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Abstract Pseudorapidity, transverse momentum, and mul-
tiplicity distributions are measured in the pseudorapidity
range |η| < 2.4 for charged particles with transverse
momenta satisfying pT > 0.5 GeV in proton–proton colli-
sions at a center-of-mass energy of

√
s = 13 TeV. Measure-

ments are presented in three different event categories. The
most inclusive of the categories corresponds to an inelastic pp
data set, while the other two categories are exclusive subsets
of the inelastic sample that are either enhanced or depleted
in single diffractive dissociation events. The measurements
are compared to predictions from Monte Carlo event gener-
ators used to describe high-energy hadronic interactions in
collider and cosmic-ray physics.

1 Introduction

The study of the properties of particle production without any
selection bias arising from requiring the presence of a hard
scattering (a selection known as “minimum bias”) is one of
the most basic measurements that can be made at hadron
colliders. Such events are produced by strong interactions of
partons inside the hadrons, which occur at low momentum
exchanges, for which predictions of quantum chromodynam-
ics (QCD) cannot be obtained perturbatively, and for which
diffractive scatterings or multiple partonic interactions (MPI)
play a significant role. The theoretical description of these
components of particle production is based on phenomeno-
logical models with free parameters adjusted (“tuned”) to
reproduce the experimental data. However, when a momen-
tum transfer of several GeV (referred to as a hard process)
is involved, predictions obtained from perturbative QCD
(pQCD) are, in many cases, in good agreement with the mea-
surements. Understanding the transition region between hard
processes calculable with perturbative techniques and soft
processes described by nonperturbative models is required
for a full description of particle production in proton–proton
(pp) collisions at the LHC. It is also essential when the col-
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lider is operated at high luminosities since a bunch crossing
contains many pp collisions (pileup) forming a complex final
state that needs to be theoretically controlled for precise stud-
ies of standard model processes, as well as for new physics
searches.

Inclusive measurements of charged particle pseudorapid-
ity distributions, dNch/dη, and transverse momentum distri-
butions, dNch/dpT, as well as charged particle multiplici-
ties have been previously performed in proton–proton and
proton-antiproton collisions in the center-of-mass energy
range

√
s = 0.2–8 TeV and in various phase space regions [1–

19]. Most of these measurements are described to within
10–20% by present event generators as reported, e.g., in
Ref. [20].

More recently, measurements of the charged-hadron pseu-
dorapidity distribution in pp collisions at the highest ener-
gies reached so far,

√
s = 13 TeV, have been presented in

Refs. [21–24]. The present work extends those studies, for
charged particles with pT > 0.5 GeV measured over the
range |η| < 2.4, to cover not only the pseudorapidity den-
sity, but also the per-event multiplicity probability, P(Nch),
as well as different transverse-momentum distributions, such
as that of the leading charged particle dNch/dpT, and its cor-
responding integrated spectrum, D(pT,min). The integrated
spectrum D(pT,min) is defined as:

D(pT,min) = 1

Nevents

∫
pT,min

dpT,leading

(
dN

dpT,leading

)
. (1)

Here Nevents is the number of selected events, N is the num-
ber of events with a leading charged particle with transverse
momentum pT,leading, and pT,min is the lower limit of the inte-
gral. In each event, the highest-pT charged particle within
|η| < 2.4 and with pT > 0.5 GeV is selected as the leading
charged particle. The integrated spectrum of charged parti-
cles is sensitive to the transition between the nonperturbative
and perturbative QCD regions [17,25].

The measured distributions are presented for three differ-
ent event data sets: an inelastic sample, a sample dominated
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by nonsingle diffractive dissociation events (NSD-enhanced
sample), and a sample enriched by single diffractive dissoci-
ation events (SD-enhanced sample). The measurements are
compared to predictions from different Monte Carlo (MC)
event generators used to describe high-energy hadronic inter-
actions in collider and cosmic-ray physics.

This article is organized as follows. Section 2 gives a brief
description of the CMS detector. The MC models used for
corrections and comparison to data are described in Sect. 3.
The data sample, track reconstruction, and event selection
are discussed in Sect. 4. The procedure to correct the data for
detector effects and the systematic uncertainties affecting the
measurements are described in Sects. 5 and 6, respectively.
The final results are presented in Sect. 7 and a summary is
given in Sect. 8.

