
Infrastructure for Model Management and Model

Diagnosis

by

Manasi Vartak

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

o Massachusetts Institute of Technology 2018. All rights reserved.

Signature redacted
A uthor .................. ..........

Department of Electrical Engineering and Computer Science

May 25, 2018

Signature redacted
C ertified by ............... ..... .......

Samuel Madden
Professor

Thesis Supervisor

Signature redacted
A ccepted by .......................

LeslidA(4 Kolodziej ski
Professor of Electrical Engineering and Computer Science,

Chair, Department Committee on Graduate Students
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY co

JUN 18 2018

LIBRARIES

I



2



Infrastructure for Model Management and Model Diagnosis

by

Manasi Vartak

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Building ML-based workflows in the real world is a trial-and-error, iterative pro-
cess where an ML developer builds tens to hundreds of workflows before arriving
at one that meets some task-specific acceptance criteria. This iterative process of
workflow building is laborious for several reasons including the large variety of avail-
able ML models, the time required to train the workflow, difficulty keeping track of
workflows built during the modeling process, and the time required for debugging
trained workflows. In this thesis, we are primarily interested in two problems with
the repetitive modeling process: first, how to manage ML-based workflows gener-
ated over multiple iterations of the modeling process, and second, how to efficiently
debug or diagnose trained ML-based workflows. In this work, we study these ques-
tions from a systems perspective and propose novel software systems and techniques
to address them. Specifically, our contributions are: 1. We propose MODELDB, a
system to track provenance and performance of ML-based workflows. 2. We propose
MISTIQUE, a system to store ML-based workflow intermediates in order to speed
up model debugging tasks, and 3. We provide examples of new diagnostic techniques
that can be designed using the data in MISTIQUE.

Thesis Supervisor: Samuel Madden
Title: Professor

3



4



Acknowledgments

My PhD work would not have been possible without the support of an incredible

number of people who have personally or professionally taught me many things, given

me unique opportunities, and believed in me.

First and foremost, this PhD wouldn't have been possible without the unwavering

support of my PhD advisor, Samuel Madden. All through my PhD, Sam has given

me freedom to take on and explore a wide variety of research problems ranging from

systems research to visualization/ HCI to machine learning and even computational

biology. This freedom helped me clearly identify my interests and strengths. His

unwavering support also enabled me to take on large, risky, often ill-defined problems

without fear of failure. His metrics around "is it an interesting problem" and the

importance of building a "real system" have shaped my view of the research world.

His amazingly collaborative nature has also encouraged me to engage in many col-

laborations during my time at MIT. Sam's willingness to learn, enthusiam, humility,

and kindness are always inspiring to me.

I would also like to thank Michael Stonebraker who I had the fortune to work with

early on in my PhD and who has given me great feedback on research and career.

Mike always asks the hard questions about any piece of work and has helped improve

my research and this thesis document. I am also grateful to Tamara who, along with

Mike, has been on my thesis committee and whose comments on my thesis encouraged

me to view my work in a wider setting.

The work in this thesis wouldn't have been possible without Matei Zaharia who

has been a collaborator both on MODELDB and MISTIQUE. Matei's help in shap-

ing technical direction has been invaluable. I'm thankful to Aditya Parameswaran

for introducing me to the wonderful area of data visualization and exposing me to

problems that have since shaped my research tastes. I'm also incredibly grateful to

Hugo Larochelle who at Twitter mentored me and opened up the whole world of

deep learning practice and research. I have also have been privileged to have had

many great mentors including Elke Rundensteiner who originally got me interested

5



in databases, Irene Grief, and Tyreek Moore.

One of the highlights of my PhD tenure has been the opportunity to work with

amazingly talented and motivated undergraduate and masters degree students at

MIT. The work on MODELDB would truly have been impossible without them and

I feel priviledged to have had the opportunity to be their fearless leader for a little

while.

I am also grateful to have been supported by a Facebook PhD Fellowship from

2016 -2018.

I am thankful to the DB Group students past and present who have been on this

journey with me and have played an important role in improving my research and

communication of it. At MIT, I have also had the fortune of being part of many

student groups including GWAMIT, GW6, GSW, and EECS REFS, where I was

able to learn from a great number of amazingly driven students and I was given the

opportunity to contribute to causes important to me. Morevoer, one of the best

things about my time at MIT has been meeting like-minded friends who have been

on this journey with me and this has been one of the reasons I have thought of MIT

and Boston as "home."

Besides CSAIL, the MIT Trust Center for Entrepreneurship has most contributed

to my growth at MIT. The Trust Center, through its staff and programming, in-

troduced me to entrepreneurship and provided me with innumerable opportunities

to test out ideas in a low-risk setting. I am grateful to have been part of such a

supportive community.

None of my PhD (or anything else) would have been possible without the unflag-

ging support of my parents, Jyoti and Pradeep. They have been rocks of strength,

love, and clear-headed advice, three things that never fail to clear the fog. My hus-

band, Ashutosh, has been with me every day of this journey and has many stories

to tell! His encouragement, support, patience, wit, curiosity, kindness, and love have

kept me going and have encouraged me to go farther. My PhD experience would

have been so much less fun and enriching without him. My brother, Nimish, and his

family have been yet another rock of support for me and a place I have turned to

6



for advice so many times. My grandfather, Sadashiv, even in memory, has been an

amazing inspiration for me through his lifelong qualities of resilience and hard work.

I am grateful to the rest of my family for their love and encouragement.

Ultimately, for me, MIT was not one person, one department, or one degree. It

was a land of opportunities, resources, and freedom of exploration. I am truly grateful

to have been able to spend my PhD time here.

7



8



Contents

1 Introduction 17

1.1 The modeling process . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Managing ML-based workflows over many iterations . . . . . . 19

1.1.2 Debugging and Diagnosing Workflows . . . . . . . . . . . . . . 20

1.1.3 Techniques for Model Diagnosis . . . . . . . . . . . . . . . . . 21

1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 O utline of T hesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Background

2.1 A primer on Machine Learning . . . .

2.2 ML-based workflows . . . . . . . . .

2.3 Scope of this Work . . . . . . . . . .

2.4 Kaggle: a source for machine learning

2.5 Types of ML-based workflows . . . .

2.5.1 Traditional Modeling Methods

2.5.2 Deep Neural Networks . . . .

2.6 Modeling Frameworks . . . . . . . .

2.6.1 Traditional ML . . ... . . . .

2.6.2 Deep Neural Networks . . . .

tasks and

(TRAD)

25

. . . . . . . . . . . . 25

. . . . . . . . . . . . 27

. . . . . . . . . . . . 29

workflows . . . . . . 30

. . . . . . . . . . . . 31

. . . . . . . . . . . . 32

. . . . . . . . . . . . 34

. . . . . . . . . . . . 37

. . . . . . . . . . . . 37

. . . . . . . . . . . . 39

3 Related Work

3.1 ML Model lifecycle management . . . . . . . . . . . . . . . . . . . . .

3.2 Workflow and Experiment Management Systems . . . . . . . . . . . .

43

43

45

9



3.3 Provenance capture and storage . . . . . .

3.4 Data storage, versioning, and compression

3.5 Model Diagnosis and Visualization . . . .

3.6 O ther . . . . . . . . . . . . . . . . . . . .

4 MODELDB

4.1 Introduction . . . . . . . . . . . . . . . . .

4.1.1 Motivating Example . .. . . . . . .

4.2 Prelim inaries . . . . . . . . . . . . . . . .

4.2.1 Key Abstractions . . . . . . . . . .

4.3 MODELDB Architecture . . . . . . . . . .

4.4 Implementation . . . . . . . . . . . . . . .

4.4.1 Native Libraries . . . . . . . . . . .

4.4.2 MODELDB Light API . . . . . . .

4.5 Data Visualization for MODELDB . . . . .

4.6 Evaluation . . . . . . . . . . . . . . . . . .

4.7 Adoption and Release . . . . . . . . . . . .

5 MISTIQUE

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.1 Motivating Examples . . . . . . . . . . . . . . . . .

5.1.2 MISTIQUE: storing model workflow intermediates .

5.2 Prelim inaries . . . . . . . . . . . . . . . . . . . . . . . . .

5.2.1 Model Workflows and Intermediates . . . . . . . . .

5.2.2 Characterization of Diagnostic Queries . . . . . . .

5.2.3 Problem Formulation . . . . . . . . . . . . . . . . .

5.3 MISTIQUE Overview . . . . . . . . . . . . . . . . . . . .

5.3.1 A rchitecture . . . . . . . . . . . . . . . . . . . . . .

5.3.2 Usage Example . . . . . . . . . . . . . . . . . . . .

5.4 D ata Store. . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4.1 Quantization and Summarization . . . . . . . . . .

* . . . 47

* . . . 49

. . . . 50

* . . . 52

53

. . . . 53

. . . . 55

. . . . 59

. . . . 60

. . . . 61

. . . . 62

. . . . 65

. . . . 70

. . . . 72

. . . . 78

. . . . 80

85

. . . . 85

. . . . 86

. . . . 89

. . . . 91

. . . . 91

. . . . 92

. . . . 93

. . . . 95

. . . . 95

. . . . 98

. . . . 99

. . . . 100

10



5.4.2 Exact and Approximate De-duplication . .

5.4.3 Adaptive Materialization . . . . . . . . . .

5.5 Cost M odel . . . . . . . . . . . . . . . . . . . . .

5.5.1 Query Cost Model . . . . . . . . . . . . .

5.5.2 Storage Cost Model . . . . . . . . . . . . .

5.6 Fetching data from MISTIQUE . . . . . . . . . .

5.7 Experimental Setup . . . . . . . . . . . . . . . . .

5.7.1 Workflows . . . . . . . . . . . . . . . . . .

5.8 Experimental Results . . . . . . . . . . . . . . . .

5.8.1 End-to-End Query Execution Times . . .

5.8.2 Intermediate Storage Cost . . . . . . . . .

5.8.3 Validating the Cost Model . . . . . . . . .

5.8.4 Effect of Quantization on Accuracy . . . .

5.8.5 Adaptive Materialization . . . . . . . . . .

5.8.6 Workflow Overhead . . . . . . . . . .. . . .

5.9 Summary and Discussion of Experimental Results

5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . .

6 Applications of MISTIQUE

6.1 M otivation . . . . . . . . . . . . . . . . . . . . . .

6.2 PREDICTIONVISUALIZER Interface . . . . . . . .

6.2.1 Prediction Matrix . . . . . . . . . . . . . .

6.2.2 Summary Pane . . . . . . . . . . . . . . .

6.2.3 Input Data Explorer . . . . . . . . . . . .

6.3 Evaluation via Pilot User Study . . . . . . . . . .

7 Future Work

7.1 MODELDB ...............

7.2 MISTIQUE ...........

7.3 Diagnostic Techniques.....

11

. . . . . . 102

103

103

104

105

106

107

107

111

112

113

116

119

121

122

123

127

129

129

130

130

133

135

136

139

139

141

142

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .



8 Conclusion 145

12



List of Figures

1-1 M odeling loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2-1 ML-based workflow Abstraction . . . . . . . . . . . . . . . . . . . . . 27

2-2 ML-based workflow Example . . . . . . . . . . . . . . . . . . . . . . . 28

2-3 TRAD vs. DNN models (adapted from [51]) . . . . . . . . . . . . . . . 32

2-4 Sample TRAD pipeline for home price prediction . . . . . . . . . . . . 34

2-5 Toy neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2-6 VGG16 network for image classification . . . . . . . . . . . . . . . . . 36

4-1 Sample TRAD pipeline for home price prediction . . . . . . . . . . . . 56

4-2 ModelDB Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4-3 Overview of MODELDB Frontend Architecture (reproduced from [78]) 72

4-4 Projects Summary View (reproduced from [78]) . . . . . . . . . . . . 73

4-5 Timeline Visualization (reproduced from [78]) . . . . . . . . . . . . . 74

4-6 Model Timeline Drilldown (reproduced from [78]) . . . . . . . . . . . 74

4-7 Custom Visualizations (reproduced from 1781) . . . . . . . . . . . . . 75

4-8 Models View (reproduced from [781) . . . . . . . . . . . . . . . . . . . 75

4-9 Model Filtering (reproduced from [78]) . . . . . . . . . . . . . . . . . 76

4-10 Model Pipeline View (reproduced from [78]) . . . . . . . . . . . . . . 76

4-11 Model Annotation (reproduced from [78]) . . . . . . . . . . . . . . . . 77

4-12 Visualizing Model Metadata (reproduced from [781) . . . . . . . . . . 77

4-13 MODELDB Execution Overhead (reproduced from [123]) . . . . . . . 79

4-14 MODELDB Storage Overhead (reproduced from [1231) . . . . . . . . 80

13



4-15 MODELDB use in Katib for managing hyperparameter tuning experi-

ments (screenshot from [126]) . . . . . . . . . . . . . . . . . . . . . . 83

5-1 ActiVis Tool screenshot from [701 . . . . . . . . . . . . . . . . . . . . 86

5-2 VizML Tool screenshot from [26] . . . . . . . . . . . . . . . . . . . . 87

5-3 Zillow pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5-4 VGG16 architecture (reproduced from [116]) . . . . . . . . . . . . . . 90

5-5 MISTIQUE Architecture with data flow during storage (S1-3) and

querying (Q 1-4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5-6 MISTIQUE Data Model . . . . . . . . . . . . . . . . . . . . . . . . . 97

5-7 End-to-end query runtimes. Asterisk indicates strategy picked by cost

m odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5-8 Storage sizes for different strategies . . . . . . . . . . . . . . . . . . . 114

5-9 Verifying the cost model . . . . . . . . . . . . . . . . . . . . . . . . . 117

5-10 Read (solid) vs. Exec (dashed) Trade-off . . . . . . . . . . . . . . . . 117

5-11 Visualizing average activations for different storage schemes: (a) full

precision (float32), (b) LP_QT (float16), KBIT_QT (k = 8), POOL_QT

(o- = 32) (all produce the same heatmap); (c) KBITQT (k = 3); (d)

THRESHOLDQT . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 119

5-12 Adaptive Materialization: effect on storage and query time for syn-

thetic Zillow workload . . . . . . . . . . . . . . . . . . . . . . . . . 122

5-13 Logging Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6-1 Prediction Visualization (reproduced from [78]) . . . . . . . . . . . . 131

6-2 Prediction Matrix (reproduced from [78]) . . . . . . . . . . . . . . . 132

6-3 Clustering the Prediction Matrix (reproduced from [781) . . . . . . . 133

6-4 Nearest Neighbors in the Prediction Matrix (reproduced from [78]) . 134

6-5 Grouping Predictions (reproduced from [78]) . . . . . . . . . . . . . 134

6-6 Comparing ROC and PR curves across models (reproduced from [781) 135

6-7 Comparing confusion matrices across models (reproduced from [78]) 135

6-8 Visualization of raw data (reproduced from [78]) . . . . . . . . . . . 136

14



List of Tables

2.1 Sample data for Home Price Prediction . . . . . . . . . . . . . . . . . 33

4.1 Number of submissions made by top-10 competitors in different Kaggle

competitions. These numbers were obtained from the private leader-

board for competitions that finished in the last six months. . . . . . . 54

5.1 A Categorization of Diagnostic Queries. Last column, X=input, Y=target,

I=intermediate dataset, P=predictions. . . . . . . . . . . . . . . . . . 94

5.2 (Contd.) A Categorization of Diagnostic Queries. Last column, X=input,

Y=target, I=intermediate dataset, P=predictions. . . . . . . . . . . . 95

5.3 Workflow Templates for Zillow workload. The numbers in params in-

dicate the number of times a transformation is applied (typically once

on the training set and then again on test set) . . . . . . . . . . . . . 110

5.4 Size of Layers in CIFAR1O_VGG16 . . . . . . . . . . . . . . . . . . . 115

5.5 SVCCA accuracy: Comparison of CCA coefficient across different stor-

age schem es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 KNN accuracy: Fraction of overlap between true KNN and KNN com-

puted across different storage schemes. . . . . . . . . . . . . . . . . . 121

15



16



Chapter 1

Introduction

Machine Learning (ML) applications are becoming omni-present in a variety of do-

mains. For example, ML powers object detection in self-driving cars [25, 29], voice-

driven assistants through speech recognition [57, 91, and recommendation systems on

many e-commerce sites [79, 67]. While the above applications are the most visible

applications of machine learning, ML is also being used behind the scenes for tasks

such as prioritizing and responding to customer service requests [651, determining

where to drill for oil [66], and deciding whether to provide loans to applicants [92].

A key step in building an ML application is developing an ML-based data-processing

workflow to perform the given task (e.g., pedestrian detection or loan default risk esti-

mation). A typical ML-based workflow consists of multiple operations including data

pre-processing, feature extraction, and training of an ML model. Building such a

workflow is, in general, not a one-shot process and requires a great deal of experimen-

tation. An ML developer must explore different data transformations, ML models,

and hyperparameter settings to identify an ML-based workflow that meets some

task-specific performance or quality criteria. As a result, ML developers will often

train and evaluate tens to hundreds of workflows. We refer to the process of devel-

oping an ML-based workflow for a particular application as the modeling process.

Software systems to support the modeling process are the focus of this thesis.

'Informally, hyperparameters are model variables whose values affect the parameters the model
can learn from data. We provide a detailed explanation in Chap. 2

17



We note that while the techniques proposed in this work are applicable to general

data-processing workflows which require iterative experimentation, we are motivated

by workflows where training an ML model is an important part of the workflow.

Consequently, our motivating examples, implementations, and evaluation are oriented

towards ML-based workflows. Moreover, our proposed techniques work best when

applied to ML-based workflows because they are tailored to the unique requirements

as well as properties of these workflows. We discuss the relationship of this work to

general data-processing workflows in the Related Work chapter (Chap. 3).

1.1 The modeling process

Suppose our task is to predict home prices using historical data about homes and

their sale value (see Chap. 2 for the full example). Given this task, a typical mod-

eling process proceeds as follows. An ML developer starts with a simple workflow

specification 2 consisting of some data pre-processing steps (e.g., removing missing

values from the data), feature extraction operations (if any), and an ML model (e.g.,

linear regression) that captures assumptions about how the data was generated (e.g.,

that there is a linear dependence between the dependent and independent variables).

The ML developer then trains this workflow. For steps without any data-dependent

state, there is no explicit training required; however, for ML models, a learning algo-

rithm is used to fit the model parameters to the training data. Once the workflow

has been trained, the ML developer computes performance of the trained workflow

using a metric specific to the task (e.g., error in predicted home price). Based on

the performance of the trained workflow, the ML developer may decide to refine the

workflow. For example, the ML developer may pre-process data in a different manner,

build a different type of ML model (e.g., decision tree instead of linear regression),

tune hyperparameters of the current ML model, and so on. We call the process of

specifying a workfiow, training steps in the workfiow,' evaluating the trained work-

flow, and finally refining the workflow definition based on its task performance as the

2We delay formal definitions of ML-based workflows Chap. 2

18



modeling loop (see Fig. 1-1). Each sequence of these four actions constitutes one

iteration through the modeling loop and an ML developer typically performs many

tens, if not hundreds, of iterations through this loop.

Final
workf low

Specify
o rkfIowTrain-

Validate

Debug

Figure 1-1: Modeling loop

The modeling process described above is repetitive and laborious for a variety of

reasons including the large variety of available ML models, the time required to train

models in the workflow, difficulty keeping track of workflows built during the modeling

process, and the time required for debugging trained workflows. In this work, we are

primarily interested in two problems with the repetitive modeling process: first, how

to manage ML-based workflows generated over multiple iterations of the modeling

process, and second, how to efficiently debug or diagnose trained ML-based workflows.

In particular, we study these two questions from a systems perspective and propose

novel software systems and techniques to address them.

1.1.1 Managing ML-based workflows over many iterations

ML developers often train and evaluate hundreds of ML-based workflows before ar-

riving at one that meets the acceptance criteria on workflow performance or quality.

However, developers currently have no means of tracking previously-trained ML-based

workflows for insights from previous experimentation. For example, almost all ML

developers interviewed as part of this work (employed at companies ranging from

startups to large tech companies) either did not have any workflow tracking system

in place, or at best, they manually tracked trained workflows in a text document or

a spreadsheet. Remembering this information about each trained workflow or even

19



manually logging them in a spreadsheet is challenging for more than a handful of

models (because ML developers forget to record some workflows or make mistakes in

recording). From our interviews with data scientists, we found that the lack of model

management causes insights to be lost, produces workflows that are not reproducible

or auditable, and leads to challenges in collaboration and in running meta-analyses

(see Chap. 4). These challenges bring to light an important but little-studied problem

in the practice of machine learning that we term model workflow management or

simply model management. Model management in the context of this thesis deals

with tracking ML-based workflows built during the modeling process, extracting steps

(and parameters) for each workflow, and then making all of this information available

for sharing, analysis, and reproducibility. The first contribution of this thesis is

to propose MODELDB, the first open-source system for model management.

1.1.2 Debugging and Diagnosing Workflows

The second problem studied in this thesis is that of ML-based workflow debugging

and diagnosis. Machine learning is the process of automatically extracting patterns

from data. During this process, an ML developer does not explicitly define rules

for extracting patterns from data; instead, these "rules" are learned automatically

from the data by tuning model parameters. As a result, debugging an ML model

(and its associated ML-based workflow) is as much about debugging data as it is

about debugging code. Moreover, "bugs" in ML-based workflows can often result

from patterns already present in the data as opposed to errors. For these two reasons,

we refer to model debugging instead as model diagnosis. Just as a doctor diagnoses

the underlying reason for a patient's symptoms, our goal with model diagnosis is to

identify why certain outputs are produced by an ML-based workflow.

Concretely, diagnosing an ML-based workflow involves answering questions such

as "why does the home price prediction workflow under-perform on old Victorian

homes?" or "why does the image classification model classify a frog as a ship?" The

results from model diagnosis such as "because there are very few old Victorian houses

in the dataset" or "frog and ship images in the dataset have similar backgrounds" help

20



identify failure modes for the workflow and devise remediations. A line of work related

to model diagnosis studies model interpretability (e.g., [106, 13, 83, 41]). Model

interpretability in turn seeks to answer different kinds of questions ranging from how

to make results from ML models usable to non-experts (e.g., [138]) to understanding

the abstract concepts learned by a neural network (e.g., [13]). For simplicity, we will

refer to both kinds of analyses described above as "model diagnosis."

Many model diagnosis questions such as the ones described above can be answered

by analyzing different data artifacts related to the ML-based workflow including input

data, prediction values, and outputs of different workflow stages (e.g., the results of

applying dimensionality reduction to an input dataset). We collectively refer to these

datasets as model workflow intermediates or simply model intermediates. Currently,

performing model diagnosis requires the ML developer to choose one of two solutions:

either store all model intermediates (often hundreds of GBs in size) and incur a large

storage cost; or repeatedly run workflows to obtain the relevant intermediates, an

untenable solution for interactive diagnosis. Moreover, as shown by our empirical

evaluation in Chap. 5.8, for some queries, the difference in execution time when re-

running a workflow vs. reading an intermediate can be up to two orders of magnitude.

Thus, choosing the right strategy for running model diagnosis queries can significantly

impact time required for model diagnosis.

The bottleneck in supporting efficient and widely usable model diagnosis is there-

fore caused by two data management questions: (a) how to store large intermediates

efficiently for storage and querying; and (b) how to trade-off intermediate storage vs.

recreation? To address this challenge of efficiently querying model inter-

mediates, the second contribution of this thesis is MISTIQUE, a system

designed to capture, store, and query model intermediates for model di-

agnosis.

1.1.3 Techniques for Model Diagnosis

The MISTIQUE system described above provides ML developers with easy access

to data that was previously expensive to obtain (computationally or storage-wise).

21



Access to this data enables the design and evaluation of new types of diagnostic

techniques. Specifically, the last contribution of this thesis is a novel user-

interface for comparing and exploring predictions from multiple models.

Since current systems for ML infrastructure do not manage workflows across many it-

erations or store model intermediates, they cannot support comparison of predictions

or intermediates across many ML-based workflows. Our novel interface, called the

PREDICTIONVISUALIZER, uses data in MISTIQUE and visualizes predictions across

any number of previously trained workflows. This novel visualization can enable the

user to easily spot trends in specific model types while also analyzing individual model

predictions.

Thus, this thesis takes first steps in defining infrastructure for managing models

across many modeling iterations and performing model diagnosis. In the next section,

we summarize the contributions made by our work and lay out the outline for the

remainder of this document.

1.2 Summary of Contributions

The goal of this thesis is to propose infrastructure for managing ML-based workfiows

across many iterations and for supporting model debugging. Towards this goal, we

make three contributions:

" First, we propose MODELDB, a system that serves as a centralized repository

of ML-based workflows. MODELDB helps ML developers track what work-

flows they have trained, the different stages of each workflow along with their

respective hyperparameters, and the performance of every trained workflow.

This information avoids repeated work, provides auditability, and enables meta-

analyses across models.

" Second, we propose MISTIQUE, a system to store data intermediates produced

from workflows that can be used to perform a variety of diagnostic tasks. MIS-

TIQUE can be used with traditional ML workflows in scikit-learn [981 as well

22



as deep neural networks in Tensorflow [6]. Depending on the diagnostic query,

MISTIQUE can run model diagnosis up to two orders of magnitude faster than

current methods.

* And third, we propose to use the intermediates captured in MISTIQUE to

develop new diagnostic techniques. Specifically, we present PREDICTIONVIsU-

ALIZER, a visual interface to compare instance-level predictions and summary

performance metrics across many models.

1.3 Outline of Thesis

The rest of the thesis is organized as follows. We begin by providing a primer on

machine learning and the specific types of ML-based workflows studied in this thesis

(Chapter 2). We then present a survey of related work in Chapter 3. The MODELDB

system including its design, implementation and evaluation is described in Chapter 4.

In Chapter 5, we present the MISTIQUE system for model diagnosis. We present

the Prediction Visualizer in Chapter 6. We finish with a discussion of future work in

Chapter 7 and concluding thoughts in Chapter 8.

23



24



Chapter 2

Background

In this section, we provide a primer on machine learning, formally define the concept

of ML-based workflows, and describe the types of ML-based workflows studied in this

thesis. We also describe popular ML frameworks to motivate the implementation

decisions in subsequent chapters and provide an overview of the Kaggle platform

which we use as a source for real-world ML-based workflows.

2.1 A primer on Machine Learning

Basics. Machine learning is the process of finding patterns in data. We start with

a set of input examples X={x 1 ... X} from which we want to extract patterns. This

is called the training set. In many cases, the training set is processed to repre-

sent examples in a manner that is suitable for extracting patterns. This processing,

involving the generation of new descriptors or attributes of data, is called feature

extraction, and each descriptor of the data is called a feature. All the features of

the training data together make the data representation. Broadly, a model is a

set of assumptions about some process. A machine learning model captures our as-

sumptions about the process that generated our training data, specifically, these are

assumptions about the probability distribution of our data and are embodied in the

parameters of our model [89]. There are many machine learning models (e.g., linear

regression, multi-layer perceptron, support vector machines) as well as methods (e.g.,

25



decision tree classifier, principal component analysis) that have been proposed over

the years1 .

A machine learning model has a set of parameters that can be adapted to the

training data. A machine learning algorithm or a learning algorithm is used to

learn these parameters from the training data. ML models also have additional vari-

ables associated with them called hyperparameters whose value is usually set before

the learning algorithm is applied. Hyperparameters influence the distribution of pa-

rameters learned by the model and affect how well the model captures the underlying

data generating process. For example, the number of clusters k is a hyperparameter

in the k-means clustering algorithm.

