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We initiate a holographic study of coupling-dependent heavy ion collisions by analyzing, for the first
time, the effects of leading-order, inverse coupling constant corrections. In the dual description, this
amounts to colliding gravitational shock waves in a theory with curvature-squared terms. We find that, at
intermediate coupling, nuclei experience less stopping and have more energy deposited near the light cone.
When the decreased coupling results in an 80% larger shear viscosity, the time at which hydrodynamics
becomes a good description of the plasma created from high energy collisions increases by 25%. The
hydrodynamic phase of the evolution starts with a wider rapidity profile and smaller entropy.
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Introduction.—Relativistic collisions of heavy ions at
RHIC and LHC result in the formation of a strongly
interacting state of matter known as the quark-gluon plasma
(QGP). While these experiments provide an invaluable
window into properties of quantum chromodynamics
(QCD), our theoretical understanding of QGP in QCD
remains far from complete. In recent years, gauge-gravity
duality (holography) has enabled theoretical studies of
certain, usually supersymmetric, classes of large-N field
theories, which are most readily performed at infinitely
strong (’t Hooft) coupling λ. As a result of those advances,
many properties of QGP previously conceived as impen-
etrably complex, such as its collective far-from-equilibrium
behavior, can now be analyzed using numerical general
relativity techniques. At infinite coupling, heavy ion
collisions have been successfully modeled by (dual) colli-
sions of gravitational shock waves in Einstein bulk theory
with an extra dimension and a negative cosmological
constant [1–5] (see [6–8] for reviews.).
We face several challenges in connecting holographywith

experimental studies of QGP, which typically occur at the
intermediate coupling strength. Most formidable among
them is establishing a bulk dual to nonsupersymmetric
Yang-Mills theory with any (small) number of colors and
fundamental matter. From the point of view of presently
understood holography, even computing 1=N corrections
around infinite N requires the inclusion of quantum gravity
corrections (perturbative topological gs corrections in string
theory) (see, e.g., [9–11]). Including coupling constant
corrections in a perturbative (1=λ) series around infinite
coupling is easier and requires one to find an α0-corrected
higher-derivative supergravity action. To leading order, such
coupling constant corrections have been computed for
thermodynamics [12], hydrodynamics [13–18], thermal-
ization, and higher-frequency spectrum at linear [19–21]
and nonlinear levels [22]. Reference [21] further showed that
simple leading-order higher derivative corrections to the

bulk action reproduce a variety of coupling constant
dependent phenomena, including the approach to kinetic
theory regime and breakdown of hydrodynamics above a
coupling-dependent critical momentum.
In this Letter, we describe the first dynamical (real-time)

collision with coupling constant dependence. The dynami-
cal nature allows us to see how the system evolves towards
a hydrodynamic plasma, how the energy distributes itself,
and to study the entropy production during the collision.
What we will demonstrate is that, as the coupling constant
is decreased, the nuclei experience less stopping with more
energy deposited on the light cone and have a flatter
distribution of energy in the plasma. The time until the
effective hydrodynamic description becomes applicable
(hydrodynamization time, thyd) is increased and less total
entropy is produced.
Curvature-squared theories.—We will restrict our atten-

tion to the simplest, leading-order class of perturbative
(in α0) higher-derivative corrections and study curvature-
squared theories. Such effective supergravity actions of
massless modes, which are known to generically arise from
string theory, can be found by either computing loop
corrections to the world-sheet beta function [23,24] or
by guessing the right action that could result in scattering
amplitudes computed from string theory [25–27]. It is
important to note that type IIB string theory compactified
on S5, dual toN ¼ 4 SYM theory, is special from the point
of view that all α0 and α02 corrections vanish and the
leading-order corrections are proportional to α03R4 with
α0 ∝ L2=λ1=2. We adopt the view that it is plausible that in
more realistic theories, such as in a putative dual to QCD,
the leading order corrections would enter at order α0, which
is why we restrict to R2 theories. Nevertheless, we wish to
stress that a precise theory dual to these theories is
unknown, even though the holographic framework allows
us to compute field theory quantities, such as the expect-
ation values of dual operators.
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At leading order in α0, the most general curvature-
squared action can be written as the Einstein-Gauss-
Bonnet theory [28]

