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ABSTRACT

DISTRIBUTED STRUCTURAL ACTUATION AND CONTROL
WITH ELECTROSTRICTORS
Michael Fripp

This document develops a methodology for modeling the dynamic
behavior of an electromechanical system with distributed electiostrictive
coupling. A framework for the derivation of the governing equations is
presented which is sufficiently general to model the dynamics of a broad
range of nonlinear systems.

The modeling starts with a understanding of the constitutive
relationships describing the electromechanical behavior of the electrostrictive
relaxor ferrcelectric, PMN-PT 0.9(Pb[Mg,,;Nb,,3]O0;-0.1(PbTiO;)). The practical
limitations of the constitutive relationships are also presented. The relevant
constitutive relationships for electrostrictors are introduced into a generalized
form of Hamilton's principle. Approximate system equations are derived
using the Rayleigh-Ritz assumed mode method.

The general equations which describe the dynamics of the
electrostrictively coupled electromechanical system are experimentally
validated by examining the static and dynamic response of a cantilevered
beam actuated with an electrostrictive wafer. These equations are
subsequently used in a control algorithm to regulate tip displacement of the
cantilevered beam. A second-order controller with output linearization and
temperature stabilitzation yielded a consistent 60% noise reduction across a
wide range of temperatures and field levels. An adaptive control algorithm
which gave 20% noise reduction was also implemented.
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NOTATION

A Helmholtz free energy: scalar
or surface area: scalar

a number of assumed structural displacement modes
number of assumed electrical modes (i.e. number of electrical surfaces)
Br  generalized coordinate conversion matrix for forces: [ax6] matrix
Be generalized coordinate conversion matrix for charges: [bx3] matrix
C stiffness matrix: [6x6] matrix
C*  electric field varying stiffness: [6x6] matrix
Cd  damping matrix: [6x6] matrix

d piezoelectric coupling term: [3x6] matrix
or amplified disturbance input to the piezoceramic: scalar

D electrical displacement vector: [3x1] vector

E electric field vector: [3x1] vector

€ control error: scalar

€ dielectric of the electrostrictor: [3x3] matrix

F’ hyperbolic field term: tensor

f vector of applied forces: [6x1] vector

G higher-order electrostrictive charge storage matrix: [bxb] matrix
or Gibbs free energy function: scalar

g linearization factor in the output linearization: tensor
or magneto-mechanical coupling term: tensor

r rate of adaptation: matrix

H enthalpy of the system: scalar
or transfer function: scalar

I identity matrix: [axa] matrix

k hyperbolic relaxation factor: scalar

K stiffness matrix: [axa] matrix

K  electric field correction to the stiffness term: tensor
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linear differential operator for elasticity: [6x6] matrix

differential operator for electricity: [3x1] vector

mass matrix: [axa] matrix

electrostrictive constants relating electric field with strain: scaiar
electrostrictive coupling term. Includes a electric field term: [3x6] matrix
modal vector of mechanical strains: [6xa] matrix

modal vector of electric fields: [3xb] matrix

poisson’s ratio

electrical polarization: [3x1] vector

sporitaneous polarization: scalar

modal vector of mechanical displacements: [6xa] matrix

modal vector of voltages: [3xb] matrix

electrical potential: scalar

applied electrode charges: [3x1] vector

temperature factor relating m and temperature: scalar
temperature facter relating k and temperature: scalar
electrostrictive capacitance matrix: [bxb] matrix

infinitesimal quantity of heat: scalar

electromechanical coupling matrix: [axb] matrix
or temperature: scalar

electric field correction to the electromechanical coupling verm: tensor
elastostriction coupling term: tensor

modal amplitudes of physical displacement: [ax1] vector
or elastostrictive coupling constants: tensor

or position

density: scalar

compliance matrix: [6x6] matrix

or system entropy: scalar

or Laplace transform variable: scalar
or velocity error: scalar

strain vector: [6x1] vector
time or ply thickness: scalar

stress vector: [6x1] vector
or sampling interval: scalar

complimentary kinetic energy: scalar
control output

vector of mechanical displacements: [6x1] matrix
or amplified control input to the electrostrictor: scalar

Xiv
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potential energy: scalar

change in potential energy per unit volume at a particular stata: scalar
vector of generalized electric coordinates: [bx1] vector

volume: scalar

complimentary electrical energy: scalar

change in electric energy per unit volume at a particular state: scalar
magnetic energy: scalar

externally applied work: scalar

natural frequency: scalar

control output: scalar

reference model: matrix

tip displacement: scalar

damping ratio: scalar

dummy variable indicating the state of the system: scalar

value of the dummy variable at the end of the path and reflecting the
current state of the system: scalar

Z transform variable: scalar

Superscripts

a

pertains to the actuator
or applied level after output linearization

pertains to the controller
or commanded level before output linearization

desired value

bias point

reference value

pertains the structure

value measured at constant electric field
value measured at constant stress
transpose

inverse

derivative with respect to ¢
derivative with respect to time
estimated value

includes an electric field term
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Chapter 1

INTRODUCTION

Electrostrictors all are ceiamic;
with voltage aid, tiny or gigantic.
Despite high voltage and incredible strain
during large deflections, they feel no pain.
Yet when temperature is thus applied,
sensitive electrostrictors subside.
Cold electrostrictors need not alarm-
they're only shivering to keep warm.

-M. Valere Masingill

1.1 Motivation

The performance required of future precision structures has motivated
a new approach to structural design, where feedback control principles and
advanced sensors and actuators are applied to the design of high performance
structural systems. The optimization through modeling of these controlled
structures will allow higher precision, lighter weight, and more robust
structures.

Inherent to the design of controlled structures is the implementation
of adaptive and sensory materials. These materials are referred to as active
materials. New controlled structures demand increased levels of actuation
and sensing capabilities from materials that have not changed significantly
since the 1970s. As a result, improved performance is provided through a

17



18 Dynamic Actuation and Control with Electrostrictors

better understanding of the material behavior and a more efficient use of the
materials in the applications.

The basis of efficient material utilization lies in the advent of better
modeling of the controlled structure. Such a model would need to include
the coupled dynamics of the electrical and mechanical interactions of the
system. Before an accurate electromechanical model can be created, however,
a thorough understanding of the electrical and mechanical behavior of the
materials is required. The material behavior is most often characterized in
terms of constitutive relationships that detail the coupled interaction of the
electrical and mechanical parts of the material. The limitations of the
constitutive relationships needs to be understood as well as the dependence
of the constitutive parameters on their operating environment, such as
temperature and stress.

An increasing number of the applications involving active materials
use the materials to actuate, control, and sense flexible structures. The large
power density of the solid-state actuators makes them well suited to becoming
an integral component of an adaptive structure. As a result, the interaction
between the structure and the actuator or sensor becomes increasingly
important. The constitutive relationships of the active materials are coupled
with the mechanical behavior of the host structure and the electrical behavior
of the electronics. The actuators and sensors can be configured as point
sources or they can be distributed over the structure. Again, the need for
accurate modeling is paramount.

By the nature of the material, the study of active materials is an
interdisciplinary study. The dynamics of the material are governed by
materials science. The dynamics of the active structure are described through
structural dynamics. The dynamics of the controlled system are found with
control theory. This thesis attempts to incorporate each of these disparate
descriptions of electrostrictors with the goal being the unified understanding
of actuation with electrostrictors.
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1.2 Material Overview

There are many active materials that are currently commercially
available for actuation and sensing: electrostrictors, piezoelectrics,
magnetostrictors, shape memory alloys, shape memory ceramics, and
poiymer hydrogels. This study focuses upon electrostrictive ceramics, but the
general models will be sufficiently general so that they can be applied to a
broad class of the nonlinear active materials.

The objective of this study is to actuate a structure; hence, the most
important p.operty of the active material is that it must be able to input a
large force over a wide range of frequencies. The available force for actuation
is a product of the material stiffness and maximum straia. This product is
known as the actuation potential since it is a rough measure of the amount of
energy that can be imparted into a structure. Another feature of strong
importance is the materials’ bandwidth. The operating frequency of the
material must be larger than the structural modes otherwise only limited
actuation is feasible.

Of lesser importance is the amount of hysteresis and the brittleness of
the material. The hysteresis in a cycle is a measure of the amount of energy
lost and serves as an upper bound on the material efficiency. Excessive
hysteresis leads to significant heating during high frequency excitation.
Additionally, the hysteresis is a phase lag which can be problematic during
control implementation. The brittleness given by a K;. value is a rough
indication of the brittleness of the material. A small K,. is indicative of a
brittle material.

There are several types of active materials which posses a large
actuation potential and a high bandwidth. As indicated in figure 1.1,
piezoceramics, magnetostrictors, and electrostrictors can deliver large forces at
high frequencies. The other commercially available active materials are
lacking one or the other of the two actuation parameters. Piezopolymers and
polymer hydrogels lack the sufficient stiffness needed to actuate a structure.
By their very nature of being shape memory, shape memory alloys and
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ceramics can only successfully operate at low frequencies. The switching
mechanism and tremendous hysteresis prohibits their cycling faster than a
few hertz.

During the remainder of this subsection, a brief description of each
material is presented. Figure 1.1 gives a quick reference for the material
behavior, but each of the materials has more subtle advantages and
disadvantages. Special focus is given to the material’s actuation ability and to
their electromechanical behavior.

Piezoceramics are the most widely used active materials for actuation.
They have a high bandwidth and a large actuation potential. Piezoceramics
have high temperature stability and a good linearity at low electric field levels
(Caay, 1984) (Jaffe, Cook, and Jaffe, 1971). Although these materials are linear
at low fields, the nonlinearity at moderate to high electric field levels is
difficult to express in the form of a constitutive relationship (Chan and
Hagood, 1994).

Magnetostrictive materials are nonlinear materials which are driven
by magnetic field. Magnetostrictors are good materials for actuation because
they posses a high frequency response, a large actuation potential, low
hysteresis, and strong temperature stability (Butler, 1988). Although
nonlinear, the constitutive relationships for magnetostrictive behavior can be
simplified to a set of nonlirear algebraic equations (Carman, 1994) (Kannan
and Dasgupta, 1994). This “friendly” nonlinearity can be easily expressed in
the models developed in chapter 5. As a result, the general equations of
motion for a distributed magnetostrictive system also will be developed.
Actuation by magnetic field is a double edged sword. Significant extra
hardware is required in order to produce a magnetic field, but the field
geometry allows for large displacement rods of magnetostrictor. Thus,
although providing 0.2% strain, magnetostrictive rods can give several
hundred microns of displacement (Anjanappa and Bi, 1994).

Electrostriciors are nonlinear electroceramic materials which are
typically composed of PMN (Pb[Mg, ,sNb,5]O;). These materials feature a large
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actuation potential, high frequency response, and a negligible hysteresis
(Uchino, 1986). Electrostrictors have a significant variation of the
electromechanical coupling with respect to temperature (Blackwood and
Ealey, 1993). Due to the material nonlinearity and the temperature
sensitivity, electrostrictors have principally been used in specialty quasi-static
applications. = Models that describe the dynamic or distributed
implementation of electrostrictors are just being developed (Fripp and
Hagood, 1994). As a result, this thesis focuses upon electrostrictive materials.
The properties of electrostrictors are discussed in more detail in chapters 2
and 3.

Shape memory materials come in two forms: alloys composed of
nickel-based Nitinol and ceramics composed of lead-based PL.ZST. Both the
shape memory alloys and the shape memory ceramics deliver large
deflections and posses high material stiffness (Schetky, 1979) (Rogers, Liang,
and Barker, 1989). However, by the nature of being shape memory materials,
these materials perform at limited frequencies and require dissipative rate
laws for their material description. The phase change in the alloys are
triggered by temperature changes while the phase change in the ceramics can

PZT-5H | Terfenol | PMN PVDF | PAN Nitinol | PLZST
Actuation piezo- | magneto- | electro- | piezo- Polymer | shape shape
Mechanism ceramic | strictor  strictor | polymer | Hydrogel | memory | memory

alloy ceramic

Max Strain 0.13% [0.2% 0.1% 0.07% | 50% 8% 0.9%
Stiffness 10Msi | 7 Msi 17Msi | 0.3 Msi |0.2Msi [ 4-13 Msi| 12 Msi
Density kg/m? | 7500 9250 7800 1780 7100 7500
Hysteresis 0% 2% <1% >10% | High High | High
Bandwidth ] 100kHz | 10kHz | 100 kHz | 100 kHz | <1 Hz <5Hz |<100Hz
Brittleness, 1.4 | 0.9 polymer | polymer imetal =15
K., MPavm ] | ! ;

Figure 1.1: Comparison of the commercially available active materials. For
actuation the most important figures are the product of strain and stiffness and
the bandwidth of the actuation.
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be triggered by either a temperature change or an imposed electric field
(Ghandi and Hagood, 1994).

Polymer hydrogels are a new actuator and are driven by pH variations.
This actuator delivers large strains but is very slow and cannot deliver
significant forces due to the material’s low stiffness (Brock et al, 1994).
Similarly, piezopolymers can deliver significant strains over a wide range of
frequencies but lack sufficient stiffness to effectively actuate a structure. In
fact, the low stiffness of piezopolymers lead to their principle application as a
solid-state sensor (Broadhurst, Micheron, and Wada, 1981) (Kynar, 1987).

1.3 Previous Actuation Models

The previous models for structural actuation with adaptive materials
are limited. An overwhelming majority of the models have focused upon
the linear implementation of piezoceramic actuators. Few have looked at
electrostrictive elements and no one else has considered electrostrictors
distributed in a structure.

Piezoceramics have dominated structural actuation because they are
easy to model at low actuation levels and because they have been
commercially available for decades. At low electric field levels, piezoceramics
are essentially linear elements; the mechanical displacement is proportional
to the electrical displacement and vice versa. Thus, piezoceramics, like other
adaptive materials, can be used as sensors or as actuators. For actuation,
piezoceramics have been used in beams (Bailey and Hubbard, 1985) (Lee and
Moon, 1989) (Hagood et al, 1990), plates (Crawley and Lazarus, 1989) (Lee, 1990)
(Yu, 1993), trusses (Hagood and Crawley, 1988) (Geng and Haynes, 1992), shells
(Tzou and Howard, 1992), box beams (Smith and Chopra, 1990) (Chandra and
Chopra, 1991) and motors (Hagood and McFarland, 1994) (Zhang and Zhu,
1994)

The coupled structural and electrical interaction of “linear"
piezoceramic elements has been investigated. The implementation of
distributed linear electroceramic elements in a coupled electromechanical
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system has been successfully modeled (Hagood et al, 1990). In this model, the
linear constitutive properties of piezoceramics were introduced into
Hamilten's principle.  The resulting governing equations for the
electroelastic system were approximated with a Rayleigh-Ritz assumed modes
technique. The model was validated through experiments with
piezoceramics on a cantilevered beam.

However, Hagood et al. did not include aay of the nonlinear properties
of piezoceramics. Later efforts in modeling actuation with piezoceramics also
neglected the material nonlinearities (Tzou and Howard, 1992).
Piezoceramics strains become nonlinear and strongly hysteretic at large
electric fields. Additionally, the nonlinearity of piezoceramics is a strain
based nonlinearity instead of an electric field based nonlinearity (Anderson,
1989). The nonlinear behavior of piezoelectrics have been extensively studied
(Chan and Hagood, 1994). However, the resulting models are often
sufficiently cumbersome so that engineering implementation is difficult.
Attempts to model the nonlinear behavior of piezoelectric actuation
invariably neglect the fundamental nonlinearities (Yu, 1993).

Electrostrictive actuators consisting of relaxor ferroelectric materials
have also existed for decades. The modeling effort with electrostrictors has
focused upon the material's constitutive relationships. Numerous authors
have produced constitutive relationships in which the electromechanical
relationships and the temperature dependence have been investigated.
Polynomial parameterization in terms of electric field is most common
(Blackwood and Ealey, 1993) but a few authors have utilized a transcendental
function of the electrical polarization (Namboodri, 1992) (Hom and Shankar,
1994).

Although many of the material properties have been characterized,
little attention has been paid to the coupled structural interaction.
Experiments have been conducting utilizing electrostrictors, but the modeling
effort is skimpy. Most often, the electrostrictor is given a large enough electric
bias that the nonlinear behavior is effectively linearized (Regelbrugge et al,
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1994). Although such approaches tend to work, they are inherently brutish
and inefficient.

In summary, those implementing electrostrictors are working by
intuition and by trial and error, essentially operating blindly. The
constitutive parameters are documented but the models on utilization are
nonexistent. The knowledge that has accrued on the linear modeling of
piezoceramics in flexible structures has yet to be applied to the problems of
modeling electrostrictors.

1.4 Objective

Applications involving electrostrictors primarily use the material in
stacks and rely upon the longitudinal properties of the material as opposed to
the smaller transverse properties. A large actuation potential, high set-point
accuracy, and low hysteresis make electrostrictors a choice material for quasi-
static micro-positioning devices. Despite these advantages, few applications
have implemented electrostrictors as structural actuators due to the
nonlinearity and temperature sensitivity of electrostrictors. Piezoceramics
continue to dominate structural control applications.

This document attempts to create an analysis framework through
which approximate governing equations of a nonlinear electroceramic system
with distributed electrostrictive coupling can be expressed and thereby lower
the barriers to application of this material. This general analysis is specifically
applied to distributed electrostrictors in structural actuation. First, variational
principles are reviewed. Then the variational concepts are used to derive the
nonlinear governing equations for electrostrictors. These equations not only
model the mechanical interaction between the electrostrictor and the
structure but also model their electrical behavior.  Using assumed elastic
modes and electric field shapes allows the derivation of general equaticns of
motion for an arbitrary structural system with distributed electrostrictive
inclusions. Dynamic and static experiments upon a cantilevered beam
corroborate the model. Finally, the governing equations are utilized in a
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second-order controller with output linearization and adaptive contro!l
algorithm for vibration control.

1.5 Overview

This document seeks to provide a comprehensive treatise on the
utilization of electrostrictive elements. The previous works on relaxor
ferroelectrics are reviewed and then extended into the reaim of application
through a general model of an electrostrictively coupled electromechanical
system. The methodology used to model the dynamics of electrostrictive
materials is sufficiently broad so that it can be applied to any system which is
composed of elements which can be described by a set of nonlinear algebraic
constitutive relationships.

In chapter 2 the micromechanical world of electrostrictors is broached.
The crystalline properties and configuration of the relaxor ferroelectric are
reviewed. Some of the present and future applications of electrostrictors are
given.

In chapter 3 the constitutive relationships for electrostrictors are
derived in terms of electric field and of electrical polarization. The
electromechanical coupling is modeled as hyperbolic tangent squared and as a
quadratic relationship. The limitations of the different formulations are
given. Methods to model the temperature behavior are also presented.

In chapter 4 the constitutive properties of electrostrictors are
investigated experimentally. The material behavior is compared with the
material models that were developed in chapter 3. The electrostriction,
elastostriction and temperature dependence is presented. During this section,
data on one-dimensional constrained actuation is also presented. The electric
field correction to the material stiffness is presented as well as evidence that
the nonlinearity of electrostrictors is fundamentally a electric field-based
nonlinearity.
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In chapter 5 models of an electrostrictively coupled electromechanical
system are derived. Hamilton's principle is applied to a nonlinear
electromechanically coupled system. The general form of Hamilton's
principle is simplified for the case when a thermodynamic formalism was
used to describe the constitutive relationships. The most general form of
Hamilton's principle is used to derive the governing equations for the
electromechanical system. The governing equations are applicable for finite
elements analysis or an assumed modes method. Simplifications of the
governing equations are presented for the case when there is only one
actuator on the structure.

In chapter 6 experimental verification of the governing equations
derived in chapter 5 is presented. Results from the model and the
experiment are compared in the case of quasi-static actuation, dyramic charge
control, and over a wide range of actuation frequencies. The effect of the
material's quadratic nonlinearity is also presented.

In chapter 7 the results of using the electrostrictive actuator for
vibration control are presented. A second-order control loop and an adaptive
control algorithm are utilized. These closed loop tests are performed at
different temperatures in an effort to explore the effect of temperature on the
control algorithm.

In chapter 8 the effectiveness of the modeling effort is summarized as
well as providing a synopsis of the experimental and control effort in this
study. The contributions provided by this thesis are also listed. For the casual
reader, the author suggests that section 8.2 be perused first. This should allow
the readers to focus their time most efficiently.




Chapter 2

MATERIAL OVERVIEW

Electrostrictors, electrostrictors
straining with high energy.
Electrostrictors - in a few short years

what will you mean to me?

Activated at Curie temperature:
do you enjoy electrical abuse?
Bonded to larger structures,
just what will be your use?

-Greg Will

Modern electrostrictors provide strains as large as 0.1%, poses high
mechanical stiffness, exhibit little hysteresis, are isotropic at zero electric field,
and do not require poling. This chapter seeks to explain the micromechanical
properties that lead to these material behaviors. The description starts with
the crystalline properties of the material. The micro-mechanical properties
are then described in context with existing applications of electrostrictive

materials.

2.1 Crystalline Description

The piezoelectric effect was discovered in 1880 when Pierre and Jacques
Curie discovered that crystals develop electrical polarization under the
influence of an external mechanical force (P.G. DeGennes, 1982.). However, it
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took until the 1950s before electrostrictors were popularized by
G.A. Smolenskii (G.A. Smolenskii, et. al, 1961.). Modern electrostrictors were
discovered during the development of integrated electronics in the 1950s and
the push for higher dielectric materials. As the dielectric permittivity of the
materials increased, it was recognized that the ferroelectric properties also
increased. The rise of PMN (Pb[Mg,,sNb,,;]O,) as the electrostrictor of choice
occurred during the late 1970s anc! 1980s.

