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ABSTRACT

In the last 10-15 years, many cities across the U.S. have worked to create cities that are not just
for motor vehicles. Even with these monetary and physical infrastructure investments, a very low
percentage of people in the U.S. primarily use bicycles as a form of transportation, and a large
gender gap exists in bicycling. Research suggests the gender gap is due to factors such as risk
aversion, bicycling being less convenient to female household responsibility, and women having
a stronger preference for safety than men. The objective of this thesis is to analyze built
environment and land use factors related to bikeshare usage and investigate if these factors differ
for men and women. Exploring how different factors might affect male and female ridership can
reveal how gender differences manifest themselves in biking, and can lead to insights into why
women bike at such low rates compared to men.

In this thesis, I estimate direct ridership models for Boston's bikeshare system, Hubway, to
predict trip origins based on a 14 demographic, safety, bicycle infrastructure, safety and transit
explanatory variables. I find that many variables impact men and women similarly, particularly
land use and demographic factors. The one variable that was significant in all models for women
but not in any models for men was distance to separated bicycle facilities. This result indicates
that for women, there are more trip origins at stations closer to separated bicycle facilities. I
discuss the implication of these findings for city planners and Hubway or other bikeshare
systems. The results point to the need for additional research on how experience level may also
influence bikeshare usage.

Thesis Supervisor: P. Christopher Zegras

Title: Associate Professor of Transportation and Urban Planning
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1 INTRODUCTION

1.1 Motivation
In the last 10-15 years, many cities across the U.S. have worked to create cities that are not just

for motor vehicles. Movements such as Complete Streets and Vision Zero indicate an increased

interest in creating streets that are safe and usable for bicycling and walking. Still, even with

these monetary and physical infrastructure investments, a very low percentage of people in the

U.S. primarily use bicycles as a form of transportation, with less than one percent (0.6%) of

commuters biking to work at least once a week (ACS, 2016). According to the American

Community Survey (ACS), there was a 3.8% decline in people who use a bicycle as the primary

form of transportation to work in 2015, although over half of the largest cities saw an increase in

people biking to work (ACS, 2015). Even though bicycling makes up a small percentage of

transportation mode choice in the U.S., it has gained increased attention as cities have focused on

healthy forms of transportation. Additionally, biking is not equally spread across demographics;

gender shows a large disparity in usage. Men are more than twice as likely to bike to work than

women, 0.8 percent of men commute by bike while only 0.3 percent of women commute by bike

(ACS, 2012).

There is emerging research into the social and cultural factors impacting why women bike at

lower rates than men, but less research focuses on women's bicycle preferences and factors that

impact why they are choosing to or not to ride a bike. Additionally, there is limited quantitative

data on bicycle usage in cities, particularly related to gender and this varies significantly from city

to city. Cities such as Portland and Boston do yearly or monthly bicycle counts, but those are

often manually done and limited to a few locations.

This thesis explores the factors related to ridership on Boston's bikeshare system, Hubway, and

how these factors compare for men and women. I built a dataset of station-area and station
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specific characteristics to estimate regression models predicting station-level usage. The findings

suggest that land use factors effect men's and women's usage similarly, but some safety factors

impact men's and women's usage differently. The results suggest where higher ridership stations

are located, how the physical environment at stations can be improved to increase ridership, and

how these differ between men and women.

1.2 Theoretical framework
Travel behavior is usually analyzed using utility maximization theory to explain transportation

mode choice. Individuals choose a transportation option among a set of available alternatives, that

maximizes their utility, which tends to focus on cost of travel (in monetary and time costs). In this

theory, researchers in the field of active transportation have recognized the importance of the

quality of the environment as a determinant of behavior (Krizek et al, 2009). The framework I use

focuses on physical environment characteristics related to choosing bike share as a transport

mode. An additional framework, not used here, includes individual characteristics and

interpersonal characteristics as causal factors in active transportation route choice. This thesis

focuses on the physical environment characteristics, recognizing that there are other factors that

are also contributing to individuals' mode choice. From the literature review, five categories of

factors emerged as impacting bike usage; land use, safety, bicycle infrastructure, transit and

demographics.

Knowing behaviors of individuals is a hurdle in bike research. Three types of measurements tend

to be used for measuring relevant behaviors: self-reporting (e.g. ,travel diary), observation (in

person or sensors) and instrumentation (motion detectors such as GPS) (Troiano ,2005). Using

observation can capture number of trips and intensity well, but does not capture trip purpose or

who is or is not cycling. From these types of measurement possibilities, observation using

bikeshare data provides a large amount of readily available data to capture usage by gender, but
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the results cannot illuminate who is or is not captured within that usage, nor why individuals may

choose to bike, or not.

1.3 Research Questions
My objective is to analyze factors related to usage of bikeshare and investigate if these factors

differ for men and women. Exploring how different factors effect men and women ridership can

reveal how gender differences manifest themselves in biking, and can lead to insights into why

women bike at such low rates compared to men. While numerous hypotheses exist explaining the

gender gap in biking - such as risk aversion, bicycling being less convenient, or women having

family roles that do not encourage bicycle usage - more granular understanding of women's

preferences is needed.

As cities continue to move toward more non-motorized modes of transportation, biking may go

from a fringe mode to a more normalized form of transportation. Accordingly, planners should

understand the gender gap in biking, and assess what factors can be used to address this gap, so

that as biking increases as a mode it does not continue to have a large gender equity gap. Planners

will need more tools, data and insights to serve the needs of cyclists and to address this gender

gap in biking. My goal is to provide more insight into factors affecting where women choose to

ride, to help planners plan bicycle facilities more equitably. I will explore three questions around

bike share usage:

* Does women's usage of bike share differ from men's (in trends such as time of day, day

of week etc.)?

* What are the major factors that are effecting bike share usage?

* Do these factors differ for men and women?
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1.4 Overview of Methods
To answer these questions, I estimate direct ridership models, which predict Hubway station trip

origins based on a variety of explanatory variables. The period of analysis is April-October 2017,

and the dependent variable is the number of trips that start at a station (trip origins). The trip

origin data is grouped by gender and broken up into four different periods of the day. The

explanatory variables are within five categories; demographics, bicycle infrastructure, safety, land

use, and transit.

I construct a dataset of station-level and station-area variables at each Hubway station in the

Boston region, using a street network distance of a quarter mile define the catchment area for the

station-area variables.

I estimate the models using the statistical software R. First, I remove correlated variables and use

the Chow Test to test if different models are justified for male and female usage and for different

times of day. Next, I run a base OLS model for total trip origins, before running OLS models on

the grouped data to compare the results between men and women by time period. Finally, after

identifying spatial autocorrelation, I run spatial lag and spatial error models to account for spatial

autocorrelation in seven of the eight models.

1.5 Structure
This thesis includes six chapters. After this introduction, the second chapter presents a literature

review on bicycling and gender differences in transportation. The following chapter describes the

study area's land use and transportation, and the Hubway System. The fourth chapter explains the

data sources, overview of the dependent and explanatory variables, and analytic methods. The

fifth chapter presents the model output and analyzes the results. A final chapter concludes with

implications, limitations, and areas for future research.
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2 LITERATURE REVIEW

When trying to dissect why women have lower bikeshare usage rates than men, it is important to

look into existing literature in many disciplines, including broadly factors impacting why people

bike, gender specific reasons, and factors specific to bike share. Accordingly, I review three

areas: general factors related to decisions to bicycle, gender and travel behavior, and bikeshare

usage.

2.1 Factors Affecting Cycling

2.1.1 Land Use and Built Environment

Many studies have researched the impact of built environments on motorized vehicles (Ewing,

Cervero, 2001), (Crane, 2000). Studies have shown that, all else equal, neighborhood built

environment characteristics impact how much residents drive, with factors like land-use mix,

transit accessibility and pedestrian friendliness leading to lower vehicle miles travelled. Cervero

and Duncan (2003) found that urban design and land-use diversity factors were positively

associated with the decision to ride a bike. Factors such as well-connected streets, small city

blocks, mixed land uses, and close proximity to retail activities were shown to induce non-

motorized transport (Cervero & Duncan, 2003). Many studies suggest that denser urban areas

lead to higher cycling share (Pucher & Buehler, 2006, Parker et al., 2008). These higher density

areas tend to have lower levels of vehicle ownership (Litman, 2007) which can have a positive

effect on cycling. Density has also been shown to increase cycling frequency. Dill and Voros

(2007) found that people living closer to city centers take more utilitarian bike trips.

Distance is another factor that and individual takes into account when deciding on a transport

mode, generally (Keijer and Rietveld 2000). This can also have larger impact for cycling since a

longer distance typically means a higher travel time than for other modes such as automobiles or
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transit. For cycling, longer trip distances tend to represent a much lower share of trips (Moritz,

1998; Zacharais, 2005; Pucher & Buehler, 2006). Some of this is probably due to the increased

physical effort required for longer trips (Van Wee et al., 2006). Trip distance is also linked to land

use. Residents living in city centers use bicycles as a transportation mode more than residents in

the suburbs (Witlox & Tindemans, 2004).

2.1.2 Infrastructure

Studies have indicated the importance of bicycle infrastructure -that well-connected

neighborhood streets and a network of bicycle-specific infrastructure can encourage more

bicycling among adults (Dill, 2009). Dill and Carr (2003) found that the number of bike lanes per

square mile explains a large share of the variation in bicycle commuting rates. Continuous and

non-interrupted cycle lanes and paths have also been identified as influencing the decision to

cycle (Wang et al., 2011, Heinen et al., 2009). Network continuity represents a safety concern for

cyclists, as they may have to reintegrate into vehicular traffic when facilities suddenly tenninate

(New Zealand Transport Agency, 2011).

Research has shown that bicycle infrastructure improves safety of bicycling. A longitudinal study

of sharrows' in Chicago found when looking at crashes before and after infrastructure

installation, bicycle crashes went down (Ferenchak & Wesley, 2016). However, less literature

compares different types of bicycle facilities, such as conventional bike lanes, buffered bike

lanes2 , sharrows or parking buffered lanes. The factors analyzed have tended to be route

characteristics (such as turn frequencies) or environmental factors (such as traffic conditions)

rather than specific bike infrastructure. This is likely due to a lack of detailed bike infrastructure

' Sharrows are defined as roads with shared lane marking, and are used to raise awareness of bicyclists'
presence and move cyclists toward the center of the travel lane, away from parked cars (Ferenchak &
Marshall, 2016).
2 NACTO guidelines define a buffered bike lane as a conventional bike lane with a designated buffer space
separating the bike lane from motor vehicle travel lane or parking late.
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inventory data or a lack of enough varied facility types to do meaningful analysis.

One study, using GPS data in San Francisco, found bike lanes were preferred to other bike

facilities especially by infrequent cyclists (Hood et al., 2011). Yet, another study using bicycle

mounted GPS units in Portland, Oregon found that cyclists placed relatively high value on off-

street bike paths, enhanced neighborhood bikeways (bicycle boulevards) and bridge facilities

(Broach et al., 2012). Additional research has studied the effect of bicycle facilities separated

from traffic. Proximity to trails was one of three significantly environmental variables for

respondents cycling at least once a week in a survey in the state of Washington (Moudon et al,

2005). Krizek and Johnson (2006) found that only close distance to separated bike facilities were

statistically significant predictors of choosing to cycle.

2.1.2.1 Bicycle Route Choice and Infrastructure

Broadly, there has been a lot of research on overall bike route choice preferences. Existing

research has found that cyclists' route choice depends on distance, safety, turn frequency, slope,

intersection control, and traffic volumes (Broach et al., 2012; Broach et al., 2009; Ehrgott, Wang,

Raith, & Van Houtte, 2012; Hood et al., 2011; Winters et al., 2011). When looking at

environmental factors, research reveals similar results, with both men and women reporting that

perceived environmental factors related to traffic conditions, motorist aggression and safety are

main concerns. (Heesch et al., 2012).

2.1.3 Safety

A main determinant of whether people chose to bike or not is how safe they perceive bicycling to

be (Geller, 2009; Gatersleben & Appleton, 2007; Pucher & Buehler, 2008). Bike infrastructure

can improve the safety of cyclists, but this varies by the experience level of the cyclist. Some

studies have shown that riding in vehicular traffic is safer than riding on a cycle tracks (Pedler &

Davies 2000). Comparing sharrows to bike lanes and no infrastructure, a longitudinal study found
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that sharrows saw the smallest decrease in bicycle injuries, suggesting that sharrows have limited

effectiveness in terms of safety (Ferenchak & Wesley 2016). Krizek et al. (2009) note that

separated bicycle facilities are perceived as being safer than regular bicycle facilities, although

they are not necessarily safer, specifically at intersections with vehicular traffic. This perception

of increased safety may help less confident cyclists decide to ride a bike and lead to higher levels

of ridership (Krizek et al, 2009).

