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Abstract

Many success stories in the data sciences share an intriguing computational phenomenon.
While the core algorithmic problems might seem intractable at first, simple heuristics or
approximation algorithms often perform surprisingly well in practice. Common examples
include optimizing non-convex functions or optimizing over non-convex sets. In theory, such
problems are usually NP-hard. But in practice, they are often solved sufficiently well for
applications in machine learning and statistics. Even when a problem is convex, we often
settle for sub-optimal solutions returned by inexact methods like stochastic gradient descent.
And in nearest neighbor search, a variety of approximation algorithms works remarkably
well despite the "curse of dimensionality".

In this thesis, we study this phenomenon in the context of three fundamental algorithmic
problems arising in the data sciences.

* In constrained optimization, we show that it is possible to optimize over a wide range
of non-convex sets up to the statistical noise floor.

" In unconstrained optimization, we prove that important convex problems already
require approximation if we want to find a solution quickly.

* In nearest neighbor search, we show that approximation guarantees can explain much
of the good performance observed in practice.

The overarching theme is that the computational hardness of many problems emerges
only below the inherent "noise floor" of real data. Hence computational hardness of these
problems does not prevent us from finding answers that perform well from a statistical
perspective. This offers an explanation for why algorithmic problems in the data sciences
often turn out to be easier than expected.

Thesis Supervisor: Piotr Indyk
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Over the past two decades, the reach of data sciences such as machine learning, statistics,
and signal processing has grown tremendously. Fueled by our ever-increasing capabilities to
collect large amounts of data, statistical algorithms now underlie a broad range of modern
technology. Well-known examples include web search, medical imaging, bioinformatics,
computer vision, and speech recognition - just to name a few. From a computational
perspective, many of these success stories highlight an intriguing overarching theme: while
the core algorithmic problems might seem costly to solve or even intractable at first, simple
heuristics or approximation algorithms often perform surprisingly well in practice.

Examples of this phenomenon are abundant. In statistical estimation tasks, it is now
standard practice to optimize over non-convex sets (e.g., sparse vectors or low-rank matrices),
even though such problems are NP-hard in general. When training neural networks or fitting
random forests, iterative methods often find good solutions in spite of the non-convex loss
functions. Even for convex problems, we commonly resort to stochastic gradient methods
that return only coarse answers yet still provide good generalization properties. And when
searching through large collections of complex data such as images or videos, approximate
data structures quickly return the right answer in spite of the "curse of dimensionality".

This discrepancy between the inexact nature of popular algorithms and their good empirical
performance raises a fundamental question:

When and why do approximate algorithms suffice in statistical settings?

There are multiple reasons to study this question. On the theoretical side, we should
understand how statistical settings evade fundamental hardness results. After all, the
hallmark of a scientific theory is its predictive power. But when it comes to predicting
performance in machine learning or statistics, the dominant "worst case" view of algorithms
often seems too pessimistic.

On the more applied side, the growing influence of data sciences also means that errors
made by our algorithms can have direct negative consequences in the real world. If we want
to responsibly utilize these algorithms in scenarios with serious impact, it is important to
delineate the regimes where we can safely rely on their answers. Finally, understanding why
inexact solutions work well often enables us to develop new algorithms that achieve even
better computational or statistical performance.
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The goal of this thesis is to explain and extend the success of approximate algorithms in

statistical settings. To this end, we investigate three fundamental algorithmic problems

in the data sciences. All three vignettes share a common theme: approximate algorithms

consistently avoid computational hardness results, but still achieve strong performance both

in theory and in practice.

At a high level, our results show that the computational hardness of many algorithmic

problems only emerges when we compute high-accuracy solutions below the inherent "noise

floor" of the data we collected. So from the perspective of the statistical problem we want to

solve, the computational hardness of the intermediate algorithmic problem often turns out

to be irrelevant. This explains why algorithmic problems in the data sciences can usually

be solved sufficiently well in practice, even if a worst case perspective might at first suggest

otherwise.

The work in this thesis makes contributions to the following areas:

Constrained optimization. Optimizing over convex sets is a well-understood task with

polynomial-time algorithms for a broad range of constraints. In contrast, even simple

problems involving non-convex sets are NP-hard. Nevertheless, seminal results in

compressive sensing show that statistical settings improve the situation markedly. For

certain non-convex sets such as sparse vectors and low-rank matrices, we now have

reliable algorithms and a comprehensive understanding of both computational and

statistical aspects. But the situation is still less clear for general non-convex sets.

In this thesis, we introduce an extension of projected gradient descent for arbitrary

non-convex cones that achieves (near-) optimal statistical accuracy. Moreover, we

identify a new notion of approximately projecting onto non-convex sets. This notion

allows us to optimize over constraints that would otherwise be NP-hard to handle. In

addition to their strong theoretical guarantees, our algorithms also improve over the

state of the art in numerical experiments.

Unconstrained optimization. Stochastic gradient descent (SGD) is a ubiquitous algo-

rithm in machine learning and underlies many successful classification techniques. On

the one hand, research has shown that SGD returns solutions with good statistical

properties. On the other hand, SGD relies on approximate gradients and has only

modest convergence guarantees as an optimization algorithm. As a result, SGD is

often unreliable and requires instance-specific tuning of hyperparameters. Such brittle

performance is a common hidden cost of approximate algorithms. So why do we resort

to sometimes unreliable algorithms?

To explain our dependence on approximate algorithms, we show that computational

limits already emerge when solving important convex problems to high accuracy.

Two concrete examples in this thesis are kernel support vector machines (SVM) and

kernel ridge regression, which are widely used methods in machine learning. For these

problems, a reliable high-accuracy algorithm with subquadratic running time would

break a well-established barrier in complexity theory. So our use of inexact algorithms

like SGD is probably due to the fact that there is no "silver bullet" algorithm for

these problems. There are inherent computational limits when working with powerful

data representations such as kernels. This shows that the negative side effects of

approximate algorithms are sometimes unavoidable.
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Nearest neighbor search. Quickly searching through vast amounts of data plays a key
role in important technologies such as web-scale search engines and recommender
systems. However, there are (conditional) lower bounds telling us that fast nearest
neighbor search should be impossible in general. So what structure in the data
do successful algorithms exploit? The Locality Sensitive Hashing (LSH) framework
provides a rigorous explanation. But empirically, LSH lost ground to other methods
over the past decade.

In this thesis, we bridge this divide between theory and practice and re-establish LSH
as a strong baseline. We thereby demonstrate that the LSH theory can explain much
of the good performance observed in practice. Moreover, we show empirically that
the assumptions in the LSH theory are naturally satisfied when the dataset is derived
from a trained embedding such as a neural network. On the practical side, our LSH
implementation FALCONN has become a popular library for nearest neighbor search
on GitHub.

In the next three sections, we outline our concrete contributions in more detail. At a high
level, each part of this thesis corresponds to one of the three algorithmic problems mentioned
above.

1.1 Optimizing over non-convex cones

The goal in constrained optimization is to minimize an objective function f : Rd -+ R over a
given constraint set C C Rd. This fundamental paradigm has found a myriad of applications
and has led to influential algorithmic techniques such as the simplex algorithm or interior
point methods. The classical theory of optimization shows that for a broad range of convex
constraint sets, it is possible to solve constrained optimization problems in polynomial time
(for instance, linear programs or semidefinite programs) [40, 54, 174, 175]. Building on this
work, a large body of research from the past 15 years has focused on applications with
non-convex constraints. Here, the situation is more subtle. Even simple problems over
non-convex sets can be NP-hard, yet are often solved successfully in practice.

One important example in the data sciences are estimation problems. In a linear estima-
tion problem, we want to (approximately) recover an unknown parameter vector 0* E Rd

from a small number of linear observations. We can summarize n such observations in a
measurement matrix X E Rnxd and a response vector y E R' to get the following data
model:

y = X0* + e,

where e E R' is an unknown noise vector. Since this is a linear model, a natural approach
to estimating 0* is a constrained least squares problem of the form

minimize Iy - X01||

subject to 0 E C .

In this formulation, the constraint set C encodes our prior knowlege about the unknown
parameters 0* (e.g., a sparsity or rank constraint). While the linear setup might seem simple
at first, it already applies to a broad range of problems including magnetic resonance imaging
[157], recommender systems [59], and selecting important features in gene expression data
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[222]. In these applications, utilizing prior knowledge through carefully chosen constraints
is crucial for finding a good estimate from a small number of samples.

From a worst case perspective, Problem (1.1) might seem hopeless. For instance, the least
squares problem is already NP-hard for simple non-convex constraints such as C being the
set of sparse vectors [168]. Nevertheless, various algorithms often find good estimates in
practice [73, 221]. To explain this phenomenon, the fields of compressive sensing and high-
dimensional statistics have developed a rich theory for optimizing over certain non-convex
sets [69, 101, 114, 231]. Under regularity assumptions on the matrix X, corresponding
algorithms provably find an estimate 0 such that 0 ~ 0* up to the inherent noise in the
problem.

At a high level, there are two algorithmic approaches to estimating 0*:

* Convex relaxations relate the non-convex constraint back to a convex counterpart. The
statistical guarantees for estimating 0* are well understood and in many cases optimal.
While this approach has been very successful for some non-convex constraints (e.g.,
sparse vectors and low-rank matrices [59, 60, 90, 186]), it is not clear how to derive
convex relaxations for other constraint sets (e.g., graph sparsity or group sparsity
[232]).

* Projected gradient descent (PGD) forgoes the convex route and directly works with the
non-convex set. While this succeeds for well-conditioned problems [50, 80, 131, 170,
177], the PGD approach does not match the sample complexity of convex relaxations
in the general case [133]. Moreover, PGD relies on access to an efficient projection
oracle for the non-convex set C. 1 Unfortunately, the projection problem can also be
NP-hard (among others, the culprits are again graph sparsity and group sparsity [33,
118]). In such cases, PGD does not have a polynomial running time.

Methods for sparse vectors and low-rank matrices have been highly successful despite the
non-convex constraints. Hence it is important to understand how general this phenomenon
is. Specifically, we investigate the following question:

For what non-convex sets can we solve constrained estimation problems efficiently?

In this thesis, we significantly extend the class of non-convex sets for which we can efficiently
optimize in a statistical setting. In particular, we make the following three contributions:

Result 1. We introduce a generalized version of projected gradient descent for non-
convex sets that achieves the optimal sample complexity for estimation problems with
arbitrary conditioning.

This result provides an alternative path to optimal statistical performance that does not
rely on convex relaxations. However, the new algorithm still relies on projections for the
set C, which can be an NP-hard sub-problem. To ameliorate this issue, we show that our
generalization of PGD also works when combined with a weaker notion of projection.

'To be precise, projecting an input 0 i" E Rd to the set C means solving the problem minOec I 1 - 0i 112
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Result 2. Our generalized PGD algorithm still succeeds when it only has access to
approximate projections.

While PGD has been combined with approximate projections before [39, 49, 82, 107, 108,
144, 145, 205], our framework is the first that leads to faster algorithms for a broad range
of constraint sets. An important insight is that we need to combine PGD with two comple-
mentary notions of approximate projections simultaneously.

To instantiate our new PGD framework, we have to provide approximate projections for
concrete constraint sets. To this end, we combine ideas from both continuous and dis-
crete optimization. Our faster projections leverage a broad range of techniques from the
approximation algorithms literature.

Result 3. We exhibit many constraint sets for which an approximate projection is

provably faster than an exact projection.

This result summarizes multiple independent algorithms in this thesis. Among others, we
give fast approximate projections for constraint sets defined by low-rank matrices, hierar-
chical sparsity, graph sparsity, group sparsity, and k-histograms (see Table 2.1 for details).
Even in cases where an exact projection is NP-hard (such as graph sparsity and group
sparsity), we can still approximately project in nearly-linear time.

Our three results show that we can optimize over a diverse collection of non-convex sets as
long as we stay above the noise floor of the estimation problem. In particular, approximate
projections provide a concrete new example of algorithmic problems that become significantly
easier in a statistical setting. Although they solve the intermediate projection problems only
approximately, they still provide optimal statistical guarantees in the overall estimation
task. Our provable guarantees also show how PGD-like heuristics can succeed in practice
even when applied to non-convex sets. Finally, we remark that our algorithms improve over
prior work both in theory and in experiments.

1.2 Lower bounds for unconstrained optimization

Another large class of algorithmic problems arising in the data sciences are instances of
unconstrained optimization. One important framework here is empirical risk minimization
(ERM) [225]. For a set of labeled data points (Xi, y1),..., (Xn, yn) and a loss function L,
the goal is to find a minimizer 0 of the empirical risk

n
La(6) = L(0, xi, yi).

The loss function L encodes how well the parameters 0 fit the data point (X, y). By varying
the loss function and the underlying classifier, the ERM paradigm encompasses widely used
learning techniques such as logistic regression, support vector machines (SVM), and artificial
neural networks [207].
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Over the past decade, stochastic gradient descent (SGD) has emerged as a powerful tool
for approximately solving ERM problems [52, 188]. The main idea of SGD is to work with
approximate gradients obtained from only a subset of the data points in each iteration (as
opposed to the exact gradient from all n data points). Especially for large datasets, a
single iteration of SGD can be multiple orders of magnitude faster than a single iteration of
gradient descent.

For convex ERM problems (and some non-convex ones), it is now understood that SGD
quickly finds solutions that generalize, i.e., achieve good classification accuracy on new
unseen data [113, 173, 180]. Nevertheless, the approximate gradients used in SGD come at
a cost. While they allow the algorithm to make rapid initial progress, SGD only converges
slowly to the true minimizer of the empirical risk. This leads to the following issues:

. It is often unclear if a low classification accuracy is a failure of optimization (e.g., an
inaccurate ERM solution) or learning (wrong choice of model or insufficient data).

. Achieving good performance with SGD often requires fine-tuning various parameters
such as the step size [239].

* Seemingly benign questions such as step size schedules or adaptive step size selection
are still the subject of current research and actively debated in the community [94,
141, 187, 216, 239].

This unreliable behavior of SGD can add significant overhead to the overall training time.
It also limits the effective use of machine learning to a small number of expert researchers.
In contrast to SGD, an ideal algorithm should reliably and quickly converge to the empirical
risk minimizer. The fact that we are stuck with tuning SGD raises a natural question:

What are the fundamental computational limits of empirical risk minimization?

The second part of our thesis addresses this question in both convex and non-convex settings.

Convex ERM. How would an ideal ERM algorithm look like? Formally, our goal is to
find an e-approximate solution to the ERM problem, i.e., an estimate 0 that is e-close to
an optimal solution 0*:

Ln($) - Ln(O*) < E .

An ideal algorithm would have a time complexity of 0 (n log 1/F). This running time implies
that the algorithm would return a high-accuracy solution (due to the log 1/e dependence)
with only a small cost per iteration (the linear dependence on n). Note that it is possible to
achieve both goals individually. So-called interior point methods have a log 1/e dependence
but usually require expensive iterations with a cost of 0(n 3 ) [40, 54, 174, 175]. In constrast,
SGD has cheap iterations but only a slow convergence rate where the accuracy parameter
enters as 1/e (without the logarithm) [208]. Is it possible to achieve the best of both worlds?

We utilize results from fine-grained complexity to show that such an ideal algorithm is
probably impossible for two important ERM problems. In particular, we build on the
Strong Exponential Time Hypothesis (SETH), which can be seen as a natural strengthening
of the classical P vs NP conjecture [123, 124, 226].
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Result 4. Assuming SETH, no algorithm can solve kernel support vector machines
and kernel ridge regression to high accuracy in subquadratic time.

From a practical perspective, a quadratic running time can be burdensome or even prohibitive
for datasets with n = 106 or n - 10' data points, which are now increasingly common.
So unless a new algorithm cleverly exploits extra problem-specific structure, we have to
live with the downsides of approximate algorithms for large datasets. This shows that our
reliance on approximations in statistical settings is not only a matter of convenience but
due to fundamental computational limits. Moreover, our result justifies the use of SGD and
other approximation methods (e.g., random features or the Nystr6m method [179, 234]) for
large-scale kernel problems.

Non-convex ERM. Finding the exact minimizer of the empirical risk is NP-hard even for
simple non-convex problems [47]. But in practice, SGD has become a surprisingly effective
tool for non-convex problems such as training neural networks. While the success of SGD
is not yet well understood, can we give evidence that SGD - as currently employed - is in
some sense optimal?

When we run SGD to train a large neural network, the main computational burden is
computing the gradient of the loss with respect to the network parameters. This is the
problem commonly solved by the seminal backpropagation algorithm that is now implemented
in all major deep learning frameworks [195]. The standard approach is to compute gradients
for a batch of examples and then to update the network parameters with the average gradient.
Since data batches now contain hundreds or even thousands of data points, it is important
to understand how quickly we can compute batch gradients [111].

For a neural network with p hidden units, computing the gradient of a single data point
via backpropagation takes 0(p) time. With a batch of size n, the standard approach is to
simply compute the gradient of each data point individually and then to average the result.
This has a rectangular time complexity of O(n - p). But from an information-theoretic
perspective, the algorithm has all the information for computing the batch gradient after
reading the input (the network and the data points) in time O(n + p). So is it possible to
improve over the rectangular running time? We again leverage the fine-grained complexity
toolkit to prove that the rectangular running time is (likely) optimal.

Result 5. Assuming SETH, approximately computing the gradient of a two-layer
network with rectified linear units (ReLU non-linearities) requires O(n -p) time.

Our hardness result suggests that it may be impossible to significantly improve over back-
propagation for computing gradients in neural networks. As in kernel methods, this perspec-
tive points towards an inherent tension between the representational power of a learning
approach and the resulting computational hardness. Furthermore, our result provides an
explanation for why backpropagation has been an unchanged core element in deep learning
since its invention.
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1.3 Nearest neighbor search

The third algorithmic problem we focus on is nearest neigbor search (NNS). Given a dataset
of d-dimensional points P = {pl,. . . , p,} and a distance function 6 : Rd x Rd -+ R, we first
build a data structure that then allows us to answer nearest neighbor queries efficiently.
Specifically, for a given query point q E Rd, our goal is to quickly find its nearest neighbor

arg min 6(p,q)
pEP

NNS is a fundamental tool for processing large datasets and is commonly used for exploratory
data analysis and near-duplicate detection. Moreover, large-scale recommender systems and
search engines rely on NNS as an integral component.

A simple baseline for NNS is a linear scan: when a new query q arrives, simply compute
the distance 6(pi, q) to all n points without building a data structure beforehand. We then
pick the closest point pi, which can be done in 0(n) total time. In fact, this baseline is

(nearly) optimal in the general case: there are conditional lower bounds proving that a
strongly sub-linear query time is impossible [15, 84, 192, 235]. But as datasets continue
to grow, it is increasingly important to design fast algorithms with a sublinear query time.
Indeed, there is now a long line of work on data structures for NNS that enable fast query
times in practice. Popular examples include k-d trees [41], Locality Sensitive Hashing (LSH)
[112, 127], product quantization [134], and graph-based approaches [159]. Their impressive
empirical performance raises a natural question:

Why do nearest neighbor algorithms work well in practice?

The theory of LSH offers an explanation via distance gaps. To be concrete, let us assume
that the query point q is c times closer to its nearest neighbor p* than to all other data
points. We can formalize this as

(qp*) <; - .6(q,p) for p E P \ {p*}.
C

Intuitively, large distance gaps should lead to an easier nearest neighbor problem since there
is more "contrast" between the nearest neighbor and an average data point. Indeed, the
seminal hyperplane hash yields a data structure with query time 0(n'/C) for the widely
used angular distance (also known as cosine similarity) [70]. This sublinear query time is
responsible for the good empirical performance of the hyperplane hash. It also shows how
the linear time hardness of NNS only appears below the "noise floor" given by the distance
gaps.

However, more recent NNS techniques have improved significantly and now outperform the
hyperplane hash by an order of magnitude on standard benchmarks [23, 43]. So are distance
gaps still sufficient to explain the good performance of NNS methods in practice? And even
if distance gaps still suffice, it is not clear why a dataset would have large distance gaps to
begin with. This thesis addresses both of these questions.

Bridging theory and practice of locality-sensitive hashing. Can distance gaps
provide faster query times than the 0(n/c) achieved by the hyperplane hash? Over the
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past decade, theoretical research has shown that more advanced hash functions achieve a
0(nl/2) query time [16, 18, 19]. The quadratically better exponent could potentially lead
to faster query times in practice as well. But unfortunately, this has not happened so far.

The main bottleneck of the theoretically motivated hash functions is the time it takes to
compute the hash function itself. Here, a key feature of the hyperplane hash becomes
apparent: computing a single hash function costs only 0(d) time, while the theoretically
better hash functions have higher time complexities such as 0(d2 ). Is it possible to combine
the good sensitivity (i.e., small query time exponent) of more advanced hash functions with
the fast computation time of the hyperplane hash?

Our starting point is the cross-polytope (CP) hash originally introduced by Terasawa and
Tanaka [219]. The authors conduct insightful experiments demonstrating that the CP hash
has a good sensitivity. But they do not provide theoretical proofs for this phenomenon.
Moreover, their version of the CP hash also suffers from the slow 0(d2 ) time to compute
a hash function and consequently was not adopted in practice. Our work addresses these
shortcomings. A key ingredient are ideas from randomized dimensionality reduction that
enable us to compute the CP hash in 0(dlogd) time [12].

Result 6. The cross-polytope hash provably achieves a 0(nl/2) query time in the
locality-sensitive hashing framework. Empirically, it also improves over the hyperplane
hash by a factor of 4x to 10x for datasets of size 106 to 108.

We converted our research implementation of the CP hash into an open source library
called FALCONN [185].1 When we released FALCONN in 2015, it was the fastest library
in the standard NNS benchmark and improved over the prior state-of-the-art by a factor
2x to 3x [43]. Moreover, it was the first LSH-based technique that empirically improved
over the hyperplane hash in more than a decade. While a graph-based approach surpassed
FALCONN in the following year, our library is still competitive with the state-of-the-art
[23]. This demonstrates that distance gaps can indeed provide a good explanation for the
empirical success of NNS. Moreover, FALCONN has become a popular library on GitHub
and found users in both academia and industry [185].

Understanding distance gaps in learned embeddings. LSH explains how distance
gaps enable fast NNS in practice. But where do these distance gaps come from? In the past,
feature vectors for images, text, or speaker identities were usually designed by hand. More
recently, such hand-crafted embeddings are often replaced by embeddings trained from data.
Why do these trained embeddings exhibit good distance gaps? And can we specifically train
embeddings for more efficient NNS?

We investigate this question for embeddings derived from artificial neural networks. This
is an important class of models for NNS because the aforementioned types of data are now
often embedded into vector spaces via neural networks. For our exposition here, it suffices
to focus on the cross-entropy loss used to train most contemporary networks. After some

'The name stands for "Fast Approximate Look-up of COsine Nearest Neighbors".
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simplifications, we can write the loss for an example x and class y as

L(x, y) ~ Z(0(x), vy) (1.2)

where #(x) : Rd a Rk is the embedding computed by the network and vy is the weight
vector for class y.1 We write Z(-, -) to denote the angle between two vectors. From the

perspective of NNS, achieving a small angle Z(#(x), vy) for all points of interest directly

corresponds to a good distance gap.

We conduct a range of experiments on different neural networks to understand the angle

Z(#(x), vy) achieved by their embeddings. Indeed, we find that the training process always

leads to distance gaps in the resulting embeddings. However, these gaps are sometimes too

small for NNS methods to offer a meaningful improvement over a simple linear scan. To

address this issue, we introduce changes to the training process that reliably lead to larger

distance gaps in the resulting embedding. Overall, we obtain the following result.

Result 7. We can train a neural network embedding of 800,000 videos so that stan-
dard NNS methods are 5x faster on the resulting dataset. I

In addition to the NNS speed-up, our changes do not negatively affect the classification

accuracy (and sometimes lead to higher accuracy). Overall, our experiments explain how

distance gaps naturally arise in neural network training because the cross-entropy loss

encourages angular distance gaps.

'Intuitively, v. is a prototypical example for class y under the embedding 0.
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Part I

Optimizing Over
Non-Convex Cones
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Chapter 2

Projected Gradient Descent For
Non-Convex Cones

2.1 Introduction

The goal in constrained optimization is to minimize a (often convex) objective function
f : Rd -- R over a given constraint set C C Rd, i.e., to find a point x E C that minimizes the
function value f(x) among all points in the set C. Formally, we want to solve the problem

minimize f(x)

subject to x E C.

This fundamental paradigm has found many applications in the sciences and engineering,
including control theory, finance, signal processing, statistics, circuit design, machine learn-
ing, etc. [40, 54, 174, 175]. As a result, the underlying techniques such as the Simplex
algorithm, interior point methods, and projected gradient descent have become some of the
most widely used algorithmic primitives and are available in broad range of commercial
solvers and optimization libraries.

A crucial question in constrained optimization is what constraint sets C allow for efficient
algorithms. Over the past few decades, the optimization community has developed a rich
classification based on different types of cones.1 , The most prominent examples are the
non-negative orthant (giving rise to linear programs), the second-order cone (underlying
for instance quadratic programs), and the cone of positive semidefinite matrices (which
forms the basis of semidefinite programming). While there are more cones for which we
have polynomial time solvers (e.g., the exponential cone or the hyperbolicity cone), the
overarching theme is that all of these cones are convex. This raises the natural question:

Can we efficiently solve optimization problems over non-convex cones?

Recall that a cone is a set that is closed under multiplication with non-negative scalars. So if we have
x E C, then we also have a - x E C for any a > 0.
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Constrained estimation problems. Driven by applications in the data sciences, the
past ten years have seen a large amount of research devoted to specific non-convex cones.
The canonical example here is the set of sparse vectors, i.e., vectors with only a small number
of non-zero coefficients. Sparsity arises in a broad range of applications. In compressive
sensing, the goal is to recover a sparse vector (e.g., the image of a patient's spine) from
a small number of linear observations. Examples of linear observations are measurements
given by a magnetic resonance imaging (MRI) device [157]. In statistics, we often want
to find a small number of important features (e.g., genes relevant to a disease) from a
high-dimensional dataset such as gene expression data [222]. In both cases, we can write
the problem as a linear model of the form

y = X9* + e

where 9* E Rd is the unknown sparse vector and X E RnXd is the measurement matrix (in
signal processing) or design matrix (in statistics). The vector y E R' contains the linear
observation corrupted by noise e E R'. Given the observations y and the matrix X, the
goal is now to find a good estimate 6 ~ 0* up to the inherent noise level.

Since we are working with a linear model, a natural approach to solve this problem is via
constrained least squares:

minimize I1Y - X0112

subject to 11011o < s

where we write 116o to denote the sparsity or fo-"norm" of 6 (i.e., the number of non-
zero coefficients in 9). The parameter s is our desired upper bound on the sparsity of the
solution. The resulting estimator 0 has essentially optimal statistical performance, but the
computational side is not immediately clear.

It is easy to see that sparse vectors form a non-convex cone.1 An unfortunate consequence
of the non-convexity is that solving least squares with a sparsity constraint is already NP-
hard [168]. At first, this might suggest that we cannot hope for an algorithm with strong
guarantees. But in a variety of applications, several methods usually find good estimates 6.
So what is going on here?

To explain this phenomenon, a rich body of work has investigated regularity conditions for
the design matrix X. The most common assumptions take the form of the following pair of
inequalities:

f1|| 12 < ||X OJ|| < L1\1 | ,1

which is assumed to hold for all sparse vectors 9 and two fixed constants 0 < f < L. Under
this condition, it is possible to show that widely influential methods such fi-regularized least
squares (also known as the Lasso [221]) and f -minimization (Basis Pursuit [73]) provably
find estimates 0 that are essentially optimal from a statistical point of view.

The step from the non-convex fo-constraint (sparsity) to the convex fi-norm has been
generalized to a broader theme of convex relaxations. Another seminal instantiation of this
approach are low-rank matrix problems, where the non-convex rank constraint is relaxed to

'A convex set is closed under taking convex combinations of its elements. But the convex combination
of two s-sparse vectors with different supports can be up to 2s-sparse.
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the convex nuclear norm [59, 186]. Moreover, there convex relaxation frameworks such as
atomic norms and decomposable regularizers [69, 171]. However, it is still unclear which non-
convex cones are amenable to the relaxation approach, and whether the convex relaxation
route is necessay for optimal statistical guarantees in the first place.

To address these questions, we make two main contributions.

2.1.1 Projected gradient descent for non-convex cones

Our first contribution is an extension of the classical projected gradient descent (PGD)
algorithm to the non-convex setting outlined above. Similar to gradient descent, PGD is
a first-order method that improves an objective function f iteratively via gradient steps.
In order to incorporate the constraint set, PGD assumes that it has access to a projection
oracle Pc that maps an arbitrary input to the closest point in the constraint set C. With
such a projection oracle, the PGD algorithm can be stated as a simple iterative procedure:1

for i <- 1, ... T:

0i+1 - PC (02 - V f(0))

The classical theory for PGD analyzes convergence to the global minimizer for convex
sets. More recent work from the past decade has also established estimation results for
non-convex sets [50, 80, 102, 131, 170]. However, these results typically rely on stringent
assumptions on the (restricted) condition number , = L/. It is known that non-convex
PGD only matches convex relaxations in the regime where r, is very close to 1 [133]. In
contrast, the convex relaxation approaches also achieve optimal statistical guarantees for
arbitrary r, [231]. Especially in machine learning and statistics, one would instead prefer
algorithms that reliably work for arbitrary condition numbers because the design matrix
X is typically given by a data generating process we do not control. In contrast, signal
processing settings usually have some freedom to co-design the measurement matrix with
the estimation algorithm.

The gap between PGD and the convex relaxations is not due to a lack of better understanding
- it is a real limitation of the algorithm. If we project onto the non-convex set C in every
iteration, PGD can get stuck in local minima due to the "kinks" of the non-convex constraint
set. Moreover, these local minima can correspond to incorrect solutions of the overall
estimation problem. So a crucial question is whether we can modify PGD to escape such
local minima (indeed, this exactly what happens implicitly in the r, e 1 regime mentioned
above: a single gradient step already provides enough signal to escape local minima). One
approach in this direction is to project onto significantly larger constraint sets in every
iteration, but doing so leads to worse statistical performance since we now require our
regularity condition on a much larger set [133].

Our new algorithm. To overcome this limitation posed by non-convex constraints, we
introduce an extension of PGD that carefully explores the local neighborhood around the
constraint set. This exploration takes the form of a new inner loop in PGD that allows the

'For simplicity, we ignore the choice of initialization 01 and step size 71 here.
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iterates to leave the constraint set in a controlled way. At a high level, this approach can
be formalized as follows:

for i +- 1,. .., T: > Standard outer PGD loop
6i,1 <- 6 > Inner loop starts at current iterate

for j +- 1,.., Tnner:

6 i,j+1 y 6iJ - r7 Pc (Vf( ('))

0 i+1 +- PC(6i Tinner+1)

The crucial trade-off in the inner exploration phase is between the non-convex constraint
and our statistical "budget". If we explore over a larger space, it becomes easier to escape
the local minima caused by the non-convex kinks in the constraint set. However, exploring
over a larger space also means that we require regularity conditions over a larger set, which
in turn means a worse statistical rate (more regularity requires more samples). On the other
hand, if we explore only over a small region (e.g., only a single gradient step as in vanilla
PGD), we risk getting stuck in a local minimum.

By introducing an inner loop inspired by the Frank Wolfe algorithm, we show that we
can carefully balance these two desiderata. The resulting guarantee demonstrates that we
can match the optimal guarantees of convex relaxations for any non-convex cone and any
condition number ,. For constraint sets where no convex relaxation is known (see the next
subsection), our approach also goes beyond the convex relaxation approaches. Overall, the
non-convex PGD perspective allows us to unify and extend a broad range of prior work in
this area. Moreover, our provable guarantees justify the heuristic use of PGD with non-
convex sets in practice and offer an explanation why this approach can work well in spite of
the non-convexity.

2.1.2 Approximate projections

Our algorithm from the previous subsection is a powerful tool for optimizing over non-convex
cones - provided we have an efficient projection oracle PC. So have we really made progress?
If projecting onto the non-convex set turns out to be an NP-hard problem, our overall
algorithm is not efficient because it relies on a projection in every iteration. Hence it is
important to understand the complexity of projecting onto our constraint sets of interest.

Recall that we started with the following type of optimization problem (again instantiated
for the least squares loss):

argmaxly - X6||. (2.1)
OeC

PGD allows us to solve this problem via a sequence of projections. If we denote our current
iterate (before the projection) with 0i", computing PC(62") means solving a problem of the
form:

arg max||Qi" - 0 . (2.2)
oec

Note the main difference between Equations 2.1 and 2.2: we have removed the data matrix
X from the optimization problem. While this certainly simplifies the situation, we are still
left with a non-convex problem because C is a non-convex set.
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For some constraint sets, the projection problem (2.2) is indeed much easier. For instance, we

can project onto the set of sparse vectors with a simple thresholding operation in linear time
(in contrast, recall that solving sparse least squares is NP-hard). Similarly, we can project
onto the set of low-rank matrices via a singular value decomposition (SVD). However, for
more complex constraint sets, the computational hardness often associated with non-convex
sets quickly strikes back.

A concrete example is graph sparsity [118, 122]. In addition to the "vanilla" sparsity
constraint, we now also require that our estimate obeys a graph connectivity constraint. For
a given graph defined on our features, such a constraint enforces that the selected features
form a connected component in the underlying graph. A concrete example of such a graph
are protein-protein interaction networks in computational biology. From the biologist's
point of view, graph-sparse solutions are more meaningful because they are more likely to
correspond to a true biological process. But from the algorithmist's point of view, projecting
onto the set of graph-sparse vectors is unfortunately an NP-hard problem.

Graph sparsity is not the only example of a constraint set that is hard to work with. Another
example that has been intensively studied in the statistics literature is group sparsity, where
the sparse solution consists of a few groups of variables [242]. Again, projecting on the set
of group sparse vectors is NP-hard [33]. And even for sets with polynomial-time projections
such as low-rank matrices or tree sparsity (also known as hierarchical sparsity), their super-
linear running time can be a bottleneck in practice. While these problems are not NP-hard,
improving the current running times of exact projections would still represent progress on
fundament algorithmic problems. So how can we overcome this "projection bottleneck" in
PGD? Addressing this challenge is our second contribution in this context.

Tail approximations. When faced with a hard exact problem such as that in Equation
2.2, a standard approach in theoretical computer science is to study an approximate version
of the problem instead. A natural way to relax the projection guarantee is as follows: for
an input vector 0 r", we are now content with an approximate projection 0 E C satisfying
the guarantee

0- 2| < cT - min||Oin - 012, (2.3)
O'eC

where cr > 1 is the approximation ratio (for cT = 1, this is the same guarantee as an
exact projection). In the following, we will refer to such a notion of projection as a tail
approximation.

Using an approximate projection of this form is a natural approach for speeding up PGD. Af-
ter all, PGD is an iterative algorithm where every step contributes only a small improvement
to the solution quality. So insisting on an exact projection seems like an overly burdensome
intermediate goal. But surprisingly, this intuition is false. As we show in Section 2.5, it is
possible to prove that for any cT > 1, there are problem instances where PGD provably
fails. While this does not preclude the success of heuristics in practice, ideally we would
like to understand whether it is possible to leverage approximation algorithms in a way that
still provides strong performance guarantees.

Head approximations. We show that this is possible by utilizing a second, complemen-
tary notion of approximation: For an input vector Oin, our goal is now to find a unit vector
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6 E C- Sd-I such that

( Qi,96) > cw - m ax ( Qif, I') (2.4)
O'ecnSd-1

where 0 < cW ; 1 is again the approximation ratio (and for cR = 1, this is also the same
guarantee as an exact projection). In this thesis, we refer to this notion of projection as a head
approximation. It is important to note that head and tail projections offer complementary
approximation guarantees. As soon as cR or cT are strictly bounded away from 1, a tail
approximation cannot be converted to a high-quality head approximation (or vice versa).

By combining head an tail projections in the right way, we can prove that PGD with
approximate projections still converges to a statistically optimal solution in a broad range of
estimation tasks (more specifically, under the same regularity conditions as in the previous
subsection). Our approximation-tolerant extension of PGD is best illustrated in the well-
conditioned regime (n 1 1), where we do not need the inner loop of the general algorithm.
Denoting a tail approximation oracle with T and a head approximation oracle with 7, the
main iterative step of PGD then becomes:

0i+1 <- Tc(Ot - q -7(Vf (0))).

Compared to vanilla PGD, the main difference is that we now apply projections to both
the gradient and the current iterate. Underlying this scheme is the insight that a tail
approximation is only a useful guarantee when the input vector is already somewhat close
to the constraint set. However, applying a full gradient update can lead us far outside the
constraint set. To overcome this difficulty, we instead only take a head-projected gradient
step. Clearly, this allows us to stay relatively close to the constraint set C. Moreover, we
can show that the head-projected gradient step still makes enough progress in the function
value so that the overall algorithm converges to a good soluton.

Instantiating our framework. While our approximation-tolerant version of PGD is an
intriguing framework, at first it is not clear how useful the framework can be. To get an
actual algorithm, we must instantiate the head and tail projection guarantees with concrete
approximation algorithms for interesting constraint sets. Indeed, prior work on PGD with
approximation projections could only instantiate their respective algorithms in restrictive
settings [49, 82, 107, 108, 144, 145, 205]. To address this issue for our framework, we build
a bridge between the continuous and discrete optimization worlds. By leveraging a wealth
of results from the approximation algorithms literature, we construct new approximate
projections for a broad range of constraint sets including tree sparsity, graph sparsity, group
sparsity, and low-rank matrices (see Table 2.1). Even in cases where an exact projection is
NP-hard (such as graph or group sparsity), our approximation algorithms run in nearly-linear
time.

In all cases, our algorithms significantly improve over the running time of exact projections
both in theory and in practice. While our theoretical analysis is not tight enough to preclude
a moderate constant-factor increase in the sample complexity, the resulting estimators are
still optimal in the O(.) sense. Experimentally, we also observe an interesting phenomenon:
despite the use of approximate projections, the empirical sample complexity is essentially
the same as for exact projections. Again, our results provide evidence that algorithmic
problems become significantly easier in statistical settings. Moreover, they support the use
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of approximate projections for optimization problems in statistics and machine learning.

Best known time complexity Best known time complexity
Constraint set of an exact projection of an approximate projection

(prior work) (this thesis)

Sparsity 0(d)

Low-rank matrices 0(d'.5) (r d)

Tree sparsity 0(d2 ) [64] O(d)
k-histograms 0(k 2 - d2 .5 ) 0(dl+E)

EMD sparsity 0(d'.5 )

Graph sparsity NP-hard [118] 0(d)

Group sparsity NP-hard [33] 6(d)

Table (2.1): The time complexity of exact and approximate projections for various constraint
sets. In all cases beyond simple sparsity, approximate projections are significantly faster
than the best known exact projections.

Further notes on the table: for simplicity, we use the 0 notation and omit logarithmic
factors. The variable d denotes the size of the input (the dimension of the vector 0*). For
matrix problems, the stated time complexites are for matrices with dimension xf'_ x V'ri so
that the overall size (number of entries) is also d. The variable r denotes the rank of a
matrix. For EMD sparsity, there is no known exact projection or hardness result. The E in
the exponent of the running time for k-histograms is an arbitrary constant greater than 0.

2.1.3 Outline of this part

In this chapter, we describe our core algorithms for optimizing over non-convex cones with
approximate projections. Later chapters will then provide approximate projections for
concrete constraint sets. The focus in this chapter is on our new two-phase version of
projected gradient descent since it is the most general algorithm. We will also provide more
specialized versions for the RIP setting (K ~ 1) since we use them in later chapters.

2.2 Main result

Before stating our algorithm and its guarantee, we formally define our problem of interest.
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2.2.1 Setup

Recall that our goal is to minimize a function f : Rd -+ R over a given constraint set C C Rd

Formally:

minimize f(0)
subject to 9 E C

When solving such a constrained optimization problem, there are two main questions:

. What properties does the objective function f satisfy?

" How do we access the constraint set C?

Restricted strong convexity and smoothness. Regarding the first question, we as-
sume restricted strong convexity and smoothness as is commonly done in statistical esti-
mation problems [9]. In contrast to the classical (global) notions of strong convexity and
smoothness, the restricted counterparts only hold over the constraint set (or a suitably
relaxed version of the constraint set). This weakened assumption is crucial because the con-
centration phenomena in statistical settings are only sufficient to guarantee strong convexity
and smoothness over a subset of the entire parameter space.

Definition 2.1 (Restricted smoothness). Let C be a cone. Then a differentiable convex
function f has restricted smoothness L over C if, for every point 9' C Rd and every vector
9 C1

(Vf(O' + 9) - Vf(0'), 9) LI .

Note that for a quadratic function IIX9 - yfl1, this is equivalent to IIXO112 < L 11011 for
every 9 E C.

Definition 2.2 (Restricted strong convexity). Let C be a cone. Then a differentiable convex

function f has restricted strong convexity f over C if, for every point 9' C Rd and every
vector 9 E C,

f(0' + 9) f(0') + (Vf(0'), 0) + -2I .

For a quadratic function jIIX9 - yII2, this is equivalent to IIXO112 > f1111 for every 9 E C.

Approximate projections. Next, we address the second question: how do we access

the constraint set C? To this end, we now introduce our notions of "head" and "tail"
approximations. These relaxed projections are the only way our algorithm 2PHASE-PGD
interfaces with the constraint sets. 1

Definition 2.3 (Head approximation). Let C*, C- C R d be two cones and let cjj E R.
Then an (C*, Cw, cN)-head approximation satisfies the following property. Given any vector

'To avoid confusion: in this thesis, C* does not denote a polar cone, but instead the constraint set
corresponding to the solution 0*.
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g E Rd, the head approximation returns a unit vector 0 Cw n S-1 such that

(g, 0) > cW - max (g, 0').
O'EC*nSd-

Definition 2.4 (Tail approximation). Let C*, C C Rd be two cones and let cr R.
Then an (C*, CT, cT) -tail approximation satisfies the following property. Given any vector
Oin E Rd, the tail approximation returns a vector 0 E CT such that

|10in - 0112 _< cT- min ||0i" - 0'112
O'cC*

These definitions are the main link to the later chapters of this thesis. It is important to
note that head and tail are two complementary notions of approximate projections. In
general, a good head approximation cannot be converted to a good tail approximation (or
vice versa). For cN = 1 or cT = 1, the respective definition of an approximate projection is
equivalent to an exact one.

In addition to a relaxed approximation guarantee (cH < 1 and cT > 1, respectively), the
above definitions also allow for approximation in the output sets C and CT. As long as C-
and Cr are comparable to C* (say sparsity 2 - s instead of sparsity s), this relaxation affects
the sample complexity only by constant factors, yet enables polynomially faster algorithms
in cases such as graph sparsity.

2.2.2 Main results

Before we proceed to our main result, we briefly introduce some additional notation. For
two sets C1 and C2, we denote their Minkowski sum by Ci + C2. For an integer m, we write
m x C for the m-wise Minkowski sum of a set with itself (i.e., C + 0 + C + - + C a total
of m times).

With this notation in place, we now state our main theorem.

Theorem 2.5 (2PHASE-PGD). There is an algorithm 2PHASE-PGD with the following
properties. Assume that 2PHAsE-PGD is given

" a (C*, Cr, cT) -tail approximation such that 0* E C*, and

" a (C* - C7-, CH, cW) -head approximation.

Then let

k - e((1 + CT)2 .LW

9, - fllt

and assume that f has restricted smoothness LW over C and restricted strong convexity fall
over the sum of C* with the negations of Cr and k copies of C, i.e., fall = eC*-Cr-kxC -

For a given F > 0 and R > 110*112, 2PHASE-PGD then returns an estimate 0 such that

(I + Cyr)2
11 - 0*112 < max 64. C max (Vf (0*), 0'), ER

fall O'(C*-C-1/c xCw)nSd I
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The time complexity of 2PHAsE-PGD is dominated by O(log 11E) calls to the tail approxima-

tion and O(k log 1/E) calls to the head approximation and the gradient oracle, respectively.

Since the theorem above is somewhat technical, we briefly instantiate it in the standard

compressive sensing setting to illustrate the bounds. Let C*, CR, Cr each be the set of

s-sparse vectors. Since we can exactly project onto s-sparse vectors in linear time, we have

c- = cT = 1. Hence our algorithm requires restricted smoothness and strong convexity only
over sets that are 0(s)-sparse, for which we can invoke standard results for RIP matrices

[101]. The RIP setting also implies that all I f- a 1. Together, this yields the standard
bound 110 - 0*112 < O(Ile112) for a noise vector e after a sufficient number of iterations (so
that the ER terms is negligible).

2.2.3 Related work

Due to the vast literature on constrained optimization in statistical settings, we only compare

to the most closely related works in detail. In this chapter, we focus on general PGD-style
algorithms. Related work for specific constraint sets can be found in the respective chapters.

As mentioned before, there is a long line of work on instantiations of PGD with specific

non-convex sets. This includes Iterative Hard Thresholding [50], Compressive Sampling

Matching Pursuit [170], and the Singular Value Projection algorithm [131], among others [80,
102]. The work here is clearly inspired by these algorithms. In particular, a guiding question
for this thesis was how general the non-convex PGD phenomenon is. Our contributions go

beyond these - arguably by now classical - algorithms in three important ways:

* Our algorithm works for arbitrary condition numbers, while the aforementioned work

is for the well-conditioned regime (, 1) that is common in compressed sensing.

* Our algorithm applies for arbitrary non-convex cones as opposed to special constraint
sets such as sparse vectors or low-rank matrices.

* Our algorithm requires only approximate projections, while the aformentioned methods
require exact projections. Hence our algorithm can be used in settings where an exact

projection is NP-hard.

More recently, Oymak, Recht, and Soltanolkotabi [177] also consider projected gradient

descent for general constraint sets that can be non-convex. However, their goals are some-

what different from ours: the authors focus on establishing sharp constants for isotropic

measurement setups or data matrices, which corresponds to the well-conditioned regime

given by the restricted isometry property. In contrast, our focus is on the regime where

the condition number can be arbitrary. Moreover, our algorithm works with approximate

projections.

Jain, Tewari, and Kar [133] also consider iterative thresholding methods (i.e., projected

gradient descent) in the regime where the condition number can be arbitrary. However,

the sample complexity does not match the optimal rates achieved by the Lasso estimator

because the statistical rate has a quadratic dependence on the condition number. Our

two-phase variant of projected gradient descent addresses this shortcoming. Moreover, our

algorithm works with approximate projections and arbitrary conic constraint sets.
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2.2.3.1 Approximate projections

Prior to this thesis, several efforts have been made to enable compressive sensing recovery
for structured sparse signals with approximate projection oracles. Blumensath [49] discusses
a projected Landweber-type method that succeeds even when the projection oracle is ap-
proximate. However, the author assumes that the projection oracle provides an E-additive
tail approximation guarantee. In other words, for any given O ' E Rd, their approximation
oracle returns a 0 C C satisfying:

1 1 - 011 2 = min|i"On - 0'12 + E (2.5)
0'ec

for some parameter E > 0. Under such conditions, there exists an algorithm that returns an
estimate 0 within an 0(c)-neighborhood of the optimal solution 0*. However, approximation
oracles that achieve low additive approximation guarantees are rather rare. Note that for
cones it is always possible the scale the input so that an additive approximation is essentially
an optimal projection.

On the other hand, the works [144, 145] assume the existence of a head-approximation oracle
similar to our definition and develop corresponding signal recovery algorithms. However,
these approaches only provide estimation guarantees with an additive error term that is not
necessary statistically. For a standard sparsity constraint, this error term has the form of
O(110*11), where Q is the set of the s largest coefficients in 0*. Therefore, their result is not
directly comparable to our desired estimation guarantee.

Some more recent works have introduced the use of approximate projections for vectors
that are sparse in a redundant dictionary. Giryes and Elad [107] present a sparse recovery
algorithm for redundant dictionaries that succeeds with multiplicative approximation guar-
antees. However, their framework uses only the tail oracle and therefore is subject to the
lower bound that we provide in Section 2.5. In particular, their guarantees make stringent
assumptions on the maximum singular values of the sensing matrix X.

Davenport, Needell, and Wakin [82] introduce an algorithm called Signal Space CoSaMP
(SSCoSaMP), which also assumes the existence of multiplicative approximate oracles. How-
ever, the assumptions made on the oracles are restrictive. Interpreted in the sparsity context,
the oracles must capture a significant fraction of the optimal support in each iteration, which
can be hard to achieve with provable guarantees. More recently, Giryes and Needell [108]
propose a version of SSCoSaMP which succeeds with oracles satisfying both multiplicative
head- and tail-approximation guarantees. Indeed, an earlier version of our algorithm is
closely related to their work. However, our earlier algorithm already requires technically
weaker conditions to succeed and our proof techniques are more concise. See Section 2.6.3
for a more detailed discussion on this topic.

2.3 Our algorithm

As mentioned before, our new algorith consists of two main parts. The inner loop of the
algorithm makes progress in function value by taking head-projected gradient steps. We
then combine these gradient steps in a way similar to the Frank-Wolfe algorithm (conditional
gradient descent). Algorithm 1 contains the pseudo code for the inner loop.
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The outer loop of our algorithm resembles projected gradient descent. Instead of taking a
gradient step, we now run our inner loop. Then we project the current iterate back to the
constraint set with a tail approximation. The pseudo code for this part can be found in
Algorithm 2. This algorithm provides the guarantees stated in Theorem 2.5.

Algorithm 1 INNERLOOP

1: function INNERLOOP(oin, r, p)

2: k < 8L-

3: 6(0) +- 0
4: for i <- 0,...,k -l do
5: g(i+l) +- HEADAPPROX(-Vf(O 2 n + 0('))
6: y + ) _ r . 9 (i+1)

CW
7: 0(i+') <-_ 7() .-p~+') + (1 M() . W(

8: end for
9: return Oin + 9 (k)

10: end function

Algorithm 2 2PHASE-PGD

1: function 2PHASE-PGD(R, E)

2: T <- [log 2 ]

3: 0(0) <

4: r(0) R
5: fort-0,...,T-Ido
6: (t+1) _ INNERLOOP(O(t), r(t))
7: 0 (t+1) - TAILAPPROX(O(t+1))

8: if | 10 (t+1) - 6 (t) 112 > 'r(t) then return 0 < 6(t) 2
9: end if

10: r(t+1) <-_r
11: end for
12: return $ < 0 (T)

13: end function

2.4 The proof

This section contains the proof of our main algorithm. We begin with a simple consequence

of the restricted smoothness condition.

Lemma 2.6 (Restricted smoothness). Let C be a cone, and let f be a differentiable convex

function satisfying restricted smoothness L over C. Let v = >j vi, where for all i, vi E C

or -vi G C. Then for any x,

f(x + v) <; f(x) + (Vf(x), v) + ||vi|| .
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Proof. First, note that restricted smoothness over C implies restricted smoothness over -C,
since one may substitute x - v for x. Next, note that for a single u E C, f(x + u) < f(x) +

(Vf(x), U) + I|I 2 follows from integrating the derivative of the function g(t) = f(X + tu).
Finally, v is a convex combination of vectors in C and -C with norm Z'illvill, so the result
follows from convexity. El

Next, we abstractly define the properties we require for our inner loop. We call an oracle
with these guarantees an INNERPHASE.

Definition 2.7 (InnerPhase). Let 0'" E C" be the input vector in the cone Cin and let
0* E C* be a vector in the cone C*. Moreover, let r E R be such that ||0'" - 0*11 | r.

Let C be a cone, let k be a natural number, and let p, c E R. Then given Oin and r, an

(C, Cin, k, p, c)-InnerPhase returns a vector Out E R d such that the following properties hold:

" The output O ut can be decomposed as

k

0 out = bo + bi
i=1

where bo E Ci" and for each i we have bi E C. Moreover,

k

ZIb||2 < c-r.

" The function value of the output satisfies

f(0out) f(0*)+p_-
2

We now prove that our Algorithm 1 is indeed a valid INNERPHASE (provided we have access
to a head approximation oracle).

Theorem 2.8 (InnerLoop). There is an algorithm INNERLOOP with the following properties.
Assume INNERLOOP is given a (C* - Ci", C-, cNH)-head approximation such that 0* E C*.
Moreover, assume that f obeys restricted smoothness Li over CR.

Then for any p > 0, INNERLOOP is a (Cw, C", k, p, l/cw)-InnerPhase where k = 8-Y
P *CH

Moreover, its running time is dominated by k gradient queries, and k calls to the head
approximation.

The algorithm can be seen as an instantiation of the Frank-Wolfe or conditional gradient
method and the analysis is therefore similar. The non-standard element here is our use of
the head approximation rather than an exact projection oracle.

Proof. For the first property, we set bo = 0", and the decomposition into bi follows from the
fact that each 0 E C- and 116(i+1)112 = --. What remains is to bound the function value.

To complete the algorithm, we need to define the step size y(i. We will also define an
auxiliary sequence of values Ji for i > 1. Specifically, we set y(0) 1, <() = for > 0

61= 1, and 6 i+1 = Ji - ( for J > 1.4 -
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To track the progress of the algorithm, we define Ei = 2(f(oin + O(i)) - f(9*)).

The key guarantee of a single step of the algorithm is that

Ei+1  (1 - '7('))Ei + ((i))2. (2.6)

To prove this, we first note that the convexity of f gives

(Vf(Oin + O(i)) 0* - in - 0 (i)) < f(*) - f(Oif + (i).

Furthermore, by assumption, 110 *- if 112 <r. Now, by the definition of a head approximation,

and using the fact that Q* - Oin is in C* - ci", we have

(Vf(n + 0 (i)), g(i+l)) K CR (V (0n + 0 (i)) 0* - )in
r

and hence
(Vf(0i" + 0(i)), 6(i+)) (Vf(in + 0(i)), 0* - 0in)

and

(Vf(in + 0 (i), 6+(i ) - 0(i)) 5 f (*) _ f (Qin + (i).

Now, 6('+1) is a vector in Ci of norm -, and O(W is a convex combination of such vectors.

Thus, applying Lemma 2.6

f(OiM + 0(i+1)) = f(if + 0 (i) + () (6(i+) - O(i)))

Sf(in + O()) + ( (Vf (i + O(),I 6i+ _- ( ) + -(Y(i))2 4LNr2

2 c 2

< f(Qif + O(i)) + (i)(f (*) - f (if + O(i))) + (,,(i))2 . 2L r2

2

=(1 -(i)f(in + O(i)) + Y( 0 (0*) + (,( i))2 . 2L r 2

C2

Plugging in the definition of Ei then gives (2.6).

Next, we get the invariant that Ei < 6i for all i > 1. This is immediate from (2.6) for
i = 1, and follows by induction for i > 1, using (1 - Y(i))6 + (,Y(i)) 2 = 6i+. Next, we

can see that for all i > 1, i < ; this is immediate for i = 1, and follows by induction as
(4 _ -4 _ 4 4

7 4 - -_7 - i +I

This finally gives us E- < j; setting k as described gives

f(Oin + O(k)) f(0*) + p.r2

as desired.

Using the notion of an INNERPHASE, we can now establish our guarantee for the OUTERLOOP.

The following theorem also yields Theorem 2.5 above.

Theorem 2.9 (OuterLoop). There is an algorithm OUTERLooP with the following prop-
erties. Assume that
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* OUTERLOOP is given a (C*, CT, cT) -tail approximation such that Q* E C*.

* OUTERLOOP is also given a (C, CT, k, p, c)-InnerPhase with

fall
- 32- (1 + cT) 2

where f has restricted strong convexity faU over the sum of C* with the negations of

Cr and k copies of C, i.e., fall = C*-CTr-kxC-

For a given E > 0 and R > 110*112, OUTERLOOP then returns an estimate 0 such that

- 0*12 < M(1 + Cr) 2
m10- * _ ax 64. max (Vf (0*), 0'), ER)

fall 8'E(C*-CT-C2xC)nSd~1

The time complexity of OUTERLOOP is dominated by O(log 1/) calls of INNERPHASE and
the tail approximation.

First, we analyze a single iteration of OUTERLOOP under some basic assumptions:

Lemma 2.10. If

110(t - 0*112 r(t)

and
(1 + CT) 2 (

r(t) > 16. max (Vf(0*), 0)
fall (O' E(C*_ -C -2 xqCjnSd-I

then

0+) - 0*112 < r(t+1).

Proof. We satisfy the precondition for the guarantee of INNERPHASE, and hence under this
assumption we have that

f(Q(t+l)) f(0*) + p. (r(t))2

and
k

t+1) = bo + bi
i= 1

for bo E Cr, bi E C and k_1||bi|2 < c- r@).

5t+1 is then contained in Cr + k x C, so 0* - 0+1) is contained in C* - CT - k x C. We
may then apply restricted strong convexity to obtain

f(0(t +,)) f(0*) + (Vf(0*), 5(+1 - 0*) + fal 1+ _ 0*11
2

||t+l) _ * (p . (r(t))2 + (Vf(0*), * -
fall

Next, we will bound this by decomposing Vf(0*) into a sum of two pieces which we can
bound separately. We define gj to be any minimizer of ||Vf (0*) - gj 112 over gj expressible
as a difference of a nonnegative multiple of 0* - bo and j vectors in C. Note that gj must
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be orthogonal to Vf(0*) - gj, and hence IVf(0*) -gj112 = |lVf(0*)||2 - I|g|Il. We define

G max 7(Vf(0*), 01).
O'E(C*-C7-C 2 xc)Sd-1

For every gj, j < c2 , we have by construction that |l9j|I2 < G. We define

ej = omax (Vf(0*) - gj, '0).
TbECmSdtz

Then we define g to be any gi, 0 < i < c 2 ,that minimizes ei.

Now, IIVf(0*)
satisfies

- gj|1 - |1 Vf (0*) - gj+1|1 > e?. Therefore, the minimum ej over 0 < i < C2

e2 < ( IVf(0*) - goI11 - I Vf (0*) - gC2 112)

<~~~~ 11If0)I~-I Vf (0*) -g, 2I)

1 2

S1 - G2

G
ej < -.

Additionally, (Vf(0*) - g, 0* - bo) 0 by optimality of g. Putting this together we have

(Vf(0*), 6* - -0+1)) = (g + (Vf(0*) - g), 0* -

= (g, 0* - 5(t+1)) + KVf(0*) -g,0*-- bo0 +E

11g112116('+') - 0*112 + (Vf(0*) - g, 0*

< Gfl6(+1)

k
- bo) + (Vf(0*) - g, bi)

0*112 + 0 + 1 11bi112
i=1

< G116(+1 ) - 0*112 G -r(t).

Plugging that into our bound on 110+1) - 0*112, we get

11(t+1) - 0*12 2
fall (p. (r(t))2 + G-|i0+I) _ 0*112 + G - r(t))

(rM))2 + 4 G2 + " 11 0(t+1)
fall 16

86+1) __ *1
8 fall (p

* I + G r- t))

( (t))2 + 4 G 2
fall

+ G -r 
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By the assumption that G < alc ( 2r(t), and that p < f.1( this gives
16-(+C~r2 - 2.(1 cT)2 '

51i0+1) _ 0*11 - (r (t) 2 +2 - 16 - (1 + CT)2

7
< 7 _ . (rut))2

- 32 - (1 + CT) 2

-(t+ ) - (1 + c r
"U2 - - 4 - (1 + CT) 2 (rt)

1
32(1 + CT) 4

r(t) )2 + 1
8.- (1 + CT)2

~(+)-0*112 : I - r@
-O2. (1+ cT)

We can finally bound 0 (t+1) as

11(+)- 0*11 < 16(t 1 - 0*11 + 110(t-l 0 (+1) 112

11||t+0 - 0*112 + CTI0+1 - 0*112

(1 + CT) 1|1+ - 0*112
r(t)

-- 2

(definition of tail approx)

as desired.

We can now prove our main theorem.

Proof of Theorem 2.9. If rT-1 > 16. (1 -r) 2 maxO'(C*-CT-C2xC)nSd-1 (Vf(0*), 0')), then

the assumption of Lemma 2.10 is, by induction, satisfied each iteration: for all t, | 0 (t - 0 *112
r(t). By the triangle inequality, 110 (t) - 0 (t+1) < r(t) and so the early return is never
triggered; thus the return value is $ = 0 (T) and satisfies 110 - 0*112 < r(T) < eR.

Otherwise, let T' be the first integer such that

r(T') < 16. (1 + CT) 2  max (Vf(0*), '0) ,fall 0/E(C*-C-C2xC)nSd-1

and let T" be either the step triggering the early return, or T if it is not triggered. By the
same argument, we still have 10 (T') - 0*11 r(T'), and T" > T', while for all t < T" we have
10(t+l) - 0 (t) 112 < !r. The return value is O - 0(T"). Applying the triangle inequality, we
obtain

T"1-1

||0(T")- 0*112 10 (') - 0*112 + I 1o0(t+1) - 0 (t) 112
t=T'

< 1(V) _- 0*112 + 3 00
r(t)t=T'

= 4 - r (T')

S64(1 + CT) 2  max (Vf(0*), 0'))
f all O' E ( C* - Cr -C2 x C)nSd-I
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2.5 A counterexample

Our algorithm for optimizing over non-convex cones relies on two notions of approximate

projections. A natural question is whether this is necessary. In particular, the tail ap-

proximation (see Definition 2.3) is arguably the natural relaxation of an exact projection.

However, we will now show that even a small amount of approximation in the projection

can lead to a failure of the overall PGD algorithm.

Consider the standard compressive sensing setting where the constraint is the set of all

s-sparse vectors. Of course, finding the optimal model projection in this case is simple: for

any vector 9"', the oracle P,(.) returns the s largest coefficients of 9 in terms of absolute

value. But to illustrate the failure of an approximate projection, we consider a slightly

different oracle that is approximate in the following sense. Let cT be an arbitrary constant

and let Ts be a projection oracle such that for any 9 E Rd we have:

110 - 7s(0)11 2 < cr-f - Ps(0)112 . (2.7)

We now construct an "adversarial" approximation oracle Ts that always returns T (9) = 0
but still satisfies (2.7) for all vectors 9 encountered during a run of PGD. In particular, we

replace the exact projection in PGD with our adversarial oracle and start with the initial

estimate 00 = 0. We will show that such an oracle satisfies (2.7) for the first iteration of

PGD. As a result, PGD with this adversarial oracle remains stuck at the zero estimate and

cannot recover the true vector.

In the RIP regime, PGD with projection oracle T, iterates

0i+1 +- T(9i + XT(y - X9)), (2.8)

which in the first iteration gives
, 

< (XTY).

Consider the simplest case where the vector 9* is 1-sparse with 0* = 1 and 0* = 0 for

i : 1, i.e., 9* = el (the first standard basis vector). Given a measurement matrix X with
(6, O(1))-RIP for small 6, PGD needs to perfectly recover 9* from X9*. It is known that
random matrices X E Rnxd with Xi, = 1/v/ni chosen i.i.d. uniformly at random satisfy
this RIP for n = O(log d) with high probability [35].1 We prove that our "adversarial" oracle
T-(9) = 0 satisfies the approximation guarantee (2.7) for its input a = XTy = XTXei with
high probability. Hence, 91 = 90 - 0 and PGD cannot make progress. Intuitively, the tail

a - Ts(a) contains so much "noise" that the adversarial approximation oracle T, does not
need to find a good sparse support for a and can simply return an estimate of 0.

Consider the components of the vector a = XTXei: ai is the inner product of the first
column of X with the i-th column of X. Clearly, we have a, = 1 and -1 < ai < 1 for i # 1.
Therefore, P,(a) = el is an optimal projection and Ia - P (a)11 2 = IlaII2 - 1. In order to
show that the adversarial oracle 7 (a) satisfies the guarantee (2.7) with constant cy-, we

'These are the so-called Rademacher matrices.
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need to prove that:

lal|' < c'7(Ila|| 1 ).

Therefore, it suffices to show that IaIj _L. Observe that qall2 = 1+ = 2 a?, where the

ail's are independent. For i # 1, each ai is the sum of n independent random variables

(with p = 1/2) and so E[a?] = -. We can use Hoeffding's inequality to show that Z, 2 a?

does not deviate from its mean - by more than O(V/d log d) with high probability. Since

n = O(log d), this shows that for any constant cT > 1, we will have

d

1lall| = 1+ +a2
i==2

2

> CT

with high probability for sufficiently large d.

Therefore, we have shown that (2.8) does not give an estimation algorithm with provable
convergence to the correct result 0*. In this part of the thesis, we develop several alternative

approaches that do achieve convergence to the correct result while using approximate

projections.

2.6 Results for the RIP setting

Several results in the following chapters are for constraint sets also known as structured

sparsity models [36]. Structured sparsity models refine the widely-used notion of sparsity by
adding additional constraints. Common examples include:

. collecting coordinates into groups (e.g., because certain features share a common

structure),

. arranging coordinates into a hierarchy (e.g., because a child coordinate can only be
active if the parent is as well), and

. graphs defined on the coordinates (e.g., to incorporate an interaction network defined

on the features).

Incorporating such constraints leads to more interpretable models and a better sample
complexity (both in theory and in practice). Since these advantages already emerge in

the simpler RIP setting, we present some of the following chapters in this context. To be

concrete, we now instantiate our general algorithm for structured sparsity models in the

RIP setting.

Our formal problem of interest here is the following. Given the measurement vector

y = Ax + e,

where x is a k-sparse vector and e is the "noise" vector, find a signal estimate - such that:

IlX - 112 c - |lell2 . (2.9)
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Since the RIP setting is usually studied in the signal processing literature, we also adopt

their notation here. In particular, we have the following correspondences:

" The design matrix X becomes the measurement matrix A.

. The unknown vector is now x instead of 0. The size of this vector is n (as opposed to

d earlier). The sparsity is k (as opposed to s).

. The number of linear observations is m (it was n before).

. The noise e is typically assumed to be worst case and not stochastic.

It is known that there exist matrices A and associated recovery algorithms that produce

a signal estimate x satisfying Equation (2.9) with a constant approximation factor c and

number of measurements m = O(klog(n/k)). It is also known that this bound on the

number of measurements m is asymptotically optimal for some constant c; see [88] and [100]
(building upon the classical results of [103, 109, 139]). From a theoretial perspective, the

goal of incorporating structured sparsity is to go beyond this bound (though we remark that
in practice, there are further motivations such as interpretability).

The three algorithms we introduce in this section are the following.

Approximate model-iterative hard threholding (AM-IHT) In Section 2.6.2, we

propose a new extension of the iterative hard thresholding (IHT) algorithm [50], which we call

approximate model iterative hard thresholding (or AM-IHT). Informally, given head- and tail-

approximation oracles and measurements y = Ax + e with a matrix A satisfying the model-

RIP, AM-IHT returns a signal estimate i satisfying (2.9). We show that AM-IHT exhibits

geometric convergence, and that the recovery guarantee for AM-IHT is asymptotically
equivalent to the best available guarantees for model-based sparse recovery, despite using

only approximate oracles.

Approximate model-CoSaMP (AM-CoSaMP) In Section 2.6.3, we propose a new

extension of the compressive sampling matching pursuit algorithm (CoSaMP) [170], which

we call approximate model CoSaMP (or AM-CoSAMP). As with AM-IHT, our proposed AM-

CoSaMP algorithm requires a head-approximation oracle and a tail-approximation oracle.

We show that AM-CoSaMP also exhibits geometric convergence, and that the recovery

guarantee for AM-CoSaMP, as well as the RIP condition on A required for successful signal

recovery, match the corresponding parameters for AM-IHT up to constant factors.

AM-IHT with sparse measurement matrices In Section 2.6.4, we show that an

approximation-tolerant approach similar to AM-IHT succeeds even when the measurement

matrix A is itself sparse. Our approach leverages the notion of the restricted isometry

property in the fl-norm, also called the RIP-1, which was first introduced in [42] and

developed further in the model-based context by [32, 101, 126]. For sparse A, we propose

a modification of AM-IHT, which we call AM-IHT with RIP-1. Our proposed algorithm

also exhibits geometric convergence under the model RIP-1 assumption on the measurement

matrix A.
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2.6.1 Preliminaries

We write [n] to denote the set {1, 2, ... , n} and P (A) to denote the power set of a set A. For
a vector x E Rn and a set Q C [n], we write xo for the restriction of x to Q, i.e., (xQ)i = xi
for i E Q and (xQ)i = 0 otherwise. Similarly, we write XQ for the submatrix of a matrix
X E R"' containing the columns corresponding to Q, i.e., a matrix in R"101. Sometimes,
we also restrict a matrix element-wise: for a set Q C [m] x [n], the matrix Xq is identical
to X but the entries not contained in Q are set to zero. The distinction between these two
conventions will be clear from context.