SGB ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
R − 2Λ

þ λGB
2

L2ðR2 − 4RμνRμν þ RμνρσRμνρσÞ
�
; ð1Þ

where the Gauss-Bonnet (GB) coupling λGB ∝ α0, which
wewill treat perturbatively [29]. The negative cosmological
constant Λ ¼ −6=L2 sets the anti–de Sitter scale, for
which, to first order, we choose L≡ L0 þ λGBL1 ¼ 1þ
λGB=2 [33].
As discussed in [21,34], the Einstein-Gauss-Bonnet

theory qualitatively reproduces the departure from infinitely
coupled physics towards weaker coupling when λGB < 0,
including a larger shear viscosity ½η=s ¼ ð1=4πÞð1 − 4λGBÞ�
[14]. Despite the perturbative nature of our calculation in
λGB, for clarity, we will present results for λGB ¼ −0.2 and
demonstrate convergence by computing the energy profiles
up to Oðλ2GBÞ. In N ¼ 4 theory, the value of the ’t Hooft
coupling that increases η=s by 80% is λ ≈Oð10Þ.
We work with a metric ansatz given in the characteristic

formulation of [1,35] by

ds2 ¼ −Adt2 þ 2dtðdrþ FdzÞ þ S2ðeBdx2⊥ þ e−2Bdz2Þ;
ð2Þ

where the functions A, B, F, and S all depend on the
Eddington-Finkelstein time t, the (holographic) radial coor-
dinate r, and the longitudinal coordinate z. Perturbatively (in
λGB), wewrite A ¼ A0 þ λGBA1 and, similarly, forB,F, and
S. After expanding the equations of motion derived from (1)
to first order in λGB, we have to solve two sets of differential
equations. First, the standard nested set of ordinary differ-
ential equations (ODEs) for A0, B0, F0, and S0 [1], followed
by an almost identical nested set of nonhomogeneous ODEs

for A1, B1, F1, and S1. The nonhomogeneous terms depend
on the numerical solution of the zeroth-order functions.
Once the solution is found, it is well known how to

obtain the dual (conformal) holographic stress-energy
tensor (see, e.g., [18,36]). We introduce a rescaled energy
density

E ≡ κ25
2L3

0

Ttt ¼ −
3

4
½a4;0 þ λGBða4;1 − 2a4;0Þ�; ð3Þ

where a4;0 and a4;1 are the normalizable modes of A0 and
A1, respectively, with analogous formulas for the pressures.
At λGB ¼ 0, the prefactor equals 2π2=N2

c for the dual
N ¼ 4 SYM theory. For duals of the Einstein-Gauss-
Bonnet theory, such a relation is unknown.
We are interested in studying the collision of planar

sheets of energy, dual to the collision of gravitational shock
waves. For our choice of L, the single shock wave metric in
Fefferman-Graham coordinates [1,37] continues to be an
exact solution of the equations of motion. These sheets of
energy are characterized by a single nonzero component of
the stress-energy tensor

T��ðz�Þ ¼
κ25
2L3

0

μ3ffiffiffiffiffiffiffiffiffiffiffi
2πw2

p e−z
2
�=2w

2

; ð4Þ

with z� ¼ t� z and w the width of the sheets. The sign in
z� depends on the direction of motion of the shock. We can
easily find a metric, such that the rescaled energy per
transverse energy, μ3, does not depend on λGB (this implies
a4;1 ¼ 2a4;0, initially). These initial conditions can then be
translated to Eddington-Finkelstein coordinates with the
standard method explained in [38,39].
Heavy ion collisions at finite coupling.—We present

results for narrow andwide shocks,withμw ¼ 0.1 andμw ¼
1.5 [40]. Because of theLorentz contraction at high energies,
it is possible to think of narrow and wide shocks as of
high- and low-energy heavy ion collisions, respectively. In
Fig. 1, first, we present snapshots of the energy density

FIG. 1. Energy density along the longitudinal coordinate z at different times for narrow (left) and wide shock collisions (right). We
present results for infinitely coupled (dashed lines), first-order corrected (dotted lines), and second-order corrected (solid lines)
collisions at λGB ¼ −0.2. At intermediate coupling, we observe increased energy density near the light cones (peaks), which signals less
stopping. In the plasma (between peaks), the energy density is flatter, which is caused by a smaller longitudinal pressure due to the larger
viscosity.
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profiles after collisions to Oðλ2GBÞ [41]. In [2,3], it was
noticed that narrow shocks exhibit a transparent regime on
the light cone as they pass through each other. At weaker
coupling, we find that this effect of transparency is greatly
enhanced. More precisely, for λGB ¼ −0.2, to leading-order
in λGB, themaximumenergy density on the light cone is 88%
higher at the end of our simulation than for λGB ¼ 0. The
energy deposited in the plasma is, consequently, smaller, and
we find its distribution to be flatter—a point towhichwewill
return shortly. The difference between first and second order
corrected results is small, but it is comforting to see that the
second order result reduces the increase in energy on the
light cone for the first order result around time μt ¼ 0.4.
For wide shocks, the authors of Ref. [3] found a curious