2 The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic
field of 3.8 T. Within the solenoid volume are a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic
calorimeter, and a brass and scintillator hadron calorimeter,
each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity coverage provided by
the barrel and endcap detectors. Muons are detected in gas-
ionization chambers embedded in the steel flux-return yoke
outside the solenoid.

The tracking detector consists of 1440 silicon pixel and
15 148 silicon strip detector modules. The barrel is composed
of 3 pixel and 10 strip layers around the primary interaction
point (IP) at radii ranging from 4.4 to 110 cm. The forward
and backward endcaps each consist of 2 pixel disks and 12
strip disks in up to 9 rings. Three of the strip rings and four
of the barrel strip layers contain an additional plane, with a
stereo angle of 100 mrad, to provide a measurement of the r -
and z-coordinate, respectively. The silicon tracker measures
charged particles within the pseudorapidity range |η| < 2.5.
For particles of 1 < pT < 10 GeV and |η| < 1.4, the track
resolutions are typically 1.5% in pT and 25–90 (45–150) μm
in the transverse (longitudinal) impact parameter [26].

The hadron forward (HF) calorimeter uses steel as an
absorber and quartz fibers as the sensitive material. The HF
calorimeters are located at 11.2 m from the interaction region,
one on each end, and together they provide coverage in the
range 2.9 < |η| < 5.2. Each HF calorimeter consist of 432
readout towers, containing long and short quartz fibers run-
ning parallel to the beam. The long fibers run the entire depth
of the HF calorimeter (165 cm, or approximately 10 interac-
tion lengths), while the short fibers start at a depth of 22 cm
from the front of the detector. By reading out the two sets of
fibers separately, it is possible to distinguish showers gener-

ated by electrons and photons, which deposit a large fraction
of their energy in the long-fiber calorimeter segment, from
those generated by hadrons, which produce on average nearly
equal signals in both calorimeter segments. Calorimeter tow-
ers are formed by grouping bundles of fibers of the same type.
Bundles of long fibers form the electromagnetic towers and
bundles of short fibers form the hadronic towers.

A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the rele-
vant kinematic variables, can be found in Ref. [27].

3 Theoretical predictions

Three different event generators simulating hadronic colli-
sions are used to correct the measurements to particle level
(Sect. 5), and for comparisons with the final results. Simu-
lated event samples were used to optimize the event selection,
vertex selection, and tracking efficiencies.

The pythia8 (version 8.153) event generator [28] uses
a model [28,29] in which initial-state radiation and multi-
ple partonic interactions are interleaved. Parton showers in
pythia are modeled according to the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) evolution equations [30–
32], and hadronization is based on the Lund string fragmen-
tation model [33]. Diffractive cross sections are described
by the Schuler–Sjöstrand model [34]. Particle production
from a low-mass state X, with MX < 10 GeV, is described
by the Lund string fragmentation model, while for higher
masses, MX > 10 GeV, a perturbative description of the
pomeron–proton scattering is introduced. The latter is based
on diffractive parton distribution functions [35–37], which
represent probability distributions for partons inside the pro-
ton, under the constraint that the proton emerges intact from
the collision. The pythia8 generator is used with the tune
cuetp8m1 [20] (also referred to as cuetm1), which is based
on the Monash tune [38] using the NNPDF2.3LO [39,40]
parton distribution function (PDF) set, with parameters opti-
mized to reproduce underlying event (UE) data from CMS
at

√
s = 7 TeV and CDF at

√
s = 1.96 TeV.

The minimum bias Rockefeller (MBR) model [41] is also
implemented within the pythia8 event generator. When used
in conjunction with the 4c tune [42] (which includes parton
showering) it is referred to as the pythia8 mbr4c model.
This model reproduces the measured energy dependence of
the total, elastic, and inelastic pp cross sections, and can be
used to fully simulate the main diffractive components of
the inelastic cross section. The generation of diffractive pro-
cesses is based on a phenomenological renormalized Regge
model [43,44], interpreting the pomeron flux as the prob-
ability of forming a diffractive rapidity gap. The value of
the pomeron intercept α(0) = 1.08 is found to give the best
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description of the diffractive dissociation cross sections mea-
sured by CMS at

√
s = 7 TeV [45].