Types of Learning Problems. In supervised learning problems, along with

the data representation xi, we are also provided with a target value yj for each input

example. Therefore, for these problems, we seek to model the probability distribution

p(ylx). When the target value yj comes from a discrete set of values, the problem

is said to be a classification problem; instead, if y, consists of continuous values,

then the problem is said to be a regression problem. If we are not provided a target

variable and our goal is to find underlying structure in x, then the problem is said to

be an unsupervised learning problem and we seek to model p(x).

Model Performance. We can use different metrics to measure performance of

our model. For regression settings this may be the mean squared error in the predicted

and actual output whereas for classification this may be the misclassification rate. In

ML, we are concerned with the performance of our model not on training data but

with the expected error on unseen, future data (also called the test data). This error

is called the generalization error. Since we do not have access to future data, we can

create test data by partitioning the training data into two. We use one part to train

the model (i.e., the training set) while we use the other part (called the validation

set) to assess model performance on unseen data. When the original training dataset

is small, instead of partitioning the data into two parts, we use cross-validation. In

cross-validation, we divide the training data into a number of folds (i.e., parts that

'In this work, we do not distinguish between a machine learning model vs. method.

26



U 01 ® 
02 03 ... Om-1 OM4

01 A1  02 A 2  03 A 3  Om-1 Am-i Om Am

Figure 2-1: ML-based workflow Abstraction

may be constructed using different techniques), train a model on all folds but one and

then test the said model on the left-out fold. We then average error across all folds

and use it as a proxy for error on future unseen data.

2.2 ML-based workflows

As described (Chap. 1), the work in this thesis deals with the process by which ML

developers build ML-based workflows for specific tasks. We now formally define an

ML-based workflow and its constituent steps.

An ML-based workflow is a directed acyclic graph of operations (See Fig. 2-1

which for simplicity shows a linear workflow). Each node in the graph represents

an operator and each edge represents the output of an operation. In most cases, a

workflow takes as input a dataset X with N examples and transform it into a dataset

Y with N examples such that the dataset Y closely matches a reference dataset T

with the same shape and size as Y (where matching is measured with respect to a

user defined function P). We call the output of P(Y, T) as the performance of the

workflow. In this work, we are most interested in tasks where the workflow that

maximizes P is not known apriori and the workflow builder must experiment with

multiple workflows to find one that produces the best performance.

An operator can perform a variety of things: it may read in data from some data

source, it may process the data in different ways (e.g., scaling values in the dataset),

it may train an ML model, and so on. Each operator Oi in the workflow can have

parameters 9i that depend on the data we seek to model and corresponding procedures

(As) to compute these parameters (whether from the data or using user input).

27



Cc er M Fill Standard Linear

02V Unique Stddev ReBia
a 

Unique 0  Mean 0 Weights

2Values mn-1 Std-dev m Bias

A Find Am-1 Compute Am Matrix
nique stats Eqn

Values

Figure 2-2: ML-based workflow Example

For example, Fig. 2-2 shows the ML-based workflow for the home price prediction

task that will be discussed next. The workflow consists of an operator to read in

the CSV file, then an operator to perform one-hot-encoding of categorical values 2 ,

then an operator to fill in missing values, then scaling of all columns to be 0-mean

and 1-variance, and finally a linear regression model to predict home prices. For

each operation in the workflow, we show the parameters of the operator as well as the

procedure used to learn these parameters. In case of the One-Hot-Encoding operation,

learning parameters merely involves indentifying all unique values in a column. In

the case of a linear regression model, the learning algorithm (in this case the learning

algorithm involves solving matrix equations) would fit the weights and biases of the

model.

In general, a workflow can be executed in three modes: (a) The training mode

where the workflow is run on training data. In this mode, the workflow is provided

both the input data Xtrain and the corresponding reference dataset Train. Each

operator of the workflow in turn gets the input data for that operator (i.e., results

of applying all the Operators preceding this one to the input data) as well as the

reference dataset Ttrain. An operator can use its input data and Train to compute

its parameters. (b) The validation mode where the entire workflow is run on the

validation data Xalidate (which is usually different from the training data) and the

result is compared with the reference dataset Tvalidate to compute the performance of

2Given a column col with potential values A, B, and C, applying one-hot-encoding to this
column generates three binary columns respectively indicating whether the column value is an A,
B, or a C.

28

W



the workflow. (c) And third, the test mode where no reference dataset is available

and the workflow is merely run from start to finish on test data, Xtest.

A typical process of building such a workflow therefore consists of four stages: (i)

specifying the workflow (i.e., stages, parameters types, and parameter computation

procedures), (ii) running the workflow in training mode; (iii) running the workflow in

validation mode to compute performance; and (iv) debugging the workflow to identify

ways to improve workflow performance. A workflow developer will repeat these steps

a number of times in order to find a workflow with high performance. Note that this

work does not cover workflows where more data becomes available (or is collected)

over time.

While our definition of workflows covers many types of data-processing workflows,

the workflows that particularly motivate us in this thesis are machine learning-based

workflows, i.e., workflows involving one or more machine learning methods. Specifi-

cally, ML-based workflows transform input data into predictions (for supervised learn-

ing methods) that accurately reflect some target variable. ML-based workflows often

consist of a series of Operators responsible for data pre-processing, creation of new

data descriptors (called feature engineering), and the training (and application) of

ML methods. In this thesis, we limit ourselves to ML-based workflows where the

last operator is a supervised machine learning method and none of the previous op-

erators are supervised machine learning methods that are to be trained in the given

workflow3 .

Thus, while the techniques proposed in this work are applicable to general data-

processing workflows that fit the above criteria, our motivating examples, implemen-

tations, applications, and evaluation are oriented towards ML workflows.

2.3 Scope of this Work

Machine learning as a field is extremely wide and diverse. As a result, some ML

models and techniques are clearly out of scope for this work. For example, our work

3 We note that already trained supervised ML methods may be used in any operator

29



does not extend to reinforcement learning since our techniques expect all training

data to be available when the workflow is run. Similarly, workflows involving active

learning [112] fall outside the scope of this thesis. Along similar lines, for deep neural

networks, this work does not cover topic of data augmentation [133] (the strategy

of increasing the amount and diversity of training data, particularly for images, by

applying various transformations to the data) during model training.

The general techniques described in this thesis are applicable to many supervised

ML models (e.g., linear models, decision trees, random forests). However, the im-

plementations of our systems do not support all types of models and workflows. For

example, MODELDB does not (natively) support deep neural network models. In

contrast, MISTIQUE supports both traditional ML models as well as deep neural

networks. PREDICTIONVISUALIZER once again is agnostic to the particular kind of

model that produced the predictions that are being analyzed. Therefore, for every

system and technique we propose, we clearly state the types of models, methods and

workflows that can be used with the system. Furthermore, we assume that data clean-

ing and integration has already been performed before the modeling process starts. As

a result, although cleaning and integration are important data pre-processing steps,

these are also out of scope for this work. For active learning and data cleaning, we

provide some pointers in the chapter on Future Work (Chap. 7) for how the proposed

systems can be extended to support these processes.

2.4 Kaggle: a source for machine learning tasks and

workflows

Before we discuss ML-based workflows, we highlight the source from which we have

obtained many modeling workflows and tasks. Kaggle 13] is a platform for conducting

and participating in data science and machine learning competitions. Kaggle hosts

machine learning challenges organized by research and industrial sponsors (e.g., the

Zillow competition described below, the ImageNet competition [21). Competitors on

30



Kaggle participate in these challenges by building ML models for the competition

task and submitting their predictions for grading by the Kaggle test server (Kaggle

maintains a leaderboard for each competition). Some competitors also opt to share

the full code used to generate their model via Kaggle kernels (i.e., runnable code

notebooks). These kernels, along with leaderboard statistics (which team produced

the best performing model), and interviews with top Kaggle competitors provide a

rich source of data on machine learning and data science workflows. In this thesis,

we use Kaggle kernels as a source of real-world, data scientist-generated machine

learning workflows. These workflows motivate some of the proposed techniques and

are also used as a test-bed for evaluating our proposed techniques, particularly in

MISTIQUE.

2.5 Types of ML-based workflows

The systems proposed in this thesis broadly deal with two distinct kinds of modeling

methods: traditional machine learning (TRAD) and machine learning using deep

neural networks (DNN) 4 . In TRAD machine learning, the performance of models

(e.g., logistic regression) is closely tied to the representation of data provided to the

model (i.e., the features used to describe examples in the data). As a result, when

training a traditional ML model, a data scientist or ML developer must identify the

best representation of data for the particular task. Consequently, as noted in the

literature [11, 142], a large fraction of the effort spent in traditional machine learning

goes towards creating or crafting high quality features and data representations.

In DNN models, in contrast, the model itself learns representations of raw data

which are optimized for the specific machine learning task. For example, if our task

is to distinguish between cat and dog images, the model will learn features for this task

that will (likely) be different from the features learned to distinguish between images

of different brands of cars. A DNN consists of many different layers of computational

4 Note that MODELDB mainly deals with traditional ML methods whereas MISTIQUE deals
with both kinds of methods discussed here.

31



Output

mapping
output from

features

-T t
mapping additional

from layers of
features features

t t
hand- hand-simple

designed features
features

input input

Traditional
Machine Learning Deep Learning

Figure 2-3: TRAD vs. DNN models (adapted from [51])

units (discussed in detail in subsequent sections) where each layer learns a different

representation of the raw data. The final layer of the network (called the output

layer) can be thought of as playing the role that a model plays in TRAD machine

learning - it learns a function correlating the data representation with the expected

label for each example. Since feature extraction takes place within the DNN model, as

noted in the literature [146, 134], the focus of ML developers now shifts from feature

engineering to engineering DNN architectures.

Fig. 2-3 shows a visual comparison of TRAD and DNN models (adapted from [51]).

We now discuss each modeling method in detail along with a prototypical ML-based

workflow for each method.

2.5.1 Traditional Modeling Methods (TRAD)

We begin with a motivating example modeled after the Zillow Home Value Prediction

competition on Kaggle [34].

Suppose an online real estate company wants to build a machine learning model

to predict home prices using historical data about home attributes (e.g., geographic

location, number of rooms, architectural style, area of the home) and the price at

32



which each home was sold5 . Sample data for this supervised learning task is shown

in Table. 2.1. The column we wish to predict (also called the target column or the

label) is the Price column. Our goal is to use the remaining columns to the predict

the value in the Price column.

Latitude Longitude Num Rooms Area (sq. ft.) ... Price ($)
34144440 -118654080 2 900 ... 500K
34144440 -118654080 1 650 ... 330K
33172410 -126657770 2 870 ... 620K
34465048 -118568168 2 910 ... 700K
34450042 -118555968 3 1010 ... 660K
33192413 -126892370 2 790 ... 490K

Table 2.1: Sample data for Home Price Prediction

As mentioned before, solving this modeling problem using traditional ML tech-

niques requires the ML developer to perform a large amount of data pre-processing

and feature engineering. ML-based workflows using traditional ML methods therefore

have a number of operators dedicated to producing features and transforming data

into a format that is best suited for the ML model that is used in the pipeline.

An example of such a modeling pipeline for the Zillow competition is shown in

Fig. 2-4. This pipeline was obtained directly from a Kaggle kernel [40]. As shown

in Fig. 2-4, this workflow consists of (a) reading data; (b) joining two tables; (c)

performing data pre-processing (e.g., fill missing values); (d) feature engineering and

selection (e.g., drop unimportant columns); (e) model training and prediction (e.g.,

LightGBM [72]). We find this pattern of pre-processing, feature engineering and

training steps across a variety of TRAD workflows (e.g., workflows [40, 35] for the

Zillow Home Value Prediction competition [34]; workflows [38, 39] for the Kaggle

Titanic Prediction competition [33]; and workflows [36, 37] for the Avito Demand

Prediction competition [32]). While these workflows vary in the complexity of their

steps, they can all be captured in our ML-based workflow abstraction.

5 the original Kaggle competition asks competitors to predict the error in Zillow's in-house price
prediction model, but we use a slightly different problem for illustration

33



Figure 2-4: Sample TRAD pipeline for home price prediction

2.5.2 Deep Neural Networks

The second modeling method we study in this thesis is machine learning using Deep

Neural Networks. Specifically, in this work, we focus on Deep Feedforward Neu-

ral Networks [51]. Unlike TRAD machine learning where the data scientist or ML

developer must hand-craft features to create an appropriate representation for the

model, a DNN model learns a representation from the raw data. A (feedforward) DNN

consists of multiple layers of computational units (also called neurons) such that each

computational unit learns functions of the input that can capture factors relevant

for the machine learning task. Fig. 2-5 shows a schematic of a toy DNN containing a

single layer. One of the hallmarks of DNNs is that they learn a hierarchy of functions

such that functions in higher layers (i.e., layers away from the input) are composed

of functions learned in the lower layers (i.e., layers close to the input). As a result, by

increasing the number of units in each layer, we can learn more functions whereas by

increasing the number of layers, we can learn more compositions of functions. The

architecture of a DNN refers to the structure of the network, specifically, the different

units in the network and how they are connected. In most architectures, units are

organized into layers such that the output of layer k can be obtained by only using

the outputs of layer k - 1. In a neural network, the layer that reads in the training

data is called the input layer while the layer that produces the model output is

called the output layer. The layers between these two layers are called the hidden

layers. Fig. 2-5 shows these layers for our toy DNN.

In a feedforward DNN or simply a multi-layer perceptron, information only flows

from the input through the lower layers to the higher layers and to the output;

there are no feedback connections that connect the output back to the input. The

34



Hidden

Input

Output

Figure 2-5: Toy neural network

class of feedforward neural networks includes fully connected neural networks and
convolutional neural networks (CNNs). Convolutional neural networks are a specific
type of feedforward DNNs optimized to process data with a grid-structure such as
images and time series [51]. In this work, we limit our selves to CNNs that work
with image data. These networks are called convolutional because they apply the
convolution operation in at least one of their layers where a convolution operation (in
the context of DNNs) involves applying a windowed element-wise matrix multiplication

operation to the input data using another matrix called the kernel (see Chap. 9 of [51]
for a detailed explanation). The second type of operation commonly found in CNNs
is the pooling operation; this simply corresponds to applying a windowed spatial
aggregation operation (e.g., with a MAX or AVERAGE operation) over a matrix.

For DNNs, we work with a running example related to image classification. The
task here is to classify an input image as belonging to a class such as cat, dog, ship,
bird etc. Fig. 2-6 shows the schematic of a popular deep neural network used for
image classification called VGG-16 [116]. VGG-16 contains 16 convolutional layers, 5
pooling layers, and three fully connected layers. It takes as input an RGB image and
passes it through the various layers to ultimately produce a vector of size 1000, each
index indicating the probability that the image belongs to one of the 1000 categories

it was trained to predict (see the ImageNet competition [108J).

In this work, we focus solely on image networks, and leave for future work the study

of deep neural networks for different data types such as text and time-series. Even

35



164 128 4096 4096

1S12

(~~1 CDj 0 fI

Figure 2-6: VGG16 network for image classification

within image networks, we focus primarily on networks with three types of layers:

convolutional layers, pooling layers, and fully connected layers. While our techniques

could support architectures such as ResNets [124], Recurrent Neural Networks [511,

we do not study them at this time. Additionally, we do not cover neural network

architectures that can change during training (e.g., as described in [91]).

We can represent DNNs via the ML-based workflow abstraction in several ways

(each appropriate in different settings). At one extreme, we can abstract the entire

DNN into a single operator where all layers and neurons in a network are grouped

together; parameters for this operator are the parameters of the entire neural network.

Applying this operator means running the entire neural network and an ML-based

workflow with a DNN represented in this manner would have only two stages: one

for reading data and another for applying the DNN model. At the other extreme,

we can consider each neuron in the DNN as a separate operator and have as many

operators in our workflow as neurons in the DNN. Parameters of each operator in

this case are only the parameters corresponding to one neuron. Our workflow would

thus have thousands of operators in a densely connected DAG. A middle ground

between the two extreme approaches is to define workflow operators at the level of

layers, i.e., groups of neurons. Since neurons in a given layer usually share the same

inputs, we can obtain a workflow with fewer operators that are (largely) connected in

a linear sequence. For example, for the VGG 16 network described above, the workflow

would have 24 operators corresponding to the 24 layers. Parameters for the workflow

operators in this case would be the weights corresponding to an entire DNN layer.

36



We use different workflow representations of DNNs in this thesis. In MODELDB,

we adopt the first (single operator) representation of DNNs for ease of capturing

workflows; for MISTIQUE, however, we are concerned with analyzing internal state

of models, and therefore we adopt a layer-level representation of DNNs.

2.6 Modeling Frameworks

A large number of frameworks are now available for machine learning, both using

traditional ML techniques and deep neural networks. We briefly survey these frame-

works with particular emphasis on the frameworks that we will study in subsequent

chapters.

2.6.1 Traditional ML

A variety of frameworks for traditional machine learning are available in different

languages. For example, scikit-learn [98] is the most popular open-source library

for traditional machine learning in Python. It includes a large array of machine

learning models for a variety of supervised and unsupervised tasks, and also provides

functionality for data pre-processing and feature engineering. scikit-learn is often

used is conjunction with pandas6 , a data processing library as well as numpy7 and

scipy' libraries for array-based numeric computation. spark.ml is an open-source

ML framework available in the Apache Spark distributed processing environment.

To perform machine learning, it provides an interface very similar to scikit-learn

and is available as a library in Scala as well as Python. R [1031 is an extremely

popular statistical computation environment that provides libraries with a variety of

ML algorithms.

6 https://pandas.pydata.org/
7 http://www.numpy.org/
8 https://www.scipy.org/
9 https://spark.apache.org/docs/latest/ml-guide.html

37



Machine Learning API in scikit-learn

We briefly review the ML API available in scikit-learn because it mirrors the API in

spark.ml and motivates our design choices in MODELDB.

The scikit-learn machine learning API consists of three main interfaces [201: the

estimator interface used for building and fitting models, the predictor interface used

for making predictions based on trained models, and the transformer interface that

is used to apply different transformations to data. In scikit-learn, a single entity

(namely a model class) is used to represent the abstract notion of a model, the

learning algorithm used to tune the parameters of the model, the hyperparameters of

the algorithm, and trained model. The model class implements both the estimator

and predictor interfaces defined above. A developer initializes an empty model (e.g.,

a RandomForest model) and optionally sets hyperparameters for this model. The

developer can then supply training data and call f it () on the model to tune the

model parameters to fit the training data. Once a model has been trained, the

developer can use the model by calling the predict () function on the trained

model.

Besides model definition and training, scikit-learn also provides various pre-processing

modules that can be used for feature engineering. These pre-processing modules im-

plement the transformer interface defined above (and occassionally even the estimator

interface when modules must store state about the data). By calling trans form (,

these modules can be used to apply different pre-processing steps to the data. Exam-

ples of transformers include those that perform simple transformations such as 0-mean

and 1-variance scaling and converting strings to integers to ones performing complex

transformations like performing dimensionality reduction using principal component

analysis.

The listing below shows a simple, end-to-end sample of how traditional machine

learning can be performed in scikit-learn using the APIs described above.

Listing 2.1: Sample TRAD pipeline in scikit-learn

38



# read data

data = pd.readcsv(filename)

# one hot encode column occupation

dataohe = pd.get-dummies (data, columns=[' occupation'],

dropfirst=True)

# scale the features

scaler = preprocessing.StandardScaler()

scaler.fit(data ohe)

dataohescaled = scaler.transform(data_ohe)

# build training set

y-train = dataohescaled['income']

x_train = dataohescaled.drop(columns=['income'])

model = linearmodel.LinearRegression()

model.fit(xtrain, ytrain)

return model

2.6.2 Deep Neural Networks

Part of the popularity of DNNs has resulted from the availability of a large number of

frameworks for DNNs. These include Tensorflow [6] released by Google, PyTorch [96]

from the open-source community (based on the previous Torch [31] framework),

MXNet [281, and older libraries such as Caffe2 [118], Theano [130] and PyLearn2 [53].

There are also different wrapper libraries available on top of these frameworks that

make it easy to define new models. One such library used in MISTIQUE is called

Keras [30]. Keras provides an easy means to define and train DNN models in Tensor-

flow (as well as Theano).

39



Many of the above frameworks, prominently Tensorflow and Pytorch, use Python

as the language of choice to define DNN models. This allows ML developers to use

familiar libraries like pandas, numpy, and scipy described above. Unlike TRAD ML,

where the training and testing of models is usually performed on the CPU, training

and execution of DNN models is preferentially performed on the GPU. The reason

is that operations commonly performed in DNNs can be easily vectorized and can

therefore take advantage of the high throughput provided by GPUs.

DNN models are usually defined in terms of the computation graph of the neural

network. Specifically, we define (a) what computational units are present in the

network, (b) how they are connected, and (c) what operations are performed at each

neuron. This computation graph can be specified at different levels of abstraction.

For example, the computation graph may be defined in terms of (relatively low level)

operations such as matrix multiplications and sigmoid functions, or simply in terms

of layers of units and their associated operations (e.g., a fully connected layer with

100 units on the input and 10 units at the output).

To illustrate, a simple CNN architecture (and model) for image classification can

be defined as shown below using the high-level APIs of the Keras library.

Listing 2.2: Keras CNN definition

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation,

Flatten

from keras.layers import Conv2D, MaxPooling2D

input-shape = (32, 32, 3)

input-tensor = Input(shape=input-shape)

numclasses = 10

model = Sequential()

model.add(Conv2D(32, (3, 3), padding='same',

input-shape=inputshape))

40



model.add(Activation('relu'))

model.add(Conv2D(32, (3, 3)))

model.add(Activation('relu'))

model.add(MaxPooling2D(poolsize=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), padding='same'))

model.add(Activation('relu'))

model.add(Conv2D(64, (3, 3)))

model.add (Activation ('relu'))

model.add(MaxPooling2D(poolsize=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten()

model.add(Dense(512))

model.add(Activation('relu'))

model.add (Dropout (0.5))

model.add(Dense(numclasses))

model.add(Activation('softmax'))

return model

41



42



Chapter 3

Related Work

The work described in this thesis is related to and builds upon previous work in

a variety of areas. We divide the work into the areas of (a) ML Model lifecycle

management; (b) Workflow and Experiment Management; (c) Provenance capture

and storage; (d) Data Versioning and Storage; and (e) ML model diagnosis and

visualization techniques.

3.1 ML Model lifecycle management

As machine learning deployments are becoming ubiqutous, various systems have been

developed in academia and in industry to manage the lifecycle of ML-based workflows.

To the best of our knowledge, MODELDB was the first open-source system for model

management. Several other systems have been proposed in academia and industry

to solve similar problems. For example, the ModelHub [861 system was proposed to

address the problem of managing the lifecycle of deep learning models. Specifically,

this work proposed a domain specific language to allow easy exploration of a number of

models, a (directory-based) model versioning system, and a storage system for DNN

parameters. Some of the techniques proposed in MISTIQUE (e.g., quantization)

have similarities to those used to compress DNN parameters in ModelHub. However,

we note that the algorithms proposed in [86] for optimally determining which model

versions to materialize have limited applicability in the MISTIQUE setting since

43

Ik



the set of model intermediates we wish to store is not known ahead of time. The

vision for model selection management systems which addresses problems similar to

MODELDB was laid out by Kumar et. al. in [771. As also noted in [77], providing a

central repository and representation for ML-based workflows (as done in MODELDB)

is a key requirement in speeding up the modeling process.

In [109], Sculley et. al. elegantly present the challenges with building and produc-

tionizing ML-based workflows based on their experience building ML-based products

at Google. Two of the problems highlighted in [1091 are the technical debt arising

from "pipeline jungles" and large amount of configurations. MODELDB takes first

steps in addressing these problems by providing a central repository where pipelines

(i.e., workflows) and their configurations are stored in a standardized format.

Different companies have since published the architecture of their proprietary

ML platforms such as the Michelangelo platform at Uber [47] and FBLearner at

Facebook [46]. Similarly, in [131] authors describe a proprietary pipeline versioning

system developed to track ML pipelines. Unlike MODELDB, this system performs

versioning at the pipeline-stage granularity and versions not only the operators used

at each stage but also the intermediate datasets produced by each stage.

Another important problem (not addressed in MODELDB or MISTIQUE) is ef-

ficiently training a large number of variations of ML-based workflows. Several papers

explore various systems optimizations that can be leveraged when training ML-based

workflows. The Columbus system [142], for example, studied the problem of op-

timizing the feature selection process by taking advantage of caching and sharing

intermediate results in R programs. KeystoneML [119] tackled a similar problem

by proposing a new framework to express ML pipelines using high-level primitives

and optimizing their execution in a distributed setting. [137] presents early work in

developing a similar system for speeding up ML workflow building.

44



3.2 Workflow and Experiment Management Systems

Our work on MODELDB is closely related to work on workflow and experiment man-

agement systems. Scientific workflow management is a rich area of research that has

produced systems including Kepler [821 (built on top of Ptolemy II [44] and used to

define workflows with different execution models), Taverna [135] workbench (used to

design and execute a variety of life science workflows), Galaxy [129] (used for repro-

ducible computational biomedical research), experiment workbench on Emulab [43j

(used to replay network research) and many others. More broadly, the importance of

history (i.e., providing a record of past operations) as an essential operation in data

analysis has been highlighted by Shneiderman and others in [113, 601. In line with

this finding, [75] developed history tools for visual data mining, while [107] developed

interactive visualizations of the visual analysis process in Re-Visualization. Graphical

histories for visual analysis in the context of Tableau [5] were studied by Heer et. al.

in [59].

The system closest in flavor and functionality to ModelDB is the VisTrails [14,

23, 221 system'. Building a visualization to answer a particular question is a trial-

and-error exploratory process similar to building an ML model [1321. As a result,

there is a need to track the provenance of visualizations as well. VisTrails provides

users with the ability to create and maintain visualization pipelines along with opti-

mizing their execution. A vistrail is a formal specification of a visualization pipeline.

Users can build visualizations (and vistrails) using the VisTrails Builder GUI. The

builder provides various modules wrapping key pieces of functionality such as data

ingest, different plotting functions etc. Similar to MODELDB, VisTrails represents a

visualization pipeline as a sequence of operations used to build a visualization. This

specification is expressed in XML format. VisTrails uses this specification to both

execute pipelines (a functionality not supported by MODELDB) and to optimize their

execution.

1VisTrails was first introduced as a solution to track visual analysis workfiows and has now
evolved to support generalized scientific workflows, including support for creating workflows using
scikit-learn.

45



A major drawback of VisTrails and most of the scientific workflow systems de-

scribed above is that they require scientists to use a system-specific workflow definition

interface (GUI or otherwise) that is separate from their scientific development envi-

ronment. For example, VisTrails requires that every visualization be built in their

system and Kelper requires the use of the Vergil interface introduced in Ptolemy.

This is, in fact, the solution also adopted by some commercial ML systems including

Microsoft Azure ML [1] and the SeaHorse product from DeepSense 141. From our in-

terviews with dozens of data scientists, however, we learned that data scientists found

the use of a standalone workflow management systems (particularly GUI-based) ex-

tremely restrictive. Data scientists want the freedom to write workflows in their ML

environment of choice and the ability to use new ML techniques without waiting for

the workflow management system to reflect these updates. Moreover, we found that

data scientists were unwilling to switch to new tools for one piece of functionality

(however key the functionality may be). Thus we found that while a standalone

workflow specification system would be much easier to build, it would have immense

difficulty getting adoption with ML developers. As a result, a significant part of the

effort in designing and implementing MODELDB was directed towards passively col-

lecting ML-based workflows without requiring data scientists to change their modeling

processes.