A study of facility safety in Canada found that rates of incidents were lowest per kilometer on

vehicular roads, followed by off-road paths, then sidewalks (Aultman-Hall, 2000). However, this

could be due to the experience levels of the cyclists using different facility types. For example,

confident, regular cyclists may ride in vehicular traffic, where inexperienced cyclists use

separated bike facilities, but may be more accident prone due to inexperience (and/or in reality,

these facilities may be less safe). Additionally, there is a difference between how cyclists perceive

safety and actual safety (Heinen et al., 2010). Therefore, different bike infrastructure may be

more attractive to different populations, from a safety perspective.

To better understand the different perceptions of safety, Roger Geller, the bicycle coordinator for

the Portland (Oregon) Bureau of Transportation created a categorization of "the four types of

cyclists" in an effort to better plan for all types of cyclists (Geller, 2006). Geller divided the

population in Portland into the four types. The 'strong and fearless' make up the smallest portion

(<1%), and are riders who will ride anywhere, regardless of the conditions. The 'enthused and

confident' generally prefer bike-specific facilities but are comfortable riding with traffic, and

make up 7% of the population. The 'interested but concerned' are curious about cycling but have

safety concerns that may prevent them from riding and make up 60% of the population. The 'no

way, no how' have no interest in cycling, no matter the circumstances and make up 33% of the

population. Geller's typologies were not initially well documented, but Dill and McNeil (2013)
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attempted to verify Geller's typologies through a phone survey in Portland. They categorized

respondents based on stated comfort level on a variety of facility types, their interest in cycling as

a mode of transportation and their physical ability to bicycle (Dill & McNeil, 2013). Their

resulting population estimates for each category were: 'strong and fearless' 4%, 'enthused and

confident 9%, 'interested but concerned' 56%, and 'no way no how' 31%.

Perceptions of safety also vary by how many other cyclists are on the road. The concept of

"safety in numbers" means that more cyclists implies increased perception of safety, which then

increases cycling. Bauman et al. (2008) found evidence that as more cyclists are on the road, the

safer it becomes, because motorists and cyclists get used to interacting with one another.

Evidence suggests that in areas with higher levels of ridership, cycling is safer. Analysis of data

from cities in 68 cities California, 14 cities in Europe, and 47 towns in Denmark found that

collision rates declined with increases in the number of people walking or bicycling (Jacobsen,

2003). Communities with higher rates of bicycle use have fewer crashes per capita.

Another factor in safety perceptions relates to vehicle infrastructure. Studies have shown that

cyclists prefer two lane roads to four lane roads (Petritsch et al, 2006; Shankwiler 2006).

Additionally, cyclists have a negative perception of roads with high traffic (Dill & Voros, 2007).

Safety can have a large impact on individuals deciding to bicycle, and often depends on bicycle

infrastructure, number of cyclists on the road and automobile infrastructure. However, these

preferences for safety vary depending on experience level and other demographics, and there can

be differences in perceived safety versus actual safety.

2.1.4 Trip Types

Trip purpose can impact mode choice and temporal travel decisions. In a study analyzing bike

usage in five North American cities, the researchers categorized trips and bicycle facilities as

utilitarian and recreational to examine differences. Utilitarian networks had higher usage during
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the workweek, with a peak during morning commute and a larger peak during evening commute.

Recreational systems had a broad peak from late morning to mid-afternoon, with more traffic on

weekends (Miranda-Moreno et al., 2013).

2.2 Travel Behavior and Gender
In order to understand gender differences in bicycling travel behavior, it is important to first

explore how travel behavior generally differs for men and women. Three key sub topics of travel

behavior and gender are outlined next including: gender and social cultural norms, gendered

space in transportation, and gender and biking.

2.2.1 Gender and Social Cultural Norms

Research has shown that women would have lower rates of cycling than men due to social factors

impacting travel behavior. Women tend to have more household responsibilities, such as

childcare duties, and errands (Collins & Tisdell, 2002). Such responsibilities do not lend

themselves easily to biking (Gordon & Richardson, 1998). Additionally, cycling is known as

being a risky transportation mode (Noland, 1995), and women tend to be more risk averse than

men (Weber et al., 2002) which would imply lower rates of adoption. However, women are more

likely than men to cycle for shopping and errands or visiting friends, and these trips lend

themselves more easily to using a bicycle (Krizek et al., 2005). These shorter, non-commuting

trips tend to be less time-constrained and can be more easily taken by bike, if the infrastructure

and socio-cultural norms allow for usage. For example, dropping off children at school can be

difficult without a cargo bike or facility that feels safe. There are also stigmas and societal norms

that can keep women from biking. Norms such as women being expected to show up

"presentable" to places can be a deterrent, or that cyclists are associated with being 'sporty'

(Aldred, 2013).

Historically, women had very different travel patterns than men, and the differing travel patterns
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and access to transport modes impacted where they worked, among other things (Cichocki, 1980).

Women tend to take more, shorter trips, likely due to differing responsibilities. Even today,

women's travel behavior and transport needs are not fully understood or properly provided for in

cities (Coleman, 2000). Bikeshare programs can be a way to lower the bar to cycling by allowing

women to take shorter trips and not having to worry about maintaining a bike (Anzilotti, 2017).

2.2.2 Gendered Spaces in Transportation

Moving in urban spaces is also experienced differently by women and men (Schmucki, 2012).

City transport systems have been planned by men, who have a predominant view of how men will

use this infrastructure, with the assumption that women have the identical needs as men

(Hamilton & Jenkins, 1992). How women move through urban spaces has received less attention

than other areas on gender in the city. Trench et al. (1992) found that many women would not use

public transportation due to personal safety reasons, and others felt concerned about car garages.

There exists a large gap between the consultant knowledge that has grown as an area of transport

policy and planning on gender patterns in specific transport locations and academic analytical

frameworks in the understanding of transport (Grieco, & McQuaid, 2012). Gendered transport in

cities reveals what different spaces and places women used, experienced and how such a specific

experience has promoted the construction of gendered social and economic identities (Schmucki,

2012).

2.2.3 Gender and Biking

Gender differences in cycling is a growing area of research. Men cycle for at least twice as many

trips as females do, across all trip types in the U.S. (Emond at al., 2009). Over the past 20 years,

women's commuting trips have varied. In 2010, women's bicycle commute trips made up a

quarter of all bicycle commute trips, which was a decrease from 2001, where woman were one-

third of all commute trips by bike (Census 2010, Pucher et al., 2011)
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Krizek et al. (2005) found that in Minneapolis, men were more than twice as likely to take a trip

by bike than women, 0.66% versus 0.25%. In the survey results, women were more likely to rate

paved shoulders and lighting on bicycle paths as very important to commuting by bicycle.

Perceptions of safety also revealed gender differences, with four main areas: lack of bicycle

paths, unsafe driver behavior, unsafe cyclist behaviors, and unsafe road conditions. Women

reported lack of paths and poor road conditions more than men did. Much of the work

surrounding gender, cycling and travel behavior suggests that the different built environment,

facility or route choice decisions made by women are likely to have implications for the different

approaches to cycling infrastructure taken by planners and policy makers.

2.2.3.1 Biking Infrastructure and Safety

Preferences for bike infrastructure vary by demographic group, and by experience level. Women

as well as inexperienced and younger cyclists tend to report bicycle facilities as being more

important (Stinson & Bhat, 2003; Krizek et al., 2005; Stinson & Bhat, 2004; Gerrard et al., 2008).

In United Kingdom, Australia, the U.S., and Canada 30% or less of cyclists are women, while in

Germany, Denmark and the Netherlands 45% or higher of cyclists are women (Pucher & Buehler,

2008). The countries and cities with high-cycling rates for women also had high-quality cycling

infrastructure (Heinen & Handy, 2012). As shown in stated-preference studies, women perceive

risks differently than men (Weber et al., 2001) and show a stronger preference for cycling

infrastructure that offers more safety (Akar et al., 2013). Research of commuters in Australia

found, consistent with gender differences in risk aversion, that female commuter cyclists showed

a preference for routes with maximum separation from vehicle traffic (Garrard et al., 2008).

Additionally, women demonstrate a stronger preference for safer forms of cycling infrastructure

(Krizek et al., 2005). Female commuter cyclists prefer to use routes with maximum separation

from motorized vehicles, therefore improving cycling infrastructure in the form of bicycle paths

and lanes that provide a high degree of separation from motor traffic is likely to be key for
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increasing transportation cycling in under-represented groups such as women (Garrard et al.,

2008). A qualitative study of barriers to bike share usage in Brisbane found that lack of

contiguous bicycle infrastructure was a barrier to bicycling (Fishman et al., 2012).

2.2.3.2 Land Use and Built Environment

Gender differences regarding the role of land use in cycling have been less studied. One study of

male and female students found that neighborhood built environment-related factors are

noticeably different between female and male students (Mitra & Nash, 2017). The study of post-

secondary students in Toronto found that for post-secondary students, access to dedicated cycling

infrastructure and high business density were associated with higher odds of cycling to school but

only among female commuters. Yet these built environment factors did not impact female cycling

for non-commute purpose (Mitra & Nash, 2017).

2.2.3.3 Conclusions of Gender and Biking

Cultural norms and differences in preferences may be related to a large portion of the gender gap.

Cycling in its current state in the U.S. does not always lends itself easily to female household

responsibilities. Additionally, safety and bicycle infrastructure are two areas that research has

shown to be related to female ridership. Improvements in infrastructure and safety are correlated

to increases in ridership. Other factors related to bicycle ridership are less studied.

2.3 Bikeshare Systems

2.3.1 Introduction

Bike share is a service where individuals have access to a fleet of bicycles for a fee. Bicycles can

typically be rented from a dock or station in the network and returned to any other dock, with

pricing and time limits varying from city to city. Bikeshare programs (BSP) first began in the

1960s but have seen an acceleration in the last 10 years. Researchers have categorized bikeshare

history into four 'generations' (Parkes et al., 2013). The first generation bikeshare system, Witte
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Fietsen (White Bikes), was launched in Amsterdam in 1965 (Davis, 2014). The system was

completely free for anyone to use. The lack of security and incentives for users to treat bikes

responsibly led to theft and the end of the system. Bikeshare systems did not come back until

1995, the second generation of bikeshare systems, when a program launched in Copenhagen. The

coin-operated systems also lacked accountability and the system was also plagued with theft

(DeMaio, 2009). The third generation of bikeshare systems learned from the mistakes of the

previous two and generally use dedicated docking stations, automated credit card payment, and

GPS units to track bicycles. Fourth generation bikeshare systems, currently emerging, include

characteristics such as dockless sytstems and transit smartcard integration (Parkers et al., 2013).

Bikeshare has been growing at a significant rate in the last five years in the U.S., as shown in

Error! Reference source not found.. In 2010 there were only four systems, and in 2016 there

were 55 systems in the US. Boston has the sixth largest bike share system in the country,

following New York City, Chicago, Washington DC, San Francisco, and Minneapolis (NACTO,

2018).
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Figure 2-1 Bikeshare Over Time, 1998-2013
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Shaheen et al. (2010) summarized six key benefits of bike share programs: flexible mobility,

emissions reductions, individual financial savings, reduced congestion and fuel use, health

benefits, and support for multimodal transport connections by being a first/last-mile connection.

2.3.2 Bikeshare and Other Modes

A growing number of studies have investigated what mode bike share users used before the

systems were in place, and how bike share programs influence transport choice. This research can

help planners better understand how people are substituting modes, and how transit and bike

share can coexist. Many of the benefits Shaheen et al. (2010) list assume substitution from modes

like automobiles. However, research does not necessarily show a strong a substitution from

automobiles. Shaheen, Martin, Cohen, and Finson (2012) conducted an online survey in

Montreal, Toronto, Washington DC, and Minneapolis/St. Paul and found that mode substitution

from cars to bike share is low. A survey in China found that around 80% of bike share users

would have walked, used public transport or their own bike, if the system was not available

(Yang et al., 2010). One limitation the authors noted from these results is that China has a low
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proportion of trips by private vehicle, but that the shift from private automobiles was still

disappointing. Additional research using survey methods in Dublin, London, and Washington,

DC reported low substitutions rates from car to bike share (LDA Consulting 2012; Murphy, 2010;

Transport for London, 2010). Car ownership is related to trip substitutions. Shaheen, Zhang,

Martin and Guzman (2011) saw different transportation shifts depending on vehicle ownership in

China. In their survey of Hangzhou bike share users, a majority of non-car owners shifted from

public transport (80%) compared to 50% for car owners. Additionally, 78% of car owners said

they used bike share-for trips they otherwise would have done by car.

Research indicates that many of the bike share trips are not substitutions away from automobiles

but are rather substitutions away from other active transportation modes such as walking and

transportation. However, for car owners who are using bike share, a majority of these trips are

substitutes for automobile trips.

