2 EHR Item ID Feature Construction . . . . . . . . . . . . . .

5.3.3 Mapping EHR Item ID to UMLS Concept Unique Identifier

5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4.1 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . .

5.4.2 Model Definition . . . . . . . . . . . . . . . . . . . . . . . .

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . .

8

40

42

47

49

51

51

53

54

56

57

57

58

59

60

61

65

67

68

70

71

71

72

73

76

76

78

79

Systems

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .



5.5.1 EHR-specific Item IDs: Bag-of-Events Feature Representation . . . . 79

5.5.2 Mapping Item IDs to CUIs . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.3 CUIs Enable Better Transfer Across EHR Versions . . . . . . . . . . 83

5.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Conclusion 89

9



10



List of Figures

3-1 Overall flow of experiment. 1) Clinical baseline features are extracted from the

database for every patient (e.g., age, sex, admitting SAPS II score) and derived

features are computed (e.g., maximum/minimum SAPS II score) to form the

Structured Features matrix v (Vp,f is the value of feature f in the pth patient).

2) Each patient's de-identified clinical notes are used as the observed data in an

LDA topic model (i.e., Un-supervisted LDA Model), and a total of 50 topics are

inferred to create the per-note topic proportion matrix q. 3) Per-note latent

topic features are aggregated in extending 12 hour windows (e.g., notes within

0-12 hours, notes within 0-24 hours, etc.) and used to form matrix q' where

qrn,k is the overall proportion of topic k in time-window m. 4) Depending on

the model and time window being evaluated, subsets of the feature matrix v

and matrix q' are combined into an Aggregated Feature Matrix. 5) A linear

kernel SVM is trained to create classification boundaries for three clinical

outcomes: in-hospital mortality, 30 day post-discharge mortality, and 1 year

post-discharge mortality (i.e., Structured SVM Model). . . . . . . . . . . . . 35

3-2 The probability of in-hospital mortality for each topic, indicating that top-

ics represent differences in outcome. Probabilities are calculated as O =

FT N"'**f" (see section 3.3.3). Each bar shows the prevalence of a given topic
_n=1 qn,k

k in the mortality category, as compared to the set of all patients. Bars are

shown as above (in red) or below (in green) the baseline in-hospital mortality

based on the value of 6 k for each topic k. . . . . . . . . . . . . . . . . . . . . 42

11



3-3 Linear SVM model performance measured via AUC on three outcomes: in-

hospital mortality, 30 day post-discharge mortality, and 1 year post-discharge

mortality. In each case, the features used are described in detail in Sec-

tion 3.3.4. Our prediction task is different from the usual situation where

data is accumulated over time. Since fewer patients have long ICU stays,

in this case, we actually lose data points as time goes on, making the pre-

diction task harder. For example, at time 0 there are 5,784 patients (5,157

controls/627 positives for in-hospital mortality) in the test set. By 72 hours,

this had dropped to 5,084 patients (4,591 controls/493 positives for in-hospital

mortality) and at 144 hours to 3,496 patients (3,141 controls/355 positives for

in-hospital mortality). (Table 3.4) . . . . . . . . . . . . . . . . . . . . . . . . 44

4-1 An example clinical note. The age, gender, and admitting diagnosis have been

highlighted. Also note, that descriptions such as "status worsening" suggest

deterioration and possible in-hospital mortality. . . . . . . . . . . . . . . . . 55

4-2 A patient's time in the ICU generates a sequence of timestamped notes. Each

of the methods described transforms the sequence of notes into a fixed-length

vector representing the ICU stay. . . . . . . . . . . . . . . . . . . . . . . . . 56

4-3 How the embedding for a single document is built by combining constituent

word em beddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4-4 The many-to-one prediction task for the LSTM, in which a document repre-

sentation is fed in at each timestep, and it makes a prediction (e.g., diagnosis)

at the end of the sequence....... ............................. 58

4-5 PCA 2-D projection of the word embeddings. Vectors of the special age tokens

are colored red. Note that these tokens cluster close together in the embedding. 63

12



5-1 Text values often modify the semantic meaning of the corresponding items.

We assign new unique item IDs with item descriptions that append these

values to the initial item description. In this example, ID 229 in MIMIC is

associated with a number of distinct text values in patients' charts that modify

its sem antic m eaning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5-2 All, Spanning, and Longest methods for annotating "ankle brachial index

left." These approaches relate the item descriptions to different sets of CUIs. 74

5-3 Distribution of number of identified CUIs per Item ID: Comparing All, Span-

ning, and Longest relation methods. . . . . . . . . . . . . . . . . . . . . . . . 75

5-4 Transformation of Item IDs BOE representation to CUIs BOE representation

using the all m ethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5-5 Length of stay in the ICU in MIMIC-III. Outliers (LOS > 50 days) truncated

for clarity of visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5-6 Number of patients remaining in the ICU (left) and clinical outcomes (right)

with prediction gap 0-48 hours. . . . . . . . . . . . . . . . . . . . . . . . . . 77

5-7 Diagram of relationship between information used to construct feature vector

(first 24 hours in the ICU) and prediction gap between information used and

outcom es. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5-8 Mean AUC across 10 2:1 stratified holdout sets and 95% confidence interval

shown for each database and outcome considered. Item IDs + SAPS II (pur-

ple) significantly outperforms Item IDs-only (blue) or SAPS II only (red) in

predicting in-hospital mortality (top) and prolonged LOS (bottom) in Care-

Vue (left) and MetaVision (right). . . . . . . . . . . . . . . . . . . . . . . . . 80

13



5-9 Mean AUC across 10 2:1 stratified holdout sets and 95% confidence interval

shown for each database and outcome considered. Converting to CUIs from

Item IDs results in small, but statistically significant differences in perfor-

mance in 3 out of the 4 tasks considered. Mean AUC across prediction gaps

shown for the outcomes of in-hospital mortality (top) and prolonged LOS

(bottom) in CareVue (left) and MetaVision (right). . . . . . . . . . . . . . . 81

5-10 Baseline approaches: (a) Train a model on all items in the training database

(Train DB) (left), and (b) Train a model only on shared items that appear in

both the training and test databases (right). . . . . . . . . . . . . . . . . . . 84

5-11 AUC when training on TrainDB and testing on TestDB using EHR-specific

Item IDs (all), Item IDs (shared), and CUIs. 95% confidence intervals are

shown for each database and outcome considered. The dashed lines show

the training AUC of each model on Train DB, while the solid lines show the

AUC on Test DB. Training using the CUIs representation results in the best

training and test AUCs across all prediction gaps compared to Item IDs (all) or

Item IDs (shared) representations. These improvements are more pronounced

for the outcome of Prolonged Length of Stay when training on CareVue and

testing on MetaVision (bottom left). . . . . . . . . . . . . . . . . . . . . . . 85

14



List of Tables

3.1 Cohort Com position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Top ten words in topics enriched for in-hospital mortality, hospital survival

(any number of days post-discharge), and 1 year post-discharge mortality. . . 41

3.3 Top ten most probable words for all topics. . . . . . . . . . . . . . . . . . . . 43

3.4 Patient cohort size at each time tested by time-varying models. Note that

patients are removed from a prediction time if they are discharged or die prior

to that tim e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Detailed model prediction results for three outcomes: in-hospital mortality,

30 day post-discharge mortality, and 1 year post-discharge mortality. This

also appears in Figure 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 AUCs for the binary classification tasks. . . . . . . . . . . . . . . . . . . . . 61

4.2 Macro-average F1 scores for the multi-way classification tasks. . . . . . . . . 61

4.3 Most predictive words for gender: (a) Male, (b) Female. . . . . . . . . . . . . 62

4.4 Most predictive words for admission types: (a) 'Urgent' admissions, and (b)

'Elective' adm issions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Most predictive words for length-of-stay: (a) Short stay (0 - 1.5 days), (b)

Medium stay (1.5 - 3.5 days), (c) Long stay (> 3.5 days) . . . . . . . . . . . 64

5.1 Number of patients and clinical outcomes (in-hospital mortality and prolonged

length of stay, i.e., LOS > 11.3 days) in CareVue (2001-2008) and MetaVision

(2008-2012) portions of MIMIC-III. . . . . . . . . . . . . . . . . . . . . . . . 77

15



5.2 Outcome: In-Hospital Mortality. Difference in AUC between SAPS II + Item

IDs and SAPS II + CUIs (Spanning) shown. Statistical Significance evaluated

using the Wilcoxon Signed-Rank Test. . . . . . . . . . . . . . . . . . . . . . 82

5.3 Outcome: Prolonged Length of Stay. Difference in AUC between SAPS II

+ Item IDs and SAPS II + CUIs (Spanning) shown. Statistical Significance

evaluated using the Wilcoxon Signed-Rank Test. . . . . . . . . . . . . . . . . 83

5.4 Number of Item IDs and CUIs in CareVue, MetaVision, and intersection for in-

hospital mortality after filtering (> 5 occurrences in data). For MetaVision,

the filter selects 2,438 of the 5,190 features. For CareVue, the filter selects

5,875 of the 15,909 features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

16



Chapter 1

Introduction

Electronic health record (EHR) systems have become abundant in acute care hospitals (97%

in 2014 [16]) and office-based practices (78% in 2015 [72]). While the data contained in EHRs

are collected for the primary purpose of facilitating day-to-day operations, the increasingly

large amount of data available present opportunities for their secondary use in retrospec-

tive analyses that can improve both the present understanding of patient physiology and

clinical practice. Using machine learning to derive such insights has become an emerging

topic of interest for researchers hoping to unlock the potential offered by EHRs. Indeed, re-

cent successes include work in detecting lymph node metastases from breast pathology [33],
autism subtyping by clustering comorbidities [24], large-scale phenotyping from observational

data [77], and many other areas.

Applications of machine learning in healthcare create new opportunities to advance the

field of medicine. Insights derived from observational data complement existing methods of

clinical knowledge generation. For example, randomized controlled trials (RCTs) remain the

gold standard in assessing treatment effects, but a large fraction of clinical decisions are not,

or cannot be, based on high-quality RCTs [58J; thus many clinicians have limited evidence

to guide their decisions. Even for those treatments that are based on an RCT, it is often

the case that inclusion criteria result in a narrow cohort, which may not be representative of

the more heterogeneous population that receives the treatment [90]. Here, machine learning

17



can provide a means to inform the priority of high-cost RCTs, highlighting those that yield

the greatest impact, and even confirm the validity of their findings when applied in practice,

often to more diverse patient populations.

The data contained in EHRs consist of many modalities, including high-frequency signals

from medical instrumentation, sporadic results from lab tests, and clinical text from care

staff. Among these modalities, clinical text is perhaps the most descriptive, consisting of

clinical narratives written by care staff and text-based metadata associated with EHR encod-

ings (e.g., the human-readable labels associated with laboratory tests). These unstructured,

free-text data have become an emerging topic of interest for researchers hoping to unlock

the potential offered by EHRs.

In this thesis, we argue that the use of free-text data is critical to delivering on the full

potential offered by EHR data, and demonstrate the use of this modality in several case

studies. These case studies use data from the intensive care unit (ICU), where the potential

impact of EHR data is magnified due to the high cost of care and lack of evidence-based

interventions. Critical care medicine in the United State had grown to cost over $80 billion

annually by 2005 [40, 39], and these costs are incurred even when treatment is perceived to

be futile by an external focus group of clinicians [45]. Further, a majority of the treatments

commonly provided in ICUs have not been subject to an RCT [691, with some estimates

as low as 10-20% of treatments backed by an RCT [711. Among those treatments that are

provided, many do not have a demonstrable impact on improving outcomes [74]. Meanwhile

ICUs generate an abundance of data as a byproduct of the continuous monitoring required

to support critical care. As a result, the ICU is a data rich environment, making it an ideal

proving ground for improving our current standard of care, and doing so at a lower cost.

The case studies in this thesis present methodologies for leveraging free-text EHR data,

and serve as steps toward the broader goal of improving care. The effective use of EHR text

data requires overcoming issues that complicate the application of traditional machine learn-

ing methods; namely, those related to 1) challenges pervasive across EHR data modalities,

and 2) challenges unique to clinical text.
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1.1 Challenges of EHR Data

EHR data are not collected for the purpose of analysis; instead, they are intended to facilitate

day-to-day operations, including the provision of care and billing. As a result, EHR data

reflect the underlying care processes, and have a number of a properties that complicate

traditional machine learning methods. Specifically, these data are irregularly sampled, noisy,

sparse, and often biased in their recording of health state and care patterns. Further, these

properties appear across multiple modalities, which must often be analyzed jointly to form

an understanding of human health [97].

Consider the recording of several common data types. In an ICU, patient vitals are often

recorded with high frequency and summarized hourly, while lab results are made available

sporadically based on when they are ordered, static demographic data are typically recorded

once per stay, and notes might be written whenever necessary and aggregated during each

nursing shift. Such differences in data modality and sampling rate complicate learning, even

when data are otherwise structured.

Each data type also typically reflects a varying degree of sparsity. For example, it may

be the case that a lab is ordered but the resulting value not recorded, or a vital may be

unrecorded for an extended period of time because of issues with the instrumentation. This

sparsity often reflects bias in the collection of data since there are few measurements per-

formed for all patients; instead, measurements are taken to facilitate diagnoses and thus the

fact that something is measured may be meaningful on its own.

Additionally, uncertainty is pervasive both with respect to data that are collected, and the

labels used for prediction targets. Uncertainty in data collection may take the form of noisy

measurements-to which many machine learning methods are, or can be made, robust-but

more often is the result of the generating process. For example, consider the time recorded

with a given measurement. While it may have been recorded at the time the measurement or

sample was taken, it may also have been recorded much later when a result became available,

or care staff had time to record it. Uncertainty in the labels used for prediction targets also

complicates traditional machine learning methods. For example, it may be tempting to use
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billing codes as a prediction target in identifying diagnoses, but these codes may be recorded

to reflect a chronic condition rather than the condition that actually led to the provision of

care. Similarly, billing codes for some conditions may be recorded when a patient receives

diagnostic testing, whether or not the tests reveal the presence of that condition.

1.2 Challenges of Clinical Text

Clinical text presents unique challenges. Many natural language processing (NLP) techniques

that are well-studied in the general domain perform poorly in clinical settings where the

underlying text reflects a distinct vocabulary, contains context-specific abbreviations and

statements, and clinical practices (e.g., copy-and-paste) result in redundant information.

A distinct vocabulary means that many state-of-the-art resources have limited utility

when transferred to the clinical domain because such resources don't reflect the underlying

distributions of clinical text. This constraint can be mitigated by creating similar resources

for clinical data, or fine-tuning existing models from the general domain on clinical data;

however, the sensitive nature of clinical text means that data are not often available in the

same quantity as the general domain (i.e., web scale).

