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by
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Abstract

Data analysis is often driven by the goals of understanding or optimizing some popu-
lation of interest. The first of these two objectives aims to produce insights regarding
characteristics of the underlying population, often to facilitate scientific understand-
ing. Crucially, this requires models which produce results that are highly interpretable
to the analyst. On the other hand, notions of interpretability are not necessarily as
central for determining how to optimize populations, where the aim is to build data-
driven systems which learn how to act upon individuals in a manner that maximally
improves certain outcomes of interest across the population. In this thesis, we de-
velop interpretable yet flexible modeling frameworks for addressing the former goal,
as well as black-box nonparametric methods for addressing the latter. Throughout,
we demonstrate various empirical applications of our algorithms, primarily in the
biological context of modeling gene expression in large cell populations.

For better understanding populations, we introduce two nonparametric models
that can accurately reflect interesting characteristics of complex distributions with-
out reliance on restrictive assumptions, while simultaneously remaining highly inter-
pretable through their use of the Wasserstein (optimal transport) metric to summa-
rize changes over an entire population. One approach is principal differences analy-
sis, a projection-based technique that interpretably characterizes differences between
two arbitrary high-dimensional probability distributions. Another approach is the
TRENDS model, which quantifies the underlying effects of temporal progression in
an evolving sequence of distributions that also vary due to confounding noise. While
the aforementioned techniques fall under the frequentist regime, we subsequently
present a Bayesian framework for the task of optimizing populations. Drawing upon
the Gaussian process toolkit, our method learns how to best conservatively inter-
vene upon heterogeneous populations in settings with limited data and substantial
uncertainty about the underlying relationship between actions and outcomes.

Thesis Supervisor: Tommi Jaakkola Thesis Supervisor: David Gifford

Professor of EECS Professor of EECS
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Nomenclature

For ease of reference, we present a list of particular notation and technical definitions
used in each chapter. Hat notation Z is used throughout the thesis to represent an
empirical realization of underlying property z which is observed/estimated from data.
C is used to represent universal constants, whose value may change from line to line.

Chapter 1

Px denotes the probability distribution of random variable X.

The LP norm of a vector x E Rd is given by: IIXII, = (IxI|P + Ix2I' + IXdIP)lP.

)1/pThe LP norm of a measurable function f : D -+ JR is given by: I Ifl I (jP If (x) IP dx)i/

For matrices A, B of equal dimensions: (A, B) is defined as the inner product of
the vectors formed by flattening the matrices, and is equivalent to the trace of their
matrix product: tr(AB). This is a linear function of both A and B.

.M is the set of all n x m nonnegative matching matrices with fixed row sums = 1/n
and column sums = 1/m.

Chapter 2

Ac denotes the complement of set A.

11- lo denotes the cardinality function (the number of nonzero entries) of a vec-
tor/matrix.

- 1 denotes the fi norm of a vector/matrix (the sum of the magnitudes of the
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entries).

1| - 112 and 11 - |IF denote the Euclidean and Frobenius norm of a vector and ma-
trix, respectively. Throughout chapter 2, we interchangeably apply operators to both
vectors and matrices assuming the context is clear.

tr(A) denotes the trace of matrix A, i.e. the sum of the diagonal entries.

The overloaded diag(.) operator returns either the vector formed by the diagonal el-
ements of the input matrix, or alternatively the diagonal matrix whose only nonzero
elements are the entries of the input vector.

D(., -) is taken to be the squared L 2 Wasserstein distance between distributions from
2.3 onward.

B := {3 E Rd : 110112 < 1,1 ;> 0} is the feasible set of unit-length projection
vectors considered in PDA.

Chapter 3

Fx denotes the cumulative distribution function of univariate probability measure
Px, and Ffl denotes the corresponding quantile function.

We slightly abuse notation using dLq (-,-) to denote both Lq-Wasserstein distances be-
tween distributions or the corresponding quantile functions' Lq-distance (both q = 1, 2
are used in this chapter).

Random variable X E R is said to follow a sub-Gaussian(o-) distribution if E[X] = 0

and Pr(IXI > t) < 2exp (-) for any t > 0.

The Wasserstein R 2 measures how much of the variation in the observed distribu-
tions is captured by the TRENDS model's fitted distributions.

A measures the magnitude of the inferred trend-effect (i.e. the effect size).

Chapter 4

All points x E Rd lie in convex and compact domain C C R

All occurrences of f are implicitly referring to f I D,.
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Pn (-), o (.), and o(-, -) respectively denote the mean, variance, and covariance func-
tion of our posterior for f | D under the GP (0, k(x, x')) prior.

Fj (a) denotes the at' quantile of random variable Z.

P-'(-) denotes the N(0, 1) quantile function.

11- |i denotes the norm of reproducing kernel Hilbert space 'wk.

3(x) C R' denotes the ball of radius 6 centered at x C C.

I C { 1, ... , d} represents the set of variables which are intervened upon in sparse
settings.

pa(Y) denotes the set of variables which are parents of Y in a causal directed acyclic

graph (DAG) (Pearl 2000)

desc(I) is the set of variables which are descendants of at least one variable in I
according to the causal DAG.

The squared exponential kernel (with length-scale parameter 1 > 0) is defined:

k(x, x') = exp ( -- IIX - '12)

The Mat6rn kernel (with another parameter v > 0 controlling smoothness of sample
paths) is defined:

21-"v/
k(x, X') r"B, (r) where r = I__ - x' l1, B, is a modified Bessel function

17(v)1li

Random variables E1),... (n) form a martingale difference sequence which is uni-

formly bounded by o if E[E(i) I . . ., E(1)] = 0 and E(') < 0- Vi E N.

A function f is Lipshitz continuous with constant L if: If(x) - f(x')I < LIx - x'I for
every x, x' G C.

Suppose p > 0 is expressed as p = m + for nonnegative integer m and 0 < q 1.
The H6lder space CP[0, 11 d is the space of functions with existing partial derivatives

of orders (ki, . . . , kd) for all integers ki, . . . , kd > 0 satisfying k, + - + kd m.
Additionally, each function's highest order partial derivative must form a function h

that satisfies: |h(x) - h(y)| C1 - y|'7 for any x, y.

17



18



Chapter 1

Introduction

Across nearly all sciences and industries, the collection and analysis of data has be-
come the primary instrument by which we learn about our world and how to enact

desired changes. Technological advancements in computing and measurement tech-

niques (e.g. higher-resolution sensors, internet/mobile applications, high-throughput

experimentation) have lead to an explosion in the amount of available data. To fully

realize the immense potential impact buried within rapidly accumulating data, we

require proper analytic methods designed to best utilize newly emerging data types.

One fundamental goal of scientific data analysis is to better understand the un-

derlying characteristics of a particular population. Classical models for interpretable

data analysis often rely on overly simple parametric distributions which are especially
inaccurate for high-dimensional measurements, or produce results that must be un-

derstood with respect to the "average" individual in the population. However, this

hypothetical average-individual may not actually exist in a heterogeneous population

and inferred average-effects can be misleading'. In contrast, black-box methods from

machine learning and nonparametrics can approximate arbitrary relationships, but

do not provide much insight about the underlying population. To address these short-

comings, this thesis will introduce nonparametric models that can accurately reflect

interesting characteristics of complex distributions, while simultaneously remaining

highly interpretable to data analysts. Our key idea is to measure changes across an

entire population via the Wasserstein (optimal transport) metric, instead of relying

on traditional coarser summaries like expectation/covariance differences.

In other application domains, such as business and medicine, one is more con-

cerned with acting to optimize the underlying population rather than simply under-

standing its characteristics. Here, data is used to infer an action policy that will

lead to desired outcomes. While advances in reinforcement learning (RL) and ban-

Consider for example the famous case of Simpson's paradox, in which a particular average-case

relationship appears in the aggregate data from different subpopulations but disappears or reverses
when these subpopulations are combined into a single larger dataset.
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dit/Bayesian optimization have shown great promise (Shahriari et al. 2016), these
sequential methods typically require a vast number of experimental rounds before
they begin to reliably identify good actions. Such reliance on a multitude of sequen-
tial experiments has limited the applicability of these methods primarily to digital
environments where one can rapidly iterate between modeling and experimentation.

It is often more logistically feasible in real-world applications to obtain a single
fixed dataset with many observations (e.g. from an external agency or scientific col-
laborator), upon which all subsequent decision-making will be based. Although more
widely applicable, learning from a fixed (and often observational) dataset will inher-
ently involve substantial uncertainty due to the limited number of samples, and it is
undesirable to prescribe actions whose outcomes are unclear. In particular, to prove
the value of sophisticated statistical learning methods to an external party (for ex-
ample to encourage the creation of a sequential experimentation infrastructure), it is
critical that the analyst provides a data-driven policy that does not produce harmful
outcomes at the outset. This unfortunately cannot be ensured under typical explo-
ration strategies employed in RL and bandit/Bayesian optimization. Even in settings
where sequential experimentation is feasible, many applications require learning to
halt at the time of deployment (consider an autonomous vehicle which is deployed
with a fixed policy to ensure reliability). Because complete exploration of complex
real-world environments is likely not achieved by the time of deployment, defining
the optimal policy will still require dealing with substantial uncertainty, which can
be quantified by studying the agent's entire past experience as a fixed dataset.

The final portion of this thesis considers such fixed-data settings from a Bayesian
perspective and formalizes the of role of uncertainty in data-driven actions. Impor-
tantly, we consider the case where the data do not even contain examples of beneficial
actions, and thus these must be identified without explicit supervision (unlike say imi-
tation learning). Adopting a Gaussian process framework, we introduce a conservative
definition of the optimal intervention which can be either tailored on an individual
basis or globally enacted over a population. Gradient methods are employed to iden-
tify the best intervention and a key theme of the approach is carefully constraining
this optimization to avoid regions of high uncertainty. Various applications of this
methodology are presented including gene expression manipulation and improving
the popularity of news articles.

1.1 Single cell RNA-sequencing

Much of the methodology presented in thesis is motivated by scientific applications
in single-cell genomics, where the goal is to model a heterogeneous cell population
in which key biological processes of interest take place within individual members.
In particular, we analyze data containing gene-expression measurements obtained via
single-cell RNA-sequencing (scRNA-seq). The recent introduction of RNA-sequencing
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techniques to obtain transcriptome-wide gene expression profiles from within indi-
vidual cells has drawn massive interest across the field of biology, as described by
Geiler-Samerotte et al. (2013). Previously only measurable in aggregate over a whole
tissue-sample/culture consisting of thousands of cells, gene-expression at the single-
cell level offers insight into biological phenomena at a much finer-grained resolution,
and is important to quantify as even cells of the same supposed type exhibit dramatic
variation in morphology and function. For a detailed survey of the technical steps
involved in extracting and quantifying RNA molecules from within single cells, we
refer the reader to the recent publication of Haque et al. (2017).

To highlight the importance of making expression measurements within single
cells, Geiler-Samerotte et al. (2013) articulate the following analogy: "analyzing gene
expression in a tissue sample is a lot like measuring the average personal income
throughout Europe - many interesting and important phenomena are simply invisible
at the aggregate level. Even when phenotypic measurements have been meticulously
obtained from single cells or individual organisms, countless studies ignore the rich
information in these distributions, studying the averages alone". A key limitation
for discovery is that existing statistical methods are primarily designed to operate
on crude summary statistics such as expectations and covariances. However, such
coarse analysis fails to leverage the finer grained insight into biological processes that
scRNA-seq measurements can provide, since one could study these same quantities
via (aggregate) tissue-level RNA-seq data. Futhermore, statistical results which are
interpreted in terms of some hypothetical "average" cell may be severely misleading.
Cell populations can exhibit enormous heterogeneity, particularly in developmental or
in vivo settings (Trapnell et al. 2014, Buettner et al. 2015). A few high-expression cells
often bias a population's average expression, and transcript levels can vary 1,000-fold
between seemingly equivalent cells (Geiler-Samerotte et al. 2013). Thus, in order to
fully characterize biological processes, it is crucial to study the full distribution of gene
expression in the underlying cell population. As the number of cells per experiment
is increased by advances in single-cell profiling technology such as Drop-seq (Macosko
et al. 2015) or inDrops (Zilionis et al. 2017), the study of population-wide cellular gene
expression distributions will enable many future discoveries, and the tools introduced
in this thesis provide principled and effective statistical frameworks for this analysis.

1.2 The Wasserstein distance

Many of our ideas for modeling populations leverage the Wasserstein distance, a met-
ric between probability distributions that themselves are defined over a common met-
ric space (Dobrushin 1970, Villani 2008). While other popular measures of difference
between distributions such as f-divergences (e.g. Kullback-Leibler), total variation, or
Bhattacharyya distances only take into account changes in probability measure, the
Wasserstein distance (and the broader class of integral probability metrics to which it
belongs) additionally considers the magnitude of changes, measuring both the amount
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of probability mass moved as well as the distance this mass is moved. Since it was first
introduced a statistical context by Mallows (1972), many special cases of this statis-
tical divergence have appeared under a variety of names including the Kantorovich,
Mallows, Dudley, optimal transport, or earth-mover distance (Levina & Bickel 2001).

For random variables X, Y defined on a common metric space with metric d(-, .),
the Wasserstein distance between their corresponding distributions Px, Py is formally
defined as the solution of the following optimization over all joint distributions Pxy
with marginals that match the given distributions:

D(X,Y) = min Ep, [d(X,Y)] s.t. (X,Y)~ Pxy, X Px, Y ~ Py (1.1)
PXY

Intuitively interpreted as the minimal amount of "work" that must be done to
transform one distribution into the other, the Wasserstein distance has enjoyed enor-
mous success across a number of application domains where differences between dis-
tributions should be measured along a meaningful scale (Levina & Bickel 2001). For
vector-valued variables, the underlying metric d(., -) is commonly taken to be an Lp
norm (typically either the Euclidean - L2 - or Manhattan - L, - distance). This
metric offers a natural dissimilarity measure between populations because it accounts
for the proportion of individuals that are different as well as how different these
individuals are (i.e. it integrates the amount of probability mass moved times the
distance moved). Lemma 1 formalizes this idea in a single dimension, showing that
the Wasserstein distance can in this case be expressed as a distance between quantile
functions.

Lemma 1 (Levina & Bickel (2001)). Suppose X, Y E R are continuous univariate
variables in a metric space where distances are measured via a LP norm. Then,
Wasserstein distance between them is given by:

1/P

D(XY) = I|F 1 (q) - F l(q)|P dq

where Fx, Fy are the CDFs of distributions Px, Py and Ff, Fi7 are the correspond-

ing quantile functions.

An empirical estimate of the Wasserstein distance from data r-_, .. ., ') Px
and y(), .... , y(m) 1ID Py (assuming m < n without loss of generality) is typically ob-
tained by solving the following optimal transport problem:

D(X, Y) = min (M, K) (1.2)
MEM

where M is the polytope of all n x m nonnegative matching matrices with fixed row
sums = 1/n and column sums = 1/m (see Villani (2008) for details), and K is a
n x m transportation cost matrix with entries Kj = d(x(i), yU)).
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The linear program in (1.2) is often solved using network simplex or interior point
methods (Pele & Werman 2009), but it remains quite computationally intensive,
requiring at least O(n3 log n) runtime. While far more efficient approximation al-
gorithms have been introduced by Cuturi (2013), we note that the computational
complexity of this optimal transport problem remains prohibitive for many practical
applications. In contrast, estimation of the Wasserstein distance from univariate data
can be done far more efficiently by way of the equivalent formulation in Lemma 1,
where quantile function estimates are easily obtained by sorting the data (merely
requiring O(n log n) runtime). This property is heavily exploited by our methods
in Chapters 2 and 3. We finally emphasize that when using an LP-Wasserstein dis-
tance in data analysis, it is critical to first ensure that the measurements of different
variables have been represented on a directly comparable scale.

1.3 Contrasting multivariate distributions

Characterizing differences between populations is one of the most fundamental tasks
encountered across the sciences. Such analysis seeks to answer whether or not the
populations differ and, if so, which variables or relationships contribute most to this
difference. In many applications, information is lacking about the nature of possi-
ble differences and the distribution of measurements in the underlying populations
are high-dimensional quite complex. The first novel method introduced in this the-
sis is principal differences analysis (PDA) for analyzing differences between high-
dimensional distributions. This approach not only produces a p-value for an empir-
ically observed difference, but also interpretably quantifies how much each variable
contributes to the overall difference. PDA operates by finding the projection that
maximizes the Wasserstein divergence between the resulting univariate populations.
Representing the first practical algorithm derived from the Cramer-Wold theory, our
approach requires no assumptions about the form of the underlying distributions, nor
the nature of their inter-class differences. A sparse variant of the method is intro-
duced to identify features responsible for the differences. We provide algorithms for
both the original minimax formulation as well as a convex semidefinite relaxation.

In addition to deriving some convergence results, we illustrate how the approach
may be applied to identify differences between cell populations in the somatosensory
cortex and hippocampus as manifested by single cell RNA-seq Zeisel et al. (2015). We
find that PDA exhibits high power in two-sample testing (even in high-dimensions
with sparse underlying differences), and is the only provably sparsistent variable-
selection method that does not rely on strong assumptions like those required for
the logistic lasso or sparse discriminants analysis. When applied to heavily nor-
malized gene expression data from cells sampled in two different brain regions, our
PDA method identified numerous interesting genes involved in regulatory interac-
tions. These could not be found via de-facto differential expression analyses that
consider each gene marginally. While Chapter 2 introduces PDA in the context of
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the Wasserstein distance, our broader framework extends beyond this specific choice
of statistical divergence.

1.4 Quantifying trends in evolving populations

Chapter 3 subsequently presents a nonparametric framework to model a short se-
quence of probability distributions that vary both due to underlying effects of se-

quential progression and confounding noise. To distinguish between these two types

of variation and estimate the sequential-progression effects, our approach leverages

an assumption that these effects follow a persistent trend. While classical statistical

tools focus on scalar-response regression or order-agnostic differences between distri-

butions, it is desirable in this setting to consider both the full distributions as well as
the structure imposed by their ordering. We thus introduce a new regression model
for ordinal covariates where responses are univariate distributions and the underlying

relationship reflects consistent changes in the distributions over increasing levels of the
covariate. This work is motivated by the recent rise of single-cell RNA-sequencing
experiments over a brief time course, which aim to identify genes relevant to the
progression of a particular biological process across diverse cell populations.

In many scientific and survey settings, real-valued observations are sampled in
batches, where the observations in each batch share a common label. This numeri-

cal/ordinal value is the covariate. The primary interest in such analyses is to assess the

affect of the covariate (measured across a batch) on other measurements (measured

within individuals). When each batch consists of a large number of i.i.d. observa-
tions, the empirical distribution of individual observation-values in a batch may be

a good approximation of the underlying population distribution conditioned on the
value of the covariate. In order to quantify the covariate's overall effect on these con-
ditional distributions, we can consider changes across all segments of the population.
In the case of high-dimensional observations, one can measure this effect separately
for each profiled variable to identify which are the most interesting. However, it may
often occur that, in addition to random sampling variability, there exist unmeasured
confounding variables, unrelated to the covariate, that affect the observations in a

possibly dependent manner within the same batch. Referred to as batch effects in

the scientific literature (Risso et al. 2014), this type of variation can cause standard
methods to overestimate the underlying effects of interest.

Our TRENDS (Temporally Regulated Effects on Distribution Sequences) regres-

sion model is designed to infer the magnitude of covariate-effects across entire distribu-

tions. TRENDS is an extension of classic regression with a single covariate (typically

of fixed-design), where one realization of our dependent variable is a batch's entire

empirical distribution (rather than a scalar) and the restriction that fitted-values are

smooth/linear in the covariate is replaced by the restriction that fitted distributions

follow a trend. Here, we formally define the concept of a trend as a sequence of distri-
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butions that evolve linearly under the Wasserstein metric. TRENDS extends scalar-
valued regression to full distributions while retaining the ability to distinguish effects
of interest from extraneous noise. Inspired by applications in single-cell genomics,
where longitudinal measurements of individual cells are unobtainable, TRENDS re-
defines the objectives and measures of fit/effect-size employed in classical regression

(such as least-squares and R2 ) by using the language of optimal transport to inter-
pretably adapt regression measures for distributions in place of scalar quantities. The
corresponding estimation algorithm we propose combines Dykstra's alternating pro-
jections with the pool-adjacent-violators technique (de Leeuw 1977, Boyle & Dykstra
1986), and is practically efficient and guaranteed to find a global optimum.

One exciting avenue of experimentation which has become possible with the ad-
vent of single-cell RNA-sequencing technology involves profiling groups of cells sam-
pled at various times from tissues / cell-cultures undergoing development. The hope
is that such data could reveal which developmental genes regulate/mark the emer-
gence of new cell types over the course of development. However, current scRNA-seq
cost/labor constraints prevent dense sampling of cells continuously across the entire
time-continuum. Researchers must instead focus on a few time-points, simultane-
ously isolating batches of cells at each time and subsequently generating RNA-seq
transcriptome profiles for each individual cell that has been sampled. Because the
cells in a batch are simultaneously collected and sequenced (independently of other
batches), the measured gene-expression values are often biased by batch effects: tech-
nical artifacts that perturb observed values in a possibly correlated fashion between
cells of the same batch. Rather than treating the cells from a single time point
identically, it is desirable to retain batch information and account for this nuisance
variation. Batch effects are also prevalent in other applications including temporal
studies of demographic statistics, where a simultaneously-collected group of survey
results may be biased by latent factors like location. When applied to scRNA-seq
time course datasets from differentiating myoblast cells (Trapnell et al. 2014) as well
as the developing somatosensory cortex of juvenile mice (Zeisel et al. 2015), TRENDS
is able to accurately uncover the genes that regulate development by disentangling
the temporal effects on expression variation from batch effects.

1.5 Bayesian inference of optimal interventions

In Chapter 4, we turn our attention from simply understanding populations to ac-
tively optimizing them through external intervention. We introduce a nonparametric
Bayesian framework for determining how to best intervene upon heterogeneous pop-
ulations in order to maximally improve individual outcomes. This work aims to
discover narrowly focused interventions (impacting few covariates) that may be indi-
vidually tailored or globally enacted over the entire population, in order to shape the
population as desired. The conservative definition of the optimal intervention that
we propose is particularly designed for applications where proposing a harmful action
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is drastically worse than proposing no change at all.

Our methodology adapts principles from Bayesian optimization (and bandits/RL)
for settings where learning is restricted to a single dataset rather than sequential ex-

perimentation. Under limited data, vast regions of the feature-space are inevitably

associated with large outcome-uncertainty, and a primary goal of this research is

to identify interventions that are beneficial not only in expectation, but also with

high confidence. The approach we introduce never suggests wild transformations

to covariate-values never before encountered in the training data, and will conser-

vatively suggest no change at all for an individual whose measurements look very

different from all previously observed data-points. While our optimal-intervention

goals appear similar to Bayesian optimization (Shahriari et al. 2016), additional data

is not acquired in our setting. Acquisition functions tailored for exploration of un-

certain areas are therefore not appropriate. Furthermore, we seek interventions that

lead to the greatest improvement in each individual's outcome rather than finding a

single answer (the maximum across the population). For example, in a writing im-

provement application, we wish to inform a particular author of simple modifications

likely to improve their existing article rather than proposing a single optimal article.

Similarly, Bayesian optimization does not address optimization of a given population

for which the underlying distribution of covariate-values is unknown.

In many data-driven applications, including medicine, the primary interest in

causality has to do with identifying actions that are likely to produce a desired change

in some outcome of interest. Typically, this is done by analyzing data using mod-

els which facilitate understanding of the relations between variables (eg. assuming

linearity/additivity). Based on conclusions drawn from this analysis, the analyst de-

cides how to intervene in a manner they confidently believe will improve outcomes.

Formalizing such beliefs via Bayesian inference, our framework instead automatically

identifies beneficial interventions directly from the data.

In a general setting, optimal intervention requires understanding both the statis-

tical relationship between covariates and outcomes as well as the underlying causal
structure. While existing methods for causal inference aim to learn both of these, they

remain limited to large sample sizes and few dimensions. By restricting ourselves to

applications that meet a set stringent causal conditions, we explore an alternative

paradigm to improve outcomes that dispenses with causal modeling, instead treating

the underlying mechanisms as a black-box function to be optimized. If the underly-

ing relationship obeys an invariance condition, our approach can identify beneficial

interventions directly from observational data. We provide theoretical guarantees for

gains obtained via our approach when Gaussian process regression modeling is used to

provide posterior estimates of the underlying relationship between covariates and out-

comes (Rasmussen 2006). Although our methods assume covariates can be precisely

adjusted, they remain capable of improving outcomes in misspecified settings where
interventions incur unintentional downstream effects (meaning they affect additional

covariates beyond those intended to be altered).
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We demonstrate two applications of this methodology. One is a writing improve-
ment task where the data consists of documents labeled with associated outcomes (eg.

grades, impact, popularity) and the goal is to suggest beneficial changes to the au-

thor. Our second example is a gene perturbation task where the expression of certain

regulatory genes can be up/down-regulated in a population (eg. cells or yeast) with
the goal of inducing a particular phenotype or downstream gene expression pattern.

These examples depict settings where features cause outcomes (not vice-versa) and

the assumptions of our approach may hold approximately, depending on the types of

external intervention used to actually alter the features.

Although our methods for learning beneficial interventions from observational

datasets rely on stringent causal and statistical assumptions, they empirically perform

well in both intentionally-misspecified and complex real-world settings. As supervised

learning algorithms grow ever more popular, we expect intervention-decisions in many

domains will increasingly rely on predictive models. Our conservative definition of

the optimal intervention provides a principled approach to handle the inherent un-

certainty in these settings as a consequence of limited data. Because we are able

to employ any Bayesian regressor (including Gaussian processes and Bayesian neural

networks), our ideas are widely applicable, considering practical types of interventions

that can either be individually personalized or enacted uniformly over a population.

1.6 Previously published work

This thesis contains material from various previous publications with collaborators

who were instrumental in developing many of the results presented here. The ma-

terial of Chapters 2, 3, and 4, has respectively appeared in the following following

publications:

J. Mueller and T. Jaakkola. Principal Differences Analysis: Interpretable Charac-

terization of Differences between Distributions. Advances in Neural Information Pro-

cessing Systems, 2015.

J. Mueller, T. Jaakkola, and D. Gifford. Modeling Persistent Trends in Distribu-

tions. Journal of the American Statistical Association, 2017.

J. Mueller, D. Reshef, G. Du, and T. Jaakkola. Learning Optimal Interventions.

Artificial Intelligence and Statistics, 2017.
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Chapter 2

Principal differences analysis

Understanding differences between populations is a common task across disciplines,
from biomedical data analysis to demographic or textual analysis. For example,
in biomedical analysis, a set of variables (features) such as genes may be profiled
under different conditions (e.g. cell types, disease variants), resulting in two or more
populations to compare. The hope of this analysis is to answer whether or not the
populations differ and, if so, which variables or relationships contribute most to this
difference. In many cases of interest, the comparison may be challenging primarily
for three reasons:

1. The number of variables profiled may be large.

2. Populations are represented by finite, unpaired, high-dimensional sets of sam-
ples from potentially complex underlying distributions with strong interactions
between variables.

3. Information may be lacking about the nature of possible differences

(exploratory data analysis).

We will focus on the comparison of two high dimensional populations. Therefore,
given two unpaired i.i.d. sets of samples XH = X(1),..., X(n) ~ Px and Y(m)

y), ... , y(m) ~ Py, the goal is to answer the following two questions about the
underlying multivariate random variables X, Y E Rd:

(Q1) Is Px = Py?

(Q2) If not, what is the minimal subset of features S C {1,... , d} such that the
marginal distributions differ Px, : Pys while Px = PY c for the complement?

A finer version of (Q2) may additionally be posed which asks how much each feature
contributes to the overall difference between the two probability distributions (with
respect to the given scale on which the variables are measured).
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Many two-sample analyses have focused on characterizing limited differences such
as mean shifts (Lopes et al. 2011, Clemmensen et al. 2011). More general differences

beyond the mean of each feature remain of interest, however, including variance/co-

variance of demographic statistics such as income. It is also undesirable to restrict the

analysis to specific parametric differences, especially in exploratory analysis where the
nature of the underlying distributions may be unknown. In the univariate case, a num-

ber of nonparametric tests of distribution equality based on statistical divergence are
available with accompanying concentration results (van der Vaart & Wellner 1996).
Popular examples of such divergences (also referred to as probability metrics) include:

f-divergences (Kullback-Leibler, Hellinger, total-variation, etc.), the Kolmogorov dis-
tance, or the Wasserstein metric (Gibbs & Su 2002). Unfortunately, this univariate
simplicity vanishes as the dimensionality d of the data grows, and a variety of com-
plex statistical divergences have been designed to address some of the difficulties that
appear in high-dimensional settings (Wei et al. 2015, Rosenbaum 2005, Szekely &
Rizzo 2004, Gretton et al. 2012).

In this chapter, we propose the principal differences analysis (PDA) framework
which circumvents the curse of dimensionality through explicit reduction back to the
univariate case. Given a pre-specified statistical divergence D which measures the dif-
ference between univariate probability distributions, PDA seeks to find a projection

,3 which maximizes D(3TX, fTY) subject to the constraints 1112 < 1, 01 > 0 (the
nonnegativity constraint on the first entry of 3 is merely included to avoid underspec-
ification). This reduction is justified by the Cramer-Wold device, which ensures that

Px h Py if and only if there exists a direction along which the univariate linearly
projected distributions differ (Cramer & Wold 1936, Cuesta-Albertos et al. 2007, Jirak
2011). Assuming D is a positive definite divergence (meaning it is nonzero between
any two distinct univariate distributions), the projection vector produced by PDA
can thus capture arbitrary types of differences between high-dimensional Px and Py.
Furthermore, the approach can be straightforwardly modified to address (Q2) by in-
troducing a sparsity penalty on /3 and examining the features with nonzero weight
in the resulting optimal projection. The resulting comparison pertains to marginal
distributions up to the sparsity level. We refer to this approach as sparse differences

analysis or SPARDA.

2.1 Related work

Due to its fundamental scientific value, the problem of characterizing differences be-
tween populations, including feature selection, has received a great deal of study
(Clemmensen et al. 2011, Tibshirani 1996, Bradley & Mangasarian 1998, Wei et al.
2015, Lopes et al. 2011). We limit our discussion to projection-based methods which,
as a family of methods, are closest to our approach. For multivariate two-class data,
the most widely adopted methods include sparse linear discriminant analysis (LDA)
proposed by Clemmensen et al. (2011) and the logistic lasso of Tibshirani (1996).
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While interpretable, these methods seek specific differences (e.g., covariance-rescaled
average differences) or operate under stringent assumptions (e.g., log-linear model).
In contrast, SPARDA (with a positive-definite divergence) aims to find features that
characterize a priori unspecified differences between general multivariate distributions.

Perhaps most similar to our general approach is Direction-Projection-Permutation
(DiProPerm) procedure of Wei et al. (2015), in which the data is first projected along
the normal to the separating hyperplane (found using linear SVM, distance weighted
discrimination, or the centroid method) followed by a univariate two-sample test
on the projected data. The projections could also be chosen at random (Lopes et al.
2011). In contrast to our approach, the choice of the projection in such methods is not
optimized for the test statistics. We note that by restricting the divergence measure
in our technique, methods such as the linear support vector machine of Bradley &
Mangasarian (1998) could be viewed as special cases. The divergence in this case
would measure the margin between projected univariate distributions. While suitable
for finding well-separated populations, it may fail to uncover more general differences
between possibly multi-modal populations whose distributions heavily overlap in the
feature space.

