
1

Using Dynamic Monitoring to Synthesize Models of

Applications That Access Databases

JIASI SHEN,MIT EECS & CSAIL, USA
MARTIN RINARD,MIT EECS & CSAIL, USA

1 INTRODUCTION

We previously developed Konure [Shen and Rinard 2018], a tool that uses active learning to infer
the functionality of database applications. An alternative approach is to observe the inputs, outputs,
and database traffic from a running system in normal use and then synthesize a model of the
application from this information. To evaluate these two approaches, we present Etch, which uses
information from typical usage scenarios to synthesize a model of the functionality of database
applications whose computation can be expressed in the Konure DSL. Etch observes the user
inputs, database traffic, and outputs.

1.1 Input Collection Methodology

To collect the runtime inputs and outputs, Etch sets up a proxy between the user and the application.
This proxy records each user-provided input, along with a snapshot of the database contents when
the input is sent to the database.

A user interacts with the application as follows. Initially, the user may populate the contents of
the backend database as they desire. Then, the user launches the application and sends commands
to the application via the Etch proxy. For applications with a graphical user interface, the user
clicks around on the interface, following the visual instructions provided by the application. For
applications with a command line interface, the user executes the commands in a way that a
typical user would use the application. If desired, the user may shut down the applications and
populate the database with new contents, then restart the applications. The user stops interacting
with the application when they reaches an understanding of the application’s functionality that is
satisfactory for a typical user.

During these user interactions, the user-provided inputs (including the corresponding database
snapshots) are collected by Etch. Etch then uses these user-provided inputs to construct a program
that is consistent with the observed functionality of the application.

1.2 Definitions

In the discussion below, we follow the terminology used in the Konure technical report [Shen and
Rinard 2018].
Each user-provided input, along with the snapshot of the database contents, forms a value

assignment. Recall [Shen and Rinard 2018] that a value assignment contains information about the
values to assign to the inputs and the database. The input information maps an input parameter to
a concrete value. The database information maps a database location (identified by a table, a row
number, and a column) to a concrete value.

Each such value assignment is used by Etch to execute the application. The application, during
execution, interacts with an external database using SQL queries. Etch intercepts all these queries
and uses them, along with the value assignment, to construct an abstract trace. Etch then converts
this abstract trace into a list of deduplicated traces (Algorithm 2).

Authors’ addresses: Jiasi Shen, MIT EECS & CSAIL, USA, jiasi@csail.mit.edu; Martin Rinard, MIT EECS & CSAIL, USA,
rinard@csail.mit.edu.

Publication date: September 2018.



1:2 Jiasi Shen and Martin Rinard

Algorithm 1
Input: U is a list of value assignments provided by the human user.
Output: A program in the Konure DSL that is consistent with the observed functionality of the

application executing withU .

1: procedure Construct(U )
2: P ← Nil
3: for A ∈ U do
4: F ← FlattenedTraces(A)
5: for ⟨T , l⟩ ∈ F do
6: P ←MergeTrace(T , l , 1, P )
7: end for
8: end for
9: return P
10: end procedure

Etch uses all the user-provided value assignments to execute the application and collect traces.
Then, Etch uses all the collected traces to construct a program, in the Konure DSL, that is consistent
with the observed functionality of the application (Algorithm 1). Finally, Etch converts the Konure
DSL program into an executable Python program.

1.3 Difference Between Etch and Konure

A key difference between Etch and Konure is the set of value assignments used for executing the
application. Etch uses the value assignments that a human user provides. Konure, in contrast,
uses active learning to automatically choose the value assignments that are important for the
algorithm. Therefore, if we use Etch and Konure to analyze the same application, these two tools
may generate different programs.
Recall that Konure explores all paths of the application to identify a unique equivalence class

of Konure DSL programs. The human Etch user, however, may not explore the application as
exhaustively as Konure does. Hence, the quality of the Etch-constructed program depends heavily
on how the human Etch user explores various paths of the application.

Conversely, if the human user provides Etch with the same set of value assignments that Konure
chooses, then Etch and Konure will generate equivalent programs.

2 THE ETCH CONSTRUCTION ALGORITHM

The Etch construction algorithm takes a list of value assignments, uses them to execute the
application, and produces a Konure DSL program that is consistent with all these executions. The
entry point is the Construct procedure in Algorithm 1.
To process each value assignment, the first step is to execute the application and collect a list

of deduplicated traces from the execution. For this purpose, Etch calls the FlattenedTraces
procedure in Algorithm 2. Recall from the Konure technical report [Shen and Rinard 2018] that
procedure GeneralizeTrace converts a concrete trace into an abstract trace. Also recall that
procedure DetectLoops detects loops in the abstract trace and returns the location for each
iteration of each loop. The procedure AllWaysToKeepOneIteration is similar to the procedure
KeepOneIteration in the Konure technical report [Shen and Rinard 2018], except that it returns
all the legitimate deduplicated traces (instead of returning only one deduplicated trace). Specifically,
for each loop found in the abstract trace, the procedure AllWaysToKeepOneIteration chooses

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:3

Algorithm 2
Input: A is a value assignment for the input parameters and the database contents.
Output: F is a list of pairs (⟨T , l⟩) that represent all the deduplicated traces collected from executing

the applicationwithA. In each pair in F ,T is a deduplicated trace that contains only one iteration
of any loop. l is a list of locations in T that are originally found to be the starting location of
loops in the abstract trace.