Further, clinical statements and abbreviations are frequently dependent on context. For

example, a statement like "the patient's condition worsened" will have very different meaning

depending on whether a patient has a cold or has been intubated. This context dependence

is exemplified in the use of abbreviations. A common abbreviation like "s/p" (status post,

or "condition after") might be shared across specialties. However, an abbreviation like "TI"

is more ambiguous. An oncologist may use "T1" to describe tumor size and its spread into

nearby structures; whereas a radiologist may use "T1" to describe the image weighting in

MRI sequences.

Finally, clinical narratives are used to communicate among care staff and often contain

redundant information. Duplication can occur when care staff explicitly copy-and-paste

existing information, a practice so pervasive that it has attracted significant academic atten-

tion [70, 41, 103, 101]. Redundant information can also be introduced implicitly as a means
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of placing emphasis on those factors that are most important in the provision of care.

1.3 Contributions

In this thesis, we evaluate several methods to create patient representations using clinical

text, and use the resulting features to predict outcomes of interest. In doing so our main

contributions fall into two areas: 1) leveraging representations of clinical text to improve the

performance of existing prediction tasks, and 2) exploring the information captured by these

underlying representations.

These contributions represent steps toward a broader goal of using machine learning

to improve healthcare. The first of these contributions serves to motivate the future use of

clinical text in predictive applications; that is to say, our work demonstrates that clinical text

provides additional, complementary information to structured EHR data, and thus should

be used to improve predictive performance. The second contribution is necessary to better

understand why a given representation is able to improve performance, and, to the extent

possible, build trust in the underlying model. We demonstrate these contributions through

several works in which we address either one or both of these issues to find appropriate

representations that facilitate downstream predictive tasks.

The works herein were informed by several common considerations: leveraging domain

knowledge, defining a meaningful clinical problem, and using representations of clinical text

to do so. First, using appropriate domain knowledge is important to avoid results that are

representative of the data, but clinically irrelevant. Indeed, applying machine learning meth-

ods out-of-the-box without sufficient domain knowledge often leads to unintended results.

For example, Caruana et al. [13] showed this in work that considered applying a deep learn-

ing method to predicting the risk of dying of pneumonia. Notably, the authors find that a

model learned that patients with asthma had a lower risk of dying, a finding that cannot

be reconciled with existing clinical knowledge. However, this result is a reflection of the

differing care provided to those patients who entered with asthma, something that becomes

evident with the addition of clinical domain knowledge.
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Second, defining the right clinical problem is an important, and often difficult, task. For

example, in an ICU setting it may be tempting to predict in-hospital mortality using all

information from a patient's record [431. However, doing so naively, one might include a

patient's billing codes. At first glance, such an inclusion seems sensible because billing codes

contain information about diagnoses that were provided during the course of care. However,

many of these codes are recorded after care has been provided (i.e., they are curated from

other EHR data). As a result, such a prediction would depend on data that becomes available

only after the point at which the prediction can be made meaningfully; thus, compromising

its utility entirely.

Finally, in each of the works we leverage representations of clinical text. While unstruc-

tured clinical text presents unique challenges, it also presents unique opportunities. By its

nature, the lack of structure is common across EHR systems. As a result, successful repre-

sentations can often be transferred across EHR systems, or facilitate the transfer of other

models across EHR systems. These two properties are critically important in enabling us to

amass sufficient data for machine learning methods-an essential undertaking since simple

machine learning methods often perform better than their more complex counterparts when

sufficient data are available [38, 21. Further, clinical text are used to communicate among

care staff. In the case of clinical notes, we intuitively expect text to contain both a summary

of the most relevant information from other signals, and subjective observations that cannot

otherwise be instrumented. Thus, clinical notes constitute a channel that both highlighting

important information and suppling new information.

1.4 Organization

This thesis is organized as follows:

Ch. 2 Background: The works that follow share several common clinical resources, as well as

a common data source. We begin by providing a high-level overview of these resources

prior to a more detailed discussion accompanying each work. Specifically, these works

rely on the publicly-available MIMIC critical care databases [81, 48].
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Ch. 3 Representations for Predicting Clinical Outcomes: We derive representations of

clinical notes that are predictive of in-hospital mortality and post-discharge mortality

in an ICU setting, and psychiatric readmission in a psychiatric care setting [31].

Ch. 4 Representations for Predicting Intrinsic Note Information: We explore the

power of expressive clinical prose by evaluating the performance of several common

models on both downstream clinical tasks and their ability to identify information

contained in each note [7].

Ch. 5 Representations for Predicting Outcomes Across Changing EHR Systems:

We map database-specific representations of information to a shared set of semantic

concepts using the human-readable, text-based metadata associated with EHR encod-

ings, thus allowing models to be built from or transition across different databases [35].

Relevant literature is highlighted alongside each of the works presented.
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Chapter 2

Background

We make use of several resources frequently encountered in machine learning for healthcare.

Their description here is intended to serve as an introduction for readers without a back-

ground in this domain. While we defer the particulars of each resource's usage to accompany

its presentation, their description here also reduces repetition in subsequent chapters. These

common resources fall broadly into several categories: 1) existing acuity scores, 2) data

sources, and 3) clinical natural language processing (NLP) tools.

2.1 Acuity Scores

The intensive care unit (ICU) admits severely ill patients in order to provide life-saving

treatment, such as mechanical ventilation. ICUs frequently have a very high staff to patient

ratio in order to facilitate continuous monitoring of all patients and ensure that any deteri-

oration in patient condition is detected and corrected before it becomes fatal; an approach

that has been demonstrated to improve outcomes [51]. As a result, the ICU is a data rich

environment.

A major effort has been placed in utilizing this data to both quantify patient health and

predict future outcomes. The APACHE system was first published in Knaus et al. [54j, and

provided predictions for patient mortality based upon data collected in the ICU. While the

25



initial system was based on expert rules, later updates used data driven methods [1041. Other

prediction systems have been developed as well, including the Acute Physiology Score (APS)

III [561, Simplified Acute Physiology Score (SAPS) [60], SAPS II [621, the Sequential Organ

Failure Assessment (SOFA) score [95], the Logistic Organ Dysfunction Score (LODS) [611,

and the Oxford Acute Severity of Illness Score (OASIS) [471.

For a thorough review of severity of illness scores in the ICU, see Strand and Flaatten

[881 and Keegan et al. [53]. Among the descriptions found there, it is important to note that

these models were identified to lack sufficient calibration for use on the individual level [55J,

and some research goals were shifted to quantify the performance of ICUs and hospitals in

aggregate, only. Nevertheless, a subset of these scores are commonly used on an individual

level, providing a competitive baseline for predictive systems.

Among these many scores, the works contained in this thesis most heavily make use of

SAPS II [621, either as a baseline or as a feature to inform models of patients' physiological

states. The SAPS II score includes information from routine physiological measurements

made during the first 24 hours, and is comprised of 17 variables: age, type of admission

(scheduled surgical, unscheduled surgical, or medical), three underlying disease variables

(acquired immunodeficiency syndrome, metastatic cancer, and hematologic malignancy), and

12 physiological variables. These physiological variables are comprised of a small number

of parameters, and common SAPS II calculators use heart rate, systolic blood pressure,

temperature, Glasgow Coma Scale [491, mechanical ventilation or CPAP, PaO2, FiO2, urine

output, blood urea nitrogren, sodium, potassium, bicarbonate, bilirubin, and white blood

cell count. The result is an integer score from 0-163 and a predicted mortality between 0%

and 100%, which is used to determine the morbidity of a patient compared to other patients,

or more frequently the morbidity of a population compared to other populations.

2.2 Data

Each of the works included in this thesis use data from the publicly-available Medical Infor-

mation Mart for Intensive Care (MIMIC) critical care databases. These databases contain
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de-identified electronic health record (EHR) data for patients seen at the Beth Israel Dea-

coness Medical Center (BIDMC). The data were collected as a collaboration among the MIT

Laboratory for Computational Physiology (LCP), BIDMC, and Philips Health Care. The

creation and use of the MIMIC database was approved by the Institutional Review Boards

of both BIDMC and MIT (IRB Protocol 2001-P-001699/3).

The data contained in MIMIC include information pertaining to patient physiology such

as demographics, hourly vital sign measurements, laboratory test results, procedures, medi-

cations, and notes. Additionally, MIMIC contains information about patient outcomes such

as mortality and readmission, both in and out of the hospital-the later is achieved by join-

ing with Social Security records. This abundance of data encompasses a large population

of ICU patients, and is made freely available to researchers worldwide;1 thus MIMIC has

become one of the preeminent data sources in machine learning for healthcare. Perhaps most

importantly, the use of an open data source facilitates reproducibility that is not otherwise

easily achieved when using private data sets [461.

While MIMIC is used extensively throughout this thesis, the individual works were con-

ducted over a period of time, and consequently each uses a different version of MIMIC.

Specifically, Chapter 3 uses MIMIC-II [81], while Chapter 4 and Chapter 5 use versions of

MIMIC-III [481.

2.2.1 MIMIC-II

MIMIC-II v2.6 is used for the work described in Chapter 3. Data in MIMIC-II were collected

at BIDMC from 2001-2008, and cover 26,870 ICU patients. In addition to patient physi-

ological recordings, MIMIC-II provides common acuity scores (e.g., SAPS 11 [62], which is

described in Section 2.1), and billing codes given by International Classification of Diseases,

Ninth Revision (ICD-9) diagnoses. Some derived data are also provided based on indicators

in the records. Notably, the work in Chapter 3 makes use of medical co-morbidities called

the Elixhauser score (EH) for 30 co-morbidities as calculated from the ICD-9 codes [261.

1The latest version of MIMIC can be downloaded from https://mimic.mit.edu/.
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Patient mortality outcomes were also queried to determine which patients died in-hospital,

or lived past the most recent query of Social Security records.

2.2.2 MIMIC-III

MIMIC-III is a successor of MIMIC-II, containing additional patient data and an updated

data layout. The work presented in Chapter 4 makes use of MIMIC-III v1.4, and the work

found in Chapter 5 makes use of MIMIC-III v1.3. While MIMIC-III v1.4 marked a ma-

jor release with respect to data quality, the underlying population was the same as v1.3,

consisting of over 58,000 hospital admissions for nearly 38,600 adult patients. MIMIC-III

contains intensive care unit (ICU) data from the Beth Israel Deaconess Medical Center col-

lected over the years 2001-2012. It is openly accessible to researchers and provides detailed

patient information, including regularly sampled vital signs, demographics, lab test results,

and time-stamped treatments and interventions. This data spans two EHR versions, Care-

Vue (2001-2008) and MetaVision (2008-2012). There are approximately 9,000 items specific

to CareVue and approximately 3,000 items specific to the MetaVision data.

2.3 Clinical NLP Tools

Many clinical natural language processing (NLP) tools have been developed. While this

thesis does not cover advances in these tools, it does make use of some commonly used tools.

The most widely-used clinical NLP tool is perhaps the clinical Text Analysis Knowledge

Extraction System (cTAKES) [841, which is used in Chapter 5. cTAKES relies heavily on

dictionary-based lookups from the Unified Medical Language System (UMLS) [81, a collection

of medical ontologies [9]. An ontology consists of a set of concepts (entities), and relations

between entities. Although general domain ontologies (e.g., Bollacker et al. [10]) and tools

for identifying equivalent semantic concepts (e.g., Finkel et al. [28]) exist, these tools do not

work well with the highly domain-specific vocabulary present in clinical text.

By relying on dictionary-based lookups from the UMLS, cTAKES is able to achieve high
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recall (at the cost of low precision) by identifying all phrases that have any potential to

be a relevant concept. While this property may be desirable for search-related tasks, its

lack of relevance to many downstream clinical decision-making tasks has been noted as the

reason for the development of additional tools, such as Sophia [22], the Eligibility Criteria

Information Extraction (EliIE) [52], and the Clinical Language Annotation, Modeling, and

Processing Toolkit [87]. Similarly, this limitation combined with a desire for out-of-the-box

usability motivated the creation of projects such as CliNER [6].

While this thesis uses only cTAKES, many of the others were used in experiments and

projects that are not reported. These earlier experiments informed the decisions made in

works presented here. For example, the 2010 i2b2/VA Workshop on NLP Challenges for

Clinical Records [93] promoted the development of 22 systems towards the task of concept

extraction from discharge summaries. The winning system of the workshop challenge used

a discriminative semi-Markov HMM, trained using passive-aggressive online updates [20].

Many other top performing methods used a Conditional Random Field (CRF) to model the

sequence learning problem [79].

In the years following the shared task workshop, the dataset proved very useful as a

research benchmark. Numerous systems and methods that have been developed can be

compared against one another using this dataset. Early successful attempts utilized the

strengths of workshop participants (sequential models, such as a CRF) and added generalized

word representations using distributional semantics [29, 50, 102]. Since then, deep learning

and recurrent neural networks have increased in popularity. Much like general domain NLP,

clinical NLP has also been shown to benefit from deep learning models that can better learn

complex patterns from the data, leading to many LSTM-based approaches to clinical concept

extraction [14, 91]. Recently, Dernoncourt et al. [21] proposed a word- and character-level

LSTM model for the de-identification task that outperformed all existing baselines.
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Chapter 3

Representations for Predicting Clinical

Outcomes

Accurate knowledge of a patient's disease state and trajectory is critical in a clinical setting.

As modern electronic healthcare records contain an increasingly large amount of data, the

ability to automatically identify the factors that influence patient outcomes stand to greatly

improve the efficiency and quality of care.

The following chapter presents work that appeared at KDD and was done in collab-

oration with Marzyeh Ghassemi, Finale Doshi-Velez, Nicole Brimmer, Rohit Joshi, Anna

Rumshisky, and Peter Szolovits. In it we explore the use of text representations for predict-

ing clinical outcomes, and demonstrate the value of incorporating information from clinical

notes, via latent topic features (viz. Latent Dirichlet Allocation), for the task of predicting

patient mortality. We evaluate our representation in three prediction regimes: (1) baseline

prediction, (2) dynamic (time-varying) outcome prediction, and (3) retrospective outcome

prediction. The baseline and retrospective prediction regimes establish lower and upper

bounds on performance, respectively. The dynamic outcome prediction uses latent topic

features derived from increasingly large subsets of the clinical notes as a semi-continuous

indicator of patient state. We focus on the dynamic (time-varying) setting because models

from this regime could facilitate an on-going severity stratification system that helps direct
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care-staff resources and inform treatment strategies.

We found that latent topic-derived features were effective in determining patient mor-

tality under three timelines: in-hospital, 30 day post-discharge, and 1 year post-discharge

mortality. Our results demonstrated that the latent topic features that are important in

predicting in-hospital mortality are very different from those that are important in post-

discharge mortality. In general, latent topic features were more predictive than structured

features, and a combination of the two performed best.