2.2 Using projections to characterize differences in
distributions

For a given divergence measure D between two univariate random variables, the
general idea of principal differences analysis is to find the projection 0 that solves

max { D(OTX(n), 3Ty(m))} (2.1)
3E5,|[110 o<k

where B : { 3 E Rd : 110112 1,,31 > 0} is the feasible set, 11011o < k is the
sparsity constraint, and OTX(n) denotes the observed random variable that follows
the empirical distribution of n samples of f3TX. Instead of imposing a hard cardinality
constraint |10|1o < k, we may instead penalize by adding a penalty term' -A1i3Io
or its natural relaxation, the f, shrinkage used in Lasso (Tibshirani 1996), sparse
LDA (Clemmensen et al. 2011), and sparse PCA (D'Aspremont et al. 2007, Amini &
Wainwright 2009). Sparsity in our setting explicitly restricts the comparison to the
marginal distributions over features with non-zero coefficients. We can evaluate the
null hypothesis Px = Py (or its sparse variant over marginals) using permutation
testing with test statistic D(^TX(n), Tj/(3)). In the basic permutation test, one
simply randomizes the assignments of the observed data S(), ..*., X(n), Y(1) .... , y(m)

to create two new groups whose underlying distributions must be equal, as specified
by the null hypothesis (Wei et al. 2015, Good 1994).

1In practice, shrinkage parameter A (or explicit cardinality constraint k) may be chosen via
cross-validation by maximizing the divergence between held-out samples.
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The divergence D plays a key role in our analysis. If D is defined in terms of
density functions as in f-divergence, one can use univariate kernel density estimation
to approximate projected pdfs with additional tuning of the bandwidth hyperparam-
eter. For a suitably chosen kernel (e.g. Gaussian), the unregularized PDA objective
(without shrinkage) is a smooth function of 3, and thus amenable to the projected

gradient method (or its accelerated variants (Duchi et al. 2011, Wright 2010)). In con-
trast, when D is defined over the cumulative density functions along the projected
direction - e.g. the Kolmogorov or Wasserstein distance that we focus on in this

chapter - the objective is nondifferentiable due to the discrete jumps in the empirical

CDF. We specifically address the combinatorial problem implied by the Wasserstein
distance. Moreover, since the divergence assesses general differences between dis-
tributions, Equation (2.1) is typically a non-concave optimization. To this end, we

develop a semi-definite relaxation of the problem into a concave formulation for use

with the Wasserstein distance.

2.3 PDA using the Wasserstein distance

In the remainder of this chapter, we focus on the squared L2 Wasserstein distance,
defined as

D (X, Y) = min E p, I||X -y||12 s.t. (X,Y y) ~ Pxy, X ~ Px, Y ~ Py (2.2)
PXY

where the minimization is over all joint distributions over (X, Y) with given marginals

Px and Py. Intuitively interpreted as the amount of work required to transform one
distribution into the other, D provides a natural dissimilarity measure between pop-
ulations that integrates both the fraction of individuals which are different and the
magnitude of these differences. While component analysis based on the Wasserstein
distance has been limited to the work of Sandler & Lindenbaum (2011), this diver-
gence has been successfully used in many other applications (Levina & Bickel 2001).
In the univariate case, (2.2) may be analytically expressed as the L2 distance between
quantile functions. We can thus efficiently compute empirical projected Wasserstein
distances by sorting X and Y samples along the projection direction to obtain quan-

tile estimates. See 1.2 for more detailed background information on Wasserstein
distance.

Under the squared L 2 Wasserstein distance, the empirical objective in Equation
(2.1) between unpaired sampled populations {X(), ... , I)} and {y(), ... , y(m)} can

be shown to be

max min E (TX(i) - Ty(j))2m = max min TWMO (2.3)
0ES MEM ,. . E B MEM

wherelo<k M=1 i=1 t t la h <k

where M4 is the set of all n x m nonnegative matching matrices defined in @1.2 with
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fixed row sums = 1/n and column sums = 1/m, Wm :- E fZij (0 ZJ1M1i, and
Zij := x() - y(). Note that if we omitted (or fixed) the inner minimization over
the matching matrices and set A = 0, the solution of (2.3) would be simply the
largest eigenvector of Wm. Similarly, for the sparse variant without minizing over
M, the problem would be solvable as sparse PCA (D'Aspremont et al. 2007, Amini
& Wainwright 2009, Wang et al. 2014). The actual max-min problem in (2.3) is
more complex and non-concave with respect to 3. We propose a two-step procedure
similar to "tighten after relax" framework used to attain minimax-optimal rates in
sparse PCA by Wang et al. (2014). First, we first solve a convex relaxation of the
problem and subsequently run a steepest ascent method (initialized at the global
optimum of the relaxation) to greedily improve the current solution with respect to
the original nonconvex problem whenever the relaxation is not tight.

Finally, we emphasize that PDA (and SPARDA) not only computationally re-
sembles (sparse) PCA, but PCA is actually a special case of PDA in the Gaussian,
paired-sample-differences setting. This connection is made explicit by considering the
two-class problem with paired samples (x(i), y(')) where X, Y follow two multivariate
Gaussian distributions. Here, the largest principal component of the (uncentered) dif-
ferences x(') - y() is in fact equivalent to the direction which maximizes the projected
Wasserstein difference between the distribution of X - Y and a delta distribution
at 0. Thus, PDA may be viewed as an extension of PCA to model the variation
between unpaired data samples from two populations, where an optimal pairing is
first inferred via the matching defined in the Wasserstein distance.

2.3.1 Semidefinite relaxation

The SPARDA problem may be expressed in terms of d x d symmetric matrices B as

max min tr (WMB)
B MEM

subject to tr(B) = 1, B >- 0, IIBi|o < k 2 , rank(B) = 1 (2.4)

where the correspondence between (2.3) and (2.4) comes from writing B = 0 0
/3 (note that any solution of (2.3) will have unit norm). When k = d, i.e., we
impose no sparsity constraint as in PDA, we can relax by simply dropping the rank-
constraint. The objective is then a supremum of linear functions of B and the resulting
semidefinite problem is concave over a convex set and may be written as:

max min tr (WMB) (2.5)
BEBr MEM

where B, is the convex set of positive semidefinite d x d matrices with trace = 1. If
B* ERd d denotes the global optimum of this relaxation and rank(B*) = 1, then the
best projection for PDA is simply the dominant eigenvector of B* and the relaxation
is tight. Otherwise, we can truncate B* as in D'Aspremont et al. (2007), treating the
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dominant eigenvector as an approximate solution to the original problem (2.3).

To obtain a relaxation for the sparse version where k < d (SPARDA), we follow

D'Aspremont et al. (2007) closely. Because B = #9 0 3 implies |IBIlo k 2 , we
obtain an equivalent cardinality constrained problem by incorporating this nonconvex
constraint into (2.4). Since tr(B) = 1 and ||BIlF = 01 = 1, a convex relaxation

of the squared Lo constraint is given by j|B Ii < k. By selecting A as the optimal

Lagrange multiplier for this f, constraint, we can obtain an equivalent penalized

reformulation parameterized by A rather than k. The sparse semidefinite relaxation

is thus the following concave problem

max { min tr (WmB) - AlBI 11 } (2.6)
BEB, MEM

While our relaxation bears strong resemblance to the sparse PCA relaxation pro-
posed by D'Aspremont et al. (2007), the inner minimization over matchings within
our problem prevents direct application of general semidefinite programming solvers.

Let M(B) denote the matching that minimizes tr (WMB) for a given B. Standard
projected subgradient ascent could be applied to solve (2.6), where at the tth iterate
the (matrix-valued) subgradient is WM(B()). However, this approach requires solving
optimal transport problems with large n x m matrices at each iteration. Instead, we
turn to a dual form of (2.6), assuming n > m (cf. Bertsekas (1998), Bertsekas &
Eckstein (1988))

1 n 1 n 1
max - min{0, tr([Zij(Zij] B)-ui-vj}+ % + v--AIIB I1

BEruR,vER"m M n . M
i=1 j=1 i=1 j=1

(2.7)
(2.7) is simply a maximization over B C Br, u E R , and v E R' which no longer

requires matching matrices nor their cumbersome row/column constraints. While
dual variables u and v can be solved in closed form for each fixed B (via sorting), we
describe a simple sub-gradient approach that works better in practice.
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RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA (2.7).
Returns the largest eigenvector of the solution to (2.6) as the desired projection
direction for SPARDA.

Input: d-dimensional data x(1),.@.., x() and y(l) ,y(m) (with n > m)
Parameters: A > 0 controls the amount of regularization, -y > 0 is the step-size
used for B updates, 77 > 0 is the step-size used for updates of dual variables u and
v, T is the maximum number of iterations without improvement in cost after which
algorithm terminates.

1: Initialize 0(0) - [, d] . .., , B 0() <- ) () EB, u(0) <- Onxi, v(0) 4- 0xi

2: While the number of iterations since last improvement in objective function is
less than T:

3: ON +- [1/n,..., 1/n] E W", &v +- [1/,. . ., 1/m] E Rm , B ÷- Odxd

4: For i, j {1,. .. ,n}x{1, ... , m}:

5: Zi - X(i)- y(U)

6: If tr([Zij 0 Zij]B(t)) - u) - jt) < 0

7: aui -u -1/m, vj<- &ovj-1/m, aB- oB+Zij @ Zij/m

8: End For

9: u(t+1) < (t) + r7 - au and v(t+1) - v(t) + r7 - av

10: B(t+l) + Projection (B(t) + -BIF - B ; A, 'Y/IIOBIIF

Output: R^eIa E Rd defined as the largest eigenvector (based on corresponding
eigenvalue's magnitude) of the matrix B(*) which attained the best objective value
over all iterations.
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Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-

trace matrices B, (the feasible set in our relaxation). Step 4 applies soft-thresholding
proximal operator for sparsity.

Input: B E Rxd
Parameters: A > 0 controls the amount of regularization, 6 = 'Y/IJOBF > 0 is the

actual step-size used in the B-update.

1: QAQT <- eigendecomposition of B

2: w* <- argmin {IOw - diag(A)11| : w E [0, 1]d, liwili = 1} (Quadratic program)

3: B <-+-Q-diag{w*,...,w*}.QT

4: If A > 0: For r, s E {1, ... d} 2 : , +- sign(B,,,) -max{0, , - 6A}

Output: b E B,

The RELAX algorithm is a projected subgradient method with supergradients
computed in Steps 3 - 8. For scaling to large samples, one may alternatively employ
incremental supergradient directions (Bertsekas 2011) where Step 4 would be replaced

by drawing random (i, J) pairs. After each subgradient step, projection back into

the feasible set B, is done via a quadratic program involving the current solution's
eigenvalues. In SPARDA, sparsity is encouraged via the soft-thresholding proximal

map corresponding to the f, penalty. The overall form of our iterations matches
subgradient-proximal updates (4.14)-(4.15) in Bertsekas (2011). By the convergence

analysis in 4.2 of Bertsekas (2011), the RELAX algorithm (as well as its incremental
variant) is guaranteed to approach the optimal solution of the dual which also solves

(2.6), provided we employ sufficiently large T and small step-sizes. In practice, fast
and accurate convergence is attained by: (a) renormalizing the B-subgradient (Step
10) to ensure balanced updates of the unit-norm constrained B, (b) using diminishing
learning rates which are initially set larger for the unconstrained dual variables (or
even taking multiple subgradient steps in the dual variables per each update of B).

2.3.2 Tightening after relaxation

It is unreasonable to expect that our semidefinite relaxation is always tight. There-

fore, we can sometimes further refine the projection /relax obtained by the RELAX

algorithm by using it as a starting point in the original non-convex optimization. We
introduce a sparsity constrained tightening procedure for applying projected gradient
ascent for the original nonconvex objective J() = minMEM 3TWM/ where 3 is now

forced to lie in B n Sk and Sk := { c Rd : 1111o < k}. The sparsity level k is fixed

based on the relaxed solution (k = I IreiaxIlo). After initializing j3(O =eiax E Rd, the
tightening procedure iterates steps in the gradient direction of J followed by straight-
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forward projections into the unit half-ball B and the set Sk (accomplished by greedily
truncating all entries of /3 to zero besides the largest k in magnitude).

Let M(O) again denote the matching matrix chosen in response to /3. J fails to

be differentiable at the / where M(g) is not unique. This occurs, e.g., if two samples

have identical projections under /. While this situation becomes increasingly likely
as n, m -_ 00, J interestingly becomes smoother overall (assuming the distributions

admit density functions). For all other /: M(') = M(O) where 3' lies in a small
neighborhood around / and J admits a well-defined gradient 2 WM(l)/. In practice,
we find that the tightening always approaches a local optimum of J with a diminishing

step-size. We note that, for a given projection, we can efficiently calculate gradients

without recourse to matrices M(O) or WMl(f) by sorting 0(t)TX(l), ... ,(tY"X(n) and

/3(t)TY(1, . . . , (t) Ty(m). The gradient is directly derivable from expression (2.3) where

the nonzero Mij (/) entries are easily determined by appropriately matching empirical

quantiles (represented by sorted indices) of the data. This extremely efficient com-

putation of M(O) is possible since the univariate Wasserstein distance is simply the
L 2 distance between quantile functions (recall Lemma 1 in 1.2). Additional compu-
tation can be saved by employing insertion sort which runs in nearly linear time for

almost sorted points (in iteration t - 1, the points have been sorted along the 0(t-1)

direction and their sorting in direction 3(t) is likely similar under small step-size).
Thus the tightening procedure is much more efficient than the RELAX algorithm

(respective runtimes are O(dn log n) vs. O(d3 n2 ) per iteration).

We require the combined steps for good performance. The projection found by
the tightening algorithm heavily depends on the starting point /(0), finding only the

closest local optimum (as in Figure 2-1). It is thus important that /(0) is already a

good solution, as can be produced by our RELAX algorithm. Additionally, we note

that as first-order methods, both the RELAX and tightening algorithms are amend-

able to a number of (sub)gradient-acceleration schemes (e.g. momentum techniques,
adaptive learning rates, or FISTA and other variants of Nesterov's method (Wright
2010, Duchi et al. 2011, Beck & Teboulle 2009)).

2.3.3 Properties of semidefinite relaxation

We conclude the algorithmic discussion by informally highlighting a few settings in

which our PDA relaxation is tight. Assuming n, m -+ 00, each of (i)-(iii) implies that

the B* which maximizes (2.5) is nearly rank one, or equivalently B* ~3 0 9 . Thus,
the tightening procedure initialized at / will produce a global maximum of the PDA
objective in each of these cases.

(i) There exists direction in which the projected Wasserstein distance between X
and Y is nearly as large as the overall Wasserstein distance in Rd. This occurs

for example if IIE[X] - E[Y 11 2 is large while both |ICov(X)IIF and IICov(Y)IIF
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are small (the distributions need not be Gaussian).

(ii) X ~ N(px, Ex) and Y N(py, Ey) with /px py and Ex ~ Ey.

(iii) X ~ N(px, Ex) and Y ~ N(py, Ey) with px = yy where the underlying co-

variance structure is such that arg maxBeB, 1|(B1 /2 ExB /2 ) 1/ 2 -(B 1/ 2 EyB1 /2 )1 /2 F
is nearly rank 1. For example, if the primary difference between covariances is

a shift in the marginal variance of some features, i.e. Ey ~ V - Ex where V is

a diagonal matrix.

Condition (i) is derived by noting that (2.5) has rank one solution when the ob-

jective is approximately linear in B. Conditions (ii) and (iii) follow from the fact

that (2.5) is actually the Wasserstein distance between random variables B 1/ 2 X and

B 1/ 2 Y. Furthermore, when X is Gaussian, AX follows a N(Apx, AExA") distribu-

tion, and the Wasserstein distance between (multivariate) Gaussian distributions can

be analytically expressed as

W(X,Y) =I1px - tty||1 + IK 2 
- 2

2.4 Theoretical results

In this section, we characterize various statistical properties of an empirical divergence-

maximizing projection /3 arg maxoE3 D(0TX(n), ITy(n)), although we note that

the algorithms may not succeed in finding such a global maximum for severely non-
convex problems. Throughout, D denotes the squared L2 Wasserstein distance be-

tween univariate distributions, the C values (with various subscripts) represent uni-

versal constants that change from line to line, and we employ hat notation to rep-
resent empirical versions of all distributional quantities. F is defined the cumulative

density function of a random variable, and the corresponding quantile function is

F1 (p) := inf{x : F(x) > p}.

To simplify our analysis, we make the following assumptions throughout:

(Al) The sample number of samples is drawn from each distribution (n = m).

(A2) Random variables X and Y admit continuous density functions.

(A3) X and Y are compactly supported with nonzero density in the Euclidean ball

of radius R.

Note that these assumptions ensure the quantile function equals the unique inverse

of any projected CDF. Our theory can be generalized beyond these conditions to

obtain similar (but far more complex) statements through careful treatment of the

distributions' tails and zero-density regions where CDFs are flat.
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Theorem 1 provides basic concentration results for the projections used in em-

pirical applications our method. To relate distributional differences between X, Y in

the ambient d-dimensional space with their estimated divergence along the univariate

linear representation chosen by PDA, we turn to Theorems 2 and 3. Finally, Theorem

4 provides sparsistency guarantees for SPARDA in the case where X, Y exhibit large

differences over a certain feature subset (of known cardinality).

Theorem 1. Suppose (A1)-(AS) hold and there exists direction 3* C B such that

D(3*TX,,3*TY) > A. Then:

D(3 X(n), #Y(y)) > A - e with probability greater than 1 - 4 exp - 4

Proof. Since /3 maximizes the empirical divergence, we have:

Pr(D(^("), ^Ti(n)) > A - e)

> Pr(D(#*TX(n), / 3 *TY(n)) > A -

> Pr(D(3*TX(n),/3*TX) + D( 3 *TY(n), *TY )

1 - 4 exp 6 4) applying Lemma 2 and the union bound. E

Theorem 2. Under the same assum tions as Theorem 1, if X and Y are identically

distributed in Rd, then: D(- X(X),0 Y(")) < e with probability greater than

I - C 1 + -- exp C2ne 2

Proof. We first construct a fine grid of points {ai, . . , as} which form an (e/R2 )-net

covering the surface of the unit ball in Rd. When Px = Py, the Cramer-Wold device

(Cramer & Wold 1936) implies that for any point in our grid: D(a4X, aSY) = 0.

A result analogous to Theorem 1 implies D(aZ("), ces()) > e with probability

< C1 exp (-2ne 2 ).

Subsequently, we apply the union bound over the finite set of all grid points. The total

number of points under consideration is the covering number of the unit-sphere which

is (i + . Thus, the probability that D(1X("), c4T()) < e simultaneously for

all points in the grid is at least

C,1+2R2 d x C2 n
C1 ~ ) + - x R4
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By construction, there must exist grid point ao such that iL3 - ao||2 < e/fR2 . By
Lemma 3

D(T"X(n), 0"y^(n)) D(aoTZ(n), aoTY(n)) + Ce

thus completing the proof.

To measure the difference between the original (unprojected) random variables
X, Y E IRd, we define the following metric between distributions on Rd which is

parameterized by a > 0 (see also Jirak (2011)):

Ta(X,Y) := IPr(IXiI < a,..., IXdI 5 a) - Pr(IY1I < a,..., IYdI < a)I (2.8)

For our subsequent theory, we also adopt the following simplifying assumptions:

(A4) Y has sub-Gaussian tails, meaning CDF Fy satisfies: 1-Fy (y) 5 2 exp(-y 2 /2).

(A5) E[X] = E[Y] = 0 (note that mean differences can trivially be captured by linear
projections, so these are not the differences of interest in the following theory).

(A6) The data have been normalized such that Var(Xe) = 1 for f = 1, ... , d.

Theorem 3. Suppose (A1)-(A6) hold and there exists a > 0 s.t. Ta(X, Y) > h (g( A))
where h (g(A)) := min{Ai, A 2} with

A1 := (a + d)d(g(A) + d) + exp(-a 2/2) + 0 exp 1/(120)) (2.9)

A 2 := (g(A) + exp(-a 2 /2)) - d (2.10)

:= IICov(X)IIi, g(A) := A4 . (1 + <b)~4, and 4b := sup0 ,L { sup, If..Ty(y)I}
with f 0 Ty(y) defined as the density of the projection of Y in the a direction.
Then:

D(T> CA - (2.11)

with probability greater than 1 - C1 exp ( -%ne2)

Proof. Our proof relies primarily on a quantitative form of the Cramer-Wold result
derived by Jirak (2011). This statement only requires that the distribution of one of
X or Y has rapidly decaying tails. We adapt Theorem 3.1 from Jirak (2011) in its
contrapositive form: If 3 a > 0 such that Ta(X, Y) > h(g(A)), then 3/ E B such that

sup Pr (3TX < z) - Pr (/Ty < z) > g(CA) (2.12)
zcR

Subsequently we leverage a number of well-characterized relationships between dif-
ferent probability metrics (summarized in Gibbs & Su (2002)) to lower bound the
projected (squared) Wasserstein distance between the underlying random variables.
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Letting KO denote the projected Kolmogorov distance in (2.12), we have that the
/3-projected L6vy-distance, LO satisfies:

K, < (1 + <D)LO where 4D := sup { sup Ifary (y)I} (2.13)
aEB y

and fQTy(y) is the density of the projection of Y in the a direction.

In turn the projected L6vy distance L, is bounded above by the Prokhorov metric
which itself is bounded above by the square root of the /-projected Wasserstein
distance. Following the chain of inequalities, we obtain: D(#TX, OTy) > CA, to
which we can apply Theorem 1 to obtain the desired probabilistic bound on the
empirical projected divergence. l

Theorem 4. Define C as in (2.11) and assume (A1)-(A6). Suppose there exists cer-
tain feature subsets S C {1,... , d} such that maxa Ta(XS, Ys) > h (g (E (d + 1)/ C)),
and remaining marginal distributions Xsc , Ysc are identical. If we take S to be the
smallest of all such feature subsets and S is unique with cardinality |S| = k, then:

arg max {D(#TX(n),/3TY(n)) : II/|Io < k}

satisfies #k) # 0 and 0.k) =0 V i 3 S, j E SC with probability greater than

I-C 1+R 2 d-k ep C2 n1 - C R+ -d exp ( 442

Proof. Intuitively, the properties of the feature subset S imply that Theorem 4 holds
for underlying distributions whose marginal distributions over SC are identical, while
the marginal distributions over S are highly different, but only if all variables in S are
considered (removal of any feature i E S results in a substantially decreased difference
in the remaining marginal distributions over S\i). Theorem 2 implies that with high

probability, any unit-vector /sc E Rdk must satisfy D( S3CXcs jcY) < e, while
Theorem 3 specifies the probability that there exists unit-vector 3S e R k such that

D(s S s S s) > d -e

A bound for the probability that both theorems' conclusions hold simultaneously
may be obtained by the union bound. When this is the case, it is clear that the
optimal k-sparse / E Rd must obey the sparsity pattern specified in the statement of
Theorem 4. To see this, consider any / E B with /3 $ 0 for some j E SC and note
that it is always possible to produce a strictly superior projection by setting Oj = 0
and distributing the additional weight j/3j among the features in S in an optimal
manner. l
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2.4.1 Auxiliary lemmas

Lemma 2. For bounded univariate random variable Z E [-R, R] with nonzero con-
tinuous density in this region, we have

D( Z(n), Z) > e with probability at most 2 exp (- )

Proof. On the real line, the (squared) Wasserstein distance is given by:

D(Z(n), Z) j (_jl(p) - Fi1(p))dp

(()_ F__ _ ) (F)(p)-F(p)

4R2  _ ( 2R()F dp where 2R < 1 for each p E (0, 1)

< 4R2f 1(p) - F (p) dp
-4Rj 2R

=2R 1 (p) - Fil(p) dp

= 2R j Fz(z) - Fz(z) dz

by the equivalence of the (empirical) quantile function and inverse (empirical) CDF

< 4R2 sup Fz(z) - Fz(z)

< e with probability > 1 - 2 exp (- )

by the Dvoretzky-Kiefer-Wolfowitz inequality (van der Vaart & Wellner 1996). l

Lemma 3. For a, 3 E B such that ||a - 112 < C, we have:

ID(aTX(n), aT(n)) - D(fTZ-(n), Tf"(n))| CR2  (2.14)

Proof. We assume that the a-projected divergence is larger than the /3-projected
divergence, and write:

nm

D(pTX(n), /TY(n)) = min Z Z(TX(i) __ /Ty(j)) 2 Mj 3MEM,
Z-=1 j=I1

recalling that M is the set of matching matrices defined previously. Let M(O) denote
the matrix which is used in the computation of the /-projected empirical Wasserstein
distance (the minimizer of the righthand side of the above expression). Thus, we can
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express (2.14) as:

axi - aryli))2 M(a) #x -7yi2
__=_ j=1 2 1 31

E S (aTx M - Cy(j)) 2 M(r)ij - E (T(i) - Ty(j))2M();
i=1 j=1 i=1 j=1

~I I[(aT(x@) - y(3))) 2 _ (!3T(x(l) _ y(3))) 2 ] AI(#3);
i=1 j=1

< [(a - #)T(xii) - y())- (a + ) T(i) _ y(i))] (
i=1 j=1

n m,

< EERCeR2 MC()j - C_ (2
i=1 j=1

2.5 Empirical results

2.5.1 Nonconvexity of the PDA objective

Figure 2-1 illustrates the cost function of PDA pertaining to two 3-dimensional dis-
tributions. Note that only dimensions 2 and 3 of the projection-space are plotted in

the figure since /#1 = 1 - Zd 2 /3 is fixed for the unit-norm projections of interest.
Here, we apply PDA to n =m =1000 points sampled from mean-zero Gaussian
distributions with the following respective covariance matrices:

F= 0.2 0.41 [1 -0.9 01
Ex =0.2 1 01 Ey= -9 1 0

0.4 0 1] K 0

Due to the large sample sizes, the empirical distributions accurately represent the
underlying populations, and thus the projection produced by the tightening proce-
dure (in green) is significantly inferior to the projection produced by the RELAX
algorithm (in red) in terms of actual divergence captured. In order to ensure good
results in practice, it is therefore important to use RELAX before tightening as we
previously advised. This example also illustrates a setting where our convex relax-
ation is tight (the RELAX solution is already globally optimal without any further
greedy optimization).
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Figure 2-1: PDA objective function for data sampled from two 3-dimensional Gaussian distri-
butions with mean zero. The point of convergence 3 of the tightening method
after random initialization (in green) is significantly inferior to the solution pro-
duced by the RELAX algorithm (in red).

2.5.2 Variable selection

The synthetic MADELON dataset used in the NIPS 2003 feature selection challenge
consists of points (n = m = 1000, d = 500) which have 5 features scattered on the
vertices of a five-dimensional hypercube (so that interactions between features must
be considered in order to distinguish the two classes), 15 features that are noisy lin-
ear combinations of the original five, and 480 useless features (Guyon et al. 2006).
While the focus of the challenge was on extracting features useful to classifiers, we
direct our attention toward more interpretable models. Figure 2-2 demonstrates how
well SPARDA, the top sparse principal component (Zou et al. 2005), sparse LDA
(Clemmensen et al. 2011), and the logistic lasso (Tibshirani 1996) are able to iden-
tify the 20 relevant features over different settings of their respective regularization
parameters (which control how many variables are selected by each method). The
red asterisk indicates the SPARDA result with A automatically selected via our cross-
validation procedure (without information of the underlying features' importance),
and the black asterisk indicates the best reported result in the challenge (Guyon et al.
2006).

The restrictive assumptions in logistic regression and linear discriminant analysis
are not satisfied in this complex dataset resulting in poor performance. Despite be-
ing class-agnostic, PCA was successfully utilized by numerous challenge participants
(Guyon et al. 2006), and we find that the sparse PCA performs on par with logistic re-
gression and LDA. Although the lasso fairly efficiently picks out 5 relevant features, it
struggles to identify the rest due to severe multi-colinearity. Similarly, the challenge-
winning Bayesian SVM with Automatic Relevance Determination (Guyon et al. 2006)
only selects 8 of the 20 relevant features. In many applications, the goal is to thor-
oughly characterize the set of differences rather than select a subset of features that
maintains predictive accuracy. SPARDA is better suited for this alternative objective.
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Figure 2-2: Number of relevant variables correctly selected by difFerent methods applied to the
MADELON data, over different settings of their respective regularization parame-
ters (which determine the cardinality of each method's chosen variable set). The
curves indicate the variable-selection precision of: SPARDA (red), the top sparse
principal component (black), sparse LDA (green), and the logistic lasso (blue).

Many settings of A return 14 of the relevant features with zero false positives. If A is
chosen automatically through cross-validation, the projection returned by SPARDA
contains 46 nonzero elements of which 17 correspond to relevant features.

2.5.3 Two-sample testing in high dimensions

Figure 2-3 compares the statistical power of SPARDA, PDA, Maximum Mean Dis-
crepancy (Gretton et al. 2012), DiProPerm (Wei et al. 2015), and the overall Wasser-
stein distance (over the ambient feature-space Rd) in two-sample testing problems
where Px # Py and the underlying differences have varying degrees of sparsity.
Here, d indicates the overall number of features in the data being tested, of which
only the first 3 exhibit any difference between the two populations.

We set the features of the underlying X and Y to mean-zero multivariate Gaussian
distributions in blocks of 3, where within each block, (common) covariance parameters
are sampled from the Wishart(I3 x3) distribution with 3 degrees of freedom. Only for
the first block of 3 features do we sample a separate covariance matrix for X and a
separate covariance matrix for Y, so all differences between the two distributions lie
in the first 3 features. To generate a dataset with d = 3 x f, we simply concatenate f
of our blocks together (always including the first block with the underlying difference)
and draw n = m = 100 points from each class. We generate 20 datasets by increasing
f (so the largest d = 60), and repeat this entire experiment 10 times reporting the
average p-values in Figure 2-3.

As we evaluate the significance of each method's statistic via permutation testing,
all the tests are guaranteed to exactly control Type I error (Good 1994), and we thus
only compare their respective power in determining Px $ Py setting. Each p-value
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is obtain by randomly permuting the class labels and recomputing the test statistic
100 times (where we use the same permutations between all datasets). In SPARDA,
regularization parameter A is re-selected using our cross-validation technique in each
permutation. The overall Wasserstein distance in the ambient space is computed
by solving the optimal transport problem via linear programming (Levina & Bickel
2001), and we note the similarity between this statistic and the cross-match test of
Rosenbaum (2005). A popular kernel method for testing high-dimensional distribu-
tion equality, the mean map discrepancy, is computed using the Gaussian kernel with
bandwidth parameter chosen by the "median trick" of Gretton et al. (2012) (which is
very similar to the energy test of Szekely & Rizzo (2004)). Finally, we also compute
the DiProPerm statistic, employing the the DWD-t variant recommended for testing
general equality of distributions by Wei et al. (2015).

cc

(0

0;

0)

Two Sample Testing

1'1 2'O 3 4o '0 6'
Data dimension (d)

Figure 2-3: Average p-values (over 10 repetitions) for multivariate two-sample tests produced
by SPARDA (red), PDA (purple), the overall Wasserstein distance in Rd (black),
Maximum Mean Discrepancy (green), and DiProPerm (blue). While the dimen-
sionality of the underlying distributions is varied, the underlying differences remain
limited to 3 dimensions in all cases.

Figure 2-3 demonstrates clear superiority of SPARDA which leverages the under-
lying sparsity to maintain high power even with the increasing overall dimensionality.
Even when all the features differ (when d = 3), SPARDA matches the power of
methods that consider the full space despite only selecting a single direction (which
cannot be based on mean-differences as there are none in this controlled data). This
experiment also demonstrate that the unregularized PDA retains much greater power
than DiProPerm, a similar projection-based method that performs poorly when the
data are not linearly separable (as is the case here).