A vector x E R' is said to be k-sparse if at most k < n coordinates are nonzero. The support
of x, supp(x) C [n], is the set of indices with nonzero entries in x. Hence supp(x) - X.
Observe that the set of all k-sparse signals is geometrically equivalent to the union of
the (n) canonical k-dimensional subspaces of R . For a matrix X E RXW, the support
supp(X) C [h] x [w] is also the set of indices corresponding to nonzero entries. For a matrix
support set Q, we denote the support of a column c in Q with col-supp(Q, c) = {r I (r, c) E Q}.

Often, some prior information about the support of a sparse signal x is available. A flexible
way to model such prior information is to consider only the k-sparse signals with a permitted
configuration of supp(x). This restriction motivates the notion of a structured sparsity model,
which is geometrically equivalent to a subset of the (') canonical k-dimensional subspaces
of R'.

Definition 2.11 (Structured sparsity model. From Definition 2 in [36]). A structured
sparsity model M C R' is the set of vectors M = {x E Rn Isupp(x) C S for some S E M},
where M {1,..., Q} is the set of allowed structured supports with Qi C [n]. We call
I = |MI the size of the model M.

Note that the Qi in the definition above can have different cardinalities, but the largest
cardinality will dictate the sample complexity in our bounds. Often it is convenient to work
with the closure of M under taking subsets, which we denote with M+ = {Q C [n] I QC
S for some S E M}. Then we can write the set of signals in the model as M = {x E
RI supp(x) E M+}.

In the analysis of our algorithms, we also use the notion of model addition: given two
structured sparsity models A and B, we define the sum C = A + B as C = {a + b I a E
A and b E B} (i.e., the Minkowski sum). Similarly, we define the corresponding set of
allowed supports as C = A+B = {QUFPIQ E AandF E B}. We also usetxC as a
shorthand for t-times addition, i.e., C + C + . . . + C.

The framework of model-based compressive sensing [36] leverages the above notion of a
structured sparsity model to design robust sparse recovery schemes. Specifically, the frame-
work states that it is possible to recover a structured sparse signal x E M from linear
measurements y = Ax + e, provided that two conditions are satisfied: (i) the matrix A
satisfies a variant of the restricted isometry property known as the model-RIP, and (ii) there
exists an oracle that can efficiently project an arbitrary signal in R' onto the model M. We
formalize these conditions as follows.

Definition 2.12 (Model-RIP. From Definition 3 in [36]). The matrix A E R"'X has the
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(6, M) -model-RIP if the following inequalities hold for all x with supp(x) C M+

(1 - J)IlxJL' < LIAxII' < (1 + 6)I|xII. (2.10)

The following properties are direct consequences of the model-RIP and will prove useful in

our proofs in Sections 2.6.2 and 2.6.3.

Fact 2.13 (adapted from Section 3 in [170]). Let A E Rmxn be a matrix satisfying the

(6, M)-model-RIP. Moreover, let Q be a support in the model, i.e., Q M+. Then the

following properties hold for all x E R" and y G R m :

IA'yI 2 < 1 + 611y12,

||A'Anx||2 < (1 + 6)||x|2,
11(1 - A7 AQ)x| 2  5|xII||2

Definition 2.14 (Model-projection oracle. From Section 3.2 in [36]). A model-projection

oracle is a function M : R" -+ P([n]) such that the following two properties hold for all

x E R4.

Output model sparsity: M(x) c M+.

Optimal model projection: Let Q' = M(x). Then,

ix - x- 112 = min||x - xQ|12.
2EM

Sometimes, we use a model-projection oracle M as a function from R" to Rn. This can be

seen as a simple extension of Definition 2.14 where M(x) = xQ, Q = M'(x), and M' satisfies

Definition 2.14.

Under these conditions, the authors of [36] show that compressive sampling matching pursuit
(CoSaMP [170]) and iterative hard thresholding (IHT [50]) - two popular algorithms for

sparse recovery - can be modified to achieve robust sparse recovery for the model M.
In particular, the modified version of IHT (called Model-IHT [36]) executes the following
iterations until convergence:

xi+ 1 -- M(xi + AT(y - Ax')) , (2.11)

where xi = 0 is the initial signal estimate. From a sampling complexity perspective, the

benefit of this approach stems from the model-RIP assumption. Indeed, the following result

indicates that with high probability, a large class of measurement matrices A satisfies the

model-RIP with a nearly optimal number of rows:

Fact 2.15 ([36, 48]). Let M be a structured sparsity model and let k be the size of the

largest support in the model, i.e., k = maxQEMIQ. Let A E Rmxn be a matrix with i.i.d.

sub-Gaussian entries. Then there is a constant c such that for 0 < 6 < 1, any t > 0, and

c 1
M > - (k log- + logMl + t),

S62s

A has the (J, M) -model-RIP with probability at least 1 - e-t.
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Since 6 and t are typically constants, this bound can often be summarized as

m = O(k + log|MI) .

If the number of permissible supports (or equivalently, subspaces) IMI is asymptotically
smaller than ('), then m can be significantly smaller than the O(k log 1) measurement bound

from "standard" compressive sensing. In particular, the situation where IMI = poly(n) . 2 0(k)
implies a measurement bound of m = 0(k) under the very mild assumption that k = Q(log n).
Since m = k measurements are necessary to reconstruct any k-sparse signal, this asymptotic
behavior of m is information-theoretically optimal up to constant factors.

While model-based recovery approaches improve upon "standard" sparsity-based approaches
in terms of sample-complexity, the computational cost of signal recovery crucially depends
on the model-projection oracle M. Observe that Model-IHT (Equation 2.11) involves one
invocation of the model-projection oracle M per iteration, and hence its overall running
time scales with that of M. Therefore, model-based recovery approaches are relevant only in
situations where efficient algorithms for finding the optimal model-projection are available.

2.6.2 Approximate Model-IHT

We now introduce our approximation- tolerant model-based compressive sensing framework.
Essentially, we extend the model-based compressive sensing framework to work with approx-
imate projection oracles, which we formalize in the definitions below. This extension enables
model-based compressive sensing in cases where optimal model projections are beyond our
reach, but approximate projections are still efficiently computable.

The core idea of our framework is to utilize two different notions of approximate projection
oracles, defined as follows.

Definition 2.16 (Head approximation oracle). Let M, MH C P([n]), p > 1, and cH CI R
such that cH < 1. Then H : R -+ P([n]) is a (cH, M, MH, p)-head-approximation oracle if
the following two properties hold for all x G R:

Output model sparsity: H(x) G MH

Head approximation: Let Q' = H(x). Then

|I||XI cH IxQ 1p for all Q C M .

Definition 2.17 (Tail approximation oracle). Let M, MT 9 P([n]), p 1 and CT C R such
that cT > 1. Then T : R -+ P([n]) is a (CT, M, MT,p) -tail-approximation oracle if the
following two properties hold for all x E Rn:

Output model sparsity: T(x) E M+.
Tail approximation: Let Q' = T(x). Then

IIx -x01||p CTI|x - xQ||p for all Q E M.

We trivially observe that a head approximation oracle with approximation factor cH = 1 is

equivalent to a tail approximation oracle with factor cT = 1, and vice versa. Further, we
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Algorithm 3 Approximate Model-IHT

1: function AM-IHT(y, A, t)
2: x0 <- 0
3: for i+-0,...,t do
4: b' <- AT (y - Ax')

5: xi+1 +- T(x2 + H(b2 ))
6: end for
7: return xt+1
8: end function

observe that for any model M, if x E M then IX - XQ 112 = 0 for some Q E M. Hence, any
tail approximation oracle must be exact in the sense that the returned support Q' has to
satisfy lix - xQ'112 = 0, or equivalently, supp(x) C T(x). On the other hand, we note that
H(x) does not need to return an optimal support if the input signal x is in the model M.

An important feature of the above definitions of approximation oracles is that they permit

projections into larger models. In other words, the oracle can potentially return a signal

that belongs to a larger model M' ; M. Our algorithms in the following chapters will use

this feature repeatedly.

Equipped with these notions of approximate projection oracles, we introduce a new algorithm

for model-based compressive sensing. We call our algorithm Approximate Model-IHT (AM-

IHT); see Algorithm 3 for a full description. Notice that every iteration of AM-IHT uses
both a head-approximation oracle H and a tail-approximation oracle T. This is in contrast

to the Model-IHT algorithm discussed above in Section 2.5, which solely made use of a tail

approximation oracle T'.

Our main result of this section (Theorem 2.20) states the following: if the measurement

matrix A satisfies the model-RIP for M + MT + MH and approximate projection oracles

H and T are available, then AM-IHT exhibits provably robust recovery. We make the
following assumptions in the analysis of AM-IHT: (i) x E R' and x E M. (ii) y =
Ax + e for an arbitrary e C R' (the measurement noise). (iii) T is a (CT, M, MT, 2)-tail-
approximation oracle. (iv) H is a (cH, MT + M, MH, 2)-head-approximation-oracle. (v) A

has the (6, M + MT + MH)-model-RIP.

As in IHT, we use the residual proxy b' = AT(y - Ax') as the update in each iteration

(see Algorithm 3). The key idea of our proof is the following: when applied to the residual
proxy b, the head-approximation oracle H returns a support F that contains "most" of the

relevant mass contained in r'. Before we formalize this statement in Lemma 2.19, we first

establish the RIP of A on all relevant vectors.

Lemma 2.18. Let ri = x - xi, Q = supp(rl), and F = supp(H(b)). For all x' E R' with
supp(x') g Q U F we have

(1 - 6)IIX'iI1 < A 1'2| < (1 + 6)lx'll1.

Proof. By the definition of T, we have supp(xi) E MT. Since supp(x) E M, we have
supp(x - xi) E MT + M and hence Q E MT + M. Moreover, supp(H(b)) E MH by the
definition of H. Therefore Q U F E M + MT + MH, which allows us to use the model-RIP
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of A on x' with supp(x') c Q u F.

We now establish our main lemma, which will also prove useful in Section 2.6.3. A similar
result (with a different derivation approach and different constants) appears in Section 4 of
the conference version of this manuscript [119].

Lemma 2.19. Let ri = X - Xi and r = supp(H(b)). Then,

ric| 11 2 ari12 + 0 C 1e|2. (2.12)
ao 1-a2_

where

ao=cH(1-6)- 6  and

0 = (1 + CH) /1 +-6

We assume that cH and 6 are such that ao.

Proof. We provide lower and upper bounds on 11H(b) 2 = b1 2, where b' = AT (y Axi) =

ATAri + ATe. Let Q = supp(r). From the head-approximation property, we can bound

1b' 112 as:

||b'|12 = ||ATAr + ArelI2
> QJ~A TAr + A Tef

C C AQAQr'2 - CHIIAQ e12

> CH(1 - 6)lIr2H2 - CH 1 + 61e12 ,

where the inequalities follow from Fact 2.13 and the triangle inequality. This provides the
lower bound on jib'I1 2 .

Now, consider rr. By repeated use of the triangle inequality, we get

||b'|12 = ||AFAr + Ae|| 2

= ||A Ar - r + r+ + AIe|1 2

|AT Ar - A112 + |r1112 + ||ATe|| 2

< ||ATuQ Ar' - rFulI|2 + ||r|F|2 + 1 + 611e|2

6 11r' 112 + 117rh112 + I 1+ 61Ie112,

where the last inequality again follows from Fact 2.13. This provides the upper bound on

Jibj 112.

Combining the two bounds and grouping terms, we obtain the following inequality. In order

to simplify notation, we write ao = cH(1 - 6) - 6 and 3o = (1 + CH) V1 + -

11rF112 > ao|lri|2 - 3011eJ12 . (2.13)

Next, we examine the right hand side of (2.13) more carefully. Let us assume that the RIP
constant 6 is set to be small enough such that it satisfies CH > 6/(1 - 6). There are two
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mutually exclusive cases:

Case 1: The value of irg2 satisfies aollr'112 o1le112. Then, consider the vector r',, i.e.,
the vector r2 restricted to the set of coordinates in the complement of I. Clearly, its norm

is smaller than j1ri11 2 . Therefore, we have

r c112 -IleI2 . (2.14)
ao

Case 2: The value of l|ri 2 satisfies aohr1 2  0 1ojelf2. Rewriting (2.13), we get

117-H12 > r 12 o -

Moreover, we also have IjrII = Irj-II + 1r 2 . Therefore, we obtain

||ryc|12 ||ri112 1 - (ao - 3o 2 . (2.15)

We can simplify the right hand side using the following geometric argument, adapted

from [149]. Denote wo = ao - /3o||e||2/jjri|| 2. Then, 0 < wo < 1 because ao| riIf 2  /3olle|2,

ao < 1, and 30 1. The function g(wo) = 1 -Lw traces an arc of the unit circle as a

function of wo and therefore is upper-bounded by the y-coordinate of any tangent line to

the circle evaluated at wo. For a free parameter 0 < w < 1 (the tangent point of the tangent
line), a straightforward calculation yields that

/1 -I W 21-w2 WO-<WO

Therefore, substituting into the bound for Ir1112, we get:

IITcII2 I1rI112 ao - / l )
- - 2 /1e _ 2 ||ri||2

1-Wao |rl2 + 00 |HeI2-
/1 - w 2  /1 _ 2

The coefficient preceding ||ri112 determines the overall convergence rate, and the minimum
value of the coefficient is attained by setting w = ao. Substituting, we obtain

Ilr'c112 1 - QIlr' 112 + 1 - 2 . (2.16)
0

Combining the mutually exclusive cases (2.14) and (2.16), we obtain

IrIFc 112 1 - a1lri112 + 0 0 ]e112,
w poo st aj

which proves the lemma. E
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Theorem 2.20 (Geometric convergence of AM-IHT). Let ri = x - z, where x' is the signal
estimate computed by AM-IHT in iteration i. Then,

|lri+1 12 _< allr 112 + OlleII2

where

a=(1 + cT) 6+ 1 _- a

# = (1 + CT) +
ao

ao/30

1 - 2
V -1 0d

+1+3]

aO = CH(1 -) -3,

00 = ( + CH) 1 + 6 -

We assume that cH and 6 are such that ao > 0.

Proof. Let a = xi + H(b2 ). From the triangle inequality, we have:

lix - xi+1 112 lx - T(a) 112
lx - a12 + Ia - T(a)11 2

(1+ cT)llX - a112

(1 + cT)Iix - x' - H(b|)11 2

(1 + cT)|Ir' - H(ATAri + ATe) 12 .

We can further bound |hr - H(ATAri + ATe)l 2 in terms of |lr 112.
' = supp(H(AT Ari + ATe)). We have the inequalities

Let Q = supp(r') and

|r2 - H(AT Ari + ATe)11 2

||r' + r'7e - A, Ar' + Are||2

||ATAr' - r'||2 + llrc|112 + |A ,|| 2

||AruQAr' - rFuQI2 + llr'C112 + |Ae||2

< 611ri||2 + 1 - aj||r112

S + a000 +
ao 1-2a

1 + 1 ||e||2,

where the last inequality follows from the RIP and (2.12)' Putting this together with (2.17)
and grouping terms, we get

lix - xi112 alx - Xi112 + /3heI12, (2.18)

thus proving the Theorem. L]

In the noiseless case, we can ignore the second term and only focus on the leading recurrence
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factor:

a (+ce + 1 cC1- )-))

For convergence, we need a to be strictly smaller than 1. Note that we can make 3 as small

as we desire since this assumption only affects the measurement bound by a constant factor.

Therefore, the following condition must hold for guaranteed convergence:

(+ cT) - c < 1, or equivalently,

2 1
CH> 1 - (2.19)

(1 + CT) 2

Under this condition, AM-IHT exhibits geometric convergence comparable to the existing
model-based compressive sensing results of [36]. AM-IHT achieves this despite using only

approximate projection oracles. In Section 2.6.5, we relax condition (2.19) so that geometric

convergence is possible for any constants CT and cH-

The geometric convergence of AM-IHT implies that the algorithm quickly recovers a good
signal estimate. Formally, we obtain:

Corollary 2.21. Let T and H be approximate projection oracles with CT and cH such that

0 < a < 1. Then after

- log 11xI12/e12 1
log 1

iterations, AM-IHT returns a signal estimate 5 satisfying

11X - ill2 (I + 12 a) .1e112

Proof. As before, let ri = x-XZ. Using 11r0 11 2 = 11x112, Theorem 2.20, and a simple inductive
argument shows that

ri+l 2 ai||11|2 + 11e|12 3 a .
j=0

For
[log lIx112/ 11e112

log g

we get ail112 1e112. Moreover, we can bound the geometric series Z =oa3 by i.
Combining these bounds gives the guarantee stated in the theorem. 0

2.6.3 Approximate Model-CoSaMP

In this section, we propose a second algorithm for model-based compressive sensing with

approximate projection oracles. Our algorithm is a generalization of model-based CoSaMP,

which was initially developed in [36]. We call our variant Approximate Model-CoSaMP (or

AM-CoSaMP); see Algorithm 4 for a complete description.

Algorithm 4 closely resembles the Signal-Space CoSaMP (or SSCoSaMP) algorithm proposed

and analyzed in [82, 108]. Like our approach, SSCoSaMP also makes assumptions about
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Algorithm 4 Approximate Model-CoSaMP

1: function AM-COSAMP(y, A, t)
2: X0 +_ 0

3: for i +-0, ... ,t do
4: b <- AT (y - Ax')
5: F +- supp(H(b'))
6: S <- F U supp(xi)
7: zjs <- Atsy, zlsc +- 0
8: Xi+1 <- Tz
9: end for

10: return xt+1
11: end function

the existence of head- and tail-approximation oracles. However, there are some important
technical differences in our development. SSCoSaMP was introduced in the context of
recovering signals that are sparse in overcomplete and incoherent dictionaries. In contrast,
we focus on recovering signals from structured sparsity models.

Moreover, the authors of [82, 108] assume that a single oracle simultaneously achieves the
conditions specified in Definitions 2.16 and 2.17. In contrast, our approach assumes the
existence of two separate head- and tail-approximation oracles and consequently is somewhat
more general. Finally, our analysis is simpler and more concise than that provided in [82,
108] and follows directly from the results in Section 2.6.2.

We prove that AM-CoSaMP (Alg. 4) exhibits robust signal recovery. We make the same
assumptions as in Section 2.6.2: (i) x E R' and x E M. (ii) y = Ax + e for an arbitrary
e E R' (the measurement noise). (iii) T is a (CT, M, MT, 2)-tail-approximation oracle. (iv)
H is a (cH, MT + M, MH, 2)-head-approximation-oracle. (v) A has the (6, M + MT + MH)-
model-RIP. Our main result in this section is the following:

Theorem 2.22 (Geometric convergence of AM-CoSaMP). Let ri = X - X2 , where x' is the
signal estimate computed by AM-CoSaMP in iteration i. Then,

I1ri+ 112 ; alr 112 + flheII2,

where

= (1 +cT) 1,

,+ o # ceo,3o 2
# 1+ cT) -+ + ,-

1- ao 2 j \

aO = CH(1 -6)- 6,

0 = (1 H + CH) 1+ 6
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Proof. We can bound the error |ri+11 2 as follows:

SIri+ 1 112 =|x - Xi+1 112

|Ixi+1 - Z112 + 11x - Z112

CTIIX - Z112 + l|x - Z112

= (1 + CT) Ix - z112

< (1CT) IIA(x - z)112

| Ax - AzII 2

Most of these inequalities follow the same steps as the proof provided in [170]. The second
relation above follows from the triangle inequality, the third relation follows from the tail
approximation property and the fifth relation follows from the (3, M+MT +MH)-model-RIP

of A.

We also have Ax = y - e and Az = Aszs. Substituting, we get:

ri+112 5 (1 + CT) IIy - AszsI 2 + le| 1 )
\ / 1 -6 , V - \, /---

< (1+ CT) (ly- Asxs11 2 + e|j2 3  . (2.20)
-F \ _6 ' /1-_6 )

The first inequality follows from the triangle inequality and the second from the fact that
zs is the least squares estimate Atsy (in particular, it is at least as good as xs).

Now, observe that y = Ax + e = Asxs + Ascxsc + e. Therefore, we can further simplify
inequality (2.20) as

1ri+1112

+ CT )IIAsexscI| 2 + ( + C) e2
1 - ( V1T 1-3

< (1 + CT) ||xs-|12 + (1 + CT) 211e112
#1-3 V1-3

=(1+ CT) 11(X - Xi)sc112 + (1 + CT) 21je12

1 _6 2|_e_2

< (1 + CT) 112 + (1 + CT) 211 2  (2.21)

The first relation once again follows from the triangle inequality. The second relation follows
from the fact that supp(xsc) E M+ (since supp(x) E M+), and therefore, Ascxsc can be
upper-bounded using the model-RIP. The third follows from the fact that xi supported on
S' is zero because S fully subsumes the support of x'. The final relation follows from the
fact that sC c F (see line 6 in the algorithm).

Note that the support F is defined as in Lemma 2.18. Therefore, we can use (2.12) and
bound 1rrc112 in terms of 2ri112, CH, and 3. Substituting into (2.21) and rearranging terms,
we obtain the stated theorem. 0
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As in the analysis of AM-IHT, suppose that e = 0 and 6 is very small. Then, we achieve
geometric convergence, i.e., a < 1, if the approximation factors cT and CH satisfy

(1 + CT) 1-cH <1, or equivalently,

2CH >1 (1 + CT) 2

Therefore, the conditions for convergence of AM-IHT and AM-CoSaMP are identical in this
regime. As for AM-IHT, we relax this condition for AM-CoSaMP in Section 2.6.5 and show
that geometric convergence is possible for any constants CT and CH.

2.6.4 Approximate Model-IHT with RIP-1 matrices

AM-IHT and AM-CoSaMP (Algorithms 3 and 4) rely on measurement matrices satisfying
the model-RIP (Definition 2.12). It is known that m x n matrices whose elements are
drawn i.i.d. from a sub-Gaussian distribution satisfy this property with high probability
while requiring only a small number of rows m [35, 36]. However, such matrices are dense

and consequently incur significant costs of 8(m - n) for both storage and matrix-vector
multiplications.

One way to circumvent this issue is to consider sparse measurement matrices [104]. Sparse
matrices can be stored very efficiently and enable fast matrix-vector multiplication (with
both costs scaling proportionally to the number of nonzeros). However, the usual RIP does
not apply for such matrices. Instead, such matrices are known to satisfy the RIP in the

fi-norm (or RIP-1). Interestingly, it can be shown that this property is sufficient to enable
robust sparse recovery for arbitrary signals [42]. Moreover, several existing algorithms for

sparse recovery can be modified to work with sparse measurement matrices; see [42, 101].

In the model-based compressive sensing context, one can analogously define the RIP-1 over
structured sparsity models as follows:

Definition 2.23 (Model RIP-1). A matrix A G R"'nx has the (6,M)-model RIP-1 if the
following holds for all x with supp(x) E M+

(1 - 6)j|x||1 < |lAx|i' (1 + 6)IxI|1 . (2.22)

Indyk and Razenshteyn [126] establish both lower and upper bounds on the number of
measurements required to satisfy the model RIP-1 for certain structured sparsity models.
Similar to Fact 2.15, they also provides a general sampling bound based on the cardinality
of the model:

Fact 2.24 (Theorem 9 in [126]). Let M be a structured sparsity model and let k be the size
of the largest support in the model, i.e., k = max|EMIQI. Then there is a m x n matrix

satisfying the (6, M)-model RIP-I with

k log(n/l)
62 log(k/l))'

where 1 =logImlog(n/k)
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Algorithm 5 AM-IHT with RIP-1

1: function AM-IHT-RIP-1(y, A, t)
2: X0 <-- 0

3: for i <- 0, ... ,t do
4: Xi+1 +- T(x2 + H(MED(y - Axi)))

5: end for

6: return xt+1
7: end function

Subsequently, Bah, Baldaserre, and Cevher [32] propose a modification of expander iterative

hard thresholding (EIHT) [101] that achieves stable recovery for arbitrary structured sparsity

models. As before, this modified algorithm only works when provided access to exact model-

projection oracles. Below, we propose a more general algorithm suitable for model-based

recovery using only approximate projection oracles.

Before proceeding further, it is worthwhile to understand a particular class of matrices that

satisfy the RIP-1. It is known that adjacency matrices of certain carefully chosen random

bipartite graphs, known as bipartite expanders, satisfy the model RIP-1 [42, 126]. Indeed,

suppose that such a matrix A represents the bipartite graph G = ([n], [M], E), where E is

the set of edges. For any S ; [n], define F(S) to be the set of nodes in [m] connected to S
by an edge in E. Therefore, we can define the median operator MED(u) : R' - R' for any

u E R' component-wise as follows:

[MED(u)]2 = median[uj : j E F({i})]

This operator is crucial in our algorithm and proofs below.

We now propose a variant of AM-IHT (Algorithm 3) that is suitable when the measurement

matrix A satisfies the RIP-1. The description of this new version is provided as Algorithm

5. Compared to AM-IHT, the important modification in the RIP-1 algorithm is the use of

the median operator MED(.) instead of the transpose of the measurement matrix A.

We analytically characterize the convergence behavior of Algorithm 5. First, we present the

following Lemma, which is proved in [32] based on [101].

Lemma 2.25 (Lemma 7.2 in [32]). Suppose that A satisfies the (6, M)-model-RIP-1. Then,
for any vectors x E R', e E R', and any support S E M+,

||[x - MED(Axs + e)]s||1 < pollxs|1 + roI|e||1.

Here, po = 46/(i - 46) and To is a positive scalar that depends on 6.

Armed with this Lemma, we now prove the main result of this section. We make similar

assumptions as in Section 2.6.2, this time using the model-RIP-1 and approximate projection
oracles for the fi-norm: (i) x E R' and x E M. (ii) y = Ax + e for an arbitrary e E Rm

(the measurement noise). (iii) T is a (CT, M, MT, 1)-tail-approximation oracle. (iv) H is a

(CH, MT + M, MH, 1)-head-approximation-oracle. (v) A has the (6, M + MT + MH)-model-
RIP-1. Then, we obtain:

Theorem 2.26 (Geometric convergence of AM-IHT with RIP-1). Let ri = x - x1, where
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X' is the signal estimate computed by AM-IHT-RIP-1 in iteration i. Let p0,To be as defined
in Lemma 2.25. Then, AM-IHT-RIP-1 exhibits the following convergence property:

llri 1j Illr< Plrii + Tllelll,

where

p = (1 + cT)(2po + 1 - CH(1 - PO)),

T = (1 + cT)(2+ CH)O -

Proof. Let ai = xi + H(MED(y - Axi)). The triangle inequality gives:

I rIx i+1 Il

_ lix - aIl i + l|x'+1 - ai|1I

< (I + CT) |z - ai ll i

(1 + cT)I|X - X' - H(MED(y - Ax2 ))IIi

= (1 + cT)|lr - H(MED(Ar + e))III.

Let v = MED(Ari + e), Q = supp(r), and F be the support returned by the head oracle H.
We have:

IIH(v)II = IVrII1 ;> cHIIvQII1, (2.23)
due to the head-approximation property of H.

On the other hand, we also have

IIvQ - r'l|1 II(MED(Ar + e) - r)Qll1

II(MED(Ar + e) - r2 )Qur| I1
< poir|i + -rolleIl|.

where the last inequality follows from Lemma 2.25 (note that we use the lemma for the
model M + MT + MH). Further, by applying the triangle inequality again and combining
with (2.23), we get

IIH(v)l|| _> cH(1 - po)l|ri ||1 - cHTOe1 - (2.24)

We also have the following series of inequalities:

IIH(v)||1 = IIH(v) - rr + rn|

< Ivr - rrI|1 + |IrII1

< IIvruQ - rruQII + I|r'||i

= |I(MED(Ari + e) - r2)Qurhi + IIrl 1,

< po|lr2 i + rohleIl + ||r'l|1.

Here, we have once again invoked Lemma 2.25. Moreover, IIr|I11 = IIr' Iii -1 1 rc Ic|. Combining
with (2.24) and rearranging terms, we get:

|Irrc I|1 (Po + 1 - cH(1 - po))Ilrili -+ (1 + cH)Toiel . (2.25)
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Recall that

I|ri+ | Ii (1 + cT) Ir' - H(v) 1i

= (1 + CT) (I rr -- Vv11 + |1r c||) ,

since vr = H(v) = H(MED(Ar + e)). Invoking Lemma 2.25 one last time and combining
with (2.25), we obtain

||ri+1||i (1 + CT) [po||r1i|i + Tollel|i

+ (PO + 1 - CH(l - po))I1r0Ii + (1 + CH)TOIJeIJ1

< (1 + CT)(2po + 1 - CH(l - po))|ri ii
+ (1 + cT)(2 + cH)ToI1eIl ,

as claimed.

Once again, if e = 0 and po is made sufficiently small, AM-IHT with RIP-1 achieves
geometric convergence to the true signal x provided that CH > 1 - 1/(1 + CT). Thus, we
have developed an analogue of AM-IHT that works purely with the RIP-1 assumption on
the measurement matrix and hence is suitable for recovery using sparse matrices. It is likely

that a similar analogue can be developed for AM-CoSaMP, but we will not pursue this

direction here.

2.6.5 Improved Recovery via Boosting

As stated in Sections 2.6.2 and 2.6.3, AM-IHT and AM-CoSaMP require stringent assump-
tions on the head- and tail-approximation factors CH and CT. The condition (2.19) indicates

that for AM-IHT to converge, the head- and tail-approximation factors must be tightly
coupled. Observe that by definition, cT is no smaller than 1. Therefore, CH must be at least

v'3/2. If CT is large (i.e., if the tail-approximation oracle gives only a crude approximation),
then the head-approximation oracle needs to be even more precise. For example, if CT = 10,
then CH > 0.995, i.e., the head approximation oracle needs to be very accurate. Such a
stringent condition can severely constrain the choice of approximation algorithms.

In this section, we overcome this barrier by demonstrating how to "boost" the approximation

factor of any given head-approximation algorithm. Given a head-approximation algorithm
with arbitrary approximation factor CH, we can boost its approximation factor to any
arbitrary constant c' < 1. Our approach requires only a constant number of invocations of

the original head-approximation algorithm and inflates the sample complexity of the resulting
output model only by a constant factor. Combining this boosted head-approximation
algorithm with AM-IHT or AM-CoSaMP, we can provide an overall recovery scheme for

approximation algorithms with arbitrary approximation constants CT and CH. This is a

much weaker condition than (2.19) and therefore significantly extends the scope of our

framework for model-based compressive sensing with approximate projection oracles.

We achieve this improvement by iteratively applying the head-approximation algorithm
to the residual of the currently selected support. Each iteration guarantees that we add
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Algorithm 6 Boosting for head-approximation algorithms

1: function BOOSTHEAD(X, H, t)
2: Qo <-- {}
3: for i <-1, . .. ,It do
4: Ai H(X n _-)
5: Qj Q- U Ai
6: end for
7: return Qt
8: end function

another cH-fraction of the best remaining support to our result. Algorithm 6 contains the
corresponding pseudo code and Theorem 2.27 the main guarantees.

Theorem 2.27. Let H be a (cH, M, MH, p)-head-approximation algorithm with 0 < cH <
1 and p > 1. Then BOOSTHEAD(, H, t) is a ((1 - (1 - cPH)t)/P, M, t x MH, p) -head-
approximation algorithm. Moreover, BOOSTHEAD runs in time O(t . TH), where TH is the
time complexity of H.

Proof. Let F E M be an optimal support, i.e., ||xrllp = maxQeMIIXQIIP. We now prove that
the following invariant holds at the beginning of iteration i:

Irxip - lxQ_1ip, < (1 - cPH)i- 1 lxr . (2.26)

Note that the invariant (Equation 2.26) is equivalent to lxQ| 1 1P > (1 - (1 - cPH)-)l)xFHP.
For i = t + 1, this gives the head-approximation guarantee stated in the theorem.

For i = 1, the invariant directly follows from the initialization.

Now assume that the invariant holds for an arbitrary i > 1. From line 4 we have

flx\iAjll > cpmaxll(x[ -Q_,QI

c~Ix (-za_)

H - x 1 1 p

= cH(|xII( - IxQ ) _ nrP)

cy(I|xrfl - Io ~II) . (2.27)

We now prove the invariant for i + 1:

Hx I Ix> || - | _ i| - Ic lpH -I-

= (1x~ - ~)(||l - | II x )

S(1 - cP) Ixrl|pp

The second line follows from (2.27) and the fourth line from the invariant.

Since As Ec MH, we have f E t x MH. The time complexity of BOOSTHEAD follows directly

57



from the definition of the algorithm. E

We now use Theorem 2.27 to relax the conditions on CT and CH in Corollary 2.21. As before,
we assume that we have compressive measurements of the form y = Ax + e, where x G M
and e is arbitrary measurement noise.

Corollary 2.28. Let T and H be approximate projection oracles with cT > 1 and 0 < CH < 1.
Moreover, let 6 be the model-RIP constant of the measurement matrix A and let

1-

[log(I - 2) 1+1
log(1 - C2

We assume that 6 is small enough so that -y < 1 and that A satisfies the model-RIP for

M + MT + t x MH. Then AM-IHT with T and BOOSTHEAD(X, H, t) as projection oracles

returns a signal estimate x satisfying

||x - 512 < C||e|2

after O(log IX12) iterations. The constants in the error and runtime bounds depend only on

CT, CH, anl -.2

Proof. In order to use Corollary 2.21, we need to show that a < 1. Recall that

a = (1+ cT)( 1- (cH(1 - 6) -6) 2 ).

A simple calculation shows that a head-approximation oracle with c' > -y achieves a < 1.

Theorem 2.27 shows that boosting the head-approximation oracle H with t' iterations gives
a head-approximation factor of

C'H = 1-cH

Setting t' = t as defined in the theorem yields c' > y. We can now invoke Corollary 2.21
for the recovery guarantee of AM-IHT.

Analogous corollaries can be proven for AM-CoSaMP (Section 2.6.3) and AM-IHT with

RIP-1 (Section 2.6.4). We omit detailed statements of these results here.

2.6.6 A fast model-RIP matrix

Besides sample complexity, a second crucial property of a good measurement matrix in

compressive sensing is its time complexity. To be precise, we are interested in the time
complexity of a matrix-vector multiplication with the measurement matrix A E R"' and
an arbitrary vector x E R'. Since many compressive sensing recovery algorithms are gradient
based methods (such as ours in the previous sections), each iteration requires at least one
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matrix-vector multiplication. Hence the running time of this operation is an important
component of the overall running time.

Note that the time complexity of the measurement matrix is particularly important when we

use approximate projections. With exact projections, the projection step in each iteration
usually dominates the overall running time and hence the matrix-vector multiplication is a

lower-order term. But when we achieve a nearly-linear running time with our approximate

projections, the time complexity of the measurement matrix can become a bottleneck. For
instance, using a dense i.i.d. Gaussian matrix gives a running time of O(n - m) for a single
matrix-vector multiplication, which can be significantly more than a nearly-linear time

projection. Hence we now investigate the time complexity of measurement matrices in more

detail.

For standard compressive sensing, researchers have identified several classes of measurement

matrices that satisfy the RIP and enable fast matrix-vector multiplication in time 0(n log n).

The most common are based on sub-sampled Fourier measurements since such ensembles

are also relevant for applications in medical imaging (MRI). For concrete results on fast

measurement matrices, see for instance [53, 62, 75, 115, 172, 194].

In contrast, matrices known to satisfy the structured sparsity-equivalent of the RIP (also

called model-RIP) only admit slow multiplication in time 0(nm) [36]. Since known recovery

algorithms utilizing structured sparsity perform several matrix-vector multiplications, this

can become a bottleneck in the overall time complexity. One approach to overcome this

barrier is to use sparse matrices that satisfy the fi-variant of the RIP. However, recent

work shows that this implies a lower bound of m = Q(k log L/ log log f) for the tree-sparsity
model [126]. In contrast, dense Gaussian matrices achieve a sample complexity of m = 0(k).

Building on [172], we construct a measurement matrix which satisfies the model-RIP and

enables multiplication in time

O(n log n + k2 log log 2 (k log n))

for general k. For k < n1 /2-p, p > 0, the multiplication time is 0(n log n). Moreover, our

matrix has the same bound on the number of measurements as existing, slower model-RIP

matrices: m = O(k+logMk1). For instance, this simplifies to m = 0(k) for the tree sparsity

model.

Ideally, a model-RIP matrix with m = 0(k + log Mk1) rows would offer a multiplication time

of 0(n log n) for all values of k. However, we conjecture that such a result is connected to

progress on the measurement bound for subsampled Fourier matrices in k-sparse compressive

sensing. Note that improving this bound is a notoriously hard problem that has seen only

slow progress over the past decade [53, 62, 75, 115, 172, 194].

2.6.6.1 Related work

There is a large body of work on matrices satisfying the RIP for general k-sparse vec-

tors. For instance, see [35, 75, 104, 194] and references therein. For matrices with fast

matrix-vector multiplication in 0(n log n) time, the best known measurement bound is
m = 0(k log n log 2 k) [115]. For k < n1 / 2 --" and p > 0, there exist fast matrices with

m = 0(k log n) [11]. Note that in this regime, O(k log n) = 0(k log 1).
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For the model-RIP, the only known matrices with m = O(k + logIMk I) are dense matrices

with i.i.d. subgaussian entries [36]. Vector-matrix multiplication with such matrices requires
O(mn) time. While ti-model-RIP matrices support faster multiplication, they also entail

a measurement lower bound of m = Q(k log !/ log log f) for the tree-sparsity model [1263.
This is considered a challenging open problem in the field.

2.6.6.2 Our construction

Following the techniques of [172], we construct a matrix that supports fast matrix-vector
multiplication and satisfies the model-RIP for the tree-sparsity model. In particular, we

prove the following theorem.

Theorem 2.29. There exists a randomized construction of A E R"xn, with optimal param-

eters m = 0(k), that satisfies the model-RIP for the tree-sparsity model .Mk. Moreover, the
matrix A supports matrix-vector multiplication with complexity

0(n log n + k 2 lognlog 2 (k log n))

for any k < n. For the regime k < n1/ 2 -p, this complexity can be refined to 0(nlogn).

Proof. We follow a two step-approach to construct A. First, from the results of [62, 75,
115, 172, 194], it is known that with high probability, one can construct matrices F E Rqxn

with q = 0(kpolylogn) that satisfy the RIP over all sparse vectors in Rn. We use the
constructions described in [172], which satisfy the RIP with q = 0(k log n log 2 (k log n)).

Their proposed F is of the form SH, where H E Rn>" is a Fourier matrix and S is a sparse
matrix with random 1 elements as nonzeros.

For smaller values of k (in particular, for k < n1/2-p for any p > 0), an elegant (randomized)
approach to construct such an F is described in [11]. Specifically, a suitable F can be
obtained by concatenating independently chosen linear transformations of the form DH
(where H E Rn>n is a Fourier or Hadamard matrix and D E RfXf is a diagonal matrix.
with random 1 elements along the diagonal), followed by left multiplication with any
row-orthonormal matrix (such as a row-selection matrix) of size q x n, where q = 0(k log n).

In either case, F provides a stable embedding of the set of all k-sparse signals into Rq with
high probability. In other words, given any subset of indices A C [n] with cardinality k, the
following relation holds for all vectors x supported on A:

(1 - 6F)1|x|| ||Fx| < (1 + 6F) IIxI2

for some small constant 6F.

Next, consider a random matrix G E Rmxq that satisfies the following concentration-of-
measure property: for any v E Rq, the following holds:

IP(IIIGvlI! - lIovIII ;> eIlvI1) < 2e-cE, V E E (0, 1/3) . (2.28)

Again, it is known that a matrix G = G-i, with the elements of G E Rmxq drawn from a

standard normal distribution, satisfy (2.28). Now, choose any index set A E Mk belonging
to the tree-sparsity model, and a small constant 6G > 0. From Lemma 2.1 of [182], the
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following property holds for all x supported on A: if 6 := 6 F + 6G + 6F6 G, then

(1 - 6)IjxII| < |IGFxI1| 2 (1 + 6) IIX12

with probability exceeding

1 -2 1+6 e

In other words, for signals with a given support set A E Mk, the probability that GF fails

to have a isometry constant 6 is no greater than 2 ( + e-k ". The total number

of supports A in the tree-sparsity model can be upper bounded by (2e)k/(k + 1) [36].
Therefore, performing a union bound over all possible A, the probablity that GF fails to
have an isometry constant 6 over the model Mk is upper bounded by

9(2e)k ( 12 k - c,2
2 e + - e (9i" . (2.29)

k + 1 6G

Choosing m = O(k) and 6 G sufficiently small, (2.29) can be made exponentially small.
Therefore, with high probability, A = G . F satisfies the RIP over all signals belonging to
the model Mk, with m = O(k) and a sufficiently small constant 6.

Multiplication of F with any vector x E R' incurs O(n log n) complexity, while multiplication
of G with Fx incurs a complexity of O(k x q). Therefore, the overall complexity scales as
O(n log n + kq). Substituting for the best available choices of F for different ranges of k, we
obtain the stated result. n E
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Chapter 3

Graph Sparsity

3.1 Introduction

Over the past decade, sparsity has emerged as an important tool in several fields includ-
ing signal processing, statistics, and machine learning. In compressive sensing, sparsity
reduces the sample complexity of measuring a signal, and statistics utilizes sparsity for
high-dimensional inference tasks. In many settings, sparsity is a useful ingredient because
it enables us to model structure in high-dimensional data while still remaining a mathemat-
ically tractable concept. For instance, natural images are often sparse when represented in
a wavelet basis, and objects in a classification task usually belong to only a small number
of classes.

Due to the success of sparsity, a natural question is how we can refine the notion of sparsity in
order to capture more complex structures. There are many examples where such an approach
is applicable: (i) large wavelet coefficients of natural images tend to form connected trees,
(ii) active genes can be arranged in functional groups, and (iii) approximate point sources in
astronomical data often form clusters. In such cases, exploiting this additional structure can
lead to improved compression ratio for images, better multi-label classification, or smaller
sample complexity in compressive sensing and statistics. Hence an important question is
the following: how can we model such sparsity structures, and how can we make effective
use of this additional information in a computationally efficient manner?

There has been a wide range of work addressing these questions, e.g., [27, 46, 92, 96, 116,
122, 130, 140, 171, 181, 212, 242]. Usually, the proposed solutions offer a trade-off between
the following conflicting goals:

Generality What range of sparsity structures does the approach apply to?

Statistical efficiency What statistical performance improvements does the use of struc-
ture enable?

Computational efficiency How fast are the resulting algorithms?

In this chapter, we introduce a framework for sparsity models defined through graphs, and
we show that it achieves a compelling trade-off between the goals outlined above. At a
high level, our approach applies to data with an underlying graph structure in which the
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large coefficients form a small number of connected components (optionally with additional

constraints on the edges). Our approach offers three main features: (i) Generality: the

framework encompasses several previously studied sparsity models, e.g., tree sparsity and

cluster sparsity. (ii) Statistical efficiency: our sparsity model leads to reduced sample
complexity in sparse recovery and achieves the information-theoretic optimum for a wide

range of parameters. (iii) Computational efficiency: we give a nearly-linear time algorithm

for our sparsity model, significantly improving on prior work both in theory and in practice.

Due to the growing size of data sets encountered in science and engineering, algorithms with

(nearly-)linear running time are becoming increasingly important.

We achieve these goals by connecting our sparsity model to the prize collecting Steiner tree

(PCST) problem, which has been studied in combinatorial optimization and approximation

algorithms. To establish this connection, we introduce a generalized version of the PCST
problem and give a nearly-linear time algorithm for our variant. We believe that our sparsity

model and the underlying algorithms are useful beyond sparse recovery, and we have already

obtained results in this direction. To keep the presentation in this chapter coherent, we

focus on our results for sparse recovery and briefly mention further applications in Section

3.7.

Before we present our theoretical results in Sections 3.3 to 3.5, we give an overview in

Section 3.2. Section 3.6 complements our theoretical results with an empirical evaluation

on both synthetic and real data (a background-subtracted image, an angiogram, and an

image of text). We defer proofs and additional details to Section 3.8. Before we proceed,

we briefly review some notation.

Basic notation Let [d] be the set {1, 2, ... , d}. We say that a vector 0 E Rd is s-sparse if

at most s of its coefficients are nonzero. The support of 6 contains the indices corresponding

to nonzero entries in 6, i.e., supp(6) = {i E [d]Ii 1- 0}. Given a subset S C [d], we write Os

for the restriction of 0 to indices in S: we have (OS)i = 0 for i E S and (0s)i = 0 otherwise.

The 2-norm of 0 is 1011 = Z'iE[d] 6i.

Sparsity models In some cases, we have more information about a vector than only
"standard" s-sparsity. A natural way of encoding such additional structure is via sparsity

models [36]: let M be a family of supports, i.e., M = {S1, S2, ... , SL} where Si g [d]. Then
the corresponding sparsity model M is the set of vectors supported on one of the Sj:

M= {0 E RdIsupp(O) C S for some S E M}. (3.1)

3.2 Our contributions

We state our main contributions in the context of sparse recovery (see Section 3.7 for further

applications). Our goal is to estimate an unknown s-sparse vector 6 E Rd from observations

of the form
y = X0+e, (3.2)

where X E Rnxd is the design matrix, y E R' are the observations, and e E R' is an

observation noise vector. By imposing various assumptions on X and e, sparse recovery
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(a) s-sparsity (b) Cluster sparsity

Figure (3-1): Two examples of the weighted graph model. (a) In a complete graph, any
s-sparse support can be mapped to a single tree (g = 1). (b) Using a grid graph, we can
model a small number of clusters in an image by setting g accordingly. For simplicity, we
use unit edge weights and set B = s - g in both examples.

encompasses problems such as sparse linear regression and compressive sensing.

3.2.1 Weighted graph model (WGM)

The core of our framework for structured sparsity is a novel, general sparsity model which
we call the weighted graph model. In the WGM, we use an underlying graph G = (V, E)
defined on the coefficients of the unknown vector 0, i.e., V = [d]. Moreover, the graph is
weighted and we denote the edge weights with w : E --+ N. We identify supports S C [d]
with subgraphs in G, in particular forests (unions of individual trees). Intuitively, the WGM
captures sparsity structures with a small number of connected components in G. In order
to control the sparsity patterns, the WGM offers three parameters:

* s, the total sparsity of S.

" g, the maximum number of connected components formed by the forest F correspond-
ing to S.

" B, the bound on the total weight w(F) of edges in the forest F corresponding to S.

More formally, let -y(H) be the number of connected components in a graph H. Then we
can define the WGM:

Definition 3.1. The (G, s,g, B)-WGM is the set of supports

M = {S C [d] I SI = s and there is a F C G

with VF = S, g(F) = g, and w(F) ; B} .

Fig. 3-1 shows how two sparsity structures can be encoded with the WGM. Since our
sparsity model applies to arbitrary graphs G, it can describe a wide range of structures.
In particular, the model generalizes several previously studied sparsity models, including
1D-clusters, (wavelet) tree hierarchies, the Earth Mover Distance (EMD) model, and the
unweighted graph model (see Table 3.1).
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3.2.2 Recovery of vectors in the WGM

We analyze the statistical efficiency of our framework in the context of sparse recovery.
In particular, we prove that the sample complexity of recovering vectors in the WGM is
provably smaller than the sample complexity for "standard" s-sparse vectors. To formally
state this result, we first introduce a key property of graphs.

Definition 3.2. Let G = (V, E) be a weighted graph with edge weights w : E -+ N. Then
the weight-degree p(v) of a node v is the largest number of adjacent nodes connected by edges

with the same weight, i.e.,

p(v) = max j{(v', v) C E | w(v', v) = b. (3.4)
bEN

We define the weight-degree of G to be the maximum weight-degree of any v E V.

Note that for graphs with uniform edge weights, the weight-degree of G is the same as the
maximum node degree. Intuitively, the (weight) degree of a graph is an important property
for quantifying the sample complexity of the WGM because the degree determines how
restrictive the bound on the number of components g is. In the extreme case of a complete
graph, any support can be formed with only a single connected component (see Figure 3-1).
Using Definitions 3.1 and 3.2, we now state our sparse recovery result (see Theorem 3.12 in
Section 3.5 for a more general version):

Theorem 3.3. Let 06 C Rd be in the (G, s, g, B)- WGM. Then

B d
n = O(s(log p(G) + log -) + glog -) (3.5)

s g

i.i.d. Gaussian observations suffice to estimate 6. More precisely, let e E Rn be an arbitrary
noise vector and let y E R' be defined as in Eq. 3.2 where X is an i.i.d. Gaussian matrix.
Then we can efficiently find an estimate 0 such that

6 - 01 < Cl|e|, (3.6)

where C is a constant independent of all variables above.

Note that in the noiseless case (e = 0), we are guaranteed to recover 6 exactly. Moreover,
our estimate 6 is in a slightly enlarged WGM for any amount of noise, see Section 3.5. Our
bound (3.5) can be instantiated to recover previous sample complexity results, e.g., the
n = 0(s log 4) bound for "standard" sparse recovery, which is tight [88].1 For the image grid

graph example in Figure 3-1, Equation (3.5) becomes n = 0(s + g log 4), which matches
the information-theoretic optimum n = 0(s) as long as the number of clusters is not too
large, i.e., g = O(s/ log d). 2

'To be precise, encoding s-sparsity with a complete graph as in Figure 3-1 gives a bound of n = O(s log d).

To match the log ! term, we can encode s-sparsity as g = s clusters of size one in a fully disconnected graph

with no edges.
2Optimality directly follows from a simple dimensionality argument: even if the s-sparse support of the

vector 0 is known, recovering the unknown coefficients requires solving a linear system with s unknowns
uniquely. For this, we need at least s linear equations, i.e., s observations.
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3.2.3 Efficient projection into the WGM

The algorithmic core of our sparsity framework is a computationally efficient procedure
for projecting arbitrary vectors into the WGM. More precisely, the model-projection problem
is the following: given a vector b C Rd and a WGM M, find the best approximation to b in
M, i.e.,

PM (b) = arg minIb -b' | . (3.7)
b'EM

If such a model-projection algorithm is available, one can instantiate the framework of [36] in
order to get an algorithm for sparse recovery with the respective sparsity model.1 However,
solving Problem (3.7) exactly is NP-hard for the WGM due to a reduction from the classical
Steiner tree problem [137]. To circumvent this hardness result, we use our approximation-
tolerant framework from Chapter 2. Instead of solving (3.7) exactly, our framework requires
two algorithms with the following complementary approximation guarantees.

Tail approximation: Find an S E M such that

||b - bs| _< C - min| 1b - bs| . (3.8)

Head approximation: Find an S E M such that

lbsJl ;> CH - maxllbslI . (3.9)

Here, CT > 1 and CH < 1 are arbitrary, fixed constants. Note that a head approximation
guarantee does not imply a tail guarantee (and vice versa). In fact, stable recovery is not
possible with only one type of approximate projection guarantee (recall Section 2.5). We
provide two algorithms for solving (3.8) and (3.9) (one per guarantee) which both run in
nearly-linear time.

Our model-projection algorithms are based on a connection to the prize-collecting Steiner
tree problem (PCST), which is a generalization of the classical Steiner tree problem. Instead
of finding the cheapest way to connect all terminal nodes in a given weighted graph, we
can- instead omit some terminals from the solution and pay a specific price for each omitted
node. The goal is to find a subtree with the optimal trade-off between the cost paid for
edges used to connect a subset of the nodes and the price of the remaining, unconnected
nodes (see Section 3.3 for a formal definition).

We make the following three main algorithmic contributions. Due to the wide applicability
of the PCST problem, we believe that these algorithms can be of independent interest (see
Section 3.7).

. We introduce a variant of the PCST problem in which the goal is to find a set of g
trees instead of a single tree. We call this variant the prize-collecting Steiner forest

(PCSF) problem and adapt the algorithm of [110] for this variant.

* We reduce the projection problems (3.8) and (3.9) to a small set of adaptively con-
structed PCSF instances.

'Note that the framework does not supply general projection algorithms. Instead, the model-projection
algorithms have to be designed from scratch for each model.
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Model Best previous Our sample Best previous Our running
sample complexity complexity running time time

iD-cluster [67] 0(s + g log ) 0(s + g log ) 0(d log 2 d) 0(d log 4 d)

Trees [121] 0(s) 0(s) 0(d log 2 d) 0(dlog 4 d)

EMD [119] B( log O(s log ) 0(sh2Blogd) O(wh2log4 d)

Clusters [122] 0(s + g log d) O(s + g log ) 0(dr) O(d log4 d)

Table (3.1): Results of our sparsity framework applied to several sparsity models.

In order to simplify the running time bounds, we assume that all coefficients are polynomially
bounded in d, and that s < d1 / 2 ," for some 1 > 0. For the graph cluster model, we consider

the case of graphs with constant degree. The exponent T depends on the degree of the

graph and is always greater than 1. The parameters w and h are specific to the EMD model,
see Chapter 6 for details. We always havb w - h = d and s > w. Our sparsity framework

improves on the sample complexity and running time of both the EMD and graph cluster

models (bold entries).

We give a nearly-linear time algorithm for the PCSF problem and hence also the

model projection problem.

3.2.4 Improvements for existing sparsity models

Our results are directly applicable to several previously studied sparsity models that can

be encoded with the WGM. Table 3.1 summarizes these results. In spite of its generality,
our approach at least matches the sample complexity of prior work in all cases and actually

offers an improvement for the EMD model. Moreover, our running time is always within

a polylogarithmic factor of the best algorithm, even in the case of models with specialized
solvers such as tree sparsity. For the EMD and cluster models, our algorithm is significantly

faster than prior work and improves the time complexity by a polynomial factor. To

complement these theoretical results, our experiments in Section 3.6 show that our algorithm

is more than one order of magnitude faster than previous algorithms with provable guarantees

and offers a better sample complexity in many cases.

3.2.5 Comparison to related work

In addition to the "point-solutions" for individual sparsity models outlined above, there has

been a wide range of work on general frameworks for utilizing structure in sparse recovery.

The approach most similar to ours is [36], which gives a framework underlying many of the

algorithms in Table 3.1. However, the framework has one important drawback: it does not

come with a full recovery algorithm. Instead, the authors only give a recovery scheme that

assumes the existence of a model-projection algorithm satisfying (3.7). Such an algorithm

must be constructed from scratch for each model, and the techniques that have been used for

various models so far are quite different. Our contribution can be seen as complementing the

framework of [36] with a nearly-linear time projection algorithm that is applicable to a wide
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range of sparsity structures. This answers a question raised by the authors of [122], who also

give a framework for structured sparsity with a universal and complete recovery algorithm.
Their framework is applicable to a wide range of sparsity models, but the corresponding
algorithm is significantly slower than ours, both in theory ("Graph clusters" in Table 3.1)
and in practice (see Section 3.6). Moreover, our recovery algorithm shows more robust

performance across different shapes of graph clusters.

Both of the approaches mentioned above use iterative greedy algorithms for sparse recovery.
There is also a large body of work on combining M-estimators with convex regularizers that
induce structured sparsity, e.g., see the surveys [26] and [232]. The work closest to ours is

[130], which uses an overlapping group Lasso to enforce graph-structured sparsity (graph
Lasso). In contrast to their approach, our algorithm gives more fine-grained control over

the number of clusters in the graph. Moreover, our algorithm has better computational

complexity, and to the best of our knowledge there are no formal results relating the graph

structure to the sample complexity of the graph Lasso. Emprirically, our algorithm recovers

an unknown vector with graph structure faster and from fewer observations than the graph
Lasso (see Section 3.8.1).

3.3 The prize-collecting Steiner forest problem

We now establish our connection between prize-collecting Steiner tree (PCST) problems and

the weighted graph model. First, we formally define the PCST problem: Let G = (V, E) be

an undirected, weighted graph with edge costs c : E -÷ R+ and node prizes 7r : V -* R. For

a subset of edges E' C E, we write c(E') = ZeEE' c(e) and adopt the same convention for

node subsets. Moreover, for a node subset V' C V, let V' be the complement V' = V \ V'.

Then the goal of the PCST problem is to find a subtree T = (V', E') such that c(E') + 7r(V')

is minimized. We sometimes write c(T) and ir(T) if the node and edge sets are clear from

context.

Similar to the classical Steiner tree problem, PCST is NP-hard. Most algorithms with

provable approximation guarantees build on the seminal work of [110] (GW), who gave an

efficient primal-dual algorithm with the following guarantee:

c(T) + 27r(T) <; 2 min c(T') + 7r(T') . (3.10)
T' is a tree

Note that the PCST problem already captures three important aspects of the WGM: (i)

there is an underlying graph G, (ii) edges are weighted, and (iii) nodes have prizes. If we

set the prizes to correspond to vector coefficients, i.e., ir(i) = b?, the term ir(T) in the

PCST objective function becomes 7r(T) = 1b - bT 1
2 , which matches the objective in the

model-projection problems (3.8) and (3.9). However, there are two important differences.

First, the objective in the PCST problem is to find a single tree T, while the WGM can

contain supports defined by multiple connected components (if g > 1). Moreover, the PCST
problem optimizes the trade-off c(T) + ir(T), but we are interested in minimizing IIb - bTl
subject to hard constraints on the support cardinality ITI and the support cost c(T) (the

parameters s and B, respectively). In this section, we address the first of these two issues;

Section 3.4 then completes the connection between PCST and the WGM. We begin by
defining the following variant of the PCST problem.
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Definition 3.4 (The prize-collecting Steiner forest problem). Let g c N be the target number

of connected components. Then the goal of the prize-collecting Steiner forest (PCSF) problem
is to find a subgraph F = (V', E') with -y(F) = g that minimizes c(E') + 7r(V').

As defined in Section 3.2.1, 1y(F) is the number of connected components in the (sub-)graph
F. To simplify notation in the rest of the chapter, we say that a forest F is a g-forest if
-y(F) = g. There is always an optimal solution for the PCSF problem which consists of g
trees because removing edges cannot increase the objective value. This allows us to employ
the PCSF problem for finding supports in the WGM that consist of several connected
components. In order to give a computationally efficient algorithm for the PCSF variant,
we utilize prior work for PCST: (i) To show correctness of our algorithm, we prove that the

GW scheme for PCST can be adapted to our PCSF variant. (ii) To achieve a good time

complexity, we show how to simulate the GW scheme in nearly-linear time.

3.3.1 The Goemans-Williamson (GW) scheme for PCSF

A useful view of the GW scheme is the "moat-growing" interpretation of [136], which

describes the algorithm as an iterative clustering method that constructs "moats" around

every cluster. These moats are essentially the dual variables in the linear program of the
GW scheme. Initially, every node forms its own active cluster with a moat of size 0. The
moats around each active cluster then grow at a uniform rate until one of the following two
events occurs:

Cluster deactivation When the sum of moats in a cluster reaches the sum of node prizes
in that cluster, the cluster is deactivated.

Cluster merge When the sum of moats that are intersected by an edge e reaches the cost
of e, the clusters at the two endpoints of e are merged and e is added to the current
solution.

The moat-growing stage of the algorithm terminates when only a single active cluster remains.
After that, the resulting set of edges is pruned in order to achieve a provable approximation

ratio. We generalize the proof of [99] and show that it is possible to extract more than
one tree from the moat-growing phase as long as the trees come from different clusters.
Our modification of GW terminates the moat-growing phase when exactly g active clusters
remain, and we then apply the GW pruning algorithm to each resulting tree separately.
This gives the following result.

Theorem 3.5. There is an algorithm for the PCSF problem that returns a g-forest F such
that

c(F) + 27r(F) min 2c(F') + 27r(F) . (3.11)
F'CG, (F')<g

For g = 1, the theorem recovers the guarantee in (3.10). We defer the proof to Section
3.8.4.1.
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3.3.2 A fast algorithm for Goemans-Williamson

While the modified GW scheme produces good approximate solutions, it is not yet sufficient
for a nearly-linear time algorithm: we still need an efficient way of simulating the moat-
-growing phase. There are two main difficulties: (i) The remaining "slack" amounts on edges
can shrink at different rates depending on how many of the edge endpoints are in active

clusters. (ii) A single cluster event (merge or deactivation) can change this rate for up to

0(|V) edges. In order to maintain edge events efficiently, we use the dynamic edge splitting
approach introduced by [76]. This technique essentially ensures that every edge always

has at most one active endpoint, and hence its slack either shrinks at rate 1 or not at all.
However, edge splitting introduces additional edge events that do not directly lead to a

cluster merge. While it is relatively straightforward to show that every such intermediate
edge event halves the remaining amount of slack on an edge, we still need an overall bound

on the number of intermediate edge events necessary to achieve a given precision. For this,
we prove the following new result about the GW moat growing scheme.

Theorem 3.6. Let all edge costs c(e) and node prizes 7r(v) be even integers. Then all

finished moats produced by the GW scheme have integer sizes.

In a nutshell, this theorem shows that one additional bit of precision is enough to track all

events in the moat-growing phase accurately. We prove the theorem via induction over the

events in the GW scheme, see Section 3.8.5.2 for details. On the theoretical side, this result

allows us to bound the overall running time of our algorithm for PCSF. Combined with

suitable data structures, we can show the following:

Theorem 3.7. Let a be the number of bits used to specify a single edge cost or node

prize. Then there is an algorithm achieving the PCSF guarantee of Theorem 3.5 in time

0(a - |EJ log|VI).

On the practical side, we complement Theorem 3.6 with a new adaptive edge splitting

scheme that leads to a small number of intermediate edge events. Our experiments show

that our scheme results in less than 3 events per edge on average (see Section 3.8.5.3).

3.4 Sparse approximation with the WGM

In order to utilize the WGM in sparse recovery, we employ the framework of [119]. As out-

lined in Section 3.2.3, the framework requires us to construct two approximation algorithms

satisfying the head- and tail-approximation guarantees (3.8) and (3.9). We now give two

such model-projection algorithms, building on our tools for PCSF developed in the previous
section.

3.4.1 Tail-approximation algorithm

We can connect the PCSF objective to the WGM quantities by setting 7r(i) = b? and

c(e) = w(e) + 1, which gives:

c(F) = w(F) + (|F| - g) and -7r(F) = ||b - bF1|2
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After multiplying the edge costs with a trade-off parameter A, the PCSF objective A - c(F) +
7r(F) essentially becomes a Lagrangian relaxation of the model-constrained optimization
problem (3.8). We build our tail-approximation algorithm on top of this connection, starting
with an algorithm for the "tail"-variant of the PCSF problem. By performing a binary search

over the parameter A (see Algorithm 7), we get a bicriterion guarantee for the final forest.

Algorithm 7 PCSF-TAIL

1: Input: G, c, 7r, g, cost-budget C, parameters v and 6.
2: We write CA(e) = A c(e).

3: lrmin + min,-(i)r Or(i), A0 -- 20
4: F <- PCSF-GW(G,cA,7r,g)
5: if c(F) 2C and 7r(F) = 0 then return F
6: Ar - 0, A, <- 37r(G), E miC
7: while A, - Ar > E do
8: Am +- (Al + Ar)/2
9: F <- PCSF-GW(G, c,, 7r, g)

10: if c(F) > 2C and c(F) vC then return F
11: if c(F) > vC then Ar +- Am else Al + Am
12: end while
13: return F <- PCSF-GW(G, cA,, 7r, g)

Theorem 3.8. Let v > 2 and 6 > 0. Then PCSF-TAIL returns a g-forest F C G such that

c(F) v C and
2

7r(F) (1 + + 6) min r(F') . (3.12)
v - 2 y(F')=g,c(F')<C

Theorem 3.8 does not give c(F) < C exactly, but the cost of the resulting forest is still
guaranteed to be within a constant factor of C. The framework of [119] also applies to
projections into such slightly larger models. As we will see in Section 3.5, this increase by a
constant factor does not affect the sample complexity.

For the trade-off between support size and support weight, we also make use of approximation.
By scalarizing the two constraints carefully, i.e., setting c(e) = w(e) + E, we get the following
result. The proofs of Theorems 3.8 and 3.9 can be found in Section 3.8.3.1.

Theorem 3.9. Let M be a (G, s, g, B)-WGM, let b e Rd, and let V > 2. Then there is an
algorithm that returns a support S C [d] in the (G, 2v - s + g, g, 2v - B)-WGM satisfying
(3.8) with cT = V1 + 31(v - 2). Moreover, the algorithm runs in time O(IE log3 d).

3.4.2 Head-approximation algorithm

For our head-approximation algorithm, we also use the PCSF objective as a Lagrangian
relaxation of the model-constraint problem (3.9). This time, we multiply the node prizes
instead of the edge costs with a parameter A. We perform a binary search similar to Alg. 7,
but the final step of the algorithm requires an extra subroutine. At the end of the binary
search, we are guaranteed to have a forest with good "density" 7 , but the good forest
could correspond to either the lower bound A, or the upper bound Ar. In the latter case, we
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Algorithm 8 GRAPH-COSAMP

1: Input: y, X, G, s, g, B, number of iterations t.
2: 00 <- 0
3: for i - 1, ... , t do
4: b <- XT(y- XO_ 1 )
5: S' +- supp(i_1) U HEADAPPROX'(b, G, s, g, B)
6: zs, <- X,y, ZSc -- 0
7: S <- TAILAPPROX(z, G, s, g, B)
8: Oi +ZS

9: end for
10: return 0 +- 0i

have no bound on the cost of the corresponding forest F,. However, it is always possible to

extract a high-density sub-forest with bounded cost from F,:

Lemma 3.10. Let T be a tree and C' < c(T). Then there is a subtree T' C T such that

c(T') < C' and cr(T') ;> -. ' (). Moreover, we can find such a subtree T' in linear time.

The algorithm first converts the tree into a list of nodes corresponding to a tour through T.
Then we can extract a good sub-tree by either returning a single, high-prize node or sliding
a variable-size window across the list of nodes. See Section 3.8.3.2 for details. Combining
these components, we get a head-approximation algorithm with the following properties.

Theorem 3.11. Let M be a (G, s, g,B)-WGM and let b E Rd. Then there is an algorithm
that returns a support S C [d] in the (G, 2s + g, g, 2B)- WGM satisfying (3.9) with CH
V1/14. The algorithm runs in time O(|E log 3 d).

3.5 Application in sparse recovery

We now instantiate the framework of [119] to give a sparse recovery algorithm using the

WGM. The resulting algorithm (see Alg. 8) is a variant of CoSaMP [170] and uses the head-
and tail-approximation algorithms instead of the hard thresholding operators.1 In order to

state the corresponding recovery guarantee in full generality, we briefly review the definition

of the (model-) restricted isometry property (RIP) [36, 61]. We say that a matrix X satisfies
the (M, 6)-model-RIP if for all 0 e M:

(1 - 6). 110112 < |X112 < (1 + 6) . 110112 . (3.13)

Theorem 3.12. Let 0 E Rd be in the (G, s, g, B)- WGM M and let X E Rnxd be a matrix
satisfying the model-RIP for a (G, c1 s,g, c2B)-WGM and a fixed constant 6, where cl and

c2 are also fixed constants. Moreover, let e E Rn be an arbitrary noise vector and let y E R'

be defined as in (3.2). Then GRAPH-COSAMP returns a 0 in the (G,5s, g, 5B)-WGM such
that 110 - $0| c3I1e|I, where C3 is a fixed constant. Moreover, GRAPH-COSAMP runs in

'Strictly speaking, HEADAPPROX' is a "boosted" version of the head-approximation algorithm developed
here. See [119] for details.
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time

O((Tx + JEl log 3 d) log )6 ,

where Tx is the time complexity of a matrix-vector multiplication with X.

In order to establish sample complexity bounds for concrete matrix ensembles (e.g., random
Gaussian matrices as in Theorem 3.3), we use a result of [36] that relates the sample
complexity of sub-Gaussian matrix ensembles to the size of the model, i.e., the quantity

IM|. More precisely, n = O(s + log|Mf) rows / observations suffice for such matrices to
satisfy the model-RIP for M and a fixed constant 6. For the WGM, we use a counting
argument to bound IMI (see Section 3.8.2). Together with Theorem 3.12, the following
theorem establishes Theorem 3.3 from Section 3.2.2.

Theorem 3.13. Let M be the set of supports in the (G, s, g, B)-WGM. Then

B d
logIMI = O(s(log p(G) +log-) + g log-)

s g

Next, we turn our attention to the running time of GRAPH-COSAMP. Since our model-
projection algorithms run in nearly-linear time, the matrix-vector products involving X can
become the bottleneck in the overall time complexity: 1 for a dense Gaussian matrix, we have
Tx = Q(sd), which would dominate the overall running time. If we can control the design
matrix (as is often the case in compressive sensing), we can use the construction of [121] to
get a sample-optimal matrix with nearly-linear Tx in the regime of s < di/ 2-4, A > 0. Such
a matrix then gives an algorithm with nearly-linear running time. Note that the bound on
s is only a theoretical restriction in this construction: as our experiments show, a partial
Fourier matrix empirically performs well for significantly larger values of s.