The data are also compared to predictions from the epos
[46] MC event generator (version 1.99) used in cosmic ray
physics [47], including contributions from soft- and hard-
parton dynamics. The soft component is described in terms
of the exchange of virtual quasi-particle states, as in Gribov’s
Reggeon field theory [48], with multi-pomeron exchanges
accounting for UE effects. At higher energies, the interac-
tion is described in terms of the same degrees of freedom
(reggeons and pomerons), but generalized to include hard
processes via hard-pomeron scattering diagrams, which are
equivalent to a leading order pQCD approach with DGLAP
evolution. The epos generator is used with the LHC tune
[49,50].

Event samples obtained from the event generators pythia8,
pythia8 mbr, and epos are passed through the CMS detec-
tor simulation based on Geant4 [51], and are processed and
reconstructed in the same manner as collision data. The num-
ber of pileup interactions in the MC samples is adjusted to
match the distribution in the data.

4 Data set, track reconstruction, and event selection

In order to minimize the effect of pileup, the data considered
in the analysis were collected in a special run in summer
2015 with an average number of pp interactions per bunch
crossing of 1.3 [52].

The two LHC beam position monitors closest to the IP
for each LHC experiment, called the beam pick-up timing
experiment (BPTX) detectors, are used to trigger the detector
readout. They are located around the beam pipe at a distance
of 175 m from the IP on either side, and are designed to pro-
vide precise information on the bunch structure and timing
of the incoming beams. Events are selected by requiring the
presence of both beams crossing at the IP, as inferred from
the BPTX detectors.

The CMS track reconstruction algorithm is based on a
combinatorial track finder (CTF) [53]. The collection of
reconstructed tracks is obtained through multiple iterations
of the CTF reconstruction sequence. The iterative track-
ing sequence consists of six iterations. The first iteration is
designed to reconstruct prompt tracks (originating near the
pp interaction point) with three pixel hits and pT > 0.8 GeV.
The subsequent iterations are intended to recover prompt
tracks that only have two pixel hits or lower pT. At each
iteration an extrapolation of the trajectory is performed, and
using the Kalman filter, additional strip hits compatible with
the trajectory are assigned.

High-purity tracks [26] are selected with a reconstructed
pT > 0.5 GeV, in order to have high tracking efficiency
(>80%) and a relative transverse momentum uncertainty

smaller than 10%. Tracks are measured within the pseudora-
pidity range |η| < 2.4 corresponding to the fiducial accep-
tance of the tracker, in order to avoid effects from tracks very
close to its geometric edge at |η| = 2.5. The impact parame-
ter with respect to the beam spot in the transverse plane, dxy ,
is required to satisfy |dxy/σxy | < 3, while for the point of
closest approach to the primary vertex along the z-direction,
(dz), the requirement |dz/σz | < 3 is imposed. Here σxy and
σz denote the uncertainties in dxy and dz , respectively. The
number of pixel detector hits associated with a track has to
be at least 3 in the pseudorapidity region |η| ≤ 1 and at least
2 for |η| > 1.

Rejection of beam background events and events with
more than one collision per bunch crossing is achieved by
requiring exactly one reconstructed primary vertex [26]. The
vertex produced by each collision is required to be within
|z| < 15 cm with respect to the center of the luminous region
along the beamline and within 0.2 cm in the transverse direc-
tion.

Different event classes are defined based on activity in
the HF calorimeters by requiring the presence of at least one
tower with an energy above the threshold value of 5 GeV in
the fiducial acceptance region, 3 < |η| < 5. The veto condi-
tion is defined by an energy deposit in the towers less than a
given threshold value. An inelastic sample consists of events
with activity on at least one side of the calorimeters, whereas
an NSD-enhanced sample contains those with calorimeter
activity on both sides. An SD-enhanced sample is defined by
requiring activity on only one side of the calorimeters, with
a veto condition being applied to the other side.

The HF energy threshold of 5 GeV was determined from
the measurement of electronic noise and beam-induced back-
ground in the HF calorimeters, using an event sample for
which a single beam was circulating in the LHC ring, and an
event sample without beams. The threshold of 5 GeV keeps
the background due to noise low, while still maintaining a
high selection efficiency. The fraction of events with at least
one HF tower on either side of the detector with an energy
above the threshold of 5 GeV in the event samples with no col-
lisions (one beam or no beam) is 0.13%. The efficiency of the
event selection defined by the presence of at least one tower
with an energy above 5 GeV in either side of the calorimeters
is 99.3%, and is calculated with respect to the event sample
defined by the presence of exactly one reconstructed primary
vertex.