All crystals, whether piezoelactric or not, exhibit an electrostrictive
effect and produce strains proportional to the square of the electrical
polarization. Electrostrictors which are used for actuation have a perovskite
crystal structure and are ferroelectric in nature. These electrostrictors can be
placed into a subgroup of ferroelectrics known as relaxor ferroelectrics (A.F.
Devonshire, 1954). The placement of relaxor ferroelectrics in terms of the
material symmetries can be seen in figure 2.1. Most of the
noncentrosymmetric cystral structures are piezoelectric in nature. However,
not all of the asymmetric piezoelectric crystal structures result in strain when

Symmetry Point Groups
Noncentrosymmetric Centrosymmetric
Piezoelectric

Polarized under stress
[

Pyroelectric
Spontaneously polarized

Ferroelectric Relaxor Ferroelectric
Electric field reversible Dispersive phase transition
pyroelectric

Figure 2.1: Classes of crystalline material. This thesis focuses upon
the relaxor ferroelectric.
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Figure 2.2: As temperature increases, the hysteresetic ferroelectric
behavior degerierates into an algebraic nonlinearity. The transverse
expansion of 0.9PMN-0.1PT is shown here.

polarized. A subgroup of piezoelectrics known as ferroelectric have the
necessary structure that allow for useful strain when polarized. The
piezoceramics used in engineering applications belong to the subgroup
known as ferroelectrics (Haertling, 1986).

Relaxor ferroelectrics are a subgroup of ferroelectrics. In fact, relaxor
ferroelectrics are ferroelectric at low temperature. The spontaneous
polarization of relaxor ferroelectrics slowly diminishes over a range of
temperatures during the phase transition known as the Curie range. The
effect of this transition is that the hysteretic response slowly degenerates into
an algebraic nonlinearity, as shown in figure 2.2. This diffuse phase
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Unpolarized State Polarized State
Electric Field
Atomic
Polarization
Space Charge
Polarization

Figure 2.3: Different styles of polarization. Every material exhibits
atomic polarization but relaxor ferroelectrics also exhibit space charge
polarization. It is the space charge polarization that leads to the large
strains in relaxor ferroelectric electrostrictors.

transition differentiates relaxor ferroelectrics from standard ferroelectrics
(Cross, 1987).

It is often misconstrued that relaxor ferroelectrics are differentiated
from standard ferroelectrics by their large dielectric permittivity. The peak
relative dielectric permittivity of the typical relaxor ferroelectric is around
20,000, which is very large. However, most ferroelectric materials have a
relative dielectric permittivity around 20,000 when heated to their Curie
temperature. The true difference between the materials is that relaxor
ferroelectrics do not experience a sharp phase change at the Curie point like
typical ferroelectrics. Instead, relaxor ferroelectrics have a diffuse phase
transition.

Although other materials also have large dielectrics, the electrostrictive
effect is intimately associated with the relaxor ferroelectric's large dielectric
permittivity. The electrostrictive effect that is present in all materials arises
from a stretching of the atomic structure or an atomic polarization, as shown
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O Oxygen
‘ %Magnesium and %Niobium

Figure 2.4: Unit cell of the perovskite crystal structure of
PMN, Pb[Mg,Nb,;]O,. The actual crystal structure will be
complicated by the addition of other dopants, such as
PbTiO,.

in figure 2.3 (Solymar and Walsh, 1988). Atomic polarization is based upon
the deformation of the electron cloud by the applied electric field. As a result,
this polarization can respond at high frequencies but delivers negligible
strains. Relaxor ferroelectrics also exhibit a space charge polarization. This
type of polarization features a limited transport of the ions. The magnitude
of the deformation is related to the dielectric permittivity of the material
(Moulson and Herbert, 1990).

Each of the preceeding “mesoscopic” behaviors is intimately related to
the crystalline structure of relaxor ferroelectrics. In the unstressed state
within the Curie temperature range, relaxor ferroelectrics exhibit a cubic
perovskite crystal structure. Perovskites have the general formula of ABO;
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O Lead
Oxygen

e Magnesium/Niobium

Figure 2.5: The perovskite structure is built of corner-shared
octahedral cages.

where A and B are metals, the positive ions should have a total charge of +6;
A and B must be of different sizes; and the smaller, higher charged ion must
be a transition metal (Braithwaite and Weaver, 1990). In the case of PMN, the
large lead ions (ionic radius of 0.132 nm, charge +2) fill the A position and are
balanced with the small magnesium and niobium ions (radius of 0.078 nm,
charge +2 and 0.070 nm, charge +5, respectively) which fill the B position in
the Perovskite ABO3 formulation. The total charge of the lead, magnesium,
and niobium atoms balances the charges from the oxygen.

The simple perovskite structure of PMN is illustrated in figure 2.4. In
this crystalline structure, the corners of the cubic structure are lead atoms, the
face center positions are filled with oxygen and the body center is occupied by
either a magnesium or a niobium atom. The ratio of lattice sites filled by
magnesium or niobium is dictated by the stoichimetric ratio. The addition of
lead titinate, PbTiO,, replaces the magnesium and niobium ions with small
titanium ions (ionic radius of 0.068 nm).

The magnesium, niobium, and titanium atoms are randomly
distributed throughout the Perovskite crystal structure. This random
distribution leads to two of the observered mesoscopic behaviors: the
existance of a Curie range and the large strains. The Curie range arises
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because the random distribution of magnesium, niobium, and titanium leads
to random distributions of cation-ordered microvolumes throughout the
crystal. These microvolumes exhibit widely different Curie temperatures. As
a result, the Curie transition is smeared across a Curie range. The size of the
microvolumes changes the behavior of the material. Thus, for example,
changing the sintering temperature from 1100°C to 1200°C alters the size of
the microvolumes and lowers the dielectric permittivity by 50% at the center
of the Curie range (Nomura and Uchino, 1982).

The random distribution of cations also leads to a larger electrostrictive
coupling. The disordered arrangement of cations gives a larger “rattling”
space than an ordered arrangement. The larger magnesiusm atoms prop
open the lattic framework and allow the smaller niobium and titanium
atcms to rattle around. When an electric field is applied to a disordered
perovskite, the niobium can shift easily within the rattling space. As a result,
larger polarizations are expected. As a result, relaxor ferroelectrics with a
disordered structure outperform normal perovskites (Nomura and Uchino,
1982). The octahedral cages which allow the ordered rattling are formed by
shifting the unit cell in figure 2.4 by a half width. The resulting structure is
shown in figure 2.5. Figure 2.5 does not show, however, the random
distribution of magnesium, niobium, and titanium which ~mplifies the
rattling and the resulting strains.

Above the Curie range, the bonds lengthen and the oxygen cages form
a sloppy fit around the magnesium, niobium, and titanium atoms. Since
there are no internal perturbations, the structure is symmetrical and cubic.
As the material is cooled, the bonds shrink. In the Curie range, the fit within
the lead cage is nearly bistable. This leads to the very large dielectric and large
strains of the material in the Curie range. Below the Curie range, the bonds
shrink further and the material is forced to assume a net polarization and
behave as a ferroelectric material (Braithwaite and Weaver, 1990). As a result,
electrostrictors are typically used near their Curie range. At these
temperatures the material exhibits maximum strain. The result of operating
near the Curie temperature is that the electromechanical coupling and the
hysteresis are strongly temperature dependent.
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There are several material behaviors resulting from perovskites being
a symmetric cubic structure around the Curie range. Due to the internal
symmetry, there is no macroscopic polarization of a relaxor ferroelectric when
there is no applied electric field. The absence of spontaneous polarization at
the crystalline scale translates on the macroscopic scale to very little hysteresis
and an excellent zero electric field set point strain response for temperatures
above or near the Curie range.

2.2 Applications

This section details many of the applications of electrostrictive
materials. Relaxor ferroelectrics are most often utilized as quasi-static micro-
positioning devices although there are some applications involving dynamic
uses of electrostrictors.

The optical community was one of the first disciplines to embrace
electrostrictors. The small hysteresis, long term stability, and high actuation
potential allowed the development of solid-state adaptive optics (Uchino et
al, 1981). Ground-based adaptive optics seek to utilize the electrostrictor's
quick response to deform a mirror to cancel the refractive turbulence of the
atmosphere. Space-based adaptive optics seek adaptive material which would
be used to achieve a desired mirror contour and correct for gravity-induced
curvature.  Also precision alignment is an important space-based
requirement. Electrostrictors are attractive for use in space due to the small
power requirements inherent to a material with negligible hysteresis and for
their good set point history when there is no power. Most of the adaptive
optics configurations have utilized the material in stacks. The stacks deform
the mirror by pushing against a rigid mount (Ealey and Davis, 1990). In a
simple quasi-static scenario, the transverse properties of the electrostrictor
have also been used to alter the shape of a mirror (Nomura and Uchino,
1983).

The optics community, as well as others, have used electrostrictive
stacks as micropositioning devices. In the optics realm, electrostrictors have
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been used to adjust the placement of mirrors in a bistable optical device in
order to stabilize the intensity of a laser (Gomi et al, 1982). In the recent repair
of the Hubble Space Telescope, electrostrictive stacks were used to adjust the
placement of the replaced articulating fold mirror. Electrostrictive stacks
have also been used in semiconductor mask alignment for VLSI and in X-ray
lithography position control (Levinson, 1988).

The quick response of electrostrictors allows their utilization as on/off
servo controllers. Some of the impact dot matrix printers have an
electrostrictive stack to impact the printer ribbon. Another prototype printer
has an electrostrictive bimorph to impact the printer ribbon (Uchino, 1986).
In either configuration, mechanical magnification is required. The smart
material printers are reported to offer faster performance with lower energy
consumption and reduced noise than the standard mechanical design .

Dynamic utilization of electrostrictors as actuators has been limited.
Martin Marietta is currently developing a line of active vibration isolators
that utilize stacks of electrostrictors to provide high frequency and small
displacement control. The electrostrictive stacks are used in conjunction with
a shape memory alloy bimorph. The shape memory component provides
low frequency, gross position control while the electrostrictor provides high
frequency fine tuning (Hom and Shankar, 1994b).

Electrostrictors have also been utilized as sensors. A medical ultrasonic
probe has been built with electrostrictors used as sensors. The development
of advanced acoustic imaging systems has led to the necessity of different
electromechanical gains at different positions within the probe. The new
ultrasonic probe provides variable gains by capitalizing on the nonlinear
electromechanical coupling offered by electrostrictors. The linear and phased
array acoustic imaging system was constructed with PMN-PT in a 1-3
composite with polyurethane. The gain of the sensor was adjusted by altering
the electric field bias across the electrostrictive elements (Takeuchi et al, 1989).

The transverse sensing properties of electrostrictors have also been
utilized (Namboodri and Rogers, 1992). In this case, an electrostrictive wafer
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was surface bonded to a cantilevered beam. The charge on the wafer was
measured. By adjusting the DC electric field, different strain sensitivities
were obtained. The ultimate goal of this style of variable gain sensor »uld
be to produce a modal sensor.

In summary, the state of the art for electrostrictors consists primarily of
electrostrictors in stacked configuration being used as micropositioning
devices. In addition to further developments of the applications already
mentioned, electrostrictors will also be utilized in solid state motors and in
micromachining tool control. Future implementation of electrostrictors is
hampered by two factors: the temperature dependence of the
electromechanical coupling and a lack of modeling methodologies for
distributed actuation and sensing configurations.



Chapter 3

CONSTITUTIVE EQUATIONS

I am an actuator. | am a sensor.
I live for voltages applied on my ends.
With the help of electricity,
| can change shape and even bend.
But temperature is my Achilles Heel,
The problem is the variation.
For in the fall | may work right,
Yet in the summer | take a vacation
-Mandy Malone

This chapter derives the form of the coupled equations describing the
Lehavior of electrostrictive relaxor ferroelectrics. These constitutive
relationships are simplified by noting material symmetry and employing
experimental observations.

The electrostriction effect is defined as being the second-order
relationship between strain and electrical polarization (Devonshire, 1954).
Formulation of the constitutive relationships in terms of polarization is
popular within the materials science community. Applications oriented
engineers tend to prefer constitutive relationships in terms of electric field
since the electric field tends to be prescribed instead of the polarization. The
constitutive relationship may include hyperbolic tangents or algebraic powers
of the fields. Each of these forms are merely variations of the thermodynamic
potential.

37
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This chapter starts by investigating the thermodynamic fo.malisn.
This formalism is applied to the symmetries inherent to electrostrictors. The
constitutive relationships are parameterized in terms of electric fieid and in
terms of electric polarization. The higher-order algebraic terms are simplified
to quadratic functions and to hyperbolic tangent functions.

3.1 Thermodynamics

It is possible to describe an electro-mechanical system by three
independent variables chosen from the pairs (stress, T, and strain, S), (electric
field, E, and displacement, D), and (temperature, O, and entropy, s). The other
three variables become the dependent variables of the system. The
thermod; namics of the system give the relationship between the variables.
In other words, the first and second laws of thermodynamics maintain the
symmetry between each of the coupled equations. This section closely follows
the corresponding section in Lines and Glass (Lines and Glass, 1977).

The first law of thermodynamics describes the conservation of energy
in a unit volume. The change in internal energy, dU, is given by

dU=dQ+dw (3.1)

where dQ is an infinitesimal quantity of heat and dW is the total work done
on the unit volume. Assuming reversibility, the second law of
thermodynamics relates the increment of heat to the absolute temperature, O,
and the system’s entropy, s, by

dQ = Bds. (3.2)
The work done on the system is the sum of the mechanical and electrical

contributions

dW = [(T;dS; +E,dD,, )dv.
v (3.3)
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Substituting equations (3.2) and (3.3) into equation (3.1) the first law becomes!

Clearly, if S, D, and s are chosen as the independent variables, then the
dependent variables are

)" au ™ JUNSP
Tij ={-és—) y Em =(-a-D—) R and 9=(E’) (35)

ij i

wherc the superscripts indicates that the designated variables are held
constant. Each of these equations are constitutive relationships for the
system.

Often the form given in the previous equations does not lend itself to a
particular application. In such cases additional thermodynamic potentials can
be added without changing the inherent thermodynamics of the system.
Since the three independent variables can be chosen in eight different ways,
there are eight possible thermodynamic potentials. They are, in addition to U,

Helmbholtz free energy A=U-6s

enthalpy H=U-T;§;; -E,Dy

elastic enthalpy H; =U-T;S;

electric enthalpy H,=U-E_ Dp,

Gibbs free energy G=U-T;S;; -EDy, —6s

elastic Gibbs energy G, =U-TyS;; - 6s

electric Gibbs energy G, =U-E_D —6s (3.6)

t There is a discrepancy between the definition of internal energy between the form given
in Devonshire (Devonshire, 1954) and the form given by Lines and Glass (Lines and
Glass, 1977). Devonshire defines the differential of the internal energy as

dU = -T;dS;; + E,,dP,, + 6ds.

which is clearly different from the form given by Lines and Glass in equation (3.4). The
change in *he sign leads to fundamental changes in the formulation of the thermodynamic
relationships. I do not understand how Devonshire can say that work supplied by a force
over a distance, TdS, decreases the energy in the system. Although I am leath to say this,
it appears that Devonshire is wrong.
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Each of the thermodynamic forms in equation (3.6) are equally valid forms
from which to generate the material constitutive relationships. The
differential forms describing infinitesimal changes in these thermodynamic
potentials are, using equation (3.4),

Helmholtz free energy dA = -sd@ +TydS;; +E,dD,

enthalpy dH = 6ds - S;;dT;; - D,,dE,,

elastic enthalpy dH, = 6ds - S;,dT;; + E;,dD,

electric enthalpy dH, = 8ds + T;dS;; - D, dE

Gibbs free energy dG = -sd® - 8;dT}; - D, dE,

elastic Gibbs energy dG; =-sd® - §;dT;; + E,dD,,

electric Gibbs energy dG; =-sd6 + T;dS;; - D, dE,, (3.7)

The astute reader might have noticed the preference for electrical
displacement instead of the electrical polarization. Much of the ferroelectric
and relaxor ferroelectric literature uses the polarization, P, explicitly rather
than the electric displacement. Since D=¢,E+P, the thermodynamic formalism
can be easily applied to the conjugate pair (P, E) rather than (D, E)
(Devonshire, 1954). This is not done here for engineering reasons. Firstly,
imposing the experimental constraini of constant polarization is exceedingly
difficult. Thus, defining material constants in terms of constant polarization
makes little sense. Secondly, although a set of thermodynamic relationships
analogous to equations (3.6) exists in terms of P and E, they do not possess the
external properties normally associated with free energies in connection with
questions of stability although the contrary is often assumed. The reason is
that the variable D enters the work function and, as a result, enters the laws of
thermodynamics in a simpler and more natural manner than P (Lines and
Glass, 1977). Nevertheless, for high dielectric materials such as
electrostrictors, the difference between electrical displacement and electrical
polarization is largely academic.
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3.2 Electric Field Expansion

3.2.1 Tensor algebraic form

The first question that must be addressed when forming the
constitutive equations is what are the preferred independent variables. As
indicated by the eight thermodynamic potentials shown in the previous
subsection, there are numerous choices. For material characterization, it is
easiest if the independent parameters are temperature, strain, and electrical
displacement. Strain is more easiiy measured than stress and electric field is
more easily specified than electrical displacement. From the thermodynamic
expressions given in equation (3.7), it is clear that either the enthalpy function
or the Gibbs free energy function should be used. This section will use Gibbs
free energy where

dG =-sdO - Sldel] - Ddem (38)

The direct electrical and mechanical effects are clearly expressed in
equation (3.8) but the form of the electromechanical coupling is yet unknown.
The electrostrictive term for the direct electrostriction effects is defined by
(Blackwood and Ealey, 1993)

1 9°S; 39)
My, =— .
v 2 JE 0K,
and converse electrostriction effects is given by
1 2°D,,
.= — . 3.10
Mg = IT,7E, (3.10)

The other electromechanical coupling terms are defined by analogy.

At this point in the derivation, expansions are given for each of the
term:s in the Gibbs energy formulation. Assume a polynomial expansion for
all of the internal energies. Neglecting temperature effects, the full Gibbs {ree
energy function becomes
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dG = -3 €0uEnEy =3 EmmoEmEnEo = 4 EmnopEmEnEEp—-h.o.t.

- %Sijleikal - %sijklmnTikalTﬂm —hot (3.11)
~ Uikt Em T T ~ Fnnija Em En T T ~ Dimnoijt EmEnEo TjjTig —-h.o.t.

- dlijmTu - mmm]EmEnTu - gmnoijEmEnEoTij —h EmEnEoEpTij —---h.o.t.

mnopij
where constants have been added to the first two lines for later simplicity.
The first line of the Gibbs energy expansion represents the electrical energy

terms and the mechanical energy is represented in the second line. The last
two lines of equation (3.11) couple the mechanical and electric energies.

Temperature has been removed from an explicitly representation in
the thermodynamic formalism. The thermal variation will be included later
in this chapter as a variation in the material constants. Either method of
including the thermal effect will provide good experimental correlation.
However, including the thermal effect as a variation on the material
parameters is easier to measure.

Expressions for the electrical displacement and mechanical strain are
obtained from the partial derivatives of ea'*.aon (3.7);

. T E
(7)o () o

ij
Evaluating the variation gives the constitutive relationships:
D = €nnEn + €mnoEnEo + EmnopEnEocEp+--h.0.1.
+ umijleijTlu + 2r,,,,,ij,dE,,Tikal + 3nmnoijklEnE’oTikal+' --h.o.t. (3.13)
+d ;i Ty + 2m B Ty + 38 mnoiiEnEo Tj + 4h E EE,T;+-ho.t
Si; = Sijt Tia + Sijiamn Ta Tmn +--he 0.1

mnopij

+ 2umijklEmTkl + zrmnijklEmEnTkl + 2nmnoijklEmEnEoTkl +--h.o.t.
+ dmijEm + mmnijEmEn + gmnoijEmEnEo + hmnopijEmEnEoEp+' --h.o.t.
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The form of the constitutive relationships in equation (3.13) are very
general and, consequently, are not very useful for electrostrictive actuation.
Knowledge of the material behavior needs to be introduced. The energy
formulation for a purely electrostrictive material is simplified by the material
symmetry. Due to the crystal center of symmetry in the perovskite structure,
all odd-rank permittivity terms in the Gibbs energy expansion are necessarily
zero. Additionally, mjjms=mpni. As a result, the piezoelectric terms, d and g,
the elastostriction terms, u and n, and many of the electrical energy terms are
zero. Neglecting these, the constitutive relationships for an electrostrictor
become

Dy = €4nEn + EmnopEnEoEp + 21 i En T Ty +--h.o.t.
+2m i EqTij + 4h o EREGE Ty +++h.o.t.

(3.14)

Sij = Sijlekl + SijklmnTlemn + 2rmnijklEmEnTk.l +---h.o.t.

+ My EQRE, + hmnopijEmEnEoEp+‘ ~h.o.t.

In the literature, the higher-order terms typically are dropped from the
electrostrictive constitutive relationships. This yields

Dm = EmnEn +2mmnuEnT“ (3 15)

Sij = Sijlek.l + ZIMljuEmEnTu + mmmJEmEn

The dielectric permittivity, £, indicates the charge stored in the
capacitive element of the electrostrictor at constant stress. The electrostriction
term, m, is the electromechanical coupling term. The compliance, sE, relates
stress and strain at constant (zero) electric field. The elastostriction term, r,
can be thought of as either an electric field induced correction to the
compliance or a stress induced correction to the electrostrictive coefficient.
The electric field varying compliance, s*, is given by

* E
Sijia = Sijit + 20 mnijki EmEn (3.16)

The stiffness variation and importance of the elastostriction term is addressed
in detail in chapter 4.
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Neglecting the elastostriction term, the electrostrictive constitutive
relations can be simplified to the quadratic model.