3.6 Experiments

We focus on the performance of our algorithm Graph-CoSaMP for the task of recovering
2D data with clustered sparsity. Multiple methods have been proposed for this problem,
and our theoretical analysis shows that our algorithm should improve upon the state of the
art (see Table 3.1). We compare our results to StructOMP [122] and the heuristic Lattice
Matching Pursuit (LaMP) [66]. The implementations were supplied by the authors and we
used the default parameter settings. Moreover, we ran two common recovery algorithms for
"standard" s-sparsity: Basis Pursuit [60] and CoSaMP [170].

We follow a standard evaluation procedure for sparse recovery / compressive sensing: we
record n observations y = XO of the (vectorized) image 0 E Rd using a subsampled Fourier

matrix X. We assume that all algorithms possess prior knowledge of the sparsity s and

the number of connected-components g in the true support of the image 0. We declare a

trial successful if the squared f2-norm of the recovery error is at most 5% of the squared

f2 -norm of the original vector 0. The probability of successful recovery is then estimated

by averaging over 50 trials. We perform several experiments with varying oversampling

'It is not necessary to compute a full pseudo-inverse Xt. See [170] for details.
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Figure (3-2): Sparse recovery experiments. The images in the top row are the original

images 0. In the regime where the algorithms recover with high probability, the estimates

0 are essentially identical to the original images. Our algorithm Graph-CoSaMP achieves

consistently good recovery performance and offers the best sample complexity for images

(b) and (c). Moreover, our algorithm is about 20 times faster than StructOMP, the other

method with provable guarantees for the image cluster model.

ratios n/s and three different -images. See Section 3.8.1 for a description of the dataset,
experiments with noise, and a comparison with the graph Lasso.

Figure 3-2 demonstrates that Graph-CoSaMP yields consistently competitive phase tran-

sitions and exhibits the best sample complexity for images with "long" connected clusters,
such as the angiogram image (b) and the text image (c). While StructOMP performs

well on "blob"-like images such as the background-subtracted image (a), its performance is

poor in our other test cases. For example, it can successfully recover the text image only

for oversampling ratios n/s > 15. Note that the performance of Graph-CoSaMP is very

consistent: in all three examples, the phase transition occurs between oversampling ratios 3

and 4. Other methods show significantly more variability.

We also investigate the computational efficiency of Graph-CoSaMP. We consider resized

versions of the angiogram image and record n = 6s observations for each image size d.

Figure 3-2(d) displays the recovery times (averaged over 50 trials) as a function of d. We
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observe that the runtime of Graph-CoSaMP scales nearly linearly with d, comparable to
the conventional sparse recovery methods. Moreover, Graph-CoSaMP is about 20 x faster
than StructOMP.

3.7 Further applications

We expect our algorithms to be useful beyond sparse recovery and now briefly describe two
promising applications.

Seismic feature extraction In [201], the authors use Steiner tree methods for a seismic
feature extraction task. Our new algorithms for PCSF give a principled way of choosing
tuning parameters for their proposed optimization problem. Moreover, our fast algorithms
for PCSF can speed-up their method.

Event detection in social networks [191] introduce a method for event detection in
social networks based on the PCST problem. Their method performs well but produces
spurious results in the presence of multiple disconnected events because their PCST algo-
rithm produces only a single tree instead of a forest. Our new algorithm for PCSF gives
exact control over the number of trees in the solution and hence directly addresses this issue.
Furthermore, the authors quote a running time of O(V 2 logVI) for their GW scheme, so
our nearly-linear time algorithm allows their method to scale to larger data.

3.8 Proofs and further results

3.8.1 Further experimental results

We start with a more detailed description of our experimental setup. All three images used
in Section 3.6 (Figure 3-2) are grayscale images of dimension 100 x 100 pixels with sparsity
around 4% to 6%. The background-subtracted image was also used for the experimental
evaluation in [122]. The angiogram image is a slightly sparsified version of the image on the
Wikipedia page about angiograms; 1 it shows cerebral blood vessels. The text image was
created by us.

We used SPGL12 as implementation of Basis Pursuit. The implementation of CoSaMP was
written by us, closely following [170]. Graph-CoSaMP and CoSaMP share the same code,
only the projection methods differ (hard s-thresholding for CoSaMP and our model projec-
tions for Graph-CoSaMP). Empirically it is not necessary to "boost" the head-approximation
algorithm as strongly as suggested by the analysis in [119], we use only a single approximate
model projection in place of HEADAPPROX' (see Alg. 8). The timing experiments in Figure
3-2(d) were conducted on a Windows machine with a 2.30 GHz Intel Core i7 CPU, 8 MB of
cache, and 32 GB of RAM.

lhttp: //commons .wikimedia. org/wiki/File :Cerebral_ angiography, _-arteriavertebralis_
sinisterinjection. JPG

2https: //www .math.ucdavis .edu/-mpf/spgll/
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(a) Original image (b) Basis Pursuit (c) CoSaMP

(d) LaMP (e) StructOMP (f) Graph-CoSaMP

Figure (3-3): Recovery examples for the text image (see Figure 3-2) and n = 3.3s noisy
linear observations using different recovery algorithms. Only Graph-CoSaMP is able to

recover the image correctly.

Recovered images In order to illustrate the outcomes of unsuccessful recovery trials,
we show examples in the regime where Graph-CoSaMP recovers correctly but the other
algorithms fail. This is the most relevant regime because it demonstrates that Graph-

CoSaMP accurately recovers the image while other methods still show significant errors.

See Figure 3-3 for the corresponding results.

Noise tolerance Ve also investigate the performance of the recovery algorithms in the

noisy setting (the error term e in (3.2)). For this, we add Gaussian noise at a measurement-

SNR level of roughly 15dB. Since we cannot hope for exact recovery in the noisy setting, we

S 2consider different tolerance levels for declaring a trial as successful (the ratio 0 - 0 /1011 2 ).

Figure 3-4 contains the phase transition plots for the text image from Figure 3-2(c). The

results show that our algorithm also gives the best performance for noisy observations.

Graph Lasso Next, we compare our approach to the graph Lasso introduced in [130].
Since the implementation in the SPArse Modeling toolbox (SPAMS)' focuses on dense

design matrices, we limit our experiments to a smaller image than those in Figure 3-2. In

particular, we use a 30 x 30 pixel synthetic image similar to the experiment in Section 9.3 of

[130]. The nonzeros form a 5 x 5 square and hence correspond to a single component in the

underlying grid graph. As suggested in [130], we encode the graph structure by using all

4-cycles as groups and use the variable replication approach to implement the overlapping

group penalty.

We record n observations y = XO with an i.i.d. Gaussian design matrix and follow the

experimental procedure outlined in Section 3.6 (recovery threshold 5%, 50 trials per data

lhttp://spams-devel.gforge.inria.fr/index.html
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Figure (3-4): Phase transitions for successful recovery under noisy observations. The three
plots are for the same image (the text image from Fig. 3-2 (c)) but use different thresholds
for declaring a trial as successful (the ratio 110 -- 012/ 11011 2). Our algorithm offers the best

performance for all thresholds.

point). See Figure 3-5 for our results. While the graph Lasso improves over Basis Pursuit,
our algorithm Graph-CoSaMP recovers the unknown vector 0 from significantly fewer ob-
servations. Moreover, our algorithm is significantly faster than this implementation of the
graph Lasso via variable replication.' While there are faster algorithms for the overlap-
ping group Lasso such as [161], the recovery performance of the graph Lasso only matches
Graph-CoSaMP for n/s > 5. In this regime, Graph-CoSaMP is already almost as fast as
an efficient implementation of Basis Pursuit (SPGL1).

3.8.2 Sparse recovery with the WGM

We now give proofs for theorems in Section 3.5. First, we establish our general sample
complexity bound.

Theorem 3.13. Let M be the set of supports in the (G, s, g, B) - WGM. Then

B d
log|MI = O(s(log p(G) + log -) + g log -) .

s g

Proof. Note that every support in the WGM corresponds to a g-forests, which contains
exactly s - g edges. We prove the theorem by counting the possible locations of g tree roots
in the graph G, and then the local arrangements of the s - g edges in the g trees.

Consider the following process:

1. Choose g root nodes out of the entire graph. There are (d) possible choices.

2. Consider the s - g edges as an ordered list and distribute the total weight budget B
to the edges. There are (B+s-g-1) possible allocations.

'As suggested by the documentation of the SPAMS toolbox, we ran this set of experiments under Linux.
The corresponding machine has an Intel Core 2 Duo CPU with 2.93 GHz, 3 MB of cache, and 8 GB of RAM.
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Figure (3-5): Comparison of our algorithm Graph-CoSaMP with the graph Lasso. Subfigure
(a) shows the synthetic test image (30 x 30 pixels). Graph-CoSaMP recovers the vector 0
from significantly fewer measurements than the other approaches (phase transition plot (b)).
Moreover, Graph-CoSaMP is significantly faster than the variable replication implementation
of the graph Lasso and essentially matches the performance of Basis Pursuit in the regime
where both algorithms succeed (n/s > 5 in Subfigure (c)).
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3. Assign a "target index" te E [p(G)] to each edge. There are p(G)-9 possible assign-
ments. Note that the combination of edge weight and target index uniquely determines
a neighbor of a fixed node v because there are at most p(G) neighbors of v connected

with edges of the same weight.

4. We now split the list of edges (together with their weight and target index assignments)
into s sets. There are (2--9) possible partitions of the edge list.

We now have a list L consisting of s edge sets together with weight assignments and target
indices. Moreover, we have a list of root nodes. We convert this structure to a g-forest (and
hence a support in the WGM) according to the following rules, which essentially form a
breadth-first search:

While there is a remaining root node, repeat the following:

1. Add the root node to a queue Q.

2. Initialize a new empty tree Ti.

3. While Q is non-empty, repeat the following

(a) Let v be the first node in Q and remove v from Q.

(b) Add v to Ti.

(c) Let A be the first edge set in L and remove A from L.

(d) For each pair of target index and weight in A, add the corresponding neighbor
to Q.

Note that this process does not always succeed: for some weight allocations, there might be
no neighbor connected by an edge with the corresponding weight. Nevertheless, it is easy
to see that every possible support in the (G, s, g, B)-WGM can be constructed from at least
one allocation via the process described above. Hence we have a surjection from the set of
allocations to supports in the (G, s, g, B)-WGM M, which gives the following bound:

IM I < - p s- g .- 2 g d

Taking a logarithm on both sides and simplifying yields the bound in the theorem. D

The proof of the recovery result in Theorem 3.12 directly follows by combining the guarantees
established for our tail- and head-approximation algortihms (Theorems 3.9 and 3.11) with
the framework of [119].

Theorem 3.12. Let 0 E Rd be in the (G, s, g, B)-WGM M and let X E R'^d be a matrix

satisfying the model-RIP for a (G, c1 s, g, c2 B)- WGM and a fixed constant 6, where cl and

c 2 are also fixed constants. Moreover, let e E R' be an arbitrary noise vector and let y E R'
be defined as in (3.2). Then GRAPH-COSAMP returns a 0 in the (G, 5s, g,5B)-WGM such

that 110 - 611 c3I1eII, where c 3 is a fixed constant. Moreover, GRAPH-COSAMP runs in

time

O((Tx + |E log 3 d) log 11011)

where Tx is the time complexity of a matrix-vector multiplication with X.
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Proof. Note that both our head- and tail-approximation algorithms project into an output
model with parameters bounded by constant multiples of s and B (we always maintain
that the support corresponds to a g-forest), see Theorems 3.9 and 3.11. This allows us
to use the CoSaMP version of Corollary 19 in [119] to establish the recovery result in our
theorem. The claim about the running time follows from the near-linear running time of our
model-projection algorithms and the running time analysis of CoSaMP in [170]. The log 11011
term in the running time comes from the geometric convergence of Graph-CoSaMP.

3.8.3 Approximate model-projection algorithms for the WGM

We now formally prove the head- and tail-approximation guarantees for our model-projection
algorithms. We assume that we have access to an algorithm PCSF-GW for the PCSF prob-
lem with the approximation guarantee from Theorem 3.5, which we restate for completeness:

Theorem 3.5. There is an algorithm for the PCSF problem that returns a g-forest F such
that

c(F) + 27r(F) min 2c(F') + 27r(F') . (3.11)
F'9G, y(F')<g

We denote the running time of PCSF-GW with TPCSF. See Section 3.8.4 for an algorithm
that achieves guarantee (3.11) in nearly-linear time.

3.8.3.1 Tail-approximation

We first address the special case that there is a g-forest F* with c(F*) < C and 7r(F*) = 0.
In this case, we have to find a g-forest F with 7r(F) = 0 in order to satisfy (3.12).

Lemma 3.14. Let lrmin = mins()>or(v) and \o =min. If there is a g-forest F* with

c(F*) < C and 7r(F*) = 0, then PCSF-GW(G,cAO,7r, g) returns a g-forest F with c(F) <
2C and 7r(F) = 0.

Proof. Applying the GW guarantee (3.11) gives

Ao - c(F) + 27r(F) _< 2Ao - c(F*) + 27r(F*)
(~) < - min

-r(F) <; AoC - 2

Since 7rmin > 0, we must have r(F) < Wrmin and hence 7r(F) = 0.

Applying (3.11) again then gives cA(F) 5 2c,\O(F*), which shows that c(F) < 2c(F*) < 2C
as desired.

We can now proceed to prove an approximation guarantee for PCSF-TAIL.

Theorem 3.8. Let v > 2 and 6 > 0. Then PCSF-TAIL returns a g-forest F C G such that

c(F) Ky -C and
2

7r(F) 5 (1 + + J) min 7r(F'). (3.12)v - 2 -(F')=g,c(F')<C
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Proof. We consider the three different cases in which PCSF-TAIL returns a forest. Note that
the resulting forest is always the output of PCSF-GW with parameter g, so the resulting
forest is always a g-forest. To simplify notation, in the following we use

OPT = min 7r().
-y(F')=g,c(F')<C

First, if PCSF-TAIL returns in Line 5, the forest F directly satisfies (3.12). Otherwise,
there is no g forest F* with c(F*) < C and r(F*) = 0 (contrapositive of Lemma 3.14).
Hence in the following we can assume that OPT >lrmin.

If the algorithm returns in Line 10, we clearly have c(F) < v- C. Moreover, the GW
guarantee gives

Am.c(F)+27r(F) 2AmC+2. OPT.

Since c(F) > 2C, we have Fr(P) OPT, satisfying (3.12).

Finally, consider the case that PCSF-TAIL returns in Line 13. Let F and F be the forests
corresponding to Al and Ar, respectively. We show that the final output F satisfies the
desired approximation guarantee if Ar - Al is small. Note that during the binary search, we
always maintain the invariant c(F) < 2C and c(Fr) v - C.

Using the GW guarantee and r(Fr) 0 gives Arc(Fr) 2ArC + 2. OPT. Therefore,

2-OPT 2.OPT
Xr < 2.OT < ..OP (3.14)

-- c(Fr) - 2C - C(v - 2)

At the end of the binary search, we have Al < Ar + e. Combining this with (3.14) above and

the GW guarantee (3.11) gives

2.OPT 2
r(F) AiC+OPT < OPT+(Ar+E)C < OPT+ +eC < (1+ + 6)OPT.

v-2 v - 2

In the last inequality, we used OPT> 7min and e = ! . This concludes the proof. D

Finally, we consider the running time of PCSF-TAIL.

Theorem 3.15. PCSF-TAIL runs in time O(TPCSF . log C -(G)

Proof. The time complexity is dominated by the number of calls to PCSF-GW. Hence
we bound the number of binary search iterations in order to establish the overall time

complexity. Let AM be the initial value of Al in PCSF-TAIL. Then the maximum number
of iterations of the binary search is

[log ~ = [log 37r(G) = m(log)
-7rmin rmin

Since each iteration of the binary search takes O(TPCSF) time, the time complexity stated

in the theorem follows. 1

If the node prizes 7r and edge costs c are polynomially bounded in lVi, the running time of

PCSF-TAIL simplifies to O(TPCSF - log|VD) for constant 6.
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We now have all results to complete our tail-approximation algorithm for the WGM.

Theorem 3.9. Let M be a (G, s, g, B)-WGM, let b CI Rd, and let v > 2. Then there is an
algorithm that returns a support S C [d] in the (G, 2v - s + g, g, 2v - B)-WGM satisfying
(3.8) with CT = /1 + 31(v - 2). Moreover, the algorithm runs in time O(|El log3 d).

Proof. We run the algorithm PCSF-TAIL on the graph G with node prizes 7r(i) = b , edge
costs c(e) = w(e) + , a cost budget C = 2B, and the parameter 6 = min(!, -). Let F be
the resulting forest and S the corresponding support. The running time bound follows from
combining Theorems 3.15 and 3.28.

First, we show that S is in the (G, 2v . s + g, g, 2v - B)-WGM. From Theorem 3.8 we know
that F is a g-forest and that c(F) _< 2v - B. This directly implies that w(F) < 2v - B.
Moreover, the g-forest F has |VFI - g edges, all with cost at least B because w(e) > 0 for
all e E E. Since IVFJ = ISI, this allows us to bound the sparsity of S as

B
(ISI- g) - <2v- B,

s

which gives ISI 2v - s + g as desired.

Now, let S* be an optimal support in the (G, s, g, B)-WGM M and let F* be a corresponding
g-forest, i.e.,

r(F*) = b -- bs12 = minlb - bs'12
S'eM

Then we have

w(F*) > min '(F')
y(F')=g,c(F')<2B

because by construction, every support in M corresponds to a g-forest with cost at most
2B. Since 7r(F) = |b - bs11 2 , applying guarantee (3.12) gives

2
b - bs|| 2 < (1+ 2 + 6) min||b - bs12

v - 2 S'eM

Simplifying this inequality with our choice of 6 then completes the proof. E

3.8.3.2 Head-approximation

We first state our head-approximation algorithm (see Alg. 9 and Alg. 10). In addition to
a binary search over the Lagrangian parameter A, the algorithm also uses the subroutines
PRUNETREE and PRUNEFOREST in order to extract sub-forests with good "density" (F)

We start our analysis by showing that PRUNETREE extracts sub-trees of good density .

Lemma 3.10. Let T be a tree and C' < c(T). Then there is a subtree T' C T such that

c(T') < C' andc(T') ;> - . Moreover, we can find such a subtree T' in linear time.

Proof. We show that PRUNETREE satisfies the guarantees in the theorem. We use the
definitions of L, 7', c', and # given in PRUNETREE (see Alg. 10). Moreover, let T' be the
tree returned by PRUNETREE. First, note that PRUNETREE clearly runs in linear time by
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Algorithm 9 Head approximation for the WGM: main algorithm PCSF-HEAD

1: function PCSF-HEAD(G, c, r, g, C, 6)
2: We write 7r(i) = A r(i).
3: 7rmin - mintr(i)>O Eff
4: Ar 2C

7rmin

5: F <- PCSF-GW(G, c, 7r,, g)
6: if c(F) ; 2C then > Ensure that we have the invariant c(Fr) > 2C (see Theorem

3.17)
7: return F
8: end if
9: E 26(G)

10: Al 4ir(G)

11: while A, - Al > e do t> Binary search over the Lagrange parameter A
12: Am <- (Al + Ar)/2
13: F <- PCSF-GW(G, c, 7rA, g)
14: if c(F) > 2C then
15: Ar Am
16: else
17: A, Am

18: end if
19: end while
20: F +- PCSF-GW(G, c, 7r,\, g)
21: F, < PCSF-GW(G, c, rA,, g)
22: F < PRUNEFOREST(Fr, c, 7r, C) > Prune the potentially large solution Fr (See Alg.

10)
23: if 7r(F) > 7r(F,') then
24: return F
25: else
26: return F'
27: end if
28: end function

84



Algorithm 10 Head approximation for the WGM: subroutine PRUNEFOREST

1: function PRUNEFOREST(F, c, 7r, C)

2: Let {TI, ., TFI} be the trees in F sorted by E(T) descendingly.
3: Cr +- C
4: for i+- 1, ... ,IFI do
5: if C, c(T) then
6: T + T
7: Cr+ Cr - c(Ti) > Cost budget (2) c(Ti)
8: else if Cr > 0 then
9: T- PRUNETREE(T, C, 7r, Cr)

10: Cr 0 > Cost budget C) = Cr
else

Tj- {arg maxj T, 7r)}

end if
end for
return {T, ... , T'

end function

> Cost budget &) = 0

17: function PRUNETREE(T, c, 7r, C')
18: Let L = (vi, ... , v2vTIl) be a tour through the nodes of T.

19: Let 7r'() = fr(vj) if position j is the first appearance of v 3 in L

0 otherwise

20: Let c'(P) = _ c(P, P+1 )
i=1-

> T = (VT, ET)

Let 7r = T)c(T)

if there is a v E VT with wr(v) > 9 then > Check if there is a single good node

(cost is automatically 0)
return the tree {v}

end if

P, = ()
for i <- 1, ... , 21VTI- 1 do

Append i to P'
if c'(Pl) > C' then

1 +- I +1
Pi <- ()

> Empty list
> Search for good sublists of L

> Start a new sublist if the cost reaches C

else if ir'(P) then > Return if we have found a good sublist
return the subtree of T on the nodes in P1

end if
end for
Merge P1 and P-1 > The algorithm will never reach this point (see Lemma 3.10).

end function
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definition. Hence it remains to establish the approximation guarantee

C' ir(T) C'.q
6 c(T) 6

Consider the first case in which PRUNETREE returns in line 23. Then T' is a tree consisting
of a single node, so c(T') r0 C'. Moreover, we have ir(T') = ir(v) 2 , which satisfies
the guarantee in the theorem.

Next, we consider the case in which PRUNETREE returns in line 33. By definition of the

algorithm, we have c'(P') < C' and hence c(T') < C' because the spanning tree T' of the
nodes in P1 contains only edges that are also included at least once in c'(P). Moreover, we

have 7r(T') ir'(P') , so T' satisfies the guarantee in the theorem.

It remains to show that PRUNETREE always returns in one of the two cases above, i.e.,
never reaches line 36. We prove this statement by contradiction: assume that PRUNETREE

reaches line 36. We first consider the partition of VT induced by the lists P' just before line
36. Note that there are no nodes v E VT with 7(v) 2 because otherwise PRUNETREE

would have returned in line 23. Hence for every list P' we have ir'(P) f because3
the last element that was added to P' can have increased r'(Pi) by at most f, and we

had r(Pi) < 2 before the last element was added to P because otherwise PRUNETREE
would have returned in line 33. Moreover, every list P' except P1 satisfies c'(P) > C' by
construction. Hence after merging the last two lists P1 and P1- 1 , we have c'(P) > C' for

all P' and also r'(Pi) < C.

We now derive the contradiction: note that all lists P' have a low density ,r but form

a partition of the nodes in VT. We can use this fact to show that the original tree had a
density lower than 7r(T), which is a contradiction. More formally, we have

1C1
7r(T) = Zw'(Pi) < (1 - 1) 2

and
1-1

2c(T) > c'(P') > (1 - 1)C .
i=1

Combining these two inequalities gives

# r r(T) ( )
< 2

2 2c(T) (1 - 1)C' 2'

which is a contradiction. Hence PRUNETREE always returns in line 23 or 33 and satisfies

the guarantee of the theorem. 0

Extending the guarantee of PRUNETREE to forests is now straightforward: we can prune

each tree in a forest F individually by assigning the correct cost budget to each tree. More

formally, we get the following lemma.
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Lemma 3.16. Let F be a g-forest. Then PRUNEFOREST(F, c, r, C) returns a g-forest F'
with c(F') C and

C
7r(F') > 7r.(F).--6 - c(F)

Proof. By construction, F' is a g-forest with c(F) < C. Let C() be the cost budget assigned
to tree T (see the comments in PRUNEFOREST). Using Lemma 3.10, we get

/) g g C() 7r(Ti)
r(F) = r(T') =1 6 c(T)

Note that the C() are the optimal allocation of budgets to the ratios !(T! with 0 < C() <

c(T) and Ja C(') - C. In particular, we have

9 0c (T1)C() 7r(Ti) > c(F) r(T) C 7(F
6 c(Ti) - 6 c(T) 6 - c(F) '

which completes the proof.

We can now prove our main theorem about PCSF-HEAD.

Theorem 3.17. Let 0 < 6 < -. Then PCSF-HEAD returns a g-forest F such that
c(F) < 2C and

7r(F) > (1 - 12 max 7r(F') . (3.15)
13(1 - 6) y(F')=g, c(F')<C

Proof. Let F* be an optimal g-forest with c(F) < C and 7r(F*) = OPT, where

OPT = max 7r(F')
y(F')=g, c(F')<C

In this proof, the following rearranged version of the GW guarantee 3.11 will be useful:

c(F) + 2(7r(G) - r(F)) 2C + 2(7r(G) - 7r(F*))

c(F ) - 2C
7r(F) > 7r(F*) + 2 (3.16)2

As in the definition of PCSF-HEAD, we write 7r, for the node prize function lrA(i) = A -7r(i).
Using such modified node prizes, (3.16) becomes

c( F) -- 20
7r(F) > OPT + 2 (3.17)

2A

We now analyze two cases: either PCSF-HEAD returns in line 7 or in one of the lines 24
and 26. Note that in all cases, the returned forest F is a g-forest because it is produced by
PCSF-GW (and PRUNEFOREST maintains this property).

First, we consider the case that the algorithm returns in line 7. Then by definition we have
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c(F) 2C. Moreover, the modified GW guarantee (3.17) gives

c(F) -2C C gri 1
7r(F) > OPT + > OPT - -- > OPT - *m* > -OPT,

2Ar Ar - 2 2

because clearly OPT > 7rmin. Hence the guarantee in the theorem is satisfied.

Now, consider the case that the algorithm enters the binary search. Let F and F be the

g-forests corresponding to Al and Ar, respectively. During the binary search, we maintain

the invariant that c(F) < 2C and c(F) > 2C. Note that our initial choices for Al and Ar
satisfy this condition (provided the algorithm reaches the binary search).

When the algorithm terminates in line 24 or 26, we have Ar > Al > Ar - E. Rearranging
(3.17) gives

2Ar(7r(Fr) - OPT) c(Fr) - 2C

c(Fr) - 2C
Ar 2(7r(Fr) - OPT)

We now introduce a variable a > 2 and distinguish two cases:

Case 1: Assume Assume '(Fr) > a C Then Equation (3.17) gives(Fr) aOPT*T

1 c(Fr) C

Ar _ 2 OPT OPT
7r(F r) _
OPT

1 7r(Fr) c(Fr) __C

2 OPT ir(Fr) OPT
7r(Fr) -

OPT

2 OPT2
r(F,) OPT
OPT

a Cr(Fr) c C2 OPT 20
7r(Fr) -1 OPT
OPT

So we get A1  Ar~ - 2 OPT - 2 () (- 5)2$PT. We can now use this together

with (3.17) to get:

C
r(F1 ) 2 OPT--

> OPT- 2PT
(1- 6)a

=(1- )OPT. (3.18)
(I - 6)a

Case 2: Assume 7- a , which is equivalent to ) 1OPT Since c(Fr) > 2C,wFRE wih st uet C. L -r t
we can invoke PRUNEFOREST on Fr with cost budget C. Let F, be the resulting g-forest.
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From Lemma 3.16 we have c(F,) < C. Moreover,

C__ C 1r(Fr) 1
7r(F') > C r(Fr) = C(Fr) > - OPT. (3.19)

- 6c(Fr) 6 C(Fr) 6a

Either case 1 or case 2 must hold. Since HEADAPPROX chooses the better forest among F

and F,', we can combine Equations (3.18) and (3.19) to get the following guarantee on the

final result F:
2 1

7r(F) > min(1 - , -- ) OPT.
(1- J)a' 6a

Choosing a = - to balance the two expressions (assuming 6 is close to 0) then gives the6
approximation guarantee stated in the theorem. E

Next, we consider the running time of PCSF-HEAD.

Theorem 3.18. PCSF-HEAD runs in time O(TPCSF -log )(G)

Proof. As in Theorem 3.15 it suffices to bound the number of iterations of the binary search.

Let A$?) be the initial value of Ar in PCSF-HEAD. Then the maximum number of iterations

is
A( 4. C .-7r(G) _r(G)

|log = [log 1 O( )
66 - C - 7rmi.T 6'rmin

As before, the running time simplifies to O(TPCSF - log|VI) for constant 6 if the node prizes

and edge costs are polynomially bounded in the size of the graph.

We can now conclude with our head-approximation algorithm for the WGM.

Theorem 3.11. Let M be a (G, s, g, B)-WGM and let b - Rd. Then there is an algorithm

that returns a support S C [d] in the (G, 2s + g, g, 2B)- WGM satisfying (3.9) with cH =

/1/14. The algorithm runs in time O(JE log3 d).

Proof. We embed the WGM into a PCSF instance similar to Theorem 3.9: we run PCSF-
HEAD on the graph G with node prizes 7r(i) = b?, edge costs c(e) = w(e) + 1, a cost

budget C = 2B, and the parameter ( = 6. Let F be the resulting forest and S be the

corresponding support. The running time bound follows from combining Theorems 3.18
and 3.28.

From Theorem 3.17 we directly have that F is a g-forest with w(F) < 2B. Following a similar

argument as in Theorem 3.9, we also get IS| < 2s+g. So S is in the (G, 2s+g, g, 2B)-WGM.

Now, let S* be an optimal support in the (G, s, g, B)-WGM M and let F* be a corresponding

g-forest, i.e.,
r(F*) = I|bs-112 = maxllbs112 .

S'EM

By construction, every support in M corresponds to a g-forest with cost at most 2B. Hence

we have
lr(F*) max 'r(F')

y(F')=g,c(F')_<2B
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Since 7r(F) = IlbsI1 2, applying Theorem 3.17 gives

Ilbs|112 > (I - )2 max|lbs, 11 .
13(1 - 6) s'EM

Substituting = y completes the proof.

3.8.4 The prize-collecting Steiner forest problem (PCSF)

For completeness, we first review the relevant notation and the definition of the PCSF
problem. Let G = (V, E) be an undirected, weighted graph with edge costs c : E -+ R+ and
node prizes 7r : V -+ R+. For a subset of edges E' C E, we write c(E') = EE, c(e) and
adopt the same convention for node subsets. Moreover, for a node subset V' C V, let V

be the complement V = V \ V'. We denote the number of connected components in the

(sub-)graph F with y(F).

Definition 3.4 (The prize-collecting Steiner forest problem). Let g E N be the target number

of connected components. Then the goal of the prize-collecting Steiner forest (PCSF) problem
is to find a subgraph F = (V', E') with -y(F) = g that minimizes c(E') + r(V').

We divide our analysis in two parts: we first modify the Goemans-Williamson (GW) scheme
to get an efficient algorithm with provable approximation guarantee for the PCSF problem
(Subsection 3.8.4.1). Then we show how to simulate the GW scheme in nearly-linear time

(Subsection 3.8.5).

3.8.4.1 The Goemans-Williamson (GW) scheme for PCSF

Before we introduce our variant of the GW scheme and prove the desired approximation
guarantee, we introduce additional notation. For a set of nodes U C V and a set of edges
D C E, we write SDU to denote the set of edges contained in D with exactly one endpoint
in U. If D = E, we write 6U. The degree of a node v in an edge set D is degD(v) -16D{V}I.

We say that a (sub-)graph F is a g-forest if F is a forest with y(F) = g.

At its core, the GW algorithm produces three results: a laminar family of clusters, a dual
value for each cluster, and a forest connecting the nodes within each cluster.

Definition 3.19 (Laminar family). A family Y of non-empty subsets of V is a laminar
family if one of the following three cases holds for all L 1, L 2 E Y: either L1 n L2  {}, or

L1 9 L 2 , or L2 C L1 .

Let U be a subset of V. Then we define the following two subsets of Y:

u := {L Y | L C U} (going "down" in the laminar hierarchy).

Y 2Tu := {L Y I U C L} (going "up" in the laminar hierarchy).

Let Y* be the family of maximal sets in Y, i.e., L E 2* iff there is no L' E 2 with L C L'.

If ULE = V, then 2* is a partition of V.

Let e E E, then we write Y(e) := { L E 2 Ie G 6L} for the sub-family of sets that contain

exactly one endpoint of e.
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Definition 3.20 (Dual values). Let Y be a laminar family. Then the dual values are
a function y : R2 -+ ij with the following two properties (as before, we write y(Y')

ZLcG- y(L) for a sub-family Y' C Y).

. y(Y(e)) c(e) for each e E E.

" Y(Y L) 7r(L) for each L E Y.

We also define several properties of g-forests related to the new concepts introduced above.

Let Y be a laminar family. We say a tree T is S-connected iff for every L E S, the

subgraph on VT n L is connected (we consider an empty graph to be connected). A g-forest

F is S-connected iff every T E F is S-connected.

Let L E S* and let L(F) be the trees in F with at least one node in L, i.e., L(F) = {T E
F VTn L $ {}}. A g-tree F is S*-disjoint iff IL(F)I < 1 for every L E Y*.

Let 9 be a family of subsets of V. A tree T has a leaf component in 9 iff there is a D C 9
with 16TD= 1. A g-forest F has a leaf component in 9 iff there is a tree T G F that has a

leaf component in 9.

A tree T is contained in 9 iff there is a D E 9 such that VT g D. A g-forest F is contained

in 9 iff there is a tree T E F that is contained in 9.

3.8.4.2 Algorithm

Our algorithm is a modification of the unrooted GW PCST algorithm in [135]. In contrast

to their unrooted prize-collecting Steiner tree algorithm, our algorithm stops the growth

phase when exactly g active clusters are left. We use these active clusters as starting point

in the pruning phase to identify a g-forest as the final result.

Since the focus of this section is the approximation guarantee rather than the time complexity,
the pseudo code in Algorithm 11 is intentionally stated at a high level.

3.8.4.3 Analysis

We now show that the forest returned by PCSF-GW has the desired properties: it is a

g-forest and satisfies the guarantee in Equation (3.11). Our analysis follows the overall

approach of [99].

Lemma 3.21. Let H = (VH, EH) be a graph and let A, B C VH be a partition of VH.

Moreover, let F = {T1,... , T} be a g-forest such that each Ti has no leaves in B and is not

contained in B. Then

SdegF(v)+ 21A\VF 2 A - 2g.
yEA

Proof. Since each T has no leaf in B and is not contained in B, every v C VF 0 B satisfies

degF(v) 2. Therefore,
1: degF(v) 21VFnBI.

VEVFnB
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Algorithm 11 Prize-collecting Steiner forest

1: function PCSF-GW(G, c, wr, g)
2: Y +- {{v}Iv E V}
3: y(C) <- 0 for all C E2.
4: VF+- V, EF<-{}
5: 9*-{}
6: d - 2 *\
7: while 1&c/ > g do
8: Ed - min 7r(C) - Y(C) >

CEdci
9: Em +- min c(e) - y(Y(e))

eE6C
Ce&c

10: E <- min(Ed, Em)

11: for C E d do
12: y(C) <- y(C) + E c Increase d
13: end for

14: if Ec Em then
15: Let C E c be such that 7r(C) - y ) = 0.
16: 9 <- 2 U fC}

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

else

> Laminar family of clusters.
> Initial dual values.

> Initial forest.
c> Family of inactive clusters.

> Family of active clusters.

> Growth phase.
Next cluster deactivation time

> Next cluster merge time

ual variables for active clusters.

> Cluster deactivation next.

> Mark cluster as inactive.
> Cluster merge next

Let e be such that c(e) - y(Y(e)) = 0 and e E 30 for some C E z.
Let C1 and C2 be the endpoints of e in Y*.
Y <-- Y U {C 1 U C2} > Merge the two clusters.

y(C1 U C2) <- 0
EF +- EF U {e} > Add e to the forest.

end if
Q <- Y* \ q > Update active clusters.

end while
Restrict F to the g trees contained in d. > Discard trees spanning inactive clusters.
while there is a D E 9 such that 16FDI= 1 do > Pruning phase.

VF <- VF \ D > Remove leaf component in 9.
Remove all edges from EF with at least one endpoint in D.

end while
return F

end function

92



Note that EVCVF degF(v) = 2(IVFI - g) because F divides VF into g connected components.
Hence

S degF(v) = 5 degF(v) - 5 degF(V)
vcVFnA VEVf vcVFnB

<; 2(IVFI - g) - 2VFnBI
= 2|VFnAJ - 2g .

Moreover, Al = IA U VFI + IA \ VF1. Combining this with the inequality above gives

S degF(v) + 21A\VF F n A - 2g + 2g A \VFj

< 21A| - 2g .

Since EvEA degF(v) vvFnA degF(v), the statement of the lemma follows. E

Lemma 3.22. Let Y be a laminar family, let 9 C Y be a sub-family, and let ' = *\ 9.
Let F be a g-forest which is Y-connected, Y*-disjoint, has no leaf component in 9, and is
not contained in 9. Then

Z |6FC+ 2I{C E d IC E I p < 2|1| - 2g.
CE.C

Proof. Contract each set C E Y* into a single node, keeping only edges with endpoints in
distinct sets in 2*. Call the resulting graph H and let A and B be the sets of vertices
corresponding to c/ and Y* n 9, respectively.

Note that F is still a g-forest in H. Since F is Y*-disjoint, no trees in T are connected by
the contraction process. Moreover, no cycles are created because F is Y-connected. Let
F' be the resulting g-forest in H. Since F has no leaf component in 9, F' has no leaves in
B. Furthermore, no tree in F is contained in 9 and thus no tree in F' is contained in B.
Therefore, F' satisfies the conditions of Lemma 3.21.

Since F is Y-connected, there is a bijection between edges in F' and edges in F with
endpoints in distinct elements of 2*. Thus we have

| 6FC 1 5degF' (V)
C& ,lyEA

Furthermore, the contraction process gives

|{C E |CE . }1 = IA\VF'I

and Idl = JAI. Now the statement of the lemma follows directly from applying Lemma
3.21. El

Lemma 3.23. At the beginning of every iteration of the growth phase in PCSF-GW (lines
7 to 24), the following invariant (I) holds:

Let F be a g-forest which is S-connected, Y*-disjoint, has no leaf component in 9, and is
not contained in 9. Moreover, let A = {v1 , ... ,vg be an arbitrary set of g nodes in G and
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let q = UCA Y',t,{. Then

E y(f(e)) + 2y(Y>-) < y(Y \ -) . (3.20)
e EEF

Proof. Clearly, (I) holds at the beginning of the first iteration because the dual values y are

0 for every element in Y. We now assume that (I) holds at the beginning of an arbitrary
iteration and show that (I) then also holds at the beginning of the next iteration. By
induction, this then completes the proof.

Let Y', 9', c', and y' be the values of Y, 9, d, and y at the beginning of the iteration.

We analyze two separate cases based on the current event in this iteration of the loop: either

a cluster is deactivated (lines 15 to 16) or two clusters are merged (lines 18 to 22).

First, we consider the cluster deactivation case. Let F be a g-forest satisfying the conditions

of invariant (I). Since Y' = Y and 9' C 9, F is also Y'-connected, Y'*-disjoint, has no

leaf component in 9', and is not contained in 9'. Hence we can invoke Equation (3.20):

> y'(Y'(e)) + 2y'(Y'l) y'(Y' \ -) . (3.21)
ec EF

Note that y and y' differ only on sets in Q/' = f'* \ 9'. Therefore, we have the following
three equations quantifying the differences between the three terms in Equations (3.20) and
(3.21):

. > y(Y'(e)) - > y'(Y'(e)) =3. > e - [e E 3FC] = E > I6F 3.22)
eEEF eEEF eEEFCEV' CE'

. y(Y'>)-y'(Y) = >0 e-1[C E 2',] = e|{C'|CE 'j}| (3.23)

. y(2'\2)-y'(Y'\2) = >3 1 1[C ] = E~d'l-eId'n2| ; ed'\-Eg (3.24)
Ced'

In the last inequality, we used the fact that A\ = g and hence 4 can contain at most g
maximal sets in the laminar family Y'. Combining the three equations above with Equation
(3.21) and Lemma 3.22 then gives:

> y(2'(e)) + 2y(Y'< ) < y(Y' \ -) . (3.25)
ecEF

Since Y' = , this is equivalent to Equation (3.20), completing the proof for this case.

Now we consider the cluster merge case. As before, let F be a g-forest satisfying the
conditions of invariant (I). Since Y = Y' U {C1 U C2} and 9 = 9', F is also 2'-connected,

2 '*-disjoint, has no leaf component in 9', and is not contained in 9'. Therefore, we can

invoke Equation (3.20) again. Moreover, Equations (3.22), (3.23), and (3.24) also hold

in this case. Combining these equations with (3.21) and Lemma 3.22 then again results

in Equation (3.25). Furthermore, we have y(Ci U C2) = 0 and thus y(y(e)) = y(y'(e),

y(Y-p) = y(Y), and y(Y \ -) = y(Y2 '\ ). Applying these equalities to Equation (3.25)
completes the proof.
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The following lemma is essential for proving a lower bound on the value of the optimal
solution.

Lemma 3.24. Let 2 be a laminar family with dual values y. Let F be a g-forest and let

S= UTF YT. Then

c(EF) +x 7F) > Y(Y \, -

Proof. Let = {C EY I FC y {}} and V = Y25. Then Y = U 4 U JR.

Since the y are dual values, we have c(e) y(Y(e)) for every e E EF. Therefore,

C(EF) = S c(e) >
eEEF

5 y(Y(e))
eEEF eGEF CcY(e)

E Ey(C)
CCY e6FC

Moreover, we have -(C) y(Y2c) for every C C Y. Thus,

7r(VF) E 7 (C)
CcI*CC-!?9

> Y(2C) = Y(Y VF) = y(-/)

C CVF

Finally, we get

c E)+7 V)> Y (-//-) +Y(~ > Y (-',& U Y(\(\('A)) U Y(VD

where we used Y = A U ' U 4 in the final step. El

We can now prove the main theorem establishing an approximation guarantee for PCSF-
GW, which also proves Theorem 3.5.

Theorem 3.25. Let F be the result of PCSF-GW(G, c, 7r, g). Then F is a g-forest and

c(F) + 27(F) <; 2c(FOPT) + 2ir(FoPT) ,

where FOPT is a g-forest minimizing c(FoPT) + r(FopT).

Proof. By construction in the growth phase of PCSF-GW (lines 7 to 24), F is a Y-
connected forest at the end of the growth phase. Since at most one element is added to
9 in each iteration of the growth phase, we have LI. = g at the end of the growth phase.
Hence restricting F to c/ in line 26 leads to F being a g-forest which is still Y-connected.
Furthermore, F is Y*-disjoint and no tree in F is contained in 9.

The pruning phase (lines 27 to 29) maintains that F is a g-forest, Y-connected, Y*-disjoint,
and not contained in 9. Moreover, the pruning phase removes all leaf components of F in
9. Hence at the end of the pruning phase, F satisfies the conditions of Lemma 3.23 (2', 9,
and d did not change in the pruning phase).

Now let FOPT - (T10PT, ... ,TOPT ) be a g-forest minimizing c(FoPT) + 7(FoPT) and let
A ={v1,... vg} with vi E TOPT. Moreover, let -1 = UvEAt{vl as in Lemma 3.23.
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Invoking the Lemma then gives

1 y(l(e)) + 2y(Y-F) 2y( 2 \ -1) . (3.26)
eG EF

Now, note that every e E EF was added to F when we had c(e) = y(Y(e)). Hence

S y(Y(e)) = 5 c(e) = c(F) . (3.27)
eEEp eEEF

Moreover, VF can be decomposed into elements in 9: after restricting F to = * \ 9
in line 26 this clearly holds. During the pruning phase, all subtrees that are removed from
trees in F are elements of 9. Therefore, there is a family of pairwise disjoint sets f C 9
such that UcET = VF. Note that for every C E 9 we have 7r(C) = y(Y c) because C was
deactivated at some point in the growth phase. Therefore,

7(F) = 5 w(C) = > (Y;c) y(Y ). (3.28)

Combining Equations (3.26), (3.27), and (3.28) then gives

c(F) + 2ir(F) 2y(Y \ 41) (3.29)

We now relate this upper bound to the optimal solution FOPT. Let 62 = UTEFOrPT YT as
in Lemma 3.24. The y are valid dual values due to their construction in PCSF-GW. Thus
Lemma 3.24 gives

Y(\22) - C(FOPT)+W(FOPT). (3.30)

Note that -2 g 41 and therefore y(Y \ -1) y(Y \ -2). The guarantee in the theorem
now follows directly from Equations (3.29) and (3.30). E

3.8.5 A fast algorithm for Goemans-Williamson

We now introduce our fast variant of the GW scheme. To the best of our knowledge, our
algorithm is the first practical implementation of a GW-like algorithm that runs in nearly
linear time.

On a high level, our algorithm uses a more aggressive and adaptive dynamic edge splitting
scheme than [76]: our algorithm moves previously inserted splitting points in order to reach
a tight edge constraint quicker than before. By analyzing the precision needed to represent
merge and deactivation events in the GW algorithm, we prove that our algorithm runs in
O(a -IEl logIV1) time, where a is the number of bits used to specify each value in the input.
For constant bit precision a (as is often the case in practical applications) our algorithm hence
has a running time of O(|El log|VI). Furthermore, our algorithm achieves the approximation
guarantee (3.11) exactly without the additional 2 term present in the work of [76]. From
an empirical point of view, our more aggressive edge splitting scheme produces only very
few additional edge pieces: we observed that the number of processed edge events is usually
close to 2lEl, the number of edge events initially created. We demonstrate this empirical
benefit in our experiments (see Section 3.8.5.3).
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Since the pruning stage of the GW scheme can be implemented relatively easily in linear time
[135], we focus on the moat growing stage here. We also remark that there are algorithms
for the PCST problem that achieve a nearly-linear time for planar graphs [38, 95].

3.8.5.1 Algorithm

Similar to [76], our algorithm divides each edge e = (u, v) into two edge parts eu and ev
corresponding to the endpoints u and v. We say an edge part p is active if its endpoint is in
an active cluster, otherwise the edge part p is inactive. The key advantage of this approach
over considering entire edges is that all active edge parts always grow at the same rate. For
each edge part p, we also maintain an event value p(p). This event value is the total amount
that the moats on edge part p are allowed to grow until the next event for this edge occurs.
In order to ensure that the moats growing on the two corresponding edge parts e" and ev
never overlap, we always set the event values so that p(eu) + p(ev) = c(e). As for edges,
we define the remaining slack of edge part eu as p(eu) - ECe yc, where W is the set of
clusters containing node u.

We say that an edge event occurs when an edge part has zero slack remaining. However,
this does not necessarily mean that the corresponding edge constraint has become tight as
the edge event might be "stale" since the other edge parts has become inactive and stopped
growing since the last time the edge event was updated. Nevertheless, we will be able to
show that the total number of edge events to be processed over the course of the algorithm
is small. Note that we can find the next edge event by looking at the edge events with
smallest remaining slack values in their clusters. This is an important property because it
allows us to organize the edge parts in an efficient manner. In particular, we maintain a
priority queue QC for each cluster C that contains the edge parts with endpoint in C, sorted
by the time at which the next event on each edge part occurs. Furthermore, we arrange
the cluster priority queues in an overall priority queue resulting in a "heap of heaps" data
structure. This data structure allows us to quickly locate the next edge event and perform
the necessary updates after cluster deactivation or merge events.

In addition to the edge events, we also maintain a priority queue of cluster events. This
priority queue contains each active cluster with the time at which the corresponding cluster
constraint becomes tight. Using these definitions, we can now state the high-level structure
of our algorithm in pseudo code (see Algorithm 12) and then describe the two subroutines
MERGECLUSTERS and GENERATENEWEDGEEVENTS in more detail.

MERGECLUSTERS(C, Cv) As a first step, we mark Cu and Cv as inactive and remove
them from the priority queue keeping track of cluster deactivation events. Furthermore, we
remove the priority queues Qc, and Qc, from the heap of heaps for edge events. Before we
merge the heaps of Cu and C, we have to ensure that both heaps contain edge events on
the "global" time frame. If Cu (or C,) is inactive since time t' when the merge occurs, the
edge event times in Qcs will have become "stale" because the moat on edge parts incident
to Cu did not grow since t'. In order to correct for this offset and bring the keys in Qc,
back to the global time frame, we first increase all keys in Qc, by t - t'. Then, we merge
Qc,. and Qc,, which results in the heap for the new merged cluster. Finally, we insert the
new heap into the heap of heaps and add a new entry to the cluster deactivation heap.
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Algorithm 12 Fast variant of the GW algorithm for PCSF.

1: function PCSF-FAST(G, c, 7r, g)
2: INITPCST(G, c, 7r)
3: t- 0
4: g' +- IVI
5: while g' > g do
6: > Returns event time and corresponding edge part
7: (te,pu) +- GETNEXTEDGEEVENT()
8: > Returns event time and corresponding cluster

9: (tc, C) <- GETNEXTCLUSTEREVENT()

10: if te < tc then
11: t - te
12: REMOVENEXTEDGEEVENT()

13: pv <- GETOTHEREDGEPART(pu)
14: > GETSUMONEDGEPART returns the current
15: > pu and the maximal cluster containing u
16: (s, Cu) <- GETSUMONEDGEPART(pu)

17: (s', Cv) +- GETSUMONEDGEPART(pv)

18: r +- GETEDGECOST(pu) - s - s' R R
19: if Cu = Cv then > The two endpoints a

20: continue >
21: end if
22: if r = 0 then
23: MERGECLUSTERS(Cu, Cv)
24: else

25: GENERATENEWEDGEEVENTS(pu, pv)

26: end if
27: else

28: t +-- tc
29: REMOVENEXTCLUSTEREVENT()

30: DEACTIVATECLUSTER(C)

31: g' 1<- g' ,

32: end if
33: end while
34: PRUNING()

35: end function

> Current time
> Number of active clusters

noat sum on the edge part

emaining amount on the edge

re already in the same cluster

5kip to beginning of while-loop
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GENERATENEWEDGEEVENTS(pupv) : This function is invoked when an edge event
occurs, but the corresponding edge constraint is not yet tight. Since the edge part pu has
no slack left, this means that there is slack remaining on pv. Let Wu and %, be the set of
clusters containing u and v, respectively. Then r = c(e) - CE . u6- yc is the length of the
part of edge e not covered by moats yet. We distinguish two cases:

1. The cluster containing the endpoint v is active.
Since both endpoints are active, we expect both edge parts to grow at the same rate
until they meet and the edge constraint becomes tight. Therefore, we set the new
event values to p(pu) = Zce + and +(P) = c 11 +-. Note that this maintains
the invariant p(pu) + p(pv) = c(e). Using the new event values for pu and pv, we
update the priority queues Qcs and Qc, accordingly and then also update the heap
of heaps.

2. The cluster containing the endpoint v is inactive.
In this case, we assume that v stays inactive until the moat growing on edge part
pu makes the edge constraint for e tight. Hence, we set the new event values to
p(Pu) = ZCC% +r and p(pv) =CE%. As in the previous case, this maintains the
invariant pt(pu) + p(pv) = c(e) and we update the relevant heaps accordingly. It is
worth noting our setting of p(pv) reduces the slack for pv to zero. This ensures that
as soon as the cluster Cv becomes active again, the edge event for pv will be processed
next.

Crucially, in GENERATENEwEDGEEVENTS, we set the new event values for pu and pv so
that the next edge event on e would merge the clusters Cu and C, assuming both clusters
maintain their current activity status. If one of the two clusters changes its activity status,
this will not hold:

1. If both clusters were active and cluster Cu has become inactive since then, the next
event on edge e will be part pv reaching the common midpoint. However, due to the
deactivation of Cu, the edge part pu will not have reached the common midpoint yet.

2. If Cv was inactive and becomes active before the edge event for pa occurs, the edge
event for pv will also immediately occur after the activation for Cv. At this time, the
moat on pu has not reached the new, size-0 moat of C,, and thus the edge constraint
is not tight.

However, in the next section we show that if all input values are specified with d bits of
precision then at most O(d) edge events can occur per edge. Moreover, even in the general
case our experiments in Section 3.6 show that the pathological cases described above occur
very rarely in practice. In most instances, only two edge events are processed per edge on
average.

3.8.5.2 Analysis

We now study the theoretical properties of our algorithm PCSF-FAsT. Note that by
construction, the result of our algorithm exactly matches the output of PCSF-GW and
hence also satisfies guarantee (3.11).

First, we establish the following structural result for the growth stage of the GW algorithm
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(the "exact" algorithm PCSF-GW, not yet PCSF-FAsT). Informally, we show that a single
additional bit of precision suffices to exactly represent all important events in the moat
growth process. The following result is equivalent to Theorem 3.6.

Theorem 3.26. Let all node prizes ir(v) and edge costs c(e) be even integers. Then all

cluster merge and deactivation events occur at integer times.

Proof. We prove the theorem by induction over the cluster merge and deactivation events

occuring in the GW scheme, sorted by the time at which the events happen. We will show

that the updates caused by every event maintain the following invariant:

Induction hypothesis Based on the current state of the algorithm, let te be the time

at which the edge constraint for edge e becomes tight and to be the time at which the

cluster constraint for cluster C becomes tight. Then te and to are integers. Moreover, if the

merge event at te is a merge event between an active cluster and an inactive cluster C, then

te - tinactive(C) is even, where tinactive(C) is the time at which cluster C became inactive.

Clearly, the induction hypothesis holds at the beginning of the algorithm: all edge costs

are even, SO te = 2- is an integer. Since the node prizes are integers, so are the tc.
The assumption on merge events with inactive clusters trivially holds because there are no

inactive clusters at the beginning of the algorithm. Next, we perform the induction step by
a case analysis over the possible events:

* Active-active: a merge event between two active clusters. Since this event modifies

no edge events, we only have to consider the new deactivation event for the new cluster

C. By the induction hypothesis, all events so far have occured at integer times, so

all moats have integer size. Since the sum of prizes in C is also an integer, the new

cluster constraint becomes tight at an integer time.

. Active-inactive: a merge event between an active cluster and an inactive cluster.
Let e be the current edge, te be the current time, and C be the inactive cluster. The

deactivation time for the new cluster is the same as that of the current active cluster,
so it is also integer. Since every edge e' incident to C now has a new growing moat,
we have to consider the change in the event time for e'. We denote the previous event

time of e' with t',. We distinguish two cases:

- If the other endpoint of e' is in an active cluster, the part of e' remaining has

size t', - te and e' becomes tight at time te + t' t because e' has two growing

moats. We have

', - te = (t', - tinactive(C)) - (te - tinactive(C)) -

Note that both terms on the right hand side are even by the induction hypothesis,

and therefore their difference is also even. Hence the new event time for edge e'

is an integer.

- If the other endpoint of e' is an inactive cluster, say C', we have to show that

te, - tinactive(c/) is even, where te' is the new edge event time for e'. We consider

whether C or C' became inactive last:
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* C became inactive last: from the time at which C became inactive we know
that t'e, -tinactive(c') is even. Moreover, we have that te = t', + (te -tinactive(C))-
Since te - tinactive(C) is even by the induction hypothesis, so is tel - tinactive(cl).

* C' became inactive last: from the time at which C' became inactive we know
that t'e, - tinactive(C) is even. The time of the new edge event can be written
as tel = te + te, - tinactive(C') (an integer by the induction hypothesis), which
is equivalent to tel - t', = te - tinactive(CI). We now use this equality in the

second line of the following derivation:

te' - tinactive(Cl) = tel - tel + te, - te + te - tinactive(C')

=2(te' - te,) + 4'1 - te

= 2(te - t',) + (t'" - tinactive(C)) - (te - tinactive(C)) -

Since te - tinactive(C) is even by the induction hypothesis, all three terms on

the right hand side are even.

Cluster deactivation: Clearly, a deactivation of cluster C leads to no changes in
other cluster deactivation times. Moreover, edges incident to C and another inactive

cluster will never become tight based on the current state of the algorithm. The only
quantities remaining are the edge event times for edges e with another cluster endpoint
that is active. Note that up to time tc, the edge e had two growing moats and te was
an integer. Therefore, the part of e remaining has length 2(te - tc), which is an even

integer. The new value of te is tc + 2(te - tc), and since tinactive(C) = to the induction
hypothesis is restored.

Since the induction hypothesis is maintained throughout the algorithm and implies the
statement of the theorem, the proof is complete. D

We now use this result to show that the number of edge part events occuring in PCSF-FAsT
is small.

Corollary 3.27. Let all node prizes wr(v) and edge costs c(e) be specified with a bits of
precision. Then the number of edge part events processed in PCSF-FAsT is bounded by
O(a - JEl).

Proof. We look at each edge e individually. For every edge part event A on e that does not
merge two clusters, the following holds: either A reduces the remaining slack of e by at least
a factor of two or the event directly preceeding A reduced the remaining slack on e by at
least a factor of two. In the second case, we charge A to the predecessor event of A.

So after 0(a) edge parts events on e, the remaining slack on e is at most ce). Theorem
3.26 implies that the minimum time between two cluster merge or deactivation events is
c(e) . So after a constant number of additional edge part events on e, the edge constraint

of e must be the next constraint to become tight, which is the last edge part event on e to
be processed. Therefore, the total number of edge part events on e is 0(a). l

We now show that all subroutines in PCSF-FAST can be implemented in O(logfVI) amortized
time, which leads to our final bound on the running time.
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Theorem 3.28. Let all node prizes ir(v) and edge costs c(e) be specified with a bits of

precision. Then PCSF-FAsT runs in O(a -IEJ logIVI) time.

Proof. The requirements for the priority queue maintaining edge parts events are the stan-

dard operations of a mergeable heap data structure, combined with an operation that adds

a constant offset to all elements in a heap in O(logIVI) amortized time. We can build such a

data structure by augmenting a pairing heap with an offset value at each node. Due to space

constraints, we omit the details of this construction here. For the outer heap in the heap

of heaps and the priority queue containing cluster deactivation events, a standard binomial

heap suffices.

We represent the laminar family of clusters in a tree structure: each cluster C is a node, the
child nodes are the two clusters that were merged to form C, and the parent is the cluster

C was merged into. The initial clusters, i.e., the individual nodes, form the leaves of the

tree. By also storing the moat values at each node, the GETSUMONEDGEPART operation

for edge part pu can be implemented by traversing the tree from leaf u to the root of its

subtree. However, the depth of this tree can be up to Q(|V|). In order to speed up the data

structure, we use path compression in essentially the same way as standard union-find data

structures. The resulting amortized running time for GETSUMONEDGEPART and merging

clusters then becomes O(logIVI) via a standard analysis of union-find data structures (with

path compression only).

This shows that all subroutines in PCSF-FAsT (Algorithm 12) can be implemented to run

in O(logIVI) amortized time. Since there are at most O(aIE) events to be processed in

total, the overall running time bound of O(a -EJ logIVj) follows. D

3.8.5.3 Experimental results

We also investigate the performance of our algorithm PCSF-FAST outside sparse recovery.

As test data, we use the public instances of the DIMACS challenge on Steiner tree problems

We record both the total running times and the number of edge events processed by our
algorithm. All experiments were conducted on a laptop computer from 2010 (Intel Core

i7 with 2.66 GHz, 4 MB of cache, and 8 GB of RAM). All reported running times are

averaged over 11 trials after removing the slowest run. Since the GW scheme has a provable

approximation guarantee, we focus on the running time results here.

Running times Figure 3-6 shows the running times of our algorithm on the public

DIMACS instances for the unrooted prize-collecting Steiner tree problem (PCSPG). For a

single instance, the maximum running time of our algorithm is roughly 1.3 seconds and most

instances are solved significantly faster. The scatter plots also demonstrates the nearly-linear

scaling of our running time with respect to the input size.

Effectiveness of our edge splitting heuristic As pointed out in our running time

analysis, the number of edge part events determines the overall running time of our algorithm.

For input values specified with a bits of precision, our analysis shows that the algorithm

encounters at most O(a) events per edge. In order to get a better understanding of our

http://dimacsll.cs.princeton.edu/
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empirical performance, we now look at the number of edge part events encountered by our
algorithm (see Figure 3-7). The scatter plots show that the average number of events per
edge is less than 3 for all instances. These results demonstrate the effectiveness of our
more adaptive edge splitting heuristics. Moreover, the number of edge events encountered
explains the small running times on the large i640 instances in Figure 3-6.
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Figure (3-6): Running times for the PCSPG instances of the DIMACS challenge. Each color
corresponds to one test case group. Our algorithm runs for at most 1.3s on any instance
and clearly shows nearly-linear scaling with the input size.
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Figure (3-7): Average number of edge events processed per edge for the PCSPG instances
of the DIMACS challenge. Each color corresponds to one test case group. The results
demonstrate the effectiveness of our edge splitting approach and show that the average
number of edge events is less than 3 for every instance.

105

mACTMODPC
* CRR

eHAND
&i640
+ JMP
x PUCNU
* RANDOM

mACTMODPC
* CRR
* H and H2
Ai640
+JMP
x PUCNU

*RANDOM

mACTMODPC
* CRR

* H and H2
i640

+JMP
x PUCNU
* RANDOM



106



Chapter 4

Group Sparsity

4.1 Introduction

In many regression problems, we posses prior information that certain features tend to be
relevant or irrelevant at the same time. For instance, a genomics application may come with
side information that certain genes belong to the same functional groups. If we select one
gene from such a functional group, we then should also treat all other genes in this group
as selected. Group sparsity allows us to incorporate this type of information in statistical
learning problems [242]. In a nutshell, group sparsity requires that the selected support (i.e.,
the set of nonzero indices) can be written as the union of a few pre-defined groups. As we
have seen with graph sparsity in the previous chapter, utilizing group sparsity can also lead
to better sample complexity and to more interpretable results.

On the algorithmic side, there are two approaches to incorporating group constraints into
estimation problems.

. On the convex relaxation side, researchers have proposed so-called group norms. One
common example is the fi / f2 group norm, which sums the f2-norms of the variables
in each group. Hence this can be seen as an fi-norm on the group level, and an

2-norm within each group.

" For non-convex PGD approaches, we require an efficient projection operator onto the
set of group sparse vectors.

One special case of group sparsity is its non-overlapping form. Here, every feature belongs to
exactly one group, i.e., the group structure forms a partition of the coordinates. In this case,
it is known that group norms have good statistical properties, and that efficient projection
operators exist. This is easy to see for the projection approach: when the groups do not
overlap, projecting onto the group sparse set corresponds to a standard knapsack problem.

However, non-overlapping group sparsity is somewhat restrictive. Ideally, we would be
able to handle arbitrary group structures. Unfortunately, group sparsity turns out to be
significantly more challenging in the general case. Using the aforementioned group norm
approach leads to undesirable properties because the regularizer then encourages that the
complement of the selected support has a group-sparse representation [232]. Moreover,
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projecting onto the set of vectors satisfying an overlapping group sparsity constraint is an
NP-hard problem [33].

We circumvent these issues by introducing new approximate projections for the set of group
sparse vectors. Our algorithms make no assumptions about the group structure and also
work in the overlapping case. The head approximation turns out to be a standard problem
in submodular maximization. Our main contribution here is to show that the submodular
greedy algorithm can be implemented in nearly-linear time in this case. In particular, we
efficiently implement the oracle calls of the greedy algorithm with a careful use of priority
queues.

Our tail approximation algorithm is more technical and uses ideas from approximation
algorithms for the set cover problem.1 At a high level, our algorithm proceeds via a binary
search over a Lagrangian relaxation of the non-convex sparsity constraint. For a each value
of the trade-off parameter, we again use a greedy-like algorithm to solve the sub-problems in
nearly-linear time. Here, we have to take special care to avoid a dependence on the dynamic
range of the input values. We achieve this by "clamping" the input values for the greedy
sub-routine appropriately.

4.1.1 Related work

Due to the large body of work on group sparsity, we only mention the most closely related
publications here.

Jacob, Obozinski, and Vert [130] introduce a convex regularizer for overlapping group
structures. This approach avoids some of the issues that arise when applying the group
norms from the non-overlapping case. But to the best of our knowledge, the statistical
properties of their regularizer are not yet fully understood. In [130], the authors give only
asymptotic consistency results. One approach could be via the decomposable regularizer
framework of Negahban et al. [171], which is one of the most general schemes for analyzing
convex relaxations in statistical estimation tasks. However, the authors of [171] point out
that their current analysis does not extend to the overlapping group regularizer of [130].
In contast, the statistical analysis of the PGD approach requires only a simple counting
argument similar to model-based compressive sensing [36].

Baldassarre et al. [33] show that projecting onto a group-sparse set of vectors is NP-hard in
the general case. Moreover, the authors propose a type of group structure that allows for a
limited amount of overlap between the groups. For this type of group sparsity, the authors
provide a polynomial time approach to constrained estimation problems. Our approach
using approximate projections is more general and applies to arbitrary group structures.
Moreover, our algorithms run in nearly-linear time, while their dynamic programming-based
method requires (strongly super-linear) polynomial time.

Finally, Jain, Rao, and Dhillon [132] also introduce a head approximation for the set of group
sparse vectors based on the submodular greedy algorithm. However, they do not utilize a tail
approximation in their recovery algorithm, which leads to sub-optimal sample complexity
bounds. Moreover, the authors do not provide a nearly-linear time head approximation. We

'Note that the hardness of projecting onto the group sparse set also stems from a connection with the
set cover problem.
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note that their greedy approach can likely bewconverted to a nearly-linear time algorithm
as well by using priority queues as in our head approximation.

4.1.2 Preliminaries

We now formally define the notion of group sparsity we consider in this chapter.

We assume we are given a family of groups G = {G1 , ... , GNg} where each Gi contains a
subset of the coordinates, i.e., Gi g [d]. Let m be the maximum size of a group:

m = maxIGj.
GEG

We are also given a target number of groups g. We denote subsets of G with calligraphic
letters such as g.

Subsets of G with a given cardinality will be particularly important for us. We write G9 for
subsets of size at most g:

G9 = {g c G g1 < g}.

Using this notation, we can now define the constraint set of group sparse vectors that we
wish to project on:

CG,g = { E Rd supp(O) C U G for some 9 E G .
GE9

Before we proceed to our approximate projections, we introduce additional notation that
will be useful. For a vector b E Rd and a subset g 9 G, we write bg for the restriction of b
to elements contained in at least one of the G E g, i.e.,

(bg)i = fbi if there is a G E g such that i E G

0 otherwise

Similarly, we sometimes use g as a shorthand for the union of its members UGeg G, which
will be clear from context.

4.2 Head approximation for group sparsity

For a given input b E Rd, the goal of head approximation is to find a set of groups 9 such
that

1bg 112 > cW - max J||bg, 11
g'EG9

for constant 0 < cW < 1. To achieve a good sample complexity, it is critical to use a small

number of groups 9. Ideally, 191 should be O(g).

We can achieve such an approximation by observing that the above is a weighted coverage
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Algorithm 13 Greedy algorithm for submodular maximization

1: function GREEDYHEAD(b, h)
2: 9 +- {}
3: while |g| < h do
4: G +- maxG'EGIIbG'21

5: !9 -- !g u {G}
6: bG+-0
7: end while
8: return g
9: end function

maximization problem. In particular, if we define h 2G R+ such that h({}) = 0 and

h(!) = ||bU GG Gi 2

then h is monotone-submodular. Hence the standard greedy algorithm can achieve a

constant-factor head approximation. For completeness, we describe the procedure in Algo-

rithm 13.

We now analyze this algorithm. Recall the following (classical) result [143]:

Lemma 4.1. Let g =.{Gi}.=1,...,h be the greedily selected groups by Algorithm 13. Then,

we have:
|lbg||2 ;> I - e~-hlg a |bi|

91gEGg 2

In particular, we get a constant-factor approximation for h = 0(g).

When naively implemented, the running time of the above algorithm is by 0(hNg). However,

we can speed up the algorithm if we maintain the f2 norms of the Ng groups as a heap.

Constructing this heap in the beginning requires time that is nearly-linear in the size of
the set-system describing G. Each update to the heap touches an coordinate at most once

(since bG is zeroed out once G is added to 9). Therefore, the total cost of all the updates is

nearly-linear in O(Ng max IGil).

4.3 Tail approximation for group sparsity

Overall, our goal in this section is to design an efficient tail approximation algorithm for

group sparsity. We aim to find a set of groups g such that

lb - bg|2 <; c7 - min lb - bg,|\
9'EG9

where cT is a fixed constant. The challenging part is to use few groups. Ideally (for

sample-complexity reasons), we would have 1g1 = 0(g). However, this is impossible due

to approximation hardness results for set cover. Instead, we will give a tail approximation

algorithm with |91 = 0(g log m). The m = 0(log d) regime is already relevant for group

sparsity in terms of sample complexity. In this regime, the increase in the number of groups
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Algorithm 14 Greedy algorithm for the Lagrangian relaxation

1: function GREEDYLAGRANGE(b, A)
2: 9 +- {
3: while g , G do
4: G +- maxGE G 1bG' 2

5: if I|bG|11 < A then
6: return 9
7: end if
8: g +- g U {G}
9: bG- 0

10: end while
11: return g
12: end function

will only lead to a doubly-logarithmic increase in the sample complexity compared to the

information-theoretic lower bound of O(s) for an s-sparse vector.