In total a sample of 2.23 million events is selected con-
taining 2 million NSD events and 0.23 million SD-enhanced
events.
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Table 1 Summary of stable-particle level definitions for each of the
event samples, corresponding to the inelastic, the NSD-enhanced, and
SD-enhanced categories. Charged particles are selected with pT >

0.5 GeV and |η| < 2.4. Forward trigger particles correspond to those
with energy E > 5 GeV located in side− (defined as −5 < η < −3)
and/or side+ (defined as 3 < η < 5). Similarly, a veto corresponds to
the absence of a trigger particle with E > 5 GeV in side− and/or side+

Event sample Forward region energy selection

Inelastic Trigger particle in side− or side+

NSD-enhanced Trigger particle in side− and
side+

SD-enhanced Trigger particle in side−( side+)
and veto in side+( side−)

5 Correction to particle level

The data are corrected for tracking and event selection effi-
ciencies, as well as for detector resolution effects. The cor-
rected distributions correspond to stable primary charged par-
ticles, which are either directly produced in pp collisions or
result from decays of particles with decay length < 1 cm.
At particle level, events are selected if at least one charged
particle is found within |η| < 2.4 and pT > 0.5 GeV. The
different event selections are defined in a similar manner to
how they are defined at detector level in order to avoid any
bias towards a specific MC model. Activity in the forward
region is defined by the presence of at least one particle, either
charged or neutral, with an energy above 5 GeV in the region
3 < |η| < 5 (referred to as the trigger particle). The veto
condition is equivalently defined by the absence of particles
with an energy above 5 GeV. The inelastic data set is defined
by requiring a trigger particle in the pseudorapidity range
3 < η < 5 or −5 < η < −3. The NSD-enhanced event
sample is defined by requiring a trigger particle in the regions
3 < η < 5 and −5 < η < −3. The SD-enhanced event
sample is defined by requiring a trigger particle in either the
positive or negative η range, with the veto condition applied
to the other region. The SD-enhanced event sample is further
divided into two exclusive subsets according to the η region
in which the trigger particle is detected. These subsets are
referred to as SD-One-Side enhanced event samples. Table 1
shows a summary of the event selection definitions at particle
level.

A response matrix, R, is constructed using the information
provided by the MC event generators and by the full detector
simulation. The elements of the response matrix (R ji ) repre-
sent the conditional probability that (for a given observable)
a true value i is measured as a value j . In this analysis, two
different correction procedures were implemented. The first
method (method 1) makes use of the full detector simulation,
while in the second method (method 2) a parametrization
of the detector response is implemented in order to over-

come the statistical limitations of the full detector simula-
tion. Whenever it is possible to accurately parametrize the
detector resolution, method 2 is used, otherwise method 1 is
applied. The two implemented methods account for unrecon-
structed particles (misses) and wrongly reconstructed tracks
(misreconstruction), as well as for the event selection effi-
ciency including the vertex and enhanced-event selection.
In method 1, the correction is performed in two steps. The
first step corrects for detector resolution, missed particles
and misreconstructed tracks, using an unfolding procedure.
The second step corrects for the event selection efficiency. In
method 2, the R matrix is constructed in a manner that does
not include information on the missed particles and misre-
constructed tracks; therefore a correction factor to account
for these effects is applied. This correction factor takes into
account the missed particles and the misreconstructed tracks,
as well as the event selection efficiency. In contrast to method
1, this correction factor is applied as a function of the observ-
able of interest. The reason for this is that the number of
missing particles in the reconstruction and the number of
misreconstructed tracks both show a dependence on the dif-
ferent observables. The D’Agostini method [54] is used to
unfold the detector effects.

The final corrected distributions are obtained by taking the
average of two corrected distributions, each corrected using
one of the two MC models that describe best the data at
detector level. Most of the distributions are best described
by pythia8 cuetm1 and epos LHC. The only exception
is the pseudorapidity distribution of the SD-enhanced event
sample, for which pythia8 cuetm1 and pythia8 mbr4c
have been used.

6 Systematic uncertainties

The following sources of systematic uncertainty are taken
into account: tracking efficiency, description of the pileup
modeling, sensitivity to the specific value used for the energy
threshold applied to the HF towers, and the dependence on
the model used for the corrections.

The systematic uncertainties show almost no dependence
on the pseudorapidity of the particles in the fiducial region
considered here. For the charged particle multiplicity and pT

distributions, the systematic uncertainties are dependent on
the value of the measured observable. The systematic uncer-
tainties associated with the pT distributions of all charged
particles, the leading charged particle, and the integrated
spectrum of the latter show a similar behavior.

