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Abstract

This thesis deals with the problem of adaptively controlling a linear time-invariant
plant in the presence of constraints on the input amplitude. A new algorithm is intro-
duced for continuous-time plants and it is shown that it leads to bounded solutions
when the initial conditions of the adaptive system lie within a compact set. A similar
condition is also put forward for discrete-time plants which ensures bounded trajecto-
ries. In both cases the results are valid for open-loop stable as well as unstable plants
but are restricted to minimum phase plants. The results are applied to the problem
of grasping and manipulating a compliant object using compliant fingerpads.
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Chapter 1

Introduction

One of the major problems that arises while controlling dynamic systems is the trade-

off between reaching maximum performance and robustness while using only practi-

cally realizable control inputs. Physical limitations dictate that hard limits be im-

posed on the magnitude to avoid damage to or deterioration of the process. Therefore,

any active input that is determined on-line should meet the desired control objectives

while remaining within certain limits. Also, from an analytical point of view, there

may be a need to maintain the process near the desired operating point in order to

make a linear control design adequate. This may in turn force the input magnitude

to lie within certain bounds.

For example consider two fingers pinch grasping an object and moving it between

two points. If both the fingers and the object are compliant then the dynamic charac-

teristics of either one (such as stiffness and damping) influence the compressive force

exerted by the fingers on the object. Also, the size of the contact area changes with

the applied compressive force which in turn may affect the stability of the grasp. If

the object is not to get dropped during manipulation the contact forces must be in

compression at all times and the control signals must therefore be constrained to only

those that produce compression between the object and both the fingers. Typically,

the dynamic characteristics mentioned above are unknown and will vary with different

grasp positions. This in turn means that some kind of adaptive control will be needed

to ensure successful manipulation. Hence, ensuring that the control input does not
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exceed these bounds while simultaneously realizing the performance objectives is a

very important problem.

Over the years, adaptive control methods have been developed to control systems

that are poorly known. In particular, parametric uncertainties in linear dynamic

systems have been effectively dealt with using adaptive control. Stability as well as

robustness issues of adaptively controlling linear time-invariant plants with unknown

parameters are well understood and documented in several textbooks and papers

[1, 2, 3]. The focus in all these cases has been on determining the least restrictive

conditions on the plant under which a control input can be realized to meet various

control objectives. There was however no restriction on the magnitude of the control

input, which commonly is the case as described in the last paragraph. In this thesis

this problem of adaptive control with constrained input will be addressed and new

methods and algorithms will be proposed to meet the constraints as well as the control

objectives.

Chapter 2 describes how limits on the input amplitude affect the performance and

stability of linear systems with emphasis on adaptive control. A review of the existing

literature on adaptive control with input constraints is also given.

In Chapter 3 and 4, some new results on the problems described in chapter 2 are

stated in Theorems 3.1-3.4 in Chapter 3, and 4.1-4.3 in Chapter 2. There modified

control schemes and the stability of the overall system is established and results

supported by simulations studies.

Chapter 4 describes an application of the results in Chapter 3. A simplified model

of compliant fingerpads is analyzed and it is shown how the control of this model can

be represented in the framework of constrained adaptive control.

1. Constraints in Automatic Control

Control with constraints on the available control amplitude commonly occurs and is

usually described as a linear plant with a nonlinear element describing the constraint,

between the controller and the plant. Classical control theory does not have any

8



general tools or methods for the treatment of input non-linearities that are readily

applicable to input saturation. This is especially true in the case of unstable systems

where stability becomes naturally a primary concern if only a limited range of control

values is allowed for whatever reason. Then the instability demanding large stabilizing

inputs conflicts with the bounds on the input and a well founded stability theory is

needed for the control design.

There has been considerable work done in the area of nonlinear systems stability

[4, 5, 6]. While they are applicable and quite useful for specific classes of nonlinear

systems they are inadequate for our purpose of determining conditions under which

a linear time-invariant plant can be controlled inside a frame of input constraints.

For instance, Describing Function Analysis consists of replacing a nonlinear element

within the system with a specifically constructed linear element and then analyzing

the resulting system. It is an approximate method and subject to some assumptions

about the system and the nonlinearity and is mostly useful to predict the onset of

limit-cycles and related phenomena. One can easily construct a description function

for a hard-saturation but the assumptions made are too restrictive to be applicable

to adaptive systems with any certainty. The Lure Problem refers to the control of

a system whose forward path is linear and has a sector nonlinearity in the feedback

path. Although hard saturation is, strictly speaking, not a sector nonlinearity, some

of the many solutions developed for the Lure problem have included treatment of

hard-saturation and time-varying nonlinearity [7, 5, 4] but they generally do not

explicitly address unstable systems. Popov's Criterion is a solution to a specific case

of Lure Problem and gives a condition for systems, which include sector nonlinearities,

similar to what Nyquist's criterion gives for linear systems, leading to a condition in

the frequency domain. Since it does not treat non-autonomous systems, it is not

of use here. The Circle Criterion [8, 9] and [7, 10] is a more generalized version of

Nyquist's Criterion than Popov's Criterion. It can be extended to non-autonomous

systems, but like all the methods above the results are interpreted in the frequency

domain and hence the result is obtained in global terms. That is, the question if the

system can be guaranteed to be globally stable or not is answered. We will show
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that, this approach is inadequate for unstable systems with hard-saturation as they

can only be locally stable. None of these methods directly addresses the stability of

non-autonomous systems with time-varying linear feedback and hard saturation in

the feed-forward path, which is the case for adaptive control with saturation. Finally,

one important fact from the viewpoint of design is to have conditions that show what

factors affect stability and in what way they do so.

1.1 Stability of Input-Constrained Systems

As the main focus of this thesis is on the stability properties of systems with input

saturation some of the general stability properties of such systems are stated below.

The system considered consists of a linear time-invariant, single-input plant and a

controller when there is a hard limit on the amplitude of the command signal going

from the control to the plant, (see Fig. 1.) Although this is a fairly general, structure

it has some important properties, which are simply stated here but detailed and

explained further in chapter 2.

Open-Loop Stable Plants

* In a system with a Bounded-Input, Bounded-Output stable (BIBO) plant, the

plant can not be made unstable by any controller when there is a limit on the

control signal. In such a case the input is always bounded and therefore the

plant variables remain bounded.

* Then the stability of the controller is all that remains to be shown to ensure

the stability of the overall system

Open-Loop Unstable Plants

* If the plant is strictly unstable then there exists an initial condition for the

plant so that the system is unstable for all subsequent control inputs. This fact

becomes obvious if the plant is considered in state description of Jordan form.

Therefore the system can only be shown to be stable when the initial conditions
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are within a compact set, which forms a stabilizable region in the state-space,

i.e. locally stable.

" It can also be shown that there exist a bounded reference input which can drive

the plant out of the stabilizable region for a fairly general class of controllers.

Therefore one can not show stability for all finite reference trajectories but only

for those that remain within some bounds. Hence, one of the quantities that

need to be determined for stability are these bounds.

" If an adaptive controller is used in addition to the above mentioned bounds,

the initial condition of the control parameter must be bounded as well, since in

that case the control parameter is also a part of the system state. Initial values

outside these bounds could drive the plant into instability.

Having these facts in mind, it is clear that stability for an adaptive system with

hard saturation is local and the condition must depend in some way on all the factors

detailed above.

2. Adaptive Control with Limits on the Input

Amplitude

Adaptive control is no exception from other control methods in that large input am-

plitudes must frequently be constrained, although in classical adaptive control theory

it is generally assumed that unlimited amplitude is available. Still, if not intention-

ally avoided, it typically results in high control signals which cannot be implemented

by actuators in practice. One possible way to avoid this is to penalize the control

input amplitude in some way and methods for that have been developed [3]. Penal-

izing the control amplitude results in lower amplitudes but does not give any insight

into, whether the system will be stable or not. For direct adaptive control of stable

discrete-time plants the effect of saturation is not very serious if good care is taken,

as the adaptive law can easily be made stable independent of any saturation effect,
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provided that the saturation bounds are known [3]. This is not true for continuous-

time systems and algorithms will not work correctly unmodified. A basic structure

for modifying the continuous-time adaptive law for effects of saturation limits was

proposed by Monopoli in 1975 [11] but no stability proof was provided in this paper.

Much of this thesis will be on showing how these algorithms need to be modified.

3. New Results

The new results that this thesis contains are in the area of adaptive control of linear

time-invariant, SISO plants with input constraints, and are in two parts.

New algorithms for continuous-time systems which ensure that parameters are es-

timated correctly with saturation, are put forward for the most common cases.

That includes, for first-order plants, states-accessible plants, relative-degree

equal one, and plants of relative degree two and greater. In all cases the results

are restricted to minimum-phase plants as when the control is unconstrained.

Stability theorems are proved for all the algorithms above and also for two pro-

totype cases of discrete-time plants, i.e. for model reference adaptive control

of first-order plants and for one-step-ahead direct adaptive control for plants of

arbitrary known order.

4. Application of Constrained Adaptive Control

As stated earlier in this chapter, manipulation problems with pinch finger grasp typ-

ically lead to control with input constraints. Then the mathematical model is based

on the assumption that friction between the two surfaces in each contact prevents

slip. This assumption can only be true if the contact force is compressive and results

in sufficient pressure in the contact area to counteract tangential forces. If the finger-

pads and the object are assumed to be compliant the complexity increases since the

interaction is dynamic and possibly unknown. The reason for exploring this problem
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is to understand what principles lie behind successful completion of robotic tasks in

manufacturing which involve mechanical interactions between the robot and its envi-

ronment. Examples of such tasks are drilling, grinding, inserting a peg-in-a-hole, and

assembly operations. Also, for general purpose robots that need to explore and ma-

nipulate objects in their environment, the presence of compliance in the end-effector

and explicit modeling of it is desirable for many reasons. The ones that come readily

to mind are:

" Compliant fingers an object will generally have a finite area of contact, in con-

trast to point contact as is the case when the fingers and the object are assumed

to be rigid. The introduction of a finite area of contact gives more stable grasp

for fewer fingers as then additional resisting and stabilizing torsional torque ap-

pears, which resists rotation around normal to the contact area. The effects of

this additional torque can well be seen from the fact that the minimum number

of finger contacts to ensure a stable grasp decreases from two to three when the

finite are of contact is introduced.

* The stresses resulting in the contact region will be much less in the compliant

case as the total force is distributed over the area of contact and not concen-

trated as in the case of a point contact. This leads to increased dexterity as

more fragile objects can then be manipulated.

* Exact shape of the object in the contact region will be less important for stability

in the compliant case and not as crucial as in the rigid case.

* The explicit modeling of the compliance in the finger and the object will lead

to dynamic models of higher order, which to some extent provides increased

maneuverability as then the control bandwidth can possibly be increased.

Often, as in the case of a general purpose robot, the objects encountered can

possess a wide range of dynamic characteristics. This implies that the grasping and

manipulation tasks have to be performed even when the dynamics of the object in
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question is unknown. In such cases, the control forces on the fingerpads need to be

generated using an adaptive rather than a fixed controller.

The general problem of contact between two deformable bodies leads to a spatio-

temporal analysis. Here, the problem will be simplified by adopting single degree-of-

freedom lumped parameter model, thus reducing the variables to be purely temporal.

The fingers as well as the object are assumed to deform only in one direction. The

aim will be able to hold a compliant object with unknown dynamic parameters in

a two-finger pinch grasp and move it along any desired path in a three-dimensional,

gravity environment, while ensuring that the object does not slip or get crushed.

Because the system essentially describes a motion in free air, the resulting model

is unstable, having a double integrator. This is the problem that motivated the work

on the control algorithms and stability theorems in this thesis. The results obtained

are however applicable to a more general class of problems and form the main subject.
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Chapter 2

Overview

1. Constraints in Automatic Control

Control amplitude1 saturation is often the dominant nonlinearity in control design

although there is very little formal theory that addresses it [14]. In the literature, the

main emphasis has been on providing schemes that preserve linear behavior under

saturation, if possible, and otherwise provide graceful degradation of system perfor-

mance under saturation. Several ad hoc schemes have been proposed [14, 15, 12, 16],

along with others which are analytically more rigorous [17, 18]. The former schemes

are, first and foremost, intended to prevent integrator windup resulting from satura-

tion, but [17] is concentrated on preserving the properties of a linear time-invariant

MIMO control design. None of the above schemes is much concerned with the domain

of stability for unstable plants except for [18], which discusses the problem but does

not give any explicit results on stability. The size of domain of stability is treated for

systems with linear feedback in [5, 19, 20], where the approach is to maximize the

domain of stability using numerical search methods.

'Control input is most often considered to be limited only in the amplitude but a more realistic
approach would be to also include a limit on the rate of the control input [12, 13]. In this thesis,
only amplitude constraints will be treated.
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2. Functional or State Constraints

Input constraints have several implications on the dynamic model and the control

design. For instance, they may imply that the mathematical model used is only valid

for a certain region of the state space. The region may be where linearity is preserved

or where some functioning constraint must be satisfied. The region will be described

by some constraint function of the state variables. When carrying out the control

design, these constraints may limit the possible reference inputs as well as how the

feedback signal is used in the control signal. The combined effect of these is then

limited by intentionally restricting the control amplitude to a certain range. Making

some assumptions on the frequency content of signals involved and using the limits

obtained from the transfer function from the input to the output variable describing

the constraint, the limits on the input can be projected to a range in the constraint

variable.

3. Stability of Input Constrained Systems

Now some general stability properties of systems which consist of a single-input,

linear time-invariant plant and a controller with a hard limit on the amplitude of the

command signal going from the controller to the plant (see Fig. 2-1). Some of the

results are independent of the structure of the controller, but in each case where that

is not true the assumed structure will be detailed with the result.

Stable Plants

A linear time-invariant (LTI) plant which has a hard limit on the control input and is

itself strictly open-loop stable, will always remain stable as in the linear case stability

and bounded-input bounded output (BIBO) stability are equivalent [1]. The stability

of the controller is then the only thing that needs to been ensured. If the controller

has a integrator (e.g. a PID controller) then special care has to be taken and the

danger of instability is a commonly known problem usually called Integrator windup.
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Limiter

r(t) v(t) u(t) y(t)
- Controller - +-- Plant

Figure 2-1: System Block-Diagram
The system that this section is devoted to investigate. The figure defines variables
r(t) as the reference input, v(t) the control signal before saturation, u(t) the control
signal after saturation and y(t) as the plant output

The results of [15, 14, 16] suggest control schemes which can overcome this problem.

Plants with multiple integrators

If the plant has in it a higher order integrators but is otherwise stable, the problem

of stability becomes more complicated. However results for continuous-time plants

exist that give globally stabilizing controllers with bounded control amplitude, using

nonlinear feedback [21]. It can further be shown that a saturating linear time-invariant

feedback control, cannot possibly globally stabilize a plant with integrators of order

greater than or equal to 3 [22].