A main ingredient in our approach is the following relaxation of the tail approximation

problem. The goal is still to find a set of groups !, but now with a penalty term for the

number of groups instead of a given budget. The fixed parameter A controls the trade-off

between approximation quality and the number of groups. Formally, we want to find a set

of groups g c G such that

log m - jib - bg112+A191 < log m-min (I|b-bgjj2+cA9'j) (4.1)

where c is a fixed constant.

4.3.1 Lagrangian relaxation

We show that the following greedy algorithm produces a set of groups ! satisfying the

guarantee in Equation (4.1).

In this section, we will sometimes "clamp" a vector by restricting all entries to be within

-T and T for a given parameter -r E R. We denote this operation with clT(b) : Rd -+ Rd

and define it element-wise as clT(b) = max(min(bi, T), -r). First, we show that running

GREEDYLAGRANGE on the clamped version of b does not affect its solution quality.

Lemma 4.2. Let A E R+I A'< A, b E Rd, = clvx(b), and

9 = GREEDYLAGRANGE(b, A').

Then we have

Ib-bg||2 = ||b bg||

Proof. We show that b - bg= - bg, which clearly implies the equality in the theorem. For

i E G, we have (b - bg)i = 0 = (b - bg)j. For i E [d] \ 9, we have b? < A' because otherwise

GREEDYLAGRANGE would have added a set containing i to 9. Hence also b? < A. Due to

the clamping threshold v/A, we have bi = bi, which implies (b - bg)i = (b - bg)i. D
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Algorithm 15 Greedy algorithm with a fixed number of iterations

1: function GREEDYFIXED(b, k)

2: g9 - {}
3: for i <-1, . .. ,k do
4: G +- maxG'EGlbG'I
5: - 9 U {G}
6: bG +- 0
7: end for
8: return 9
9: end function

Next, we relate the solution quality obtained by GREEDYLAGRANGE to a variant of the

algorithm with a fixed number of iterations. In particular, we consider GREEDYFIXED as
presented in Algorithm 15. We have the following result.

Lemma 4.3. Let k E N, y E R+, b E Rd, g GREEDYLAGRANGE(b, A/-y). Moreover, let
9' = GREEDYFIXED(b, k). Then we have

7 -|b bg||+A191 <; 11|b - bg,1|| + Ajg'|

Proof. Note that GREEDYFIXED and GREEDYLAGRANGE consider the groups G E G in the
same order (in case of a tie in marginal gain, we define the algorithms so that they choose
the same group). So if g = '191, the inequality in the lemma clearly holds with equality.
We now consider two cases.

Case 1: igi < 19'1. Let Q be the indices in 9' but not in 9. For each group G E g' \ g the
marginal gain ||bG|11 was less than A/-y because GREEDYLAGRANGE did not add the group
C to its solution. Hence we have -ylbjllI < A(19'1 - 1g1). Moreover, we have

ym2b - bg||+ A1g - -11b - bg'II, - A2g'I = ylIb lI - A(1g'1 - 191) < 0

which implies the statement of the lemma.

Case 2: 191 > 19'1. Let Q be the indices in 9 but not in 9'. For each group G E g \ 9' the
marginal gain 1bG 112 was at least A/y because GREEDYLAGRANGE added the group G to
its solution. Hence we have 'y'Ibbal > A(191 - 19'1). Moreover, we have

,y||b - bg||2 + A|9| - y||b - bg,||2 - A1g'| = -71|bf212+ A(|9| - 19'I) < 0

which implies the statement of the lemma.

We now show that GREEDYFIXED satisfies the guarantee of the Lagrangian relaxation when

run for the right number of iterations. First, we briefly introduce a fact about GREEDYFIXED.
It is an instantiation of the classical guarantee for the submodular greedy algorithm [143].

Fact 4.4. Let b E Rd, a E N, # E N, and 9 = GREEDYFIXED(b, a -/8). Then we have

|1bgII2 > (1 - e--) max 11bg,1122 - 9/'EGO 2
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Lemma 4.5. Let A E R+ and b E Rd with bnax = maxi~d b? <A. Moreover, let g*
that

||b - bg* |1 + 2A|G* = min(l|b - bg |2 + 2A|9'|)

Let 9 = GREEDYFIXED(b, |g*1 log m) where m = maXGEGIGI. Then we have

logm - ||b - bg112 + A 1 log m - m n |1b - bg| 112 + 2,19'1)

Proof. We will show that

logm - l1b - bgl112+ Alg < logm - (|1b - bg 112 + 2A19*1) (4.2)

which implies the guarantee in the theorem. By definition of 9 we have

A 91 < log m - A1g*I .

After subtracting this inequality from the Equation (4.2) and cancelling the log m term on
both sides, it suffices to show that

11b - bg| 11 2 1b -bg* 112+ Alg*l (4.3)

We now invoke Fact 4.4, which yields

IIbg 11 ;> (1 - e-om) max IIbg'lI12 9~'E-Glg* 1

(i -- 1b 2
M

> jbg| 1 binaxm|9*1

bg*|| - A19*1

where the third line used that every element in b9. is bounded by bnax, and g* contains
at most 1G*1 groups of size m. The last line follows from the assumption that b 2ax < A-
Multiplying both sides with -1 yields

-|bg| 12< -||bg* 1|2 + A9*|

Finally, note that 11b - bgj2 = |bIj - lbgl11 and the same holds for 9*. Hence adding 11bl11
to both sides of the above inequality yields the desired result in Equality (4.3). 1

We now prove a final lemma about the effect of clamping on the optimal solution.

Lemma 4.6. Let b E Rd, -y E R+, A E R+, and b = cl.(b). Then we have

min nb - bg0 11| + 2A9'| j min (11b - bg112 + 2A1|9'|)

Proof. We consider the inequality for a fixed set of groups 9' C G on both sides. By proving
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the resulting inequality

|l> - Ig'l|| + 2Alg'| < ||b - bg, 1| + 2AI'1.

for all g', we establish the theorem.

Subtracting the term 2AIg'1 on both sides leaves the following inequality

\\I> - Ibg,| _1 < \\b -- bg,| .2

For all i E 9', we have (I - 0 = (b - bg')i. For the remaining indices, we have

(b - bgi)i = bi bi = (b - bg)i

which completes the proof. 0

We now have all ingredients in place to prove our main result for the Lagrangian relaxation.

Theorem 4.7. Let A E R+ , b E Rd, > = clyj,(b), and m = maXGEGGI. Then the set of

groups g = GREEDYLAGRANGE(b, A/ log m) satisfies

log in - |b - bg||1 + Al|; log m - min (jb - bg'I11 + 2A19'|)

Proof. Let 9* be such that

||I - I*g11| + 2A|9*| = min (1I> - Ibg,1| + 2AI!;'|}Ji -b 2 -/C 2 A ')

Since we have clamped b to b, we can invoke Lemma 4.5 and get a

9F = GREEDYFIXED(6, 1 G I log m)

such that

log m |I -- 6g 112 + AI9FF F log m - min 1 - bg,11 + 2Al|'l)

< log M - mill b - bg, 11 + 2A!9'l)

where the second line follows from Lemma 4.6. Invoking Lemma 4.3 on the left hand side

(using -y = log m) then yields

log m - I 2 - +| A1g log m - mn (b - bg, + 2A19'l)

Finally applying Lemma 4.2 on the left hand side (using A' = A/log m) completes the

proof. 0
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4.3.1.1 Tail approximation algorithm

With the sub-routine for the Lagrangian relaxation in place, we can now state our main
algorithm (see Algorithm 16).

The subroutine LAGRANGEAPPROX is the algorithm developed in the previous section. As
a simple corollary of Theorem 4.7, the output g, satisfies

logm-||b-bgx|| + Al\ | logm-min(l|b - bg'|| + 2A|9'|
2 ~~9'EG 2+21/

logm - min (lb - bgI|| + 2Ag

< OPT9 logim+2Aglogim (4.4)

where we define OPT =ming'G lb - bg 1j1. We will use this inequality line repeatedly in
the following argument.

We first prove a lemma about the initialization of Af.

Lemma 4.8. Let m, A , g, and gf be as in Algorithm 16. Then the output satisfies

||b - bg, (1 + l/) OPT 9 . Moreover, if OPTg = 0, then we have ge| 2g log m.

Proof. We start with the assumption OPT9 = 0. Equation (4.4) then yields

logm - 1b - bg, j|+ Afgjj 2AEglogim

which directly implies |gl < 2g log m as desired. Moreover, we have

||b - bg,| 1 2 A2lb~l < 2Aeg

2

Note that the smallest nonzero tail error is b . Without loss of generality we can assume

that there is a i such that bi = 0 (otherwise the problem is trivial). Hence m is strictly
smaller than b2 and we have lb - bg,112 0 as required.

The OPT9 ,4 0 case remains. We want to prove that IIb- bg, 112 (1+1/-y) OPTg. Invoking
Equation (4.4) and dropping Alg| I from the left side gives

logm-ilb-bg,11| < OPT9 logm+2Afglogm

or equivalently

|lb-bg,| < OPT9 +2Afg

- OPTg+ 'y
2-y

S(1+ 1/y) OP T9

because OPTg # 0 and hence OPT 9 > b2 in as before. E

We can now prove our main theorem.

115



Theorem 4.9. Let b C Rd, g E N, y E R+ and ! = GROUPTAIL(b, g, -y). Moreover, let
m = maxGGGi. Then we have |! 9 (2 + -y)g log m and

|lb -bg||2 5 1+ -OPTg .

Proof. We consider the three lines in which GROUPTAIL can return the result 9.

First, consider Line 9. We clearly have g!; 1 (2 + 'y)g log m. Moreover, Lemma 4.8 implies
that |b - bg 11 (1 + 3/-y) OPT9 as stated in the theorem.

Next, we consider the remaining two cases. We can assume that OPT9 = 0 because the

algorithm would have returned in Line 9 otherwise (contrapositive of Lemma 4.8). Hence

we have OPT9  b2

If the algorithm returns in Line 15, we again have 91 (2 + 'y)g log m by definition.

Furthermore, Equation (4.4) gives

||b - bg||2log m < OPT log m+ A(2g log m - |bg|)
< OPTg log m

because we also have jbgI > 2g log m. Hence l1b - bgj11 satisfies the guarantee in the theorem.

Line 30 remains. To simplify notation, we use gj = jgel and te = 11b - bg,112. We adopt
the same notation for g, and tr. Note that binary search maintains the invariant that

g, 5 2g log m and gj > (2 + -y)g log m. So we have 19 < (2 + -y)g log m as desired and it

remains to show that tr _< (1 + 3/y) OPTg in this case.

Instantiating Equation (4.4) for Aj yields

te log m + Aeg OPT9 log m + Ag log m .

Using ge > (2 + -y)g log m and simplifying gives

telogm+Aj(2+-y)glogm < OPTg log m + Afg log m

te + Ae'yg < OPT9

A < OPTg
179

At the end of the binary search we also have Ar Ae E. We use this to bound tr as follows.

Instantiating Equation (4.4) for Ar and dividing both sides by log m gives

tr _< OPT9 + 2Arg
< OPT9 +2Ajg+2gE

2 b2

< OPT9 +-OPT+ " min
y t

In the last line we used the bound on A, and the definition of E. Since b2 inK OPTg, the
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last line also gives the desired bound

||b - bg11 = tr < 1+ OPT,.

FD
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Algorithm 16 Tail approximation for group sparsity

1:
2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:
21:

22:

23:

24:

25:

26:

27:

28:

29:

30:
31:

t> Binary search
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function GROUPTAIL(b, g, y)
m <- maxGE GIGI
bmin +- miniE[d],bj3$Ojbji

Ar +- 41bIJI log m

2g-y
ge <- LAGRANGEAPPROX(b, Ae)
if IjgI (2 + y)g log m then

return 9 f
end if
while Ar - Af > E do

A,, Ar+AR
Am < 2

O LAGRANGEAPPROX(b, Am)
if 2g log m < 1!m; I (2 + y)g log m then

return gm
end if
if 19ml < 2glogm then

Ar Am
else

A -Am
end if

end while

gr <- LAGRANGEAPPROX(b, Ar)
return 9 r

end function

function LAGRANGEAPPROX(b, A)
ci<- ,X (b)

m +- maxGEGIGI
9x <- GREEDYLAGRANGE(b, A/log m)
return Q

end function



Chapter 5

Tree Sparsity

5.1 Introduction

Over the last decade, the concept of sparsity has attracted significant attention in signal
processing, statistics, and machine learning. In addition to "standard" sparsity, several
classes of real-world data possess additional structure. An important type of structure is
tree sparsity (also known as hierarchical sparsity), which arises in multiple applications.
A concrete example are wavelet representations of images [160]. The coefficients of the
wavelet basis can naturally be arranged as a tree due to the multi-scale nature of wavelets.
Moreover, the dominant coefficients in the wavelet representation often form a rooted,
connected tree [34]. Using the fact that the large coefficients are connected (as opposed to
being spread over the entire wavelet tree) leads to performance improvements when working
with wavelet representations of images. Another example of tree sparsity occurs in genomics
when features in a supervised learning problem can be arranged in a hierarchy [140].

As in previous chapters, our goal is to incorporate this type of constraint into optimization
problems via projected gradient descent. Hence we are interested in the problem of projecting
an arbitrary input to the set of tree-sparse vectors. More formally, we define the tree sparsity
problem: given an arbitrary vector x E R1, find the k-sparse and tree-structured vector 5
that minimizes the error |KX - 2i|2-

Over the last two decades, the tree sparsity problem and its variants have been the subject of
extensive studies in several areas. The problem arises in several sub-fields of signal processing
such as compression and denoising [79, 209]. In combinatorial optimization, the problem
constitutes an important special case of the rooted k-MST problem.1 The problem is NP-
hard in general, but solvable on trees in polynomial time [156, 183]. In machine learning,
the problem was formulated in the context of optimal decision tree pruning [51]. Perhaps
most prominently, the problem has been studied in the compressive sensing literature. Here,
it is used to identify tree sparse approximations of signals represented in a wavelet basis

(see e.g., [36, 37, 64, 89, 121] as well as the recent survey [120]).

'In the rooted k-MST problem we are given an edge-weighted graph G, the size parameter k, and a node
v. The goal is to find a subtree of G with k edges that contains v and has the minimum weight. Note that
for the case when G is a tree, rooted k-MST is computationally equivalent to tree sparsity: the weight of
each edge can be assigned to one of its endpoints that points "away" from the root v, and minimization can
be replaced by maximization by negating each weight and adding to it the sum of all weights W.
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Solution Approximation Tree
Head / Tail Running time .prst rai.et

sparsity ratio depth
Both [64] O(kn) k 1 O(log n)

Tail O(n log n) 2k < 2 O(log n)

Head O(n log n + k log2 n) 2k + O(log n) 1/4 O(log n)
Tail n(logn + 1/) 0 (1) k < (1 + c) any

Head n(log n + I1/e) 0 (1) k > (1 - E) any
Head O(n log n) k (k - d)/16k d

Table (5.1): A summary of our algorithms for the tree sparsity problem.

The best available (theoretical) performance for this problem is achieved by the dynamic-

programming (DP) approach of [64], building upon the algorithm first developed in [51]. For

an input vector of length n and target sparsity k, the algorithm has a runtime of O(nk). 1

Unfortunately, this means that the algorithm does not easily scale to even moderate problem

sizes. For example, a modestly-sized natural image (say, of size n = 512 x 512) is usually

only tree-sparse with parameter k ~ 10 4 . In this case, nk exceeds 2.5 x 109 . Considering

that projected gradient descent invokes the projection oracle many times, it is easy to see

that the running time quickly becomes impractical for megapixel-size images with n = 106

or n = 10 7 .

Our contributions. In this chapter, we develop new approaches for the tree sparsity

problem. As in previous chapters, we leverage our approximation-tolerant variant of pro-

jected gradient descent and introduce fast algorithms for head and tail approximations. At

a high level, we introduce two classes of algorithms (also see Table 5.1 for an overview):

* Algorithms for balanced trees (Sections 5.2 and 5.3). The balanced setting is a relevant

special case of the tree sparsity problem because wavelet decompositions used in

compressive sensing give rise to balanced tree structures. Oure algorithms for this

case are practical and especially the tail approximation algorithm performs well in

experiments.

" Algorithms for arbitrary tree (Section 5.6). To understand the general version of the

tree sparsity problem, we also provide algorithms that work for imbalanced trees.

These algorithms still in run in nearly-linear time and achieve better approximation

ratios than our algorithms for the balanced case. However, the theoretical power

comes at a cost of extra logarithmic factors in the running time.

In addition, we also provide a conditional hardness result for the tree sparsity problem in

arbitrary trees (see Section 5.6.4). In particular, we relate tree sparsity to the (max, +)-
convolution problem, which is a basic primitive in discrete algorithms. Our reduction

is evidence that an exact projection for tree sparsity is indeed a challenging algorithmic

task and that it may be impossible to achieve running times that are significantly faster

than O(nk). Hence approximate projections may again be necessary for large tree sparsity

problems, even though an exact projection is possible in polynomial time.

'The algorithm in [CT13] was designed for balanced binary trees. However, in Section 5.6.7 we show the
algorithm can be extended to arbitrary binary trees.
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At a high level, our tail approximation can be seen as an extension of the complexity-

penalized residual sum of squares (CPRSS) formulation proposed by Donoho [89]. We first

pose the exact tree projection as a (nonconvex) sparsity-constrained optimization problem.

We then perform a Lagrangian relaxation of the sparsity constraint and, similar to Donoho,
solve the relaxed problem using a dynamic program (DP) with running time of 0(n). We

then iterate this step a logarithmic number of times by conducting a binary search over

the Lagrangian relaxation parameter until we arrive at the target sparsity k. A careful

termination criterion for the binary search gives our desired approximation guarantee.

As a concrete application of our approximate projections, we instantiate them in a com-

pressive sensing setting (Section 5.4). Moreover, we conduct numerical experiments with

both synthetic and real data in Section 5.5. Our empirical results show two interesting

phenomena:

. First, we see that our recovery algorithm with approximate projections has essentially

no drawbacks in sample complexity. In particular, the empirical sample complexity of

our algorithm matches that of exact projections.

. Moreover, our approximate projection has a very fast empirical running time. A single

run of our approximate projection is comparable to the cost of computing a gradient.

Hence running projected gradient descent with our approximate projection comes at

essentially no computational cost compared to gradient descent without projections

(or projected gradient descent for standard sparsity).

These findings show that approximate projections combine the statistical advantages of

a sophisticated data model (i.e., constraint set) with the computational advantages of a

simpler method. So at least for tree sparsity, the approximate projection framework allows

us to get the best of both worlds. This is another concrete instance where the statistical

setting leads to an algorithmic problem that is easier than what an arguably more classical

worst-case perspective would suggest.

5.1.1 Related work

The problem of projecting into the tree-sparsity model has received a fair amount of attention

in the literature over the last two decades. Researchers have proposed several algorithms such

as the condensing sort-and-select algorithm (CSSA) [37], complexity-penalized residual sum-

of-squares (CPRSS) [89], and optimal pruning [51]. However, all of these algorithms either

run in time Q(n2 ) or fail to provide projection guarantees for general inputs. More recently,
Cartis and Thompson [64] give a dynamic programming algorithm for exact projections

running in time 0(nk). While this is an improvement, the running time can still be

impractical for large inputs.

5.1.2 Preliminaries

Sparsity and structure. A vector x E R" is said to be k-sparse if no more than k of its

coefficients are nonzero. The support of x, denoted by supp(x) c [n], indicates the locations

of its nonzero entries.

121



Figure (5-1): A binary wavelet tree for a one-dimensional signal. The squares denote the
large wavelet coefficients that arise from the discontinuities in the piecewise smooth signal
drawn below. The support of the large coefficients forms a rooted, connected tree.

Suppose that we possess some additional prior information about our vectors of interest.
One way to model this information is as follows [36]: denote the set of allowed supports
with Mk = {Q1, Q 2 ,.. .,QL}, where Qi C [n] and I iI = k. Often it is useful to work
with the closure of Mk under taking subsets, which we denote with M+ = { [n] I Q C
S for some S E Mk}. Then, we define a structured sparsity model, Mk C IR, as the set
of vectors Mk = {x E Rn I supp(x) E M+}. The number of allowed supports L is called
the "size" of the model Mk. Typically we have L < (n), which leads to better sample
complexity than "standard" sparsity (without extra structure).

Tree-sparsity Our focus in this chapter is the tree-structured sparsity model, or simply,
tree sparsity. We assume that the n coefficients of a signal x E R" can be arranged as the
nodes of a full d-ary tree (for simplicity, we mostly focus on the binary case here). Then the
tree-sparsity model comprises the set of k-sparse vectors whose nonzero coefficients form a
rooted, connected subtree. The size of this model is upper bounded by L < (2e)k/(k + 1) [36].

For the rest of the chapter, we denote the set of supports corresponding to a subtree rooted
at node i with Ti. Then Mk = {G C [n] I Q E T, and JQJ = k} is the formal definition of
the tree-sparsity model (we assume node 1 to be the root of the entire signal).

The tree-sparsity model can be used for modeling a variety of signal classes. A compelling
application of this model emerges while studying the wavelet decomposition of piecewise-
smooth signals and images. It is known that wavelets act as local discontinuity detectors [160].
Since the supports of wavelets at different scales are nested, a signal discontuinity will give
rise to a chain of significant coefficients along a branch of the wavelet tree (see Figure 5-1).

Approximate projections. We briefly recall our definitions of approximate projections
from Chapter 2 in the context of tree sparsity. First, we define the model-projection problem
for Mk as follows: given x E Rn, determine a x* E Mk such that lix - x*11 2 is minimized.'
Since this problem is non-convex, it can be computationally demanding (see Section 5.6.4
for evidence). Our approximation-tolerant variant of projected gradient offers an alternative.

Our algorithms for tree sparse projections also work for other norm parameters. For simplicity, we state
the E2 case here.
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Instead of a single exact projection algorithm, our framework requires two approximate
projection algorithms with two complementary notions of approximation:

* A head approximation algorithm H(x, k) that satisfies the following guarantee: Let
Q = H(x, k). ThenQ G EMk and

HxH12 C2 - maxJXQ 112
QEMk

for some constants ci > 1 and C2 1.

e A tail approximation algorithm T(x, k) that satisfies the following guarantee: Let
Q = T(x, k). Then G E M+k and

11X - x-jj 2  c2 - min |X - X11|2
QEMk

for some constants ci > 1 and c 2 > 1.

Using approximate model-projection algorithms, our framework from Chapter 2 achieves the
same estimation guarantees as projected gradient descent with an exact model-projection.

5.2 Head approximation for the tree-sparsity model

We now introduce our head approximation algorithm for the tree-sparsity model. In order to
simplify the analysis, we will assume that k > [logd n]. Note that we can always reduce the
input to this case by removing layers of the tree with depth greater than k. Our approach
is based on the following structural result about decompositions of d-ary trees.

Lemma 5.1. Let T be a d-ary tree with |TI = k. Moreover, let a E N, a > 1. Then T can
be decomposed into a set of disjoint, connected subtrees S = {T1,. .. , T} such that |TI < da
for all i E [3] and 1 = SJ < [k1.

Proof. We first show that given a d-ary tree U with at least da + 1 nodes, we can find a
subtree U' with a < JU'J 5 da. Consider the following algorithm FINDTREE:

1: function FINDTREE(U)
2: Let U' be the subtree of U maximizing IU'I.
3: if IU'I < da then
4: return U'
5: else
6: return FINDTREE(U')
7: end if
8: end function

First, note that IU'I a because of the pigeonhole principle and IUI da + 1. Moreover,
the size of U decreases with each recursive invocation. Since T is a finite tree, FINDTREE
eventually terminates. When it does, the algorithm returns a subtree U' with a < IU'l I da.

We use FINDTREE repeatedly on T in order to build a decomposition S with the desired
properties. After identifying a subtree U', we remove it from T and find the next subtree

in the remaining tree until at most da nodes are left. We use this remaining subtree as the
final subtree in S.
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Algorithm 17 (HEADAPPROX) Head approximation for the tree-sparsity model

1: function HEADAPPROX(x, k, d, p, a)
2: Run ETP on x with sparsity parameter k' = do.

3: X M <- X

4: for i +- 1, . .. , I [k do

5: Us +- arg max x(
QET,JQJ=daQ p

6: x(i+l) - X( ) , (i+) - 0

7: for j E 2i U root-path(!i) (in bottom-up order) do
8: Update the DP table for node j up to sparsity k'= da.
9: end for

10: end for

11: return Q <- U i U root-path(Qi)
i=1

12: end function

By construction, S is a set of disjoint, connected subtrees. Moreover, the remaining subtree

and each subtree returned by FINDTREE satisfy ITil do. Finally, the decomposition

contains at most [ ] subtrees because every subtree we remove from T has at least a

nodes. l

In addition to the tree decomposition, our head-approximation algorithm builds on the exact

tree projection algorithm (ETP) introduced in [64]. The algorithm finds the best tree-sparse

approximation for a given input via dynamic programming (DP) in O(nkd) time.1 We run

ETP with a small sparsity value k' < k in order to find optimal subtrees of size k'. We then

assemble several such subtrees into a solution with a provable approximation guarantee.

We use the fact that ETP calculates the DP table entries in the following way: if the DP

tables corresponding to the children of node i are correct, the DP table for node i can be
computed in 0(k'2 ) time. The time complexity follows from the structure of the DP tables:

for every node and 1 k', we store the value of the best subtree achievable at that node

with sparsity exactly 1. We can now state our head-approximation algorithm (Algorithm

17) and the corresponding guarantees.

Theorem 5.2. Let x E R' be the coefficients corresponding to a d-ary tree rooted at node 1.

Also, let p > 1 and a > 1. Then HEADAPPROX(x, k, d, p, a) returns a support Q satisfying

IzxgIp ;> 1 maxEm, axQ p. Moreover, Q E M+ with - = [kl(da + ogi)

Proof. Let Q* E Mk be an optimal support, i.e.,

|xQ* ||p = maxI|xQJ|p.
SE Mk

Using Lemma 5.1, there is a decomposition of Q* into disjoint sets Q*, ... , Q* such that
p

Qf E T, 1W I : da and 0 5 []. The contribution of Q* to the overall solution is xa;.

'While ETP as stated in [64] works for p = 2 only, the algorithm can easily be extended to arbitrary

norm parameters p.
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Now, compare the contributions of our subtrees Qi to these quantities. When finding Qi for
i E [/3], one of the following two cases holds:

(i)P l P
1. > _ lx- 1 . Since Q* is a candidate in the search for Qi in line 5, we have

X Z)p p
(i)Pli 1 llQ ip

2. llx, < i . Therefore, Q,..., Qi_ 1 have already covered at least half of the
P Q*lp-

contribution of Q . Formally, let Ci Q* nui 31J -Q. Then |Ilxc. fl> .

Let A {i E [/] case 1 holds for Q} and B = {i E [/31case 2 holds for Qi}. For the set A
we have

F= ' >X > JJxQ~l. (5.1)
i=1 P iEA P iEB P iEA

Now, consider the set B. Since the Q* are disjoint, so are the C. Moreover, Ci C Q and
therefore

ZicjI > >Q ~ (5.2)

i=1 iEB iGB

Combining (5.1) and (5.2), we get

p 1 P + I l
2 x- Q ZxQ + 2- > |z*||?.

2 iA P iB

Raising both sides to power i/p gives the guarantee in the theorem. For the sparsity bound,
note that < da and root-path(Qi) [logd n]. Since we take the union over [ such
sets, the theorem follows. 0

Next, we analyze the running time of our head approximation algorithm. The proof is a
direct consequence of Theorems 5.2 and 5.3.

Theorem 5.3. HEADAPPROX(x, k, d,p, a) has a running time of

O(nd2a + k-(da + log n)(d 2a2 + log n)).
a

Proof. Since we invoke ETP with k'= da, the initial call to ETP takes O(nd2a) time. We
can implement the arg max in line 5 with a binary heap containing the DP table entries for
all nodes and sparsity da. Therefore, this step takes O(log n) time per iteration of the outer
loop.

The cost of the outer loop is dominated by the updates performed in line 8. For each node
in Qi U root-path(Q-), we have to update its DP table (O(d 2 a2 ) time) and then its entry in

the binary heap (O(log n) time). Since UQ < da and root-path(i) I Flogd n], the total

cost over all iterations of the outer loop is O( (da + log n)(d2 a2 + log n)). Combining this
with the cost of ETP gives the running time bound in the theorem. El
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Overall, we arrive at the following final guarantee.

Corollary 5.4. Let a = ~logd n]. Then HEADAPPROX(x, k, d, p, a) returns a support

SEM( 2 d+2 ) satisfying Jx,_ > (I) ! maxqEuk\jxn||l . Moreover, the algorithm runs in

time O(n log n + k log2 n) for fixed d.

5.3 Tail approximation for the tree-sparsity model

Recall that the main goal for an exact tree-projection is the following: given an input x C Rn,
minimize the quantity

|ix - xQ||i

over Q E Mk for 1 < p < oo.1 For a tail approximation, we are interested in the following
relaxed problem: find a Q E Mk' with k' c2 k and

|ix - x-ii1|5 c - min ||x - xQi1|p (5.3)
QEMk

We highlight two aspects of the modified problem (5.3):

. Instead of projecting into the model Mk, we project into the slightly larger model

Mk'-

. Instead of finding the best projection, we provide a multiplicative guarantee for the
approximation error.

We propose an approximation algorithm that achieves (5.3). First, we approach the modified
problem via a Lagrangian relaxation, i.e., we relax the sparsity constraint and keep the
requirement that the support Q forms a connected subtree:

arg minJx - xz||P+ AjQ|. (5.4)
QET,

Note that the parameter A controls the trade-off between the approximation error and the
sparsity of the recovered support. Second, we use a binary search to find a suitable value of
A, resulting in an overall recovery guarantee of the form (5.3).

5.3.1 Solving the Lagrangian relaxation

We first transform the problem in (5.4) into a slightly different form. Note that (5.4) is

equivalent to arg maxQETI iixo|1P - AJQj. We can now rewrite this problem as

arg max Z yi (5.5)
QET1 iE

where yi = ixiJP - A. Hence the goal is to find a rooted subtree which maximizes the sum of

weights yi contained in the subtree. In contrast to the original tree approximation problem,

'Our approximation algorithm also solves the o-version of the tree-sparse approximation problem (and,
in this case, even identifies the optimal projection, not only a provably good one). Since the focus in
constrained estimation problems usually lies on p = 2, we limit our proofs here to ip-norms with p < o.
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there is no sparsity constraint, but the weights associated with nodes can now be negative.

Problem (5.5) is similar to the CPRSS formulation proposed by Donoho [89]. However, our
technical development here is somewhat different because the underlying problems are not
exactly identical. Therefore, we summarize our approach in Algorithm 18 and outline its
proof for completeness.

Theorem 5.5. Let x E R' be the coefficients corresponding to a tree rooted at node 1,
and let p > 1. Then FINDTREE(x, A,p) runs in linear time and returns a support Q E 71
satisfying

||x - xg||P+ A|f| = min||x - xQI|| + A|Q|

Proof. As above, let y = |xjjP - A. For a support Q E [n], let y(Q) = EiE yi. Futhermore,
we denote the total weight of the best subtree rooted at node i with b* = max y(Q). Note that

QETj

bj = max(0, yi + Ejechidren(i) b ) because we can choose nodes in the subtrees of i indepen-
dently. A simple inductive argument shows that after the call to CALCULATEBEST(1, x, A, P),
we have bi = b* for i E [n].

Similarly, a proof by induction shows that after a call to FINDSUPPORT(i), we have y(Qi) =

b*. So the support Q returned by FINDTREE(x, A, p) satisfies

y(Q) = max y( Q)
QET1

This implies the guarantee in the theorem.

The time complexity follows from the fact that the algorithm makes a constant number of
passes over the tree.

5.3.2 Binary search

Next, we use Alg. 18 in order to achieve the desired approximation guarantee (5.3). Since
the Lagrangian relaxation (5.4) gives us only indirect control over the sparsity k', we perform
a binary search over A to find a suitable value. Alg. 19 contains the corresponding pseudo
code. In addition to x, k, c, and p, the algorithm takes an additional parameter 6, which
controls the maximum number of iterations of the binary search.

Theorem 5.6. Let x E R' be the coefficients corresponding to a tree rooted at node 1.
Moreover, let c > 1, 3 > 0, and p > 1. Then TREEAPPROX(x, k, c, p, 6) returns a support

E E M' satisfying

||x -j< 1|+< 1 + +6) min ||x - xQ |1p.Ix p (1+c - I+E m M

Moreover, the algorithm runs in time O(n(log i + plog 'max)), where Xmax = maxjC[fn]1xi|
and xmin = miniE[n],i> OxI.

Proof. We analyze the three cases in which TREEAPPROX returns a support. First, note
that the condition in line 2 can be checked efficiently: connect all nonzero entries in x to
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Algorithm 18 (FINDTREE) Solving the Lagrangian relaxation

1: function FINDTREE(x, A, p)
2: CALCULATEBEST(1, x, A, p)

3: return Q +- FINDSUPPORT(1)

4: end function
5: function CALCULATEBEST(i, x, A, p)
6: bi <-- |zilP - A
7: for j E children(i) do
8: CALCULATEBEST(j, x, A, p)

9: bi +- bi + bj
10: end for
11: bi <-- max(0, bi)
12: end function
13: function FINDSUPPORT(i)

14: if bi = 0 then
15: +-
16: else
17: Q2 +- {i}
18: for j E children(i) do
19: j *- & j U FINDSUPPPORT(j)
20: end for
21: end if
22: return &i
23: end function

the root node and denote the resulting support with U2. If Q K k, we have Q E M| and

x E Mk. Otherwise, x V Mk and the tail approximation error is greater than zero.

Second, if the algorithm returns in line 11, we have 1 < ck and Q E 71 (Theorem 5.5).

Hence n E M+. Moreover, Theorem 5.5 implies

lix - xfih+ Am|$2 : min ||x - xn|| + Am|G| -

Since Q > k = IQ| for Q E Mk, we have I|x - og||j minQEMk 11 - Xz72p.

Finally, consider the return statement in line 18. Let Q1 and Q, be the supports corresponding

to Al and Ar, respectively. Moreover, let QOPT E Mk be a support with Jjx - xQ,|,I2p =

mineEMk 1X - XQ P. We use the shorthands t = IIx - xQIJP, ki = |I1, and the corresponding
definitions for tr, kr, tOPT, and kopT. Note that throughout the binary search, we maintain

the invariants kr ck and kj < k. The invariants also hold before the first iteration of the

binary search due to our initial choices for Al and Ar (A = 0 implies yz 0 and A = xPmax
implies yi < 0, both for all i E [n]).
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Algorithm 19 (TREEAPPROX) Tree-sparse approximation

1: function TREEAPPROX(x, k, c, p, J)
2: if there is a Q E Mk with supp(x) C Q then
3: return Q
4: end if
5: Xmax +- maxie n]IXiI, Xmin +-- miniEtan],o~xiI

6: A, - xPnax) A, <-- 0, E + - I-=
7: while Al - Ar > E do
8: Am +A

2

9: Q +- FINDTREE(X, Am, p)

10: if 2 >k and Q < ck then

11: return C
12: else if Q < k then

13: A+ Am

14: else
15: Ar Am
16: end if
17: end while
18: return Q +- FINDTREE(x, A,, p)

19: end function

From Theorem 5.5, we have tr + Arkr < tOPT + ArkOPT. This implies

Ar(kr - kOPT) toQT - tr

Ar(ck - k) tOPT

Ar < tOPT
-k(c- 1)

At the end of the binary search we have Al - Ar F, giving

A tOPT (5.6)
k(c - 1)

Theorem 5.5 also implies t + Ajkj _< tOpT + AlkOpT. Together with (5.6), we get

t1  tOPT + Alk

- tOPT + tOPT + Ek
c-i

< tOPT (I + C + xPMi

< I+ + 6 tOPT.
C - 1

The last line follows from the fact that x V Mk and hence tOPT xPi.. Taking the p-th
root on both sides gives the guarantee in the theorem.

Each iteration of the binary search runs in linear time (Theorem 5.5). The difference Al - Ar
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initially is Pa and is then halved in every iteration until it reaches E. Hence the total

number of iterations is at most

XP XPk
log max - log axk

min

= log k +plog Xmax
6 min

In practical applications, 6, p, Xmax, and Xmin can be considered constants, which gives a

running time of O(n log k). Next, we remove the dependence on x-ax and give an algorithm

running in strongly polynomial time O(n log n) while achieving the same approximation
guarantee.

5.3.3 A strongly polynomial variant

The goal of this section is to develop a tail approximation algorithm for the tree sparsity

model with a strongly polynomial running time. As for our previous algorithm, we consider

the Lagrangian relaxation
arg min||x - xllP + AIQI,

QET,

where the parameter A controls the trade-off between the approximation error and the

sparsity of the identified support. Our previous algorithm runs a binary search over A
in order to explore the Pareto curve of this trade-off. However, the running time of this

algorithm is only weakly polynomial because it depends on both

Xmax = maxIxil and xmin = min lxii
iE[n] iC[n],IxiI>O

Below, we introduce an algorithm that exploits the structure of the Pareto curve in more

detail and runs in strongly polynomial time O(n log n). In fact, our new algorithm constructs

the shape of the entire Pareto curve and not only a single trade-off.

The Lagrangian relaxation is equivalent to

argmaxllxQfI| - AIQI.
QETJ

Hence, we can rewrite this problem as

arg max 1 yj where yi = Ixilp - A .
QET1 iEo

So for a given value of A, the goal is to find a subtree Q rooted at node 1 which maximizes

the sum of weights yj associated with the nodes in Q.

In the following, we analyze how the solution to this problem changes as a function of A
and use this structure in our tail-approximation algorithm. On a high level, the optimal

contribution of a node i is positive and decreasing up to a certain value of A = 7j, after
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which the contribution stays 0. So for A < yi, a subtree rooted at node i can contribute
positively to an overall solution. For A > -yi, we can ignore the subtree rooted at node i.

5.3.3.1 Properties of the Pareto curve

Let b (A) denote the maximum value achievable with a subtree rooted at i:

bi(A) = maxllxQIIP - AKQ.
cTj P

Our algorithm relies on two main insights: (i) b (A) is a piecewise linear function with at
most n non-differentiable points (or "corners"), which correspond to the values of A at which
the optimal support changes. (ii) Starting with A = 0, bi(A) is strictly decreasing up to a
certain value of A, after which b2 (A) = 0. Formally, we can state the properties of the Pareto
curve as follows.

Lemma 5.7. bi(A) is piecewise linear. There is a value -yj such that bi(A) = 0 for A > g and
b2 (A) is strictly decreasing for A < -yj. The corners of bi(A) are the points Di {Yj} U {y E

Uje children(i) Di I - < 7i}.

Proof. A simple inductive argument shows that b2(A) can be recursively defined as

bi(A) = max(O, IxiVP - A + E bj(A))
jEchildren(i)

Note that the theorem holds for the leaves of the tree. By induction over the tree, we also
get the desired properties for all nodes in the tree. We are using the fact that piecewise
linear functions and strictly decreasing functions are closed under addition. Moreover, the
corners of a sum of piecewise linear functions are contained in the union of the corners of
the individual functions.

Our algorithm does not compute the bi(A) directly but instead keeps track of the following
two quantities s (A) and ci(A). For a given value of A, s (A) denotes the sum achieved by the
best subtree rooted at node i. Similarly, ci(A) denotes the cardinality of the best subtree
rooted at node i. These two quantities are easier to maintain algorithmically because they
are piecewise constant. The proof of the next lemma follows directly from Lemma 5.7 and
a similar inductive argument.

Lemma 5.8. Let

si(A) = Ixil + 3 sj (A) and ci(A) = 1 + > cj (A)
j children(i) j E children(i)

bj(A)>0 bj(A)>0

Then si(A) and c (A) are piecewise constant and monotonically decreasing. The disconti-
nuities of si(A) and ci(A) are Di (see Lemma 5.7). At a discontinuity y E Di we have
lim6 , 0 + s (-y + 6) = si (y) and lim6 , 0 + ci(y + 6) = ci(y).

The following is an alternative characterization of si (A) and ci (A). The proof follows by an
induction over the tree.
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Lemma 5.9. Let

f2A= arg max IIXQII - AIQ.
QETj, Q7 #{}

bj (A)>0 for jEQ\{i}

Then

si(A) = IIxodjjI and

ci(A) = IQx .

We now establish a link between si(A), ci(A) and bi(A).

Lemma 5.10. Let fi(A) = si(A) - Aci(A). Then for A > yi, we have fi(A) < 0. For A < gy,

we have fi(A) = b (A).

Proof. We use the characterization of si(A) and ci(A) stated in Lemma 5.9. For A < we
have i E arg max.I I x I I - AIQI and hence

fi(A) = si(A) - Aci(A)

= IxQ, II - AIQxI

= max||xQI|| - A|O|

= bi(A)

Since fi(-yj) = 0, we get fi(A) = bi(A) for A <y .

Note that for A > -yj, we have arg maxQEy IXQ - A| = {}, and {} is the unique maximizer.
Since i E Q, for all values of A, we get fi(A) < bi(A) = 0 for A > . l

The following lemma shows that for a given value of A, we can find the next smallest
discontinuity in s (A) and ci(A) based solely on the current values of si(A) and ci(A). This
is an important ingredient in our algorithm because it allows us to build the Pareto curve
incrementally.

Lemma 5.11. Let A > 0 with A = -yj for i E [n] and let

.ss(A)
a= arg max .

i E [n], bi (A) =0 Ci ( A)

Then

^Ya = max y .
i E[n], -yi <A

Proof. Since ba(A) = 0, we have Ya < A and hence 7a maxiE[n],Ayj7.

For contradiction, assume that there is a A > -yj > 7a and let -yj be the largest such *.

From Lemmas 5.10 and 5.7, we have sj(-yj) - yjcj(7j) = fj(-yj) bj (-yj) = 0 and hence

cj (-Yj) Since sj and cj are constant in [yj, A], we have

. Sj(A) < Sa(A) (5.7)
cj(A) - ca(A)
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>Sa(Yj) Sne~ nWe have 7yj > -y7 and hence sa(yj) - -Yca(7j) = fa(j) < 0. Thus, 7; > c . Since s, and

ca are constant in [yj, A], we have y > sa), which is a contradiction to (5.7). 0
Ca (A)'

Let 7yi and -Y2 be two adjacent discontinuities in si(A) and ci(A) with -7i < 72. Note that Q\
is constant for -y, < A < 72 but Q 2 $ Q. As our last lemma, we show that Q, is still an
optimal solution for A = %2

Lemma 5.12. Let A' > 0 and let

lim si (A' - 6) = u
6-*0+
lim ci(A' - 6) = v

Then u - A'v = fi(A').

Proof. First, we show that fi(A) is continuous. Let

b'/(A) = bxiJP - A + E bl (A).
jEchildren(i)

bj(A)>O

By definition, we have b'(A) = si(A) - Aci(A) = fi(A). Moreover, an inductive argument
similar to the one used for bi(A) in Lemma 5.7 shows that b'(A) is piecewise linear and
continuous. Therefore, fi(A) is also continuous.

Since si(A) and ci(A) have only finitely many discontinuities, there is an A" < A' such that
for A" < A < A' we have si(A) = u and ci(A) = v. Therefore, we also have fi(A) = si(A) -
Aci(A) = u - Av. Moreover, fi(A) is continuous, so fi(A') = limo5o fi(A' - 6) = u - A'v. E

5.3.3.2 Constructing the Pareto curve

We now use the quantities introduced above in order to traverse the Pareto curve. We start
with A = +oo, for which the values of the si(A) and ci(A) are easy to determine. Then, we
iterate the following two steps (see Algorithm 20): (i) Use the current values of the s2 (A)
and ci(A) to find the next discontinuity. (ii) Update the s (A) and ci(A) based on the change
in the optimal support. In order to simplify the analysis, we assume that the discontinuities
7y are distinct.

Theorem 5.13 establishes a connection between the variables sj and cj in FINDPARETO and
the functions sj(A) and cj(A).

Theorem 5.13. Let s , CW , active 0, and j() be the values of si, c1 , activei, and j after

line 9 in iteration i of FINDPARETO. Then Ai = max-yl, where 1 E [n] and -yi < A1

Also, Ai = y;i). For Ai- 1 > A > Ai, we have s 1  = sj(A) and c) = ci(A). Furthermore,
active = true if b 1(A) > 0 and activel = false otherwise.

Proof. We prove the theorem by induction over i. For i = 1, the statement of the theorem
follows directly from the initialization of the variables in FINDPARETO.

Now assume that the theorem holds for a given i > 1. We need to show that the theorem
also holds for i + 1.

133



Algorithm 20 (FINDPARETO) Constructing the Pareto curve

1: function FINDPARETO(X,p)

'2: for i -1, ... , n do > Initialization
3: si <- Ixjj, ci <- 1, active <- false
4: end for
5: A0 <- +O0

6: ri +-ci

7: for i =1, ... , n do > Iterate over the discontinuities
8: j <- arg max > Find the next discontinuity

lE [n], activei =false

9: A+

10: active <- true

11: a<-j

12: while a : 1 do > Update the affected nodes
13: a <- parent(a)

14: Sa IXa 1P
15: Ca 1
16: for 1 E children(a) with active = true do
17: Sa Sa + S1

18: Ca Ca + cl
19: end for

20: end while
21: ri+1 +- C1
22: end for

23: In+1 +-~ 0
24: return (A, r)

25: end function

Since Ai = -yp), we have b (i) (A) > 0 for A < Ai and hence the update to active(p) is correct.

The inner update loop (lines 12 to 20) corresponds directly to the definition of s2 (A) and
ci(A), respectively. Hence we have

s(i+1) = lim s -(A -6)
6->0+

Ci+l) lim cl(IA - 6)

Note that we only have to update the nodes on the path from j(') to the root because the

other nodes are not affected by the discontinuity 7p).

sJ(A) and cl(A) are constant up to the next discontinuity given by

-y =max -y.
IE [n]

Let A' = pplying Lemma 5.11 with A = A' to line 8 of FINDPARETO shows that

7= Ai+ and Ai+ 1 = yj(i+1). El
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Using this connection, we can now show that the algorithm returns the shape of the Pareto
curve.

Theorem 5.14. Let p > 1 and x R"' and let A and r be the vectors returned by
FINDPARETO(X,p). Moreover, let A > 0 such that Aj_ 1 > A > A2 . Then we have ri = jQ*|
where

= arg max ||xa||P - AIQI.
cTl, lEQ

bj(A)>O for jEf\{1}

Proof. By the definition of FINDPATH and Theorem 5.13, we have ri = ci(A) for XA_1 >
A 2 i. The theorem then follows from Lemma 5.9. E

Moreover, FINDPARETO can be implemented to run in O(n log n) time using a priority
queue.

Theorem 5.15. Let p > 1 and let x E R' be the coefficients of a perfect d-ary tree. Then
FINDPARETO(X,p) runs in time O(n log n) for constant d.

Proof. Since we have a perfect d-ary tree, the depth of any node is bounded by O(log n).
Hence the work of the inner update loop (lines 12 to 20) is bounded by O(log n) for a single
iteration of the outer loop.

We implement the arg max in line 8 with a Fibonacci heap containing the nodes j with
activej = false. Hence the cost of the arg max is O(log n) and the cost of the inner update
loop remains O(log n), now in amortized time.

As a result, the total time complexity of all n iterations is O(n log n). El

5.3.3.3 Tail approximation algorithm

Given the shape of the Pareto curve, we want to find the best solution achievable with our
extended sparsity budget ck. To do so, we have to find a suitable trade-off parameter A
that achieves a constant-factor tail approximation. We implement this search with a single
scan over the Aj, starting at An so that A is increasing and the corresponding sparsity ri
decreasing. The main idea of this last claim is similar to our earlier (weakly polynomial)
tail approximation algorithm. Algorithm 21 contains the pseudo code for this approach.

We first show that FINDSOLUTION allows us to reconstruct the support corresponding to a
A2 and ri.

Lemma 5.16. Let x E R' be the coefficients corresponding to a d-ary tree and let p > 1.
Then FINDSOLUTION(x, Ai,p) returns a support Q E T1 satisfying

||x - x|' + A Q = min Ix -x||+ AIQIlix xjiIP +A fET,

x- =sI(A)ip

i= ci(A) =r

for Ai_ 1 > A> A. Moreover, FINDTREE runs in linear time.
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Algorithm 21 (TAILAPPROX) Tail approximation for the tree sparsity model

1: function TAILAPPROX(x, k, c, p)
2: (A, r) +- FINDPARETO(X, p)
3: for i -n,...,1 do
4: if ri < ck then
5: return FINDSOLUTION(x, Aip)
6: end if
7: end for
8: end function

9: function FINDSOLUTION(x, A, p)
10: CALCULATEB(1, x, A, p)
11: return Q <- FINDSUPPORT(1)
12: end function

13: function CALCULATEB(i, x, A, p)
14: b <- IxiI - A
15: for j E children(i) do
16: CALCULATEB(j, x, A, p)
17: by +- by +
18: end for
19: by <- max(O, b )
20: end function

21: function FINDSUPPORT(i)
22: Qi - {i}
23: for j E children(i) do
24: if b3 > 0 then
25: Qi +- Qi U FINDSUPPPORT(j)
26: end if
27: end for
28: return Qi
29: end function

Proof. After the call to CALCULATEB, we have bj = bj(Ai) for j E [n] (see Lemma 5.7).
Note that FINDSUPPORT follows the definition of sj(A) and c3 (A). Using Lemma 5.9, we get

Q= arg max I|xQJlJ - AIQ
QET1, f{}

b3 (A)>O for jEQ\{1}

for 12 1 > A ;> I. Lemma 5.9 also implies x = s1(A) and I = ci(A). Applying

Theorem 5.14 then gives 1 = ri.

Negating the above objective function and using lix - xQllP = l|x l| - llxQJP,, we get

Q= arg min IIx - Xz|| + AIQ|.
QETI, 2s{}

bj(A)> for jEQ\{1}
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Finally, FINDSOLUTION makes a constant number of passes over the tree and consequently
runs in time O(n). E

We now prove the main result for the tail approximation algorithm.

Theorem 5.17. Let x E Rn be the coefficients corresponding to a d-ary tree rooted at node
1. Moreover, let k > 1, c > 1 and p 1.
Q E M+ satisfying

Then TAILAPPROX(X, k, c, p) returns a support

lix - xii"| (1+ 1 )l/P min |ix - xQ .pC - I QEuk

Furthermore, TAILAPPROX runs in time O(nlogn).

Proof. First, note that TAILAPPROX always returns because ck > 1
algorithm only returns if ri < ck, so E M+ (Lemma 5.16).

We consider two cases based on Q . If Q > k, Lemma 5.16 implies

lix - X6j|| + = min| j - xQli| + IA|O|
Q${}

Smin ||x - xon|| + Aj|j|
QEMk

where the last line uses k > 1. Since A, > 0 and Q > k = |QJ for Q E Mk, we have

lix - x <_ min lix - xn|,
QC-Mk

For the case of Q , let i be the final value of the loop counter in TAILAPPROX. In order to

establish an approximation guarantee for Q, we consider the support Q' corresponding to
ri+1 . By Theorem 5.14, this is

arg max
2eET, Q{}

b,(A)>O for jeQ\{1}

llx|jlP - AlJT

for A2 > A ;> 1A+ 1 . Since the loop in TAILAPPROX continued beyond ri+1, we have 'I =
ri+l > ck.

Note that si(AI) = Xip and cj(1i) = Q (Lemma 5.16). Moreover, we have

lim s,(Ai
6c0+
lim c (Ai

J +0+

- 6) = ||XQ'lPP

-6) = xQ'l .
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Using Lemma 5.12 we get

|lxia'l -- XiP'l = fi(A)

= si(A) - Xici(Xi)

Equivalently, we have

|Ix - xQ/I|| + AiK'| = |x - xiil|| + Ai n
= + AI|| (5.8)

QET,

where the second line follows from Lemma 5.16. Now let Q* E Mk be a support with

I|x - xQ* li, = minnGMk lix - xQ lp. Since k > 1, we have

min I|x - xQ||P + IjlGl < ||x - xQ* II + jlQ*l (5.9)
QET1

Combining equations (5.8) and (5.9), we get

|Ix - xQII|| + Xi|G'\ < ||x - xQ-||| + Xi|G*|

Aj(|G'| -|GQ*|} < ||x - xQ*I-| -- |x - xQI||

jtck - k) |ix - xQ*iI

IIx - x* i|p
k(c - 1)

We combine equations (5.8) and (5.9) again, this time for Q. Moreover, we use our new

bound on A2 .

lx - - li| + nj < ||x - xQ lip, + XiIQ* I

lix - x IP < Ix - xQ* II + Ajk

|Ix - x* lip
ix -xon |PI+ c - I

<; |X - xa* l1 ( + C1

Taking the p-th root on both sides gives the guarantee in the theorem.

The running time bound for TAILAPPROX follows directly from the time complexity of

FINDPARETO and FINDSOLUTION.
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5.4 Compressive sensing recovery

As a concrete example for how to use our new approximate projections in an estimation
problem, we instantiate our algorithms in a standard compressive sensing setup. Our
example here is derived from the model-based CS framework proposed in [36] which uses
exact projections.

Recall that the goal in compressive sensing is to estimate a vector x E R' from a small
number of linear observations. These linear observation take the form

y = Ax+e,

where A E R'n is the measurement matrix and e E R' is a noise vector. The central result
of compressive sensing is that under certain assumptions on the matrix A, it is possible to
obtain a good estimate i even though the matrix A is rank-deficient (and the system hence
underdetermined).

Measurement matrices. Many algorithms for compressive sensing assume that the
measurement matrix satisfies the restricted isometry property (RIP). The matrix A has the
(6, k)-RIP if the following inequalities hold for all k-sparse vectors x E Rn:

(1 - 6)llxll' < lIAxJ' < (1 + 6)llxll' . (5.10)

There exist measurement matrices satisfying the RIP with only m = 0(k log f) rows [35].
By using additional structure, we can improve over this bound. In particular, there exist
matrices satisfying the RIP for tree sparse vectors with only m = 0(k) rows [36]. This loga-
rithmically better sample complexity leads to clear improvements in numerical experiments

(see Section 5.5).

Recovery algorithm. In order to use our approximate projections, we need a version
of projected gradient descent that is robust to the approximation errors. We utilize our
approximate model-iterative hard thresholding (AM-IHT) algorithm from Section 2.6.2. With
the RIP assumption, this algorithm recovers a signal estimate x satisfying

11X - X112 _< O(1e|112) -

The algorithm repeatedly applies the following update rule, which is inspired by the well-
known iterative hard thresholding (IHT) algorithm [50]:

X(i+l) y T(x(2) + H(AT(y - Ax(')))) . (5.11)

It is possible to show that 0(log 1IE) iterations suffice for guaranteed recovery. Therefore,
the overall time complexity of AM-IHT is governed by the running times of H(.), T(.), and
the cost of matrix-vector multiplication with A and AT.

Putting things together. We can now instantiate AM-IHT with our new head and tail
approximations. Recall that both approximate projection algorithms run in time 0(n log n).
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. Measurement Recovery Matrix-vector Recovery
Publcation bound time multiplication time guarantee

[36] O(k) 0(nk) 0(nk) f2

[126] 0(k log exponential 0(n log n) fi

[32] O(k og ) 0(nk) 0(nlogn) f1

This chapter O(k) 0(n log n) O(n log n) f2

Table (5.2): Comparison of our results with previous recovery schemes for the tree-sparsity

model. In order to simplify the presentation, all stated bounds are for the regime of

k < n1/ 2-p with p > 0. We also omit a factor of log 1 from all recovery times. An

p-recovery guarantee is of the form lix - 2|Jj cliellp, where x is the original signal, - is

the recovery result, e is the measurement noise, and c is a fixed constant.

For the overall running time, we also need a measurement matrix A that supports fast
matrix-vector multiplication. In Section 2.6.6, we describe a new construction of such a
matrix that satisfies the model-RIP for the tree-sparsity model Mk and in addition supports

fast matrix-vector multiplication in the range k < n1/ 2-p with p > 0. Combining these

ingredients with AM-IHT, we obtain an algorithm for recovering tree-sparse signals from

(noisy) linear measurements.
1

Theorem 5.18. Let A E Rmxn be a model-RIP matrix as constructed in the proof of

Theorem 2.29. Let x E R' be a signal with x G Mk and let y = Ax + e be the noisy

measurements. Then, there exists an algorithm to recover a signal estimate i E M4,1 from

y such that

11x - 5||2 cie||2

for some constants c, c' > 1. The algorithm runs in time

O (nlogn + k2 logn log 2 (k log n)) log
11e112/

for general k. This becomes time 0(n log n) for the range k < n1/2-p with p > 0.

Note that this significantly improves over the time complexity of the original model-based

compressive sensing framework [36], which required

0 nk log 112)

time for recovery. Moreover, our algorithm also improves over subsequenty work uses spase

measurement matrices. We refer the reader to Table 5.2 for details.

'To be precise, the AM-IHT algorithm in Section 2.6.2 imposes additional restrictions on the approx-
imation factors of the head and tail algorithms. However, it is possible to modify AM-IHT to work with
arbitrary constant factors by "boosting" the head approximation ratio. See Section 2.6.5 for details.
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Algorithm 22 (TREE-COSAMP) Signal recovery

1: function TREE-COSAMP(y, k, A, t)
2: io +- 0
3: for i -1, ... ,t do
4: v-AT(y - A- 1 )
5: F +- supp(5ii) U TREEAPPROX(v, 2k, c
6: z,- Ary, ZrC <- 0
7: +- TREEAPPROX(z, k, c, 2, 6)
8: Si zQ

9: end for
10: return 5 <- i
11: end function

5.5 Numerical experiments

To complement our theoretical contributions, we now experimentally demonstrate the
benefits of our approximate tree-projection algorithm in the context of compressive sens-
ing. All experiments were conducted on a laptop computer equipped with an Intel Core
i7 processor (2.66 GHz) and 8GB of RAM. Corresponding code is available on http:
//people. csail. mit. edu/ludwigs/code. html.

5.5.1 A modified algorithm

Since CoSaMP typically has better empirical performance than IHT, we use this variant
of projected gradient descent for our numerical experiments. An approximation-tolerant
version of the algorithm can be found in Section 2.6.3. We remark that it achieves the
same theoretical guarantees as stated for AM-IHT in Section 5.4. The main difference to
standard (model-)CoSaMP is that we replace the exact projections in Lines 5 and 7 with
our approximate projection.

5.5.2 Results

First, we run model-CoSaMP with the exact tree projection approach in [64], as well as our
Algorithm 22, on a piecewise polynomial signal. Such signals are well-modeled as tree-sparse
in the wavelet domain [34]. The unknown vector (signal) is of length n = 1024 and is exactly
tree-sparse with sparsity parameter k = F0.04n] = 41. We record m = F3.5k] = 144 random
Gaussian measurements and perform CS recovery. For comparison, we also include recovery
results using CoSaMP and ei-minimization (implemented by SPGL1).

As predicted by our theoretical results, Figure 5-2 demonstrates that our Algorithm 22
achieves accurate signal recovery, while standard CS approaches offer worse recovery quality.
In fact, the performance of our algorithm is comparable to that of model-CoSaMP with exact
projections. Figure 5-3 demonstrates a similar improvement in the case of a much larger
signal. For this experiment, the input signal is a tree-sparse image of size n = 512 x 512
with sparsity parameter k = 0.04n 10,000, and we use m = 3.3k ~ 35,000 random Fourier
measurements.
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CoSaMP SPGL1

Exact tree Approx. tree

Figure (5-2): Compressive sensing recovery of a ID signal using various algorithms (signal
parameters: n = 1024, k = [0.04n] = 41, m = [3.5k] = 144). Both tree-based algorithms
accurately recover the ground truth signal.

Figure 5-4 plots the results of a Monte Carlo experiment that quantifies the performance of
the different recovery algorithms in terms of the number of measurements m. The input test
signal is a piecewise polynomial signal, similar to the one in Figure 5-2. Each data point
in this plot was generated by averaging over 100 sample trials using different measurement
matrices. For this plot, a "successful recovery" is defined as the event when the 2-error of
the final signal estimate was within 5% of the f2-norm of the original signal. The success
probability of Algorithm 22 almost matches the performance of model-CoSaMP with the
exact tree-projection.

Table 5.3 demonstrates the computational efficiency of our tree-projection algorithm. Using
the wavelet coefficients from Figure 5-3 as input, our tree-projection algorithm is more than
two orders of magnitude faster than the exact tree-projection algorithm (400 x speedup).
Moreover, the tree-projection step is not a bottleneck in the overall recovery algorithm
since the time spent on multiplying with A and AT (at least one FFT each) dominates the
runtime of our algorithm.

We also compare our algorithm with the greedy tree approximation algorithm described
in [34]. While the greedy algorithm offers good recovery and runtime performance in the
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CoSaMF (SNR=12.5dB) SPGL1 (SNR=22.7dB)

Exact tree (SNR=101.4dB) Approx. tree (SNR=99.2dB)
Figure (5-3): Compressive sensing recovery of a 2D image using various algorithms (signal
parameters: n = 512 x 512, k = 0.04n a 10,000, m = 3.3k ~ 35,000). Both tree-based
algorithms accurately recover the ground truth image.

noiseless setting (see Figure 5-4 and Table 5.3), it is susceptible to shot noise (Figure 5-5).
In contrast, our algorithm has rigorous approximation guarantees and demonstrates robust
behavior similar to the exact tree-projection algorithm.

5.6 Algorithms for arbitrary trees

The algorithms from the previous sections run in nearly-linear time and suffice as head and
tail approximations. However, they have three important shortcomings:

- The algorithms apply only to balanced trees.

- The algorithms increase the size of the output tree by a constant factor.

* The algorithms have constant approximation ratios (as opposed to tighter 1 + E
guarantees).
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0 0 .8... . .. ... ... ...

0.6 --- -- - Exact tree

-EB- Greedy tree
-e-- Approx. tree

,c 0.2 -.-.-.-.- CoSaMP

-+-SPGL1
01

2 4 5 6
Oversampling ratio m/k

Figure (5-4): Comparison of compressiv sensing recovery algorithms. The probability of
recovery is with respect to the measurement matrix and generated using 100 trial runs.

Algorithm Exact tree Approx. tree Greedy tree FFT

Runtime (sec) 4.4175 0.0109 0.0092 0.0075

Table (5.3): Runtimes of-various algorithms on input data from Figure 5-3

(a single run of the projection algorithm without CoSaMP).
The times are averaged over 10 trials. n ~ 260,000, k ~ 35,000.

While our tail approximation works well in our numerical experiments, an exact algorithm is
usually preferable if it is fast enough. For instance, exact algorithms tend to be more reliable
and often require less tuning of hyperparameters. Hence it is important to understand
whether the theoretical weaknesses mentioned above are necessary. To this end, we study
the tree sparsity problem in more detail.

Our results. In this section, we contribute the following results:

- Our new head and tail projections run in nearly-linear time, do not increase the sparsity
of the output, and work for arbitrary (binary) trees. Moreover, the approximation
ratios of our algorithms are close to 1.

. We show that, for k ~ n, a strongly sub-quadratic time algorithm for tree sparsity
would imply a strongly sub-quadratic time algorithm for (min, +)-convolution. The
latter is a well-studied problem (see e.g., [55]) for which no strongly sub-quadratic
time algorithm is known. The problem bears strong similarity to the (min, +)-matrix
product, which has been used as the basis for several conditional hardness results [4,
5, 6, 29, 190, 237]. In particular, our reduction uses the techniques of [237].

From a theoretical perspective, our new approximation algorithms remove most drawbacks
of our previous head / tail projections. Moreover, our conditional hardness result provides
evidence that an exact tree projection might be impossible in time that is significantly faster
than O(nk).

From a practical perspective, a downside of our new algorithms is that their running time
contains a large number of logarithmic factors. Hence we also give a simple algorithm for the
head approximation problem whose running time O(n log n) has only a single logarithmic
factor. The approximation factor of the algorithm is constant for trees whose depth is
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Input signal

Exact tree

Greedy tree

Approx. tree

Figure (5-5): Tree projection for an input signal with shot noise (n = 1024). In order to
simplify the example, we show the results of a single tree-projection without compressive
sensing recovery. The greedy algorithm fails to find a good support while our approximation
algorithm matches the output of the exact tree-projection algorithm.
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a constant factor smaller than the sparsity k. We also show that a "boosted" variant

of the algorithm increases the sparsity bound by a logarithmic factor while achieving an

approximation ratio of 1.

Our techniques Our algorithms and lower bounds exploit the close connection between

tree sparsity and convolutions. This can be illustrated by recalling the O(kn)-time exact

algorithm for tree sparsity. The algorithm is based on dynamic programming. Specifically,

for each node i and sparsity t, we compute W[i, t], defined as the value of a sub-tree of size

t, rooted at node i, and maximizing the total weight of the selected nodes. We compute
this quantity recursively by selecting i and then, for an appropriate parameter r, selecting

the maximum weight subtree of size r rooted in the left child of i, as well as the maximum

weight subtree of size t - r - 1 rooted in the right child of i. Since we do not know the
optimal value of r in advance, the algorithm enumerates all possible values. This leads to

the following recursive formula:

W[i, t] = xi + max W[left(i), r] + W[right(i), t - r - 1] (5.12)

where xi denotes the weight of the node i.

Equation 5.12, when executed for all t = 0 . .. k, can be seen as corresponding to the (max, +)
convolution of a sequence

W[left(i), 0]... W[left(i), t - 1]

and
W [right(i),O] ... V[right(i),t - 1]

Our lower bound proceeds by showing that this correspondence is in some sense inherent, as
we reduce (max, +) convolution to tree sparsity over a binary tree of depth 6(k) with three
long paths from the root to the leaves. In turn, our approximation algorithms are obtained by
solving approximate (max, +) convolutions or (min, +)-convolutions. Such approximations

are known to be computable in nearly-linear time [178, 245]. For completeness, we include

simpler (albeit slightly slower) algorithms performing those tasks in Section 5.6.6.

The first step in our approximation algorithms is to replace the exact convolution in Equa-

tion 5.12 by its approximate counterparts. However, this works only if the underlying tree

has bounded (say, polylogarithmic) depth. This is because the approximation errors incurred

at each level are cumulative, i.e., the final error bound is exponential in the tree depth. In

order to make the algorithms applicable for trees of arbitrary depth, we must ensure that

the error accumulates only a limited number of times. To this end, we utilize the heavy-light

decomposition [215] of the underlying tree. On a high level, this approach decomposes the

tree into a set of (possibly long) paths called spines. The decomposition ensures that there

are at most O(log n) such spines on a path from the root to any leaf. We then design an

algorithm that processes each spine in "one shot", as opposed to node by node. In this way,

we ensure that the error is accumulated only a poly-logarithmic number of times.
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5.6.1 Preliminaries

We start by setting up basic notation. We generally identify the node weights of a given
binary tree with an n-dimensional vector x E Rn: each of the n coefficients in x corresponds
to a node in the tree. Similarly, we identify a subtree with the. corresponding support Q C [n]
in the vector x, i.e., the set of indices belonging to the subtree. We denote the set of supports
forming valid rooted subtrees of size k with T. For an arbitrary vector / tree x, we write
xg for the restriction of x to the support / subtree Q: we have (xQ)i xi if i G Q and
(xQ) = 0 otherwise. For a given support Q, we denote its complement with Q [n] \ [.
Finally, the i-norm of a vector x is ||xiii = En IllxH.

5.6.1.1 Head and tail approximation

With the new notation in place, we now formally state our main algorithmic problems. The
"head" and "tail" terminology comes from the application of tree sparsity in sparse recovery
[119]. In the following problems, the input is a tree with node weights x C Rn and a sparsity
parameter k.

Exact tree sparsity Find a subtree Q E Tk such that lix - xQj2Hi is minimized. Note that
this is equivalent to maximizing llxfolli.

Tail approximation Find a subtree Q E Tk such that ix -x QlIi <; cT -min'eTk IIX- XQ/li,
where CT is a constant (ideally close to 1).

Head approximation Find a subtree Q E Tk such that llXQl11 ;> CH - maxQ'ETf Hx' l1,
where cH is a constant (ideally close to 1).