D, =€£E, +2m ET,

mnij—~n * ij

(3.17)
EE +sE

Sy =mEE; +suTy.

The quadratic model is the form most often quoted in the electrostrictive
literature. The limitations of equation (3.17) are addressed in more detail
during the experimental section of this thesis.

The form of the constitutive relationships given in equation (3.17) is
the forms most easily measured experimentally. For example, the m constants
are found by applying an electric field on an unconstrained (i.e. zero stress)
material. However, letting strain and electric field be the independent
variables eases the development of the equations of motion using variational
principles and allows for simpler and intuitive assumed modes of
displacement and voltage. Rewriting the quadratic constitutive
equation (3.17),

D, =&LE, -2m_,Ciym,, E.EE +2m_.E CLS,

mnij 0 ijkl
(3.18)
T, = —Ciumy, EE, +CLS,.
-1
where Cgu =(S§'u) . This form could also have been found by evaluating a

different thermodynamic form, such as the electric enthalpy or the electric
Gibbs energy.

3.2.2 Matrix algebraic form

It is possible to express the quadratic electrostrictive constitutive
relationships in matrix notation,
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D] (D) E,
D, D, E,
D,| |D, E,
S Si T
HRHRHIEE e
S; Ss3 m st AT, (3.19)
Sy 28,3 T,
Ss 2S5 Ts
1Se)  (2S:2) w3

where m* varies with the electric field. The m values in the tensor notation
and in the expanded matrix are material constants. Most of the
electrostrictive literature reduces the fourth order tensor notation on the
electrostriction term to two indexes; mpyi=mp;. Expanding the matrices, the
electrostrictive constitutive relationships in engineering notation are

e 00
eT=|0 el o
T
0 0 & ]| (3.20)
myE; mpE; mpE;, 0 myE; myE,
m' = mE;, mE; mppE;, myE, 0 mykE,

my,E; m,E; myE; myE; myE; 0 | 5ng (3.21)
sE s5s5 0 0 0]
sfz sﬁ st 0 0 0
sE = 2S5 0 0 0
0 0 0s§, 00
0 0 0 0st O
[0 0 0 0 0 si) (3.22)

Equation (3.19) illustrates the similarities between the simplest form of
the constitutive relationships for electrostrictors and piezoelectrics. For
example, the form of m* with electric field only in the 3-direction is similar in
form to the d electromechanical coupling matrix for piezoceramics.
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However, there are some strong dissimilarities. Electrostrictors are isotropic
materials when there is no applied electric field. Piezoceramics are
orthotropic due to their poling. In addition, a factor of two is needed in the
electromechanical coupling between stress and charge but this factor is not
needed in the coupling between electric field and strain.

Electrostrictors are most often described in terms of index notation
because the matrix form of the electromechanical coupling buries part of the
electric field dependence in m*. The superscript star indicates that electric field
terms are buried within. Index notation does not obscure the extra electric
field term. When matrix notation is utilized in this document, the matrix
forms are those described in this subsection.

3.2.3 Hyperbolic tangent form

In the previous subsection a very general form of the electrostrictive
constitutive relationships was given in equation (3.14). This relationship was
simplified to the form given in equation (3.15) by neglecting higher-order
terms. As an alternate simplification, the higher-order terms can be
combined into hyperbolic tangent formulation. This is an empirical
simplification that is introduced solely because it works well.

To ensure compatibility between the electrical and mechanical
constitutive relationships, the hyperbolic form should be introduced into the
Gibbs energy formulation. The polynomial expansions of the electrostriction
coupling terms can be combined into a hyperbolic tangent formulation. In
other words, let

EmEnTy = hnopiEnEnEoE,Tj—-h.o.t.= -I:—zmijijtanhz(kIEl)ElmT%‘(&za)

M i EmEn mnopij ~m

where k is a relaxation factor. Similarly, the polynomial expansions of the
elastostriction terms can be combined into a hyperbolic tangent formulation;
Tk EmEnTiiTu — tmnopit EmEn EEp T Ty —+-h.o.t.

1 2 E_E, (3.24)
=-7 7 ' mnijia Ti; Ty tanh? (kIEl) =21 EI2



Chapter 3. Constitutive Equations 47

Incorporating the transcendental electrostriction term into equation (3.11), the
Gibbs energy formulation becomes

dG =-1eELE, -1, EnE.E, - EnE,EE,—h.o.t

4 mnop m
uT Tu ljklmnTl]Tle —--h.o.t. (325)

1 2 E E 1 2 E_E
d I mnijia Tij L i tanh® (KIEH) =20 \EP -menijTij tanh (kIEI)-—lmEI 5

Evaluating the derivatives of the energy formulation yields the
material constitutive relationships. The higher-order dielectric terms are
zeroed as well as the higher-order stress-strain coupling. The resulting
equations of motion become

D.=eTE +2m sinh(kIED)_E, sinh(kIE) E,
m = Emnn T Mo T cosh3(kIEI)lEl k Fmoijid 7 ”cosh3(klEl)IEI 626
S = 5T +§L m.,tanhz(klEl) “+-k% mmmTutanhz(klEl)E mEn |

These equations represent the nonlinear electrostrictive constitutive
relationships at constant temperature. This form of the constitutive
equations will be called the hyperbolic model.

The hyperbolic form of the constitutive relationships given in
equation (3.26) also need to be reformulated so that strain is an independent
variable.

. . E
Ty = CiuS; -?‘;Ci,-,‘,m,nnij mnhz(klsl)#

o sinh’(KIE}) E,E,E,
MY cosh (KIEl)  IEP

EE

sinh(kIEl) E_
D, =¢,E, +#m_.Ch:S,, —F————L
k mageite o h3(kIED) Bl K

« sinh(klEl) E
+%rmnijklctuij pakl -

-2
3

(3.27)

———nfg g M vy, S pq tanh? (kI EJ
cosh3(kIEI)IEI[ pqT k2 vt )

E,E.E.E,
+de M tanh (KIE) ’__usr‘_]

The fourth and higher-order electric field terms and will be neglected in

subsequent analysis. The star superscript on the stiffness matrix indicates that



48 Dynamic Actuation and Control with Electrostrictors

electric field terms are buried within. The variable stiffness matrix is defined
as

. E_E )"
Cij = (s!}u + 2 Fonniga tanh%msn#) (3.28)

3.3 Electrical Polarization Expansion

The constitutive relationships can be derived for cases where
polarization is used as the dependent variable instead of electric field (Hom
and Shankar, 1994a) (Namboodri, 1993). These researchers have preferred to
expand the constitutive properties where stress is a resultant instead of strain.
As a result, the Helmholtz free energy function is used. As given in
equation (3.7), the Helmholtz free energy function is given by

Electrical displa_ement can be converted to electrical polarization by noting
D=¢,E+P. In the case of electrostrictors, the relative dielectric permittivity is
very large. The polarization term depends on the total dielectric, ¢,¢,, and will
be much larger than the £,E term. As a result, electrical displacement is
approximately equal to electrical polarization. Since electrical polarization is
preferred in the material science community instead of electrical polarization,
electrical polarization will be used in this section.

The relationships between the Helmholtz free energy function and the
other state variables are given by

E S

The thermal dependence has been dropped from the thermodynamic
formalism. The thermal terms could be included as extra terms in the
thermodynamic formalism or as a parameterization of the material constants.

A form of the Helmholtz free energy function needs to be found which
will describe the constitutive behavior of electrostrictive materials. The first
assumption is that the electrically induced strain is proportional to the square
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of the electrical polarization. Linear material behavior of strain with relation
to stress is assumed. The last major assumption is that the change in
polarization with respect to electric field at constant stress is given by

P, =P*tanh(kE, ) (3.31)

or
E, = karctanh( = ) (3.32)

where Ps is the spontaneous polarization and k is the relaxation factor. With
a bit of head-scratching, the Helmholtz free energy function is given by

A= Cgkl( Ql_,pq P q)( kl_lemanPn)+

[P arctanh(g )+1Ps m(PSZ —Pipi)]

Once the Helmholtz free energy has been formed, the constitutive

(3.33)

relationships are easily found. Substituting equation (3.33) into the definition
of the constitutive relationships, equation (3.30), the electrostrictive
constitutive relationships become

T = Ci QuimnPmPn + CiuaSij

1 p_ (3.34)
Em = _2C1jlek.lmnPnSu + 2CijleklmnPinPn + rarcmh(F)

In summary, the constitutive relationships can be derived in terms of
electrical field or electrical polarization. Additionally, the relationship
between strains and electric field can be modeled as an even powered
polynomial or as a hyperbolic tangent. Although there are subtle variations
between them, the different forms are equivalent. This report will utilize an
even powered function and hyperbolic function of the electrical field as the
base of the constitutive relationship due to the engineering ease of this form.
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3.4 Temperature Variation

The variation of mechanical properties with respect to temperature is
the Achilles heel of electrostrictors. The electrostriction term can vary by as
much as one percent per degree Centigrade (Blackwood and Ealey, 1993).
Additionally, the dielectric permittivity is strongly temperature dependent.
The extreme temperature dependence arises from operating the material in
or near its Curie range.

Temperature produces a diffuse phase change in electrostrictors
between paraelectric and ferroelectric states. Below the Curie range,
electrostrictors behave like a standard ferroelectric. As a result, the material
exhibits significant hysteresis and large strains in this region. As the Curie
range is passed, the hysteresis as well as the large strains diminish.

Temperature dependence is typically included in the thermodynamic
formalism from which the constitutive relationships were derived. (It is a
+hermodynamic formalism!) However, the thermal dependence was dropped
from the constitutive relationships in favor of including a thermal
dependence on the material constants.

When the constitutive relationships are parameterized in terms of the
polarization, then the relaxation factor, k, the electrostrictive coefficient, Q,
and the dielectric permittivity, £, need to be characterized. The spontaneous
polarization, Ps, is assumed constant. Parameterization in terms of the
electric field requires characterization of the relaxation factor, k, the
electrostrictive coefficient, m, and the dielectric permittivity, €.

The variation of the electrostrictive effect with respect to temperature
has been modeled with a modified Curie-Weiss law. Based on the work by
Namboodri (Namboodri, 1993), the electrostrictive gain can be expressed as

My = (qﬁim(e)"")z-

where g™ is the temperature factor pertaining to the electrostrictive
parameter. O is the absolute temperature and is raised to the n-1% power. The

(3.35)
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modified polarization factors in equation (3.35) are determined by curve
fitting the model to the experimental results.

An identical formulation can be used to express the temperature
variation of the relaxation parameter, k. At the risk of being redundant, the
relaxation parameter can be expressed as

k= (q,‘i(e)"‘l)z. (3.36)

where gk is the temperature factor pertaining to the relaxation parameter.
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Chapter 4

MATERIAL TESTS

Shivering electrostrictors
struggling to keep warm,
to reaci; their Curie temperature
for their optimal form.

Shivering electrostrictors
in great electric fields,
as the voltage grows higher
a size change they yield.
-Anne-Evan Kale

This chapter presents experimental verification of the constitutive
relationships derived in chapter 3. The material behaviors are characterized
in terms of electrostriction, elastostriction, and temperature effects.

4.1 Experimental Setup

4.1.1 Physical setup

Experiments were conducted on relaxor ferroelectric ceramic wafers
manufactured by AVX corporation. The 0.27 mm thick, 2.5 mm square wafers
were composed of PMN-PT, 0.9(Pb[Mg,,;Nb,,;]0;)-0.1PbTiO;. The maximum
relative dielectric of this electrostrictor occurred near 40°C. Unless otherwise
specified, all of the experiments were conducted with the wafer temperature
near 28°C. As a result, the experimental data will feature larger hysteresis

53
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Electrodes Strain Gauge

. =y

Electrostrictor

Figure 4.1: Experimental setup for measuring the transverse and
longitudinal expansion of the unconstrained electrostrictive wafer. The strain
gage finds the transverse expansion.

than the classic curves of an electrostrictor and will feature larger strains.
This temperature trend also has been found in characterizations of pure PMN
(Blackwood and Ealey, 1993) (Uchino et al, 1981).

The electrostrictive wafer was excited with a Kepco model BOP 1000M
voltage amplifier which was fed a sinusoidal signal from a Phillips model
PM 5191 function generator. The resulting size change of the electrostrictor
was measured with a strain gauge. A model CEA-13-125UW-350, 350Q2 strain
gauge manufactured by Micro-Measurements Division was used for this
purpose. The experimental setup is shown in figure 4.1. Strain and voltage
data were collected on a Macintosh Quadra 950 using LabView software
running at 1 kHz.

4.1.2 Data reduction

As with any strain-based experiment, noise reduction is at the root of
any data reduction technique. A frequency-domain windowing and a time-
domain averaging was used for this end. Each channel of data was windowed
with an eleven point Hamming window. In this process, a Hamming shaped
window is passed over the data. Points on each side raw data point are
weighted and averaged together to create the windowed data point, as shown
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® ® ¢ o ¢ ¢ VWindowed Data Points

Hamming Weights

® o000 00 06 00 0 ¢ ¢ ¢ RawDataPoints

Figure 4.2: Hamming windowing low-pass filters the raw data by averaging
several points together according to the Hamming weighting function.

in figure 4.2. In the case of an eleven point Hamming window, eleven raw
data points are used to produce each windowed data point. This process
fiiters high frequency signals. Windowing was performed on each channel of
data in order to eliminate the possible effects of added phase.

The strain data also was averaged in the time domain. In this case, the
voltage signals were matched different cycles. The overlaid strain signals
were averaged together. A long enough time record was obtained so that at
least four cycles were averaged together.

The material parameters were found by curve-fitting the model to the
experimental data. In these cases, a direct search algorithm was used to find
the local functional minimum. Such algorithms are also known as
unconstrained nonlinear optimizations. MATLAB software was used in
these cases. Once a parameter has been determined, the same value was used
in all subsequent calculations.

4.2 Electrostrictive Effect

Electrostriction is a second-order coupling between the electrical and
mechanical energies. This effect marks the principle electromechanical
coupling exhibited by electrostrictive materials. The electrostrictive effect is
characterized by placing a slowly varying electric field across an unconstrained
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sampie. The resulting curve gives the unadulterated effect of the
electromechanical coupling. In Chapter 3, two models were derived to
described the electromechanical coupling: a quadratic model and a hyperbolic
model. As given in equation (3.17), the quadratic model expresses the
induced strain as a function of the electric field squared. The hyperbolic
model, giver in equation (3.26), expresses the induced strain as a function of
the square of the hyperbolic tangent of the electric field. Removing ail but the
direct electrostriction terms for the induced strain and requiring the electric
field to be only in the 3-direction, the models are expressed as

250 T r
— - Experiment
— Hyperbolic Model
200} -~ Quadratic Model |
c 150¢ i
g
F’.
[e)
S
= 100}
50t i
oLz . : 1
C 200 400 600 800

Applied Electric Field, Volts/mm

Figure 4.3: Unconstrained transverse expansion of an electrostrictive
wafer. Curve fitting the hyperbolic model, equation (4.1), to the data
gives the electrostrictive constant, m;;,,=6.6e-16 m2/V2 and the
relaxation parameter, k=1.6e-6 V/m. 1he same m value was used in
the quadratic model and gives good low field correlation.
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ms3;EqE, quadratic model

Sij =
4.1
5, = (4.1)

Tclf may;tanh?(kE3)  hyperbolic model
Notice that at low field levels, the hyperbolic model reduces to the form of

the quadratic model. As a result, the m value used in the hyperbolic modeli is
the same value that will be used in the quadratic model.

The material parameters were obtained by fitting the hyperbolic model
to the experimental data as described in subsection 4.1.2. Experimental data
was from electric fields ranging from DC to 800 V/mm and the form of the
hyperbolic equation was given in equation (4.1). The resulting material
values are m33;1=6.6e-16 m2/V2 for the transverse electrostrictive constant
and k=1.6e-6 V/m for the relaxatior parameter. The electrostrictive constant
scales the magnitude of the strain and the relaxation parameter dictates when
the strain tends to “bend over” or relax with increasing electric field. Since
the quadratic model is a low-field simplification of the hyperbolic model, the
same electrostrictive constant is used in both models.

As indicated in figure 4.3, the hyperbolic model provides a close
correlation between the experiment and the model through out the range of
electric field levels. The quadratic model forms a good approximation of the
experiment in the low and moderate electric field regions. Above 300 V/mm,
the quadratic model will over predict the response. Thus, the quadratic
model is valid only in the region less than 300 V/mm for PMN-PT.

4.3 Elastostrictive Effect

Elastostriction describes the stress-based correction to the induced
strain. As irdicated in Chapter 3, the elastostriction term can also be
interpreted as an electric field based correction to the compliance of the
material. In particular, from equation (3.28), the compliance of an

electrostrictor can be expressed in terms of the hyperbolic model as
. E_E
Siit = Siikt + 35 Tmniga 1anh’ (kIEI ) (4.2)
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Figure 4.4: Experimental setup to calculate the elastostriction of the
electrostrictor by measuring the change in the natural frequency of the system
as a function of electric field.

At low and moderate field levels, the compliance can be simplified to a
quadratic form. As given in equation (3.16),

Sik = Si?u + 2 i EnE, (4.3)

The first term in the equations represents the compliance at zero electric field
and the second term is the elastostriction correction. This section seeks to
define the magnitude of the elastostriction term. Notice that the hyperbolic
model reduces to the quadratic model at low field levels, thus the same value
will be used in both models.

Measuring the elastostriction term is difficult. There are two possible
techniques for measuring stiffness as a function of electric field: measuring
the actuation potentiai or measuring the natural frequency. By far the
simplest technique would be to measure the actuation potential. The
actuation potential gives the amount of deformation that the electrostrictor
can produce when its expansion is constrained. Thus, the deformation of an
electrostrictor sandwiched between layers of metal would change based on the
relative thickness of the metal and actuator. This would be an easy method
from which to find the actuator stiffness if the material nonlinearity was an
electric field-based nonlinearity. However, if the nonlinearity of an
electrostrictor was a strain-based nonlinearity, then the reduced strain from
the constraint would give erroneous results. For example, measuring the
induced strain of a piezoceramic would give incorrect results since the
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Figure 4.5: Transverse stiffness variation as a function of electric field in
0.9PMN-0.1PT. The hyperbolic model reflects the best fit of equation (4.2).
This gives an r;;33;;=3.25e-24 m2/(V2 Pa). The quadratic model uses
equation (4.3) and the same elastostriction value.

nonlinearity of a piezoceramic is a strain-based nonlinearity (Anderson, 1989).
Measuring the natural fiequency of the electrostrictor does not infringe upon
the electric field-based versus strain-based debate.

The natural frequency of an individual electrostrictor is not easily
measured. Instead, the natural frequency of an electrostrictive system needs
to be measured. The simplest system is that of an electrostrictor upon a
cantilevered beam. The stiffness of the electrostrictor will affect the natural
frequency of the beam system. An illustration of the beam is given in
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figure 4.4. By measuring the natural frequency at different bias fields across
the electrostrictor, the stiffness of the electrostrictor can be calculated.

The first natural frequency was experimentally measured by applying a
small sinusoidal signal, 0.5 V/mm in addition to a large DC electric field. In
order to translate the natural frequencies into an actuator stiffness, the
methodology developed in chapter 5 (in particular equation (5.66)) was used
to calculate the natural frequency as a function of the material stiffness. The
stiffness at different electric fields was obtained by matching the natural
frequency versus electric field from the experiment with the natural
frequency versus stiffness from the simulation.

The measured material stiffness versus electric field is shown in
figure 4.5. Error bars reflect the frequency resolution of the fourier analyzer.
The effective transverse stiffness decreased by roughly 20% as the electric field
increased from 0 to 1300 V/mm. The elastostriction factor, r, was curve fit
from the hyperbolic model given in equation (4.2). The calculated
elastostriction constant, ry;331), equals 3.25e-24 m2/(V2Pa). The relaxation
parameter, k, is the same as that which was calculated from figure 4.3. The
hyperbolic model closely matches the experimental values over the entire
field range. The quadratic model, equation (4.3), accurately predicts the
stiffness only in the low to moderate electric field range. Other investigatoss
have seen a similar variation in the longitudinal material stiffness (Hom and
Shankar, 1994b)

4.4 Temperature Effect

The variation of mechanical parameters with respect to temperature
has been a perennial problem pertaining to electrostrictors. As seen in
figure 4.6, the field-strain curves for an unconstrained electrostrictor changes
dramatically over the range of temperatures. As the Curie range is passed, the
hysteretic ferroelectric behavior transforms into a non-hysteretic non-linear
relaxor ferroelectric behavior. Although the magnitude of the strain changes
dramatically with temperature, the constitutive relationships for induced
strain are still applicable. At each temperature, the strain-field curve was fit
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Figure 4.6: The electro-mechanical coupling of electrostrictors
is strongly temperature dependent. As temperature increases,
the hysteresis and the electrostriction effect decrease. The
transverse expansion is shown here.