2.3.3 Preferences and Trip Purposes

Studies have looked at how various land use and built environment factors, transportation

infrastructure, and bicycle facilities affect bike share usage. Wang et al. (2015) found that stations

closer to jobs resulted in higher usage of the bike share system, as did food-related businesses

near stations. Fuller et al. (2011) found, in Montreal, a correlation between proximity of

residential address to bike share usage. Transit also has been shown to affect usage. Bachland-

Marleau et al. (2012) found that the more bicycle facilities near a bike share station, the more

usage the station had.

Additional studies found bicycle infrastructure impacting usage. Buck and Buehler (2011) found

a statistically significant relationship between bike share activity and presence of bike lanes when

controlling for population and retail opportunities around docking stations. Also, Rixey (2013)

and Wang et al. (2015) found that the presence of a paved trail or bikeway in the surrounding area
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of the station increased bike share usage.

A common benefit cited for bike share systems is the so-called first-mile last-mile connections,

but research has been varied. The first-mile last-mile problem is the gap between transit station

and origin or destination. Bikeshare can be a compliment to transit because it decreases this gap

in transit service. A study of Capital Bikeshare in Washington, D.C. found that public transit

ridership was positively associated with bikeshare ridership at the station level (Ma et al., 2015).

Proximity to transit station can also be a key factor for ridership of a bike share station (Daddio,

2012). Campbell et al. (2016) found that it is unclear if bike share is an attractive "first-and-last-

mile solution." Additionally, in China the interaction with transit has been shown to be both a

competitor and a complement to transit (Shaheen et al., 2011).

Studies have analyzed trip purpose of bike share users. Trip purpose was mainly work or

education related (70%) (Murphy 2010). Bikeshare members in Hangzhou, China indicated that

they frequented the station closest to work (40%) or home (40%) most (Shaheen et al., 2011).

Similarly, a member survey of the Washington DC bike share system found that the most

common trip purpose was work, followed by social/entertainment (although education was not an

option for trip type) (LDA Consulting, 2012). Shaheen et al. (2012) also found that among North

American's largest bike share programs, commuting (including to school) was the most common

trip purpose.

2.3.4 Demographics

Many researchers have found that the demographics of bike share users is different from the

general population (LDA Consulting, 2012; Lewis, 2011; Ogilbie & Goodman, 2012). An

analysis of the bike share system in Washington, DC found that the bike share members had

significantly higher employment rates and education levels, lower average age, and were more

likely to be male than the general population (LDA Consulting, 2012). Ogilvie and Goodman
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(2012) compared registered users in London's bike share system to the general population

examining usage levels to understand socio-demographic factors impacting bike share usage.

They found gender was a large predictor of use, with the model estimating that women took 60%

fewer trips than men.

2.4 Conclusions
Women and men have different preferences and therefore different travel behaviors when

choosing to bike. Additionally, women experience the built environment in different ways than

men do, and therefore have different preferences and needs when traversing the city. Lack of

availability of data with gender or other demographic factors, has prevented substantial analysis

of bicycle use and differences between women and men. Little research has looked at large

samples of quantitative data, such as usage data, to analyze what factors affect use. Parsing the

data by gender allows for analysis into gender differences that may exist. Analyzing gender

differences can produce more useful insights for city governments and bicycle planners on how to

create physical environments to best attract users and create more gender equal cities.
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3 BACKGROUND

3.1 Study Area
The study area for this analysis is the Hubway service area, which serves the cities of Boston,

Brookline, Cambridge and Somerville, as shown in Figure 3-1 Study Area Context. All cities are

within the greater Boston region. For this analysis stations in the city of Brookline were omitted

due to data limitations, described in the next section.

Cambridge and Somerville abut Boston to the north and northwest. All three are historic towns.

Boston and Cambridge were established as towns in the mid-1600s, and Somerville was settled in

the mid-1600s. Topographical limitations in the study area include the Atlantic Ocean to the east,

and the Charles River between Boston and Cambridge. The study area is relatively flat at close to

sea level. Somerville has some small elevation gains around Winter Hill, and Prospect Park, as

does the southern portion of Boston (Dudley Square, Roxbury, and Dorchester).
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Figure 3-1 Study Area Context
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3.1.1 Jobs

Most of the jobs in the study area are clustered around Boston's Longwood Medical Area, Back

Bay, the Financial District, Mass General Hospital, and Northeastern, as shown in Error!

Reference source not found.. In Cambridge, jobs are clustered around Kendall Square, MIT, and

Harvard. Somerville has one job cluster around the city's government center.

Figure 3-2 Study Area Job Density (per sq. mi)
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3.1.2 Population

The study area has a population of 856,941. As shown in Figure 3-3, population is dispersed

throughout all three cities. Somerville has a relatively consistent population density throughout

the city, while Cambridge has higher population density around Harvard, Cambridgeport, and

Central Square. Boston has population density clustered in the North End, East Boston, around

Boston University, Longwood, and the South End. Population density is also spread further away

from the core in Roxbury and Dorchester.

Figure 3-3 Study Area Population Density (per sq. mi)
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3.1.3 Land Uses

The study area has varied land uses, as shown in Figure 3-4. Cambridge and Somerville are

mainly residential, with a number of commercial corridors in the cities. Cambridge has two large

public institutions (Harvard and MIT), while Somerville has two large areas of industrial land.

Boston has a larger amount of commercial area in the Financial District, Back Bay, Fenway,

South End, and South Bay.

Figure 3-4 Study Area Land Use
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3.1.4 Transportation

The study area has a multimodal transportation system that connects the greater Boston region

internally as well as throughout New England. Land use and transportation are interconnected,

and as shown in the previous maps, the city of Boston spans a large amount of area, much of

which has low population density. As such, commuting modes are impacted by where people can

live and work. On average 67% of workers commute by car in the study area, 19% by public

transportation, 7% by walking, and 1% by biking3 . As shown in Figure 3-5 , the study area is

more multimodal than the U.S. as a whole.

Figure 3-5 Study Area Commute Mode, 2016
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3 An additional 5% of workers use other modes, including working from home.
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3.1.4.1 Public Transportation

The Massachusetts Bay Transportation Authority (MBTA) serves the study area via urban rail

(heavy and light rail), commuter rail, ferries, buses, and paratransit. Figure 3-6 shows the

regional connectivity of the urban rail network ("the T"). The top five stations by weekly

ridership, in order, are Harvard Square, South Station, Downtown Crossing, Park Street and

North Station. South Station, North Station and Back Bay Station connect to regional trains.

Figure 3-6 Study Area T Stations and Lines
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3.1.4.2 Biking

Bicycle infrastructure varies across the region. One factor that limits the regional connectivity of

the network is that each town is responsible for developing its own infrastructure. The regional

land use planning agency, the Metropolitan Area Planning Council (MAPC), does not hold any

jurisdictional power. MAPC has worked to encourage regional bike planning through a 1997

Regional Bicycle and Pedestrian Plan, and updating it as a 2007 Regional Bicycle Plan for the

greater Boston area. MAPC also was a key player in the founding of Hubway, leading the bidding

process for the initial launch in 2007. Figure 3-7 shows study area bicycling network.

Figure 3-7 Study Area Bike Network
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Boston, Cambridge, and Somerville have received accolades for being good cities for bicycling.

The League of American Bicyclists awarded Boston a silver standard, Cambridge a gold

standard, and Somerville a gold standard as Bicycle Friendly Communities (BFC). According to

the League of American Bicyclists, the BFC program attempts to set standards for what

constitutes a real bicycling culture and environment. Bicycling Magazine does its own ranking,

working with organizations, bike advocates, and riders, and analyzing data from departments of

transportation to rank top cities. According to Bicycling Magazine, key statistics include

population, miles of bicycle facilities, bicycling-friendly business score, people per bike-share,

and median home value. In 2016, Cambridge was ranked 8th for small cities, and Boston was

ranked 26th for large cities. People for Bikes also has city ratings, based on five factors: ridership,

safety, network, reach and acceleration. The cities in the study area received scores, on a five-

point scale, of: Boston 2.6, Cambridge 2.3, and Somerville 1.7.

3.2 Regional Bike Share System: Hubway
The City of Boston began planning for bike share in 2007, founding its Boston Bikes program.

Expecting the bikeshare system to be region wide, the city enlisted the help of the Metropolitan

Area Planning Council (MAPC) to lead the process of selecting a company to operate the system.

Alta Bicycle Share, which since a change of ownership has changed its name to Motivate, was

selected as a full-service bike share operator and technology innovator.

Hubway launched July 18, 2011, at first only in Boston. The system began with 61 stations and

610 bicycles. The system was funded by a $4.5 million grant from the Federal Transit

Administration and local organizations. At the end of 2011 Brookline, Cambridge, and

Somerville signed contracts with Alta Bike Share to expand to their cities. The system has

steadily grown each year. By the end of 2012 the system had added 45 new stations and 540

bicycles. At the end of 2013 the system had expanded to 130 stations and 1,200 bikes. Currently
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there are stations serving every T line, commuter rail and ferry. There are 192 stations in total,

with 1800 bikes. Figure 3-8 and Figure 3-9, below, show how the number of stations and

membership has grown over the years, with over 14,000 annual members in 2017.

In May 2018, Mayor Walsh announced that Hubway would add more than 70 new stations over

the next two years, for a total of 245 stations and 2400 bikes. The City also announced a new

sponsorship with Blue Cross Blue Shield, which would pay nearly $20 million to change Hubway

into Blue Bikes. This will also expand the system to over 1,000 new bikes and add 100 new

stations in the region (Graham, 2018). The municipalities of Boston, Brookline, Cambridge, and

Somerville own the system. Figure 3-10 shows a map of the Hubway stations in Boston,

Brookline, Cambridge and Somerville.

Figure 3-8 Growth in Stations, 2011-2017
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Figure 3-9 Growth in Annual Members, 2011-2017
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Figure 3-10 Hubway Station Map, 2018
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3.2.1 System Details

Hubway offers three membership types; a 24-hour pass, a 72-hour pass or an annual pass. Annual

memberships cost $99 upfront, or $ 10/month with an annual commitment. For annual and

monthly members, 30 free minutes per use are included in the membership price. It costs $1.50

for an additional 30 minutes, $3 for the next 30 minutes and $6 beyond that. Hubway groups

annual members and monthly members into the general category of 'subscribers'. The growth in

annual members since launching has roughly matched the expansion of stations, as shown in

Figure 3-8 and Figure 3-9.



4 DATA AND METHODS
The dataset for this analysis includes land use, built environment, transit, and demographic

variables. I construct the dataset from various publicly available data sets from the City of

Boston, City of Cambridge, City of Somerville, and MassGIS. Some variables, identified in

Section 4.2, are counted manually due to limitations of data access across all three cities. Station-

specific and station area variables were calculated for the 192 Hubway Stations in the study area,

with some stations later removed, using GIS, R, and Excel. I aggregated trip origins by station

from publicly available Hubway trip data for 2017. This chapter discusses the construction of the

dataset and methods for analysis.

4.1 Dependent Variable

4.1.1 Hubway Usage

The dependent variable for this analysis is Hubway trip origins. Factors contributing to trip

origins differ from factors contributing to trip attractions (Krykewycz et al, 2011). My analysis is

limited to trip origins because I am interested in relating factors to where trips start, to understand

if physical environment factors might influence the choice of using bike share. Due to limitations

in scope for my analysis, I could not include an analysis for destination trips.

Hubway publishes data by trip for each month. The trip data includes the origin station, start time,

destination station, end time and trip duration, as well as customer data that includes member id,

area code, gender (for subscribers), and age. The data does not include the route the user takes.

Casual riders (members who register for a 24-day or a 72-hour pass) are not included in the

analysis since these riders' gender cannot be identified.

The dataset includes over 1,313,774 trip origins for the whole year, with August seeing the
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highest number of trips. Figure 4-1 shows the distribution of trips per month, by gender4 for

subscribers.

Figure 4-1 Hubway Trip Origins by Time of Year
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4.1.1.1 Filtering

My analysis focuses on origin trips for April-October 2017 for Hubway stations. I only analyzed

data from April to October because, until winter 2017, stations in Boston, Brookline and

Somerville were closed during the winter months, generally starting in late November or early

December, and returning in the first week of April. In winter 2017-2018, 35 of the 192 stations

closed during the winter months. Cambridge, however, does not close stations in the winter,

therefore I removed the months of November-March so that all stations are in operation during

the analysis time period. Additionally, stations in Brookline were also removed because the city

4 When monthly and yearly members register, they have three gender options; male, female and other, there
is no write in option. Other makes up 0.61% of subscriber origin trips.
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did not have data available for many explanatory variables. After this process, 188 stations

remained.