One system that embodies this philosophy for passively collecting provenance is

the noWorkflow system built to collect provenance of Python scripts [90] (this func-

tionality was extended to IPython notebooks by [1001). noWorkflow requires no

instrumentation of user code nor a workflow management system. It uses a combina-

tion of static analysis, UDF instrumentation (at the language level) and environment

profiling to capture provenance of Python scripts. Specifically, noWorkflow gath-

ers data about definitions of functions, details about the environment in which the

script was run (including libraries and versions) and details about function executions

at run-time. In some ways, via static analysis and profiling APIs, noWorkflow can

capture workflow data that is extremely similar to that captured in MODELDB. A

drawback of automatically tracking all UDF calls, however, is the resulting perfor-

46



mance overhead and the challenges in extending this approach to languages other

than Python.

A hybrid approach is used by new workflow system such as Apache Airflow [49]

and Luigi [120] where workflows are defined in code but the steps (or operators in

MODELDB parlance) must follow a uniform interface. For example, workflows in

Apache Airflow are DAGs of Tasks where a Task implements the common Operator

interface. Every execution of the DAG creates a Run that is executed with the

particular task instances. Defining workflows in code enables ML developers to use

their preferred ML or data processing libraries while still making it easy to track

and run workflows. The disadvantge of this solution however is that ML developers

may end up making tasks large and monolithic, thus, making the workflow tracking

ineffective. In MODELDB, instead of giving ML developers complete freedom to

define Operators (and also to alleviate the need of each ML developer writing the

same Operators), we leverage the fact that the ML libraries we target provide key

interfaces (e.g., Estimator, Transf ormer) that we can track automatically. Thus,

we get much of the instrumentation for free whereas ML developers writing custom

functions can implement common interfaces (much as in Airflow) to enable logging

of custom functions too. In the future, we imagine adding MODELDB clients for

workflow systems such as Airflow and Luigi.

Workflow management is also related to the area of metadata management. For

example, ProvDB [87] provides a system to manage metadata collected via collab-

orative data science workflows. Also, the Ground system [61] by Hellerstein et. al.

provides a common framework for tracking data origin and use via generic abstrac-

tions that are applicable to data processing as well as ML workflows. In the future,

MODELDB could be extended to incorporate data from Ground as well.

3.3 Provenance capture and storage

Lineage or provenance capture and storage has been a rich area of work in the database

community. The questions commonly answered with provenance include where did

47



the data come from, why was a particular value produced, and how a particular value

was derived (see surveys, e.g., [21, 191). Work in this area falls into two broad classes:

tracking fine-grained lineage and tracking coarse-grained lineage. Fine-grained lineage

focuses on storing "cell-level" lineage whereas coarse-grained lineage only captures

transformations applied at the dataset-level.

There are many examples of coarse-grained provenance systems including the large

number of scientific workflow systems described above (each of these systems capture

transformations that are applied to data and seek to answer questions about how a

dataset came to be). Some systems such as Spark also capture data lineage as part of

their core abstractions (e.g., RDDs in Spark track their own lineage [140]). Similar to

coarse-grained systems, many systems have been proposed to collect and query fine-

grained lineage data (example-level or cell-level) for specific data types and computa-

tion models. An example of such a system is SubZero [136] which tracks fine-grained

provenance for array data in SciDB and develops new techniques to track the input-

output dependencies at the cell-level. Titian [68] is another fine-grained provenance

system that provides the same functionality but for Apache Spark. As with SubZero,

Titian deals with the challenge of storing cell-level input-output dependencies for large

datasets. Other systems for different compute environments and frameworks include

RAMP [951 for MapReduce systems and Lipstick [10] for PigLatin. In traditional

database systems and data warehouses, the Trio [15] and Panda [64] projects have

studied provenance in a variety of settings. Most recently, Zhang et. al. studied the

problem of providing fine-grained provenance in KeystoneML to support diagnosis of

ML pipelines [143].

Just like scientific workflow systems are examples of coarse-grained provenance

systems for scientific workflows, MODELDB can also be thought of as a system to

capture coarse-grained provenance for ML-based workflows. In contrast, MISTIQUE

can be though of as a system to capture fine-grained provenance. However, there are a

few key differences between MISTIQUE and fine-grained lineage systems. First, the

questions answered by lineage systems are significantly different from those answered

by a model diagnosis system. For instance, a lineage system seeks to answer queries of

48



the form "what input record produced a particular prediction?" whereas MISTIQUE

seeks to answer queries such as "find all the input examples that had high value for

a given feature." Second, in many ML models, we do not require specialized systems

for fine-grained (cell-level) lineage since this data can be obtained via the existing

forward and backward propagation mechanisms that are used to train models such as

DNNs [51]. And third, none of the fine-grained lineage systems address the problem

of storing intermediate results like in MISTIQUE.

3.4 Data storage, versioning, and compression

Our goal in MISTIQUE is to store model workflow intermediates as efficiently as

possible (i.e., minimizing storage footprint while keeping retrieval costs low). For

ease of experimentation with different data layouts, in our implementation of MIST-

IQUE, we took a "relational" view of model intermediates. That is, we represented

intermediates as tables. Further, for fast retrieval, we chose to represent our tables

in a columnar format as in systems such as C-Store [122] and BigTable [24]. The

concept of Partitions in MISTIQUE is similar in spirit to that of column family

or projections in columnar database engines, although the allocation of columns to

projections uses a different procedure than that used in MISTIQUE.

We also note that model workflow intermediates are often numeric arrays or ten-

sors (e.g., for image models). As a result, they could alternatively be treated as multi-

dimensional arrays and stored using an array-based storage system such a SciDB [121]

or TileDB [941. While these systems do not provide support for optimizations such

as quantization, pooling or de-duplication, using array databases for intermediate

storage is a promising avenue for future work.

The intermediate storage problem can also be viewed as a dataset versioning prob-

lem. Each intermediate within and across workflows can be considered to be a version

of the input data and our goal is to store the data versions as efficiently as possible.

The problem of dataset versioning has been well studied in relational as well as array-

based storage systems. For example, the Decibel [84] system proposed efficient tech-

49

t



niques to store versions of a relational dataset. In contrast, OrpheusDB [63] proposed

a method to "bolt-on" versioning for traditional relational databases. Similarly, Bhat-

tacherjee et. al. [17] studied the problem of recreating vs. storing relational datasets.

While the techniques proposed in [171 are powerful, they have limited applicability

in our setting because dataset "versions" (i.e., intermediates) in MISTIQUE may be

quite different from one another and the complete set of data versions is not known

apriori. On the side of array databases, [110] tackled the question of storing multiple

versions of array data by taking advantage of delta encoding and compression, but

did not consider quantization or summarization schemes. Finally, the DataHub [16]

system proposed a vision for an architecture to perform collaborative data analysis

by sharing datasets.

Besides dataset versioning, our proposed quantization strategies are similar to

those used to compress neural network weights as in the paper on DeepCompres-

sion [56] and to store array data in PStore [181. MISTIQUE currently uses off-the-

shelf compression libraries to compress Partitions that are written to disk. However,

the question of compressing floating point data has been studied in multiple papers

including [105, 80] and some of these techniques could be incorporated into MIS-

TIQUE in the future. Furthermore, we could also incorporate analysis techniques

that can operate directly on compressed data as in [451. Our strategy of identi-

fying identical ColumnChunk and only storing unique ColumnChunks is similar to

de-duplication strategies used for identifying identical blocks in the networked storage

system Venti [1021. Similar techniques for file and data de-duplication are covered

in [97].

3.5 Model Diagnosis and Visualization

As discussed in the introduction and referenced in Table 5.1, many techniques have

recently been proposed for model diagnosis and interpretability. These include visu-

alization tools such as ActiVis [70] and DeepVis Toolbox [1391 that allow users to

inspect data representations learned by DNNs. These visualizations enable ML devel-

50



opers to spot patterns in activations, identify errors, and also begin to understand

what the model is learning. Similar tools for TRAD workflows such as VizML [26]

and ModelTracker 181 provide ML developers the ability to prioritize errors, examine

model workflow intermediates, and study, in a limited way, the evolution of consec-

utive models. As we describe in Chap. 6, the availability of intermediates at every

workflow stage and across any number of models can help to significantly expand

visual diagnosis functionality. Our proposed PREDICTIONVISUALIZER is an example

of a tool that leverages data from many models to obtain a global view of trends in

model predictions. Another visualization tool that serves to study the model struc-

ture and training progress is Tensorboard 2. Unlike the previous tools, the focus of the

Tensorboard visualizations (as of this writing) is to present statistics about training

(e.g., loss curves) as opposed to aiding in model diagnosis.

Another line of work related to model diagnosis is on model interpretability. As

discussed in [411, interpretability covers a variety of problems related to models. These

range from making the results of ML models accessible to non-experts (e.g., as in [138])

to techniques that are mainly geared towards ML developers and explain model be-

havior and failures. For example, LIME 11061 seeks to explain model predictions by

building a local linear model. In contrast, PALM [76] seeks to explain model behav-

ior by building a set of simpler surrogate models that apply to clusters of examples.

Other interpretability techniques include Netdissect [13] and SVCCA [1041 that ex-

amine hidden representations of models to answer questions such as 'what real-world

concepts are encoded in each neuron' and 'whether the representations learned by

two models are the same'.

There is a large class of techniques that provide model interpretability using gra-

dient information, backpropagation or data perturbation. These include saliency

maps [1151 that indicate the sensitivity of a CNN model to each pixel in an im-

age, GradCam [111] that provides a heatmap of the areas in an image that were

respondible for a particular classification result, and models such as Deconvolutional

Networks [141] that visualize what a network is learning. Recent work also uses the

2 https://www.tensorflow.org/programmers-guide/graph-viz

51



theory of influence functions to compute how influential a particular training point is

to a particular prediction [741, and game theory to assign importance to features in

complex models such as deep neural networks (e.g., [114, 831). While these last set of

techniques cannot be supported by MISTIQUE, they represent important ways to

introspect model behavior.

3.6 Other

The work in MODELDB also has relations to systems that automate the building of

models (e.g., Automated Statistician [421 or [1461) and tuning of hyperparameters

(e.g., [117]). The data captured in MODELDB could in the future be used to aug-

ment or improve automated modeling systems. Relatedly, the workflows captured

in MODELDB could also be used to identify overfitting and errors due to multiple

hypothesis testing as discussed in [50, 144].

52



Chapter 4

MODELDB

4.1 Introduction

Building an ML-based workflow for real-world applications is an iterative process.

Data scientists and ML developers experiment with tens to hundreds of ML-based

workflows before identifying one that meets some acceptance criteria on workflow

performance. For example, as shown in Table 4.1, top competitors in Kaggle compe-

titions typically submit predictions from hundreds of workflows to the leaderboard.

The winning team in the Zillow Home Value Prediction competition made 253 sub-

missions whereas the rank-3 team in the Toxic Comment Classification competition

made 451 submissions. Although data scientists (and data science teams) build many

tens to hundreds of ML-based workflows when developing an ML application, they

currently have no way to keep track of all the workflows they have built.

The above observation highlights a problem that we term ML-workflow man-

agement. ML-based workflow management involves recording ML-based workflows

including their structure, the steps involved and their respective parameters, and any

additional metadata about the workflow, and making all of this information available

for querying.

'Each submission corresponds to the results on a test set that are generated by an ML-based
workflow. There is generally a 1:1 relationship between an ML-based workflow and a submission.
However, since teams do not submit results from a poorly-performing workflow, the actual number
of workflows built is likely to be much larger

53

I



Competition 1 2 3 4 5 6 7 8 9 10
Toxic comment classification 171 129 451 164 299 182 247 59 240 397

Mercari Price Suggestion 99 57 62 119 57 394 7 347 147 152
Camera Model identification 109 124 93 133 77 31 65 17 228 173
Recruit Visitor Forecasting 114 81 39 103 47 208 65 87 93 124

Iceberg Classifier 118 24 66 106 114 60 60 15 5 55
Speech Recognition 276 119 126 195 206 170 183 270 174 123

Favorita Sales Forecasting 117 308 265 165 145 264 49 125 63 86
Zillow Home Value Prediction 253 53 111 180 10 63 449 352 251 95

Cdiscount's Image Classification 63 155 90 95 169 96 77 12 51 61
Porto Seguro's Safe Driver Prediction 83 231 12 92 47 58 65 252 107 24

Table 4.1: Number of submissions made by top-10 competitors in different Kaggle

competitions. These numbers were obtained from the private leaderboard for compe-

titions that finished in the last six months.

To understand the need to track ML-based workflows, we studied ML-based work-

flows across many companies (ranging from small startups to large tech companies

working at the leading edge of machine learning). We found the the lack of ML-based

workflow management impacts ML developers in a variety of ways:

" Lost insights. Data about previously built ML-based workflows is necessary

to inform the next set of ML-based workflows and experiments. As studied

in human computer interaction, data about previous experiments aids with the

sensemaking [1011 process, i.e., the process of finding and organizing information

to build a mental model of the underlying phenomenon. As a result, the lack

of ability to record experiments can lead insights to be lost.

* Lack of reproducibility. Similar to the difficulties in reproducing scientific exper-

iments [121, lack of records about previously built ML-based workflows and lack

of detailed provenance information about workflows leads to results that are not

reproducible. Moreover, it causes significant modeling efforts to be duplicated

and resources wasted on re-training expensive workflows. For example, one ML

developer at a large tech company related how she had spent over a week just

re-running a modeling experiment another employee had previously conducted

since the experimental setup and results were not recorded.

" Challenges in collaboration. Lack of a centralized location of ML-based work-

54



flows makes it challenging for team members to collaborate and managers to get

insight into the ML efforts. For example, one ML team manager we interviewed

related how, without information about other ML-based workflows an ML de-

veloper had built, it was challenging to assess whether the workflow ultimately

chosen by the ML developer was in fact the best one for the task.

" Challenges in running meta-analyses. Data scientists routinely test tens to hun-

dreds of hyperparameter settings. However, there is currently no way to keep

track of all the workflows that are built, in case the ML developer would like

to revisit them or observe trends performance trends caused by hyperparame-

ters. Similarly, an ML developer may want to find trends across workflows and

identify gaps in experiementation, tasks that are challenging without a central

repository ML-based workflows and their metadata.

" Lack of auditability. ML-based workflows are increasingly used in many key

business processes in a variety of industries. As a result, government legisla-

tion is now being implemented (e.g., the GDPR regulations in the European

Union [931) which require that companies be able to explain any decisions made

without human intervention. In these cases, it is essential to have access to all

versions of a ML-based workflow that may have been used in a task along with

full provenance information about the workflow.

Additionally, we note that having a central ML-based workflow repository will also

enable new kinds of applications that are currently not possible. For example, the

data collected in a ML-based workflow management system could be used to identify

overfitting of a model and errors due to multiple hypothesis testing (e.g., [50) or

even to recommend "best" workflows for a new task.

4.1.1 Motivating Example

Consider data scientist Dave (a real Kaggle user, name changed for privacy) who is

tasked with building an ML-based workflow for the the Home Value Prediction com-

petition described in Chap. 2.5.1. Suppose that at some point in the modeling process,

55



Figure 4-1: Sample TRAD pipeline for home price prediction

Dave builds the TRAD workflow shown in Fig. 4-1 to perform this task (reproduced

from previous chapter).

After training and evaluating this workflow, Dave may decide that instead of using

a LightGBM [721 model as shown in the figure, he wants to use an XGBoost [271

model. So he updates the workflow definition, re-trains the workflow and evaluates

its performance. He finds that the XGBoost model gives him better results. He

then decides that he would like to ensemble (i.e., combine) the predictions from the

LightGMB and XGBoost models via a linear function in order to obtain even better

performance. So he again updates his workflow to train both models and compute

a weighted combination of their predictions. He then spends the next few iterations

changing the weights assigned to predictions from the two models and observing the

effect on workflow performance. This process continues until Dave finds a workflow

that meets some acceptance criteria (e.g., error < 0.05).

The iterative modeling process decribed above is not unusual at all; in fact, it is

modeled after a real modeling workflow documented in a Kaggle kernel [35]. List-

ing 4.1 shows actual code comments corresponding to a few workflow iterations con-

structed by Dave. Moreover, note that Dave is not a beginner, he is a proficient data

scientist; he is ranked 501 (among all 82000 Kagglers) and has won seven medals in

various Kaggle competitions. We present these comments to draw attention to three

pertinent details: first, we notice that Dave has developed a large number of versions

of his workflow (at least 61 based on this listing); second, we notice that many of

the iterations are essentially trial-and-error; and third, we notice that the best option

available to Dave to track evolution of his workflow is to manually make notes in his

code comments.

56



Listing 4.1: Model versioning comments by a Kaggle competitor

# version 61

# Drop fireplacecnt and fireplaceflag, following Jayaraman:

# https://www.kaggle.com/valadi/xgb-w-o-outliers-lgb-with-

outliers-combo-tune5

# version 60

# Try BASELINEPRED=0.0115, since that's the actual baseline

from

# https://www.kaggle.com/aharless/oleg-s-original-better-

baseline

# version 59

# Looks like 0.0056 is the optimum BASELINEWEIGHT

# versions 57, 58

# Playing with BASELINEWEIGHT parameter:

# 3 values will determine quadratic approximation of optimum

# version 55

# OK, it doesn't get the same result, but I also get a

different result

# if I fork the earlier version and run it again.

# So something weird is going on (maybe software upgrade??)

# I'm just going to submit this version and make it my new

benchmark.

# version 53

# Re-parameterize ensemble (should get same result).

# version 51

57



# Quadratic approximation based on last 3 submissions gives

0.3533

# as optimal lgb-weight. To be slightly conservative,

# I'm rounding down to 0.35

# version 50

# Quadratic approximation based on last 3 submissions gives

0.3073

# as optimal lgb-weight

# version 49

# My latest quadratic approximation is concave, so I'm just

taking

# a shot in the dark with lgb-weight=.3

# version 45

# Increase lgb-weight to 0.25 based on new quadratic

approximation.

# Based on scores for versions 41, 43, and 44, the optimum is

0.261

# if I've done the calculations right.

# I'm being conservative and only going 2/3 of the way there.

# (FWIW my best guess is that even this will get a worse score,

# but you gotta pay some attention to the math.)

# version 44

# Increase lgb-weight to 0.23, per Nikunj's suggestion, even

though

# my quadratic approximation said I was already at the

optimum

To address the problem of ML-based workflow management, we propose a novel

58



system called MODELDB. MODELDB automatically tracks ML-based workflows as

they are built, records provenance information for each step in the workflow, stores

this data in a standard format, makes it available for querying via an API and a

visual interface.

Building a system for ML-based workflow management presents three key chal-

lenges. First, ML-based workflows are extremely diverse. They can be built using

different ML libraries and in different programming languages. They may also use

a variety of different data pre-processing steps as well as ML models. Therefore,

it is unclear how to capture these workflows via a single system. Second, different

workflows and their associated steps may have different metadata and provenance

information associated with them. Consequently, it is challenging to capture all this

metadata using a single unified schema. And third, since we want to build a system

that we can deploy in the real world, we must minimize changes that an ML developer

would need to make to their current modeling process.

In the next sections, we describe the design decisions we made to address each

of the above challenges. We also outline the limitations of the current system and

provide pointers for potential remediations.

4.2 Preliminaries

As defined in the Background in Chap. 2, in this work, we represent ML-based work-

flows as a DAG of operations. Each operation in turn can perform diverse functions;

for example it may pre-process data (e.g., remove some examples), create new de-

scriptors for the data (i.e., feature engineering), or apply a machine learning model.

Further, each operator has zero or more parameters associated with it that can be

tuned to fit the training data.

There are two key ways to capture ML-based workflows built during experimen-

tation: either require ML developers to use a workflow management system (distinct

from their ML development environment) in order to specify and run their work-

flows, or instrument ML code to capture workflows passively. The first solution is

59



the one adopted by GUI-based machine learning workflow definition software such

as Microsoft Azure ML [1] and Weka [55]. However, after interviewing many ML

developers we found that data scientists usually have a preferred programming envi-

ronment (i.e., language, software libraries) for constructing ML-based workflows and

they are unwilling to switch to standalone workflow management systems. We also

found that workflow management software restricts the operators that can be used in

the workflow to those operators available in the software. However, ML developers

want the ability to use the lastest ML models without waiting for the workflow soft-

ware to incorporate these updates. Therefore, in MODELDB, we decided to adopt the

second route - to instrument ML code in order to automatically extract ML-based

workflows. Specifically, we allow ML developers to build workflows in their favorite

ML environments and augment these environments with libraries to extract and log

ML-based workflows.

We accomplish the task of passively capturing workflows via two key design ele-

ments: (a) we develop a set of common abstractions for representing different types

of ML-based workflows (described next), and (b) we instrument key functions in

different ML libraries that capture a large variety of commonly performed steps in

ML-based workflows (described in Chap. 4.4.2).

4.2.1 Key Abstractions

Our generic representation of an ML-based workflow as a DAG of operators affords a

lot of flexibility to capture diverse workflows. Our implementation builds upon this

definition to capture ML-based workflows defined in different ML libraries. Specifi-

cally, we use the following abstractions. Note that these abstractions in MODELDB

are currently tailored for traditional ML-based workflows.

e DataFrame: The key ingredient of any ML-based workflow is the dataset. MOD-

ELDB currently only deals with TRAD workflows that operate on tables or arrays

of data. We represent these datasets via an abstraction called the DataFrame.

A DataFrame consists of rows (examples) and columns (features). MODELDB

60

IRPIR-M



does not store the actual contents of a DataFrame but stores metadata about a

dataframe such as where it came from (e.g., filename) and schema information

about its columns (e.g., name and type of value).

" Workflow: This is a container abstraction that contains an ordered set of Op-

erators (currently MODELDB only supports linear sequences of operators).

" Operator: An Operator 2 represents any operation that takes in a DataFrame

and produces a DataFrame. As discussed before, an Operator may be a simple

operation such as scaling the data or a complex operation like applying a trained

model. Operators have state that can be learned from the data and we can use

algorithms to learn parameters of that state.

* OperatorSpec: This abstraction holds all the state required to completely re-

produce the Operator including parameters of the operator that may be learned

from the data and also any user-specified parameters (i.e., often hyperparame-

ters for an ML model or method)3 .

Note that the abstractions presented above are used to represent the actual ML-

based workflow. An ML developer will perform different procedures for model evalu-

ation (e.g., cross-validation) and model selection (e.g., random search in the space of

hyperparameter values) that will not be captured through these abstractions. MOD-

ELDB chooses to capture these workflow building steps separate from the workflows

through the use of an asbtraction called Events (See MODELDB implementation in

Chap. 4.4).

4.3 MODELDB Architecture

Figure 4-2 shows the high-level architecture of our system. MODELDB consists of

three key components: native client libraries for different machine learning environ-

ments, a backend that stores workflow data, and a web-based visualization interface.
2In the MODELDB code, this abstraction is named the Transformer
3In the implementation, the OperatorSpec is named the TransformerSpec and it only stores the

hyperparameters for a trained model. The model object is responsible for storing the parameters

61



ML env
(spark.ml) ... ModelDB

Backend
ModeiDB

MLen) rift Frontend
(scikit-learn) Storage..

ML env
(R)

Figure 4-2: ModelDB Architecture

Client libraries are responsible for automatically extracting ML-based workflows from

code and passing them to the MODELDB backend. MODELDB client libraries are

currently available for scikit-learn and spark.ml. This means that ML developers can

continue to build workflows and perform experimentation these environments while

the native libraries passively capture workflow information. The MODELDB backend

exposes a thrift4 interface to allow clients in different languages to communicate with

the MODELDB backend. The backend can use a variety of storage systems to store

the workflow metadata. For ease of implementation, we chose to store MODELDB

generated workflow data in a relational database whereas for workflow metadata that

can have a flexible schema (e.g., user-specified key-value pairs or Light API specifi-

cations as defined later in this chapter), we chose to use a key-value store. The third

component of ModelDB, the visual interface, provides an easy-to-navigate layer on

top of the backend storage system that permits visual exploration and analyses of

ML-based workflow data.

4.4 Implementation

Chap. 4.2 described the abstractions used by MODELDB to represent ML-based work-

flows. As mentioned before, in order to allow ML developers to continue building

ML-based workflows in their preferred environments and minimize changes to their

62

4 https://thrift.apache.org/



current modeling process or code, we chose to instrument key functions in popular

ML libraries.

MODELDB client libraries capture ML-based workflow data at two levels: first,

MODELDB uses an Event abstraction to track function calls in user code that are

relevant to workflow or model building activities. For example, an event may record

a transformation of data, the fitting of a model, splitting of a dataset into train-vs-

test, cross-validation and so on. Once the MODELDB backend receives an event, a

second level of data extraction occurs. Information about each event is processed

and is represented in terms of the underlying workflow that is being built. For

example, suppose the client library fires a GridSearchCrossValidation event. The

GridSearchCrossValidation operation builds a number of ML models with different

hyperparameter settings and evaluates them via cross-validation. Therefore, when a

GridSearchCrossValidation event fires, a few things happen: first, MODELDB back-

end logs the GridSearchCrossValidation event. It then extracts information about

all the models that were built as part of the operation and the corresponding cross-

validation operations. It then fires GridCellCrossValidation events for each model

that was built (notice Cell vs. Grid in the two event names). Each GridCellCross-

Validation event then logs a CrossValidation event and stores the workflow that was

built and evaluated.

In order to capture the key operations that take place in an ML environment, we

examined the ML APIs for popular ML libraries and identified the most frequently

used operations. As described in Chap. 2, the scikit-learn machine learning API

offers three key interfaces: the estimator interface, the transformer interface, and the

predict interface. Within these interfaces, the most frequently used functions are f it

(fit a model to data), transform (apply an operation to some data), and predict

(apply a trained model to data). Along with other model building functions such as

such as traintest_split, these functions cover a significant portion of functions

that are relevant for workflow-building.

The key workflow building events tracked by MODELDB are shown below; the full

list is available in our GitHub repository [541. The firing of an event in MODELDB can

63



result in other events being fired and in a variety of data being added to MODELDB

including new workflows, their metrics etc.

" Event: This is the core abstraction from which different types of events are

derived.

" RandomSplitEvent: This event captures the splitting of a Dataframe into a

train and test frame, and stores enough data to replicate the split.

* FitEvent: FitEvent captures the fitting of a model to a Dataframe in order to

produce a trained model (i.e., a Transformer). This event stores the Transform-

erSpec, the input DataFrame, features, and the resulting Transformer.

* TransformEvent: This captures any transformation that is applied to a DataFrame

(other than fitting of models). The event captures the input and output dataframes

(only ids are stored in the database), features (i.e., columns) on which the trans-

former operates, and any transformer hyperparameters.

" MetricEvent: This event captures the fact that a model was evaluated against

some test data to compute a metric. The event logs the evaluation dataframe,

the model (transformer) tested, type of metric, and metric value.

" CrossValidationEvent: This event captures the k-fold cross-validation operation

run on any model (see definition in Chap. 2). Specifically, models and metrics

for each fold are captured via the CrossValidationFold abstraction.

" GridSearchCrossValidationEvent: As described before, this event corresponds

to the operation of evaluating the performance (via cross-validation) of models

built using different hyperparameter settings. The GridSearchCrossValidation-

Event is associated with multiple events of type GridCellCrossValidation where

each sub-event corresponds to cross-validation of a model using a single set of

hyperparameter values.

Note that these events are not an exhaustive list of all events that are relevant to

workflow building activities and in the future we can expand these events to record

64



more functions.

Lastly, in addition to the common abstractions defined before, MODELDB also

introduces three organizational abstractions to group workflows together.

* Project: All workflows related to one application are assumed to belong to the

same project. A Project, in turn, is made up of one or more Experiments.

" Experiment: Workflows semantically grouped together by the user (e.g., an ex-

periment to explore different neural network architectures) form an Experiment.

An Experiment is composed of many ExperimentRuns.

" ExperimentRun: An ExperimentRun represents one execution of script or code.

A re-run of the same script produces a different ExperimentRun.

DB schema

Each of the abstractions above is represented as a table in a relational database.