62 Dynamic Actuation and Control with Electrostrictors

x 10"

O Experiment i
— Model

Electrostriction Coefficient, m, m2/v2
o o o = -
'S o ™ - () >

o
(V)

0 i i i 1 ? o __Q
-20 0 20 40 60 80 100
Temperature, C

Figure 4.7: The electrostriction constant, m,,,,, decreases as the temperature
increases. The temperature variation can be curve-fit with equation (4.4).
The temperature factors are q™;,,2,=2.56e-7 m2/V2, q™;75,=-1.21e-9 m2/('K
V2), and qm;223=1 .438-12.!’“2/("(2 V2)

with equation (4.1) in order to give the m and k values for that temperature.
As seen in figure 4.6, the form of the constitutive equation describes the
behavior of the electrostrictor across a wide range of temperatures. The
maximum strain is provided at 5°C. The model gives a better fit to the data a
temperatures above 0°C than at temperatures below 0°C. As the material
becomes increasingly ferroelectric at lower temperatures, the material strain
becomes increasingly linear with respect to electric field. The inherently
quadratic nature of the hyperbolic model does not provide as close of a fit to
the increasingly linear data at these reduced temperatures.
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The behavior of the electrostrictive constant and the relaxation
parameter can be described by the thermal model developed in chapter 3. As
given in equations (3.35) and (3.36), the m and k parameters can be expressed
as a even-powered polynomial expansion of the absolute temperature.
2

my = (qff ln(e)n_l) (4.4)

k=(akor)’ (45)
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Figure 4.8: The relaxation parameter, k, decreases as the temperature

increases. The temperature variation can be curve-fit with equation (4.5). The

temperature factors are qf =8.0e-3 m/v, q¥=-3.46e-5 m/('K v), and q%=4.04e-

8.m/('K? v).
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Figure 4.9: Comparison of the temperature dependence of
electrostrictors and piezoceramics. Peak strain is the transverse strain
occurring at 780 V/mm. The hyperbolic model is a combination of
equation (4.1) and the temperature compensation of equations (4.4)
and (4.5). The piezoceramic coupling is taken from Piezo Systems,
Inc. product catalog (Piezo Systems, 1993).

Figures 4.7 and 4.8 illustrate the temperature dependence of the
electrostrictive and relaxation parameters. These parameters were
determined by curve fitting the field-strain curves at each temperature. In
figure 4.7, the electrostrictive coupling coefficient, m, decreases as the
temperature increases. As a result, the actuation potential of an electrostrictor
correspondingly decreases. Equation (4.4) is curve fit to the data. Using three
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terms in the expansion, close agreement is achieved between the model and
the experiment. The resulting temperature factors are qM,,,,,=2.56e-7 m2/v2,
qm,,222=-1.216-9 mz/(°K Vz), al'ld qm”223=1.43e’12.m2/(0K2 VZ).

In figure 4.8, the relaxation parameter, k, is shown decreasing with
temperature. The relaxation or "bend over" of electrostrictors is delayed
through the application of temperature. This means that the quadratic model
is applicable at larger field levels during higher temperatures. Conversely,
this trend also indicates that the material becomes increasingly ferroelectric at
lower temperatures. Equation (4.5) is curve fit to the data and provides close
agreement of model and experiment. The resulting temperature factors are
qf=8.0e-3m/v, q5=-3.46e-5 m/("K v), and q%=4.04e-8.m/(‘’K? v).

In brief, electrostrictors exhibit a marked change in the coupling
behavior as a function of temperature. However, figure 4.9 illustrates that
other active materials, such as piezoceramics, also exhibit a significant change
in the coupling parameters. The values are normalized in terms of percent
deviation from room temperature. The peak strain of the electrostrictor is
the transverse strain occurring at 780 V/mm. The model of the peak strain is
a combination of the hyperbolic model given in equation (4.1) and the
temperature corrections given in equation (4.4) and (4.5). The
electromechanical coupling constant for the piezoceramics, dsy, is taken from
Piezo Systems, Inc. product catalog (Piezo Systems, 1993). PZT-5H is the
industry standard soft piezoceramic and PZT-5A is a hard piezoceramic.

Electrostrictors exhibit a larger variation of strain as a function of
temperature than the piezoceramics. The peak strain varies from +22% at
5°C to -93% at 101°C. The models of the peak strain provide good correlation
for temperatures ranging from 15°C to 70°C, but under predict the response
for temperatures outside of the region. The piezoceramic material also
exhibit a significant change with respect to temperature. The soft
piezoceramic varies by -18% to +30% from -20°C to 110°C. The hard
piezoceramic varies by 5% over the same temperature range. At room
temperature, the 0.4%/°C variation of the soft piezoceramic is almost a
quarter of the 1.5%/°C slope of the electrostrictor. Nevertheless, the
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Figure 4.10: The dielectric permittivity of an electrostrictor is a strong
function of temperature. The peak in the pemmittivity occurs during the
Curie range. The permittivity was measured at 400 Hz.

temperature dependence of the piezoceramic needs to be kept in context with
the significant variations of soft piezoceramics.

The Curie range coincides with dramatic changes in the dielectric
permittivity, as indicated in figure 4.10. The changes in the dielectric
permittivity are consistent for a ferroelectric near its Curie temperature.

4.5 Stress-Loading Effects

The previous sections have examined the behavior of an
unconstrained electrostrictive wafer. This section describes the quasi-static
behavior of the material when it is constrained by another structure. First,
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the model of the induced strain is derived by noting the material equilibrium.
Then, the theory is applied to the geometry of a electrostrictor sandwiched
between plates of aluminum.

4.5.1 Linear induced strain meodel

The total strain in a structure containing an active material is a
function of the balance of forces between the active material and the
constraint. In the most general case, this balance needs to be evaluated
through the use of plate theory. For such cases the reader referred to the
numerous texts on plate theory, such as (Timoshenko and Woir.owsky-
Krieger, 1959). For the simple sandv ich geometry presented in figure 4.11, the
induced strain can be computed more directly. In this analysis, the epoxy
layer provides a “perfect” bond between the components and, thus, shear-lag
effects are ignored.

The interface force at the boundary between the structure and the
actuator must balance in order for the structure to be in equilibrium. In other
words

feonstraint _ [actuation (4.6)

i

structure N z

3 + z Fconstraint
Factuation
actuator | . : X

Figure 4.11: Free-body diagram of the cross section of a sandwich
structure.
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The force that the constraining structure and the actuator provides is a
function of the cross-sectional area, the material stiffness, and the difference
between the free strain and the induced strain. In other words

peonstraint _ 5.5, s ( 0-— Sinduced)

4.7
pactuation _ *waca (S free _ ginduced ) 7

where a superscript ‘s’ refers to the structure and a superscript ‘a’ refers to the
actuator. The factor of two for the constraining force arises from having a
constraint on the top and on the bottom. The negative sign comes from the
force being in negative direction. Substituting equation (4.7) into equation
(4.6), the induced strain can be found. Assuming that the width of the
actuator equals the width of the structure, ws=w3, the induced strain is

; '
Smduced — S free (4.8)
C? +2C%*
In other words, the induced strain is proportional to the unconstrained
motion of the wafer. The proportionality is given by the stiffness ratios and
thickness ratios of the actuator and the hosr structure. This ratio 1s often
defined as the relative stiffness, .

2C°t°
Y= Cigs (4.9)
Introducing the relative stiffness into equation (4.8) gives
Sinduced — 1 Sf"‘” ( 4.10)
1+ ¥

4.5.2 Nonlinear induced strain

The strain-field relationship for electrostrictors is nonlinear. Similarly,
the relationship for piezoceramics is also nonlinear at moderate field levels.
By looking at induced strain of unconstrained wafers, constitutive
relationships can be derived. However, it is not clear whether the
fundamental constitutive relationship features strain as a function of electric
field or whether electric field is a function of strain. In other words, which is
true,
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S=f(E) electric field-based nonlinearity (4.11)

or

E = f(S) strain-based nonlinearity (4.12)

When unconstrained actuation is considered, there is no effective difference
between the forms. Similarly, if the electromechanical coupling is linear,
then considering the form of the nonlinearity is silly. However, for
constrained actuation of nonlinear active materials, the difference can
become significant.

The form of the nonlinearity is a fuzzy yet fundamentally important
concept. The form of the nonlirearity dictates at which point the
nonlinearity will manifest itself. The case is illustrated in figure 4.12 for a
hypothetical example of constrained expansion. In the free case, a particular
nonlinearity exists at a specific electric field level and strain level. When the
actuator is constrained, will the nonlinearity manifest itself at the same strain
level or the same electric field level? If the nonlinearity is an electric field-
based nonlinearity, then the nonlinearity will exist at the same field level. If
the nonlinearity is strain-based, then the nonlinearity will exist at the same
magnitude in strain.

A )
Strain | Free strain

Field-based nonlinearity
/ .- Strain-based nonlinearity

>

Electric Field

Figure 4.12: The form of the nonlirearity indicates whether the
nonlinearity will manifest at a particular value of strain or at a particular
electric field. A hypothetical example of constrained expansion is
presented.
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4.5.2.1 Electric field-based nonlinearity

Constitutive relationships generally assume that nonlinearities are a
function of electric field and that equation (4.11) is true. The strain is a direct
function ot the applied electric field. As a result, the linear relationship for
constraint given in equation (4.10) scales the magnitude of the free strain. In
other words, the slope at a electric field level is a linear scale of the slope of
the free strain. Using the definition of free strain expressed in the hyperbolic
model, equation (4.1), and allowing electric field only in the 3-direction, the
induced strain is expressed as

; I 1
sijduced = T3P 2 tanh® (kE; ) (4.13)

4.5.2.2 Strain-based nonlinearity

If the nonlinearity is a function of the strain in the material, then
equaticn (4.12) is the fundamental relationship between strain and electric
field. In this case, the fundamental nonlinearity depends more on the
deformation of the microstructure than on the externally applied stimulus.
The scaling factor given in the linear relation:hip in equation (4.10) scales the
electric field instead of the strain. Thus, the slope at any strain level is a
linear scale of the slope of the free strain. Using the definition of free strain
expressed in the hyperbolic model in equation (4.1) and allowing electric field
only in the 3-direction, the induced strain for a strain-based nonlinear system
is

induced 1
st (T kEs (4.14)

_ 1 a2
—-—2m33ij tann
k

The closed form solution given in equation (4.14) is available only
because the nonlinearity of electrostrictors is an algebraic function. In
general, finding the strain in this case is difficult. For instance, with
piezoceramics the easiest method is to assume a value for the strain and then
iterate to find the correct strain (Anderson, 1989).
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4.5.2 Sandwich experiment

The induced strain of an electrostrictive wafer sandwiched between
two pieces of aluminum was examined. As shown in figure 4.13, a 0.27 mm
thick electrostrictive wafer was bonded between two pieces of 25 mm wide,
0.50 mm thick aluminum. For comparison, the induced strain of a
piezoceramic sample was taken from Anderson (Anderson, 1989) where a
0.25 mm thick piezoceramic wafer was bonded between two pieces of 25 mm
by 64 mm by 0.25 mm thick aluminum wafers. In both cases, the induced
strain was measured with a strain gauge mounted on the aluminum.

The measured and calculated induced strain of the electrostrictor are
presented in figure 4.1z. The induced strain was predicted with the model
developed for electric field-based nonlinearities, equation (4.13), and with the
free strain given in figure 4.3. If a constant stiffness is assumed, ther the
predicted strain will exceed the measured strain. If the variable stiffness
given in figure 4.5 is included, then the predicted and measured strain agree.
As a result, the nonlinearity of an electrostrictor is a electric field-based
nonlinearity. This fact simplifies the treatment of electrostrictive actuation.

= Electrostrictor

\

Aluminum

Piezoelectric

Figure 4.13: Experimental setups to measure the transverse strain of an
electrostrictive wafer and a piezoceramic wafer constrained between two
pieces of aluminum.
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Figure 4.14: Effect of the stiffness variation on the induced strain on an
electrostrictor sandwiched between two pieces of aluminum. The
models assume that the electrostrictor exhibits an electric field-based
norilinearity.

The measured and calculated induced strain of the piezoceramic
sandwich are presented in figure 4.15. A strain-based model and a electric
field-based model are presented. Since a closed-form algebraic expression of
piezoceramic nonlinearity have not been found simple expressions of the
form given in equations (4.13) and (4.14) are unavailable. As a result,
equation (4.8) was used in both models to calculate the induced strain. The
free strain in the strain-based model was taken from the unconstrained
expansion of a piezoceramic wafer. The free strain in the field-based model
was determined through iteration. The process is described in Anderson
(Anderson, 1989). At low field levels, piezoceramics are linear elements and
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the two models yield identical results. At higher field levels the nonlinear
behavior of piezoceramics becomes more significant and the two models
diverge. The strain-based model closely correlates to the experimental results.
As a result, the nonlinearity of piezoceramics is a strain-based nonlinearity.
This fact complicates the treatment of piezoceramic actuation.

25 T T T T 1.‘.

20

-
an

MicroStrain

-
(=)

O Experiment
— Strain-Based Model
- Field-Based Model

i

0 50 100 150 200 250 300
Applied Electric Field, Volts/mm

Figure 4.18: The induced strain of a piezoceramic sandwiched
between layers of aluminum shows that the fundamental nonlinearity
of piezoelectrics is a strain-based nonlinearity. Data is taken from
Anderson (Anderson, 1989).
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4.5 Material Properties

Figure 4.16 summarizes the material properties of 0.9PMN-0.1PT.
Where it is possible, the parameters have been experimentally measured.
When experiments are difficult, the values are taken from the literature.

Stiffness

Poisson’s ratio
Dielectric constant
m constant

k constant

r constant

qm™ constant
(thermal effects on the
electrostrictive term)

gk constant
(thermal effects on the
relaxation parameter)

Thermal expansion
Thermal conductivity
Fracture toughness

Ultimate strength

i, =120 GPa
from figure 4.5
vt =0.38
from (Nomura and Uchino, 1982)
£; =17000¢,
from figure 4.9
m; = 6.6e-16 m2 /v2
from figure 4.3
k=16e-6 V/m
from figure 4.3
133 = 3.25e-24 I’I\Z/(V2 Pa)
from figure 4.5
QM0 = 2.2e-7 m2/v2

qM1222 = -1.0e-9 m2/(°K v2)
qM1223 = 1.2e-12 m2 /(K2 v2)
from figure 4.7
gk; = 8.0e-3 Vm/v
gk, = -3.46e-5 vm/v K
qk3 = 4.04e-8 Vm /v /K>
from figure 4.8
o< le-6 /°C
from (Nomura and Uchino, 1982)
43 W/(m °C)
from (Blackwood and Ealey, 1993)
Kic =09 MPa+m
from (Freiman and White, 1994)

O, = 24 MPa
from (Ealey and Davis, 1990)

Figure 4.16: Summary of material properties for PMN-PT.



Chapter 5

CouPLED MODELING

Actuating electrostrictor
a changing chameleon of voltage
quivering into heated blurs
as if just from a frozen fridge

Electric fields and strains
undulating temperatures
shock them with high frequency
to make them constant and tame-
while the engineer is under pressure

-Denille Marion

The until this chapter, the object has been to describe the material
behavior of electrostrictor material. This chapter switches the attention to the
behavior of a continuous system with a distributed active material. In such a
system, the behavior of each component strongly influences the behavior of
the global structure. This chapter starts by deriving the governing equations
for an arbitrary nonlinear electromechanical system. These equations are
then focused on the behavior of an electrostrictively coupled system. For
simple geometry, the general equations of motion are simplified. The
theoretical development of this chapter is based upon previous work of the
authors (Fripp, Hagood, and Luoma, 1994) and upon (Hagood, Chung, and
von Flotow, 1990).

75
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3.1 Variational Principles for Nonlinear Systems

This section describes the use of variational principles to model the
dynamics of nonlinear systems. First, the application of Hamilton's principle
to nonlinear systems is reviewed. Particular attention is given to describe the
energy terms when the state variables are coupled. Then, an electric enthalpy
function is introduced in order to simplify the equations.

5.1.1 Ham:ilton’s principle for coupled nonlinear systems

Hamilton’s principle is a common variational principle in dynamics.
The generalized form of Hamilton’s principle for a coupled electromechanical
system with a quasi-static electric field is

[?[o1 - 8U+8W; - 8w, +W]dt=0 (5.1)
4

where T* is the complimentary kinetic energy, U is the »otential energy, W," is
the complimentary electrical energy, W, is the magnetic energy, and W
represents the externally applied work.

For linear systems, the energy terms can be stated explicitly. With
nonlinear materials, the energy terms must be integrated as the system
changes. From Crandall (Crandall et al, 1968), the integral forms of the energy

terms are
T =] '[:pu dudv (5.2)
\%
S -
U= [ Tydsyav (5.3)
Vv
x E -
we=| jODdemdv (5.4)
\%

W= I:HmdBmdv (5.
A\
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W = [f;6u; dA =Y 80;q; (5.6)
i
where u represents the mechanical displacements, ¢ is the electric potential, {
is the surface force, and q is the externally supplied charge. S is the strain, T is
the stress, E is the electric field, D is the electrical displacement, B is the
magnetic flux density, and H is the magnetic fiela.

The expressions of the energy terms given in equations (5.2) through
(5.5) do not exactly express the dynamics of a system that has external
constraints placed upon it. For active materials, these constraints come in the
form of constitutive relationships. In these cases, it is easier to think of the
energy terms as depending on a sing'e dummy variable, &, which reflects the
state of the system along the arb'trarily va.ying path. As a result, the single
state variable reflects an instant in the progression of the system. The
variation in energy still needs to be examined as the system changes.
Substituting the dummy variable into the energy expressions changes the
integrations with respect to the state variables, S, £, and B, into a integration
with respect tc . By chain rule, equations (5.2) through equation (5.5)

become
T‘=J' jédu- a; dV
vdo CUPY (5.7)
U= ” S,(&)T, (S(E).E(E)) dE aV. (5.8)
W’ =”0 E/ (&)D,,(S(E),E(&)) dE dV (5.9)
)
g: I3 » » » -
wm=”( B!, (S(&),H(E))H, (&) dE dV (5.10)
]

The prime indicates a derivative with respect to ¢&.

For electrically actuated active mate:ials, such as electrostrictors, the
magnetic energy terms are negligible. Substituting the potential energy and
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the electrical energy terms from equations (5.8) and (5.9) into Hamilton's
riinciple, equation (5.1), yields

j[sr 6Jj§ask'Tk,d§dV 6” 0D, dEdV+ W |di=0 (5.11)

The variation of each energy term needs to be examined with respect to
each the state variables. As a result, the variations are defined as

5“ ()dE dV = J’j {3()55 ‘;(S)as 3;5255' 3(8265'}d¢ dv. (5.12)
The variations are indicated by 8. Hamilton’s equation states that the
variation of state variables must integrate to zero. No claims are made < bout
the variations of a derivative of a state variable, such as 6E’or 68’. As a
result, the variations with respect to a derivative of a state variable, 6E’ or 65,
will need to be transformed into a variation of the state variable, 8E or &S,
through an integration by parts with respect to ¢.

The form of Hamilton’s principle given in equations (5.6-5.11) places
minimal restrictions on the system. There are no constraints on the
constitutive relationships; the relationships need not even be smooth.
Similarly, there are no restrictions about the nature of the external forcing.
The only requirement is that the strain and the electric field be continuous
functions of §. Because of the generality of the frame work, Hamilton’s
principle will be utilized later in this chapter in order to derive the
variational principle for an electrostrictively coupled system.

5.1.2 Thermodynamic simplification of Hamilton’s principle

The derivation of the system dynamics can be simplified when the
constitutive relationships are derived fro.n a thermodynamic relationship.
The thermodynamic formalism instills a compatibility between the electrical
and mechanical equations. For simplicity let us examine the behavior of a
system that can be described in terms of an electric enthalpy function. As
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given in equation (4.7), the constitutive relationships can e defined in terms
of electric enthalpy, Hj, as
dH,

asij

Tj = and D, =-2-2 (5.13)
Introducing thz definition of electric enthalpy into Hamilton's principle,
equation (5.11), yields

I [ ”éaasg] g?j dg dv -5”“5 n 2y dédV+<WV}dt 0. (5.14)

Realizing that the integrand is a chain rule expansion of H; allows the two
integrals of H, to be combined. Equation (5.14) can he expressed as

[

J- [ST 5IIQJH2d dV+b\V}dt L15r*-5£Hﬂ§dV+éW}dt=O (5.15)

where the value at §=E reflects the current sta.e of the system and =0
reflects the null state of the system, i.e. H2(§)=H2 and H,(0)=0.

Evaluating the c.thalpy function in equation (5.15) produces the
variational indicator of a system described by an enthalpy function as given by
Tiersten (Tiersten, 1969);

-

OT* —6|H, dV+6W |dt = (5.16)
[orsfmoveawass

J

Bringing the variation on the electric enthalpy inside the integral gives

JH oH -
L[é‘r j( 25E, -55—;5SlidV+¢W]dt 0. (5.17)

n

Substituting the definitions of electric enthalpy from equation (5.13) into
equation (5.17) yields the final form of the variational principle for a system
which can be described by an electric enthalpy function

I:l

2

[M‘+;(Dn55n —Tk]é'Sk,)dV+8W} dt=0. (5.18)
\%
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Host Structure

N

Electrostrictive
— Material

Electrode

—-—h

Figure 5.1: Electroelastic continuum geometry illustrating
inclusions of electrostrictive material which are electroded
arbitrarily

For any system where the constitutive relations can be expressed in
terms of an enthalpy function, equation (5.18) is a form of the variational
principle that is equivalent to the full form given in equation (5.11). This
proof did not employ any issumptions as to linearity or as to the nature of the
coupling. All that is required is that there exists an enthalpy function for the
system that is differentiable with respect to S and E. Equation (5.18) is the
standard form of Hamilton’s . rinciple for a linear piezoceramic system
(Hagood et al, 1990) because such systems are derived from the
thermodynamic formalism. The form of the constitutive relationships that
we will use would allow the use of this thermodynamic simplification.
However, not all constitutive relationships are formed from thermodynamic
potentials. Often higher-order terms of constitutive relationships are
discarded without rederiving the thermodynamic potential. In brief, the
thermodynamic simplification is not always feasible. As a result, this thesis
will address variations in the work and energy terms as given in equation
(5.11) instead of jumping to the simplifications offered by equation (5.18).
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5.2 General Equations of Motion

In this section, the approximnate equations of motion will be derived
from the variational principle expressed in (5.11). The following steps
provide a general framework for dealing with nonlinear systems. Although
this paper describes the derivation for an electrostrictively coupled system,
the basic procedure is applicable to any nonlinear system where each
component can be described by a set of piece-wise continuous, nondissipative,
nonlinear algebraic constitutive relationships.