46



2.6 Cellular gene expression differences between the
somatosensory cortex and hippocampus

Recent technological advances allow complete transcriptome profiling in thousands of
individual cells with the goal of fine molecular characterization of cell populations.
The (beyond the crude average-tissue-level expression measure that is currently stan-
dard) (Geiler-Samerotte et al. 2013). We apply SPARDA to expression measurements
of 10,305 genes profiled in 1,691 single cells from the somatosensory cortex and 1,314
hippocampus cells sampled from the brains of juvenile mice by Zeisel et al. (2015).
Playing critical roles in the brain, the somatosensory cortex (linked to the senses) and
hippocampal region (linked to memory regulation and spatial coding) contain a diver-
sity of cell types. It is thus of great interest to identify how cell populations in these
regions diverge in developing brains, a question we address by applying SPARDA to
scRNA-seq data from these regions.

Following Trapnell et al. (2014), we represent gene expression by log-transformed
FPKM computed from the sequencing read counts 2 , so values are directly comparable
between genes. Because expression measurements from individual cells are poorer in
quality than transcriptome profiles obtained in aggregate across tissue samples (due
to a drastically reduced amount of available RNA), it is important to filter out poorly
measured genes and we retain a set of 10,305 genes that are measured with sufficient
accuracy for informative analysis.

The resulting ZI produced by SPARDA identifies many previously characterized
subtype-specific genes and is in many respects more informative than the results of
standard differential expression methods. Table 2.1 and Figure 2-4 demonstrate that
SPARDA discovers many interesting genes which are already known to play important
functional roles in these regions of the brain. For comparison, we also run LIMMA,
a standard method for differential expression analysis which tests for marginal mean-
differences on a gene-by-gene basis (Ritchie et al. 2015). Ordering the significant
genes under LIMMA by magnitude of their mean expression difference, we find that
3 of the top 10 genes identified by SPARDA also appear in this top 10 list (Crym,
Spirnk8, Neurod6), demonstrating SPARDA's implicit attraction toward large first-
order differences over more nuanced changes in practice. Because only few genes can
feasibly be considered for subsequent experimentation in these studies, a good tool
for differential expression analysis must rank the most relevant genes very highly in
order for researchers to take note.

One particularly relevant gene in this data is Snca, a presynaptic signaling and
membrane trafficking gene whose defects are implicated in both Parkinson and Alzheimer's
disease (Lesage & Brice 2009, Linnertz et al. 2014). While Snca is ranked 1 1 th highest
under SPARDA, it only ranks 349 according to LIMMA p-values and 95 based on
absolute mean-shift. Figure 2-5 shows that the primary change in Snca expression

2available in NCBI's Gene Expression Omnibus (under accession GSE60361)
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GENE WEIGHT

Cck 0.0593 Primary distinguishing gene between distinct interneuron classes
identified in the cortex and hippocampus (Jasnow et al. 2009)

Neurod6 0.0583 General regulator of nervous system development whose induced

mutation displays different effects in neocortex vs. the hippocampal region

(Bormuth et al. 2013)

Stmn3 0.0573 Up-expressed in hippocampus of patients with
depressive disorders (Oh et al. 2010)

Plp1 0.0570 An oligodendrocyte- and myelin-related gene which exhibits

cortical differential expression in schizophrenia (Wu et al. 2012)

Crym 0.0550 Plays a role in neuronal specification (Molyneaux et al. 2007)

Spink8 0.0536 Serine protease inhibitor specific to hippocampal

pyramidal cells (Zeisel et al. 2015)

Gap43 0.0511 Encodes plasticity protein important for axonal regeneration

and neural growth

Cryab 0.0500 Stress induction leads to reduced expression in the

mouse hippocampus (Hagemann et al. 2012)

Mal 0.0494 Regulates dendritic morphology and is expressed at lower

levels in cortex than in hippocampus (Shiota et al. 2006)

Tspan13 0.0488 Membrane protein which mediates signal transduction events

in cell development, activation, growth and motility

Table 2.1: Genes with the greatest weight in the projection 3 produced by SPARDA analysis
of the mouse brain single cell RNA-seq data. Where not cited, the description of
the genes are taken from the standard ontology annotations.

between the cell types is not a shift in the distributions, but rather the movement
of a large fraction of low (1-2.5 log-FPKM) expression cells into the high-expression

(> 2.5 log-FPKM) regime. As this type of change does not match the restrictive
assumptions of LIMMA's t-test, the method fails to highly-rank this gene while the

Wasserstein distance employed by SPARDA is perfectly suited for measuring this sort

of effect.

2.6.1 Identifying genes with differential interactions

Finally, we also apply SPARDA to normalized expression data with mean-zero 8
unit-variance marginal distributions. Since this removes nearly all of the difference
between the two populations in terms of any single gene's expression, this explicitly

restricts our search to genes whose relationship with other genes' expression is different

between hippocampus and cortex cells. After restricting our analysis to only the top
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gemt ontology term Gp-vdus q-value level Ane contained

GO:0019226 transmission of nerve impulse BP 4 460 18(3.7%) 5.46e-11 1.31e-08

GO:0007268 synaptic transmission BP 4 301 13(3.3%) 1.04-07 1.02e-05

GO:0055082 cellular chemical homeostesis BP 4 632 16(2.5%) 1.27e-07 1.02e-05

GO:0032051 clathrin iht chain binding MF 4 3 3 (100.%) 1.330-07 4.66&-O6

0:0048666 neuron development BP 4 646 16(2.5%) 1.87e-07 1.09e-05

GC:0022008 neurogenesis BP 4 1029 20 (1.%) 2.28e-07 1.09e-05

GO:0032846 positive regulation of homeostatic process BP 4 57 6(10.5%) 4.72e-07 1.89e-05

GO:0048878 chemical homeostasis BP 4 mW 17 (2.0%) 1.12e-06 3.82e-O5

0:0007399 nervous system development BP 4 1466 23(1.6%) 1.31e-06 3.93o-05

GO:0030182 neuron differentation BP 4 654 17(2.0%) 1.57e-06 4.18e-05

00:0031175 neuron projection development BP 4 529 13(2.5%) 3.21e-06 7.76-05

GO:0051969 regulation of transmission of nerve impulse BP 4 194 8(4.1%) 7.32e-06 0.00016

0:0048858 cell projection morphogenesis BP 4 5B 12(2.3%) 1.37e-05 0.000275

GO:0032990 cell part morphogenesis BP 4 542 12(2.2%) 2.19e-05 0.000405
GO:0007010 cytoskeleton organization BP 4 763 14(1.8%) 3.33e-05 0.000571

GO:0048168 regulation of neuronal synaptic plasticity BP 4 38 4(10.5%) 4.29e-05 0.000686

GO:0000902 cell morphogenesis BP 4 814 14 (1.7%) .91e-S 0.00093

GO:0050877 neurological system process BP 4 2024 24(1.2%) 6.97-05 0.00093

00:0044057 regulation of system process BP 4 427 10(2.3%) 7.099-05 0.00093

GO:0008368 axon ensheathment BP 4 54 5 (6.%) 7.36e-05 0.00093

GO:0006344 adult locomotory behavior BP 4 66 5 (5.8%) 8.23e-S 0.00098
GO:0007611 learning or memory BP 4 151 6(4.0%) 0.000131 0.0015

GO:0006900 membrane budding BP 4 21 3(14.3%) 0.000165 0.0018

00071822 protein complex subunit organizaion BP 4 900 14 (1.6%) 0.000192 0.00201

GO:0001662 behavioral fear response BP 4 27 3(11.1%) 0.000356 0.00341
0:0002209 behavioral defense response BP 4 27 3 (.11%) 0.000356 0.00341

0:0030913 peranodal junction assembly BP 4 6 2(33.3%) 0.00039 0.0036
00:0007626 locomotory behavior BP 4 186 6(3.2%) 0.000405 0.0036

Figure 2-4: Biological process terms most significantly enriched in the annotations of the top
100 genes identified by SPARDA.

500 genes with largest initial average expression (since genes playing important roles
in interactions should be nontrivially expressed), we normalize each gene's expression
values to have mean zero and unit variance within in the cells of each class.

Subsequent application of SPARDA reveals that most of the genes corresponding
to the ten greatest values of the resulting 3 are known to play important roles in

in signaling and regulation (see Table 2.2). This analysis reveals many genes known
to be heavily involved in signaling, regulating important processes, and other forms
of functional interaction between genes. These types of important changes cannot
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of Snca expression across cells of the somatosensory cortex and hip-

be detected by standard differential expression analyses which consider each gene in
isolation or require gene-sets to be explicitly identified as features (Geiler-Samerotte
et al. 2013).
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GENE WEIGHT DESCRIPTION

Thyl 0.1245 Plays a role in cell-cell & cell-ligand interactions during
synaptogenesis and other processes in the brain

Vsnll 0.1245 Modulates intracellular signaling pathways of nervous system

Stmn3 0.1222 Stathmins form important protein complex with tubulins

Stmn2 0.1188 Note: Tubulins Tubb3 and Tubb2 are ranked 2 0 th and 2 5 th

by weight in #3
Tmem59 0.1176 Fundamental regulator of neural cell differentiation.

Knock out in the hippocampus results in drastic expression
changes of many other genes (Zhang et al. 2011)

Baspi 0.1171 Transcriptional cofactor which can divert the differentiation of
cells to a neuronal-like morphology (Goodfellow et al. 2011)

Snhgl 0.1166 Unclassified non-coding RNA gene

Mllt1l 0.1145 Promoter of neurodifferentiation and
axonal/dendritic maintenance (Lederer et al. 2007)

Uchll 0.1137 Loss of function leads to profound degeneration
of motor neurons (Jara et al. 2015).

Cck 0.1131 Targets pyramidal neurons and enables neocortical plasticity
allowing for example the auditory cortex
to detect light stimuli (Li et al. 2014, Gallopin et al. 2006)

Table 2.2: Genes with the greatest weight in the projection # produced by SPARDA analysis
of the marginally normalized expression data.
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Chapter 3

Modeling persistent trends in
distributions

A common type of data in scientific and survey settings consists of real-valued obser-
vations sampled in batches, where each batch shares a common label, a numerical/or-
dinal value whose effects on the observations is the item of interest. The batch label
is also referred to as the covariate, which may be of random or fixed design. When
each batch consists of a large number of i.i.d. observations, the empirical distribution
of the batch may be a good approximation of the underlying population distribution
conditioned on the value of the covariate. A natural goal in this setting is to quantify
the covariate's effect on these conditional distributions, considering changes across
all segments of the population. In the case of high-dimensional observations, one can
measure this effect separately for each variable to identify which are the most inter-
esting. However, it may often occur that, in addition to random sampling variability,
there exist unmeasured confounding variables unrelated to the covariate that affect
the observations in a possibly dependent manner within the same batch (cf. batch
effects in Risso et al. 2014).

The primary focus of this chapter is the introduction of the TRENDS (Tempo-
rally Regulated Effects on Distribution Sequences) regression model, which infers
the magnitude of these covariate-effects across entire distributions. TRENDS is an
extension of classic regression with a single covariate, where one realization of our
dependent variable is a batch's entire empirical distribution rather than a scalar, and
the condition that fitted-values are smooth/linear in the covariate is replaced by the
condition that fitted distributions follow a trend. Formally defined in 3.3, a trend
describes a sequence of distributions where the pth quantile evolves monotonically for
all p c (0, 1), though not necessarily in the same direction for different p, and there
are at most two partitions of the quantiles that move in opposite directions. Thus,
TRENDS extends scalar-valued regression to full distributions while retaining the
ability to distinguish effects of interest from extraneous noise.
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Despite the generality of our ideas, we motivate TRENDS with a concrete scientific

application: the analysis of single-cell RNA-sequencing time course data (see 3.12
for an alternative application to income data). One promising experimental design

made feasible by the advent of scRNA-seq technology involves sampling groups of cells

at various times from tissues / cell-cultures undergoing development and measuring

transcriptome-wide gene expression within each individual sampled cell (Trapnell

et al. 2014, Buettner et al. 2015). It is hoped that these data can reveal which

developmental genes regulate/mark the emergence of new cell types over the course

of development.

Current scRNA-seq cost/labor constraints prevent dense sampling of cells con-

tinuously across the entire time-continuum. Instead, researchers target a few time-

points, simultaneously isolating sets of cells at each time and subsequently generat-

ing RNA-seq transcriptome profiles for each individual cell that has been sampled.

More concretely, from a cell population undergoing some biological process like de-

velopment, one samples Ne > 1 batches of cells from the population at time te where

f = 1, 2,... , L indexes the time-points in the experiment and i = 1,... , N = l N

indexes the batches. Each batch consists of ni cells sampled and sequenced together.

We denote by xg) E R the measured expression of gene g in the sth cell of the ith

batch (1 < s < ni), sampled at time te.

Because expression profiles are restricted to a sparse set of time points in current

scRNA-seq experiments, the underlying rate of biological progression can drastically

differ between equidistant times. Thus, changes in the expression of genes regulat-

ing different parts of this process may be highly nonuniform over time, invalidating

assumptions like linearity or smoothness. One common solution in standard tissue-

level RNA-seq time course analysis is time-warping (Bar-Joseph et al. 2003). Since

our interest lies not in predicting gene-expression at new time-points, we instead aim

for a procedure that respects the sequence of times without being sensitive to their
precise values. In fact, researchers commonly disregard the wall-clock time at which

sequencing is done, instead recording the experimental chronology as a sequence of

stages corresponding overall qualitative states of the biological sample. For example,
in Deng et al. (2014): Stage 1 is the oocyte, Stage 2 the zygote, ... , Stage 11 the late
blastocyst. Attempting to impose a common scale on the stage numbering is difficult

because the similarity in expression expected across different pairs of adjacent stages

might be highly diverse for different genes. In this work, we circumvent this issue by
disregarding the time-scale and te values, instead working only with the ordinal levels

f (so the only information retained about the times is their order ti < t 2 < ... < tL

as done by Bijleveld et al. (1998) (Section 2.3.2).

Depictions of such data from two genes (where N = 1 for each f) are shown in the

lefthand panels of Figure 3-1. Lacking longitudinal measurements, these data differ

from those studied in time series analysis: at each time point, one observes a different

group of numerous exchangeable samples (no cell is profiled in two time points), and

also the number of time points is small (generally L < 10). As a result of falling
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Figure 3-1: Violin plots (kernel density estimates) depicting the empirical distribution of known
developmental genes' expression measured in myoblast cells (on left), and the
corresponding TRENDS fitted distributions (on right). Each point shows a sampled
cell.

RNA-seq costs, multiple cell-capture plates (each producing a batch of sampled cells,
i.e. N > 1) are being used at each time point to observe larger fractions of the cell
population (Zeisel et al. 2015). Because the cells in a batch are simultaneously col-
lected and sequenced (independently of other batches), the measured gene-expression
values are often biased by batch effects: technical artifacts that perturb observed
values in a possibly correlated fashion between cells of the same batch (Risso et al.
2014, Kharchenko et al. 2014). Rather than treating the cells from a single time point
identically, it is desirable to retain batch information and account for this nuisance
variation. Batch effects are also prevalent in other applications including temporal
studies of demographic statistics, where a simultaneously-collected group of survey
results may be biased by latent factors like location.

Furthermore, as discussed in 1.1, reducing a cell population to a crude summary
statistic may be highly misleading, because cell populations can exhibit enormous
heterogeneity, particularly in developmental or in vivo settings, and transcript levels
can vary immensely between seemingly equivalent cells (Geiler-Samerotte et al. 2013).
By fitting a TRENDS model (which accounts for both batch effects and the full
distribution of expression across cells) to each gene's expression values, researchers
can rank genes based on their presumed developmental relevance or employ hypothesis
testing to determine whether observed temporal variation in expression is biologically

55



relevant.

3.1 Related work

To better motivate the ideas subsequently presented in this chapter, we first describe
why existing methods are not suited for scRNA-seq time course experiments and
similar ordered-batched data lacking longitudinal measurements. As an alternative
to time-series techniques, regression models might be applied in this setting, such as
the Tobit generalized linear model of Trapnell et al. (2014). However, these models
rely on linearity/smoothness assumptions, which can be inappropriate for sporadic
processes such as development. More importantly, classic regression models scalar
values such as conditional expectations, for which results must be interpreted as the
effects in a hypothetical "average cell".

Rather than focusing only on (conditional) expectations or a few quantiles, we wish
to model the full (conditional) distribution of values, which is critical in the case of a
highly heterogeneous population (Geiler-Samerotte et al. 2013, Buettner et al. 2015).
Let P denote the underlying distribution of the observations from covariate-level f.
An omnibus test for distribution-equality (Ho : P = - - - = PL vs. the alternative that
they are not all identical, cf. the Komogorov-Smirnov method described in 3.10) can
capture arbitrary changes, but fails to reflect sequential dynamics. Significance tests
also do not quantify the size of effects, only the evidence for their existence. Krish-
naswamy et al. (2014) have proposed a mutual-information based measure (DREMI)
to quantify effects, which could be applied to our setting. However, under systematic
noise caused by batch effects, measures of general statistical dependence between the
batch-values and label f (e.g. mutual information or hypothesis testing) become highly
susceptible to the spurious variation present in the observed distributions (resulting
in false positives). We thus prefer borrowing strength in the sense that a consistent
change in distribution should ideally be observed across multiple time points for an
effect to be deemed significant.

Instead of these general approaches, we model the Pj as conditional distributions
Pr(X I f) which follow some assumed structure as f increases. Work in this vein
has focused on modeling only a few particular quantiles of interest (Bondell et al.
2010) or accurate estimation of the conditional distributions using smooth nonpara-
metric regression techniques (Fan et al. 1996, Hall et al. 1999). While such estimators
possess nice theoretical properties and good predictive-power, the relationships they
describe may be opaque and it is unclear how to quantify the covariate's effect on
the entire distribution. Note that in the case of classic regression, interpretable linear
methods remain favored for measuring effects throughout the sciences, despite the
availability of flexible nonlinear function families. Our TRENDS framework retains
this interpretability while modeling effects across full distributions.
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Change-point analysis can also be applied to sequences of distributions, but is
designed for detecting the precise locations of change-points over long intervals. How-
ever, scRNA-seq experiments only span a brief time-course (typically L < 10), and
the primary analytic goal is rather to quantify how much a gene's expression has
changed in a biologically interesting manner. Many change-point methods require
explicit parameterization of the types of distributions, an undesirable necessity given
the irregular nature of scRNA-seq expression measurements (Kharchenko et al. 2014).
Moreover, some development-related genes exhibit gradual rather than abrupt tempo-
ral temporal changes in expression. Requiring few statistical assumptions, TRENDS
models changes ordinally rather than only considering effects that are either smooth
or instantaneous, and this method can therefore accurately quantify both abrupt or
gradual effects.

3.2 Methods

Formally, TRENDS fits a regression model to an ordered sequence of distributions,
or more broadly, sample pairs {(i, F)}' where each i E {1,..., L} is an ordinal-
valued label associated with the ith batch, for which we have univariate empirical
distribution P. Here, it is supposed that for each batch i: a (empirical) quantile

function Ij-4 is estimated from ni scalar observations {X},,}_ 1 - Pi sampled from
underlying distribution Pi = Pr(X I fi), which may be contaminated by different

batch effects for each i. We assume a fixed-design where each level of the covariate
1,... , L is associated with at least one batch. In scRNA-seq data, P is the empirical
distribution of one gene's measured expression values over the cells captured in the
same batch and i indicates the index of the time point at which the batch was

sampled from the population for sequencing.

Unlike the supervised learning framework where one observes samples of X mea-
sured at different f and the goal is to infer some property of Pe := Pr(XC), in our

setting, we can easily obtain P as an empirical estimate of Pr(Xlei). We thus neither
seek to estimate the distributions P1 , ... , PL, nor test for inequality between them.
Rather, the primary goal of TRENDS analysis is to infer how much of the variation
in Pr(X I f) across different f may be attributed to changes in f as opposed to the

effects of other unmeasured confounding factors. To quantify this variation, we in-

troduce conditional effect-distributions Qe for which the sequence of transformations

Q1 - Q2 4 - - - 9 QL entirely captures the effects of f-progression on Pr(X I f), un-
der the assumption that these underlying forces follow a trend (defined in 3.3). We

emphasize that the Qe themselves are not our primary inferential interest, rather it is

the variation in these conditional-effect distributions that we attribute to increasing-f

rather than batch effects.

Thus, the Qf are not estimators of the sequence of PF. Rather, the Qe represent

the distributions one would expect see in the absence of exogenous effects and random
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sampling variability, in the case where the underlying distributions only change due

to f-progression and we observe the entire population at each f. Since we do not

believe exogenous effects unrelated to f-progression are likely to follow a trend over

f, we can use this presumption to denoise any spurious variation. This is achieved by
identifying the sequence of trending distributions which best models the variation in

{ P'}_1 and subsequently concluding that changes in this trending sequence reflect

the f-progression-related forces affecting PF.

3.2.1 Use of the Wasserstein distance

TRENDS employs the Wasserstein distance to measure divergence between distri-

butions. The Wasserstein distance is a natural dissimilarity measure of populations

because it accounts for the proportion of individuals that are different as well as how

different these individuals are. For univariate distributions, Lemma 1 in 1.1 states

that the Lq-Wasserstein distance is simply the Lq distance between quantile functions

given by:
1/q

dgq (P, Q) = |11 F-(p) - G-1(p)|I dp) (3.1)

where F, G are the CDFs of P, Q and F-1 , G- 1 are the corresponding quantile func-

tions. Slightly abusing notation, we use dLq(, -) in this chapter to denote both

Wasserstein distances between distributions or the corresponding quantile functions'

Lq-distance (both q = 1, 2 are used in our work).

In addition to being easy to compute (in 1-D), the L 2 Wasserstein metric is

equipped with a natural space of quantile functions, in which the Fr6chet mean takes

the simple form stated in Lemma 4. Calling this average the Wasserstein mean, we

note its implicit use in the popular quantile normalization technique (Bolstad et al.

2003).

Lemma 4. Let Q denote the space of all quantile functions. The Wasserstein mean

is the Frschet mean in Q under the L 2 norm:

: H F-1 =argmin (F-1(p) - G1(p))2 dp (3.2)
Po n 1 e i fo

Proof. Given any G-1 c- Q, we can define function H : [0, 1] ->R such that G-1 -
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N

H+ N F-1. We have:
i=1

N 1

/ (F-1(p) - G-(p))2 dp

1N N 2

= ( F3 -1(p) - H(p) - F-1 (p) dp
J0j=1 N =

1 N N 2

>N(F1(p) - iZF-1(p) dp

regardless of the value taken by H(p) for each p E [0, 1]. L

3.3 Characterizing trends in distributions

Definition 1. Let F-'(p) denote the pth quantile of distribution P with CDF F.
A sequence of distributions P1, ... , PL follows a trend if:

1. For any p E (0, 1), the sequence [F -1(p), . . . , Fj-1(p)] is monotonic.

2. There exists p* E [0, 1) and two intervals A, B that partition the unit-interval
at p* (one of A or B equals (0, p*) and the other equals [p*, 1)) such that: for
all p E A, the sequences [F-1 (p), ... , F-1 (p)] are all nonincreasing, and for all
q E B, the sequences [F' 1(q),... , F71 (q)] are all nondecreasing. Note that if
p* = 0, then all quantiles must change in the same direction as f grows.

1 2 2 22

How each quantile changes for f -1,2,3

N Increasing N Constant
0Decrasing N N on-ontonic

Figure 3-2: Violin plots depicting four different sequences of distributions which follow a trend.
The pth rectangle in the color bar on the righthand side indicates the monotonicity
of the pth quantile over the sequence of distributions (for p = 0.01, 0.02,... , 0.99).

Our formal definition of a trend applies to distributions which evolve in a consis-
tent fashion, ensuring that the temporal-forces that drive the transformation from P
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to PL do so without reversing their effects or leading to wildly different distributions
at intermediate f values. While the second condition of our definition technically
subsumes the first, Condition 1 contains our key idea and is therefore separated from
Condition 2, a subtler additional assumption that does not significantly alter results
in practice. Note that the trend definition employed in this chapter is intended for
relatively short sequences and does not include cyclic/seasonal patterns studied in
time-series modeling.

Lemma 5. If distributions P1 ,. . . , PL follow a trend, then

i

dL (Pi,Pj)z = dL I (P-1 ) Pt) for all i<y' E{Ill...,L}
i=i+1

Proof. Foranyi <j E {1, ... L}:

dL1(P, Pj) j F-(p) - F3- 1(p)| dp
0

Se=i1

=dL 1 (E -1, Pf)

+1+
where the second equality follows from the fact that Fi-' (p), FgQj(p) ... , F,-l(p)
is assumed to be monotone for each p.

Measuring how much the distributions are perturbed between each pair of levels
via the L1 Wasserstein metric, Lemma 5 shows the trend criterion as an instance of
Occam's razor, where the underlying effects of interest are assumed to transform the
distribution sequence in the simplest possible manner (recall that the Wasserstein
distance is interpreted as the minimal work required for a given transformation). If
one views the underlying effects of interest as a literal force acting in the space of
distributions, Lemma 5 implies that this force points the same direction for every f
(i.e. P1, . . . , PL lie along a line in the L1 Wasserstein metric space of distributions).
A trend is more flexible than a linear restriction in the standard sense, because the
magnitude of the force (how far along the line the distributions move) can vary over
f. Thus, we have formally extended the colloquial definition of a trend ("a general
direction in which something is developing or changing") to probability distributions.

To further conceptualize the trend idea, one can view quantiles as different seg-
ments of a population whose values are distributed according to Pr(X I f) (e.g. for
wealth-distributions, it has become popular to highlight the "one percent"). From
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this perspective, it is reasonable to assume that while the force of sequential pro-
gression may have different effects on the groups of individuals corresponding to
different segments of the population, its effects on a single segment should be con-
sistent over the sequence. If some segment's values initially change in one way at
lower levels of f and subsequently revert in the opposite direction over larger f (i.e.
this quantile is non-monotone), it is natural to conclude there are actually multiple
different progression-related forces affecting this homogeneous group of individuals.
It is therefore natural to assume a trend if we only wish to measure the effects of a
single primary underlying force. Often in settings such as scRNA-seq developmental
experiments, the researcher has a priori interest in a specific effect (such as how each
gene contributes to a specific stage of the developmental process). Therefore, data are
collected over a short e-range such that the primary effects of interest should follow
a trend.

The second condition in the trend definition specifies that adjacent quantiles must
move in the same direction over f except at most a single p*. This restricts the number
of population-segments which can increase over f when a nearby segment of the
population is decreasing. Intuitively, Condition 2 forces us to borrow strength across
adjacent quantiles when estimating effects that follow a trend. The main effect of
the additional restriction imposed by this condition prevents a trend from completely
capturing extremely-segmented effects (such as the example depicted in Figure 3-
3C). However, applications involving such complex phenomena are uncommon (it is
difficult to imagine a setting where the primary effects-of-interest push more than
two adjacent segments of a population in different directions), and such nuanced
changes can be reasonably attributed to spurious nuisance variation. We note that
a trend can still roughly approximate the major overall effects even when the actual
distribution-evolution violates Condition 2 (as seen in Figure 3-3C). In practice, the
results of our method are not significantly affected by this second restriction, but
it provides nice theoretical properties ensuring our estimation procedure (presented
in 3.6) efficiently finds a globally optimal solution, as well as additional robustness
against spurious quantile-variation in the data (possibly due to estimation-error given
limited samples per batch).

Figure 3-2 depicts simple examples of trending distribution-sequences. In each
example, it is visually intuitive that the evolution of the distributions proceeds in
a single consistent fashion. To highlight the broad spectrum of interesting effects
TRENDS can detect, we present three conceptual examples in 3.3.1 of distribution-
sequences that follow a trend, which includes consistent changes in location/scale and
the growth/disappearance of modes. Despite imposing conditions on every quantile,
the trend criterion does not require: explicit parameterization of the distributions,
specification of a precise functional form of the f-effects, or reliance on a smooth
or constant amount of change between different levels. This generality is desirable
for modeling developmental gene expression and other enigmatic phenomena where
stronger assumptions may be untenable.
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Figure 3-3: Violin plots depicting sequences of distributions which do not follow a trend (Ob-
served Distributions in lefthand panels). Shown to the right of each example are
the corresponding fitted distributions estimated by TRENDS (with the TRENDS
R2 value).

The lefthand panels of Figure 3-3 depict three examples of sequences which do not
follow a trend for different reasons. To the right of each example, we show the "best-
fitting" sequence that does follow a trend (formally defined in (3.6)), each distribution
of which corresponds to our estimate of Q, (introduced in 4.4). We reiterate that the
Qe are not by themselves of interest, but are merely used to quantify the sequential-
progression effects (as will be described in 3.5). Nonetheless, the visual depiction of
the trending Qe provides insight regarding what sort of changes a trend can accurately
approximate. Whereas the evolution of the (trending) fitted distributions in Figure
3-3A (on right) can intuitively be attributed to one consistent force, multiple are
required to explain the variation in the original non-trending sequence of distributions
on the left. Identifying a single consistent effect responsible for the changes in the left
panel of Figure 3-3B is far more plausible, and we note that these distributions in fact
are much closer to following a trend (while hard to visually discern, the 0 .0 4 th -. 16 th
quantiles of the observed distribution sequence increase between f = 1 to 2 and
decrease slightly from t = 2 to 3, thus violating a trend).

During specific stages of development, changes in the observed cellular gene-
expression distributions generally stem from the emergence/disappearance of different
cell subtypes (plus batch and random sampling effects). Clear subtype distinctions
may not exist in early stages where cells remain undifferentiated, and thus not only are
the relative proportions of different subtypes changing, but the subtypes themselves
may transform as well. Therefore, developmental genes' underlying expression pat-
terns are likely described by Examples 2 and 3 (of specific conceptual types of trends)
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in 3.3.1. The trend criterion fits our a priori knowledge well, while remaining flexible
with respect to the precise nature of expression changes.

3.3.1 Conceptual examples of trends

Example 1. Any sequence of stochastically ordered distributions follows a trend.

One considers random variable X1 ~ P1 less than X2 ~ P 2 in the stochastic or-

der (which we denote P -< P2) if Fi(x) > F2 (x) Vx (equivalently characterized

as Pr(X1 > x) < Pr(X2 > X) Vx) (Shaked & Shanthikumar G. 1994, Wolfstet-
ter 1993). Thus, the defining characteristic of a trend - the local monotonicity re-
striction independently applied to each quantile - is more general than imposing

a consistent stochastic ordering/dominance across the distribution-sequence (either

P1 - P 2 - - - - - PL or P1 >- P2 > - - >- PL), as this alternative requires that local

changes to each segment of the distribution all proceed in the same direction.

Example 2. Our trend definition also encompasses sequences where the distributions

at intermediate values of f are monotonic quantile mixtures of P1 and PL, i.e.

Ve: F = wtFj 1 + (1 - wj)F-1

s.t. {w E [0, 1] : f = 1,... , L} form a monotonic sequence (3.3)

Quantile mixtures are typically more appropriate than mixture distributions when

there is no evident switching mechanism between distributions in the data-generating
process (Gilchrist 2000). Condition (3.3) thus naturally characterizes the situation in

which the underlying forces of interest gradually evolve distribution P1 into PL over

f = 1,...,L.

Example 3. In many applications, each PF is a mixture of the same K under-

lying subpopulation-specific distributions, where we let Gk denote the CDF of the

kth subpopulation-specific distribution (mixing component) with f-dependent mix-

ing proportion -i) Each observed distribution can thus be expressed as:

K K-1

Vf E {1f.. L} : F = r (k)Gk where V k, f : 7r k) E [0, 1] , 7(K=) 7r k)

k=1 k=1
(3.4)

Here, the effects of interest alter the mixing proportions, so that a fraction of the

individuals of one subpopulation transition to become part of another as f increases.