The full schema is available at https: / /github. com/mitdbg/modeldb/blob/

master/server /codegen/sqlite /createDb. sql. In addition to the abstrac-

tions defined above, we also provide users the ability to associate arbitrary key-values

with any part of the workflow or ExperimentRun.

4.4.1 Native Libraries

As described above, MODELDB logs key events in ML environments so it can extract

the ML-based workflow that is being built. Further, as discussed for scikit-learn,

there are three functions that cover a large portion of the operations that are of

interest: the fit, transform, and predict functions. Instead of overriding the

implementations of these functions directly, MODELDB client libraries provide sync

variants of these functions (e.g., fit becomes fit-sync). The sync variants not

only perform the particular operation but also log the corresponding event to the

MODELDB backend. While MODELDB logs a small number of function calls, these

are the key functions that all ML models in scikit-learn are expected to implement.

65



Therefore, so long as implementers of ML models implement these interfaces, we can

capture workflows containing these models.

As expected, a limitation of this technique for capturing events and workflows

is that ML developers may perform the operations usually performed in the f it or

t rans form functions using a different set of APIs. In this case, our client library

would not be able to identify that operation correctly. This is a significant drawback

in scikit-learn since ML-based workflows in scikit-learn often use other libraries such

as numpy, scipy and pandas along with scikit-learn. However, in spark.ml, most

operations follow standard interfaces (Estimator, Transformer) and MODELDB can

therefore capture most workflow operations of interest. As ML developers see the

advantages offered by workflow management and the need to produce re-producible

workflows becomes paramount, we expect to see more standardization in how ML-

based workflows are built and therefore the coverage of our functions is likely to grow.

For now, if the operation being performed is not currently captured in MODELDB,

then the ML developer can wrap the operation in the appropriate interface (Estimator

or Transformer) or alternatively use the Light API to log the entire workflow.

Usage Example

Next, we provide an example of how MODELDB can be used to captured ML-based

workflows in spark.ml.

To use MODELDB, a developer simply needs to import the MODELDB native

client library and perform a few lines of setup to connect to the MODELDB back-

end. Once that is done, the ML developer only has to use the sync-variants of key

functions. In spark.ml, the functions fit, transform, and predict respectively

become fitSsync, transformSync, and predictSsync.

The Listing 4.2 shows an example of spark.ml code without MODELDB logging

whereas Listing 4.3 below shows the same spark.ml code using MODELDB.

Listing 4.2: Sample spark.ml workflow without MODELDB

def main(args: Array[String]) {

66



val sc = new SparkContext(...)

// set up spark

val spark = SparkSession

.builder()

.appName("SimpleSample")

.getOrCreate()

// read data

val df = spark

.read

.option("header", true)

.option("inferSchema", true)

.csv(path)

// select features

val assembler = new VectorAssembler()

.setInputCols(Array("LIMIT_BAL", "SEX",

"EDUCATION", "MARRIAGE", "AGE"))

.setOutputCol ("features")

val transformedDf = assembler.transform(df)

// define ML model

val logReg = new LogisticRegression()

.setLabelCol ("DEFAULT")

/7 split data into train and test

val Array(trainDf, testDf) = transformedDf

.randomSplit(Array(O.7, 0.3))

// train ML model

67



val logRegModel = logReg.fit(trainDf)

System.out.println(s"Coefficients:${logRegModel.coefficients}")

// predict on test data

val predictions = logRegModel.transform(testDf)

predictions.printSchema()

// evaluate performance of model

val evaluator = new BinaryClassificationEvaluator()

.setLabelCol ("DEFAULT")

val metric = evaluator.evaluateSync(predictions, logRegModel)

System.out.println(s"Metric:${metric}")

}

Listing 4.3: Sample spark.ml workflow with MODELDB

def main(args: Array[String]) {

// set up spark

val sc = new SparkContext(...)

val spark = SparkSession

.builder()

.appName("Simple-Sample")

.getOrCreate()

// set up modeldb

val MODELDBROOT =

ModelDbSyncer.setSyncer(

new ModelDbSyncer(projectConfig = NewOrExistingProject("Demo

"modeldbuser",

"Test-project"

68



),

experimentConfig = new DefaultExperiment,

experimentRunConfig = new NewExperimentRun)

ModelDbSyncer.setSyncer(new ModelDbSyncer(SyncerConfig(

MODELDBROOT + "/client/syncer.json")))

// read data

val path = MODELDBROOT + "/data/credit-default.csv"

val df = spark

.read

.option("header", true)

.option("inferSchema", true)

.csvSync(path)

// select features

val assembler = new VectorAssembler()

.setInputCols(Array("LIMIT_BAL", "SEX",

"EDUCATION", "MARRIAGE", "AGE"))

.setOutputCol("features")

val transformedDf = assembler.transformSync(df)

// define model

val logReg = new LogisticRegression()

.setLabelCol ("DEFAULT")

// split data into train and test

val Array(trainDf, testDf) = transformedDf

.randomSplitSync(Array(0.7, 0.3))

69



// fit model

val logRegModel = logReg.fitSync(trainDf)

System.out.println(s"Coefficients:${logRegModel.coefficients}")

// predict on test data

val predictions = logRegModel.transformSync(testDf)

predictions.printSchema()

// evaluate performance of model

val evaluator = new BinaryClassificationEvaluator()

.setLabelCol ("DEFAULT ")

val metric = evaluator.evaluateSync(predictions, logRegModel)

System.out.println(s"Metric:${metric}")

}

4.4.2 MODELDB Light API

Since MODELDB can only log workflows from scikit-learn and spark.ml, for the re-

maining ML environments, we provide a Light API. In the Light API, a workflow

built in any language or ML environment may be described using the YAML ' or

JSON 6 formats. The specification requires a small set of mandatory fields (e.g.,

workflow name, type, configuration, and metrics). Other than that, the ML devel-

oper has the flexiblity to include arbitary metadata via key-value pairs. For example,

users often include metadata such as model authors, maintainers, and metrics over

time. An example of a workflow specification using YAML is shown in Listing 4.4.

Unlike the MODELDB native libraries, logging models via the light API does not

(by default) include information about the workflow or model architecture; the ML

developer must explicitly supply this information in the specification.

Currently, the Light API is being used to log models from environments like R

'http://yaml.org/
6https://www.json.org/

70



and proprietary ML frameworks. It is also being used in cases where the model has

already been developed and therefore ML developers cannot retroactively use the

sync API defined above. The code listing below shows an example of a YAML file

that can be used to log arbitrary models.

Listing 4.4: Sample YAML config file

# define datasets used

DATASETS:

- FILENAME: /path/to/train_file.csv

METADATA:

numcols: 1

TAG: train

- FILENAME: /path/to/testfile.csv

METADATA:

numcols: 1

TAG: test

# define the model workflow

MODEL:

# required key-value pairs

NAME: Sample Model

TYPE: Normal distributions

PATH: path/to/model.R

TAG: train

CONFIG:

11: 20

METRICS:

- TYPE: accuracy

VALUE: 0.9

# optional kv pairs

owner: bob

date-created: 2016-02-23

71



GET Models
localhost:3000/ 

(overview tab) M F ct (ep
I select oject A sc

Projects swi ch t abs Model Page

sele model

Models
(data table tab)

Figure 4-3: Overview of MODELDB Frontend Architecture (reproduced from [78])

4.5 Data Visualization for MODELDB

MODELDB captures a large amount of metadata about ML-based workflows. To sup-

port easy access to this data, MODELDB provides a visual interface. The interface

has been implemented using nodejs and jquery. The data visualizations for MOD-

ELDB were developed in collaboration with Wei-En Lee as part of his Masters Thesis

at MIT [78]. An overview of the frontend architecture is shown in Fig. 4-3.

We provide three key views for exploring the data stored in MODELDB. A user

starts with the projects summary page (Fig. 4-4) that provides a high level overview

of all the projects in the system including the name, description for each project,

the number of ML-based workflows built for the project, accuracy metrics for each

workflow, and a breakdown of the workflows by type. This view can be easily extended

to add other summary fields as well.

The user can then click on a particular project to see the workflows for that

project. We present models via two key visualizations, first, we present a workflow

timeline page (Fig. 4-5) where the ML developer can see all the workflows built for

the project, along with their quality metrics, arranged as a timeline. This view helps

the ML developer see the evolution of the workflow over time. The ML developer can

click on any particular workflow to view attributes of the workflow including its type

72



IMD8._vMoratory Metrks min max average 501 models

mdkisrIne0.791 1.157 0.93
Buidingmodel topredict rating or moviesrom D8 11 0.222 0418 0.39

Project Model Types

Housing Prices Metrics min max average

modeidse rse 26609.771 51036449 34593.99

Predict housingorices

Project Model Types

Figure 4-4: Projects Summary View (reproduced from [78])

and hyperparameter settings (Fig. 4-6).

The same page also provides the ML developer an easy interface for building

custom visualizations for analyzing workflow performance (Fig. 4-7). For example,

any attribute of a workflow (e.g., hyperparameter values) can be plotted against a

metric (e.g., accuracy) to easily see the impact of that attribute for a large set of

workflows.

We also provide a tabular view (Fig. 4-8) of workflow information. This view

presents all workflow information at a glance and supports a variety of actions such

as filtering, sorting, grouping, and search (Fig. 4-9).

From any of the above interfaces, the ML developer can drill-down into a single

workflow. Fig. 4-10 shows the single workflow page that lists various attributes of the

workflow such as ML model used and hyperparameters. It also shows the workflow

that was captured automatically. We can easily see the inputs to the workflow, trans-

formations, and ML model used. We also provide the ability for the ML developer

to annotate different workflows for collaboration. Last, we provide the functionality

to associate arbitrary metadata with a workflow in the form of a JSON or YAML

specification. This functionality is particularly useful for the Light API described

earlier. Fig. 4-12 shows the visualization of this metadata.

Thus, as we can see from the visualizations above, the metadata logged in MOD-

ELDB is rich and can be explored in a variety of ways. There are certainly other,

more sophisticated visualizations and operations that we can support with MOD-

ELDB. For example, various questions related to workflow analysis (e.g., comparing

73



501 modelsOyrvie NWdOwlts IMDBexploratory
modedbuser

Models Building model to predict rating for movies from IMOB

FUtw
Dragconfigs or metrics into tts section
totifter models based aon key -value pairs

View models by

Fiter

to fite modes based anlkey value Pairs.

0.3-

0.7-

WI
41&&*b

+ -+ + ow++

0 0. 1

200 400 U0 00 1.000 w 1 w

0 ~~ 00 00 0 m ,0 1.80 40D 1.00 1,800 Z000

Explore Visualizations
Generate charts to visualize trends in data by selecting ftelds to plot as xand v vaues
Optionally pick fields to group by and specify what type of aggrgation to use

y-axtis;

X axis:

group by.

aggregate:

Figure 4-5:

09-

0.7-

06-

0.5-

0.2-

0.1 I I I
Expivmw Run 10

. 3

Re... UnewR APIeIne m F.

Timeline Visualization (reproduced from [78])

+++++ +4"++
4+ 4+

200 400 600 800 1.000
model 10

1.200

Model 10: 347

Experiment Run ID: 1

Experiment ID:1

Project ID: 1
Type: GBTRegessor

Hyperparameters
featuresCot- features

maxlter: 10
4+4+ 44. lossType: squared

seed: -131597770

mininstancesPerNode: 1
maxMemorylnrMB;256

1,400 1,600 1,800 impurity: variance

cacheNodelds: false

0 200 400 ;00 00 1,00 1200 1,400 1,600 1,800 2,00

Figure 4-6: Model Timeline Drilldown (reproduced from [78])

74

8 P~Ipb8n
"aml TIPe

RMmFm&09

GU1 A60

1.3-

1.0*-

0.91

0.8-

0.7-
0.6-
0.5-

0.4-

0.3-
0.2-

0A1-

ah~
0 0 f00 !



Explore Visualizations
Generate charts to visualize trends in data by selecting fields to plot as x and y values.
Optionally pick fields to group by and specify what type of aggregation to use.

Y-axis: s

x-axis:

group by: V

aggregate:

CP. ae

Type
* GBTRegressoe
* RandomForestRegressor

0.9-

0.8-

0.7-

0.6

0.5

0.4-

0.3

0.2

0.1-

5 7 9

Figure 4-7: Custom Visualizations (reproduced from [78])

DataFrame Misc.

Type: LnearRegression

Hyperparameters

Type: LinearRegression

Hyperparam ters

Type- LinearRegression

Hyperparameters

Type: LinearRegression

Hyperparameters

rmse: 0.881

rmse: 0.849

rmse: 0.873

rmse: 0.942

Notes: test annotation

Model Filepath: 2016-12-09

Timestamp: 2016-12-09 18:5...

See Mo

Notes: this model is funky

Model Filepath: 2016-12-09

Timestamp: 2016-12-09 18:5...

See Mo

Notes: feature1, feature2, fe...

Model Filepath: 2016-12-09.

Timestamp: 2016-12-09 18:5...

See Mo

Notes:

Model Filepath: 2016-12-09.

Timestamp: 2016-12-09 18:5...

See Mo

Figure 4-8: Models View (reproduced from [78])

75

IDS

Experiment Run ID 1

Experiment ID: 1

Model ID: 29

Experiment Run ID: 1
Experiment ID: I

Model ID: 30

Experiment Run ID: I

Experiment ID: 1

ModelID:31

Experiment Run ID: 1
Experiment ID: 1

DataFrame ID: 30

DataFrame ID- 35

DataFrame ID: 36

DataFrame ID: 37

Specificatiom( metrcs



Overview and Charts

Models

Flker
Drag compor metricontsothis section
tofilter modelsbasedvnle -value pars.

Group
Choose fiedtogroupdatatleby

S DataearmMsk

M, . -:

Experiment Run I:1
Expenment ID 1

MNo-de!: 032

Experiment Run Q0:1

ExperimentD ID

Model Filepot: 2016-12-09 1.-

Timestamp: 2016 12-09 18:5..

DamFrame 0: 35 Type: Linear Regression rnse 1.056

Hyyerparameters

tol: L.E 6

solver auto

elasticNetaram:0.8
predictionCo: prediction

6tIntercept true
teaturesCol: features

maxiter 20

labelCol: imdbOree

standardization: rue

Notes:
Model Filepath: 2016-12-09 1

Timestamp: 2016-12-09 1&5

Notes.

Model Fileoat: 2016-1209 1

Timestamo- 2016-12-09 1&5..
See More

Figure 4-9: Model Filtering (reproduced from 178])

iModeIDB > Pjd oaoMd

Model ID: 22 DataFrame D: 30 Type: LinearReression rmse:0.881 Notes: Revisitother models

Experiment Run ID: I Hyverparame nf Model Filepath: 2016-12-09 1

Experiment ID: 1

Project ILI I
Se More

e Figu rred 26 1 0 Moe i teme -e ---- ro d eeefr - 7 -) ee2

Figure 4-10: Model Pipeline View (reproduced from 1781)

76

ModelD: 35

Expersment Run ID:1
Experiment ID: 1

DataFramre iD. 35 Type: Unearegression
Hyperparameers

rese:0.99

See More

Metric$



Best linear regression model

Revisit other models with regParam 0.1

dd annotation...
samass1W. asae

Figure 4-11: Model Annotation (reproduced from 1781)

Additionil Metadata

METRICS

TYPE. *atcwwcY,
VALUE:

modeUd: 015E974e0609415Cbe6c2af246923cW8,
pedktloioojle: tmp/O1Se.g4e0 15cb6o2af46923c84xed.te.
NAME: 'LoglstlcRegessIn.
TYPE: 'LogiatlcRegre$Sion',

CONFIG :(..,
features :1..I t
MODELDBjnodeUd

Figure 4-12: Visualizing Model Metadata (reproduced from [781)

77

I )

,*eels,



workflows, finding common ancestors for different results in a workflow, finding similar

workflows) were studied in H. Subramanyam's Masters thesis [123] and are available

via query APIs in MODELDB. Another category of analyses that are useful in under-

standing workflows are those that study workflow operations at the level of individual

examples. These analyses seek to answer questions such as "what models mis-predict

example-50?" or "how do the outputs of model-i differ from the outputs of model-2?"

These analyses require example-level data about a workflow - data that is not cap-

tured in MODELDB. However, these are exactly the types of analyses MISTIQUE

was designed to support and in the next chapter, we discuss how MISTIQUE can

answer such queries efficiently.

4.6 Evaluation

We evaluated MODELDB performance on pipelines in spark.ml with a particular

focus on the overhead of MODELDB both in terms of execution time and storage.

Experimental evaluation of the spark.ml MODELDB client was done as part of H.

Subramanyam's Masters thesis at MIT [1231. Here we provide an overview of the

experimental results and refer the reader to [123] for details on the evaluation.

To evaluate the performance overhead of MODELDB, we built ML-based workflows

for three datasets: IMDB7 , Animal Shelter8, and Housing'. For each dataset, we

performed the following modeling experiments: (a) simple: a single workflow was

built with a single hyperparameter setting; (b) full: we constructed ten workflows by

performing hyperparameter optimization on the same workflow (i.e., the stages were

the same, we only changed the hyperparameter settings); and (c) exploratory: we built

about 200 workflows exploring different model types and feature combinations. We

also replicated the base data to scale input size. For each experiment, we measured

the total time to build all models and measured the total time spend in MODELDB

7 New data link, old data no longer available: https://www.kaggle.com/tmdb/
tmdb-movie-metadata

8https://www.kaggle.com/c/shelter-animal-outcomes/data
9https://www.kaggle.com/c/house-prices-advanced-regression-techniques

78



Time Overhead vs. Datst Sie
- animal- full

imdb- full
imdb- exploratory

60 - animal- simple
- imdb- simple

E- housing- exploratory
; animal- exploratory

5 50 - housing- simple
housing- full

040
0

aR

1 0

30

0 200000 400000 60000 800000 100000
Number of Rows in Dataset

Figure 4-13: MoDELDB Execution Overhead (reproduced from [1231)

operations as a percentage of the total time. The results are shown in Fig. 4-13.

On the x axis, we show the dataset size measured as number of rows in the table

and on the y axis, we show the time overhead of using MoDELDB. First, we note

that the overhead depends on the number of models that are built; therefore, the

overhead for simple is always lowest followed by full and then exploratory. As we can

see, MoDELDB can have large overhead for small datasets (<lOOK rows) but this

overhead reduces to <10% for most datasets over 300K rows.

Next, we evaluated the cost of storing the metadata collected by MoDELDB.

Fig. 4-14 shows the total storage required for all the data captured by MoDELDB

(including model storage). Note that this experiment stores only the best model from

hyperparamter optimization. As with execution overhead, we find that storage scales

linearly with the number of models built and results in a neglibible storage overhead

(-<2 MB). If we store every model produced during hyperparamter optimization, the

storage increases proportional to the number of trained models.

79



Database Sizes After Reduction
animal-simple

housing-full

imdb-simple

imdb-exploratory

animal-exploratory

housing-exploratory

lmdb-full

housing-simple

animal-full

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Size (MB)

Figure 4-14: MODELDB Storage Overhead (reproduced from [123])

4.7 Adoption and Release

We officially released MODELDB as an open-source model management system in

Feb. 2017 and since then there has been a large amount of interest and adoption of

MODELDB. Specifically, over the last year, our GitHub repository [54] has garnered

> 400 stars, has been cloned over a thousand times, and has been forked >70 times.

MODELDB has been tested at multiple small and large companies, and is deployed

in various settings.

Here we describe three sample deployments of MODELDB.

* Model Management at Large Tech Company: A large tech company X'0

has built a machine learning platform built on top of the Spark distributed

computing environment. This platform supports hundreds of data scientists

and ML developers at Company X who build thousands of models for cus-

tomers and internal users. While thousands of models are ultimately deployed

in production, an even larger number of models are built internally for research

and experimentation. Before MODELDB, Company X did not have a good
10anonymized for privacy

80



solution of keeping model histories and this was reducing data scientist produc-

tivity as well as managers' visibility into their team's machine learning efforts.

After MODELDB was released, Company X found that because of MODELDB's

native support for spark.ml, MODELDB could be easily used to track models

on their platform. As a result, Company X tested and integrated MODELDB

into their ML platform. Company X currently uses the native MODELDB li-

braries for spark.ml to track models built on their platform and store model

metadata in a central model repository. MODELDB's model tracking function-

ality is being used to help data scientists maintain model histories, ensure that

their models are reproducible, version models, and perform meta-analyses to

understand model performance. As of this writing, Company X is also making

independent improvements to MODELDB to better adapt it to their internal

modeling procedures.

e Model Management at International Bank: Bank Y" was one of the ear-

liest adopters of MODELDB. Machine learning models are often used in banks

for applications such as risk modeling. As with regular data science projects,

a lot of experimentation is involved in developing robust risk models. Addi-

tionally, financial services is also a highly regulated industry. Therefore, model

management and auditability have become essential from a regulatory perspec-

tive. As mentioned in the introduction to this chapter, many governments are

introducing legislation that require financial institutions to keep track of all

models used to make financial decisions and make them available for audits.

Information that must be made available for audits includes workflow metadata

such as the data used to build the model, the pre-processing steps used on the

data, metrics about workflow performance and so on. A model management

system like MODELDB is ideally suited to track this information. Therefore,

Bank Y decided to integrate MODELDB into their workflow and build a central

repository for workflow metadata. Unlike the tech company mentioned above,

this bank uses R as their ML environment of choice. MODELDB only provides
1 1anonymized for privacy

81



native support for scikit-learn and spark.ml frameworks. Therefore, to enable

the bank to use MODELDB in their ML workflow, we developed the Light API

described before. The Light API enabled this bank to log models developed

in R along with all the expected metadata. Although they were unable to log

fine-grained information about the ML workflows via this API, the Light API

enabled the bank to retroactively log workflows without updating any model

code. The bank currently uses MODELDB to store every new version of a ML-

based workflow along with metadata such as the model owners, the last time

the model was trained, back-testing metrics and so on.

* Model Management in Open-source ML Infrastructure Project: Kube-

Flow [127] is an open, community driven project to make it easy to deploy and

manage an ML stack on Kubernetes [128]. As described previously, an impor-

tant part of ML-based workflow development is searching for hyperparameters

of a model. The hyperparameter tuning module of KubeFlow, called Katib [1261

uses MODELDB to track models built during hyperparameter tuning and visu-

ally explore the results as shown in Fig. 4-15. Since KubeFlow mainly works

with Tensorflow models, this project is also using the Light API for MODELDB,

indicating the need to provide native support for Tensorflow models.

82



-- 7

\\ /2~ \

/

/

/ W

V

Figure 4-15: MODELDB use in Katib for managing hyperparameter tuning experi-
ments (screenshot from [126])

83

'4. K~KJ~

VkWVAd.i&bV

=MONO
MINIMUM



84



Chapter 5

MISTIQUE

5.1 Introduction

Machine learning is the process of automatically extracting patterns from data. Con-

sequently, debugging an ML-based workflow is as much about debugging data as it is

about debugging code. Additionally, "bugs" in ML-based workflows can often result

from patterns already present in the data as opposed to errors. As a result, we refer

to model debugging instead as model diagnosis. Just as a doctor diagnoses the un-

derlying reason for a patient's symptoms, our goal with model diagnosis is to identify

the reasons why an ML-based workflow produces a particular output.

Many diagnostic queries can be answered by analyzing different data artifacts

related to ML-based workflows including input data, prediction values, and data

representations produced by the model or workflow operators (e.g., high-dimensional

representations of homes or images learned by the model). We collectively refer

to these datasets as model workflow intermediates (formal definition in Sec. 5.2).

Given the importance of model workflow intermediates for diagnosis, in

this work, we explore the question of how to efficiently store and query

intermediates to support efficient model diagnosis. We propose MISTIQUE

(Model Intermediate STore and QUery Engine), a system designed to capture, store,

and query model workflow intermediates to support diagnostic queries.

85



5.1.1 Motivating Examples

We begin by highlighting three diagnostic techniques that have been proposed in the

literature and describe the role that model workflow intermediates intermediates play

in each of them. A more extensive list of techniques is presented in Chap. 5.2.2.

Visualizations

A popular means to understand the working of any model is via visualization. For

example, the ActiVis tool from Facebook [70] (screenshot in Fig. 5-1) provides de-

velopers of neural networks an interactive visualization of neuron activations. This

information can help ML developers identify activation patterns, compare activations

between classes, and find potential sources of error. Similar tools have also been built

for traditional modeling workflows. For example, VizML 126] (Fig. 5-2) provides an

interface where ML developers can prioritize errors, examine feature distribution, and

debug model results.

A Model Architecture

-Qt-

1. Susan starts exploring the
model overview. She selects a
data node (yellow).

B Neuron

ENTY
AB8IR
HUM

U
LOC

Sinstance It)

$47
22

Activation 2. Examines activation patterns
for classes and instance subsets

Matrix view Projected view

*J

" Each colum isa neuron. e,#
Dader=strongeractivation tW

Correctly Classified

O Misdassifed

4. Inspecting instance #120's activations
reveals it activates neurons in ways
different from correctly classified ones
(#38, #47) and from its class (NUM).

clcung aninstancein
nsanceseectionview

addsittoneurws
aaiv~ew

C Instance Selection

correctly Cassified Misclasified

ENTY

ABBRm
NUM

atsthedameterofag*fball?

3. Susan explores classification
results for instances (questions).
She wonders why question #120,
asking about numeric values, is
misclassified.

Figure 5-1: ActiVis Tool screenshot from [701

Intermediates. In order to visualize arbitrary model intermediates, the relevant

intermediates must first be generated and stored (re-running the model each time is

too expensive for an interactive setting). For ActiVis, this means that data repre-

sentations at each model layer must be stored. As expected, the total cost to store

86



16

Prediello-K t

4 1 20

o u

0 4 20

0 13' 0

4 137 uDS

3.

2-

0I U
CU
C.

Un
A 0

0

2

3

U U

15 0.

M55

16.5

17,0
1715

18.0
19.5

12.0

Figure 5-2: VizML Tool screenshot from [261

all intermediates is tremendous. E.g., storing intermediates for ten variants of the

popular VGG16 network [116] on a dataset with 50K examples requires 350GB of

compressed storage. As a result, ActiVis requires users to restrict the layers and

number of examples for which intermediates (and aggregates of intermediates) will

be logged.

SVCCA

Raghu et. al. recently proposed SVCCA [104], a technique to compare representations

learned by different layers in one or more neural networks. In brief, SVCCA takes as

input the activations of neurons in two layers 11 and l2, performs SVD on the two sets

of activations, projects activations into the subspace identified by SVD, and computes

canonical correlation to find directions in these subspaces that are most aligned (see

Alg. 1).

Intermediates. To perform class sensitivity analyses across the whole network as

described [1041, activations for all examples at all layers must be available. Further-

87

A

B

C

D o 01 0: 0.3 0 05 0.a 0.7 0.8 0,9 o

.2-.31
1.0 1.0

1. 1.5
LE3 A- 2.0 2.0

0133 3 40 40 horn. o4msrL 24 25 Mh

GM T 30 3.0
3.5 3.5

4.0 k m L

MS M

P 
F



more, if one wants to study training procedure dynamics as described in the paper,

this data must be collected at every training epoch. As with ActiVis, storing data

for ten training epochs would take 350GB for a moderately sized network, creating

a major bottleneck in using this technique. These intermediates could also be gener-

ated anew each time the analysis was to be run; however, to perform class sensitivity

analysis, this would require running the model >200 times on the full dataset.