The general system is represented in Figure 5.1. The electromechanical
system is composed of an elastic body with inclusions of electrostrictive
material which are electroded arbitrarily. The displacements within the
elastic body and electric fields about the electrodes will be combined through
the electrostrictive properties to form the electromechanically coupled
equations of motion.

A note on notation: During the derivation, there are times when a
tensor or matrix of each value squared is needed. This representation is not
easily expressed with either tensors or matrices. As a result, new notation is
defined. When a matrix or tensor is raised to a power, then each element is
raised to that power, but the size and rank does not change.

5.2.1 Equation for quadratic system

Several forms of the constitutive relationship for electrostrictors were
derived in chapter 3. This subsection will use the quadratic model which was
given in equation (3.17). Repeating the model here

D, =¢ E +2m_ ET

mny~~n "y

(5.19)

S,=m_ EE +s,T,.

P4y P g

The constitutive relationship will be substituted into the general form of
Hamilton’s principle which was described in section 5.1.1. The evaluation of
the variations needs to be performed for each of the energy expressions in
equation (5.11).
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5.2.1.1 Variation of kinetic energy

The complimentary kinetic energy of the system was expressed in
equation (5.7) as

. £
T = [ ] dujpu; av (520
The variation of the kinetic energy is
. - u .t .
5T = ! P> J’O du'pu dv. (5.21)
Bringing the variation inside of the integral gives
5T = j Su'pir dV. (5.22)
v
Integrating by parts yields
o1 at = [du'pa[” av - [* [ oupii avar (5.23)
1 v h 4 v

where the first term must be zero. Hamilton’s principle allows arbitrary
variation of the path between the endpoints but requires the variation at the
end points to be zero. The first term in equaticn (5.23) takes tte difference ot
the variations of « at the end points t; and t; which must be zero. As a result,
the variation of the kinetic energy is

j( :2 ST” dt = —j: \j{ Su'pii dV dt (5.24)

3.2.1.2 Variation of potential energy

The potential energy of the system, as given in equation (5.8), requires
more care in its evaluation than the kinetic energy terms due to the coupling
between the stress, strain, and the electrical terms. Arbitrary variation of
strain and electric field is allowed, but the variables are constrained by the
constitutive relationships. In order to form the variation in the face of this
constraint, the two variables can be thought to depend on a single dummy
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variable, &, which reflects the state of the system alcng the arbitrarily varying
path. Repeating equation (5.8),

U= j j S5(E) T, (S(E),E(&)) dE aV. (5.25)

Substituting for stress from the tensor constitutive relationship in
equation (5.19) gives

U= j j { CEimypeE EqSi +C,Jklsklsu}d§ dv. (5.26)

U

Taking the variation yields

a0 o0
5U = T SE, + S \%
”{ . ask]6s“+a 5 }ddjd

= I J‘o {(—chﬂmklpqEPS{j)qu + (Cgklsij)&k] (5.27)
\"

+(~Chymy pEpEq + CluSi ) 857 }ag av.

Inteyrating the last term in equation (5.27) by parts in order to transform the
variation of S into a variation of S and canceling the redundant strain terms
yields

¢ ,
oU = J.{{J‘O —2C§l,lmk1pquSij dﬁ)SE
Vv

¢, E , E E
+(j0 2Cijk]mk1pquF-q d§ +(—CijklmklpquEq +Cijklskl)

(5.28)
5]55”} av.

Evaluation of the first integration is not easy and will be retained in its
unevaluated form since it will be canceled by a term arising in the electrical
energy expression. The second integration wili be evaluated directl since
there is only one path dependent variable, E. Let & =& represen” the pr sent
state of the system and £=0 correspond to zero field and zero strain
conditions:
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S{e=¢)=s, E(¢=&)=E,
feges Hoeg
S(£=0)=0, an? E(£=0)=0
Equation (5.28) simplifies to
SU—j S 5CE . E.S dE |5 CE s, )os. bav ¢
W= jo 2Cumy, ELS) d& 16E, +( ikl kl) ijrdv. (5.30)
\"

5.2.1.2 Variation of electrical energy

The electrical energy terms can be evaluated in a manner similar to the
potential energy terins. Again, tne arbicrary, vzt coupled, electrical
displacement and electric field variables require the introduction of a dummy
variable, ¢, which indicates “e state of the system along the path. As given
in equation (5.8), the electrical energy of the system is

w3 j J' Efn (&) D (S(E),E(8)) dE 6V (5.31)

Substituting for electrical displacement from the constitutive relationship
given in equation (5.19) yields

Y E , -
Wi j’o {(e = <M i C hi Mg EpE g JEnEfy + 2mmnijcijxlSkIEnEm} dE dV.(5.32)
Lol

J—

W

Co #*

Taking the variation yields

” {aweas Ve 55+ Ve 5 }dgdv

ISy JEn
= T Efm —6m . CE EnEEf)0E, +(2m i CEUE B )8y (5.33
=1 (emn m ~ OMppiiCiiMypq EREGER )OE M mniCijkIEnEm J0S) (5.33)
\Y

T : , E ’
+(€mn 2mmmJCklpqulpqE EqEq + 2m.nnijCijklEnskl)SEm} dé dv.

Integrate the last term in equation (5.25) by parts in order to transform the
variation of E’ into a variation on E. Hamilion's principle allows arbitrary
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variations of the state variable, E, but does not make any statements about the
derivative of the state variable, E’. The E’ terms from the integration will
cancel the E’ terms shown in equation (5.33). This yields

/o -

* 5 E ’ v é E , .
oW, = j{“o 2MpCijki EnEm dg ]53“ +Uo =20 i Cisk EnSki 46
v (5.34)

T E E ]
+(€mnEn = 2MppiiCijiMyipg EpEgEn + 2mMmijCijki EnSig }{3 J&m} dv.

Evaluating the first integral which has an uncoupled integrand simplifies the
equation. Again, let ¢ =¢ represent the present state of the system while ¢=0
corresponds to zero field and zero strain conditions, as indicated n
equation (5.29).

{ ( E

= i E , "
oW, = H(mmnijcijklEnEm)‘sskl +UO ~2m mijCiiiaEnSia dé
Y (5.35)

©
s

T . E o \)or
+ (EmnEn - 2mmnijl:—'ncxjkimklpqEqu + 2mmnijEnCijklskl )J&m} dv

Each of the energy variations in equation (5.11) has now been
evaluated in terms of the electrostrictive constitutive relationship.
Substituting for the variations in kiretic energy, potential energy, electrical
energy, and external werk, Hamilton’s equation becomes

I

! v

T E E
+ I(EmnEn = 2m i EaCijmiapg EpEq + 2mmpiiEnCijiiSk )5Em AV (5.2¢)
v

-pl.lJ&UJ dv + I(_Ci!j:‘klsij + mmnijEnCiljiklEm )5Skl av+ jfl 6Ui dA
v A

-Y.q;6¢; [dt=0
j
where the un~valuated integrals in the potential energy and electrical energy
terms have canceled each other due to the assumed symmetry of the m
electrostrictive terms. In other words, mjjmp=mumn;; for most electrostrictors.
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Comparing the terms in equation (5.26) and in constitutive
relationships given in equation (5.19), Hamilton’s equation for the
electrostrictively coupled system can be simplified to

b .
jn [-piiju; dV + [Ty 88y dV+[ Dy O, dV+in5uidA—qu5qoj dt = 0.(5.37)
v v Y A J
For the simplified dynamics of an electrostrictor, the variational principle can
be formed directly from the constitutive relationships, as indicated by
section 5.1.1. The full development of the governing equations from
Hamilton’s principle was preserted for the sake of generality and
thoroughness.

5.2.2 Equation for hyperbolic tangent system
The equations of motion for an electrostrictor can be found for the

hyperbolic constitutive relationships. The hyperbolic model was given in

equation (3.26) as

7 smh(kIEl) E L2 smh(kIEI) E

ki T ch3 I 1B K R e T TE TE

E_E E E
S —Sljlekl + k] mnij tdnh (klE‘) EI 04 k2~, rmkalTk' [anh (klEl) ]E

D, = e;nEn +=
(5.38)

The hyperbolic model was derived from thermodynamic formalism, as
described in section 3.2.2. It was proven in section 5.1.1 that the final equation
of motion can be written directly if a thermodynamic formalism exists. Thus,
instead of repeating the steps described in the previous subsection, the
constitutive relationships are substituted into equation (5.18).

t .
J‘t I—puj5uj dVv - ITHESH dv+J.Dm6E‘m dv + Ifiﬁui dA - qu&pj dt =0.(5.39)
Y v v A j

As a result, each term in the general equation of motion for the nonlinear

system can be found directly. The potential energy expression gives

EE, i
2 155 (5.40
T >0

Ty 65y =( CijkiSij ~ T > MmniiCiik

and the electrical energy expression gives
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. . sinh(kIE) E
D, 8E, =(£ E; +2mp0ChuiiSiy —— =n
m9Em | mnEn T Mmoo (KIEl) IEI

.13
, . sinh (kIEl) E E.E,,
= == MM vt Cruii Lt
k'MW S (kIE)  IEP

+2 » sinh(klEl) E| (5.41)

= mnijkl CruiiCpgkl = —F————- Spg Sw
cosh” (kIEl) IEI

sinh*(kIEl) E, E E,,
) 5 ; 3 JaEm
cosh”(klEl) IEl

4 * *
= 17 Fmnijki M vwinCuuiCpgki Spg

By deriving the constitutive relationship from o thermodynamic formalism,
extensive algebra was skipped and the resulting governing equation could be
succinctly expressed.

5.3 Rayleigh-Ritz Assumptions

The previous section derived the general form of Hamilton’s principle
for an electrostrictively coupled electromechanical system. The general
equations can be solved either in a finite elements routine or with an
assumed modes formulation. Finite elements are well suited {or quasi-static
excitation but the assumed mcde formulation give quicker results for
dynamic actuation. As a result, this thesis presents the Rayleigh-Ritz
assumed mode formulation.

5.3.1 Modal assumptions

The assumed modes rormulation finds the strain-displacement
relationship and the field-potential relationship in terms of generalized
coordinates relating to the mechanical and electrical displacements. The
strain-displacement .nd field-potential relationships can be introduced as

S;; = Lijquq(x,t)  and E,=L,ox,1)=-¢(x,t) (5.42)
where u is the mechanical displacement, ¢ is the electric potential, L is the
linear differential operator for the particular elasticity problem, and Lv is the
negative grac.ient operator. In indicial notation, the elasticity operator for 3-D

general elasticity is
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o 15 9 J
Luq = 5(6@ ? + 6Jq IJ (543)
) ]

The deflections, u, of the structure can be expressed in terms of
assumed deflection shape functions, ,(x), and the vector of time varying
modal amplitudes, r(t).

r ()
Uy (X, 1) = Yo, (X)r, (1) = {W;](x)'” u/f]a(x)} : (5.44)
ry(v)

The modal displacement vectors are restricted only so that they obey the
geometric boundary conditions of the problem. Similarly, the electrical
potential can be expressed in terms of a modal vector and a vector of modal
voltage amplitudes

vy(1)
e, =1 v ={y )y} (5.45)
v (D)

where the only restriction on the modal field vecto. is that it satisfies the
prescribed electrical boundary conditions. The modal field vector must be
constant across a conductor and zero at ground. We can simplify the algebra
by combining the differential operators and the modal vectors

S;(x,) = N (0r, (1) r=l-a (5.46)

E(x,1) = N (x)v (1) s=1-b.

5.3.2 Equation for quadratic system

Substituting these modal assumptions ard the notation definition into
the matrix form of the quadratic general equations of motion, equation (5.28),
gives
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L2 . .
I‘n jarr(_rs "/’jrspWJr r NusCuklN' ir Nklrcuklmmm)N\ Nr\npvsvp) dv
v

+ J.avr(N:ner‘{mN:mvl . 2N;1rN;lmmnijcﬁklmklqu;uN:;\-\'tVuV\ (5.47)

+2V N MmNy Cha Nty )V + [ 8r wif, dA+ Y v,y (x,)g, |dt=0
A r

Allowing arbitrary variations of r and v, two coupled equations in the
generalized coordinates are obtained. These will be called the actuator and
the sensor equations of the nonlinear electroelastic system. The actuator
equation describes the dynamics of the mechanical system and the sensor
equation describes the dynamics of the electrical system.

Mgt +Kr -0 vv, = B! Actuztor Equation (5.48)

20,0,V -G, V.V, Vv, +Q,v, =Blq, Sensor Equation

ur-u 't v "t

The system mass is defined so that it includes inertial components
from the electrostrictive actuator and from the host structure;

M, = [yipy, dV (5.49)
A4

where p is a function of the position within the body and the material type.
The stiffness of the ystem is defined so that both the elcctrostrictor’s and the
structure’s stiffness are included;

J‘Nus i3kl klr

~~

2.50)

where CE is a function of the position within the body and the material type.
The electromechanical coupling term is defired as

J' N Cam o Ny Ny dV. (5.51)

the electrostrictive capacitance is

j N:el N (5.52)
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and the higher-order charge storage is

Vet mng
v (5.53)

\ ak v v v
Gy = [ 2N, Chamyp NN NG, V.

The forcing matrices are defired in terms of the modal vectors evaluated
over the surfaces where the external work is supplied. The effect of the
distributed forcing is found by integrating the force over the mode while the
application of charge is evaluated at the r electrode.

Bﬁ:jw;f,dA and  BY =yl (x,). (5.54)
A

The actuator and sensor equation as given in equation (5.48) contain
the generalized dynamics of an electrostrictively coupled electromechanical
system. The derivation started with a generalized form of Hamilton's
principle and utilized Rayleigh-Ritz assumed deflection and voltage modes.

In the actuator equatior, the M, K, and Bf terms are the standard terms
that arise from this approximate technic .1es to analyze continuous systems.
The M and K terms are influenced not orly by the host s ructure but also by
the actuators. The actuat. also makes its presence felt in the 6
electromechanical coupling term. The quad:atic behavior of the
electrostrictor is indicated by the quadratic voltage terms. The Bi term
indicates the effect that the forcing has upon each deflection mode of the

structure.

In the sensor equation, the Q and B4 terms are the standard terms that
arise from placing charge on a capacitor. The Q term is directly related to the
dielectric permittivity of an electrostrictor. Due to the large relative dielectric
permittivity of electrostrictors, the Q term tends to dominate the sensor
equation. At large actuation fields, the higher-order charge storage matrix is
significant. The electromechanical coupling in the sensor ejuation provided
by the 6 term is most significant when the electrestrictor is used as a sensor.
The Ed term indicates the location of the actuator electrodes being supplied
with charge.
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5.3.3 Equation for hyperbolic tangent system

In this subsection, the equations of motion of an electrostrictive system
are derived from the hrperbolic constitutive equations. The hvperbolic
equarions are given in equation (5.38) and Hamilton’s expression is given in
equations (5.39-5.41). Substituting the modal assumptions into the full
nonlinear governing equations for the full hyperbolic tangent constitutive
relations quicxly becomes a .ightmare of index notation. Although possible,
this implementation becomes a harrowing foray requiring pages of algebra.
As a result, three major simpiifications are introduced: 1) notational
simplification, 2) a truncation of higher-order terms in the electric field
varying stiffness, and 3) a truncation of higher-order terms in the electrical
energy expression .

The most fundamental simplification is a notational simplification.
During the derivation, there are times when a tensor of each value squared is
needed. This representation is not conveniently expressed with tensors. As a
result, new notation is defined. When a tensor is raised to a pcower, then each
element is raised to that power, but the rank does not change.

The electric field varying stiffness term, C*, needs simplification. As
described in equation (3.28), electrostrictive stiffness consists of a con;tant
term and a field varying term.

. > E,E, " —
Cijkl = (Sil;;kl + *-22— rl.mijkl Ianh'(kIEl )i—z‘n‘ \ (').33)
k IEi~ J
The hyperbolic tangent function in the denominator needs to be brought into
the numerator if it is to be sulved with standard differential equation
techniques. This transformation is done with a Taylor series expansion.

. ijkl
iikl|g_o +F JE

I mniik
+h.o.t.= E’ —2- MM E E, +hot (5.56)

Cijkl =C 7Em
Sijkl (55
E=0 ) ijkl

Dropping the higher-order terms, the field varying stiffness becomes
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. ] I mnijkl ~
Cinw = -2—5ELE, CUH CijkimnEmEn (5.57)

3 o -
Sijkl (s,-jk,)

The simplified stiffness term, equation (5.57) is substituted into the
electrical energy term for the hyperbolic system which was given in
equation (5.41).
smh(kIEl) E,
cosh® (kIEI) IEI

2 E ~ sinh"(kIEh E_E E,,
_k_zmmmj \utu(ctuu CtuijxyExEy)Coshs(klE” n|Ei3

2 E - sinh(kIEl) E
+frmnijkl(cluij_clmj)() XE))(Cqul CqulvwE\'Ew)ml—gl' pq-tu

i3
4 . sinh”(kIEl) E_E E,,
—Frmnijklmvw:uctuijcqul quOShS(k‘EI) n|E|3 8Em

E -~
CUU CluijxyExEy )Stu

Dm‘SE (EmnEn % mmmj(

(5.58)

Neglecting any terms that include any combination of strain and electric field
that is higher than third order, the electrical energy expression becomes

D, 6E, (en,nE +5 mm,,,JCmUSm tanh(kIEI)—|

g sinh’ (klEU E.E.E,
k3 ManiiMywta - wij cosh’ (kIEl) |E|3
sinh(kIEl) Enj
—— R E
PPN sh3(KIED [EI) ™

(5.59)

2 E
+ir mnuleluuC klS

By restricting the system to a maximum of third-order coupling, the
variations in the electric field are removed from the electrical energy

expression.

The simplified stiffness term, equation (5.57), is also substituted into
the mechanical energy term for the hyperbolic system which was given in
equation (5.40).
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Ty88y, = [(Cﬁkl “Cm lmnEmEn)Si,“
(5.60)
E E

] ~E
—k_:mm'.lj(Lljkl Cl]klmnE E )

Neglecting terms that are higher than third-order simplifies the mechanical
energy terms to

( ~E FE

T}65y =kc-‘jklsu CijkimaEmEnSi — 2 mmn-JC

)5sk, (5.61)

The total coupled equations of motion are found by substituting the electrical
energy, equation (5.59), and the mechanical energy, equation (5.61), into the
expression of Hamilton’s principle given in equation (5.39).

The system of equations can be expressed in the simpiified Rayleigh-
Ritz formulation through the modal assumptions given in subsection (5.3.1).
Substituting the modal assumptions and allowing arbitrary variations of
displacements and voltage, two coupled equations of motion are obtained in
the generalized coordinates. For the hyperbolic model, the actuator and
sensor equations become

f ) p
M, + K, + qursrp"qu + Oy FF, +0,..FFvv, = B, Actuator Equation

Qv +20, For, + Gy BFLFIF, + R BForr, =B} Sensor Equation

(5.62)

The hyperbolic electric field dependence has been incorporated into two terms

=Hmnh(k\;N;JiN;,’(vjvk) I/ WY (5.63)
\"

\Npq\pr\ \F

and

B’ Isech (k\ NINLv v )dV
(5.64)

The mass matrix does not change with the additional of higher-order
material nonlinearities. As given in equation (5.49)

M, = j y,PY dV (5.63)
\I
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Similarly, the stiffness of the system has been divided into two terms. The
zero field stiffness is the . ine as that used in the previous subsection. As
given in equation (5.50)
E
leijl]klN
(5.66)

However, the addition of the elastostriction term introduces a stiffness term
that is electric field dependent. In this case, the stiffress correction is

5 = [ CmaN NN Ny, AV

(5.67)
The electromechanical coupling term changes mildly by changing from the
quadratic to the hypertolic tangent formulation:
tus Jmmnl]Cljk' ;lsN:mN;-x dv
(5.68)
As with the stiffness term, the electromechanical coupling is strongly
dependent on the stiffness of the electrostrictor. Since ihe stiffness varies

with electric field, there is an electric field based co~rrection to the
electromechanical coupling term

lu»ws Jmmmj Uk]qu;]s N N‘ N‘ dV (569)

The electrostrictive capacitance does not change from the form given in
equation (5.50)

= [Nl .
' (5.70)
The higher-order charge storage is changed to

tuy

Grps = J’ 2m,,, M, Co, NN NUNL dV (5.71)
A"

The inclusion of the elastostriction term introduces a elastostriction charge

storage term

R, = [ 20, CEuN G NN} N, AV (5.72)

tuij v
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5.3.4 Rayleigh-Ritz and finite-elements

The dynamic equations of motion for a distributed electrostrictively
coupled system are given in equations (5.48) and equation (5.62). These
equations are presented in terms of a Rayleigh-Ritz formulation. This
presentation has been a misnomer because the same equations can be used in
the same form in a finite-elements formulation. This is because Rayleigh-
Ritz and finite-element methods are fundamentally the same thing. In finite-
elements methods, FEM, each node introduces another degree-of-freedom. In
Rayleigh-Ritz formulation, RRF, shape functions represent each degree-of-
freedom. With either scenario, the resulting dynamics are formed from the
available degrees-of-freedom. As a result, the same governing equations are
used in either formulation technique. A shift between RRF and FEM only
requires a redefinition of the mechanical and electrical shape functions, y*
and y*.