3.1 Overview

In a fragmented healthcare system of patients, doctors, caregivers, and specialists, an ac-

curate knowledge of a patient's disease state is critical. Electronic monitoring systems and

health records facilitate the flow of information among these parties to effectively manage

patient health. However, information is not knowledge, and often only some of the informa-

tion will be relevant in the context of providing care. Expert physicians need to sift through

these extensive records to discover the data most relevant to a patient's current condition.

As such, systems that can identify these patterns of relevant characteristics stand to improve

the efficiency and quality of care.

This work focuses on the task of on-going mortality prediction in the intensive care unit

(ICU). The ICU is a particularly challenging environment because each patient's severity of

illness is constantly evolving. Further, modern ICUs are equipped with many independent

measurement devices that often produce conflicting (and even false) alarms, adversely affect-

ing the quality of care. Consequently, much recent work in ICU mortality models 162, 95, 471

has aimed to consolidate data from these devices (primarily structured data and physiologi-

cal waveforms) and to transform these information streams into predictions. However, these

works omit perhaps the most informative sources recorded about patients: free-text clinical

notes and reports.

The narrative in the clinical notes, recorded by expert care staff, is designed to provide

trained professionals a quick glance into the most important aspects of a patient's state. We
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expect that combining features extracted from these notations with standard physiological

measurements will result in a more complete representation of patients' states, thus affording

improved outcome prediction. Unfortunately, free-text data are often more difficult to include

in predictive models because they lack the structure required by most machine learning

methods. To overcome the obstacles inherent in clinical text, latent variable models such

as topic models [4, 11 can be used to infer intermediary representations that can in turn be

used as structured features for a prediction task.

We demonstrate the value of incorporating information from clinical notes, via latent

topic features, in the task of in-hospital mortality prediction as well as 30 day and 1 year

post-discharge mortality prediction. Specifically, we evaluate mortality prediction under

three prediction regimes: (1) baseline regime, which used structured data available on ad-

mission (2) time-varying regime, which used baseline features together with dynamically

accumulated clinical text using increasigly large subsets of the patient's narrative record,

and (3) retrospective regime, which used all clinical text generated from a hospital stay to

supplement the baseline features. In each, our prediction task differs from the familiar time-

varying situation whereby data accumulates; since fewer patients have long ICU stays, as

we move forward in time fewer patients are available and the prediction task becomes in-

creasingly difficult. In all targeted outcomes, we demonstrate that adding information from

clinical notes improves predictions of mortality.

3.2 Related Work

Mortality models for acute (i.e., ICU) settings constitute a broad area of research. Siontis

et al. [85j reviewed 94 studies with 240 assessments of 118 mortality prediction tools from

2009 alone. Many of these studies evaluated established clinical decision rules for predicting

mortality, such as APACHE [56], SAPS II [62], and SOFA [951 (described in Section 2.1).

The more recent OASIS score [47] uses machine-learning algorithms to identify the minimal

set of variables capable of yielding an accurate severity of illness score (AUC 0.88).

Work by Hug and Szolovits [44] used several hundred structured clinical variables to create
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a real-time ICU acuity score that reported an AUC of 0.88-0.89 for in-hospital mortality

prediction. Notably, most of the predictive power of their models was from data gathered

within the first 24 hours of the ICU stay. For example, their baseline computed acuity score

(SAPS I) reported an AUC of 0.809 for in-hospital mortality prediction based on information

during the first 24 hours of ICU stays in 1,954 patients. Their real-time acuity score (RAS)

had AUCs of 0.875 on day 1, 0.880 on day 2, 0.878 on day 3, 0.871 on day 4, and 0.853 on

day 5.

Several recent works have used information from clinical notes in their model formu-

lations. Saria et al. [83] combined structured physiological data with concepts from the

discharge summaries to achieve a patient outcome classification F1 score of 88.3 with a

corresponding reduction in error of 23.52%. Similarly, Ghassemi et al. [30] described pre-

liminary results indicating that topic models extracted from clinical text in a subgroup of

ICU patients were valuable in the prediction of per-admission mortality. They found that

common topics from the unlabeled clinical notes were predictive of mortality, and an RBF

SVM achieved a retrospective AUC of 0.855 for in-hospital mortality prediction using only

learned topics. Finally, Lehman et al. [64] applied Hierarchical Dirichlet Processes to nursing

notes from the first 24 hours for ICU patient risk stratification. They demonstrated that

unstructured nursing notes were enriched with clinically meaningful information, and this

information could be used for clinical support. Using topic proportions, the average AUC for

hospital mortality prediction was 0.78 ( 0.01). In combination with the SAPS I variable,

their average AUC for hospital mortality prediction was 0.82 ( 0.003). While each work

was performed using a different cohort-and, therefore, cannot be directly compared-their

reported performances inform our expectations.

3.3 Methods

Figure 3-1 gives a general overview of our experimental process. First, we extract clinical

baseline features, including age, sex, and SAPS II score, from the database for every pa-

tient. We also extract each patient's de-identified clinical notes. We use these notes as the
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Figure 3-1: Overall flow of experiment. 1) Clinical baseline features are extracted from the
database for every patient (e.g., age, sex, admitting SAPS II score) and derived features are
computed (e.g., maximum/minimum SAPS II score) to form the Structured Features matrix
v (Vp,f is the value of feature f in the p'h patient). 2) Each patient's de-identified clinical
notes are used as the observed data in an LDA topic model (i.e., Un-supervisted LDA Model),
and a total of 50 topics are inferred to create the per-note topic proportion matrix q. 3) Per-
note latent topic features are aggregated in extending 12 hour windows (e.g., notes within
0-12 hours, notes within 0-24 hours, etc.) and used to form matrix q' where qm,k is the overall
proportion of topic k in time-window m. 4) Depending on the model and time window being
evaluated, subsets of the feature matrix v and matrix q' are combined into an Aggregated
Feature Matrix. 5) A linear kernel SVM is trained to create classification boundaries for
three clinical outcomes: in-hospital mortality, 30 day post-discharge mortality, and 1 year
post-discharge mortality (i.e., Structured SVM Model).

observed data in an LDA topic model, and infer a total of 50 topics.' We normalize the

word counts associated with each note, so that each note is represented by a 50-dimensional

vector, summing to 1. These per-note topic distributions are then aggregated on a 12 hour

semi-continuous timescale (e.g., notes within 0-12 hours, notes within 0-24 hours, etc.). A

linear kernel SVM is trained to create classification boundaries with combinations of the

structured clinical features and latent topic features to predict in-hospital mortality, 30 day

post-discharge mortality, and 1 year post-discharge mortality.

lWe selected 50 empirically after considering several parameterizations for the number of topics.
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3.3.1 Data and Pre-Processing

We used ICU data from the MIMIC-II v2.6 database 1811, a publicly-available, de-identified

medical corpus described in Section 2.2.1. In addition to clinical baseline features, we ex-

tract International Classification of Diseases-Ninth Revision (ICD-9) diagnoses, and Disease-

Related Group. Medical co-morbidities were represented by the Elixhauser scores (EH) for

30 co-morbidities as calculated from these ICD-9 codes. Patient mortality outcomes were

also queried to determine which patients died in-hospital, or lived past the most recent query

of Social Security records.

We extracted all clinical notes recorded prior to the patient's first discharge, including

notes from nursing, physicians, labs, and radiology. The discharge summaries themselves

were excluded because they typically stated the patient's outcome explicitly. Vocabularies

for each note were generated by first tokenizing the free text and then removing stopwords

using the Onix stopword list.2 A TF-IDF metric [82] was applied to determine the 500 most

informative words in each patient's notes, and we then limited our overall vocabulary to

the union of the most informative words per-patient. This pre-processing step reduced the

overall vocabulary down to 285,840 words from over 1 million words while maintaining the

most distinctive features of each patient.3

Patients were excluded if they had fewer than 100 non-stop words or were under the age

of 18. Specific notes were excluded if they occurred after the the end of the day in which

a patient died or was discharged (e.g., radiology or lab reports whose results were reported

afterwards). The resulting cohort consisted of 19, 308 patients with 473, 764 notes. We held

out a random 30% of the patients as a test set. The remaining 70% of patients were used to

train our topic models and mortality predictors. Table 3.1 summarizes the number of notes

and patients in the training and test sets.

2 Onix Text Retrieval Toolkit, API Reference, http://www.lextek.com/manuals/onix
3 Some medical term canonicalization parsers were also examined, but we found their outputs to be fairly unreliable for this

task.
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Table 3.1: Cohort Composition

Train Test Total
Patients 13,524 5,784 19,308
Notes 331,635 142,129 473,764

3.3.2 Structured and Derived Features

In total, we extracted and derived 36 structured clinical variables for each patient: the age,

gender, SAPS II score on admission, minimum SAPS II score, maximum SAPS II score,

final SAPS II score, and the 30 EH comorbidities. Data were scaled to avoid the range of a

feature impacting its classification importance. This formed a feature matrix v, where the

element Vp,f was the value of feature f in the pth patient.

3.3.3 Topic Inference

Instead of considering each note separately, we used the all notes that occurred in a particular

time period as features for that period. We examined the distribution of note times, and

found three peaks in note entry for any given day in a patient's stay (e.g., day 1, day 2, etc.):

around 06:00, 18:00 and 24:00.4 Given this distribution, we used 12-hour windows for our

time windows.

Topics were generated for each note using Latent Dirichlet Allocation [4, 36]. Our initial

experiments found no significant difference in held-out prediction accuracy across a range of

20 to 100 topics. We set hyperparameters on the Dirichlet priors for the topic distributions

(a) and the topic-word distributions (/) as a = 5 0- = bW v . Topicnumber Tpcs nubrWrd noa

distributions were sampled from an MCMC chain after 2,500 iterations. This topic-modeling

step resulted in a 50-dimensional vector of topic proportions for each patient for each note.

We concatenated the topic vectors into a matrix q where the element q was the pro-

portion of topic k in the nh note. Of particular interest was whether certain topics were

enriched for in-hospital mortality and long-term survival. We used an enrichment measure

4 The increases in note submission at 06:00 and 18:00 were likely due to the current 12 hour nursing shift cycle. The large
number of notes submitted at end-of-day were likely due to a previously common 14:00 - midnight nursing shift.
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defined by Marlin et al. [67], where the probability of mortality for each topic is calculated
EN

as O-- 1 q,k*k, where y, is the noted mortality outcome (0 for a patient that lives, and
n=1 qnoa,k

1 for a patient that dies). These enrichment measures are reported in Section 3.4.1.

The time windows were used to construct feature vectors for each prediction task, where

(at each step) we extended the period of consideration forward by 12 hours. From the

previously constructed per-note matrix q that describes the distribution over topics in each

note, we collapse into another matrix q' where q' describes the overall proportion of topic

k in time-window m. The element q,,k is given by the mean of that topic's proportions of

all the notes in time-window m: meanEmqn,k.

3.3.4 Prediction

We considered three prediction regimes with the inferred topic distributions: baseline pre-

diction, dynamic (time-varying) outcome prediction and retrospective outcome prediction

for the outcomes of in-hospital, 30-day, and 1-year mortality.

A separate linear SVM 115] was trained for each of the three outcomes, and each set of

model features evaluated.5 The loss and class weight parameters for the SVM were selected

using five-fold cross-validation on the training data to determine the optimal values with

AUC as an objective. The learned parameters were then used to construct a model for the

entire training set, and make predictions on the test data.

All outcomes had large class-imbalance (mortality rates of 10.9% in-hospital, 3.7% 30

day post-discharge, and 13.7% 1 year post-discharge6 ). To address this issue, we randomly

sub-sampled the negative class in the training set to produce a minimum 70%/30% ratio

between the negative and positive classes. Test set distributions were not modified to reflect

the reality of class imbalance during prediction, and reported performance reflects those

distributions.

First, we established a static baseline model using only structured features present at

5 The choice of linear kernel SVM was motivated by a fast implementation, though other choices (e.g., logistic regression)
would be reasonable as well.

6 This includes those who die within the first 30-days post-discharge, so two of the prediction targets have overlap.
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admission (i.e., clinical baseline features and derived features thereof). We then ran dynamic

outcome prediction in intervals of 12 hours at each step by including larger sets of patient

notes in a step-wise manner. We finally performed retrospective outcome predictions, where

we included structured features and all notes written during the stay as a static entity

for prediction. Significantly, predictions of mortality with this type of feature set are a

retrospective exercise only: it is not possible to first select all notes that occur before a

patient's death, and then predict in-hospital mortality, because the time of mortality is not

known a priori. The observer would have to "know" that the patient's hospital record was

about to finish (either by death or discharge). The following settings were evaluated:

" Admission Baseline Model: A baseline model using the structured features of age,

gender, and the SAPS II score at admission. These baseline features are extracted

from the data present at patient admission only. (3 features total)

" Time-varying Topic Models 1-20: Outcome prediction performed by including notes

in a step-wise fashion, extending the period of consideration forward by 12 hours at

each step. For example, Time-varying Topic Model 1 includes topic features derived

from all notes written during the first 12 hours of a patient's stay in the ICU, while

Time-varying Topic Model 20 includes those derived from the first 240 hours. (50

features total)

" Combined Time-varying Model 1-20: Outcome prediction using the same setup as

Time-varying Topic Models 1-20, but with the static structured features from Ad-

mission Baseline Model (gender, age, admitting SAPS score) included. (53 features

total)

" Retrospective Derived Features Model: A retrospective model using the structured

features of age, gender, admitting SAPS II score, the minimum SAPS II score, the

maximum SAPS II score, the final SAPS II score, and all EH comorbidities. (36

features total)
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" Retrospective Topic Model: A retrospective model using topics derived from all notes

written during a patient's stay in the ICU. (50 features total)

* Retrospective Topic + Admission Model: A retrospective model combining structured

features from Admission Baseline Model (gender, age, admitting SAPS scores) with

latent topic features from Retrospective Topic Model. (53 features total)

* Retrospective Topic + Derived Features Model: A retrospective model combining struc-

tured features from Retrospective Derived Features Model (gender, age, admitting/min/-

max/final SAPS scores, EH comorbidities) with latent topic features from Retrospec-

tive Topic Model. (86 features total)

We compare the prediction results for all models on each of the outcomes in Figure 3-3

and Table 3.5. We again emphasize that retrospective models are retrospective exercises

only to establish the isolated and combined prediction ability of clinical notes and features.

We also note that our Time-varying Topic Model is time-varying only in its application.

We do not use other possible latent variable models such as "Dynamic topic models" [51,

because we do not want to model the time evolution of topics, but rather the time evolution

of membership to a given set of topics.