– Tracking efficiency. The systematic uncertainty due to the
difference between the track reconstruction efficiency in
data and simulation is ≈ 4%. This has been obtained in
Ref. [16] at

√
s = 8 TeV and validated for

√
s = 13 TeV
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data by comparing the tracking performance of the data
set used in this analysis to the performance of the same
data set but reconstructed with the (different) tracking
conditions used in Ref. [16]. The tracking efficiency is
estimated with a data-driven method known as “tag-and-
probe” [55] by exploiting resonances decaying into two
particles.

– Pileup modeling. The systematic uncertainty associated
with the modeling of the pileup contribution is calcu-
lated by varying the nominal selection of events with
exactly one vertex to that obtained with at least one ver-
tex where only the tracks associated with the vertex with
the largest sum of the squared transverse momenta of
its tracks are used. The difference between these two
selections is taken as the associated uncertainty. For the
pseudorapidity distributions, the uncertainty is estimated
to be about 1% for the inelastic event sample, while it
is about 1.5 and 0.3% for the NSD- and SD-enhanced
event samples, respectively. An uncertainty of about 2%
on the pT distributions for the most inclusive selection
procedure is obtained, while it is smaller than 1% for
the SD-enhanced event sample. The inelastic and NSD-
enhanced event samples have similar uncertainties for
the multiplicity distributions, first increasing at low mul-
tiplicities from 2 to 8% and then decreasing to 0.5% for
large multiplicities.

– Event selection with HF. The systematic uncertainty
associated with the event selection is determined by
varying the threshold applied to the energy of the HF
calorimeter towers, while keeping the definition of the
stable-particle level unchanged. The default value of the
energy threshold applied to the HF calorimeter towers is
varied from 5 GeV by ±1 GeV.
In the inelastic and NSD-enhanced event samples an
uncertainty of less than 2% for all the relevant distri-
butions is obtained, while for the SD-enhanced sample
the uncertainty increases to ≈ 6% for the pseudorapidity
distributions and varies between 1 and 15% for the pT

distributions.
– Model dependence. The systematic uncertainty due to

the model dependence is calculated as one half of the
difference between the corrected distributions using the
two MC models mentioned in Sect. 5. For the pseudora-
pidity distributions, it varies between 0.1 and 1% for the
inelastic and NSD-enhanced event samples, and is about
7% for the SD-enhanced sample.
For the transverse-momentum distributions, the most
inclusive event samples have a maximum uncertainty
of about 4% at high pT, while the SD-enhanced event
sample exhibits a maximum uncertainty of 10% around
2 GeV, decreasing at both the low and high ends of the
spectrum.
For the event multiplicity distributions, the inelastic and

NSD-enhanced event samples have similar uncertainties
with values up to 8%, reaching a maximum uncertainty
for low and high multiplicities, and a minimum for mul-
tiplicities between 5 and 40.

The total systematic uncertainty is obtained by adding the dif-
ferent sources discussed above in quadrature. Table 2 sum-
marizes all the contributions per observable and per event
selection. The total uncertainty is reported for each case.

Due to the statistical limitations of the multiplicity mea-
surement in the SD-enhanced event sample, this distribution
is not included in the results.

7 Results

Charged particle distributions corrected to particle level as
a function of η, pT and leading pT, as well as the inte-
grated leading pT as a function of pT,min (D(pT,min)), and
the multiplicity per event P(Nch) are shown in Fig. 1. They
are presented for the different event categories correspond-
ing to the most inclusive (inelastic), the diffraction-depleted
(NSD), and the diffraction-enhanced (SD) samples.

The SD-minus and SD-plus samples are mutually exclu-
sive, depending on the side of the forward-detector that con-
tains the hadronic activity. The pseudorapidity distribution
of the SD-enhanced event sample is also presented as a sym-
metrized distribution constructed from the SD-minus and
SD-plus enhanced samples and is referred to as the SD-
One-Side enhanced event sample. The symmetrization is per-
formed by reflecting the distribution with respect to η = 0.
The pseudorapidity distributions are averaged over the posi-
tive and negative η ranges to suppress statistical fluctuations.

The per-event yields, defined in Eq. (1), are obtained
experimentally as

D(pT,min) = 1

Nevents

∑
pT,leading>pT,min

ΔpT,leading

(
dΔN

dΔpT,leading

)
,

(2)

where Nevents is the number of events with a leading charged
particle, ΔpT,leading is the bin width, and ΔN is the number
of events with a leading charged particle in each bin.