1: procedure FlattenedTraces(A)
2: ⟨σi ,σd ⟩ ← A
3: Populate the database with contents as specified in σd
4: Execute the application with input parameters as specified in σi
5: Tc ← The concrete trace collected from the execution
6: Ta ← GeneralizeTrace(Tc ) ▷ Abstract trace
7: la ← DetectLoops(Ta )
8: F ← AllWaysToKeepOneIteration(Ta , la ) ▷ List of all deduplicated traces
9: return F
10: end procedure

each iteration of the loop in turn, recursively entering the chosen iteration. For each legitimate
deduplicated trace, the procedure keeps track of the locations that were originally the starting
locations of loops. The procedure returns the list of all deduplicated traces along with their loop
information.

Etch uses these traces to construct a program in the Konure DSL. The algorithm starts with an
empty program and progressively updates the program with the given traces, one at a time, by
calling the procedure MergeTrace in Algorithm 3. This procedure incorporates a new trace into
an existing program, so that the resulting program is consistent with all traces seen in the history.
This procedure performs a pattern match on the existing program and then invokes procedures
in Algorithms 4, 5, 6, 7, and 8 accordingly. The procedure SameSkeleton returns whether two
queries share the same skeleton, that is, if they may be generalized from the same SQL query in
the application. When two queries share the same skeleton, the procedure MergeQuery uses this
skeleton to construct a new query where the source locations (the ASrc nonterminal symbol for
abstract traces [Shen and Rinard 2018]) are the intersections of those used by the two incoming
queries. This procedure also collects metadata on historical results retrieved from these queries.
The procedure MergedResults looks up and returns the metadata collected by the procedure
MergeQuery.
After Etch returns from the Construct procedure in Algorithm 1, Etch uses the constructed

Konure DSL program to generate an executable Python program. Note that queries in the con-
structed Konure DSL program may still have ambiguity regarding source locations. Specifically, a
query may potentially refer to multiple source locations that are not equivalent. In this case, some
of the potential source locations are correct while others are not. Etch enumerates all the potential
choices until finding a program that produces outputs consistent with all the observed executions.
Etch then returns this program’s Python version.

Publication date: September 2018.



1:4 Jiasi Shen and Martin Rinard

Algorithm 3
Input: T is a trace collected from the FlattenedTraces procedure, which contains a list of query-

result pairs (⟨q, r ⟩) collected from an execution of the application. In each query-result pair,
the query (q) is an instance of the nonterminal symbol “AQuery” in the syntax for abstract
traces that represents an SQL query that the application sent to the database. The result (r ) is
an integer representing the number of rows retrieved by the corresponding query.

Input: l is the list of loop information for T .
Input: i is a positive integer.
Input: P is the fragment of the application, expressed in the Konure DSL that corresponds to the

tail of T starting from the i-th query.
Output: The fragment of the application, expressed in the Konure DSL, after updating P with the

tail of trace T starting from the i-th query.

1: procedureMergeTrace(T , l , i, P )
2: if P : “Nil” then ▷ P is an empty program
3: returnMergeTraceNil(T , l , i)
4: else if P : “qP ” then ▷ P contains a single query
5: returnMergeTraceEnd(T , l , i, P )
6: else if P : “qP1 qP2 bP ” then ▷ P starts with at least two queries
7: return MergeTraceSeqence(T , l , i, P )
8: else if P : “if qP then bPt else bPf ” then ▷ P starts with a conditional statement
9: return MergeTraceIf(T , l , i, P )
10: else if P : “for qP do bPt else bPf ” then ▷ P starts with a loop
11: return MergeTraceFor(T , l , i, P )
12: end if
13: end procedure

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:5

Algorithm 4
Input: T is a trace collected from the FlattenedTraces procedure, which contains a list of query-

result pairs (⟨q, r ⟩) collected from an execution of the application. In each query-result pair,
the query (q) is an instance of the nonterminal symbol “AQuery” in the syntax for abstract
traces that represents an SQL query that the application sent to the database. The result (r ) is
an integer representing the number of rows retrieved by the corresponding query.

Input: l is the list of loop information for T .
Input: i is a positive integer.
Output: The fragment of the application, expressed in the Konure DSL, after updating P with the

tail of trace T starting from the i-th query.