3.4 Results

3.4.1 Qualitative Enrichment

Table 3.2 lists the top words for the topics which had the largest enrichment (Ok E n

for in-hospital mortality, the smallest enrichment for in-hospital mortality, and the highest

enrichment for 1 year mortality. The relative distributions of the in-hospital mortality prob-

abilities for each of the 50 topics are shown in Figure 3-2. There was a wide variation in

the in-hospital mortality concentration for the different topics, ranging from 3% - 30%. (See

Table 3.3 for a listing of the top ten words for all topics.)
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Table 3.2: Top ten words in topics enriched for in-hospital mortality, hospital survival (any
number of days post-discharge), and 1 year post-discharge mortality.

Topic Top Ten Words Possible Topic
In-hospital 27 name, family, neuro, care, noted, status, Discussion of end-of-
Mortality plan, stitle, dr, remains life care

15 intubated, vent, ett, secretions, propofol, Respiratory failure
abg, respiratory, resp, care, sedated

7 thick, secretions, vent, trach, resp, tf, tube, Respiratory infection
coarse, cont, suctioned

5 liver, renal, hepatic, ascites, dialysis, failure, Renal Failure
flow, transplant, portal, ultrasound

Hospital 1 cabg, pain, ct, artery, coronary, valve, post, Cardio-vascular
Survival wires, chest, sp surgery

40 left, fracture, ap, views, reason, clip, hip, dis- Fracture
tal, lat, report

16 gtt, insulin, bs, lasix, endo, monitor, mg, am, Chronic diabetes
plan, iv

1-Year 3 picc, line, name, procedure, catheter, vein, PICC7 line insertion
Mortality tip, placement, clip, access

4 biliary, mass, duct, metastatic, bile, cancer, Cancer treatment
left, ca, tumor, clip

45 catheter, name, procedure, contrast, wire, Coronary catheteriza-
french, placed, needle, advanced, clip tion

The topics enriched for in-hospital mortality presented a detailed view of the possible

causes of death in the ICU. For example, patients in a modern ICU rarely die suddenly.

Often patient life is sustained for some time in order for their family to express their wishes

regarding terminal care and death. This could be one interpretation for Topic 27, which

pertains to the discussion of end-of-life care options. Other topics with in-hospital mortal-

ity enrichment pertained to top causes of ICU mortality: respiratory infection (Topic 7),

respiratory failure (Topic 15), and renal failure (Topic 5).

Hospital survival was also marked by topics which seem relevant to factors tied closely to

the ability to recover from physiological insults: patients who are admitted for cardiovascular

surgery (Topic 1) are often not allowed as surgical candidates until they are otherwise in very

good health; patients who are able to respond to their care staff and the ICU environment

(Topic 26, Table 3.3) are adequately dealing with the known stress of ICU admission; patients

41



Population Baseline Mortality -

Per Topic Probability of Mortality
0.36 H Mty Mo

in-Hospital Mortality Baseline Mortality
In-Hospital Mortality Baseline Mortality

0.31

02,6

0.21 ---

0.16 -

0,11

0.06

0.01
1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Topic ID

Figure 3-2: The probability of in-hospital mortality for each topic, indicating that topics
represent differences in outcome. Probabilities are calculated as 9 k = ZN1 qn,k*y

YN (see sec-_n=1 qn,k
tion 3.3.3). Each bar shows the prevalence of a given topic k in the mortality category, as
compared to the set of all patients. Bars are shown as above (in red) or below (in green) the
baseline in-hospital mortality based on the value of 0 k for each topic k.

with trauma-based injuries such as fracture and pneumothorax (Topics 8, 40); and patients

with chronic conditions like diabetes (Topic 16).

The topics enriched for 1 year post-discharge mortality suggested that patients who are

discharged but die within a year have conditions with a low chance of long-term survival.

For example, cancer (Topic 4), the need for long-term IV access while in the ICU (Topic 3),

and the use of coronary catheterization (Topic 45) to diagnose lesions in coronary arteries

or other valvular/cardiac issues.

3.4.2 Prediction

We evaluated the predictive power of each model and outcome pair. Figure 3-3 shows the

AUCs achieved by each model for the three targeted outcomes. Table 3.5 lists a more

complete set of the SVM classification metrics.
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Table 3.3: Top ten most probable words for all topics.

Topic Number Top Ten Words
1 cabg, pain, ct, artery, coronary, valve, post, wires, chest, sp
2 ccu, cath, mg, am, sp, groin, bp, cardiac, hr, cont
3 picc, line, name, procedure, catheter, vein, tip, placement, clip, access
4 biliary, mass, duct, metastatic, bile, cancer, left, ca, tumor, clip
5 liver, renal, hepatic, ascites, dialysis, failure, flow, transplant, portal, ultrasound
6 ct, contrast, pelvis, abdomen, fluid, bowel, clip, free, wcontrast, iv
7 thick, secretions, vent, trach, resp, tf, tube, coarse, cont, suctioned
8 chest, pneunothorax, tube, reason, clip, sp, ap, left, portable, ptx
9 remains, family, gtt, line, map, cont, levophed, cvp, bp, levo
10 name, neo, gtt, stitle, dr, sbp, resp, cont, wean, aware
11 remains, increased, temp, hr, pt, c, ativan, cont, mg, continues
12 micu, code, stoolr,obe, psocial, noted,ch received, cchr
13 chest, pulmonary, bilateral, edema, portable, clip, reason, apu, effusions
14 resp, cough, sats, mask, sob, wheezes, nc, status, mg, neb
15 intubated, t, net, t, secretions, propofol, abg, respiratory, resp, care, sedated

16 gtt, insulin, bs, lasix, endo, monitor, mg, am, plan, iv
17 drainage, pain, abd, fluid, draining, drain, incision, sp, intact, pt
33 heparin, afib, ptt, am, gtt, mg, rate, hr, pvcs, iv
19 name, pacer, namepattern, placement, heart, pacemaker, ventricular, av, rate, chest
20 left, lung, effusion, lobe, pleuralo, o st, supper, et, opacity
21 skin, noted, care, left, applied, changed, draining, coccyx, wound, edema
22 tube, placement, tip, line, portable, ap, reason, position, chest, ng
23 noted, shifta, a, w , patent, patient, foley, agitated, soft, mg
24 het, pt, gi, blood, bleeding, am, stable, unit, bleed, noted
25 name, am, mg, able, bp,time, night, times, doctor, confused

26 pain, co, denies, spin cel, thoa, adiet,po,t floor
27 name, family, neuro, care, noted, status, plan, stitle, dr, remains
28 clip, reason, ro, medical, examination, evidence, impression, underlying, condition, normal
29 neuroas, b bp, commands, iv, cough, soft, status, lopressor, swallow
30 skin, stable, social, family, intact, tsicu, note, support, endo
31 woman, female, husband, name, pain, patientm,bm, am, hospital, noted
32 diagnosis, admitting, name, reason, please, examination, yearold, eval, findings, underlying
33 name, neck, soft, patient, noted, anterior, epidural, level, posterior, namepattern
34 ct, contrast, chest, medoptiray, images, lesions, iv, nodes, lobe
35 left, stenosis, disease, clip, reason, carotid, severe, report, radiology, final

36 femoral, foot, left, leg, iliac, grointon, patent, graft, extremity
37 acute, reason, head, clip, evidence, eval, name, wo, status, ct
38 aortic, aorta, cta, wwo, dissection, recons, contrast, left, aneurysm, chest
39 left, ivc, filter, vein, pulmonary, veins, dvt, clip, inferior, upper
40 left, fracture, ap, views, reason, clip, hip, distal, lat, report
41 spine, cervical, spinal, clip, thoracic, fall, lumbar, vertebral, contrast, reason
42 hemorrhage, head, ct, left, frontal, contrast, subdural, hematoma, clip, bleed
43 ct, trauma, contrast, injury, fracture, fractures, pelvis, clip, wcontrast, sp
44 contrast, brain, head, left, mri, images, mra, stroke, clip, cerebral
45 catheter, name, procedure, contrast, wire, french, placed, needle, advanced, clip

46 artery, left, common, distal, catheter, internal, branches, flow, name, middle
47 vein, stent, catheter, name, mm, portal, tips, balloon, venous, sheath
48 service, distinct, procedural, artery, sel, carotid, left, cath, name, clip
49 catheter, name, performed, embolization, contrast, bleeding, procedure, mesenteric, extravasation,

Iclip
50 1artery, carotid, left, aneurysm, injection, vertebral, internal, evidence, clip, cerebral

As shown in Table 3.5, the prevalent class imbalance resulted in a bias toward low speci-

ficities in the Admission Baseline Model. The balance between sensitivity and specificity

generally leaned towards favoring higher specificities for in-hospital and 30 day mortality
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Figure 3-3: Linear SVM model performance measured via AUC on three outcomes: in-
hospital mortality, 30 day post-discharge mortality, and 1 year post-discharge mortality. In
each case, the features used are described in detail in Section 3.3.4. Our prediction task is
different from the usual situation where data is accumulated over time. Since fewer patients
have long ICU stays, in this case, we actually lose data points as time goes on, making the
prediction task harder. For example, at time 0 there are 5,784 patients (5,157 controls/627
positives for in-hospital mortality) in the test set. By 72 hours, this had dropped to 5,084
patients (4,591 controls/493 positives for in-hospital mortality) and at 144 hours to 3,496
patients (3,141 controls/355 positives for in-hospital mortality). (Table 3.4)

prediction as time moved forward in the Time-varying models, but this was not uniformaly

true in all cases. In general, the Retrospective Derived Features Model had a high sensitivity

and low specificity, the Retrospective Topic Model had good specificity, and the combined

models tended to have a more even set of both measures.

For 30 day and 1 year post-discharge mortality prediction, the Admission Baseline Model
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Table 3.4: Patient cohort size at each time tested by time-varying models. Note that patients
are removed from a prediction time if they are discharged or die prior to that time.

Cohort Size (Control, Positive)
Time (Hours) Total
0
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228

5784
5784
5749
5563
5497
5161
5084
4691
4587
4116
4030
3570
3496
3026
2967
2580
2541
2215
2186
1925

In-Hospital
5157, 627
5157,
5128,
4998,
4937,
4664,
4591,
4241,
4140,
3710,
3626,
3210,
3141,
2707,
2652,
2291,
2254,
1953,
1925,
1681,

627
621
565
560
497
493
450
447
406
404
360
355
319
315
289
287
262
261
244

30 Day
5597,
5597,
5563,
5382,
5318,
4986,
4911,
4524,
4421,
3963,
3877,
3427,
3354,
2898,
2840,
2468,
2431,
2117,
2090,
1837,

187
187
186
181
179
175
173
167
166
153
153
143
142
128
127
112
110
98
96
88

1 Year
5058,
5058,
5026,
4855,
4795,
4480,
4407,
4043,
3945,
3530,
3448,
3023,
2956,
2533,
2479,
2138,
2109,
1825,
1802,
1575,

726
726
723
708
702
681
677
648
642
586
582
547
540
493
488
442
432
390
384
350

was very steady, averaging an AUC of 0.68

Combined Time-varying Model achieved an

mortality and 0.75/0.77 for 1 year mortality.

over all time windows for both outcomes. The

average/best performance of 0.77/0.8 for 30 day

In both outcomes the Time-varying Topic Model

performed strictly better than the Admission Baseline Model until the available patient

subset became minimal (the 204 -216 hour windows), and the Combined Time-varying Model

was always better than either alone.

As expected, the four Retrospective models were generally more predictive than any of the

Time-varying models. Retrospective models tended to increase performance as more features

were added. For in-hospital and 30 day mortality prediction, the Retrospective Topic Model

performed better than the Retrospective Derived Features Model (AUCs increased from 0.90

to 0.94 and 0.75 to 0.78 respectively). For 1 year mortality this was reversed (AUC decreased
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Table 3.5: Detailed model prediction results for three outcomes: in-hospital mortality, 30
day post-discharge mortality, and 1 year post-discharge mortality.
Figure 3-3.

Model Used

This also appears in

AUC Sens. Spec.
In-Hospital Mortality Admission Baseline Model 0.771 0.999 0.010

Time-varying Topic Model 1 0.728 0.858 0.471

Time-varying Topic Model 10 0.838 0.686 0.829

Time-varying Topic Model 20 0.791 0.525 0.853
Combined Time-varying Model 1 0.840 0.638 0.85

Combined Time-varying Model 10 0.854 0.666 0.844

Combined Time-varying Model 20 0.798 0.299 0.950
Retrospective Derived Features Model 0.901 0.997 0.108
Retrospective Topic Model 0.944 0.856 0.892
Retrospective Topic + Admission Model 0.944 0.821 0.910
Retrospective Topic + Derived Features Model 0.961 0.915 0.870

30 Day Mortality Admission Baseline Model 0.683 0.995 0.075
Time-varying Topic Model 1 0.695 0.150 0.944

Time-varying Topic Model 10 0.759 0.817 0.551

Time-varying Topic Model 20 0.665 0.602 0.579
Combined Time-varying Model 1 0.761 0.348 0.885

Combined Time-varying Model 10 0.796 0.641 0.770

Combined Time-varying Model 20 0.75 0.011 0.991'
Retrospective Derived Features Model 0.745 0.941 0.220
Retrospective Topic Model 0.783 0.342 0.909
Retrospective Topic + Admission Model 0.813 0.872 0.633
Retrospective Topic + Derived Features Model 0.818 0.096 0.985

1 Year Mortality Admission Baseline Model 0.692 0.997 0.021
Time-varying Topic Model 1 0.681 0.218 0.907

Time-varying Topic Model 10 0.715 0.321 0.870

Time-varying Topic Model 20 0.662 0.834 0.379
Combined Time-varying Model 1 0.743 0.705 0.665

Combined Time-varying Model 10 0.760 0.512 0.812

Combined Time-varying Model 20 0.722 0.451 0.804
Retrospective Derived Features Model
Retrospective Topic Model
Retrospective Topic + Admission Model
Retrospective Topic + Derived Features Model

0.776
0.755
0.784
0.813

0.999
0.358
0.314
0.464

0.045
0.890
0.919
0.887

from 0.78 to 0.76).

In the in-hospital mortality setting, it seemed that admission features were not needed

once latent topic features are known, but the derived features did provide extra informa-

tion.8 However, in the 30 day setting, latent topic features were similarly improved by either

8Adding the admission features did not improve the Retrospective Topic Model, but adding the derived features boosted
AUC slightly to 0.96.
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the admission features or the derived features.9 This is likely because the derived features

included EH comorbidities derived from the ICD-9 codes, and the ICD-9 codes themselves

are often transcribed after a patient's discharge with the most actionable (or billable) con-

ditions a patient presented. It is possible that these features are most relevant to in-hospital

mortality risks (e.g., EH scores for myocardial infarction, congestive heart failure, etc.).