Algorithm 1 SVCCA [104]

1: procedure SVCCA(A 1 , A,,) // activations from layers 11 and 12
2: A/ - SVD(A11 , 0.99) / directions explaining 99% variance
3: A' +- SVD(A, 0.99) / as above
4: {p2 , Z 11, Z12} +- CCA(A 1 , A 2 ) // canonical correlations analysis (CCA)
5: return EZ Pi5:rtunmin (size ( )size(12))

Network Dissection

Bau et. al. recently proposed Netdissect [131 to learn interpretable concepts for filters

in a convolutional neural network (CNN). For every convolutional filter k, Netdissect

calculates the distribution of values for the the activation map (i.e., activations pro-

duced at neuron-k) Ak(x) and computes a threshold Tk such that p(Ak(x) > Tk) = a

where a is a small constant like 0.005. Tk is then used to convert Ak into a 0-1

representation (we will call this the binarized representation) indicating whether the

activation is above the threshold or not. Finally, the correlation between the binarized

representation and the original concept label is computed.

Intermediates. Netdissect requires that the activation maps for every image and

every convolutional unit be available. If Netdissect is to be run for a single unit or

layer, it is conceivable that the computation can be done in memory. However, when

performing this computation for all units or tuning the threshold Tk (e.g., for a new

dataset), then it may be more efficient to store the intermediates vs. re-running the

model repeatedly.

88



Algorithm 2 Netdissect [13]

1: procedure NETDISSECT(I, C, k, a) // images I, Concept c, unit k, activation
threshold a

2: Dk Ak(I) // get activation maps for unit k
3: Tk <- percentile(Dk, 1 - a) get threshold
4: for Image x in I do

5: A (x) +-- Ak(x)
6: for [ij] in A(x).cells do binarize
7: if A(x)[i, j] > Tk then
8: A (x)[i, j] = 1
9: else

10: A(x)[i, j] = 0

11: L(x) <- Labelsc(x) // pixel-wise label for concept

12: return >E IL(x) flA(x)I
2 :L(x) UA(x)I intersection over union metric

5.1.2 MISTIQUE: storing model workflow intermediates

As demonstrated by the diagnostic techniques above, model workflow intermediates

form the substrate on which a variety of diagnostic and interpretability techniques

are based. However, model workflow intermediates require many tens to hundreds of

GBs in storage, making it challenging to use existing diagnostic techniques as well

as develop new ones. In addition, computing intermediates by re-running the model

for each analytic query not only slows down the process of model diagnosis but can

also be unacceptable in interactive query workloads. Thus, the bottleneck in support-

ing efficient and widely usable model diagnosis is caused by two data management

questions: (a) how to store large amounts of data efficiently (for storage as well as

querying); and (b) how to trade-off intermediate storage vs. recreation?

To address these questions, we propose MISTIQUE, a system designed to capture,

store, and query model workflow intermediates for model diagnosis. MISTIQUE can

work with traditional ML workflows as well as deep neural networks. MISTIQUE

leverages unique properties of intermediates in both kinds of modeling approaches

to drastically reduce storage costs while giving up little accuracy in most analytic

techniques. Specifically, MISTIQUE is based on three key ideas: 1. Activation quan-

tization and summarization: we take inspiration from existing diagnostic techniques

89



S1 OneHot S2: PCA S1O:ElasticNet AUROC

POct3O properties interim1 interim2) -p0.85

S1:OneHot S2:PCA S10: LinRegEncode

POct31 properties interim1 interim2. ---.- 0.83

S: OneHot S10: RelativeSize S11:XGBoostEncode

PNovl properties interim1 - n interim1O pred 0.89

Figure 5-3: Zillow pipelines

1..
-64 .'4096 4096

S12 1... 1000

Ly yr~iw4S~Ew~iI 512&
* 0

Figure 5-4: VGG16 architecture (reproduced from 11161)

to encode neuron activations based on data distributions, thus getting drastic storage

reductions without trading off accuracy; 2. Similarity-based compression: we lever-

age data similarity in traditional ML-based workflows as well as DNNs to remove

redundancy between intermediates and obtain large compression ratios. 3. Adaptive

querying and materialization: we propose a cost model to determine when a query

for intermediates should be answered by re-running the model vs. reading a mate-

rialized intermediate. A similar cost model determines when an intermediate should

be materialized. Together, these techniques can reduce storage for intermediates by

up to 11X for traditional ML-based workflows and 6X for deep neural networks, and

provide a query speed-up of up to two orders of magnitude.

90



5.2 Preliminaries

In this section, we describe the models supported by MISTIQUE and our problem

formulation. We also present a list of commonly used diagnostic techniques along

with a categorization based on the amount of data used by each technique.

5.2.1 Model Workflows and Intermediates

As described in the Background chapter (Chap. 2), in this work we consider two

kinds of workflows: (a) traditional ML workflows (TRAD) and (b) workflows with

deep neural networks (DNN).

For TRAD, as before, we consider the running example of Zillow Home Value

Prediction. Fig. 5-3 shows examples of TRAD workflows built for this task. As

noted before, the ML-based workflows contain a variety of operators performing a

mixture of data pre-processing (e.g., OneHotEncoding, Scaling), feature engineering

(e.g., computing the RelativeSize feature), and model training and prediction (e.g.,

gradient boosted trees in XGBoost [27]).

Similarly, for DNNs, we consider the running example of DNN models for classifying

images. The models we work with in MISTIQUE have been trained to perform

classification on the CIFAR101 dataset. This dataset consists of images drawn from

ten classes such as frog, ship, deer, etc. Fig. 5-4 shows VGG16 [116] network that was

previously discussed in Chap. 2. As described before, each layer in the DNN learns

different features of the input data and therefore the effect of each layer is to represent

data in a high-dimensional sub-space different from the other layers. In MISTIQUE,

we take a layer-level view of a DNN and represent it as a workflow: specifically, every

layer of the DNN is cast as an operator in the ML-based workflow.

The process of training an ML-based workflow (TRAD or DNN) can produce dif-

ferent artifacts: the learned model parameters, log files, gradient information, inter-

mediate datasets produced by different operators in the workflow, etc. In this work,

we focus on model workflow intermediates that are the datasets produced at different

'https://www.cs.toronto.edu/ kriz/cifar.html

91



stages of the ML-based workflow. For traditional ML workflows, these are the results

of different operators ( labeled "intermX" in Fig. 5-3) whereas for DNNs, these are the

hidden representations (i.e., neuron activations) produced by different layers of the

neural network.

The techniques used in MISTIQUE can be used to store intermediates from many

different models and workflows; these could be runs of different workflows on the same

input data or runs of the same workflow on different data. As will be described in

the data model (Chap 5.3.1), MISTIQUE associates a unique rowid with every

example. Consequently, while MISTIQUE could be used in either of these settings,

the optimizations described next are most effective when applied to intermediates

derived from the same input data. Therefore, in our current implementation, we

assume that MISTIQUE is used to store intermediates from many workflows applied

to the same input data. With extra book-keeping, the system can be extended to

support the more general case of varying input data.

5.2.2 Characterization of Diagnostic Queries

In Sec. 5.1, we highlighted three techniques used for model diagnosis. In Table 5.1

we provide a survey of diagnostic and interpretability techniques drawn from the lit-

erature. For each diagnostic technique, we show an example of the question answered

by that technique (or query) in terms of our running examples. For completeness, we

also include analyses that cannot be handled solely with MISTIQUE either because

they require access to data other than model workflow intermediates (e.g., gradi-

ents) or because they require the ability to perturb data or models. Furthermore,

to characterize the query performance of our system, we categorize diagnostic tech-

niques based on amount of data required by each technique. Specifically, based on

the number of Rows, i.e., input examples, and Columns, i.e., features, used by each

technique, we define four categories: Few Columns, Few Rows (FCFR), Few Columns,

Many Rows (FCMR), Many Columns, Few Rows (MCFR), and Many Columns, Many

Rows (MCMR). In this work, few denotes <100. A typical diagnostic workload con-

tains queries belonging to different categories; for example, one workload might be:

92



(i) plot the prediction error for workflow PNovl (FCMR); (ii) for the house with high-

est prediction error, H*, examine its raw features (MCFR); (iii) find the performance

of houses PNovl on houses "most similar" to H* (MCFR). (iv) plot the features of H*

vs. the average features of all houses (MCMR). A system for model diagnosis must

therefore be able to support queries in all four categories. In Table 5.1, we identify by

name (e.g., POINTQ) the queries that will be used in our experimental evaluation.

5.2.3 Problem Formulation

Each of the queries discussed above requires access to different intermediates from an

ML-based workflow, e.g., predictions or hidden representations. For a given interme-

diate, there are two ways of computing it: (a) either we can re-run the workflow up

to the particular intermediate (denoted RERUN) or (b) we can read the intermediate

that has previously been materialized to disk (denoted READ). For instance, the Net-

dissect implementation from [131 re-runs the full model any time an analysis is to be

performed. While this solution may suffice when computing intermediate results for

a small number of examples, running the model over tens of thousands of examples is

slow (e.g., up to two orders of magnitude slower than reading as shown in Chap. 5.8)

and wastes computation. In contrast, systems like ActiVis [70] and VizML [26] store

intermediates to disk and read them to answer queries. While materializing inter-

mediates is essential for providing interactive query times, this can come at a large

storage cost. As mentioned before, storing intermediates for ten epochs of the VGG1 6

network on CIFAR10 takes about 350GB (gzip compressed), a storage cost most de-

velopers are unwilling to pay. Similarly, storing fifty traditional ML workflows with

9 - 19 stages takes 67 GB of storage (gzip compressed). Thus, the strategies of

RERUN and READ are optimal for some intermediates while they may be expensive

(with respect to time or storage) for others. In this work, we seek to address

the question of speeding up diagnostic queries by intelligently choosing

when to re-run a ML-based workflow vs. when to (store and) read an

intermediate and in turn minimize the cost of storing intermediates.

93



Query Category Specific instantiation Intermediates

Queried
Queries Using Intermediates

Few Columns, Few (POINTQ) Find the activation map for neuron-35 in layer-4 X, I
Rows for image-345.png [139]
(FCFR) (POINTQ) Find average lot size feature for for the Home-135 X, I

in Poct3i
(TOPK) Find the top-10 images that produce the highest X, I
activations for Neuron-35 in layer-13 [1391
(TOPK) Find prediction error on the 10 homes that were X, I
most recently built
Get the predicted price error for Home-150 [81 X, P
Get accuracy of POct31 on the top-50 most expensive homes Y, X, P
in LA [701

Few Columns, (COLDIFF) Compare model performance for POt31 and X, Y, P
Many Rows PNovl grouped by type of house [85, 88]
(FCMR)

(COL _DIFF) Find the examples whose predictions differed X, Ynn,
between CIFAR10_CNN and CIFAR10_VGG16 [881 Yvgg
(COLDIST) Plot the error rates for all homes [261 X, I, Y, P
(COLDIST) Plot the confidence score for all images pre- X, I, Y, P
dicted as cats [261
Find number of images that were predicted as a frog but Y, P
were in fact a ship [261
Compute the confusion matrix for the training dataset [8] Ytrain,

Ptrain
Many Columns, (KNN) Find performance of CIFAR10_CNN for images sim- X, Ximg-5l,
Few Rows ilar to image-51 [81 Y, P
(MCFR) (KNN) Find predictions for the 10 homes most similar to X, x, Y,

Home-50 P
(ROW DIFF) Compare features for Home-50 and Home-55 I, Y
that are known to be in the same neighborhood but have
very different prices [70]
(ROW DIFF) Compare the activations of neurons in layer- I, Y
6 between an adversarial image and it's equivalent non-
adversarial image
Determine whether this test point is an adversarial exam- X, Xtest,
ple [481 Y, Ytest
Find training examples that contributed to the prediction of X, I, xtest,
this test example [761 itest

Table 5.1: A Categorization of Diagnostic Queries. Last column, X=input, Y=target,
I=intermediate dataset, P=predictions.

94



Category Specific instantiation (Contd.) Intermediates

Queried
(Contd.)

Queries Using Intermediates
Many Columns, (SVCCA) Compute similarity between the logits of class I
Many Rows ship and the representation learned by the last convolutional
(MCMR) layer [104]

(SVCCA) Find the features from interm-8 most correlated X, Y, P
with the residual errors of Poet31
(VIS) Plot the average activations for all neurons in layer-5 I
across all classes [70]
(VIS) Plot the average feature values for Victorian homes in
Boston vs. Victorian homes in Seattle
Compare the representations learned in layer-5 by AlexNet IAlexNet,
and by VGG16 in Layer-8 [104] IVGG
Find correlation between the activation of each neuron and X, I
pixels corresponding to concept lamps 113]

Queries Not Using Intermediates
Gradient-based Find the salient pixels in Image-250 [115, 111, 145]
Feature importance Find importance of pixel-50 in this model [106, 1141
methods
Perturbing exam- Find the minimal change that must be made to mispredict
ples Image-51 [52, 99]
Training New Mod- Find a smaller model that performs similarly to a larger
els model [62, 76]

Table 5.2: (Contd.) A Categorization of Diagnostic Queries. Last column, X=input,
Y=target, I=intermediate dataset, P=predictions.

5.3 MISTIQUE Overview

In this section, we give a high-level overview of the system architecture and how it

can be used to run diagnostic queries.

5.3.1 Architecture

The system architecture for MISTIQUE is shown in Fig. 5-5. MISTIQUE con-

sists of three primary components: the PipelineExecutor, the DataStore, and the

ChunkReader. These three components are tied together by a central repository called

the MetadataDB that is used to track metadata about intermediates and workflows.

The PipelineExecutor is responsible for running ML models and workflows in logging

mode. This means that the executor runs the workflow forward, finds all interme-

95

Query
(Contd.)



log_intermedi ates ()

Figure 5-5: MISTIQUE Architecture with data flow during storage (S1-3) and
querying (Q1-4)

diates produced by the workflow and registers information about the workflow and

intermediates in MetadataDB. The PipelineExecutor does not make decisions about

data storage or placement; that falls under the purview of the DataStore. Along with

logging intermediates, the PipelineExecutor is also responsible for storing operators

trained in a workflow (e.g., a trained XGBoost model) so that the operator may be

re-run in the future without retraining.

Intermediates produced by the PipelineExecutor are passed on to the DataStore

(Sec. 5.4) for decisions about whether and how to store the intermediate. The DataS-

tore is made up of an InMemoryStore and a persistent store (on-disk in our implemen-

tation). MISTIQUE adopts a column-oriented scheme (much like [122, 7]) to store

intermediates. Specifically, MISTIQUE represents each intermediate (including the

source data and the final predictions) as a DataFrame2 that is divided horizontally
2We choose to call it a dataframe because of the familiarity of the concept and not due to any

96

MISTIQUE

...........

Pipeline
Executor W Chunk

2 .Reader

Data Store Metadai'} etadtaDB

InMemoryStore 
Stored

Partly-filled 
CoIChunk

Partitions
Index
Structures

Disk E Compressed
Partition

Statistics

Pipeline/XFormer
Store

get_i ntermediateso(



RowBIock{

RowBlock{

row id Column

: Col
:Chunk - DataFrame

Figure 5-6: MISTIQUE Data Model

into a set of RowBlocks. Every row is associated with a unique rowid that is pre-

served across all intermediates and is used as a primary index. A DataFrame is also

associated with a set of Columns that make up the DataFrame. The part of a Column

that falls into a particular RowBlock is called a ColumnChunk. The data model is

shown in Fig. 5-6.

The unit of data storage in the DataStore is a Partition. A Partition is a collection

of ColumnChunks from one or more DataFrames that are to be stored together. The

InMemoryStore serves as a bufferpool and keeps a number of (uncompressed) Parti-

tions in memory. When a Partition is evicted from the InMemoryStore, the Partition

is compressed and written out to disk. As described in subsequent sections, storage

decisions in MISTIQUE are made at the level of ColumnChunks, giving the sys-

tem fine-grained control over data placement. The DataStore also stores any indexes

built on the data (by default, a primary index on rowid). The process of storing

intermediates is indicated by S1-S3 in Fig. 5-5: the request to log intermediates is

sent to the PipelineExecutor which sends each intermediate to the DataStore. The

DataStore in turn queries the MetadataDB to determine whether the intermediate

(or some columns) should be stored and, if so, stores the data using optimizations

described below.

parallels with R, pandas or Spark dataframes. They can equally be considered as relational tables.

97



The final component of MISTIQUE is the ChunkReader (Sec. 5.6) which is re-

sponsible for servicing query requests. Query execution in MISTIQUE may involve

fetching data from the DataStore or re-running the workflow to re-create interme-

diates. The procedure for querying intermediates is shown as Q1-Q4 in Fig. 5-5:

the query is sent to the ChunkReader which queries the MetadataDB to determine

whether to re-run the model or read data that was previously stored. Depending on

the response, the ChunkReader either invokes the PipelineExecutor or queries the

DataStore. The decision between these two alternatives is made by the cost model

(Sec. 5.5). Regardless of how the data is obtained, a query to MISTIQUE produces

a numpy array3 that can be used as input to analytic functions.

5.3.2 Usage Example

As mentioned in the Introduction (Chap. 1), the current implementation of MIST-

IQUE can be used to log intermediates from DNNs defined using the Keras library (see

Background in Chap. 2) on top of Tensorflow, or TRAD workflows using scikit-learn.

To log intermediates from Keras and Tensorflow, the ML developer must only

provide MISTIQUE with the path to the model checkpoint and as well as an input

loading function. Calling log-intermediates (checkpoint, inputfunc)

causes MISTIQUE to run the DNN model forward by calling the input function and

logging intermediates for every model layer.

For scikit-learn, we have defined a YAML specification (modeled after Apache Air-

flow4 )5 that is used to express scikit-learn pipelines in a standard format. We wrapped

a number of common scikit-learn functions for use in the YAML specification (e.g.

models like XGBoost, LinearRegression as well as preprocessing steps like Scaling

and LabelIndexing). logintermediates (yaml-file, input_func) simi-

larly logs all the pipeline intermediates. Once intermediates have been logged in

3 http://www.numpy.org/
4 https://airflow.incubator.apache.org
5This YAML specification is different from the Light API in MODELDB. This specification has

all the information required to instantiate relevant scikit-learn objects and run each step of the ML
workflow. The YAML specification for the MODELDB Light API has minimal requirements and, in
general, is insufficient to instantiate a scikit-learn pipeline.

98



MISTIQUE, the ML developer can use a set of query APIs to access the data in

MISTIQUE.

The key query API exposed by MISTIQUE is getintermediates ( [keys]).

This API can be used to retrieve any column, of any intermediate, belonging to any

model that has been logged with MISTIQUE. Keys take the form of project.mode1.

int ermediat e.column. The API returns a numpy array with the required columns

as well as the rowid column. For ease of use, MISTIQUE provides implementa-

tions of common analytic functions that can be applied on top of the numpy array

result (although this is not the focus of our contribution). Since MISTIQUE returns

numpy arrays, it is also easy to add other analytic functions.

5.4 Data Store

Once MISTIQUE has used the cost model (Sec. 5.5) to determine that an intermedi-

ate is to be stored, the DataStore is responsbile for determining how to most efficiently

store the intermediate. The naive strategy when storing intermediates is to fully store

every intermediate from any workflow that is run. While simple, this strategy requires

a great deal of storage, e.g., it logs 350 GB of compressed data across ten epochs of

the moderately sized VGG1 6 model and requires 67 GB to store fifty traditional ML

pipelines with <20 stages. Therefore, we explore different storage strategies to reduce

footprint of intermediates without compromising query time or accuracy. Specifically,

we propose three key optimizations: (a) for DNNs, we propose multiple quantization

and summarization schemes to reduce the size of intermediates; (b) for DNNs as well

as traditional workflows, we perform exact and approximate de-duplication between

ColumnChunks within and across models; (c) we perform adaptive materialization of

intermediates by trading off the increased storage cost with reduction in query time.

We now expand upon each of these optimizations.

99



5.4.1 Quantization and Summarization

A key insight from diagnostic techniques proposed for DNNs is that ML developers

are much more interested in relative values of neuron activations than they are in the

exact values. For example, the visualizations in ActiVis are used to compare acti-

vations of neurons in different classes (see Fig. 5-1). Since the visualization cannot

display >256 shades of the same color, at most 256 distinct activation values may

be shown in the visualization. Along similar lines, the Netdissect technique only ex-

amines neuron activations in the top 99.5th percentile, i.e., the technique only needs

to know if the activation is "very high" or "not very high"-regardless of the actual

activation value. This indicates that we can quantize or discretize neuron activations

into a much smaller number of values without affecting the accuracy of many diag-

nostic techniques. Previous work on model compression and model storage [56, 861

explored the use of quantization of model weights to reduce model size for inference

as well as storage. In this work, we propose to extend those techniques to aggres-

sively quantize neuron activations. Note that since these activations are only used

for diagnostic purposes, we can perform drastic quantization. MISTIQUE supports

three quantization schemes:

" Lower precision float representation (LPQT): Storing a double precision float

value as a single precision (float32) or half point precision (float16) value can lead

respectively to a 2X and 4X reduction in storage with no effect on diagnostic

accuracy.

" k-bit quantization (KBI T_QT): Since many diagnostic techniques are based on rela-

tive activations, we can reduce storage costs by representing values using quantiles

(similar strategies are used to quantize weights in [861). Given the maximum num-

ber of bits b to be allocated for storing each activation, we can compute 2b bins

using quantiles and assign each value to the corresponding bin. Quantization of

activation values from o to b bits reduces storage by a factor of .

" Threshold-based quantization (THRESHOLDQT): To support queries such as Net-

dissect that use an explicit activation threshold, we can directly encode the data

100



as 0-1s depending on whether values are above or below the threshold. Once a

threshold has been picked, however, we cannot encode the data with respect to

another threshold. This scheme reduces storage cost by o, the number of bits used

by the original values.

The quantizations above reduce the storage required for each value, but do not

reduce the number of values stored. This is particularly important in CNNs where

the size of an activation map can significantly increase storage costs. Therefore, to

reduce the number of activations, we support summarization via pooling (similar to

the max-pooling operator in DNNs). In pooling quantization (POOLQT), we apply

an aggregation operation such as average (default) or max to adjacent cells in an

activation map to obtain a lower resolution representation of the map. Assuming a

2-D activation map per channel (as in CNNs), pooling quantization reduces storage

by S where we assume that the size of an activation map is SxS and size of the

aggregation window is -xo-. We support two levels of pooling quantization: U=2

(default, also denoted pool(2)) and a-=S, denoted pool(S), e.g., pool(32) for C IFAR10.

0- = S is the most extreme version of pool-based quantization where we compute a

single average value to represent each activation map.

Implementation.

Both KBITQT and THRESHOLDQT require the system to first collect samples of

activations to build a distribution and subsequently use this distribution to perform

quantization. By default, for KBITQT, we set k = 8, which means that we compute

28 = 256 quantiles for the activation distribution and assign each activation value

to the appropriate quantile. 8BITQT reduces storage by 4X when raw activations

are single precision floats and 8X for double precision. Note that when fetching

an 8BITQT intermediate, we must also pay a reconstruction cost to go from the

quantized values (0 - 255) to floating points. For POOLQT, we conservatively use

o- = 2. However, the user can choose to set a more aggressive pooling level depending

on the application. In Sec. 5.8, we study the trade-offs involved in setting different o-

values.

101



5.4.2 Exact and Approximate De-duplication

This optimization is based on two observations. First, intermediates in traditional

ML workflows often have many identical columns. For example, in the TRAD work-

flows of Fig. 5-3, consecutive intermediates often only differ in a handful of features

(e.g., RelativeSize between interm9 and interm10 in PNv1) and workflows share many

stages (e.g., in an extreme case like Pocta3 and Poc31, all intermediates are identical

except for pred). Second, TRAD and DNN intermediates often have similar columns

(e.g., predictions from multiple models for the same task such as Poct3o, Poct3l; in-

termediates from different epochs for the same DNN; and quantized versions of inter-

mediates). We can leverage these insights to avoid storing redundant data and to

compress similar data to obtain higher compression ratios.

Implementation

Implementing de-duplication (exact and approximate) requires two steps: first, we

must identify identical or similar ColumnChunks, and second, we must compress

these ColumnChunks when writing to storage (MISTIQUE does not currently com-

press ColumnChunks when in memory). We can identify identical ColumnChunks

simply by computing the hash of the ColumnChunks. If an identical ColumnChunk

has previously been stored, then the current ColumnChunk can be skipped. For

detecting similar columns, we use the MinHash. For every new ColumnChunk, the

DataStore computes the MinHash for the ColumnChunk (after discretizing the values)

and queries the LSH index for Partitions with Jaccard similarity above a threshold

T. If an existing ColumnChunk is found to have similarity above T, the new Colum-

nChunk is stored in the same partition as the existing ColumnChunk. Otherwise, a

new Partition is created.

For DNNs, we perform two simplifications: (a) we only perform exact de-duplication

because DNN columns seldom have similar values; (b) we assign columns from the

same intermediate to the same Partition because DNN intermediates have many more

columns than TRAD intermediates and Partition assignments based on data-similarity

102



disperse columns over a large number of Partitions.

The previous procedure performs a rough clustering of ColumnChunks based on

similarity and assigns ColumnChunks to Partitions. When a Partition is to be written

to disk (e.g., because it is full or gets evicted from the InMemoryStore), the Parti-

tion is compressed and written out. MISTIQUE supports a variety of off-the-shelf

compression schemes including gzip, HDF5, and Parquet.

5.4.3 Adaptive Materialization

Adaptive materialization is motivated by the observation that traditional ML work-

flows and DNN models are often many stages long but not all intermediates or columns

are accessed with equal frequency. Some intermediates (e.g., predictions of a model

or image embeddings from the last convolutional block) may be accessed very often

while others (e.g., activations from the first convolutional layer) may be accessed less

frequently. Therefore, we trade-off the increase in storage cost due to materialization

against the resulting speedup in query time. We capture this trade-off in parameter

-y formally described in our storage cost model (Sec. 5.5.2). If y for an intermediate

is larger than a threshold, the intermediate is materialized. An intermediate that is

queried a large number of times has a large -y value and is more likely to be materi-

alized. Similarly, an intermediate with a small storage cost leads to a larger -y and is

more likely to be materialized. The full algorithm for logging intermediates is shown

in Alg. 3.

5.5 Cost Model

In order to make the decision about (a) whether to store an intermediate, and (b)

whether to execute a query by re-running a workflow or reading an intermediate, we

respectively develop a storage cost model and a query cost model. We begin with the

query cost model which provides the building blocks for the storage cost model.

103



Algorithm 3 Storing intermediates

1: procedure STOREINTERMEDIATE(row_ block, 7min)
2: for col_ chunk E rowblock.columns do
3: stats +- get _stats(col _chunk)
4: if y < 7min then // don't store
5: update stats(stats)
6: return
7: colchunk +- quantize(col chunk)
8: identical col <- get_identical _cols(col)
9: if identicalcol == nil then

10: partition +- get _ closest_ partition(stats, sim)
11: partition.add(col_ chunk)
12: evicted_ partition +- bufferpool.add(partition)
13: compress_and store partition(evictedpartition)
14: else
15: update(identicalcol)

5.5.1 Query Cost Model

The total time to execute a diagnostic technique (tdiag) can be computed as the

sum of the time to fetch the required intermediates (tfetch) and the time to perform

computation on the data (tcompute).

tdiag = tfetch + tcompute (5.1)

The time to fetch the data, in turn, is equal to either the time to re-run the workflow

or to read a previously stored intermediate. Since the compute time is the same in

both cases, we only model tfetch. Suppose we want to fetch the intermediate at stage i

in workflow M (e.g., i-th layer in a DNN or stage-i in a traditional ML workflow) and

we seek to compute the intermediate for nex examples (where nex is between 1

and TOTALEXAMPLES). Then, if ti,re-run denotes the time to re-run the workflow

to intermediate i, we can compute this quantity as the sum over each stage s < i of:

(a) time to read the transformer for s (treadxformer), (b) time to load the input for s

104



(treadxformer_ input), and (c) time to execute s (texecxformer).

ti,re-run = E8 Of{treadxformer (S) + treadxformer _input (S)

+ texecxformer (s)} (5.2)

For a DNN, we can rewrite the model as follows: (a) we usually load the entire model

at once, so we can rewrite the first term as tmodelload; (b) explicit input to the DNN

is only provided at layer-0, so we read input once; and (c) since the model is usually

used to predict on batches of examples, we factor batch size into the time to execute

a stage. If tmodelload denotes the time to read the model, sizeof denotes the size of an

object in bytes, bt _size denotes the batch size, p denotes the read speed of storage,

and tfwd(s, btsize) denotes the time to run a single batch of examples through the

DNN up to layer s, the cost model for re-running DNNs can be written as in Eq. 5.3.

n ex - sizeof(ex)
ti,re-run,NN = tmodel-load + -

- P
n ex

+ - Z Otwd(s, bt _size) (5.3)
btsize

ti,rea=n - ex -sizeof(ex) (5.4)
Pd

Instead of re-running a model to obtain an intermediate, we can also read a previously-

stored intermediate. The time to read an intermediate (denoted tread) is simply pro-

portional to the size of the intermediate, i.e., the number of examples multiplied by

the size of one example. We assume that the size of the example accounts for the

precision of the value (e.g., float16, uint8). We fold the time to read, decompress,

and reconstruct the data into the constant Pd.