RRF require more engineering insight than FEM. In FEM every
possible degree-of-freedom is considered for possible motion. RRF limits the
possible motions to those which are probable for the system. Engineering
intuition is needed to select the proper shape functions. Two advantages
result from 2pplying good engineering judgment in a RRF: 1) speed and 2)
more intuition into the system.

RRF dramatically reduce the number of available degrees-of-freedom.
A typical RRF uses 5 shape functions while a moderate FEM routine will use
a thousand nodes and, hence, a thousand degrees-of-freedom for the same
structure. The reduction in computation time and in computer memory
requirements is tremendous.

If good judgment is used in the determination of the shape functions
used in the RRF, then extra insight is gathered about the system. By seeing
the rel tive importance of physically meaningful shape functions, a better
understanding of the behavior of the system is gleaned. For complicated
systems where engineering insight fails or for systems which are too
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complicated for a simple set of shape functions, then RRF will fail while FEM
will still succeed. However, for the systems considered in this thesis, RRF
will provide quicker and more meaningful solutions.

5.4 Simplifications of General Equations

In the most general form, the constitutive relationships for
electrostrictors and the governing equations for an electrostrictively coupled
electromechanical system are best described in index notation. However,
index notation raquires thirteer. indices for the quadratic model and even
more for the hyperbolic model, which is rather cumbersome. The general
equations can be transformed into simpler forms for the case when there is
only one prescribed voltage source or for the case when the voltages are in
only one direction. For this case, the equations can be placed in state-space
form when the voltage is a prescribed function. Both forms are presented in
this section.

A note or. notation: During the derivation, there are times when a
tensor or matrix of each value squared is needed. This representation is not
easily expressed with either tensors or matrices. As a result, new notation is
defined. When a matrix or tensor is raised to a power, then each element is
raised to that power, but the size and rank does not change.

5.4.1 Matrix form of quadratic model

This simplification of the quadratic equations for an electrostrictively
coupled electromechanical system assumes that there is oniy cne prescribed
voitage source (i.e. v is scalar). in this case, equation (5.48) reduces to

Mi+Kr-Q'v=B' Actuator Equation I
(5.73)

20'vr—-G'v+Qv=BYq  Sensor Equation.

where the 6" matrix and the G* term include voltage dependencies. The
matrix form of the system mass, system stiffness, and the electrostrictive
capacitance remain essentially unchanged from the form given in equations
(5.49), (5.50), and (5.52). The mass matrix is
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M= [y py" dv. (5.74)
\V

Similarly, the stiffness matrix is

X=[N'CPN" av. (5.75)
\'%

The electrostrictive capacitance matrix is

C=[N"eT™N"qv, (5.76)
!

and influence matrices are

B' =y fdA and Bi=y (x) (5.77)
A

The electrostrictive term, m, necessitates a rearrangement of the
electromechanical court’ng term and the higher-order charge storage orm.
The electromechariicai coupling mairix becomes

8" = [N"C*"m"'N"qV (5.78)
\%

and the higher-order charge storage matrix is

G" = [2N"m'C* " m"'N" aV. (5.79)
y

The matrix form of the terms used in equations (5.74-5.79) are the
expansions of the tensors previously defined in this chapter. The matrix
form of the electric field varying electrostrictior: term was given in equation
(3.21) as

(myEy mpEy mpE; 0 myE; myE,
m’ ={m,E, m;E; m;;E, myuE; 0 myE (5.80)
myE; mpE; myEy myE; myE; 9

-

The dielectric coupling terms was defined ir. ec uation (3.20) as
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l—elT 0 0
eT=| " ¢ o], (5.81)
0 0 &

The stiffness terms of the symmetric electrostrictor at constant electric field

are

CHCLChL 0 0 0

ChChCh 0 0 0

_|caChch 0 0 0
0 0

5.82
0 0 o0 ck (:82)

The mechanical displacement shape function is a matrix of the deformation
shapes of all of the shape functions. The mechanical displacement is given by
the product of the shape function with their time varying amplitudes.

yii(x) wip(x) - [[ry(1)
u(x,t) = Y (xX)r(t) ={ w3;(x) yi(x) - Kry(t) (5.83)
Y3 (x) y3(x) ||

The strains in the structure are product of the linear differential operator for
the particular elasticity problem and the vector of mechanical displacements.

a -
(2 0 o0
0 £ 0|
0 o 2 |¥Yi® v - (n)
S(x,t) =N"(x)r(t) = 0 12 Lazi Vo (x) Wiy (x) - ry(1) (5.84)
PR LR ZOR (W
29z 2 ox
10 19
|20y 20x ]

The electrical potentials correspond to the voltages at the electrodes.

P(x,t) = y¥ (x)v(1) (5.85)

The electrical field comes from the variation of the electrical potential;

E(x,t)=N"(x)v(t)=-Vy'v (5.86)
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where V is the gradient operator.

The form of the actuator and sensor equation as given in equation
(5.59) represent a simplification when only one actuator is present on the
structure. The general form of the actuator and sensor equations, equation
(5.39), can also be readily translated to matrix form for other actuation
scenarios, such when as the electric field is present in only one direction.

5.4.2 State-space representation of quadratic system

Although electrostrictors are nonlinear elements, actuation with
electrostrictors can be modeled as a linear plant with a nonlinear input for the
case when there is only one actuator. In other words, the nonlinear system
given in equation (5.48) can be placed in a state-space form when the voltages
are prescribed functions of time. The system can be described as

{:}=[2 ?\H:} (5.87)
xz{:}’ “={5} (5.88)

0 I 0 0
A= _M_l _M_lCd N and B= M_IBf M_]@, . (5.89)

Cd is a possible viscous damping matrix and the electromechanical coupling
0" includes a factor of electric field. The output equations depend on which

where

variables are desired. Let us assume that the strain values at some discrete
location are desired, then the other parts of equation (5.87) become

y=S(x), C=[N(x) 0 and D=[0 0] (5.90)

Although the voltage-driven case readily lends itself to state-space
format, the charge-driven couplings would require significant algebraic effort
in order to place them in a similar format.
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5.4.3 State-space representation of hyperbolic system

5.4.3.1 Without elastostriction

The general equations of motion which involve hyperbolic
trigonometry can also be placed in a state-space representation. For this
simplification, it is assumed that the elastostriction term is zero. Also, it is
assumed that the voltages are prescribed functions of time. In other words, it
is assumed that the active materials are actuators. But there are no
restrictions on the number of active elements. As a result, equation (5.62) can

{;} =[é g]{:} (5.91)

( f

r A\
*= {r} u= {tanh(k vIN"'N'y )__N+ (5.92)
(v'Nv va)

be described as

where

0 I 0 0
A: _M—]K _M—]Cd » and B: M-le M-l@ . (593)

The output equations depend on which variables are desired. Let us assume
that the strain values at some discrete location are desired, then the other
parts of equation (5.91) become

y=S(x), C=[N'(x) 0 and D=[0 0] (5.94)

The mass, stiffness, and influence matrices remain unchanged from
the form given in equations (5.74), (5.75), and (5.77). The electromechanical
coupling matrix is now defined as

o= N"C*Fm! dv (5.95)
\%
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5.4.3.2 With elastostriction

If only a one-dimensional investigation is required, then the reduced
actuation due to the elastostriction effect can be added. Since the actuation is
one-dimensional, the elastostriction term, r, the electrostriction term, m, and
the stiffness term, CE, are scalar. In this case, the forcing term given in
equation (5.91) would include the O term described in equation (5.69). As a
result the forcing term and the coupling term need to be redefined.

f

u=/ %tanh(k\/v‘N"N"v)—va {
(V'N" N"v) (5.96)

%tanh(k\/v‘N"N"v)—-Nl—v— v'N''N'y

NN
and
B= 0 0 0 (5.97)
“[MTBf M'e -M'O] ‘

The elastostriction coupling matrix is defined as

O = j N 'Cm'dV = ij"cEZrN'N"‘m‘dv (5.98)
\Y v

Only one of the elastostriction coupling terms is included in this state-
space representation. This elastostriction term describes how the decreasing
stiffness and higher electric fields produces decreasing actuation potential.
The term that is neglected describes how the decreasing stiffness produces
varying natural frequencies.
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Chapter 6

STRUCTURAL EXPERIMENTS

Ceramic devices that shiver
Structural deflectors that quiver
The end to man's vices
Lies in these devices
Electrostrictors .. iiiey deliver!

-Eric Wobells

Experiments were conducted to test the validity of the analytical
models of the electrostrictively coupled electromechanical system that were
derived in chapter 5. In these tests, the electrostrictor was driven by a
prescribed voltage and both the strain and the inducea charge were measured.

6.1 Experimental Setup

6.1.1 Physical setup and data reduction

The experiments were conducted on a cantilevered aluminum beam
with a surface-bonded electrostrictive wafer, as indicated in figure 6.1. The
beam is 37.8 cm long, 2.7 cm wide, and 0.16 cm thick. An electrostrictor was
bonded to one side of the beam 2.1 cm from the base and extends 2.7 cm. The
electrostrictor is a 0.027 cm thick 0.9 PMN-0.1 PT ceramic wafer manufactured
by AVX. The surfaces were electroded with aluminum and the transverse
properties of the wafers (i.e. m,;,, values) were utilized. The wafer was
bonded to one side of the beam. Transverse motion of the wafer induced not
only a moment, but also stretching in the beam. The maximum relative

103
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21mm  orm 0.27mm thick 1.63mm
_Z_’ ‘= - electrostrictive ceramic v
— 1
Ve 'Y
?; a3 ‘ \ Strain gauge 3
Z mm :
: !
~g 378mm — =1

Figure 6.1: Cantilevered beam test article

dielectric of this electrostrictor occurred at a temperature of 40°C. Unless
otherwise noted, all of the experiments were conducted with the wafer
temperature at 28°C. As a result, the experimental data will feature larger
hysteresis than the classic curves of an electrostrictor and will feature larger
strains (Blackwood and Ealey, 1993) (Uchino et al, 1982).

The basic material properties of the beam and the electrostrictive
actuator are given in figure 6.2. A more complete summary of the
electrostrictive material properties are given in figure 4.9. The damping ratio
of the beam was measured with a ring-down test for the first three dynamic
modes of the beam, the dielectric permittivity was measured with an Omega
multimeter, and the electromechanical coupling terms were obtained from
free wafer tests as described in section 4.

The electrostrictive wafer was excited with a Kepco model BOP 1000M
voltage amplifier which was fed a sinusoidal signal from a Phillips model PM
5191 function generator. The modal displacements were measured with a
strain gauge located on the reverse side of the beam from the electrostrictive
wafer, 3.3 cm from the base. Data was collected on a Macintosh Quadra 950
using LabView software running at 4 kHz. The electrical displacement was
measured by integrating the current applied to the actuator.

The strain data was windowed in the frequency domain with an eleven
point Hamming window and then averaged in the time domain over four
cycles. A similar process was performed on the voltage data in order to
eliminate the possible effects of added phase. A more detailed description of
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Beam: Stiffness Ci,, =68GPa
Poisson’s ratic v =0.33
Damping ratio
- First mode ¢ =0.6%
- Second mode . =04%
- Third mode £ =0.3%
Electrostrictor:  Stiffness C;',F;, =120 GPa
Dielectric constant €1 =17000¢,
m constant m,, = 6.6e-16 m? /v?
k constant k=1.6e-6 V/m

Figure 6.2: Material properties of the aluminum beam and
electrostrictive actuator

the data reduction was presented in subsection 4.1.2 of the chapter dealing
with materials testing.

6.1.2 Model comparison and shape functions

The experimental results are compared with the models developed in
chapter 5. Two expressions of the coupled structure interaction were
developed: a hyperbolic model and a quadratic model. The hyperbolic model
is more general than the quadratic model and expresses the electromechanical
coupling in terms of hyperbolic tangent functions. The state-space form of
the hyperbolic model is expressed in subsection 5.4.3.1. The quadratic model
is the low field simplification of the hyperbolic model and features a quadratic
electromechanical coupling. The state-space form of the quadratic model is
expressed in subsection 5.4.2. The values used in the simulations of the
experimental data are taken from values presented in the literature or
previously calculated in this thesis. No iteration was attempted to enhance
the correlation betw<en the experiments and the model.

For all of the model simulations, the driving voltage was a single
frequency sinusoid and the beam was initially at rest. The model used seven
assumed deflection shape functions, y,(x). Five of these deflection modes
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reflect the exact mode shape for a uniform cantilevered beam. The other two
mode shapes represent the beam profile if there was a static electric field on
the electrostrictive wafer; one mode represented bending while the other
mode represented extension. These “static” mode shapes help to better
represent any residual strain energy due to the discontinuous stiffness at the
electrostrictor (Fleming and Crawley, 1991).

The exact mode shapes for a cantilevered beam are (Meirovitch, 1985)
W3 (x) = (coshA x —cos A, x)- o, (sinh A, x —sin A,x) (6.1)

where A and a are unique for each mode of the structure. The first “static”
mode shape represents the bending induced by the electrostrictive wafer.
This mode has constant curvature around the actuator and zero curvature
elsewhere. If a; and a, represent the endpoints of the actuator, then the static
bending mode is given by

0 X <a,
w;r = %(X—al )2 al <x<az. (62)
(al_al)(x—%(al_al)) a; <X

The “static” mode shape associated with extension exhibits constant slope
around the actuator and zero slope elsewhere.

0 X <a,
X—a
yi, = ' a; <x<a- (6.3)
a -9
1 a, <X

The process of applying Rayleigh-Ritz analysis to a beam with surface
mounted actuators is explained in detail in other sources (Fripp, Hagood, and
Luoma, 1994) (Hagood et al, 1990) and more generally in (Meirovitch, 1985).
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6.2 Quasi-Static Response

The quasi-static response of the cantilevered beam system is illustrated
in figure 6.3. A prescribed voltage was placed across the electrostrictive wafer
and the resulting strain was measured. The applied voltage was in the form
of a 0.1 Hertz sinusoid. The theoretical strain was found by numerically
evaluating the state-space form of the actuator equation. The hyperbolic
model is presented in equation (5.70) and the quadratic model is presented in
equation (5.66). The quadratic model is the low-field simplification of the

hyperbolic model.

150 T T T
/
/
/
/
/
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£
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0
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Q
=
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— - Experiment
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- — Quadratic Model

o A1 1
0] 200 400 600 800

Applied Electric Field, Volts/mm

Figure 6.3: Quasi-static deflections of the cantilevered beam. The
hyperbolic model used equation (5.70) to predict the response. The
quadratic model used equation (5.66).
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Figure 6.4: Charge variations on the electrostrictor during 6 Hz
dynamic actuation. The hyperbolic model used the state-space form of
the sensor equation as given by equation (5.70) and the quadratic
model used equation (5.48) to calculate the response. The
discrepancy between the modeled and experimental result could
result from a variation in the dielectric permittivity.

At low fields, good agreement is achieved with both model and
experiments when both static modes are included in the Rayleigh-Ritz
approximations, as shown in figure 6.3. The quadratic model tends to break
down above 300 V/mm because the initial simplifying approximations are no
ionger valid at the higher field levels. The hyperbolic model provides
excellent agreement across the entire range of applied electric field levels.
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6.3 Charge Variation

The sensor equation of an electrostrictively-coupled system can be
verified by examining the charge variation on the electrostrictive wafer. In
this case, a 6.00 Hertz sinusoidal voltage signal was supplied to the wafer. The
charge on the electrostrictor was determined by integrating the current
applied to the electrostrictor. The current supplied to the electrostrictor was
measured with a sensing resistor in series with the electrostrictor. The
integrating circuit featured a single pole integrator with a corner at 0.1 Hertz.
The charge in the simulation was calculated through the sensor relation in
the general equations of motion. The hyperbolic model is given in equation
(5.62) and the quadratic model is expressed in equation (5.48).

As shown in figure 6.4, the quadratic model over predicts the charge at
large electric field levels. The hyperbolic model under predicts the charge at
all levels, but more closely approximates the shape of the charge-field curve.
The mismatch between experimental and modeled performance in the low-
field region suggests that the dielectric permittivity of the electrostrictor
might have been larger than that which was used in the model. The
dielectric is sensitive to changes in temperature, frequency, and electric field.
The Aielectric was calculated from the capacitance measured by the Omega
multimeter. The multimeter measures the capacitance at 390 Hz. The
capacitance of electrostrictors increases as the frequency decreases
(Namboodri, 1992). The capacitance could increase by 20% in the frequency
range between the 390 Hz measurement and the 6 Hz experiment. A 20%
increase in the capacitance would provide a very close correlation between
the experiment and the model in figure 6.4.

6.4 Frequency Response

For a linear system, the frequency response can be expressed as a
transfer function. Unfortunately, a tran.fer function loses its meaning when
referring to a nonlinear system. As a result, the RMS strain was calculated as
a function of the excitation frequency at a low and a high electrical bias. The
low electrical bias case, 75 V/mm, is presented in figure 6.5 and the high
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Figure 6.5: Frequency response of the cantilevered beam. There is a
low DC bias of 75 V/mm. Superharmonic resonances are prevalent
due to the quadratic nonlinearity inherent to electrostrictors. The
quadratic model and the hyperbolic model yield identical resuilts at this
low electric field level.

electrical bias case of 400 V/mm is shown in figure 6.6. In both cases a
75 V/mm sinusoidal signal provided the excitation.

In figure 6.5, the first, second, and third modes of the beam are visible
and represented by peaks in both the modeled and experimental data. There
are also large responses at one half of these natural frequencies. A nonlinear
system, such as an electrostrictor, is not constrained to respond at the same
frequency as the excitation. An excitation at half of the natural frequency
induces a resonance at the natural frequency due to the quadratic nonlinearity
inherent to electrostrictors. This frequency doubling is called a
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Figure 6.6: Frequency response of the cantilevered beam. There is a
large DC bias of 400 V/mm. The superharmonic resonances are virtually
eliminated because the high bias effectively linearizes the system.

superharmonic resonance (Nayfeh and Mook, 1979). The hyperbolic model
and the quadratic model provide identical results at this field level.
Additionally, the modeled and experimental results agree closely over the

range of frequencies.

The superharmonic resonances are less visible in the experiment and
in the simulation at the high electric bias field, as seen in figure 6.6. By going
to the large bias levels, the nonlinear system essentially has been linearized.
The hyperbolic model again provides close agreement over the range of
frequencies. The quadratic model over predicts the response at high electric
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Figure 6.7: Superharmonic resonance. Excitation at one half of the
first natural frequency, 4.39 Hz, excites a resonance at the natural
frequency, 9.38 Hz. The quadratic model and the hyperbolic model
yield identical results at this low electric field level.

field levels because the 400 V/mm DC electric bias is beyond the valid range
of the reduced material constitutive relationsh’ps.

The phase portrait of the first superharmonic resonance is illustrated
in figure 6.7. In this case, an excitation at one half of the first natural
frequency excites the first mode of the beam. The input excitation is 4.69 Hz
and the system responds at 9.38 Hz. This figure corresponds to the first peak
in figure 6.5. The bow tie effect occurs because the structure (and hence the
strains) are responding at twice the rate of the applied electric fields. Again,
the hyperbolic model and the quadratic model yield identical results.



Chapter 7

CONTROL

Electrostriction seizes the jointed opportunity
To actively control lattices of stress

Thereby achieving greater virtues of stability.

But first the ceramic beast
Must tame its cwn wildness
Of careening thermal dependency
By humming a high pitched tune of constancy
To allay all fears but one-
A blizzard with a power outage
Which lends reason to its shivering.
-Dan Jobson

The previous chapters have examined the mechanical behavior of
electrostrictors and the ability to model the nonlinearly coupled
electromechanical behavior of an electrostrictively coupled system. This
chapter applies the previous knowledge into the design and implementation
of electrostrictors in feedback control. An electrostrictive actuator is used for
active vibration control. A simple second-order control loop is used as well
as an adaptive control algorithm. The stability of the control algorithms in
the face of temperature variation is also addressed.

113
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Figure 7.1: Cantilevered beam test article. The piezoceramic wafer
introduces mechanical disturbances into the system. The
electrostrictive wafer is used to cancel the vibrations so that the non-
collocated tip displacement is minimized.

7.1 Experimental Setup

The physical setup for the controls is illustrated in figure 7.1 and the
material parameters are given 1n figure 7.2. An electrostrictive wafer is used
to cancel the disturbances introduced by a piezoceramic wafer. The vibrations
measured by the displacement sensor are minimized through actuation of the
electrostrictive wafer. A transfer function between the disturbance signal to
the piezoceramic and the tip displacement is used to compare the
effectiveness of the controllers.

7.1.1 Closed-loop setup

The basic signal diagram of the experimental setup is illustrated in
figure 7.3. A Tektronix 2630 Fourier Analyzer is used to generate the transfer
function. For measuring the effectiveness of the tip control, the analyzer
generates a random signal and sends it to a Trek Model 663A High Voltage
Power Supply and a Trek Model 662 10kV Amplifier. This amplifier
magnifies the signal by a factor of 1000 before sending it to the piezoceramic
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wafer. The output from this amplifier is represented by d since it is a

disturbance signal.

A Bently Nevada 7200 Series Proximitor, a non-contacting inductive
sensor, finds the displacement of the beam tip. The conversion factor of the
sensor is 3.9 V/mm. This displacement signal is sent not only to the fourier
analyzer for inclusion in the transfer function but also to the control
algorithm. The digital controller is written in C, calls National Instrument
input/output drivers, and runs on a Macintosh Quadra 950. The control
output is passed through a Kepco model BOP 1000M voltage amplifier in
route to the electrostrictive avtuator. This amplifier magnifies the signal by a
factor of 100 with a roll-off above 1 kHz. The controller has a cycle time of
180 Hz which is close to the second mode of the cantilevered beam system.