Unstable Plants

If the plant is strictly unstable, i.e. having at least one unstable pole, some important

facts can be stated about the stability of the system. A clear statement of these facts

cannot been found in the literature. They will therefore be stated and proved here

as Lemma 1 and 2. The first result is independent of what controller is used so the

controller generating the signal u(t) is left unspecified.
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Let a linear, time-invariant plant have a state-space description given by

(t) = Ax(t) + bu(t) Iu(t) < um, V t > to (2.1)

and assume that it is of Jordan form, with a diagonal matrix A E R"' . The

following lemma states that if the system in Eq. (2.1) is unstable it cannot be globally

stabilized using any bounded control input.

Lemma 2.1 There exist a constant xm. and an initial condition x(to), both of which

are finite, with I|x(to)I xm. for which the system in Eq. (2.1) has unbounded

solutions.

Proof:

Let A, be the eigenvalue of A for j = 1, 2,... n, and Ai be such that it is real and

Ai 2 Re(Aj) V j = 1, 2,...n. (2.2)

Since A is in a diagonal form, the equation corresponding to the eigenvalue Ai can be

written as

i(t) = Aixi(t) + biu(t).

Since A is unstable , Ai > 0. It follows that

1 d1 d (t) = Airx(t) + xi(t)biu(t)
2 dt"

* Ai 1xi(t)1 2 - Ixi(t)I biI uma (2.3)

> 0 V Ixi(t)| I Xm,

where

xm" = IbitUmx (2.4)

If A2 is complex, then the complex conjugate A* is also an eigenvalue of A. Using

18



the unitary state transform

T ==
2) 7]

in defining

p(t) T xi (t) 1and 3 T 1  b1
Xi+1(t bjj

Then the state-space spanned by the eigenvectors corresponding to these two eigen-

values satisfy the equation

X~t) = pilp + WiJp + OU(t) J=,
.- 1 0

p and 0 are real, I is the identy matrix and pLL and wi denote, respectively, the real

and the imaginary parts of A2. This gives the relation

1 d p(t )P(t ) = pT(t gt) = tIp|(t) | 2 + pT(t)iOu(t)

> g||p(t)jj2 - ||P(t)IIII|||ma.x (2.5)

> 0 V IIp(t)II >Xm.

where

Xma = x" (2.6)
Ai

From Eq. (2.4) and (2.5) it is notes that a constant xma exists satisfying the condi-

tions stated in Lemma 2.1 and hence the proof.

Now it will be shown that a bounded reference input, r(t) can be found for which

a feedback controller destabilizes the system defined in Fig. (2-1) and Eq. (2.1)

Let the feedback controller be described by

v(t) = f(x, t) + fo(x, t)r(t) (2.7)
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where

sup f(x, t) R(t) E Loo (2.8)
1*0li5X. 1fO(x't)1

and f and fo are such that condition giving existence of solutions are satisfied. Further

assume that the system is controllable for all times. Then we have the following

lemma.

Lemma 2.2 There exists a bounded reference trajectory that destabilizes the plant in

Eq. (2.1) with the controller structure in Eq. (2.7) satisfying Eq. (2.8).

Proof: As in the proof of Lemma 2.1, assume that Ai, defined in Eq. (2.2) is real. If

r(t) = -f(x, t) + Ci- Ci > 0 (2.9)
fO(x, t) bi

then the control signals defined in Fig. 2-1 will be, u = v = ei for sufficiently small

El. Also assume without loss of generality that x(to) > 0. This results, for this case,

in

i (t) = Aix + ei > 0 Vt > to.

or xi(t) -+ oo as t -> oo. Hence , any reference input of the form in Eq. (2.9) drives

the system into the unstable region. It is further noted from Eq. (2.8) that r(t) is

bounded. 9 A similar proof can be given, even if Ai is complex.

It is worth noting that a special case of the controller in Eq. (2.7) is the linear

feedback controller

v(t) = f (t) T x(t) + fo(t)r (t)

which satisfies Eq. (2.8) if f(t) is bounded and fo(t) : 0.

Both Lemma 1 and 2 hold for discrete-time systems as well. The proofs are almost

identical and are therefore omitted. For sake of completeness the discrete- time form

of Lemma 2.1 will now be stated.

Lemma 2.3 (Discrete-time system) If the discrete-time system

p(t + 1) = AAp(t) + bdU(t) Iu(t) I uma. (2.10)

20



is unstable, with Ad, defined as the eigenvalue of Ad E Ex, wzth the largest modulus,

JAd, 1. Also bd, defined as the entry in bd corresponding to Ad. Then there exist a

constant
s Ib,|um.

IAd- 1

and an initial condition p(to), both of which are finite, with ||V(to)II > Wm= for which

the system has unbounded solutions.

4. Adaptive Control with Limits on Input Am-

plitude

Most adaptive control algorithms that have been developed so far are for plants with

a known structure but poorly known parameters. For linear plants this typically

means that the order, and the relative order of the plant's transfer function are

known but its coefficients are unknown. Further a distinction is made between direct

and indirect adaptive control. Indirect control refers to that an intermediate step is

taken, in estimating explicitly the plant parameters to be used to calculate the control

parameters, whereas in direct adaptive control this step is omitted and the control

parameters are estimated directly. Although both these approaches are equally valid,

only the case of direct adaptive control will be treated in this thesis.

In direct adaptive control, the parameters of the controller are adapted over time,

in principle, based on a comparison of the expected and the resulting plant output.

The rule for the adjustment of the parameter is expressed as an adaptive law, usually

in the form of a differential equation for continuous-time systems and a difference

equation for discrete-time systems. The state of the overall system will therefore

contain the time-varying parameters of the controller in addition to the plant and

other controller states. The system state space will then necessarily be composed

of linear and nonlinear subsystems which makes the overall system nonlinear and

time-varying. For continuous systems the controller and the adaptive law take the
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form
v(t) = 9T(t)x(t)+r (t)r(t)

= 9T (t)W(t)

u(t) = {t ) t(t)| < um. (2.11)

Umaxsgn(V(t)) if Iv(t)I >Um

9(t) = fc(w,Ot)

where x(t) is the system state or the output from a state estimator,

w(t) = xT(t), r(t)]T  and 9(t) = [(t), ,.(t) .

The function fc(-) describes the adaptive law, of which there are many variants. The

exact form is not important here and therefore not elaborated upon.

For the discrete-time case the controller structure is

v(t) = ii(t)pV(t) + Ou(t) + Or(t)r(t)

= OT(t)p(t)

(t) { v(t) if Iv(t)I _<; Um. (2.12)

Umasgn(v(t)) if Iv(t)I > Umu

O(t + 1) = fd(p, , t).

Here p, and p contain a measurement history of the plant output, y(t) and the

_ 9 9'T 9 an L [VT T' ~,]. As incontrol input, u(t),respectively, = , 7 , I, and o Y [
the continuous-time case, the function fd(-) stands for an adaptive law of some form.

Here V plays the role a state vector in a nonminimal state-representation of the plant.

For continuous-time systems, the introduction of a limiter seriously affects the

adaptive law in a way which is not trivially compensated for. In [11] Monopoli

proposed the addition of correcting signals in the adaptive law. The treatment is

however, not complete and not quite rigorous in view of the advances in the field

since then.

Discrete-time systems on the other hand , do not need any modifications in the

adaptive law; standard adaptive laws naturally accommodate saturation effects [3].
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In both cases of continuous and discrete-time controi. a knowiedge of the actuai

control signal amplitude, u(t) , i.e. the control signal after saturation is needed.

When the measurement is not available, the saturator can be implemented inside the

controller, hence effectively moving the saturator inside the controller. A lower bound

on the actual, external saturation limit must then be known.

4.1 Stability of Adaptive Systems with a Saturated Input

The presence of a limiter ensures bounded inputs. This implies that if the plant is

stable, all the state-variables of the plants are bounded. All that remains to be shown

is that the signals in the controller remain bounded. In most cases, this boils down to

proving the boundedness of the control parameter. For unstable plants, the problem

becomes more complicated. It should be noted that the results of Lemmas 2.1 and

2.2 are applicable in this case.

Lemma 1 is applicable to any unstable system with a LTI plant and is therefore

valid in that case here. It is also noted that the controller structure is the same as is

assumed for Lemma 2, although it is too early to say whether the other conditions of

Lemma 2 are satisfied.

Continuous-Time Constrained Adaptive Control

In continuous-time adaptive control, the general approach is to construct a reference

model which describes the desired behavior of the closed-loop system and would be

implemented if all the plant parameters were perfectly known. The fundamental

assumption made is that a nominal value for the control parameter, 0 = 9* exists for

which the system behaves exactly like the reference model. This is one of the reason

behind the restriction that the structure of the plant must known, as it can argued

that a knowledge of the structure is necessary to make the plant behave identically to

the model by merely choosing the right control parameter. This control parameter is

what the adaptive law is designed to search for. It is not guaranteed, although, that

it will find the true parameter value. Only, that it will find some value that makes the

system behave like the model for the reference inputs used. However, if the system is
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given a sufficiently -rich" set of reference inputs 2 then the control parameter estimate

will converge to the correct value. That the parameter vector is a part of state for

the overall system suggests, in view of Lemma 1, that the initial conditions for that

parameter vector must also be bounded. This is indeed the case as will be stated in

the following lemma. Let fc(-) be such that it is a bounded function of 0 and also

bounded for bounded (w, t), i.e. 3 Fe(w, t) such that

IIfc(w, , r)I < Fe(w, t) < oo V 0, (2.13)

when t, and w are bounded.

Lemma 2.4 If the controller structure in Eq. (2.11) satisfying Eq. (2.13) is used for

system (2.1) then there exists a finite 9(to) such that the origin of the linear subsystem

is unstable.

Proof: Instability means that there exists a point, in the linear subsystem, arbitrarily

close to the origin and a bounded initial condition for the control parameter that lead

to unbounded trajectories.

As in the proofs for Lemmas 2.1 and 2.2, consider the most unstable eigenvalue,

Ai of the linear subsystem, and the corresponding decoupled, differential equation

i(t) = Aix 1(t) + biu(t)

Without loss of generality assume bi > 0 and let xi (to) = exm,, where 0 < e < 1

and xm, is defined in (2.4). Let C and j be the the state vector and the parameter

vector, respectively, obtained by excluding the entries corresponding to xi from w and

9. The system is linear and in view of Lemma (2.2) only bounded reference inputs

are considered, then 3-y, cl, co > 0 such that

II&(t)I < cieY(t-o) + co = &max(t - to) V t > to.

2 The signals that satisfy this richness condition are referred to as persistently exciting in adaptive
control theory [1].
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Fma(t, to) sup Fe(w, r),
to <T<t

then if j(to) = 0 it follows that

j|(t)| (t - to) Fma~,t)

and by choosing

92(to) = (tu - to)Fcm (tu, to) 1 + Wmax(tu - to)]
Cxmax I

tu =L to + 1 log -
R4 e (_A_ ) C

The result obtained is that

u(t) = F(t)&(t) + Oi(t)xi(t)

-&max(t - t0)F~m(t, to)(t - to) + (9,(to) - Fmx(t, to)(t - to)) X,(t),
(2.14)

giving u(to) 0, so i(to) is increasing and because Eq. (2.14) holds for all x2(t) >

CXmax when to < t < tu, it follows that

.j(t) = Aix(t) + biu(t)

> Aix(t) Vt E [totu]

and

xi(tu) exmaxe *~o) = Xmax

and from Lemma 2.1, the proof follows.

As before with Lemmas 2.1 and 2.1, Lemma 2.4 applies equally to discrete-time

systems.
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4.2 Conclusion

The following conclusions can be drawn from Lemmas 2.1, 2.2 and 2.4.

To guarantee stability for an adaptive system as described in Eqns. (2.1), (2.3)

and (2.11) where the plant is not necessarily stable the following factors must be

included.

1. A bound on the initial conditions of the plant.

2. A bound on the magnitude of the reference input.

3. A bound on the initial conditions of the parameter estimate.

Exactly how these factors contribute to stability will be the main subject of chap-

ters 3 and 4.

5. Papers Published on Adaptive Control in the

Presence of Constraints

As stated before, the basic structure for modifying the adaptive law for effects of

saturation limits was proposed by Monopoli in 1975 [11]. Papers that have dealt

with this problem in the past few years include [23] -[31]. In [23]-[29] it is assumed

that the plant is open-loop stable. In [24, 25] the problem of discrete time, direct

adaptive control is addressed In [27]-[30] the problem of discrete time, adaptive pole-

placement control is addressed and by and large all employ projection to guarantee

bounded parameter estimates and based on that derive global stability for type-1

plants. In [29] the case of continuous time indirect adaptive control is explored and

there again projection is used in the adaptive algorithm and stability results only

for open-loop stable plants given. In [31] the proposed approach of Monopoli in [11]

is followed in continuous time direct adaptive control, i.e. to modify the adaptive

law by augmenting the error signal with correcting signals to establish parameter

boundedness as before results apply only to open-loop stable plants.
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Chapter 3

Adaptive Control of

Continuous-Time Systems

In this chapter some new results obtained on the problems described in the previous

chapter are stated in Theorems 3.1-3.4 where modified control schemes and stability of

the overall system is established. Simulations are presented to support the theoretical

derivations.

1. A First-Order Plant

Statement of the Problem: A plant with an input-output pair {u(.), x,(.)} is

described by the scalar equation

i,(t) = apx,(t) + bpu(t) (3.1)

where a, and b, are unknown, but the sign of b, is assumed to be known. The input

u(t) is additionally subject to the magnitude constraint

u(t)I < UO

where uo is a known constant.
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A reference model is described by the first-order differential equation

im(t) = amxm(t) + bmr(t) (3.2)

where am is a known negative constant, bm is known, and r(t) is a piecewise-continuous

bounded function whose magnitude is such that

Ir(t)I ro.

It is assumed that am, bm and r(t) have been chosen so that xm(t) represents the

output desired of the plant at time t. The aim is to determine a bounded control

input u(t) so that all signals in the system remain bounded, for a given set of initial

conditions, and x, tracks xm as closely as possible.

If the plant parameter is known, a feedback controller of the form

u(t) = 9*xp(t) + k*r(t), where 0* = am- ap and k* bm

suffices. Since a,, b, and hence 0*, k* are unknown the control input is chosen to have

the form
v(t) = 0(t)xp(t) + k(t)r(t)

(t) v(t) if Iv(t)I uO (3.3)

uosgn(v(t)) if Iv(t)I > uo

where 9(t) is a time-varying control parameter. Then the closed-loop system can be

described by

6,(t) = (a, + b,(t))x,(t) + bAu(t) + bpk(t)r(t) (3.4)

where Au(t) = u(t) - v(t). If the output error e(t) and the parameter errors #(t) and

(t) are defined as

e (t) xp ,(t) - xm (t), # (t) O (t) - 0*(t), b(t) = k(t) - k*
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the obtained error equation is from Eqs. (3.2) and (3.4) as

6(t) = ame(t) + bpk(t)xp(t) + bO(t)r(t) + bpAu(t).