Additional observations were removed based on relative anomalies, including trips that started

and ended at the same location, trips that were less than two minutes, and trips that were over 60

minutes. This removed outliers and errors and also increased the likelihood of focusing on

utilitarian instead of recreational trips. Additionally, weekend trips were removed. My analysis

focuses on utilitarian trips because I am interested in understanding factors related to non-leisure

trips. Individuals using bicycles for commuting and leisure or sport are sensitive to different

factors (Stinson & Bhat, 2005). Additionally, recreational trips have a different temporal

distribution than utilitarian trips; recreation trips tend to have a broad peak that runs from late

morning to midafternoon and on weekends (Miranda-Moreno et al., 2003). Accordingly, I

removed weekend trips and long trips to limit the number of leisure trips. That said, it is not

possible to determine trip type in the Hubway trip origins data, so I do not attempt to make

explicit claims about utilitarian trips.

The trips were further grouped into time periods: AM Peak (6-1OAM), Midday (1l-3PM), PM

Peak (4PM-8PM), and Late Night (9PM- I AM). Overnight trips (2-5AM) (0.99% of observations)

were excluded. Table 4-1 shows the percent of total trips during each time period.
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Table 4-1 Percent of Trip Origins by Time Period

Time Period Gender Percent of Total Trips

Overnight Male 0.76%

Female 0.23%

AM Male 24.54%

Female 8.13%

Mid Male 15.18%

Female 4.94%

PM Male 30.26%

Female 9.64%

Late Male 5.02%

Female 1.31%

After this data cleaning, 692,475 trip origins remained. Of these, men accounted for a much

larger share than women: 524,387 versus 168,088 trips. Figure 4-2 shows the distribution of trips

in the dataset by hour, and Figure 4-3 shows the distribution of trips by time period. Clear

morning and evening peaks appear for both men and women, around 8AM and 5PM, with a small

bump also around noon.

Figure 4-2 Trip Origins by Gender and Hour, April-October 2017

60,000

40,000
-. - Female

-Mle

20,000

0

1 5 10 15 20
Hour

Data Source: hubway 2017

42



Figure 4-3 Trip Origins by Gender and Time Period, April-October 2017
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4.1.1.2 Relative Usage

To more easily compare differences in relative usage, I examine usage by gender as a share of

total trips by that gender. As shown in Figure 4-4., women start a relatively higher share of their

total trips at 8 AM. Number of trips and percentage of trips over a day shows that men and

women exhibit similar temporal patterns over a day. Figure 4-5 shows that the relative shares of

total usage by women and men are almost identical across the day, with women having a slightly

higher share of usage during the AM Peak and slightly lower share of usage during late night,

differences of around one percentage point in each case.
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Figure 4-4 Share of Trips by Gender and Hour, April-October 2017
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Figure 4-5 Share of Trips by Gender and Time Period, April-October 2017
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4.1.1.3 Spatial Distribution

Spatially representing where users start their trips can help give an idea of spatial patterns that

exist in the data. During AM peak, women have a large share of trips in Back Bay West, along
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the Green Line to Longwood, at Mass General Hospital, and around Central and Inman Squares.

Men however, have a large share of their trips near Long Wharf North and the Financial District,

at North and South Station, in Back Bay, and in Cambridgeport/Central Square. Long Wharf

North, North and South Station are key transit and ferry nodes where last-mile connections may

happen.

Midday trips show very similar spatial patterns for men and women, and most trips are more

concentrated. Clusters of trips occur at Kendall/MIT, Financial District, Central Square and Back

Bay for both genders. These are main areas of employment, so these clusters could indicate

midday trips starting from work.

PM trips also show very similar spatial patterns. Clusters of trip origins for both males and

females occur in Kendall/MIT and Back Bay with smaller clusters at Harvard Square and South

Station. Additionally, a large share of female trip origins occur around Mass General Hospital. In

addition, male trip origins see a larger share of trips in the Financial District. This spatial

distribution for when many workers leave work could be due to clustering of female workers in

the health care industry and male workers in the finance industry.

Late night trip origins are more concentrated, but vary between male and female. Male shares of

trips cluster around the Financial District, Kendall/MIT, Central Square and Harvard. Female

shares of trips cluster around Government Center, the Theatre District, Central Square and

Kendall/MIT.
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Figure 4-9 Male Share of Origin Trips by Si
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Figure 4-12 Female Share of Origin Trips by Station, 9PM-2AM
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Figure 4-13 Male Share of Trip Origins by Station, 9PM-2AM
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4.1.1.4 Descriptive Statistics

The descriptive statistics of trip origins by station, shown in

Statistic N Mean St. Dev. Min Max

M1AM 188 301.12 250.32 1 1,254

Feale4P 188 182.98 181.90 1 1,421

4Pm-9PM 188 357.04 328.87 2 1,773

Pm-AM 188 48.49 55.86 0 303

AM-1AM 188 909.01 870.15 8 6,998

2AM 188 562.44 635.31 6 5,078

4M-9PM 188 1,121.26 1,193.94 11 7,252

Ma 188 185.97 217.22 0 1,309



, illustrate the large range in station usage, and differences between average number of trip

origins for men and women. The PM peak time period has the highest mean value for men and

women, and the late night time period has the lowest mean value for both men and women. The

data was highly skewed left, so a square root transformation was used to transform the data to be

closer to a normal distribution for modeling. Histograms of trip origins and the transformation are

shown in Appendix A and B.

Table 4-2 Explanatory Variable Descriptive Statistics

Statistic

Female
6AM-1 lIAM

Female
11I AM-4PM

Female
4PM-9PM

Female
9PM-2AM

Male
6AM-1 lAM

Male
11I AM-4PM

Male
4PM-9PM

Male
9PM-2AM

N Mean St. Dev. Min

188 301.12 250.32 1

188 182.98

Max

1,254

181.90 1 1,421

188 357.04 328.87 2 1,773

188 48.49 55.86 0 303

188 909.01 870.15 8 6,998

188 562.44 635.31 6 5,078

188 1,121.26 1,193.94 11 7,252

188 185.97 217.22 0 1,309



Table 4-3 Top 20 Stations (by total trip origins)

Station Total Female AM Male AM Female Mid Male Mid Female PM Male PM Female Late Male Late
Trips

MIT at Mass/Amherst St 19085 688 2093 1421 5078 1509 6572 276 1309

South Station - 700 Atlantic Ave 19016 763 5826 513 2259 1773 7252 98 429

Central Square at Mass Ave 13271 731 2316 664 1700 1690 4695 303 1115

MIT Stata Center at Vassar St 13046 130 607 796 3349 1269 6330 75 465

Kendall T 12760 593 1834 768 3166 1035 4715 102 526

Nashua Street at Red Auerbach 11722 1154 6998 222 756 550 1658 40 296

Beacon St at Massachusetts Ave 11197 1254 2137 528 1551 1133 3008 266 1128

MIT Vassar St 10184 667 3176 304 2057 523 2768 96 539

MIT Pacific St at Purrington St 10034 696 2569 489 2032 700 2422 154 878

Charles Circle - Charles/Cambridge 9702 1092 2139 471 1088 1130 2997 116 567
Ames St at Main St 9479 260 962 709 2425 807 3655 102 520
One Kendall Square 9417 610 1714 628 1819 773 3106 103 577

Back Bay T Stop 9289 701 2766 261 883 901 3257 120 323
Copley Square 8927 582 1372 496 1231 1262 3387 153 400

Harvard Square at Mass/Dunster 8529 294 885 564 1536 1135 3032 244 801
Boston City Hall 8300 529 1873 350 1541 660 2963 53 282
University Park 7686 475 1589 267 1335 552 2455 177 805
Lechmere Station 7219 676 1499 280 1117 576 2775 35 233

Boylston St at Fairfield St 7029 495 1217 368 1162 615 2717 73 345

Christian Science Plaza - Mass Ave 6985 750 1428 334 811 811 1958 151 595



A full list of trip origins by station, with station rank, illustrates that the highest stations for men

and women are very similar. The top 20 stations for total trip origins are shown in Table 4-3.

Many of the top 20 stations are near T stations or landmarks in the city.

4.2 Explanatory Variables
I categorized the explanatory variables into five categories: demographics, safety, bicycle

infrastructure, land use and transit. Variables related to the area surrounding stations were

aggregated to a quarter mile catchment area. The data come from a variety of sources, including

MassGIS, American Community Survey (ACS), the Longitudinal Employer Household

Dynamics (LEHD), City of Boston, City of Somerville and City of Cambridge. Variables were

chosen based on availability from all three cities, literature on factors affecting bikeshare usage,

and literature on factors related to where or why women bike. I used ArcMap to calculate

variables and R, SQL, and Excel to analyze the results. Some factors, such as distance, are shown

in the literature to vary between men and women but were not included in this analysis due to its

focus on physical environment characteristics, and focus on trip origins rather than origin-

destination pairs. All variables are briefly outlined next, with descriptive statistics and histograms

in Appendix C and D.

Variables related to the area surrounding the station were calculated for the station catchment

area, which was estimated as the quarter mile street network distance from a Hubway station.

Using the street network distance rather than Euclidean distance provides a better representation

of human accessibility to the station distance because it follows the street network and accounts

for network connectivity rather than distance as the crow flies. Figure 4-14 shows an example of

the difference between using a Euclidean distance-based versus a street network-based catchment

area. Due to station proximity, many catchment areas were not exclusive, with varying amounts



of catchment area overlaps across the study area. Figure 4-15 shows each station and its

catchment area. There was significant overlap in areas such as inner downtown Boston and

Central Square, Kendall Square and Harvard Square in Cambridge.

Figure 4-14 Quarter Mile Catchment Area
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Table 4-4 shows an overview of the 17 variables initially included in the model. The next section

describes the variables in more detail, including methods when variables were calculated.

Table 4-4 Explanatory Variable Overview

Explanatory Variable Expected Reason for the expected sign Source
Sign

Jobs + Jobs attract trips 1
Population + Population produces trips 2

Higher density areas produce and
attract more trips

Distance to CBD More activity closer to CBD so more 3
destinations are in closer proximity

Major University + Universities are trip producers 3,4
Commercial Area + Commercial areas attract trips 5, 6, 7

Docks + Hubway supplies docks where there is 8
more demand

Distance to Separated Bike More inexperienced cyclists prefer to 5,6,7
Facility be closer to separated bike facilities

Distance to Bike Facility - Bicycle infrastructure increases 5, 6, 7
perceived safety

Length of Bike Network + Bicycle infrastructure increases 5, 6, 7
perceived safety

Average Number of Lanes - Fewer lanes mean less traffic and/or 4
narrower streets

Average Annual Daily Traffic - More traffic flow decreases perceived
safety

Bike Activity + Areas with more cyclists have higher
perceived safety

Length of Truck Route - Large trucks feel unsafe so are 6
avoided

Streetlights + More visibility is desired for safety 6, 7, 8

T Station + Transit can attract riders for first or 4,11
last mile connections

Number of bus stops + Transit can attract riders for first or 12
last mile connections

1: LEHD Data, US Census Bureau 2015; 2: American Community Survey (ACS) 2012-2016; 3: Manual calculation;
4: MassGIS; 5: City of Boston; 6: City of Cambridge; 7: City of Somerville; 8: Motivate; 9: MassDOT; 10: Boston
Area Research Initiative; 11: MBTA; 12: BetterBus

4.2.1 Demographics

4.2.1.1 Population

I calculated population for men and woman separately, using the American Community Survey (ACS)

2012-2016 (5-year estimates) at the census block level. For census blocks that were not completely
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contained within a catchment area, I calculated the population proportional to the area within the

catchment area. Additionally, for overlapping catchment areas, population was split among the

overlapping catchment areas, so that population would not be double counted. For example, if three

catchment areas overlapped, the overlapping population within the overlapping polygon was divided by

three. I used this method assuming that population in, say, two stations with overlapping catchment areas

has an equal likelihood of using either station. I expect population to have a positive effect on trip origins

because a large portion of transportation trips begin at home (for example, home-based-work or home-

based-other). I also calculated the density of catchment area as people per square foot. Density can

capture population as representing clusters of people, which could indicate other amenities. I expect

density to have a positive effect on trip origins because higher density of population indicates more trip

production.

4.2.1.2 Jobs

I aggregated jobs data from LEHD data and the Employment Statistics (LODES) Dataset. Jobs can be an

indicator of demand for travel from work. The data is from the most recent year available, 2015, at the

block level, and includes number of female workers, and number of male workers. For census blocks that

were not completely contained within a catchment area, I calculated the jobs proportional to the area

within the catchment area5 . I expect jobs to have a positive effect on trip origins.