Equivalently, this implies that the mixing proportion of one component falls while the

probability assigned to the other grows by the same amount. To ensure the generality

of this example, we avoid imposing a specific parameterization for Gk. Rather, we
merely assume these mixture components are stochastically ordered with G1 < G 2 -

... --- GK because subpopulations by definition have distinct characterizations (note
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that imposing a stochastic ordering is much weaker than requiring Gk to have disjoint
support).

To formalize the types of migration between subpopulations which meet our trend

criterion, we conceptualize a graph 9 with vertices 1,... , K representing each mixture
component. If there is migration from subpopulation i to j > i in the transition

between level (f - 1) -* f (i.e. 7r ire - A and ir = Ie + A), then directed

edges i -+ (i+1),(i+-1) -* (i+2),...,(j-1) j are added to g (and in the

case where j < i, these same edges are added to 9, only their direction is reversed).
The case in which multiple simultaneous migrations between subpopulations take

place between (f - 1) -> is handled more delicately: First, we identify the sequence

S of operations which produces the optimal transformation from mixing proportions

vector [x21, ... , ird] -+ [, . . . , ( r1), where the only possible operation is to select

k E {1, ..., K - 1} and enact the simultaneous pair of reassignments 7r k) - _ -

A; ir k+l) _ k+1) + A for some A c [-1,1] whose magnitude is the cost of this

operation. Subsequently, for each operation in S, we introduce an edge into g between

the corresponding nodes k and k + 1 whose direction is specified by the sign of A
(edge k -a (k + 1) if A > 0, the reverse edge otherwise).

G is initialized as the empty graph and for f = 2,..., L, the necessary edges
are added to the graph corresponding to the mixing-proportion changes between

( - 1) -+ f as described above. Then, the sequence of distributions P1, . . . , PL follows
a trend if g contains no cycles after step L and at most one node with two incoming

edges. Intuitively, this implies that a trend captures the phenomenon in which the

underlying forces of progression that induce migration from one subpopulation to a

larger one as f increases, do not also cause migration in the reverse direction between

these subpopulations at different values of f. Figure 3-2D depicts an example of an

evolving 3-component mixture model which follows a trend.

3.4 TRENDS regression model

Recall that in our setting, even the underlying batch distributions Pi (from which the

observations Xi,, are sampled) may be contaminated by latent confounding effects.

We assume the quantile functions of each P are generated from the model below:

Fi-1 = G-1 + Si such that G 1 , ... , G- 1 follow a trend, and the following hold:

(3.5)

(A7) Si : (0, 1) -+ R is constrained so that G- 1 and Fi-1 are valid quantile functions.
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(A8) For all p E (0,1) and i: Ei(p) follows a sub-Gaussian(-) distribution (Honorio

Jaakkola 2014), so E[Si(p)] = 0 and Pr(EIj(p)j > t) < 2exp foran

t > 0.

(A9) For all p E (0, 1) and i / j: Fj(p) is statistically independent of &6j(p).

In this model, G' is the quantile function of the conditional effect-distribution

Qj, whose evolution captures the underlying effects of level-progression. The random
noise functions E : (0, 1) -+I R can represent measurement-noise or the effects of other

unobserved variables which contaminate a batch. Note that the form of E is implic-

itly constrained to ensure all Fij, G-' are valid quantile functions. Because 9i(pl)

and Ei(p2) are allowed to be dependent for pi # P2, the effect of one Si may manifest

itself in multiple observations Xi,,, even if these observations are drawn i.i.d. from Pi

(for example, a batch effect can cause all of the observed values from a batch to be

under-measured). In fact, condition (A7) encourages significant dependence between
the noise at different quantiles for the same batch. The assumption of sub-Gaussian

noise is quite general, encompassing cases in which the Ej(p) are either: Gaussian,
bounded, of strictly log-concave density, or any finite mixture of sub-Gaussian vari-

ables (Honorio & Jaakkola 2014). Although condition (A9) stringently ensures all

dependence between observations from different f arises due to the trend, similar in-

dependence assumptions are required in general regression settings where one cannot

reasonably a priori specify a functional form of dependence in the noise. Real batch

effects are likely to satisfy (A9) since they typically have the same chance of affecting

any given batch in a certain manner (because the same experimental procedure is

repeated across batches, as in the case of the cell-capture and library preparation in

scRNA-seq). Nonetheless, we note that assumption (A8) can be immediately gener-

alized (with trivial changes to our proofs) in order to allow heteroscedasticity in the

batch effects E (endowing each batch with a different o-i sub-Gaussian parameter),
but we opt for simplicity in this theoretical exposition.

Model (3.5) is a distribution-valued analog of the usual regression model, which

assumes scalars Y = f(Xi) + cE where E2 ~ sub-Gaussian(a2 ) and Ei is independent

of cj for i j. In (3.5), an analogous f maps each ordinal level {1,..., L} to

a quantile function, f(i) = G', and the class of functions is restricted to those

which follow a trend. Our assumption of mean-zero Ei that are independent between

batches is a straightforward extension of the scalar error-model to the batch-setting,
and ensures that the exogenous noise is unrelated to f-progression under (3.5). Just as

the Y,. .. , YN are rarely expected to exactly lie on the curve f (x) in the classic scalar-

response model, we do not presume that the observed distributions P will exactly

follow a trend (even as ni - oo Vi so that Pi -+ P). Rather our model simply encodes

the assumption that the effects of level-progression on the distributions should be

consistent over different f (i.e. the effects follow a trend).

For each f, TRENDS finds a fitted distribution Qe using the Wasserstein least-

65



squares fit which minimizes the following objective:

L

Q1,-.. ,QL =argmin ZdL 2(QP i2 where Q1,. . . , QL follow a trend
Q,---,QL j=1 iEIt

(3.6)

where I is the set of batch-indices i such that fi = f, and we require N := JIj| ;> 1

for all E {1, ... , L}. Subsequently, one can inspect changes in the Qe which should
reflect the transformations in the underlying Pj that are likely caused by increasing
f. Figure 3-3 shows some examples of fitted distributions produced by TRENDS
regression. The objective in (3.6) bears great similarity to the usual least-squares loss
used in scalar regression, the only differences being: scalars have been replaced by
distributions, squared Euclidean distances are now squared Wasserstein distances, and
the class of regression functions is defined by a trend rather than linearity/smoothness
criteria. In 3.6, we introduce an efficient algorithm that is always guaranteed to
produce the optimal Wasserstein-least-squares fit.

Expression measurements in scRNA-seq are distorted by significant batch effects,
so the Si are likely to be large. In addition to technical artifacts, Buettner et al.
(2015) find biological sources of noise due to processes such as transcriptional burst-
ing and cell-cycle modulation of expression. Unlike development-driven changes in
the underlying expression of a developmental gene, other biological/technical sources
of variation are unlikely to follow any sort of trend. TRENDS thus provides a tool for
modeling full distributions, while remaining robust to the undesirable variation ram-
pant in these applications by leveraging independence of the noise between different
batches of simultaneously captured and sequenced cells.

3.5 Measuring goodness of fit, effect size, and statis-
tical significance

Analogous to the coefficient of determination used in classic regression, we define the
Wasserstein R 2 to measure how much of the variation in the observed distributions

P1,..., PN is captured by the TRENDS model's fitted distributions Q1,..., QL:

21N - 2 1N -T-
R := 1- ( dL 2  , ) Pi 2 dL2 (2 [0, 1] (3.7)

Here, squared distances between scalars in the classic R2 are replaced by squared

Wasserstein distances between distributions, and the quantile function F - = F -
is the Wasserstein mean of all observed distributions. By Lemma 4, the numerator
and denominator in (3.7) are respectively analogous to the residuals and the overall
variance from usual scalar regression models.
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In classic linear regression, the regression line slope is interpreted as the expected
change in the response resulting from a one-unit increase in the covariate. While
TRENDS operates on unit-less covariates, we can instead measure the overall expected
Wasserstein-change under model (3.5) in the P over the full ordinal progression
f= 1,...,L using:

1
A := - dLi(Q1,QL) (3-8)

The L1 Wasserstein distance is a natural choice, since by Lemma 5, it measures the
aggregate difference over each pair of adjacent f levels (just as the difference between
the largest and smallest fitted-values in linear regression may be decomposed in terms
of covariate units to obtain the regression-line slope). Thus, A measures the raw mag-
nitude of the inferred trend-effect (depends on the scale of X), while R2 quantifies
how well the trend-effect explains the variation in the observed distributions (inde-
pendently of scaling). Note that if the TRENDS model is fit to the distributions from
the example in Figure 3-3B, the TRENDS-inferred effect of sequential-progression is
nearly as large as the overall variation in this sequence, which agrees with our visual
intuition that the observed distributions already evolve in a fairly consistent fashion.

Additionally, we introduce a test to assess statistical significance of the trend-
effect. We compare the null hypothesis Ho : Q1 = Q2 = - - - = QL against the
alternative that the Qi are not all equal and follow a trend. To obtain a p-value,
we employ permutation testing on the fi-labels of our observed distributions P with
test-statistic R 2 (Good 1994). More specifically, the null distribution is determined by

repeatedly executing the following steps: (i) randomly shuffle the Li so that each P is
paired with a random Eferm - {1,.. , L} value, (ii) fit the TRENDS model to the pairs

{(Eferm P~i)}f to produce Q erm Qrm (iii) use these estimated distributions to
compute Rperm using (3.7). Due to the quantile-noise functions E9() assumed in our
model (3.5), HO allows variation in our sampling distributions P which stems from
non-f-trending forces. Thus the TRENDS test attempts to distinguish whether the
effects transforming the P follow a trend or not, but does not presume the Pi will
look identical under the null hypothesis. By measuring how much further the P lie
from one distribution vs. a sequence of trending distributions in Wasserstein-space,
we note that our R2 resembles a likelihood-ratio-like test statistic between maximum-
likelihood-like estimates F and Qf (where we operate under the Wasserstein distance
rather than Kullback-Leibler which underlies the maximum likelihood framework).

As we do not parametrically treat the distributions, we find permutation test-
ing more suitable than relying on asymptotic approximations. Statistical accuracy
and computational burden can be traded off by choosing an appropriate number of
permutations. We note that within each permutation of the data, the Wasserstein-
least-squares fit can be computed very efficiently in practice (as detailed in 3.6).
Unfortunately, N and L may be small in some applications, which undesirably limits
the number of possible label-permutations. In 3.5.1, we overcome the granularity
problem that arises in such settings by developing a more intricate permutation pro-
cedure akin to the smoothed bootstrap of Silverman & Young (1987).
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To determine whether our model is reasonable when working with real data, it is
best to rely on prior domain knowledge regarding whether or not the effects of primary
interest should follow a trend. When this fact remains uncertain, then (as in the case
of classical regression) the question is not properly answered using just our Wasser-
stein R2 values (which we caution tend to be much larger than the familiar R2 values
from linear regression, due to the heightened flexibility of our TRENDS model). 3.9.2
demonstrates a simple method for model checking based on plotting empirically-
estimated residual functions Si against the sequence-level f. Similar plots of scalar
residuals are the most common diagnostic employed in standard regression analysis.
While this model-checking procedure is able to clearly delineate simulated devia-
tions from our assumptions, it shows little indication that the TRENDS assumptions
are inappropriate for the real scRNA-seq data from major known developmentally-
relevant genes. Our simulation in 3.9.2 also empirically demonstrates that despite
its restrictive assumptions, the TRENDS model can provide superior estimates of
severely-misspecified effects than the initial empirical distributions.

3.5.1 Permutation testing with small batch numbers

Unfortunately, in many settings of interest such as most currently existing scRNA-
seq time course data, N and L are both small. This limits the number of possible-
permutations of distribution-labels and hence the granularity and accuracy with which
we can determine p-values in the our test. Note that TRENDS estimation is com-
pletely symmetric with respect to a reversal of the distributions' associated levels (i.e.
replacing each fi +- L - fi + 1), so if B denotes the number of possible permutations,
we can only obtain p-values of minimum granularity 2/B which may be unsatisfac-
tory in the small N, L regime (e.g. N < 7). In the classical tissue-level differential
gene expression analyses (in which sample sizes are typically small), this problem has
been dealt with by permuting the genes (of which there are many) rather than the
sample labels. However, this approach is not entirely valid as it discards the (often
substantial) correlations between genes and has been found to produce suboptimal
results (Phipson & Smyth 2010).

To circumvent these issues, we propose a variant of our label-permutation-based
procedure to obtain finer-grained but only approximate p-values (in the small N, L
setting, rough approximations are all one can hope for since asymptotics-derived p-
values are also error-prone). The underlying goal of our heuristic is to produce a richer
picture of the null distribution of R2 (at the cost of resorting to approximation), which
is accomplished as follows:

1. Shuffle the distributions' fi-labels as described above, but now explicitly perform
all possible permutations, except for the permutations that produce a sequence

{erm ,perm } which equals either the sequence of actual labels {...... , fL}
or its reverse in which each fi is replaced by L - fi + 1.

68



2. For data in which each distribution Pi is estimated from a set of samples

{Xi, , one can obtain a diverse set of K null-distributed datasets from a

single permutation of the labels by employing the bootstrap. For each k =
1, ... , K and i = 1,. .. , N: draw ni random samples Z with replacement from

ni p.(~~~k) uigj~~~
{XiX,} compute a bootstrapped empirical distribution .k using ({Z }n"
and assemble the kth null-distributed dataset (under the current labels-permutation)
by pairing the bootstrapped empirical distributions with the permuted labels

fperm

3. Apply TRENDS to each null-distributed dataset {(ey*"", 1(k))}N1 and compute

a Rermk value via (3.7) which is distributed according to the desired null (where

K= and (k) = Pi if bootstrapping is not performed).

4. Form a smooth approximation of the null distribution by fitting a kernel CDF
estimate F to the collection of (B - 2) - K null samples {R Permk} where k
1, ... , K and perm is an index over the possible label-permutations under con-
sideration (we use the Gaussian kernel with the plug-in bandwidth proposed by
Altman and Lger, which has worked well even when only 10 samples are avail-

able (Altman & Leger 1995)). Finally, the approximate p-value is computed as

p := 1- F(R2 ), where R2 corresponds to the fit of TRENDS on the original
dataset.

Note that under the exchangeability of labels assumed in HO, the sequence of fi
corresponding to the actual ordering or its reverse are equally likely a priori as any
other permutation of the fi. Thus, Step 1 above is unbiased, despite the omission of
two permutations from the set of possibilities. Producing a much richer null distribu-
tion than the empirical version based on few permutation samples, the bootstrap and
kernel estimations steps enable us to obtain continuum of (approximate) p-values.
Intuitively, our richer approximation is especially preferable for differentiating be-

tween significant p-values despite its sensitivity to the bandwidth setting, because

the standard permutation test offers no information when the actual test statistic is

greater than every permuted statistic (a common occurrence if B is small), whereas

our approach assigns smaller p-values based on the distance of the actual test statistic

from the set of permuted values. Finally, we remark that the kernel estimation step

in our p-value approximation is similar to the approach of Tsai and Chen (Tsai &
Chen 2007), and point out that as the number of distributions per level Nj grows,
the approximation factor of our procedure shrinks, as is the case for p-values based

on asymptotics which are themselves only approximations.
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3.6 Fitting the TRENDS model

We propose the trend-fitting (TF) algorithm which finds distributions satisfying

L

Q1, ... ,QL = arg min wi-dL (Q Pi)} where Q1,... , QL follow a trend
.QL f=1 iEI,

(3.9)
If P (the empirical per-batch distributions) are estimated from widely varying sample

sizes ni for different batches i, then it is preferable to replace the objective in (3.6) with

the weighted sum in (3.9). Given weights wi chosen based on ni and Nf, TRENDS
can better model the variation in the empirical distributions that are likely more

accurate due to larger sample size. As ni and Ne are fairly homogeneous in scRNA-seq

experiments, we use uniform weights here (but provide an algorithm for the general

formulation). To fit TRENDS to data {(7i, Pet, wi)}_ 1 via our procedure, the user

must first specify:

" Numerical quadrature points 0 < pI < p 2 < - < pP-1 < 1 for evaluating the

Wasserstein distance integral in (3.1), i.e. which P - 1 quantiles to use for each

batch.

" A quantile estimator F-1(p) for empirical CDF F.

Given these two specifications, the TF procedure solves a numerical-approximation

of the constrained distribution-valued optimization problem in (3.9). Defining po :=
2 Pi - P2 and pp := 2PP-1 - PP-2, we employ the following midpoint-approximation
of the integral

L P-1 
-k+ - Pk

G-n G 1:(i Pk) - GE-1 (Pk k1 -

e 

,--,GL f=1 zele k=1 -

where G1, ... , GL must follow a trend (3.10)

While this problem is unspecified between the Pkth and pk+1th quantiles, all we re-

quire to numerically compute Wasserstein distances (and hence R 2 or A) is the values

of the quantile functions at pi, ... , PP_1, which are uniquely determined by (3.10).
Although our algorithm operates on a discrete set of quantiles like techniques for

quantile regression (Bondell et al. 2010), this is only for practical numerical reasons;

the goal of our TRENDS framework is to measure effects across an entire distribution.

Throughout this work, we use P - 1 uniformly spaced quantiles between I and P-
(with P = 100) to comprehensively capture the full distributions while ensuring com-

putational efficiency. In settings with limited data per batch, one might alternatively

select fewer quadrature points (quantiles), avoiding tail regions of the distributions

for increased stability (our results were robust to the precise number of quadrature

points employed).

70



Since no unbiased minimum-variance Vp E (0, 1) quantile estimator is known,
we simply use the default setting in R's quantile function, which provides the best
approximation of the mode (Type 7 of Hyndman & Fan (1996)). Other quantile
estimators perform similarly in our experiments, and Keen (2010) have found little
practical difference between estimation procedures for sample sizes > 30. Here, we
assume the ni cells sampled in the ith batch are i.i.d. samples (reasonable for cell-
capture techniques). If this assumption is untenable in another domain, then the
quantile-estimation should be accordingly adjusted (cf. Heidelberger & Lewis 1984).

Basic PAVA Algorithm: min,,, EL 1(ye - ze)2 s.t. Zi <- - ZL

Input: A sequence of real numbers Yi, - . . , YL
Output: The minimizing sequence y,* . - , YL which is nondecreasing.

1. Start with the first level f= 1 and set the fitted value 91 = y1

2. While the next ye > gei_, set e = ye and increment f

3. If the next f violates the nondecreasing condition, i.e. ye <iie-i, then backaverage to restore
monotonicity: find the smallest integer k such that replacing fe,... , Ye-k by their average
restores the monotonicity of the sequence 91,. .. , DR. Repeat Steps 2 and 3 until f = L.

Our procedure uses the Pool-Adjacent-Violators-Algorithm (PAVA), which given
an input sequence Y1, ... ,yL E R, finds the least-squares-fitting nondecreasing se-
quence in only O(L) runtime (de Leeuw 1977). The basic PAVA procedure is ex-
tended to weighted observations by performing weighted backaveraging in Step 3.
When multiple (fi, yz) pairs are observed with identical covariate-levels, i.e. 3f s.t.
Ne := |Ij| > 1 where Ij := {i = , we adopt the simple tertiary approach
for handling predictor-ties (de Leeuw 1977). Here, one defines pe as the (weighted)
average of the {yi : i E Ie} and for each level f all yi : i E Ij are simply replaced
with their mean-value gi. Subsequently, PAVA is applied with non-uniform weights to

{(f, 9f)}I_, where the fth point receives weight Nj (or weight ZEie wi if the original
points are assigned non-uniform weights wi,... , WN). By substituting "nonincreas-
ing" in place of "nondecreasing" in Steps 2 and 3, the basic PAVA method can be
trivially modified to find the least-squares nonincreasing sequence. From here on, we
use PAVA((yi, wi), . . . , (yN, wN); S) to refer to a more general version of basic PAVA,
which incorporates observation-weights wi (for multiple y values at a single f), and
a user-specified monotonicity condition c C {"nonincreasing", "nondecreasing"} that
determines which monotonic best-fitting sequence to find.

Fundamentally, our TF algorithm utilizes Dykstra's method of alternating pro-
jections (Boyle & Dykstra 1986) to project between the set of L-length sequences of
vectors which are monotone in each index over f and the set of L-length sequences
of vectors where each vector represents a valid quantile function. Despite the it-
erative nature of alternating projections, we find that the TF algorithm converges
extremely quickly in practice. This procedure has overall computational complexity
O(TLP2 +NP), which is efficient when T (the total number of projections performed)
is small, since both P and L are limited. Relying on auxiliary lemmas presented in
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Trend-Fitting Algorithm: Numerically solves (3.9) by optimizing (3.10)

Input 1:
Input 2:
Output:

Empirical distributions and associated levels (and optional weights) {(fi, Fi, w2 )}
A grid of quantiles to work with 0 < pi < ... <pp-i < 1

The estimated quantiles of each Qf {G71 (Pk) : k = 1,..., P - 1} for f E {1, ... , L}
from which these underlying trending distributions can be reconstructed.

1. F,~ 1 (Pk) := quantile(FP,pk) for each i E {1,.. . ,N},k E {1,. . . ,P - 11

2. w* :=Z wi for each f E {1, ... , L}
iEie

3. xf[k] :Wi Pj-1(Pk) for each f E {1, ... , L}, k E {1,..., P - 1}
iEhe

4. for P* = 0, P1, P2, -,PP-1:

5. 6[k] := "nondecreasing" if Pk > p*; otherwise 6[k] := "nonincreasing"

6. y1,. .. , y := AlternatingProjections xi,... ,XL ; 3 ; { }_1, {Pk}] -)

7. W[6] := the value of (3.10) evaluated with GT 1 (Pk) = ye[k] V, k

8. Redefine 6[k] := "nonincreasing" if Pk > p*; otherwise 6[k] := "nondecreasing"
and repeat Steps 6 and 7 with the new 6

9. Identify min W[3] and return de-'(pk) = yi*[k] Vf, k where y* was produced at the
5

Step 6 or 8 corresponding to 6* := arg max W[6].

AlternatingProjections Algorithm: Finds the Wasserstein-least-squares sequence of vectors
which represent valid quantile-functions and a trend whose monotonicity is specified by 3.

Input 1: Initial sequence of vectors x( , ... ., O
Input 2: Vector 3 whose indices specify directions constraining the quantile-changes over f.
Input 3: Weights w E R and quantiles to work with 0 < pi < ... < pp-1 < 1

Output: Sequence of vectors y(1 , ... Iyf where Vf, k : yj[k] < yt) [k + 1] and the sequence

yi( [k], ... ,y 9 [k] is monotone nonincreasing/nondecreasing as specified by 5[k],

provided that x(O [k] < x(0 [k + 1] for each f, k

1. r(O [k] := 0 , s(O [k] := 0 for each f C- {l,..., L}, k E {1,., P - 1}
2. for t = 0, 1, 2,. .. until convergence:

3. yft [kl, . . yft [k] := PAVA x t[k] + rft [k], w',..) (Xft [k] + rft [k], w* -~ ]

for each k E {1,. . . , P - 1}. PAVA computes either the least-squares nondecreasing

or nonincreasing weighted fit, depending on 6[k].

4. r t+)[k] := x [k] +r, [k] - yt [k] for each f, k

5. Vf E {l, . .. , L} xf +11 +.. I _ i
PAVA ((yt) [1] + st) [1], Py") ,..., (-P[Pt) - 11 + s( [p - 11, PPP-2) ;"nondecreasing")

6. s .+ [k] :=Ay) [k] + s ([k] - x t+1)[k] for each f, k
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3.8, our proof of Theorem 5 provides much intuition on the TF algorithm. Essen-
tially, once we fix a 6 configuration (specifying which quantiles are decreasing over
f and which are increasing), our feasible set becomes the intersection of two convex
sets between which projection is easy via PAVA. Furthermore, the second statement
in our trend definition limits the number of possible 6 configurations, so we simply
solve one convex subproblem for each possible 6 to find the global solution.

y

Figure 3-4: Visual example of the first two updates made by Dykstra's method of alternating
projections to find the empirical Wasserstein-least-squares-fit. Each point depicts
a L x (P - 1) matrix, whose (f, k)th entry is supposed to numerically represent
the Pt quantile of the th distribution. X is the closed/convex set of matrices
whose columns are nondecreasing (representing valid quantiles of a probability
distribution), and y is the closed/convex set of matrices whose rows are monotonic
over t and satisfy the trend criterion for each pk quantile. Given some initial matrix
depicted in green, whose columns contain the empirical quantiles of each observed
distribution PI, our goal is to find the closest matrix A E X n Y (depicted by
the star). The columns of A will thus be valid quantile functions of a sequence
of distributions that follow a trend, ensuring A represents the Wasserstein-least-

,squares-fit (as distances between quantile functions correspond to Wasserstein
distances between distributions).

Theorem 5. The Trend-Fitting algorithm produces valid quantile-functions G1-1, .. . ,
which optimally solve the numerical version of the TRENDS objective given in (3.10).
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Proof. We have:

argmin -P-1 F p- - G[ (Pk 2 Pk+1 Pk-1

G L.., f =1 iE It k=1-

where G 1 ,..., GL follow a trend
P-1 (P1- k1)L -2

argmi E Pk-1 Wi -1(pk) - V)) }
v(),..v k=1 f=1 iEle

for 0) E RP-l with entry v M at kth index

s.t. V k < k' E {1,. .. , P- 1} :

V < V since G-1 must be a valid quantile function

V 1) (L) is a monotone sequence whose direction = 6[k] for one of
the 6 constructed in Step 6 or 8 of the procedure.

This is because the set of all 6 considered by the TF algorithm contains every pos-
sible increasing/decreasing configuration (mappings from k E {1, ... , P - 1} -+

{"nonincreasing", "nondecreasing"}) whose corresponding quantile-sequence satisfies
the second condition of the trend definition.

= argmin
V()...v(L)

( M) 2

(F(Pk) - k

P-1 L

(Pk+1 Pk-1 fw;
k=1 f=1

(3.11)

Pf : ) < oY since G- 1 is a valid quantile function
s.t.Vk< k E Il, . . . ,P- 1}: (1) (L) -

IVk,..., Vk are monotone with direction = 6[k]

where we defined w* := F (p) := wi F;-(pk)
iEI e We

ji~l

We will now show that for any 6 constructed in Step 6 or 8, the corresponding y
produced by the AlternatingProjections algorithm are the optimal valid quantile-
functions if we impose the additional constraint that for any k, the pkth quantile-
sequence must be increasing/decreasing as specified by 6[k]. Establishing this fact
completes the proof because the trends-condition is simply the union of 2P such con-
straints, each of which is tested by the TF procedure. Therefore, one of corresponding

Y, ... , YL sequences must be the global minimum.

Having fixed an increasing/decreasing configuration 6, let N denote the Hilbert

space of all L x (P - 1) matrices, and X be the vector-space of all sequences (a.k.a.
L x (P - 1) matrices) [v(0),..., v(L)] s.t. V E {1,..., L}, k C {1, .. ., P - 1} : () E

RP and v1,...,V1 is a nondecreasing sequence. Similarly, define Y to be the

vector-space of all sequences [), (L) ( S. k : (e) E RP1 and ( I) (L)
sk it . ,

is a monotone sequence which is increasing if and only if 6[k] specifies it. Finally, we
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also define the following metric over these sequences

dw ([vM),... ,v()], [w() . . . , (L) Pk+1 Pk-1 W (V 2 -

k=1 f=1

(3.12)

Lemmas 7 and 8 in 3.8 show that our AlternatingProjections algorithm is equiv-

alent to Dykstra's method of alternating projections (Boyle & Dykstra 1986) between

X and Y under metric dw. Furthermore, both X and Y are closed and convex, and

the initial point (i.e. sequence) [xl), ... , x()] must lie in X because V, k : the TF

algorithm initializes x(t) as a (weighted) average of valid quantile-functions (assum-
ing the quantile-estimators do not produce invalid quantile-functions), and thus itself

must be nondecreasing in k. Therefore, we can apply the celebrated result stated in

Combettes & Pesquet (2011), Boyle & Dykstra (1986) which implies that Dykstra's

algorithm must converge to the projection of the initial-sequence onto X n Y. By con-

struction, this projection (under metric dw defined in (3.12)) exactly corresponds to

the solution of the constrained optimization in (3.10) under the additional constraint

imposed by 6. l

3.7 Theoretical results

Under the model given in (3.5), we establish some results regarding the statistical

quality of the Qi, ... , QL estimates produced by the TF algorithm. The corresponding

proofs are relegated to 3.8. To develop pragmatic theory, we use finite-sample bounds

defined in terms of quantities encountered in practice rather than the true Wasserstein

distance (3.1), which relies on an integral that must be numerically approximated.

Thus, in this section, dw(-, ) is used to refer to the midpoint-approximation of the

L 2 Wasserstein integral illustrated in (3.10). In addition to the conditions of model

(3.5), we make the following simplifications throughout for ease of exposition:

(AlO) The number of batches at each level is the same, i.e. N := N1  - - - NL> 1

(All) The same number of samples are drawn per batch, i.e. n := ni for all 1 < i < N.

(A12) For k = 1, . . . , P - 1: the (k/P)th quantiles of each distribution are considered.

(A13) Uniform weights are employed, i.e. in (3.9): wi = 1 for all i.

Theorem 6. Under model (3.5) and additional conditions (A1O)-(A13), suppose the

TF algorithm is applied directly to the true quantiles of P1, . . . , PN. Then, given any
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e > 0, the resulting estimates satisfy: dw(G 1 , GE) < e for each f {1,... , L}

(e 2Ne
with probability greater than: 1 - 2PL exp 82LJ

Thus, Theorem 6 implies that our estimators are consistent with asymptotic rate
Op (I/ /N) if we directly observe the true per-batch quantiles P1 ,. . . , PN (which are
contaminated by E under our model). By using the union-bound, our proof does not

require any independence assumptions for the noise introduced at different quantiles
of the same batch. Because direct quantile-observation is unlikely in practice, we now

examine the performance of TRENDS when these quantiles are instead estimated
using n samples from each Pi. Here, we additionally assume:

(A14) For i = 1,. . . , N : quantiles are estimated from n i.i.d. samples X 1,i, ... , X -. P.

(A15) There is nonzero density at each of the quantiles we estimate, i.e. CDF Fj is
strictly increasing around each F-1(k/P) for k = 1, . . . , P - 1.

(A16) The basic quantile estimator defined below is used for each k/P, k = 1,... , P - 1

Fj-1 (p) := inf{x : Fi(x) > p}

where F,(-) is the empirical CDF computed from X1 ,,. .. , X ,, ~ P.

Theorem 7. Under the assumptions of Theorem 6 and (A14)-(A16), suppose the TF

algorithm is applied to estimated quantiles Fj-'(k/P) for i = 1,..., N, k = 1,..., P -

1. Then, given any e > 0, the resulting estimates satisfy: dw(Gi7 1 , Gil) <c
for each f E {1, ... , L} with probability greater than:

1 - 2PL exp ( + Ne exp 2n -R 2) (3.13)
(32.2L) 4 v L

where for y > 0:

R(-y) := min{R(-, i, k/P) : i = 1,...,N,k = 1,. .. ,P- 1}
i~k

R (-y7 A): min { F (Fi-'(p) + -) - p, p - F (Fi-'(p) - -y)} (3.14)

Theorem 7 is our most general result applying to arbitrary distributions Pi that
satisfy basic condition (A15). However, the resulting probability-bound may not
converge toward to 1 if n - R( ) 2 < O(log Nj), which occurs if few samples are

available per batch (because then the P are can be very poorly estimated). Thus,
TRENDS is in general only designed for applications with large per-batch sample
sizes. The bounds obtained under the extremely broad setting of Theorem 7 may be
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significantly improved by instead adopting one of the following stronger assumptions:

(A17) The simple quantile-estimator defined in (A16) is used, and the support of each
Pi is bounded and connected with non-neglible density. This implies that there
exist constants B, c > 0 such that for each i:

fi(x) = 0 Vx [-B, B] and f,(x) > c VX E [-B, B]

where fi is the density associated with CDF Fi.