In order to remove the effect of Au, which can be considered as a known disturbance,

a signal e&(t) is generated as the output of a differential equation

da(t) = amea(t) + ka(t)Au(t) eA(to) = 0.

If e,.(t) = e(t) - eA(t), it is obtained that

du(t) = ameu(t) + bpo(t)xp(t) + bppr(t) + (t)Au(t). (3.5)

Where x(t) = bp - ka(t). Eq. (3.5) is in a standard error model form for which the

following adaptive laws can be used

#(t) = -Y 1sgn(b,)eux,

(t) -7y 2sgn(b,)eur (3.6)

k(t) = -Y 3euAu

where -y > 0 i = 1, 2, 3. This results in a Lyapunov function

1 r2V = - [e2 + lb,2 .U 71
+ -K2]
)73 .

(3.7)

since V = ame2 < 0. Hence 0(t), V)(t), ,c(t) and eu(t) are bounded Vt > to. From (3.7)

it can be deduced that 3 4m, < oo such that I0(t) I < Oma and IV(t) I < ama V t >

to, where

71
(3.8)

Theorem 3.1 The adaptive system in Eqs. (3.1), (3.2), (3.3), and (3.6) has bounded
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solutions V jr t)j < To if

b~o j&T|am| - k*! J a,|
(i) IxP(to)I bu0  and (ii) 2V(t) I - b * II (3.9)

Further,

IxP(t) < boVt to.
a,

Proof: See Appendix A

Theorem 1 implies that adaptive control of a first-order plant in Eq. (3.1) leads

to bounded solutions with the controller in Eq. (3.3) and the adaptive law in Eq.

(3.6) provided conditions (i) and (ii) are met. The boundedness of all signals in

the adaptive system was established in two steps. First the parameter error 0(-)

was shown to be bounded which was done using the adaptive law in (3.6). Next

the boundedness of the state x, of the plant was derived, if the initial conditions

are restricted to remain within a bounded set. Additional comments regarding the

bounds on the initial conditions are made at the end of section 2..

2. State Variables Accessible

In this section the plant considered is an nth order one, whose states are accessible

and described by the vector differential equation

,(t) = Ax,(t) + bu(t) (3.10)

where the entries A,, E RnL and b, E R are unknown. It is assumed that a reference

model described by

m(t) = Amxm(t) + bmr(t) (3.11)

can be determined where r(t) is a piecewise-continuous bounded function with Ir(t) I<
ro, and Am E ]Rnlf is an asymptotically stable matrix, which is such that a vector
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0* and a scalar k* exists and are solutions of

Ap+b m*T = Am

k*b, = b,.

As in the scalar case the, input u(t) is subjected to the magnitude constraint

Iu(t)I uo

where uo is a known constant. The aim is to determine a bounded control input

u(t) so that x, tracks xm as closely as possible while all signals in the system remain

bounded. The main result is summarized in the following theorem.

Theorem 3.2 Let an adaptive controller be chosen as

v(t) = k(t)9T(t)xp(t) + k(t)r(t)

u(t) = v(t) if |v(t)| UO

uosgn(v(t)) if Iv(t)I > uo

= -xeTPbm (3.12)

= -71lueTPbm

6a (t) = Amea(t) + bmk(t)-'Au(t) eA(to) = 0

eu(t) e(t) - e(t) #(t) =0 (t) - *(t) V)(t) -
k* k t )

where Ap + PAm =-Q and Q = QT > 0. Let qo = Amin(Q), & = , P=

IIPbm|| and p = " where Am,, and Amin denote the maximum and minimum

eigenvalue, respectively. If a Lyapunov function candidate V is defined as

1
V(eu, #, 0) = eTPeu + #Tr-~o+ -v)2 r = r > o -Y1 > 0

71
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then the adaptive system in Eq. (3.10) has bounded solutions if

(i) xT(to)Px(to) < Amin(P) k*I| 2pb119*I- 2o
P 1 1 *1 2 P b I O~ l - ~ f .( 3 . 1 3 )

1 qo - p jk*| !A |2Pb||6*|| - go|
and (ii) V(to) < (.

Aa.x(Tr) 2Pb + a k*| [ q + 2Pb h6* M

Further,

xT(t)Pxp(t) < Amin(P)|k*||2pbII* - goi V t > to. (3.14)

Proof: See Appendix A

Remarks:

1. Theorems 3.1 and 3.2 imply that if the initial conditions of the state as well as

the parameter error lie within a certain bound, then the adaptive system will

have bounded solutions. The local nature of the stability result is to be expected

in view of Lemmas 2.1-2.4, since the control input was restricted to lie within

certain limits. This condition can only be removed by restricting the open-loop

poles to lie in the left half plane. Theorems 3.1-3.4 extend this statement to the

adaptive case, where the control parameter is also a state-variable of the overall

nonlinear system, and hence requires not only a bound on I|x(to)I but also on

the norm of the parameter error I(to) .

2. Condition (ii) implies that prior information regarding an upper bound on 110*|1

needs to be known so that the matrix Q and hence qo can be chosen to make the

right hand side in condition (ii) positive. Since the feedback control input has a

component due to the external input and a component due to the plant-model

mismatch, it is not surprising that for a given parameter I 1* 1, the scaling factor

ro/uo must be small. That is, the magnitude of the reference input r(t) and,

hence, of the state of the model xm that the plant state must track, must be

appropriately scaled. As the mismatch between the plant and the model gets

reduced, the factor ro/uo can be increased.
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3. It should be noted that the adaptive algorithm in Eq. (3.12) leads to the

boundedness of the control parameter 0. Since the plant input u is always

bounded, this implies that if the plant is open-loop stable, the boundedness of

the remaining signals in the closed-loop system immediately follows, without

any restriction on the initial conditions of the plant or the controller, leading to

global stability. Conditions (i) and (ii) in Theorems 3.1 and 3.2 are therefore

required only for unstable plants.

4. It is interesting to note that the results will hold for any adaptive law which

guarantees boundedness of the parameter error and will therefore extend to the

algorithms proposed in [31] as well.

3. Output Feedback

Now a look will be taken at the case when only the output is available for feedback.

The plant considered is single-input single-output system described by

,(t) = Apx,(t) + bpu(t) y,(t) = h x,(t) (3.15)

where the input u is subjected to the constraint

Iu(t)I <; uo Vt > to,

and xP : R+ -+ R' is the n-dimensional state vector of the plant. Eq. (3.15) is

written equivalently as a transfer function

W,(s) = kZ(s) = h T(sI - A,)-1b,
R,(s) P

where Z,(s) and F,(s) are monic polynomials in the differential operator s.

The following standard assumptions are made regarding W,(s):

1. The sign of the high frequency gain, k,, is known.
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2. An upper bound, (n), on the order of the plant is known.

3. The relative degree, (n*), of the plant is known.

4. The roots of Z,(s) are known to be in the open left half of the complex plane,

i.e. Z,(s) is Hurwitz.

5. The system {h,', A,, b,} is controllable and observable.

The objective is to let the plant output y,(t) follow a reference trajectory ym (t)

as closely as possible. To achieve that a a reference model is introduced, described

by a linear time-invariant, asymptotically stable system with an input-output pair

{r(-), ym(-)}, and described by a transfer function

Win(s) = km (S)
Rm(s)

with a relative degree n*, > n*, where Zm(s) and R,(s) are monic polynomials in the

differential operator s, and km is assumed to be positive. The reference input r(t) is

assumed to be a uniformly bounded piecewise-continuous function of time, and that

Ir(t)I ro V t > to.

Similar to the standard adaptive controller in [1], a controller is chosen of the form

,(t) = Awi(t) + lu(t)

2 (t) = Aw2(t) + ly,(t)

W (t) = r(t), L4)1(t), y,(t), Uo2(t)]

O(t) = [k(t), 9T(t), 90 (t), OT(t) (3.16)

v(t) = 9(t)TW(t)

{ v(t) if Iv(t)I UO
U-

uosgn(v(t)) if Iv(t)I > uo
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where k : 11 -+ 0, L1 : Rli* --- + R" 1, 00 : R - IR, 02, L 2 : IR+- _ n- 1, A is

an asymptotically stable matrix and det(sI - A) = A(s). It follows that when the

control parameters k(t), 01 (t), 0 (t), 02(t) assume the constant values k,, 01c, 9 0c, 02c,

respectively, the transfer function of the feedforward and the feedback controllers

become respectively
A(s) and D(s) (3.17)

A(s) - C(s) A(s)

where C(s) is determined by 01c and D(s) by 02c, 0oc or

C(s) = sI - A)-11, D(s) = 0Oc + OT (sI - A)-'I.
A(s) A(s) O L sI

The overall transfer function of the plant together with the controller can be expressed

as

WO(s) = kekZ,(s)A(s) (3.18)
(A(s) - C(s))R,(s) - kZ,(s)D(s)

where ke - -. If we now chose A(s) so that it contains Zm(s) as a factor, A(s) =

Zm(s)Ai(s) then (3.18) becomes

WO(s) = kckpZp(s)Ai(s)Zm(s) (3.19)
(A(s) - C(s))R,(s) - kZ,(s)D(s)(

The existence of the control parameter 9*, which lets W (s) Wm (s), is equivalent

to the existence of the polynomials C*(s), D*(s), and the gain k* such that the

denominator polynomial in Eq. (3.19) becomes Zp(s)Aj(s)Rm(s). Identifying R(s)

with Q(s), -kpZ,(s) with P(s) and Zp(s)Aj(s)Rm(s) with Q*(s) the problem is to

determine C*(s) and D*(s) such that

[A(s) - C*(s)] Q(s) + D*(s)P(s) = Q*(s),

which is the Bezout's identity and it guarantees the existence of D*(s), and C*(s)

if Q(s) and P(s) (or equivalently, R,(s) and Zp(s)) are relatively prime, i.e. the

controllability/observability assumption made earlier are sufficient conditions for a
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solution to exist. The differential equation describing the plant together with the

controller can be represented as

p(t) = Apxp(t) + bp(9(t)Tw(t) + Au(t))

L 1 (t) = Awi(t) + 1(0(t)Tw(t) + Au(t))

2 (t) = Aw2 (t) + l(hTx,)

(3.20)

where Au(t) = u(t) - v(t).

errors defined as

With the controller in Eq. (3.16), and the parameter

0 (t) = 0o(t) - 00* #1(t) = 01(t) - 0*(t) = k(t) - k*,

02 (t) =2 2(t) - 02,

the overall system becomes

(t) = AmnX(t) + bmn [#T(t)w(t) + k*r(t) + Au(t)]

where Au(t) = u(t) - v(t),

Amn =

Ap + bp9 h,

l1 h

bpo*T

A + 19*T

0

bpo*TP2

19*T

A

bmn = I

0

hmn = [hT, 0, 0 and x = IX, Wi, W 2 -

Since W0 (s) = Wi(s) when 9(t) =_ * it follows that the reference model can be

described non-minimally by the (3n - 1)th order differential equation

mn(t ) = AmnXmn(t) + b

where xmn(t) = [X*(t), aU*(t), Ls(t)].

yM(t) = h T xrn(t)

The signals in xmn(t) can be considered as
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signals in the reference model corresponding to Xij) in the overall system. Hence, the

error equation for the overall system may be expressed as

6(t) = Amne(t) + bn [dT(t)w(t) + Au(t)] , ei(t) = h Te(t).

If el = yp - ym, the error model is given by

ei(t) = Wm(s) [T(t)w(t)]

in the absence of the limiter. With the limiter, if Au = u - v, it can be shown in a

straightforward manner that

el(t) = Wm(s) [kT(t)w(t) + Au(t)]. (3.23)

In what follows, the cases n* = 1 and n* > 2 are treated separately to describe the

adaptive law which establishes the boundedness of the parameter error. Once this is

done, the boundedness of the rest of the state variables of the adaptive system for

arbitrary n* is established in section 2.3.3.

3.1 Adaptive law n* = 1

As in the standard adaptive control problem, the adaptive law is considerably simpler

when n* = 1 than when n* > 2 since in the former case Wm(s) can be made strictly

positive real (SPR). The Au(t) term in Eq. (3.23) is compensated for by generating

the signal

eA(t) = Wm(s)kA(t)Au(t)

where kA(t) is a time-varying gain, adjusted according to an adaptive law that is to be

determined. If a compensated error eu1 is defined as eu1 = el - e&, and a parameter

error ,b& as 0& = 1 - k*kA, it is obtained that

eui(t) = WM(S) [4U(t)Wt((t)
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where

=U ['kA T(t)]T  WU (t) = [AU(t), WT(t)] T

The error model is now have in a recognizable form, and hence an adaptive law can

be found by inspection as

= -sgn(kp)Fwei ul = -k*-yseujAu where r = rT > 0 and ya > 0.

(3.24)

It should be noted that the adaptive law in Eq. (3.24) is implementable since kA =

y-aeuAu. The use of Kalman-Yakubovich lemma then gives us that eul, 0, E **,

with a Lyapunov function

TD 1 1
V(eu, , ,&) = e T + jk* 1r + y&k-2A

where eu is the state corresponding to the output eul.

3.2 Adaptive Law, n* > 2

Here, as in the standard adaptive control problem, an augmented error is used to

determine the adaptive laws. First define the signal

ea(t) = kA(t)Wm(s)Au(t)

where kA(t) is a time-varying gain, to compensate for the term Au(t) in Eq. (3.23).

If eu, = el - e&, then

eui(t) = hWm(S) [4T(t)w(t)] + P(t)Wm(S)AU(t)

where VbA(t) = j; - kA(t). Then the auxiliary error and the augmented error are

determined as

e 2 (t) = [TWm(s)I - Wm(S)OT(t)] w(t)

eis(t) = eu1 (t) + ki(t)e2 (t).
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It folhows that

1,'
lu= eP(t)k(t) + #A(t)A(t) + i 1(t)e2(t) + (t)

where (t) = W'(s)Iw(t), (a&t) = W.(s)Au(t), and 6(t) is an exponentially decaying

term due to initial conditions. The adaptive laws can be found by inspection as

= 0(t)

ki (t) = 'tP(t)

- -~PA(t)

= -sgn(k,)r
1 + T (t) (t)

E1U(t)e2(t)
= -11+T(t) (t)

Eiu(t)W(t)

= + T(t) (t)

which gives us that eu 1, 1, ka E COO with

1 [1 OI 1, + p 1 2
(, '01,#) = 4 + + - 'I

2 jk*| 71 1 -Y

as a Lyapunov function.