If trerun > tread, we run the query by reading a previously stored intermediate.

5.5.2 Storage Cost Model

Using the query cost model, we can also determine when to store (i.e., materialize)

an intermediate. The decision to materialize can be made at the level of an entire

105



intermediate (i) or a particular column in an intermediate (i, c). In either case,

we compute tre-run and tread as above by setting n-ex to TOTALEXAMPLES. If

tre-run > tread, we can trade-off the speedup from storing the intermediate against the

additional cost of storing the intermediate.

(ti,re-run - ti,read) - n_query(i) (55)
S(i)

This trade-off is captured in i shown in Eq. 5.5 where S(i) is the (amortized) storage

required for intermediate i, nquery(i) is the number of queries made to intermediate

i that gets updated with each query to the system. -y is computed every time the Data-

Store has to make a decision on whether to re-run a model or read its intermediates.

The units of -y are seconds per GB and it captures the amount of query time saved per

GB of data stored. For example, a i of 1000 sec/GB indicates that the ML developer

is willing to use 1GB of storage in exchange for a total saving of 1000s in query time.

Note that the numerator of Eq. 5.5 increases with the number of times intermediate

i is queried. S(i), in turn, is affected by storage of other intermediates; intermediates

with similar data will lead to lower S(i) because they are compressed together.

Note that the only unknown quantities in Eqs. 5.3 and 5.4 are the time to load

the model or workflow and time to execute each stage of the workflow. So long as

MISTIQUE has executed a workflow at least once, it will have measurements for both

these quantities and can estimate the trade-off between re-running vs. reading. If the

workflow has never been executed before, MISTIQUE must execute the workflow in

order to collect statistics, irrespective of whether the intermediates will eventually be

stored.

5.6 Fetching data from MISTIQUE

Diagnostic techniques like those discussed in Sec. 5.2.2 are executed by first fetching

the data from MISTIQUE and then running analyses on it. We currently have a

simple query execution model inside MISTIQUE. The ChunkReader is responsible

106



for fetching intermediates either by reading them from the DataStore or re-running the

workflow and returning them to the user. When a query for an intermediate arrives,

the ChunkReader first queries the MetadataDB to check if the intermediate has been

stored and if so, verifies that the time to read the intermediate is less than the time to

re-run the workflow (as computed by the cost model in Sec. 5.5). If the time to read is

smaller, the ChunkReader queries the DataStore for the intermediate. The DataStore

in turn identifies the Partitions containing ColumnChunks for this intermediate. For

particular kinds of queries (e.g., fetch results by rowid), MISTIQUE can use the

primary index to speed up retrieval of relevant Partitions. In the future, we can

incorporate specialized indexes for particular types of queries (e.g., nearest neighbor

index). Once the relevant Partitions have been read, the ColumnChunks for this

intermediate are stitched together and returned. On the other hand, if it is faster

to re-run the workflow, the ChunkReader invokes the PipelineExecutor to obtain

the intermediate. The PipelineExecutor in turn executes previously stored operators

for this model or workflow. In either case, the result of the query to MISTIQUE

is a numpy array which is then used as input for further analysis (e.g., SVCCA,

visualization). Pseudocode for querying MISTIQUE is shown in Alg. 4.

5.7 Experimental Setup

In the previous sections, we described the data model, architecture and optimizations

implemented in MISTIQUE. In this section, we present an experimental evaluation

of our system on multiple real-world models and analytical techniques. We begin

with a description of the experiment setup, including the generation of ML-based

workflows, and then describe our results.

5.7.1 Workflows

We evaluated our storage techniques on different traditional ML workflows from scikit-

learn and on deep neural network models built in Tensorflow.

107



Algorithm 4 Reading Data from MODELDB

1: procedure GET _DATA(columns)
2: dfs +- columns.parent _dataframe()
3: tmpl +- []
4: for df E dfs do
5: tmp2 +- []
6: for row_ block E df.rowblocks() do
7: tmp3 +- [I
8: for column E columns do
9: if column.ismaterializedO then

10: partition +- column.read partition()
11: tmp.append(partition[column])
12: else
13: rerunworkflow(column, rowblock)

14: rowblockdata <- hconcat(tmp3)
15: tmp2.append(row _block _ data)

16: dfdata = v - concat(tmp2)
17: tmp 1.append(dfdata)

18: res +- hconcat(tmpl)
19: return res

Traditional ML Workflows (TRAD)

To replicate a real-world machine learning scenario for traditional models, we use the

dataset and task from the Zillow Home Value Prediction competition discussed in

Chap. 2. The goal of this competition is to use data about homes (e.g., number of

rooms, average square footage) to build a model that can predict the error of Zillow's

in-house price prediction model.

For this task, we are given three csv files: (i) properties containing attributes

of homes in the dataset; (ii) training data listing the property id, date of the

property sale, and the error between the Zillow price estimate and the actual sale

price; (iii) test data containing the property id and three dates of potential property

sale. To obtain ML-based workflows for this task, we took ten scikit-learn scripts

uploaded by Kagglers for this task and turned them into workflows in MISTIQUE.

Table 5.3 shows all the workflow template used in the Zillow workload. The evaluation

workflows contained between 9 - 19 different stages including data preprocessing,

feature engineering, feature selection, and training as well as prediction using the

108



model. Since Kaggle competitiors often submit scripts with the best hyperparameter

settings, we also defined 5 variations for each workflow by varying the hyperparameter

settings. While we could have generated a much larger number of variations for each

pipeline, we believe that the resulting set of 50 pipelines are sufficient to illustrate

the advantages of MISTIQUE.

DNN Models (DNN)

To illustrate the efficacy of our techniques on deep neural networks, we use with

the C IFAR10 image classification task. C IFAR10 contains 50K training images

from 10 classes where each image has dimensions 64x64x3. We evaluate on two

models trained on CIFAR10: the VGG16 model fine-tuned on CIFAR10, denoted

as CIFAR10_VGG16 (the original model has been trained on the IMAGENET [108]

dataset) and a well-accepted, simple CNN model trained from scratch, denoted as

CIFAR10__CNN 6. The original VGG16 model consists of 13 convolutional layers, 5

pooling layers, and 3 fully connected layers. During fine-tuning of VGG1 6, we take the

first 13 pre-trained convolutional layers, freeze their weights, replace the original fully

connected layers with two smaller, fully connected layers (because C IFAR10 does not

require these layers to be wide) and train these layers. In contrast, CIFAR10_CNN

has 4 convolutional layers and 2 fully connected layers, and is trained from scratch.

We checkpoint model weights after every 10% of the total number of epochs (i.e., 10

checkpoints each).

Choice of ML-based workflows. We chose the Zillow Home Value Prediction

Challenge as our task for TRAD models because many hundreds of Kagglers have

participated in this competition and thus we can obtain real-world workflows that

have been submitted to the competition. Moreover, operators used in these Kaggle

workflows are also used in many other ML-based workflows that model tabular data.

Thus, while these workflows don't capture all possible ML-based workfiows, they

capture key operators and enable us to evaluate our techniques on workflows with

6https://github.com/keras-team/keras/blob/master/examples/cifarlO_

cnn.py

109



ID Pipeline Template
P1 ReadCSV (3) - Join (2) -+ SelectColumn

-+ DropColumns (2) - TrainTestSplit -+

TrainLightGBM - Predict (2)

P2 ReadCSV (3) -+ Join (2) -+ SelectColumn

-+ DropColumns (2) - TrainTestSplit -+

TrainXGBoost -+ Predict (2)
P3 ReadCSV (3) -+ OneHotEncoding -+ FillNA (2) -+

Join (2) -+ SelectColumn -+ DropColumns (2) -
TrainTestSplit -+ TrainEasticNet -+ Predict (2)

P4 ReadCSV (3) -+ Avg -+ OneHotEncoding -+ FillNA (2)
-+ Join (2) - SelectColumn -+ DropColumns (2) -+

TrainTestSplit -+ TrainEasticNet -+ Predict (2)
P5 ReadCSV (3) -+ Join (2) -+ SelectColumn

-+ DropColumns (2) -+ TrainTestSplit -+

TrainXGBoost,TrainElasticNet -+ Predict (4)
-+ CombinePredictions (2)

P6 ReadCSV (3) -+ Avg -4 Join (2) - SelectColumn

-+ DropColumns (2) -+ TrainTestSplit -+

TrainLightGBM -+ Predict (2)

P7 ReadCSV (3) -+ Avg -+ Join (2) -+ SelectColumn

-+ DropColumns (2) -+ TrainTestSplit -+

TrainXGBoost -+ Predict (2)
P8 ReadCSV (3) -+ Avg -+ GetConstructionRecency

-+ OneHotEncoding -+ FillNA (2) -+ Join

(2) -+ SelectColumn -+ DropColumns (2) -+

TrainTestSplit -+ TrainEasticNet -+ Predict (2)

P9 ReadCSV (3) -+ Avg -+ GetConstructionRecency

-+ OneHotEncoding -+ FillNA (2) --

ComputeNeighborhood -+ Join (2) -+ SelectColumn

-+ DropColumns (2) -+ TrainTestSplit -+

TrainEasticNet -+ Predict (2)

PlO ReadCSV (3) -+ Avg -+ GetConstructionRecency

- OneHotEncoding -* FillNA (2) -+

ComputeNeighborhood -4 IsResidential -+

Join (2) -+ SelectColumn -+ DropColumns (2)

-+ TrainTestSplit -+ TrainEasticNet -+ Predict

(2)

Hyperparameters
learning-ratesub_feature,

mindata

eta,lambda,alpha,max-depth

11_ratio,tol

11_ratio,tol,
normalize

eta,lambda,alpha,max-depth,
xgb-weight,

lgbm-weight

eta,lambda,alpha,max-depth,
bagging-fraction

eta,lambda,alpha,max-depth,
bagging-fraction

11_ratio,tol,
normalize

ComputeNeighborhoodparams,
11_ratio,tol,
normalize

IsResidentialparams,

11_ratio,tol,
normalize

Table 5.3: Workflow Templates for Zillow workload. The numbers in params indicate
the number of times a transformation is applied (typically once on the training set
and then again on test set)

110



these operators.

On the DNN-side, VGG1 6 is one of the most popular models used for image clas-

sification. It also represents a moderately sized network that is ideal for evaluation

in a research setting. Moreover, the key building blocks of convolution, pooling, and

fully connected layers are the hallmarks of image networks and therefore evaluating

MISTIQUE on networks with these layers provides a view of its applicability to

other image networks. Note that we have not tested our system on networks such as

ResNets that have skip connections and dropout.

MISTIQUE has been entirely implemented in Python. All experiments were run

on an Intel Core i7-6900K machine running at 3.20 Ghz. 32 core machine (16 CPUs)

with 64 GB RAM, and 2 GM200 GeForce GTX Titan X GPU. GPU support was

enabled when running DNN models.

5.8 Experimental Results

The overall gains offered by a system like MISTIQUE will vary depending on the

details of the ML workflows that are logged with MISTIQUE. The set of experiments

described next evaluate MISTIQUE in a controlled setting with a limited number

and type of workflows. As a result, the performance tradeoffs may change in other

settings and we discuss the generalizability of the results in Chap. 5.9.

Our goals in the experimental evaluation are to answer the following key questions:

" What is the speedup in execution time from using MISTIQUE to run diagnostic

queries?

" What overall storage gains can we achieve by using MISTIQUE and our pro-

posed optimizations?

" Does our cost model accurately capture the re-run vs. read trade-off?

" For DNNs, how do the proposed quantization schemes affect accuracy of diag-

nostic techniques?

111



102 Re-run Read
I FCM RFC

0\~0

10 2

101

100

10-1

C) A,0

:i MCFR MC M R

* .
10 2

010
4)
E

02

Is- 10
a)
E

S0
S10

102

Query

(a) Zillow pipelines

Re-run Read j
FCFR FCMR: MCFR MCMR

10

410 'Z;

(c) CIFAR10_VGG16 (Layer 11)

Figure 5-7: End-to-end query runtimes.
model

(D
E

100

10-1

102

10 4

10o3

102

101

- Re-run m Read

I
FCFR FCMR MCFR MCMR

QA- 6 *

C)& * *)&*

(b) CIFAR10_VGG16 (Layer 21)

Re-run ReadI
FCFR FCMR: MCFR MCMR

10101011 LlIn.i
(d) CIFAR10_VGG16 (Layer 1)

Asterisk indicates strategy picked by cost

" What is the overhead of using MISTIQUE vs. baselines?

" What is the impact of adaptive materialization on storage and query time?

5.8.1 End-to-End Query Execution Times

In this set of experiments, we evaluate the end-to-end execution times for a represen-

tative set of diagnostic techniques from Table. 5.1. For each query category (FCFR,

FCMR, MCFR, MCMR), we evaluate on two queries for the TRAD and DNN work-

flows. For the DNN queries, we run the same query at multiple layers to show how the

trade-off between reading and re-running changes across layers. In this experimental

112

'1 - $e AP

Q..

a)

E

C

12



setup, when re-running DNN models, we pre-fetch the entire input into memory. Batch

size for the DNN queries was set to 1000 and RowBlocks in MISTIQUE were set to

be 1K rows. Fig. 5-7 shows results of this experiment with an asterisk indicating the

strategy chosen by the cost model. Note the log scale on the y-axes.

For TRAD models, we find that running a query by reading an intermediate is al-

ways faster than re-running the workflow. For example, in Fig. 5-7a, we see a speedup

of between 2.5X - 390X. In contrast, for DNN models (here CIFAR1 0_VGG16), the

decision between whether to re-run or read depends on the model layer and number

of examples fetched by the query. For queries on Layer2l (Fig.5-7b), the last layer,

reading intermediates is 60X - 210X faster that than re-running the model. For

Layer1l (Fig.5-7c), we see that reading the intermediate is again faster by 2X -

42X. In contrast, we find that at Layeri (Fig.5-7d), re-running the model can be up

to 2.5X faster for some queries. This is because Layeri is very close to the input and

is the largest layer by size (see Table. 5.4). Since we pre-fetched input data for DNN

queries, we expect to observe even larger speedups when the input must be read from

disk. For all queries we evaluated, with the exception of SVCCA, compute time is a

small fraction of the total query time. For SVCCA on Layeri, in contrast, compute

time accounts for about 99% of the total time.

The above experiment empirically demonstrates that choosing the right

strategy (re-run vs. read) in executing a diagnostic technique can lead to

speedups of between 2X- 390X.

5.8.2 Intermediate Storage Cost

Next we examine the storage gains obtained by the different optimizations proposed in

MISTIQUE. Fig. 5-8 shows the storage cost, i.e., number of bytes used, for Zillow,

CIFAR10_CNN and CIFAR10_VGG16 models. For every set of models, we store in-

termediates from allstages. For TRAD, we evaluate the basic strategies of STOREALL

and DEDUP. For DNN models, we also compare the storage cost when applying differ-

ent quantization schemes: LP_QT, 8BIT_QT, and POOL_QT (o- = 2,32) described in

Sec. 5.4.

113



102 dedup store all

Storage scheme

80

60

40

19 20

0

v dedup A storeall

1 5 10 15 20 25 30 35 40 45 50
Number of pipeline runs

(a) Zillow workflows

lpqnt pool(2) dedup
8bit_qnt M pool(32) store_all]

m100 1

10 tp_qnt pool(2) dedup

8biLqnt pool(32) store_al

Storage scheme

jVGG16 (right)

102

12

10

1 0

Storage scheme

(b) CIFAR10_CNN (left) and CIFAR10

Figure 5-8: Storage sizes for different strategies

114

ID

101

10 0

10-1 L-

1o 3

- 102

0
N- 102



Layer num Name Shape
0 input (32, 32, 3)

1, 2 blockiconvi, blocki _conv2 (32, 32, 64)
3 block_ pool (16, 16, 64)

4, 5 block2_convi, block2_conv2 (16, 16, 128)
6 block2_ pool (8, 8, 128)

7, 8, 9 block3_conv1 (8, 8, 256)
10 block3_pool (4, 4, 256)

11, 12, 13 block4_conv1 (4, 4, 512)
14, 15, 16, 17 block4_pool (2, 2, 512)

18 block5_ pool (1, 1, 512)
19 flatten (512)
20 dense (256)
21 logits (10)

Table 5.4: Size of Layers in CIFAR10_VGG16

For Zillow (Fig. 5-8a, left), we find that the raw dataset is 168 MB compressed

but STOREALL requires 67GB to store all the intermediates across 50 workflows.

The 400X larger storage footprint indicates that the naive STOREALL strategy can-

not scale to large input data, long workflows or large number of models. In con-

trast, DEDUP, which applies approximate and exact de-duplication as discussed in

Chap. 5.4.2, drastically reduces storage cost by 11OX to 611 MB. On the right side

of Fig. 5-8a, we see that the cumulative storage cost for Zillow increases linearly

for STOREALL, while it stays relatively constant for the DEDUP strategy. This is

because, for Z illow (and most TRAD workflows), many columns are shared between

pipelines. Consequently, most of the storage cost is due to the first workflow whereas

deltas are stored for the rest.

In Fig. 5-8b we show the cost in bytes of storing intermediates for C IFAR1 0_CNN

and CIFAR1 0_VGG16. For both models, we store intermediates for ten epochs. The

raw size of the input data (CIFAR10) is 170MB (compressed) in both cases. For

CIFAR10_CNN we find that STOREALL with no quantization requires 242 GB,

while STOREALL consumes 350 GB for CIFAR10_VGG16. The storage cost per

DNN model is much larger than that of a traditional ML workflow. As a result,

reducing storage footprint is even more essential for DNN models. For each model,

115



we present storage sizes for LPQT, 8BITQT and POOLQT (o=2,32). We apply

DEDUP on top of the default scheme of POOLQT (a=2) to obtain the final size.

For CIFAR10_CNN , we see that LPQT reduces storage from 242GB to 128 GB

for and 8BITQT further reduces it to 72.4 GB. The biggest storage gains can be

achieved by applying different levels of POOLQT which can reduce storage to 39

GB for - = 2 (6.2X reduction) and 2.53 GB for a = 32 (95X reduction). Apply-

ing DEDUP does not produce significant gains because, unlike Zillow workflows,

CIFAR10_CNN has few or no repeated columns. CIFAR10_VGG16 shows the same

trends as that of CIFARlCNN except for the impact of DEDUP. Applying POOLQT

to CIFAR1O_VGG16 reduces storage by 6X for o = 2 (58 GB) and by 83X for a = 32

(4.19 GB). As discussed in Sec. 5.7, C IFAR1O_VGG16 is trained such that the bottom

13 convolutional layers of the network are frozen while only the top fully connected

layers are trained. Thus, intermediates from the 13 layers are the same across all mod-

els and therefore applying DEDUP in addition to POOLQT (0r = 2) reduces storage

footprint by 60X to 5.997 GB.

Thus, MISTIQUE can reduce storage footprint by up to 6X (DNN)-

11OX (TRAD), and upto 60X for fine-tuned models.

5.8.3 Validating the Cost Model

In Sec. 5.5, we proposed models to quantify the cost of re-running a model and the

cost of reading an intermediate. In this section, we present experiments verifying

our cost models and the resulting trade-off, focusing particularly on DNNs. For this

evaluation, we used the CIFAR10__VGG16 model and stored intermediates for all

layers to disk. Next, we ran an experiment where we fetched each intermediate either

by reading the intermediate from disk or by re-running the model. When re-running

the DNN model, we pre-fetched the entire input data into memory to avoid disk access.

We repeated this process for different number of examples (nex in the cost model).

The results are shown in Fig. 5-9 and 5-10.

Fig. 5-9a shows the time required to compute intermediates by re-running the

model (n-ex=zTOTAL _EXAMPLES) with different batch size settings. We see that

116



1 6 11 16 19

10

10 3

102

10

10

101

1001

10 2

1049
10

21

E

12

10 4

102

101

100

4n1
'U

* Ipqnt A pool(2) x pool(32)
v 8biLqntj

1 6 11 16
Layer Number

(b) Cost of reading intermediate

21

Verifying the cost model

102

1010

9~10'1

-2

1K 1 OK 20K 30K 40K 50K I1K 1 OK 20K 30K 40K 50K
Number of examples Number of examples

(a) Empirical (b) Predicted

Figure 5-10: Read (solid) vs. Exec (dashed) Trade-off

117

2 10 A 1000 x 10000
T 100 1

1 6 11 16 19
Layer Number

(a) Cost of re-running model

Figure 5-9:

* layerl I * layer2l * layer16
" layeri * layer6 I

mon---

" layer1l1 layer2l o layer16
" layerl * Iayer6



batch size (number of examples that are run through the model at a time) has a

significant impact on execution time. This is because batch size affects the number

of times the model is run forward. Computing intermediates for batch size=10 is

30X slower than for batch size=1000. Performance degrades slightly for batch size of

10000, whereas larger batchsizes overflow the GPU memory (11 GB). (We therefore

use batch size of 1000 in all experiments.) We also find that the time to re-run

increases proportionately to the layer number and we pay a fixed cost of 1.2s for

model load. As shown in Fig. 5-10a, execution time also increases linearly with nex

(i.e., the total number of examples that are run through the model).

Fig. 5-9b shows the time to read an intermediate from disk for different layers and

quantization schemes. RowBlock size=1K rows and nex=TOTAL__EXAMPLES.

As captured in Eq. 5.4, the time to read an intermediate depends on the number of

examples in the intermediate and size of each example. We find that 8BIT_QT has

the largest read time (due to high reconstruction cost), followed by LPQT (but with

2X as much storage as 8BITQT), followed by pool(2), and finishing with pool(32).

Although pool(32) produces the best query time, the drastic summarization makes it

impossible to run certain queries on it (e.g., SVCCA). pool(2) therefore presents

a good trade-off with respect to query time and storage, and we use it as

the default storage scheme in MISTIQUE.

Next, we examine the impact of the cost difference between re-running and reading

an intermediate when querying different layers of the C IFAR1 0_VGG1 6 model. When

reading intermediates, we assume that the intermediates have been stored with the

default pool(2) scheme. Fig. 5-10a shows the retrieval cost for five different layers

when nex is varied between 1K - 50K. Dashed lines correspond to re-running

the model whereas solid lines correspond to reading the intermediate. We find that

(as captured in our cost model), the time to read or re-run intermediates scales

linearly with the number of examples. Similar to the trend in end-to-end runtimes,

reading intermediates is cheaper than re-running the model for all layers except Layer1

(>10K examples). Layer1 is anomalous because the intermediate is of large size (and

therefore takes long to read) but is close to the input (and therefore is fast to re-

118

ll " l I Ill ! l l P rll'



(a) (b) (c) (d)

Figure 5-11: Visualizing average activations for different storage schemes: (a) full
precision (float32), (b) LP_QT (float16), KBIT_QT (k = 8), POOL_QT (or = 32) (all
produce the same heatmap); (c) KBITQT (k = 3); (d) THRESHOLDQT

run). Fig. 5-10b shows the same trade-off from Fig. 5-10a, except as predicted by our

cost model. We see that the cost model accurately predicts the trade-off between re-

running vs. reading and can be used to determine the right query execution strategy

(as in Fig. 5-7).

One constraint when querying an intermediate via reading is that the number

of RowBlocks read depends on the whether the examples queried are scattered and

whether there is an appropriate index available on the RowBlocks. However, since the

dotted and solid lines in Fig. 5-10 do not intersect, we see that even if MISTIQUE has

to read the entire intermediate (50K) examples, it is faster to read the intermediate vs.

re-run the model. In addition, while RERUN can only benefit from indexes on the input

(e.g., find predictions for examples 36), MISTIQUE can index any intermediate and

speed up queries in different layers (e.g., find predictions for examples with neuron-50

activation > 0.5).

5.8.4 Effect of Quantization on Accuracy

Next, we discuss the effect of our quantization strategies on diagnostic techniques. We

highlight results from three queries, namely, VIS, SVCCA and KNN from Table 5.1.

VIS: Similar to [70], suppose we want to visualize the average activation of

256 neurons in layer-9 of the CIFAR10_VGG16 network. Fig. 5-11 shows heatmaps

of these activations for full precision values (float32), LPQT (float16), KBITQT

(k=8), POOLQT (a = 32), KBITQT (k=3) and THRESHOLDQT (99.5%). We see

that there is no visual difference between full precision, LPQT (float16), KBITQT

119

AI



(k=8) and POOL_QT (o,=32 or equivalently a=2). However, KBITQT (k=3) and

THRESHOLDQT show obvious visual discrepancies.

SVCCA: The results of performing CCA 1104] (captured in the average cca coef-

ficient) between the logits produced by the CIFAR1 0_VGG16 network and represen-

tations of four different layers are shown in Table 5.5. We see that the cca coefficient

for the 8BIT_QT intermediate is extremely similar to the full precision intermediate.

In contrast, POOLQT (a = 2) introduces a discrepancy in the coefficient that reduces

as the layer number increases. While 8BIT_QT is more accurate, reading 8BITQT

is 6X slower and takes 1.5X more storage than pool(2).

K-nearest neighbors (KNN): In KNN, our goal is to find the k most similar ex-

amples to a given example similar to [8]. Table 5.6 shows the accuracy of KNN on

different layers when using 8BITQT and POOLQT (a = 2). Here, we set k=50

and measure accuracy as the fraction of nearest neighbors that overlap with the true

nearest neighbors computed on the full precision data. As with SVCCA, we find that

8BIT_QT produces almost the same neighbors as the full precision intermediates

whereas POOLQT usually captures 75% of the neighbors.

Thus, we find that 8BITQT is more accurate than pool(2) for some diagnostic

queries; however, the increased accuracy comes at the cost of 1.5X more storage and

6X slower queries. In MISTIQUE, we choose to accept this lower accuracy of pool(2)

but provide the user the option of using 8BITQT as the default storage scheme.

Layer Full precision 8BITQT pool(2)
SVCCA (value of average cca coefficient)

6 0.8886 0.8868 0.6098
11 0.9185 0.9176 0.7085
16 0.7891 0.787 0.7464
19 0.8182 0.8182 0.8086

Table 5.5: SVCCA accuracy: Comparison of CCA coefficient across different storage
schemes

120



Layer Full precision 8BIT_QT POOL_QT (- = 2)
11 1.0 0.94 0.74
16 1.0 0.96 0.84
19 1.0 1.0 1.0

Table 5.6: KNN accuracy: Fraction of overlap between true KNN and KNN computed
across different storage schemes.