feature: not only did the energy come to a full stop and
explode hydrodynamically, but due to the strong inter-
actions, the energy piled up at midrapidity, leading to a
maximum energy density of 2.71 times the maximum
energy density of the incoming nuclei. Now, at weaker
coupling, this effect subsides very rapidly; for λGB ¼ −0.2,
the maximum E=μ4 is only 2.17 times the initial maximum.
One of the hallmarks of infinitely strongly coupled

collisions is its rapid relaxation towards a hydrodynamic
regime (hydrodynamization). Given some temperature, this
occurs within a time of thyd < 0.5=T at midrapidity—a
result that is independent of thewidth of the shocks [3]. This
comparison is usually done by comparing the full far-from-
equilibrium pressure with the pressure that would follow
from first-order hydrodynamics, given some temperature
and fluid velocity. From our simulations, we extract the
λGB-dependent temperature, fluid velocity and viscosity.
Combined, they allow us to compare the pressure (solid
lines) with pressure computed from hydrodynamics (dashed
lines), as shown in Fig. 2, for both λGB ¼ 0 (red) and λGB ¼
−0.2 (blue) (note that the longitudinal pressure follows
from E ¼ 2PT þ PL).
It is clear that, at intermediate coupling, it takes longer

for hydrodynamics to become a good description of the
evolution of the plasma. We quantify this by obtaining the
timewhen hydrodynamics describes the transverse pressure
within 10%, for small λGB, which we find to be μthyd ¼
f1.48 − 1.1λGB; 1.40 − 19λGBg for fnarrow; wideg shocks.
By further including the change in temperature, this leads to
the hydrodynamization time in units of the temperature at
the time of hydrodynamization

thydThyd ¼ f0.41 − 0.52λGB; 0.43 − 6.3λGBg; ð5Þ

again for fnarrow; wideg shocks. For λGB ¼ −0.2, this
results in 25% and 290% longer hydrodynamization times.
The strong difference between wide and narrow shocks can
be explained by realizing from Fig. 2 that wide shocks
approach the hydrodynamic regime much slower due to
the continuous inflow of matter. A coupling-dependent
perturbation then leads to correspondingly larger

hydrodynamization times. Furthermore, the leading order
thydThyd ¼ 0.43 for wide shocks is quite sensitive to our
criterion for hydrodynamization and could be in the range of
thydThyd ¼ 0.0�2.0 for similar criteria. This would greatly
affect the 290% found at our 10% criterion. The result for
narrow shocks has a very weak dependence on thewidth and
the criterion used, making the increase of thydThyd by 25%
more robust.
To set the initial conditions for the hydrodynamic

evolution, it is crucial to obtain the rapidity distribution
of the energy deposited in the plasma, which is shown
in Fig. 3. We define rapidity y by t ¼ τ cosh y and
z ¼ τ sinh y, where τ is the proper time. At early times,
the finite coupling corrections result in less energy depos-
ited in the plasma, as well as in a wider rapidity profile (at
its maximum, the rapidity profile is f11%; 23%g wider for
fnarrow; wideg shocks). At late times, the increased
viscosity at intermediate coupling plays an important role

FIG. 2. Plots of infinitely coupled E=μ4 (black, dotted line) and
PT=μ4 (blue, solid line), and E=μ4 (black, solid line) and PT=μ4

(red, solid line) at intermediate coupling, as well as hydro-
dynamic predictions for pressures (dotted line) as functions of
time t and longitudinal coordinate z. Top plots represent narrow
and bottom plots wide shocks. For narrow shocks, hydrody-
namics breaks down near the light cone.

FIG. 3. Rapidity distributions (multiplied with τ4=3 to compen-
sate for the expansion of the plasma) for narrow (left) and wide
(right) shock collisions at λGB ¼ −0.2 (solid line) and λGB ¼ 0
(dashed line). The distributions start out wider and smaller, but
become of comparable width and amplitude due to the 80% larger
viscosity.
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as it decreases the longitudinal pressure. The rapidity
profile at λGB ¼ 0 grows faster in width and consequently
has smaller energy density at midrapidity.
Another consequence of the increased viscosity can be

seen in the entropy production. To demonstrate this, we
show both the total entropy per transverse energy as a
function of time (Fig. 5) and the difference in the entropy
density δsAH (Fig. 4) as measured by the apparent horizon
and defined as