4.2.2 Safety

4.2.2.1 Average Annual Daily Traffic

Average annual daily traffic (AADT) is an estimate of the number of vehicles that use a roadway during

the year. AADT effects the perceived safety in an area, which impacts a potential user's comfort in the

surrounding area when departing or arriving. AADT is captured by MassDOT for a limited number of

5 Unlike population, Jobs were only calculated as proportional to the area within the catchment area, so jobs were
double counted for overlapping catchment areas.
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streets. I calculated an average of the AADT for roads within the catchment area. Some areas, especially

newer developments like the Seaport, may have underestimated AADT because the data was captured

between 2009-2012. I obtained the data from MassGIS, as sourced from the MassDOT road inventory. I

expect AADT to have a negative relationship with trip origins because an area with more vehicle traffic

would decrease how safe and comfortable it feels to bike in that area.

4.2.2.2 Number of Lanes

To capture road width, number of lanes is used to estimate how pleasant it is in the area surrounding the

station. More lanes can make it difficult for cyclists to navigate through the traffic. For each street in the

catchment area, I summed the total number of lanes on each street to calculate the average total number of

lanes in the catchment area. This would show, on average in the surrounding area, how pleasant a street is

to bike on, with fewer lanes indicating a more pleasant street. The number of lanes is likely correlated

with average annual daily traffic, since lanes are usually added to accommodate more traffic. I obtained

the data from MassGIS, and sourced from MassDOT road inventory. I expect number of lanes to have a

negative relationship with trip origins.

4.2.2.3 Parking Meters

Parking meters are generally located in retail and entertainment areas, where short term parking is needed.

Therefore, parking meters are included to identify areas of high activity. Parking areas are also dangerous

for cyclists, with vehicles crossing into bicycle lanes while parking, or drivers/passengers opening their

car doors into cyclists when they exit vehicles. The data was aggregated to the catchment area. Parking

meters data was obtained from the City of Boston, Cambridge, and Somerville. I expect this variable

could have two impacts on bikeshare usage: 1) decrease ridership due to parking activity often meaning

more potential conflicts with cyclists or 2) parking representing commercial areas which will increase

ridership due to commercial corridors being destinations or origins for trips.
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4.2.2.4 Truck Routes

Truck activity can have adverse impacts on noise and safety, so some cities limit the streets where heavy

vehicles can drive. Trucks are permitted on most streets in the region, but are encouraged to use a system

of Posted Truck Routes for a majority of their trips. I obtained a truck route map for the region from the

City of Cambridge and manually geocoded it. Then I calculated the total length of the truck route within

each catchment. I expect stations with a higher amount of truck routes to have lower trip origins because

large vehicles decrease perceived safety for cyclists.

4.2.2.5 Number of Bus Stops

On most streets bus stops are in or adjacent to the bike lane. Navigating around a stopped bus, or a bus

pulling into a bus stop can leave cyclists exposed to traffic and can feel unsafe. Additionally, buses are

large vehicles, and getting passed by a bus can feel unsafe. I calculated the number of bus stops in the

catchment area to indicate another safety metric. I expect bus stops have a negative relationship with

origin trips. I calculated the data using the Better Bus ArcMap tool, which utilizes the MBTA general

transit feed specification (GTFS).

4.2.2.6 Streetlights

Lighting can increase perceived safety, particularly for women. Women have indicated in previous

studies that they tend to prefer well-lit areas. Streetlights can increase this perceived safety, but also tend

to be in areas where pedestrians or drivers may also need them, such as commercial corridors or major

intersections. Streetlights can also increase actual safety by decreasing pedestrian, bike and vehicle

accidents with appropriate lighting of streets (Lutkevish et al, 2012). Light can increase surveillance and

deter potential crime (Haans and de Kort, 2012). This could however, indicate that streetlights are placed

in areas where there is more crime and/or had more accidentss. Given that most streetlights have been on

streets for many years, the reduction in accidents would likely outweigh any initial crime or unsafe

conditions, so I expect streetlights to have a positive relationship with trip origins in the PM peak and
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night time periods. I obtained streetlight data from the City of Boston, and Cambridge. The data did not

exist for Somerville, so I manually counted streetlights using Street View in Google Earth. To normalize

the data, I divided the total number of streetlights by length of road network in the station area catchment

area.

4.2.3 Bicycle Factors

4.2.3.1 Length of Bike Network

Availability of bicycle infrastructure can increase usage, as cyclists feel safer. The length of the bike

network was calculated for each catchment area, in feet. All bike facility types were included. I expect

length of bike network to positively affect trip origins. Bicycle network data was obtained from City of

Boston, Cambridge, and Somerville. The data was combined to create a bike network for the entire study

area.

4.2.3.2 Distance to Bike Facility

Research has indicated that bike infrastructure increases bike usage. Distance to bike facility is used to

indicate how close the station is to bike infrastructure. The distance to a bike facility was calculated for

each Hubway station, as the distance to the closet bike facility. All bike facility types were included. I

expect stations closer to bike facilities to have more trip origins. I obtained bicycle network data from

City of Boston, Cambridge, and Somerville.

4.2.3.3 Distance to Separated Bike Facility

Facilities separated from traffic tend to be preferred by cyclists, and for women in particular. I expect that

the closer a station is to a separated bike facility, the higher the number of trips that will start at that

station. Each city had different designations for the facilities. Separated facilities included: major shared

use path, cycle track, mixed use path, bike path/multi-use path, parking separated bike lane, and separated

bike lane. I calculated the distance to a separated bike facility for each Hubway station. I obtained bicycle

network data from City of Boston, Cambridge, and Somerville.
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4.2.3.4 Bicycle Activity

I used bicycle crashes as a proxy for bicycle usage, following a study from UCLA that found intersections

with bikeways and higher bicycle counts had higher crashes (Ligget, 2016). I compiled crash data from

the City of Cambridge, Somerville, and a database created by researchers from Harvard School of Public

Health, the Boston Police Department, and BARI for the City of Boston. To standardize the data

available, a three year period of 2015-2017, 2014-2016, and 2010-2012 was used for Cambridge,

Somerville, and Boston, respectively 6. Only crashes that involved a cyclist were included. I aggregated

the data to the catchment area. Since crashes cannot be normalized by cyclist flow, I expect that crashes

will be a proxy for bicycle usage. This is a limitation of the data. While research has shown that at a

certain threshold more cyclists mean less crashes due to safety in numbers, I assume that the number of

overall cyclists in the study area is not high enough to reduce crashes. As cycling increases, the number of

crashes also increases, so I expect crashes will have a positive effect on trip origins.

4.2.3.5 Docks

The number of docks at a station is a variable that can control for the supply of bikes at a station.

Literature indicates that as the number of docks that a station has increases, so does the usage. I include

total number of docks in the catchment area to capture higher demand areas. I expected docks and total

number of docks in catchment area to have a positive effect on trip origins.

4.2.4 Land Use

4.2.4.1 Land Use Mix

Studies have indicated that the more mixes of land use, the more trips will start or end at that location.

The more types of land use, the more varied the trip attractors or producers there are. Varied land uses

6 It may be problematic using three different time periods because more recent dates have higher bicycle usage.
However, this was the only complete dataset available for each city for crashes of any sort. Somerville had
incomplete data for 2017, and Boston only had data from 2010-2012 because a research group studied that time
period specifically. I compared the total counts for all three cities and they were on similar scales. This does not,
however, indicate that the numbers are a good and consistent measure for bicycle activity between the three cities.
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tend to be a proxy for more cycling friendly places. As such, I expect station catchment areas with a

higher land use mix will have more trip origins. This measure does not measure magnitude of mixture of

land uses, which should be captured in population orjobs.

Frank et al (2006) propose a land use mix measure, using 6 different land use types:

Land Use Mix=-A/(ln(N));

where area =

A=(bl/a)*ln(bl/a)+ (b2/a)*ln(b2/a)+ (b3/a)*ln(b3/a)+ (b4/a)*ln(b4/a) )+
(bS/a)*ln(b5/a) )+ (b6/a)*ln(b6/a)

a=total square feet of land for all six land uses present in buffer

and:

bl= low density residential, single family

b2= medium density residential, high density residential, multi family

b3=retail

b4=office

b5=education

b6=entertainment

N=number of six land uses with area > 0

For the land use mix measure, a higher value indicates more mixture of land uses. The land use mix

measure can range from 0 to 1; 0 indicates homogenous land use and a I indicates equal mixture of land

use types, or higher mix.

The land use data available from MassGIS only included four land use types, however, thus I modified

the above formula as:

Land Use Mix=-A/(ln(N));

where area =

A=(bl/a)*ln(bl/a)+ (b2/a)*ln(b2/a)+ (b3/a)*ln(b3/a)+ (b4/a)*ln(b4/a)

a=total square feet of land for all four land uses present in buffer

and:
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bl= low density residential, single family

b2= medium density residential, high density residential, multi family

b3=commercial

b4=institution

N=number of four land uses with area > 0

4.2.4.2 Distance to Central Business District

The distance to central business district (CBD) measures how relatively far out a station is from the CBD.

All else equal, in a monocentric city, moving further away from the CBD would make likely trip

distances longer, and reduce demand for cycling. I use City Hall as the center point due to its central

location and identity as a central city point. I expect distance to CBD to negatively impact trip origins, as

the farther away a station is from the CBD the lower the demand for cycling. The study area is not a

mono-centric city, and has multiple smaller business districts, so the relationship may not be linear.

4.2.4.3 Major Universities

Students have been identified in the literature as a typical user profile for bike share usage. Given their

lower income and younger age and the fact that many universities partner with Hubway to offer

discounted memberships, I expect the presence of a major university to have a positive impact on trip

origins. Using existing point data, Google Maps and campus maps, I manually calculated a categorical

variable for presence of a major university in the catchment area, including all campus buildings

identifiable on a campus map. The point data was obtained from MassGIS, and included undergraduate

and graduate enrollment. I counted as major universities those with over 2,000 total student enrollment.

The schools included: Berklee School of Music, Bunker Hill Community College, Boston University,

Emerson College, Harvard College, Lesley University, Massachusetts Institute of Technology,

Northeastern University, Roxbury Community College, Suffolk University, Tufts University, University

of Massachusetts Boston, and Wentworth Institute of Technology. Secondary locations (such as Harvard

or Tufts Medical School) were not included.
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4.2.5 Transit

4.2.5.1 T Stations

Bike share can be used as a first- or last-mile connection, often in conjunction with transit. MBTA T

stations represent potential supply of users. A categorical variable captures this, with a I representing at

least one T station in the catchment area and a 0 representing no T stations in the catchment area. I expect

that stations with a T station in the catchment area will have higher usage than stations without a T

Station in the catchment area. I obtained from MassGIS that was provided by MBTA.

4.2.5.2 Bus Frequency

To assess the bus frequency of the catchment area, I calculated the number of buses that arrive or depart

during a given time period in the catchment area. The measure is the total frequency of bus service. This

can indicate how well an area is served by the bus system, which is related to cycling in multiple ways.

First, it can supply demand for trip origins and people using bikeshare for a first or last mile connection.

Additionally, other studies indicated that many bikeshare trips are substitutes for public transportation, so

areas with higher bus frequency could increase bikeshare usage because users are substituting bikeshare

trips for bus trips. Alternatively, areas with high bus frequency could be have good accessibility so there

may be less demand for bikeshare.

Using the Better Bus ArcMap tool, which utilizes the MBTA general transit feed specification (GTFS), I

calculated the frequency of bus departures and arrivals. I expect that the higher the bus frequency is, the

higher the trip origins because more frequency produces more potential trips, and more potential

substitute trips. I expect that these two positive effects are larger than the decrease of demand caused by

having good accessibility.

4.3 Modelling Approach
For this analysis, I used multiple linear regression analysis to examine the relationship between the

number of trips that originate from each station, grouped by time and gender and the various explanatory
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variables.

A correlation matrix showed four variables that were highly correlated. Variables with above 0.7

correlation were not included together in the regression models. Then, an ordinary least squares

regression was run. The Chow Test, which tests if coefficients on the grouped data are equal, was used to

check if the data could be grouped by gender. Next, spatial error and spatial lag models were run for all

trip origins, male origins and female origins to determine the variables for the best fit model. Then a

Chow Test was run for each time period, and I subsequently ran OLS, spatial lag and spatial error

regressions for each time period and gender.

4.3.1 Correlation

Four variables were removed that were highly correlated. Total number of docks in the catchment area are

correlated with jobs (0.65 and 0.69 for female and male respectively). Total number of docks in the

walkshed was removed because docks at the station directly captures supply variation in stations'. Bus

frequency (bustrips) and bus stops (NumStops) were highly correlated (0.64). Given that transit

accessibility is also captured with T categorical variable, bus frequency was removed. Density was highly

correlated with population (0.82 for both female and male population), and was removed. Average daily

traffic and average number of lanes were highly correlated (0.72). Average daily traffic was removed

because the data were relatively dated, from 2009-2012, and many newer areas, such as the Seaport

would likely have underestimated traffic levels. Figure 4-16 illustrates highly correlated variables in

darker blue, with numeric values showing the correlation.