3.3 Boundedness of Signals

The results in sections 2.3.1 and 2.3.2 imply that adaptive laws can be found which

imply that, for any relative degree,

11(t)II kmnax Vt > to

in Eq. (3.21). Define P as the symmetric positive definite solution to Lyapunov

equation, and p as the ratio between the maximum and the minimum eigenvalues of

P so that

APn+PAmm = -Q
Amxa(P)
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Let qo = AminkQ) and pb = Mb / = L, , P = , I' and

= [9T, 00, 9 ]T. If

0 I 0

C= hT 0 0p

0 0 I

then & = Cx. Also, since 4 = k, Tj , we have II (t)I 5 kmax and Ik(t)I :5 k*I+0max

for all t > to. Now the main result will be stated, which proves the boundedness of

all signals in the adaptive system.

Theorem 3.3 The system in Eq. (3.21) has bounded solutions if

(to) < 1 qo - |k*| p! 2pbIIO*TC|| -

2|k*| Ama(I') pg I2PbI||*TC - qO|+ 2pbIICI

(3.25)
-- 2

(ii) xT (to)Px(to) 5 Amin(P) 2pb Uo
.2Pb||#*T C|| - go|

Further
r 2

X T (t)Px(t) 5 Amij(P) 2pbO Vt > to.
2Pb||N*TC|| - qo I

Proof: See Appendix A.

It is noted that condition (ii) in Theorem 3.3 is quite difficult to check since the

quantity on the right hand side requires a fair amount of knowledge of the plant

parameters. It may be argued that the bounds on the initial conditions in (i) and

(ii) establish the existence of such values for which the overall adaptive system is

stable. However as is seen in the simulation results in the next section, these bounds

are indeed conservative and the initial conditions can be increased further before

instability occurs.
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4. Robustness

The stability results given in Theorems 3.1-3.3 can readily be extended to include

bounded disturbances. Here only the most general case of Theorem 3.3 will be treated

as the modifications needed for 3.1 and 3.2 follow quite trivially.

Assume that a disturbance v(t), where jv(t)l 5 vo, enters the system, between

the limiter and the plant (see Fig 3-1). The problem is to adaptively control such a

plant in the presence of parametric uncertainties, and input constraints, so that all

the signals in the closed-loop system remain bounded and the output y, tracks the

model output ym as closely as possible.

4.1 Disturbances

Disturbances due to many different sources can be accounted for with a model in

Fig. 3-1, and are not limited to input disturbances. Unmodelled dynamics, as well as

measurement disturbances can relatively easily be cast into the form shown in Fig.

3-1. It is fairly easy to see that the latter can be reduced to the problem in Fig 3-1

while the former may not be obvious. That case will therefore be investigated further.

Unmodelled Dynamics

Let W,(s) stand for a additive perturbation of the plant so that

W,(s) = W,(s) + W,(s)

then it can be shown [1] that this perturbation can be considered as a input- distur-

bance of the form in Fig. 3-1, where

v(t) = [1 - W1(S) WM(S)] W, 1(s)iW,(s)uc(t)

41



Limiter V(t)

r(t) v(t) Uc(t) Ud(t) y(t)
S Controller --- +- 1 Plant-

Figure 3-1: System Block-Diagram with Input-Disturbances.
The system with added input-disturbances. The figure defines additional variables
uc(t) as controller output, v(t) as the external disturbance, and Ud(t) as the actual
input with the disturbance included.

where W1 (s) is defined as the feedback controller transfer function which from Eq.

(3.17) is equal to

W1 (S) =L D(s) = * + o*T (sI - A)-11.
A (s) - 0 2

If W,(s) is stable and has a relative degree higher than or equal to that of W.(s)

then v(t) will be bounded as uc(t) is bounded. It is noted that the introduction of

the limiter simplifies the problem as it makes it possible to deduce the boundedness

of v, whereas without the limiter that cannot be done.

4.2 Modification of Adaptive Law

As the disturbance enters additively at the input then the actual input that enters

the plant is

Ud(t) = uc(t) + v(t).
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The system as described in Eq (3.21) without disturbance, becomes with disturbances

i(t) = AmnX(t) + bmn [kT(t)w(t) + k*r(t) + Au(t) + v(t)] . (3.26)

After the correcting signal generated from Au(t) = uc(t) - v(t) has been subtracted

from the error equation, the corrected error equation for the n* = 1 case becomes

eu,(t) - inWm(S) [kT(t)wu((t) + v(t).

For n* > 2 the equation for the augmented error becomes

El = 1 OT(t)g(t) + )A (t)( &(t) + i 1(t)e2(t) + h Wm(S)V(t) + 6(t)

Because Wn(s) is asymptotically stable the disturbance term can be replaced by F(t)

which is also bounded by

k*t) <; W(S) 110 "0 LI.

Several methods have been developed to guarantee parameter boundedness. The

Dead-Zone scheme is the most basic one, but others include. Bound on 1111, the o-

modification scheme, and the el-modification scheme [1]. Using the dead-zone method
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as an example for the n* > 2 case, the modified adaptive laws become

sgn(k,)1 + T (t)()

0

Ei (t)e2 (t)
+1 +T(t) t)

p1(t)

0

if le.i1|<o+6

if kICI <Po+ 6

if leUii > o + 6

if leI1I< Fo+6

if |CU, I Po + 6

if ICUI < Fo+ 6

4.3 Stability

The boundedness of all parameter errors has now been shown and it is therefore

possible to modify Theorem 3.3 and arrive to the following result.

Theorem 3.4 The system in Eq. (3.26) has bounded solutions for all vo uo if

(i) VV (to)
1

~ 2 Jk*l Ama.( )

qo - pI~rrLkjro+* 2pb|*TCll - qoj

p! 2pbll|*TCII - qo + 2pbllCI

XT(to)PX(to) 5 Amin(P)
2Pb juo - vol1

2pb1||*TCII - go I

XT(t)PX(t) < Amin(P)

Proof: See Appendix A.
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=1+ 0T(t (t)

0

(ii)

Further

2

(3.27)

2Pb luo - vol

2pbI||* T CII - qoJ

2

V t > to.



5. Simulations

5.1 1st Order System

The following adaptive control problem was simulated to study the behavior of solu-

tions for a first order plant. The transfer functions of the plant and the model were

chosen to be

W(s) 1 and WM(s)W s-1  s+1

respectively. The controller in Eq. (3.3) in section 2.1 was used with uo = 10 as

the bound on the control signal amplitude and with two adjustable parameters 9 and

k. The outputs of the plant and the model output as well as the feedback signal v

and the control input are shown in Figs. 3-2-3-5 for the cases (a) r(t) = 0.0, (b)

r(t) = 5,(c) r(t) = 5 sin(0.5t) and (d) r(t) = 5sgn[sin(0.5t)]. Initial conditions for the

plant and the model were chosen as xP(0) = -9.9, Xm(0) = -9.9, 0(0) = -2.2 and

k(O) = 1.1. The following observations were made.

" The output error tends asymptotically to zero in all cases.

" The initial conditions chosen in the simulation satisfy conditions (i) and (ii)

in Theorem 3.1 . It was observed that the system became unstable when the

conditions were violated even slightly, for example with xP(0) = -10.01.

5.2 Output Feedback, Relative degree 2

The following adaptive control problem was simulated to study the behavior of solu-

tions when the relative degree of the plant is greater than 1. The transfer functions

of the plant and the model were chosen to be

Wy(s) = 1 and Win(s) = 1
s2-1 s2 +2s+1

respectively. The controller was implemented as in Eq. (3.16) with the fixed control

parameters A = -1 and 1 = 1. The true values of the control parameters are then

k* = 1 0* = -2, 0* = -4 and 09 = 0. The plant and the model outputs as well as
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the feedback signal c and the control input u are shown in Fig. 3 for the cases of

(a) r(t) = 0.0, (b) r(t) = 5, (c) r(t) = 5 sin(0.5t) and (d) r(t) = 5sgn[sin(0.5t)]. The

initial conditions for the plant and the model were chosen as y,(O) = -5 and ym(O) =

-5, and the control parameter vector 9(0) = 1.10*. The following observations were

made.

* The output error tends asymptotically to zero in all cases except in case (d)

where the input saturates periodically.

" The input saturates for a sufficiently small interval in the initial transients dur-

ing which time the plant is stabilized. However, the initial conditions exceeded

the bounds specified in conditions (i) and (ii) in Theorem 3.3 showing that these

conditions are somewhat conservative. As in the simulation study in section 3.1,

instability did result when the magnitude of the initial conditions was increased

further.
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Plant and Model Outputs
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Figure 3-2: Case (a) for Adaptive Control of a 1st-order Continuous-Time Plant.
Simulation results for case (a) when the reference input is r(t) = 0. The plots show
the time history of the plant and model outputs, the control signal before and after
saturation, and parameter errors.
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Plant and Model Outputs
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Figure 3-3: Case (b) for Adaptive Control of a 1st-order Continuous-Time Plant.
Simulation results for case (b) when the reference input is r(t) = 5. The plots show
the time history of the plant and model outputs, the control signal before and after
saturation, and parameter errors.
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Figure 3-4: Case (c) for Adaptive Control of a 1st-order Continuous-Time Plant.
Simulation results for case (c) when the reference input is r(t) = 5 sin(0.5t). The
plots show the time history of the plant and model outputs, the control signal before
and after saturation, and parameter errors.
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Figure 3-5: Case (d) for Adaptive Control of a 1st-order Continuous-Time Plant.
Simulation results for case (d) when the reference input is r(t) = 5sgn[sin(O.5t)]. The
plots show the time history of the plant and model outputs, the control signal before
and after saturation, and parameter errors.
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Figure 3-6: Case (a) for Adaptive Control of a 2nd-order Continuous-Time Plant.
Simulation results for case (a) when the reference input is r(t) = 0. The plots show
the time history of the plant and model outputs and the control signal before and
after saturation.
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Plant & Model Outputs
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Figure 3-7: Case (b) for Adaptive Control of a 2nd-order
Simulation results for case (b) when the reference input is
the time history of the plant and model outputs and the
after saturation.

Continuous-Time Plant.
r(t) = 5. The plots show
control signal before and
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Figure 3-8: Case (c) for Adaptive Control of a 2nd-order Continuous-Time Plant.
Simulation results for case (c) when the reference input is r(t) = 5sin(0.5t). The
plots show the time history of the plant and model outputs and the control signal
before and after saturation.
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Plant & Model Outputs
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Figure 3-9: Case (d) for Adaptive Control of a 2nd-order Continuous-Time Plant.
Simulation results for case (d) when the reference input is r(t) = 5sgn[sin(O.5t)]. The
plots show the time history of the plant and model outputs and the control signal
before and after saturation.
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Chapter 4

Adaptive Control of

Discrete-Time Systems

In this chapter some new results on the problems described in chapter 2 in the case

of discrete-time systems are stated in Theorems 4.1- 4.3 where control schemes and

stability of the overall system is established.

1. Model Reference Adaptive Control of a First

Order Plant

Statement of the Problem: A plant with an input-output pair {u(-), x,(-)} is

described by the scalar equation

y(t + 1) = ay(t) + bpu(t) (4.1)

where a, and bp are unknown, but the sign of bp is assumed to be known. The input

u(t) is additionally subject to the magnitude constraint

lu(t)I < UO
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where .o is a knowN coastant.

A reference model is described by the first-order difference equation

y*(t + 1) = amy*(t) + bnr(t)

where am is a known constant, bm is known, and r(t) is a piecewise-continuous

bounded function whose magnitude is such that

Ir(t)I < ro.

It is assumed that am, bm and r(t) have been chosen so that y*(t) represents the

output desired of the plant at time t. The aim is to determine a bounded control

input u(t) so that all signals in the system remain bounded, for a given set of initial

conditions, and y tracks y* as closely as possible.

Rewriting the plant equation as

y(t + 1) - amy(t) = (a, - am)y(t) + bpu(t)

it follows that a control input of the form

u(t) = - , - am y(t) + bmr(t) =" OT 0'(t) (4.2)
.bp, ~) + bp,

ensures that ly(t) - y*(t)I -+ 0 as t -+ oo, where

00 = [OO,, 600]T, 60Y = a, - am, 0, = 1 , and 0'(t) = [-y(t), y(t + 1) - amy(t)]T.
b, b,

(4.3)

Obviously, since Oo is unknown, Eq. (4.2) cannot be implemented. However, from

Eq. (4.1), the control input can be expressed as

u(t) = 6OT(t) (4.4)
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where

0(t) = [-y(t), y(t + 1) - amy(t)] T . (4.5)

Using the predictor form in Eq. (4.4), Oo can be estimated using the well known

parameter estimation scheme [3]

0(t) =0(t - 1) + - a (t - 1) [U(t _ 1) _ T(t -1)0(t - 1)] (4.6)
c + cT(t - 1) (t -1)

where 0 < a < 2 and c > 0 are constants, which ensures that the norm of the

parameter estimate error 11(t)l| II 110(t) - Ool| is nonincreasing with time so the

parameter estimate, 0(t) is bounded for all t > to (see Lemma B.1).

Once it has been obtained that the control parameter is bounded, the stability

of the overall adaptive system is established provided the state variables of the plant

and the controller are shown to be remain bounded in the presence of constrained

plant inputs. The adaptive controller is chosen as

u(t) = v(t) if lvi UO (4.7)
uosgn(v(t)) if lvi > uo

v(t) = OT (t)0'(t)

with the parameter 0(t) adjusted as in Eq. (4.6). It will be shown in the next section

that the adaptive system defined by Eqs. (4.1), (4.6), and (4.7) has bounded solutions

for all initial conditions within a compact set.

1.1 Stability

If the plant is asymptotically stable, it immediately follows that for any conditions of

the plant, yp, is bounded. As a result, 0(t) and hence v(t) are bounded, which ensures

the global boundedness of the overall system. The question is whether the same can

be said for plants that are not necessarily stable. The following theorem addresses

this issue.
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Theorem 4.1 The system defined by Eqs. (4.1) (with Jap| > 1), (4.6), and (4.7) has

bounded solutions if

(1 - |am) - bm o (Ja,| - 1)

(i) ||9(to) Ibmi bp 1O

bu To (IapJ - 1)+ bpJ

(ii) 1y(to)1 < I bp o I
Japi -1

where 0(t) = 0(t) - 00.

Proof: See Appendix B.

2. One-Step-Ahead Adaptive Control of an nth

Order Plant

Now an nth order linear time-invariant plant with unknown parameters considered

and an adaptive controller developed for control in the presence of input constraints.

In the following, the notation used in [3] will be followed to represent the problem.