1: procedureMergeTraceNil(T , l , i)
2: ⟨⟨qT1 , r

T
1 ⟩, . . . , ⟨q

T
i , r

T
i ⟩, ⟨q

T
i+1, r

T
i+1⟩, . . . , ⟨q

T
k , r

T
k ⟩⟩ ← T

3: if i = k then
4: return “qTi ”
5: else ▷ i < k
6: b ←MergeTraceNil(T , l , i + 1)
7: if l says T has a loop starting at i then ▷ Production “Block := For”
8: return “for qTi do b else Nil”
9: else ▷ Production “Block := Query Block”
10: return “qTi b”
11: end if
12: end if
13: end procedure

Publication date: September 2018.



1:6 Jiasi Shen and Martin Rinard

Algorithm 5
Input: T is a trace collected from the FlattenedTraces procedure, which contains a list of query-

result pairs (⟨q, r ⟩) collected from an execution of the application. In each query-result pair,
the query (q) is an instance of the nonterminal symbol “AQuery” in the syntax for abstract
traces that represents an SQL query that the application sent to the database. The result (r ) is
an integer representing the number of rows retrieved by the corresponding query.

Input: l is the list of loop information for T .
Input: i is a positive integer.
Input: P is the fragment of the application, expressed in the Konure DSL that corresponds to the

tail of T starting from the i-th query. P is of the form “qP ”.
Output: The fragment of the application, expressed in the Konure DSL, after updating P with the

tail of trace T starting from the i-th query.

1: procedureMergeTraceEnd(T , l , i, P )
2: ⟨⟨qT1 , r

T
1 ⟩, . . . , ⟨q

T
i , r

T
i ⟩, ⟨q

T
i+1, r

T
i+1⟩, . . . , ⟨q

T
k , r

T
k ⟩⟩ ← T ▷ SameSkeleton(qTi ,q

P ) is True
3: q ←MergeQuery(qTi , r

T
i ,q

P )
4: if i = k then ▷ Production “Block := Query Block := Query ϵ”
5: return “q”
6: else ▷ i < k
7: b ←MergeTraceNil(T , l , i + 1)
8: if l says T has a loop starting at i then ▷ Production “Block := For”
9: return “for q do b else Nil”
10: else ▷ Production “Block := If”
11: if rTi > 0 then
12: return “if q then b else Nil”
13: else
14: return “if q then Nil else b”
15: end if
16: end if
17: end if
18: end procedure

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:7

Algorithm 6
Input: T is a trace collected from the FlattenedTraces procedure, which contains a list of query-

result pairs (⟨q, r ⟩) collected from an execution of the application. In each query-result pair,
the query (q) is an instance of the nonterminal symbol “AQuery” in the syntax for abstract
traces that represents an SQL query that the application sent to the database. The result (r ) is
an integer representing the number of rows retrieved by the corresponding query.

Input: l is the list of loop information for T .
Input: i is a positive integer.
Input: P is the fragment of the application, expressed in the Konure DSL that corresponds to the

tail of T starting from the i-th query. P is of the form “qP1 qP2 bP ”.
Output: The fragment of the application, expressed in the Konure DSL, after updating P with the

tail of trace T starting from the i-th query.

1: procedureMergeTraceSeqence(T , l , i, P )
2: ⟨⟨qT1 , r

T
1 ⟩, . . . , ⟨q

T
i , r

T
i ⟩, ⟨q

T
i+1, r

T
i+1⟩, . . . , ⟨q

T
k , r

T
k ⟩⟩ ← T ▷ SameSkeleton(qTi ,q

P
1 ) is True

3: q ←MergeQuery(qTi , r
T
i ,q

P
1 )

4: if i = k then ▷ Production “Block := If”
5: if rTi > 0 then return “if q then Nil else qP2 bP ”
6: else return “if q then qP2 bP else Nil”
7: end if
8: else ▷ i < k
9: if l says T has a loop starting at i then ▷ Production “Block := For”
10: if ∃r . r ∈ MergedResults(qP1 ) ∧ r > 0 then
11: bt ←MergeTrace(T , l , i + 1, “qP2 bP ”)
12: else
13: bt ←MergeTraceNil(T , l , i + 1)
14: end if
15: if 0 ∈ MergedResults(qP1 ) then bf ← “qP2 bP ”
16: else bf ← “Nil”
17: end if
18: return “for q do bt else bf ”
19: else
20: if rTi ∈ MergedResults(qP1 ) or SameSkeleton(qTi+1,q

P
2 ) then

▷ Production “Block := Query Block”
21: b ←MergeTrace(T , l , i + 1, “qP2 bP ”)
22: return “q b”
23: else ▷ Production “Block := If”
24: b ←MergeTraceNil(T , l , i + 1)
25: if rTi > 0 then return “if q then b else qP2 bP ”
26: else return “if q then qP2 bP else b”
27: end if
28: end if
29: end if
30: end if
31: end procedure

Publication date: September 2018.