δSAH ≡ κ25
2L3

0

δsAH ¼ 3πS20ðλGBS1 þ δrah∂rS0Þ: ð6Þ

All quantities are evaluated at the apparent horizon (AH)
and δrah is the perturbation of its λGB ¼ 0 position that
depends on t and z. It is clear from Fig. 4 that, for negative
λGB, there is more entropy near the light cone and less in the
plasma—in agreement with Fig. 1. Overall, this leads to
less total entropy, with 27% and 25% reduction for narrow
and wide shocks at the start of our simulation. Because of
larger viscous entropy production, this difference decreases
in the hydrodynamic regime, and we find 15% and 12%
reduction for narrow and wide shocks at the end of Fig. 5.
The decrease can be partly explained by a reduced number
of degrees of freedom, as our choice of L and λGB implies

15% fewer degrees of freedom, as measured by Ttt=T4.
Last, we stress that Fig. 5 implies that the choice of
λGB ¼ −0.2 is likely outside the regime of applicability
of our first-order λGB expansion; we do not expect that the
decrease of the entropy around μt ¼ −0.5 would occur in a
nonperturbative computation.
Discussion.—In this Letter, we presented the first

computation of holographic heavy ion collisions at finite
coupling, which amounted to solving the collision of
gravitational shock waves in the Einstein-Gauss-Bonnet
theory, perturbatively in λGB. Interestingly, we found that
the reduced coupling resulted in more energy on the light
cone for narrow shocks, as well as less stopping for wider
shocks, as measured by the reduced pileup of energy.
Our work sheds light on finite coupling corrections to

strongly coupled phenomenology of heavy ion collisions,
in particular, to its hydrodynamization times, its rapidity
profile, and the entropy production (previously studied in
[39,42–44]). In [42], it was found that the rapidity profile at
strong coupling needed to be wider by about 50% to
describe experimental data. Our results indeed indicate a
wider initial rapidity profile, as is also suggested by the
increased energy on the light cone for narrow shock
collisions. Nevertheless, quantitatively, this increase only
amounts to approximately 20%. Also, the increased vis-
cosity leads to a reduced rapidity width and increased
entropy production at later times, perhaps balancing each
other at μτ ¼ f3; 6g for fnarrow; wideg shocks. However,
in QCD, the quantitative size of these two effects can vary,
especially as the shear viscosity of QCD in this regime is
expected to decrease with decreasing temperature.
In this Letter, we considered only the simplest model for

finite coupling corrections (perturbative curvature squared
in pure gravity), studied it to next-to-leading-order in
(inverse) perturbative coupling corrections and, thus, made
the first step towards phenomenologically more accurate
holographic models. Studying the theory nonperturbatively
in λGB would be much more challenging, as the nested
structure of the characteristic formulation of general rela-
tivity would be lost. In the future, it will also be important
to compare our results to similar perturbative simulations in
N ¼ 4 SYM theory. However, supported by the findings of
Ref. [21], which analyzed the corrections to the linear
spectrum from nonperturbative Gauss-Bonnet and pertur-
bative α03 terms in type IIB supergravity (dual to N ¼ 4
SYM), we expect at least the qualitative behavior of shock
wave collisions in top-down constructions to remain similar
to the results of this Letter. It would also be interesting to
study coupling corrections in nonconformal or charged
theories (see [45,46]), which could model a varying
viscosity as well as nontrivial baryonic charge densities.
Finally, a full description of the initial stages of heavy

ion collisions will likely involve insights from both weakly
and strongly coupled physics, and a complete description
will then require an interpolation between physics found at

FIG. 4. Coupling constant correction to entropy density as
measured by change in the area of the apparent horizon for
narrow and wide shock waves. For negative λGB, the entropy is
enhanced at the light cone, while negative in the plasma. At even
later times the entropy correction also becomes positive at
midrapidity due to the larger viscous entropy production.

FIG. 5. Total entropy produced as measured by the apparent
horizon area for narrow (left) and wide shocks (right) at λGB ¼
−0.2 (solid line) and λGB ¼ 0 (dashed line). The decrease
in entropy around μt ¼ −0.5 is expected to disappear in a
simulation with a nonperturbative λGB.
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both weak and strong coupling, as, e.g., discussed in [47].
To make this interpolation, it will then be crucial to perform
expansions both around λ ¼ 0 as well as around λ ¼ ∞.
For dynamical far-from-equilibrium collisions, the latter
expansion will follow the procedure that we initiated in this
Letter.
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