Piezoceramic:  Stiffness CﬂelllOE =63 GPa
d constant d3; = 180e-12 m/v
Electrostrictor:  Stiffness i, = 120 GPa
m constant m,, = 6.6e-16 m? /v*
k constant k=16e-6v/m
?t:ef:'l:lssgzts on the izt = 2.2e7 m2/v2
electrostrictive term) qMy1222 = -1.0e-9 m2 /(°K v2)
qMyy223 = 1.2e-12 m2 /(°K2 v?2)
gk constant g; = 8.0e-3 VYm/v
(hermal elfects e 3,605 N/ K
qks = 4.04e-8 Vm /v PK?
Beam: Stiffness C};, =68 GPa
Poisson’s ratio w =0.33
Damping ratio
- First mode ¢ =0.6%
- Second mode . =0.4%
- Third mode ¢ =0.2%

Figure 7.2: Material properties of the beam, the piezoceramic disturbance
source, and the electrostrictive actuator.
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Figure 7.3: Signal diagram of the setup used to control the tip deflection of the
cantilevered beam. The effectiveness of the control algorithms is determined by a
transfer function between the displacement error, e, and the disturbance voltage, d.

7.1.2 Open-loop setup

The signal diagram for measuring the open-loop transfer function of
the cantilevered beam system is based upon figure 7.3. The only difference is
that the controller does not exist in the open-loop measurements. The
transfer function between the the disturbance signal, d, and the output, y,
represents the open-loop transfer function.

7.1.3 Actuator authority

The basic signal diagram for measuring the transfer function of the
electrostrictive actuator is illustrated in figure 7.4. As with the open and
closed-loop responses, a Tektronix 2630 Fourier Analyzer is used to generate
the transfer function. The singal is amplified with the Kepco model BOP

W ————u . Yy —; .

- - Voltage . Electrostrictive ~ Cantilevered Displacement |
—- g . g~ T

_ White noise " Amplifier . Actuator " Beam  Sensor !

P00V /N ) © (39V/mm) |

: out_in” | ‘ J

Figure 7.4: Signal diagram of the setup used to find the transfer function of the
actuator.
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Figure 7.5: Frequency response of the electrostrictive actuator at a bias of
180 V/mm. The transfer function was taken by providing 10 V,ns/mm white
noise at u and measuring the resulting displacement at y.

1000M voltage amplifier and then sent to the electrostrictor. The Bently
Nevada 7200 Series Proximitor finds the tip displacement of the beam.

The effectiveness of the electrostrictive actuator is illustrated in
figure 7.5. The wafer was biased with a 180 V/mm electric field. The
Tektronix Fourier Analyzer supplied a white noise input so that the voltage
at u (in figure 7.4) was 10 V,n,s/mm. The resulting tip displacement, y, was
measured. The first and second modes of the beam are clearly visible. Also of
note is the lack of a zero between the two modes.

7.2 Output Linearization

The force produced by an electrostrictor is nonlinear. Until this
section, the focus of this thesis has been to work with this strong material
nonlinearity. This section describes a method to linearize the output from
the electrostrictor. In other words, through output linearization, the
electrostrictor will essentially become a linear element. As a result, with
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output linearization an electrostrictor can

be easily incorporated in linear control Sﬁ
theory.
7.2.1 Output linearization model @
Through output linearization, a 1
transform is sought so that a linear input <
produces a linear output. In brief, the
. . . : >
inverse of the hyperbolic strain-voltage :EO—’EG E

relationship is sought. In chapter 3, the

hyperbolic strain-voltage relationship was
Figure 7.6: Notation for field

expressed in equation (3.8). Repeating the
and strain bias.

relation without the elastostriction term,
the induced strain is given by

=-L

E_E
tanh?(k|El) =m0 7.1
" (kIEl) = (7.1)

mnij
Most applications of electrostrictives use the material in the form of a wafer.
In this case, the electric field goes in only one direction. As a result, equation

(7.1) can be simplified to

S;. = L m,; tanh 2 (kIE}). (7.2)
2 My

ij=k

Assuming that the strain is only needed in one direction transforms S and m
into scalars. This allows the finding of an inverse. Inverting a scalar form of

|El=Ltanh™! 1{kzmg'sij (7.3)

Nominally, equation (7.3) is all that is needed for output linearization.
However, for bipolar actuation an electrostrictor must be biased. The bias
should be included in the formulation of the linearization. As shown in
figure 7.6, define the bias point to be

equation (7.2) gives

Sp+S5=S; and E%+E3=E,. (7.4)
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where the superscript “0” indicates the bias point and the superscript “a”
indicates the applied level after the output linearization. Substituting the
strain and field bias into the inverted strain-voltage relationship becomes

IE® + E*l= {tanh ™! k?m' (S5 + S} (7.5)

From strain-field relationship, we can define the biased strain in terms of the
electric fizld. Substituting equation (7.2) into equation (7.5) gives

IE° + E*I= L tanh™" \/kzm{jl(k% m;; tanh?IKE°1+53) (7.6)

Through output linearization we are seeking a relationship where the
resulting strain, S2, is linearly proportional to the commanded field, E¢. In
other words, what operation must be performed on E¢ so that the applied
electric field, E2, produces a linear response. The commanded field is the
response from the controller and the applied field is what is actually given to
the actuator. Both the commanded field, E¢, and the resulting strain are
variations around the bias point.

S§ = 8ijmEm (7.7)
Substituting equation (7.7) into equation (7.6) yields
IE® + E®l= %tanh'] \/kzmgl (;‘7 m;; tanhzlkE°|+gE°) (7.8)

Assuming that the biased electric field is larger than the electric field
variation, i.e.. Ec<E°, then we can obtain the final form of the output

linearization

E* = Ltanh™' | tanh?(KE®) + k®m;'gE* — E° (7.9)

Equation (7.9) has incorporated several substantial assumptions. First,
it is assumed that the electric field flows in only one direction which allowed
the scalar for of E to be used. Similarly, unidirectional actuation was assumed
which allowed the use of the scalar form of m and S. Finally, the bias in the
electric field was assumed larger than the time varying comporent of electric
field. Also, it is assumed that a linearization of the plant is desired.
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Although substantial assumptions, most engineering applications will utilize
these simplifications.

7.2.2 Output linearization experiment

Output linearization is meaningless unless there exists a good linear
controller for the system. As a simple, yet effect linear controller, a second-
order control was chosen to cancel the tip displacement of the cantilevered
beam illustrated in figure 7.1. For simplicity and due to the sloth of the digital
controller, damping of only the first mode was attempted.

The controller was chosen in the form of a positive position feedback
(PPF) controller. A PPF controller feeds the structural position coordinate
directly to the compensator and the product of the compensator position
coordinate and a scalar gain positively back to the structure. This type of
controller was chosen because it can pick-off modes in a dense pack and can be
tuned so that it is inherently stable in the crossover region. On the downside,
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Figure 7.7: Transfer function of the PPF controlier. The controller was given
in equation (7.13) and the output linearization described in equation (7.9).
The zero at 160 Hz corresponds to the non-minimum phase zero due to the
time delay inherent to digital control.
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a PPF system adds flexibility at low frequency (possible static instability) and
offers only moderate damping levels.

The Laplace representation of a PPF control system is

2
o°

H(s) = (7.10)

s +20°0°% + o°
where ¢ is the compensator frequency, (¢ is the compensator damping ratio,
and s is the Laplace transform variable. The change from the continuous
domain to the digital domain is achieved with Tustin’s method in which s is
replaced with its digital equivalent;

21-7"
Tl+z7"

(7.11)
T is the sampling interval and z is the Z transform variable. Applying

Tustin’s method to the PPF controller gives

—_9,-1 -2 c,.cq1_ 1
H(z):ll@—wcz _izl 22-I+z_2+2§ o1 z-]
T 14227 +2 T 1+z

c2
el +o ) (7.12)

The Z transform is easily converted to the finite difference form. The
exponent on the z indicate the delay on the variable, (i.e.. z 'u(z) > u,_)).
Writing the PPF control algorithm in the finite difference form gives

uk-l(s - 2wc2) - "k-2(4 -4 T+ chTz) + wcsz(YR +2yq+ Yk-z)

uy = (7.13)

4+4L°0°T + 0°°T?

Control is performed by sending the output of the PPF controller given
in equation (7.13) through the output linearization described in equation (7.9).
The PPF controller was applied to the experimental setup described in
section7.1. The parameters were chosen to achieve roll-off quickly after the
first mode the system. As a result, {<=0.5, =110 rad/sec, and T=0.0062 sec.
The time period is a hardware fixed parameter which is dictated by the 160 Hz
cycle time. The linearization factor was chosen to be g=15*10-10 which lies on
the verge of stability. Figure 7.7 shows the PPF controller with output
linearization. A representative bias voltage of 400 V/mm was used in the
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Maghnitude, dB mm/NVolt

8

linearization. The transfer function is taken between the position error, e,
and the control output, x, as indicated in figure 7.3. The controller rolls-off
shortly after the first natural frequency of the system. The roll-off is aided by a
non-minimum phase zero which corresponds to the time delay introduced by
the digital controller.

Experimentally implementing the output linearized PPF controller on
the cantilevered beam produces a dramatic reduction in the disturbance of the
first mode of the system. The RMS disturbance voltage to the piezoceramic, d,
is 120 V/mm. The control voltage, u, is prevented from ever exceeding
+150 V/mm. Figure 7.8 shows the open-loop and closed-loop response of the
system. The transfer function is between the disturbance voltage, d, and the
tip displacement of the beam, y. The first mode of the system is effectively
eliminated. There is also a slight softening of the low frequency behavior. In
the region between 10 Hz and 100 Hz, the RMS displacement is reduced by
63%.
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Figure 7.8: Effectiveness of the PPF controller. The electrostrictive wafer is
biased to 400 V/mm. The transfer function is between the disturbance voltage,
d, and the resulting displacement, y. A 63% RMS reducticn is achieved
between 10 Hz and 100 Hz.
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Figure 7.9: Effectiveness of the output linearization. Through output
linearization, the electrostrictive actuator delivers consistent
performance across a wide range of voltage amplitudes.

The purpose of the output linearization was to provide consistent
performance across a wide range of voltages. As a result, the same controller
was implement at different bias voltages. The reduction in the RMS
displacement was noted at the different bias levels. As indicated in figure 7.9,
the variation is negligible. In other words, output linearization is a very
effective method through which to obtain linear performance from an
electrostrictor.
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7.3 Simple Temperature Control

Temperature sensitivity is the principle reason that electrostrictors are
avoided. The electromechanical coupling changes dramatically with respect
to temperature. Any design which utilizes electrostrictors must address the

temperature variation.

Most engineering systems that utilize electrostrictors require
temperature stability. Since the temperature does not change, the
electromechanical coupling can be know very accurately. As a result, when
the fix of the Hubble telescope was performed, the astronauts not only added a
series of electrostrictive micropositioners but also installed a small heater.
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Figure 7.10: Effect of temperature variation in the transverse
actuation of an electrostrictive wafer. This figure is duplicated from
chapter 4.
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Figure 7.11: Gain factor for temperature compensation. The gain is
normmalized so that 25°C has unity gain.

The active vibration isolators designed by Martin Marietta require the
operating temperature to be held within +5°F (Hom and Shankar, 1994b).

Although effective, maintaining temperature stability is often an
unacceptably strict requirement. This section describes two techniques to
tackle the temperature troubles tied to electrostrictors: gain compensation and
shivering. The gain compensation is effective and yields consistent
performance over a wide range of temperatures. Shivering is essentially
ineffective except for systems with very small heat capacity.
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Figure 7.12: Effectiveness of electrostrictive control at different temperatures.
Without any temperature compensation, the performance drops dramatically. A
temperature dependent multiplicative gzin allows consistent performance over
a wide range of temperawres. The electrostrictor was biased by 180 V/mm.

7.3.1 Temperature gain compensation

Gain compensation is an intuitive technique to obtain uniform
performance across a range of temperatures. The electr mechanical coupling
of an electrostrictor decreases with temperature. As a result, if the gain of the
controller is equivalently increased, then consistent performance will result.
Thus, all that is needed is a temperature dependent multiplicative factor
scaling the amplitude of the control signal.
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The temperature variation of electrostrictors can be accurately
modeled, as shown in figure 7.10. The temperature model was described in
subsection 3.3.4 and experimentally validated for one dimensional actuation
in section 4.4. Figure 7.10 is repeated from chapter 4.

With the models of the temperature variation given in equations (3.27)
and (3.28), the electromechanical coupling can be computed at each of the
temperatures. The coupling at a 180 V/mm bias field is easily found. The
reciprocal of the coupling factor gives the gain needed for temperature
compensation. The gain is normalized so that 25°C has unity gain. The gain
as a function of temperature is presented in figure 7.11.

The tip displacement control of the cantilevered beam was attempted
with the PPF controller described in equation (7.13). The parameter values
remain unchanged from those given in subsection 7.2.2. The control was
implemented with temperatures ranging from 5°C to 55°C. The vibration
control was attempted with and without the temperature gain compensation.
As seen in figure 7.12, control with temperature gain compensation delivers
consistent performance acress a wide range of temperatures. Control without
gain compensation yields dismal performance at elevated temperatures.

7.3.2 Shivering

Hysteresis represents energy that is dissipated during a cycle. The
energy is typically dissipated in the form of heat. Electrostrictors have small,
but nonzero, hysteresis and, thus, will heat under a cycling electric field. The
hysteresis in electrostrictors decreases with increasing temperature, as shown
in figure 7.10. As a result, the heating will not significantly exceed the Curie
temperature range.

The concept of small amplitude, high frequency cycling creating heat is
not a revolutionary concept. This is another way of describing shivering
where rapid muscle activity generates heat. Some insects vibrate their wings
for a while before flight, heating the muscles to the temperature at which they
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work best. The cycling of electrostrictors is simply another application of self-
heating.

Unfortunately, shivering does not work very well. As seen in
figure 7.13, the heat generated by the small hysteresis of the electrostrictor is
small compared with the heat lost to the system. In this case, a 100 V/mm
signal was applied at 1200 Hz and a DC offset of 150 V/mm. Shivering with a
free wafer will increase the operating between 15°C and 5°C. This could be a
significant reduction in the temperature sensitivity of the material.

However, the extra convection provided by a host aluminum structure
45
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Figure 7.13: Effect of shivering (self-heating) with electrostrictors by applying
a 1200 Hz, 100V/mm signal at a 150V/mm DC bias. With a free wafer,
shivering significantly increases the material temperature but the heat
dissipates rapidly when the wafer is applied to a structure.
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completely cancels the raise in temperature. Shivering will only work when
the material is well insulted.

7.4 Adaptive Control

7.4.1 Theory of adaptive control

This section applies an adaptive control algorithm to the experimental
system described previously in this chapter. The theory behind adaptive
control algorithms is taken from Slotine and Li (Slotine and Li, 1991).

Adaptive control differs from an ordinary controller in that the
controller parameters are variable, and there is a mechanism for adjusting
these parameters on-line based on signals in the system. These controllers
assume that the parameters are constant or at most slowly varying. The basic
approach of the adaptive controller is to estimate the uncertain system
parameters based on the measured system signals, and to use the estimated
parameters in the control input computation. In brief, adaptive control
algorithms are control algorithms with on-line parameter estimation.

There are a variety of methods for updating the adaptation parameters.
A common technique compares the output of the system with the output
from a model of the system. The difference between the system output and
the expected output is the basis of the adaptation. The reference model is
altered so that it can accurately predict the dynamics of the system. The
control output is based upon the command signal and the modeled system
dynamics. As a result, adaptive controllers require a good mode! of the
system dynamics.

Adaptive control algorithms are fundamenta'ly different from robust
control algorithms. Adaptive control algorithms are superior to the robust
approach when dealing with uncertainties which are constant or slowly-
varying. An adaptive control algorithm learns about its system and
maximizes performance for the given set of parameters. A robust algorithm
simply attempts to maximize performance over a range of possible
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conditions. The adaptive control algorithm requires little or no a priori
knowledge about the unknown parameters while the robust controller
requires a reasonable estimate of the parameter bounds. The robust control
algorithm is superior for dealing with disturbances, quickly varying
parameters, and unmodeled dynamics.

In adaptive control, the dynamics of the system can be represented in
the form

M(r)r+C(r,r)r+K(r)=1 (7.14)

where M represents the mass, C is the damping, K is the stiffness, and 1 is the
external force. At this point, the understanding of the system dynamics is
introduced. It is assumed that there exists an unknown vector, a, which can
describe the system parameters, M, C, and K. Although the parameter, a, is
unknown, the relationships is know. The reference model becomes

M(r)i" + C(r,F)r" + K(r) = Y(r,r,r",f")a (7.15)
where r’ is the reference velocity. The reference velocity is formed by
shifting the desired velocities according to the position error.

i =i - A(r-r’). (7.16)

The desired position is given by rd and A is a relative weighting between the
position error and the desired velocity components.

The unknown system parameter vector, a, ic estimated based upon the
system dynamics,

a=-TY's, (7.17)
where the hat atop the a indicates the estimated value instead of the actual

parameter value and I" controls the rate of the adaptation. The velocity error,
s, is given by

s=F-" =r-i'+A(r-r). (7.18)
Combining the pieces together, the control law becomes

t=Ya-KDs. (7.19)
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The control law contains a feed forward term, Ya, and a PD term K"s. The PD
term is exactly analogous to the form of the controller described in equation
(7.10). The feed forward term incorporates the adaptive part of the control
algorithm.

In summary, based upon the knowledge of the dynamics of the system,
a parameter matrix Y is formed and initial values for the system parameters,
a, are guessed. The output control, 1, given in equation (7.19) is based upon
the system error, s, as given in equation (7.18) and the reference model, Ya.
The system parameters are updated through equation (7.17). The loop
continues by reforming the output control based upon the system error and
the reference model.

7.4.2 Implementation of adaptive control

The adaptive controller described in the previous subsection can be
applied to the experimental setup given in section 7.1. However, the adaptive
control algorithm assumes full-state feedback. Because full-state feedback is
not easily realizable for the continuous system, a single-state adaptive
controller is used. The tip deflection will be used to approximate the first
mode of the beam. These are bad assumptions but are the best available for
the current system configuration.

For the reduced system, the gain of the system was used as the
adaptation parameter. For ease in implementation, the gain was set at unity
and the mass, damping, and stiffness of the reference model were varied.
Thus, the reference model is

v={i i r} (7.20)

The controller was used for active vibration control, so all of the
desired parameter variables (variables with superscript d) were zeroed. The r
value were taken from the tip displacement of the beam. The r parameter
was found by differencing the current tip displacement with the previous
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Figure 7.14: Experimental implementation of an adaptive control algorithm
decreases the resonant displacement by 20%. The control algorithm was
running at 150 Hz. The electrostrictive actuator was biased by 300 V/mm and
the maximum signal was limited not to exceed ¥70 V/mm.

displacement. During the experimental implementation, the initial values of
a were set to zero.

The adaptation rate was chosen to be

2e-4 0 0
r=y 0 le-5 0

and the relative weighting was chosen to be A=1000. The PD gain was taken
as KP=1le-4. These parameters were experimentally chosen so as to be large
enough to ensure quick convergence and effective control without inducing
instability. Since these values are strongly related to the unmodeled
dynamics of the system and the system noise, they are typically determined
experimentally.
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The experimental implementation of the adaptive control algorithm is
presented in figure 7.14. The electrostrictive wafer was linearized by a bias
voltage of 300 V/mm and the maximum control signal was limited to be less
than 70 V/mm. With a cycle rate of 150 Hz, control was only effective on the
first mode of ‘he structure. The performance of the adaptive controller is
dismal when compared with the previous controllers.

The basic experimental system doomed the adapative controller from
the start. Adaptive controllers were orignially designed and work best in
system that have few degrees-of-freedom, full-state feedback, moderate to
large damping, and low noise levels. The cantilevered beam system has none
of these attributes. The experimental setup is lightly damped continuous
structure with one state of feedback through a noisy sensor. Thus, to
maintain stability, low adaptation gains were required. Since low gains were
used, poor performance was obtained.

Despite the poor performance, the adaptive controller holds the
advantage that no knowledge of the system is required. The controller gives
the 20% noise reduction regardless of the system gains. Thus, if no
knowledge is available then an adaptive controller might be worth the
ghastly performance that it provides.
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Chapter 8

CONCLUSIONS

Shivering back and forth
Trying to be warm
Moving south then north
All in perfect form.

Vibrating still faster
Unable to stop.
Small ceramic master
Reaching for the top.
-Sarah Melton

8.1 Summary

This thesis presents the theory and the experiments describing the use
of electrostrictive elements for structural actuation and control. The
electromechanical behavior of the relaxor ferroelectric 0.9 PMN - 0.1 PT was
categorized and presented in context of its constitutive relationships. The
general form of the nonlinear constitutive relationships for an electrostrictor
were reduced to a hyperbolic tangent squared relationship and even further
reduced to a single quadratic relationship. The temperature dependence of
the material was also presented and modeled. In this process, the 20%
stiffness reduction with a 1300 V/mm electric field was measured and the
material nonlinearity was shown to be an electric field-based nonlinearity.

135
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The simplified constitutive relations were introduced into a
generalized form of Hamilton’s principle. Introducing an assumed mode
formulation allowed these equations to be succinctly expressed in terms of an
actuator equation and a sensor equation. The actuator equation describes the
dynamics of the mechanical system and the sensor equation describes the
dynamics of the electrical system and these equations are coupled by the
electrostriction term. Although the derivation was applied to the case of an
electrostrictor, the derivatica is far more general and forms a framework
around which the global dynamics of many nonlinear electroceramic actuated
system can be derived. The equations of motion in assumed modes form
could be utilized in a finite elements solution scheme or in a Rayleigh-Ritz
solution since the general form of the two techniques are identical.