The tail approximation problem can be seen as an approximate minimization problem, while
the head approximation problem is an approximate maximization problem. Note that a
constant-factor tail approximation does not imply a constant-factor head approximation,
and vice versa.

5.6.1.2 Generalized convolutions

Our algorithms build on sub-routines for various convolution problems, which we now review.

Definition 5.19 ((0, ®)-Convolution problem). Given two vectors A = (Ao, ... , A,_ 1 )T E
Z' and B = (Bo,...,Bn_ 1)T E Zn, output the vector C = (Co,... ,Cn_1 )T E Z defined as:

Ck = 0o=0(Ai D Bki) for all k = 0,...,I n -1.

We consider three instances of the general convolution problem: (min, +), (max, +), and
(OR, AND)-convolution. The latter is also called Boolean Convolution. Note that one can
solve the Boolean Convolution problem in time O(n log n) using the Fast Fourier Transform
on indicator vectors.

We will repeatedly use the following two theorems about (min, +) and (max, +)-convolutions
that we prove in Section 5.6.6.
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Let A, B E N' be two integer vectors with positive entries. Let W be the largest value of
an entry in A or B. Let C E N' be the (max, +)-convolution of A and B. We can output a
vector C' E N" such that Ck Ck (1+ E)C for all k = 0, ... ,n - 1 in time

0 -. log n - log 2 W).

An analogous statement holds if C is the (min, +)-convolution of A and B. We can output a
vector C' E N' such that Ck Ck < (1 + e)Ck for all k = 0, ... , n - 1 in the same runtime.

An slightly faster algorithm for (min,+) matrix products was shown by Uri Zwick [245].
We also note than a different algorithm for approximating (max, +)-convolution was given
in [204], but no theoretical guarantees on the approximation factor were provided.

Let A' E Nn',..., Al E Nn' be 1 > 2 vectors with positive entries. We assume that the

entries of the vectors are indexed starting with 0, i.e., A' = (A ,..., Ani- 1) for every

i = 1, ... , 1. Let B E Nn, n = n1 +... +n be the (min,+)-convolution between the I vectors
A 1, ... , A" defined as follows:

Bj = min A .+ ... +A'
m1+...+ml=j i I

s.t. O<mt<nt-1 Vt=1,...,1

for every j = 0, . .., n - 1. We can output a vector B' E Nn such that B, < Bk (1 + E)B'
for all k = 0,..., n - 1 in time

( - log n -log 2 W log 3

where W denotes the largest entry in the vectors A1 , ... , A'.

An analogous statement holds for (max, +)-convolution (we replace min in the equation
for Bj with max). The runtime stays the same and we output a vector B' E Nn such that
B' < Bk 5 (1+ e)B' for all k = 0,..., n - 1.

5.6.2 1 + E tail approximation in nearly linear time

Our algorithm utilizes a heavy-light decomposition [215], which we define first.

Definition 5.20 (Heavy-light decomposition [215]). Let x be a binary tree, and let node v
be a child of node u (the parent). We call an edge e = (u, v) heavy if one of the following
holds:

" size(v) > size(u)-1.
2

" size(v) = size(u)~1 and v is the right child of the parent u.2

We call all other edges light.

We extend the above definition of light and heavy edges to nodes as follows: If a parent u
is connected to a child v by a heavy edge, we call v heavy. We can easily check that every
node has at most one heavy child and that only leaves can have no heavy child. We call
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a node special if it is not a heavy child of its parent. Special nodes are relevant for our
definition of a spine:

Definition 5.21 (Spine). Consider the following process. Pick any special node u. If u is
not a leaf, it has a unique heavy child. Choose this child and repeat. We will end up in a
leaf. This defines a path in the tree corresponding to the node u. We call this path the spine
corresponding to the node u. The spine includes the node u and the final leaf.

By iterating over all special nodes, we can decompose the tree into a set of spines. This
decomposition has desirable properties because we can only have a small number of spines
on any path from a leaf to the root. More formally, consider any node u in the tree. The
number of light edges on the path from the node u to the root of the tree is upper bounded
by O(log n). The reason is that every light edge at least halves the size of the subtree and
the number of nodes in the tree is upper bounded by n. Since every two light edges on the
path are separated by one spine, the number of different spines on the path from the node
u to the root is also upper bounded by O(log n).

With our definition of a spine set up, we now proceed to our main result of this section.

Theorem 5.22. Given a vector x and an integer k > 1, we can find a subtree Q E 7k such
that

I I XI <; (1 + E) X 
| Ii

where

Q* = arg min |zX,| 1 .
Q'CiIk

Moreover, the algorithm runs in time O(- - log9 n . log3 Xmax).

Proof. For a tree x of size n > 0, we define the tail tree sparsity vector to be the vector

To simplify the exposition, in this section we will skip the word "tail".

We will recursively compute approximate tree sparsity vectors for all subtrees rooted at the
special nodes of the tree x. As we compute these approximations, the sizes of the subtrees
become smaller and the lengths of the corresponding approximate sparsity vectors (the
number of entries in the vectors) also become smaller. To compute the approximate sparsity
vector for a special note u, we need to know the approximate sparsity vectors for all special
nodes in the subtree rooted at u. Without loss of generality, we assume that for every leaf
1, we have xj > 0.

Our recursive algorithm works as follows.

" For an integer 1 > 1, let PI, P2, . -, 7p be the spine that starts at the root p1 of the tree
x and ends in the leaf pl of the tree. For simplicity, we renumber vertices of the tree
x so that the spine consists of vertices 1,. .. , I in this order (1 is the root of the tree
and I is the leaf).

" For i= 1, ... , 1 - 1, the node i has i + 1 as a child. Let x' denote the subtree rooted at
the other child node (recall that x is a binary tree). Let ni > 0 denote the size of the
subtree xZ. Note that ni can be zero if node i has only one child, i.e., the node i + 1.
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For simplicity of exposition, let x1 be an empty tree of size nr := 0. It corresponds to

a child of leaf 1. Since leaf 1 has no children, X1 is of size 0. Let

s (s, sI, s, ... , )T E Nni+1

be the approximate sparsity vector for the subtree x' computed recursively. We assume

that si is an approximate sparsity vector in the following sense. Let S be the (exact)

sparsity vector for the subtree x'. Then St < s1 < (1 + 6)S for some 3 > 0 and for all

j= 0,1,..., nj.

. For a node i = 1, ... , 1, let wi denote the total weight of the subtree rooted at i. We

define a set L as follows. Initially L = {l}. We set lmi = 1. While 'min > 1, choose

the smallest ' > 1 such that wl'+i (1 + ')W~min for some 3' > 0 that we will choose
later. Then we add 1' to L, set 1min = 1', and repeat. We note that the size of the set

L is upper bounded by ILI log1 +6,(nxmax) < O(log(nxrnax)/').

We need the set L for the following reason: We want to approximate the sparsity

vector for the tree x. Fix an arbitrary sparsity t > 1 that we want to approximate.

The optimal tree will pick a number 1" > 1 of nodes from the spine and rooted subtrees

from the trees xc,..., Xc". The main idea is that I" is as good as 1"' for some 1"' E L up

to a factor (1 + 3'). That is, we can assume that 1" E L and we loose at most a factor

of (1 + 3') in the approximation ratio (we make this precise in the analysis below).
This implies that it is sufficient to compute the sparsity vectors for all different 1" E L,
i.e., assuming that we have to pick the first 1" nodes from the spine. In particular,

we do not require to compute sparsity vectors for all values in [1], which leads to an

important speed-up and enables our algorithm to run in nearly-linear time. To get
an approximation for sparsity t, we take the minimum tail (for sparsity t) that we
achieve over all the computed sparsity vectors for different 1" E L.

. For every 1" E L, we compute a sparsity vector r" E Nn+. Let t be the sparsity that

we want to approximate. We want to pick up the first 1" nodes from the spine. We
also have to pick up t - l" nodes from the trees x 1, ... ,c". Therefore, we set

rt := + X"

min s + ... +s ill

Mir..,'Mj' >0 M i/
s.t. mj+...+mi, =t-l

It remains to approximately compute min s + ... + si,). This is exactly the

problem stated in Theorem 5.6.1.2. We run the corresponding algorithm with approx-

imation factor (1 + 3'). The approximate sparsity vector r C Nn+1 for the tree x is

then computed as rt := mini/EL r' for all t = 0, 1,. ., r.

Correctness of the algorithm There are three sources of error in one recursive call of

the algorithm. First, we do not have the exact sparsity vectors for the subtrees xi. Instead,
we have (1 + 6)-approximate sparsity vectors. This introduces 1 + 3 multiplicative error in

our approximation of the sparsity vector for the tree c. Second, we will show below that

working with the prefixes of the spine of length I" E L introduces a multiplicative error of

(1+'). Finally, since we perform an approximate (min, +)-convolution in the final step of the
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recursive call, we get additional multiplicative error of (1 + 6'). Therefore, the multiplicative
step gives an approximate sparsity vector for the tree x with error (1 + 6) (1 + 6')2. From

Definition 5.20, we know that the number of different spines on any path to the root is upper

bounded by O(log n). This implies that the recursive depth of the algorithm is O(log n),
which leads to a final approximation error of (1 + ') .O(log) Choosing 6' = 8 E ) gives

the promised (1 + E) approximation factor.

It remains to show that working with the prefixes of the spine of length I" E L introduces

a multiplicative error of at most (1 + 6'). Fix an arbitrary sparsity t = 0,..., n. Let ' be

the number of nodes from the spine that an optimal subtree (with the smallest possible

tail error) of size t picks up. We assume that 1' V L since otherwise we compute an exact

(sub-)solution. We have that l" < 1' < I' for some lI", l'' E L with w1 +"1 < (1 + 6')wg by
the construction of the set L. Let Q* be the support of the optimal subtree (Q* picks up '
nodes from the spine). Since 1' < l, we have

w1/ 1 L|xg|I1. (5.13)

Let Qt be Q* but with all the nodes from the subtree rooted at l' + 1 removed from it. Then

Qt picks up l" nodes from the spine as required. We have to show that we did not increase
the tail too much by removing vertices from the support Q* to get the support Qt. To this
end, we observe that we increased the tail by at most wl"+ - wl,, and therefore:

|xg|-I|1 IIXTiIi1 + W1+1 - W2

|Xw||1 + 6'W1"2
< (1 + 6')IjX?-I|,

where we use (5.13) in the last inequality.

The runtime of the algorithm There are S:= O(log n) levels of recursion in the
algorithm. In each level, we perform ILI O(log(nxmax)/6') =: S2 approximate (min, +)-
convolutions between multiple sequences with approximation factor (1 + 6'). From Theo-

rem 5.6.1.2, we know that one (min, +)-convolution takes S3 := 0 ( - log 4 n - log2 xmax)

time. Since we chose 6' = ( ), we get the final runtime stated in the theorem:

S1 - S2 - S 3  0 ( . log9 n - log3 Xmax

5.6.3 1 + E head approximation in nearly linear time

In this section, we prove the following theorem.

Theorem 5.23. Given a vector x and an integer k > 1, we can find a subtree Q C Tk such

that
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where

k*, =arg max IIxQ, 11.

Moreover, the algorithm runs in time 0( n . log 12 n log2 Xmax)

We solve the problem in two attempts. In the first attempt, we construct an algorithm that
runs in the required nearly-linear time but the approximation error is too large. This will
allow us to introduce ideas used in the second (and final) algorithm that achieves both the
desired running time and approximation factor.

5.6.3.1 First attempt to solve the problem

For a tree x of size n > 0, we define the head tree sparsity vector to be the vector

)T

Notice that this definition is different from the tail tree sparsity vector in Section 5.6.2. To
simplify the exposition, we omit the word "head".

Our plan is to compute an approximation to the tree sparsity vector for every tree rooted
at a special node, i.e., for every tree rooted at the first node of every spine. Since the root
of the tree is a special node, this will also solve our original problem.

Similarly to the previous section, we perform this computation recursively.

. For an integer 1 > 1, let P1, P2, ... , pi be the spine that starts at the root pi of the tree
x and ends in a leaf (pl) of the tree. To simplify notation, we renumber the vertices
of the tree x so that the spine consists of vertices 1, ... , 1 in this order.

* For i = 1, ... , 1 - 1, node i has child node i + 1. Let x' denote the subtree rooted at the
other child node. Let ni > 0 denote the size of the subtree xi. To simplify notation,
let x1 be an empty tree of size n := 0. It corresponds to a child of leaf 1. Let

s := si, isiI ... ,s si T E Nni

be the approximate sparsity vector for the subtree x' computed recursively. We assume
that s' is a (1 + 6)-approximate sparsity vector in the following sense. Let S be the

(exact) sparsity vector for the subtree x'. Then .j/(1+6) < s < . for all j = 1, ... , ni.

We will determine 3 > 0 later.

. Let t = (ti, ... , tm)T E N' be the approximate sparsity vector corresponding to a
tree of size m > 0. We would like to represent t with much fewer than m entries so
that we can work with the sparsity vector faster. For this, we define the compressed
sparsity vector C(t) EE N10g+6'(mxmax) as follows.' For j = 0,...,log1+,'(mxmax) - 1,
we set C(t)j to the minimum j' > 1 such that tj, > (1 + 3')i. Notice that the sparsity
vector is non-decreasing (that is, tk tk+1 for every k = 1,. .. , m - 1). Intuitively,
C(t) stores the indices of the sparsity vector t where the value changes by a lot,
i.e., by at least a factor of 1 + 3'. We decreased the number of entries from m to

'We will choose 6' > 0 later. Xmax upper bounds the maximum value in the vector t.
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log1 +6 '(mXmax) O(log(mXmax)/6') by using C(t) instead of t. Note that, given C(t),
we can recover vector r = (ri, .. , rm)T E N, such that t/(1 + 3') < rj < tj for every

j . E [m]. We do this as follows: we set rj := maxj,:c(t)j,<j(1 + ')i' for every j E [m].

For every i E 1 ... 1, we compute the compressed sparsity vector C(s2 ) corresponding
to the subtree x2. Then, for every i = 1, 1 - 1, ... , 1 (in this order), we compute the
compressed sparsity vector c' for the tree rooted at node i. To compute c2 we need
C(s') and c'- 1. Given C(s') and c- 1 , we can first compute approximate sparsity
vectors corresponding to the tree xi and to the tree rooted at node i - 1 as described
in the definition of compressed sparsity vectors above. Then we could use (max, +)-
convolution to compute the approximate sparsity pattern for the tree rooted at node i
from which we can obtain c'. However, the time complexity of this approach is too large.
Instead, given ci-I and C(s'), we can compute c' directly in time 0(log2 (nxmax)/' 2 ).
We give more details below.

We output c1 , which is the compressed sparsity vector corresponding to the input tree
X.

Why this approach does not quite work Consider the stage of the algorithm when
we are given compressed sparsity vectors ci- 1 and C(s') and we compute c' for some fixed
i = 1,..., . To compute c', we can (implicitly) compute an approximate sparsity vector
a corresponding to ci-I and an approximate sparsity vector b corresponding to C(st) as
described in the definition of the compressed sparsity vectors. The vectors a and b consists
of at most 0(log(nXmax)/6') different entries. It is not hard to see that the approximate
sparsity vector for the tree rooted at node i consists of at most 0(log2 (nxmax)/6'2 ) different
values (it is essentially a (max, +)-product of a and b). We obtain c' from the resulting
approximate sparsity vector as in the definition of the compressed sparsity vectors. Again,
it is easy to check that this can be done implicitly in the stated runtime. As observed in
the definition, the step of obtaining the compressed sparsity vector c' introduces a 1 + 3'

multiplicative error because we round the values of the vector to an integer power of 1 + 3'.

Since we compute I compressed sparsity vectors c, c -1 , ... , ci, the total error that we collect
is (1 + 3')1. Since we want the final error to be small (at most 1 + E), and 1 can be large (as
large as Q(n)), we have to choose 3' = 0(1/n). This is prohibitively small because even the
size of the compressed sparsity vectors becomes Q(n).

5.6.3.2 Second attempt to solve the problem

In our first attempt, we constructed an algorithm in which we had to choose 3' to be too
very small. In this section, we change the algorithm in a way that will allow us to pick 3'
to be much larger. The resulting algorithm then runs in the promised time complexity and
achieves a 1 + E approximation. The algorithm stays the same as in attempt one, except for
the last (fourth) step. We now describe how to modify this last step.

W.l.o.g. we assume that 1 is an integer power of 2. We can do that since otherwise we
can add 1 - 2i [l/2ij nodes to the spine with the corresponding values equal to 0. For
every integer j > 0 such that 2 < 1, we split the nodes 1, 2, . .. , 1 on the spine into l/2j
groups, each containing 2' nodes. For y = 1, ... , 1/2j, the y-th group consists of 2i nodes
(y - 1) 2 i + 1, (y - 1)2i- + 2,..., y2'. For a fixed j > 0 and for a fixed group y, we want to
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compute an approximate sparsity vector r3 'y corresponding to subtrees in which we choose
only nodes (y - 1)2j + 1, (y - 1)2j + 2, ... , y2 from the spine. Namely, we want to compute

rj : x(y-1)2j+l + - - - + Xy2i

+ max (y-)2+l + ... +s 
m1,...,m2j;>0 ( M 2j

St. m1+...+m2j=t~23

for all t = 0, 1, ... , 23 + n(y-1)2j+l + n(y-1)2i+2 +... + ny2i. To approximately compute the

quantity max (... + sm2.), we run the algorithm from Theorem 5.6.1.2 with

approximation factor 1 + 6'. Let nij' := 2 * + n(y-1)2j+1 + ... + ny2. The runtime for

(1 + Y')-approximately computing rj'y is

* 

n~ log 6 n o max) ( 6/2 log -02mx

by Theorem 5.6.1.2. When using Theorem 5.6.1.2 we note that the largest value in vectors
Si can be Q(nW). Since njl +... + nj,I/2j <; n, we get that the total runtime for computing
the approximations i'Y for all vectors r3'Y is upper bounded by

0 (n. log7 n - log 2 xmax). (5.14)

Now we will describe how to use the vectors i'Y to get an approximation to the sparsity
vector of the tree x. We start with computing the compressed sparsity vectors C(Oi') for
all j and y.

For every i = 1, 2,...,1, we consider trees in which we choose nodes 1, 2,. .. ,i from
the spine and we do not choose the node i + 1. For such trees, we compute the com-
pressed sparsity vector v'. We want to use at most O(log n) compressed sparsity vec-
tors C(iO'YO), C(i'i), C(IJ2,2), C(ia393),... to compute v'. We choose the pairs jp, y,
according to the binary expansion of i: we choose different integers jp such that i =
2jO + 2, + 2j2 + 2h +.... We also choose the groups yp so that different groups do not share
nodes and together the groups cover all elements 1, 2,... ,i from the spine. To compute
V, we could compute the (max, +)-convolution of the vectors o, 1'Y1, j2,Y2,. from

which we can obtain the compressed vector v'. However, this would take too much time.
Instead, we observed in our previous attempt that we can compute vi directly from the
compressed vectors C(r.PYP). Thus, the compressed sparsity vector vi can be computed in
time O(log n - log2 (nxmax)/6'2 ).

Now we have 1 compressed sparsity vectors v, I .2 v1. To compute the sparsity vector
for the tree x we could do the following: get sparsity vectors corresponding to vectors
v 1, v2 , ... , v1 and compute entry-wise minimum of the 1 vectors. This has too large time
complexity and instead we compute the answer by computing the entry-wise minimum
without explicitly computing the sparsity vectors. More precisely, let v' E N' be a vector
consisting of only +oo initially. For every i E [1] and for every entry v', we set v to be

3

equal to min(v'j,j). We set z = 1. For every j = 1,..., n in this order, we set vj := (1+')z

and, if v +o0, we update z = max(z, v). We output v as the sparsity vector for the tree

154



X.

The approximation factor of the algorithm We assume that the vectors s' (that we
compute recursively) are (1 + 6)-approximations to the exact sparsity vectors. We compute
the vectors ri1 that introduce another 1 + 6' multiplicative error in the approximation.
We then get compressed sparsity vectors C(Oi'), which gives another multiplicative error
factor 1 + ('. To compute every v', we need to compute a (max, +)-convolution between
compressed sparsity vectors O(log n) times, which gives (1 + 6')O(logn) error. The total error
from the recursive call is bounded by

(1+ 6) - (I + 6') (1 + 6') - (I + 6/O')"ogn)

= (1 + 6) (1 + 5')O (log n)

Since the depth of the recursion is O(log n) (from the definition of the heavy-light decom-

position), the error of the algorithm is (1 + 6')O(1ogn2 ). To make it smaller than 1 + E, we
set 3' = E(E/ log2 n).

The runtime of the algorithm The runtime of the recursive step is dominated by
computing the vectors rj'Jy. Plugging 3' = 8(E/ log2 n) into (5.14), we get that the runtime
of the recursive step is

0( -2. log n - log2 Xmax).

Since the depth of the recursion of the algorithm is 0 (log n), the final runtime is

0( n .log 12  . log 2 Xmax)

5.6.4 (max, +)-Convolution hardness for the tree sparsity problem

In this section is we provide an evidence that the exact tree sparsity requires nearly quadratic
time. Recall that, given a binary node-weighted tree x of size m, we want to output the
largest sum of weights of nodes of x that we can pick up by choosing a rooted subtree of x
of size k < m. The best known algorithm for this problem runs in time 6(m2 ) (see Section
5.6.7). In this section we show that this problem cannot be solved in a strongly subquadratic
time unless the (max, +)-convolution problem can be solved in a strongly subquadratic time.
This is a well studied problem [55, 68] which is known to be at least as hard as the polyhedral
3S UM problem' [55].

Theorem 5.24. Let x be a binary node-weighted tree of size m. If (max,+)convolution
cannot be computed in m 2 -n 1 ) time, then the sparsity cannot be computed in m2-n 1 ) time
either.

Proof. Follows from Theorems 5.28 and 5.32 below. D

'Given three vectors A = (Ao,. . ., A, 1 )T, B = (Bo,. .. , B_ 1 )T, and C = (Co,..., C"_I)T, such that
Ai + B3  C,+j for all 0 < i, J < n, decide whether Ai + Bj = Ci+j for any 0 < i, j < n. No strongly
subquadratic time algorithm is known for this problem.
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Definition 5.25 (SUMi problem). Given three vectors A, B, C G Z, output

{k I ij :k = i + and Ai + Bj + Ck > 0}.

Definition 5.26 (SUM 2 problem). Given three vectors A, B, C E Z, output t = 0, n-I
such that

t E {k I 3ij : k = i +j and Ai + Bj + Ck 0}

or report that there is no such an integer.

Definition 5.27 (SUM 3 problem). Given three vectors A, B, C E Z, decide if the following
statement is true:

3i, j : Ai + Bj + Ci+j > 0.

If (max, +)-Convolution problem can be solved in strongly subquadratic time, so can
SUM 3 problem. We will show the opposite direction - if SUM 3 problem can be solved
in strongly subquadratic time, then (max, +)-Convolution problem can be solved in strongly
subquadratic time. We show this by reducing (max, +)-Convolution problem to SUM 1

problem, SUM 1 problem to SUM 2 problem, SUM 2 problem to SUM 3 problem. Our proof
of the following theorem uses the approach from [237] (see Sections 4.2 and 8).

Theorem 5.28. If SUM 3 problem can be solved in a strongly subquadratic time, then

(max,+)-Convolution can be solved in a strongly subquadratic time.

Proof. Follows from Lemmas 5.29, 5.30 and 5.31 below. El

It can be shown that SUM3 problem is no harder than the 3SUM problem (given a set of
integers, decide if it contains three integers that sum up to 0) [2]. This can be done using
the techniques from [169] and [236] (see Theorem 3.3). This together with Theorem 5.28
implies that (max, +)-convolution problem is no harder than the 3SUM problem (up to a
factor that is logarithmic in the largest absolute value of an integer in the input).

Lemma 5.29. Let A, B E Z' be input for (max, +)-Convolution problem. Let W be the
largest absolute value of an integer appearing in vector A or B. If SUM1 can be solved in
time O(n2-E), then (max, +)-Convolution can be solved in O(n2-e . log W) time.

Proof. To solve (max, +)-Convolution, we perform O(log W) steps of binary search for all
indices in parallel.

We define two vectors Lk = -10W and Hk = 10W for all k = 0,..., n - 1. We perform the
following sequence of steps 100 - log W times:

.Set A' <-- A, B' +-- B and Ck __LHf2 alk= ,...,n-

2. Run the algorithm for SUM1 on vectors A', B' and C'. Let R be the output set.

3. For every k = 0, . . ., n - 1, consider two cases. If k E R, then update Lk .

If k R, then update Hk Lk Hk

Let C be the output of (max, +)-Convolution instance that we need to output. During the
execution of the algorithm above, we always maintain property that Lk <; Ck < Hk for all

156



k = 0, ... , n - 1. After 100 - log W iterations, we have Lk = Hk - 1. This implies that
Lk = Ck for all k = 0, .. . , n - 1. Therefore, we output Lk as the answer. E

Lemma 5.30. If SUM2 can be solved in time O(n2-E), then SUM can be solved in time
o(n2 -(F/2))

Proof. The idea is to run the algorithm for SUM 2 problem to find element t of interest,
remove Ct from vector C and repeat until we found all elements that need to be reported.
To achieve the stated runtime, we split both vectors A and B in x/iii vectors each having
V/i entries. Then we run the algorithm for SUM 2 for each pair of shorter vectors at least
once. Below we provide more details.

Let A = (A,...,An_ 1)T, B = (Bo,..., Bn_ 1)T and C = (Co,..., Cn_1 )T be the input
vectors for SUM, problem. Let W be the largest absolute value of an integer in vector A
or B. Let T = 0 be the set that the algorithm will output. Initially the set is empty set.
Let a be parameter that we will set later (we will set a = 1/2). For each pair of integer
(i', j'), i' = 0, ... , n1-a - 1, j' = 0,..., n1-a - 1, we perform the following sequence of steps
(in total, we do the sequence of steps n2 - 2 a times).

1. For i = 0, ... ,na - 1, we set A' = A(i,.n-)+i. For i na,..., 2na - 2, set A' = -10W.

2. For j = 0, ... na -1, we set B = A(j,.na)+j. For j =na,..., 2na - 2, set B) = -10W.

3. For k = 0, . . , 2na - 2, we set Ck = C((i'+j')-n")+k-

4. Run the algorithm for SUM 2 problem on vectors A', B' and C'. If the algorithm
outputs an integer t, add integer t to set T and set Ct = -10W, and go to Step 1.

The correctness of the algorithm follows from its description. It remains to analyse its
runtime. Suppose that the algorithm for SUM 2 runs in time O(n2-E). Since the length of
vectors A', B' and C' is O(na), every invocation of SUM 2 algorithm takes S1 := Q(na(2-,))
time. We run algorithm for SUM 2 for every tuple (i',j'). The number of tuples is S2 :=
O(n2- 2a). In Step 4 we might need to reiterate execution of the sequence of steps if we
received some integer t. However, notice that no integer t can be reported twice by the
definition of SUM 2 problem and because we set Ct = -10W. Therefore, the number of
times we might need to reiterate the sequence of steps, is upper bounded by S3 := n. Thus,
the total runtime is upper bounded by

O(S1 - S 2 + Si - S3) = 0 (na(2-6) . n2-2a + na(2-E) . n)

By setting a = 1/2, we get that the runtime is upper bounded by O(n2-(,/ 2)), as required. El

Lemma 5.31. If SUM 3 problem can be solved in time O(n2 -E), then SUM 2 problem can
be solved in time O(n2-e log n)

Proof. This follows by binary search. E

Theorem 5.32. If tree sparsity can be solved in strongly subquadratic time, then SUM 3
problem can be solved in a strongly subquadratic time as well.

Proof. Let A, B, C C Z' be the input to the SUM 3 problem. Let W be equal to 10 times
the largest absolute value of an entry in A, B, C. Consider A E Z". We first construct a
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Algorithm 23 Extracting a dense subtree.

1: function DENSESUBTREE(X, Q, k')
2: Let T be a tour through the nodes in Q as they appear in a depth-first traversal.
3: Let I = (i1 , ... i2jQJ-1) be the node indices in order of the tour T.

Xi. if position j is the first appearance of ij in I
4: Let x' -

: Le0 otherwise

5: Let S = (i, ... ,ij+k'-1) be a contiguous subsequence of I with 1j+k'1 -,>

21I11XQI11i
6: return Q', the set of nodes in S.
7: end function

path PA of n nodes such that the weight of the first node is 11W + A 0 and the weight of the
i-th nodes is W + Aj_1 - Aj- 2 for i = 2, ... , n. PB is constructed in the same way. Finally,
we construct a path pC such that the weight of the first node is 11W + C,_1 and the weight
of the i-th nodes is W + Cn-i - Cn-i+1 for i = 2, ... , n. We then build the tree x as follows.
The root of the tree is equal to the first node of PA. The left child of the root is equal to the
second node of PA. The right child of the root is equal to the first node of PB- (call it v).

The left child of v is equal to the second node of PB. Finally, the right child of v is equal
to the first node of Pc. We set m to be the size of the tree (which is 3n), and set k to be
equal to n + 2. Observe that

max IxoIII > (2 + n)W + 30W
QcETk

iff there are i,j E {0,1, ... , n - 1} such that Ai + Bj + Ci+j > 0.

To show the above inequality, let kA, kB, kc > 1 be the number of nodes that we pick
up from paths PA, PB, PC, respectively, in the tree x in the optimal support Q. kA, kB, kc

are positive because we assign very large weights to the first nodes of the paths. We
have that kA + kB + kc = k = 2 + n. It is easy to verify that the contributions from
paths PA, PB, PC are 1OW + kAW + AkA_1, 10W + kBW + BkB_1, 10W + kcW + Cn-kc,
respectively. Since kA + kB + kc = 2 + n, the total contribution from the three paths is
30W + (2 + n)W + AkA1 + BkB-1 + C(kA-1)+(kB-_1), as required. El

5.6.5 Constant factor head approximation in nearly linear time

Before we give the main algorithm of this section, we setup some auxiliary sub-routines.

5.6.5.1 Subroutines

First, we state the following sub-routine which extracts a subtree of bounded size and
proportional "density" from a given tree. A similar sub-routine has appeared before in [118],
but here we give a variant that maintains exact sparsity.

Lemma 5.33. Let x E R' be a vector of node weights and let Q be a subtree. Moreover,
let k' E N be the target sparsity. Then DENSESUBTREE(X, Q, k') returns a subtree Q' of size
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|'I < k' such that
k'

Moreover, DENSESUBTREE runs in time O(IQI).

Proof. We use the notation set up in the algorithm DENSESUBTREE (see Algorithm 23). By
a simple averaging argument, we know that at least one contiguous length-k' subsequence
of I achieves at least the density of the sequence I, which is

1 1 1

x> > 2 2 11
j=1 j=1 2

The second inequality follows from the definition of x' (every node value in Q appears exactly

once in the sum).

Therefore, Line 5 of the algorithm always succeeds and we find a subset Q' C Q corresponding

to a subsequence S =(i, .. ., ij+k'-1) such that

+k'- k'

IIXQ2 III Z Xfe >_ Q H1XQIIi

Finally, we can find such a dense contiguous sequence in linear time by maintaining a sliding
window over the sequence I.

Moreover, we use the following sub-routine for solving the Lagrangian relaxation of the tree

sparsity problem [117].

Fact 5.34 ([117]). There is an algorithm SOLVERELAXATION with the following guarantee.

Let x E Rn be a vector of node weights and let A be the Lagrangian trade-off parameter.

Then SOLVERELAXATION(x, A) returns a subtree Q such that

IIxQIII - AIQI > maxlxQ',Ij - AIQ'I . (5.15)
Q'ET

Moreover, SOLVERELAXATION runs in time O(n).

5.6.5.2 Unrooted head approximation

We now give an algorithm for finding an unrooted subtree that achieves a constant-factor
head approximation. While the resulting subtree is not connected to the root, we have
sufficiently tight control over the sparsity so that we can later post-process the subtree by
connecting it to the root.

Theorem 5.35. Let x - Rn be a vector of node weights, let k E N be the target sparsity,
and let 0 < a < 1 be a sparsity control parameter. Then UNROOTEDHEAD(x, k, a) returns

a subtree Q of size II ak such that

||x ||12 - max ||xq,|| .I
16 Q'ETk
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Algorithm 24 Finding an unrooted head approximation.

1: function UNROOTEDHEAD(x, k, a)
2: Xmax +- maxiE[] Xi
3: A, +- x

2k

4: Q1 - SOLVERELAXATION(x, A,)
5: if IjI < 2k then
6: return DENSESUBTREE(X, Q1, ak)
7: end if
8: Ar +- 211 i
9: E a-4k

10: while Ar - Al > E do
11: Am Ai+Ar

2

12: Qm + SOLVERELAXATION(x, Am)
13: if |Dml > 2k then
14: A+ Am
15: else
16: Ar Am
17: end if

18: end while
19: Q1 +- SOLVERELAXATION(x, A,)
20: Q +- DENSESUBTREE(x, Q1, ak)
21: Qr +- SOLVERELAXATION(x, Ar)
22: Q' *- DENSESUBTREE(X, Qr, ak)
23: if |Iq| l|1 |1Q'i|i then
24: return Q'

25: else
26: return Q'r
27: end if
28: end function

Moreover, UNROOTEDHEAD runs in time O(nlogn).

Proof. We adopt the notation of Algorithm 24. Moreover, let Q* be an optimal subtree of
size k, i.e., we have Q* E Tk and IlxQ*i = maxQ'ewk IxQ'II1.

There are three cases in which UNROOTEDHEAD returns a subtree: Lines 6, 24, and 26. We

consider these three cases separately. Note that in every case, the final subtree is the result
of a call to DENSESUBTREE with sparsity parameter ak. Hence the final subtree Q returned

by UNROOTEDHEAD always satisfies JQI < ak (see Lemma 5.33). It remains to show that
the subtree Q also satisfies the desired head approximation guarantee.

Case 1: We start with Line 6. Substituting Q* into the guarantee of SOLVERELAXATION

(see Fact 5.34), we get the following inequalities:

11xQ1 |ii - AjjQjl > maxllxQyIl1 - AjlQl Ilx|rIii - Alk
Q'ET

Ilx~j1 IIxQ* 1 - Al(k -- Ilj1) . (5.16)
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Equation (5.16) and its variant for A, will become useful again later in the proof. Now, we
substitute A, = xa and get

|XQ 11 1 IIXQ* 11i1 - 1 Xmax

Since we can assume that the sparsity k is at least the depth of the tree, a k-sparse rooted
subtree can always pick up the largest node weight xmax. So IXQ11 > max and hence

To complete this case, we invoke the guarantee of DENSESUBTREE (Lemma 5.33) to get

IXI > O'IIXQ1

ak

> _IIX2-IIi8

Case 2: We now consider the case that the algorithm performs the binary search over A
and returns in Line 24 or 26. Note that we initialize the binary search so that we always
have jQI) > 2k and IQr < 2k. Moreover, at the end of the binary search we also have
Al < Ar Al + E.

We now distinguish two sub-cases: in the first sub-case, we assume that the solution jIQ1

has a good density , , which implies that the subtree Q' is sufficiently good. In the
complementary case, we can then use the low density of Q1 to show that Q'. is a good
solution.

Sub-case 2a: *hxQ1 Ii > 1  Substituting this inequality into the guarantee providedJIJi - 4 k
by DENSESUBTREE gives

ak a
1 21Q11 8~~~Ii IQ

as desired.

Sub-case 2b: * 1 xQ2 11. We lower bound IIxor III via the guarantee provided by
1011 4 k

SOLVERELAXATION, which we re-arrange as in Case 1 to get:

IIxQrIi > IIxQ* - Ar(k -IQr|)

> ||xQ-||1 - Ark . (5.17)

In order to control the RHS above, we need an upper bound on Ar (note that IQrI can be
less than k). We establish this via an upper bound on A, and using that Al and Ar are close
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at the end of the binary search. Re-arranging Equation (5.16) gives:

Al x!j1iIi - IIxQ* Ill
- |11 - k

< IfRiQ 11
I~Ik

< 2I1xQ,~ III
INi

1 IIXQ I*ll
2 k

where we used I|1I > 2k and the low-density assumption for Q, in this sub-case.

Substituting this upper bound and Ar Al + E back into Equation (5.17) gives

1
11 x 011 > IlxQ* 1 * - EIxQ- 11i - k

2
1

> _IIxQ*I1i

where we used Xmax 5 |xn* 1 1 as in Case 1.

We now invoke the guarantee of DENSESUBTREE. As mentioned above, we maintain <Dr <

2k as an invariant in the binary search. Hence we get

ak
IIXQ2', 2 C IXr 11 - 16 1 .r 21QrI 16

Finally, we prove the running time of UNROOTEDHEAD. Since both subroutines SOLVERE-

LAXATION and DENSESUBTREE run in linear time, the overall time complexity is dominated

by the binary search. We can upper bound the number of iterations by the logarithm of

Ar _8kflxl|1i

- < 8nk < 8n2 ,
E Xrmax

which implies the running time bound in the theorem. El

5.6.5.3 Final head approximation algorithm

We now state our overall head approximation algorithm. The main idea is to invoke

UNROOTEDHEAD form the previous subsection with a sufficiently small sparsity control

parameter a so that we can connect the resulting subtree to the root without violating our

sparsity constraint.

Theorem 5.36. There is an algorithm HEADAPPROX with the following guarantee. Let

x E R' be a vector of node weights, let d be the depth of the tree, and let k E N be the target

sparsity. Then HEADAPPROX returns a rooted subtree Q of size II < k such that

IXQIIi k-d max I 'xQ' II.16k Q'ETk
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Moreover, HEADAPPROX runs in time O(nlogn).

Proof. Let Q' be the subtree returned by UNROOTEDHEAD(x, k, k-- ). Hence Q' satisfies

I|'I < k - d and

40,11i > k-d
16k

Next, let QP be the path from the root of the subtree Q' to the root of the overall tree. Since
the depth of the overall tree is d, we have jGpj K d.

We now let Q = Q' U QP be the final subtree. Clearly, Q is a rooted subtree and still satisfies
the same head approximation guarantee as Q'. Moreover, we have JQ| = |Q'I + jQpy < d as
desired.

The running time of HEADAPPROX follows directly from Theorem 5.35. E

Corollary 5.37. Assume that the depth of the input tree is at most a constant fraction of
the sparsity k. Then HEADAPPROX is a constant-factor head-approximation algorithm with
exact sparsity k.

5.6.5.4 A boosted algorithm

Prior work shows that it is possible to "boost" a head-approximation algorithm so that the
approximation ratio improves arbitrarily close to one while only incurring a small increase
in sparsity [119].

Fact 5.38 ([119]). Let HEAD be a head-approximation algorithm with approximation ratio

cH and output sparsity ak. Then BOOSTEDHEADt is a head-approximation algorithm with
approximation ratio c'H - (1 - cHt and output sparsity tak. Moreover, BOOSTEDHEAD

runs in time O(t - THEAD), where THEAD is the time complexity of a single invocation of the
algorithm HEAD.

We can invoke Fact 5.38 and our new head approximation algorithm to give a range of
trade-offs between sparsity increase and head-approximation ratio. It is worth noting
that Fact 5.38 has only a logarithmic dependence on the gap between cH and an exact
head "approximation" with factor 1. For node weights x coming from a bounded range, this
allows us to achieve an exact head (and hence also tail) approximation with only logarithmic
increase in sparsity. More precisely, we get the following theorem, where we assume that
the depth of the tree d is at most k/2 in order to simplify the bounds.

Theorem 5.39. There is an algorithm BOOSTEDHEADAPPROX with the following guar-
antee. Let x E N' be a vector of node weights bounded as xi < A, and let k E N be the
target sparsity. Then BOOSTEDHEADAPPROX(x, k) returns a rooted subtree Q such that

IQI < 33k log 2kA and
||xq|j1 2! max ||xQ,|1.

Q'ETk

Moreover, BOOSTEDHEADAPPROX runs in time O(n (log n) (log kA)).

Proof. First, note that we can restrict our attention to trees with depth at most k. Any

node that has larger distance from the root cannot participate in the optimal solution due
to the sparsity constraint.
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Next, we show that increasing our output sparsity by a constant factor allows us to get a
result independent of the depth of the tree (this is in contrast to Theorem 5.36 and Corollary
5.37). We can construct an algorithm HEADAPPROX' that achieves a head approximation

ratio of by invoking UNROOTEDHEAD from Theorem 5.35 with parameter a = -. We
ensure that the output is an unrooted tree by connecting it to the root. This increases the
sparsity by at most the depth, which we just bounded by k. Hence the total sparsity of the
output is ak + k = !a. Moreover, HEADAPPROX' runs in time O(n log n).

We now boost our new head approximation algorithm HEADAPPROX'. Rearranging the
guarantee in Fact 5.38 shows that

log! 1
t = < 22 log -

log 
1 CHo

suffices for a boosted head approximation ratio of c' = 1 - E.

Since we have integer node weights, the gap between an optimal head approximation and
the second-best possible head approximation is at least 1. Moreover, the total weight of
an optimal k-sparse subtree is at most kA. Hence it suffices to set E = 1 in order to
guarantee that a (1 - E)-head approximation is exact. As a result, invoking BOOSTEDHEAD
with t = 22 log 2kA produces a subtree Q with the desired properties.

Each iteration of BOOSTEDHEAD invokes HEADAPPROx' once. So the running time of
HEADAPPROX' (see Theorem 5.36) and our bound on t imply the running time bound of
the theorem.

5.6.6 Approximating (max, +) and (min, +)-convolutions

5.6.6.1 Approximating the (max, +) and (min, +)-convolutions between two se-
quences

Let A, B E N" be two integer vectors with positive entries. Let W be the largest value of
an entry in A or B. Let C E N' be the (max, +)-convolution of A and B. We can output a
vector C' E N' such that C < Ck < (1 + e)Ck' for all k = 0, ... , n - 1 in time

0 ( . log n - log2 w).

An analogous statement holds if C is the (min, +)-convolution of A and B. We can output a
vector C' E N' such that Ck, Ck 5 (1 + e)Ck for all k = 0, ... , n - 1 in the same runtime.

Proof. Given a vector D E N' with positive entries and an integer i > 0, we define a binary
vector X(D, i):

X(D, i)k := if (1 + E) i < Dk < (1 +)i+1,

0 otherwise.

For all pairs of integers 0 < i, j log 1+ W, define vector Xij := X(A, i)*X(B, j). Computing
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all vectors Xij takes total time

0 ((iog2+e W) - n log n).

Finally, we set

Cl:= max (1 + E)i + (1 + E)i (5.18)Ck Oi,jilog1+E W
s-t. (Xigj)k=1

for all k = 0, ... , n - 1. The runtime and the correctness follows from the description.

The proof for (min, +) convolution is analogous. F

5.6.6.2 Approximating the (max, +) and (min, +)-convolutions between multiple
sequences

Let A' E Nf, .. . , Al E Nni be I > 2 vectors with positive entries. We assume that the

entries of the vectors are indexed starting with 0, i.e., A' ( Ai,..., A,)T for every

i = 1, .. ., 1. Let B E N", n = n +. .. +n be the (min, +)-convolution between the 1 vectors
A', ... , An' defined as follows:

Bj = min A'L + .. .+ A'.m1+...+mi= j Mjj
s.t. O<mt nt-1 Vt=1,...,l

for every j = 0, . . ., n - 1. We can output a vector B' E Nn such that B' < Bk _< (1 + E)B'
for all k =0, ... , n - 1 in time

Q(n -log n . log 2 W . log 3

where W denotes the largest entry in the vectors A', ... , Al.

An analogous statement holds for (max, +)-convolution (we replace min in the equation
for B3 with max). The runtime stays the same and we output a vector B' E Nn such that
B < Bk (1 + E)B for all k = 0,..., n - 1.

Proof. We repeatedly use the fast algorithm for approximately computing (min, +)-con-
volutions. Let B" be the (min, +)-convolution between the vectors A,..., AL/2 and
let B"' be the (min, +)convolution between the vectors AL1/2]+1, ... , Al. Then B is the
(min, +)convolution between the two vectors B" and B"'. This gives a natural recursive
algorithm for computing B': recursively approximate B" and B"' and use the approximation
algorithm from Theorem 5.6.1.2 to compute get B'. If B" and B' are approximated within
factor (1 + E') and we set approximation factor to be (1 + E") in the algorithm from Theorem
5.6.1.2, we get (1+ e')(1+ E") approximation factor for B'. Since the depth of the recursion is

log 2 1, we get that the final approximation factor of B is (1 + E")'092 '. Setting E" := 0 (
gives the required approximation factor for B'. Since the number of the recursion levels is

0(log 1) and every level takes 0 - log n - log 2 w), we get the required runtime.

The proof for (max, +)is analogous. I
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5.6.7 Tree Sparsity in rectangular time on unbalanced trees

Theorem 5.40. Given a binary tree of size n and an integer k, we can solve the Tree
Sparsity problem in time 0(n2).

Proof. We show this inductively.

Consider the recursive algorithm for solving the Tree Sparsity problem. Consider a tree
with the left subtree is of size L and the right subtree is of size R. The size of the tree
is 1 + L + R. For some constant C we can compute the sparsity vector of size L + 1 for
the left subtree in time C - L2 and the sparsity vector of size R + 1 for the right subtree in
time C -R 2. These two sparsity vectors can be combined to get the sparsity vector for the
root. As can be easily verified, combining the sparsity vectors takes time C' - LR for some
constant C'. Thus, overall time to compute the sparsity vector for the root is

C-L 2 +C-R 2 +C'-LR<C-(I+L+R) 2

if C > C' as required. E

Theorem 5.41. Given a binary tree of size n and an integer k, we can solve the Tree
Sparsity problem in time 0(kn).

Proof. We observe that for every node we need to compute k + 1 entries of the sparsity
vector.

Consider the original tree. A node it heavy if both left and the right subtrees are of size
> k. If both subtrees are of size < k, the node is light. Otherwise, the node is average.

The runtime corresponding to heavy, average and light vertices can be analyzed as follows.

. A simple counting reveals that the total number of heavy nodes is 0(n/k). The total
runtime corresponding to the heavy nodes is O(n/k) -0(k 2) = 0(nk), where 0(k 2 )
comes from combining two sparsity vectors of size k + 1.

* Consider an average node u. The runtime corresponding to it is upper bounded by
O(nuk) where nu is the size of the subtree of u. This is because one sparsity vector is
of size nu + 1 and the other is of size k + 1. The total runtime corresponding to the
average nodes is Eu O(nuk) = 0(nk), where the summation is over all average nodes.

. Consider a light node u whose parent is average or heavy. Let su be the size of the tree
rooted at u. The runtime corresponding to this tree is 0(su) by Theorem 5.40. The
total runtime corresponding to the light nodes is upper bounded by EZ 0(su) = 0(nk)
where the summation is over all light nodes whose parents are heavy or average. The
inequality follows because Eu su = 0(n) and su = 0(k) for all such nodes u.

El
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Chapter 6

Earth Mover Distance Sparsity

6.1 Introduction

The notion of sparsity has emerged as a powerful tool in signal processing theory and
applications. A signal (or image) is said to be k-sparse if only k of its coefficients in a
given basis expansion are nonzero. In other words, the intrinsic information content in the
signal is miniscule relative to its apparent size. This simple notion enables a wide variety
of conceptual and algorithmic techniques to compress, reconstruct, denoise, and process
practical high-dimensional signals and images.

In several practical applications, the nonzero coefficients of signal ensembles exhibit ad-
ditional, richer relationships that cannot be captured by simple sparsity. Consider, for
example, a 2D "image" constructed by column-wise stacking of seismic time traces (or shot
records) measured by geophones positioned on a uniform linear array. Assuming the pres-
ence of only a few subsurface reflectors, the physics of wave propagation dictates that such a
2D image would essentially consist of a small number of curved lines, possibly contaminated
with noise (see Figure 6-1). A convenient model for such an image is to simply assume that
each column is sparse. However, this simple model ignores the fact that the indices of the
nonzeros change smoothly across adjacent columns. Such settings are commonplace: similar
"line" singularities are often encountered in other applications such as biological imaging
and radio-astronomy.

In this chapter, we propose a model for sparse signal ensembles where the locations of the
nonzeros, or the support, of a signal transforms continuously as a function of spatial (or
temporal) location. A key ingredient in our model is the classical Earth Mover Distance
(EMD) [193]. Hence we call our model the Constrained EMD model. Informally, our
proposed model assumes that:

" each signal in our ensemble is k-sparse, and

. the cumulative EMD between pairs of adjacent supports is constrained to be no greater
than a nonnegative parameter B.

The parameter B controls how dramatically the support can vary across different signals. A
value of B = 0 indicates that the support remains constant across all signals in our ensemble,
while a large value of B admits potential large jumps across adjacent signal supports.
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Figure (6-1): Part of a typical seismic shot record (Sigsbee2A data set). The x-axis cor-

responds to space (receiver) and the y-axis to time. Note that the large coefficients of
neighboring columns are at similar locations.

Compressive sensing with the CEMD Model We design both head- and tail-appro-
ximations for our proposed CEMD model.

. Our tail-approximation oracle returns a support set with tail-approximation error
at most a constant times larger than the optimal tail error. At the same time, the
EMD-budget of the solution is still O(B) (Theorem 6.15). The algorithm relies on
solving a small number of min-cost max-flow problems over a specially defined graph.

* Our head-approximation oracle returns a support set with head value at least a
constant fraction of the optimal head value. Moreover, the EMD-budget of the solution
is O(B log ) (Theorem 6.7). We achieve this guarantee with a greedy algorithm that
iteratively adds paths to the solution.

Combining these algorithms into our new framework, we obtain a compressive sensing
scheme for the CEMD model using 0(k log(1 log(I))) measurements for robust signal
recovery. For a reasonable choice of parameters, e.g., B = 0(k), the bound specializes to
m = 0(k log log(-)), which is very close to the information-theoretic optimum of m = 0(k).

Additionally, we demonstrate the advantages of the Constrained EMD model, and the
associated approximation algorithms, in the context of compressive sensing. Geometrically,
the model is equivalent to a particular union of subspaces of the ambient signal space.
Therefore, we can leverage the framework of model-based compressive sensing [36] to build a
new CS reconstruction algorithm that is specially tailored to signal ensembles well-described
by the Constrained EMD model. We illustrate the numerical benefits of the new algorithm
in comparison with existing state-of-the-art approaches.

6.1.1 Prior work

There has been a substantial amount of work devoted to reconstructing time sequences of

spatially sparse signals, e.g., [91, 227]. These works assume that the support of the signal

(or even the signal itself) does not change much between two consecutive steps. However,
the change of supports between two columns a and b was defined according to the fo norm,
i.e., as IIs(a) - s(b) I o. In contrast, we measure this difference using the EMD distance. As

a result, our model easily handles signals such as those in Figure 6-5, where the supports of
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Figure (6-2): The support-EMD for a matrix with three columns and eight rows. The circles
stand for supported elements in the columns. The lines indicate the matching between
the supported elements and the corresponding EMD cost. The total support-EMD is
EMD(supp(X)) = 2 + 3 = 5.

any two consecutive columns can potentially be even disjoint, yet differ very little according
to the EMD.

Another related work is that of [125], who proposed the use of EMD in a compressive sensing
context in order to measure the approximation error of the recovered signal. In contrast, in
this chapter we are using EMD to constrain the support set of the signals.

6.2 The CEMD model

As an instantiation of our main results, we discuss a special structured sparsity model known
as the Constrained EMD model [199]. A key ingredient in the model is the Earth Mover's
Distance (EMD), also known as the Wasserstein metric or Mallows distance [150]:

Definition 6.1 (EMD). The EMD of two finite sets A, B C N with Al = BI is defined as

EMD(A,B) = min Zla--r(a) , (6.1)
,r: A->B aE A

where -r ranges over all one-to-one mappings from A to B.

Observe that EMD(A, B) is equal to the cost of a min-cost matching between A and B. Now,
consider the case where the sets A and B are the supports of two exactly k-sparse signals,
so that JAl = BI = k. In this case, the EMD not only measures how many indices change,
but also how far the supported indices move. This notion can be generalized from pairs of
signals to an ensemble of sparse signals. Figure 6-2 illustrates the following definition.

Definition 6.2 (Support-EMD). Let Q C [h] x [w] be the support of a matrix X with exactly

s-sparse columns, i.e., Icol-supp(Q, c) = s for c E [w]. Then the EMD of Q is defined as

w-1
EMD(Q) = E EMD(col-supp(Q, c), col-supp(Q, c + 1)).

C=1

If the columns of X are not exactly s-sparse, we define the EMD of Q as the mini-
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Figure (6-3): A signal X and its best approximation X* in the EMD model M 3,1. A sparsity

constraint of 3 with 3 columns implies that each column has to be 1-sparse. Moreover, the

total support-EMD between neighboring columns in X* is 1. The lines in X* indicate the

support-EMD.

mum EMD of any support that contains Q and has exactly s-sparse columns. Let s =

maxce[,] Icol-supp(Q, c)I. Then EMD(Q) = mine EMD(F), where F C [h] x [w], Q c F, and

F is a support with exactly s-sparse columns, i.e., |col-supp(F, c)I = s for c c [w].

The above definitions motivate a natural structured sparsity model that essentially char-

acterizes ensembles of sparse signals with correlated supports. Suppose we interpret the

signal x E Rn as a matrix X E Rhxw with n = h w. For given dimensions of the signal X,
our model has two parameters: (i) k, the total sparsity of the signal. For simplicity, we
assume here and in the rest of this chapter that k is divisible by w. Then the sparsity of

each column X,,, is s = k/w. (ii) B, the support-EMD of X. We call this parameter the

EMD budget. Formally, we have:

Definition 6.3 (Constrained EMD model). The Constrained EMD (CEMD) model is

the structured sparsity model Mk,B defined by the set of supports Mk,B = I [h] x

[w] | EMD(Q) < B and |col-supp(Q, c)| = - for c E [w]}.

The parameter B controls how much the support can vary from one column to the next.

Setting B = 0 forces the support to remain constant across all columns, which corresponds

to block sparsity (the blocks are the rows of X). A value of B > kh effectively removes the

EMD constraint because each supported element is allowed to move across the full height of

the signal. In this case, the model demands only s-sparsity in each column. It is important

to note that we only constrain the EMD of the column supports in the signal, not the actual

amplitudes. Figure 6-3 illustrates the CEMD model with an example.
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6.3 Sampling bound

Our objective is to develop a sparse recovery scheme for the Constrained EMD model. As

the first ingredient, we establish the model-RIP for Mk,B, i.e., we characterize the number

of permissible supports (or equivalently, the number of subspaces) lk,B in the model and

invoke Fact 2.15. For simplicity, we will assume that w = Q(log h), i.e., the following bounds

apply for all signals X except very thin and tall matrices X. The following result is novel:

Theorem 6.4. The number of allowed supports in the CEMD model satisfies logMk,BI =

0(k log B).

Proof. For given h, w, B, and k, the support is fixed by the following three decisions: (i)

The choice of the supported elements in the first column of X. (ii) The distribution of the

EMD budget B over the k supported elements. This corresponds to distributing B balls

into k + 1 bins (using one bin for the part of the EMD budget not allocated to supported

elements). (iii) For each supported element, the direction (up or down) to the matching

element in the next column to the right. Multiplying the choices above gives (h) (Bk)2 k,

an upper bound on the number of supports. Using the inequality (a) < (!)b, we get

logMk,B < og ((h) B + k ) 2k)

h B-+-k
s log - + k log + 0(s + k)

s k

= k log -). E
k

If we allow each supported element to move a constant amount from one column to the

next, we get B = 0(k) and hence, from Fact 2.15, m = 0(k + log Mk,BI) = 0(k) rows

for sub-Gaussian measurement matrices. This bound is information-theoretically optimal.

Furthermore, for B = kh (i.e., allowing every supported element to move anywhere in

the next column) we get m = 0(k log n), which almost matches the standard compressive

sensing bound of m -= 0(k log f) for sub-Gaussian measurement matrices. Therefore, the

CEMD model gives a smooth trade-off between the support variability and the number of

measurements necessary for recovery.

We can also establish a sampling bound in the RIP-1 setting with Fact 2.24. For the case

of B 8(k), we get m = 0(k ). In order to match the block-sparsity lower bound

of m = 0(k log,, n), we need to assume that B = 0(k/w), i.e., each path (and not each

element) in the support has a constant EMD-budget on average. We omit the details of this

calculation here.

The following theorem is useful when establishing sampling bounds for recovery schemes

using the CEMD model.

Theorem 6.5. The CEMD model is closed under addition: Mk1 ,B1 +Mk 2 ,B2  M+k 2 ,B1+B 2 *

Proof. Let Q, E MkI,B, and Q 2 E Mk2 ,B2 . Moreover, let F = Q1 U Q2. We have to show

that F E Mki+k 2 ,B1 +B 2 -

171



The column-sparsity of Q 1 and Q 2 is kl/w and k2 /w, respectively. Hence the column-
sparsity of F is at most w1 Z. Moreover, we can construct a matching for F with cost at
most B1 + B2 from the matchings for Q1 and Q2 . To see this, consider without loss of
generality the matchings 71r and 7r 2 corresponding to the first two columns in Q, and Q2,

respectively. We start constructing the new matching 7r' by starting with 1. Then, we.
iterate over the pairs (a, b) in 7r2 one by one and augment 7r' to include both a and b. There
are four cases:

1. Both a and b are still unassigned in 7r'. Then we can simply add (a, b) to 7r'.

2. Both a and b are already assigned in 7r'. In this case, we do not need to modify 7r' to
include a and b.

3. a is not included in 7r', but b is already assigned in 7r'. This is the interesting case
because we must now find a new neighbor assignment for a. Let b' be the entry in the
second column that is in the same row as a. If b' is not assigned yet, we can simply
add (a, b') to 7r'. Otherwise, let a' be the value such that 7r'(a') = b'. Then we remove
the pair (a', b') from 7r', add (a, b') to 7r', and repeat this procedure to find a new
neighbor for a'. It is easy to see that this procedure terminates after a finite number
of steps, and that no node currently assigned under 7r' loses a neighbor. Moreover,
note that this operation does not increase the cost of the matching 7r'.

4. b is not included in 7r', but a is already assigned in 7r'. This case is symmetric to case
3 above.

Each of the four cases increases the cost of 7r' by at most the cost of (a, b) in 7r2. Iterating over
all pairs in 7r2, we observe that the final matching ir' has cost no more than the cumulative
costs of 7ri and 7r2, i.e., at most B1 + B2 . Therefore, F E Mk1 +k 2 ,Bi+B2 -

6.4 Head Approximation Algorithm

First, we develop a head approximation algorithm for the CEMD model. Ideally, we would
have an exact projection algorithm H mapping arbitrary signals to signals in Mk,B with
the guarantee llH(x)llp = maxCMkB lxQ1lp. However, this appears to be a hard problem.
Instead, we propose an efficient greedy algorithm satisfying the somewhat looser requirements
of a head approximation oracle (Definition 2.16). Specifically, we develop an algorithm that
performs the following task: given an arbitrary signal x, find a support Q E Mo(k),o(Blog k)

such that llxQ 1P;> c maxEMkB oIF l, where c > 0 is a fixed constant.

As before, we interpret our signal x as a matrix X C RhXw. Let OPT denote the largest

sum of coefficients achievable with a support in Mk,B, i.e., OPT = maxoEMkB I|xa I. For a

signal x E Mk,B, we interpret the support of x as a set of s = k/w paths from the leftmost
to the rightmost column in X. Our method proceeds by greedily finding a set of paths that
cover a large sum of signal coefficients. We can then show that the coefficients covered by
these paths are a constant fraction of the optimal coefficient sum OPT.

Definition 6.6 (Path in a matrix). Given a matrix X E RhX, a path r C [h] x [w] is

a set of w locations in X with one location per column, i.e., Irn = w and U(ij)ErJ = [w]-
The weight of r is the sum of amplitudes on r, i.e., wx,p(r) = '(ij)Er|Xi,1| . The EMD of
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Algorithm 25 Head approximation algorithm

1: function HEADAPPROX(X, k, B)
2: XM+ X
3: for i +-1,...,s do
4: Find the path ri from column 1 to column w in X(') that maximizes w(')(ri) and

uses at most EMD-budget [j.
5: X(i+1) +- X(0

6: for (u, v) E ri do

7: X )- 0
8: end for
9: end for

10: return Ui=i ri
11: end function

r is the sum of the EMDs between locations in neighboring columns. Let j1,... , jw be the
locations of r in columns 1 to w. Then, EMD(r) = Ew-1 ji - ji+1 I

Trivially, we have that a path r in X is a support with wxp(r) = I|XrII and EMD(r) =

EMD(supp(X,)). Therefore, we can iteratively build a support Q by finding s paths in X.
Algorithm 25 contains the description of HEADAPPROX. We show that HEADAPPROX finds
a constant fraction of the amplitude sum of the best support while only moderately increasing
the size of the model. For simplicity, denote w(r) := wxp(r), and w(0(r) := wx(i)'(r). We
obtain the following result:

Theorem 6.7. Let p > 1 and B' = [H,|B, where H, = Zi=1 1/i is the s-th harmonic
number. Then HEADAPPROX is a ((' 1/P, Mk,B, Mk,B', p) -head-approximation oracle.

Proof. Let Q be the support returned by HEADAPPROX(X, k, B) and let QOPT E Mk,B
be an optimal support. We can always decompose QOPT into s disjoint paths in X. Let
t,..., o be such a decomposition with EMD(ti) > EMD(t 2 ) > ... > EMD(ts). Note that
EMD(ti) < [j: otherwise EZ EMD(ti) > B and since EMD(QOPT) < B this would be
a contradiction. Since Q is the union of s disjoint paths in X, Q has column-sparsity s.
Moreover, we have EMD(Q) = E'_ 1 EMD(ri) Z L 5 [Hs]B. Therefore, Q F M+,

When finding path ri in X(), there are two cases:

Case 1: w(')(ti) K !w(ti), i.e., the paths ri, ... , ri_1 have already covered more than half of
the coefficient sum of ti in X.

Case 2: w(')(ti) > lw(ti), i.e., there is still more than half of the coefficient sum of ti

remaining in X(). Since EMD(ti) LJ, the path ti is a candidate when searching

for the optimal path ri and hence we find a path ri with w(z)(ri) > jw(ti).

Let C = {i E [s] I case 1 holds for ri} and D = {i E [s] I case 2 holds for ri} (note that
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C = [s] \ D). Then we have

||X|| = w( (ri) w()(ri) + E w() (ri)
i=1 iEC ED (6.2)

> E w( 1(r) w(ti).
iED 2iE=D

For each ti with i E C, let Ei = ti U3<i rj, i.e., the locations of ti already covered by some
rj when searching for ri. Then we have

E XUj"p = w(ti) - W M (t) > w(t )
(u,v)EEi

and

S S |Xu,Vp > w(ti).
iCC (u,v)Ei iEC

The ti are pairwise disjoint, and so are the Ei. For every i E C we have Ei G Uji rj. Hence

||Xf||p? = Ew((ri) 5 5 |XU ( w(ti). (6.3)
i=1 iEC (u,v)EEi iEC

Combining Equations 6.2 and 6.3 gives:

111
2|IXfI|| > I W(ti + (W(ti) OPT

IIXII > ( I )1/p max IIXQi p.4 n'CMk,B

Theorem 6.8. HEADAPPROX runs in O(snBh) time.

Proof. Observe that the running time of HEADAPPROx depends on the running time of
finding a path with maximum weight for a given EMD budget. The search for such a
path can be performed by dynamic programming over a graph with whB = nB nodes, or
equivalently "states" of the dynamic program.' Each state in the graph corresponds to a
state in the dynamic program, i.e., a location (i, j) E [w] x [h] and the. current amount of
EMD already used b E {0, 1, ... , B}. At each state, we store the largest weight achieved by
a path ending at the corresponding location (i, j) and using the corresponding amount of
EMD budget b. Each state has h outgoing edges to the states in the next column (given the

current location, the decision on the next location also fixes the new EMD amount). Hence

the time complexity of finding one largest-weight path is 0(nBh) (the state space has size

0(nB) and each update requires 0(h) time). Since we repeat this procedure s times, the

overall time complexity of HEADAPPROX is O(snBh). El

We can achieve an arbitrary constant head-approximation ratio by combining HEADAPPROX

'We use the terminology 'states" here to distinguish the dynamic program from the graph we will
introduce in Section 6.5.
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with BOOSTHEAD (see Section 2.6.5). The resulting algorithm has the same time complexity
as HEADAPPROX. Moreover, the sparsity and EMD budget of the resulting support is only
a constant factor larger than k and B'.

6.5 Tail-Approximation Algorithm

Next, we develop a tail-approximation algorithm for the CEMD model. Given an arbitrary
signal x, our objective is to find a support F E Mk,O(B) such that

lix - xr||p < c min lx - xQI|p, (6.4)
QEMk,B

where c is a constant. Note that we allow a constant factor increase in the EMD budget
of the result. The algorithm we develop is precisely the graph-based approach initially
proposed in [199]; however, our analysis here is rigorous and novel. Two core elements of
the algorithm are the notions of a flow network and the min-cost max-flow problem, which
we now briefly review. We refer the reader to [10] for an introduction to the graph-theoretic
definitions and algorithms we employ.

The min-cost max-flow problem is a generalization of the classical maximum flow problem
[10, 77]. In this problem, the input is a graph G = (V, E) with designated source and sink
nodes in which every edge has a certain capacity. The goal is to find an assignment of flow
to edges such that the total flow from source to sink is maximized. The flow must also be
valid, i.e., the amount of flow entering any intermediate node must be equal to the amount
of flow leaving that intermediate node, and the amount of flow on any edge can be at most
the capacity of that edge.

In the min-cost max-flow problem, every edge e also has a cost ce (in addition to the capacity
as before). The goal now is to find a flow f : E - R+ with maximum capacity such that the
cost of the flow, i.e., EeE ce ' f(e), is minimized. One important property of the min-cost
max-flow problem is that it still admits integral solutions if the edge capacities are integer.

Fact 6.9 (Theorem 9.10 in [10]). If all edge capacities, the source supply, and the sink
demand are integers, then there is always an integer min-cost max-flow.

The min-cost max-flow problem has many applications, and several efficient algorithms
are known [10]. We leverage this problem for our tail-approximation task by carefully
constructing a suitable flow network, which we now define.

Definition 6.10 (EMD flow network). For a given signal X, sparsity k, and a parameter
A > 0, the flow network Gx,k,A consists of the following elements:

* The nodes comprise a source, a sink and a node vij for i E [h], j E [w], i.e., one node
per entry in X (besides source and sink).
G G has an edge from every vij to every vkj+1 for i, k E [h], j E [w - 1]. Moreover,
there is an edge from the source to every vi,1 and from every viw to the sink.

* The capacity on every edge and node (except source and sink) is 1.
* The cost of node vij is -|Xij|P. The cost of an edge from vij to Vk,J+1 is Ali - k|.

The cost of the source, the sink, and all edges incident to the source or sink is 0.
* The supply at the source is s (= b) and the demand at the sink is s.
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Figure 6-4 illustrates this definition with an example. The main idea is that a set of disjoint

paths through the network Gx,k,A corresponds to a support in X. For any fixed value of
A, a solution of the min-cost max-flow problem on the flow network reveals a subset S of

the nodes that corresponds to a support with exactly s indices per column and minimizes

-||XQ|| + AEMD(Q) for different choices of support Q. In other words, the min-cost flow

solves a Lagrangian relaxation of the original problem (6.4). See Lemmas 6.12 and 6.13 for

a more formal statement of this connection.

~ 1 3 -

X= 0 -1

.2 1

-1 0-3

2A

0 -1
source sink

-2 -1

Figure (6-4): A signal X with the corresponding flow network GX,k,A for p = 1. The node

costs are the negative absolute values of the corresponding signal components. The numbers

on edges indicate the edge costs (most edge costs are omitted for clarity). All capacities in

the flow network are 1. The edge costs are the vertical distances between the start and end
nodes, multiplied by A.

A crucial issue is the choice of the Lagrange parameter A, which defines a trade-off between
the size of the tail approximation error and the support-EMD. Note that the optimal support

Q with parameters k and B does not necessarily correspond to any setting of A. Nevertheless,

we show that the set of supports we explore by varying A contains a sufficiently good

approximation: the tail error and the parameters k and B are only increased by constant

factors compared to the optimal support Q. Moreover, we show that we can find such a

good support efficiently via a binary search over A. Before stating our algorithm and the

main result, we formalize the connection between flows and supports.