In general terms, the inelastic and NSD distributions
are similar. The pseudorapidity density of the SD-enhanced
event sample is about a factor of 4 lower than that of the most
inclusive event samples. The pT distributions (i.e., pT, lead-
ing pT, and integrated leading pT) of the SD-enhanced event
sample fall very steeply for large pT values. The charged
particle multiplicity distribution of the NSD-enhanced event
sample shows a depletion of low-multiplicity events and an
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Fig. 1 From top to bottom, left to right: pseudorapidity , pT, leading
pT, integrated leading pT, and multiplicity of charged particles per event
for the inelastic (circles), NSD-enhanced (triangles), SD-enhanced (dia-
monds), and SD-One-Side enhanced (crosses) event samples. The band

encompassing the data points represent the total systematic uncertainty,
while the statistical uncertainty is included as a vertical bar for each data
point
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Table 2 Summary of
systematic uncertainties per
observable for each of the event
samples. The observables are
(presented as rows, from top to
bottom) pseudorapidity,
multiplicity, transverse
momentum, leading transverse
momentum, and the integral of
the latter. The columns, from
left to right, represent the
following event samples:
Inelastic, NSD-enhanced and
SD-enhanced. For each
observable the respective
sources of uncertainty are listed.
These are, from top to bottom:
the tracking efficiency, the
pileup modelling, the event
selection and the model
dependence. The final value in
each case represents the total
systematic uncertainty

Systematic uncertainties (%)

Observable Source Inelastic NSD-enhanced SD-enhanced

dNch
dη

Tracking efficiency 4 4 4

Pileup modeling 1 1.6 0.3

Event selection < 0.2 1 7

Model dependence 0.8 0.5 7

Total 4 4 9

P(Nch) Tracking efficiency 4 4 —

Pileup modeling 0.5–8 0.5–8 —

Event selection 0–2 0–2 —

Model dependence 0–8 0–8 —

Total 4–8 4–8 —
dNch
dpT

Tracking efficiency 4 4 4

Pileup modeling 0–2 0.5–2 0–2

Event selection < 0.2 1 1–12

Model dependence 0–4 0–4 4–10

Total 4 4 7 – 14
dNch

dpT,leading
Tracking efficiency 4 4 4

Pileup modeling 0–4 0.5–4 0–4

Event selection < 0.2 1 1–12

Model dependence 0–3 0–3 4–14

Total 4 4 5–14

D(pT,min) Tracking efficiency 4 4 4

Pileup modeling 0–2 0.5–2 0–2

Event selection < 0.2 1 1–12

Model dependence 0–4 0–4 1–11

Total 4 4 4–15

increase of high-multiplicity events compared to that of the
inelastic sample.

Figure 2 shows the pseudorapidity densities of charged
particles for four different event categories. The measure-
ments are compared to the predictions of different MC event
generators, namely pythia8 cuetm1, pythia8 mbr4c, and
epos LHC. The predictions of epos LHC provide the best
description of the data within uncertainties for the inelastic
event sample. The predictions of pythia8 cuetm1 slightly
underestimate the measurements, while those of pythia8
mbr4coverestimate them. For the NSD-enhanced event sam-
ple, the predictions of epos LHC and pythia8 cuetm1 both
give a reasonable description of the data within uncertainties,
while the predictions of pythia8 mbr4c overestimate the
measurements. The opposite behavior is observed for the SD-
enhanced event samples, with the predictions of epos LHC
underestimating the data, and the predictions of pythia8
cuetm1 overestimating them. The predictions from pythia8
mbr4c describe well the SD data within uncertainties, show-
ing only small deviations at the edges of the phase space. The
SD-One-Side enhanced event sample is not well described

by epos LHC, while pythia8 cuetm1 tends to overestimate
data, and the prediction from pythia8 mbr4c describes the
measurements within uncertainties over almost the full range,
exhibiting some deviations in the regions where the diffrac-
tive dissociative system is observed.