3.5 Discussion

Models that incorporated latent topic features were generally more predictive than those

using only structured features, and a combination of the two feature types performed best.

Notably, the combination provides a robustness that is able to perform well initially, lever-

aging primarily the structured information, and then continues to improve over the first 24

hours by incorporating the latent topic features. This resilience is particularly important

since we observed that the first 24 hours of clinical notes appear to be the most meaningful

toward predicting in-hospital mortality, while the baseline begins to steadily decrease.

Our observation of the importance of early data agrees with other reported results. Recall

that, using topics derived from the first 24 hours of notes only, Lehman et al. obtained an

average AUC for in-hospital mortality prediction of 0.78 ( 0.01), and this was increased

to 0.82 ( 0.003) with the SAPS I variable. Further, Hug et al. obtained an AUC of 0.809

for in-hospital mortality prediction based on information during the first 24 hours of ICU.

As such, we examined our results for in-hospital mortality when using topics derived from

the first 24 hours of notes only (prediction time of 36 hours in Figure 3-3), and obtained

corresponding AUCs of 0.77 for the Time-varying Topic Model, and 0.841 for the Combined

Time-varying Model. Compared to Lehman et al's result, this implies that (with enough

data) neither the extra hierarchical machinery added with HDPs nor the knowledge-based

cleansing of medical terms before modeling improve prediction results (i.e., an AUC of 0.78

vs. 0.77). Compared to Hug et al's results, this implies that the addition of clinical text

9 Adding the admission features to the Retrospective Topic Model improved AUC to 0.81 but adding the derived features did
not improve AUC further.
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provides reasonable performance boosts to the power of gold-standard structured information

like SAPS II score (i.e., an AUC of 0.809 vs. 0.841).

Further, when predicting in-hospital mortality, we observed that the Admission Baseline

Model's predictive power (i.e., information acquired on admission) becomes much less valu-

able to predicting mortality as patients stay longer. This is likely because those who are

not discharged within the first day of hospital admission are significantly sicker than those

who are. Note that the average ICU stay time in the MIMIC-II database is 3 days across

all units, and Figure 3-3 shows that after this time there was no additional predictive power

gained by adding the structured admission information to the latent topic features (i.e., the

Time-varying Topic Model and the Combined Time-varying Model converge).

This convergence draws attention to another interesting observation. Namely, both of the

Time-varying models trended up in their ability to predict in-hospital mortality until -120

hours, and then trended down until the end of prediction. While initially counterintuitive,

this is likely because of the loss of a significant number of patients (from both death and

discharge) in the available patient cohort. For example, the test set population goes from

4,030 patients (3,626 control/404 positive for in-hospital mortality) to 3570 patients at this

point (3,210 control/360 positive for in-hospital mortality).

Additionally, the predictive power of each topic changed depending on the target outcome.

This appeals to intuition because, in a modern ICU, conditions that lead to in-hospital

mortality are very different from those that would allow for a live discharge leading to a

30 day or 1 year mortality. As such, information about which topics tend to bias a patient

towards any set of outcomes in useful for clinicians, when compared to the typical "black-box"

approach to feature selection.

Finally, much work focuses on retrospective prediction of mortality outcomes. We also

performed these predictions to compare the relative predictive power of different feature types

and were able to achieve retrospective AUCs of 0.9, 0.94 and 0.96 for in-hospital mortality

prediction using the Retrospective Derived Feature Model, Retrospective Topic Model, and

combined Retrospective Topic + Dervied Features Model. However, we re-emphasize that
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predictions of mortality with retrospective feature sets are not helpful or relevant for clinical

staff because statistical functions of signals or features (e.g., min/max) and other structured

data (such as ICD-9 codes and EH comorbidities) are not known a priori. Instead, these

models are useful to establish upper bounds on what can be predicted from such data, and

to compare to existing literature.

3.6 Conclusions

Modern electronic healthcare records contain an increasingly large amount of data including

high-frequency signals from biomedical instrumentation, intermittent results from lab tests,

and text from notes. Such voluminous records can make it difficult for care-staff to identify

the information relevant to diagnose a patient's condition and stratify patients with similar

characteristics.

Standard approaches to hospital mortality prediction use features such as gender, age,

SAPS and SOFA score. In this work, we examined the utility of augmenting these standard

features with textual information-specifically in the form of topic-based features-for pre-

dicting mortality in the ICU. Features extracted by latent variable models are attractive in

this clinical application because scientific understanding is as important as clinical utility.

Qualitatively, the discovered topics correlated with known causes of in-hospital and post-

discharge death. Further, adding latent topic features to structured clinical features increased

classification performance in a variety of prediction scenarios: in-hospital mortality, 30-day

mortality, and 1-year mortality.

The models and results explored in this work could ultimately be useful for interpretable

models of disease and mortality.
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Chapter 4

Representations for Predicting Intrinsic

Note Information

The narrative prose contained in clinical notes is unstructured and unlocking its full poten-

tial has proved challenging. Many studies incorporating clinical notes have applied simple

information extraction models to build representations that enhance a downstream clinical

prediction task, such as mortality or readmission. Improved predictive performance suggests

a "good" representation. However, these extrinsic evaluations are blind to most of the insight

contained in the notes.

The following chapter presents work that appeared at the AMIA Informatics Summit

and was done in collaboration with Willie Boag, Dustin Doss, and Peter Szolovits. In it, we

explore the use of text representations for predicting intrinsic note information. Specifically,

in order to better understand the expressive power of clinical prose, we investigate both

intrinsic and extrinsic methods for understanding several common note representations.

4.1 Overview

Electronic Health Records (EHRs) contain an abundance of data about patient physiology,

interventions and treatments, and diagnoses. The amount of data can be overwhelming in
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the intensive care unit (ICU), where patients are severely ill and monitored closely. In this

setting, it can be difficult to reconcile data from multiple sources; instead, care staff rely on

clinical notes to provide summaries that capture important events and results. This unstruc-

tured, free text thus contains important' observations about patient state and interventions,

in addition to providing insight from caregivers about patient trajectory.

The secondary use of EHR data in retrospective analyses facilitates a better understand-

ing of factors, such as those contained in clinical notes, that are highly predictive of patient

outcomes [31, 11, 80, 37]. Additionally, the free-text nature of clinical notes means that

data extraction does not rely heavily on each EHR's implementation, making methods for

clinical notes portable across different EHRs. However, there are many ways to represent

the information contained in text, and it is unclear how to best represent clinical narratives

for the purpose of predicting outcomes.

Many efforts to leverage clinical notes for outcome prediction focus on improving the

performance of a final prediction task [31, 30, 80, 641. Post hoc feature analysis can assist

in discovering those features that are most predictive, but it provides only a partial solution

toward improving our understanding. We would like to know what facts and derived features

matter most in affecting the predictive abilities of the models we build from them. This will

allow us not only to improve performance but to understand what representations of the

identified features are most useful.

For example, it has been shown that a patient's EHR-coded race and social history can

help to identify a Gonorrhea infection accurately [92]. Therefore, if we are trying to use text

analysis tools to make such an identification, we would like to know if those tools are able to

determine a patient's race and social history accurately from the notes. While it is seemingly

counter-intuitive to predict EHR-coded information using clinical notes, doing so provides

insight into what is, and isn't, reflected in a given note's representation. Such awareness is

important when designing representations for downstream prediction tasks because it exposes

assumptions both about information is contained in the notes and what sophisticated models

may be able to accomplish.
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Toward the goal of understanding and improving note representations for downstream

prediction performance, we consider several common representations and evaluate them on a

variety of tasks. We explore performance on "easy" tasks, such as age, gender, ethnicity, and

admission type, each of which are readily accessible as EHR-coded data. Additionally, we

use the same representations on common prediction tasks, such as in-hospital mortality and

length of stay. We show that 1) no single representation outperforms all others, 2) a simple

representation tends to outperform more complex representations on "easy" tasks while the

opposite is true for "common" prediction tasks, and 3) some seemingly "easy" tasks, such as

ethnicity, are difficult for all of the representations considered.

4.2 Related Work

Work leveraging clinical notes for prediction can be broadly categorized into those focusing

on clinical prediction tasks and those focusing on the representation of text.

Clinical Prediction Tasks: Several existing works have demonstrated the utility of clin-

ical narratives in forecasting outcomes. A standard approach for converting narrative prose

to structured vector-based features uses unsupervised topic modeling to represent each note

as a distribution over various topics. Lehman et al. [641 and Ghassemi et al. [30, 311 use note-

derived features in a framework to predict mortality. In recent work, Caballero Barajas and

Akella [11] use generalized linear dynamic models on top of latent topics to detect an increase

in the probability of mortality before it occurs. Luo and Rumshisky [66] use a supervised

topic modeling approach to improve prediction of 30-day mortality. Grnarova et al. 137] use

convolutional neural networks (CNNs) to construct document representations for the task

of mortality prediction. Although the authors perform this prediction using all data from a

patient's stay, their results show that both doc2vec [59] and their CNN approach improve

performance relative to a topic representation. Further, Cohen et al. [19] explore the use of

redundancy-aware topic models to combat the prevalent issue of copying notes forward in a

patient's clinical record; however, they do not apply this model in a downstream prediction
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task. Similarly, Pivovarov et al. [77] explore the use of topic models in the discovery of

probabilistic phenotypes, but do not use these phenotypes to make predictions.

Text Representations: In the general domain, it has been observed that data often

drives performance. Even simple models can often outperform complex models when they

have sufficiently with access to sufficiently large data. Banko and Brill 121 observe this

effect directly in the general natural language processing domain, noting that many methods

continue to be optimized on small datasets and prove ineffective when applied to datasets

orders of magnitude larger. Similarly, Halevy et al. [38] discover that "for many tasks, words

and word combinations provide all the representational machinery we need to learn from

text." Previously, limited access to clinical narratives have limited the applicability of this

observation to the clinical domain.

4.3 Data

This work uses data from the publicly-available Multiparameter Intelligent Monitoring in

Intensive Care (MIMIC-III) database, version 1.4 [481, described in Section 2.2.2. A typical

clinical note might look like the one shown in Figure 4-1, which shows the radiology report

of a 64-year-old patient with poor respiratory status.

We consider only patients older than 15 years, who were in the ICU for at least 12 hours.

Young patients are excluded since they typically exhibit different physiology from an adult

population. Further, we include only each patient's first ICU stay, thus precluding training

and testing on data from the same patient. Because of recording and measurement issues in

the database, we exclude any ICU stays that do not conform to the common sense ordering

of

hospadmission < icu intime < icu_outtime < hosp_dischtime

Finally, we consider Nursing and Nursing/Other, Radiology, and Physician notes, because

other categories occurred relatively infrequently. For each ICU stay, we extract the first 24
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_date_ 4:07 AM
CHEST (PORTABLE AP) Cup # _num_
Reason: ETT tube placement, progression of pulmonary process
Admitting Diagnosis: NON-HODGKIN LYMPHOMA

hosptaL_ MEDICAL CONDITION:
64 year old man sVp silo BMT for follicular lymphoma intubatad now with
worsening respiratory status

REASON FOR THIS EXAMINATION:
ETT tube placement, progression of pulmonary process

FINAL REPORT
HISTORY: BMT for lymphoma wIth respIratory status worsenIng,

FINDINGS: In compadson with study of _date_. the tip of the endotracheal tube
now measures approximately 3.2 cm above the carina. Central catheter and
nasogastric tube remain In place. There Is continued mid enlargement of the
cardiac silhouette in a patient with low king volumes. Indistinctness of
engorgWed pulmonary vessels is consistent with elevated pulmonary venous
pressure. The possibility of supervening consolIdation cannot be excluded If
there Is appropriate clinical symptomatology

Figure 4-1: An example clinical note. The age, gender, and admitting diagnosis have been
highlighted. Also note, that descriptions such as "status worsening" suggest- deterioration
and possible in-hospital mortality.

notes (or fewer if the stay has fewer notes). These criteria result in 29,979 unique ICU stays,

an equivalent number of patients, and 320,855 notes. The dataset is randomly divided into

a 7:2 train/test split.

As "easy" prediction tasks, we extract several coded variables for each patient that re-

main constant throughout the stay, including: age, gender, ethnicity, and admission type.

In addition, we also retrieve "common" clinical outcomes and findings during the stay, such

as: diagnosis, length of stay, and in-hospital mortality. We then try to predict these charac-

teristics and outcomes from different representations of the text notes.

As observed in replication studies, one of the central obstacles in replicability-even for

work done on public datasets-is that descriptions of data cleaning and preprocessing are

often inadvertently underspecified [46]. Therefore, we make our code publicly available.1

1Code available at http://www.github.com/wboag/wian.
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0 hours 2 hours 2.5 hours 10 hours

Figure 4-2: A patient's time in the ICU generates a sequence of timestamped notes. Each
of the methods described transforms the sequence of notes into a fixed-length vector repre-
senting the ICU stay.

4.4 Methods

MIMIC-III v1.4 contains de-identified clinical notes. In preprocessing these notes, tags in-

dicating de-identified protected health information are removed. Phrases written entirely

in capital characters are then replaced by a single token, effectively coalescing common

structural elements; for example, the section heading "RADIOLOGIC STUDIES" would be

replaced with a single token. Additionally, regular expressions for common age patterns are

used to replace all specified ages with symbols binned by decade to ensure that relevant age

information is not lost. Finally, we remove all non-alphanumeric tokens, and normalize all

remaining numbers to a single number token.

For each word, we compute the number of unique patients who have a note contain-

ing that word-this is the "document" frequency. For each note, we compute the term

frequency-inverse document frequency, or tf-idf of each word and keep the top-20 words of

that document. Thus a patient's stay is represented as an ordered list of filtered bags-of-

words.

The following subsections describe several approaches to aggregate each patient's multiple

note vectors into one fixed-size patient vector that summarizes their stay in the ICU, as

illustrated in Figure 4-2.
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4.4.1 Bag of Words

Bag of words (BoW) is one the simplest methods for creating vector representations of

documents. Using the top-20 tf-idf words from each note produces a vocabulary of size IVI =

17,025 words. In this representation, the patient vector is a IVI-dimensional sparse, multi-

hot vector. If a word appears in any of the notes for a given patient, then the corresponding

dimension for that word is "on" in the resulting patient vector.

Bag of words presents a strong baseline representation for downstream predictive tasks.

In this work, its strength is a result of its high dimensionality relative to other models: by

reducing the representations into a smaller, denser space, other models may inadvertently

throw out information with predictive value. More specifically, we expect that bag of words

will perform well on tasks that involve the prediction of categories which may be directly

represented by single words in their notes. For example, we would expect a note which

frequently contains the word "male" to correctly identify the patient as male.