5.8.5 Adaptive Materialization

In Sec. 5.5.2, we proposed a simple cost model to trade-off storage for an intermediate

vs. the resulting decrease in query time. The impact of adaptive materialization is

highly workload dependent. We present results from applying this optimization on a

small synthetic query workload as a preliminary proof of efficacy for this optimization.

For the Zillow task, we constructed a synthetic query workload by selecting at

random 25 queries (with repetition) from Table 5.1. These queries where drawn

from all the query categories - FCFR, FCMR, MCFR, and MCMR. We then used

MISTIQUE to log intermediates with adaptive materialization turned on. We set -y

to 0.5s/KB (i.e., trade-off 1 KB of storage for a 0.5s speedup in query time). Fig. 5-12

shows the impact of adaptive materialization on storage size and runtime of queries

in this workload. On the left, we see that adaptive materialization (ADAPTIVE) has

a small storage footprint compared to both STOREALL and DEDUP: intermediates

are materialized only once an intermediate has been queried a large number of times.

On the right of Fig. 5-12 we see the query times for three different queries (chosen

to demonstrate three different behaviors). When no columns have been materialized,

queries in the adaptive strategy take as long as RERUN. As more queries get executed

(and therefore columns are materialized), the response time for queries reduces. In

this example, we see reduction in response times for the VIS query but not for the

COLDIST query.

121



100 .adaptive v dedup A _all 100 e COLDIST v COLDIFF A VISi

80 80

60 E 60
NC

40 Of 40

20 0 20 A

0 0
1 20 40 60 80 100 120 140 1 5 10 15 20 25

Number of query runs Number of query runs

Figure 5-12: Adaptive Materialization: effect on storage and query time for synthetic

Zillow workload

5.8.6 Workflow Overhead

As shown in the architecture diagram in Fig. 5-5, a new intermediate that is to be

logged in MISTIQUE is first added to the InMemoryStore. Partitions from the In-

MemoryStore are written to disk only if the Partition is full or the Partition gets

evicted from the InMemoryStore. Therefore, the exact overhead of logging depends

on whether the relevant Partitions are full and if the InMemoryStore is already satu-

rated: if the InMemoryStore is saturated, then logging an intermediate will result in

a write to disk; however, if the InMemoryStore is not saturated, then there is no over-

head associated with logging. Since InMemoryStore and Partition saturation depend

closely on the workload, it is challenging to accurately estimate logging overhead

in general. Instead, to provide an upperbound on logging overhead, we measure

workflow execution time when each intermediate is written to disk synchronously.

Fig. 5-13 shows the total runtimes (including logging overhead) for three TRAD

workflows, P1, P5 and P9 (see Table. 5.3). These were picked as representative

workflows because of varying lengths and use of diverse models (they contain 12,

17, and 18 stages respectively). We find that workflow runtime is directly correlated

with the amount of data written to storage. The STOREALL strategy consistently

produces the largest workflow execution time since it writes the largest amount of

data (see Fig. 5-8). ADAPTIVE, in contrast, has low but non-zero overhead (because

122



600 adaptive E dedup store-all 6 00 i8biqnt pool(2) rerun
500 500 lp-qnt pool(32) store_all

0400 400EE
0300 300

S 200 ii200

100 100

p1 p5 p9 CNN VGG16
Pipeline Model

(a) Zillow workflows (b) DNN models

Figure 5-13: Logging Overhead

it stores transformations used in the workflow). The DEDUP strategy produces modest

overhead that is close to ADAPTIVE because it stores little data for each workflow.

For DNNs, we find that running the CIFAR10_VGG1 6 model without logging takes

19s. Storing all intermediates (without compression) takes 252s for single precision

floats and 151s for half precision floats. When using 8BITQT, we pay an extra cost

for computing quantiles and binning the data, resulting in workflow execution time

of 379s. While 8BITQT takes 13X longer than running the model with no logging,

this overhead is small compared to the time taken to train a model (often >30 mins

for this model). Finally, using POOLQT (or = 32) on CIFAR10_VGG16 results in

execution time of 20s - comparable to the time to run the model while - = 2 requires

56s and o = 4 requires 38s. Since CIFAR10_CNN shows similar trends, we do not

discuss its logging overhead separately.

5.9 Summary and Discussion of Experimental Re-

sults

As mentioned before, the overall gains offered by a system like MISTIQUE vary de-

pending on the details of ML-based workflows logged with the system. This includes

the types of data consumed by ML-based workflows; the type, number and diversity

of ML-based workflows logged; and properties of the operators used in workflows.

123



The set of experiments described in the previous section evaluated MISTIQUE in

a controlled setting with a limited number of workflows. In this section, we sum-

marize our results and comment on how we expect the results to generalize to other

experimental settings and ML-based workflows.

" Query time: In our TRAD workflows, we found that reading an intermediate

is always faster than re-running the model and can produce speedups between

2.5X - 390X. Large gains are seen for FCMR queries whereas MCMR shows

small gains. For DNNs, the query speedup depends on what layer of the DNN

that is queried; for Layer-21 (last layer), reading an intermediate is 60X -

210X faster, whereas for Layer-1 (first layer, closet to input), re-running can be

upto 2.5X faster. In general, reading an intermediate is generally faster but the

cost models can identify the right trade-offs depending on the intermediate and

number of examples queried.

In other settings, we expect that the trade-off between re-run and execute will

depend on the workflow stages and sizes of intermediates. This highlights the

need for a cost model such as the one we have developed in Chap. 5.5.

" Storage Cost: For TRAD models, we can take advantage of the large redundancy

in intermediate columns and use the DEDUP strategy to reduce storage by 11OX

for the Zillow workflows. In contrast, for DNN models, we find that 8BIT_QT

reduces storage footprint by 4X while POOLQT (- = 2) reduces footprint by up

to 6X and POOLQT (- = 32) by up to 95X. DEDUP does not have a significant

impact for DNNs except for cases where some weights are frozen (e.g., during

fine-tuning for CIFAR10_VGG16).

For TRAD models, a significant fraction of the storage reduction comes from

consecutive intermediates and multiple workflows sharing columns. In experi-

mental settings where workflows do not have the same input data (e.g., with

many ML developers working on different problems or input data changing over

time) or intermediates have few shared columns, we expect these gains to be

lower. For DNN models, most of the gains we see are from quantization and

124



summarization techniques that are applicable to the most common CNN layers.

Moreover, these techniques and the resulting gains are independent of other

DNNs that are trained. Consequently, we expect the DNN storage reductions to

carry over to other experimental settings.

* Cost Model: Our experiments validate that the cost model proposed in Chap. 5.5

holds across different layers of a DNN and varying numbers of examples. The

cost model can also accurately predict when it is faster to read an intermediate

vs. re-run a model.

Our proposed cost model is fairly general and does not make strong assumptions

about the workflow or its input data. We expect it to be valid in a variety

of experimental settings where the model is run on a single node. What the

model currently does not capture, however, are any overheads that may be

involved in materializing intermediates that are being generated in a distributed

fashion (e.g., with Spark) and adding these considerations to the cost model is

an important avenue for future work.

* Effect on Accuracy: The different storage strategies proposed by MISTIQUE

represent intermediates in lossy fashion. As a result, not all storage schemes

can support all diagnostic queries. For visualization queries, all storage schemes

except for aggressive quantization (e.g., KBITQT (k=3) and THRESHOLDQT)

can produce visualizationst that are largely indistinguishable visually. For

SVCCA and KNN, 8BITQT produces results that are highly accurate (but

at a higher query cost) whereas POOLQT (- = 2) introduces some errors (but

has low query cost). MISTIQUE adopts POOLQT (a- = 2) with LPQT as

the default intermediate representation but depending on the diagnostic query

workload, the ML developer can choose more aggressive or conservative quan-

tization.

For other experimental settings, we expect to see similar trends where the qual-

ity of results depends on the precision required by diagnostic techniques.

125



" Adaptive Materialization: This strategy can reduce the time required to run di-

agnostic queries (e.g., COLDIFF in this workload) while maintaining a small

storage footprint. However, the results of adaptive materialization are highly

workload dependent. For example, columns will be materialized only if many

queries in the workload query a column repeatedly. Therefore, if the queries

are very diverse, then we will not see significant benefits of this optimization.

Moreover, we note that adaptive materialization also requires the materializa-

tion threshold to be tuned appropriately.

The impact of adaptive materialization in general depends significantly on

the query workload. Consequently, we expect this optimization to produce

large speedups in query time for workloads with similar queries and negligible

speedups for other workloads.

" Overhead: Any type of intermediate logging adds an overhead that is di-

rectly proportional to the amount of data logged. In TRAD workflows, the

STOREALL strategy can take upto 300s for logging large workflows whereas

the ADAPTIVE strategy introduces negligible overhead beyond the raw work-

flow runtime of 30-50s. Similarly, for DNNs, STOREALL takes about 250s

(compared to 19s for only running the model) while POOLQT (or = 32) takes

20s. However, POOLQT (- = 32) can be used to perform very few diagnostic

queries. POOLQT (o- = 2) which takes 56s to run presents a good trade-off

between overhead, storage size, and supported diagnostic queries.

In other experimental settings, we expect to see similar trends - we expect the

overhead to scale with the amount of data logged.

Finally, all the workflow we tested were ones where the intermediate data could

fit on a single machine. When the input data is so large that, it cannot be stored on

one machine (or exceeds storage limits), we may need to explore alternatives to fully

materializing intermediates. For example, it may suffice to sample intermediates at

the example level and only analyze a subset of examples. Similarly, we could develop

techniques to estimate how much data is required to correctly perform a particular

126



diagnosis task (similar to the work in visualization [731). We believe this to be a ripe

area for future work and expand on it in Chap. 7 on Future Work.

As suggested by the discussion above, the performance of MISTIQUE is ML

workload dependent, and therefore, performing a user study with many ML applica-

tions in a real enterprise setting is an important direction for future work.

5.10 Conclusion

Model diagnosis is an essential part of the model building process. Analyses per-

formed during model diagnosis often require access to model workflow intermediates

such as features generated via feature engineering and embeddings learned by deep

neural networks. Querying these intermediates for diagnosis requires either the in-

termediate to have been pre-computed and stored or to be re-created on the fly. As

we demonstrate in this work, making an incorrect decision regarding reading vs. re-

running can slow down diagnostic techniques by up to two orders of magnitude. In

this work, we proposed a system called MISTIQUE tailored to capture, store, and

query model intermediates generated from ML-based workflows. MISTIQUE uses a

cost model to determine when to re-run a workflow vs. read an intermediate from

storage. When storing intermediates, MISTIQUE uses unique properties of tradi-

tional machine learning workflows and deep neural networks to reduce the storage

footprint of intermediates by 6X- 11X while reducing query execution time by up

to 210X for DNNs and 390X for TRAD workflows.

127



128

- - Pq rIN"' '9 1" RIM "W "RM&w



Chapter 6

Applications of MISTIQUE

The MISTIQUE system described in the previous chapter provides ML develop-

ers easy access to data that was previously expensive to obtain (computationally or

storage-wise). Efficient and easy access to arbitrary model intermediates can enable

the development of new types of diagnostic techniques. As an example of new diag-

nostic techniques that can be enabled by MISTIQUE, the last contribution of this

thesis is PREDICTIONVISUALIZER, a novel user-interface to visualize predictions (and

other intermediate data) across many models. This work was done in collaboration

with Wei-En Lee as part of his Masters thesis [78]. We provide an overview of the

work here and point the reader to 1781 for a detailed discussion.

6.1 Motivation

Visualization tools such as ActiVis and VizML described in the previous chapter

provide ML developers the ability to visualize model workflow intermediates (or ag-

gregates of model workflow intermediates) for a single workflow. These tools, however,

are unable to extend to many workfiows or facilitate comparison between workflows.

Since ML developers in fact build tens to hundreds of ML-based workflows, provid-

ing ML developers the ability to quickly identify trends in workflow performance or

among examples can speed up the modeling loop. Tools such as ModelTracker [8]

took the first steps in providing such type of functionality by allowing the ML de-

129



veloper to compare predictions between consecutively built workflows. However, it is

challenging to extend such a tool to hundreds of workflow iterations without a stor-

age system such as MISTIQUE. Therefore, with PREDICTIONVISUALIZER, we build

upon the functionality of ModelTracker and provide ML developers the ability to run

example-level comparisons across any number of workflows. For this work, we focus

on visualizing predictions across many workflows. However, the same ideas could

be used to visualize other intermediates such as embeddings from a CNN or results

of different operators in a TRAD workflow.

Note that our goal with this work was to explore new visual interfaces that can

be constructed with intermediate data available in a system such as MISTIQUE.

Building these interfaces to support large scale datasets brings up several scalability

challenges that are out of scope for this work and are ripe directions for further

exploration (see Future Work in Chap. 7). Similarly, the initial observations collected

in our pilot study require further exploration via a large-scale user study.

6.2 PREDICTIONVISUALIZER Interface

Fig. 6-1 shows an overview of the PREDICTIONVISUALIZER interface. The visualizer is

composed of three parts: the Prediction Matrix (top), the Summary Pane (middle),

and Input Data Explorer (bottom). The Prediction Matrix presents example-level

predictions across many examples and models, the Summary Pane provides summary

statistics about model performance (e.g., accuracy, AUROC), and the Input Data

Explorer provides the means to contextualize trends we see in predictions. We now

examine each of these views in turn.

6.2.1 Prediction Matrix

Fig. 6-2 shows a detailed view of the Prediction Matrix. Each column in the Pre-

diction Matrix corresponds to a ML-based workflow whereas each row of the matrix

correspond to an example in the data. The color of each cell represents the correctness

of the prediction captured as 1 - predictedprobability for positive exam-

130



ModeDB

Models
Double dick an a columr in the
prediction matrixtoselectamodef

Encowfscime
Setect color scaleforencod&in
predietw intrltematri

Sot and Chuster
Order the rows and comns of wthe
prediction matr

Theshold
Sel~ect t1vsNdfo arnyd ssfcav.

SELECTAMODEL

A7.

SELECT A MODEL

9 
4

-- r-~-~---
4
r--~1---T-

w GT Aw DWM8bte DisCmRWm~h me EnO* eCt Eip mNubwhw HowhfRate JobIuwdv--nt JObLd

0 1 41 1102 1 1 1 94 3 2

2 1 37 1373 2 1 4 92 2 1

4 0 27 591 2 1 7 40 3 1

6 0 59 1324 3 1 10 81 4 1

8 0 38 216 23 1 12 44 2 3

13 0 34 1346 19 1 18 93 3 1

15 0 29 1389 21 1 20 . 51 4 3

17 0 22 1123 16 1 22 96 4 1

20 0 24 673 11 1 26 96 4 2

22 0 34 419 7 1 28 53 3 3

ShowfngIto 10of 441entdes PrevIoUS 2 45 Nedt

Figure 6-1: Prediction Visualization (reproduced from 178])

ples and predicted_probability - 0 for negative examples. For the purpose

of this work, we limit ourselves to binary classification problems. The cells in green

131

0 dancomsampe

Filter

69'w



Correct GroundIncorrect

131 44

684
119
350

1458
1203
1301

454
1462

300
1061
486
570

1256
500
861
811
846
529

Truth (G*

-~ t)

Figure 6-2: Prediction Matrix (reproduced from [78])

thus represent correct predictions whereas red cells represent incorrect predictions.

On the left, we also show the ground-truth for every example in gray-scale. 1 Visually

representing correctness of predictions allows us to easily spot trends in our model

performance. For example, by examinging the Prediction Matrix in Fig. 6-2, we can

spot a few trends right away: (1) As indicated by the colors, the predictions of some

workflows are highly correlated (e.g., first and last column) whereas the predictions

from some workflows have less correlation (e.g., first and second column). This in-

formation is directly useful in tasks such as ensembling where we wish to ensemble

workflows with uncorrelated predictions. (2) Next, by examining the red cells, we

can easily see where the errors made by these models are clustered. In this par-

ticular example, we can see that the workflows are mainly mis-predicting examples

with ground-truth=1 (possibly because the dataset is imbalanced). This informa-

'Note that we can apply different color schemes for encoding prediction correctness.

132



tion can aid in improving the workflows or recommend the collection of more data

with ground-truth=1. (3) Last, by examining changes in row color across multiple

columns, we can easily identify prediction churn as described in Chap. 5).

The Prediction Matrix also supports other functions to support model diagnosis.

For example, as shown in Fig. 6-3, it supports clustering of examples (or models)

based on rows (or columns) to easily identify trends in the data. This operation can

aid the ML developer in identifying examples (or models) with similar underlying

characteristics. Similar to ModelTracker [8], we also allow the ML developer to easily

find "nearest neighbor" or most similar examples ( Fig. 6-4). This information about

similar examples can help with finding errors such as mislabelled examples or suggest

new ideas for feature engineering.

Last, the Prediction Matrix allows ML developers to define example groups and

compare model performance across groups (similar to [71]). For example, Fig. 6-5

shows aggregate performance for examples with different values of the feature "age."

Similar to [70], these aggregate statistics can be easier to interpret than individual

instances and can therefore aid in identifying trends.

Figure 6-3: Clustering the Prediction Matrix (reproduced from [78])

6.2.2 Summary Pane

The second part of the PREDICTIONVISUALIZER interface is the Summary Pane, The

user can select models in the Prediction Matrix to view summary statistics about

model performance and make comparisons. Figs. 6-6-6-7 show the summary charts

produced for different models. For every model selected in the Prediction Matrix, the

133



12

267

1i i

12

12 4
124F

Figure 6-4: Nearest Neighbors in the Prediction Matrix (reproduced from [781)

RandomsampleCorre,-t I on,- ro IthfC

At,0

Age
Aget
Age
Age

Aget

Filter

G 
Group

groupby:
a
26

24
48
25

0

329

1462

11' .4

1159

739

Figure 6-5: Grouping Predictions (reproduced from [78])

PREDICTIONVISUALIZER computes the ROC and PR curves as well as the confusion

matrix. The Summary Pane then presents this data together in order to enable the

134

X



ML developer to quickly compare model performance.

NO"d
* RanRow*@OWuI~mI (Wd 2030)

LOV.0cRP*W..I2 lid: 204)
*L0O0CRBUUiwfl (Id-00')

PR

1.0.0.8-

017-I0.0- 'o
0.5-

0.4-

0.3

0.2-

0.1.

0.0 . . I . I
0.0 0.1 0.2 0.3 0.4 0. *0. .0. .

PAil0

Figure 6-6: Comparing ROC and PR curves across models (reproduced from [78])

Predicted

1 0
Predicted

1 0
Predicted

1 0

- 2 11

0 
E

Model ca506e4d..

- 5 8

o3 E 0 2

Model 426aee7f...

9

Model 0156974...

Figure 6-7: Comparing confusion matrices across models (reproduced from [78])

6.2.3 Input Data Explorer

The final part of the PREDICTIONVISUALIZER interface is the Input Data Explorer.

In order to identify trends in example-level model performance, an ML developer

needs the ability to contextualize results. Specifically, in order to (say) investigate

why some examples are mispredicted by a model, the ML developer needs the ability

to examine the examples themselves including their input representations. Therefore,

the Input Data Explorer shows raw input data in tabular form (Fig. 6-8). The ML

developer can sort and select examples, as well as search through the data to quickly

drill-down to the relevant information. This part of the visualization is inspired by

the input data visualization in VizML 126]. In the future, this visualization can be

extended to visualize intermediates other than the input data.

135

ROC

IA0-

0.9-

0.?-

0.6-

0.5-

0.4-

031

I
A

00 0.1 0.2 0.3 0.4 0.A00?0. . 1.0
pa"

*LogOkcAlgvfmlon Id: 0034)
* Loo9iWoNPWWuwn (Id: 2031)

Ii



Search: Show all columns: Show 1 entries

id GT Age DailyRate a DistanceFromHome a EmployeeCount * EmployeeNumber

HourlyRate a Jobinvolvement * JobLevel a Monthlyincome * MonthlyRate a NumCompaniesWorked

Sparrentc~aArvHike M CtAndard r M 'tnirklntirvn1 Avl M TntalWnekinoYPar" M TrAininaTimp0 As0YAr

Id A GT Age DailyRate D1stunceFromHone EnpvajeeCcunt EmployeeNumber HourlyRate Jobiwolvement JobLevel

0 1 41 1102 1 1 1 94 3 2

2 1 37 1373 2 1 4 92 2 1

4 0 27 591 2 1 7 40 3 1

6 0 59 1324 3 1 10 81 4 1

8 0 38 216 23 1 12 44 2 3

13 0 34 1346 19 1 18 93 3 1

15 0 29 1389 21 1 20 51 4 3

17 0 22 1123 16 1 22 96 4 1

20 0 24 673 11 1 26 96 4 2

22 0 34 419 7 1 28 53 3 3

Showing Ito 10 of 441 entries Previous 2 3 4 5 45 Next

Figure 6-8: Visualization of raw data (reproduced from [78])

6.3 Evaluation via Pilot User Study

We evaluated the PREDICTIONVISUALIZER interface through a pilot user study. Our

goal in this small-scale study was to examine (a) whether comparing across multiple

workflow (vs. two workflow comparison) is important in debugging; and (b) whether

visualizing predictions aids in workflow debugging. The pilot study was conducted

with four participants and two variations of the interface. The first variation allowed

prediction comparisons across any number of workfiows (as above). The second,

however, only showed data for two consecutive workflows: the current workflow and

the one trained immediately prior to the current one. The second variation was

designed to mimic the functionality provided by the ModelTracker interface [8]. In

the pilot study, two participants were assigned to each interface.

The study was designed as follows. Study staff constructed ten workflows for

the IBM HR Analytics Employee Attrition and Performance competition on Kag-

gle2. The task in this competition is to use employee records (e.g., years in current

2 https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset

136



postition, job satisfaction rating) to predict whether an employee will churn. These

workflows generated by the staff used different types of pre-processing steps as well

as ML models and had varying error rates (i.e., no workflow was significantly better

than the others). The resulting workflows were logged and predictions were loaded

into the PREDICTIONVISUALIZER interface. Study participants had access to data

about the workflow as well as predictions via the PREDICTIONVISUALIZER interface.

Participants were asked to review both sources of data and suggest improvements

to the workflow. They were also asked to talk aloud while exploring the interface.

We collected participants' suggestions for improving the workflows as well as their

feedback on the interface.

Our pilot study made the following qualitative observations. A large-scale study

is required to draw quantitative conclusions about the efficacy of our interface.

" The Prediction Matrix visualization provides an easy means to identify problems

with models and examples. For example, based on the visualizations, partici-

pants immediately identified that certain kinds of models performed poorly on

the data.

" While example-level data is useful in debugging, summary data provides a better

overview of workflow performance. This feedback suggests that the interface

could be reordered to present the Summary Pane first followed by the Prediction

Matrix.

* Multi-workflow comparisons are useful compared to two-workflow comparisons.

Participants who used the two-workflow interface expressed interest in the abil-

ity to compare data across more than just two workflows.

" Tighter integration with workflow training is required. All study participants

wanted the ability to build workflows from the same interface as the PREDIC-

TIONVISUALIZER and examine prediction changes in real time.

Our pilot study thus provided some validation of our hypothesis that comparing

results from multiple workflows is more useful than pairwise workflow comparisons and

137



suggested ways of extending the functionality of our interface. Further development

of the interface and a full-scale user study is necessary to quantify the efficacy of the

PREDICTIONVISUALIZER.

138



Chapter 7

Future Work

This thesis work has made inroads into the problems of building systems for managing

models and supporting model diagnosis. Much work remains to be done in each of

these areas both to make the proposed systems applicable across diverse machine

learning tasks and to address new problems brought up by each of these proposed

systems.

7.1 MODELDB

We see three key directions for future work building on MODELDB. First, one of the

main limitation with MODELDB (as of this writing) is that MODELDB provides na-

tive clients only for two libraries, namely scikit-learn and spark.ml. Other frameworks

must use the Light API to log ML-based workflows to MODELDB. Consequently, the

immediate next steps for MODELDB are to extend native support to other ML envi-

ronments and libraries. In particular, providing MODELDB support for ML models

built in R would benefit the large R user community. Similarly, given the increas-

ing popularity of deep learning, extending MODELDB to treat deep learning models

as first-class citizens would make model management available to a large number

of deep learning researchers. Projects such as KubeFlow have already incorporated

MODELDB into their system via the Light API but we could provide much deeper

instrumentation including the logging of architectures, metrics, and training progress,

139



among other things.

The second fruitful direction for future work is to explore alternative means of log-

ging modeling pipelines. Currently, MODELDB relies on instrumenting key functions

in various libraries to capture transformations. However, this approach has inherent

limitations since new functions are constantly added to ML libraries and ML devel-

opers may compose functions in unusual ways leading to MODELDB being unable to

log their workflow. Alternative ways of logging may include compiler/ interpreter-level

hooks or even intercepting calls at the operating system level. Some strides have been

made in this direction through systems such as noWorkflow [90] and Ground [611. For

languages such as Scala and Java, it may even be possible to apply LLVM transfor-

mations to capture modeling pipelines with no change to user code (e.g., as in [1251).

The third direction for future work is in the area of model representation and

storage. Often, ML developers prototype models in a research environment (e.g., in

R or Python scikit-learn) but then need to deploy the model using a system such as

Spark. In that case, there is no easy way to convert an R or Python model to Spark.

Therefore, developing a common intermediate representation (such as ONNX 1 or

PMML 2 ) for inter-operability between frameworks can significantly speed up the pro-

cess of ML deployment. A related direction for research is model storage. MODELDB

currently routes model serialization to various ML frameworks and doesn't provide

special support for optimized model storage. However, similarly to 186], we find that

optimizing model storage is important for ML developers who want to build and

version hundreds of models.

Last, our work assumes that the data that we use for modeling is adequate for the

task and that it has been cleaned and integrated. While this is often true, there are

many cases where more labeled data must be obtained, potentially through user input

(e.g., via active learning [112]). We believe that tracking active learning in terms of

new examples obtained or labeled is crucial to tracking how the performance of the

ML model evolved with additional data. Including data gathering as another kind of

lhttps://github.com/onnx/onnx
2 http://dmg.org/pmml/v4-1/GeneralStructure.html

140



operation in MODELDB is a rich avenue for future work and may produce extremely

interesting insights about the utility of each training example.

Similarly, in data cleaning and integration, tracing how a record wound up in

the ultimate training dataset is crucial for debugging potential errors in the model

outputs. As discussed in the Related Work chapter (Chap. 3), there is a rich body

of literature studying provenance or lineage of data. It would be worth exploring

whether there are common operations or interfaces (in the software sense) that could

be used to track cleaning operations. In the simplest case, if the key cleaning or

integration operations were derived from the basic "transformer" interface described

in MODELDB, then they could be tracked in the current system. However, it is likely

that these operations will not follow a common interface and therefore there is room

for a lot of work to increase coverage of these operations.

7.2 MISTIQUE

While our work on MISTIQUE made inroads into the problem of storing and query-

ing model intermediates, we see multiple avenues for future work.

First, our work focuses on efficient storage techniques as a way to speed up diag-

nostic queries. A parallel means of achieving this goal is to speed up query execution

via techniques such as indexing, sampling, and approximation. For example, deciding

which examples are most "useful" in answering a diagnostic query might enable us to

re-run the model on very small amount of data and thus produce a different perfor-

mance trade-off. Similarly, MISTIQUE currently assumes that there are no special

indexes present on the intermediates. However, one of the advantages of material-

izing intermediates is that we can build highly optimized index structures to speed

up specific queries. For example, we could speedup nearest neighbor queries using

techniques such as those described in [69J. Similarly, our query execution currently

separates intermediate fetching from analysis; however, using knowledge about the

analysis may allow us to make better decisions about fetching intermediates (e.g.,

whether we need to reconstruct quantized unit8 data to float32).