Figure 3 shows the charged particle multiplicity distri-
butions for the inelastic and NSD-enhanced event samples.
The different event generators provide similar predictions
for the inelastic and NSD-enhanced event samples, with dif-
ferences appearing only at low multiplicities. It is in this
low-multiplicity regime that the SD dissociation events con-
tribute the most. The pythia8mbr4c generator gives the best
description of the data in the low-multiplicity region, while
pythia8 cuetm1 and epos LHC overestimate the data by
approximately 20%. This behavior is similar to that observed
in the pseudorapidity distribution of the SD-enhanced selec-
tion, where pythia8 mbr4c provides the best description of
the SD-enhanced event sample. For multiplicities above 35,
the predictions of pythia8 cuetm1 give the best description
of the data, whereas those of pythia8 mbr4c and epos LHC
are off by up to 50%. The high multiplicity region is espe-
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Fig. 2 Charged particle pseudorapidity densities averaged over both
positive and negative η ranges. Top to bottom, left to right: inelas-
tic, NSD-, SD-, and SD-One-Side enhanced event samples. The mea-
surements are compared to the predictions of the pythia8 cuetm1
(long dashes), pythia8 mbr4c (continuous line), and epos LHC (short

dashes) event generators. The band encompassing the data points rep-
resent the total systematic uncertainty, while the statistical uncertainty
is included as a vertical bar for each data point. The lower panels show
the corresponding MC-to-data ratios

cially sensitive to MPI and improving its modelling could
lead to a better understanding of these processes.

Figures 4, 5 and 6 show the charged particle pT distribu-
tions for all the particles, the leading particle, and the inte-
grated spectrum of the latter, for the inelastic, NSD-, and SD-
enhanced event samples. The pT range for the SD-enhanced
event sample is smaller compared to the other samples, rang-

ing up to 6.3 GeV instead of 50 GeV. This is a consequence
of the more steeply falling pT spectrum of the SD-enhanced
event sample with respect to the other two event categories
(Fig. 1).

The pT distributions of the charged particles in the inelas-
tic and NSD-enhanced event samples are best described by
the predictions of pythia8 cuetm1 over almost the full pT
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Fig. 3 Charged particle multiplicity distributions of the inelastic (left),
and NSD-enhanced (right) event samples. The measurements are com-
pared to the predictions of the pythia8 cuetm1 (long dashes), pythia8
mbr4c (continuous line), and epos LHC (short dashes) event genera-

tors. The band encompassing the data points represent the total system-
atic uncertainty, while the statistical uncertainty is included as a vertical
bar for each data point. The lower panels show the corresponding MC-
to-data ratios

range. Small deviations of up to 10% in the low-pT region are
observed. This region is dominated by particles coming from
MPI. The predictions of pythia8 mbr4c describe the low-
pT region but rapidly start to overestimate particle produc-
tion for pT > 5 GeV by up to 30%. The predictions of epos
LHC give a reasonable description of the data for transverse
momenta up to pT ≈ 10 GeV, while above this value they
underestimate it by ≈ 10%. In the case of the SD-enhanced
event sample, pythia8 cuetm1 gives the best description of
the data, while epos LHC and pythia8 mbr4c underesti-
mate or overestimate the data by 40 and 80%, respectively. It
is interesting to observe how difficult it is to simultaneously
describe within a given model both the bulk of soft particles
mainly coming from MPI and the high-pT particles primarily
coming from hard parton scattering.

The leading pT distributions of charged particles and their
integral as a function of pT,min are presented in Figs. 5 and 6,
respectively. These two distributions provide valuable infor-
mation on the modeling of the transition between the non-
perturbative and perturbative regimes, and on the modeling
of MPI [25]. For the case of the leading transverse momen-
tum distributions, the predictions of epos LHC give the best
description of the data for the inelastic and NSD-enhanced
event samples almost everywhere within the experimental
uncertainties with only some small deviations at low-pT val-
ues of up to ≈ 10%. For pT > 4 GeV, the predictions of
pythia8 cuetm1 are able to reproduce these data. The pre-

dictions of pythia8 mbr4c are not able to describe the data
at either low or high pT for any of the analyzed event samples.
In the case of the SD-enhanced event sample, the predictions
of pythia8 cuetm1 provide the best description of the data,
while those of epos LHC disagree by up to ≈ 40%.