7 The number of docks directly impacts the number of trips a station can produce, as larger stations can produce
more trips. This introduces endogeneity into the model, in this case as an issue of simultaneity, where the model is
estimating demand based on a variable that is also determined by demand. Simultaneity occurs when an explanatory
variable causes the dependent variable, but the dependent variable also causes the explanatory variable. In this
instance, the trip origins at a station is likely how Hubway decides how many docks to put at a station, and therefore
the number of docks at a station is also determining the demand. I do not account for simultaneity in the models, and
this is discussed in my limitations.
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Figure 4-16 Correlogram for Explanatory Variables
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4.3.2 Base OLS Regression

I ran an ordinary least square (OLS) regression on total trip origins. An OLS regression minimizes the

sum of the squared deviations from observations (SSR), and is represented as:

y =oc +#1Xi1 + fl2Xi 2 ... flpXpl +Ej,

where:
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oc= average ridership with no explanatory variables present

# = is a coefficient representing the estimated relationship
between variable x and the independent variable

E = residual error

OLS models estimate coefficients by minimizing the sum of square prediction errors. I ran the OLS

model for total origin trips, male origin trips, and female origin trips. I use this base model to test if the

data can be separated into groups.

4.3.3 Chow Test

I used the Chow Test to determine whether the data can be pooled for OLS modeling or separated into

groups for different models based on, in this case, gender and/or time. The test compares the sum of

squares error from the pooled regression to the sum of square errors of the regression on the two separate

groups. For the pooled regression, the explanatory variable is total usage, and for the two groups the

explanatory variables are male usage and female usage. The Chow Test assesses the null hypothesis of

the coefficients of the two groups being equal:

Chow = RSStotal - (RSSfemale +RSSmale))/k

(RSSfemale +RSSmale)/(Ni +N 2 -2k)

where,

RSStotal = regression on total usage

RSSjemale = regression on f emale usage

RSSmaie = regression on male usage

k = number of explanatory variables + constant

N = number of observations

4.3.4 Spatial Autocorrelation

One issue with using an OLS model for spatial data is that the spatial relationships of the underlying data

may violate basic OLS assumptions: the dependent variables and/or the error terms may be related in

space. Spatial autocorrelation exists if observations that are closer to each other in space have related
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values. Spatial error and spatial lag are the primary types of spatial dependence. Spatial error is when the

error terms of different spatial units are correlated, and treats spatial autocorrelation as an estimation

problem. Spatial lag assumes that dependencies exist among the levels of the dependent variable, for

example, the usage at one bike share station is impacted by the usage as nearby stations. I checked the

base model for spatial autocorrelation and then add and remove explanatory variables to find the best fit

model. I removed four variables: land use mix, number of bus stops length of bicycle network, and

distance to bike facility. The final list of variables was: male population, female population, male jobs,

female jobs, average number of lanes, parking meters, truck routes, number of bus stops, streetlights,

distance to separated bike facility, bicycle traffic, distance to separated bike facility, docks, distance to

CBD, major universities and T stations.

4.3.4.1 Moran's I Test

The Moran's I Test is a standard way of testing for spatial autocorrelation. The test is an inferential

statistic and evaluates if the attributes and location of features exhibit a pattern of clustering, dispersion or

randomness. The null hypothesis is that the data is randomly distributed. For this analysis, the spatial

weights were calculated using the five nearest neighbors.

Moran's I statistic is defined as:

n Ef2=1XE=1w, 1 (xi -;)(x - ;)

E7 X, -;z)2

n n

So = wij
i=1 j=1

Spatial weights are defined as: wij is the weight between observation i and j and S, is the sum of all
the wi,.

If Moran's index is significantly larger than the expected value, then the null hypothesis is rejected and

the data is spatially autocorrelated. For this analysis, the Moran's I statistic was greater than the observed

value of I and positive, at a high level of statistical significance. Therefore, the null hypothesis was

72



rejected implying that the data was spatially correlated. See Appendix F for Moran's I calculation and

output.

4.3.4.2 Spatial Error and Spatial Lag

I ran both spatial lag and spatial error models and compared for best fit in each model. For the eight time

period models, seven of them exhibited spatial autocorrelation, with the AM time period not exhibiting

spatial autocorrelation.
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5 RESULTS

This chapter presents the results from the models, using the methods as described in the previous chapter.

They are run for different time periods, AM peak, midday, PM peak and late night, for a total of eight

models. Results are discussed within each time period and then compared across time periods.

5.1 Base Models
I first ran a base model to assess which explanatory variables should be included in the model generally

and to test if separate models could be run according to gender and time period. The base models were for

total trip origins, female origin trips, and male origin trips. The resulting base models are shown in Error!

Reference source not found.. I ran a Chow test for the pooled data (total trip origins) and compared that

to the grouped data (female origin trips and male origin trips). The Chow Test showed that male and

female usage were statistically different. With Chow statistic of 8.27 and F critical of 1.29, the null

hypothesis of data being the same pooled as it is grouped was rejected.

The data was highly skewed left, so a square root transformation was applied to reduce skewness. The

distribution was then more symmetric, with a skewness of 0.33. Histograms of the trip origins before and

after the transformation are shown in Appendix A and Appendix B. After this, I ran a spatial error and

spatial lag model for the data to determine which variables made up the best fit model by comparing the

AIC of the spatial model. I removed three variables: length of bicycle facilities in the catchment area,

distance to bicycle facility, and land use mix. Spatial lag and spatial error results are shown in Table 5-1.

Five variables were statistically significant in all three models: distance to CBD, number of docks, bicycle

activity and parking meters.
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Table 5-1 Spatial Lag and Spatial Error for Base Models

All Trip Origins Female Trip Origins Male Trip Origins
Spatial Lag Spatial Error Spatial Lag Spatial Error Spatial Lag Spatial Error

Demographics

Land Use

Bicycle

Infrastructure

Safety

Transit

Female Jobs
(per 10,000 jobs)

Female Population
(per 1,000 people)

Male Jobs
(per 10,000 jobs)

Male Population

(per 1,000 people)

Distance to CBD
(per 10,000 ft)

Major University

Land Use

Number of Docks

(per 10 docks)

Distance to Bike Facility
(per 1,000 ft)

Length of Bike Facilities
in Catchment Area
(per 1,000 fi)

Dist. to Sep. Bike Facility
(per 000ft)

Average Number of
Lanes

Bike Activity
(per 100 crashes)

Parking Meters
(per 100 parking metres)

Truck Length

Streetlights

T Station

Intercept

Num. obs.
Log Likelihood
AIC (Linear model)
AIC (Spatial model)
LR test: statistic
LR test: p-value
rho

9.96
(13.27)
18.26*
(7.96)
-9.15

(13.12)
-15.96 *

(7.79)
-13.16***

(2.45)
5.82

(3.27)
3.19

(10.25)
18.95***

(2.94)

-3.15
(3.13)

-3.11

(0.60)
6.56

(4.40)

-1.82

(1.91)
57.83***
(15.59)
5.21 **
(1.82)
24.06*
(9.69)
-83.87
(43.68)
-3.04
(2.89)

30.49**
(9.86)

188
-784.13
1605.06
1606.25
0.813
0.37
0.04

(0.46)

lambda

14.74
(13.86)
17.97*
(7.88)
-14.96
(13.90)
-15.52*

(7.80)
-14.76***

(2.51)
7.21 *
(3.50)
2.77

(9.74)
20.2***

(2.87)
-2.60
(2.97)

-0.12

(0.61)
-8.45*
(4.35)

-1.95

(2.05)
58.68***
(16.11)
5.14**
(1.92)
21.34*
(10.33)
-95.78*
(42.28)

-1.66
(2.92)

31.15**
(10.28)

188
-780.28
1605.06
1598.56

8.50
0.004

0.84
(2.04)

4.41 ***
(1.26)

0.24
(2.32)

4.33***
(1.29)

0.811
(3.55)

-0.01
(4.10)

0.61 0.85

-3.48**
(1.19)

1.60
(1.69)
2.38

(5.29)
7.63***

(1.53)

-0.05
(1.68)

-0.23

(0.30)
-6.26**
(2.27)

-0.67

(0.96)
33.12***

(8.10)
2.45*
(0.92)
11.32*
(5.09)
-33.52
(22.67)
-1.19
(1.48)

12.90**
(4.99)

187
-660.54
1355.97
1357.08

0.89
0.34
0.05

(0.05)
0.25

(0.08)

-4.26***

(1.26)
2.53

(1.82)
0.94

(5.04)
8.18***

(1.49)

0.55
(1.61)

-0.12

(0.31)
-7.35**
(2.26)

-0.68

(1.03)
33.92***

(8.40)
2.39*
(0.98)
8.43

(5.44)
-38.53
(21.93)

-0.71
(1.48)

14.01**
(5.27)

187
-657.07
1355.970
1350.13

7.83
0.005

0.25***
(0.08)

(2.24)
-11.01 ***

(2.19)
4.28

(2.93)
1.74

(9.26)
16.32***

(2.65)
-2.81

(2.91)

-0.32

(0.53)
-2.41

(3.91)

-0.69

(1.67)
53.45***
(13.92)
4.87**
(1.60)
18.67*
(8.83)
-57.84
(39.11)
-3.64
(2.55)

25.94**
(8.95)

187
-763.07
1561.58
1562.13

1.45
0.23
0.06

(0.05)

(2.28)
-12.48***

(2.24)
5.38

(3.15)
1.37

(8.75)
17.53***

(2.56)
-1.75
(2.77)

-0.13

(0.54)
-3.64
(3.89)

-0.75

(1.79)
55.89***
(14.45)
4.90**
(1.69)
15.36
(9.43)
-69.58
(37.63)
-2.74
(2.55)

26.83**
(9.32)

187
-758.91
1561.58
1553.82

9.75
0.002

0.26***
(0.08)

*p-<0.1 **p<0.05 ***p<0.01
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5.2 Time Period Models
The Chow test was subsequently run on each time period, comparing the pooled female OLS regression

to the time periods. The null hypothesis, that the data at each break point was the same, was rejected. This

supported separating the data by time period.

I ran an OLS regression using the same explanatory variables from the base model for each time period,

then checked the results from each model for spatial auto correlation using the Moran I test.

In all models except for AM peak, the p-value calculated from the Moran I test was statistically

significant and the z-score was positive. Due to this result, the null hypothesis that the spatial distribution

of the data is random, is rejected. Since spatial autocorrelation was detected, an OLS model is not the best

model for the data, as it does not take into account spatial tendencies of data. Spatial lag and spatial error

models were used instead, to account for spatial autocorrelation in the data. The results from the Moran I

test are shown in Appendix F. The spatial error model had a lower AIC than the linear model and the

spatial lag model. AIC is used to compare models so I used the spatial error model due to the lower AIC.

Maps of spatial lag are shown in Appendix G, illustrating how spatial lag is not the best method for

accounting for spatial autocorrelation.

5.2.1 Results AM Peak

5.2.1.1 Consistent Variables Across Genders

Statistically significant variables for both men and women included population, number of docks, and

bicycle activity. The more docks a station had, the higher trip origins it had at that station. This variable

was positive and statistically significant. As mentioned, however, this may introduce endogeneity in the

model. Hubway likely decides how many docks to put at a station based on the demand for trips, and the

increased number of docks can produce more trips.
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As population near a station increases, the more trip origins at the station. A large portion of morning

trips are likely for commuting purposes; the positive coefficient for population during AM peak supports

the hypothesis of people using Hubway for home based trips such as to get to work or school. Bicycle

activity was also positive, so stations with more bike activity in the catchment area had more ridership.

This could be due to simultaneity between bike activity and trip origins. Hubway likely places stations

near where there is bicycle activity, and bicycle activity may be increasing where there are stations.

5.2.1.2 Differing Variables Between Genders

Distance to separated bike facility was statistically significant for female usage, but was not in the male

usage model: the further a station is from a bike facility, fewer number of trips by women start at that

station, supporting the hypothesis that women prefer separate bike facilities. For men, distance to CBD

was statistically significant and negative, indicating that as a station is further from the CBD, it

experiences less male ridership. This could be due men tending to work in traditional professions that are

more likely to locate in downtowns (finance, real estate, engineering) because these professions rely more

on clusters. The further a station is from downtown, the less likely it is to attract men's commuting trips.