1:8 Jiasi Shen and Martin Rinard

Algorithm 7
Input: T is a trace collected from the FlattenedTraces procedure, which contains a list of query-

result pairs (⟨q, r ⟩) collected from an execution of the application. In each query-result pair,
the query (q) is an instance of the nonterminal symbol “AQuery” in the syntax for abstract
traces that represents an SQL query that the application sent to the database. The result (r ) is
an integer representing the number of rows retrieved by the corresponding query.

Input: l is the list of loop information for T .
Input: i is a positive integer.
Input: P is the fragment of the application, expressed in the Konure DSL that corresponds to the

tail of T starting from the i-th query. P is of the form “if qP then bPt else bPf ”.
Output: The fragment of the application, expressed in the Konure DSL, after updating P with the

tail of trace T starting from the i-th query.

1: procedureMergeTraceIf(T , l , i, P )
2: ⟨⟨qT1 , r

T
1 ⟩, . . . , ⟨q

T
i , r

T
i ⟩, ⟨q

T
i+1, r

T
i+1⟩, . . . , ⟨q

T
k , r

T
k ⟩⟩ ← T ▷ SameSkeleton(qTi ,q

P ) is True
3: if i = k then
4: return P
5: else ▷ i < k
6: q ←MergeQuery(qTi , r

T
i ,q

P )
7: if l says T has a loop starting at i then ▷ Production “Block := For”
8: b ←MergeTrace(T , l , i + 1,bPt )
9: return “for q do b else bPf ”
10: else ▷ Production “Block := If”
11: if rTi > 0 then
12: b ←MergeTrace(T , l , i + 1,bPt )
13: return “if q then b else bPf ”
14: else
15: b ←MergeTrace(T , l , i + 1,bPf )
16: return “if q then bPt else b”
17: end if
18: end if
19: end if
20: end procedure

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:9

Algorithm 8
Input: T is a trace collected from the FlattenedTraces procedure, which contains a list of query-

result pairs (⟨q, r ⟩) collected from an execution of the application. In each query-result pair,
the query (q) is an instance of the nonterminal symbol “AQuery” in the syntax for abstract
traces that represents an SQL query that the application sent to the database. The result (r ) is
an integer representing the number of rows retrieved by the corresponding query.

Input: l is the list of loop information for T .
Input: i is a positive integer.
Input: P is the fragment of the application, expressed in the Konure DSL that corresponds to the

tail of T starting from the i-th query. P is of the form “for qP do bPt else bPf ”.
Output: The fragment of the application, expressed in the Konure DSL, after updating P with the

tail of trace T starting from the i-th query.

1: procedureMergeTraceFor(T , l , i, P )
2: ⟨⟨qT1 , r

T
1 ⟩, . . . , ⟨q

T
i , r

T
i ⟩, ⟨q

T
i+1, r

T
i+1⟩, . . . , ⟨q

T
k , r

T
k ⟩⟩ ← T ▷ SameSkeleton(qTi ,q

P ) is True
3: if i = k then
4: return P
5: else ▷ i < k

▷ Production “Block := For”
6: q ←MergeQuery(qTi , r

T
i ,q

P )
7: if rTi > 0 then
8: b ←MergeTrace(T , l , i + 1,bPt )
9: return “for q do b else bPf ”
10: else
11: b ←MergeTrace(T , l , i + 1,bPf )
12: return “for q do bPt else b”
13: end if
14: end if
15: end procedure

Publication date: September 2018.



1:10 Jiasi Shen and Martin Rinard

3 EXPERIMENTAL RESULTS

We present an experiment that compares the human user-provided inputs and the inputs chosen
by the Konure inference algorithm.

3.1 Methodology

We used Etch to construct programs for the applications in the Konure technical report [Shen
and Rinard 2018].1 For each application command, we ran Etch twice, each time using a different
set of value assignments: The first time uses the value assignments collected by the Etch proxy
when the human user interacted with the application. The second time uses the value assignments
chosen by the Konure inference algorithm.

The outcomes of running Etch are executable Python programs, each program consistent with
the observed functionality of the application. We measured the quality of these Etch-constructed
programs based on the following metrics.
Output comparison metrics: For each command of each application, we compared the outputs
from the following programs: (1) the Etch-constructed program using value assignments from
the human user, (2) the Etch-constructed program using value assignments from Konure, (3) the
Konure-inferred program, and (4) the original application.
We executed all these programs using the following sets of value assignments: (1) the value

assignments collected from human user interaction and (2) the value assignments chosen by Konure
during inference. For each set of value assignments, we executed all programs and compared their
output differences. 2

We then counted the number of value assignments for which the outputs differed. The outputs
can differ in the following ways.