Definition 6.11 (Support of a set of paths). Let X E R h, be a signal matrix, k be a

sparsity parameter, and A > 0. Let P = {q1, ... , qs} be a set of disjoint paths from source

to sink in Gx,k,A such that no two paths in P intersect vertically (i.e., if the qi are sorted

vertically and i < j, then (u, v) E qi and (w, v) E qj implies u < w). Then the paths in P

define a support

Qp ={(u, v) I (u, v) E qi for some i E [s]}. (6.5)

Lemma 6.12. Let X E Rhxw be a signal matrix, k be a sparsity parameter and A > 0. Let
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P = {q1, . .. , q} be a set of disjoint paths from source to sink in Gx,k,A such that no two
paths in P intersect vertically. Finally, let fp be the flow induced in Gx,k,A by sending a
single unit of flow along each path in P and let c(fp) be the cost of fp. Then

c(fp) -IIX II + A EMD(Qp) . (6.6)

Proof. The theorem follows directly from the definition of Gx,k,A and Qp. The node costs
of P result in the term - |Xq ,jP. Since the paths in P do not intersect vertically, they are
a min-cost matching for the elements in Qp. Hence the cost of edges between columns of X
sums up to A EMD(Qp). D

For a fixed value of A, a min-cost flow in Gx,k,x gives an optimal solution to the Lagrangian
relaxation:

Lemma 6.13. Let Gx,k,A be an EMD flow network and let f be an integral min-cost flow
in Gx,k,A. Then f can be decomposed into s disjoint paths P {q1,...,qs} which do not
intersect vertically. Moreover,

IIX - Xnp I + AEMD(Qp)

= min IX - XQIP + AEMD(Q). (6.7)
Q(EMk,B (

Proof. Note that IX-XQflP = IIXII-||XQIIP. Since |IXIIP does not depend on Q, minimizing

IX -XQ||P + AEMD(Q) with respect to Q is equivalent to minimizing -||XQIIP + AEMD(Q).

Further, all edges and nodes in Gx,k,A have capacity one, so f can be composed into exactly
s disjoint paths P. Moreover, the paths in P are not intersecting vertically: if qi and
qj intersect vertically, we can relax the intersection to get a set of paths P' with smaller
support EMD and hence a flow with smaller cost - a contradiction. Moreover, each support
Q E Mk,B gives rise to a set of disjoint, not vertically intersecting paths Q and thus also
to a flow fg with c(fQ) = -IIXQQ II + AEMD(QQ). Since f is a min-cost flow, we have
c(f) <; c(fQ). The statement of the theorem follows. E

We can now state our tail-approximation algorithm TAILAPPROX (see Algorithm 26). The
parameters d and 6 for TAILAPPROx quantify the acceptable tail approximation ratio (see
Theorem 6.15). In the algorithm, we assume that MINCOSTFLow(Gx,k,) returns the
support corresponding to an integral min-cost flow in Gx,k,A. Before we prove the main
result (Theorem 6.15), we show that TAILAPPROX always returns an optimal result for
signals X E Mk,B.

Lemma 6.14. Let xmin = minlxi >oIXi,|P and Ao = . Moreover, let X E M k,B and Q
be the support returned by MINCOST FLOW(GX,k,,\O). Then I\X - Xn||p = 0 and Q E M+,B

Proof. Let F = supp(X), so F E Mk First we show that X -X = 0. For contradic-
tn, assumeth> k, r | e -X-ti s

tion, assume that IX - XI > 0, 50 IX - XQIIP > Xmin > 0 (tail-approximation is trivial
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Algorithm 26 Tail approximation algorithm

1: function TAILAPPROX(X, k, B, d, 6)
2: Xmin +- minige ,>O Xi'jIP
3: E +- 6
4: A 0 4--
5: Q <- MINCOSTFLOW(Gx,k,Xo)
6: if Q E Mk,B and ||X - Xq||p = 0 then
7: return Q
8: endif
9: Ar 0

10: Al <-XIIP
11: while A - Ar > E do
12: Am <- (A + Ar)/2
13: Q <- MINCOSTFLOW(GXk,Am)
14: if EMD(Q) > B and EMD(Q) < dL
15: return Q
16: end if
17: if EMD(Q) > B then
18: Ar Am

19: else
20: A Am
21: end if
22: end while
23: Q <- MINCOSTFLOw(Gx,k,A1 )
24: return Q
25: end function

then

for X = 0). Since Q is a min-cost flow, Lemma 6.13 gives

Xmin liX - Xo|| + AoEMD(Q)

= min|X - XI||P + AoEMD(Q')
Q'EMk,B

<0 + n EMD(F)

Xmin

_ 2 '

which gives a contradiction. The last line follows from EMD() < kh < nh.

Now, we show that Q E MkB. By construction of GX,k,Ao, Q is s-sparse in each column.
Moreover,

IX -X P + AoEMD(Q) = minX - Xo]|P+ AoEMD(Q'),
ED( EMkBD )

AoEMD(Q) 0 + A0EMD (F).

So EMD(Q) < EMD(F) < B. L

Next, we prove a bicriterion-approximation guarantee for TAILAPPROX that allows us to
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use TAILAPPROX as a tail approximation algorithm. In particular, we show that one of the
following two cases occurs:

Case 1: The tail-approximation error achieved by our solution is at least as good as the
best tail-approximation error achievable with support-EMD B. The support-EMD of
our solution is at most a constant times larger than B.

Case 2: Our solution has bounded tail-approximation error and support-EMD at most B.

In order to simplify the proof of the main theorem, we use the following shorthands: Q1 =
MINCOSTFLOW(GX,k, 1 ), Q, = MINCOSTFLOW(GX,k,A,), bi = EMD(Ql), br = EMD(Qr),
ti = lix - XQ,|1 P, and tr = 11X - XQrlip

Theorem 6.15. Let d > 1, 6 > 0, and let Q be the support returned by the algorithm

TAILAPPROX(X, k, B, d, 6). Let OPT be the tail approximation error of the best support

with support-EMD at most B, i.e., OPT = minreMkB| X - Xr| 11P. Then at least one of the

following two guarantees holds for Q:

Case 1: B < EMD(Q) < dB and ||X - XQl|| < OPT

Case 2: EMD(Q) < B and I1X - X| (1+ i-' + 6) OPT.

Proof. We consider the three cases in which TAILAPPROX returns a support. If TAILAPPROX

returns in line 7, the first guarantee in the theorem is satisfied. If TAILAPPROX reaches the

binary search (line 11), we have X Mk,B (the contrapositive of Lemma 6.14). Therefore,
we have OPT > Xmin > 0 in the remaining two cases.

If TAILAPPROX returns in line 15, we have B < EMD(Q) < dB. Moreover, Lemma 6.13
gives

ILX - XQfll + AmEMD(Q)

< min X - XQ'I||+ AmEMD(Q')

< OPT+ AmB.

Since EMD(Q) ;> B, we have IJX - XK||P< OPT.

We now consider the third return statement (line 24), in which case the binary search

terminated with A, - A, < E. In the binary search, we maintain the invariant that b, < B

and br > dB. Note that this is true before the first iteration of the binary search due to our

initial choices of Ar and Al. 1 Moreover, our update rule maintains the invariant.

We now prove the bound on I|X - Xf-1l1 = ti. From Lemma 6.13 we have

tr + Arbr OPT + ArB

ArdB < OPT + ArB

OPT

A- B(d - 1)

'Intuitively, our initial choices make the support-EMD very cheap and very expensive compared to the
tail approximation error.
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Since the binary search terminated, we have Al < Ar + E. We now combine this inequality
with our new bound on A, and use it in the following inequality (also from Lemma 6.13):

t1 + Abl < OPT + AB

t, < OPT + A 1B

< OPT +(A +E)B

OPT
<OPT+ +EB

d-1
1 xmin6B

< (I+ I)OPT+ xi6
d- 1 wh2

1
d( + )OPT + Jxmin
d - 1

1
d-(1 + + 6)OPT.

-- d - I

This shows that the second guarantee of the theorem is satisfied. E

Corollary 6.16. Let p 1, c> 1,< <c-1, and d = 1+ c-__1. Then TAILAPPROX

is a (cl/P, Mk,B, Mk,dB, p)-tail approximation algorithm.

Proof. The tail approximation guarantee follows directly from Theorem 6.15. Note that we

cannot control which of the two guarantees the algorithm returns. However, in any case we
have EMD(Q) < dB, so Q E Mk,dB- l

In order to simplify the time complexity of TAILAPPROX, we assume that h = Q(log w), i.e.,
the matrix X is not very "wide" and "short". We arrive at the following result.

Theorem 6.17. Let 6 > 0, xmin = minixj1ioIJXijJP, and xmax = maxXijIP. Then

TAILAPPROX runs in O(snh(log 1 + log xm-)) time.

Proof. We can solve our instances of the min-cost flow problem by finding s augmenting paths
because all edges and nodes have unit capacity. Moreover, Gx,kA is a directed acyclic graph,
so we can compute the initial node potentials in linear time. Each augmenting path can then
be found with a single run of Dijkstra's algorithm, which costs O(wh log(wh) +wh2 ) = O(nh)
time [77]. The number of iterations of the binary search is at most

|\X||P ||X\\Pnh
log P log I

f Xmin 6

xmaxn
2 h

Xmino

log + log Xmaxo Xmin

Combining this with a per-iteration cost of O(snh) gives the stated running time. E

To summarize, the algorithm proposed in [199] satisfies the criteria of a tail-approximation
oracle. This, in conjunction with the head approximation oracle proposed in Section 6.4,
gives a full sparse recovery scheme for the CEMD model, which we describe below.
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6.6 Compressive Sensing Recovery

We now bring the results from the previous sections together. Specifically, we show that
AM-IHT (Algorithm 3), equipped with HEADAPPROX and TAILAPPROX, constitutes a
model-based compressive sensing recovery algorithm that significantly reduces the number
of measurements necessary for recovering signals in the CEMD model. The main result is
the following theoretical guarantee:

Theorem 6.18. Let x E Mk,B be an arbitrary signal in the CEMD model with dimension
n = wh. Let A E Rmx be a measurement matrix with i.i.d. Gaussian entries and let
y c R' be a noisy measurement vector, i.e., y = Ax + e with arbitrary e E R'. Then
we can recover a signal approximation i E Mk,2B satisfying Hx - iI2 CIjeII2 for some
constant C from m = O(k log(E log -)) measurements. Moreover, the recovery algorithm

runs in time O(n log X (k log n + L(B+log n +log xn-))) where Xmin = mins io IxiI and

xmax = maxlxil.

Proof. First, we show that m rows suffice for A to have the desired model-RIP. Following the
conditions in Corollary 2.28, A must satisfy the (6, Mk,B + MT + M+t)-model-RIP for small
6, where t is the number of times we boost HEADAPPROX (a constant depending on a and
CT). We have MT = Mk,2B from Corollary 6.16 and MH = M2k,37-B where y = [log L] + 1
from Theorems 6.5 and 6.7 (note that HEADAPPROX must be a (CH, M + MT, MH, 2)-head-
approximation oracle). Invoking Theorem 6.5 again shows that it suffices for A to have the

(6, M(2+2t)k,( 3+3ty)B)-model-RIP. Using Theorem 6.4 and the fact that t is a constant, Fact
2.15 then shows that

m = 0 k log =) 0 k log ( log k))k k w

suffices for A to have the desired model-RIP.

Equipped with our model-RIP, we are now able to invoke Corollary 2.28, which directly
gives the desired recovery guarantee |1x - X11 2  CIjeI| 2. Moreover, the corollary also shows

that the number of iterations of AM-IHT is bounded by O(log g ). In order to prove our
desired time complexity, we now only have to bound the per-iteration cost of AM-IHT.

In each iteration of AM-IHT, the following operations have a relevant time complexity: (i)
Multiplication with A and AT. The measurement matrix has at most k log n rows, so we
bound this time complexity by 0(nk log n). (ii) HEADAPPROX. From Theorem 6.8 we know
that HEADAPPROX runs in time O(n4t-B). (iii) TAILAPPROX. Theorem 6.17 shows that
the tail-approximation algorithm runs in time O(nw (log n + log ) Combining these
three bounds gives the running time stated in the theorem. E

Note that for B = O(k), the measurement bound gives m = O(k log log -), which is a
significant improvement over the standard compressive sensing measurement bound m =

0(k log !). In fact, the bound for m is only a log log - factor away from the information-
theoretically optimal bound m = O(k). We leave it as an open problem whether this
spurious factor can be eliminated via a more refined analysis or algorithm.
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Original

Figure (6-5): Benefits of CS reconstruction using EMD-CoSaMP. (left) Original image with
parameters h = 100, w = 10, k = 2, B = 20, m = 80. (center) CS reconstruction using
CoSaMP [170]. (right) CS reconstruction using EMD-CoSaMP. CoSaMP fails, while our
proposed algorithm is able to perfectly recover the image.

6.7 Numerical Experiments

In all our experiments, we use the LEMON library [85] in order to solve the min-cost max-
flow subroutine in Algorithm 26. Figure 6-5 displays a test grayscale image of size 100 x 10
with edge discontinuities such that the total sparsity is 2 x 10 = 20 and the cumulative
EMD across pairs of adjacent columns is equal to B = 20. We measure linear samples of
this image using merely m = 80 random Gaussian measurements, and reconstruct using
CoSaMP as well our proposed approach (EMD-CoSaMP). Each iteration of EMD-CoSaMP
takes less than three seconds to execute. As visually evident from Fig. 6-5, CoSaMP fails to
reconstruct the image, while our proposed algorithm provides an accurate reconstruction.

Figure 6-6 displays the results of a Monte Carlo experiment to quantify the effect of the
number of random measurements M required by different CS reconstruction algorithms to
enable accurate reconstruction. Each data point in Fig. 6-6 was generated using 100 sample
trials over randomly generated measurement matrices. Successful recovery is declared when
the converged solution is within an f2 distance of 5% relative to the Euclidean norm of the
original image. We observe that our proposed EMD-CoSaMP and EMD-IHT algorithms
achieve successful recovery with far fewer measurements than their conventional (unmodified)
counterparts.

6.8 Conclusions

We have proposed a structured sparsity model for images with line singularities that is based
on the Earth Mover Distance (EMD). Moreover, we have introduced corresponding approx-
imate projection algorithms based on ideas from greedy algorithms and min-cost maximum
flow. We have leveraged these algorithm to develop a new compressive sensing recovery
algorithm with significant numerical benefits. We remark that we have also employed our
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Figure (6-6): Comparison of several reconstruction algorithms. The signal is the same as
in Figure 6-5. The probability of recovery is with respect to the measurment matrix and
generated using 100 trial runs. The recovery algorithms using our constrained EMD model
have a higher probability of recovery than standard algorithms.

new algorithms for an application in seismic data analysis, but this work is beyonod the
scope of this thesis [200].

There are at least two interesting avenues for future work in the context of the CEMD
model. Is our use of approximate projections necessary? A conditional hardness result for
an exact projection into the CEMD model would provide strong evidence. Moreover, the
time complexity of our algorithms is not optimal. An ideal approximate projection would
run in time that is nearly-linear in the true input size. Note that such an approach cannot
explicitly instantiate the full graph as in our algorithms since this step already requires
strongly superlinear time. Hence a nearly-linear time algorithm will probably require new
insights.
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Chapter 7

Low-Rank Matrices

7.1 Introduction

The previous chapters focused on various forms of sparsity such as graph sparsity, group

sparsity, or hierarchical sparsity. A common theme in the corresponding approximate

projections is their heavy reliance on ideas from combinatorial algorithms. Combinatorial
problems are a natural starting point for approximate projections because they allow us

to leverage the rich toolkit developed in the approximation algorithms community [228,
238]. However, an important question is whether approximate projections are also useful

in a broader context. In this chapter, we take a step in this direction and study low-rank

constraints, which have received a large amount of attention over the past decade. We show
that approximate projections lead to faster running times for low rank matrices as well.

Note that low-rank matrices are an instance of linear algebraic structure, as opposed to the
combinatorial structure from previous chapters.

Over the past decade, exploiting low-rank structure in high-dimensional problems has

become an active area of research in machine learning, signal processing, and statistics.
The general approach is to utilize a low-rank model of data in order to achieve better

prediction, compression, or estimation compared to a "black box" treatment of the ambient
high-dimensional space. This parallels the seminal work on compressive sensing and sparse

linear regression where sparsity allows us to estimate a high-dimensional object from a small

number of (linear) observations.

Important problems involving low-rank matrices include matrix completion, matrix sensing,

and matrix regression. The common theme is that the rank constraint captures important

struture present in real world data, which leads to better statistical performance. However,

utilizing the low-rank structure also comes at a cost: incorporating the constraint into the

estimation procedure often results in a more challenging algorithmic problem. If we want to

incorporate a low-rank constraint into our optimization (estimation) problem via projections,

the main sub-routine of interest is a singular value decomposition (SVD).

For a matrix e E- Rdixd 2 , the time to compute an SVD (and hence an exact projection) is

O(d - d2 - min(di, d2 )). While this is a polynomial time complexity, even polynomial scaling
can become prohibitively slow given the growing size of modern datasets. Note that the

time complexity of an exact SVD (or the closely related low-rank projection) is unlikely
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to improve significantly in practice. Matrix decompositions of this form have been studied

for decades and no practically faster algorithms are known. This leads to the following
important question: Can we design efficient approximate projections for low-rank matrices?

In this chapter, we show that we can utilize results on approximate SVDs [165] to give
approximate head and tail projections for low-rank matrices. While approximate SVDs

(such as PROPACK [147]) have been used in low-rank problems before, this approach did

not come with provable guarantees. We show that our variant of projected gradient descent

tolerates the slack introduced by approximate SVDs. This also provides an explanation for

the empirical success of approximate projections in prior work. Moreover, our approach

improves over PGD with PROPACK in numerical experiments (see Section 7.4).

The remainder of this section contains related work and preliminaries for our theoretical

results. We provide head and tail approximation guarantees for low-rank matrices in Section

7.2. Section 7.3 then instantiates our algorithms in the context of low-rank matrix recovery.

Section 7.4 complements our theoretical results with experiments.

7.1.1 Related work

Low-rank recovery has received a tremendous amount of attention over the past few years,
so we refer the reader to the recent survey [83] for an overview. When referring to prior
work on low-rank recovery, it is important to note that the fastest known running time for

an exact low-rank SVD (even for rank 1) of a d, x d2 matrix is O(d1 d2 min(di, d2 )). Several

papers provide rigorous proofs for low-rank recovery using exact SVDs and then refer to

Lanczos methods such as PROPACK [147] while accounting a time complexity of O(did2r)

for a rank-r SVD. While Lanczos methods can be faster than exact SVDs in the presence

of singular value gaps, it is important to note that all rigorous results for Lanczos SVDs
either have a polynomial dependence on the approximation ratio or singular value gaps [165,
196]. No prior work on low-rank recovery establishes such singular value gaps for the inputs
to the SVD subroutines (and such gaps would be necessary for all iterates in the recovery

algorithm). In contrast, we utilize recent work on gap-independent approximate SVDs [165],
which enables us to give rigorous guarantees for the entire recovery algorithm. Our results

can be seen as justification for the heuristic use of Lanczos methods in prior work.

Becker, Cevher, and Kyrillidis [39] analyze an approximate SVD in combination with an

iterative recovery algorithm. However, [39] only uses an approximate tail projection, and as

a result the approximation ratio cT must be very close to 1 in order to achieve a good sample

complexity. Overall, this leads to a time complexity that does not provide an asymptotic

improvement over using exact SVDs.

Recently, several authors have analyzed a non-convex approach to low-rank matrix recovery

via factorized gradient descent [45, 74, 223, 243, 244]. While these algorithms avoid SVDs

in the iterations of the gradient method, the overall recovery proofs still require an exact

SVD in the initialization step. In order to match the sample complexity of our algorithm or

SVP, the factorized gradient methods require multiple SVDs for this initialization [74, 223].
As a result, our algorithm offers a better provable time complexity. We remark that [74,
223] use SVP for their initialization, so combining our faster version of SVP with factorized

gradient descent might give the best overall performance.
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7.1.2 Preliminaries

In previous chapters, we studied structured sparsity models as special forms of conic con-
straint sets. While this suffices for combinatorial types of structure, the low-rank constraint
in this chapter requires a more general definition. To formulate the low-rank results in a
common framework with the histograms constraints in the next chapter, we now introduce
subspace models.

Definition 7.1 (Subspace model). A subspace model U is a set of linear subspaces. The
set of vectors associated with the subspace model U is M(U) = {1|0 E U for some U E U}.

It is easy to see that structured sparsity models are an instance of subspace models (each
allowed support is a subspace). Moreover, low-rank matrices also fit this definition. We
can encode low-rank matrices by letting U be the set of rank-r matrix subspaces, i.e., each
subspace is given by a set of r orthogonal rank-one matrices. Note that this is an instance
of a subspace model with an infinite number of subspaces. For the discrete sparsity models,
we instead have a finite union of subspaces.

As in previous chapters, we use approximate projections to overcome the bottleneck posed
by exact projections. Specializing our general head an tail approximations from Chapter 2
to subspace models yields the following definitions:

Definition 7.2 (Approximate tail projection). Let U and UT be subspace models and let

cT > 0. Then T : Rd -+ UT is a (cT, U, Ur) -approximate tail projection if the following
guarantee holds for all b E Rd: The returned subspace U = T(b) satisfies |lb - Publ| <
cTlb - Publj.

Definition 7.3 (Approximate head projection). Let U and UN be subspace models and let
cN > 0. Then W : Rd -* UN is a (cN, U, UN)-approximate head projection if the following
guarantee holds for all b I Rd: The returned subspace U = W(b) satisfies IlPub|| > cNI|Publ|.

As before, the two definitions are distinct in the sense that a constant-factor head approxi-
mation does not imply a constant-factor tail approximation, or vice versa. Another feature

of these definitions is that the approximate projections are allowed to choose subspaces from

a potentially larger subspace model, i.e., we can have U ; UN (or UT). This is a useful

property when designing approximate head and tail projection algorithms as it allows for
bicriterion approximation guarantees.

7.2 Head and tail approximations for low-rank matrices

We now give our head an tail approximation guarantees for low-rank matrices. We use the

following result from prior work on approximate SVDs.

Fact 7.4 ([165]). There is an algorithm APPROXSVD with the following guarantee. Let
A e Rdxd2 be an arbitrary matrix, let r E N be the target rank, and let E > 0 be the desired
accuracy. Then with probability 1 - V), APPROXSVD(A, r, E) returns an orthonormal set of

vectors z1,... , E I RdI such that for all i E [r], we have

lzT AATzi - o-,1 < Eo+ , (7.1)
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where -i is the i-th largest singular value of A. Furthermore, let Z C Rdi xr be the matrix

with columns zi. Then we also have

1A - ZZTAIIF < (1 + E)IIA - ArflF (7.2)

where A, is the best rank-r Frobenius-norm approximation of A. Finally, the algorithm runs

i (dd 2rog(d 2 /) + dir2 log 2 (d 2 / b) + 3(d2in time /

It is important to note that the above results hold for any input matrix and do not require

singular value gaps. The guarantee (7.2) directly gives a tail approximation guarantee for

the subspace corresponding to the matrix ZZTA. Moreover, we can convert the guarantee

(7.1) to a head approximation guarantee. In the following, we let Ur be the subspace model

of rank-r matrices.

As mentioned before, Equation (7.2) directly gives a tail approximation. We now show how

to convert Equation (7.1) to a head approximation guarantee. In the following, we let Ur
be the subspace model of rank-r matrices.

Theorem 7.5. There is an algorithm APPROXLowRANK with the following property. For

an arbitrary input matrix A E Rdixd 2 and a target rank r, APPROxLowRANK produces

a subspace of rank-r matrices U and a matrix Y = PuA, the projection of A onto U.

With probability 99/100, the output satisfies both an (1 - E, Ur, Ur) -approximate head pro-

jection guarantee and an (1 + E, Ur, Ur)-approximate tail projection guarantee. Moreover,
APPROxLOWRANK runs in time

d1 d2r log d2 + d1r
2 log2 d2 + r3 log3 d2

Proof. Let zi, ... ,zr be the vectors returned by APPRoxLowRANK(A, r, E). Then APPROX-
LOwRANK returns the matrix Y = ZZTA and the subspace U spanned by the vectors zi

and z[A (it is easy to see that Y is indeed the projection of A onto U). Both operations

can be performed in time O(did 2r). Hence the overall running time is dominated by the

invocation of APPROxSVD, which leads to the running time stated in the theorem.

It remains to prove the desired head and tail approximation ratios. The tail approximation

guarantee follows directly from Equation (7.2). For the head approximation, first note that

Equation (7.1) implies
zTAATZ. > (1- e)o.
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We now apply this inequality by rewriting the head quantity IIZZTA l1 as follows:

IIZZT A|1 = tr(ATZZTZZT A)

= tr(ATZZT A)

= tr(AT ( zizf)A)
i=:1

= tr( ATzz7 A)
i=1

= tr(AT ziz[A)

r

- tr(zT AA Tzi )
i= 1
r

= zT AA Tzi
i=1

r

> (1-e) 2oQ
i=1

=(I - E) JAr11F

where the matrix Ar is the best rank-r approximation of the matrix A. This proves the

desired head approximation guarantee. D

Since the approximation factor E only enters the running time in the approximate SVD,
we can set the approximation ratios to small constants. This allows us to combine our

approximate projections with our variant of projected gradient descent.1 In the next section,
we give a concrete examples. Empirically, we will see in Section 7.4 that a very small number

of iterations in APPRoxSVD already suffices for accurate recovery.

7.3 A recovery algorithm

Before we state our formal recovery result, we briefly recap the relevant context.

7.3.1 Preliminaries

As before, our goal is to recover an unknown, structured vector 0* E Rd from linear

observations of the form
y = XO* + e, (7.3)

where the vector y E R' contains the linear observations / measurements, the matrix

X E R'Xd is the design / measurement matrix, and the vector e E R' is an arbitrary noise

'We remark that our definitions require head and tail projections to be deterministic, while the approxi-

mate SVD is randomized. However, the running time of APPROxSVD depends only logarithmically on the

failure probability, and it is straightforward to apply a union bound over all iterations of projected gradient

descent. Hence we ignore these details here to simplify the presentation.
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vector.

To keep the setup simple, we study a compressive sensing version of this problem where the
formal goal is to find an estimate 0 E Rd such that

S- 0*11 < c .||e|l 2 .

Here, the scalar c is a fixed, universal constant and 11-112 is the standard f2 -norm. We assume
that the vector 0* represents the coefficients of a low-rank matrix. To be precise, we convert
a matrix E E Rdxd 2 into a vector by concatenating the rows (or columns) to form a vector
of dimension d = d1 . d2.

Restricted isometry property. Next, we introduce a variant of the well-known re-

stricted isometry property (RIP) for subspace models. The RIP is a common regularity
assumption for the design matrix X that is often used in compressive sensing and low-rank
matrix recovery in order to decouple the analysis of algorithms from concrete sampling
bounds. Formally, we have:

Definition 7.6 (Subspace RIP). Let X E Rnxd, let U be a subspace model, and let 6 > 0.
Then X satisfies the (U, J)-subspace RIP if for all 0 E .M(U) we have

(1 - 6)110112 < IIX011 2 < (1 + 6)110112

In the next section, we provide such a measurement matrix that combines good sample
complexity with fast multiplication time (which important in iterative algorithms such as
ours).

7.3.2 A fast measurement matrix for low-rank structure

Here, we establish bounds on the sample complexity of recovering a low-rank matrix with
a particular focus on fast measurement matrices. In particular, we are interested in mea-
surement matrices that support matrix-vector multiplications with a running time that is
nearly-linear in the size of the vector. Our results follow from a concatenation of previous
results in this area.

Consider the case where the subspace model U corresponds to the set of rank-r matrices of
size d, x dj. Then, the subspace RIP corresponds to the rank-r restricted isometry property,
first introduced by Recht, Fazel, and Parrilo [186]. A standard Gaussian matrix ensemble
satisfies the rank-r RIP. But since such matrices are dense and unstructured, they have

a strongly superlinear running time of 0(n - d). To improve over the time complexity, we

establish the following result:

Theorem 7.7. Let d = d'. Then, there exists a randomized construction of a matrix

X E Rnxd, with parameters n = 0(r - d - polylogd), such that X satisfies the rank-r RIP

with high probability. Moreover, X supports matrix-vector multiplications with complexity

0(d log d).

Proof. We begin by considering matrices that satisfy the standard RIP for s-sparse vectors,
as well as support fast matrix-vector multiplication. To the best of our knowledge, the
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sharpest such bounds have been recently obtained by [115]. They show that with high
probability, a matrix formed by randomly subsampling

n = 0(6-21 lg2(s/6)d)

rows of the discrete Fourier Transform (DFT) matrix satisfies the standard RIP (with
isometry constant 6) over the set of s-sparse vectors.

Next, we invoke a well-known result by Krahmer and Ward [142]. Consider a diagonal matrix
D , where the diagonal is a Rademacher sequence uniformly distributed over {-1, 1}d.

Also consider any fixed set of vectors B with IBI = m where s > O(log L). If X' is any
n x d matrix that satisfies the standard RIP over the set of s-sparse vectors with constant
6 < e/4, then high probability the matrix X = X'D is a Johns on-Lindenstrauss embedding
for E. Formally, the following is true with probability exceeding 1 - r7:

(1 - e)110111 < IIXO112 < (1 + e)f|/3fl.

uniformly for all # C B.

Next, we invoke Lemma 3.1 of [58], who show that the set of vectors corresponding to rank-k
matrices, Sk, exhibits an c-net Sk (with respect to the Euclidean norm) such that

Sri ( 9 /E)(d+d 2 +1)k.

Also from [58], we have that if X is a Johnson-Lindenstrauss embedding with isometry

constant E for an Sk, then X satisfies the rank-k RIP with constant 6 = O(E). Plugging
in s = O(k(di + d2 )) and m = O(spolylogd) and adjusting constants, we get the stated

result. E

7.3.3 Recovery result

We now prove our overall result for low-rank matrix recovery.

Theorem 7.8. Let X E Rnxd be a matrix with RIP for low-rank matrices, and let Tx denote

the time to multiply a d-dimensional vector with X or XT. Then there is an algorithm that

recovers an estimate 0 such that

|$ - 0*|| < c||e||

Moreover, the algorithm runs in time O(Tx + r - di).

Since the proof is a direct consequence of our general results in Chapter 2, we omit the

details here.

Up to constant factors, the requirements on the RIP of X in Theorem 7.8 are the same

as for exact projections. As a result, our sample complexity is only affected by a constant

factor through the use of approximate projections. Our experiments in Section 7.4 show

that the empirical loss in sample complexity is negligible. Similarly, the number of iterations

O(log|10If/11eI) is also only affected by a constant factor compared to the use of exact

projections [50, 131].
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In the regime where multiplication with the matrix X is fast, the time complexity of the

projection dominates the time complexity of the recovery algorithms. Here, our algorithm
runs in time O(r.d2), which is the first provable running time faster than the O(d3) bottleneck

given by a single exact SVD. While prior work has suggested the use of approximate SVDs

in low-rank matrix recovery [83], our results are the first that give a provably better time
complexity for this combination of projected gradient descent and approximate SVDs. Hence

Theorem 7.8 can be seen as a theoretical justification for the heuristic use of approximate

SVDs.

Finally, we remark that Theorem 7.8 does not directly cover the low-rank matrix completion

case because the subsampling operator does not satisfy the low-rank RIP [83]. To clarify our

use of approximate SVDs, we focus on the RIP setting in our proofs, similar to recent work

on low-rank matrix recovery [74, 223]. We believe that similar results as for SVP [131] also
hold for our algorithm. Our experiments in the next section also show that our algorithm

works well for low-rank matrix completion.

7.4 Experiments

We now investigate the empirical performance of our proposed algorithms. All experiments

were conducted on an iMac desktop computer with an Intel Core i5 CPU (3.2 GHz) and
16 GB RAM. With the exception of the dynamic program (DP) for 2D histograms, all
code was written in Matlab. Since the Krylov SVD of [165] is only available as a Matlab
routine, we also chose the Matlab version of PROPACK [147] so that the implementations

are comparable. Unless reported otherwise, all reported data points were averaged over at

least 10 trials.

Considering our theoretical results on approximate projections for low-rank recovery, one

important empirical question is how the use of approximate SVDs such as [165] affects the

sample complexity of low-rank matrix recovery. For this, we perform a standard experiment
and use several algorithms to recover an image of the MIT logo from subsampled Fourier

measurements (c.f. Section 7.3.2). The MIT logo has also been used in prior work [131,
186]. We use an image with dimensions 200 x 133 and rank 6 (see Figure 7-2). We limit our

attention here to variants of SVP because the algorithm has good empirical performance

and has been used as baseline in other works on low-rank recovery.

Figure 7-1 shows that SVP / IHT combined with a single iteration of a block Krylov SVD
[165] achieves the same phase transition as SVP with exact SVDs. This indicates that the

use of approximate projections for low-rank recovery is not only theoretically sound but

can also lead to practical algorithms. In Figure 7-3, we also show corresponding running

time results demonstrating that the block Krylov SVD also leads to the fastest recovery

algorithm.

We also study the performance of approximate SVDs for the matrix completion problem.

We generate a symmetric matrix of size 2048 x 2048 with rank r = 50 and observe a

varying number of entries of the matrix. The approximation errors of the various algorithms

are again comparable. Figure 7-1 shows the resulting running times for several sampling

ratios. Again, SVP combined with a block Krylov SVD [165] achieves the best running time.

Depending on the oversampling ratio, the block Krylov approach (now with two iterations)
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Figure (7-1): Left: Results for a low-rank matrix recovery experiment using subsampled
Fourier measurements. SVP / IHT with one iteration of a block Krylov SVD achieves the
same phase transition as SVP with an exact SVD. Right: Results for a low-rank matrix
completion problem. SVP / IHT with a block Krylov SVD achieves the best running time
and is about 4 - 8 times faster than PROPACK.
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Figure (7-2): (left) Example low-rank matrix of size d = 133 x 200, r = 6. (right) Recovery
error of various algorithms as a function of time (2 independent trials).

is 4 to 8 times faster than SVP with PROPACK.

7.4.1 Further description of the experiments

Figure 7-2 shows an image of the MIT logo used in the low-rank matrix recovery experiments
[131, 186]. For our first experiment, we record n = 3.5(di +d 2)r = 6994 linear measurements
of the image. The measurement operator is constructed by subsampling m rows of a Fourier
matrix and multiplying its columns by a randomly chosen Bernoulli vector, similar to the
RIP matrix given in Section 7.3.2. The goal is to recover the image from these observations.

We adapt the Singular Value Projection (SVP) algorithm of [131] by replacing the exact
SVD step with approximate SVDs (some of which are very coarse), and demonstrate that we
can still achieve efficient matrix recovery from few observations. As alternatives to Matlab's
in-built svd function, we include the PROPACK [147] numerical linear algebra package,
which implements a Lanczos-type method. We also include an implementation of the recent
Block-Krylov SVD algorithm of [165], which offers a nice tradeoff between approximation
ratio and running time. We test this method with 1 and 8 Krylov subspace iterations (8 is
the default provided in the code of [165]).

Figure 7-3 shows the running times corresponding to the phase transition plot in Figure 7-1.
The only stopping criteria we used were based on a small residual and a maximum number
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Figure (7-3): Running times corresponding to the low-rank matrix recovery experiment in
Figure 7-1. The block Krylov variant of IHT with one iteration has the best running time.
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Figure (7-4): Average approximation errors for the low-rank matrix completion experiment
in Figure 7-1. As for low-rank matrix recovery, the different SVDs achieve essentially the
same error.

of iterations, so the running times of the algorithms are slowest in the regime where they
do not recovery the signal.

The subspace IHT algorithm is iterative, i.e., it produces a sequence of matrix estimates

{o, $ .. ., Oj}. Figure 7-2 displays the estimation error, 110*-) , as a function of wall-clock
time, on two different trial runs. We observe from the plots that PROPACK and the
Block Krylov method (with 8 iterations) perform similar to the exact SVD due to the small
problem size. Interestingly, a very coarse approximate SVD (a single Block Krylov subspace
iteration) provides the fastest convergence. Overall, using approximate SVDs within SVP
/ IHT does not only yield computational speed-ups, but also offers competitive statistical
performance.

We also report results of using the SVP / IHT algorithm with approximate projections on a
larger matrix completion problem. We generate a matrix of size d = 2048 x 2048 with rank
r = 50. We only sample n randomly chosen entries .of this matrix and attempt to reconstruct
the matrix from these entries using SVP with approximate low-rank projections. We vary n
and obtain error curves as well as running times. Figure 7-4 shows the approximation errors
for the matrix completion experiment in Figure 7-1. As for the matrix recovery experiments,
all SVDs achieve essentially the same error. We note that the error floor of about 0.05 is a
result of our stopping criterion.
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Chapter 8

Histograms

8.1 Introduction

Next, we introduce fast approximate projections for 2D-histograms, another natural model
of data. As in the low-rank case, we think of the vector 0* E Rd as a matrix 8 E Rdl d and
assume the square case for simplicity (again, our results also apply to rectangular matrices).
We say that 8 is a k-histogram if the coefficients of E can be described as k axis-aligned
rectangles on which E is constant.

This definition is a generalization of 1D-histograms to the two-dimensional setting and has
found applications in several areas such as databases and density estimation. Moreover, the
theoretical computer science community has studied sketching and streaming algorithms
for histograms, which is essentially the problem of recovering a histogram from linear
observations. Similar to low-rank matrices in the previous chapter, 2D-histograms also do
not fall into the structured sparsity framework of earlier Chapters.

Due to their piecewise constant structure, a natural representation for histograms is a
wavelet basis. Indeed, combining Haar wavelets with tree-structured sparsity gives the
correct sample complexity of n = O(k log d) for iD-histograms. However, the wavelet
approach incurs a suboptimal sample complexity of O(k log 2 d) for 2D-histograms. Note
that it is information-theoretically possible to achieve a sample complexity of O(k log d).
But unfortunately, the corresponding (exact) projection requires a complicated dynamic
program (DP) with time complexity O(d'k2 ), which is impractical for all but very small
problem dimensions [167].

In this chapter, we design significantly faster approximate projection algorithms for 2D
histograms. Our approach is based on an approximate DP [167] that we combine with
a Lagrangian relaxation of the k-rectangle constraint. Both algorithms have parameters
for controlling the trade-off between the size of the output histogram, the approximation
ratio, and the running time. As mentioned in Section 7.1.2, the bicriterion nature of our
approximate head and tail guarantees becomes useful here. In the following two theorems,
we let Uk be the subspace model of 2D histograms consisting of k-rectangles (see Section
7.1.2 for the definition of a subspace model).
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Theorem 8.1. Let ( > 0 and E > 0 be arbitrary. Then there is an (1 + E,Uk,Uc.k)-
approximate tail projection for 2D histograms where c = O(1/( 2e). Moreover, the algorithm

runs in time 0(d'+().

Theorem 8.2. Let ( > 0 and E > 0 be arbitrary. Then there is an (1 - E,Uk,Uc-k)-
approximate head projection for 2D histograms where c = O(1/(2E). Moreover, the algorithm

runs in time o(d 1+().

Note that both algorithms offer a running time that is almost linear. The small polynomial

gap to a linear running time can be controlled as a trade-off between computational and

statistical efficiency (a larger output histogram requires more samples to recover).

While we provide rigorous proofs for the approximation algorithms as stated above, we

remark that we do not establish an overall recovery result similar to previous structured

sparsity models or low-rank matrices. The reason is that the approximate head projection is

competitive with respect to k-histograms, but not with the space Uk +Uk, i.e., the Minkowski

sum of two k-histogram subspaces. The details are somewhat technical and we give a more

detailed discussion in Section 8.3.1. However, under a natural structural conjecture about

sums of k-histogram subspaces, we can also obtain a recovery result similar to Theorem 7.8.
Moreover, we experimentally demonstrate that the sample complexity of our algorithms

already improves over wavelets for k-histograms of size 32 x 32 (see Section 8.4).

Finally, we note that our DP approach also generalizes to -- dimensional histograms for

any constant -y > 2. As the dimension of the histogram structure increases, the gap in

sample complexity between our algorithm and the prior wavelet-based approach becomes

increasingly wide and scales as O(k-y log d) vs O(k log^ d). For simplicity, we limit our

attention to the 2D case described above.

8.1.1 Related work

ID and 2D histograms have been studied extensively in several areas such as databases [78,
128] and density estimation. Histograms are typically used to summarize "count vectors",
with each coordinate of the vector 0 corresponding the number of items with a given value

in some data set. Computing linear sketches of such vectors, as well as efficient methods for

recovering histogram approximations from those sketches, became key tools for designing

space efficient dynamic streaming algorithms [105, 106, 220]. For 1D histograms it is known

how to achieve the optimal sketch length bound of n = O(k log d): it can be obtained by
representing k-histograms using a tree of O(k log d) wavelet coefficients as in [105] and then

using the structured sparse recovery algorithm of [36]. However, applying this approach to

2D histograms leads to a sub-optimal bound of O(k log2 d).

8.2 Approximation algorithms for 2D histograms

We now describe our approximate head and tail projections for histograms. One key

ingredient in our algorithms are hierarchical histograms. Overall, our goal is to approximate

arbitrary 2D histograms, i.e., arbitrary partitions of a Tdx V/H matrix with k non-overlapping

rectangles (for simplicity, we limit our attention to the case of square matrices). Such

histograms are also known as tiling histograms. However, tiling histograms are hard to
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work with algorithmically because they do not allow a clean decomposition for a dynamic

program. Instead, work in histogram approximation has utilized hierarchical histograms,
which are also partitions of a matrix into k non-overlapping rectangles. The additional

restriction is that the partition can be represented as a tree in which each rectangle arises

through a vertical or .horizontal split of the parent rectangle. We refer the reader to [167]
for a more detailed description of different histogram types.

An important result is that every tiling histogram consisting of k rectangles can be simulated

with a hierarchical histogram consisting of at most 4k rectangles (d'Amore and Franciosa,

1992). Since Theorems 8.1 and 8.2 provide bicriterion guarantees for the output space, i.e.,
projections into a space of histograms consisting of O(k) rectangles, we focus our attention

on approximation algorithms for hierarchical histograms in the following. These results can

then easily be converted into statements for tiling histograms by increasing the number of

histogram tiles by 4.

Next, we introduce some histogram-specific notation. For a histogram subspace U, we

denote the number of histogram pieces in U with -y(U). We denote the set of hierarchical

histograms subspaces with ytj. When we have an upper bound on the number of histogram

pieces, we write y",k for the set of hierarchical histogram subspaces U with 'y(U) < k.

An important subroutine in our approximate projections is the following notion of a hier-

achical histogram oracle.

Definition 8.3. An (a,()-hierarchical histogram oracle is an algorithm with the following

guarantee: given any b E R'l"'x and A E R as input, the algorithm returns a hierarchical

histogram subspace U such that

IIPubI2 - -7(U) > max IIPub 1 2 - Ay(U') . (8.1)
a U' E Yh

Moreover, the algorithm runs in time O(dl+().

An algorithm with the following guarantee directly follows from the hierarchical dynamic

programming techniques introduced in [167]. In particular, Theorem 3 of [167] implies a

dependence of a = 0(1/(2).

Equation (8.1) has the flavor of a head approximation (a max-quantified guarantee). As a

direct consequence of Equation (8.1), we also get the following "tail approximation" variant.

Lemma 8.4. The solution U returned by an (a, ()-hierarchical histogram oracle also satisfies

b - Pub 11 2 + A-y(U) min |lb - Pub1 2 + A7(U') . (8.2)
a U'EXh

Proof. Multiplying both sides of Equation (8.1) with -1 and pulling the negative sign into

the max gives

-||Pub1 2 + -y(H) min -I|Pub|11 2 + A-y(U').a U'EYh

Adding ||b11 2 to both sides and using that PU and Pu' are orthogonal projections then gives

Equation (8.2) via the Pythagorean Theorem. 0

197



Algorithm 27 Tail projection for hierarchical histograms

1: function HISTOGRAMTAIL(b, k, v, )
2: A +- min {Ibij - bi,,j, bij - bi 0}

A
2

3: Emin +- d
4: A0 --
5: Uo <- HISTOGRAMORACLE(b, Ao)
6: if l1b - PuJI = 0 and -y(Uo) ak then
7: return Uo
8: end if
9: A, +- 0

10: Ar <- 2allblI
11: E - ""k
12: while Ar - A i E do
13: Am +-A\+A,2
14: Um <- HISTOGRAMORACLE(b, Am)
15: if -y(Um) > ak and -y(Um) < vak then
16: return Um
17: end if
18: if 7(Um) > vak then
19: A,- Am

20: else
21: Ar Am

22: end if
23: end while
24: return HISTOGRAM ORACLE(b, Ar)
25: end function

However, note that neither Equation (8.1) nor (8.2) give direct control over the number
of histogram pieces k. In the following, we give algorithms that convert these guarantees
into approximate projections. In a nutshell, we show that carefully choosing the trade-off
parameter A, combined with a postprocessing step of the corresponding solution, yields head
an tail approximations.

8.2.1 Approximate tail projection

We now show how to construct an approximate tail projection from a hierarchical histogram
oracle. In the following, we assume that HISTOGRAMORACLE(b, A) is an (a, ()-hierarchical
histogram oracle.

First, we establish a lower bound on the approximation error l1b - Pull 2 if b is not in the

histogram subspace U.

Lemma 8.5. Let b E Rd and U be a histogram subspace. If b U, then we have l|b-Pul2 >

Emin where Emin is as defined in Algorithm 27.

Proof. If b U, there is a histogram piece in U on which b is not constant. Let R be the
set of indices in this piece. We now give a lower bound on the projection error based on
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the histogram piece R (recall that the projection of b onto U averages b in each histogram
piece):

lb - Pull2 > Z (bij - bR)2 where bR = bi
(ij)ER II (ij)ER

Let (i*, j*) be the index of the largest coefficient in the histogram piece R (ties broken arbi-
trarily). Then we bound the sum on the right hand side above with the term corresponding
to (i*,j*):

2

lb - Pul 2 > bi1,|| bij
RI (ij)ER

Let AR be the smallest non-zero difference between coefficients in R. Note that AR > 0
because b is not constant on R. Moreover, we have AR < max(ij)R bi*,j* - bij. Hence we
get

2
1 _ -___ 1 (b2bi*,j* |R bi~j > bi*,j*- |R bi ' *R|(bi*,j* - AR) 2

J (ij)ER (b*,* R- ___

because b i,j* is one of the largest coefficients in R and at least one coefficient is smaller
than bi.,j* by at least AR. Combining the inequalities above and simplifying then yields

I p 2_ A2

|b -FUll 2  R2  = d Emin-

Next, we prove that the histogram oracle returns roughly a k-histogram if the input is a
k-histogram and we set the parameter A correctly.

Lemma 8.6. Let Emin and A 0 be defined as in Algorithm 27. If b is a hierarchical k-
histogram, then HISTOGRAMORACLE(b, Ao) returns a hierarchical histogram subspace Uo
such that b E U0 and -y(Uo) ak.

Proof. First, we show that b E Uo, i.e., that |lb - PuJII = 0. Since b E , h,k, we know
that there is a hierarchical histogram subspace U' such that lb - Pyu'| = 0 and y(U') 5 k.
Substituting this histogram subspace U' and A0 into Equation (8.2) gives

2
llb-Pul 2 < Aoy-(U') < !"i"

2

where we also used that -y(U) > 0. Since Emin > 0, the contrapositive of Lemma 8.5
shows that b E Uo.

Next, we prove that y(Uo) < ak. Substituting into Equation (8.2) again and using |lb -
Puo 1| = 0 now gives the desired bound on the number of histogram pieces:

A0-y(Uo) Aok . E
a

With these preliminaries in place, we now show the main result for our tail approximation
algorithm.
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Theorem 8.7. Let b E Rd, k E N, V > 1, and > 0. Then HISTOGRAMTAIL(b, k, v,)
returns a histogram subspace U such that -y(U) < vak and

1
||b - Pub||2 < (I+ I + min |b - Pub||2-( V -1 U'E.4,k

Moreover, the algorithm runs in time

0 (n log

where A is as defined in Algorithm 27.

Proof. We analyze the three cases in which HISTOGRAMTAIL returns separately. First,
consider Line 7. In this case, UO clearly satisfies the conditions of the theorem. So in the
following, we condition on the algorithm not returning in Line 7. By the contrapositive of
Lemma 8.6, this implies that b V M(1h,k)-

Next, consider the case that HISTOGRAMTAIL returns in Line 16. This directly implies that
"i(Um) < vak. Moreover, substituting into Equation 8.2 and restricting the right hand side
to histogram subspaces with at most k pieces gives

||b - pU| 112 + -y(Um) mn |b - Pu'b1 2 + Amy(U')
a U'E.Yih,k

lb - pUm1|2 < min lib - Pub112 + Amy(U') - Amk
U' &-K, k

lb - pU 112 < min |lb - Pub| 2
U'EX1h,k

where we used that y(Um) > ak and -y(U') < k.

For the remaining case (Line 24), we use the following shorthands in order to simplify
notation: Let U and Ur be the histogram subspaces returned by HISTOGRAMORACLE
with parameters Al and Ar, respectively. We denote the corresponding tail errors with
t= ||b - Pu 1 12 and tr = l|b - pU,12. Moreover, we denote the optimal tail error with
t*= minU/-eh k|b - Pu' bI|2 . Finally, let 71 = 7(Uj) and yr = y(Ur) be the number of
histogram pieces in the respective histogram subspaces. Rewriting Equation 8.2 in terms of
the new notation gives

tj + -yl :! t* + Al k (8.3)

tr + A'r t* + Ark (8.4)
a

We will use Equation 8.3 in order to bound our tail projection error t1 . For this, we establish

an upper bound on Ar. Note that Ar A, + F when the algorithm reaches Line 24. Moreover,
the binary search over A is initialized so that we always have 'yl > vak and -y < ak.
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Combining these facts with Equation (8.4) leads to an upper bound on Al:

A1 *

t r+-Y, < t* + Aik
a

-l ak t* +Aink
a

- -(v-1)k

We use these facts in order to establish an upper bound on tr. Substituting into Equation
(8.4) gives

tr K* +' + f-k~

tr 1 + t*

where we used that t* > Emin because b is not a hierarchical k-histogram if the algorithm

reaches Line 24 (see Lemma 8.5). Combined with the fact that -yr < ak, this proves the

statement of the theorem.

Finally, we consider the running time bound. It is straightforward to see that the overall

running time is dominated by the invocations of HISTOGRAMORACLE, each of which takes

O(dC) time. The number of iterations of the binary search is bounded by the initial gap

between Al and Ar and the final gap E, which gives an iteration bound of

A() - A0) ad2 k bI
[log . E ~| = 0 log A2

Simplifying and multiplying this iteration bound with the running time of the subroutine

HISTOGRAMORACLE leads to the running time bound stated in the theorem. El

Theorem 8.1 now follows directly from Theorem 8.7. We first restate Theorem 8.1:

Theorem 8.1. Let ( > 0 and E > 0 be arbitrary. Then there is an (1 + E,Uk ,U,.k)-
approximate tail projection for 2D histograms where c = 0(11(2E). Moreover, the algorithm

runs in time 6(d'+C).

Setting = O(E) and v = O(1/) gives the 1 + E guarantee in Theorem 8.1. Moreover, we

use the a = 0(1/(2) dependence from Theorem 3 of [167].

8.2.2 Approximate head projection

Next, we show how to construct an approximate head projection from a hierarchical his-

togram oracle. Similar to the approximate tail projection above, we perform a binary search

over the parameter A in order achieve a good trade-off between sparsity and approximation.

In contrast to the tail case, we now need an additional subroutine for extracting a "high-

density" sub-histogram of a given hierarchical histogram. We reduce this task of extracting
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Algorithm 28 Head projection for hierarchical histograms

1: function HISTOGRAMHEAD(b, k, T)
2: bmax 4- maxbij I b?
3: A, - bmpxT

k
4: U - HISTOGRAMORACLE(b, A,)
5: if -y(U) k then
6: return U
7: end if
8: Ar +- 2a||b|1 2

9: E bmpxT
2k

10: while Ar - A > E do
11: Am ,,+ Al +A,

12: Um +- HISTOGRAMORACLE(b, Am)
13: if -y(Um) > 22k then
14: A,<- Am
15: else
16: Ar Am
17: end if
18: end while
19: U +- HISTOGRAMORACLE(b, A,)
20: Ur <- HISTOGRAMORACLE(b, Ar)
21: U/ +- FINDSUBHISTOGRAM(b, U1, 2k)

2T

22: if Puib 2 |IPurbI|2 then
23: return U/
24: else
25: return Ur
26: end if
27: end function

a sub-histogram to a problem on trees. Formally, we build on the following lemma about
the subroutine FINDSUBTREE.

Lemma 8.8. Let T = (V, E) be a tree with node weights w V -+ R. Moreover, let s < IVI
be the target subtree size. Then FINDSUBTREE(T, w, s) returns a node subset V' C V such

that V' forms a subtree in T, its size is at most 2s, and it contains a proportional fraction

of the node weights, i.e., EiGV'w(i) > ' yjE w(i).

Proof. Let w' and i be defined as in FINDSUBTREE. An averaging argument shows that

there must be a contiguous subsequence S as defined in FINDSUBTREE with

i+2s-1 2s 21VI-1

'( - 21V - 1 E

where the first inequality holds because S contains 2s nodes, and the second inequality holds

by the construction of the tour W.

Let V' be the nodes in S. Note that we have defined w' such that every node weight is used
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Algorithm 29 Subroutines for the head projection

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

15: function FINDSUBTREE(T, w, s)
16: Let W = (vi, . ., V21VI-1) be a tour through the nodes of T.

17: Let w'(j) =w(vj) if position j is the first appearance of vj in W

0 otherwise

> T = (V, E)

18: Let S = (vi, ... , vi+2s-1) be a contiguous subsequence of W with + w(

19: return the set of nodes in S.
20: end function

only once, and hence we get

Z w(j) >
jEV'

i+2s-

E w'(j)
j=i

as desired. Finally, since S is contiguous in the tour

of size at most 2s.

W, the nodes V' form a subtree in T
R

Utilizing Lemma 8.8, we now show how to extract a "good" sub-histogram from a given

hierarchical histogram. More precisely, our goal is to find a sub-histogram U' with a bounded

number of histogram pieces that still achieves a comparable "density" IPUb11 2  flPubjl2 . In
-Y(U') -Y(U)

order to precisely state our algorithm and proof, we now formalize the connection between

hierarchical histograms and tree graphs.

For a given histogram subspace U, let Tu = (Vu, Eu) be the tree defined as folllows: First,
every split in the hierarchical histogram corresponds to a node in Vu. For each split, we

then add an edge from the split to the split directly above it in the histogram hierarchy.

For a histogram subspace with -I(U) pieces, this leads to a tree with -Y(U) - 1 nodes. We

also associate each node v in the tree with three rectangles. Specifically, let R(v) be the
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function FINDS UBHISTOGRAM(b, U, s)

Let TU = (VU, EU) be a tree corresponding to the histogram subspace U.

Let w : VU -+ R be the node weight function corresponding to U and b.

Let T be the tree TU with an additional root node r.

Let w* be defined as w with the root node weight w*(r) = IIPRO bI2.
V +- FINDSUBTREE(T&, w*, s)

if r E V' then
return the sub-histogram defined by the splits in V'

else
Let r' be the root node in the subtree defined by V'.

Let U" be a 4-piece hierarchical histogram such that one of the leaf rectangles is

Rn.
return the composition of U" and the sub-histogram defined by V'

end if
end function

12:

13:

14:

> 1w(j)I jEV



rectangle split at v, and let Ri(v) and R,(v) be the left and right child rectangles resulting
from the split, respectively.

Next, we define the node weight function w : VU -+ R. The idea is that the weight of a
node corresponds to the "projection refinement", i.e., the gain in preserved energy when
projected onto the finer histogram. More formally, for a rectangle R, let PRb the projection
of b onto the rectangle R, i.e.,

(PRb)ij = 0 if (i, j) V R

FRJ E (u,v)ER bu,v otherwise

Then we define the weight of a node v as

w(v) = IIPR,(v)b12 + IIPRr(v)b12 - IIPR(v) 2I

Let R 1 ,. .. , R,(U) be the rectangles in the hierarchical histogram U, and let RO be the

V x V/- "root" rectangle. Since the rectangles are non-overlapping, we have

Y(U)

Z PRib = Pub.
t=1

Note that the rectangles R 1 , ... , R_(U) are exactly the child rectangles of the leaves in the
tree Tu. Moreover, by the construction of the weight function w, we have

||PRob|12 + ( w(v) = ||Pub|| 2

VEVU

because the contributions from intermediate nodes in the tree TU cancel out.

Lemma 8.9. Let b E Rv/-dxv/, let U be a hierarchical histogram subspace, and let s < 7(U)
be the target number of histogram pieces. Then FINDSUBHISTOGRAM(b, U, s) returns a

hierarchical histogram subspace U' such that -y(U') < 2s + 4 and ||Pub||2 > '| |Pub 112.
Moreover, the algorithm runs in time O(d).

Proof. Note that by construction, the tree T* defined in FINDSUBHISTOGRAM has k nodes

and the node weights w* satisfy

S w(v) = IIPubI| 2 .

U

Lemma 8.8 then shows that the subtree defined by the set of nodes V' satisfies IV' < 2s

and

5 w(v) > w(v) s | 2
vEV, 3(U) V EV - -(U) JlPubi

Let R'1, ... , RfVlI be the leaf rectangles of the subtree V'. The above lower bound on the
sum of the node weights implies that

IV,'
IPRb|2 s U 2

i=1 i Y(U)
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because the rectangles R' are non-overlapping and the weights of the inner tree nodes in V'

cancel as before. Hence any hierarchical histogram containing the rectangles Ri, ... , R,
satisfies the desired head projection bound. It remains to show that we can convert the
subtree defined by V' into a hierarchical histogram.

If the set V' contains the root node of T , the subtree V' directly gives a valid sub-histogram
of U. On the other hand, if the root node of T is not in V', we can construct a simple

4-piece hierarchical histogram U" that contains the root rectangle Rr of V' as one of its leaf

nodes. The histogram subspace U" is given by four splits corresponding to the boundaries of

the root rectangle Rn. We can then combine the hierarchical histogram U" with the subtree

V' by adding the splits in V' to the hierarchical histogram in U" (by construction, all these

splits are valid). The resulting hierarchical histogram then has at most 4 + IV'l < 4 + 2s

pieces.

The running time bound is straightforward: all pre-processing can be accomplished in linear

time by computing partial sums for the vector b (projections onto a rectangle can then be

computed in constant time). The subroutine FINDSUBTREE also runs in linear time because

it requires only a single pass over the tree of size O(?(U)). El

We can now state our approximate head projection algorithm.

Theorem 8.10. Let b c Rd, k e N, and 0 < T < 1. Then HISTOGRAMHEAD(b, k, T) returns

a histogram subspace U such that -yu < 4 -ak + 4 and

||Pub|2 > (1 - r) max ||Pub|| 2
U-''h,k

Moreover, the algorithm runs in time O(d' M log d).

Proof. First, we introduce a few shortands to simplify notation. Let the histogram subspace

U1 be the solution returned by HISTOGRAMORACLE(b, A,). We then write hi = |IPubJ2 for

the head approximation of U1 and ; = -y(U) for the number of histogram pieces in the

histogram subspace U1. We adopt a similar convention for hr and -yr (corresponding to the

solution for parameter Ar). Finally, let h* be the optimal head approximation achievable

with a k-histogram, i.e., h* = maxU'E./k IIPu,b2.

Rearranging Equation (8.1), using the new notation, and substituting the optimal k-
histogram solution for the max-quantifier gives

hi > h* - A k - . (8.5)

We now consider the case that the algorithm returns in Line 6. We clearly have -Y(U) <

4k + 4 when reaching Line 6. Moreover, substituting for A, in Equation 8.5 gives

hi > h* - baxT (k - Y

(1-T)h*

where the second line follows from h* > bmax. This inequality holds because any histogram

with at least 4 pieces can always create a rectangle that isolates the largest element in b
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(for simplicity, we assume that k > 4 and b # 0). Hence U, satisfies the conditions of the
theorem.

Next, we consider the case that the algorithm reaches the binary search. Note that the

binary search is initialized and performed such that we have Al < Ar < Al + E when it
terminates. Moreover, we have Yr ik and 71 > +k. We now distinguish two sub-cases

based on the "density" - of the solution Ul corresponding to Al. Let # = r(1-r/2) be the

density threshold compared to the optimal solution density h*

Sub-case 1: -L < q51 . This inequality allows us to establish an upper bound on Al.

Rearranging Equation (8.5) gives (note that k - is negative):

Al <- hi - h*

-71/a - k

ahk

We now use > 2 +k:

A < ahl
-- hi - T/y1/2

hi a

-- 'i 1 - T/2
0h* a

- k 1 - r/2

T h*

2 k

where we used the density upper bound for U1 valid in this subcase and the definition of q.
Next, we derive a lower bound on hr. Instantiating Equation (8.5) with Ur instead of U1

gives

hr > h* - Ar( k

> h* - Ark

> h* -(Ai+E)k

- h* - Aik ek
T T

> h* h* bmax2 2
> (I - T)h*

where we again used bmax < h*. So in this sub-case, Ur satisfies the conditions of the
theorem.

Sub-case 2: - > #L. In this subcase, the solution U1 has a good density, so FINDSUB-

HISTOGRAM can extract a good solution with a bounded number of histogram pieces. More
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formally, since -yl _> 2k, we can invoke Lemma 8.9 and get

IPub11 2 > T k

2ak h*
i- k

> -) h*.

Moreover, the output of FINDSUBHISTOGRAM satisfies y(U/) K -k + 4, and hence UJ
satisfies the conditions of the theorem.

We can now conclude the proof of the theorem: always, one of sub-case 1 and sub-case 2

holds. Since HISTOGRAMHEAD always returns the best of the two choices Ur and Uf, the

overall result has the desired head approximation guarantee.

The overall running time is dominated by the invocations of HISTOGRAMORACLE in the

binary search. Each invocation takes Q(nl+() time and the number of invocations is the

number of iterations of the binary search, i.e., bounded by

[o) - AM A 1 4ak|b11 2

E E bmaxT

Since k < d and < <d, the running time bound in the theorem follows. D
bmnax -

As before, Theorem 8.2 follows as a direct consequence of Theorem 8.10. For completeness,
we repeat the statement of Theorem 8.2:

Theorem 8.2. Let ( > 0 and E > 0 be arbitrary. Then there is an (1 - E, Uk,U,.k)
approximate head projection for 2D histograms where c = 0(1/(2E). Moreover, the algorithm

runs in time (d1 +').

Setting r = 0(E) gives the 1-E guarantee in Theorem 8.2. Moreover, we use the a = 0(1/(2)
dependence from Theorem 3 of [1671.

8.3 Recovery of histograms

Unlike previous chapters, we cannot instantiate our head and tail approximations for 2D-

histograms to get an "end-to-end" recovery guarantee. The reasons are somewhat technical

and will be discussed in the next subsection. Instead, we show how to construct a fast

measurement matrix for 2D-histograms (Subsection 8.3.2). Moreover, our empirical results

in Section 8.4 demonstrate that our algorithms do succeed in numerical experiments and

improve over the sample complexity of a wavelet approach.

8.3.1 A conjecture

While we have approximate projections for 2D histograms, they do not suffice to state an

overall recovery guarantee in the current form. The issue is that our recovery framework
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from Chapter 2 requires an approximate head projection that is competitive with respect
to the sum of subspaces U + UT. While this is easy to satisfy for low-rank matrices (the
sum of two rank-r subspace models is contained in the rank-2r subspace model), adding
histogram subspace models is more subtle. For instance, consider two k-histogram subspaces
corresponding to k rows and columns of a k x k matrix, respectively. The sum of the two
subspaces then contains k 2 individual rectangles (a chessboard pattern). While these k 2

rectangles are not independent (the dimension of the space is only 2k), the chessboard
pattern is no directly contained in the set of 2k-histogram subspaces. As a result, a
head approximation that is competitive with respect to 2k-histograms is not immediately
competitive with respect to the sum of two k-histograms.

While head boosting (c.f. Section 2.6.5) is not directly helpful to overcome this issue, we
believe that 2D histograms are "well-behaved" in the sense that boosting is still helpful. In
particular, we believe that the sum of two k-histograms still allows a constant-factor head
approximation with a single 0(k)-histogram subspace. More formally, we state the following
conjecture.

Conjecture 8.1. Let c > 0 be fixed. Then there are universal constants c1 > 0 and c 2 > 0
depending on c such that the following holds. For any b E Rd, there is a c1 k-histogram
subspace U such that we have

lPub|| ; c2IIPcxukb|.

If the above conjecture is true, Theorem 8.10 yields an approximate head projection that is
competitive to c x Uk. Combining this with our recovery framework from Chapter 2 then
yields an overall recovery algorithm.

8.3.2 A fast measurement matrix

As in Section 7.3.2, we now establish a bound on the sample complexity of subspace recovery.
This time, our focus is in 2D-histograms (instead of low-rank matrices). As before, our focus
is on fast measurement matrices, i.e., matrices that support matrix-vector multiplications
with a running time that is nearly-linear in the size of the vector. Our construction is again
a concatenation of previous results.

We consider the case where the subspace model U corresponds to the set of hierarchical
or tiling histograms. Since either type of histogram can be modeled as superpositions of
sub-rectangles of the domain V x VH, we can simply model the histogram subspace model
U as a subset of dictionary-sparse vectors

{xlx = Da, allo < k} .

Here, D is a dictionary of size d x (2) where each column of D corresponds to a single tile

(normalized to unit f2 -norm).

Therefore, any matrix that satisfies the RIP with respect to the dictionary D (abbreviated
sometimes as the D-RIP) also suffices for reliable histogram subspace recovery. The following
result can be derived similar to Theorem 2.29 in Section 2.6.6.
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Figure (8-1): Results for recovering a hierarchical histogram from subsampled Fourier
measurements. As predicted by our theoretical argument, the 2D histogram DP has the
best sample complexity.

Theorem 8.11. There exists a randomized construction of a matrix X G Rnxd, with
parameters n = O(k log d/k), such that with high probability, X satisfies the subspace RIP
for the histogram subspace model. Moreover, X supports matrix-vector multiplications with
complexity O(d log d + k2 polylogd).

8.4 Experiments

We begin with a description of the experimental setup. All experiments were conducted on
an iMac desktop computer with an Intel Core i5 CPU (3.2 GHz) and 16 GB RAM. With the
exception of the dynamic program (DP) for 2D histograms, all code was written in Matlab.
We chose C++ for the 2D histogram DP because it heavily relies on for-loops, which tend
to be slow in Matlab. Unless reported otherwise, all reported data points were averaged
over at least 10 trials.

Figure 8-1 shows our results for recovering a 2D histogram from linear observations. As
before, we use subsampled Fourier measurements. Our test vector is a 32 x 32 hierarchical
histogram consisting of 4 rectangles. Hierarchical histograms are essentially 2D piecewise
constant functions over a 2D domain where the constant pieces (or tiles) are generated by
starting with the entire domain as a single tile and recursively partitioning tiles by making
horizontal or vertical splits. We compare three approaches:

" "Standard" sparsity in the Haar wavelet domain.

* Tree sparsity in the Haar wavelet domain [36, 105].

* Our approximate projection algorithm.

The focus in our experiments is on sample complexity, so we have implemented only one
"level" of the DP in [167]. As the phase transitions in Figure 8-1 show, our 2D histogram
DP does indeed offer the best empirical sample complexity.
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Chapter 9

The Fine-Grained Complexity Of

Empirical Risk Minimization

9.1 Introduction

Empirical risk minimization (ERM) has been highly influential in modern machine learn-
ing [225]. ERM underpins many core results in statistical learning theory and is one of
the main computational problems in the field. Several important methods such as support
vector machines (SVM), boosting, and neural networks follow the ERM paradigm [207]. As
a consequence, the algorithmic aspects of ERM have received a vast amount of attention
over the past decades. This naturally motivates the following basic question:

What are the computational limits for ERM algorithms?

In this thesis, we address this question both in convex and non-convex settings. Convex ERM
problems have been highly successful in a wide range of applications, giving rise to popular
methods such as SVMs and logistic regression. Using tools from convex optimization, the
resulting problems can be solved in polynomial time. However, the exact time complexity of
many important ERM problems such as kernel SVMs is not yet well understood. As the size
of data sets in machine learning continues to grow, this question is becoming increasingly
important. For ERM problems with millions of high-dimensional examples, even quadratic
time algorithms can become painfully slow (or expensive) to run.