4.4.2 Word Embeddings

Because of the success of word2vec in recent years, we embed words and documents into

a dense space in order to accommodate soft similarities. We train clinical word vectors

using the publicly-available word2vec tool 2 on 129 million words from 500,000 notes taken

from MIMIC-III. Hyperparameters were specified using Levy et al. [65] as a reference: 300-

dimensional SkipGram with negative sampling (SGNS) method with 10 negative samples, a

min-count of 10, a subsampling rate of le-5, and a 10-word window. These clinical embed-

dings are available for public use on the MIMIC-III Derived Data Repository.3

As shown in Figure 4-3, we create a note representation by aggregating the top tf-idf

words in the document. With these top words, we look up each of their word2vec embeddings

(blue) and collapse them into a final vector using elementwise -max, -min, and -average. We

apply the same aggregation scheme (max, min, and average) to collapse the patient's list of

2 Code available at https://github.com/tmikolov/word2vec.
3 Data available at https://physionet.org/works/MIMICIIIDerivedDataRepository/.
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amiD inniiimry
elementwise max elementwise min elementwise average

HISTORY: 74 year old female with mental status changes and tachycardia

Figure 4-3: How the embedding for a single document is built by combining constituent word

embeddings.

document vectors into one fixed-length patient vector.

4.4.3 Recurrent Neural Network

One problem with the approaches described above is that they all ignore temporal ordering

of the documents. That is to say, they fail to track the progression of a patient's state

over time during the ICU stay. One solution to this limitation is to use a sequence-based

model. We use a Bidirectional LSTM network, which has proven to be effective at modeling

temporal sequences [42, 571. In order to provide a fair comparison, we build the list of

document vectors for each patient in the same way that was done for word embeddings.

These document vectors are then fed into the LSTM one document per timestep.

Our LSTM was implemented in Keras 118] using a Bidirectional LSTM with 256 hidden

units, a dropout rate of 0.5, and a 128-unit fully connected layer immediately before the

output label softmax. Models were trained for 100 epochs.

"CORONARY ARTERY DISEASE"

LSTM LSTM ... LSTM

Figure 4-4: The many-to-one prediction task for the LSTM, in which a document represen-
tation is fed in at each timestep, and it makes a prediction (e.g., diagnosis) at the end of the

sequence.
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4.5 Experimental Setup

The principal aim of this work is to better understand what information is captured by

various representations of clinical notes. Because most of the derived representations have

non-interpretable dimensions from the embedding process, we cannot look for correlations

between individual dimensions and our queries. Instead, we use downstream predictive per-

formance to asses whether a particular representation has encoded the necessary information.

We consider the following prediction tasks modeling clinical states and outcomes:

1. Diagnosis. We filter down to patients with one of the 5 most common primary diag-

noses and predict: Coronary Artery Disease, Pneumonia, Sepsis, Intracranial Hemor-

rhage, and Gastrointestinal Bleed.'

2. In-Hospital Mortality. Binary classification of whether the patient died during their

hospital stay.

3. Admission Type. Binary classification of Urgent or Elective.

4. Length-of-Stay. Three-way classification of whether patients stayed in the ICU for

Less than 1.5 days, Between 1.5 and 3.5 days, and longer than 3.5 days.

We are also interested in whether the notes are able to capture basic demographic infor-

mation:

1. Gender. Binary classification of Male or Female.

2. Ethnicity. Binary classification of White or Non- White.

3. Age. Three-way classification of age as less than 50 years old, between 50 and 80 years

old, or older than 80 years old.

While these tasks reflect those commonly found in research, we use them to evaluate our

representations rather than as clinically-actionable targets. For example, it might be noted

4While these are the top 5 most common diagnoses in our cohort, we note that they correspond to very different conditions.
We expect that this will make the task easier than, for example, discriminating among diagnoses that are similar.
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that a single patient can suffer from multiple conditions, but here we consider only their

primary diagnosis. Similarly, the ranges for age and length-of-stay are reasonable, but would

need to be tailored in other conceivable applications. In both cases, however, these choices

serve to highlight the types of information each representation is capturing.

Binary classification tasks are evaluated using AUC, while multi-way classification tasks

are evaluated using the macro-average Fl-score of the different labels. Predictions are made

for bag-of-words and word embedding representations using a scikit-learn [76] support vector

classifier with linear kernel. Predictions are made for the LSTM using a softmax layer.

4.6 Results

Performance for the 7 classification tasks using the 3 representation models are shown in

Table 4.1 (binary classifications) and Table 4.2 (multi-way classifications). In general, our

findings match our expectations: while a complex model tends to do well for "downstream"

tasks involving reasoning, such as diagnosis and length-of-stay, it struggles to compete with

a simpler model in token-matching tasks like age and gender.

Specifically, the bag-of-words (BoW) model performs best at predicting so-called "common-

sense" tasks: age, gender, and (less significantly) ethnicity, for which there are words which

almost directly predict the labels. In contrast, the LSTM model outperforms BoW on tasks

more related to clinical reasoning: diagnosis and length of stay, for which we expect the

temporal information to be important in predictions. Embeddings serve as a halfway point

between BoW and LSTM; while the method does not make use of a temporal sequence, this

experiment allows us to untie the pre-trained word vectors from the temporal dynamics of

the LSTM. In doing so, we see that the embeddings typically perform competitively against

BoW, but the LSTM is able to further use them.
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Table 4.1: AUCs for the binary classification tasks.

in-hospital mortality admission type gender ethnicity
BoW 0.821 0.883 0.914 0.619
Embeddings 0.814 0.873 0.836 0.580
LSTM 0.777 0.870 0.837 0.533

Table 4.2: Macro-average F1 scores for the multi-way classification tasks.

diagnosis length of stay age

BoW 0.828 0.724 0.635
Embeddings 0.828 0.730 0.544
LSTM 0.836 0.758 0.450

4.7 Discussion

As shown in Table 4.1 and Table 4.2, the different models exhibit varied performance across

tasks with no consistent winner. Bag-of-words tends to do well on tasks where a single

word, or a few words, are strongly associated with prediction categories. Notably, bag-of-

words is much better at predicting age. This is likely because the normalized, per-decade

age tokens created during preprocessing are, of course, strongly associated with predicting

age. The LSTM, on the other hand, had a difficult time distinguishing between the age

token embeddings since all age tokens fall nearby one another within the embedding space,

as shown in Figure 4-5.

For these tasks, bag-of-words provide a strong baseline because some standard demo-

graphic information, such as age and gender, are typically specified in the notes. However, it

is precisely because of their frequency of occurrence that information retrieval methods, such

as tf-idf, underestimate their importance. Recall that tf-idf reduces the score of exceedingly

common words. While this step is clearly important in the treatment of "stopwords"-words

that are so common they provide no additional value-here it inadvertently removes com-

monly recorded information. This presents a challenge for aggregating the word embeddings

of a note into one single document embedding because including too many words in the

aggregate statistical values (i.e., averages, maximums, and minimums) drives down the "in-

formativeness" of the representation by adding noise to these aggregate statistics.
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Table 4.3: Most predictive words for gender: (a) Male, (b) Female.

(a) Male

man 1.4012
he 1.0589
wife 0.9953
male 0.7956
his 0.6772
prostate 0.2435
prop 0.1965
ofm 0.1850
hematuria 0.1816
esophagectomy 0.1812
distention 0.1756
trauma 0.1748

(b) Female

she 1.0176
woman 0.9051
her 0.7561
husband 0.7004
breast 0.3206
daughter 0.2656
nausea 0.2309
female 0.2246
commode 0.2183
responded 0.2052
fick 0.2009
cco 0.1975

Table 4.4: Most predictive words for
'Elective' admissions.

(a) 'Urgent'

ew 0.2639
er 0.2495
fracture 0.2258
fx 0.2248
osh 0.2235
b 0.2194
disease 0.2138
vertebral 0.2061
cabg 0.2029
fractures 0.1971
fall 0.1893
arteriogram 0.1877

admission types: (a) 'Urgent' admissions, and (b)

(b) 'Elective'

sda 0.8048
flap 0.4646
esophagectomy 0.4617
artery 0.4435
epidural 0.4415
valve 0.3845
lobectomy 0.3838
resection 0.3644
avr 0.3527
replacement 0.3324
nephrectomy 0.2812
whipple 0.2740
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Further, all methods achieve high AUCs for mortality, admission type, and gender; sim-

ilarly, each performs poorly for ethnicity. The highest ethnicity AUC is still 20 points lower

than the worst reported AUC for the other tasks. This suggests that predicting ethnicity

from notes is an inherently difficult challenge. This is largely because race, while commonly

coded elsewhere, is not typically specified in the notes. Additionally, 71% of patients are

white in our dataset. This class imbalance may be large enough that a "default" value may be

assumed and not recorded. When ethnicity is mentioned, it is usually to denote a language

barrier, for example, "Spanish-speaking" or "required translator."

In general, interpretability is seen as a desirable feature for machine learning, particularly

in the clinical setting: doctors care not only about what decision is made, but what infor-

mation is used to inform that decision. Here, BoW seems to have a natural advantage over

other embedding models, as it is very easy to examine what words have the most predictive

power for given tasks.

Indeed, Table 4.3 clearly demonstrates the interpretability of the features for predicting

gender. Words such as 'man', 'male', 'wife', and 'he' directly suggest a male patient, and

these are shown to have high predictive power for gender. More interestingly, we see words

corresponding to gender-correlated conditions and body parts, such as 'prostate' for men

0
0 @

0

0 0

0. *i. .

. 0

Figure 4-5: PCA 2-D projection of the word embeddings. Vectors of the special age tokens
are colored red. Note that these tokens cluster close together in the embedding.
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Table 4.5: Most predictive words for length-of-stay: (a) Short stay (0 - 1.5 days), (b) Medium
stay (1.5 - 3.5 days), (c) Long stay (> 3.5 days)

(a) Short stay (0 - 1.5 days)

ml 0.5295
pt 0.5086
to 0.3570
b 0.3403
sensitivity 0.2489
meq 0.2090
atrial 0.1934
tamponade 0.1784
valuables 0.1770
vomited 0.1738
s 0.1708
weaning 0.1676

(b)
days

Medium stay (1.5 - 3.5

followed 0.2014
aps 0.1888
lifting 0.1811
of 0.1796
device 0.1790
trunk 0.1747
available 0.1644
metastatic 0.1610
the 0.1603
holes 0.1576
this 0.1520
decubitus 0.1509

(c) Long stay (> 3.5 days)

amio 0.2470
mn 0.2393
brain 0.2172
decreasing 0.2002
fentanyl 0.1971
withdrawal 0.1933
vasospasm 0.1900
previously 0.1890
coiling 0.1811
exercises 0.1799
dobbhoff 0.1779
frequently 0.1776

and 'breast' for women. Unsurprisingly, BoW performs

task.

better than other methods on this

Admission type, with features shown in Table 4.4 is less-easily interpreted, but still

provides understandable features. Words such as 'er' and 'ew' refer to the emergency room

or ward, and 'fracture' or 'fall' refer to traumatic injuries, all of which reasonably suggest

an urgent-care admission. Conversely, many of the predictive words for elective admissions

suggest chronic conditions or planned surgical procedures ('artery', 'valve', 'replacement').

We see that BoW also performs quite well on this task.

However, we see some differences when we examine the predictive features for the length-

of-stay task in table 4.5. In contrast to gender or admission type, the features for length-of-

stay are much more generic, seeming to have little interpretable relation to the prediction

task. At the same time, we see that the LSTM achieves a higher F1 score as compared

to the BoW model for this task. This suggests that BoW is interpretable for the simple

token-matching tasks, but not the harder reasoning tasks. Therefore, more complex and

performant models should be used for these harder tasks.
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4.8 Conclusions

In this work we consider both demographic and clinical prediction tasks in order to "stress

test" a variety of common note representations. We show that different representations have

different strengths: while complex models can outperform simple ones on reasoning tasks,

they struggle to capture seemingly "easy" information. On the other hand, simple word-

matching models prove to be very effective and interpretable for tasks that are so simple

that complex models tend to overlook their differences. In doing so, we motivate the need

for considering multiple representations rather than adopting a one-size-fits-all approach.

Finally, to promote open and reproducible research, our code is publicly available, alongside

word vectors trained on a very large corpus of clinical notes.

65



66



Chapter 5

Representations for Predicting Outcomes

Across Changing EHR Systems

Existing machine learning methods typically assume consistency in how semantically equiv-

alent information is encoded. However, the way information is recorded in databases differs

across institutions and over time, often rendering potentially useful data obsolescent. As

machine learning methods are more widely adopted in healthcare, mitigating this erroneous

assumption will become critical.

The following chapter presents work that appeared at KDD and was done in collabo-

ration with Jen Gong, Peter Szolovits, and John Guttag. In it, we map database-specific

representations of information to a shared set of semantic concepts, thus allowing models to

be built from or transition across different databases.

We demonstrate our method on machine learning models developed in a healthcare set-

ting. In particular, we evaluate our method using two different intensive care unit (ICU)

databases and on two clinically relevant tasks, in-hospital mortality and prolonged length of

stay. For both outcomes, a feature representation mapping EHR-specific events to a shared

set of clinical concepts yields better results than using EHR-specific events alone.
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5.1 Overview

Existing machine learning methods typically assume consistency in how information is en-

coded. However, the way information is recorded in databases differs across institutions

and over time, rendering potentially useful data obsolescent. This problem is particularly

apparent in hospitals because of the introduction of new electronic health record (EHR)

systems. During a transition in data encoding, there may be too little data available in the

new schema to develop effective models, and existing models cannot easily be adapted to

the new schema since required elements might be lacking or defined differently.

In this chapter, we explore the effect of data encoding differences on machine learning

models developed using EHRs. Mining EHRs enables the development of risk models on

retrospective data and their application in real-time for clinical decision support. Such

models facilitate improving outcomes while lowering costs. However, this task is complicated

by the fact that EHRs are constantly changing-utilizing new variables, definitions, and

methods of data. entry. Furthermore, EHR versions often differ across institutions, and even

in different departments within the same institution.

While specification changes can appear minor, each difference means that a risk model

developed on a prior version may depend on variables that no longer exist or are defined

differently in the current version. For example, the Society for Thoracic Surgeons' Adult

Cardiac Surgery Database has undergone many transitions since its introduction in 1989

[73]. During one transition, two variables indicating whether a patient has a history of

smoking or whether the patient is a current smoker were remapped to a single variable

capturing whether the patient is a current or recent smoker [861.

Remapping variables manually is feasible for small changes, but modern EHRs may

contain over 100,000 distinct items, and this number continues to grow over time [25, 31.

Consequently, risk models typically rely on only a small number of variables so that they

can be easily adapted. It has been shown, however, that models based on a large number

of variables typically out-perform models based on a small number of variables [98J. The

alternative, building version-specific models, is prohibitively labor intensive and creates a
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problem during transition periods, when there are insufficient data to build a high-quality

risk model.