• The Etch-constructed program may miss output values because it misses a branch of a
conditional statement. When a value assignment causes the program to enter a branch
that Etch did not observe, the original application produces certain outputs but the Etch-
constructed program performs a no-op for that branch.
• The Etch-constructed program may miss output values even when the program contains the
query for retrieving these values: Etch may have not observed an execution where this query
returns nonempty data. Hence, Etch have not observed any data from this query appear
in the outputs. The Etch-constructed program, therefore, lacks the corresponding output
statements.
• The Etch-constructed program can produce extra output values because it incorrectly refer-
ences certain data fields. This error can happen when the observed traces are ambiguous,
that is, when the trace (or the output) contains values that have multiple potential source
locations that are not equivalent. The Etch-constructed program may reference any one of
these source locations that produces correct outputs for all the observed value assignments.
However, this source location is not guaranteed to be correct. An incorrect reference may be
exposed when the Etch-constructed program executes with an unobserved value assignment.
In this case, the program may use the incorrect data to produce extra outputs or to perform
incorrect queries that affect the execution further.

1 We exclude the Kandan commands get_channels_id_activities_id, get_me, and get_users_id because these commands did
not occur in the user interaction session. We exclude the Kandan command get_channels_id_attachments because the user
triggered a functionality in this command that could not be expressed in the Konure DSL.
2Technically, the outputs from the original application consist of templates of text (in HTML, JSON, or other formats) filled
in with result-specific values. We preprocessed these outputs by extracting output values from the text.

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:11

A key insight for using the Konure value assignments is that the they are comprehensive enough
for Konure to identify a unique equivalent class of programs in the Konure DSL, by observing the
application outputs and the database traffic. Hence, if the Etch-constructed program is inaccurate
in any way that affects the program outputs, the inaccuracy will manifest as incorrect outputs
or incorrect database queries 3 when the Etch-constructed program processes the Konure value
assignments.
Code comparison metrics: For each command of each application, we statically compared the
Etch-constructed programs (two programs, generated with human value assignments and with
Konure-chosen value assignments, respectively) and the Konure-inferred program side by side.
Note that whenever two Konure DSL programs are equivalent in terms of the observable database
queries and outputs, they must be syntactically identical except for potentially equivalent data fields
referenced in queries and outputs. Recall that both Etch and Konure generate Python programs
directly from the Konure DSL. Thus, we can compare the syntactical difference between these two
programs to quantify how their functionality differ.

Specifically, we analyzed the Etch-constructed program code and counted themissing or different
components compared to the Konure-inferred program:
• The number of missing conditional branches.
• The number of missing loops.
• The number of missing or different statements that perform SQL queries. Each such query is
originally extracted from the database traffic between the application and the backend data-
base.4 Recall that Etch uses the observed queries to construct an abstract trace. This process,
as documented in the Konure technical report [Shen and Rinard 2018], transforms each SQL
query into a query skeleton (the query excluding concrete values) along with references to
source locations (the potential origins of these concrete values). Etch eventually constructs a
Python program with statements that use these SQL query skeletons and references variables
that hold earlier data.
• The number of missing or different output statements. Each such statement outputs the data
from a source location.

Recall that the difference between the Etch-constructed program and the Konure-inferred
program is caused by the use of value assignments for observing the application. Thus, these
comparisons allow us to visualize how the human user and the Konure inference algorithm explore
the hidden components of the application.

3.2 Results

For each command of each application, we present two figures. Here, the first figure presents
the quality metrics for the Etch-constructed program using value assignments provided by the
human user and captured by the Etch proxy. The second figure presents the quality metrics for the
Etch-constructed program using value assignments chosen by the Konure inference algorithm.
Both figures compare the Etch-constructed programs to the program that Konure inferred for the
application command.

Each such figure contains six sub-figures. In all these sub-figures, the horizontal axes represent
the number of value assignments processed by Etch. For example, a data point at horizontal mark
n corresponds to the DSL program constructed by Etch based on only the first n user-provided
value assignments. The user-provided value assignments are ordered by the time that they were
captured by the Etch proxy.

3Note that observing only the outputs is insufficient for exposing all inaccuracies.
4Like Konure, Etch also intercepts this traffic.

Publication date: September 2018.



1:12 Jiasi Shen and Martin Rinard

Output comparison results: Among each group of six sub-figures, the first two sub-figures (a–b)
present the output comparison results.

Sub-figure (a) presents the results for the output comparison by executing the Etch-constructed
program with all human user-provided value assignments and comparing the outputs against the
original application. The vertical axes represent the number of executed value assignments for
which the Etch-constructed program produces incorrect outputs. The legends are:
• Line “user_input_incorrect_total” represents the total number of human-provided value
assignments for which the Etch-constructed program produces incorrect outputs.
• Line “user_input_miss_out” represents the number of human-provided value assignments
for which the Etch-constructed program produces incorrect outputs that miss values.
• Line “user_input_more_out” represents the number of human-provided value assignments
for which the Etch-constructed program produces incorrect outputs that have extra values.