Non-convex ERM problems have also attracted extensive research interest, e.g., in the
context of deep neural networks. First order methods that follow the gradient of the
empirical loss are not guaranteed to find the global minimizer in this setting. Nevertheless,
variants of gradient descent are by far the most common method for training large neural
networks. Here, the computational bottleneck is to compute a number of gradients, not
necessarily to minimize the empirical loss globally. Although we can compute gradients in
polynomial time, the large number of parameters and examples in modern deep learning
still makes this a considerable computational challenge.

Unfortunately, there are only few existing results concerning the exact time complexity of
ERM or gradient computations. Since the problems have polynomial time algorithms, the
classical machinery from complexity theory (such as NP hardness) is too coarse to apply.
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Oracle lower bounds from optimization offer useful guidance for convex ERM problems, but
the results only hold for limited classes of algorithms. Moreover, they do not account for
the cost of executing the oracle calls, as they simply lower bound their number. Overall, we
do not know if common ERM problems allow for algorithms that compute a high-accuracy
solution in sub-quadratic or even nearly-linear time for all instances.1 Furthermore, we do
not know if there are more efficient techniques for computing (mini-)batch gradients than
simply treating each example in the batch independently.2

We address both questions for multiple well-studied ERM problems.

Hardness of ERM. First, we give conditional hardness results for minimizing the em-
pirical risk in several settings, including kernel SVMs, kernel ridge regression (KRR), and
training the top layer of a neural network. Our results give evidence that no algorithms
can solve these problems to high accuracy in strongly sub-quadratic time. Moreover, we
provide similar conditional hardness results for kernel PCA. All of these methods are popular
learning algorithms due to the expressiveness of the kernel or network embedding. Our
results show that this expressiveness also leads to an expensive computational problem.

Hardness of gradient computation in neural networks. Second, we address the
complexity of computing a gradient for the empirical risk of a neural network. In particular,
we give evidence that computing (or even approximating, up to polynomially large factors)
the norm of the gradient of the top layer in a neural network takes time that is "rectangular".
The time complexity cannot be significantly better than O(n - m), where m is the number of
examples and n is the number of units in the network. Hence, there are no algorithms that
compute batch gradients faster than handling each example individually, unless common
complexity-theoretic assumptions fail.

Our hardness results for gradient computation apply to common activation functions such
as ReLU or sigmoid units. We remark that for polynomial activation functions (for instance,
studied in [155]), significantly faster algorithms do exist. Thus, our results can be seen as
mapping the "efficiency landscape" of basic machine learning sub-routines. They distin-
guish between what is possible and (likely) impossible, suggesting further opportunities for
improvement.

Our hardness results are based on recent advances in fine-grained complexity and build

on conjectures such as the Strong Exponential Time Hypothesis (SETH) [123, 124, 226].
SETH concerns the classic satisfiability problem for formulas in Conjunctive Normal Form

(CNF). Informally, the conjecture states that there is no algorithm for checking satisfiability
of a formula with n variables and m clauses in time less than O(cP - poly(m)) for some

c < 2.3 While our results are conditional, SETH has been employed in many recent

'More efficient algorithms exist if the running time is allowed to be polynomial in the accuracy parameter,
e.g., [208] give such an algorithm for the kernel SVM problem that we consider as well. See also the discussion
at the end of this section.

2Consider a network with one hidden layer containing n units and a training set with m examples, for
simplicity in small dimension d = O(logn). No known results preclude an algorithm that computes a full
gradient in time O((n + m) log n). This would be significantly faster than the standard O(n - m - log n)
approach of computing the full gradient example by example.

3Note that SETH can be viewed as a significant strengthening of the P 4 NP conjecture, which only
postulates that there is no polynomial time algorithm for CNF satisfiability. The best known algorithms for
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hardness results. Its plausibility stems from the fact that, despite 60 years of research on
satisfiability algorithms, no such improvement has been discovered.

Our results hold for a significant range of the accuracy parameter. For kernel methods, our
bounds hold for algorithms approximating the empirical risk up to a factor of 1 + E, for
log(1/E) = w(log 2 n)). Thus, they provide conditional quadratic lower bounds for algorithms
with, say, a log 1/E runtime dependence on the approximation error E. A (doubly) logarith-
mic dependence on 1/E is generally seen as the ideal rate of convergence in optimization,
and algorithms with this property have been studied extensively in the machine learning
community (cf. [28].). At the same time, approximate solutions to ERM problems can
be sufficient for good generalization in learning tasks. Indeed, stochastic gradient descent
(SGD) is often advocated as an efficient learning algorithm despite its polynomial depen-
dence on 1/E in the optimization error [52, 208]. Our results support this viewpoint since
SGD sidesteps the quadratic time complexity of our lower bounds.

For other problems, our assumptions about the accuracy parameter are less stringent. In
particular, for training the top layer of the neural network, we only need to assume that
E 1/n. Finally, our lower bounds for approximating the norm of the gradient in neural
networks hold even if e - n0 (1 , i.e., for polynomial approximation factors (or alternatively,
a constant additive factor for ReLU and sigmoid activation functions).

Finally, we note that our results do not rule out algorithms that achieve a sub-quadratic
running time for well-behaved instances, e.g., instances with low-dimensional structure.
Indeed, many such approaches have been investigated in the literature, for instance the
Nystr6m method or random features for kernel problems [179, 234]. Our results offer an
explanation for the wide variety of techniques. The lower bounds are evidence that there is
no "silver bullet" algorithm for solving the aforementioned ERM problems in sub-quadratic
time, to high accuracy, and for all instances.

9.1.1 Background

We briefly review the relevant background from fine-grained complexity. The ERM problems
we consider will be formally introduced together with our results in the next section.

We obtain our conditional hardness results via reductions from two well-studied problems:
Orthogonal Vectors and Bichromatic Hamming Close Pair.

Definition 9.1 (Orthogonal Vectors problem (OVP)). Given two sets A = {al, ... , an}
{0, I}d and B = {bi, ... , bn} g {0, 1}d of n binary vectors, decide if there exists a pair a E A
and b E B such that aT b = 0.

For OVP, we can assume without loss of generality that all vectors in B have the same
number of 1s. This can be achieved by appending d entries to every bi and setting the
necessary number of them to 1 and the rest to 0. We then append d entries to every ai and
set all of them to 0.

Definition 9.2 (Bichromatic Hamming Close Pair (BHCP) problem). Given two sets
A = {ai,.. . , an} C {0, I}d and B = {b,. .. , bn} 9 {0, 1}d of n binary vectors and an
integer t E {2, ... , d}, decide if there exists a pair a E A and b E B such that the number of

CNF satisfiability have running times of the form O(2(0-*)n . poly(m)).
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coordinates in which they differ is less than t (formally, Hamming(a, b) := Ila - bII < t). If

there is such a pair (a, b), we call it a close pair.

It is known that both OVP and BHCP require almost quadratic time (i.e., n2-o(1)) for

any d = w(log n) assuming SETH [15].1 Furthermore, if we allow the sizes JAI = n and

IBI = m to be different, both problems require (nm)1 -(1) time assuming SETH, as long as
m = n' for some constant a E (0, 1) [57]. Our proofs will proceed by embedding OVP and

BHCP instances into ERM problems. Such a reduction then implies that the ERM problem

requires almost quadratic time if the SETH is true. If we could solve the ERM problem

faster, we would also obtain a faster algorithm for the satisfiability problem.

9.1.2 Our contributions

We now formally describe our main contributions, starting with conditional hardness results

for kernel problems. We then give our results for neural network ERM problems and for

computing gradients.

9.1.2.1 Kernel problems

We provide hardness results for two kernel ERM problems. In the following, let xi,. . . , xn E
Rd be the n input vectors, where d = w(log n). We use yi, . . ., yn E R as n labels or target
values. Finally, let k(x, x') denote a kernel function and let K E R"X" be the corresponding

kernel matrix, defined as Ki, := k(xi, xj) [203]. Concretely, we focus on the Gaussian kernel

k(x, x') := exp (-Clix - 1'112) for some C > 0. We note that our results can be generalized

to any kernel with exponential tail.

Kernel SVM. For simplicity, we present our result for hard-margin SVMs without bias

terms. This gives the following optimization problem.

Definition 9.3 (Hard-margin SVM). A (primal) hard-margin SVM is an optimization

problem of the following form:

minimize - a aj yi yj k(xi, xj)
2 ay,...,a, 2)(9.1)

subject to yif(xi) > 1, i = 1, ... n,

where f(x) := E'i aiyik(xi, x).

The following theorem is our main result for SVMs, described in more detail in Section 9.2.1.

In Sections 9.4.2.1, 9.4.2.2, and 9.4.2.3 we provide similar hardness results for other common

SVM variants, including the soft-margin version.

Theorem 9.4. Let k(a, a') be the Gaussian kernel with C = 100 log n and let

E = exp(-(log 2 n)).

'We use w(g(n)) to denote any function f such that 1imn-+ f(n)/g(n) = oc. Similarly, we use o(g(n))

to denote any function f such that limn-, f(n)/g(n) = 0. Consequently, we will refer to functions of the

form w(1) as super-constant and to n'(1) as super-polynomial.
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Then approximating the optimal value of Equation (9.1) within a multiplicative factor 1 + e
requires almost quadratic time assuming SETH.

Kernel ridge regression. Next we consider Kernel ridge regression, which is formally
defined as follows.

Definition 9.5 (Kernel ridge regression). Given a real value A > 0, the goal of kernel ridge
regression is to output

1 2 AT
argmin -Iy- Ka|2 +-aTKa.

aERn 22

This problem is equivalent to computing the vector (K + AI>)y. We focus on the special
case where A = 0 and the vector y has all equal entries yi = ... = yn = 1. In this case, the
entrywise sum of K-ly is equal to the sum of the entries in K- 1 . Thus, we show hardness
for computing the latter quantity (see Section 9.4.4for the proof).

Theorem 9.6. Let k(a, a') be the Gaussian kernel for any parameter C = w(log n) and let
E = exp(-w(log 2 n)). Then computing the sum of the entries in K- 1 up to a multiplicative

factor of 1 + E requires almost quadratic time assuming SETH.

Kernel PCA. Finally, we turn to the Kernel PCA problem, which we define as follows
[164].

Definition 9.7 (Kernel Principal Component Analysis (PCA)). Let In be an n x n matrix
where each entry takes value 1/n, and define K' := (I - 1n)K(I - 1). The goal of the

kernel PCA problem is to output the n eigenvalues of the matrix K'.

In the above definition, the output only consists of the eigenvalues, not the eigenvectors.

This is because computing all n eigenvectors trivially takes at least quadratic time since

the output itself has quadratic size. Our hardness proof applies to the potentially simpler
problem where only the eigenvalues are desired. Specifically, we show that computing the

sum of the eigenvalues (i.e., the trace of the matrix) is hard. See Section 9.4.3 for the proof.

Theorem 9.8. Let k(a, a') be the Gaussian kernel with C = 100 log n and let

E = exp(-w(log 2 n))

Then approximating the sum of the eigenvalues of K' = (I - 1n)K(I - 1n) within a multi-
plicative factor of 1 + E requires almost quadratic time assuming SETH.

We note that the argument in the proof shows that even approximating the sum of the
entries of K is hard. This provides an evidence of hardness of the kernel density estimation
problem for Gaussian kernels, complementing recent upper bounds of [71].

9.1.2.2 Neural network ERM problems

We now consider neural networks. We focus on the problem of optimizing the top layer

while keeping lower layers unchanged. An instance of this problem is transfer learning with
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large networks that would take a long time and many examples to train from scratch [184].
We consider neural networks of depth 2, with the sigmoid or ReLU activation function. Our
hardness result holds for a more general class of "nice" activation functions S as described

later (see Definition 9.12).

Given n weight vectors w 1, .. ., wn E Rd and n weights al, ... , an E R, consider the function

f : Rd - R using a non-linearity S : R -+ R:

n

f(u) : a . S(uTWj)
j=1

This function can be implemented as a neural net that has d inputs, n nonlinear activations

(units), and one linear output.

To complete the ERM problem, we also require a loss function. Our hardness results hold

for a large class of "nice" loss functions, which includes the hinge loss and the logistic loss. 1

Given a nice loss function and m input vectors a1 , ... , am E Rd with corresponding labels

yi, we consider the following problem:

m

minimize loss(yi, f(u)). (9.2)

Our main result is captured by the following theorem (see Section 9.2.3 for the proof). For

simplicity, we set m = n.

Theorem 9.9. For any d = w(logn), approximating the optimal value in Equation (9.2)
up to a multiplicative factor of 1 + - requires almost quadratic time assuming SETH.

9.1.2.3 Hardness of gradient computation

Finally, we consider the problem of computing the gradient of the loss function for a given
set of examples. We focus on the network architecture from the previous section. Formally,
we obtain the following result:

Theorem 9.10. Consider the empirical risk in Equation (9.2) under the following assump-

tions: (i) The function f is represented by a neural network with n units, n - d parameters,

and the ReLU activation function. (ii) We have d = w(log n). (iii) The loss function is the

logistic loss or hinge loss. Then approximating the fp-norm (for any p 1) of the gradient

of the empirical risk for m examples within a multiplicative factor of nc for any constant

C > 0 takes at least 0 ((nm)1-0(1)) time assuming SETH.

See Section 9.2.4 for the proof. We also prove a similar statement for the sigmoid activation

function. At the same time, we remark that for polynomial activation functions, significantly

faster algorithms do exist, using the polynomial lifting argument. Specifically, for the

polynomial activation function of the form x' for some integer r > 2, all gradients can be

computed in O((n+m)dr) time. Note that the running time of the standard backpropagation

algorithm is 0(dnm) for networks with this architecture. Thus one can improve over

'In the binary setting we consider, the logistic loss is equivalent to the softmax loss commonly employed
in deep learning.
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backpropagation for a non-trivial range of parameters, especially for quadratic activation
function when r = 2. See Section 9.4.6 for more details.

9.1.3 Related work

Recent work has demonstrated conditional quadratic hardness results for many combinatorial
optimization problems over graphs and sequences. These results include computing diameter
in sparse graphs [72, 189], Local Alignment [7], Frechet distance [56], Edit Distance [30],
Longest Common Subsequence, and Dynamic Time Warping [3, 57]. In the machine learning
literature, [31] recently showed a tight lower bound for the problem of inferring the most
likely path in a Hidden Markov Model, matching the upper bound achieved by the Viterbi
algorithm [230]. As in our work, the SETH and related assumptions underlie these lower
bounds. To the best of our knowledge, we give the first application of this methodology to
continuous (as opposed to combinatorial) optimization problems.

There is a long line of work on the oracle complexity of optimization problems, going back
to [173]. We refer the reader to [174] for these classical results. The oracle complexity of
ERM problems is still subject of active research, e.g., see [8, 21, 22, 65, 240]. The work
closest to ours is [65], which gives quadratic time lower bounds for ERM algorithms that
access the kernel matrix through an evaluation oracle or a low-rank approximation.

The oracle results are fundamentally different from the lower bounds presented here. Oracle
lower bounds are typically unconditional, but inherently apply only to a limited class of
algorithms due to their information-theoretic nature. Moreover, they do not account for the
cost of executing the oracle calls, as they merely lower bound their number. In contrast,
our results are conditional (based on the SETH and related assumptions), but apply to any
algorithm and account for the total computational cost. This significantly broadens the
reach of our results. We show that the hardness is not due to the oracle abstraction but
instead inherent in the computational problem.

9.2 Overview of the hardness proofs

We now give high-level overviews of our hardness proofs.

9.2.1 Kernel SVMs

Let A = {al, ... , a} g {0, 1}d and B = {bi, ... , b,} 9 {0, I}d be the two sets of binary
vectors from a BHCP instance with d = w(log n). Our goal is to determine whether there is
a close pair of vectors. We show how to solve this BHCP instance by reducing it to three
computations of SVM, defined as follows:

1. We take the first set A of binary vectors, assign label 1 to all vectors, and solve the
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corresponding SVM on the n vectors:

minimize - a k(aiay)ai,..,n2 2~~
n (9.3)

subject to Ecajk(ai,aj) >1, i = 1,.. .,n.
j=1

Note that we do not have yi in the expressions because all labels are 1.

2. We take the second set B of binary vectors, assign label -1 to all vectors, and solve
the corresponding SVM on the n vectors:

1n
minimize - E 8jk(bi~bj)

S 1,.., o2 2 _ 3f~kb,~
S .2 ,j (9 .4 )

n

subject to -Z 3k(bi,bj) < -1, i= 1,...,n.
j=1

3. We take both sets A and B of binary vectors, assign label 1 to all vectors from the

first set A and label -1 to all vectors from the second set B. We then solve the

corresponding SVM on the 2n vectors:

minimize - aiajk(ai,aj)+- E 0if3/3k(bi,bj)- E ai3 jk(ai,bj)
02 2

./i i'j= i,j~1

n n

subject to Zajk(ai, aj) - ZIOjk(a, bj) 1, i = 1,...,n , (9.5)
j=1 j=1

n n

- Z/3jk(bi, b) + a jk(b, aj) -1, i = 1, ... , n
j=1 j=1

Reduction running time. The reductions to SVM proceed by creating appropriately
labeled data sets (A, B or A U B) and invoking the SVM subroutine on each of them. Each
of those data sets contain 0(n) points in Rd, so the reductions run in O(dn) time. Since we
only need to assume that d = w(log n), it follows that a sub-quadratic algorithm for SVM

implies a sub-quadratic algorithm for BHCP.

Intuition behind the construction. To show a reduction from the BHCP problem to

SVM computation, we have to consider two cases:

. The YES case of the BHCP problem when there are two vectors that are close in Ham-

ming distance. That is, there exist ai E A and bj E B such that Hamming(ai, bj) < t.

* The NO case of the BHCP problem when there is no close pair of vectors. That is,
for all a E A and bj E B, we have Hamming(ai, by) > t.

We show that we can distinguish between these two cases by comparing the objective value

of the first two SVM instances above to the objective value of the third.
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Intuition for the NO case. We have Hamming(ai, b,) t for all ai E A and bj E B.

The Gaussian kernel then gives the inequality

k(ai, bj) = exp(-100 log n - Iiai - bji ) < exp(-100 log n - t)

for all ai E A and b c B. This means that the value k(ai, bj) is very small. For simplicity,
assume that it is equal to 0, i.e., k(ai, bj) = 0 for all ai E A and bj E B.

Consider the third SVM (9.5). It contains three terms involving k(ai, bj): the third term in

the objective function, the second term in the inequalities of the first type, and the second

term in the inequalities of the second type. We assumed that these terms are equal to 0
and we observe that the rest of the third SVM is equal to the sum of the first SVM (9.3)
and the second SVM (9.4). Thus we expect that the optimal value of the third SVM is

approximately equal to the sum of the optimal values of the first and the second SVMs. If
we denote the optimal value of the first SVM (9.3) by value(A), the optimal value of the

second SVM (9.4) by value(B), and the optimal value of the third SVM (9.5) by value(A, B),
then we can express our intuition in terms of the approximate equality

value(A, B) e value(A) + value(B) .

Intuition for the YES case. In this case, there is a close pair of vectors ai E A and

bj E B such that Hamming(ai, bj) < t - 1. Since we are using the Gaussian kernel we have

the following inequality for this pair of vectors:

k(ai, bj) = exp(-100 log n - IIai - bj 11) > exp(-100 log n - (t - 1))

We therefore have a large summand in each of the three terms from the above discussion.

Thus the three terms do not (approximately) disappear and there is no reason for us to

expect that the approximate equality holds. We can thus expect

value(A, B) ? value(A) + value(B) .

Thus, by computing value(A, B) and comparing it to value(A) +-value(B) we can distinguish

between the YES and NO instances of BHCP. This completes the reduction. The full proofs

are given in Section 9.4.2.1.

9.2.2 Kernel ridge regression

The hardness proof for kernel ridge regression is somewhat technical, so we only outline it

here. As described in Section 9.1.2, our goal is to prove that computing the sum of the

entries in the matrix K-1 requires quadratic time. The main idea is to leverage the hardness

of computing the sum y= 1 k(ai, bj), as shown in Lemma 9.24.

To this end, we show that the following approximate equality holds:

s(KX 1) + s(K 1 ) - s(KX)~ 2 : k(a , bj).
i,j=1
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where we use the notation KAB, KA, KB as in the previous section. This allows us to
conclude that a sufficiently accurate approximation to s(K- 1 ) for a kernel matrix K gives us
the solution to the BHCP problem. The key observation for proving the above approximate
equality is the following: if a matrix has no large off-diagonal element, i.e., it is an "almost
identity", then so is its inverse.

9.2.3 Training the final layer of a neural network

We start by formally defining the class of "nice" loss functions and "nice" activation functions.

Definition 9.11. For a label y E {-1, 1} and a prediction w C R, we call the loss function

loss(y, w) : {-1, 1} x R -* R>0 nice if the following three properties hold:

* loss(y, w) = l(yw) for some convex function 1 : R --+ R>0.

* For some sufficiently large constant K > 0, we have that (i) 1(x) o(1) for all x > nK

(ii) 1(x) ;> w(n) for all x -nK, and (iii) 1(x) = 1(0) k o(1/n) for all x G kO(n-K).

1 1(0) > 0 is some constant strictly larger than 0.

We note that the hinge loss function loss(y, x) = max(0, 1-y -x) and the logistic loss function

loss(y, x) = -ln (1 + eyx) are nice loss functions according to the above definition.

Definition 9.12. A non-decreasing activation functions S : R -+ R>0 is "nice" if it satisfies

the following property: for all sufficiently large constants T > 0 there exist vo > v1 > V 2

such that S(vo) = 0(1), S(vi) = 1/nT, S(v2) = 1/n'(l) and v1 = (Vo + v2)/2.

The ReLU activation S(z) = max(0, z) satisfies these properties since we can choose v0 = 1,
vi = 1/n T, and v2 = -1 + 2/nT. For the sigmoid function S(z) = 1_, we can choose

vi = - log(nT - 1), vo = v1 + C, and v2 = vi - C for some C = w(log n). In the rest of the
proof we set T = 1000K, where K is the constant from Definition 9.11.

We now describe the proof of Theorem 9.9. We use the notation a := (al, ... ,an)T. Invoking
the first property from Definition 9.11, we observe that the optimization problem (9.2) is
equivalent to the following optimization problem:

m

minimize l(yi - (Ma)), (9.6)

where M C Rmxn is the matrix defined as Mj := S(u wj) for i = 1, . . ,m and j = 1,. . . n.

For the rest of the section we will use m = 8(n).1

Let A = {ai,...,an} g {0,1}d and B = {b 1,...,bn} g {0,1}d with d = w(log n) be the
input to the Orthogonal Vectors problem. To show hardness we define a matrix M as a

Mi
vertical concatenation of 3 smaller matrices: M1 , M2 and M2 (repeated). M = M2 -

M2

Both matrices M1 , M2 E R are of size n x n. Thus the number of rows of M (equivalently,
the number of training examples) is m = 3n.

'Note that our reduction does not explicitly construct Al. Instead, the values of the matrix are induced

by the input examples and weights.
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Reduction running time. The reduction from BHCP to the retraining problem proceeds
by creating n weight vectors and O(n) training examples, both of which are vectors in Rd.
The procedure for creating the examples (described in the following sections) takes 0(dn)
time. Since we only need to assume that d = w(log n), it follows that a sub-quadratic
algorithm for the retraining problem implies a sub-quadratic algorithm for BHCP.

Reduction overview. We select the input examples and weights so that the matrices
Mi and M2 , have the following properties:

* MI: if two vectors a, and bj are orthogonal, then the corresponding entry (M1 )i,
S(vo) = 8(1) and otherwise (M1 )i,j - 0.1

" M 2 : (M2 )i,i = S(vi) - 1/n1OOK and (M2)i,j ~ 0 for all i , j
To complete the description of the optimization problem (9.6), we assign labels to the inputs

corresponding to the rows of the matrix M. We assign label 1 to all inputs corresponding

to rows of the matrix MI and the first copy of the matrix M2 . We assign label -1 to all
remaining rows of the matrix M corresponding to the second copy of matrix M2 .

The proof of the theorem is completed by the following two lemmas. See Section 9.4.5 for
the proofs.

Lemma 9.13. If there is a pair of orthogonal vectors, then the optimal value of (9.6) is
upper bounded by (3n - 1) - l(0) + o(l).

Lemma 9.14. If there is no pair of orthogonal vectors, then the optimal value of (9.6) is
lower bounded by 3n -l(0) - o(1).

The intuition behind the proofs of the two lemmas is as follows. To show Lemma 9.13, it
suffices to demonstrate a feasible vector a. We achieve this by setting each entry of a to a
"moderately large" number. In this way we ensure that:

* At most n - 1 entries of Mia are close to 0, each contributing at most l(0) + o(1/n)
to the loss.

. The remaining entries of Mia are positive and "large", each contributing only o(1)
to the loss. These entries correspond to orthogonal pairs of vectors. The total loss
corresponding to Mi is thus upper bounded by (n - 1) - l(0) + o(1).

* The entries of the two vectors M2a are close to 0, contributing approximately 2n -l(0)
to the loss.

To show Lemma 9.14, we need to argue that no vector a achieves loss smaller than 3n -
l(0) - o(1). We first observe that the two copies of M2 contributes a loss of at least 2n -l(0),
independently of the values of a. We then show that the entries of a cannot be too large

(in absolute value), as otherwise the loss incurred by the two copies of the matrix M2 would
be too large. Using this property, we show that the loss incurred by M, is lower bounded
by n - l(0) - o(1).

Since l(0) > 0 (the third property in Definition 9.11), we can distinguish < 3n - l(0) + o(1)
from > (3n + 1) - l(0) - o(1) with a high-accuracy ERM solution. Hence Lemmas 9.13 and
9.14 imply that Problem (9.6) is SETH hard.

'We write x 1y if x = y up to an inversely superpolynomial additive factor, i.e., Ix - yj < n~-0).
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9.2.4 Gradient computation

Finally, we consider the problem of computing the gradient of the loss function for a

given set of examples. We focus on the network architecture as in the previous section.

Specifically, let Fa,B(a) :=j 1 ajS(a, bj) be the output of a neural net with activation

function S, where: (1) a is an input vector from the set A := {1, . . . , am} C {O, 1}d; (2)

B := {bi,... , bn} g {O, 1 }d is a set of binary vectors; (3) a = {a1,... , an}T E R1 is an

n-dimensional real-valued vector. We first prove the following lemma.

Lemma 9.15. For some loss function 1 : R --+ R, let l(Fa,B(a)) be the loss for input a when
the label of the input a is +1. Consider the gradient of the total loss l,A,B 1aGA l(FaB(a))

at a1 = ... an = 0 with respect to a1 ,..., an. The sum of the entries of the gradient is

equal to l'(0) - EaeA,beB S(a, b), where l'(0) is the derivative of the loss function I at 0.

For the hinge loss function, we have that the loss function is 1(x) = max(0, 1 - x) if the

label is +1. Thus, l'(0) = -1. For the logistic loss function, we have that the loss function

is (x) = L In (1 + e-x) if the label is +1. Thus, l'(0) = - in this case.

Proof of Theorem 9.10. Since all fp-norms are within a polynomial factor, it suffices to show

the statement for fi-norm.

We set S(a, b) := max(0, 1 - 2aTb). Using Lemma 9.15, we get that the fl-norm of the

gradient of the total loss function is equal to Il'(0)I - EaEA,beB laTb=O. Since l'(O) 0 0, this

reduces OV to the gradient computation problem. Note that if there is no orthogonal

pair, then the f1-norm is 0 and otherwise it is a constant strictly greater than 0. Thus

approximating the fi-norm within any finite factor allows us to distinguish the cases. D

See Section 9.4.6 for further results.

9.3 Conclusions

We have shown that a range of kernel problems require quadratic time for obtaining a high

accuracy solution unless the Strong Exponential Time Hypothesis is false. These problems

include variants of kernel SVM, kernel ridge regression, and kernel PCA. We also gave

a similar hardness result for training the final layer of a depth-2 neural network. This

result is general and applies to multiple loss and activation functions. Finally, we proved

that computing the empirical loss gradient for such networks takes time that is essentially
"rectangular", i.e., proportional to the product of the network size and the number of

examples.

We note that our quadratic (rectangular) hardness results hold for general inputs. There

is a long line of research on algorithms for kernel problems with running times depending

on various input parameters, such as its statistical dimension [241], degrees of freedom [25]

or effective dimensionality [1661. It would be interesting to establish lower bounds on the

complexity of kernel problems as a function of the aforementioned input parameters.

Our quadratic hardness results for kernel problems apply to kernels with exponential tails.

A natural question is whether similar results can be obtained for "heavy-tailed" kernels, e.g.,
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the Cauchy kernel. We note that similar results for the linear kernel do not seem achievable
using our techniques. 1

Several of our results are obtained by a reduction from the (exact) Bichromatic Hamming
Closest Pair problem or the Orthogonal Vectors problem. This demonstrates a strong
connection between kernel methods and similarity search, and suggests that perhaps a reverse
reduction is also possible. Such a reduction could potentially lead to faster approximate
algorithms for kernel methods: although the exact closest pair problem has no known sub-
quadratic solution, efficient and practical sub-quadratic time algorithms for the approximate
version of the problem exist (see e.g., [14, 16, 17, 19, 224]).

9.4 Proof details

9.4.1 Preliminaries

In this section, we define notion used later in this chapter. We start from the soft-margin
support vector machine (see [163]).

Definition 9.16 (Support Vector Machine (SVM)). Let xl,..., xn E Rd be n vectors and

Y1, - . , yn G { -1, 1} be n labels. Let k(x, x') be a kernel function. An optimization problem
of the following form is a (primal) SVM.

A n1
minimize - a ayyk(xi,xj) + n i
,1.,e., bn~ 2-z 1 i= (9.7)

subject to yif(xi) > 1 - i, in,

where f(x) := b + = 1 ajyjk(xi, x) and A > 0 is called the regularization parameter. i are
known as the slack variables.

The dual SVM is defined as

maximize Ea 2 - aajyyyk(xi, x- )
_,. 2., ;>2

n

subject to EZaiyi = 0, (9.8)
i=1

1
al, ...- an < --

An

We refer to the quantity b as the bias term. When we require that the bias is b = 0, we call
the optimization problem as SVM without the bias term. The primal SVM without the bias
term remains the same except f(x) = JI='1 aiyik(xi, x). The dual SVM remains the same
except we remove the equality constraint Z=1 aiyi = 0.

'In particular, assuming a certain strengthening of SETH, known as the "non-deterministic SETH" [63],
it is provably impossible to prove SETH hardness for any of the linear variants of the studied ERM problems,
at least via deterministic reductions. This is due to the fact that these problems have short certificates
of optimality via duality arguments. Also, it should be noted that linear analogs of some of the problems
considered in this chapter (e.g., linear ridge regression) can be solved in O(nd2 ) time using SVD methods.
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The (primal) hard-margin SVM defined in the previous section corresponds to soft-margin

SVM in the setting when A -+ 0. The dual hard-margin SVM is defined as follows.

Definition 9.17 (Dual hard-margin SVM). Let x1, ... , x, E Rd be n vectors and let

y1,..., yn E {-1, 1} be n labels. Let k(x, x') be a kernel function. An optimization problem

of the following form is a dual hard-margin SVM.

nn
maximize a- ai a yi yj k(xi, xj)

a ,., > 0 2
i 1~~ (9.9)
n

subject to a yi = 0.
i=1

If the primal hard-margin SVM is without the bias term (b = 0), then we omit the inequality

constraint Z=i aiyi = 0 in the dual SVM.

We will use the following fact (see [163]).

Fact 9.18. If a*, ... , a* achieve the minimum in an SVM, then the same c4, ... , a* achieve

the maximum in the dual SVM. Also, the minimum value and the maximum value are equal.

9.4.2 SVM problems

9.4.2.1 SVM without the bias term

In this section we formalize the intuition from Section 9.2.1. We start from the following

two lemmas.

Lemma 9.19 (NO case). If for all ai E A and bj E B we have Hamming(ai, bj) t, then

value(A, B) value(A) + value(B) + 200n 6 exp (-100 log n - t).

Lemma 9.20 (YES case). If there exist ai E A and bi E B such that Hamming(ai, bj) < t-1,
then

1
value(A, B) value(A) + value(B) + - exp(-100 log n - (t - 1)).

4

Assuming the two lemmas we can distinguish the NO case from the YES case because

200n6 exp(-100 log n - t) < - exp(-100 log n - (t - 1))
4

by our choice of the parameter C = 100 log n for the Gaussian kernel.

Before we proceed with the proofs of the two lemmas, we prove the following auxiliary

statement.

Lemma 9.21. Consider SVM (9.3). Let ,. a* be the setting of values for o1,..., a,

that achieves value(A). Then for all i = 1, ... , n we have that n > ao > 1/2.

Analogous statement holds for SVM (9.4).
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Proof. First we note that value(A) n2/2 because the objective value of (9.3) is at most
n2 /2 if we set a, = .. . = an = 1. Note that all inequalities of (9.3) are satisfied for this

setting of variables. Now we lower bound value(A):

1 n nvalue(A) = a a k(ai, aj) > i2 kj i=2

From value(A) l Z=(a*) 2 and value(A) < n 2/2 we conclude that a < n for all i.

Now we will show that ai' > 1/2 for all i =1,..., r. Consider the inequality

n

a* k(ai, aj)= a* + E a*k(ai, a) >
j=1 j: i

which is satisfied by a*, . . ., a* because this is an inequality constraint in (9.3). Note that

k(ai,aj) K 17 for all i 7 j because C = 100logn and I1ai - ajI11 = Hamming(ai, aj) !1
for all i j. Also, we already obtained that a* < n for all j. This gives us the required

lower bound for a*:

1
a* > I ajk(ai, aj) > I -- n - n-102 /.
a*1 - E '~~a)r~i i n2 > 1/2.

Additive precision For particular value of t, the sufficient additive precision for solving

the three SVMs is - exp(-100 log n - (t - 1)) to be able to distinguish the NO case from

the YES case. Since we want to be able to distinguish the two cases for any t C {2, ... , d},
it suffices to have an additive precision exp(--100 log n - d) - exp(-100 log n - (t - 1)).
From [15] we know that any d = o(log n) is sufficient to show hardness. Therefore, any

additive approximation exp(-w(log 2 n)) is sufficient to show the hardness for SVM.

Multiplicative precision Consider any E = exp(-w(log 2 n)) and suppose we can approxi-

mate within multiplicative factor (1+E) quantities value(A), value(B) and value(A, B). From

the proof of Lemma 9.21 we know that value(A), value(B) n 2 /2. If value(A, B) K 10n2 ,
then (1 + E)-approximation of the three quantities allows us to compute the three quantities

within additive exp(-w(log 2 n)) factor and the hardness follows from the previous paragraph.

On the other hand, if value(A, B) > 10n2 , then (1 + E)-approximation of value(A, B) allows

us to determine that we are in the YES case.

In the rest of the section we complete the proof of the theorem by proving Lemma 9.19 and

Lemma 9.20.

Proof of Lemma 9.19. Let a*, ... , a* and #3*, ... , * be the optimal assignments to SVMs

(9.3) and (9.4), respectively. We use the notation 6 := exp(-100 log n - t). Note that

k(ai, bj) = exp(-100 log n-1|ai-bI|1) < 6 for all i, j because IJai-b I-'= Hamming(ai, bj) t
for all i,j.

We define a := a + 10n 26 and i3 : + 10n 2 6 for all i = 1,. . . , n. We observe that

a3,/f < 2n for all i because a, < <n for all i (Lemma 9.21) and 6 = exp(-100 log n - t)
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. Let V be the value of the objective function in (9.5) when evaluated on a' and 3'

We make two claims. We claim that a' and 0' satisfy the inequality constraints in (9.5).
This implies that value(A, B) < V since (9.5) is a minimization problem. Our second claim
is that V < value(A) + value(B) + 200n66. The two claims combined complete the proof of
the lemma.

We start with the proof of the second claim. We want to show that V < value(A) +value(B) +
200n'6 . We get the following inequality:

>3= a'ak(ai,aj) + - > ik(bib9 ) - k k(ai,b,)
i,j=1 ij=1 i,j=1

nn
< >1 a ak(ai,aj) + - >3 0' ' k(bi,bj)

i,j=1 i,j=1

since the third sum is non-negative. It is sufficient to show two inequalities

- Y a'k(ai, aj) < value(A) + 100n662 >3 i

and
i n6

2>3 /3'k(bi, bj) value(B) + 100n66
i,j=1

to establish the inequality V < value(A) + value(B) + 200n66. We prove the first inequality.
The proof for the second inequality is analogous. We use the definition of a' = a* + 10n26:

2 a' a k(ai, aj)

2 (a4 + 10n26)(a + 10n26)k(ai, a,)
i,j=1

- (a* a* k(ai, aj) + 20n36 + 1002462
i,j=1

* value(A) + 100n66,

where in the first inequality we use that a* < n and k(ai, aj) < 1.

Now we prove the first claim. We show that the inequality constraints are satisfied by a'

and 0'. We prove that the inequality

n n

E3a' k(ai, aj) - >33 k(ai, bj) > 1 (9.10)
j=1 j=1

is satisfied for all i = 1, . .. , n. The proof that the inequalities

n n

->3,%k(bi,bj)+Jak(bi,aj) < -1
j=1 j=1
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are satisfied is analogous.

We lower bound the first sum of the left hand side of (9.10) by repeatedly using the definition
of a' = a* + 10n26:

Eac k(ai, aj)
j=1

=(a* + 10n 26) + E a k(ai, aj)

> 10n2 6 + a + : a* k(ai, aj)

n

= 10n26 + I:Z k(ai, aj)
j= 1

> 1I+ 10n 28.

In the last inequality we used the fact that ac satisfy the inequality constraints of SVM
(9.3).

We upper bound the second sum of the left hand side of (9.10) by using the inequality
13 < 2n and k(ai, bj) 6 for all i, j:

j0 k(ai,bj) < 2n26.
j=1

Finally, we can show that the inequality constraint is satisfied:

n n

3cek(ai, aj) - Z/ 3k(ai, bj) > 1 + 10n26 - 2n 2 6> 1.
j=1 j=1

Proof of Lemma 9.20. To analyze the YES case, we consider the dual SVMs (see Definition
9.17) of the three SVMs (9.3), (9.4) and (9.5):

1. The dual SVM of SVM (9.3):

maximize E az Ec k(ai, a )
a,.,an i1 2ij

(9.11)

2. The dual SVM of SVM (9.4):

n

maximize E
...........,n

(9.12)
n

E i)3j k (ai , aj).
2j=
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3. The dual SVM of SVM (9.5):

maximize
.cIo-Xn>0

n n n

S ai + 53 - Y - aiajk(ai, aj)
i=1 i=1 i,j=1

+

(9.13)
n

Y5 aijk(ai, bj).
i,j==1

Since the optimal values of the primal and dual SVMs are equal, we have that value(A),
value(B) and value(A, B) are equal to optimal values of dual SVMs (9.11), (9.12) and (9.13),
respectively (see Fact 9.18).

Let a*, ... . a* and * .. . * be the optimal assignments to dual SVMs (9.11) and (9.12),
respectively.

Our goal is to lower bound value(A, B). Since
sufficient to show an assignment to a and /j

function. For this we set ai = ac and /j = for
inequality:

value(A, B) a*
i=1

(9.13) is a maximization problem, it is
that gives a large value to the objective
all i, j = 1, . . . , n. This gives the following

+ a a* k(ai, aj)
i=1 i,j=1

2 E /3>;k(b ,bj) +
i,j=1

n

n

E ajk(ai,bj)
i j=1

> value(A) + value(B) + E a* k(ai, bj),
i,j=1

where we use the fact that value(A) and value(B) are the optimal values of dual SVMs
(9.11) and (9.12), respectively.

To complete the proof of the lemma, it suffices to show the following inequality:

a* k(ai, bj) > 1 exp(--100 log n - (t - 1)). (9.14)

Notice that so far we did not use the fact that there is a close pair of vectors a E A and
bj E B such that Hamming(ai, bj) t - 1. We use this fact now. We lower bound the left
hand side of (9.14) by the summand corresponding to the close pair:

a # k(ai, bj) a*f' k(ai, b) a* exp(-100 log n - (t - 1)),

where in the last inequality we use Hamming(ai, bj) < t -1 and the definition of the Gaussian
kernel.

The proof is completed by observing that a > 1 and > 1 which follows from Fact 9.18
and Lemma 9.21. E
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9.4.2.2 SVM with the bias term

In the previous section we showed hardness for SVM without the bias term. In this section
we show hardness for SVM with the bias term.

Theorem 9.22. Let xi, . .. , x, E {-1, 0, I}d be n vectors and let Y1,... , yn E {-1, 1} be n
labels.

Let k(a, a') = exp (-C||a - a'1|2) be the Gaussian kernel with C = 100 logn.

Consider the corresponding hard-margin SVM with the bias term:

eminimize b 2 E aayiy yk(xi, xj )
ai,...,an>_0, b 2i,j=1 (9.15)

subject to yif (xi) > 1, i 1, . . . ,

where f (x) :=b + Eni aiyik(xi, x).

Consider any e = exp(-w(log 2 n)). Approximating the optimal value of (9.15) within the
multiplicative factor (1 + E) requires almost quadratic time assuming SETH. This holds for
the dimensionality d = O(log3 n) of the input vectors.

The same hardness result holds for any additive exp(-w(log2 n)) approximation factor.

Proof. Consider a hard instance from Theorem 9.4 for SVM without the bias term. Let

i x.... , cE {0, i}d be the n binary vectors of dimensionality d = w(log n) and yi, ... , yn E
{ -1, 1} be the n corresponding labels. For this input consider the dual SVM without the
bias term (see Definition 9.17):

n Inz~11maximize E - -y - E yyyyk(xi, z). (9.16)

We will show how to reduce SVM without the bias term (9.16) to SVM with the bias term.
By Theorem 9.4 this will give hardness result for SVM with the bias term. We start with a
simpler reduction that will achieve almost what we need except the entries of the vectors
will not be from the set {-1, 0, 1}. Then we will show how to change the reduction to fix
this.

Consider 2n vectors

Xi, .. ., X, -Xi, . .. , -xn E 1-1, 0, 1}d

with 2n labels yi,..., y, -yi, ..*, -yn E {-1, 1}. Consider an SVM with the bias term for
the 2n vectors, that is, an SVM of the form (9.15). From Definition 9.17 we know that its
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dual SVM is

n n n
maximize a + E 2 aiaj y y k(xi, j)

== 1 1,+=1

in n2

E Oijij~i Zj + : S ijij~i -x (9.17)
i,j=1 i,j=1

subject to aiyi = E 3Yj.
i=1 j=1

Consider any setting of values for a and j. Notice that if we swap the value of ai and #i
for every i, the value of the objective function of (9.17) does not change. This is implies

that we can define a-y:= := and set ai = = -yi for every i. Because of the convexity

of the optimization problem, the value of the objective function can only increase after this

change. Clearly, the equality constraint will be satisfied. Therefore, w.l.o.g. we can assume

that ai = Oi = yi for some -i and we can omit the equality constraint.

We rewrite (9.17) in terms of -y and divide the objective function by 2:

n n I n
maximize E y 2 - - y y k(xi, ) + -yyjk(xi, - x). (9.18)

- i=1 2,3=1 ,j=l 1 (9.18)

Notice that (9.18) and (9.16) are almost the same. The only difference is the third term

2 yyyiyjk(xi, -xj)
iZJ=1

in (9.18). We can make this term to be equal to 0 and not change the first two terms as

follows. We append an extra coordinate to every vector xi and set this coordinate to be

large enough value M. If we set M = +oo, the third term becomes 0. The first term does

not depend on the vectors. The second term depends only on the distances between the

vectors (which are not affected by adding the same entry to all vectors). Thus, the first two

terms do not change after this modification.

We showed that we can reduce SVM without the bias term (9.16) to the SVM with the bias

term (9.17). By combining this reduction with Theorem 9.4 we obtain hardness for SVM

with the bias term. This is almost what we need except that the reduction presented above

produces vectors with entries that are not from the set {-1, 0, 1}. In every vector xi or -xi

there is an entry that has value M or -M, respectively. In the rest of the proof we show

how to fix this, by bounding M by O(log3 n) and distributing its contribution over O(log3 n)

coordinates.

Final reduction The final reduction is as follows:

. Take a hard instance for the SVM without the bias term from Theorem 9.4. Let

X,. ... ,nE {0, 1}d be the n binary vectors of dimensionality d = w(logn) and

Y1, .-. . , yn E {-1, 1} be the n corresponding labels.
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- Append log3 n entries to each of the vectors xi, i = 1,..., n and set the entries to be
1.

* Solve SVM (9.15) on the 2n vectors X1,.., n, -Xi,. -n {1, 0 , I}d with 2n
labels yi, .. . , yn, -yi, ... , -yn E {-1, 1}. Let V be the optimal value of the SVM
divided by 2.

* Output V.

Correctness of the reduction From the above discussion we know that we output the
optimal value V of the optimization problem (9.18). Let V' be the optimal value of SVM
(9.16).

By Theorem 9.4, it is sufficient to show that IV -V'I < exp(-w(log 2 n)) to establish hardness
for SVM with the bias term. We will show that IV - V'I < no(M) exp(- log3 n). This gives
hardness for additive approximation of SVM with the bias term. However, IV - V'I <
exp(-w(log 2 n)) is also sufficient to show hardness for multiplicative approximation (see the
discussion on the approximation in the proof of Theorem 9.4).

In the rest of the section we show that IV - V'j < nGOl exp(- log 3 n). Let -y be the
assignment to -yj that achieves V' in SVM (9.16). Let -yj be the assignment to yi that
achieves V in (9.18). We will show that y < 0 (n) for all i = 1,.. . , n. It is also true that
-y* < 0(n) for all i = 1,...,n and the proof is analogous. Since x1,..., x" are different
binary vectors and k(xi, xj) is the Gaussian kernel with the parameter C = 100 log n, we
have that k(xi, xj) 1/n10 for all i f j. This gives the following upper bound:

n I n n
V' = y - y yy' ) Z (jy - -x(1)) (4 ) .

i= 2 ,3= 1 i= 1

Observe that every non-negative summand on the right hand side is at most 0(1). Therefore,
if there exists i such that > w(n), then the right hand side is negative. This contradicts
the lower bound V' > 0 (which follows by setting all -y to be 0 in (9.16)).

By plugging -y into (9.18) and using the fact that 0 0(n), we obtain the following
inequality:

V > V'+ y- 1 '4yiyjk(xi, -xj) > V' - nOl exp(- log3 n). (9.19)
i,j=1

In the last inequality we use k(xi, -xj) exp(- log 3 n) which holds for all i, j = 1, ... , n
(observe that each xi and xj ends with log3 n entries 1 and use the definition of the Gaussian
kernel).

Similarly, by plugging -y into (9.16) and using the fact that -y < 0(n), we obtain the
following inequality:

V' > V - 2 y*-y*yiyk(xi, -xj) V - no(') exp(- log3 n). (9.20)
i,j=1
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Inequalities (9.19) and (9.20) combined give the desired inequality

V - V'1 5 n 0 ) exp(- log3 n)

9.4.2.3 Soft-margin SVM

Theorem 9.23. Let xl, ... , xn E {-1, 0, 1}d be n vectors and let Yi, ... , yn E {-1, 1} be n

labels.

Let k(a, a') = exp (-C||a - a'112) be the Gaussian kernel with C = 100 log n.

Consider the corresponding soft-margin SVM with the bias term:

A n I
minimize - a y yy k(xi, xj) +
cl, ...,Qcn >0, b 2n~= =

1 > 2J 2=1 (9.21)

subject to yif(xi) >1 - , in,

where f(x) := b+Z 1 - aiyik(xi, x).

Consider any E = exp(-w(log 2 n)) and any 0 < A < 7 for a large enough constant K > 0.
Approximating the optimal value of (9.21) within the multiplicative factor (1 + E) requires

almost quadratic time assuming SETH. This holds for the dimensionality d = O(log3 n) of

the input vectors.

The same hardness result holds for any additive exp(-w(log 2 n)) approximation factor.

Proof. Consider the hard instance from Theorem 9.22 for the hard-margin SVM. The dual
of the hard-margin SVM is (9.17). From the proof we know that the optimal a and fi
satisfy ai = fi = 7-4 5 2Kn for some large enough constant K > 0 for all i = 1,...,n.
Thus, w.l.o.g. we can add these inequalities to the set of constraints. We compare the

resulting dual SVM to Definition 9.16 and conclude that the resulting dual SVM is a dual
of a soft-margin SVM with the regularization parameter A = $. Therefore, the hardness
follows from Theorem 9.22. El

9.4.3 Kernel PCA

In this section, we present the full proof of quadratic hardness for Kernel PCA. It will also

be helpful for Kernel Ridge Regression in the next section.

Given a matrix X, we denote its trace (the sum of the diagonal entries) by tr(X) and the

total sum of its entries by s(X). In the context of the matrix K' defining our problem, we

have the following equality:

tr(K') =tr((I - 1n)K(I - n))

= tr(K(I - 1n)2) = tr(K(I - 1))

= tr(K) - tr(Kln) = n - s(K)/n
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Since the sum of the eigenvalues is equal to the trace of the matrix and tr(K') = n - s(K)/n,
it is sufficient to show hardness for computing s(K). The following lemma completes the
proof of the theorem.

Lemma 9.24. Computing s(K) within multiplicative error 1 + E for e = exp(-w(log 2 n))
requires almost quadratic time assuming SETH.

Proof. As for SVMs, we will reduce the BHCP problem to the computation of s(K). Let A
and B be the two sets of n binary vectors coming from an instance of the BHCP problem.
Let KA, KB C RX" be the kernel matrices corresponding to the sets A and B, respectively.
Let KA,B E R2nx 2 n be the kernel matrix corresponding to the set A U B. We observe that

s :=(s(KAB) - s(KA) - s(KB))/2
n

= > k(ai, bj)
i,j=1

n

= exp(-Cljai - bjII2).
i,j=1

Now we consider two cases.

Case 1. There are no close pairs, that is, for all i,j = 1,...,n we have I|ai - b1ll1 > t and
exp(-C|ai - bj 1j2 ) < exp(-Ct) =: 6. Then s < n2.

Case 2. There is a close pair. That is, |Iai, - byI11 < t - 1 for some i', j'. This implies
that exp(-Cllai, - bj1||I) > exp(-C(t - 1)) =: A. Thus, s > A.

Since C = 100 log n, we have that A > n10 6 and we can distinguish the two cases.

Precision. To distinguish s > A from s < n 2 6, it is sufficient that A > 2n26. This holds
for C = 100 log n. The sufficient additive precision is exp(-Cd) = exp(-w(log 2 n)). Since
s(K) 0(n2 ) for any Gaussian kernel matrix K, we also get that (1 + E) multiplicative
approximation is sufficient to distinguish the cases for any E = exp(-w(log 2 n)) E

9.4.4 Kernel ridge regression

We start with stating helpful definitions and lemmas.

We will use the following lemma which is a consequence of the binomial inverse theorem.

Lemma 9.25. Let X and Y be two square matrices of equal size. Then the following
equality holds:

(X +Y)-1 = X - X- 1 (I + YX )- 1 YX'.

Definition 9.26 (Almost identity matrix). Let X E Rnlf be a matrix. We call it almost
identity matrix if X = I + Y and |Yi,,I < n-w() for all i,j = 1,... , n.
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We will need the following two lemmas.

Lemma 9.27. The product of two almost identity matrices is an almost identity matrix.

Proof. Follows easily from the definition.

Lemma 9.28. The inverse of an almost identity matrix is an almost identity matrix.

Proof. Let X be an almost identity matrix. We want to show that X is an almost identity

matrix. We write X = I - Y such that 'Yj' I n-w(1) for all i, j = 1,.. ,n. We have the

following matrix equality

X-1 = (I -Y)' =I Y +Y 2 +Y3  ...

To show that X- is an almost identity, we will show that the absolute value of every
entry of Z := Y + Y 2 + Y 3 + ... is at most n-w(l). Let E < n-'(1) is an upper bound

on IYj,3I for all i, j = 1, ... , n. Then I _< Zj',, where Z' : Y' + (Y') 2 + (Y') 3 + . ..
and Y' is a matrix consisting of entries that are all equal to e. The proof follows since

Zj = Z2|1 Eknk-1 < 10E < n-(1).

In the rest of the section we prove Theorem 9.6.

Proof of Theorem 9.6. We reduce the BHCP problem to the problem of computing the sum

of the entries of K- 1 .

Let A and B be the two sets of binary vectors from the BHCP instance. Let K E R2nx2n

be the corresponding kernel matrix. We can write the kernel matrix K as combination of

four smaller matrices K"1 , K1'2, K2,1, K2 ,2 E R" x:

K= K K1,2

K1'1 is the kernel matrix for the set of vectors A and K2 ,2 is the kernel matrix for the

set of vectors B. We define two new matrices X, Y E R2
nx

2n: x0 K0  and

[ Ki,2 1

Y K 2,1 0

For any matrix Z, let s(Z) denote the sum of all entries of Z. Using Lemma 9.25, we can

write K- as follows:

K-1 = (X + Y)-' - X-1 - X-'(I + YX-')~'YX-'.

We note that the matrix X is an almost identity and that MYij 1 5 n-(1) for all i, j =

1, ... , 2n. This follows from the fact that we use the Gaussian kernel function with the

parameter C = w(log n) and the input vectors are binary. Combining this with lemmas

9.27 and 9.28 allows us to conclude that matrices X'(I + YX ')-' and X-' are almost

identity. Since all entries of the matrix Y are non-negative, we conclude that

s(X-'(I + YX-')-'YX-') = s(Y)(1 n---()).
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We obtain that

s(K-1) = s(X-1 ) - s(X- 1 (I + YX- 1 )YX- 1)

= s(X- 1) - s(Y)(1 n-'(1))

= s ((K1,1)-1) + s ((K2,2)-) _ (Y)(I n-w)

Fix any a = exp(-w(log2 n)). Suppose that we can estimate each s(K-1 ), s ((K' 1')- 1 ) and
s ((K2, 2 )- 1 ) within the additive factor of a. This allows us to estimate s(Y) within the
additive factor of 10a. This is enough to solve the BHCP prdblem. We consider two cases.

Case 1 There are no close pairs, that is, for all i, j = 1, ... , n we have HIai - bjII1 > t and
exp(-Cllai - bjl|') < exp(-Ct) =: 6. Then s(Y) < 2n 26.

Case 2 There is a close pair. That is, IIai - b| 11 < t - 1 for some i', j'. This implies that

exp(-C||ai, - bj'II2) > exp(-C(t - 1)) =: A. Thus, s(Y) > A.

Since C = w(log n), we have that A > 100n 2 6 and we can distinguish the two cases assuming
that the additive precision a = exp(-w(log 2 n)) is small enough.

Precision To distinguish s(Y) 2n2 6 from s(Y) > A, it is sufficient that A > 100n 2 6 and
a < A/1000. We know that A > 100n 2 6 holds because C = w(log n). Since A < exp(-Cd),
we want to choose C and d such that the a < A/1000 is satisfied. We can do that because
we can pick C to be any C = w(log n) and the BHCP problem requires almost quadratic
time assuming SETH for any d = w(log n).

We get that additive E approximation is sufficient to distinguish the cases for any E
exp(-w(log 2 n)). We observe that s(K 1 ) < 0(n) for any almost identity matrix K. This
means that (1 + E) multiplicative approximation is sufficient for the same E. This completes
the proof of the theorem.

9.4.5 Training of the final layer of a neural network

Recall that the trainable parameters are a := (ai,.... an )T, and that the optimization
problem (9.2) is equivalent to the following optimization problem:

minimize Zl(yi- (Ma)), (9.22)

where M E R"Xn is the matrix defined as Mj := S(uTwj) for i = 1, ... , m and j = 1,... n.
For the rest of the section we will use m = 6(n).

Let A = {aj,...,an} 9 {o,i}d and B = {bi,..., bn} {0 ,1}d with d = w(log n) be the
input to the Orthogonal Vectors problem. We construct a matrix M as a combination of
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three smaller matrices:
M,

M= M2].
M2

Both matrices M1 , M 2 E R"'r are of size n x n. Thus we have that the number of rows of
M is m = 3n.

We describe the two matrices M1 , M2 below. Recall that vo, v1, and v2 are given in Definition
9.12.

(M1)ij = S (vO - (v 2 - vO) - aTbj). For any two real values x, y E R we write x e y if
x = y up to an inversely superpolynomial additive factor. In other words, Ix - yj <
n- .(1). We observe that if two vectors ai and b, are orthogonal, then the corresponding
entry (M1 )i,j = S(vo) = 0(1) and otherwise (M)i,j w 0. We will show that an

(1 + -)approximation of the optimal value of the optimization problem (9.22) will

allow us to decide whether there is an entry in M1 that is S(v0 ) = E(1). This will
give the required hardness.

It remains to show how to construct the matrix M, using a neural network. We set the

weights for the j-th hidden unit to be J. That is, d weights are specified by the
1

vector bj, and we add one more input with weight 1. The i-th example (corresponding

-(2- voa 1a
to the i-th row of the matrix M1 ) is the vector [ ( J. The output of the

j-th unit on this example (which corresponds to entry (M1), 3 ) is equal to

S (V2 - voj T= S (vo - (v 2 -vo) - aTbj)
-(2vo~ I T

=(M1)i,j

as required.

. (M2)i,j = S (V1 - (v2 - vi) - i bj), where bi is a binary vector obtained from the

binary vector bi by complementing all bits. We observe that this forces the diagonal
entries of M2 to be equal to (M2 )i,i = S(vi) = 1/n1000K for all i = 1, ... , n and the
off-diagonal entries to be (M2)i,j 0 for all i j.1

To complete the description of the optimization problem (9.22), we assign labels to the inputs
corresponding to the rows of the matrix M. We assign label 1 to all inputs corresponding
to rows of the matrix Mi and the first copy of the matrix M2 . We assign label -1 to all
remaining rows of the matrix M corresponding to the second copy of matrix M2 .

It now suffices to prove Lemma 9.13 and Lemma 9.14.

Proof of Lemma 9.13. To obtain an upper bound on the optimal value in the presence of
an orthogonal pair, we set the vector oz to have all entries equal to n1O0K. For this ca we
have

-T
'For all i $ j we have bi bi > 1. This holds because all vectors bi are distinct and have the same number

of 1s.
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* (Mia)iI Q(n100K) for all' i = 1, .. .,n such that there is exists j 1,... ,n with
a b = 0. Let x > 1 be the number of such i.

" (Mia)iI < n-w(l) for all i = 1,..., n such that there is no j = 1,..., n with aj b = 0.
The number of such i is n - x.

By using the second property of Definition 9.11, the total loss corresponding to M, is upper
bounded by

x l((n100K)) + (n - x) -(- (l)) x o(1 ) + (n - x) (1(0) + o(/n))

(n - 1) -1(0) + o(1) =: 11.

Finally, the total loss corresponding to the two copies of the matrix M 2 is upper bounded
by

2n l( O(n- 800K)) = 2n (1(0) o(1/n))

< 2n 1(0) + o(1) =: 12.

The total loss corresponding to the matrix M is upper bounded by 11+12 < (3n-1)-1(0)+o(1)
as required. F1

Proof of Lemma 9.14. We first observe that the total loss corresponding to the two copies
of the matrix M 2 is lower bounded by 2n - 1(0). Consider the i-th row in both copies of
matrix M2 . By using the convexity of the function 1, the loss corresponding to the two rows
is lower bounded by l((M2a)i) + l(-(M2 a)i) > 2 . 1(0). By summing over all n pairs of rows
we obtain the required lower bound on the loss.

We claim that Iia|. < n 106
K. Suppose that this is not the case and let i be the index of

the largest entry of a in magnitude. Then the i-th entry of the vector M2a is

(M2a)i = ay (M2)i,i n - ai -n-w(l)

>-a2  -WM1

where we recall that the diagonal entries of matrix M 2 are equal to (M2)i,i = S(vi) = 1/nK.

If Jail > n10 6
K, then I(M2a)il > n000.k However, by the second property in Definition 9.11,

this implies that the loss is lower bounded by w(n) for the i-row (for the first or the second
copy of M2 ). This contradicts a simple lower bound of 4n - 1(0) on the loss obtained by
setting a = 0 to be the all Os vector. We use the third property of a nice loss function which
says that 1(0) > 0.

For the rest of the proof, we assume that lalK < n 1 6K. We will show that the total loss
corresponding to Mi is lower bounded by n - 1(0) - o(1). This is sufficient since we already
showed that the two copies of M 2 contribute a loss of at least 2n - 1(0).

Since all entries of the matrix M, are inversely superpolynomial (there is no pair of orthogonal
vectors), we have that j(Mia)i| < n-w ) for all i = 1,...,n. Using the second property
again, the loss corresponding to Mi is lower bounded by

n - 1( n- (1)) > n -(1(0) - o(1/n))

> n 1 (0) - 0(1)
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as required.

9.4.6 Gradient computation

We start from the proof of Lemma 9.15.

Proof.

01a, A,B al( F,B(a)) S(a, bj) = l'(0) - S(a, bj) (since F0 ,B(a) = 0).
oua aEA MFa,B(a) acA

Sigmoid activation function We can show our hardness result holds also for the sigmoid
activation function.

Theorem 9.29. Consider a neural net with of size n with the sigmoid activation function
o(x) = 1 . Approximating the p norm (for any p > 1) of the gradient of the empirical

risk for m examples within the multiplicative factor of nc for any constant C > 0 takes at

least 0 ((nm)1-0(1) ) time assuming SETH.

Proof. We set S(a, b) o -(-10(C + 1)(log n) -aT b). Using Lemma 9.15, we get that the
f, norm of the gradient is equal to 1l'(0)I - EaEA,beB 1 +e10(C+1)(ogn)_.Tb It is easy to show

that this quantity is at least l'(0)I/2 if there is an orthogonal pair and at most ll'(0)I/(2nc)
otherwise. Since l'(0) 0 0, we get the required approximation hardness. E

Polynomial activation function On the other hand, by using the polynomial lifting
technique, we can show that changing the activation function can lead to non-trivially faster
algorithms:

Theorem 9.30. Consider a neural net with one hidden layer of size n, with the polynomial
activation function o-(x) = x' for some integer r > 2. Computing the gradients of the
empirical loss function for m examples in R d can be done in time 0((n+ m)dr).

Note that the running time of the "standard" back-propagation algorithm is 0(dnm) for
networks with this architecture. Thus our algorithm improves over back-propagation for a
non-trivial range of parameters, especially for quadratic activation function when r = 2.

We start by defining the network architecture more formally. We consider a neural network
computing a function f : R'xd -+ R defined as f(x) := S(xA)a, where

. x E Rlxd is an input row vector of dimensionality d.

. A E Rdx" is a matrix with j-th column specifying weights of edges connecting the
input units with the j-th hidden unit.

. S : R -+ R is a non-linearity that is applied entry-wise. S(x) = x' for some constant

integer r > 2 for the rest of the section.
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* a E Rm is column vector with aj specifying the weight of the edge that connects the
j-th hidden unit with the output linear unit.

Let X E Rnxd be the matrix specifying n inputs vectors. The i-th row of X specifies the
i-th input vector. Let z := f(X) E Rn be the output of function f when evaluated on the
input matrix X. Let 1 : Rn -+ R be the total loss function defined as 1(z) n Ili (zi) for
some functions li : R --+ R.

Let

( al 491 T c
49a 'a' ' 0am)

be the vector of gradients for weights a1 ,...,am. Let - E Rdxm be the matrix that
specifies gradient of 1 with respect to entries Akj. That is,

( 91 - C/
OA Ikj OAk, 3

for k =1,.., d and j =1, ... ., M.

Theorem 9.31. We can evaluate - and -- in O((n + m)dr).

Proof. Let l'(z) := ,.n z Rn denote the vector that collects all

We note that

a/- al-
= - .(output of the j-th hidden unit on the i-th input vector)

9ay Ozi

= '(zi) - (X(OANr)) .

This gives

=0Xa ) 1'(z)

= (AMr)T ((X(r))T 11(Z))

The last expression can be evaluated in the required O((n + m)dr) (n + m)l+o(l) time.

We note that

91 * B

Ak =I OAk,j
n

Xi,k - r - (input to the j-th hidden unit)r-1 a- l_(z,).

i=1

For two matrices A and B of equal size let A o B be the entry-wise product. We define the
column vector Vk E R': (vk)i = Xi,k - r - l(zi) for k = 1,.. , d. Then the k-th row of 2 is

equal to (vgjX(r-l)A(r-l)) o aT. We observe that we can compute

(vTX(r)A r)) a aT = ((VTX-1))A- 1 ) aT
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in O((n + m)d'-l) time. Since we have to do that for every k = 1, ... , d, the stated runtime

follows. ZI
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Part III

Nearest Neighbor Search
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Chapter 10

Unifying Theory And Experiment
In Locality-Sensitive Hashing

10.1 Introduction

Nearest neighbor search is a key algorithmic problem with applications in several fields

including computer vision, information retrieval, and machine learning [206]. Given a set of
n points P C Rd, the goal is to build a data structure that answers nearest neighbor queries
efficiently: for a given query point q E Rd, find the point p E P that is closest to q under an

appropriately chosen distance metric. The main algorithmic design goals are usually a fast

query time, a small memory footprint, and - in the approximate setting - a good quality of

the returned solution.

There is a wide range of algorithms for nearest neighbor search based on techniques such

as space partitioning with indexing, as well as dimension reduction or sketching [198]. A
popular method for point sets in high-dimensional spaces is Locality-Sensitive Hashing

(LSH) [70, 112]. LSH offers a provably sub-linear query time and sub-quadratic space

complexity. Moreover, it has been shown to achieve good empirical performance in a variety

of applications [206].

LSH relies on the notion of locality-sensitive hash functions. Intuitively, a hash function is

locality-sensitive if its probability of collision is higher for "nearby" points than for points

that are "far apart". More formally, two points are nearby if their distance is at most ri,
and they are far apart if their distance is at least r2 = c - ri, where c > 1 quantifies the gap

between "near" and "far". The quality of a hash function is then characterized by two key

parameters:

" p1, the collision probability for nearby points, and

* P2, the collision probability for points that are far apart.

The gap between p, and P2 determines how "sensitive" the hash function is to changes in

distance. This property is captured by the parameter

log 1/p1

log 1/P2
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As we will see later, the parameter p is usually expressed as a function of the distance gap
c. The problem of designing good locality-sensitive hash functions and LSH-based efficient
nearest neighbor search algorithms has attracted significant attention over the past twenty
years.

In this thesis, we focus on LSH for the Euclidean distance on the unit sphere, which is an
important special case for several reasons. First, the spherical case is relevant in practice.
The Euclidean distance on a sphere corresponds to the angular distance or cosine similarity,
which are commonly used in applications such as comparing image feature vectors [134],
speaker representations [202], and tf-idf data sets [217]. On the theoretical side, Andoni
and Razenshteyn [19] also show a reduction from Nearest Neighbor Search in the entire
Euclidean space to the spherical case. These connections lead to a natural question: what
are good LSH families for the Euclidean distance on the unit sphere?

The recent work of [18, 19] gives the best known theoretical guarantees for LSH-based
nearest neighbor search w.r.t. this distance measure. Specifically, their algorithm has a
query time of O(nP) and space complexity of O(n+P) for

1
P 2c2 - I

This running time is known to be essentially optimal for a large class of algorithms [20, 93].
As a concrete example, consider the distance gap c = 2. Then their algorithm achieves a
query time of nl/ 7 +o(l).

At the heart of their algorithm is an LSH scheme called Spherical LSH, which works for
unit vectors. Its key property is that it can distinguish between distances r1 = x/_/c and

r2 = v'F with probabilities yielding p = 2c-1 (the formula for the full range of distances is
more complex and given in Section 10.2). Unfortunately, their approach is not applicable
in practice as it is based on rather complex hash functions that are very time consuming to
evaluate. For instance, simply evaluating a single hash function from [19] can take more time
than a linear scan over 106 points. Since an LSH data structure contains many individual
hash functions, using their scheme would be slower than a simple linear scan over all points
in P unless the number of points n is extremely large.

On the practical side, the hyperplane LSH introduced in the influential work of Charikar
[70] has worse theoretical guarantees, but works well in practice. Since the hyperplane LSH
can be implemented very efficiently, it is the standard hash function in practical LSH-based
nearest neighbor algorithms and the resulting implementations has been shown to improve
over a linear scan on real data by multiple orders of magnitude [158, 217].

The aforementioned discrepancy between the theory and practice of LSH raises- an impor-
tant question: is there a locality-sensitive hash function with optimal guarantees that also
improves over the hyperplane LSH in practice?