We enable the application of machine learning models developed using one database

on data from another version. We apply natural language processing (NLP) techniques to

meta-data associated with structured data elements and map semantically similar elements

to a shared feature representation. This approach enables building models that can leverage

data from another database without restricting the data to a subset or requiring database

integration, a difficult problem [23, 34].

We present a case study on the structured data in the Medical Information Mart for

Intensive Care (MIMIC-Ill) [481, which is described in Section 2.2.2. This data spans two

EHR versions, CareVue (2001-2008) and MetaVision (2008-2012). There are approximately

9,000 items specific to CareVue and approximately 3,000 items specific to the MetaVision

data.

In this case study, we relate EHR-specific data to clinical concepts from the Unified

Medical Language System (UMLS) [9], a collection of medical ontologies. An ontology

consists of a set of concepts (entities), and relations between entities. Although general

domain ontologies (e.g., 110]) and tools for identifying equivalent semantic concepts (e.g.,

1281) exist, these tools do not work well with the highly domain-specific vocabulary present

in clinical text.

We demonstrate that using a shared set of semantic concepts improves portability of risk

models across databases compared to using EHR-specific items. We do this by evaluating

the performance of clinical risk models trained on one database and tested on another for

predicting in-hospital mortality and prolonged length of stay (LOS).

Our work makes the following contributions:

1. We present a novel approach to facilitating the construction and use of predictive

models that work across multiple EHR systems.

2. We demonstrate the effectiveness of our approach on two commonly used predictive

models and on data from two epochs of EHR systems in the publicly available MIMIC-
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III dataset.

5.2 Related Work

Several solutions to resolving structured data in different EHR versions have been proposed

in the literature. Much previous work has developed methods to reconcile health care infor-

mation with different encodings of variable names by mapping databases to existing clinical

vocabularies and ontologies [78, 68, 891.

Sun 189] proposes a method to leverage UMLS to merge two databases. He demonstrates

his approach by producing a shared representation for lab items at two different hospitals.

This work builds a semantic network for each database structure on its own, and then seeks

to merge the two structures by leveraging context and outside sources such as UMLS. In

contrast, our work does not seek to relate individual concepts within an EHR as a semantic

network. Instead, we map each element directly to concepts in the UMLS ontologies and use

this representation for greater generalizability of predictive models.

In the area of clinical risk-stratification, Carroll et al. [12] demonstrated that a model for

identifying patients with rheumatoid arthritis generalized well at other institutions, despite

differences in the natural language processing pipelines used and the differences in structured

variable coding across EHR systems. While promising, the logistic regression model they

tested used only 21 characteristics (from clinical notes and structured data) drawn from the

patient's record. A similar method would not be appropriate for our task, which draws upon

thousands of characteristics from the EHR.

Changing encodings of databases is an opportunity for transfer learning methods, where

information from a task that is related (source task) but not directly relevant to the task

of interest (target task) is leveraged to improve performance. For example, Wiens et al.

[99] transferred information from other hospitals in the same hospital network to improve

risk predictions for a hospital-acquired infection at the hospital of interest. In [991, the

hospitals had a shared set of features, but also hospital-specific features. Similarly, our

EHRs intersect (capturing similarly coded lab tests, microbiology tests, and prescriptions),
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but each also contains a large set of features that does not appear in the other. Rather than

utilizing the EHR-specific features directly in our models, we present an approach to first

map the features to semantically equivalent concepts. Unlike most feature-representation

transfer methods, which explicitly use the data to learn a feature representation where the

source and target data distributions lie closer together [75], we utilize a domain-specific

vocabulary encoded through expert knowledge.

5.3 Method

In this section, we describe a feature representation that captures the EHR encodings (Sec-

tion 5.3.1). Next, we describe the EHR-specific feature representation for each patient (Sec-

tion 5.3.2), and then the conversion of this representation to the UMLS concepts, called

concept unique identifiers (CUIs) (Section 5.3.3).

5.3.1 Bag-of-Events Feature Representation

We construct our feature representation to demonstrate that mapping to a shared encoding

enables building effective risk models across EHR versions. The goal of using this represen-

tation is not to learn the best possible risk models; instead, it is to elucidate the impact of

transferring models from one database to another.

To that end, we consider a feature space that relies on the encoding of items in the EHR.

Events are represented by the number of times they occurred. Each patient is represented as

a bag-of-events (BOE) gathered from the first 24 hours of their stay. The BOE representation

omits information about the ordering of events and any associated numerical values (e.g.,

the result of a blood pressure measurement). This type of BOE representation has been used

previously to construct clinical risk models from structured data [96, 94, 17].

The BOE features capture the different kinds of events encoded in the EHR systems.

While using the values of lab tests or vital signs would certainly lead to improved predictive

performance [62, 63, 31], it would obscure information about how the encodings affect model
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performance.

Bag-of-events is analogous to the bag-of-words representation for text. We therefore

apply the common normalization technique term-frequency, inverse-document frequency (tf-

idf). Tf-idf favors terms-or, in our case, events-that occur with high frequency within an

individual but infrequently across individuals. These weights tend to filter out features that

occur so broadly that they are ineffective in differentiating individuals. Finally, we apply a

maximum absolute value normalizer to all features after tf-idf transformation to make the

ranges of tf-idf transformed features comparable.

The events we consider are represented in 1) EHR-specific domains, and 2) UMLS concept

unique identifiers (CUIs). These feature spaces are presented in the following sections.

5.3.2 EHR Item ID Feature Construction

We construct features from the EHRs to reflect the clinical events that occurred. In the

MIMIC-III database, events are defined by an ID, an associated description, and a text or

numerical value. While numerical values capture measurements of patient state, text values

often add to the semantic meaning of the events. Because of this, we assign new identifiers

for each unique (ID, text value) pair. These new unique identifiers are referred to as Item

IDs in the rest of the chapter.

Figure 5-1 shows an example. In MIMIC-III, the ID 229 is associated with the text

description "INV Line#1 [Site]"; in other words, information about an invasive line that

has been placed in the patient. Events recorded in the chart contain many unique values

associated with this ID, indicating the sites where the line could have been placed. For

example, the text "PA Line" indicates a pulmonary arterial line, which has very different

clinical implications than a "peripherally inserted central catheter" invasive line.

After constructing the BOE representation in the Item ID feature space, we apply a filter

to remove events that occurred in fewer than 5 patients to alleviate sparsity in the high-

dimensional feature space (15,909 items in CareVue, 5,190 events in MetaVision). After

applying the filter, CareVue had 5,875 features and MetaVision had 2,438 features.
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MIMIC Item ID MIMIC Item Description

229 INV Line#1 [Site]

MIMIC Item ID MIMIC Value

229 PA line

229 Lumbar Drain

229 Dialysis Line

Item ID Item Description

2290 INV Line Site PA
Line

229_1 INV Line Site
Lumbar Drain

229_23 INV Line Site
Dialysis Line

Figure 5-1: Text values often modify the semantic meaning of the corresponding items. We
assign new unique item IDs with item descriptions that append these values to the initial
item description. In this example, ID 229 in MIMIC is associated with a number of distinct
text values in patients' charts that modify its semantic meaning.

5.3.3 Mapping EHR Item ID to UMLS Concept Unique Identifier

In order to identify the shared semantic concepts represented by the EHR-specific Item

IDs, we annotate clinical concepts from the UMLS ontologies in the human-readable item

descriptions. Although concepts could be identified using simpler string matching methods

such as edit distance, these methods do not handle acronyms and abbreviations (common in

clinical text) well.

Using the Clinical Text Analysis Knowledge Extraction System (cTAKES), a frequently

used tool for identifying UMLS concepts, we annotate the human-readable item descriptions

from both EHR versions in our data [84]. cTAKES was primarily developed for annotating

clinical notes, which contain more context than the EHR item descriptions. This makes iden-

tified entities in the item descriptions difficult to disambiguate, and cTAKES often identifies

many concepts for each item description. The entity resolution process is further complicated

by the differing methods of EHR event entry between CareVue and MetaVision. CareVue

allowed for free-text entry of item descriptions, resulting in typos and inconsistent abbrevi-

ation and acronym usage. These characteristics result in less context to leverage during the

entity resolution process, and lead to some ambiguous annotations. Thus, the relation of
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C1328319

ankle brachial index left
_ 

1 _j -I, to

C0003086 C0445456 C0918012 C0205091

All: {C0003086, C0445456, C0918012, C0205091, C1328319}

Spanning: (c0205091, C1328319}
Longest: (C1328319)

Figure 5-2: All, Spanning, and Longest methods for annotating "ankle brachial index
left." These approaches relate the item descriptions to different sets of CUIs.

Item IDs to CUIs often identifies several relevant concepts, rather than a single one.

To address this, we consider three methods for defining the set of CUIs corresponding

to each item ID: 1) all CUIs found (all), 2) only the longest spanning matches (spanning)

and 3) only the longest match (longest). The spanning method is also utilized by (22].

The authors suggest that this method identifies the most specific concepts corresponding

to a given segment of text, without eliminating useful text auxiliary to the longest concept

mention.

Consider, for example, the text "ankle brachial index left" (Figure 5-2). Initially, five

CUIs are associated with this text. For this example, longest would choose only the CUI

for "ankle brachial index," and ignore "left." This method will likely drop informative CUIs.

This is evidenced by the large drop in the average number of CUIs identified compared to

all (see Figure 5-3). On the other hand, all does not remove any CUIs. This may capture

concepts that are only marginally relevant to the item description. For example, the all

annotation of "ankle brachial index" identifies "ankle," "brachial," and "index" as separate

CUIs, in addition to the full concept of "ankle brachial index." Capturing these constituent

words-"ankle," "brachial," and "index"-as relevant to the concept of "ankle brachial index"

could be misleading rather than informative. Finally, spanning presents a medium between

longest and all. For this example, it would identify "ankle brachial index" and "left" as the

corresponding CUIs. This captures all of the concepts with the longest spans across the text

without dropping text or including concepts with mentions contained within a longer, more

specific mention.

Figure 5-3 shows the distribution of number of CUIs per Item ID for the different mapping
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Figure 5-3: Distribution of number of identified CUIs per Item ID: Comparing All, Spanning,
and Longest relation methods.
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Figure 5-4: Transformation of Item IDs BOE representation to CUIs BOE representation
using the all method.

methods. Spanning maintains approximately the same mean number of CUIs per Item ID

compared to all, while reducing the tail from over 20 to 15 CUIs. In Section 5.5.2, we

evaluate these different methods for mapping Item IDs to CUIs.

With the resulting set of CUIs corresponding to each Item ID, we mapped the Item ID

BOE feature vectors to CUI feature vectors. For each CUI, we found the set of Item IDs

that contained that concept. We then summed the counts from that set of Item IDs to get

the count for the CUI. This transformation was done before applying tf-idf normalization.

Figure 5-4 depicts an example of this conversion using all CUIs.
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Figure 5-5: Length of stay in the ICU in MIMIC-III. Outliers (LOS > 50 days) truncated
for clarity of visualization.

5.4 Experimental Setup

In these experiments,1 our goal is to demonstrate the utility of our method in building models

across related databases. We chose not to combine the databases to build a single risk model

in order to clearly demonstrate the utility of our approach for transferring models across

databases.

5.4.1 Task Definition

We considered patients of at least 18 years of age. We included only these patients' first ICU

stay so as to avoid multiple entries for a single patient. This filtering is important because it

removes the possibility of training and testing on the same patient (even if they are different

ICU stays). We also removed the set of 120 patients whose stays overlapped with the EHR

transition and consequently had data in both CareVue and MetaVision.

In the resulting cohort, we extracted data from the first 24 hours of each patient's stay.

This provides a fair comparison against baseline acuity scores, which commonly use only

Code available at https://github.com/mit-ddig/event-cui-transfer.
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Table 5.1: Number of patients and clinical outcomes (in-hospital mortality and prolonged
length of stay, i.e., LOS > 11.3 days) in CareVue (2001-2008) and MetaVision (2008-2012)
portions of MIMIC-III.

EHR In-Hospital Mortality Prolonged Length of Stay
N n N n

CareVue 18,244 1,954 (10.7%) 16,735 4,893 (29.2%)
MetaVision 12,701 1,125 (8.9%) 11,758 2,798 (23.8%)

Total 30,945 3,079 (9.9%) 28,493 7,691 (27.0%)

Number of patients
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- , - .- .
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-) MetaVislon: In-Hospital
- CareVue: Prolonged Length of Stay
+ MetaVision: Prolonged Length of Stay
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Number of clinical outcomes
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Figure 5-6: Number of patients remaining in the ICU (left) and clinical outcomes (right)
with prediction gap 0-48 hours.

information from this time period [62].

We considered the two tasks of predicting in-hospital mortality and prolonged length of

stay (LOS). In-hospital mortality is defined as death prior to discharge from the hospital.

We define prolonged LOS in the ICU as a stay exceeding the upper quartile (> 11.3 days).

Figure 5-5 shows the distribution of length of stay across the patients in the ICU. Table 5.1

shows the number of patients in each EHR and the number of cases of the two outcomes.

For prolonged LOS, we filtered out patients who died before the 11.3 day cutoff. This was to

avoid considering patients who died and patients who were discharged before the prolonged

LOS cutoff as equivalent classes. Because of this, the number of patients (N) considered for
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ICU End of first 24 Include outcomes after
admission hours in ICU prediction gap

Features Prediction Gap

Figure 5-7: Diagram of relationship between information used to construct feature vector
(first 24 hours in the ICU) and prediction gap between information used and outcomes.

the outcome of prolonged LOS was lower than the number considered for the outcome of

in-hospital mortality.

We considered several prediction gaps ranging from 0 hours (immediately following ob-

servation) to 48 hours in 12 hour increments. The prediction gap is the time from the end

of the first 24 hours of the ICU stay to when we start counting outcomes. Any patient

who experienced the outcome of interest or was discharged during the prediction gap was

removed from the data before modeling. This impacts performance by removing the easier

cases. For example, a patient who has an item such as "comfort measures only" in the first 24

hours would have an easily predicted outcome. Increasing the prediction gap removes such

patients from consideration. Figure 5-6 shows both the number of patients remaining in the

ICU and the number of clinical outcomes as we increase the prediction gap (diagrammed in

Figure 5-7) for both CareVue and MetaVision.

5.4.2 Model Definition

For all of the experiments, we learned L2-regularized logistic regression models with an

asymmetric cost parameter:

min W W + C+ E log (1 + e-i +gXi) (5.1)
i:yi=+1 i:yj=-l

We used the scikit-learn LIBLINEAR implementation to train and test all models [76, 27.