Sub-figure (b) presents the results for the output comparison by executing the Etch-constructed
program with all Konure-chosen value assignments and comparing the outputs against the original
application. The vertical axes represent the number of executed value assignments for which the
Etch-constructed program produces incorrect outputs. The legends are:
• Line “active_input_incorrect_total” represents the total number of Konure-chosen value
assignments for which the Etch-constructed program produces incorrect outputs.
• Line “active_input_miss_out” represents the number of Konure-chosen value assignments
for which the Etch-constructed program produces incorrect outputs that miss values.
• Line “active_input_more_out” represents the number of Konure-chosen value assignments
for which the Etch-constructed program produces incorrect outputs that have extra values.

We note that the Konure-inferred program produced correct outputs for all of these value
assignments.
Code comparison results: The next four sub-figures (c–f) present the code comparison results.
Sub-figure (c) presents the results for the code comparison between the Etch-constructed

program against the Konure-inferred program, focusing on conditional branches. The vertical axis
represents the number of branches that the Etch-constructed program differs from the Konure-
inferred program. The legends are:
• Line “miss_branch_total” represents the total number of conditional branches in the Konure-
inferred program that are missing in the Etch-constructed program.
• Line “miss_branch_empty” represents the number of branches in the Konure-inferred pro-
gram that condition on a query retrieving empty data that are missing in the Etch-constructed
program.
• Line “miss_branch_exist” represents the number of branches in the Konure-inferred program
that condition on a query retrieving nonempty data that are missing in the Etch-constructed
program.

Sub-figure (d) presents the results for the code comparison between the Etch-constructed
program against the Konure-inferred program, focusing on loops. The vertical axis represents the
number of loops that the Etch-constructed program differs from the Konure-inferred program.
The legends are:
• Line “miss_loop_total” represents the total number of loops in the Konure-inferred program
that are missing in the Etch-constructed program.
• Line “miss_loop_with_no_query” represents the number of loops in the Konure-inferred pro-
gram that are missing in the Etch-constructed program and the Etch-constructed program
does not have any query that corresponds to the loop body.

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:13

• Line “miss_loop_has_query” represents the number of loops in the Konure-inferred program
that are missing in the Etch-constructed program and the Etch-constructed program has
queries, but not any control structure, that correspond to the loop body.
• Line “miss_loop_has_if” represents the number of loops in the Konure-inferred program
that are missing in the Etch-constructed program and the Etch-constructed program has a
conditional branch in the place of the loop.

Sub-figure (e) presents the results for the code comparison between the Etch-constructed
program against the Konure-inferred program, focusing on statements that perform SQL queries.
The vertical axis represents the number of SQL query statements that the Etch-constructed program
differs from the Konure-inferred program. The legends are:
• Line “miss_query” represents the number of SQL query statements in the Konure-inferred
program that are missing in the Etch-constructed program.
• Line “diff_query_use_source” represents the number of SQL query statements in the Konure-
inferred program that are present in the Etch-constructed program but these queries reference
different source locations.5
• Line “diff_query_use_list” represents the number of SQL query statements in the Konure-
inferred program that are present in the Etch-constructed program, referencing the same
source locations, but these references differ in whether they use only a single value or the
entire list of the previously-retrieved data.

Sub-figure (f) presents the results for the code comparison between the Etch-constructed
program against the Konure-inferred program, focusing on statements that produce outputs. The
vertical axis represents the number of output statements that the Etch-constructed program differs
from the Konure-inferred program. The legends are:
• Line “miss_out_total” represents the total number of output statements in the Konure-
inferred program that are missing6 in the Etch-constructed program.
• Line “miss_out_with_no_query” represents the number of output statements in the Konure-
inferred program that are missing in the Etch-constructed program and the Etch-constructed
program does not have the corresponding queries that retrieve the output values.
• Line “miss_out_has_query_miss_exist” represents the number of output statements in the
Konure-inferred program that are missing in the Etch-constructed program even though
the Etch-constructed program has the corresponding queries that retrieve the output values.
• Line “diff_out_stmt” represents the number of output statements in the Etch-constructed
program but not in the Konure-inferred program.

We next present results for each command of each application.
Figure 1 presents the measured quality of the Etch-constructed program for the Kandan [kan

2018] get_channels command, using the value assignments provided by the human Etch user.
The quality is measured in comparison to the Konure-inferred program. Figure 2 presents the
measured quality of the program that Etch constructed using the value assignments provided by
Konure.
Figure 3 presents the measured quality of the Etch-constructed program for the Kandan

get_channels_id_activities command, using human-provided value assignments. Figure 4
presents the measured quality of the program that Etch constructed using the value assignments
provided by Konure.