(A18) The following is known regarding the quantile-estimation procedure:

1. The quantiles of each P are estimated independently of the others.

2. The quantile-estimates converge at a sub-Gaussian rate for each quantile
of interest, i.e. there exists c > 0 such that for each k, i and any c > 0:

Pr ( F71 (k/P) - Fi-(k/P) > E) < 2 exp(-2nc2 C2 )

Theorem 8. Under the assumptions of Theorem 6, conditions (A14), (A15), and
one of either (A17) or (A18), the bound in (3.13) may be sharpened to ensure that
for any e > 0:

dw(G 1 , G 1) < e for each {1, ... , L}

with probability greater than:

-E2N, c 2 2
1-2P L exp + exp Ne nE2

In Theorem 8, the additional assumption of bounded/connected underlying distri-
butions results in a much better finite sample bound that is exponential in both n and
Nt (implying asymptotic Op(N- 11 2 + n-/2) convergence). While this condition and
the result of Theorem 7 assume use of the simple quantile-estimator from (A16), nu-
merous superior procedures have been developed which can likely improve practical
convergence rates (Zielinski 2006). Assuming guaranteed bounds for the quantile-
estimation error (which may be based on both underlying properties of the Pi as well
as the estimation procedure), one can also obtain the same exponential bound. In fact,
condition (A17) is an example of a distribution and quantile-estimator combination
which achieves the error required by (A18). Because the boundedness assumption is
undesirably limiting, we also derive a similar result under weaker assumptions:

(A19) Each Pi has connected support with non-neglible interior density and sub-
Gaussian tails, i.e. there are constants B > b > 0, a > 0, c > 0 such that for all i:

(1) F is strictly increasing,

(2) fi(x) > c Vx E [-B, B] where fi is the density function of CDF Fi.
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(3) Pr(Xi > x) < exp (-a [x - (B - b)] 2 ) if x> B

and Pr(Xi < x) < exp (-a [x - (-B + b)] 2 ) if x < -B

(A20) Defining r :min {2c2 ) 2a1 }, we have r > 0, or equivalently, 2ab2 > 1.

(A21) We avoid estimating extreme quantiles, i.e. Fi-'(k/P) E (-B, B)

for k= 1,...,P- 1.

Theorem 9. Under the assumptions of Theorems 6 and 7 as well as conditions

(A19)-(A21), the previous bound in (3.13) may be sharpened to ensure that for all

e > 0:
dw(Gf', Gf 1 ) < e for eachf E {1 ... , L}

with probability greater than:

- 2 Ne r N E21-2P L exp (32a.L) + exp (H6Nr n)

Theorem 9 again provides an exponential convergence bound in both n and Ne un-

der a realistic setting where the distributions are small tailed with connected support,
and the simple quantile estimator of (A16) is applied at non-extreme quantiles. Note

that while we specified properties of the distributions, noise, and quantile estimation

in order to develop this theory, our nonparametric significance tests do not rely on

these assumptions.

3.8 Auxiliary proofs and lemmas

Lemma 6 (de Leeuw (1977)). Given weights wi, . .. , wN > 0 and pairs (fl, y1),--- , (fN, yN)

where each f E {1,... , L} appears at least once, the fitted values 1,. .. , yL produced by

tertiary-variant of PAVA are guaranteed to be the best-fitting nondecreasing sequence

in the least-squares sense, i.e.

L

Y1, .. ,L = arg min wi (e -yi)2
e=1 iEII

Lemma 7. Recall the definitions from the TF algorithm and the proof of Theorem 5.

Given any [x(1),..x(L)] E X, its projection onto Y under metric dw, [y(l), -- (L)
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may be computed Vk E {1, ... , P 1} as

yk , L .y PAVA (()z , W*1),..., (x(,L) W*); 6[k]

Proof. Choose any [z(1),... , z(L)] E Y. By consequence of Lemma 6

PAVA ((x(', w*), (x ,L W* ); J[k]

m-argmin
monotone A1 ,. AL

L

==:~ ~M

W ' (P) - A) 2

L

ZEw* Zk k

where the Af are only increasing if specified by 6[k]

)) Vk

since z (1)have monotonicity specified by 6Zk , . k hv o oct
P-1

k=1

Pk+1 - Pk-1 W* (

f=1

Lemma 8. Recall the definitions from the TF algorithm and the proof of Theorem 5.
Given any [yN(),... , y(L)] G Y, its projection onto X under metric dw, [x( ,... ,
may be computed Vf E {1, . . . , L} as

M ,X = PAVA ( (y((C P2P-'P
XI 1I1 2 )I

() PPPP-2
yp-1) 2 ) ; "nondecreasing")

Proof. Choose any [zW, ... , Z(O] E X. By Lemma 6:

PP PP-2) "nondecreasing"

for each f

Pk+1 - Pk-1 XM

2 ) k
k=1 ( Pk+1 Pk-1 Z

since [z 1 ,... , z(L)] E X ==>

Pk+1 - Pk-1

21
( ) )

k=1

Pk+1 Pk-1I
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aP-1
Aj<-...<Ap- 1 k=

(y C)
P2 -PO)

( Pk+1 - Pk-1 (') - Ak)}

2 -

P-1

k=1
-yke )2

k=1

Vf

w* (4)
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k=1

2 )
_ M 1 2

Y)2

z ) 2



3.8.1 Proof of Theorem 6

Proof. Recalling that G-1 (p) denotes the pth quantile of Qj = f(f), we also define:

(3.15)Fj1 (p) := ZF-1(p)
eIEi

By a standard application of the Chernoff bound (Vershynin 2012, Boucheron et al.
2013):

Pr (IF-1 (p) - GT 1 (p)I > q) = Pr ( i(p) < 2 exp ( -2N, V7 > 0

Recall that we compute the Wasserstein integral using P - 1 equally-spaced quantiles
and the midpoint approximation, so

P-1

S (Pel-(kP) -Gf1(kP))
k=1

L

Pr E
(e=1

dw (F I, Gi) 2 >

L P-1

< EiPr
R=1 k=1

by a union-bound

L -P -Pr (lP-u'k/P) - GE1(k/P)

< 2PL exp 77N)

> i17

(3.16)

Note that W1 ,..., GL form the best trending approximation to the F by Theorem

5, and since G- 1 , ., G are valid quantile functions which also follow a trend, this
implies:

dw F.- , 2

f=1 iEle

L

< dw (Fi-, G 1 ) 2

e=1 iEle

(F-1 , G1)2 by Lemma 4
L L

E 2w
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iEh

d (F--1, Gj1) 2 ~ dw (PF- 1, Gj1 )2

(kP)- Gt1(k/P) )2>

,e $1 ) <



(Fi-1 G 7) 2
EdwThVs : dw (- al

Thus, by the triangle-inequality:

1/2

dw (Gf1,G71 dw (i 1 ,G 1 ) +dw (Fi,Gt1)< 2

which implies VE > 0 we can combine this result with (3.16) setting 77 := E2/4 to get:

Pr (]f: dw(Gf 1 , Gil) > E) < Pr 4) <2PLexp

3.8.2 Proof of Theorem 7

Proof. We proceed similarly as in the proof of Theorem 6. Defining

-;;-1 I1 - I
Fj (p) := -r F- (p)

iEbd

by Theorem 3.10 and Lemma 4, we have:

Ldw (G 1 dw (Gf ,
f~=1

L

< Zdwdw (G, Ff (G 0 1) 

since G1 ,...,) G are valid quantile functions which follow a trend. Thus, for all f:

dw (GE, G) <dw (Gf , + dw (FG G) by the triangle-inequality

2( 1/2

(Ft Gt 1

(i- , Gil) + dw

, G71) 2 + dw F-

by the triangle-inequality

2- 1/2

, j- by Cauchy-Schwartz
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(3.17)

L

<2 Edw
1f~

(dw
L

f=1

- L -

Sdw (Fi- ,G -') 2

Edw (Fi1 G 1 )2 >

_1_ 
2 1/2

(Fj F;-

L

<2v /2 dw (F-
. =1



Therefore, for all E > 0:

Pr (e: dw (G 7 1, G-1

(EP dw (Fi, Gj
\f=1

> E) < Pr ( dw (Fj-1,

+ Pr ( dw
\f=1

Fe, by the union-bound

and we can use (3.16) to bound the first summand, resulting in the following bound

Pr (3f : dw (GIG 1 > E < 2PL exp 32.2 +Pr
--- 1 - 2

dw (Fj , F;- > 1

(3.18)
Finally, Lemma 10 implies:

L

Pr dw (1 1___ 2 - 2 

N)
> - 2NePL exp

which produces the desired bound when combined with (3.18). 0I

3.8.3 Proof of Theorem 8

Proof. By Lemma 11, (A17) -> (A18), so we only need to show the result assuming
(A18) holds. Lemma 12 then implies:

L __( 1 ')2
Pr dw (Fj , Fj-

( =1
< 2P exp

- 2 2

8 ne

Note that the bound in (3.18) only requires the assumptions from Theorem 6, so we
can combine it with the above expression to obtain the desired bound. l

3.8.4 Proof of Theorem 9

Proof.

Consider Pr (F-i'(k/P) - F'(k/P) >

-Pr $1 (-(k/P) +
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S)2)
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Pr 1 [Xi, < Fi-(k/P) + ] )

This is the CDF evaluated at Y := " of a binomial random variable with success
probability T:= Fj (F (k/P) + E) in n trials.
Now assume + F;-1(k/P) > B > 0, which implies nj5> Y.
Letting D(a |1 3) denote the relative entropy between the Bernoulli(a) and Bernoulli(#)
distributions, we can thus apply a tail-inequality for the binomial CDF which Arratia
& Gordon (1989) derived from the Chernoff bound to upper-bound (3.19) by

< exp (- nD (n

=exp (-n log (-ln)+ (I log

_exp (- Ek log ( k/P + 1 + k log( ( - 1P +)]
<exp -- [ logF (F-(kP) + () - l - F (F s(k P)+

exp (-n [ o +-log g1--F - +since F(- < I

=e-n(k) . exp (n ( I - k) log (1 - F (F (k/P) + E))

where C(k) := log ( + ( log (1 > _1

<," -exp n (I - log (1 - F (F,-(k/P) + c))

since the fact log x > Vx > 0 implies C(k) > -1 Vk E {1, ... , P - 1}x
<e~- .exP n 1- )log(1 z)) where z:= 1 - exp (-a(F-'(k/P) + E - B + b) 2 )

because 1 - k/P > 0 and by (A19): F (Fi-'(k/P) + E) > z

since we've assumed Fj- (k/P) + E > B

=,-,n. exp -2an I - k) (F-1(k/P) + E - B + b)2

<e~* - exp -2an 1
) min {b2, (B - F-1(k/P))2

- (B - F;1 (k/P))2

because E > B - F-'(k/P) implies
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min {b2, (B - F (k/P))2 E2

(B - F- (k/p))2
< (F- 1(k/P)+ - B +b)

2a (1 -
k

-

min {b2, (B - F-(k/P))2

(B - F -l(k/P))2

2a (1 - min (B - F (/F2(k/ - J I

(B F - a(k/P))2 )

since we assumed E ;> B - Fi- (k/P)

2 )
a p(1 -4 b2 _

because by (A19) and (A21):

- F-(k/P) < B and 0 < b < B

And finally, we can use the fact that k < P - 1 to obtain the following bound

62 i

Pr (Fi- (k/P) - F71 (k/P) > E) < exp (-rn
2ab2 - 1

4PB2 )

Following the proof of Lemma 11, one can show that (A19) implies

Pr (FZ1(k/P) - F71(k/P) > E) < exp(-2nc262 )

Combining (3.21) with (3.20), we thus have

Pr (Fi-(k/P) - F 1 (k/P) > E) <

where r := min {2c2 2aB2 - > 0 by (A20).

One can show by an identical argument that

Pr (F;-1(k/P) - F--1(k/P) >6e) < exp (-nrE2)

and therefore

Pr (I F--'(k/P) - F-'(k/P) > 6) < 2 exp (-nr 2 )

Fi-'(k/P) - F-1 (k/P) is thus sub-Gaussian with parameter 1 and independent

of F;' (k/P) - Fjl(k/P) Vj # i because we assumed the simple quantile-estimator
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if 0 < E < B - Fi-'(k/P) (3.21)

exp (-nrE2 ) VE > 0

VE > 0

VE > 0 (3.22)



defined in (A16) is used. Following the proof of Lemma 12, V' > 0:

2

,F;-Pr ( <2P exp ,Ne ne2)>dw (Ff
f=1

Note that the bound in (3.18) only requires the assumptions from Theorem 6, so we

can combine it with the above inequality to obtain the desired bound. l

Lemma 9

s.t. F(x) =
all -y > 0:

(Serfling (1980): Theorem 2.3.2). For p E (0, 1): if there exists unique x

p and F- 1 (p) is estimated using n i.i.d. samples from CDF F, then for

Pr K 1(p) - F-1(p) > 7) 2 exp (-2nR(y, i, p) 2 )

where R(y, i, p) := min {F (F- 1 (p) + -y) - p , p - F (F (p) - 'y) }

Lemma 10.
(3.17)

Under the assumptions of Theorem 7 and definitions (3.14), (3.15),

2

>

L

Pr dw, F )-1

FE , F; >

(- 1(k/P)
L P-1

=Pr IIEEI

( =1 NtiEl k= P

P-1

NL E Pr
k=1
P-1

<2NjL E exp
k=1

<2NjLP exp

(
- F;1 (k/P)

-2nR k/Li,k/

-2nR (V //L))

I-> T

P) )

by the union-bound

by (A15) and Lemma 9

by definition (3.14)

LI
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V-Y > 0: <2NjPLexp

Proof of Lemma 10.

L

Pr dw,

- F- (k/P))

( -- 1 (k /P)

-2nR (TL2__F



Lemma 11. If we assume (A14) and (A15), then condition (A17) implies condition
(A 18).

Proof of Lemma 11. Assume WLOG that Fj-1(k/P) > 0 and note that FJ-'(k/P) <
B by (A17).
Then, by a bound established in the proof of Lemma 9 given in (Serfling 1980),
Vn> 0:

and

Pr (fP-1(k/P)

Pr (F1(k/P)

By (A17): f (x) = yF (x) > c Vx c (-B, B)

exp (-2n R(c, i, k/P) 2 )

exp (-2nR(e, i, k/P) 2 )

which implies

R(y7, i,p) > cy > 0 if F-1 (p) t E(-B, B) (3.26)

because recall that we defined R(-y, i,p) := min {F, (F~1 (p) +}) -p , p - Fj (Fi-1 (p) - ')}
Together with (3.26), (3.24) and (3.25) imply

Pr (?i-1(k/P) - Fi-1 (k/P) > E) exp(-2ncE 2) if F-1 (k/P) + E < B (3.27)

and

Pr (F-1(k/P) - F);(k/P) > E) < exp(-2nc 2
6

2 ) if F 1 (k/P) - e > -B (3.28)

Note that because fi(x) = 0 Vx > B, we have

Pr (-i 1(k/P)

=> Pr (<i- (k/P)

> Fi-(k/P) + E = 0 if e > B - Fi-1 (k/P)

if E > B - F-'(k/P)- F (k/P) >

as well as

Pr (i-l(k/P)

-- Pr (F-1(k/P)

< Fi-1(k/P) - e) 0

- Fi-1 (k/P) > e) 0

if E > B + Fi-1 (k/P)

if E > B + Fi-1 (k/P)

Putting together (3.27), (3.28), (3.29), and (3.30), we thus have

Pr (F-j-(k/P)

Pr (Fi;(k/P)

- Fi-(k/P) >

- Fi-'(k/P) >

exp(-2n 2 6 2)

exp(-2nc2 C2 )

which implies

Pr (F- 1 (k/P) - Fi'(k/P) > 6) < 2 exp(-2n 2 E2 )
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(3.25)

(3.29)

and

(3.30)

VC > 0

VE > 0

Ve > 0

-- F-'(k/P) >

- Fi-'(k/P) >



Lemma 12. Under condition (A18) and definitions (3.14), (3.15), (3.17)

For all -y > 0 :
L ( 7Idw 1) 2

Pr Edw (F , IF;-
( =1

> < 2Pexp (-2nc 2Ny)

Proof of Lemma 12.

L7 __1 - )2>
Pr (dw (F ,F) >)

( =1

=Pr (1 L P-1 1
f=1 iElI k=1

P-I

5Pr
k=1

P-1

2 ex
k=1

P) - Fi-(k/P) >

- Fi-1(k/P) > by the union-boundE -1(k/P)

2nc2 LN = 2P exp (-2nc 2Ne'Y)

where in the last inequality, we have used the fact that (A18) implies the 1;~1(k/P) --
Fi-(k/P) are independent sub-Gaussian random variables with parameter $, so
the inequality follows from a standard application of the Chernoff bound (Vershynin
2012, Boucheron et al. 2013).

3.9 Simulation study

We perform a simulation which realistically reflects various properties of scRNA-seq
data, based on assumptions similar to those explicitly relied upon by the scRNA-seq

models of Kharchenko et al. (2014). Samples are generated from one of the following

choices of the underlying trending distribution sequence Q1, ... , QL with L = 5:

(Si) Qj ~ NB(r,,pt) with rj = 5 and Pe = 0.3,0.3,0.4,0.5,0.8 for f = 1,. . . , 5.

(S 2 ) Qe is a mixture of NB(r = 5,p = 0.3) and NB(r = 5,p = 0.7) components,
with the mixing proportion of the latter ranging over AX = 0.1, 0.4, 0.8, 0.8, 0.8
for f = 1,. . ., 5.

(S3) Q , ~NB(r=5,p=0.5) fort= 1, ... ,5.
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NB(r, p) denotes the negative binomial distribution parameterized by r (target num-

ber of successful trials) and p (probability of success in each trial). Our negative

binomial distribution parameters rj and pj correspond to the arguments size and

prob used by the NegBinomial functions in the R stats package (here, a negative

binomial random variable represents the number of failures occurring in a series of

Bernoulli trials before re successes take place).

To capture various types of noise affecting scRNA-seq measurements (e.g. dropout,
PCR amplification bias, transcriptional bursting), noise for the ith batch is intro-

duced (independently of the other batches) via the following steps: rather than sam-

pling from Qt,, we instead sample from P, - NB(rj, ji), where ~j = re + rnoise and

e e P + Pnoise. Here, Pnoise, rnoise are independently drawn from centered Gaussian
distributions with standard deviations o, 10.a respectively (a thus controls the degree

of noise). For the mixture-models in S 2 , we sample from Pt, which is also a mixture of

negative binomials (with the same mixing proportions as Qe) where the parameters

of both mixing components are perturbed by noise variables rnoise, pNoise. In order

to ensure we are sampling from valid distributions after the introduction of noise, we

subsequently enforce the following additional constraints: re ;> 1, 0.05 < j5e < 0.95
before drawing our observations. To the observations sampled from Pe1 , we finally

apply a logio(x + 1) transform (also applied to the scRNA-seq data in 3.11) before

proceeding with our analysis.

We first investigate the convergence of TRENDS estimates under each of the

models Si, S 2 , and S 3 , varying n, Ne, and the amount of noise independently. Figure

3-5 shows the Wasserstein error (sum over f of the squared Wasserstein distances

between the underlying Qe and estimates thereof) of our TRENDS estimates vs. the

error of the empirical distributions. The plot demonstrates rapid convergence of the

TRENDS estimator (as guaranteed by our theory in 4.7) and shows that TRENDS

can produce a much better picture of the underlying distributions than the (noisy)

observed empirical distributions. As shown in Figure 3-5A, this may occur even in the

absence of noise, thanks to the additional structure of the trend-assumption exploited

by our estimator. Thus, when the underlying effects follow a trend, our A statistic

provides a much more accurate measure of their magnitude than distances between

the empirical distributions. These results indicate that the largest benefit of our

TRENDS approach is for small to moderate sized samples.

To compare performance, we evaluate TRENDS against alternative methods under

our models SI-S 3 with substantial batch-noise (a = 0.1). Fixing N = 1, ni = 1000
for all f, i, we generate 400 datasets from the different underlying trending models

described above (100 from each of Si, S 2 , and 200 from S 3 ). TRENDS is applied to

each dataset to obtain a p-value (via the permutation procedure described in 3.5.1).
In this analysis, we also apply the following alternative methods (detailed in 3.10):
a linear variant of our TRENDS model (where quantiles are restricted to evolve

linearly rather than monotonically), an omnibus-testing approach (using the maximal

Kolmogorov-Smirnov (KS) statistic between any pair of distributions), and a measure
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Figure 3-5: The Wasserstein error of the TRENDS fitted distributions vs. the observed em-
pirical distributions, under models S1 - S3 with various settings of n, 0-, and N.
Depicted is the average error (and standard deviation) over 100 repetitions.

of the (marginally-normalized) mutual information (MI) between t and the values in
each batch. The latter two alternative methods make no underlying assumption and
capture arbitrary variation in distributions over f. We employ the same approach
to ascertain statistical significance (at the 0.05 level) under each method. All p-
values in this chapter are obtained via permutation-testing (with 1000 permutations).
To correct these p-values for multiple comparisons, we employ the step-down minP
adjustment algorithm of Ge et al. (2003), which cleverly avoids double permutations
to remain computationally efficient.

Table 3.1 demonstrates that methods sensitive to arbitrary differences in distri-
butions are highly susceptible to spurious batch effects (both the KS and MI identify
all 400 datasets as statistically significant), whereas our TRENDS method has the
lowest false-positive rate, only incorrectly rejecting its null hypothesis for 4 out of
the 200 datasets from S3 . TRENDS also exhibits the greatest power in these experi-
ments. To ascertain how well these methods distinguish the trending data from the
non-trending samples, we computed area under the ROC curve (AUROC) by gener-
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Method FPR TPR AUROC
TRENDS 0.02 0.35 0.87

Linear-TRENDS 0.03 0.32 0.85
KS 1.0 1.0 0.44
MI 1.0 1.0 0.53

Table 3.1: False-positive rate (FPR) and true-positive rate (TPR) produced by different meth-
ods, as well as AUROC values. FPR is determined by the fraction of datasets
generated under model S3 deemed statistically significant (or S1, S2 for TPR).

ating ROC curves for each method using its p-values (ties broken using test statistics)
as a classification-rule for determining which simulated datasets the method would
correctly distinguish from constant model S3 at each possible cutoff value. The re-
sults of Table 3.1 show that TRENDS is superior at drawing this distinction in these
simulations.

3.9.1 Evaluating TRENDS p-values

Under the simulation setup of 3.9, we investigate the performance of our permutation
technique to obtain TRENDS p-values. We draw samples from each of the underlying
models S1, S2 , S3 with n = 100, N = 1, and o- = 0.1. To each simulated dataset (in
total, 100 datasets are drawn from each model), we apply the TRENDS model and
then determine the significance of the TRENDS R2 via a standard permutation test
utilizing all possible permutations of the batch labels (here L = 5 so the number of
distinct possible permuted-R 2 values from the null is 5!/2 = 60). We subsequently
employ our p-value approximation to assess the significance of the same R2 value using
the same permutations as before, but with additional bootstrapped samples drawn
under each permutation of the batch labels until the total number of null samples
is enlarged to at least 1000. Subsequently, the kernel CDF procedure is applied to
these 1000 null samples as detailed in the technique described above for obtaining an
approximate p-value.

To compare our approximation with the standard permutation test p-value, we
require the actual p-value of the observed R2 describing the TRENDS fit, which is
estimated as follows: a minimum of J = 10, 000 new datasets (i.e. batch sequences)
from the same underlying model are drawn in which f is randomly permuted among
the different batches within a single dataset. TRENDS R2 values are then computed
for each of these null datasets (which resemble the permuted data we use in practice,
but each permutation of the labels is matched with freshly sampled batches corre-
sponding to a new dataset), and we can subsequently define the underlying p-value
as in permutation testing. Note that this approach can approximate the actual null
distribution of R2 arbitrarily well as we increase J, and in our experiments, we begin
with J = 10, 000 and gradually increase up to 1, 000, 000 while at least 5 null-R 2
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values greater than the one observed in the original data have not yet been observed.
Table 3.2 demonstrates that our approximation produces much better p-values than
the basic permutation method.

Model Average p E[y- p] SD(fr) MSE(r) E[pperm - p] SD(pperm) MSE(pperm)
S 0.13 -0.012 0.036 1.2e-3 -0.015 0.036 1.3e-3
S 2  0.19 0.039 0.068 5.2e-3 0.085 0.117 1.8e-2
S3 0.51 0.056 0.084 8.8e-3 0.092 0.157 2.8e-2

Table 3.2: Comparing our approximate p-values (jp) against the standard permutation test
(Pperm). Column 2 lists the average true p-value (over 100 datasets) for each model
Si-S 3 .

3.9.2 Determining whether TRENDS model is appropriate

In this section, we perform another simulation to demonstrate our proposed procedure
for checking whether the TRENDS model is appropriate in analyses lacking prior
domain knowledge about the effects of interest. Samples are generated from one
of the following choices of the underlying trending distribution sequence Q1,... , QiL
(with L = 7):

(111) Qt ~ N(0, 1) for f = 1, . .. , 7.

(R 2 ) Qt ~ N(pe, 1) with pi = 0,0.1,0.1,0.2,0.5,0.9,1 for e = 7.

(R 3) Qe ~ N(pt, 1) with pe = 0, 0.1, 0.3, 0.5,0.4,0.2, 0 for f = 1,...,7.

Note that the underlying sequence of distributions for R3 severely violates our trend
condition. Under each of these models, observed values for the ith batch is generated
according to xi,, = xj,8 + zi where 1j,, iid Qf,, and we independently draw a single
noise-variable (i.e. batch-effect) zi ~ N(0, U2 ) for the entire batch.

For each quantile p C (0, 1) used in our TRENDS-fit, we compute the value of
the empirical residual function Si(p) =-1(p) - Q- (p), where <- denotes the
empirical quantiles of the distribution for the ith batch (estimated from {x,,}i
P) and G- 1 denote the fitted quantiles produced by the TF algorithm applied the
data (corresponding to inferred trending distributions Qej). Figure 3-6 depicts a
diagnostic plot showing the distribution of Ei(p) vs. f when TRENDS is fit to data
from each of these models. Based on the clear pattern displayed by the residuals in
the R3 plot, one can easily correctly conclude that the TRENDS model is not very
appropriate for this dataset. In contrast, the residual functions appear random for
data from the other two underlying settings (which meet our TRENDS assumptions).

Under this simulation, we can evaluate the performance of our TRENDS estimates
of misspecified effects. Motivated by our A statistic and Lemma 5, we employ the

91



(B) R2

8-
9;

1 2 3 4 5 6 7 1 2 3 4 5 6 7

I

9-

1 2 3 4 5 6 7

Figure 3-6: Diagnostic plot of the residual functions Ei(p) when TRENDS is fit to data from
each underlying setting R 1, R 2, R 3 (N = 1, ni = 1000, a = 0.1). For each batch
i, the plot depicts a kernel density estimate of the values taken by Ei(p) over
p = 0.01, 0.02,... , 0.99.

L1 Wasserstein distance to define the true overall sequential-progression effect in this
simulation as Atrue = EL 2 d 1 (Qt-1, Qf), which is simply 1 for setting R3. When all
N = 1 (one batch per level), we can simply incorporate the Wasserstein distances
between adjacent observed empirical distributions Aemp = Zf= 2 dLi(Pe-1,Pe) as abasic estimate of Atrue. Note that the batch-effects cause Aemp to have inflated
variance beyond random-sampling deviations in the empirical quantile-estimates. In
contrast, the ATRENDs estimate produced by our TRENDS model is downwardly
biased when applied to data from R3, because of our restriction to monotone quantiles.
Even in this misspecified setting, Figure 3-7 shows that under non-trivial amounts of
noise, ATRENDS remains a far superior estimator Of Atrue than Aemp, which is highly
susceptible to variation arising from these batch-effects.
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Figure 3-7: The mean/standard-deviation of the squared error
ATRENDS estimates (red) over 100 datasets drawn
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Of Aemp estimates (blue) and
from R3 (under each value of

3.10 Alternative methods

Here, we describe different methods that TRENDS is compared against. Note that the
methods which model full distributions may be ordered based on increasing generality
of the underlying assumption as follows: Linear TRENDS -+ TRENDS -+ KS / MI.
By selecting a model later in this ordering, one can capture a wider diversity of
underlying effects but only with decreased statistical power (and robustness against
batch-effects).

3.10.1 Kolmogorov-Smirnov method (KS)

This approach performs an omnibus test of the hypothesis that there exist f, and e2
such that Pr(X I ti) : Pr(X I e2). As a test statistic and measure of effect-size, we use
the maximum Kolmogorov-Smirnov test statistic between these empirical conditional
distributions over all possible pairs fi < f2 E {1, ... , L}. Statistical significance is
assessed via permutation testing, since the usual asymptotics are no longer valid after
maximization.
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3.10.2 Mutual information method (MI)

Here, we estimate the size of the effect using the mutual information between F and
X. Because we operate in the fixed-design setting, f is technically not a random
variable, so we instead employ a conditional variant of the mutual information in
which the marginal distribution of f is disregarded, following the DREMI method
of Krishnaswamy et al. (2014). First, we simply reweigh our batches to ensure the
marginal distribution of f is uniform over {1, ... , L} in the given labels {Ei}=. Sub-
sequently, kernel density estimates of the reweighed joint (X, f) distribution as well
as each conditional Pr(X I f1) are used to calculate the (conditional) mutual informa-
tion, which is used to produce a ranking of genes' inferred developmental importance
according to this method. A p-value is obtained via permutation testing, using the
mutual information as the test statistic.

3.10.3 Tobit model (censored regression)

Trapnell et al. (2014) introduce a scalar regression model specifically tailored for the
analysis of single-cell gene expression over time (which only considers conditional
expectations rather than the complete expression distribution across the cell pop-
ulation). Their approach ranks genes based on the significance of the regression
coefficients in a Tobit-family generalized additive model fit to log-FPKM values vs.
time. It is thus assumed that measured expression follows a log-normal distribution,
and the Tobit link function is introduced to deal with the scarcity of observed reads
from some genes expected to be highly expressed (this missing data issue plagues
scRNA-seq measurements due to the small amount of RNA that can be isolated from
one cell). We try both directly regressing X against tj (referring to this generalized
linear model as the linear Tobit), as well as initially using a B-spline basis expan-
sion of the te values so the subsequent Tobit regression can capture diverse nonlinear
effects (Trapnell et al. 2014).

3.10.4 Linear TRENDS (LT) model

This method is very similar to TRENDS, except it uses a more restrictive class of
regression functions where each quantile evolves linearly (rather than the assumption
of monotonicity used in our trend criterion). We thus operate on real-valued rather
than ordinal covariates (e.g. the actual values of the time points te when available in
the scRNA-seq context, or the integer f-values when there are no definitive numerical
batch-labels, as in our simulation study). Linear TRENDS also relies on our notion of
Wasserstein least-squares fit, the A effect-size measure (used to rank genes), and the
same permutation-procedure for testing significance in TRENDS (the sole difference
between these models is that the former accounts for covariate scaling assuming that
effects manifest linearly on this scale).
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A similar linear multiple-quantile regression framework has been previously pro-
posed in numerous contexts, although it is designed only for simultaneously estimating
a few specific quantiles of the conditional distribution (Takeuchi et al. 2006, Bondell
et al. 2010). Takeuchi et al. and Bondell et al. both fit this model jointly over the
quantiles of interest via a quadratic program with constraints to ensure non-crossing
quantiles. Linear quantile regression (with non crossing) could nonetheless be em-
ployed to model the full distribution by simply selecting a grid of quantiles spanning
(0, 1) as is done in TRENDS, but note that simple scalar measures such as our A
and R2 values do not exist in standard quantile regression which lacks the unifying
Wasserstein perspective presented in this chapter.