141



Next, as the size of the model scales, e.g., to ResNet-150 [581 with 150 layers, or

the data scales to sizes comparable to ImageNet 11081, it is possible that the trade-offs

with respect to reading intermediates vs. re-running would change, and that we might

need completely new methods for storing or encoding intermediates. On similar lines,

extending our work to other types of models and data types, e.g., recurrent neural

networks or time series data, may identify new opportunities for optimizations that

are based on specific data properties or access patterns.

Third, MISTIQUE currently optimizes access to intermediates on a per-query

basis. However, real-world diagnosis session often involves many queries, and therefore

there may be opportunities to further reduce execution time via caching and pre-

fetching. Similarly, batching queries could introduce new opportunities to optimize

both reads and model re-runs.

Finally, the two systems MODELDB and MISTIQUE are closely related: MOD-

ELDB can be thought of as performing logical logging of ML-based workflows, whereas

MISTIQUE performs physical logging. While our focus in this thesis was on devel-

oping the two sub-systems, integrating them is also a fruitful direction for future

work.

7.3 Diagnostic Techniques

PREDICTIONVISUALIZER scratched the surface in terms of the new diagnostic tech-

niques can be developed using the data in MISTIQUE. Other interesting applications

of this data include detecting discrepancies between training and test datasets on the

fly, summarization techniques to characterize mis-predicted examples, and new dif-

ferencing techniques for comparing models and model pipelines, among many other.

Our small-scale pilot study with the PREDICTIONVISUALIZER also indicated that

users would benefit from a unified workflow for building models and debugging, leav-

ing lots of room to develop interfaces that support both of these "modes". We also

see room for many improvements in scaling visualizations to large model intermedi-

ates with thousands of rows and columns (e.g., possibly by using techniques such as

142



those proposed in imMens [81]). Finally, there are several interesting questions to be

answered about the prediction visualizer interface with a full-scale user study: two

key questions are (a) whether the prediction visualizer reduces the time to diagnose

models and (b) which model data is most useful to surface in the debugger.

143



144



Chapter 8

Conclusion

Machine learning has become ubiqitous in a variety of applications. The key step

in using ML in any application is to build a machine-learning based workflow to

perform the given task. The process of building this ML-based workflow, i.e., the

modeling process, is an iterative process with the ML developer experimenting with

hundreds of workflows before obtaining one that meets some acceptance criteria. In

this thesis, we explore the problem of making the modeling processes faster and more

efficient. Specifically, we develop solutions to two problems: first, how can we manage

ML workflows developed across many iterations in the modeling process; and second,

how can we provide common infrastructure to support the diagnosis of ML workflows.

To address the first question, we propose a system called MODELDB that can

automatically track ML workflows as the ML developer is developing them and make

workflow metadata available in a common format. MODELDB currently provides

client libraries for the popular scikit-learn and spark.ml libraries that can automati-

cally track ML workflows. MODELDB also provides an intuitive and easy-to-use web-

based interface to visualize the workflow data captured by the client libraries. MOD-

ELDB was the first open-source model management system and has been adopted at

banks, large tech companies, and has been used in other open-source machine learning

tools.

To address the second question, we propose a system called MISTIQUE. Our

observation is that many model diagnosis techniques are based on data artifacts that

145



are generated at different stages of a trained ML workflow. ML developers wanting to

use these techniques must therefore either store large amounts of model intermediate

data or continually re-run models in order to answer diagnostic queries. To address

this problem and speed-up the process of model diagnosis, we built MISTIQUE

the Model Intermediate STorage and Query Engine. MISTIQUE provides a way to

easily log intermediates from a variety of ML workflows (traditional and using DNNs)

and query these intermediates efficiently. MISTIQUE implements different storage

strategies to reduce the footprint of model intermediates and also develops a cost

model to determine when to re-run a model for a diagnostic query vs. when to read

a stored intermediate. The same cost model is used to decide when an intermediate

should be materialized. We evaluate MISTIQUE on traditional ML workflows and

DNNs and demonstrate that MISTIQUE can speed up certain kinds of diagnostic

queries by up to two orders of magnitude. We also show that the storage strategies

proposed in MISTIQUE can reduce storage footprint of traditional models by up to

1 10X and of deep neural network models by up to 6X.

The final contribution of this thesis is the PREDICTIONVISUALIZER, a new visu-

alization interface that is an example of the new types of model diagnosis techniques

(and tools) that can be enabled by MISTIQUE. Existing model performance debug-

ging tools only support debugging predictions from one model or at most two models

built consecutively. However, with MISTIQUE, an ML developer can log arbitrary

intermediates from a large number of models. In PREDICTIONVISUALIZER, we surface

prediction data from a large number of models to the ML developer and provide the

developer with a visual interface for performing meta-analyses across models as well

as identifying instance-level trends. Our pilot user study shows that ML developers

can benefit from such a tool and identifies directions for further development.

The two systems proposed in this thesis, MODELDB and MISTIQUE, together

take the first steps in building a common infrastructure for supporting model manage-

ment and diagnosis. As machine learning continues to become a key part of business

processes across many industries, we predict that the importance and need for such

common infrastructure will continue to grow.

146



Bibliography

[1] Azure machine learning studio. https://azure.microsoft.com/
en-us/services/machine-learning-studio/.

[21 Imagenet object detection challenge. https: //www . kaggle .com/c/

imagenet-object-detection-challenge.

[3] Kaggle.com. https ://kaggle. com.

[41 Seahorse: Visual spark. https: //seahorse.deepsense.ai/.

[5] Tableau software: Business intelligence and analytics. https://www.
tableau. com/.

[61 Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale
machine learning. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI'16, pages 265-283, Berkeley, CA,
USA, 2016. USENIX Association.

[7] Anastassia Ailamaki, David J DeWitt, and Mark D Hill. Data page layouts
for relational databases on deep memory hierarchies. The VLDB Journal - The
International Journal on Very Large Data Bases, 11(3):198-215, 2002.

[8] Saleema Amershi, Max Chickering, Steven M. Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. Modeltracker: Redesigning performance analysis tools
for machine learning. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI '15, pages 337-346, New York, NY,
USA, 2015. ACM.

[9] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai,
Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng,
Guoliang Chen, et al. Deep speech 2: End-to-end speech recognition in english
and mandarin. In International Conference on Machine Learning, pages 173-
182, 2016.

147



110] Yael Amsterdamer, Susan B. Davidson, Daniel Deutch, Tova Milo, Julia Stoy-
anovich, and Val Tannen. Putting lipstick on pig: Enabling database-style
workflow provenance. Proc. VLDB Endow., 5(4):346-357, December 2011.

[11] Michael R Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess,
Michael J Cafarella, Arun Kumar, Feng Niu, Yongjoo Park, Christopher Re,
and Ce Zhang. Brainwash: A data system for feature engineering.

[12] Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature News,
533(7604):452, 2016.

[13] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba.
Network dissection: Quantifying interpretability of deep visual representations.
In Computer Vision and Pattern Recognition, 2017.

[141 Louis Bavoil, Steven P Callahan, Patricia J Crossno, Juliana Freire, Carlos E
Scheidegger, Claludio T Silva, and Huy T Vo. Vistrails: Enabling interactive
multiple-view visualizations. In Visualization, 2005. VIS 05. IEEE, pages 135-
142. IEEE, 2005.

[15] Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom. Uldbs:
Databases with uncertainty and lineage. In Proceedings of the 32nd interna-
tional conference on Very large data bases, pages 953-964. VLDB Endowment,
2006.

[16] Anant Bhardwaj, Amol Deshpande, Aaron J. Elmore, David Karger, Sam Mad-
den, Aditya Parameswaran, Harihar Subramanyam, Eugene Wu, and Rebecca
Zhang. Collaborative data analytics with datahub. Proc. VLDB Endow.,
8(12):1916-1919, August 2015.

[17] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya
Parameswaran. Principles of dataset versioning: Exploring the recreation/stor-
age tradeoff. Proc. VLDB Endow., 8(12):1346-1357, August 2015.

[18] Souvik Bhattacherjee, Amol Deshpande, and Alan Sussman. Pstore: an efficient
storage framework for managing scientific data. In Proceedings of the 26th
International Conference on Scientific and Statistical Database Management,
page 25. ACM, 2014.

[19] Rajendra Bose and James Frew. Lineage retrieval for scientific data processing:
a survey. ACM Computing Surveys (CSUR), 37(1):1-28, 2005.

[20] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, et al. Api design for machine learning software: experiences
from the scikit-learn project. arXiv preprint arXiv:1309.0238, 2013.

148



[21] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A
characterization of data provenance. In Proceedings of the 8th International
Conference on Database Theory, ICDT '01, pages 316-330, London, UK, UK,
2001. Springer-Verlag.

[22] Steven P Callahan, Juliana Freire, Emanuele Santos, Carlos E Scheidegger,
Claudio T Silva, and Huy T Vo. Managing the evolution of dataflows with
vistrails. In Data Engineering Workshops, 2006. Proceedings. 22nd International
Conference on, pages 71-71. IEEE, 2006.

[23] Steven P Callahan, Juliana Freire, Emanuele Santos, Carlos E Scheidegger,
Clhudio T Silva, and Huy T Vo. Vistrails: visualization meets data manage-
ment. In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pages 745-747. ACM, 2006.

[241 Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable: A distributed storage system for structured data. ACM Trans.
Comput. Syst., 26(2):4:1-4:26, June 2008.

[25] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving:
Learning affordance for direct perception in autonomous driving. In Com-
puter Vision (ICCV), 2015 IEEE International Conference on, pages 2722-
2730. IEEE, 2015.

[26] Dong Chen, Rachel KE Bellamy, Peter K Malkin, and Thomas Erickson. Di-
agnostic visualization for non-expert machine learning practitioners: A design
study. In Visual Languages and Human-Centric Computing (VL/HCC), 2016
IEEE Symposium on, pages 87-95. IEEE, 2016.

[271 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD '16, pages 785-794, New York, NY, USA,
2016. ACM.

[28] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274, 2015.

[29] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and
Raquel Urtasun. Monocular 3d object detection for autonomous driving. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2147-2156, 2016.

[30] FranAgois Chollet. keras. https: //github. com/f chollet/keras, 2015.

149



131] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environ-
ment for machine learning. In BigLearn, NIPS Workshop, 2011.

[32] Kaggle Competition. Avito demand prediction challenge. https: / /www.
kaggle.com/c/avito-demand-prediction/.

[33j Kaggle Competition. Titanic: Machine learning from disaster. https : / /www.
kaggle.com/c/titanic/.

134] Kaggle Competition. Zillow prize: ZillowAA2s home value prediction (zesti-
mate). https://www.kaggle.com/c/zillow-prize-1.

[351 Kaggle Competitor. Kaggle kernel. https :/ /www. kaggle .com/
aharless/xgboost-lightgbm-and-ols.

[36] Kaggle Competitor. Kaggle kernel: Avito demand prediction
competition. https: //www.kaggle.com/sudalaira-jkumar/

simple-exploration-baseline-notebook-avito/code.

[371 Kaggle Competitor. Kaggle kernel: Avito demand predic-
tion competition. https://www.kaggle.com/bminixhofer/

aggregated-features-lightgbm.

1381 Kaggle Competitor. Kaggle kernel: Titanic predi-
tion challenge. https ://www.kaggle.com/arthurtok/

introduction-to-ensembling-stacking-in-python/code.

139] Kaggle Competitor. Kaggle kernel: Titanic predi-
tion challenge. https: //www. kaggle. com/poonaml/

titanic-survival-prediction-end-to-end-ml-pipeline/code.

[401 Kaggle Competitor. Kaggle kernel: Zillow home value pre-
diction competition. https://www.kaggle.com/aharless/

xgb-w-o-outliers-lgb-with-outliers-combined.

[411 Been Doshi-Velez, Finale; Kim. Towards a rigorous science of interpretable
machine learning. In eprint arXiv:1702.08608, 2017.

[421 David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum,
and Zoubin Ghahramani. Structure discovery in nonparametric regression
through compositional kernel search. In Proceedings of the 30th International
Conference on Machine Learning, June 2013.

[431 Eric Eide, Leigh Stoller, and Jay Lepreau. An experimentation workbench for
replayable networking research. In Proceedings of the 4th USENIX Conference
on Networked Systems Design &#38; Implementation, NSDI'07, pages 16-16,
Berkeley, CA, USA, 2007. USENIX Association.

150



[44] Johan Eker, J6rn W Janneck, Edward A Lee, Jie Liu, Xiaojun Liu, Jozsef
Ludvig, Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming
heterogeneity-the ptolemy approach. Proceedings of the IEEE, 91(1):127-144,
2003.

[45] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and
Berthold Reinwald. Compressed linear algebra for large-scale machine learning.
The VLDB Journal, Sep 2017.

[46] Facebook Engineering. Introducing fblearner flow: Facebook's ai back-
bone. https://code.facebook.com/posts/1072626246134461/

introducing-fblearner-flow-facebook-s-ai-backbone/

[47] Uber Engineering. Meet michelangelo: Uber's machine learning platform.
https://eng.uber.com/michelangelo/.

[48] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner.
Detecting adversarial samples from artifacts. arXiv preprint, 2017.

[491 Apache Software Foundation. Airflow.

[501 Andrew Gelman and Eric Loken. The garden of forking paths: Why multiple
comparisons can be a problem, even when there is no aAIJfishing expeditionhAi
or AAIJp-hackinghAI and the research hypothesis was posited ahead of time.
2013.

[511 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http: //www. deeplearningbook. org.

[521 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. ICLR, 2015.

[53] Ian J Goodfellow, David Warde-Farley, Pascal Lamblin, Vincent Dumoulin,
Mehdi Mirza, Razvan Pascanu, James Bergstra, Fr6d6ric Bastien, and Yoshua
Bengio. Pylearn2: a machine learning research library. arXiv preprint
arXiv:1308.4214, 2013.

[54] MIT DB Group. Modeldb. https://github.com/mitdbg/modeldb,
2017.

[55] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H Witten. The weka data mining software: an update. ACM
SIGKDD explorations newsletter, 11(1):10-18, 2009.

[56] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman coding.
CoRR, abs/1510.00149, 2015.

151



[57] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos,
Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates,
et al. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint
arXiv:1412.5567, 2014.

[581 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770-778, 2016.

f591 Jeffrey Heer, Jock D Mackinlay, Chris Stolte, and Maneesh Agrawala. Graphical
histories for visualization: Supporting analysis, communication, and evaluation.
Visualization and Computer Graphics, IEEE Transactions on, 14(6):1189-1196,
2008.

[60] Jeffrey Heer and Ben Shneiderman. Interactive dynamics for visual analysis.
Commun. ACM, 55(4):45-54, April 2012.

[611 Joseph M Hellerstein, Vikram Sreekanti, Joseph E Gonzalez, James Dalton,
Akon Dey, Sreyashi Nag, Krishna Ramachandran, Sudhanshu Arora, Arka
Bhattacharyya, Shirshanka Das, et al. Ground: A data context service.

[621 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[631 Silu Huang, Liqi Xu, Jialin Liu, Aaron J Elmore, and Aditya Parameswaran.
o rpheus db: bolt-on versioning for relational databases. Proceedings of the
VLDB Endowment, 10(10):1130-1141, 2017.

[641 Robert Ikeda and Jennifer Widom. Panda: A system for provenance and data.
In Proceedings of the 2Nd Conference on Theory and Practice of Provenance,
TAPP'10, pages 5-5, Berkeley, CA, USA, 2010. USENIX Association.

165] IBM Inc. How chatbots can help reduce customer service costs
by 30%. https://www.ibm.com/blogs/watson/2017/10/

how-chatbots-reduce-customer-service-costs-by-30-percent/
2017.

[661 IBM Inc. How gpus are transforming the oil and gas in-
dustry. https://blogs.nvidia.com/blog/2017/03/15/

transforming-oil-and-gas-industry/, 2017.

[671 StitchFix Inc. Stichfix algorithms tour. http: //algorithms-tour.
stitchfix.com/, 2017.

[68] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-
unghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. Titian: Data
provenance support in spark. Proceedings of the VLDB Endowment, 9(3):216-
227, 2015.

152



[69] Jeff Johnson, Matthijs Douze, and Herv6 J6gou. Billion-scale similarity search
with gpus. arXiv preprint arXiv:1702.08734, 2017.

[701 Minsuk Kahng, Pierre Andrews, Aditya Kalro, and Duen Horng Chau. Ac-
tivis: Visual exploration of industry-scale deep neural network models. CoRR,
abs/1704.01942, 2017.

[71] Minsuk Kahng, Dezhi Fang, and Duen Horng (Polo) Chau. Visual exploration
of machine learning results using data cube analysis. In Proceedings of the
Workshop on Human-In-the-Loop Data Analytics, HILDA '16, pages 1:1-1:6,
New York, NY, USA, 2016. ACM.

[72j Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting
decision tree. In Advances in Neural Information Processing Systems, pages
3149-3157, 2017.

[73] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr Indyk, Sam Madden, and
Ronitt Rubinfeld. Rapid sampling for visualizations with ordering guarantees.
Proceedings of the VLDB Endowment, 8(5):521-532, 2015.

[741 Pang Wei Koh and Percy Liang. Understanding black-box predictions via in-
fluence functions. In Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pages 1885-1894, International Convention
Centre, Sydney, Australia, 06-11 Aug 2017. PMLR.

[75] M. Kreuseler, T. Nocke, and H. Schumann. A history mechanism for visual
data mining. In Proceedings of the IEEE Symposium on Information Visualiza-
tion, INFOVIS '04, pages 49-56, Washington, DC, USA, 2004. IEEE Computer
Society.

[76j Sanjay Krishnan and Eugene Wu. Palm: Machine learning explanations for
iterative debugging. In Proceedings of the 2Nd Workshop on Human-In-the-
Loop Data Analytics, HILDA'17, pages 4:1-4:6, New York, NY, USA, 2017.
ACM.

[77] Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M. Patel. Model
selection management systems: The next frontier of advanced analytics. SIG-
MOD Rec., 44(4):17-22, May 2016.

[781 Wei-En Lee. Visualizations for model tracking and predictions in machine learn-
ing. Master's thesis, 2017.

[79] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet computing, 7(1):76-80, 2003.

[801 Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE transac-
tions on visualization and computer graphics, 20(12):2674-2683, 2014.

153



[81] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. immens: Real-time visual querying
of big data. Computer Graphics Forum (Proc. Euro Vis), 32, 2013.

[82] Bertram Luddscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A Lee, Jing Tao, and Yang Zhao. Scientific workflow
management and the kepler system. Concurrency and Computation: Practice
and Experience, 18(10):1039-1065, 2006.

[83] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In Advances in Neural Information Processing Systems 30, pages
4768-4777. Curran Associates, Inc., 2017.

[84] Michael Maddox, David Goehring, Aaron J Elmore, Samuel Madden, Aditya
Parameswaran, and Amol Deshpande. Decibel: The relational dataset branch-
ing system. Proceedings of the VLDB Endowment, 9(9):624-635, 2016.

185] H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat
Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Bou-
los, and Jeremy Kubica. Ad click prediction: A view from the trenches. In
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD '13, pages 1222-1230, New York, NY, USA,
2013. ACM.

[86] H. Miao, A. Li, L. S. Davis, and A. Deshpande. Modelhub: Deep learning
lifecycle management. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pages 1393-1394, April 2017.

[87] Hui Miao, Amit Chavan, and Amol Deshpande. Provdb: Lifecycle management
of collaborative analysis workflows. 2017.

[88] Mahdi Milani Fard, Quentin Cormier, Kevin Canini, and Maya Gupta. Launch
and iterate: Reducing prediction churn. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 3179-3187. Curran Associates, Inc., 2016.

[89] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT Press,
Cambridge, MA, 2012.

[90] Leonardo Murta, Vanessa Braganholo, Fernando Chirigati, David Koop, and
Juliana Freire. noworkflow: capturing and analyzing provenance of scripts.
In International Provenance and Annotation Workshop, pages 71-83. Springer,
2014.

[91] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Am-
mar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, et al. Dynet: The dynamic neural network toolkit.
arXiv preprint arXiv:1 701.03980, 2017.

154



[92] NPR. Will using artificial intelligence to make loans trade
one kind of bias for another? https://www.npr.org/
sections/alltechconsidered/2017/03/31/521946210/
will-using-artificial-intelligence-to-make-loans-trade-one-kind-of
2017.

[93] Official Journal of the European Union. General data protection regula-
tion. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
celex%3A32016R0679.

[94] Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy Mattson.
The tiledb array data storage manager. Proceedings of the VLDB Endowment,
10(4):349-360, 2016.

[95] Hyunjung Park, Robert Ikeda, and Jennifer Widom. Ramp: A system for
capturing and tracing provenance in mapreduce workflows. 2011.

[96] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

[97] Jodo Paulo and Jos6 Pereira. A survey and classification of storage deduplication
systems. ACM Computing Surveys (CSUR), 47(1):11, 2014.

[98] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, 0. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825-2830,
2011.

[99] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Auto-
mated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 1-18. ACM, 2017.

[100] Jodo Felipe Nicolaci Pimentel, Vanessa Braganholo, Leonardo Murta, and Ju-
liana Freire. Collecting and analyzing provenance on interactive notebooks:
When ipython meets no workflow. In Proceedings of the 7th USENIX Confer-
ence on Theory and Practice of Provenance, TaPP'15, pages 10-10, Berkeley,
CA, USA, 2015. USENIX Association.

[101] Peter Pirolli and Stuart Card. The sensemaking process and leverage points for
analyst technology as identified through cognitive task analysis. In Proceedings
of international conference on intelligence analysis, volume 5, pages 2-4, 2005.

[102] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage.

[1031 R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

155



[1041 Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein.
Svcca: Singular vector canonical correlation analysis for deep learning dynamics
and interpretability. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus; S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 6078-6087. Curran Associates, Inc., 2017.

[1051 Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. Fast lossless compres-
sion of scientific floating-point data. In Data Compression Conference, 2006.
DCC 2006. Proceedings, pages 133-142. IEEE, 2006.

[1061 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust
you?": Explaining the predictions of any classifier. In Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD '16, pages 1135-1144, New York, NY, USA, 2016. ACM.

[1071 Anthony C Robinson and Chris Weaver. Re-visualization: Interactive visualiza-
tion of the process of visual analysis. In Proceedings of the GIScience Workshop
on Visual Analytics and Spatial Decision Support, 2006.

[108] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252,
2015.

[1091 D Sculley, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, and Michael
Young. Machine learning: The high-interest credit card of technical debt.

[1101 Adam Seering, Philippe Cudre-Mauroux, Samuel Madden, and Michael Stone-
braker. Efficient versioning for scientific array databases. In Proceedings of
the 2012 IEEE 28th International Conference on Data Engineering, ICDE '12,
pages 1013-1024, Washington, DC, USA, 2012. IEEE Computer Society.

[1111 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. 7(8), 2016.

[112] Burr Settles. Active learning literature survey. Technical report, 2010.

[113] Ben Shneiderman. The eyes have it: A task by data type taxonomy for infor-
mation visualizations. In Proceedings of the 1996 IEEE Symposium on Visual
Languages, VL '96, pages 336-, Washington, DC, USA, 1996. IEEE Computer
Society.

[114] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important
features through propagating activation differences. CoRR, abs/1704.02685,
2017.

156



[115] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
CoRR, abs/1312.6034, 2013.

[116j Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[117] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-
mization of machine learning algorithms. In Advances in neural information
processing systems, pages 2951-2959, 2012.

[118] Facebook Open Source. Caffe2. https: //github. com/caf f e2 /caf f e2,
2015.

[119] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht.
Keystoneml: Optimizing pipelines for large-scale advanced analytics. In 2017
IEEE 33rd International Conference on Data Engineering (ICDE), pages 535--
546, April 2017.

[120] Spotify. Luigi.

[121] Michael Stonebraker, Paul Brown, Jacek Becla, and Donghui Zhang. Scidb: A
database management system for applications with complex analytics. Com-
puting in Science and Engg., 15(3):54-62, May 2013.

[1221 Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth
O'Neil, Pat O'Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store: A column-
oriented dbms. In Proceedings of the 31st International Conference on Very
Large Data Bases, VLDB '05, pages 553-564. VLDB Endowment, 2005.

[1231 Harihar Subramanyam. A system for storage and analysis of machine learning
operations. Master's thesis, 2017.

[124] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4,
inception-resnet and the impact of residual connections on learning. CoRR,
abs/1602.07261, 2016.

[1251 Dawood Tariq, Maisem Ali, and Ashish Gehani. Towards automated collection
of application-level data provenance. In TaPP, 2012.

[1261 KubeFlow Team. Katib: Repository for hyperparameter tuning. https / /
github.com/kubeflow/katib.

[127] KubeFlow Team. Kubeflow: open, community driven project to make it easy
to deploy and manage an ml stack on kubernetes. https ://github.com/
kube flow.

157



[128] Kubernetes Team. Kubernetes: Production-grade container orchestration.
https://kubernetes.io/.

[129] The Galaxy Team and Community. The galaxy project.

[130] Theano Development Team. Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[131] Tom van der Weide, Dimitris Papadopoulos, Oleg Smirnov, Michal Zielinski,
and Tim van Kasteren. Versioning for end-to-end machine learning pipelines. In
Proceedings of the 1st Workshop on Data Management for End-to-End Machine
Learning, page 2. ACM, 2017.

[1321 Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and
Neoklis Polyzotis. S ee db: efficient data-driven visualization recommendations
to support visual analytics. Proceedings of the VLDB Endowment, 8(13):2182-
2193, 2015.

[1331 Jason Wang and Luis Perez. The effectiveness of data augmentation in image
classification using deep learning. Technical report.

[134] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning
structured sparsity in deep neural networks. In Advances in Neural Information
Processing Systems, pages 2074-2082, 2016.

[135] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David
Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic,
Paul Fisher, et al. The taverna workflow suite: designing and executing work-
flows of web services on the desktop, web or in the cloud. Nucleic acids research,
41(W1):W557-W561, 2013.

[136] Eugene Wu, Samuel Madden, and Michael Stonebraker. Subzero: A fine-grained
lineage system for scientific databases. In Proceedings of the 2013 IEEE Interna-
tional Conference on Data Engineering (ICDE 2013), ICDE '13, pages 865-876,
Washington, DC, USA, 2013. IEEE Computer Society.

[137] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Rong Ma, Shuchen Song, and
Aditya Parameswaran. Helix: Holistic optimization for accelerating iterative
machine learning. Technical report.

[138] Hongyu Yang, Cynthia Rudin, and Margo Seltzer. Scalable bayesian rule lists.
arXiv preprint arXiv:1602.08610, 2016.

[139] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson.
Understanding neural networks through deep visualization. In Deep Learning
Workshop, International Conference on Machine Learning (ICML), 2015.

158



[1401 Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages 15-28, San Jose, CA,
2012. USENIX.

[1411 Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convo-
lutional Networks, pages 818-833. Springer International Publishing, Cham,
2014.

[142] Ce Zhang, Arun Kumar, and Christopher R6. Materialization optimizations for
feature selection workloads. ACM Transactions on Database Systems (TODS),
41(1):2, 2016.

[143] Zhao Zhang, Evan R. Sparks, and Michael J. Franklin. Diagnosing machine
learning pipelines with fine-grained lineage. In Proceedings of the 26th Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
HPDC '17, pages 143-153, New York, NY, USA, 2017. ACM.

[144] Zheguang Zhao, Lorenzo De Stefani, Emanuel Zgraggen, Carsten Binnig, Eli
Upfal, and Tim Kraska. Controlling false discoveries during interactive data
exploration. In Proceedings of the 2017 ACM International Conference on Man-
agement of Data, pages 527-540. ACM, 2017.

[145] B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba. Learning Deep
Features for Discriminative Localization. CVPR, 2016.

[146] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016.

159