In this thesis, we show that there is a family of locality-sensitive hash functions that achieves
both objectives. Specifically, the hash functions match the theoretical guarantee of Spherical
LSH from [19] and, when combined with additional techniques, give better experimental
results than the hyperplane LSH. More specifically, our contributions are:

'Note that if the data points are binary, more efficient LSH schemes exist [210, 211]. However, in this
thesis we consider algorithms for general (non-binary) vectors.
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Theoretical guarantees for the cross-polytope LSH. We show that a hash function
based on randomly rotated cross-polytopes (i.e., unit balls of the fi-norm) achieves the same
parameter p as the Spherical LSH scheme in [19], assuming data points are unit vectors.
While the cross-polytope LSH family has been proposed by researchers before [97, 219] we
give the first theoretical analysis of its performance.

Fine-grained lower bound for cosine similarity LSH. To highlight the difficulty of
obtaining optimal and practical LSH schemes, we prove the first non-asymptotic lower bound
on the trade-off between the collision probabilities Pi and P2. So far, the optimal LSH upper
bound p = 1#-y (from [18, 19] and cross-polytope from here) attain this bound only in the
limit, as P1, P2 -- 0. Very small p, and P2 are undesirable since the hash evaluation time is
often proportional to I/p2. Our lower bound proves this is unavoidable: if we require P2 to
be large, p has to be suboptimal.

This result has two important implications for designing practical hash functions. First, it
shows that the trade-offs achieved by the cross-polytope LSH and the scheme of [18, 19] are
essentially optimal. Second, the lower bound guides design of future LSH functions: if one
is to significantly improve upon the cross-polytope LSH, one has to design a hash function
that is computed more efficiently than by explicitly enumerating its range (see Section 10.3
for a more detailed discussion).

Multiprobe scheme for the cross-polytope LSH. The space complexity of an LSH
data structure is sub-quadratic, but even this is often too large (i.e., strongly super-linear
in the number of points), and several methods have been proposed to address this issue.
Empirically, the most efficient scheme is multiprobe LSH [158], which leads to a significantly
reduced memory footprint for the hyperplane LSH. In order to make the cross-polytope LSH
competitive in practice with the multiprobe hyperplane LSH, we propose a novel multiprobe
scheme for the cross-polytope LSH.

We complement these contributions with an experimental evaluation on both real and
synthetic data (SIFT vectors, tf-idf data, and a random point set). In order to make the
cross-polytope LSH practical, we combine it with fast pseudo-random rotations [12] via the
Fast Hadamard Transform, and feature hashing [233] to exploit sparsity of data. Our results
show that for data sets with around 105 to 108 points, our multiprobe variant of the cross-
polytope LSH is up to 10x faster than an efficient implementation of the hyperplane LSH,
and up to 700x faster than a linear scan. To the best of our knowledge, our combination of
techniques provides the first "exponent-optimal" algorithm that empirically improves over
the hyperplane LSH in terms of query time for an exact nearest neighbor search.

10.1.1 Related work

The cross-polytope LSH functions were originally proposed by Terasawa and Tanaka [219].
However, their analysis was mostly experimental. Specifically, the probabilities p, and P2
of the proposed LSH functions were estimated empirically using the Monte Carlo method.
Similar hash functions were later proposed by Eshghi and Rajaram [97]. They also use
the DFT to speed-up the matrix-vector multiplication. Both of the aforementioned papers
consider only a single-probe algorithm.
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There are several works that show lower bounds on the quality of LSH hash functions [20,
93, 162, 176]. However, they provide only a lower bound on the p parameter for asymptotic

values of p, and P2, as opposed to an actual trade-off between these two quantities. In this

thesis we provide such a trade-off, with implications as outlined in the introduction.

10.1.2 Preliminaries

We use 11.11 to denote the Euclidean (a.k.a. f2) norm on Rd. We also use Sd-1 to denote

the unit sphere in Rd centered in the origin. The Gaussian distribution with mean zero and

variance of one is denoted by N(0, 1). Let p be a normalized Haar measure on Sd-1 (that

is, p(Sd-1) = 1). Note that p it corresponds to the uniform distribution over Sd-1. We also

let u ~ Sd-1 be a point sampled from Sd-1 uniformly at random. For 77 E R we denote

1 ooe-2/
c()= Pr [X ]= > e77/2 dt.

X~N(0,1) r-r,

We will be interested in the Near Neighbor Search on the sphere Sd-1 with respect to the

Euclidean distance. Note that the angular distance can be expressed via the Euclidean

distance between normalized vectors, so our results apply to the angular distance as well.

Definition 10.1. Given an n-point dataset P c Sd-1 on the sphere, the goal of the (c, r)-

Approximate Near Neighbor problem (ANN) is to build a data structure that, given a query

q E Sd-1 with the promise that there exists a datapoint p E P with |1p - q|| < r, reports a

datapoint p' E P within distance cr from q.

Definition 10.2. We say that a hash family R on the sphere Sd-1 is (r1, r2, P1, p 2 )-sensitive,

if for every p, q E Sd-1 one has Pr [h(x) = h(y)] pi if Ijx - ylI ri, and Pr [h(x) =
h~W h~W

h(y)] <_p2 if x -y Y11 > r2,

It is known [112] that an efficient (r, cr, p1, p 2)-sensitive hash family implies a data structure

for (c, r)-ANN with space O(n1+P/p +dn) and query time O(d -nP/pi), where p = log(/p)

10.2 Cross-polytope LSH

In this section, we describe the cross-polytope LSH, analyze it, and show how to make

it practical. First, we recall the definition of the cross-polytope LSH [219]: Consider the

following hash family W for points on a unit sphere Sd-I c Rd. Let A E Rdxd be a random

matrix with i.i.d. Gaussian entries ("a random rotation"). To hash a point x E Sd- 1, we

compute y = Ax/jAxj| E Sd-1 and then find the point closest to y from { ei}1<i<d, where

ei is the i-th standard basis vector of Rd. We use the closest neighbor as a hash of x.

The following theorem bounds the collision probability for two points under the above family

Theorem 10.3. Suppose that p, q E Sd-1 are such that 11p - q\\ = T, where 0 < T < 2.
Then,

1 r
In =- Ind+ O (Inlnd).

Pr [h(p) = h(q)] 4 - 2
h~w
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Before we show how to prove this theorem, we briefly describe its implications. Theorem
10.3 shows that the cross-polytope LSH achieves essentially the same bounds on the colli-

sion probabilities as the (theoretically) optimal LSH for the sphere from [19] (see Section
"Spherical LSH" there). In particular, substituting the bounds from Theorem 10.3 for the

cross-polytope LSH into the standard reduction from Near Neighbor Search to LSH [112],
we obtain the following data structure with sub-quadratic space and sublinear query time

for Near Neighbor Search on a sphere.

Corollary 10.4. The (c, r)-ANN on a unit sphere Sd-1 can be solved in space O(n1+P+dn)

and query time O(d - nP), where p = - _ 2 +4o(2 ) .

We now outline the proof of Theorem 10.3. For the full proof, see Section 10.5.2.

Due to the spherical symmetry of Gaussians, we can assume that p = el and q = ael + 1e2,

where a, 0 are such that a 2 + 02 = 1 and (a - 1)2 + 32 - F2 . Then, we expand the collision

probability:

Pr [h(p) = h(q)] = 2d . Pr [h(p) = h(q) = e1 ]
h~H h~W

= 2d - Pr [Vi Iuil < ul and aui + Ovi| aui + 3v1 ]
u,v~N( , 1)d

=2d E Pr [|X2| i X1 and IaX2 + Y2| 5 aXI + Y1 ,]X1,Y, IX2,Y2

(10.1)

where X1 , Y1 , X2 , Y2 ~ N(0, 1). Indeed, the first step is due to the spherical symmetry of
the hash family, the second step follows from the above discussion about replacing a random

orthogonal matrix with a Gaussian one and that one can assume w.l.o.g. that p = el and

q = cei + /e 2 ; the last step is due to the independence of the entries of u and v.

Thus, proving Theorem 10.3 reduces to estimating the right-hand side of (10.1). Note that

the probability Pr[IX21 < X1 and IaX 2 +Y 21 5 aXi +3Y3Y 1 ] is equal to the Gaussian area of

the planar set Sx,y shown in Figure 10-1a. The latter is heuristically equal to 1 - eA 2 /2,

where A is the distance from the origin to the complement of Sx,,y1 , which is easy to

compute (see Section 10.5.1 for the precise statement of this argument). Using this estimate,

we compute (10.1) by taking the outer expectation.

10.2.1 Making the cross-polytope LSH practical

As described above, the cross-polytope LSH is not quite practical. The main bottleneck is

sampling, storing, and applying a random rotation. In particular, to multiply a random

Gaussian matrix with a vector, we need time proportional to d2 , which is infeasible for large

d.

Pseudo-random rotations. To rectify this issue, we instead use pseudo-random rotations.

Instead of multiplying an input vector x by a random Gaussian matrix, we apply the

following linear transformation: x -+ HD3HD2HDix, where H is the Hadamard transform,
and Di for i E {1, 2, 3} is a random diagonal 1-matrix. Clearly, this is an orthogonal

transformation, which one can store in space O(d) and evaluate in time 0(d log d) using
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Figure (10-1)

I I
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C 0.35 ---- Lower bound
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Number of parts T
ax + Oy = (aX1 OY) (b) Trade-off between p and the number of

(a) The set appearing in the analysis of parts for distances v'2/2 and V (approxima-
the cross-polytope LSH: Sxy = {XI < tion c = 2); both bounds tend to 1/7 (see
X1 and jax + 3yj < aX1 +O 1}. discussion in Section 10.3).

the Fast Hadamard Transform. This is similar to pseudo-random rotations used in the
context of LSH [81], dimensionality reduction [12], or compressed sensing [13]. While we
are currently not aware how to prove rigorously that such pseudo-random rotations perform
as well as the fully random ones, empirical evaluations show that three applications of HDi
are exactly equivalent to applying a true random rotation (when d tends to infinity). We
note that only two applications of HDi are not sufficient.

Feature hashing. While we can apply a pseudo-random rotation in time O(d log d), even
this can be too slow. E.g., consider an input vector x that is sparse: the number of non-zero
entries of x is s much smaller than d. In this case, we can evaluate the hyperplane LSH
from [70] in time O(s), while computing the cross-polytope LSH (even with pseudo-random
rotations) still takes time 0(d log d). To speed-up the cross-polytope LSH for sparse vectors,
we apply feature hashing [233]: before performing a pseudo-random rotation, we reduce the
dimension from d to d' < d by applying a linear map x -+ Sx, where S is a random sparse
d' x d matrix, whose columns have one non-zero 1 entry sampled uniformly. This way, the
evaluation time becomes O(s + d' log d'). 1

"Partial" cross-polytope LSH. In the above discussion, we defined the cross-polytope
LSH as a hash family that returns the closest neighbor among {tei}1 i d as a hash (after a
(pseudo-)random rotation). In principle, we do not have to consider all d basis vectors when
computing the closest neighbor. By restricting the hash to d' < d basis vectors instead,
Theorem 10.3 still holds for the new hash family (with d replaced by d') since the analysis
is essentially dimension-free. This slight generalization of the cross-polytope LSH turns out
to be useful for experiments (see Section 10.4). Note that the case d' = 1 corresponds to
the hyperplane LSH.

Note that one can apply Lemma 2 from the arXiv version of [233] to claim that-after such a dimension
reduction-the distance between any two points remains sufficiently concentrated for the bounds from
Theorem 10.3 to still hold (with d replaced by d').
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10.2.2 Multiprobe LSH for the cross-polytope LSH

We now describe our multiprobe scheme for the cross-polytope LSH, which is a method for

reducing the number of independent hash tables in an LSH data structure. Given a query

point q, a "standard" LSH data structure considers only a single cell in each of the L hash

tables (the cell is given by the hash value hi(q) for i E [L]). In multiprobe LSH, we consider
candidates from multiple cells in each table [158]. The rationale is the following: points p
that are close to q but fail to collide with q under hash function hi are still likely to hash

to a value that is close to hi(q). By probing multiple hash locations close to hi(q) in the

same table, multiprobe LSH achieves a given probability of success with a smaller number

of hash tables than "standard" LSH. Multiprobe LSH has been shown to perform well in

practice [158, 214].

The main ingredient in multiprobe LSH is a probing scheme for generating and ranking

possible modifications of the hash value hi(q). The probing scheme should be computa-

tionally efficient and ensure that more likely hash locations are probed first. For a single

cross-polytope hash, the order of alternative hash values is straightforward: let x be the
(pseudo-)randomly rotated version of query point q. Recall that the "main" hash value

is hi(q) = arg maxjEd] Jxj. 1 Then it is easy to see that the second highest probability of
collision is achieved for the hash value corresponding to the coordinate with the second

largest absolute value, etc. Therefore, we consider the indices i E [d] sorted by their absolute

value as our probing sequence or "ranking" for a single cross-polytope.

The remaining question is how to combine multiple cross-polytope rankings when we have

more than one hash function. As in the analysis of the cross-polytope LSH (see Section
10.2, we consider two points q = el and p = ael + /e2 at distance R. Let A() be the

i.i.d. Gaussian matrix of hash function hi, and let x(') - AC)ei be the randomly rotated

version of point q. Given x(), we are interested in the probability of p hashing to a certain

combination of the individual cross-polytope rankings. More formally, let r be the index

of the vi-th largest element of Ix() , where v E [d]k specifies the alternative probing location.

Then we would like to compute

Pr [hi(p) = r() for all i E [k] i A()q - x()]
A ),...,A(k) Vi

k

= fi Pr [arg max (a - A('el +f- A(')e 2 )j = I A()el - ()
i=1 A) jE[d]

If we knew this probability for all v E [d]k, we could sort the probing locations by their

probability. We now show how to approximate this probability efficiently for a single value

of i (and hence drop the superscripts to simplify notation). WLOG, we permute the rows

of A so that rv = v and get

Pr arg max I(ax + -Ae 2)j| =v Aei =x Pr arg max|(X + - .y) 3 = v]
A jE[d] yN(O,Id) jE[d] a

The RHS is the Gaussian measure of the set S = {y E Rd arg max[d] (X + y)3 | = v}.

'In order to simplify notation, we consider a slightly modified version of the cross-polytope LSH that

maps both the standard basis vector +ej and its opposite -e to the same hash value. It is easy to extend

the multiprobe scheme defined here to the "full" cross-polytope LSH from Section 10.2.
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Similar to the analysis of the cross-polytope LSH, we approximate the measure of S by
its distance to the origin. Then the probability of probing location v is proportional to
exp(--llyx,v 112), where yx,v is the shortest vector y such that arg max lx +-ylj = v. Note that

the factor 3/a becomes a proportionality constant, and hence the probing scheme does not

require to know the distance R. For computational performance and simplicity, we make a
further approximation and use yx,v = (maxi lxiI - xvl) - ev, i.e., we only consider modifying
a single coordinate to reach the set S.

Once we have estimated the probabilities for each vi E [d], we incrementally construct the

probing sequence using a binary heap, similar to the approach in [158]. For a probing
sequence of length m, the resulting algorithm has running time O(L - d log d + m log m). In

our experiments, we found that the O(L - d log d) time taken to sort the probing candidates

vi dominated the running time of the hash function evaluation. In order to circumvent this

issue, we use an incremental sorting approach that only sorts the relevant parts of each
cross-polytope and gives a running time of O(L - d + m log m).

10.3 Lower bound

Let W be a hash family on Sd-1. For 0 < ri < r2 < 2 we would like to understand the
trade-off between p1 and P2, where pi is the smallest probability of collision under N for

points at distance at most r1 and P2 is the largest probability of collision for points at
distance at least r2. We focus on the case r2 ~ 2 because setting r2 to \/_2 - o(1) (as d
tends to infinity) allows us to replace p2 with the following quantity that is somewhat easier
to handle:

= Pr [h(u) = h(v)].

u,v~Sd-1

This quantity is at most P2 + o(1), since the distance between two random points on a unit
sphere Sd-1 is tightly concentrated around V. So for a hash family N on a unit sphere
sd-1, we would like to understand the upper bound on p1 in terms of p* and 0 < rl < .

For 0 < r ; V2 and 77 E R, we define

A(T,1)= Pr X 17and I - ).X+ T2 _ _.y ]/X Pr [X > 7].
X,Y~N(0,1) 2 4 /X~N(0,1)

We are now ready to formulate the main result of this section.

Theorem 10.5. Let N be a hash family on Sd-1 such that every function in N partitions

the sphere into at most T parts of measure at most 1/2. Then we have p1 < A(ri, 7) + o(1),

where 77 E R is such that Dc(7) = p* and o(1) is a quantity that depends on T and rl and

tends to 0 as d tends to infinity.

The idea of the proof is first to reason about one part of the partition using the isoperimetric

inequality from [98], and then to apply a certain averaging argument by proving concavity

of a function related to A using a delicate analytic argument. For the full proof, see

Section 10.5.3.
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We note that the above requirement of all parts induced by N having measure at most
1/2 is only a technicality. We conjecture that Theorem 10.5 holds without this restriction.
In any case, as we will see below, in the interesting range of parameters this restriction is
essentially irrelevant.

One can observe that if every hash function in W partitions the sphere into at most T
parts, then p* > I (indeed, p* is precisely the average sum of squares of measures of the
parts). This observation, combined with Theorem 10.5, leads to the following interesting
consequence. Specifically, we can numerically estimate A in order to give a lower bound
on p = log(lpi) for any hash family NR in which every function induces at most T parts of

measure at most 1/2. See Figure 10-1b, where we plot this lower bound for ri = V/2,1
together with an upper bound that is given by the cross-polytope LSH 2 (for which we use
numerical estimates for (10.1)). We can make several conclusions from this plot. First,
the cross-polytope LSH gives an almost. optimal trade-off between p and T. Given that
the evaluation time for the cross-polytope LSH is O(T log T) (if one uses pseudo-random
rotations), we conclude that in order to improve upon the cross-polytope LSH substantially
in practice, one should design an LSH family with p being close to optimal and evaluation
time that is sublinear in T. We note that none of the known LSH families for a sphere
has been shown to have this property. This direction looks especially interesting since the
convergence of p to the optimal value (as T tends to infinity) is extremely slow (for instance,
according to Figure 10-1b, for r1 = V2 /2 and r 2 m V we need more than 10 5 parts to
achieve p 0.2, whereas the optimal p is 1/7 r 0.143).

10.4 Experiments

We now show that the cross-polytope LSH, combined with our multiprobe extension, leads to
an algorithm that is also efficient in practice and improves over the hyperplane LSH on several
data sets. The focus of our experiments is the query time for an exact nearest neighbor
search. Since hyperplane LSH has been compared to other nearest-neighbor algorithms
before [202], we limit our attention to the relative speed-up compared with hyperplane
hashing.

We evaluate the two hashing schemes on three types of data sets. We use a synthetic data
set of randomly generated points because this allows us to vary a single problem parameter
while keeping the remaining parameters constant. We also investigate the performance of
our algorithm on real data: two tf-idf data sets [151] and a set of SIFT feature vectors [134].
We have chosen these data sets in order to illustrate when the cross-polytope LSH gives
large improvements over the hyperplane LSH, and when the improvements are more modest.
We present our experiments at a high level here and refer the reader to subsection 10.4.1 for
a more detailed description of the data sets and our experimental setup (implementation
details, CPU, etc.).

In all experiments, we set the algorithm parameters so that the empirical probability of
successfully finding the exact nearest neighbor is at least 0.9. Moreover, we set the number of
LSH tables L so that the amount of additional memory occupied by the LSH data structure

'The situation is qualitatively similar for other values of rl.
2More specifically, for the "partial" version from Section 10.2.1, since T should be constant, while d grows
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is comparable to the amount of memory necessary for storing the data set. We believe

that this is the most interesting regime because significant memory overheads are often

impossible for large data sets. In order to determine the parameters that are not fixed

by the above constraints, we perform a grid search over the remaining parameter space

and report the best. combination of parameters. For the cross-polytope hash, we consider
"partial" cross-polytopes in the last of the k hash functions in order to get a smooth trade-off

between the various parameters (see Section 10.2.1).

Multiprobe experiments. In order to demonstrate that the multiprobe scheme is critical

for making the cross-polytope LSH competitive with hyperplane hashing, we compare the

performance of a "standard" cross-polytope LSH data structure with our multiprobe variant

on an instance of the random data set (n = 220, d = 128). As can be seen in Table 10.2

(Subsection 10.4.1), the multiprobe variant is about 13x faster in our memory-constrained

setting (L = 10). Note that in all of the following experiments, the speed-up of the

multiprobe cross-polytope LSH compared to the multiprobe hyperplane LSH is less than

11x. Hence without our multiprobe addition, the cross-polytope LSH would be slower than

the hyperplane LSH, for which a multiprobe scheme is already known [158].

Experiments on random data. Next, we show that the better time complexity of the

cross-polytope LSH already applies for moderate values of n. In particular, we compare

the cross-polytope LSH, combined with fast rotations (Section 10.2.1) and our multiprobe
scheme, to a multi-probe hyperplane LSH on random data. We keep the dimension d = 128
and the distance to the nearest neighbor R = V/2/2 fixed, and vary the size of the data set

from 220 to 228. The number of hash tables L is set to 10. For 220 points, the cross-polytope

LSH is already 3.5x faster than the hyperplane LSH, and for n = 228 the speedup is 10.3x

(see Table 10.3 in Subsection 10.4.1). Compared to a linear scan, the speed-up achieved by
the cross-polytope LSH ranges from 76 x for n = 220 to about 700 x for n = 228.

Experiments on real data. On the SIFT data set (n = 106 and d = 128), the cross-

polytope LSH achieves a modest speed-up of 1.2x compared to the hyperplane LSH (see

Table 10.1). On the other hand, the speed-up is is 3 - 4x on the two tf-idf data sets,
which is a significant improvement considering the relatively small size of the NYT data set

(n - 300, 000). One important difference between the data sets is that the typical distance

to the nearest neighbor is smaller in the SIFT data set, which can make the nearest neighbor

problem easier (see Subsection 10.4.1). Since the tf-idf data sets are very high-dimensional

but sparse (d 1 100, 000), we use the feature hashing approach described in Section 10.2.1

in order to reduce the hashing time of the cross-polytope LSH (the standard hyperplane

LSH already runs in time proportional to the sparsity of a vector). We use 1024 and 2048

as feature hashing dimensions for NYT and pubmed, respectively.

10.4.1 Further description of experiments

In order to compare meaningful running time numbers, we have written fast C++ imple-

mentations of both the cross-polytope LSH and the hyperplane LSH. This enables a fair

comparison since both implementations have been optimized by us to the same degree. In
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Data set Method Query Speed-up Best k Number of Distances
time (ms) vs HP candidates time (ms)

NYT HP 120 ms 19 57,200 96
NYT CP 35 ms 3.4x 2 (64) 17,900 30

pubmed HP 857 ms 20 1,481,000 762
pubmed CP 213 ms 4.0 x 2 (512) 304,000 168

SIFT HP 3.7 ms 30 18,600 3.0
SIFT CP 3.1 ms 1.2x 6 (1) 13,400 2.2

Table (10.1): Average running times for a single nearest neighbor query with the hyperplane
(HP) and cross-polytope (CP) algorithms on three real data sets. The cross-polytope LSH
is faster than the hyperplane LSH on all data sets, with significant speed-ups for the two
tf-idf data sets NYT and pubmed. For the cross-polytope LSH, the entries for k include
both the number of individual hash functions per table and (in parenthesis) the dimension
of the last of the k cross-polytopes.

particular, hyperplane hashing can be implemented efficiently using a matrix-vector mul-
tiplication sub-routine for which we use the eigen library (eigen is also used for all other
linear algebra operations). For the fast pseudo-random rotation in the cross-polytope LSH,
we have written a SIMD-optimized version of the Fast Hadamard Transform (FHT). We
compiled our code with g++ 4.9 and the -03 flag. All experiments except those in Table
10.3 ran on an Intel Core i5-2500 CPU (3.3 - 3.7 GHz, 6 MB cache) with 8 GB of RAM.
Since 8 GB of RAM was too small for the larger values of n, we ran the experiments in
Table 10.3 on a machine with an Intel Xeon E5-2690 v2 CPU (3.0 GHz, 25 MB cache) and
512 GB of RAM.

In our experiments, we evaluate the performance of the cross-polytope LSH on the following
data sets. Figure 10-2 shows the distribution of distances to the nearest neighbor for the
four data sets.

random For the random data sets, we generate a set of n points uniformly at random on
the unit sphere. In order to generate a query, we pick a random point q' from the data
set and generate a point at distance R from q' on the unit sphere. In our experiments,
we vary the dimension of the point set between 128 and 1,024. Experiments with the
random data set are useful because we can study the impact of various parameters (e.g.,
the dimension d or the number of points n) while keeping the remaining parameters
constant.

pubmed / NYT The pubmed and NYT data sets contain bag-of-words representations of
medical publication abstracts and newspaper articles, respectively [151]. We convert this
representation into standard tf-idf feature vectors with dimensionality about 100,000. The
number of points in the pubmed data set is about 8 million, for NYT it is 300,000. Before
setting up the LSH data structures, we set 1000 data points aside as query vectors. When
selecting query vectors, we limit our attention to points for which the inner product with
the nearest neighbor is between 0.3 and 0.8. We believe that this is the most interesting
range since near-duplicates (inner product close to 1) can be identified more efficiently
with other methods, and points without a close nearest neighbor (inner product less than
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Figure (10-2): Distance to the nearest neighbor for the four data sets used in our experiments.
The SIFT data set has the closest nearest neighbors.

0.3) often do not have a semantically meaningful match.

SIFT We use the standard data set of one million SIFT feature vectors from [134], which
also contains a set of 10,000 query vectors. The SIFT feature vectors have dimension 128
and (approximately) live on a sphere. We normalize the feature vectors to unit length

but keep the original nearest neighbor assignments-this is possible because only a very

small fraction of nearest neighbors changes through normalization. We include this data

set as an example where the speed-up of the cross-polytope LSH is more modest.

10.5 Proof details

10.5.1 Gaussian measure of a planar set

In this section we formalize the intuition that
subset A C R2 behaves like e-A/2, where AA
A is quite special.

the standard Gaussian measure of a closed
is the distance from the origin to A, unless

For a closed subset A C R2 and r > 0 denote 0 < pA(r) < 1 the normalized measure of the
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Method k Extra Query Number of CP hashing Distances
probes time (ms) candidates time (ms) time (ms)

Single-probe 1 0 6.7 39800 0.01 6.3
Multiprobe 3 896 0.51 867 0.22 0.16

Table (10.2): Comparison of "standard" LSH using the cross-polytope (CP) hash vs. our
multiprobe variant (L = 10 in both cases). On a random data set with n - 220, d = 128,
and R = v'2/2, the single-probe scheme requires 13x more time per query. Due to the
larger value of k, the multiprobe variant performs fewer distance computations, which leads
to a better trade-off between the hash computation time and the time spent on computing
distances to candidates from the hash tables.

Data set size n 220 222 224 226 228

HP query time (ms) 2.6 7.4 25 63 185
CP query time (ms) 0.75 1.4 3.1 8.8 18

Speed-up 3.5 x 5.3 x 8.1 x 7.2 x 10.3 x
k for CP 3 (16) 3 (64) 3 (128) 4 (2) 4 (64)

Table (10.3): Average running times for a single nearest neighbor query with the hyperplane
(HP) and cross-polytope (CP) algorithms on a random data set with d = 128 and R = F/2.
The cross-polytope LSH is up to 10x faster than the hyperplane LSH. The last row of the
table indicates the optimal choice of k for the cross-polytope LSH and (in parenthesis) the
dimension of the last of the k cross-polytopes; all other cross-polytopes have full dimension
128. Note that the speed-up ratio is not monotonically increasing because the cross-polytope
LSH performs better for values of n where the optimal setting of k uses a last cross-polytope
with high dimension.

intersection A n rS1 (A with the circle centered in the origin and of radius r):

p( A n rS ).
PA(r) := 2rr

here y is the standard one-dimensional Lebesgue measure (see Figure 10-3a). Denote
AA := inf{r > 0 : PA(r) > 0} the (essential) distance from the origin to A. Let 9(A) be the
standard Gaussian measure of A.

Lemma 10.6. Suppose that A C R2 is a closed set such that PLA(r) is non-decreasing. Then,

sup (IA(r) - er 2 /2) (A) A e/2
r>0

Proof. For the upper bound, we note that

9(A) = j A(r) -re ,r 2/2 dr <
00 re 2/2dr =e-
J e d - A/
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For the lower bound, we similarly have, for every r* > 0,

9(A) = j0 [A(r) . re-, 2/2 dr > pA(r*) j ,re_ 2/2 dr = PA(r)e --l*)2/2

where we use that PA(r*) is non-decreasing.

Now we derive two corollaries of Lemma 10.6.

Lemma 10.7. Let K C R2 be the complement of an open convex subset of the plane that

is symmetric around the origin. Then, for every 0 < E < 1/3,

Q(El/2 . e-(1+E)-A /2) 9(K) e-A /2

Proof. This follows from Lemma 10.6: indeed, due to the convexity of the complement of

K, PK(r) is non-decreasing. It is easy to check that

PK ((1 + )AK) = (El/2

again, due to the convexity (see Figure 10-3b). Thus, the required bounds follow. El

Lemma 10.8. Let K C R2 be an intersection of two closed half-planes such that:

" K does not contain a line;

" the "corner" of K is the closest point of K to the origin;

" the angle between half-planes equals to 0 < a < 7r.

Then, for every 0 < E < 1/2,

-eI+E).A) < 9(K) < A 2
Qa (E - e ( K5-% K) 5-a /2

Proof. This, again, follows from Lemma 10.6. The second condition implies that PK(r) is

non-decreasing, and an easy computation shows that

K((1 + E)AK) Qoa(E)

(see Figure 10-3c).

10.5.2 Proof of Theorem 10.3

In this section, we complete the proof of Theorem 10.3, following the outline from Sec-

tion 10.2. Our starting point is the collision probability bound from Eqn. (10.1).

For u, v E R with u > 0 and au + /v > 0 define,

a(u,v) = Pr [|X21 < u and laX2 + Y21 < au + 0v1.
X2 ,Y2 ~N(0,1)
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Then, the right-hand side of (10.1) is equal to

2d - E [o(X1, Y)dl]
X1,Y1~N(0,1)

Let us define
A (u, v) = min{u, au + 3v}.

Lemma 10.9. For every 0 < E < 1/3,

1 - eA(uV) 2 /2 < o-(u, v) 1 -- 1 (1/2 . e-(1+)A(uv) 2 /2

Proof. This is a combination of Lemma 10.7 together with the following obvious observation:
the distance from the origin to the set {(x, y) : Ixl > u or lax + /3yl 2 au + /v} is equal to
A(u, v) (see Figure 10-1a). 3

Lemma 10.10. For every t > 0 and 0 < E < 1/3,

Ore e-(+)- -4 5 r [A(X1, Y) > t] <
\ / X1,Y1~N(0,1)

Proof. Similar to the previous lemma, this is a consequence of Lemma 10.8 together with
the fact that the squared distance from the origin to the set {(x, y): x > t and ax + fy t}
is equal to _4 - t2. E

10.5.2.1 Idealized proof

Let us expand Eqn. (10.1) further, assuming that the "idealized" versions of Lemma 10.9
and Lemma 10.10 hold. Namely, we assume that

-(u, v) = 1 - e-A("'V)2/2

and
4 2

Pr [Z (X1 , Y) t] = e~ 4r2
X1,Y1~N(0,1)

(10.2)

(10.3)

In the next section we redo the computations using the precise bounds for 0-(u, v) and
Pr[A(XI, Y) t].
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Expanding Eqn. (10.1), we have

E [0-(X 1 ,Y 1)d-1]X1 ,Yi~N(0,1)
Pr [U(X, Y) tdW-] dt

0 X1,Y1~N(0,1)

=(PrO1)[eA(X1'y1) 2/2 ; 1 -- td] dt
nO X1,Y1~N(0,1)

( - t 1)4-r2 dt
0

4

=(d - 1) -(1 - U)G Ud-2 dt

8 - -r2

4-

=r 8(1) - d 4-2,

where:

. the first step is a standard expansion of an expectation;

. the second step is due to (10.2);

. the third step is due to (10.3);

* the fourth step is a change of variables;

. the fifth step is a definition of the Beta function;

. the sixth step is due to the Stirling approximation.

Overall, substituting (10.4) into (10.1), we get:

1 Tr2
In 1 - In d Or (1).

Pr [h(p) = h(q)] 4- n (
h~w

10.5.2.2 The real proof

We now perform the exact calculations, using the bounds (involving E) from Lemma 10.9
and Lemma 10.10. We set e = 1/d and obtain the following asymptotic statements:

o(u, v) = 1 - d ( -l) -(1 d0") ,n 2/2

and

Pr [A(X, Y) > t] = di0(1) .4-,
X,Y~N(0,1)

Then, we can repeat the "idealized" proof (see Eqn. (10.4)) verbatim with the new estimates

and obtain the final form of Theorem 10.3:

1T2
In _- _2_- In d O(In ln d).

Pr [h(p) = h(q)] 4 - r2

h~w
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Note the difference in the low order term between idealized and the real version. As we
argue in Section 10.3, the latter 0(lnlnd) is, in fact, tight.

10.5.3 Proof of Theorem 10.5

Lemma 10.11. Let A C Sd-i be a measurable subset of a sphere with P(A) = po < 1/2.
Then, for 0 < T < v'2, one has

Pr [X > q and aX + Y > 7] +o(1)
Pr [v E A I u E A,Iu - v|| <T] = X,Y~N(0,1)

u,v~Sd-- Pr [X > 1 + o(1)
X~N(0,1)

(10.5)
where:

Sa =1- 2'

* r CIR is such that Pr [X > n] =po.
X~N(O,1)

In particular, if to = Q(1), then

Pr [v E A u E A, Iu - v T] = A(T, (PC (po)) + o(1).
u ,V~Sd-1

Proof. First, the left-hand side of (10.5) is maximized by a spherical cap of measure yo.
This follows from Theorem 5 of [981. So, from now on we assume that A is a spherical cap.

Second, one has

Pr_ [vEA |u A,||u-v I| T]
u,v~Sd 1

= Pr [VEA|uEA,I|u-vI =T o(1)] +o(1)
U,V~Sd-1

Pr [ul > i and (a o(1))ui + (0 0(1))U2 1]
Pr [ui 4q +o(1)

u~Sd-1

Pr [X > 7 and aX + Y > q] + o(1)
X, Y~N(0, 1)

Pr [X > n] + o(1)
X~N(0,1)

where i is such that Pr [ul > 7-] = po and:
u~Sd-1

* the first step is due to the concentration of measure on the sphere;

. the second step is expansion of the conditional probability;

. the third step is due to the fact that a 0(1)-dimensional projection of the uniform
measure on a sphere of radius Vd' in Rd converges in total variation to a standard
Gaussian measure [87].
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Lemma 10.12. For every 0 < T < v 2, the function p a A(r, 1(z(p)) is concave for
0 < p < 1/2.

Proof. Abusing notation, for this proof we denote A(77 ) = A(r, 77) and

I(r)= Pr [X > 77 and aX + 3Y > 77 ]
X,Y~N(0,1)

(that is, A(rq) = I(7r)/ c(rq)). One has @'c(r7) = and

I'() =- -
e2/2. (1 -a)r

Combining, we get

e-7 2 /2 I(r/) - 2,IDc(n)'bc

= 2 w Dc (77)2

and
24c(r/*)Ic ( - )7) -- I(r*)

wc(s* )2
-- l( *)

where r/* *(A) = 4c '-0p) It is sufficient to show that II(r7*) is non-decreasing in rj* for
77* > 0.

We have

V 2 .e -q2 /2
Il'(r/) = 2 e-' (2

ir &(j)3
( ) - I(r) -

2 e-
2 /2

r &c(77)3

We need to show that Q( 77) 0 for 77 > 0. We will do this by showing that Q'(rj) < 0 for

rq > 0 and that limo Q(77) = 0. The latter is obvious, so let us show the former.

2a(1 - a)2

'3 .
OT 7( 2.-a)2 .27 < 0

for rq > 0. El

Now we are ready to prove Theorem 10.5. Let us first assume that all the parts have measure

Q(1). Later we will show that this assumption can be removed. W.l.o.g. we assume that
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functions from the family have subsets integers as a range. We have,

p1 Pr [h(u)= h(v) IIu-vIIT]
u,v~Sd--

h~w

h~ (h'()AQT, h(i))))] + ()

< A , -1 E [ p(h-1(i))2)) + o(1)
h~

A(T, -(p*(N))) + o(1),

where:

. the first step is by the definition of p1;

" the third step is due to the condition p(h-1 (i)) = Q(1) and Lemma 10.11;

. the fourth step is due to Lemma 10.12 and the assumption p(h-(i)) 1/2;

. the final step is due to the definition of p* (W ).

To get rid of the assumption that a measure of every part is Q(1) observe that all parts
with measure at most E contribute to the expectation at most e - T, since there are at most

T pieces in total. Note that if E = o(1), then E . T = o(1), since we assume T being fixed.
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Figure (10-3)
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Chapter 11

Learning Embeddings For Faster
Nearest Neighbor Search

11.1 Introduction

Learning representations has become a major field of study over the past decade, with
many succesful applications in computer vision, speech recognition, and natural language
processing. The primary focus in these directions has been accuracy, usually with a focus on
classification tasks. Here, the main goal is to learn a representation that enables a standard
classifier (e.g., a linear model such as softmax regression) to correctly label the transformed
data. However, as learned representations have achieved high accuracy in a wide range of
applications, additional goals are becoming increasingly important. One such desideratum
is computational efficiency: how quickly can we process the learned representations? This
question is particularly relevant in the context of large databases, where the goal is to
store many millions or even billions of images, texts, and videos. Common instantiations of
such settings include web search, recommender systems, near-duplicate detection (e.g., for
copyrighted content), and large-scale face recognition.

In this thesis, we study the problem of learning representations through the lenss of similarity
search. Similarity search, also known as Nearest Neighbor Search (NNS), is a fundamental
algorithmic problem with a wide range of applications in machine learning and broader
data science. The most common example is similarity search in large corpora such as
the aforementioned image databases, segments of speech, or document collections. More
recently, NNS has also appeared as a sub-routine in other algorithms such as optimization
methods [86], cryptography [146], and large-scale classification [229]. A key challenge in
the design of efficient NNS methods is the interaction between the data and the algorithms:
How can we exploit structure in the data to enable fast and accurate search? Research on
NNS has established a large set of techniques such as kd-trees, locality-sensitive hashing,
and quantization methods that utilize various forms of structure in the data.

Traditionally, NNS is used on hand-crafted feature vectors: image similarity search is often
performed on SIFT vectors, speakers are identified via their i-vector, and document similarity
is computed via tf-idf representations. However, recent progress in deep learning is replacing
many of these hand-crafted feature vectors with learned representations. There is often a
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clear reason: learned representations often lead to higher accuracy and semantically more
meaningful NNS results. However, this raises an important question: Do existing NNS
algorithms perform well on these new classes of feature vectors? Moreover, learning the
representations in NNS also offers an interesting new design space: Instead of adapting the
algorithm to the dataset, can we learn a representation that is particularly well suited for
fast NNS?

Our main contribution of this chapter is studying this interaction between deep represen-
tations and NNS algorithms in more detail. First, we point out that angular gaps are a
crucial property of learned representations when it comes to the efficiency of NNS methods.
We then explore the design space of neural networks and find that architectural changes
such as normalization layers can have significant impact on the angular gaps, even when
the classification accuracy is not affected. Based on our experiments, we propose changes
to the network architecture and training process that make the resulting representations
more amenable to NNS algorithms. Our proposals are intuitive and simple to implement,
yet enable speed-ups of 5x or more for nearest neighbor search. Moreover, our changes do
not negatively affect the accuracy of the network and sometimes even improve training.

Chapter outline. In Section 11.2, we first explain a property of vectorial representations
that is crucial for the performance of NNS methods. This property will guide our evaluation
of various neural network design consideration in Section 11.3. We present our experimental
results in Section 11.4.

11.2 Smaller angles, faster similarity search

We first take a closer look at what properties of representations enable fast nearest neighbor
search (NNS). We comprehensively address this question both from a theoretical and an
empirical perspective. The resulting insights will then guide our approach to learning
representations that are good for NNS.

Preliminaries. Before we begin with our investigations, we briefly define the NNS problem
formally. The goal in NNS is to first preprocess a dataset D of points from a metric (X, dist)
so that we can later quickly answer queris of the following form: "Given a query point
q E X, which point p E D minimizes the distance dist(q, p)?". A common concrete
instance of the NNS problem is similarity search under cosine similarity. Here, the set of
points D contains unit vectors in Rd and the distance measure dist is the angular distance

def cos1  
qT

(q, p)Ncos-

11.2.1 Theoretical analysis

Different NNS algorithms rely on different properties on the data in order to enable faster
similarity search. In this thesis, we focus on locality-sensitive hashing (LSH), a well-establish
NNS method, where it is possible to analyze the impact of distance gaps on the query time
quantitatively [112, 127]. Concretely, we study the cosine similarity NNS problem mentioned
above and analyze the running time of the popular hyperplane LSH [70].
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Figure (11-1): Analytically and empirically estimated costs of an approximate nearest
neighbor search as a function of the angle between the query and the nearest neighbor. The
analytical cost is given as the number of distance computations between the query point
and the candidate points returned by the LSH table. The empirical cost is given as the
total time per query on a laptop computer from 2015 (CPU: Intel Core i7-4980HQ).

Suppose that a query q makes an angle of a with the closest vector. Under reasonable
assumptions on the balance of the data, we show the following statement in Section 11.7.2.
If we want to ensure that the probability of finding the closest vector is at least, 1 -exp(-5) ~

99.33%, the expected number of candidates considered in a nearest neighbor search, for a
dataset of size n, grows with a as

N(a) = 5n-lOg2(l-) (11.1)

We defer our formal theorem with its proof to the supplementary material.

Equation (11.1) allows us to estimate the number of nearest neighbor candidates (i.e., the
time complexity of a query) as we vary the angle between the query vector and the nearest
neighbor. A crucial property of this relation is that smaller angles between nearest neighbor
and the query point enable significantly faster NNS. We illustrate by substituting concrete
numbers. For n = 106 data points, improving the angle a from ir/3 (60 degrees) to 7r/4 (45
degrees) reduces the number of nearest neighbor candidates (i.e., distance computations)
from about 16K to 1.5K, whichis roughly a 10x speed-up.. In Figure 11-1(a), we plot the
expression (11.1) as a function of the angle a for n = 106.

11.2.2 Empirical analysis

While the above theoretical analysis is for the relatively simple hyperplane LSH, the same
trend also applies to more sophisticated NNS algorithms. We show that two state-of-the-art
NNS methods show empirical behavior that is very similar to Figure 11-1(a). Concretely,
we compare the following two ANN implementations that are commonly used:

. Annoy, which implements a variant of the classical kd-tree [44].

. FALCONN, which implements the fastest known LSH family for angular distance

[185].

We generate a dataset of n = 106 random unit vectors and plant queries at a given angle
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a from a randomly selected subset of database points. Since the dataset is drawn from the

uniform distribution over the hypersphere, it is "well-spread" and matches the assumptions
of our analysis above. For each angle a, we generate 10,000 queries and report the average
query time for finding the correct nearest neighbor with empirical success probability 0.9.

Figure 11-1(b) shows that the query times of the two ANN implementations largely agree
with our theoretical prediction.1 An important aspect of the plot is the linear scan baseline,
i.e., the cost of computing all distances between query and database points (which always
finds the correct nearest neighbor). At 90% relative accuracy, the ANN algorithms we
evaluated only improve over a linear scan once the angle is around 60 degrees. For larger
angles, current ANN algorithms cannot maintain both high accuracy and faster inference
speed. Overall, our empirical findings also underline the importance of the angle between

query and nearest neighbor for NNS performance.

11.3 Learning representations for smaller angles

In the previous section, we have seen that the angle between the query and its nearest

neighbor play a crucial role in the performance of fast NNS methods. We now build on this
insight to learn representations where this angle is small. As deep neural networks have
become widely used for learning representations, we focus specifically on how to modify
neural networks and their training process to enable faster NNS.

11.3.1 Preliminaries

We study neural networks for supervised classification into one of C classes. Each example
x comes from a domain X, typically RP, and our goal is to predict its label y E [C]. Given
training examples (xi, yi) E X x [C], we learn model parameters by optimizing a certain
loss function on the training data. We then use the resulting model to predict labels.

For our purposes, a neural network consists of three sets of parameters: (i) the network

weights 6 E E defining a mapping #0 : X -+ Rd, (ii) a set of class vectors {vy}ye[C] that also

lie in Rd, and (iii) a bias vector b E RC. We will often write the class vectors as a matrix
V. We refer to the vectors 0/(x) as the representation vectors. We employ the commonly

used softmax loss, which is defined as:

def exp(#o(x)Tv y
ti(x, y; 6, V, b) =~ - log ep~~)v ~

4 e[Cl exp(0o(x)T vj + b)

Noting that #0(x)Tvj + bj = (#o(x), 1)T(vj, bj), the bias term is superflous for the purposes

of the softmax objective. To simplify the discussion, we will therefore ignore the biases and

'There are some mismatches, for instance in the regime of small angles. For FALCONN, this is because a
real LSH implementation also needs to compute the hash functions, which is not included in our theoretical
analysis above.
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write:

C~~yO,) def exp(qdo(x) T vy)f (X, Y; 0, V) =e -- p (0g W , .
-lbEjc[c) exp(Oo(x) vj)

The Softmax Objective. To understand the softmax objective better, we write it as

f(x, y; 0, V) = -# 0(X)TV Y + log E exp(#o(x) T vj).
je[c]

The training process aims to achieve a small loss, i.e., we want the correct dot product

#5(X)TVy to be large and the other dot products #9 (x)TVj to be small. We further re-write

the inner product in order to highlight the connection to the angle between class vectors

and representation vectors:

00 (X) T j = 110o(x)|12 I|VjI12 cos i(o(x), vj) . (11.2)

Viewed this way, three properties of the loss function become apparent:

1. While the relative norm of the class vectors does influence the predictions of the model,
the overall scale does not. Doubling the lengths of all class vectors has no influence

on the prediction accuracy, yet it can change the softmax loss.

2. The norm of the representation vector Oo(x) is irrelevant for the 0-1 prediction loss

objective. Yet it can have significant influence on the softmax loss.

3. A small angle between the representation vector #o(x) and the class vector vj is

beneficial for both the prediction loss objective as well as the softmax loss objective.

Other things being equal, we prefer a model that maps examples to representation

vectors that are well-aligned with the correct class vectors.

Next section, we view these three terms through the lens of angles for NNS problems.

11.3.2 Improving the representation quality: smaller angles

When training a representation with small angles between query and nearest neighbor, we

will view the representation before the softmax layer as the query point and the class vectors

in the softmax as dataset points. Our main focus is then to improve the mean correct angle

between the representation vector #o(x) and the correct class vector vy. For an evaluation

set {(x 1 , yi), . . . , (xm, ym)}, we define the mean correct angle as

1lm
-: Z (00 (xi), vy,)

i=1

In this section, we describe how our modifications improve the mean correct angle. As we

have seen in Section 11.2, this angle is an algorithm-agnostic quantity that dictates the

speed-ups we can expect from various ANN algorithms.

To illustrate the impact of various network design choices, we evaluate the effect of each

modification on a medium-sized dataset (in the supplementary material, we also show the
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effect on a smaller dataset that facilitates easier visualization and aids intuition). In Section

11.4, we then evaluate our modifications on two larger datasets.

multiMNIST. This dataset is derived from the popular MNIST dataset [148]. We con-

struct large-multiclass variants of MNIST by concatenating multiple digits (see Section 11.4

for more details). We call these variants multiMNIST. The multiMNIST instances allow us

to confirm our intuitions on a larger dataset with a higher-dimensional softmax and more

classes. Here, we use multiMNIST instances with 1,000 to 10,000 classes.

We investigate the impact of three training modifications.

Control Representation Vector Norms As discussed in Section 11.3.1, scaling the

representation vectors #o(x) can change the loss function without changing the prediction

accuracy. The dynamics of (stochastic) gradient descent update parameters so as to increase

the inner product q0 (x)Tvj, or equivalently, the product

110o(x)112 - Vyi 112 -cos Z(#o(x), vi)

With a constraint on the term ||#0(x) 112, the training process tends to increase the remaining

terms instead, which leads to smaller angles Z(#0(x), vj). We consider several options for

controlling the norms of the representation vectors. Layer Normalization [24] ensures that

the presoftmax vector has mean entry zero and a constant norm. Scaling (which is similar to

Weight Normalization [197]) divides each presoftmax vector by its mean before propogating

and thus ensures a constant norm (but not necessarily mean zero). A variant of scaling

just uses the normalized vector but does not back-prop through the normalization. Batch

normalization [129] can be used to ensure that each activation has mean 0 and variance 1 at

equilibrium, which implies that the mean squared norm of the representation is d. Finally,
one can simply "regularize" by adding a A 1  #(xi) Ij term to the loss.

While batch norm is often used in networks for other reasons, it is unclear a priori which
of these options would work best from the viewpoints of the angles, the final accuracy and

the convergence speed. We compare these options in more detail in Section 11.7.4. Our

experiments show that from the point of view of accuracy, convergence speed and angles,
batch norm empirically gives better results than the other options.

For lack of space, we only show the comparison with batch norm in the rest of this section.

Using batch norm does not hurt the accuracy on the evaluation set, nor the convergence

speed. The mean angle improves and the representation vector norms are now significantly

smaller than in the unconstrained case.

Use All Directions In a standard ReLU-based neural network, the representation vector

O(x) is the output of a ReLU. In particular, this means that each coordinate of #(x) is

non-negative, i.e., the representation vector always lies in the non-negative orthant. While

the non-linearity in neural networks is an important source of their representation power,
the ReLU at the last layer yields a more difficult dataset for NNS methods. Instead of

producing a representation on the entire unit sphere, the representation vector is restricted

to lie in the non-negative orthant. Implicitly, this also restricts the locations of the class

vectors in the softmax: in order to achieve reasonable angle, the class vectors must be close
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Figure (11-2): The effect of batch normalization on the evaluation accuracy, mean correct
angle, and norm of the representation (pre-softmax) vectors. The plots show two training
runs on our multiMNIST dataset with 1,000 classes. The norm of the representation vectors
is now nearly constant, and the mean correct angle improves significantly. The normalization
also improves training speed.
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Figure (11-3): The effect of swapping ReLU and batch normalization before the softmax
layer. The plots show two training runs on our multiMNIST dataset with 10,000 classes.
The norm of the representation vectors show less variation during training, and the mean
correct angle improves. The normalization also improves training speed.
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Figure (11-4): The effect of normalizing the class vectors in the softmax layer. The plots
show two training runs on our multiMNIST dataset with 10,000 classes. The average
norm of class vectors is now constant and significantly smaller than before. Moreover, the
mean correct angle improves while the accuracy is not negatively affected. Importantly, the
positive effects are cumulative with the previous modification of swapping the order of ReLU
and batch normalization (we are not comparing to a baseline without batch normalization
because we could not train a 10,000 class multiMNIST dataset without batch normalization).

to the non-negative orthant. To ameliorate this issue, we propose to either remove the last
layer ReLU or to place it before the batch norm so that the final representation vector #o(x)
can have both positive and negative coordinates.

As we can see in Figure 11-3, this modification improves the mean correct angle on mul-
tiMNIST. Moreover, the network achieves a good classification accuracy faster, and the
representation vector norms are better controlled.

Equalize Class Vector Lengths NNS is often an easier problem when all dataset points
have the same norm as various distance measure such as Euclidean distance, maximum inner
product, and cosine similarity are then comparable. Hence it is desirable to ensure that all
class vectors in the softmax layer have the same norm. In many trained networks, the ratio
between largest and smallest class vector norm is already fairly small, e.g., about 1.5 in case
of the Inception architecture [218] for Imagenet. The fact that this ratio is not too large
suggests that forcing it to be exactly 1 while training may not hurt the performance of the
model. This is our third modification: we constrain the norms of the class vectors to all
be equal. This constraint can be realized via projected gradient descent: we first initialize
the class vectors to have unit norm.1 Then after every gradient step (or a small number of
steps), we re-normalize the class vectors to be norm 1 again.

This modification has two advantages. First, it guarantees that the NNS problem is exactly
an angular NNS problem. Moreover, the modification also helps in achieving smaller angles.
Intuitively, we constrain the second term I|vj| 2 in Equation (11.2) to be 1. We see the effect
of this modification on the multiMNIST dataset in Figure 11-4. The mean correct angle
improves and the class vector norms are now significantly smaller than in the unconstrained
case. Importantly, the improvement in mean correct angle is cumulative with the previous
modifications. Overall, we not only obtain an angular NNS problem (instead of MIPS), we
also have a better conditioned problem due to the smaller angles.

'The constant 1 is somewhat arbitrary and other values may be considered.
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11.4 Experiments

We now evaluate our training modifications on two large datasets. We begin by describing
these two datasets that we use in our experiments, together with the corresponding network
architecture. In Section 11.7.3, we also report results on a third dataset (CelebA).

MultiMNIST As in Section 11.3, we use our multiclass variant of the classical MNIST
dataset [148]. MNIST contains grayscale images of hand-written digits {0, 1, 2,. . ., 9} with
fixed size 28 x 28. To create a multiclass dataset, we horizontally concatenate c of these images
together to form composed images. We label each composed image with the concatenation of
the corresponding digits. Thus, for example c = 2 corresponds to class space {00, 01, ... , 99}
and image size 28 x 56. We construct a training dataset by concatenating random images
from the MNIST train dataset, and proceed similarly for the evaluation dataset. We refer
to a multiMNIST dataset with C classes as multiMNISTC. Figure 11-9 shows an example
image from multiMNIST 100K (so c = 5).

Our model architecture is based on the MNIST model architecture in the TensorFlow
tutorial [1].1 The network consists of two 5 x 5 convolutional layers with 32 and 64 channels,
respectively. Both convolutional layers are followed by batch norm, ReLu and MaxPool. We
then use a fully connected layer to project down to d dimensions, where d is the softmax
dimension typically taken to be between 256 and 1024. We train the network with stochastic
gradient descent on a single machine with a GPU.

SportslM We perform our second set of experiments on the SportslM dataset [138].2
This dataset contains about 1 million videos. As in [229], we construct a multiclass problem
where the examples are the video frames, and the labels are the video ids. We use the first
half of each video as training examples and the second half as test examples. After removing
some videos to ensure a common format, this gives us a classification problem with about
850,000 labels.

We convert each frame to its VGG features [213], using a pretrained VGG16 network.3

In particular, we use the output of the last convolutional layer as features, followed by a
fully connected layer of size 1024 and a softmax layer of dimension d = 256. To accelerate
training, we employ a sampled softmax loss approximation with sample size 8192. This
also allows us to test whether our training modifications are compatible with the sampled
softmax approximation (the multiMNIST test cases are trained with a full softmax). We
train our models using a distributed TensorFlow setup employing 15 workers with one GPU
each and 10 parameter servers.

Evaluation Objectives The goal of our experiments is to investigate two main questions:
(i) How effective are our modifications for improving the angle between the representation
vectors and the class vectors? (ii) Do our modifications hurt the accuracy of the model?

'Available at https: //www.tensorflow.org/get-started/mnist/pros.
2 Available at http: //cs. stanford. edu/people/karpathy/deepvideo/.
3Downloaded from https: //www. cs . toronto.edu/-frossard/post/vggl6/.
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Figure (11-5): The effect of our training modifications on a multiMNIST_100K dataset.
The mean correct angle improves significantly while the evaluation accuracy is not affected
negatively.
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Figure (11-6): The effect of our training modifications on the SporstIM dataset (the legend
is the same as in Figure 11-5 above). The mean correct angle is significantly smaller. The
evaluation accuracy also improves. Moreover, the points remain evenly spread over the unit
sphere, i.e., the "table balance" quantity M(P, h)/M* remains close to 1, especially for the
best-performing combination of our techniques.

Moreover, we also investigate the "well-distributedness" of the class vectors. In Theorem 11.1
in Section 11.7.2, we define a specific measure of imbalance that impacts the run time of
an LSH-based nearest neighbor scheme. More precisely, we show that as long as second
moment of the table loads, denoted by M(P, h) remains close to an "ideal" value M*, smaller
angles improve the NNS performance. We want to determine if this measure of imbalance,
M(P, h)/M*, remains small.

Results The results of our experiments on multiMNIST_100K are shown in Figure 11-5.
The baseline training approach uses the common configuration of applying batch normal-
ization before the nonlinearity and does not normalize the softmax vectors. Compared to
this baseline, our training modifications decrease the mean correct angle from about 40 to
15. This corresponds to a 30x faster softmax evaluation at inference time. Moreover, our
modifications lead to no loss in accuracy.

Figure 11-6 shows the results on the SportslM dataset. In this case, our modifications
improve the accuracy after 600K steps. Placing the batch normalization after the non-
linearity seems particularly important. The mean correct angle decreases by slightly more
than 10 degrees. As we see in Figure 11-7, this yields a 5x faster nearest neighbor query
time.

The right panel in Figure 11-6 shows the second moment of the table loads relative to the
ideal value, i.e., M(P, h)/M*. While our modifications lead to an increase in this value, the
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Figure (11-7): Effect of our training modifications on the query times of nearest neighbor

algorithms. We report the relative accuracies, i.e., the probability of finding the correct near-

est neighbor conditioned on the model being correct. Both diagrams are for the SportslM

dataset.

For LSH as implemented in the FALCONN library (left), our training yields a 5x speed-up
in the relevant high accuracy regime. The variant of kd-trees implemented in the Annoy
library (right) does not reach relative accuracy 1 when the softmax is trained using the

standard approach. In contrast, the softmax resulting from our training techniques is more
amenable to the kd-tree algorithm. Again, we obtain faster query times for fixed accuracy.

increase is small and stays around 1.4x for the relevant configuration that achieves the best

accuracy and mean correct angle.

In summary, our experiments demonstrate that our modifications obtain significantly smaller

angles between representation vectors and the correct class vectors. This translates to an

order of magnitude improvement in inference speed, and leads to learning better represen-
tations. The improvement comes at no decrease in overall accuracy.

11.5 Related work

Liu et al. [153] proposes a method for training with larger angular distance gaps. In contrast
to our approach, the authors modify the loss function, not the training process or network
architecture. The focus of their work is also on classification accuracy and not fast similarity

search. The authors do not quantify the improvements in angular distance and train on

datasets with a relatively small number of classes (100 or less).

Liu et al. [152] also modify the loss function for learning representations with angular
distance gaps. Again, the focus of their work is on accuracy and not fast similarity search.

In particular, the authors do not investigate the effect of their changes on the angular gap

on large datasets. The focus of our work is on fast similarity search and we evaluate various

network modifications with end-to-end experiments using state-of-the art NNS methods.

273



11.6 Conclusions and future work

We have demonstrated how to learn representations specifically for faster similarity search
in large datasets. To this end, we have studied multiple modifications to neural network
training and architecture that lead to a smaller angle between the learned representation
vectors produced by the network and the class vectors in the softmax layer. This angle is a
crucial measure of performance for approximate nearest neighbor algorithms and enables a
5x speed-up in query times. An interesting direction for future research is whether these
insights can also lead to faster training of large multiclass networks, which are common in
language models or recommender systems.

11.7 Further results

11.7.1 Visualization of our approach

2D-GMM. To visualize the effect of our modifications, we consider a synthetic example
that allows us to illustrate the geometry of the softmax layer. The data is drawn from a
small number of well separated Gaussians in two dimensions. The labels correspond to the
Gaussians they are sampled from. The network we train has two hidden layers with ten
hidden units each, followed by a projection to two dimensions. We use ReLU non-linearities.
We train the network using AdaGrad [94] to convergence, i.e., (near) zero training loss. The
appealing property of this synthetic example is that we can plot the representation vectors

0o(x) and class vectors vi directly in two dimensions.1 The results are in line with those on
multimnist and are meant to help visualize the effect of our modifications.

We show in Figure 11-8 the effect of our modifications on this dataset. In Figures 11-8(a)
and (b). we see that applying batch normalization leads to pre-softmax vectors that have
approximately the same norm. Moreover, the angle between the pre-softmax vectors and
the correct class vector improves noticeably.

Figures 11-8(c) and (d) show the effect of using all directions on the 2D-GMM dataset for
a mixture of 2 Gaussians. When the ReLU is after the batch norm, the pre-softmax vectors
are in the non-negative quadrant. Moving the batch norm after the ReLU leads to smaller
angles.

Finally, we visualize the effect of projecting the softmax vectors in Figures 11-8(e) and
(f). This modification leads to even thinner sectors, i.e., even smaller angles between the
representation vectors and the correct class vectors.

11.7.2 Theoretical analysis of NNS

For the case of locality-sensitive hashing (LSH), we can analyze the speed vs. accuracy

tradeoff quantitatively [112, 127].

'A complementary approach would be to train a higher-dimensional softmax and project the vectors to

two dimensions for visualization. However, such a projection necessarily distorts the geometry. Hence we

have trained a two-dimensional softmax to ensure a faithful illustration.
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Figure (11-8): Visualization of our training modifications for a two-dimensional softmax
trained on a synthetic dataset. Each column shows the effect of one modification. The top
row contains the baseline result without the respective training modification and the bottom
row shows the result with modification.

The data is drawn from a mixture of Gaussians with equally spread means and variance
0.1 in each direction. Since a ReLU unit before the softmax limits the expressivity of the
model, we could only train two classes with the two-dimensional softmax and a final ReLU
(middle column). Hence we did not employ a ReLU before the softmax layer in the left and
right columns. In all cases, the network trained to accuracy 1.

The blue points in the plots are the representation vectors of the examples and the red *'s
are the class vectors in the softmax. The gray sectors indicate the maximum angles between
the representation vectors and the corresponding class vectors. The plots show that our
modifications lead to significantly smaller angles.
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Suppose that we use a hyperplane LSH scheme with k hyperplanes per table and m inde-
pendent hash tables [70]. For the purpose of our analysis, we consider a variant where we
select a candidate set of class vectors as follows: we first find the hash bucket of the query
vector in each of the m tables and collect all database points in these hash buckets as a

candidate set. Among these candidates, we then compute exact distances in order to find

the (approximate) nearest neighbor. The goal is to choose the parameters m and k so that

(i) the probability of finding the closest vector in the candidates set is close to 1, and (ii)

the number of candidates is small.

In order to analyze this LSH scheme, we need to consider two questions:

. How many hash tables m do we need to query so that we find the nearest neighbor in

one of them with good probability?

. How many spurious candidate vectors will we encounter in the m hash buckets we
explore?

We now address the first question. For a query q, the probability that that a dataset point

within an angle of a' lies in the same LSH bucket as q is pa (1 )_ 2k. To ensure that the

failure probability is small, say, exp(-5) ~ 0.67%, it suffices to take m to be 5 /pa. It can
then be easily verified that we should set k to be as large as possible in order to obtain a

small candidate set. However, taking k to be larger than log n leads to many hash buckets

being empty, which increases the cost of generating the set of candidates itself. So we set k
to be logn]; see also [112, Theorem 3.4].

Next, we bound the total number of candidates in the hash buckets. The expected number
of points in a given hash bucket is n/2k (the expectation is taken over the randomness in
the hash function). However, this quantity does not necessarily bound the expected number
of candidates during a query. The event that q lands in a certain hash bucket may be
correlated with a large number of database points occupying the same bucket (consider a
heavily clustered dataset). To ensure a fast query time, we want to bound the expected
number of points in a bucket conditioned on q landing in the bucket. This quantity is a
function of the data and query distribution. Under the assumption that the data points are
reasonably spread out (i.e., each hash bucket contains roughly the same number of database
points), the bound of n/2k for a single table is approximately correct. To measure how
"well-spread" the dataset P is under the hash function h : Rd [ 2 k], we define the following
quantity M(P, h):

M(P, h) = E h--1(i) n P
iE[2k]

The table load M(P, h) simply sums the squares of the hash bucket occupancy counts, which

penalizes evenly spread out point sets less than highly clustered ones. With this definition,

we can now analyze the expected number of spurious candidates under the assumption that

the query q comes from the same data distribution as the database P. In the regime where

the mean correct angle between pre-softmax vectors and class vectors is small, this is a well

justified assumption.

Theorem 11.1. Suppose that the query point q is chosen uniformly at random from the

database P and that the hash function h was used to build the hash table. Then the expected

number of points in the bucket containing q is M(P, h)/n. Moreover, if the hash function
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values {h(p)} pep are independent random variables, then

E[M(P, h)] - M* - -+ n I - . (11.3)

Proof. For the first part, let q be a point from P chosen at random. The quantity of interest
is

Eq[Number of points in bucket containing q] = 1: Eq[1(q' and q in same bucket)]
q'GP

= Z Eq[l(h(q) = h(q'))]
q'EP

= jh- 1 (h(q')) nP/n
q'EP

= Z S |h 1(i) nPI/n
iE[2k] q'EP:h(q')=i

= h-1 (i) n P12 /n
iE[2k]

=M(P, h)/n.

For the second part, we follow a similar chain of equalities and write:

M(P, h)= 5 lh- 1 (i) n P| 2

iE[2k]

= S |h- 1 (i)fnPI
iC-[2k] q'E P:h(q')=i

= Ih-'(h(q')) n P
q'EP

= 5 nEq[l(h(q) = h(q'))].
q'eP

Now note that Eq[1(h(q) = h(q'))] is 1 when q = q'. Under the independence assumption,
this expectation is in every other case. Thus we get

E[M(P, h)] = E nEq[1(h(q) = h(q'))]
q'eP

q1E1

= n + n(n -1)

= + n I- .

The claim follows. E

If for a specific database P and hash function h, M(P, h)/M* is close to 1, then the LSH
table is sufficiently balanced for the inference to be efficient. Note that if we set k to be
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Figure (11-9): An example from multiMNIST_100k; label 73536.

[log 2 n], then M/n is at most 3, i.e., we have a small constant number of candidate points
per hash bucket. As a result, the number of candidates in the nearest neighbor search
roughly equals the number of hash buckets. Using the earlier formula for the collision
probability Pa, we get the following formula for the number of candidate points as a function
of angle a:

-5 5n- 1092(1-2)

Pa

This expression allows us to estimate the number of candidate distance computations as
we decrease the angle between the pre-softmax vector and the correct class vectors. We
illustrate our estimate by substituting concrete numbers: if n = 106, improving a from 7r/3
(60 degrees) to 7r/4 (45 degrees) reduces the number of hash bucket lookups from about 16K
to 1.5K, i.e., an order of magnitude improvement. In Figure 11-1(a), we plot the expression
(11.7.2) as a function of the angle a for n = 106.

11.7.3 Experiments on CelebA

To investigate the impact of various network modifications on a third dataset, we also
conduct experiments on CelebA [154]. CelebA consists of about 200K face images of roughly
10K different celebrities. The goal of our experiment is to evaluate the quality of the
representation learned by a standard Resnet model with 32 layers. In particular, we want to
understand how well the learned representation generalizes to previously unseen identities

(not only unseen images of celebrities that are also present in the training dataset). To this
end, we learn a representation on about 8K identities via the multiclass approach that we
also employed for other datasets. At evaluation time, we then take 2K unseen identities and
compute representations for all examples (roughly 20K images). We compute two quantities:
(i) the accuracy of a nearest-neighbor classifier on the evaluation dataset. (ii) the angular
gaps to the nearest neighbor of the same class.

Our results show that normalizing the class vectors significantly improves both accuracy
and angular gaps. Combining softmax normalization with the Batch Normalization - ReLU
swap yields an accuracy of 74%, which is significantly higher than baselines without softmax
normalization that achieve 60% accuracy (for both possible orders of normaliation layer an
non-linearity). Moreover, the angle between query and nearest neighbor improves by about
8 degree while the set of evaluation points remains as balanced as the baselines without
normalization of the class vectors.

11.7.4 Comparison of normalization options

We consider various options for controlling the norms of the representation vectors.

BN: Batch Normalization.
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Figure (11-10): Comparison of various Normalization Options on MultiMNIST 1K

LN: Layer Normalization [24].

Scaling: Using a normalized representation 0o(x) = 00(x)/10Wo(x)WI.

To evaluate these options, we used multiMNIST data set with 1K classes. We use a network
identical to that in Section 11.4 with a representation layer of 256 dimensions. We compare
these options on various axes: the final accuracy, the speed of convergence and the mean
angle. For each of the configurations, we did a grid search over learning rates to pick the
best one. The final accuracy and angles are shown in Figure 11-10. As the figures show,
the network with batch norm gives nearly the same angles as the best of these options. In
terms of convergence speed and accuracy, batch norm is the noticeably better than the other
options.
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