Statement of the Problem: The plant to be controlled is described by

A(q-')y(t) = q d5(q-l)u(t)

where q-' is the backward shift operator, d stands for pure time delay and

A(q~') = 1 + aq~ 1 + -- - + anq-n

B(q~1) = bo + b 1q1 + --- + bmq- m

and the coefficients of A(.) and B(.) are assumed to be unknown. The control input

is such that Iu(t) 5 uo for all t > to and the objective is for the plant output y(t)

follow some desired trajectory y*(t) as closely as possible. The plant-model can be
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rewritten in the form of a d-step-ahead predictor as [3]

y(t + d) = a(q-')y(t) + (q~')u(t)

where
oe(q-1) = oo + alq- + - - - + af_1q"-i

O(q- 1) = 03 + p1q-1 + - - - + Om+d- 1 qm+d-l

Oo = bo # 0

To get a linear control form, Eq. (4.8) is expressed as

_1

= - (q- 1)y(t)
60

1
+ -(q- 1 )u(t)

0o

= a'(q-')y(t) + [0'(q-1) + 1]u(t)

where a(q-1) = Ooa'(q- 1) and /(q-1) = 0[1 + 6'(q-')].

rewrite Eq. (4.8) as

u(t) = T(t)60

This makes it possible to

(4.9)

where

= ;,, oT ]T, 0, = [ao ... . 1 0O = [i' 1,, n+d-1]

j = 1,...,m + d - 1

Is is noted that Eq. (4.9) holds regardless of how the control is obtained and is just

a reparametrization of the plant-model. If 0 was known, then a control of the form

u(t) = O'T(t) 00 (4.10)
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1y
-y(t + d)
0o

(t)

cx2 =

#j ,

T
O 10Ill,-

= [-y(t), .. ., -y(t - n+ ), -U(t - ), ... ., -U(t - m - d + 1), y(t + d)]T



where

#'T(t) = [-y(t),..., -y(t - n + 1), -u(t - ),...,-u(t - m - d + 1), y*(t + d)],

would ensure that y(t) tends to the desired trajectory y*(t). Since 00 is unknown and

the control is subjected to saturation, the following control input is used instead of

Eq. (4.10).

v(t) = #'T (t)9(t)

u v(t) if Iv(t)I 'o (4.11)
uosgn(v(t)) if Iv(t)I > uo

where 9(t) is a parameter estimate adjusted according to the adaptive law

(t) = (t - 1)+ aO(t - d) [u(t - d) - #T (t - d)9(t - 1)1 (4.12)
c + T (t - d) (t - d)

where 0 < a < 2, c > 0 and the estimate of 00, is kept away from zero by using

standard projection methods. From lemma B.1, it follows that 9(t) = 9(t) - Oo is

always bounded, and that 11(t)II is a nonincreasing function such that

1(01) | 11(to)II. (4.13)

2.1 Stability

As in the previous section, the stability of the closed-loop system follows immediately

if the plant is asymptotically stable, for, the boundedness of the plant input u directly

leads to boundedness of ~, and Lemma B.1 establishes the boundedness of the control

parameter 9(t). Also, the stability result holds globally. Below, it will be shown that

the closed-loop system has bounded solutions even for unstable plants.
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Let

9T (t)

JT (t)

nd = n+d-1,

ly*(t) 5 ymax,

k(t)

=T (,(t), 7 T(t), 6,.(t)T

= T (t) L T(t) W egt)

= [-y(t + d - 1), -y(t + d -2), ... , -y(t - n + 1)] T

= [-u(t - 1), -u(t - 2),.. .,-u(t - m - d + 1 )]T,

md = m + d - 1, P A diag (nd, nd._1,...,1)

II9(t)| 5 max

= 9,(t) - 0y, IW(t) = eU(t) - 9ou, ,r(t) = O,.(t) - 90,..

Let | - Z 1.-. The main result is stated in the following theorem.

Theorem 4.2 The adaptive system defined by Eqs. (4.8) and (4.11) has bounded

solutions if

(i) max < (1- II0ouI) - fdI,61I (I10o1 1100YI1 -

V'd |0ol (1 - II09ouli) + n( (/d + "-x) (1,3oi 110ft -i
UO vl-d2

T (to - d + 1)PPy(to - d + 1) 5

.2

FUO (1- 10OU1)

- \/00:I/301

where P =diag[rd, (nd - 1), ... , 2, 1] is an nd x nd positive-definite matrix.

Proof: See Appendix B.

Remarks:

1. It should be noted that the one-step-ahead controller analyzed here was chosen

because of its analytical simplicity and not because of its performance which is

questionable in many situations.
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2. Theorems 4.1-4.3 are equally valid for any adaptive law which ensures bounded

parameter estimates. For example, if a least-squares adaptive law is used, the

theorems will be unchanged provided that the saturation effect is properly ac-

counted for [3].

3. Theorem 4.2 has been shown to hold for a specific choice of P as shown in the

theorem statement. It is however believed that the theorem can be stated more

generally, similar to Theorems 3.2-3.4, without specifying P except that it is

a solution to the discrete Lyapunov equation, AIPAm - P = -Q where Q
is some positive definite matrix. This specific choice of P simplifies both the

conditions and the proofs of the theorems, making the problem more tractable.

3. Control in the presence of Bounded Distur-

bances

The stability results for discrete-time systems given in Theorems 4.1 and 4.2 can,

similarly to the continuous-time case, readily be extended to include bounded distur-

bances. Here only the case of one-step-ahead control of a plant of arbitrary order will

be treated as the modifications needed for Theorem 4.1 follow quite trivially. Assume

,as in the continuous-time case, that a disturbance v(t) , where Iv(t)l I; vo, enters

the system, between the limiter and the plant (see Fig 3-1). The v term denotes a

bounded "noise" that can account for for disturbances from many different sources,

and is not limited to input disturbances. Computer round-off error, unmodelled dy-

namics, as well as measurement noises can be cast into this form.

The actual input then becomes

Ud(t) = Uc(t) + v(t),

and system as described as d-step-ahead predictor in Eq (4.8) without disturbance,
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becomes with disturbances

y(t + d) = ce(q-')y(t) + O(q~ 1 ) [uc(t) + v(t)] .

Similar to before the predictor is written in linear control form as

uc(t) = '(t)9 0 + #(t) O6 - v(t)

where

T (y = -(t), .., y(t -n + 1), -ac(t - 1),)..., - aC(t - m - d + 1), y(t + d)]

# (t) = [-V(t - ) .,-v(t - m - d+ +1)]

# (t)O6 - v(t) and corresponding Po A vo(1 + II0,oull). It can be shown

that if the following dead-zone modification of the adaptive law is used then 11(t)JI

will be nonincreasing [3]. Define

ec(t - 1) = uc(t - d) - of(t - d)a(t - 1)

then the modified adaptive law becomes

= (t - 1) + {'aejt - d)ec(t - 1)

CT(t- d)#t - d)

0

if Iec(t - 1)1 > 2Po

if Iec(t - 1)1 5 2P0

Any other scheme that ensures the parameter error is bounded will do but this one

is only given as an example.

If the controller is the same as before, or

v(t) = O' T (t)9(t) Uc(t) =
v(t)

uosgn(v(t))

if Iv(t)i < UO

if |v(t)| > UO
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where

#'T(t) = [-y(t),..., -y(t - n +1), -uc(t - 1),..., -uc(t - m - d +1), y(t + d)*],

then the following stability theorem is obtained.

Theorem 4.3 The adaptive system defined by Eqs. (4.8), (4.11) and (4.14) has

bounded solutions if

ind ( (101 1 1
v5|#od 100 1-||10-|11- 00+ nd (,/ + "0 )| ( ||001 l 10

12

(ii) 4YT(to - d + 1)PPy(to - d + 1) 5 u0 (1 - II0OUI1i)

Proof: See Appendix B.

4. Simulations

4.1 Model Reference Control of a 1st Order System

The following adaptive control problem was simulated to study the behavior of solu-

tions for a first order plant. The continuous-time transfer functions of a sample-and-

hold system and corresponding model were chosen to be

1_ 1
W,(s) = and WMn(s) = 1

s-s+1

respectively. Using a zero order hold and sampling time of T = 0.1 sec equivalent

discrete-time transfer functions become [32].

-0.1052 0.09516
W,(z) = Wm1.105 Wm, =z + 1.15z +O.9048
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. The controller in Eq. (4.7) was implemented with uo = 10 as the bound on the con-

trol signal amplitude. The correct parameters are in this case 0' = [-1.905, -9.508].

The outputs of the plant and the model output, the feedback signal v and the con-

trol input u(t) as well as the parameter estimate errors are shown in Figs. 4-1-4-4

respectively, for the cases (a) r(t) = 0.0, (b) r(t) = 5, (c) r(t) = 5 sin(0.5t) and (d)

r(t) = 5sgn[sin(0.5t)]. Initial conditions for the plant and the model were chosen as

y(0) = 9.9, ym(0) = -9.9, 9 T(0) = [-1.99, -9.932]. The following observations

were made.

" The output error tends asymptotically to zero in all cases except in case (d)

where the control saturates periodically even after the parameter estimates have

converged to the correct values.

" The initial conditions chosen in the simulation satisfy conditions (i) and (ii)

in Theorem 4.1 . It was observed that the system became unstable when the

conditions were violated even slightly, for example with y(0) = -10.01.

4.2 One-Step-Ahead Control of a 2nd Order System

The following adaptive control problem was simulated to study the behavior of so-

lutions for a sample-and-hold system when the order of the plant is greater than 1.

The continuous-time transfer functions of the plant was chosen to be

-10 -10
Wy(s) = s2 +25s- 10 (s + 25)(s - 0.4)

Using a zero-order hold with a sampling time T = 0.33 s the equivalent discrete-time

transfer function becomes

B(z) -0.1231. - 0.01793
A(z) - - 1.141z + 2.098110-

The controller was implemented as in Eq. (4.11). The true value of the control

parameter vector is then OT' = [-9.269, 0.002421, 0.1456, -8.121]. The plant and the

desired outputs, the feedback signal v and the control input u as well as the norm of
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the parameter error vector are shown in Figs. 4-5-4-8 for the cases of (a) y*(t) = 0.0,

(b) y*(t) = 0.8480, (c) y*(t) = 0.8480sin(O.5t) and (d) y*(t) = 0.8480sgn[sin(0.5t)].

The initial conditions for the plant and the model were chosen as y(O) = 1.713,

y(-1) = 0 and the control parameter vector e(O)T = [-9.358, 0.002444, 0.147, -8.199].

* The output error tends asymptotically to zero in all cases except in case (d)

where the control saturates periodically.

" The input saturates for a sufficiently small interval in the initial transients

during which time the plant is stabilized. and also periodically for case (d).

The initial conditions satisfy conditions (i) and (ii) in Theorem 4.2. As in the

simulation study in section 4.2, instability did result when the magnitude of the

initial conditions was increased further.
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Figure 4-1: Case (a) for Adaptive Control of a 1st-order Discrete-Time Plant.
Simulation results for case (a) when the reference input is r(t) = 0. The plots show
the time history of the plant and model outputs, the control signal before and after
saturation, and parameter errors.

67

) 5

5)



Plant & Model Outputs
- -

-. . .. ..... .

y,

5 10
time [secs]

15 20

Control Signals

U

.V....

) 5 10 15 2(
time [secs]

Parameter Errors

g-...

20

10

0

-10

-20

0.5

0

-0.5

10
time [secs]

15 20

Figure 4-2: Case (b) for Adaptive Control of a 1st-order Discrete-Time Plant.
Simulation results for case (b) when the reference input is r(t) = 5. The plots show
the time history of the plant and model outputs, the control signal before and after
saturation, and parameter errors.
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Figure 4-3: Case (c) for Adaptive Control of a 1st-order Discrete-Time Plant.
Simulation results for case (c) when the reference input is r(t) = 5 sin(0.5t). The
plots show the time history of the plant and model outputs, the control signal before
and after saturation, and parameter errors.
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Figure 4-4: Case (d) for Adaptive Control of a 1st-order Discrete-Time Plant.
Simulation results for case (d) when the reference input is r(t) = 5sgn[sin(0.5t)]. The
plots show the time history of the plant and model outputs, the control signal before
and after saturation, and parameter errors.
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Figure 4-5: Case (a) for One-Step-Ahead Adaptive Control of a Discrete-Time Plant.
Simulations for case (a) when the reference output is y*(t) = 0. The plots show
the time history of the plant and model outputs, the control signal before and after
saturation, and the norm of the parameter error vector.
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Figure 4-6: Case (b) for One-Step-Ahead Adaptive Control of a Discrete-Time Plant.
Simulations for case (b) when the reference output is y*(t) 0.8480. The plots show
the time history of the plant and model outputs, the control signal before and after
saturation, and the norm of the parameter error vector.
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Figure 4-7: Case (c) for One-Step-Ahead Adaptive Control of a Discrete-Time Plant.
Simulations for case (c) when the reference output is y*(t) = 0.8480 sin(0.5t). The
plots show the time history of the plant and model outputs, the control signal before
and after saturation, and the norm of the parameter error vector.
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Figure 4-8: Case (d) for One-Step-Ahead Adaptive Control of a Discrete-Time Plant.
Simulations for case (d) when the reference output is y*(t) = 0.8480sgn[sin(O.5t)].
The plots show the time history of the plant and model outputs, the control signal
before and after saturation, and the norm of the parameter error vector.
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Chapter 5

Application of Bounded Input

Adaptive Control

In this chapter it will be shown how the modeling of compliant fingers manipulating

a compliant object leads to a problem of adaptive control with bounded input.

In the first section a brief discussion will be given on the problem of object ma-

nipulation with human-like hands or end-effectors. Some of the advantages that can

be gained from using compliant fingerpads in the end-effectors of multi-multi-purpose

robots. Also, an outline is given about how the theory of Haptics describes the touch

and manipulation process using models of varying complexity.

The second section is devoted to the analysis of a simplified mathematical model

of compliant fingers manipulating a compliant object. Included in the analysis of the

model is the identification of the constraints that the manipulation problem imposes

on the mathematical model.

Finally the third section deals with the design of an adaptive controller for the

dynamic system obtained from the model. It will be shown how this problem naturally

leads to amplitude constraints on the control input-force.
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1. Compliant Fingerpads

Current robots are in many ways far from achieving a level performance commensurate

with that of the human hand. This is especially true for tasks which involve direct

manipulation of objects whose characteristics are not necessarily known beforehand.

Robots that are capable of dextrous tasks on a similar level as the human hand

are desirable for many reasons. Most obvious are basic industrial applications, such

as automated assembly operations. Another very practical application would be the

design of robots that are able to perform any kind of critical tasks in a hazardous

environment such as high-temperature or high-radiation situations.

One distinguishing characteristic of the human hand is the very sensitive compliant

skin-layer on each fingertip. These compliant fingerpads are supported by relatively

rigid bones which convey to the skin any forces applied by the muscles attached to

the bones. Even though the analysis of the mechanics of the contact is made more

complex by allowing the object and the fingers to be compliant, the compliant contact

offers several advantages over the rigid contact.

" Compliant fingers contacting a compliant object will generally have a finite area

of contact, in contrast to point contact as is the case when the fingers and the

object are assumed to be rigid. The introduction of a finite area of contact gives

more stable grasp for fewer fingers as then additional resisting and stabilizing

torsional torque appears, which resists rotation around the normal to the contact

area. The effects of this additional torque can well be seen from the fact that

the minimum number of finger contacts to ensure a stable grasp decreases from

three to two when the finite are of contact is introduced.