5Two different source locations may or may not be equivalent, depending on whether they always hold the same data.
6A missed output statement may or may not affect the final output, due to potentially duplicated output statements.

Publication date: September 2018.



1:14 Jiasi Shen and Martin Rinard

Figure 5 presents the measured quality of the Etch-constructed program for the Kandan
get_users command, using human-provided value assignments. Figure 6 presents the measured
quality of the program that Etch constructed using the value assignments provided by Konure.

Figure 7 presents the measured quality of the Etch-constructed program for the student registra-
tion system’s liststudentcourses command, using human-provided value assignments. Figure 8
presents the measured quality of the program that Etch constructed using the value assignments
provided by Konure.
Figure 9 presents the measured quality of the Etch-constructed program for the Blog applica-

tion [rai 2018] get_article_id command, using human-provided value assignments. Figure 10
presents the measured quality of the program that Etch constructed using the value assignments
provided by Konure.

Figure 11 presents the measured quality of the Etch-constructed program for the Blog applica-
tion get_articles command, using human-provided value assignments. Figure 12 presents the
measured quality of the program that Etch constructed using the value assignments provided by
Konure.

3.3 Discussion

In the output comparison sub-figures (a–b), each positive count shows that the Etch-constructed
program produced incorrect outputs for certain value assignments. 7 The programs constructed with
human user value assignments produced correct outputs for the observed functionality (Figures 1a,
3a, 5a, 7a, 9a, and 11a). However, these programs are not completely correct when tested with the
Konure-chosen value assignments (Figures 1b, 5b, and 9b). In contrast (as expected), the programs
constructed with Konure value assignments produced correct outputs for all the Konure-chosen
value assignments (Figures 2a, 2b, 4a, 4b, 6a, 6b, 8a, 8b, 10a, 10b, 12a, and 12b). This is also the case
for the Konure-inferred programs.

In the code comparison sub-figures (c–f), each positive count represents that the Etch-constructed
program differs from the Konure-inferred program. Most of the programs constructed with human
user value assignments did not converge to the correct programs (Figures 1, 3, 5, and 9), except
when the programs are relatively simple (Figures 7 and 11). Specifically, these programs missed
conditional branches (Figures 1c, 3c, 5c, and 9c), and loops (Figures 1d). As a result, these programs
also contained inaccurate queries (Figures 1e, 3e, and 5e) and inaccurate output statements (Fig-
ures 1f, 5f, and 9f). Most of these differences cause the program outputs to differ, except for the
following cases:
• When the Etch-constructed program misses a conditional branch, the program may still
produce the correct outputs if the rest of the execution does not produce outputs regardless
of the branch taken. Specifically, the corresponding Konure-inferred branch may not contain
any query or may not produce any outputs. Meanwhile, while the Etch-constructed enters
the incorrect branch, it may happen to not produce any outputs (Figure 3c). When a missing
branch does not produce outputs regardless of the branch taken, the missing branch does
not change the program outputs.8
• When the Etch-constructed program misses an SQL query statement, the corresponding
Konure-inferred query’s results may not be used to produce any outputs or to provide
intermediate results for any query affecting outputs (Figure 3e). Even when the corresponding

7An incorrect Etch-constructed program is guaranteed to produce incorrect database traffic for at least one Konure-
chosen value assignment. However, an incorrect Etch-constructed program may not produce incorrect outputs for any
Konure-chosen value assignment.
8Note that the missing branch still affects the database traffic.

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:15

Konure-inferred query produces outputs, these outputs may happen to be a subset of other
existing output values (Figure 7d). When a missing query does not affect the program outputs,
the missing query does not change the program outputs.9
• When the Etch-constructed program references an ambiguous source location, the referenced
source location may be equivalent to the corresponding Konure-inferred source location
(Figures 7e and 8e). In this case, the equivalent source locations are interchangeable and do
not change the program behavior.
• When the Etch-constructed programmisses an output statement, the corresponding Konure-
inferred outputs may happen to be a subset of other existing output values (Figure 6f). In this
case, the missing output statement does not change the set of output values produced by the
program.