We used logistic regression because the model is linear in the features. Therefore the model

weights are clinically interpretable, facilitating assessment of the relative importance of fea-
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tures. We employed L2-regularization to reduce the risk of overfitting, since our data are

small relative to the data dimensionality (see Table 5.1).

We used 5-fold stratified cross-validation on the training set to select the best value for

C_. We searched for the value in the range 10-7 to 100 in powers of 10. We set the asymmetric

cost parameter (f) to the class imbalance (i.e., the ratio of the number patients who did

not experience the outcome to the number of those who did). We evaluated our method

using the area under the receiver operating characteristic curve (AUC). The AUC captures

the trade-off between the false positive rate and the true positive rate of a classifier when

sweeping a threshold.

5.5 Experimental Results

5.5.1 EHR-specific Item IDs: Bag-of-Events Feature Representa-

tion

We first demonstrate that the simple BOE representation with EHR-specific Item IDs is

able to predict clinical outcomes such as mortality and prolonged length of stay. We show

the performance against the Simplified Acute Physiology Score II (SAPS II) [62], a well-

established acuity score that is commonly used as a baseline when developing risk models

for mortality in the ICU [31, 32, 44] and also uses information from the first 24 hours in the

the ICU.

We evaluate performance on CareVue and MetaVision separately. We computed the AUC

on 10 2:1 stratified training:holdout splits. We show that the Item ID BOE features add

auxiliary information to the physiological variables captured by SAPS on its own (Figure 5-

8). We used the Wilcoxon signed-rank test [100] to evaluate significance of the differences

between the Item IDs-only results and the SAPS II + Item IDs results. All differences for

both outcomes and both databases were statistically significant (p-value = 0.0051). Although

the magnitudes of the differences are not large (between 0.005 and 0.015 across all prediction

gaps for all tasks), they are consistent. In the following experiments, we used the SAPS II
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Figure 5-9: Mean AUC across 10 2:1 stratified holdout sets and 95% confidence interval
shown for each database and outcome considered. Converting to CUIs from Item IDs results
in small, but statistically significant differences in performance in 3 out of the 4 tasks con-
sidered. Mean AUC across prediction gaps shown for the outcomes of in-hospital mortality
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Table 5.2: Outcome: In-Hospital Mortality. Difference in AUC between SAPS II + Item
IDs and SAPS II + CUIs (Spanning) shown. Statistical Significance evaluated using the
Wilcoxon Signed-Rank Test.

Prediction CareVue MetaVision

Gap (Hrs) Mean Difference in AUC p-value Mean Difference in AUC p-value
0 0.0050 0.0051 0.0048 0.0051

12 0.0055 0.0051 0.0052 0.0051
24 0.0058 0.0051 0.0071 0.0051
36 0.0056 0.0051 0.0080 0.0051
48 0.0056 0.0051 0.0074 0.0051

+ BOE (Item IDs or CUIs) feature space.

5.5.2 Mapping Item IDs to CUIs

We evaluate the predictive performance of the BOE features when the events counted are

represented by UMLS concept unique identifiers (CUIs) rather than EHR-specific Item IDs.

We compare the performance of a model trained using SAPS II + CUIs vs. SAPS II +

Item IDs for each of the tasks of interest. We evaluate the three methods of translating item

descriptions to CUIs described in Section 5.3.3.

The mean AUCs across 10 2:1 stratified training:holdout splits are shown in Figure 5-9,

and the Wilcoxon sign-rank test p-values for in-hospital mortality and prolonged length of

stay are shown in Table 5.2 and Table 5.3, respectively. The mean differences in AUCs

across all the prediction gaps were statistically significant for the outcome of in-hospital

mortality in CareVue and MetaVision, as well as the outcome of prolonged length of stay

in CareVue (p-value = 0.0051). However, they are small in magnitude (A AUC < 0.008).

For the outcome of prolonged LOS, the differences in MetaVision between SAPS II + Item

IDs and SAPS II + CUIs were not statistically significant. Thus, although some statistically

significant decreases in AUC occur when CUIs are used, they are very small in magnitude.

This small difference shows that representing clinical events using CUIs can still achieve high

predictive performance on predicting mortality in the ICU within a single EHR system.

As Figure 5-9 shows, the spanning method appears to have improved or comparable
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Table 5.3: Outcome: Prolonged Length of Stay. Difference in AUC between SAPS II + Item
IDs and SAPS II + CUIs (Spanning) shown. Statistical Significance evaluated using the
Wilcoxon Signed-Rank Test.

Prediction CareVue MetaVision
Gap (Hrs) Mean Difference in AUC p-value Mean Difference in AUC p-value

0 0.0048 0.0051 0.0001 0.7989
12 0.0053 0.0051 0.0015 0.5076
24 0.0071 0.0051 0.0017 0.3863
36 0.0080 0.0051 0.0017 0.2845
48 0.0074 0.0051 0.0018 0.2845

performance to the other approaches across the four tasks. We therefore use the spanning

method going forward to map to the CUI BOE representation. Table 5.4 shows the number of

item IDs in each EHR version and the resulting number of CUIs from the cTAKES mapping

using the spanning approach.

5.5.3 CUIs Enable Better Transfer Across EHR Versions

We evaluate performance on predicting in-hospital mortality and prolonged length of stay

across EHRs. To do this, we train a model on data from one EHR system (Train DB) and

evaluate on data from the other EHR system (Test DB). We hypothesize that models trained

on CUIs will better generalize across EHRs compared to Item IDs because 1) mapping to

CUIs removes redundancy within each EHR, particularly CareVue, and 2) the intersecting

set of CUIs between EHRs is larger than the intersecting set of Item IDs relative to the

number of features in each EHR.

We compare our approach of training a model on CUIs to two baselines: 1) training

on all Item IDs from Train DB (Figure 5-10(a)), and 2) training on the shared set of Item

IDs between Train DB and Test DB (Figure 5-10(b)). Training on all Item IDs from Train

DB and testing on Test DB effectively means excluding most of the charted events from

consideration during prediction. While this obviously will not result in the best prediction

performance, it is a realistic simulation of how a model that has been developed on one

database version might directly be applied to data from a new schema early on in a transition.
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These results are shown in Figure 5-11. 95% confidence intervals are shown on the test

AUC, generated by bootstrapping the test set 1000 times to have the same size and class

imbalance as the original test set. The difference between the training AUC and test AUC

provides a sense of how well the model is able to generalize from Train DB to Test DB, and

to what extent it is overfitting to the training data.

These results demonstrate that the models trained on CUIs outperform those trained on

both all and shared Item IDs for both outcomes. In addition, the difference between the

training and test AUC when all Item IDs are used (red lines) is much larger than the same

difference when CUIs are used, or when shared Item IDs are used. This demonstrates that

using CUIs is less prone to overfitting and results in more generalizable models.

Using the UMLS CUIs, we increase the AUC on in-hospital mortality by at least 0.01

Table 5.4: Number of Item IDs and CUIs in CareVue, MetaVision, and intersection for in-
hospital mortality after filtering (> 5 occurrences in data). For MetaVision, the filter selects
2,438 of the 5,190 features. For CareVue, the filter selects 5,875 of the 15,909 features.

Prediction Gap CareVue MetaVision Intersection
(Hrs) Item IDs CUIs Item IDs CUIs Item IDs CUIs

0 5875 3660 2438 2192 2118 2052
12 5843 3645 2421 2182 2102 2046
24 5795 3619 2405 2175 2094 2041
36 5746 3595 2384 2161 2076 2035
48 5703 3573 2351 2151 2048 2017

Train DB Test DB Train DB Test DB

Figure 5-10: Baseline approaches: (a) Train a model on all items in the training database
(Train DB) (left), and (b) Train a model only on shared items that appear in both the
training and test databases (right).
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Figure 5-11: AUC when training on TrainDB and testing on TestDB using EHR-specific Item
IDs (all), Item IDs (shared), and CUIs. 95% confidence intervals are shown for each database
and outcome considered. The dashed lines show the training AUC of each model on Train
DB, while the solid lines show the AUC on Test DB. Training using the CUIs representation
results in the best training and test AUCs across all prediction gaps compared to Item IDs
(all) or Item IDs (shared) representations. These improvements are more pronounced for the
outcome of Prolonged Length of Stay when training on CareVue and testing on MetaVision
(bottom left).

across all tasks. Similarly, we improve the AUC on prolonged LOS by at least 0.009 when

training on MetaVision and testing on CareVue. When we train on CareVue and test on

MetaVision, we achieve even larger improvements compared to shared Item IDs (A AUC

> 0.03) and all Item IDs (A AUC > 0.07).

For predicting prolonged LOS with a gap of 24 hours when training on CareVue and
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testing on MetaVision, these differences translate to an AUC of 0.77 (0.76, 0.78) when using

CUIs, compared to an AUC of 0.70 (0.69, 0.71) when all Item IDs are used and 0.74 (0.73,

0.75) when shared Item IDs are used. Thus, converting our EHR-specific Item ID features

to a shared CUI representation results in significantly better performance when applying a

model learned on data from one EHR version to data from another.

5.6 Conclusion and Discussion

We introduce an approach to constructing machine learning models that are portable across

different representations of semantically similar information. When a database is replaced

or a schema changed, there is inevitably a period of time during which there are insufficient

data to learn useful predictive models. Our method facilitates the use of models built using

the previous database or data schema during such periods.

We demonstrate the utility of our approach for constructing risk models for patients

in the intensive care unit. We leverage the UMLS medical ontology to construct clinical

risk models that perform well across two different EHRs on two different tasks: in-hospital

mortality and prolonged length of stay. Our method of mapping to CUIs results in increased

AUC over EHR-specific item encodings for all prediction gaps, both outcomes, and both

directions of training on one EHR and testing on the other.

Despite improving performance, our method suffers from several limitations. First, al-

though using the CUI BOE representation leads to significantly higher overlap in feature

spaces between the two EHRs (CareVue and MetaVision), a significant number of CUIs is

lost when the intersection is taken. We believe that this is the result of insufficient disam-

biguation of entities from the free-text item descriptions utilized in CareVue. Identifying all

relevant concepts from short item descriptions is challenging for existing natural language

processing tools that depend on context for term disambiguation. Leveraging other sources

of text with sufficient context to disambiguate these terms (e.g., clinical notes) is a plausible

way to address this problem.

Second, while our method generalized well across the two EHR versions in our data, our
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use of MIMIC-III limits our experiments to data from the same institution. We chose to

work with MIMIC because it is an open, freely-accessible database, and it allowed us to

conduct a reproducible case study that highlights many of the challenges associated with the

portability of models in a more general setting. Applying our method to other institutions

could lend insight to how well our approach performs in the presence of different care staff,

practices, and patient population characteristics, as well as differences in EHR systems. It

would also allow us to investigate how our method performs in transferring models across

institutions.

Although we demonstrate the utility of this method in a clinical setting, entity resolution

for database matching is a common problem. As databases in finance, government, and other

sectors evolve and data analytics gains traction, resolving changes in information recording

over time is an important task.
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Chapter 6

Conclusion

This thesis provides several case studies in which leveraging representations of text is impor-

tant for clinical predictive tasks. Although not exhaustive, these case studies reflect contri-

butions toward the broader goal of using machine learning to improve healthcare; specifically,

our results motivate the future use of clinical text, and suggest that no single representation

will suffice. Further, we affirm our belief that free-text data is critical to delivering on the

full potential offered by EHR data.

In Chapter 3, we saw that as EHRs contain an increasingly large amount of data, standard

approaches to hospital mortality prediction can be improved by incorporating information

from clinical narratives. Specifically, we demonstrated that standard acuity features tend to

become less predictive over time due to decreasing data that can be used for support, and

that this effect can be offset by including topic-based features derived from clinical notes.

Paramount to this observation is that while patient support decreases over time, the volume

of notes about each of the remaining patients increases over time. While this is true about

other patient-collected data as well, the notes become increasingly informative about patient

state.

Further, the case study presented in Chapter 3 suggests that notes contain complemen-

tary information; thus motivating the need for their inclusion in order to obtain the highest

performing predictive models. This notion appeals to intuition since we would expect that
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clinical notes both provide a summary of important events recorded by other instrumented

signals and contain observations that cannot be otherwise recorded (i.e., subjective observa-

tions).

In Chapter 4, we saw that many simple NLP models do well on a variety of tasks, but

notably that no one model performs best across all tasks. The first of these findings is

unsurprising, since simple machine learning methods often perform better than their more

complex counterparts when sufficient data are available [38, 21. Instead, a more satisfying

realization can be discovered in this observation; namely, we may be approaching a state

where sufficient clinical data are available that simple methods perform well. This is im-

portant because, historically, barriers to accessing clinical data have often impeded machine

learning methods, particularly when data include clinical notes that are laden with protected

health information.

The second finding, that no single machine learning method always performs best, is

initially surprising, but ultimately appeals to our intuition. In essence we considered the

prediction of intrinsic note information in order to "stress test" several common note repre-

sentations, showing that complex models outperform simples ones on reasoning tasks, but

struggle to capture seemingly "easy" information. Conversely, the simplest word-matching

models prove to be very effective and interpretable for tasks where complex models tend to

overlook their differences. In this finding we can see a likeness to the differences between ex-

tractive and abstractive summarization. Specifically, our "easy" tasks benefit from methods

that show extractive properties since the information we are predicting is able to be found

directly in the text; whereas the more difficult tasks require methods that are abstractive

insofar as they are able to reconcile and synthesize information that may not appear directly

in the text.

In Chapter 5, we introduced an approach to constructing machine learning models that

are portable across different representations of semantically similar information. Our method

leveraged domain knowledge from the UMLS in order in order to transfer a model from one

EHR to another. We expect this to occur increasingly frequently as EHRs are replaced,
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resulting in periods of time during which there are insufficient data to learn useful predictive

models. As such, our method may grow in importance since it facilitates the use of models

built using the previous EHR system.

When considering the impact of our work, we must also consider its limitations. Rather

than doing so comprehensively, we highlight the two considerations that are most impor-

tant. First, we chose to work with MIMIC [81, 481 because it is an open, publicly-accessible

database, allowing us to conduct case studies that are reproducible. Applying our methods

to other institutions could lend insight to how well our approaches perform in the presence

of different care staff, practices, and patient population characteristics, as well as differ-

ences in EHR systems. We believe the reproduction of results at multiple sites is crucial in

establishing the validity of methods, and has proven difficult to do [461.

Second, our work presents methodologies that serve as steps in the direction of using

machine learning to improve healthcare. However, improving healthcare will require changes

to the provision of care; thus, the impact of our work is indirect. Indeed, change will require

not just this work, but many others to incrementally improve the state of healthcare. As a

community, we should embrace the many research opportunities this affords. Healthcare de-

mands improvements in replacing mundane clinical tasks, facilitating better decision making,

and providing tools to advance clinical practice.
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