* The stresses resulting in the contact region will be much less in the compliant

case as the total force is distributed over the area of contact and not concen-

trated as in the case of a point contact. This leads to increased dexterity as

more fragile objects can then be manipulated.

" Exact shape of the object in the contact region will be less important for stability
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in the compliant case and not as crucial as in the rigid case.

* The explicit modeling of the compliance in the finger and the object will lead

to dynamic models of higher order, which to some extent provides increased

maneuverability as then the control bandwidth can possibly be increased.

1.1 Computational Theory of Haptics

In the computational theory of haptics proposed by Srinivasan and Annaswamy [33],

several levels of modeling complexity have been identified and they will now be briefly

discussed.

Purely Spatial Sensory is a term used for models which only include the static

properties of contact under passive touch. They are mainly useful for the in-

vestigation of shape and texture recognition under static situations.

Purely Temporal Sensory-Motor is used to describe models when spatial prop-

erties of the contact do not change with deformation during active touch and

manipulation. A model of this kind can be realized by assuming that the con-

tact interfaces are rigid, although the sub-surface materials can be compliant.

Then the problem can be described using only temporal variables. A model of

this type will be analyzed in the next section.

Spatio-Temporal Sensory models describe passive touch when both the spatial

an temporal variations contact conditions are is included in the modeling. An

example of process a that could be described by a model of this type would be

the detection of shape and texture when the object is stroked with a passive

hand.

Spatio-Temporal Sensory-Motor are the most general models and include all

the factors above. That is, active touch with temporally varying grasping and

manipulation, along with spatially and temporally varying contact conditions.
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2. Dynamic Model

The general problem of contact between two deformable bodies leads to a spatio-

temporal analysis. We simplify the problem by adopting single degree-of-freedom

lumped parameter model (See Fig 5-1), thus reducing the variables to be purely tem-

poral. The fingers as well as the object are assumed to deform only in the horizontal

direction, defined as x. In the y and z directions, with z being positive opposite to the

direction of gravity, the fingers and the object behave otherwise as rigid bodies. The

aim is to be able to hold a compliant object with unknown dynamic parameters in a

two-finger pinch grasp and move it along some desired path in a three-dimensional,

gravity environment, while ensuring that the object does not slip or gets crushed.

The dynamic behavior of the two fingers is described by the parameters

{mri, msi, be, kd},

where Mri and m~i denote the masses of the rigid backing and the compliant pad,

bd and kd denote respectively the visco-elastic and elastic coefficients for finger i,

i = 1, 2. The dynamic properties of the object are also assumed to be described by

the parameters

{i, M2 , b, k},

which may be unknown.

The displacements of the rigid backing and the skin of finger i from their equi-

librium positions are denoted respectively by the variables x,. and x,i, i = 1, 2.

Similarly, xi is the variable describing the displacement of the object mass mi from

its equilibrium position.

The variable f, stands for the external force that is exerted on the rigid backing of

finger i, and fdi stands for the contact force that results between the fingerpads and the

object. The direction of the forces is taken to be positive when they are compressive.

This implies that the two fingers are in contact with the object if, xi = x,, and

fc > 0. When contact is lost, fa = 0 and x,i and xi become independent.
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From now on it will be assumed that the fingers are in contact with the object,

then the model for the x-direction can be written conveniently as a LTI 8th order

2-input MIMO system in a matrix-vector form:

M.(t) + Bi + Kx = fx (5.1)

where

0

0

0

0

0

0

in3 + nil

0

0

-bec

b + bec

-b

0

0

0

Ms + Mi

0

0

-b

b + bc2

-bc2

0

0

0

Mr

0

0

-bc2

bc2

f0

0

0

-fX2

kec

-kci

0

0

-kec

k + kc1
-k

0

Xr

X3,

X,2

Xr2.

0

-k

k + kc2

-kc2

0

0

-kc2

kc2

By introducing some symmetries into the problem the control task can be simpli-

fied further. First it is assumed that the left and right finger are identical in their

dynamic characteristics so that M, 1 = Mr2 ni, m,1 = ns2  "i,, bc = bc2  be,

and kc1 = kc2 = kc. Secondly it is assumed that the object is symmetric about its

center so that mi = M2. It is shown in [34] that with these simplifications this MIMO

system can be transformed into two decoupled SISO systems by using state transfor-

mations. The state-transformation is realized by defining an asymmetric part and a
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symmetric part for each variable can as follows

x, = X,(t) + Xrs(t)

x.,(t) = xsa(t) + x,(t)

fx 1)(t) = fx,(t) + fxa(t)

fc 1 )(t) = fc,(t) + fca (t)

Xr2 (t) = Xra(t) - Xrs(t)

x, 2(t) = xa(t) - x,,(t)

fX 2 (t) = fx.,(t) - fxa(t)

fCz2 (t) = fc..,(t) - fcxa(t).

Now the system can be written using this state-space representation as two decoupled

systems

a = AaXa+ bafxa

where

Aa =

0

-ke

ms + m,

0

0

ke + 2k
mS + Mi

0

ke
m. M

1

-bc
m, + m1

0

1

bc + 2b
ms + m,

0

bc

M,.

0

ke

M, + m,

0

0

ke

m8 + m1

0

-k
M,.

is = Asx, + bsf.,

0

be

M, + M,
ba=

1

0

be

mas + nil

1

-be

M,.

This model can be used to describe the x-dimensional dynamics of the object. In

the other directions (y and z) it is assumed for simplicity that the system behaves as
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0
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0

0
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xsa
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Xra

Xra
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Xrs

Xrs
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a rigid body in these directions, or

mtM(t) = f, (t) + f,2 (t)

mOO(t) = fCYI(t)+ fCY2(t)

mti(t) = -mtg + fZ1 (t) + fZ 2(t)

mOO(t) = -mOt + fCZI(t) + fCZ 2(t)

where mt = 2m, + 2m, + 2m, and mo = 2mi.

2.1 Constraints

When writing Eq. (5.1) it was assumed that the contact force was positive, but it

must also be ensured that the normal contact force is sufficiently large to prevent slip

in either y or z direction. Assuming that Coloumb's friction law can be applied at

the contact surface then this constraint becomes

fc.i(t) > 1fc-(t)2 + fcyi(t)2 Vt > to i = 1,2

where ) is the coefficient of friction. Further, assuming that f -,1  f,2 and f z 2

then the constraint can be expressed using the alternative state variables as

Ifxca(t)I + 1 fe i(t)2 + fcy,.(t)2 < fxc,(t) V t > to (5.4)

A second constraint can also be imposed by assuming that the object can only

tolerate a finite amount of compression force, fcrush, before being crushed. This can

be formulated as

fxc,(t) :!; ferus. (5.5)

2.2 Satisfaction of Constraints

Any control scheme considered must ensure that the constraints in Eqs. (5.4) and

(5.5) are satisfied at all times. That problem can be reduced to constraining the

external forces fa, f,, f, and f- to lie within a compact set, as will now be shown.
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It can shown that the external forces are related to the contact forces through

transfer functions as follows

fca(S) mlbcs + mike

fa(S) WFs 2 + mtbes + mtbe

fe.(s) m1bes3 + (m1ke + 2bbe )s2 + 2(bke + bck)s + 2kke

f.,(s) Wis4 + (2mb + mtbc)s3 +(2mrb + mtke + 2bbc)s 2 + 2(bke + bek)s + 2kke

fe,(s) mi

fr(s) mt

fL.(s) mi
fr(s) mt

(5.6)

whereM M ,.(MS + im). It is noted that all these transfer functions are stable and

proper and therefore have finite gain for all frequencies. This means that the gains

of the transfer functions give bounds on the time-signals as well or

lfca(t)| :5 'Yama V t > to

|fe,(a) I ?|fy (t) I V t > to (5.7)

Ife(t)I ma If(t)I V t > to

where -ya"', 7"m" and -ym, are determined from the corresponding transfer function

in Eq. (5.6). The signal, f, needs to be generated in a such way that it contains a

governing zero-frequency, (dc) component that is of sufficient magnitude to guarantee

that

in I f.,(t)I 5 1 fC,(t)| 5 y" V t > to

where -yr," and -"m" are determined from the transfer function in (5.6). Using the

above in Eq. (5.4) and (5.5) it is obtained that the constraints are satisfied as long

as

y?" Ifa(t)I + ' f,(t) + f2(t) y ,(t)
pI
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and that the object does not get crushed if

"Y" If.,(t)I fcrus

Given bounds, Fmll, and Fbm' such that ff2(t) + f.?(t) Fa"x V t > to, and

f,(t) F"'" Vt > to, then the final result is that the object does not slip if

1 [ s'F'
f (t)I - 7 FS -ma=xf~r. (5.8)

The problem of preventing slip has now been reduced to a control problem in presence

of amplitude constraints.

3. Control Design

Often, as in the case of a general purpose robot, the objects encountered can possess

a wide range of dynamic characteristics. This implies that the grasping and manip-

ulation tasks have to be performed when the dynamics of the object in question is

unknown. In such cases, the control forces on the fingerpads need to be generated

using an adaptive rather than a fixed controller.

3.1 An Adaptive Controller

The manipulation task is to generate forces f, so that the object position Xa follows

a desired path X*a (t) for all time t, and since the object has unknown characteristics,

an adaptive controller is required to control the system in Eq. (5.2). As mentioned in

section 2.2, the magnitude constraint on I fca is satisfied if f, (t) 1 5 fa, as determined

in Eq. (5.8). Hence the problem is to determine an adaptive controller to generate

the input f, in Eq. (5.2) in the presence of the magnitude constraint

IfA(t)I fao Vt > to.
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An input-output relation can be determined from Eq. (5.2) as

xsa(s) _ bs + k

fx.(s) ~ s2 [m,(mi + m.)s2 + (m, + m, + mi)(bes + k,)]

It is seen that this transfer function has relative degree n* = 3 and hence the results of

chapter 3 section 3 can be used when designing a controller. A fourth-order reference

model is chosen with a transfer function Wm(s) so that it represents the best possible

prior information about the object parameters. A reference input fa, is selected so

that the corresponding output is the desired path motion x*. and we let IfetI far..

The adaptive controller is described by the equations

C (t) = Awl(t)+1f8 (t)

w2 (t) = Aw 2 (t) + X.,a(t)

w(t) = [fa,(t), wi(t)T, X.a(t), W2(t)T]

9(t) = [k(t), 01(t)T, 90 (t), 02(t)T

fa(t) = 9(t) T W(t)

A(t) = a (t) if f1(t)l fa0
ff=sgn(L(t)) if L(t)I > fa,

e&(t) = kA(t)Wm(s)(fa(t) - a(t))

eul (t) =X.a(t) - X*a(t) - eA(t)

e 2 (t) (t)TW (s)I -Wm(S)T(t)] w(t)

eis(t) = eu1(t) + ki(t)e2(t)
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6(t) = $(t) = -sgn(k,) E 1 (t(t)
1P+ T (t)(t)

ciu(t)e2( )
kci(t) = 4 1 (t) = - _______

1+ T (t) (t)

lcA(t ) = -.yi'(t ) = e~t~ t
1+ T (t) (t)

where k : R+ -> IR, ), wIR+ R3, 0 : R+ -+ R, 02 , U 2 : R+ _, R3

A E R3x3 is an asymptotically stable matrix, also (t) = Wm(s)Iw(t), A(t) =

Wm()(f(t) - fa(t)).

Remark: The controller given above is high-order and quite complicated and needs

further simplification before it can be considered practical. It is noted however that it

is the structure of the system and the controller that is the reason for this complexity

and not the requirement that the control input be bounded in magnitude.
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Chapter 6

Summary and Conclusions

1. Summary

In this thesis the problem of adaptively controlling a linear time-invariant plant in

the presence of constraints on the input amplitude has been solved to some extent.

New algoritms were introduced for adaptive control of a continuous-time plants and it

shown that they lead to bounded solutions when the initial conditions of the adaptive

system are within a compact set. A similar condition was also put forward for discrete-

time plants which similarily ensured bounded trajectories. In both cases the results

are valid for open-loop not necessarily stable plants but minimum phase. It was also

shown how the control problem involved in the manipulation of a compliant object

with compliant fingerpads, quite naturally reduces to a problem of adaptive control

in the presence of input constraints. A controller based on the previously obtained

results and which solved that problem was given.

2. Conclusions

In this thesis some light has been cast on how saturation effects the stability of adap-

tive systems. Many questions are however, still unanswered on the various interesting

phenomena that can evolve in a non-linear and time-varying system as the one in ques-

tion. For example, it would be interesting to know under what conditions, a limit
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cycle can appear. Also a interesting question is to ask which initial conditions and

reference inputs lead to control signals that are high enough in amplitude to cause

saturation. These questions and many more are the subject of future research.
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Appendix A

Proofs of Theorems in Chapter 3

1. Proof of Theorem 3.1

The proof is given by showing the existence of a compact set A in the state space

which bounds the trajectories.

The following definitions are useful to prove Theorem 3.1.

W(x,)

f(x,)

xP /2

amx2 + b,4x2+ bpVr + k*bprx, (A.1)

A ~ XP IbI ro(c~ma + Ik*1)
IamI - IbI kmax

< I : pI 01

Condition (ii) in Theorem 3.1 implies that

Omx: Jaml - lk*|g|,
|bm| + a A apI

Also from the definition of A and Omax, it follows that

f(x,) amx, I1- am ) ixP
( m i

V x E A.

(A.2)

The proof is provided by considering the cases when (a) IvI 5 uO and (b) IvI > uo.
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(a) Let _u. Theii

u(t) = v(t) = 9(t)xp(t) + k(t)r(t)

and Au(t) = 0. Hence

ip(t) = amxp(t) + bpo(t)xp(t) + bV)(t)r(t) + bpk*r(t).

This leads to the time derivative

W(xP) amxp + b Ox' + bipVr + k*bprxp

0 Vx, E A from Eq. (A.2).

(b) Let lvi > uo. Here, u = uosgn(v) and lvi > uo. As a result, Eq. (3.4) becomes

,(t) = amxp(t) + bpuosgn(v(t)) - bp9*x,(t)

and correspondingly,

W(xp)
- amx2 - bpO*x2 + bpuosgn(v)xp

- amx - bp9*x2 + uo IbpxI sgn(v)sgn(bpxp)]

It will be shown that W(x,) < 0 V x, E A by considering two separate cases, based

on the signs of v and bpx,.

Case I sgn(v) = sgn(bpx,). Since lvi > uO, vbpx, > uo IbpxI. Hence

bpO*x2 + bp 4X + bpkrxp ;> Uo IbpxpI

or

- iamI x - b,,9*x 2 + IbpxI uo + [lam X2 - bp xO - bp$xpr - bpk*rxp < 0.
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it is ailsU oteI that

W(xp) = -|am. x - bp*x +uo|bpxpI = apx + uo |bpxp|.