For women, the CBD distance is not significant, possibly because traditionally female jobs such as health

care, education, child care, are less likely to to locate downtown. For example, K-12 schools and many

health care related jobs are more likely to locate near residential areas.
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Table 5-2 AM Models

I OLS Spatial Lag Spatial Error
Female AM Male AM

Female Jobs
(per 10,000 jobs)

Female Pop.
(per 1,000 people)

Male Jobs
(per 10,000 jobs)

Male Pop.
(per 1,000 people)

Dist. to CBD
(per 10,000 ft)

Major Univ.

Demographics

Land Use

Bicycle
Infrastructure

Safety

Transit

lambda

*p<0.I**p<0.05***p<0.01

78

-0.82
(1.44)

5.05***
(0.92)

Num. of Docks
(per 10 docks)

Dist. to Sep. Bike Facility
(per 1,000 ft)

Avg. Num. Lanes

Bike Activity
(per 100 crashes)

Parking Meters

Truck Length

Streetlights

T Station

Intercept

Num. obs.

R2

Adj. R2

Residual Std. Error (df= 175)
F Statistic (df= 12; 175)
Log Likelihood

AIC (Linear model)

AIC (Spatial model)

LR test: statistic

LR test: p-value

rho

-0.15
(2.34)

5.22***
(1.55 )

-4.28***
(1.45)
-2.31

(2.06)
11.78***

(1.92)
-1.12

(2.65)
2.00*

(1.19)
2.64***
(1.01 )
2.28**
(1.08)
-2.80

(6.36)
-36.98

(26.15)
-1.96

(1.81
0.63

(6.11)
188

0.35
0.31
6.31

7.88***

-1.37
(0.86)
-0.68

(1.24)
4.44***
(1.16)
-2.78*
(1.6)
0.51

(0.71
1.73***
(0.61
0.89

(0.65)
1.95

(3.83
-27.6*

(15.84
-0.8

(1.09)
3.7

(3.61
188

0.41
0.37
10.45

10.09***

Female AM

-0.86
(1.39)

5.19***
(0.9)

-1.21
(0.85)
-0.87

(1.22)
4.39***
(1.12)
-2.99

(1.55
0.48

(0.69)
16.82**
(5.9)

0.75
(0.65)

1.61
(3.71
-25.56

(15.59)
-0.95

(1.07)
3.4

(3.5)

187
0.419
0.376

-696.57
1423.95
1423.15

2.81
0.09

(0.05)
0.09

Male AM

-0.33
(2.25)

5.66***
(1.51 )
-3.72*
(1.46)
-2.72
(2)

11.53***
(1.85)
-1.51

(2.54)
1.91

(1.14)
25.75**
(9.66)

1.9
(1.08)
-3.16

(6.13)
-31.35
(25.64)

-2.45
(1.77)
-0.43

(5.93)
187

0.355
0.307

-603.06
1235.16
1236.12

1.04
0.31

(0.05)
0.06

Male AMFemale AM

-1.27
(1.65)

5.04***

(0.93)

-1.73
(0.91
-0.12

(1.32)
4.64***
(1.08)
-3.84*
(1.54)

0.14
(0.75)
16.27**
(6.09)

0.71
(0.71

0.68
(4.01
-29.81

(15.31
-0.4

(1.08)
5.62

(3.68)
187

0.468
0.428

-691.22
1423.95
1412.44

13.51
2.37E-04

0.31
(0.08)

-0.16
(0.27)
4.94**
(1.55 )

-5.26***
(1.54)
-1.63

(2.19)
11.93***
(1.77)
-2.05

(2.51
1.44

(1.26)
28.01**
(9.97)

2.11
(1.17)
-4.32

(6.62)
-40.49

(25.06)
-1.59

(1.77)
4.12

(6.24)
187

0.402
0.357

-598.67
1235.16
1227.33

9.83
1.71 E-03

0.29***
(0.08)



5.2.2 Midday Models

5.2.2.1 Consistent Variables Across Gender

Statistically significant variables for both men and women were distance to CBD, number of docks at a

station, bicycle activity, parking meters, truck route length, and streetlights. The more docks a station had

and the more bicycle activity in the catchment area, the higher trip origins were at a station. As discussed

in the AM model, this could be due to endogeneity.

Parking meters and length of truck route were both positive, so as parking meters and length of truck

routes in the catchment area increase, ridership also increases. Streetlights in the catchment area and

distance to CBD were negative, indicating that areas with more streetlights have fewer trip origins and

areas closer to the CBD had higher trip origins at a station. Length of truck route could be a proxy for

main, non-freeway arterials. These roads coincide with many direct routes throughout the city. For

example, Massachusetts Avenue, state Route 2A in Cambridge is a truck route, but is also a key

northwest/southeast connector in Cambridge and into Boston. The road is a very direct path to get from

many areas in West Cambridge to the Charles River. During the midday time period, when traffic

generally is lower, men and women may be more likely to use a direct route that has worse bicycle

infrastructure since a decrease in automobile traffic increases perceived safety.

As discussed in Chapter 4, parking meters having a positive relationship with trip origins could be due to

parking meters, rather than parking spots, being located in commercial areas. In the early afternoon,

common trip types are likely lunch or errands, both of which are more likely to be located in commercial

areas. Jobs was not statistically significant, so these trips may not be work-based trips.

Streetlights having a negative relationship with trip origins could be due to the variable measuring more

than just how well-lit an area is. Streetlights could be a proxy for underutilized areas, areas that otherwise

feel unsafe, or areas where vehicles need lighting, all of which are not appealing for cyclists.
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Major universities has a positive statistically significant coefficient, indicating that students are likely

starting trips near universities in the afternoon. Given that students have more flexible schedules, this

supports students leaving school mid day, either for errands or to go home.

5.2.2.2 Variables Differing Between Genders

Similar to in the first model, distance to a separated bicycle facility was statistically significant for

women. As the distance to a separated bicycle facility decreased, ridership for female origin trips

increased. As discussed in the AM model, starting more trips near separated bicycle facilities could

indicate that women feel safer using these types of facilities and are more likely to take trips when the

route can be closer to a separated bicycle facility. Also, the coefficient is about the same as for the AM

model. I expected the coefficient to be smaller (or have a larger negative magnitude) because I would

expect that women have more constraints during the AM time period since they likely on their way to

work, so may choose the origins station that is closest to their origin rather than the one with specific

characteristics. Further identifying what type of trips are occurring during the midday period could give

more insight into this.
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Table 5-3 Midday Models

OLS Spatial Lag Spatial Error

Female Mid Male Mid Female Male Mid Female Male Mid
__________________ Mid j Mid

Demographics

Land Use

Female Jobs
(per 10,000 jobs)

Female Pop.
(per 1,000 people)

Male Jobs
(per 10,000 jobs)

Male Pop.
(per 1,000 people)

Dist. to CBD
(per 10,000 ft)

Major Univ.

Bicycle Num. of Docks
Infrastructure (per 10 docks)

Dist. to Sep. Bike Facility
(per 1.000 fi)

Safety Avg. Num. Lanes

Bike Activity
(per 100 crashes)

Parking Meters
(per 100 parking meters)

Truck Length

Streetlights

Transit T Station

Intercept

Num. obs.

R2

Adj. R2
Residual Std. Error (df= 175)
F Statistic (df= 12; 175)

Log Likelihood

AIC (Linear model)
AIC (Spatial model)
LR test: statistic
LR test: p-value

rho

lambda

0.53
(1.02)

0.75
(0.65)

-2.09**
(0.61)

2.78***
(0.88)

2.55***
(0.82)

-2.65**
(1.13
-0.74
(0.5)

1.32***
(0.43)
1.23***
(0.46)

7.59***
(2.7)

-20.1*

(11.18)
-0.94

(0.77)
9.7***

188
0.52
0.49
4.45

15.79***

0.31
(1.74)
-2.24*
(1.15)

-5.36***
(1.09)

5.66***
(1.53 )

5.15***
(1.43)
-2.28

(1.97)
-1.53*
(0.89)

2.62***
(0.75)

2.17***
(0.81 )

12.59***
(4.75)
-38.2*

(19.51
-2.07

(1.35
20.28***

188
0.56
0.53
7.8

18.61***

0.35
(0.98)

1.01
(0.64)

-1.88**
(0.61 )
2.37**
(0.88)
2.5**
(0.79)

-2.81 **
(1.08)
-0.66

(0.48)
12.65**
(4.14)
1.09*

(0.46)
6.89**

(2.62)
-16.89

(10.97)
-1.11

(0.75)
8.84***

(2.49)
187

0.574
0.542

0.574
0.542
-640.6

1313.34
1311.21

4.14

0.04
0.11*

(0.05)

0.00
(0.17)
-1.43

(1.14)
-4.73**

(1.1 )
4.72**
(1.52)

5.08***
(1.37)
-2.57

(1.88)
-1.26

(0.85)
24.88***

(7.17)
1.85*
(0.8)

11.43*

(4.57)
-29.81

(19.08)
-2.47
(1.3 )

17.61***

(4.48)
187

0.529
0.494

0.529
0.494

-536.83
1104.36
1103.65

2.71
0.1
0.09

(0.05)

0.55
(1.16)

0.91
(0.65)

-2.35***
(0.64)
3.02**
(0.93)

2.82***
(0.76)

-3.11**
(1.08)
-0.68

(0.53)
13.06**
(4.28)
1.16*
(0.5)
5.53*

(2.82)
-23.6*

(10.75)
-0.87

(0.76)
9.74***

(2.59)
187

0.610
0.581

0.610
0.581

-635.37
1313.34
1300.73

14.61
1.32E-04

0.04

(0.2)
-1.21

(1.15)
-5.66***
(1.14)

5.55***
(1.63)

5.93***
(1.31
-2.84

(1.86)
-1.25

(0.94)
25.77***

(7.4)
2.03*

(0.87)
10.44*

(4.92)
-40.25*

(18.58)
-1.96

(1.31
18.38***
(4.64)

187
0.563
0.530

0.563
0.530

-532.48
1104.36
1094.96

11.4
7.36E-04

*p<0.**p<0.05***p<0.01
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5.2.3 PM Peak Models

5.2.3.1 Consistent Variables Between Gender

This period had the highest adjusted R2 of all time periods, and also has the highest number of trips for

both men and women.

Distance to CBD, number of docks, bicycle activity and parking meters were statistically significant for

both male and female models. As in previous models, number of docks, bicycle activity and parking

meters were positive, and distance to CBD was negative.

Number of docks and bicycle activity, as discussed in earlier models, could be an indication of

endogeneity. Given that many PM peak trips are likely commuting trips, the negative sign of distance to

CBD likely supports a mono-centric city model, that people are leaving the city center in the evening.

However, jobs were not statistically significant in this model. This could indicate that men and women are

engaging in another trip after work, for example running an errand and then using bikeshare. This would

support jobs not being statistically significant but distance to CBD being negative and statistically

significant.

Additionally, the positive relationship with parking meters could indicate that these trips are starting in

commercial areas, especially since jobs was not statistically significant. This would support trips starting

from another activity, such as running an errand or going to dinner or a bar.

5.2.3.2 Differing Variables Between Gender

Similar to the first two models, distance to separated bike facility was statistically significant and negative

for women, but not statistically significant in the male model. As discussed in the previous models, this

could indicate that women feel safer using these types of facilities and are more likely to take trips when

the route can be closer to a separated bicycle facility. The coefficient is smaller during PM (-5.02), than

for AM (-3.11) and midday (-3.84) time periods, meaning that women's trips are more sensitive to being
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far from a separated facility in the PM peak. This could indicate that women have less constraints during

their PM trips.

Major university and length of truck route in the catchment area were statistically significant in the male

model but not in the female model. For men, the existence of a major university in the catchment area

leads to higher trip origins, and the higher amount of truck routes in the catchment area also leads to

higher trip origins. It is unclear why universities is statistically significant for men but not women. One

hypothesis is that women tend to have more household responsibilities, so may take classes during the

day or late hours, so they can tend to those responsibilities during the evening. Without having a better

understanding of the gender breakdown of enrollment within each university, and what profile of students

each university tends to have it is hard to analyze why this temporal difference occurs.