In our setting, the empirical quantiles of each conditional distribution are avail-
able, so one can directly employ the usual squared error loss on the empirical quantiles
themselves (as done in our TF algorithm) rather than relying on the quantile regres-
sion loss function used by Takeuchi et al. and Bondell et al. Analogous to the proof
of Theorem 5, one can easily show that optimizing the squared error loss (on each
quantile) implies the distributions constructed from the set of fitted quantiles are the
Wasserstein least-squares fit under the restriction that each quantile evolves linearly
over ti, the time at which the batch is sampled. By replacing the PAVA step (over
f) of the TF algorithm with standard linear regression (where tj is the sole covari-
ate) and also omitting the 6-search for the split between increasing and decreasing
quantiles, our alternating projections method is trivially adapted to fit the set of
non-crossing quantile linear regressions under the squared-loss. In the case where we
estimate around 100 quantiles to represent the entire distributions, we find that this
linearized TF algorithm is orders of magnitude faster than the quadratic program,
which has difficulty dealing with the large number of constraints required in this set-
ting (these methods are not intended to estimate full distributions). We therefore
fit the Linear TRENDS model using this linearized TF algorithm in our applications

(computational efficiency is crucial when the model is fit thousands of times as in our
gene-expression analyses), and find that besides the marked runtime improvement,
Linear TRENDS produces nearly identical estimates as the linear multiple-quantile
regression model of Bondell et al.

3.11 TRENDS analysis of single cell RNA-seq data

To evaluate the practical utility of our method, we analyze two scRNA-seq time course
experiments and compare TRENDS against the alternative approaches described in
3.10. The first dataset is from Trapnell et al. (2014) who profiled single-cell tran-

scriptome dynamics of skeletal myoblast cells at 4 time-points during differentiation
(myoblasts are embryonic progenitor cells which undergo myogenesis to become mus-
cle cells). Trapnell et al. (2014) studied the single-cell transcriptome dynamics of
skeletal myoblast cells during differentiation to identify the genes which orchestrate
the morphological /functional changes observed in this process. After inducing dif-
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ferentiation in a culture of primary human myoblast cells, cells were sampled (and
sequenced) in batches every 24 hours. While the microfluidic system in this experi-

ment can capture 96 cells (one batch is sampled per time point), some of the captures
contain visible debris and cannot be confirmed to come from a whole single cell. In
addition to discarding these, Trapnell et al. stringently omit cells whose libraries were
not sequenced deeply (> 1 million reads), since their analysis uses high-dimensional

manifold methods which are not robust to noise. Because TRENDS is designed to

distinguish biological effects from noise, we retain these cells embracing the additional

(albeit noisy) insight on underlying expression. Omitting only the debris-cells, the
data' we analyze consists of 17,341 genes profiled in the following number of cells at

each time point: Oh: 93 cells, 24h: 93 cells, 48h: 93 cells, 72h: 76 cells.

In a second larger-scale scRNA-seq experiment, Zeisel et al. (2015) isolated 1,691
cells from the somatosensory cortex (the brain's sensory system) of juvenile CD1 mice
aged P22-P32. We treat age (in postnatal days) as our batch-labels, with L = 10
possible ordinal levels. In this data, numerous batches of cells were captured from
some identically-aged mice, implying Nj > 1 for many f, and a total of 14,575 genes

have nonzero expression measurements2 in the sampled cells.

In all analyses, gene expression is represented in (logl 0(x + 1) transformed) Frag-
ments Per Kilobase of transcript per Million mapped reads (FPKM) (Trapnell et al.

2014). Although TRENDS is nonparametric and can be applied to any expression
representation, we find log-FPKM values favorable due to their interpretability and
direct comparability between different genes. The methods we compare TRENDS
against ( 3.10) are all suited for log-FPKM values and do not hinge on the specific

distributional assumptions often required for other expression-measures such as read

counts Risso et al. (2014) or negative-binomial rates Kharchenko et al. (2014).

Assuming that trending temporal-progression effects on expression reflect each
gene's importance in development, we measure the size of these effects using our A
statistic (3.8). Fitting a separate TRENDS model to each gene's measurements, we
thus produce a ranking of the genes' presumed developmental importance. If instead,
one's goal is simply to pinpoint high-confidence candidate genes relevant at all in
development (ignoring the degree to which their expression transforms in the devel-
opmental progression), then our permutation test can be applied to establish which
genes exhibit strong statistical evidence of an underlying nonconstant TREND effect.

For all methods, p-values are obtained using the same procedure as in the simula-
tion study (1000 permutations with step-down minP multiple-testing correction (Ge

et al. 2003)). In these analyses, significance testing (which identifies high-confidence

effects) and the A statistic (which identifies very large effects) both produce informa-
tive results.

1Myoblast FPKM values are available in the Gene Expression Omnibus under accession
GSE52529.

2We compute FPKM values from the somatosensory cortex sequencing read counts available in
the Gene Expression Omnibus under accession GSE60361.
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To determine whether the TRENDS model appropriately fits this data, we first
investigate the residual functions when TRENDS is applied to the scRNA-seq data
from genes known to play a major role in regulating developmental processes. Figure
3-8 does not indicate any systematic pattern in the residuals that would suggest our
model is inappropriate for these data. Table 3.3 details the most highly enriched
terms identified in the significantly trending gene set from each dataset. Shown in
Table 3.4 are previously characterized developmental genes found among those with
the ten largest TRENDS A values (i.e. the genes with the largest inferred effect-size).
Table 3.5 lists the highly enriched GO terms (found via the ConsensusPathDB tool
of Kamburov et al. (2011)) in the 100 genes with largest A values in each dataset.

(A) MT2A (B) Nestin (C) TSPYL6
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Figure 3-8: Diagnostic plot of the residual functions E4(p) for TRENDS fit to scRNA-seq
data from known regulatory genes of myoblast development. For each batch
i, the plot depicts a kernel density estimate of the values taken by E(p) over
p = 0.01, 0.02,.. ., 0.99.

As the myoblast data only contains four e-levels and one batch from each, the
TRENDS permutation test stringently identifies only 20 genes with significant non-
constant trend at the 0.05 level (with step-down minP multiple-testing correction
(Ge et al. 2003)). Terms which are statistically overrepresented in the Gene Ontology
(GO) annotations of these significant genes (Kamburov et al. 2011), indicate the
known developmental relevance of a large subset (see Figure 3-9A). Enriched biological
process annotations include "anatomical structure development" and "cardiovascular
system development" (Table 3.3A).

In contrast, the cortex data are much richer, and TRENDS accordingly finds far
stronger statistical evidence of trending genes, identifying 212 as significant (at the
0.05 level with step-down minP multiple-testing correction). A search for GO enriched
terms in the annotations of these genes shows a large subset to be developmentally
relevant (Figure 3-9B), with enriched terms such as "neurogenesis" and "nervous sys-
tem development" (Table 3.3B). Due to the limited batches in these scRNA-seq data

(each of which may be corrupted under our model), the TRENDS significance-tests
act conservatively (a desirable property given the pervasive noise in scRNA-seq data),

97



identifying small sets of genes we have high-confidence are primarily developmentally
relevant.

(A) Myoblast (B) Cortex
ddevelopment --- - _ ---- Col

------------- develoment.-,-.

....-............... process

: re-g.::".ulation

Figure 3-9: Word clouds of biological process terms significantly enriched (at the 0.01 level) in
GO annotations of the genes with significantly trending expression in each analysis
(Kamburov et al. 2011). Each word cloud was produced using the Consensus-
PathDB tool of Kamburov et al. (2011).

Ranking the genes by their TRENDS-inferred developmental effects (using A),
9 of the top 10 genes in the myoblast experiment have been previously discovered
as significant regulators of myogenesis and some are currently employed as standard
markers for different stages of differentiation (see Table 3.4A). Also, 7 of the top 10
genes in the cortex analysis have been previously implicated in brain development,
particularly in sensory regions (Table 3.4B). Thus, TRENDS accurately assigns the
largest inferred effects to clearly developmental genes (see also Table 3.5). Since
experiments to probe putative candidates require considerable effort, this is a very
desirable feature for studying less well-characterized developmental systems than our
cortex/myoblast examples. Figure 3-1A shows TRENDS predicts that MT2A (the
gene with the largest A-inferred effect in myogenesis and a known regulator of this
process) is universally down-regulated in development across the entire cell popu-
lation. Interestingly, the majority of cells express MT2A at a uniformly high level
of > 3 log FPKM just before differentiation is induced, but almost no cell exhibits
this level of expression 24 hours later. MT2A expression becomes much more het-
erogenous with some cells retaining significant MT2A expression for the remainder of
the time course while others have stopped expressing this gene entirely by the end.
TRENDS accounts for all of these different changes via the Wasserstein distance
which appropriately quantifies these types of effects across the population.

Because any gene previously implicated in muscle development is of interest in
the myoblast analysis, we can form a lower-bound approximation of the fraction of
"true positives" discovered by different methods by counting the genes with a GO an-
notation containing both the words "muscle" and "development" (e.g. "skeletal muscle
tissue development"). Table 3.6 contains all GO annotations meeting this criterion.
Figure 3-10A depicts a pseudo-sensitivity plot based on this approximation over the
genes with the highest presumed developmental importance inferred under different
methods. Here, the Tobit models are censored regressions specifically designed for
scRNA-seq data, which solely model conditional expectations rather than the full
distribution of expression across the cells (see 3.10). A larger fraction of the top
genes found by TRENDS and our closely-related Linear TRENDS method have been
previously annotated for muscle development than top candidates produced by the
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other methods.

We repeat this analysis for the cortex data using a different set of "ground truth"
GO annotations (listed in Table 3.7), and again find that TRENDS produces higher
sensitivity than the other approaches (Figure 3-10B) based on this crude measure.
As researchers cannot practically probe a large number of genes in greater detail, it is
important that a computational method for developmental gene discovery produces
many high ranking true positives which can be verified through limited additional
experimentation. While TRENDS appears to display greater sensitivity than other
methods, we note that it is difficult to evaluate other performance-metrics (e.g. speci-
ficity) using the scRNA-seq data, since the complete set of genes involved in relevant
developmental processes remains unknown.

(A) Myoblast (B) Somatosensory Cortex
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Figure 3-10: Pseudo-sensitivity of various methods based on their ability to identify known
developmental genes. (A) the number of genes with a GO annotation containing
both "muscle" and "development" found in the top K genes (ranked by the
different methods for the myoblast data), over increasing K. (B) similar plot
for the cortex data, where developmental genes are now those annotated with a
relevant GO term from Table 3.7.

The Nestin gene in the myoblast data provides one example demonstrating the
importance of treating full expression distributions rather than just mean-effects.
Nestin plays an essential role in myogenesis, determining the onset and pace of my-
oblast differentiation, and its overexpression can also bring differentiation to a halt
(Pallari et al. 2011), a process possibly underway in the high-expression cells from
the later time points depicted in Figure 3-1B. TRENDS ranks Nestin 35th in terms
of inferred developmental effect-size (with TRENDS p-value = 0.02 before step-down
minP multiple-testing correction and 0.09 after), but this gene is overlooked by the
scalar regression methods (only ranking 3,291 and 5,094 in the linear / B-spline To-
bit results). Although Figure 3-1B depicts a clear temporal effect on mean Nestin
expression, scalar regression does not prioritize this gene because these methods fail
to properly consider the full spectrum of changes affecting different segments of the
cell population in the multitude of other genes with similar mean-effects as Nestin.
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Although the closely-related Linear TRENDS model appears to do nearly as well
as TRENDS in our pseudo-sensitivity analysis (Figure 3-10), we find the linearity
assumption overly restrictive, preventing the Linear TRENDS model from identifying
important genes like TSPYL5, a nuclear transcription factor which suppresses levels
of well-known myogenesis regulator p53 (Epping et al. 2011, Porrello et al. 2000).
Linear TRENDS model only assigns this gene a p-value of 0.2 whereas TRENDS
identifies it as significant (p = 0.05), since TSPYL5 expression follows a monotonic
trend fairly closely (R2 = 0.95) but is not as well approximated by a linear trend
(R2 = 0.68). Figure 3-11 confirms that the TRENDS-fitted distributions for this
gene lie very close to the observed expression distributions, so the vast majority of
temporal variation in empirical TSPYL5 expression can be attributed to the presence
of a consistent underlying trend.
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Violin plots depicting the empirical distribution of TSPYL5 expression measured
in myoblast cells (on left), and the corresponding TRENDS fitted distributions
(on right). Each point shows a sampled cell.
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(A) Myoblast
Term p-value q-value
liver development le-4 6e-3
hepaticobiliary system development le-4 6e-3
anatomical structure development 3e-4 8e-3
gland development 3e-4 0.03
system development 2e-3 0.08
regulation of cyclin-dependent protein

serine/threonine kinase activity 2e-3 0.08
single-multicellular organism process 3e-3 0.04
single-organism

developmental process 4e-3 0.04
central nervous system development 5e-3 0.07
cardiovascular system development 5e-3 0.07
circulatory system development 5e-3 0.07
multicellular organismal

development 5e-3 0.08
cellular nitrogen compound
catabolic process 5e-3 0.07
response to hormone 5e-3 0.08
nervous system development e-3 0.07
heart development 5e-3 0.08
regulation of cell cycle 6e-3 0.07
organ development 6e-3 0.08

(B) Somatosensory Cortex
Term p-value q-value
transmission of nerve impulse 6e-8 2e-5
multicellular organismal

signaling 1e-7 3e-5
cell communication 6e-7 7e-5
neuron differentiation le-6 2e-4
cell development 3e-6 2e-4
ensheathment of neurons 3e-6 2e-4
axon ensheathment 3e-6 3e-4
single organism signaling 4-e6 3e-4
neurogenesis le-5 le-3
regulation of biological quality le-5 4e-4
system development le-5 5e-4
neuron projection development le-5 le-3
cell projection organization le-5 5e-4
single-organism cellular process 2e-5 4e-4
neuron development 2e-5 le-3
anatomical structure development 3e-5 5e-4
nervous system development 3e-5 2e-3
cellular developmental process 5e-5 6e-4
cell differentiation 6e-5 2e-3
single-organism

developmental process 7e-5 7e-4

Table 3.3: Most highly enriched terms in the biological process annotations of significantly
trending genes. The p-values correspond to the statistical significance of each term's
enrichment in the set of genes (false-discovery-rate correction produces q-values).
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(A) Myoblast
Gene A R

2  
p-value Developmental Evidence

MT2A 0.46 0.98 0.11 Apostolova et al. (1999)
ACTA2 0.44 0.99 0.08 Petschnik et al. (2010)
MT1L 0.43 0.99 0.09 Apostolova et al. (1999)
TNNT1 0.42 0.95 0.13 Sebastian et al. (2013)
MYLPF 0.41 0.99 0.03 Sebastian et al. (2013)
MYH3 0.39 0.99 0.04 Trapnell et al. (2014)
MT1E 0.39 0.99 0.11 Apostolova et al. (1999)
AC004702.2 0.37 0.99 0.23 Unknown
FABP3 0.35 0.98 0.18 Myers et al. (2013)
DKK1 0.34 0.99 0.12 Han et al. (2011)

(B) Somatosensory Cortex
Gene A R2 p-value Developmental Evidence
Sst 0.23 0.22 0.05 Zeisel et al. (2015)
Xist 0.14 0.09 0.35 Unknown
Ptgds 0.13 0.24 0.02 Trimarco et al. (2014)
PIp1 0.13 0.16 0.14 Zeisel et al. (2015)
Mog 0.13 0.13 0.16 Zeisel et al. (2015)
Npy 0.12 0.11 0.23 Zeisel et al. (2015)
Rps26 0.11 0.12 0.20 Unknown
Tsix 0.11 0.12 0.23 Unknown
Apod 0.11 0.16 0.11 Sanchez et al. (2002)
Ermn 0.10 0.11 0.20 Zeisel et al. (2015)

Table 3.4: The top ten inferred developmental genes (with the largest A value) from each
experiment. Shown are the TRENDS A, R2 , and p-value (after step-down minP
multiple-testing correction) for each gene, as well as existing literature (if known)
which previously characterized the gene as playing an important role in developmen-
tal processes.



103

(A) Myoblast
Term p-value q-value_
actin-mediated cell contraction 4e-9 9e-7
muscle structure development 6e-9 le-6
striated muscle tissue development 8e-9 9e-7
muscle tissue development le-8 2e-6
muscle organ development le-8 2e-6
response to zinc ion 2e-8 2e-6
actin filament-based movement 3e-8 2e-6
organ development le-7 le-5
muscle system process le-7 7e-6
response to inorganic substance 2e-7 le-5
muscle contraction 2e-7 2e-5
negative regulation of growth 2e-7 le-5
response to metal ion 2e-7 le-5
mitotic cell cycle 3e-7 le-5
response to transition

metal nanoparticle 5e-7 2e-5
cellular response to metal ion 5e-7 3e-5
cellular response to

inorganic substance le-6 4e-5
muscle cell development 2e-6 6e-5
cell cycle 5e-6 2e-4
muscle tissue morphogenesis 6e-6 2e-4
muscle organ morphogenesis 9e-6 2e-4
heart development le-5 4e-4
regulation of mitotic cell cycle le-5 6e-4
striated muscle cell development 2e-5 6e-4

Table 3.5: Most highly enriched terms in the

(B) Somatosensory Cortex
Term p
ensheathment of neurons
axon ensheathment
cellular homeostasis
cellular chemical homeostasis
transmission of nerve impulse
multicellular organismal signaling
glial cell differentiation
regulation of biological quality
glial cell development
chemical homeostasis
response to inorganic substance
homeostatic process
nervous system development
response to metal ion
response to oxygen-

containing compound
system development
central nervous system development
detoxification of copper ion
response to steroid

hormone stimulus
response to lipid
response to reactive oxygen species
response to toxic substance
anatomical structure development
neurogenesis

-value q-value
2e-10 3e-8
2e-10 5e-8
3e-8 2e-6
4e-8 4e-6
7e-8 5e-6
le-7 6e-6
3e-7 2e-5
4e-7 2e-5
7e-7 3e-5
2e-6 6e-5
4e-6 le-4
8e-6 3e-4
le-5 5e-4
2e-5 6e-4

4e-5 le-3
6e-5 le-3
6e-5 2e-3
7e-5 2e-3

le-4 2e-3
le-4 2e-3
2e-4 3e-3
2e-4 3e-3
2e-4 6e-3
3e-4 5e-3

biological process annotations of the top
genes with largest A values in each experiment. The p-values correspond to

100
the

statistical significance of each term's enrichment in the set of genes (false-discovery-
rate adjustment produces q-values).



Table 3.6: A list of all GO annotation terms containing both the words "muscle" and "devel-
opment", used to produce the pseudo-sensitivity plots in Figure 3-10A.

Gene Ontology ID Annotation Term
1 GO:0007420 brain development
2 GO:0007399 nervous system development
3 GO:0014003 oligodendrocyte development
4 GO:0021860 pyramidal neuron development
5 GO:0022008 neurogenesis

Table 3.7: A list of the GO annotation terms relevant to the somatosensory cortex development,

used to produce the pseudo-sensitivity plots in Figure 3-10B. This brain region is

primarily composed of oligodendrocyte and pyramidal neuron cells (Zeisel et al.
2015).
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Gene Ontology ID
GO:0048745
GO:0048747
GO:0048742
GO:0048739
GO:0048635
GO:0007517
GO:0007519
GO:0048743
GO:0048738
GO:0055013
GO:0048741
GO:0055014
GO:0055015
GO:0048643
GO:0097084
GO:0060948
GO:0055001
GO:0055026
GO:0045843
GO:0016202
GO:0048642
GO:0055024
GO:0061049
GO:0014706
GO:0007525
GO:0061052
GO:0045844
GO:0014707
GO:0007522
GO:0048641
GO:1901863
GO:0072208
GO:0003229
GO:0060538
GO:0061050
GO:0055020
GO:0061061
GO:0061051
GO:0055002
GO:0060537
GO:0007527
GO:0002074

Annotation Term
smooth muscle tissue development
muscle fiber development
regulation of skeletal muscle fiber development
cardiac muscle fiber development
negative regulation of muscle organ development
muscle organ development
skeletal muscle tissue development
positive regulation of skeletal muscle fiber development
cardiac muscle tissue development
cardiac muscle cell development
skeletal muscle fiber development
atrial cardiac muscle cell development
ventricular cardiac muscle cell development
positive regulation of skeletal muscle tissue development
vascular smooth muscle cell development
cardiac vascular smooth muscle cell development
muscle cell development
negative regulation of cardiac muscle tissue development
negative regulation of striated muscle tissue development
regulation of striated muscle tissue development
negative regulation of skeletal muscle tissue development
regulation of cardiac muscle tissue development
cell growth involved in cardiac muscle cell development
striated muscle tissue development
somatic muscle development
negative regulation of cell growth involved in cardiac muscle cell development
positive regulation of striated muscle tissue development
branchiomeric skeletal muscle development
visceral muscle development
regulation of skeletal muscle tissue development
positive regulation of muscle tissue development
metanephric smooth muscle tissue development
ventricular cardiac muscle tissue development
skeletal muscle organ development
regulation of cell growth involved in cardiac muscle cell development
positive regulation of cardiac muscle fiber development
muscle structure development
positive regulation of cell growth involved in cardiac muscle cell development
striated muscle cell development
muscle tissue development
adult somatic muscle development
extraocular skeletal muscle development



3.12 ACS income distribution analysis

To demonstrate the broader utility of TRENDS beyond scRNA-seq analysis, we fi-
nally present a brief study of incomes in various industries during the years 2007-2013
following the economic recession. Our goal is to quantify and compare effects across
different industries' incomes during this post-recession period. Rather than measur-
ing ephemeral decline/rebound in this analysis, our interests lie in consistent effects
which enduringly altered an industry's incomes through 2013. American Consensus
Survey (ACS) reported income data from 12,020,419 individuals across the USA in
the years 2007-2013 were obtained from the Integrated Public Use Microdata Series
(Ruggle et al. 2010). After filtering out individuals with missing or $1 and under
reported income, the data consists of 257 industries from which at least 100 people
were surveyed in each of the years under consideration. We fit TRENDS to the data
from each industry separately, treating the observations from each year as a single
batch and year-index in this time series as the label (f = 1, . . . , 7).

Industry R2  p-value A
Other information services 0.97 0.02 5465
Software publishers 0.78 0.10 2991
Electronic auctions 0.86 0.04 2584
Oil and gas extraction 0.78 0.12 2454
Miscellaneous petroleum and coal products 0.52 0.38 2415
Other telecommunication services 0.80 0.07 2414
Pharmaceutical and medicine manufacturing 0.98 0.04 2220
Management of companies and enterprises 0.66 0.12 2194
Metal ore mining 0.89 0.02 2074
Support activities for mining 0.88 0.03 1915
Electric and gas, and other combinations 0.82 0.03 1910
Non-depository credit and related activities 0.92 0.06 1860
Sound recording industries 0.51 0.38 1731
Electronic component and product manufacturing 0.99 0.02 1719
Securities, commodities, funds, trusts, and other financial investments 0.57 0.23 1665
Agricultural chemical manufacturing 0.77 0.09 1635
Communications, and audio and video equipment manufacturing 0.72 0.09 1628
Pipeline transportation 0.70 0.14 1620
Coal mining 0.90 0.04 1573
Natural gas distribution 0.69 0.11 1546

Table 3.8: The 20 industries with annual incomes most affected by temporal progression from
2007-2013 (as inferred by TRENDS). Broader sectors are: manufacturing (red),
business/finance (green), energy (blue), technology (magenta).

Table 3.8 lists the industries which according to TRENDS are subject to the largest
trending temporal effects in income distribution over this post-recession period. The
table contains numerous industries from the business/financial and manufacturing
sectors, which were known to be particularly affected by the recession. Interest-
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Figure 3-12: Distributions of reported income of individuals in the "other information services"
industry. (A) kernel density estimates applied to the ACS survey results from
each year (B) corresponding TRENDS fitted distributions.

ingly, many industries from the energy sector are also included in the table'. The
other industries in which income distributions were subject to the largest temporal
progression effects are predominantly technology-related, representing the continued
growth in incomes in this sector, which has been unaffected by the recession.

Of particular note is the "other information services" industry (includes web search,
internet publishing/broadcasting), where we observe the emergence of a distinct sub-
group with reported incomes in the hundreds of thousands. While a few of the extreme
reported incomes fell from 07-08, TRENDS conservatively estimates the underlying
effects as consistently increasing all quantiles rather than including this change in A
(such extrema are highly-variable, even at our large sample size). For reference, the
average reported incomes of this industry in 2007-13 were: $65.8k, $66.6k, $77.9k,
$78.7k, $82.1k, $84k.

3Reflecting the enactment of the Energy Independence and Security Act of 2007, which sought
to move the U.S. toward greater energy efficiency and reduce reliance on imported oil.
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Chapter 4

Learning optimal interventions under
uncertainty

In many data-driven applications, including medicine, the primary interest is identify-
ing interventions that produce a desired change in some associated outcome. Because
of experimental limitations, learning in such domains is commonly restricted to an
observational dataset D, := { (, (, y(i)) _n which consists of IID samples from a pop-
ulation with joint distribution Pxy over covariates (features) X E Rd and outcomes
Y E R. Typically, such data is analyzed using models which facilitate understanding
of the relations between variables (e.g. assuming linearity/additivity). Based on con-
clusions drawn from this analysis, the analyst decides how to intervene in a manner
they confidently believe will improve outcomes. Formalizing such beliefs via Bayesian
inference, we develop an alternative framework that instead automatically identifies
beneficial interventions directly from the data.

4.1 Causal assumptions

Under our setup, an intervention on an individual with pre-treatment covariates X
produces post-treatment covariate values X that determine the resulting outcome Y
(depicted as the graphical model: X -+ X -+ Y). Each possible intervention results
in a diffferent X. More concretely, we make the following simplifying assumption:

Y =f(X) +e with E[E] = 0, EJL ,X (4.1)

for some underlying function f that encodes the effects of causal mechanisms (i.e. X

represents a fair description of the system state, and some covariates in X causally
affect Y, not vice-versa). The observed data is comprised of naturally occurring co-
variate values where we presume -W = x(') for i = 1,...,n (i.e. the system state
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remains static without intervention, so the observed covariate values directly influ-
ence the observed outcomes). Moreover, we assume the relationship between these

covariate values and the outcomes remains invariant, following the same (unknown)

function f for any X arising from one of our feasible interventions (or no intervention

at all). Note that this assumption precludes the presence of hidden confounding.

Peters et al. (2016) have also relied on this invariance assumption, verifying it as a

reasonable property of causal mechanisms in nature.

4.2 Objectives

Given this data, we aim to learn an intervention policy defined by a covariate trans-

formation T : Rd a Rd, applied to each individual in the population. Here, T(x)

presents a desired setting of the covariates that should be reflected by subsequent
intervention to actually influence outcomes. When T only specifies changes to a

subset of the covariates, an intervention seeking to realize T may have unintended

side-effects on covariates outside of this subset. We ignore such "fat hand" settings

(Duvenaud et al. 2010) until 4.9. Instead, our methods assume interventions can

always be carried out with great precision to ensure the desired transformation T is

exactly reflected in the post-treatment values: i = T(x). Our goal is to identify the
transformation T which produces the largest corresponding post-treatment improve-

ment with high certainty. T(x) can either represent a single mapping to be performed

on all individuals (global policy) or encode a personalized policy where the intervened

upon variables and their values may change with x.

Our strong assumptions are made to ensure that statistical modeling alone suf-
fices to identify beneficial interventions. While many real-world tasks violate these
conditions, there exist important domains in which violations are sufficiently minor
that our methods can discover effective interventions (cf. Rojas-Carulla et al. (2016),
Peters et al. (2016)). We use two applications to illustrate our framework. One is a
writing improvement task where the data consists of documents labeled with associ-

ated outcomes (e.g. grades or popularity) and the goal is to suggest beneficial changes

to the author. Our second example is a gene perturbation task where the expression

of some regulatory genes can be up/down-regulated in a population (e.g. cells or bac-

teria) with the goal of inducing a particular phenotype or activation/repression of a

downstream gene. In these examples, covariates are known to cause outcomes and

our other assumptions may hold to some degree, depending on the type of external

intervention used to alter covariate values.

The contributions of this chapter include:

1. A formal Bayesian definition of the optimal intervention that exhibits desirable

characteristics under uncertainty due to limited data.
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2. Widely applicable types of (sparse) intervention policy that are easily enacted
across a whole population, and efficient algorithms to find the optimal interven-

tion under practical constraints.

3. Theoretical insight regarding our methods' properties in Gaussian Process set-
tings and certain misspecified applications, where interventions on a few covari-
ates may unintentionally perturb additional non-intervened-upon covariates.

4.3 Related work

The same invariance assumption has been exploited by Peters et al. (2016) and Rojas-
Carulla et al. (2016) for causal variable selection in regression models. Recently, re-
searchers such as Duvenaud et al. (2010) and Kleinberg et al. (2015) have supported
a greater role for predictive modeling in various decision-making settings. Zeevi et al.
(2015) use gradient boosting to predict glycemic response based on diet (and per-
sonal/microbiome covariates), and found they can naively leverage their regressor to
select personalized diets which result in superior glucose levels than the meals pro-
posed by a clinical dietitian. As treatment-selection in high-impact applications (e.g.
healthcare) grows increasingly reliant on supervised learning methods, it is imperative
to properly handle uncertainty.

Nonlinear Bayesian predictive models have been employed by Hill (2011), Broder-
sen et al. (2015), and Krishnan et al. (2015) for quantifying the effects of a given
treatment from observations of individuals who have been treated and those who have
not. Rather than considering a single given intervention, we introduce the notion of
an optimal intervention under various practical constraints, and how to identify such
a policy from a limited dataset (in which no individuals have necessarily received any
interventions).

Although our goals appear similar to Bayesian optimization and bandit problems
(Shahriari et al. 2016, Agarwal et al. 2013), additional data is not collected in our
setup. Since we consider settings where interventions are proposed based on all avail-
able data, acquisition functions for sequential exploration of the response-surface are
not appropriate. As most existing data is not generated through sequential experi-
mentation, our methods are more broadly applicable than iterative approaches like
Bayesian optimization.

A greater distinction is our work's focus on the pre vs. post-intervention change in
outcome for each particular individual, whereas Bayesian optimization seeks a single
globally optimal configuration of covariates. In practice, feasible covariate transfor-
mations are constrained based on an individual's naturally occurring covariate-values,
which stem from some underlying population beyond our control. For example in the
writing improvement task, the goal is not to identify a globally optimal configuration
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of covariates that all texts should strive to achieve, but rather to inform a particu-
lar author of simple modifications likely to improve the outcome of his/her existing

article. Appropriately treating such constraints is particularly important when we

wish to prescribe a global policy corresponding to a single intervention applied to all

individuals from the population (there is no notion of an underlying population in

Bayesian optimization).

4.4 Methods

Our strategy is to first fit a Bayesian model for Y I X whose posterior encodes our
beliefs about the underlying function f given the observed data. Subsequently, the

posterior for f I D, is used to identify a transformation of the covariates T : Rd -
Rd which is likely to improve expected post-intervention outcomes according to our
current beliefs. The posterior for f I D, may be summarized at any points x, x' E Rd

by mean function E[f(x) I D,,] and covariance function Cov(f(x), f(x') I Do).