If W(x,) > 0, it follows from Eq. (A.4) that the bracketed term is negative. This

contradicts Eq. (A.2) which implies that Case I cannot occur for any x, E A.

Case II sgn(v) = -sgn(bpxp).

Here W reduces to

W(x,) = a x - b x uoI.

Since xI b U0 in A, once again W(x,)
at

It is noted that A is non-empty since

< 0 V x, E Ain case II.

|aml - k* gI|apI
'ma-x b, Ib uca

|bpI ro(aOm.

lami - IbI

+ |k*|) ub,
kma ~ a,

which concludes the proof.

2. Proof of Theorem 3.2

Proof: Define W(xP) = xXP and

2pbro

qo - 0m. [2pb + a k* (qo + 2pbIIO*||)] lk*| | 2pb1||*|| - qo|

Condition (ii) implies that

krnax
go - p Ik*I [0 +2pbO* I - O|
2Pb + Ce |k*| [qO + 2Pb||0* hjj

As in the proof of Theorem 3.1, two cases are considered.

(a) Let lvi <uo. Here Au = 0, and hence

u(t) = v(t) = k(t)OT (t)x,(t) + k(t)r(t).
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As a result,

p(t) = Amxp + bm[O(t) + ?(t)k(t)9(t)]TxP(t) + bpk(t)r(t).

This leads to a time-derivative

W(x,) xT [ATP + PAT] x, + 2(bT Px,)[ + Oko]TXP + 2(biPx )kr

-qo||x,||2+ 2PbX| 2'P max +|k*l &emaxG*

1 - Ik*| amax.
+ 2pbIIxPIi I

1 - I|k*|I ca

< 0 VXp EA
(A.5)

which follows from the definition of A and the condition in Theorem 3.2 and where

it has been used that I|PI aoma_, and therefore

sup(k(t)(t)) Ik*I maxt ~~ 1 - I k* I a(,ma

Note that this implies that stability can only be expected if *(t) < Ik*-1 I
(b) Let lvi > uo. Hence,

u = uosgn(v) and |vI > uo

and the system equations in Theorem 3.2 become

P(t)

V t > to.

= Axp(t) + bpuosgn(v(t)) - bm*TxP(t).

Correspondingly,

V = xT [ATP + PAT] x, - 2(bT PxP)(O*TxP) + 2(bTpPx) usgn ( v

- -xQxp+ 2 bT Px, uosgn( v )sgn(bT PxP) - 2(bT PxP)(*Txp).

(A.6)

The proof is given by considering two separate cases, based on the signs of v and

(bTPx,).
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C) = sgn(bPx,). In this case Eq. (A.6) becomes

W(xp) = -xQxp - 2(b TPxP)(*TxP) + 2 |bi Px .

Since lvi > uO, we have, after some algebraic manipulations on

(bTPx,) > I|biPx,|| I1 , that

-x, Qxp - 2(bMPx,)(9*Tx,) + 2jb*Px U

+ X,'QXP - 2(b P x,) [0 + Ok|]x, - 2(bTPxp) kr] < 0.

The definition of A implies that the term within the bracket is positive so that

W <0 Vx E A.

Case II sgn( V) = -sgn(b TPx,). Here Eq. (A.6) becomes

W(x,) = -xT Qx, - 2(bT PxP)(*Tx,) - 2 bT PI

< -qo|xp|| 2 + 2 IbmTPxp||*l|ll|xll - 2 |bmTPxpl

< 0 if |jxj| < Ik*||2pbI*l| - go|

The upper bound of |xII in the set A implies that W < 0 V x, E A in this case as

well. Finally if B is defined as

B = {xIW(x,) =Am~in(P) 2 PbU o |
[Ik*Ii j2PbIIO*II - T0o.

then B defines a level surface of W(x,). Condition (ii) in Theorem 3.2 ensures that
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B C A since

qO - p k*I !. |2pbI|*ll - qo|
2Pb + a Ik*| [qo + 2pb1||*II

2 pbuo

Ik*| 12pb1||*II - qoI
Amax(P)
Amin(P) I

2pbro

o - 4.ax[2Pb + a |k*|

Hence W(x,) < 0 on all points on the level surface and Theorem 3.2 follows.

3. Proof of Theorem 3.3

Define W(x) = xTPx and

2pb(|k*I + 4.x)ro

qo - 2PbOm.mxIICII

2PbUO

2pb G*TCII - qo

Condition (ii) implies that

4'max :
go - k*I pa 12pbI*TC|| - go

pra 2pbI|I*TCII - qO + 2pbIICII

As in the proof of Theorem 3.1, two cases are considered.

(a) Let lvI <; uo. Here Au = 0, and hence

u(t) = v(t) = GT(t)w(t).

As a result,

t(t) = AmnX(t) + bmn[$T(t)O(t) + k(t)r(t)].
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This leads to a time-derivative

W(x) = xT AT.P+PAT ] x + 2(bT Px)[kT(t)&(t) + k(t)r(t)]

< -qO1|XII 2 + 2Pbj|X||IOm2xIICI + 2pbj|x1|[Ik*I + 4rax.ro

K 0 VxEA

which follows from the definition of A and condition (ii) in Theorem 3.3.

(b) Let lvI > uo. Hence,

u = uosgn(v) and lvi > uo

and Eq. (3.21) becomes

(t) = AmnX(t) + bmnUosgn(v(t)) - bmn9*TCO(t).

Correspondingly,

vV = xT [AT P + PAT ] x - 2(bT Px)(O*TCx) + 2(bT Px)uosgn(v)

= -xTQx + 2 pbPx Tosgn(v )sgn(b nPx) - 2(bT Px)(9*TCx).

(A.8)

As in the previous sections, the proof is given by considering two separate cases,

based on the signs of v and (bT Px).

Case I sgn(v) = sgn(bT.Px). In this case Eq. (A.8) becomes

W(x) = -XTQx - 2(bT Px)(9*TCx) + 2 b pX Uo.

Since lvi > uo, it is obtained, after some algebraic manipulations on (bTmPx)v >

bm Px uO, that

-xTQx - 2(bT Px)(*Ti;) + 2 b uo

+ [XTQx - 2(bT Px)( T &) - 2(bT Px)kr < 0
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The definition of A implies that the term within the bracket is non-negative so that

W, 0 Vx E A.

Case II sgn(v) = -sgn(b' Px). Here Eq. (A.8) becomes

W(x) -xTQx - 2(b T Px)(9*T Cx) - 2 bT .Px uo

-q||x|j 2 + 2 bT IIpX|||*T CII||XII - 2 |bTPxj Uo

0 if ||xII < 2PbUo
2pbG*TC|I - qo

The upper bound of ||xII in the set A implies that W < 0 V x E A in this case as

well. Finally if a level surface of W(x) is defined as

I W(x) = )in(P)

2

.2A ||j*T C|| - qO I

condition (ii) in Theorem 3.3 ensures that B C A since

go -|jk*| p gq- 2pbI||*TCI|

P qo - 2pb |6*1 I + 2pbIICII

2 pboO
2pb1|*TCII - gO

Amx(P)

~ VAmin(P)

[ 2pb(|k*I + max.)ro

qo - 2pbOm.xICI 

Hence W(x) < 0 on all points on the level surface and Theorem 3.3 follows.

4. Proof of Theorem 3.4

Define W(x) = xTPx and

A L {xI 2pb(Ik*I ro + vo + 4..rxo)

qo - 2PbO..,IICII
ii IXI < 2pb(Uo - VO)

I 2pbIG*TCII - qo
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Condition (ii) implies that

(kmax :
O - PIk 1ro+v 2pbI||*TCII - qo_

p 2pbl||*TC|| - qo + 2pbIICII

As in the proof of Theorem 3.3, two cases are considered.

(a) Let lvI < uo. Here Au = 0, and hence

uc(t) = v(t) = 9T(t)w(t).

As a result,

(t) = AmnX(t) + bmn[IT(t)(D(t) + k(t)r(t) + v(t)].

This leads to a time-derivative

W'(x) = xT [ATP +P A x + 2(b T Px)[ T (t)&(t) + k(t)r(t) + v(t)]

< -qo||x||2 + 2pbIIXlI24maxI|CII+ 2pbl|xII[|k*l ro + vo + $m.ro]

< 0 VxEA

which follows from the definition of A and condition (ii) in Theorem 3.4.

(b) Let lvi > uo. Hence,

uc = uosgn(v) and IvI > uo

and Eq. (3.21) becomes

(t) = AmnX(t) + bmn(uosgn(v(t)) + v(t)) - bmnn*TC)(t).
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Correspondingly,

W = xT [A +PA T, x - 2(bT,'Px)(9*TCx) + 2(b T Px)sgn(v)(uo + vsgn(v))

-xTQx + 2|binPx sgn(v)(uo + sgn(v ))sgn(biTPx) - 2(bT Px)(j*TCx).
(A.10)

As in the previous sections, the proof is given by considering two separate cases,

based on the signs of v and (bT Px). It is noted that as vo < uo then sgn(v) =

sgn(uosgn(v) + v) when lvi > uo.

Case I sgn(v) = sgn(b TPx). In this case Eq. (A.10) becomes

W(x) = -xTQx - 2(b T Px)(9*TCx) + 2binPx| [u0 + sgn(v )].

Since lvI > uO, it is obtained, after some algebraic manipulations on (bT Px)(v~v) >

bmnPx (uO + vsgn(v)), that

-xTQx - 2(bT Px)(*Tcv) + 2 bTnPx (uo + vsgn(v))

+ [xTQx - 2(b T Px)(OTID) - 2(bT Px)(kr + v)] < 0

The definition of A implies that the term within the bracket is non-negative so that

W, O VxEA.

Case II sgn(v) = -sgn(bTmPx). Here Eq. (A.10) becomes

W(x) = -xTQx - 2(bT.Px)(9*TCx) - 2 pX (u +vsgn(v))

-qol|x| 2 + 2 b .Pxj Il* T CiI||xII - 2 JbT Px| (UO - VO)

< 0 if ||xI < 2pb (Uo - vO)

I2pbi||*TC| - gO

The upper bound of lix I in the set A implies that W < 0 V x E A in this case as
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well. Finally if a level surface of W(x) is defined as

B { x IW(x) =
.2

Amin(P) 
2pb(uo - vO)

.|(P [2pb||9*TC|| - qo (

condition (ii) in Theorem 3.3 ensures that B C A since

qo - p Ik'l*+vo LqO - 2Pb||1*T C|
#max < "O - "pbII9*TCII +

pUOV IgO - 2Pb||* I||+ 2Pb|C||

2pb(Uo - VO)

2pbG*TC|| - qo

Amax(P)
Amin(P)

2pb(Ik*i ro + vo + maxro)

qo - 2pbqma.ICI|

Hence TW(x) < 0 on all points on the level surface and Theorem 3.4 follows.
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Appendix B

Proofs for Theorems in Chapter 4

1. Lemma B.1

Lemma B.1 If an input-output pair u and 0 are related by the regression equation

u(t) = 4T(t) 00

and the unknown parameter 0 is estimated using the update law

= (t - 1) + -a(t - d) ( u(t - d) - T (t - d)9(t - 1)]
C + $(t - d)$(t - d)I

where d > 1 is the pure time delay. Then (i) 11(t)II is nonincreasing, and (ii) 11(t)II<

|1(to)II.

Proof: Defining the parameter error 9(t) = 9(t) - 9o, and a Lyapunov function

candidate V(t) = |1(t)112, it is obtained that

W(t) = (t - 1) - a.
(t - 1)

1)0(t - 1)]

and hence,

a[2+ ac T (t - 1) (t - 1) 1 [ T(t
= a -2+ +T(t - 1)J(t - 1)_c+ T

- 1)9(t - 1)] 2

(t - 1) (t - 1)
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< 0 if O<a<2 and c>0.

Hence, (i) and (ii) in Lemma B.1 follows.

2. Proof of Theorem 4.1

Define W(t) = y2(t), AW(t) = W(t) - W(t - 1), and A =

where

Ymin

Ymax

0

{Y I Ymin Y Ymax}

1 + IbII W(to)II
1 - lami - |bII W(to)JIIbmiro

JaI - 1'

It is noted that condition (i) in Theorem 4.1 implies that A is non-empty. The proof

is given by showing that

ly(t)| 5 Ymax if 1y(to) : Ymax.

This is established by showing that

A W(t) 5 0 if y(t) E A

and

(B.3)

(I)

W(t +1) Ynax if Iy(t)I < ym in.

It is easy to see that (I) and (II) imply Eq. (B.3). Since

AW(t + 1) = b [u(t) + ay(t)2 - Y2 ()
bp
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defining z(t) as

z(t) = b u(t) + Ly(t)

(I) follows if it can be shown that

Iy(t)I z(t) V y(t) E A. (B.4)

Also, Eq. (II) follows if the following inequality can be established:

z(t) ymin if Iy(t)I ymnin.

The proof is completed by considering three separate cases and showing in each case

that z(t) satisfies the inequalities (B.4) and (B.5).

Case (a) lvi uo.

Since u(t) = v(t) and the latter can be expressed as

v(t) = -6Oy(t) - 9,(t)y(t) + 9ou(t) + WU(t)u(t)

it is obtained that

= lbl y(t)
bp

+ r(t)
bp

- 9,(t)y(t) + Gu(t)bmr(t)
(B.6)

(iami + IbI I9W(to)ll) lyI + (1 + lbl lI9(to)Il) lbmI ro.

If Iy(t) ymin, it follows that (B.6) can be simplified as z(t) 5 ly(t)l and hence,

(B.4) holds. If Iy(t)I ymin, by direct substitution in Eq. (B.6), it follows that

z(t) :5 ymin if Iy(t)I Ymin

and hence, (B.5) holds.

Case (b) lvi > uo and sgn(v) =sgn( y).
bp
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In this case,

z(t) = bI u(t) + 2y(t) 5 1b, v(t) + y(t)
bp bp

which reduces to the inequality (B.6), and hence, as in case (a), (B.4) and (B.5) hold.

Case (c) Ivl > uo and sgn(v) = -sgn( ay).
bp

This results in

z(t) = Jb, UO - by(t)

and two subcases evolve.

Subcase (i) Zo > Y. Here,

z(t) = IbI uo - ay(t) = b [uo - Lpy(t)
lbp bp

IbI vt - y(t)

Since sgn(v) = -sgn( y), in this subcase then
bp

z(t) IbI v(t) + Ly(t)
bp

As in cases (a) and (b), this implies that (B.4) and (B.5) hold.

Subcase (ii) uo < y . Unlike all the cases above, it is required that y(t) be bounded
p

above by ym. to establish the necessary inequalities. It is noted that

z(t) = IbI uO - Ly(t) = IbI [ y(t) - uO]
bp bp (B.7)

< Iy(t)I if y(t) 5 Yma

and hence (B.4) holds. Since the inequality in (B.7) holds for any y(t) such that

ly(t)I : ymax, it follows that (B.5) holds as well.