The general model for an electrostrictively coupled system was applied
to the special case of an electrostrictive wafer (. 9PMN-.1PT) mounted on a
cantilevered beam. The dynamics of the electrostrictively coupled system
were predicted based upon the separate dynamics of the cantilevered beam
and of the electrostrictor. There was solid agreement between the predicted
and experimentally measured strain and electrical displacement over a wide
range of frequencies and voltages. The quadratic nonlinearity of the
electrostrictor can lead to a superharmonic resonance in which case an
excitation at half of the natural frequencies leads to a resonance at the natural
frequency. The superharmonics greatly decreased as the bias voltage was

increased.

The general model for the electrostrictively coupled system was also
summoned to model the closed-loop dynamics of the electrostrictive wafer
mounted on a cantilevered beam. A second-crder controller and an adaptive
control algorithm were implemented to cancel the tip displacements induced
by a piezoceramic disturbance source. By adjusting the gains of the second-
order controller according to the theory, a consistent 60% reduction of the
peak displacement was achieved over a wide range of temperatures and bias
voltages. The adaptive control algorithm used the gain of the electrostrictor
as the adaptation parameter and succeeded in providing 20% attenuation of
the tip displacement.
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8.2 Contributions by Chapter

The brief summary of the conclusions from this thesis presented in the
previous section is overly brief. In this section, the salient points from each
chapter are presented sequentially, as appearing in the thesis. Where
appropriate, section references are included so that the detailed description
can be found.

8.2.1 Chapter 2: material overview

During chapter 2 the material properties of electrostrictors are placed in
context with the material’s crystalline structure. In section 2.1 electrostrictors
are placed among the classes of crystalline materials. Additionally, the
fundamental differences between electrostriction and piezoelectricity are
described. The identifying characteristics of electrostriction are a diffuse phase
transition and a strong material symmetry. The diffuse phase transition,
which is created by microvolumes of magnesium, niobium and titanium,
produces a Curie range and allows for large strains. The material symmetry
causes the even powered strains-field relationships, produces a symmetric
stiffness matrix, and prohibits spontanecus macroscopic polarization. The
lack of spontaneous macroscopic polarization translates into the small
hysteresis which is characteristic of electrostrictive devices. The temperature
dependence of the gains is a function of operating the material near its Curie
range. Perovskite structure is also reviewed.

During section 2.2 the applications of electrostrictive actuators are
reviewed. Most applications currently involve quasi-static micro-positioning
devices.

All of the information presented in chapter 2 is taken from previously
published sources.
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8.2.2 Chapter 3: constitutive equations

During chapter 3 the constitutive relationships for electrostrictors are
derived. The chapter starts in section 3.1 with a review of the
thermodynamic formalism from which constitutive relationships are
derived. As with most formalisms, the thermodynamic formalism is greatly
aided if the investigator knows the answer before the problem is started. In
such cases the formalism then provides continuity and compatibility of the
resulting equations.

One expansion of the thermodynamic formalism leads to quadratic
representation of the electrostrictive constitutive relationships. In this
derivation the material symmetry is utilized and higher-order terms, such as
the elastostriction term, are dropped. The steps are detailed in
subsection 3.2.1. The resulting relationships are dubbed the quadratic model
and this is the standard representation of electrostrictors in the literature.

D, —£E+2m ET.

mnij—~n * ij

(3.17)
S, =m_EE +5.,uT

Pgij P q

As described in subsection 3.2.2, the quadratic model can also be expressed in
matrix notation.

An alternate expansion of the thermodynamic formalisms leads to a
hyperbolic tangent squared representation of the electrostrictive constitutive
relationships. As detailed in subsection 3.2.3, the material symmetry is
utilized and some higher-order terms are dropped. As expressed in
equation (3.26) the elastostriction terms have been retained. This form of the
constitutive equations is referred to as the hyperbolic model.

20 T sinh(klEl) E; > sinh(kiEl) E,

Dy = EqEq +£ o aen g ki TiT =5 e
man g Mmnij i I (kBN 1B K ik K S e TR

(3.26)

E
Sij =55aT + klz M tanhz(kIEI) = En 4 k22 * i T tanh? (KIED) e

The last terms in equation (3.26) can be thought of as an electric field
correction to the material stiffness. In this case, the variable stiffness matrix is
defined as
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. EpEy )~
Cija = (Sgk! + f, T mnijkI tanhz(klEl)—i'éi—zi) (3.28)

The previous expressions are valid only at constant temperature. The
temperature dependence of the electrostrictive gains can be expressed as an
algebraic expansion in terms of temperature. The form of the expansion is
detailed in section 3.4.

One of the major contributions of this thesis is the introduction of the
hyperbolic model and the temperature expansion of the coupling terms.
Although based upon the works of Namboodri (Namboodri, 1993), this
formulation is simpler and more applicable. The elastostriction term and the
variable stiffness matrix were first explored by the author (Fripp, Hagood, and
Luoma, 1994).

8.2.3 Chapter 4: material tests

Experiments were presented in chapter 4 that confirmed the
relationships derived in chapter 3. In section 4.2 the primary coupling
between electric field and strain, the electrostrictive effect, is presented. The
quadratic model provides good correlation with the experiments up to
300 V/mm. The hyperbolic model continues to provide good correlation to
the experiment at the maximum field level of 800 V/mm.

The elastostrictive effect is presented in section 4.3. The elastostrictive
effect manifests as the electric field-based correction to the material stiffness.
The stiffness was measured by examining the variation of natural frequency
of a cantiivered beam as a function of bias field across the surface-bonded
electrostrictor. A 20% reduction of transverse stiffness was found as the
electric field increased from 0 to 1300 V/mm.

The material properties as a function of temperature are presented in
section 4.4. Strain versus field curves are taken at temperatures ranging from
-14°C to 100°C. The strains vary from a high of +22% at 5°C to low of -93% at
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100°C of the room temperature magnitudes. Material parameters are fit to
each of the curves and then the array of material parameters versus
temperature are fit with an algebraic expansion. The temperature models
provide a solid fit between 15°C and 70°C and a rough fit across the entire
range of temperatures.

The effects of a constraint on the material properties is presented in
section 4.5. The electric field-based correction to the stiffness needed to be
included for good experimental agreement. Additionally it is shown that the
nonlinearity of electrostrictors are an electric field-based nonlinearity.

Figure 4.16 gives a through summary or the material constants of the
electrostrictor 0.9PMN-0.1PT.

One of the major contributions from this chapter is the experimental
measure of the elastostrictive effect and the effect that this has upon the
material stiffness. Utilization of the hyperbolic model and of the temperature
models is also new. Similarly, the proof that electrostriction is a electric fieid-
based ncnlinearity is a new and fundamentally important finding.

8.2.4 Chapter 5: coupled modeling

The behavior of a continuous system with distributed active material is
modeled in chapter 5. The chapter starts with a review of Hamilton's
principle for coupled nonlinear systems. If the constitutive relationships are
derived from a thermodynamic formaiism, then the general integral
nonlinear form of Hamilton’s principle given in equation (5.1) can be
simplified to the non-integral form given in equation (5.18).

ty

.“tl 81" + I(DnJEn - Tkléskl ) dV +8W |dt=0. (5.18)
v

Equation (5.18) does not impose any limitations on the material nonlinearity
nor on the nature of the coupling.
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Both the integral and algebraic form of Hamilton’s equation are used to
develop nonlinear equations of motion for electrostrictors. The process is
described in detail in section5.2. Assumed modes are introduced in
section 5.3. The assumed modes are valid for Rayleigh-Ritz or for finite
element solution techniques since the two techniques differ only in the
number of mode shapes that are introduced. By allowing arbitrary variations
in the mechanical displacements and in the voltages, coupled dynamic
equations of motion result. The equations are know as the actuator equation
and the sensor equation. The quadratic form is given in equation (5.48) and
the hyperbolic form is given in equation (5.62).

During section 5.4 simplifications of the general equations of motion
are presented. The tensor forms derived in section 5.3 are expressed in matrix
form and in state-space representation.

With the exception of the general form of Hamilton’s equation,
everything in this chapter is new. The process of applying Hamilton's
principle to coupled nonlinear systems previcusly had not been done. The
simplification of Hamilton’s principle for thermodynamic formalisms is also
new. The equations of motion for arbitrarily distributed electrostrictors is the
main contribution of this thesis.

8.2.5 Chapter 6: structural experiments

The models developed in chapter 5 are verified in chapter 6. Before
utilizing the models, shape functions are introduced in subsection 6.1.2. The
models were then used to verify the behavior of the quasi-static deflections of
a cantilevered beam actuated by electrostrictors. As shown in section 6.2, the
quadratic model provides correlation up until 300 V/mm while the
hyperbolic model provides correlation throughout the range of field levels.
The charge on the electrostrictor followed similar trends to the strain, as
detailed in section 6.3.

The validity of the equations of motion at wide range of frequencies
was presented in section 6.4. At low electrical bias levels, 75 V/mm, the
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quadratic nonlinearity of the electrostrictor can lead to superharmonic
resonances. At higher bias levels, 400 V/mm, the electrostrictor becomes
more linearized and the superharmonics disappear. Both models provide
good correlation at the low bias level. The hyperbolic model also provides
good correlation at the higher bias level while the quadratic model over
predicts the response.

This thesis is the first to illustrate the superhamonic behavior that can
result from the quadratic nonlinearity inherent to electrostrictors. Models
have not previously existed, and, thus, have not previously been applied to
distributed actuation with electrostrictors.

8.2.6 Chapter 7: control

The knowledge developed in the previous chapter is brought to the
problem of using electrostrictors to regulate the tip displacement of a
cantilevered beam in chapter 7. This chapter sought to provide constant
control authority at different field levels and temperatures by adjusting the
control gain.

The use of output linearization is presented in section 7.2. The
hyperbolic model developed in chapter 3 is inverted. As presented in
equation (7.9), the applied electric field, E?, is a direct function of the
commanded electric field, E¢, and the bias electric field, E°.

E® = {tanh™' \tanh®(kE°) + k’mj;'gE® - E° (7.9)

A second-order control system based upon a positive position feedback
controller was used in the experiment. The system was digitally
implemented and provided consistent 60% signal reduction from DC to
950 V/mm.

The control of electrostrictors at different temperatures was described
in section 7.3. In subsection 7.3.1 the gain of the controller is adjusted as a
function of temperature to compensate for the change in the material
behavior. By adjusting the gain, consistent performance is achieved between
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0°C and 55°C. Without gain adjustment, the control authority and, hence,
the performance drops dramatically with increasing temperature. Attempts
to use self-heating or “shivering” to regulate the material temperature failed
due to heat dissipation.

A nonlinear control technique known as adaptive control was
introduced in section 7.4. Unlike the previous techniques where temperature
and the field level must be explicitly measured, no prior knowledge is
required for adaptive control. An adaptive control algorithm was
implemented where the material gain was the adaptation parameter. A
minor 20% signal reduction was obtained. Adaptive controllers do not work
well with continuous systems or with noisy systems.

The theory of control systems was not advanced by the investigations
presented in this chapter. All of the control techniques had been previously
applied to other systems. This thesis simply sought to apply these techniques
towards the control with electrostrictors. Dynamic control with distributed
electrostrictors had not been done previously. As a result, the output
linearization and the temperature stabilization are new concepts for
electrostrictive control. Proving that the nonlinear behavior can be
linearized and that the temperature sensitive behavior can be compensated is
an exciting and important finding.

8.3 Recommendations for Future Work

Since only a single type of electrostrictive material was used in the
experiments of this study (0.9PMN-0.1PT manufactured by AVX), some
characteristics which were measured may be different in other materials.
Even within the same batch of electrostrictors, a 10% variation in the
electromechanical coupling was observed. Different formulations of
electrostrictor certainly lead to different macroscopic behavior. As a result, a
broader investigation into different electrostrictive types is warranted.

This study focused upon the use of electrostrictors for actuation. Little
attention was paid to the use of electrostrictors as sensor. The models
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developed in this thesis should be applied to the sensor applications. Also,
the models should be extended and verified with magnetostrictive actuators.
Applications beyond the cantilevered beam need to be investigated. More
complex and more applicable structures need to be modeled and built.

The control applications presented in this study are fundamental and
simple. Since digital control is required for implementation, more elaborate
control should be attempted. LQR and other robust control algorithms
should be used to diminish the influence of temperature.
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Appendix A
MAGNETOSTRICTION

Magnetic Atoms, such as iron, keep
Unpaired Electrons in their middle shell,
Each one a spinning Magnet that would leap
The Bloch Walls whereat antiparallel
Domains converge. Diffuse Material
Becomes Magnetic when another Field
Aligns domains, like Seaweed in a swell.
How nicely Microscopic Forces yield,

In Units growing visible, the World we wield!

-John Updike

This chapter describes applies the models developed during the thesis
to the problem of actuation with magnetostrictors. The chapter starts by
describing the material behavior of magnetostrictors in general terms.
Nonlinear constitutive relationships are presented. The constitutive
relationships are incorporated into Hamilton’s principle and nonlinear
equations of motion are derived.

A.l1 Material Overview

Magnetostrictive materials are an active material that can be described
through the methodology presented in this thesis. Magnetostrictors are a
nonlinear material where the strain is proportional to the square of the
magnetic field. Like electrostrictors, magnetostrictors offer large actuation
strains, high stiffness, and a quick response. Although linearized models of
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magneto-mechanical interaction have been developed (Kannan and
Dasgupta, 1994) (Brown, 1966), nonlinear quantatative analytical models have
not been presented. This section takes the nonlinear constitutive
relationships for magnetostrictors and, through the methodology presented
in this thesis, derives the nonlinear governing equations for a
mzenetomechanical system.

Magnetostrictors are composed of materials that exhibit a strong
magnetic anisotropy, such as Terfenol. Magnetic anisotropy is a reflection
that electron spins are not entirely free to act independently of their host
atom; and the regular atomic order within a crystal exterts some infiuence on
the magnetic order (Braithwaite and Weaver, 1990). More specificaly, the
magnetic anisotropy relates the amount of atomic magnetization along the
unpreferred crystalline direction versus the atomic magnetization along the
preffered crystalline direction.

The direction of the magnetic anisotropy depends upon the strain in
the crystal. Applying a magnetic field alters the exchange interaction between
adjacent atomic magnets and changes the atomic spacing in the material,
which is strain. In other words, upon the application of a magnetic field a
state of minimum energy is achieved if the crystal is strained. This small
change in the shape of the magnetic specimen is the magnetostriction effect
(Wang, 1966). Since the magnetostrictive effect is closely aligned with the
material anisotropy, the magneto-mechanical coupling is a strong function of
pre-stress and tempe.rature.

Although large strain magnetostrictive actuators are a relatively new
and exotic development, magnetostriction is neither new nor exotic. Most
magnetic materials exhibit a magnetosirictive effect. Although far smaller
than Terfenol. iron, cobalt, and nickel produce magnetostrictive strains on
the order of 0.001%. Magnetostriction is the major source of hum in
conventional transformer cores. Due to the quadratic nonlinearity of
magnetostrictors, the 60 Hz main frequency produces a 120 H> sound wave
and higher harmonics.
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A.2 Constitutive Equations

Like electrostrictors, magnetostrictors can be linearized through the
application of a large electromagnetic field. In the unsimplified expression,
however, the dynamics of an unconstrained magnetostrictor can be expressed
in a set of nondissipative nonlinear algebraic constitutive relationships
(Carman, 1994).

Bm = ”rs:mHn + gunmSan

1

. (a.1)
Tu = —EguannHm +C:‘klskl

The magnetic permeability, u, relates the magnetic flux density, B, with the
applied magnetic field strength, H. The magnetic permeability relays the
strength of the ferromagnetic effect and is measured at constant strain. The
stiffness at constant magnetic field, CH, relays strain znd stress. The
magnetomechanical coupling term is given by g.

A.3 Equations of Meiion

A.3.1 Hamilton’s principle

The general equations of motion of the magnetostrictor are based upcn
Hamilton’s principle. Hamilton’s principle for a nonlinear electo-
magnetically coupled mechanical system is given by

IIZ[ST'—SU+&V;,—5WC+¢WV]dt=O. (a.2)
U

The form of Hamilton’s principle given in equation (a.2) differs from the
form given in equation (5.1) because the independent parameters are strain
and magnetic field instead of strain and electric field. As a result, the energy
terms are defined slightly differently from the forms given in equations (5.7-
5.10).

T = jvjjdu,pu,. dv (a.3)

;; » » [ [
U= ”0 SL(E)T,(S(E),E(&)) dE aV. (a.4)
4
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W, = [ [ Diu(€)En(S(6).D&)) dE av (@5)
\%
Wi = [ [ Hi(6)B (S8, H(&)) d€ av (a.6)
\"
W = [ f, 8u; dA- Y E; 9+ Y B, SH (a.7)
j k

For a magnetostrictor, the electrical energy term given by equation (a.5) is
negligible. The derivation of the general equations of motion closely follows
that used for electrostrictors in section 5.2.1.

A.3.2 Variation of kinetic energy

The evaluation of the variations needs to be performed for each of the
expressions in equation (a.2). The variation of the complementary kinetic

energy is
b d — u . ( -
ST = ! 5]0 du‘pa dV. (a.8)
Bringing the variation inside of the integral gives
ST = j Si'pa dV. (a.9)
f
Integrating by parts yields
2T di = [oupu[? av- | K [ 8u'pii dv at (2.10)
4 v Y by

where the first term must be zerc. Hamilton’s principle allows arbitrary
variation of the path between the endpoints but requires the variation at the
end points to be zero.

A 3.3 Variation of potential energy

The variation in the mechanical potential energy involves the coupled
dynamics of the strain and stress variables. As a result, the variation of the
coupled variables can be expressed in terms of a single dummy variable, &,
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which reflects the current state of the system along the arbitrarily varying
path. As given in equation (a.4), the variation in the potential energy is given

by
U= j j $;(E)T;(S(E),E(£)) dE V. (a11)

Substituting the constitutive relationships as given in equation (a.1), the
potential energy becomes

U= j j s;Cl,s gunmS’H H dgdv (a.12)

i n

U

Taking the variation with respect to each of the state variables yields

¢| au du au .,
‘SU'”o{ask,‘ss'“ SH_ + --5s}a.§dv

JH,_, dS;
(a.13)

_jj {C asu ( giﬁ“m IJ n)6H +(C,,usu—%gi,-an,,Hm)5S§j}d§dV.

Integrating the last term in equation (a.13) by parts in order to transform the
variation of §’ into a variation of S yields

8U = [ [ {(C115)3u + (~emmSiHa )8H + (~CluSt + £,0uHiH,, )85, a2
) - (a.14)
+(CliSu 4 £y H, )5, 4V

Let & =& represent the present state of the system and £=0 correspond to zero
field and zero strain conditions:

fe=g=s  wz=g)-
S(£=0)=0, and H(£=0)=

(a.15)

Cancelling the redundant stiffness terms in the strain variation and
rearranging equation (a.14) yields

oU = I(C Su — ZguanH Su"’_[{ gijnm i ,,)5H '*’(gijan;Hm)Ssij}d§dv(a'lé)

\%
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A.3.4 Variation of magnetic energy

The magnetic energy terms can be evaluated in a manner similar to the
mechanical potential energy terms. Again, the arbitrary yet coupled magnetic
field and magnetic flux variables require the introduction of a dummy
variable, &, which indicates the state of the system along the path.

. £
Wi = [ [ Hi,(9)BL(SE) HS)) dE av (a.17)
v
Substituting for magnetic flux from the constitutive relationship gives
. £

Wi = Jj “'S“"HDH;!I + ZijmS;H Hy, dSdV. (a.18)

v 0 ﬂ*

Vi

Taking the variation with respect to each of the state variables yields

. 15w IV, W

= J‘J‘Oé {(gijan“H:“)asU + (yfsnﬂH:'n + gijnmsin;n)&-In (319)
v

+ (ulsnan + gijnmsinn )SH:,,}dé dVv.

The variation of H’ needs to be transformed into a variation of H because the
the variation of the magnetic field is defined to be zero at the endpoints.
Variations of the derivative of the magnetic field, H’, are not explicitly
defined. As a result, integrate equation (a.19) by parts to yield

oW, = jjog{(gijannH:n )5Sij + (ulsnnH:n + 2m S HG )5Hn
v (a.20)

~(MH + 2yonSiHy + 2,0mS,H; )0H, [E + (U5, H, + 2,5, H, J8H,, O dv

Let £=£ represent the present state of the system and £ =0 correspond to zero
field and zero strain conditions:

W = [(13aH, + £,0nS,H, )OH,, + Ij {(2amHaH)8S, ~(2,mSH, }8H,, }EAV (a.21)

\%



Appendix A. Magnetostriction 159

A.3.5 Equations of motion

At this point, each of the energy terms needed for Hamilton’s principle
have been expressed in terms of the constitutive relationships for
magnetostrictors. Substituting these energy terms into equation (a.2)
produces the equations of motion for a magnetostrictively coupled structure.

) ‘12 J uypia;dv — [(CHiSy) ~ L gijumHoHp )85, AV
\Y v
(a.22)

+ j'(p,%mH,, + ZijomSijHa |0H , AV + !fiSui dA+Y Bk&{k]dt =0.
\Y A k

Now that the equations of motion for a magnetostrictively coupled
system have been developed, the equations can be substituted into an
assumed mode formulation. An actuator and a sensor equation will result.
The process of applying assumed mode formulation was described in depth in
chapter 5.