4.4.1 Intervening at the individual level.

For x G Rd representing the covariate-measurements from an individual, we are given
a set Cx C Rd that denotes constraints of possible transformations of x. Let T(x) =

Y c Cx denote the new covariate-measurements of this individual after a particular
intervention on x which alters covariates as specified by transformation T : Rd -+ Rd.
Recall that we assume an intervention can be conducted to produce post-treatment
covariate-values that exactly match any feasible transformation: 1 = T(x), and we

thus write f(T(x)) in place of E[Y I _ = T(x)].

We first consider personalized interventions in which T may be tailored to a par-
ticular x. Under the Bayesian perspective, f I Dn is randomly distributed according
to our posterior beliefs, and we define the individual expected gain function:

Gx(T) := f(T(x)) - f(x) I Dn (4.2)

Since f(x) = E [Y I X = x], random function Gx evaluates the expected outcome-

difference at the post vs. pre-intervention setting of the covariates (this expectation
is over the noise e, not our posterior). To infer the best personalized intervention

(assuming higher outcomes are desired), we use optimization over vectors T(x) E Rd
to find:

T*(x) = argmax F (a) (4.3)
T(x)ECx

where F1 (a) denotes the ath quantile of our posterior distribution over G(-). We

choose 0 < a < 0.5, which implies the intervention that produces T*(x) should
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improve the expected outcome with probability > 1 - a under our posterior beliefs.

Defined based on known constraints of feasible interventions, the set C., c Rd enu-
merates possible transformations that can be applied to an individual with covariate
values x. If the set of possible interventions is independent of x (i.e. Cx = C Vx), then
our goal is similar to the optimal covariate-configuration problem studied in Bayesian
optimization. However, in many practical applications, x-independent transforma-
tions are not realizable through intervention. Consider gene perturbation, a scenario
where it is impractical to simultaneously target more than a few genes due to tech-
nological limitations. If alternatively intervening on a quantity like caloric intake, it
is only realistic to change an individual's current value by at most a small amount.
The choice Cx := {z E Rd : Jz - zilo < k} reflects the constraint that at most k
covariates can be intervened upon. We can denote limits on the amount that the
sth covariate may be altered by Cx :{ (z E Rd : IX, - z31 < y} for s E 1,. . . , d}.
In realistic settings, Cx may be the intersection of many such sets reflecting other
possible constraints such as boundedness, impossible joint configurations of multiple
covariates, etc.

For any x, T(x) E Rd: the posterior distribution for GX(T) has:

mean = E[f (T(x) I D,] - E[f(x) I D, (4.4)

variance = Var(f(T(x)) I D,) + Var(f(x) I D,,)

- 2Cov(f(T(x)), f(x) I D,,) (4.5)

which is easily computed using the corresponding mean/covariance functions of the
posterior f I D,. When T(x) = x, the objective in (4.3) takes value 0, so any superior
optimum corresponds to an intervention we are confident will lead to expected im-
provement. If there is no good intervention in Cx (corresponding to a large increase in
the posterior mean) or too much uncertainty about f(x) given limited data, then our
method simply returns T*(x) = x indicating no intervention should be performed.

Our objective exhibits these desirable characteristics because it relies on the pos-
terior beliefs regarding both f(T(x)) and f(x), which are tied via the covariance
function. In contrast, a similarly-conservative lower confidence bound objective (i.e.
an adaptation of the UCB acquisition function with lower rather than upper quan-
tiles) would only consider f(T(x)), and could propose unsatisfactory transformations
where we actually have E[f (x) I D,] > E[f(T(x)) I Dv].

4.4.2 Intervening on entire populations

The above discussion focused on personalized interventions tailored on an individual
basis. In certain applications, policy-makers are interested in designing a single inter-
vention which will be applied to all individuals from the same underlying population
as the data. Relying on such a global policy is the only option in cases where we no
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longer observe covariate-measurements of new individuals outside the data. In our
gene perturbation example, gene expression may no longer be individually profiled in
future specimens that receive the decided-upon intervention to save costs/labor.

Here, the covariates X are assumed distributed according to some underlying
(pre-intervention) population, and we define the population expected gain function:

Gx(T) : = Ex[Gx(T)] = Ex [f(T(x)) - f(x) I Dn]

which is also randomly distributed based on our posterior (Ex is expectation with
respect to the covariate-distribution X which is not modeled by f I Dvn). Our goal
is now to find a single transformation T : Rd -+ Rd corresponding to a population

intervention which will (with high certainty under our posterior beliefs) lead to large

outcome improvements on average across the population:

T argmax F-(1 ) (4.6)
TET

Here, the family of possible transformations T is constrained such that T(x) E Cx for
all T E T, X E Rd. As a good model of our multivariate features may be unknown,
we instead work with the empirical estimate:

T argmax F-1T)(a) (4.7)
T Er T (T

where G,(T) := [f(T(x'))) - f(x('))] I Dn

is the empirical population expected gain, whose posterior distribution has:

mean = E[f(T(x('))) I D,] - E[f(x(')) I Dn] (4.8)

n~ n

variance - 2 [Cov (f(X(i)), f(XW) I Dn)
i=1 j=1

- Cov(f(T(x ())), f(x ()) J Dn)

- Cov(f(x(')), f(T(x(i))) ID)
+ Cov(f(T(x('))), f(T(x ())) I Dn) (4.9)

The population intervention objective in (4.7) is again 0 for the identity mapping
T(x) = x. Under excessive uncertainty or a dearth of beneficial transformations in 'T,
the policy produced by this method will again simply be to perform no intervention.
In this population intervention setting, T is designed assuming future individuals will
stem from the same underlying distribution as the samples in Dn. Although T is a
function of x, the form of the transformation must be agnostic to the specific values
of x (so the intervention can be applied to new individuals without measuring their
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covariates).

We consider two types of transformations that we find widely applicable. Shift
interventions involve transformations of the form: T(x) = x + A where A E Rd
represents a (sparse) shift that the policy applies to each individuals' covariates (e.g.
always adding 3 to the value of the second covariate corresponds to T(x) = [x1 , x 2 +
3, ... , ,r7]). Covariate-fising interventions are policies which set certain covariates to
a constant value for all individuals, and involve transformations T-. (x) = [zi, .. ., zd]
such that for some covariate-subset I C {1, ... , d} : zj = xj Vj V I and for j E I:
z3 E R is fixed across all x (e.g. always setting the first covariate to 0, for example in
gene knockout, corresponds to T(x) = [0, X2, .. . , Xd] Vx). Figure 4-1 depicts examples
of these different interventions. Under a sparsity constraint, we must carefully model
the underlying population in order to identify the best covariate-fixing intervention
(here, setting X1 to a large value is superior to intervening on X2 ).
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Figure 4-1: Contour plot of expected outcomes over feature space [Xi, X 2] for relationship
Y = X1 -X2 + e. Black points: the underlying population. Gold diamond: opti-
mal covariate-setting if any transformation in the box were feasible. Red points:
same population after shift intervention A = [-3, 0]. Light (or dark) green points
(along border): best covariate-fixing intervention which can only set X2 (or only
X1) to a fixed value. Blue, purple, light blue points: individuals who receive
a single-variable personalized intervention (arrows indicate direction of optimal
transformation).
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4.5 Gaussian process regression

Gaussian Process (GP) regression is a nonparametric Bayesian model that has en-
joyed widespread success in supervised learning settings with limited data (Rasmussen
2006). This technique has been favored in many applications as it produces both
accurate predictions and effective measures of uncertainty (with closed-form estima-
tors available in the standard case). Furthermore, a variety of GP models exist for
different settings including: non-Gaussian response variables (Rasmussen 2006), non-
stationary relationships (Paciorek & Schervish 2004), deep representations (Dami-
naou & Lawrence 2013), measurement error (McHutchon & Rasmussen 2011), and
heteroscedastic noise (Le et al. 2005). While these more advanced variants are not
employed in this thesis, our intervention-methodology can be directly used in con-
junction with such extensions (or more generally, any model which produces a useful
posterior for f I Dn).

The key idea of the GP approach is to adopt a Gaussian process prior over the
space of possible functions mapping features to outcomes, under which f (x(M), . .. , f (x(n))
follow a multivariate Gaussian distribution N(mn, Kn,n) for any collection of data
points {x() }&U 1. This prior (and the resulting GP model) is specified by a prior mean
function m : Rd -+ R and positive-definite covariance function k : Rd x Rd -+ R which

encodes our prior belief regarding properties of the underlying relationship between
X and Y (such as smoothness or periodicity). Here, the vector m" E R' denotes
the evaluation of function rn at each point {x()}?_ 1, and Knn denotes the matrix

whose ,jth component is k(x(), w()). Given test input points x!", ... , X!"* E Rd

in addition to training data Dn, we additionally define: f* := [fK(xK), ... , f(x **)],

y= [y(,...,Iy(n)], matrix K, with i, Jth entry k(x(z), x* ) (where x() is the ith

training input), and matrix K*,, which contains pairwise covariances between test
inputs.

The standard GP regression model assumes that the noise E - N(0, a2 ) is inde-
pendently sampled for each observation. In this case, the posterior for f at the test
inputs, f, I Dn, follows a N(p,, En*) distribution with the following mean vector and

covariance matrix:

Pn, = m* + (Kn,n + 021)- 1 (yn - mn), En* = K*,* - K,,n(Kn,n + O21)- Kn,*

Note that our intervention-optimization framework is not specific to this GP

model, but can be combined with any algorithm that learns a reasonable posterior

for f. While employing a more powerful model should improve the results of our

approach, comparing various regressors is not our focus. Thus, all practical results of

our methodology are presented using only the standard GP regression model, under

which the posterior distribution over f is given by the above expressions. In each ap-

plication presented here, our GP uses the Automatic-Relevance-Determination (ARD)
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covariance function, a popular choice for multi-dimensional data (Rasmussen 2006):

k(x, x') = ro . exp (s (4.10)

The ARD kernel relies on length-scale hyperparameters I,. ., d which determine how

much f can depend on each dimension of the feature-space. All hyperparameters of

our GP regression model (covariance-kernel parameters 11 ... , ld and UO (the output

variance) as well as the variance of the noise o 2 ) are empirically selected via marginal-

likelihood maximization (i.e. Type II maximum likelihood: Rasmussen, 2006). In

each application, we employ the 0 .0 5 th posterior-quantile (a = 0.05) in our method

to ensure that with high probability, the intervention it infers to be optimal induces

a nonnegative change in expected outcomes.

4.6 Algorithms to identify beneficial transformations

Throughout this chapter, we employ Gaussian Process regression to model Y I X,
as described in the previous section. Under the basic GP model, G"(T) follows a

Gaussian distribution and the ath quantile of our personalized gain is simply given

by:

F- =E[G(T)] + <D 1 (a) . Var[Gx(T)]1/ 2  (4.11)

where 4D- 1 denotes the N(0, 1) quantile function. The quantiles of the empirical

population gain may be similarly obtained. When a smooth covariance kernel k(., -) is

adopted in the GP prior, derivatives of our intervention-objectives are easily computed

with respect to T.

In many practical settings, an intervention that only affects a small subset of

variables is desired. Software to improve text, for example, should not overwhelm

authors with a multitude of desired changes, but rather present a concise list of the

most beneficial revisions in order to retain underlying semantics. Note that identi-

fying a sparse transformation of the covariates is different from feature selection in

supervised learning (where the goal is to identify dimensions along which f varies

most). In contrast, we seek the dimensions I C {1, .... , d} along which one of our

feasible covariate-transformations can produce the largest high-probability increase

in f, assuming the other covariates remain fixed at their initial pre-treatment val-

ues (in the case of personalized intervention) or follow the same distribution as the

pre-intervention population (in the case of a global policy).

For a shift intervention T(x) = x + A, we introduce the convenient notation

G,(A) := G,(T). In applications where shifting x, (the sth covariate for s ~ {1, .. . , d})

by one unit incurs cost - , we account for these costs by considering the following
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regularized intervention-objective:

d

JA(A) := FG(() -- AZysIAsI (4.12)
8=1

By maximizing this objective over feasible set CA := {A E R' : x + A E Cx for all x E R }
policy-makers can decide which variables to intervene upon (and how much to shift

them), depending on the relative value of outcome-improvements (specified by A).

The optimization of our regularized objective JA is performed using the proximal

gradient method (Bertsekas 1995), where at each iterate: a step in the gradient di-

rection is followed by a soft-thresholding operation (Bach et al. 2012) as well as a
projection back onto the feasible set CA. When A = 0 and there is no penalty, we in-

stead use the Sequential Least Squares Programming procedure of Kraft (1988), which
empirically converged more quickly that the basic gradient method when applied to

our unregularized objective.

4.6.1 Continuation method to avoid poor local optima

As our intervention objective JA is often highly nonconcave, first/second-order opti-
mization methods may suffer from the presence of poor local optima. Nonconcavity
arises primarily due to the fact that the Gaussian process uncertainty balloons in
any region lacking data. To deal with local optima in acquisition functions, Bayesian
optimization methods employ heuristics like combining the results of many local op-
timizers or operating over a fine partitioning of the feature space (Shahriari et al.
2016, Lizotte 2008).

We instead develop a continuation technique that performs a series of gradient-
based optimizations over variants of this objective with tapering levels of added

smoothness. Under this strategy, we solve a series of optimization problems, each

of which operates on our objective under a smoothed posterior (and the amount of
additional smoothing is gradually decreased to zero). Excessive smoothing of the
posterior is achieved by simply considering GP models whose kernels are given overly

large length-scale parameters. Each time the amount of smoothing is tapered, we ini-
tialize our local gradient optimizer using the solution found at the previously greater
smoothing level. Intuitively, the highly smoothed GP model is primarily influenced

by the global structure in the data, and thus our optimization with respect to the
posterior of this model is far less susceptible to low-quality local maxima. Analysis of

a similar homotopy strategy under radial basis kernels has been conducted by Mobahi

et al. (2012).
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4.6.2 Sparse shift intervention

In some settings, one may require that at most k < d covariates are intervened upon.
We identify the optimal k-sparse shift intervention via the Sparse Shift Algorithm

below, which relies on e1 -relaxation (Bach et al. 2012) and the regularization path of

our penalized intervention objective. As the e1 -norm provides the closest convex re-

laxation to the Lo norm, this is a a commonly adopted strategy to avoid combinatorial

search in feature selection (Bach et al. 2012).

When applied to identify sparse shift interventions for populations, the Sparse

Shift Algorithm computes the regularization path over different settings of the penalty

A > 0 for the following regularized objective:

JA(A) := F-1  (a) - AlA 1  (4.13)

which is maximized over the feasible set CA := {A E R' : x + A E Cx for all x C Rd}

(recall we write Gn(A) := Gs(T) when T(x) = x + A). Subsequently, we identify

the regularization penalty which produces a shift of desired cardinality and select

our intervention set I as the covariates which receive nonzero shift. Finally, we

optimize the original unregularized objective (A = 0) with respect to only the selected

covariates in I to remove bias induced by the regularizer. Each inner maximization

in both the Sparse Shift/Covariate-fixing algorithms is performed via the previously

described proximal gradient methods combined with our continuation strategy.

Sparse Shift Algorithm: Finds the best k-sparse shift transformation vector

A* within feasible set CA c RS.

1: Set -y, = 1 for s = 1,...,d

2: Perform binary search over A to find:

A* - argmin {A > 0 s.t. A* := argmax JA(A) has < k nonzero entries}
AECA

3: Define I <- support(A*.) C {1,.. . , d} where A*. := argmax Jx.(A)
AECA

4: Return: A* +- argmax Jo(A) where B := CA n {A E Rd : A, = 0 if s 0I}
ZAEB

Recall that in the case of personalized intervention, we simply optimize over vec-

tors T(x) E C.. Any personalized transformation can therefore be equivalently ex-

pressed as a shift in terms of A, E Rd such that T(x) = x+A,. After substituting the

individual gain G,(A.) in place of the population gain G.(A) within our definition of

JA in (4.13), we can thus employ the same algorithm to identify sparse/ cost-sensitive

personalized interventions. To find a covariate-fixing intervention which sets k of the
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covariates to particular fixed constants across all individuals from the population, we
instead employ a forward step-wise selection algorithm detailed in the next section,
as the form of the optimization is no longer amenable to fr-relaxation.

4.6.3 Sparse covariate-fixing intervention

In other applications, one may wish to identify the optimal covariate-fixing inter-

vention which sets k of the covariates to particular fixed constants uniformly across

all individuals from the population. In this setting, it is not easy to leverage f-
relaxation, so we instead employ the forward step-wise selection algorithm described
below. Recall I C {1, ... , d} denotes the subset of covariates which are intervened

upon, and the covariate-fixing intervention produces vector T1 -z(x) E Rd such that

Tl-Z (x), = x, if s 0 I, otherwise T.E,(x), = z, which is a constant chosen by the

policy-maker. This same transformation is applied to each individual in the popula-

tion, creating a more homogeneous group which share the same value for the covariates

in I. For a given I, the objective function to find the best constants is:

J""({zFS() =) (a) (4.14)

1 nX0i) if S V _E
with Gn(T,,z) = - [f(z(')) - f(x()] I D where z -) =

n i= w zS otherwise

which is maximized over the constraints: z, E C, C R for s E I. Each maximization

over a fixed set of {z,}5sr is again performed via the previously described proximal

gradient methods combined with our continuation strategy.

Sparse Covariate-fixing Algorithm: Identifies the best k-sparse covariate-fixing
transformation, where sets C1, . . . , Cd C R encode feasible settings for each covariate.

1: Initialize I- - 0, U <- {1,..., d}, J* <- 0

2: While Il < k:

3: Set J,* +- max Jnjif{'({zr}rETU{s}) for each s E U
Cr:rE U{S}

4: Find s* +-- argmaxsE { J*}

5: If J*.>J*: J*+-J**, I +IUJ{s*}, -+-U\s*

6: Else: break

7: Return: {z*}5 E-T +- argmax J"
Cs:SE1
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4.7 Theoretical results

Here, we present some theoretical analysis of our methodology, in which, we pre-
sume the causal assumptions laid out in 4.1 hold throughout. For clarity, we rewrite
the true underlying relationship as f* in this section, letting f now denote arbitrary
functions, and our theoretical results are with respect to the true improvement of
an intervention G*(T) := f*(T(x)) - f*(x), G* (T) := Ex[G*(T)]. This theory cor-
responds a frequentist analysis of our Bayesian approach, in which G*, G* are no
longer viewed as random because the true underlying relationship is fixed at an arbi-
trary f* (not sampled from some prior distribution). We also note that much of our
theory relies on Gaussian Process results derived by Srinivas et al. (2010) and van der
Vaart & van Zanten (2011).

Theorems 10 and 11 below characterize the rate at which our empirical person-
alized and population intervention objectives are expected to converge to the true
improvement (due in part to contraction of the posterior as n grows). Since these
results hold for all T, this implies the maximizer of each of our empirical intervention-
objectives is asymptotically consistent, converging to the true optimal transformation
as n -+ oc (under a reasonable prior). Complementing these consistency results, The-
orem 12 ensures that for any finite sample-size n > 0: optimizing our personalized
intervention objective corresponds to improving a lower bound on the true improve-
ment with high probability, when a is small and f* belongs to the RKHS of our prior.
Here, probability is used in the frequentist sense to refer to random draws of the data,
so this property is non-obvious (from the Bayesian perspective, a exactly controls the
probability of a harmful intervention).

In this case, the optimal transformation inferred by our approach only worsens
the actual expected outcome with low probability.

Our consistency statements depend on the following additional assumptions:

(A22) There exist p > 0 such that the H6lder space CP[0, 1]d has probability one under
our GP(0, k(x, x')) prior (see van der Vaart & van Zanten (2011) for details).

(A23) f* and any f supported by our Gaussian process prior are Lipschitz continuous
over C with constant L.

(A24) All data lies in the compact subset C = [0, 1]d.

(A25) We select a low quantile in our intervention objectives: 0 < a < 0.5.

(A26) The noise variables are Gaussian distributed: g (j) N(0, u2 ) for i =1, . . , n.

(A27) The density of our input covariates px E [a, b] is bounded above and below over
compact domain C.

119



Theorem 10. If we adopt a GP(0, k(x, x')) prior and conditions (A22)-(A27) are
met, then for all x, T(x) C C:

1E F-)(c) - G*(T() < L + 1)- T.I(n) 1/[2(d+l)

where constant C depends on the prior and density px and we define:

[ ( (n) -= 1 2 if Of 1(n) < n-d/( 4p+2d)

n - [4'-*'(n)]( 4p+ 4d)/d otherwise

of4*j(n) is the (generalized) inverse of $f*(e) := * which depends on the concen-
IE

tration function #f*(e) = inf IIhf|1 - log H (f : IIf I.c < E). #f* measures
hChk:jh-f*Io<E k

how well the RKHS of our GP prior 'lk approximates f* (see van der Vaart & van
Zanten (2011) for more details). The expectation ED, is over the distribution of the
data {(X(0, y())}M_

Importantly, Theorem 10 does not assume anything about the true relationship

f* and the bound depends on the distance between f* and our prior. When f* is a
p-smooth function, a typical bound is given by 0'J(n) = O(n- minjupP}/( 2 v+d)) if k is
the Mat6rn kernel with smoothness parameter v. When k is the squared exponential
kernel and f* is -regular (in the Sobolev sense), 0'7(n) = O((1/ log n)I3/2-d/4).

Proof of Theorem 10. Recall that Gx(T) := f(T(x)) - f(x) I D, depends on f. We
fix x 0, T(xo) E C and adapt the bound provided by Theorem 13 to show our result.
Let B 6(x) c C denote the ball of radius 0 < 6 < 1 centered at x E C. We first2
establish the bound:

J f(x) - f*(x)px(x) dx

j f(x) - f*(x)Ipx(x) dx + f If(x) - f*(x)Ipx(x) dx
J B(X0) J 6 (T(xo))

>a Vol(B 6) [min lf(x) - f*(x)j+ min If(x) - f*(x)l]L XE86(xo) xE56(T(xo))

>a Vol(L36) - f(T(xo)) - f(xo) - [f*(T(x.)) - f*(x)] - 86L]

>a Vol(B6) - G0 (T) - G*0(T) - 86L] (4.15)

where Vol(B6 ) = 0( 6 d). Theorem 13 below implies the following inequality (ignoring
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constant factors):

[C - -(n)]1/2

>Evnj f) -- f* (x) px(x) dx dl~n(f I Dn)

by Jensen's inequality

a~d- ED,, GX 0(T) - G* (T) -6L dHI,(f I D,)

via the bound from (4.15)

-- aLjd~l + ad ED"

= - aL6d+l + a6d -EVn

> - aL6d+1 + aSd - EDn

Io 00

F Gj(T)-Gx(T )

Ia 1

Pr (IGX (T) - GxO(T| r)

FG (T)(6) - G*O(T) d&

> - aL6d+1 + a( - a)6d E LF Tj)(a) - G*O(T)]

We can similarly bound G*0 (T) - F--

- aLjd+l + ajd -ED,,

> - a Ld+1 + a6d - ED,

> - aLd+1 +a Ead G*0(T ) -

Choosing 6 := [xlp (n)]72(-d) and combining (4.16) and (4.17) produces the desired
result, since a < 0.5 implies a < 1 - a. El

Theorem 11. Under the assumptions of Theorem 10, for any T such that
Pr(T(X) E C) = 1, we have:

EVnfF-(T) (a) - GTa) 0L + )Vf*(n) ]

Proof. Combining the results of Lemmas 13 and 14 below, we obtain the desired
upper bound through a straightforward application of the triangle inequality. Note
that we've simplified the bound using the identity - log(1 - a) < 1/a for a < 0.5. El

For our final result, we adopt a few additional assumptions:
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(4.16)

G*0(T) - F-'
0 
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FIG*O(T) (6) da-
0 x -GxO(T)j



(A28) f* E 'Hk(C) which is the RKHS induced by our covariance function k with norm

I I Ik (cf. Rasmussen (2006) 6.1).

(A29) Noise variables Eg) form a uniformly bounded martingale difference sequence

E(') < o- for Z'= 1,..., n.

Theorem 12. Suppose we adopt a GP(0, k(x, x')) prior and conditions (A24)-(A29)

are met. Then, for any x, T(x) E C: FQ, (T(a) G*(T)

with probability (over the noise) greater than 1-C(n+1)-exp (-1kI~ j2 ] 2i1f*II2)

1
In Theorem 12, -y7, := max - log 1I + 07- 2KAj is a kernel-dependent quantity

ACC:IAI=n 2
(KA := [k(x, X')]x,x'EA) which, in the Gaussian setting, is the mutual information
between f and observations of Y at the most informative choice of n points. When

the kernel satisfies k(x, x') < 1, the following bounds are known (Srinivas et al. 2010):
-y = 0(d log n) for the linear kernel, -y = O((log n)d+') for the squared exponential
kernel, and Yn = O(nd(d+1)/(2v+d(d+1)) (log n)) for the Mat6rn kernel with smoothness
parameter v. Note that while f* is not required to be drawn from our prior and E
may be non-Gaussian, this result assumes the kernel k and noise-level o- are correctly
set.

Proof of Theorem 12. Fix x, T(x) E C, and define 6 := (n+1)-exp ( - ( 0 2-2f*I2)
3007yn

In this case, -Vn+1 = <b- 1 (a) (see definition in Theorem 14).

Theorem 14 implies that with probability > 1 - 6:

bPn(X) - f*(x) < -4-(a) -o-n(x) and lp,(T(x)) - f*(T(x))I < -<b-1(a) - o-n(T(x))

Since our posterior is Gaussian:

r -11/2

F-(1 ) = pa(T(x)) - [z(x) + 21(a) o (T(x)) + o- (X) - 2-n (x, T(x))

Therefore:

f* (T()) - f*(x) - F-1 (a)

- - 1/2

=f*(T(x)) - pi,(T(x)) + pn(x) - f*(x) - b1 (a) [an(T(x)) + of(x) - 2u-(x, T(x))

<f*(T(x)) - Pnu(T(x)) + pn (x) - f*( ) - b 1(a) 1o0(T(x)) + oQ (x) + 2 / (x)o (T())]

since we assume a < 0.5 - 4b- 1(ca) < 0, and j-n(x, T(x))j I < o (x)u (T(x))
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f*(T( x)) - p .(T(x)) + ps .(x) - f*(x) - <b ((a) [Orn(T(x)) + -n(x)j

[f*(T(x)) - pn(T(x)) - <D-
1(a)o-n(T(x))] + [Pn (x) - f*() - ( an(X)

which is less than 0 with probability at most 3.

4.7.1 Auxiliary lemmas

Theorem 13 (van der Vaart & van Zanten (2011)). The assumptions of Theorem 10
imply:

EDn j[f(x) - f*(x)] 2px(x)dx dfln(f I Dn)

where f-I' (n) is defined as above. See van der
detailed discussion about this function.

< C.P *(n)

Vaart & van Zanten (2011) for a

Theorem 14 (Srinivas et al. (2010)). Assume conditions (A24)-(A29), fix 3 E (0, 1),
and define:

fn := 2|1f*11 + 300'}n[log(n/6)]3

Pr [Vx E C: |pn(x) - f*(X) ,SnO+10'n(X)]

Lemma 13. Under the assumptions of Theorem 11, for any x, T(x) G C:

[ L2 d log(1 - a) 1/2

Proof. Define random variables Z := f(T(x(')) - f( ()) I 72 for i =1,... , n.
Note that these variables all share the same expectation: Ex[Z] := Ex[Zj] = Gx(T)
and Gn(T) = E"_I Zi. The Lipschitz continuity of f combined with the fact that
C = [0, 1 ]d implies: Zi C [-LVd, LV d] for all i. Thus, Hoeffding's inequality ensures:

Pr ( Gn(T) - Gx(T)

-> F )- ()O -
|GI(T )-Gx (T) I

<2exp 2

C. [-L 2 d (, _ )1/2
n
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Because posteriors G,(T), Gx(T) follow a Gaussian distribution:

FJ1,,(T) (a) - 1T() F aF (FT) (a) FGn(T)-Gx(T)

and F 1 (T)(a) - F (Ta) F G(T)-Gx(T)

Lemma 14. Under the assumptions of Theorem 11, for any x, T(x) c C:

ED G F>T)(a) - G* (T) < . (L + I) - [f*(n)]/[(+)

Proof of Lemma 14. A similar argument as the proof of Theorem 10 applies here. We
again first bound:

If(x) - f*(x)Ipx(x) dx

>a Vol(L3) I f(x) - f*(x) px(x) dx + j If(T(x)) - f*(T(x))Ipx (x) dx - 8Lj

a -Vol(B3) [Ex[f(x) - f*(x)] + Ex[f(T(x)) - f*(T(x))] - 85L1

Following the same reasoning as in the proof of Theorem 10, we obtain (up to constant
factors):

-aLjd+l + aad ED" G* (T) - F[C(a)] -9(n)]1/2

and we can use the same argument to similarly bound E-D [Fx (T) (a- G* (T)]. l

4.8 Empirical results

4.8.1 Simulation study

We first apply our approach to simulated data from simple covariate-outcome re-
lationships, where the average improvement produced by our chosen interventions
rapidly converges to the best possible value with increasing n. In these experiments,
sparse-interventions consistently alter the correct feature subset, and proposed trans-
formations under our conservative a = 0.05 criterion are much more rarely harmful
than those suggested by optimizing the posterior mean function (which ignores un-
certainty).
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Over the simulated data summarized in Figure 4-2, we apply our basic personal-
ized intervention method (a = 0.05) with purely local optimization (standard) and
our continuation technique (smoothed), which significantly improves results. For each
of the 100 datasets, we randomly sampled a new point (from the same underlying
distribution) to receive a personalized intervention. The magnitude of each inter-
vention is bounded by 1, except for in data from the quadratic relationship. We
also infer sparse interventions (with a cardinality constraint of 2 for the linear and
quadratic relationships, 1 for the product relationship). When Y = X, - X2 + e,
the optimal (constrained) intervention may drastically vary depending upon the in-
dividual's covariate-values, and our algorithm is able to correctly infer this behavior

1.0

0.I

-0.2-
50 100

Sample size
10

1.0

0.5.

J0.0

-1.0-
S0 100

Sample Size
150 20

(A) Linear: f(X) = 0.3X1 + 0.7X 2

0.8

10.4-
0.2.

10.0-

-0.2

50 100
sample size

150

(B) Quadratic: f(X) = 1 - - 2

- Sparse Intervention
- Ignoring Uncertainty

Standard Intervention
Smoothed Intervention

(C) Product: f(X) = X1 - X2

Figure 4-2: The mean (solid) and 0.051h quantile (dashed) expected outcome change pro-
duced under personalized interventions suggested by various methods, over 100
datasets of each sample size. Each dataset contains 10-dimensional covariates,
with Xi ~ Unif[-1, 1], and Y is determined by the indicated relationships and
additive Gaussian noise (a = 0.2). The black lines indicate the best possible
expected outcome change (when the best change depends on which individual re-
ceived the intervention, the black solid/dashed lines indicates the mean and 0 .05th
quantile over our 100 trials).

125

/

-i - --- --

I,

-- ----- ------------------------ -



(Simulation C). Finally, we also apply a variant of our method which entirely ig-
nores uncertainty (a = 0.5). While this approach is on average better for larger
sample sizes, highly harmful interventions are occasionally proposed, whereas our
uncertainty-adverse method (a = 0.05) is much less prone to producing damaging
interventions (preferring to abstain by returning T(x) = x instead). This is a critical
property since interventions generally require effort and are only worth conducting
when they are likely to produce a substantial benefit.