Since the cases considered above are mutually exclusive and collectively exhaus-

tive, it has been established that (I) and (II) follow in all cases. Hence the proof.
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3. Proof of Theorem 4.2

The vector *, E Rn. can be viewed as a state vector for the plant with the description

= Am'y(t) - 3obm [u(t) - ,(t)COo, - 'l)(t)9oU] (B.8)

where

C = 0(d-1)xn ]
Inxn

0

Am

-L

--- )n 0

I(n - 1) X(n -- 1) :,

0

bm =

It can easily be shown that

A7'PAm - P = -I, b TPAm = 0, b TPbm = nd.

Now is 'hyper-shell' A, in Rd defined as

A {) I min II'P I5 mnax}

where

V/MU9max +

1 -

( 1
1001

+ JMa. ) Y~nx
)max = UO (1 - II0.OUI1)

|| I - d 1|| 1s/fnI/3oIOmax

Let a scalar quantity W(t) = #bT(t)P#y(t), and AW(t) = W(t) - W(t - 1). It
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will be shown below that equations (I) and (II) given by

AW < 0 if O,(t) E A (I)

if ||1,(t)I 5 *ming (II)

hold. It is noted that (I) and (II) imply that W(t) P. for all W(to) ',m. which

proves the theorem.

From Eqs. (B.8) and (B.9), AW(t) is given by

= -jIzP(t)Il 2 + ndfg [u(t) - ?k(t)oQ 2

If a nonnegative quantity z(t) is defined as

z(t) = VnI,ol u(t) - P (t)COY - # (t)OO,

then (I) follows if

if O ,(t) E A. (B.11)

= vT(t)[P - I]'epv(t) + nldl3g [u(t) - -(t)COO, - 'O{T oo0. 2

5 (nd - 1)?p2. + nldI3 [u(t) - ?V(t)COO, - ?p(t)O0u 2

if 114(1(t) 5 min.

Hence, Eq. (II) is satisfied if

z(t) Vmin if ||by(t)l| 1 'V'min-

As in the proof of Theorem 4.1, three cases are considered below, in each of which,

it is shown that Eq. (B.11) and (B.12) hold, which suffices to establish the proof.

Case (a) lvj uo.
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AW(t) (B.10)

Also,

W(t)

(B.12)

W(t + 1) :5 ndVfmin :5 *M'ax

- ?PYT(t)COOY

Z~t _< ||,()| 1PWII



Since u(t) = v(t), it is obtained that

u(t) = ii4(t)C6O0 + OT(t)OU + ?1 (t)CY(t) + ?L)T(t)9u(t) + y*(t + d) (0, + Or,(t)).

This simplifies z(t) which becomes

z(t) = V pI~3o| JbT(t)C Y(t) + V)T(t)ju(t) + y*(t + d) (Ocr +

V/i7 iUOmrax + i.

9,.(t))

r*w.
Yrnx (B.13)

If IIPy(t)| I> Pmin, then Eq. (B.13) can be simplified further as

Z(t) :! ||10Y(0)1

and hence Eq. (B.11) holds. If II I)(t)lI 5 kmin, by direct substitution in Eq. (B.13),

it follows that z(t) 'Pmin and hence Eq. (B.12) holds.

Case (b) lvi 5 o and sgn(v) = sgn(-pT(t)CO0, - *T(t)OOu).

Then

z(t) V/II I001v(t) - ?4(t)CO , -# (t)OO. (B.14)

Since Eq. (B.14) is similar to Eq. (B.13) in case (a), same arguments as above can

be used to conclude (B.11) and (B.12).

Case (c) lvi 5 uO and sgn(v) = sgn(V)pTC6oy + ?P10U).

Here,

Ju(t) - *PT(t)CO - # (t)oou = UO - ap(t)CO0, + ?pT (t) OuI

and two subcases evolve.
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Subcase (i) uo > [ C 60, + V,, O. Here,

z(t) = Vrin l/%| [UO - I (t)C O + Ip(t)9OU]

: Vildo [lvi - V (t)CO0,+# (t)O0 .

Since sgn(v) = sgn(-V),TC6O, - ?PV9o), we have that

(t) < Vd Igo Io - V (tC ),-T(t)O0.

once again, this reduces to a form similar to Eq. (B.13) and hence (B.11) and (B.12)

hold.

Subcase (ii) uo # COO, + "PT'9 .o As in the proof of Theorem 4.1, this is the

occasion to use the upper bound on ||#b|| in this subcase. Here, z(t) can be expressed

as

z(t ) = /I|O II [ OTC6OO + Iu - O]

I I Oy (t)II if Oy (t) kmrnax (B.15)

and hence (B.11) holds. Since the inequality in Eq. (B.15) holds for any 'ky(t) such

that ||/)y(t)jj 5 Ima, Eq. (B.12) is valid too.

Cases (a), (b), and (c) cover all possible situations and hence the theorem is

proved.

4. Proof of Theorem 4.3

0

The vector iky E Rnd defined as in Eq. (4.14) satisfies the description

'45(t + 1) = Amiky(t) - 10 bm [Uc(t) + v(t) - OT(t)C6OO - p ,(t)OOu - (t)9%46)
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0
0(d-1)xn 1

Inxn

Am

0

(nd - 1)X(nd- 1)

0
.J

As in Theorem 4.2, it can be shown that

APAm - P = -I b TPAm = 0

A hypershell A is once again defined as

A = I y I ' min ||1y I I max},

with

V/MUO9max + 0 + (|r I + max) Y*.n
1 -

V/Ii-o 10 max

UO (1 - I|0IO|1i) - F0

1100m11 -
1

||6 1, 1

and W(t) = O (t)PVy(t).

The boundedness of all the signals will be shown by demonstrating that

W(t) 02 a V W(to) ib2.

This in turn is proved by showing that the equations

AW(t) 5 0 if ?Py(t) E A
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where

?pT (t)

and

bm =

1

0

bPbm = n.

Omin =

(I)

= -Uc(t - 1), -ac(t - 2), ..., -ac(t - m - d + 1)]

=[-v(t - 1), -v(t - 2), ... , -v(t - m - d + 1)],7

C =



W(t + 1) : nfdmin 4max if j '0y(t)II min

hold. If z(t) is defined as

z(t) = V5 1|o|I Uc + V - V C9 0, - i L0o - U lIh09

we can show that AW(t) is given by

AW(t) = -||70(t)I 2 + z2(t).

Hence, Eq. (I) holds if

Also, W>tz(t) if be(t) E A.s

Also, W(t) can be expressed as

W(t) = yTt)[P - I4'(t) + z2 (t).

Therefore, Eq. (II) is valid if

z(t) min if I|y (t) I5 Pmin

As in Theorems 4.1 and 4.2, we proceed to establish Theorem 4.3 by showing in three

distinct cases that Eqs. (B.17) and (B.18) hold.

Case (a) I vI uo.

Since uc(t) = v(t), then

uc(t) = ? (t)C9 0 , + + # (t)CO,(t) + U(t)9(t) + y*(t + d) (9cr + W,.(t))
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and

(II)

(B.17)

(B.18)



This makes it possible to simplify z(t) as

z(t)

= v/~i~ bd2#oI 'Y (t)C9Y(t) + I'(t)9.(t) + y*(t + d) (9c, + J,(t)) + v(t) - #/ (t)9o2|

< f-d|1o 1||/'(t)I Imax + dUomax+ i M *+ vo.

(B.19)

If ||d'(t)II Omin, Eq. (B.19) implies that

if IPy(t)|I E A

i.e., Eq. (B.17) holds. If I|i',(t)I| 1 2/'min, it is easy to that Eq. (B.18) holds, which

completes the proof in this case.

Case (b) vi 5 uo and sgn(v) = sgn(v - ?PTC6O, - V u0o - T09).

In this case, it is obtained that

z(t) = VARI#ol v(t) + v(t) - Y,(t) T CO9Y - < (t)90 . - gT(t) 0 . (B.20)

Since the right hand sides of Eqs. (B.20) and (B.19) are identical, the same arguments

as in case (a) can be used here as well to complete the proof.

Case (c) jvj uo and sgn(v) = sgn(-v +, + )0OU + 'V) 0'O).

Here, z(t) can be expressed as

z(t) = - -v(t) + OT(t)C6OO + OT (t)9O6 + OT(t)9oo

and two subcases evolve.

Subcase (i) uO -v + TC + <Ou + VTO6u .

Then

z(t) = 1,7 lo1 [tO - -v + V)TCO! + VT 6O0 + O9u6]

S 10#1 [l vi -- v + OICOO! + OT cOu + I)LOu ]

V IQoI oV + v - *TCOO, - OT Ou -OT (B.21)
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Eq. (B.21) is similar to Eq. (B.19) and hence, (I) and (II) hold as in cases (a) and

(b).

Subcase (ii) uo +-v + C + OZ9o + OTOfu.

Then

z(t ) = ,n I10o1 [1-v + OiCOOY + POou + *TO6uj - IO]

I|b(t)II if Py (t) E A

since ||by(t)I 5 Om . If ||Py(t)I 5 O min, direct substitution shows that z(t) 5 "-mi

and hence Eq. (B.18) holds, which proves (I) and (II).

Cases (a), (b), and (c) are mutually exclusive and collectively exhaustive and

hence, the proof of Theorem 4.3 is completed.

111



Bibliography

[1] K.S. Narendra and A.M. Annaswamy. Stable Adaptive Systems. Prentice Hall, Engle-

wood Cliffs, N.J., 1989.

[2] K.J. Astr6m and B. Wittenmark. Adaptive Control. Addison Wesley, New York, 1988.

[3] G.C. Goodwin and K.S. Sin. Adaptive Filtering, Prediction, and Control. Prentice-Hall,

1984.

[4] M. Vidyasagar. "Nonlinear Systems Analysis". Prentice-Hall, New Jersey, 1993.

[5] Dragoslav D. Siljak. "Nonlinear Systems". John Wiley & Sons, Inc, New York, 1969.

[6] M.A. Aizerman and F.R. Gantmacher. Absolute Stability of Regulator Systems. Holden-

Day, Inc., 1964.

[7] K.S. Narendra and R.M. Goldwin. "A geometric criterion for the stability of cer-

tain nonlinear nonautonomous systems". IEEE Transactions on Circuit Theory, CT-

11:406-408, 1964.

[8] G. Zames. "On the input-output stability of time-varying nonlinear feedback systems,

part i: Conditions derived using concepts of loop gain, conicity and positivity". IEEE

Transactions on Automatic Control, 11:228-238, 1966.

[9] G. Zames. "On the input-output stability of time-varying nonlinear feedback systems,

part ii: Conditions involving circles in the frequency plane and sector nonlinearities".

IEEE Transactions on Automatic Control, 11:465-476, 1966.

[10] K.S. Narendra and J.H. Taylor. Frequency Domain Criteria for Absolute Stability.

Academic Press, New York, 1973.

112



11 , R.. Mionopoli. "Adaptive control for systems with hard saturation". In IEEE Con-

ference on Decision and Control, pages 841-843, Houston, Tx, 1975.

[121 I. Horowitz. "Feedback systems with rate and amplitude limiting". International

Journal of Control, 40:1215-1229, 1984.

[13] G. Feng M.Palanswami and Y. Zhu. "Stability of rate constrained robust pole place-

ment adaptive control systems". Systems & Control Letters, 19:99-107, 1992.

[14] R.S. Smith J.C. Doyle and D.F. Enns. "Control of plants with input saturation non-

linearities". In Proceedings of the 1987 A CC, pages 1034-1039, Minnesota, 1987.

[15] I. Horowitz. "A synthesis theory for a class of saturation systems". International

Journal of Control, 38:169-187, 1983.

[16] A.H. Glattfelder and W. Schauffelberger. "Stability analysis of single loop control sys-

tems with saturation and antireset-windup circuits". IEEE Transactions on Automatic

Control, AC-28, December 1983.

[17] Petros. Kapasouris. "Design for Performance enhancement in Feedback Control Sys-

tems with Multiple Saturating Nonlinearites". PhD thesis, Massachusetts Institute of

Technology, 1988.

[18] Per-Olof Gutman and Per Hagander. "A new design of constrained controllers for linear

systems". IEEE Transactions on Automatic Control, AC-30:22-33, January 1985.

[19] Von J.S. Karmakar and Dragoslav D. Siljak. "Maximization of absolute stability regions

by mathematical programming methods". Regelungstechnik, 1975.

[20] J.A. Walker and N.H. McClamroch. "Finite regions of attractions for the problem of

lure". International Journal of Control, 6:331-336, 1967.

[21] A.R. Teel. "Global stabilization and restricted tracking for multiple integrators with

bounded controls". Systems & Control Letters, 18:165-171, 1992.

[22] H. J. Sussmann and Y. Yang. "On the stabilizability of multiple integrators by means of

bounded feedback controls". In Proceedings of the 30th IEEE Conference on Decision

and Control, Brighton, England, December 1991.

113



[23] F. Ohkawa and Y. Yonezawa. "A discrete model reference adaptive control system for a

plant with input amplitude constraints". International Journal of Control, 36:747-753,

1982.

[24] A.N. Payne. "Adaptive one-step-ahead control subject to an input-amplitude con-

straint". International Journal of Control, 43:1257-1269, 1986.

[25] C. Zhang and R.J. Evans. "Amplitude constrained adaptive control". International

Journal of Control, 46:53-64, 1987.

[26] C. Zhang and R.J. Evans. "Amplitude constrained direct self-tuning control". In

IFAC Symposium on Identifcation and System Parameter Estimation, pages 325-329,

Beijing, China, 1988.

[27] C. Zhang and R.J. Evans. "Adaptive pole-assignment subject to saturation con-

straints". International Journal of Control, 46:1391-1398, 1987.

[28] D.Y. Abramovitch and G.F. Franklin. "On the stability of adaptive pole-placement

controllers with a saturating actuator". IEEE Transactions on Automatic Control,

35:303-306, 1990.

[29] C. Zhang G. Feng and M. Palaniswamy. "Stability analysis of input constrained con-

tinuous time indirect adaptive control". Systems & Control Letters, 17:209-215, 1991.

[30] C. Zhang. "Discrete time saturation constrained adaptive pole assignment control".

IEEE Transactions on Automatic Control, (to appear), 1993.

[31] H. Wang and J. Sun. "Modified model reference adaptive control with saturated in-

puts". In Proceedings of the 31st Conference on Decision and Control, Tucson, Arizona,

1992.

[32] Gene F. Franklin J. David Powell and Michael L. Workman. "Digital Control of Dy-

namic Systems". Addison-Wesley, Inc., 1990.

[33] A.M. Annaswamy and M.A. Srinivasan. The computational theory of haptics. Private

Communication, 1990.

114



[34] A.M. Annaswamy and M.A. Srinivasan. "Identification for grasping and manipulation

of compliant objects with compliant fingerpads". Submitted to the IEEE Transactions

on Automatic Control, 1991.

115