In contrast (as expected), the programs constructed with Konure value assignments all converged
to the correct program equivalent to the Konure-inferred program. These results highlight the
effectiveness of the inputs chosen by the Konure inference algorithm.
Taking a closer look at the lines in these plots, most of the lines are non-increasing when

Etch processes more value assignments. This general trend implies that, as Etch observes more
executions of the application, it is able to construct more accurate programs that capture the
application functionality. There are, however, a few situations where the lines can increase.
• In sub-figures (a) and (b), the lines “user_input_miss_out” and “active_input_miss_out” can
increase (Figure 3a) when Etch fluctuates between multiple ambiguous source locations that
are not equivalent for certain unseen value assignments.
• In sub-figures (a) and (b), the lines “user_input_more_out” and “active_input_more_out”
can increase (Figures 3a, 3b, 4a, and 4b) when Etch fluctuates between multiple ambiguous
source locations that are not equivalent or when Etch reaches a new branch but does not
have enough information to eliminate ambiguity.
• In sub-figures (a) and (b), the lines “user_input_incorrect_total” and “active_input_incorrect_
total” can increase because of the two points above.
• In sub-figure (d), the lines “miss_loop_has_query” and “miss_loop_has_if” can increase
(Figures 1d, 2d, and 7d) when Etch reaches a new branch in the Konure-inferred program
that contains a loop but Etch has not yet seen multiple iterations of this loop, hence Etch
does not have enough information to construct the loop structure.
• In sub-figure (e), the lines “diff_query_use_source” and “diff_query_use_list” can increase
(Figures 1e, 2e, 3e, 4e, 5e, 6e, 7e, and 8e) when Etch fluctuates between multiple ambiguous
source locations or when Etch reaches a new branch but does not have enough information
to eliminate ambiguity.
• In sub-figure (f), the line “miss_out_has_query_miss_exist” can increase (Figures 2f, 4f, 6f, 7f,
and 8f) when Etch reaches a new branch in the Konure-inferred program that contains a
query that produces outputs but Etch has not yet seen this query return any data, hence
Etch has not yet observed any output produced by this query.
• In sub-figure (f), the line “diff_out_stmt” can increase (Figure 1f, 3f, 4f, 5f, and 9f) when Etch
reaches a new branch but does not have enough information to eliminate ambiguity.

4 CONCLUSION

We present Etch, a system that observes the inputs, outputs, and database traffic from a running
system in normal use and then synthesizes a model of the application from this information.
Preliminary results indicate that the human user-provided inputs may be insufficient for exploring
9Note that the missing query still affects the database traffic.

Publication date: September 2018.



1:16 Jiasi Shen and Martin Rinard

the functionality in rare usage scenarios, especially for more sophisticated applications. When
the observations are insufficient, Etch may synthesize incorrect programs. Because Konure uses
active learning to systematically build a model of the program, if the semantics of the program
conforms to the Konure DSL, then Konure will correctly infer a program that correctly captures
this unique semantics.

REFERENCES

2018. Getting Started with Rails. http://guides.rubyonrails.org/getting_started.html.
2018. Kandan – Modern Open Source Chat. https://github.com/kandanapp/kandan.
Jiasi Shen and Martin Rinard. 2018. Using Active Learning to Synthesize Models of Applications That Access Databases.

http://hdl.handle.net/1721.1/117593. Technical report.

Publication date: September 2018.

http://guides.rubyonrails.org/getting_started.html
https://github.com/kandanapp/kandan


Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:17

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 1. Etch uses human inputs to construct kandan command get_channels

Publication date: September 2018.



1:18 Jiasi Shen and Martin Rinard

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 2. Etch uses Konure inputs to construct kandan command get_channels

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:19

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 3. Etch uses human inputs to construct kandan command get_channels_id_activities

Publication date: September 2018.



1:20 Jiasi Shen and Martin Rinard

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 4. Etch uses Konure inputs to construct kandan command get_channels_id_activities

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:21

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 5. Etch uses human inputs to construct kandan command get_users

Publication date: September 2018.



1:22 Jiasi Shen and Martin Rinard

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 6. Etch uses Konure inputs to construct kandan command get_users

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:23

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 7. Etch uses human inputs to construct studentdb command liststudentcourses

Publication date: September 2018.



1:24 Jiasi Shen and Martin Rinard

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 8. Etch uses Konure inputs to construct studentdb command liststudentcourses

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:25

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 9. Etch uses human inputs to construct blog command get_article_id

Publication date: September 2018.



1:26 Jiasi Shen and Martin Rinard

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 10. Etch uses Konure inputs to construct blog command get_article_id

Publication date: September 2018.



Using Dynamic Monitoring to Synthesize Applications That Access Databases 1:27

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 11. Etch uses human inputs to construct blog command get_articles

Publication date: September 2018.



1:28 Jiasi Shen and Martin Rinard

(a) Output comparison using value assignments pro-

vided by the human Etch user

(b) Output comparison using value assignments cho-

sen by Konure

(c) Code comparison on conditional branches (d) Code comparison on loops

(e) Code comparison on statements that perform SQL

queries

(f) Code comparison on statements that produce out-

puts

Fig. 12. Etch uses Konure inputs to construct blog command get_articles

Publication date: September 2018.


	1 Introduction
	1.1 Input Collection Methodology
	1.2 Definitions
	1.3 Difference Between Etch and Konure

	2 The Etch construction algorithm
	3 Experimental Results
	3.1 Methodology
	3.2 Results
	3.3 Discussion

	4 Conclusion
	References