For the distribution of the integrated leading charged parti-
cle pT as a function of pT,min, the predictions are normalized
to the data in the high-pT,min region, since this region is bet-
ter described by the models. The pT,min distribution for the
SD-enhanced event sample is very different from the others,
and the normalization is performed at pT,min = 3.2 GeV,
while for inelastic and NSD-enhanced samples it is per-
formed at pT,min = 9 GeV. The inelastic and NSD-enhanced
event samples are best described by the predictions of epos
LHC and pythia8 cuetm1, although the former overesti-
mates particle production by about 10% at around 4–5 GeV,
and the latter underestimates it by a similar amount at around
pT,min = 1 GeV. The predictions of pythia8 mbr4c agree
with the data in the high-pT region above 9 GeV but increas-
ingly underestimate the data at lower pT values, where dis-
crepancies of up to about 20% are observed. The predictions
of pythia8 cuetm1 describe best the SD-enhanced data set,
while those of epos LHC and pythia8 mbr4c overestimate
and underestimate the data by up to about 40%, respectively.
Comparing the shapes of the D(pT,min) distributions for the
inelastic (or NSD-enhanced) and SD-enhanced samples, the
transition between the regions dominated by particle produc-
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Fig. 4 Charged particle transverse-momentum densities of inelastic
(top left), NSD-enhanced (top right), and SD-enhanced (bottom) event
samples. The measurements are compared to the predictions of the
pythia8 cuetm1 (long dashes), pythia8 mbr4c (continuous line), and

epos LHC (short dashes) event generators. The band encompassing the
data points represent the total systematic uncertainty, while the statis-
tical uncertainty is included as a vertical bar for each data point. The
lower panels show the corresponding MC-to-data ratios

tion from MPIs (and softer diffractive scatterings) and from
single-hard parton scatterings seemingly occurs at about 4
and 2 GeV, respectively, as indicated by the (fast) change of
slope in the spectra around these pT,min values.

8 Summary

Charged particle distributions measured with the CMS detec-
tor in minimum bias proton–proton collisions at a center-of-
mass energy of

√
s = 13 TeV have been presented. Charged

particles are selected with transverse momenta satisfying
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Fig. 5 Leading charged particle pT distributions of inelastic (top left),
NSD-enhanced (top right), and SD-enhanced (bottom) event samples.
The measurements are compared to the predictions of the pythia8
cuetm1 (long dashes), pythia8 mbr4c (continuous line), and epos

LHC (short dashes) event generators. The band encompassing the data
points represent the total systematic uncertainty, while the statistical
uncertainty is included as a vertical bar for each data point. The lower
panels show the corresponding MC-to-data ratios

pT > 0.5 GeV in the pseudorapidity range |η| < 2.4. The
measured distributions, corrected for detector effects, are pre-
sented for three different event samples selected according
to the maximum particle energy in the range 3 < |η| < 5.
The event samples correspond to an inelastic sample, a sam-
ple dominated by nonsingle diffractive dissociation events

(NSD-enhanced sample), and an event sample enriched by
single diffractive dissociation events (SD-enhanced sample).

In general, the event generators epos LHC, pythia8
cuetm1, and pythia8 mbr4c describe the measurements
reasonably well. However, differences are observed in the
pseudorapidity distributions for the SD-enhanced event sam-
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Fig. 6 Integrated leading charged particle pT distributions as a func-
tion of pT,min for inelastic (top left), NSD-enhanced (top right), and SD-
enhanced (bottom) event samples. The measurements are compared to
the predictions of the pythia8 cuetm1 (long dashes), pythia8 mbr4c
(continuous line), and epos LHC (short dashes) event generators. The

band encompassing the data points represent the total systematic uncer-
tainty, while the statistical uncertainty is included as a vertical bar for
each data point. The lower panels show the corresponding MC-to-data
ratios

ple in the region where the diffractive dissociative system is
observed. In the distributions integrated over the pT of the
leading particle above a given threshold, D(pT,min), devia-
tions of up to 40% are observed in the small pT region. The
change from a relatively flat to a falling D(pT,min) distri-
bution occurs at different pT,min values for the diffractive-

enhanced event samples (pT,min ≈ 2 GeV) and the inelastic
and NSD-enhanced sample (pT,min ≈ 4 GeV).

The level of agreement between these new measurements
at

√
s = 13 TeV and the event generators predictions is

comparable to that observed for previous measurements at
lower energies. The measurements described here provide
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new insights into low momentum-exchange parton scatter-
ings that dominate inelastic (including diffractive) pp inter-
actions. The rich variety of distributions presented for differ-
ent event samples, especially those enhanced in diffractive
processes, provide new information to understand the transi-
tion from perturbative to nonperturbative regions in particle
production in high-energy pp collisions and help constrain
model parameters in modern hadronic event generators used
in collider and cosmic-ray physics.
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