Figure 4-3 displays the behavior of both the population shift intervention in the
linear setting, and the population covariate-fixing intervention under the quadratic re-
lationship. The population intervention is notably safer than the individually tailored
variants, producing no negative changes in our experiments.
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150 200
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100
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(A) Linear: f(X) = 0.3X1 + 0.7X 2 (B) Quadratic: Y = 1 - X2 - X22

Figure 4-3: The mean (solid) and 0 .0 5th quantile (dashed) expected outcome change produced
by our population intervention method, over 100 datasets for each sample size
(same setting as in Figure 4-2). The black line indicates the best possible expected
outcome improvement.
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4.8.2 Gene perturbation

Next, we applied our methodology to search for population interventions in observa-
tional yeast gene expression data from Kemmeren et al. (2014). We evaluated the
effects of proposed interventions (restricted to single gene knockouts) over a set X of
10 transcription factors (n = 161) with the goal of down-regulating each of a set of 16
downstream small molecule metabolism genes (each of these is treated as a separate
outcome Y). The data set used for this analysis contains gene expression levels for
a set of wild type (i.e. 'observational') samples, Dob (n = 161), as well as for a set
of 'interventional' samples, Dint, in which each individual gene was serially knocked
out.

In our analysis, we search for potential interventions for affecting the expression
of a desired target gene by training our GP regressor on D,,b and determining which
knockout produces the best value of our empirical covariate-fixing population inter-
vention objective (for down-regulating the target). Subsequently, we use Dit to eval-
uate the actual effectiveness of proposed interventions in the knockout experiments.
We only search for interventions present in Dint (single gene knockouts) rather than
optimizing to infer optimal covariate transformations. Each method evaluated in this
analysis was to propose an intervention (single gene knockout) to down-regulate the
expression of each target gene (separately). Once a gene to knock out was proposed,
this intervention was evaluated by comparing the resulting expression of the target
when the proposed knockout was actually performed in the experimental data Dint.
This expression level could then be compared to the 'optimal' choice of transcription
factor from X to intervene upon (the transcription factor whose knockout produced
the largest down-regulation of the target in Dint). Note that this application repre-
sents a setting with complex underlying causal relationships, where it is likely that
many of our stringent causal assumptions in 4.1 are severely violated.

We compared our approach against two methods commonly used to identify can-
didate genes for knockout by biologists (which are also more broadly used to draw
conclusions about affecting outcomes across the sciences). First, we applied a multi-

variate regression analysis in which a linear regression model was fit to the observa-

tions of (X, Y) in D2 obs. The best gene to knockout was inferred on the basis of the
regression coefficients and expression values (if no beneficial regression coefficient was

found significant at the 0.05 level under the standard t-test, then no intervention was

proposed). Second, we performed a marginal analysis in which separate univariate
linear regression models were fit to (X1 , Y), ... , (Xd, Y), and the best knockout was
again inferred on the basis of the regression coefficients and expression values (again,
no intervention was recommended if there was no statistically significant beneficial

regression coefficient at the 0.05 level, after correcting for multiple testing via the

False Discovery Rate).

Figure 4-4 compares the results produced by these methods to the optimal in-
tervention over X for down-regulating each Y, as found in the experimental data
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Figure 4-4: Actual effects of proposed interventions (single gene knockout) over a set transcrip-
tion factors on down-regulation of each of a set of 16 small molecule metabolism
target genes. Insets (a) and (b) show empirical marginal distributions between
target gene TSL1 and the transcription factors identified for knockout by our
GP population intervention method (CIN5) and the marginal regression approach
(GAT2). Inset (c) shows the empirical marginal distributions between target gene
GPH1 and MOT3, which was the transcription factor knockout proposed by the
multivariate regression approach.

DEit. The gray curve in the figure illustrates the maximal intervention effect on each
downstream target gene that could have been achieved by selecting the right tran-
scription factor to knock out. Of the 16 small molecule metabolism target genes
tested, in three cases our method proposed an intervention which was found to be
optimal or near optimal in Det, while in the remaining cases, the model uncertainty
causes the method not to recommend any intervention (except for one very minorly
harmful intervention for target SAM3). On the other hand, neither form of linear
regression proposed effective interventions for any target other than FKS1, and in
quite a few cases, the linear regressors proposed counterproductive interventions that
up-regulated the target.

Compared to marginal linear regressions and multivariate linear regression, our
method's uncertainty prevents it from proposing harmful interventions, and the in-
terventions it proposes are optimal or near optimal (Figure 4-4). Insets (a) and (b) in
Figure 4-4 depict the empirical marginal distributions between target gene TSL1 and
members of X identified for knockout by our method (CIN5) and the marginal re-
gression approach (GA T2). From the linear perspective, these relationships are fairly
indistinguishable, but only CIN5 displays a strong inhibitory effect in the knock-
out experiments. Inset (c) shows the empirical marginal for a harmful intervention
proposed by multivariate regression for down-regulating GPH1, where the overall cor-
relation is significantly positive, but the few lowest expression values (which influence
our GP intervention objective the most) do not provide strong evidence of a large
knockdown effect. This highlights the importance of a model that properly accounts
for uncertainty in the covariate space when evaluating potential transformations of
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covariate-values, especially when the data are extremely noisy as in the case of these
gene expression measurements.

4.8.3 Writing improvement

In this section, we apply our personalized intervention methodology to the task of
transforming a given news article into one which will be more widely-shared on social
media. We use a dataset from Fernandes et al. (2015) that consists of 39,000 news
articles published by Mashable around 2013-15 (Fernandes et al. 2015). Each article
is annotated with the number of shares it received in social networks (which we use
as our outcome variable after log-transform and rescaling). A multitude of features
have been extracted from each article (e.g. word count, the category such as "tech" or
"lifestyle", keyword properties), many of which Fernandes et al. (2015) produced using
natural language processing algorithms (e.g. subjectivity, polarity, alignment with
topics found by Latent Dirichlet Allocation). After removing many highly redundant
covariates, we center and rescale all variables to unit-variance (see Table 4.2 for a
complete description of the 29 covariates used in this analysis).

We randomly partition the articles into 3 disjoint groups: a training set (5,000
articles on which scaling-factors are computed and our GP regressor is trained), an
improvement set (300 articles we find interventions for), and a held-out set (over
34,000 articles used for evaluation). A large group is left out for validation to ensure
there are many near-neighbors for any specified setting of article-covariates. Subse-
quently, a basic GP regression model is fitted to the training set. Over the held-out
articles, the Pearson correlation between the observed popularity and the GP (poste-
rior mean) predictions is 0.35. Furthermore, there is a highly significant (p < 8- 10-41)
positive correlation of 0.07 between the model's predictive variance and the actual
squared errors of GP predictions over this held-out set. Our model is thus able to
make reasonable predictions of popularity based on the available covariates, and its
uncertainty estimates tend to be larger in areas of the feature-space where the pos-
terior mean lies further from actual popularity values.

In this analysis, we compare our personalized intervention methodology which re-
jects uncertainty (using a = 0.05) with a variant of the this approach that ignores
uncertainty (using the same objective function with a = 0.5). Both methods share
the same GP regressor, optimization procedure, and set of constraints. Note that this
latter approach corresponds to the popular strategy of fitting a supervised learning
model to predict outcomes and then optimizing features with respect to the predicted
outcomes without regard for predictive uncertainty. For the 300 articles in the inter-
vention set (not part of the training data) we allow intervening upon all covariates
except for the article category which presumably is fixed from an author's perspective.
All covariate-transformations are constrained to lie within 1-2,21 standard deviations
of the original covariate value, and we impose a sparsity constraint that at most 10
covariates can be intervened upon for a given article.
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Unfortunately, no pre-and-post-intervention articles are available for us to ascer-
tain a ground truth evaluation. To crudely measure performance, we estimate the
underlying expected popularity of a given covariate-setting using benchmark popular-
ity: the (weighted) average observed popularity amongst 100 nearest neighbors (in
the feature-space) from the set of held-out articles (with weights based on inverse Eu-
clidean distance). Note that such a matching strategy is widely employed for inferring
treatment effects in the causal inference literature. Over our improvement set, the
Pearson correlation between articles' observed popularity and benchmark popularity
is 0.28 (highly significant: p ; 2.10-10). This approach thus appears to be, on average,
a reasonable way to benchmark performance (even though nearest-neighbor held-out
articles can individually differ from the text of a particular pre/post-intervention
article despite sharing similar values of our 29 measured covariates).

Figure 4-5 depicts the results produced by our personalized intervention for each
article in our intervention set. The expected improvement produced by a particular
intervention is defined as the difference between the benchmark popularity of the
post-intervention covariate-settings and the original covariate-settings of the article
receiving the personalized intervention. Table 4.1 summarizes these results. A paired-
sample t-test suggests our method is significantly superior on average (p < 2 - 10-6).
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Benchmark popularity changes produced by the personalized interventions for 300
articles suggested by our method with a = 0.05 (Rejecting Uncertainty) vs. a =
0.5 (Ignoring Uncertainty). The points (i.e. articles) are colored according to the
value of our personalized intervention objective with a = 0.05. Using a = 0.05
outperforms a = 0.5 in this analysis in 177/300 articles in the improvement set.

= 0.05, the average benchmark popularity increase produced by our
intervention methodology is 0.59, whereas it statistically significantly

130

S 9

-0 * 
pa 0 0 0

0 .- --a

0

* -0

0

0- I
- - 0 -- - - -- - - - -- - -

o So 0

I
0.0

- 1



decreases to 0.55 if a = 0.5 is chosen. Thus, even given this large sample size,
ignoring uncertainty appears detrimental for this application, and a = 0.5 results

in 4 articles whose benchmark popularity worsens post-intervention (compared to

only 2 for a = 0.05). Nonetheless, both methods generally produce very beneficial

improvements in this analysis, as seen in Figure 4-5.

Method Mean Median 0 .0 5 th Quantile Num. Negative

Rejecting Uncertainty 0.586 0.578 0.126 2

Ignoring Uncertainty 0.552 0.555 0.105 4

Table 4.1: Summary statistics for the benchmark popularity change produced by each method
over the 300 articles of the intervention set. The last column counts the number of
harmful interventions (with change < 0).

As an example of the personalization of proposed interventions, our method

(a = 0.05) generally proposes different sparse interventions for articles in the Business

category vs. the Entertainment category. On average, the sparse transformation for

business articles uniquely advocates decreasing global sentiment polarity and increas-

ing word count (which are not commonly altered in the personalized interventions

found for entertainment articles), whereas interventions to decrease title subjectivity

are uniquely prevalent throughout the entertainment category. These findings appear

intuitive (e.g. critical business articles likely receive more discussion, and titles of pop-

ular entertainment articles often contain startling statements written non-subjectively

as fact). Interestingly, the model also tends to advise shorter titles for business arti-

cles, but increasing the length for entertainment articles. Articles across all categories

are universally encouraged to include more references to other articles and keywords

that were historically popular.

To provide concrete examples, we present some articles of the Business and En-

tertainment categories (taken from our improvement set). For this business arti-

cle: http: //mashable. com/2014/07/30/how-to-beat -the-heat/, our method pro-

poses shifting the following 10 covariates (see Table 4.2 for feature descriptions):

numhrefs: +2, numselfhrefs: -1.25, average_ token_ length: -1.771,
kwavgmin: +1.71, kw _avgavg: +2,
selfreference_min _shares: +2, self reference_maxshares: +1.68,
self _reference avg sharess: +2, global_ subjectivity: +1.57,
globalsentiment_ polarity: -2

For this entertainment article: http: //mashable. com/2014/07/30/how-to-beat -the-heat/,

our method proposes shifting the following 10 covariates:

average token-length: -1.55, kw _avgmin: + 1.63, kw_avgavg: +2,
selfreference min shares: +2 self_reference maxshares: +1.85,
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selfreferenceavg _shares: +2.0, LDA_00: +1.63, LDA_01: -2, LDA_04: +0.82,
global_ subjectivity: +1.62

Indifferent to uncertainty, the method with a = 0.5 advocates shifting all these covari-

ates by the t2 maximal allowed amounts, which leads to a 0.04 worse improvement in

benchmark popularity compared with the covariate-changes specified above for this

article.

Feature Description

n_tokenstitle

n tokenscontent

n_unique_tokens

n_nonstopwords

num hrefs

num selfhrefs

average_ token _length

num_keywords

datachannelislifestyle

datachannel is_ entertainment

data channel is bus

data channel is socmed

datachannelistech

data channel is world

kw avg min

kwavgmax

kwavgavg

selfreference_min_ shares

selfreferencemaxshares

self reference avg_ shares

LDA_00

LDA_01
LDA_02

LDA_03

LDA_04

globalsubjectivity

global sentiment polarity

title_ subjectivity

title sentiment polarity

Number of words in the title

Number of words in the content

Rate of unique words in the content

Rate of non-stop words in the content

Number of links

Number of links to other articles published by Mashable

Average length of the words in the content

Number of keywords in the metadata

Is the article category "Lifestyle"?

Is the article category "Entertainment"?

Is the article category "Business"?

Is the article category "Social Media"?

Is the article category "Tech"?

Is the article category "World"?

Avg. shares of articles with the least popular keyword used for this article

Avg. shares of articles with the most popular keyword used for this article

Avg. shares of the average-popularity keywords used for this article

Min. shares of referenced articles in Mashable

Max. shares of referenced articles in Mashable

Avg. shares of referenced articles in Mashable

Closeness to first LDA topic

Closeness to second LDA topic

Closeness to third LDA topic

Closeness to fourth LDA topic

Closeness to fifth LDA topic

Subjectivity score of the text

Sentiment polarity of the text

Subjectivity score of title

Sentiment polarity of title
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Table 4.2: The 29 covariates of each article (dimensions of X in this analysis). Features
involving the share-counts of other articles and LDA were based only on data known
before the publication date.



4.9 Misspecified interventions

Our methodology heavily relies on the assumption that the outcome-determining
covariate values Y produced through intervention exactly match the desired covariate
transformation T(x). When transformations are only allowed to alter at most k <
d covariates, this requires that we can intervene to alter only this subset without
affecting the values of other covariates. If T specifies a sparse change affecting only a
subset of the covariates I c {1,. . . , d}, our methods assume the post-treatment value
of any non-intervened-upon covariate remains at its initial value (i.e. Ys = XS Vs V I).

In some domains, the covariate-transformation induced via sparse external inter-
vention can only be roughly controlled (e.g. our gene perturbation example when the
profiled genes belong to a common regulatory network). Let TE,, denote a covariate-
fixing transformation which sets a subset of covariates in I C {1, ... , d} to constant
values zi E- R111 across all individuals in the population. In this section, we consider
an alternative assumption under which the intervention applied in hopes of achiev-
ing T1 -2 propagates downstream to affect other covariates outside I (so there may
exist s V I: Y, , x,), which we formalize as the do-operation in the causal calcu-
lus of Pearl (2000). Here, we suppose the underlying population of X, Y follows a
structural equation model (SEM) (Pearl 2000). The outcome Y is restricted to be a
sink node of the causal DAG, so we can still write Y = f*(X) + E and maintain the
other conditions from 4.1. Rather than exhibiting covariate-distribution TE-z(X)
with Y = f*(Tz (X)) + e (as presumed in our methods), the post-treatment popu-
lation which arises from an intervention seeking to enact transformation T1 -z is now
assumed to follow the distribution specified by p(X, Y I do(XI = z1 )). Note that
the do-operation here is only applied to some nodes in the DAG (variables in subset
I) as discussed by Peters et al. (2014), but its effects can alter the distributions of
non-intervened-upon covariates outside of I which lie downstream in the DAG.

For settings where sparse interventions elicit unintentional do-effects and the
causal DAG meets condition (A31), Theorems 15 and 16 below imply that, under com-
plete certainty about f*, the (minimum cardinality) maximizer of our covariate-fixing
intervention objective corresponds to an transformation that produces an equally
good outcome change when the corresponding intervention is actually realized as a
do-operation in the underlying population. Combined with Theorem 11, our results
ensure that, even in this misspecified setting, the empirical maximizer of our sparse
covariate-fixing intervention objective (4.7) produces (in expectation as n -+ oc)
beneficial interventions for populations whose underlying causal relationships satisfy
certain conditions.

We let pa(Y) denote the variables which are parents of outcome Y in the underly-
ing causal DAG, and desc(I)c denotes the set of variables which are not descendants
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of variables in subset I. We also define:

1* := argmin {II'j s.t. I TrTz E argmax Ex [f*(Tmz(x)) - f*(x)] (4.18)
Tz-z:I<k

as the intervention set corresponding to the optimal k-sparse covariate-fixing trans-
formation (where in the case of ties, the set of smallest cardinality is chosen), if
transformations were exactly realized by our interventions (which is no longer as-
sumed to be the case in this section). Our theory considers the following structural
properties of the underlying causal DAG:

(A30) For a given I C {1,. . . , d}: pa(Y) C I U desc(I)0

which ensures that each variable which is parent of Y either belongs to the
chosen intervention-set I, or is otherwise not a descendant of the variables in
this set.

(A31) No variable in pa(Y) is a descendant of other parents, ie. $ j c pa(Y) s.t.
j E desc(pa(Y) \ {j}).

Theorem 15. For any covariate-fxirng transformation Tzrz where I satisfes (A30):

Ex [f*(T-zW(x)) - f*(x)] = EYdo(XE=z1 ) [f*(~)] - Ex [f*(x)]

Proof. We employ subscripts to index particular covariates of X. The notation

[aR, as] = a E Rd is used to denote a vector assembled from disjoint subsets of
dimensions R, S C {1,... , d}. Regardless of the ordering of these partitions in our
notation, we assume they are correctly arranged in the assembled vector based on
their subscript-indices (i.e. a = [aR, as] = [as, aR]). We have:

Edo(X1 =Z1 ) [f *(W)

J f*([x1czz]) p(xlc I do(Xi = z1)) dx1c

S f* ([Xpa(Y)\I, Zlnpa(Y), aTc\pa(Y)1) P(X C\pa(Y) I Xpa(Y)\, do(Xi = z))

- P(Xpa(Y)\I I do(X1 = zl)) dxIc\pa(Y) dxpa(Y)\I

where covariate-subset alc\pa(Y) can take arbitrary values

since f* is constant along covariates V pa(Y)

J f*([Xpa(Y)\, Zinpa(Y), aIc\pa(Y)1) P(Xpa(Y)\I I do(Xi = zi)) dzpa(Y)\E

Sf* ([Xpa(y)\i, zinpa(Y), arc\pa(Y)1) P(Xpa(Y)\) (

since the marginal distribution over Xpa(y)\I equals the do-distribution by (A30)

JJ f* ([Xpa(Y)\T, Zlnpa(Y), XIC\pa(Y)] )p(Xic\pa(Y) I Xpa(Y)\I)P (Xpa(Y)\I)dxc\pa(Y)dxpa(Y)\I
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=Ex [f*(T-z(X))]

In the absence of extremely strong interactions between variables in pa(Y), the equal-
ity of Theorem 15 will also hold for 1* if Ipa(Y)I < k.

Theorem 16. If the underlying DAG satisfies (A31), then 1* will satisfy (A30).

Proof. Since Ex[f*(Tj,,(x))] does not change when z3 := [Tl,,(x)]j is altered for
any j pa(Y), including variables outside of the parent set in I does not improve
this quantity. Thus, either pa(Y) C I*, or I* C pa(Y). The first case immediately
implies (A30). When I* c pa(Y): our assumption that no variable in pa(Y) is a
descendant of other parents implies the other parents must belong the complement
of desc(I*), since this is a subset of desc(pa(Y)). 0

Finally, we empirically investigate how effective our methods are in this misspec-
ified SEM setting, where a proposed sparse population transformation is actually
realized as a do-operation and can therefore unintentionally affect other covariates in
the post-intervention population. We generate data from an underlying linear non-
Gaussian SEM, and where Y is a sink node in the corresponding causal DAG. Here,
we suppose that a desired transformation upon variable s E { 1, ... , d} cannot be
enacted exactly and the Y which arises post-treatment is distributed according to
do(X, = E[Xs] + A), where E[Xs] is the mean of the pre-treatment marginal distri-
bution of the sth covariate. In this case, do-effects can propagate to other covariates
which are descendants of s in the DAG because the values of descendant variables are
redrawn from the do-distribution which arises as a result of shifting E[X,]. Because
all relationships are linear in our SEMs, the actual expected outcome change result-
ing from a particular shift (resulting from the corresponding do-operation) is easily
obtained in closed form.

Our GP intervention framework (with a = 0.05) is applied to the data to infer an
optimal 1-sparse shift population intervention (only interventions on a single variable
are allowed). The maximal allowed magnitude of the shift is constrained to ensure
the optimum is well-defined (to 1 times the standard deviation of each variable in
the underlying SEM distribution). An alternative approach to improve outcomes in
contrast to our black-box approach is to apply a causal inference method like LinGAM
(Shimizu et al. 2006) to estimate the SEM from the data, and then identify the optimal
single-variable shift A* in the LinGAM-inferred SEM (since all inferred relationships
are also linear, the optimal single-variable shift will be either 0 or the lower/upper
allowed shift and we simply search over these possibilities). We compare our approach
against LinGAM by evaluating the actual expected outcome change produced by
the shift A* proposed by each method (where the actual expected outcome change
is found by analytically performing the do(X, = x, + A*) operation in the true
underlying SEM). Note that LinGAM is explicitly designed for this setting, while both
our method and the relied-upon Gaussian Process model are severely misspecified.
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In our experiment, two underlying SEM models are considered which were used
by Shimizu et al. (2006) to demonstrate the utility of their LinGAM method (albeit
with impractically large sample size = 10,000). SEMA and SEMB are respectively
used to refer to the models depicted on the lefthand and righthand sides of Figure
4-6. In each SEM, the outcome Y is always fixed at a sink node of the causal DAG
(to ensure the covariates cause the outcomes and not vice versa), while the remainder
of the variables are adopted as our observed covariates X. Note that neither data-
generating SEM considered here satisfies the structural condition (A31) required by
our previously described theoretical guarantees.
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Figure 4-6: Two linear non-Gaussian S
(2006).

(B) SEMB

EM structures depicted in Figure 3 of Shimizu et al.

This experiment represents an application of our method in a highly misspecified
setting. The true data-generating mechanism differs significantly from assumptions
of our GP regressor (output noise is now fairly non-Gaussian, the underlying rela-
tionships are all linear while we use an ARD kernel). Furthermore, an intervention to
transform a single covariate incurs a multitude of unintentional off-target effects re-
sulting from the do-effects propagating to downstream covariates in the SEM, whereas
our method believes only the chosen covariate is changed. In contrast, this data ex-
actly follows the special assumptions required by LinGAM, and we properly account
for inferred downstream do-operation effects when identifying the best inferred in-
tervention under LinGAM. The only disadvantage of the LinGAM method is that it
does not a priori know the direction of the causal relationship X -+ Y (although we
found it always estimated this direction correctly except on rare occasions with tiny
sample sizes of n = 20).
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Since LinGAM only estimates linear relations, the best inferred shift-intervention
found by this approach will always be 0 or the minimal/maximal shift allowed for
a particular covariate. Searching over these three values for each covariate ensures
the actual optimal shift will be recovered if the LinGAM SEM-estimate were correct.
However, under our approach, identifying the optimal population shift-intervention
requires solving an optimization problem. Even if the GP regression posterior were
to exactly reflect the true data-generating mechanism, our approach might get stuck
in a suboptimal local maximum or avoid the minimal/maximal allowed shift due to
too much uncertainty about f in the resulting region of feature-space. In practice,
these potential difficulties do not pose much of an issue for our approach.
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Figure 4-7: The average (solid) and 0 .05th quantile (dashed) expected outcome change pro-

duced by our method (red) vs LinGAM (blue) over 100 datasets drawn from two
underlying SEMs chosen by Shimizu et al. (2006). The black dashed line indicates
the best possible improvement in each case.

Figures 4-7A and 4-7B demonstrate that the inferred best single-variable shift
population intervention (under constraints on the magnitude of the shift) matches the
performance the interventions suggested by LinGAM (except for in rare cases with
tiny sample size) when the proposed interventions are evaluated as do-operations in
the true underlying SEM. Thus, we believe a supervised learning approach like ours is
preferable in practical applications where interpreting the underlying causal structure
is not as important as producing good outcomes (especially for higher dimensional
data where estimation of the causal structure becomes difficult (Peters et al. 2014)).

The assumption of sparse interventions realized as a do-operation (as defined by
Peters et al. (2014)) may also be an inappropriate in many domains, particularly if
off-target effects of interventions are explicitly mitigated via external controls. To ap-
preciate the intricate nature of assumptions regarding non-intervened-upon variables,
consider our example of modeling text documents represented using two features: po-
larity and word count. A desired transformation to increase the text's polarity can be
accomplished by inserting additional positive adjectives, but such an intervention also
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increases articles' word count. Alternatively, polarity may be identically increased by
replacing words with more positive alternatives, an external intervention which would
not affect the word count (and thus follows the assumptions of our framework). These
two different external interventions seek to enact the same desired transformation, but
neither necessarily alters the covariate-distribution in the manner presumed by the
do-calculus).
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Chapter 5

Discussion

This thesis presented various data-driven methodologies for addressing the key tasks
of understanding and shaping a specific population of interest. In particular, we are
able to interpretably characterize changes and identify beneficial interventions in a
nonparametric fashion, without having to specify a restrictive generative model for
the (often high-dimensional) distribution of measurements in the underlying (often
heterogeneous) population. While primarily used for analysis of biological popula-
tions throughout this document, each of our statistical methods comprises a broader
framework of general ideas and objectives that are widely applicable across a number
of diverse domains, including demographic studies and business analytics.

Chapter 2 introduced the idea of principal differences analysis for interpretable
characterization of differences between distributions, as well as efficient optimiza-
tion algorithms for the corresponding estimation problem and its semidefinite re-
laxation. The PDA approach demonstrated numerous empirical benefits in tasks
ranging from feature-selection, high-dimensional two-sample testing, and identifying
differential gene-gene interactions between cell populations. Although we focused on
algorithms for PDA & SPARDA tailored to the Wasserstein distance, which we favor
for its interpretability when the profiled variables are measured on a meaningful scale,
different statistical divergences may be better suited in other applications.

PDA is a useful method for contrasting two populations, but other applications

(such as developmental scRNA-seq analysis) call for characterizing changes in an

evolving population. While established methods exist to quantify change over a se-

quence of probability distributions, TRENDS addresses the scientific question of how

much of the observed change can be attributed to sequential progression rather than
nuisance variation. Although the proposed TF algorithm resembles quantile-modeling

techniques, our ideas are grounded under the unifying lens of the Wasserstein distance,
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which we use to measure effects (3.8), goodness-of-fit (3.7), and a distribution-based
least-squares fit (3.6). Like linear regression, an immensely popular scientific method

despite rarely reflecting true underlying relationships, our TRENDS model is not in-
tended to accurately model/predict the data, which are likely subject to many more
effects than our simple trend definition encompasses. Rather, TRENDS quantifies ef-
fects of interest, which remain highly interpretable (via our Wasserstein-perspective)
despite being considered across fully nonparametric populations. When considering
TRENDS analysis, it is important to ensure that the primary effects of interest are
a priori expected to follow our trend definition. For the developmental scRNA-seq
data considered in this work, this is a reasonable assumption because the experiments
typically focus on a limited window of the underlying process. Furthermore, the se-
vere prevalence of nuisance variation makes it preferable to identify a high-confidence
developmentally-relevant subset of genes (e.g. because they display consistent ef-
fects over time), rather than attempting to characterize the complete set of genes
displaying interesting effects. As simultaneously-profiled cell numbers grow to the
many-thousands thanks to technological advances (Macosko et al. 2015), significant
developmental discoveries may be made by studying the evolution of population-wide
expression distributions, and TRENDS provides a principled framework for this anal-
ysis.

Chapter 4 focused on identifying how to best shape populations via external in-
tervention rather than merely improving our understanding of their underlying char-
acteristics. We proposed a Bayesian framework for directly learning beneficial trans-
formations from observational data. While this objective is, strictly speaking, only
possible under stringent causal assumptions, our approach performs well in both
intentionally-misspecified and complex real-world settings. As supervised learning al-
gorithms grow ever more popular, we expect intervention-decisions in many domains
will increasingly rely on predictive models. Here, we introduced a "first do no harm"
philosophy which formalizes the role of uncertainty within our definition of the op-
timal action. Our conservative definition provides a principled approach to handle
the inherent uncertainty in these settings due to finite data. Able to employ any
Bayesian regressor, the ideas presented in this chapter are widely applicable, con-
sidering easily-implemented forms of transformations that can either be personally
tailored or enacted uniformly over a population.

5.1 Future work

Our work has opened up a number of interesting lines of future research. First, fur-
ther theoretical investigation of the SPARDA framework is of interest, particularly
in the high-dimensional d 0 0(n) setting. Here, rich theory has been derived for
compressed sensing and sparse PCA by leveraging ideas such as restricted isometry
or spiked covariance (Amini & Wainwright 2009). A natural question is then which
analogous properties of Px, Py theoretically guarantee the strong empirical perfor-
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mance of SPARDA observed in our high-dimensional applications. Finally, we also
envision extensions of the methods presented here which employ multiple projections

in succession, or adapt the approach to non-pairwise comparison of multiple popula-

tions.

The TRENDS framework presented in Chapter 3 introduces many theoretical
questions, including further examination of the interplay between convergence rates

and types of distributions, noise, and quantile-estimators. While our trend definition

produces good empirical results in these scRNA-seq analyses (and encompasses vari-

ous conceptually interesting effects discussed in 3.3.1), we emphasize that adopting
this assumption narrowly restricts the sort of effects measured by our approach. Our
limited definition is unlikely to characterize more complex effects of interest in general
settings (particularly for longer sequences), and future work should explore extensions
such as allowing change-points in the model. Note that our proposed Wasserstein-

least-squares fit objective and Wasserstein-R2 measure remain applicable for more

general classes of regression functions on distributions. Furthermore, Lemma 5 pro-
vides an alternative definition of a trend which also applies to multidimensional dis-
tributions, and thus may be useful for applications such as spatiotemporal modeling.

In Chapter 4, we presented methods for identifying interventions which can be
tailored on an individual basis, or globally enacted across an entire population. How-
ever, there exist numerous applications (particularly in the field of medicine), in
which one wishes to identify distinct subpopulations, where all individuals within

a subgroup uniformly receive the same intervention. The optimal strategy for such

stratification of a heterogeneous population remains an open question, which might be
addressed through clustering techniques or a tree-based partitioning of the covariate-
space. Chapter 4 also relied on the strong assumption that any desired transformation

within the feasible set can be precisely realized via external intervention, which is not

the case in many practical settings. While our approach is still able to achieve strong

empirical performance even in settings where this condition is violated, it remains an
important task to explicitly address the issue of imprecisely enacted transformations.
A key question is how to the propagate uncertainty in the post-intervention change in

covariates into our objective function which defines the optimal intervention. Here,
one might seek wide and flat optima of our intervention-objectives, such that even
if the realized noisy transformation does not precisely achieve the optimal objective

value, it nonetheless should produce a substantial outcome improvement (with high

confidence).

Finally, we point out that Chapter 4 solely considered transformations of vector-

valued data which can be represented in a standard tabular format, where each col-

umn represents a meaningful covariate and each row contains the measurements of

these different variables observed within a single individual from the population. It

remains of interest to extend this methodology to settings where, rather than being
interpretably featurized, the data only consist of structured objects. For example,
individual molecules in chemical applications may be represented as graphs, and sen-
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tences in natural language processing are often viewed as a discrete sequences. When
faced with a population consisting of structured objects, it becomes less obvious how

to best identify maximally beneficial transformations. For the case of sequence data,
we have introduced one way to apply the same type of gradient-based optimization

utilized in Chapter 4, which involves leveraging a latent variable generative model of

the structures (Mueller et al. 2017). Generalizing these ideas to encompass a broader

class of structures remains an open avenue for future research.
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