The length of truck route, as mentioned in the previous model, could be a proxy for main, non-freeway

arterials. These roads coincide with many direct routes throughout the city. Therefore, during the PM time

period, male cyclists could be more likely to decide to start a trip near a road that bisects the city. This

follows literature that men may prefer a direct route more than women, especially since women value

safety characteristics higher than men.
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Table 5-4 PM Models

OLS Spatial Lag Spatial Error
Female PM Male PM Female PM Male PM Female PM Male PM

Demographics Female Jobs 1.58 - 1.17 - 1.1 -
(per 10,000 jobs) (1.33) - (1.28) - (1.49) -

Female Pop. 0.68 - 1.09 - 0.81 -
(per 1,000 people) (0.85 ) - (0.84 ) - (0.86 ) -

Male Jobs - 0.31 - 0.22 - 0.23
(per 10,000 jobs) - (0.23 ) - (0.22 ) - (0.27)

Male Pop. - -3.66** - -2.42 - -2.48
(per 1,000 people) - (1.5) - (1.48) - (1.49)

Land Use Dist. to CBD -3.13*** -9.11*** -2.78*** -7.98*** -3.48*** -9.19***
(per 10,000 ) (0.8) (1.41) (0.8) (1.44) (0.84) (1.48)

Major Univ. 1.85 5.21*** 1.35 3.96* 2.03 4.96*
(1.15) (1.99) (1.13) (1.94) (1.21) (2.11)

Bicycle Num. of Docks 4.57*** 8.55*** 4.54*** 8.46*** 5.18*** 10.05***
Infrastructure (per 10 docks) (1.07) (1.86) (1.03) (1.77) (1 ) (1.69)

Dist. to Sep. Bike Facility -4.71*** -3.33 -4.91*** -3.85 -5.02*** -4.33
(per 1,000 f) (1.48) (2.56) (1.41 ) (2.43) (1.42) (2.4)

Safety Avg. Num. Lanes -0.54 -1.70 -0.43 -1.32 -0.32 -1.21
(0.66) (1.15) (0.63 ) (1.09) (0.69) (1.21)

Bike Activity 2.11*** 3.24*** 20.5*** 30.98*** 22.28*** 33.85***
(per 100 crashes) (0.56 ) (0.97) (5.4 ) (9.23 ) (5.61 ) (9.55

Parking Meters 1.99*** 3.6*** 1.71** 3.12** 1.93** 3.61**
(0.6) (1.04) (0.6) (1.04) (0.65) (1.13)

Truck Length 8.94** 19.32*** 7.81* 17.27** 6.06 14.48*
(3.53 ) (6.16) (3.41 ) (5.9) (3.67) (6.36 )

Streetlights -10.38 -34.95 -6.15 -22.24 -12.76 -36.98
(14.61 ) (25.3) (14.28 ) (24.58 ) (14.15 ) (23.94)

Transit T Station -0.4 -1.28 -0.66 -1.95 -0.33 -1.07
(1.01) (1.75) (0.98) (1.68) (1 ) (1.7)

Intercept 10.26*** 25.67*** 8.82** 21.38*** 9.3** 21.77***
(3.33) (5.91 ) (3.23 ) (5.78) (3.38) (6)

Num obs. 187 187 187 187
R2 0.604 0.672 0.623 0.700
Adj. R2 188 188 0.574 0.647 0.594 0.678
Residual Std. En-or (df= 175) 0.6 0.66
F Statistic (df= 12; 175) 0.58 0.63
Log Likelihood 2.48 10.11 -586.39 -688.13 -583.79 -682.86
AIC (Linear model) 22.31*** 27.95*** 1204.65 1410 1204.65 1410
AIC (Spatial model) 1202.77 1406.25 1197.57 1395.71
LR test: statistic 3.88 5.75 9.07 16.29

LR test: p-value 0.05 0.02 2.59E-03 5.45E-05
rho 0.1* 0.12* -

(0.05 ) (0.05 ) -
lambda - - 0.26*** 0.33***

- - (0.08 ) (0.07)
*p<O. I**p<0.05***p<0.01
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5.2.4 Late Night Models

5.2.4.1 Consistent Variables between Gender

For late night trips distance to CBD, number of docks, major university, bike activity and parking meters

were statistically significant for both male and female trips. As was in the previous models docks, major

university, bike activity and parking meters were positive and distance to CBD was negative.

Number of docks and bicycle activity, as discussed in earlier models, could be an indication of

endogeneity. Distance to CBD is negative but much smaller than in other models. Looking at the spatial

distribution of trips, Figure 4-12 and Figure 4-13, this concentration of trips around the CBD is evident.

Combined with the statistical significance of parking meters, this could be due to trip origins happening

around commercial areas. This could be due to users using bikeshare after a social or entertainment trip as

well as service industry workers using bikeshare after work, since shifts end during this late night period.

Looking into Friday and Saturday late night trips would be interesting to see if there is a more

pronounced pattern for nights when more people are engaging in social trips in this time period.

5.2.4.2 Differing Variables between Gender

Female population, distance to separated bike facility and streetlights were statistically significant for

women but not men. Population had a positive sign, so areas with more population had higher ridership.

Distance to separated bike facility, as in previous models, was negative. As discussed in the previous

models, starting more trips near separated bicycle facilities could indicate that women feel safer using

these types of facilities and are more likely to take trips when the route can be closer to a separated

bicycle facility. The coefficient has the lowest negative magnitude of all female models. This could be

explained by women feeling more constrained in the late night time period because of perceived safety

(fewer people on the street, darkness), and therefore choose the station closest to their origin rather than

with their preferred characteristics.
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The spatial distribution of trips shown in Figure 4-12 and Figure 4-13, distance to CBD being statistically

significant and negative, and parking meters being statistically significant and positive support trips not

starting near residential areas, and occurring in entertainment areas (which also are near the CBD). The

statistical significance of population for women could indicate that women are more likely to start trips

where there are more eyes on the street or street activity. This is often a factor in perceived safety for

women, and would make sense that it is showing up only during late night and for women.

Streetlights was also negative, indicating that areas with fewer streetlights had more trip origins. As

discussed in previous model results, streetlights could be a proxy for less safe areas. This would support

women being concerned with a different type of safety during the night. For example more concerned

with being assaulted than getting hit by a car, so they are more likely to start a trip form an area that has

eyes on the street (population) and is not perceived as unsafe (streetlights) than being closer to a separated

bike facility.

Jobs was statistically significant for the male model but not the female model. Male jobs had a negative

sign, so areas with more jobs had fewer trip origins. This supports the characterization of trips during late

night being around entertainment areas, where there are less jobs. Jobs being statistically significant for

men but not women could be due to male and female jobs having different spatial distributions, and male

jobs being located in more concentrated areas where there is less mixture of land uses.
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Table 5-5 Late Night Models

OLS Spatial Lag

Demographics

Land Use

Bicycle
Infrastructure

Safety

Transit

Female Jobs
(per 10,000 jobs)

Female Pop.
(per 1,000 people)

Male Jobs
(per 10,000 jobs)

Male Pop.
(per 1,000 people)

Dist. to CBD
(per 10,000 ft)

Major Univ.

Num. of Docks
(per 10 docks)

Dist. to Sep. Bike Facility
(per 1,000 ft)

Avg. Num. Lanes

Bike Activity
(per 100 crashes)

Parking Meters
(per 100 parking meters)

Truck Length

Streetlights

T Station

Intercept

Num. obs.
R2
Adj. R2
Residual Std. Error (df=
175)
F Statistic (df= 12; 175)
Log Likelihood
AIC (Linear model)
AIC (Spatial model)
LR test: statistic
LR test: p-value
rho

Male Late
Late

-1.07*

(0.57)
1.22***
(0.36)

-0.62*
(0.34)
0.97**
(0.49)
1.47***
(0.46)

-1.51**
(0.63)
-0.21

(0.28)
1.39***
(0.24)

1.12***
(0.25)
3.54**

(1.5)
-11.81*
(6.22)
0.02

(0.43)
1.8

(1.42)
188
0.6

0.58

Female Late

-1.05

(0.54)
1.34***

(0.35)

-0.5

(0.33)
0.76

(0.48)
1.44***
(0.43)

-1.65**

(0.6)
-0.17

(0.27)
13.07***

(2.31
0.91***
(0.26)
2.92*

(1.45)
-10.87

(6.04)
-0.04

(0.41
1.45

(1.35
187

0.617
0.588

Male Late

-2.61**
(1.01

1.25
(0.67)

-2.28***

(0.65)
2.2 1*

(0.92)
2.32**
(0.82)
-2.19

(1.14)
-0.15

(0.51
26.29***

(4.36)
1.95***

(0.5)
5.54*

(2.76)
-13.75

(11.46)
-1.11

(0.78)
6.2 1*

(2.66)
187

0.604
0.570

Female Late

-1.2

(0.65)
1.29***
(0.36)

-0.76*
(0.36)
1.28*

(0.52)
1.62***

(0.42)
-1.74**

(0.6)
-0.21

(0.3)
13.01***

(2.38 )
1.05***

(0.28)
2.59

(1.57)
- 14.4*
(5.96)
0.26

(0.42)
1.94

(1.44)
187

0.643
0.616

2.48 4.68

22.31*** 21.51***
-426.05
885.65
882.1
5.56
0.02

0.12*

(0.05)
lambda

-546.01
1122.27
1122.02

2.25
0.13
0.08

(0.05)
0.31*** 0.21**

(0.08) (0.08)
p<0.1 **p<0.05 ***p<0.01
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Spatial Error

-2.62**
(1.05)

1.04

(0.69 )
-2.45***

(0.65)
2.61***
(0.92)

2.37***

(0.86)
-2.04*

(1.19)
-0.23

(0.53)
2.72***

(0.45)
2.12***

(0.48)
5.99**

(2.85)
-17.59

(11.71)
-0.93

(0.81
6.91**
(2.74)

188
0.6

0.57

Male Late

-2.85*

(1.16)
1.23

(0.69)
-2.6***

(0.68)
2.67**
(0.96)
2.58**

(0.81
-2.24

(1.14)
-0.14

(0.56)
27.28***

(4.49)
2.08***

(0.51
5.01

(2.93)
-17.58

(11.41
-0.75

(0.8)
6.55*

(2.77)
187

0.618
0.589

-422.24
885.65
874.47
13.18

2.83E-04

-543.96
1122.27
1117.92

6.34
1.1 8E-02



5.3 Discussion
Table 5-6 Model Summaries

Statistically Significant in Models
M F

AM Mid PM Late AM Mid PM L

+

+ + +

+ + + +

+

+

- Expected

ate Sign

+ +

+ +

+ + + +

+ + + + + + + + +

+

0

Population

Distance to
CBD

Major
University

Commercial
Area

Docks

Distance to
Separated

Bike
Facility
Average

Number of
Lanes

Bike
Activity

Length of
Truck Route

Streetlights

+

+

+

+

The results across all time periods show differences in statistically significant variables, indicating that

cyclists use bikeshare differently throughout the day, as shown in Table 5-6. However, two variables were

statistically significant in both the male and female users in all of the models. These variables included

docks and biking activity. Distance to CBD and parking meters were in all models except one. Docks,
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distance to CBD, parking meters and biking activity had signs in the expected direction. As noted when

discussing the model results, number of docks and biking activity may be endogenously related to trip

origins, so this could explain the statistical significance for both genders in all models.

The coefficient estimates for streetlights and length of truck route showed unclear results. I expected

streetlights to be positive, and length of truck route to be negative but both signs were flipped.

Streetlights, as noted earlier, may be a proxy for unsafe areas, or unsafe intersections. This would explain

why streetlights had a negative coefficient. Overlaying streetlights with other safety data, including

vehicle crashes, pedestrian crashes and crime would be a good place to start in assessing if streetlights

was actually measuring how unsafe an area is, rather than how safe it is. Length of truck route could be

instead indicating main, non-freeway arterials. These roads coincide with many direct routes throughout

the city. For example, Massachusetts Avenue from Harvard University to MIT is a designated truck route

but is also a main arterial, with a bike lane, that many cyclists use since it is the most direct route between

those two points.

One other unexpected explanatory variable was T stations, which was not statistically significant in any of

the models. Given the literature, and that the spatial distribution of bike share trips seemed to support a

positive relationship with T stations, this result was surprising. Additionally, the literature discussed

bikeshare as a first-last mile connection, which would have supported T stations being statistically

significant. This first-last mile connection may have been better captured if trip destinations were

analyzed instead of origins. For example, during the AM time period users take bikeshare to a T station,

so trip destinations would capture the first-mile connection. This may be less evident for trip origins

during the PM time period because users are less constrained leaving work than they are going to work,

also seen with a wider spread of trips during the PM time period.

Distance to separated bike facility was negative in female models, indicating that stations closer to

separated bike facilities had more trip origins for female users. This negative sign was the expected
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direction from the literature review. This variable was only statistically significant in female models. The

literature supports this result, with studies identifying that females have a strong preference for facilities

separated from traffic and that separated facilities have more perceived safety, which is a factor for which

women have a stronger preference.

5.3.1 Time Period Comparisons

For AM peak, docks, population and bike activity were significant for both genders. During AM peak

users may be more constrained for their trip, if the trip purpose, for example, is commuting. This would

support the results of statistically significant factors having to do with location rather than characteristics

of the surrounding physical environment such as safety features or bicycle infrastructure.

Results for midday models had more statistically significant variables than the AM models. This could be

due to these trips being less constrained, so users have more freedom to choose a station that has their

preferred characteristics. Additional variables include major universities, length of truck route, and

streetlights. The positive sign of major universities supports that students are starting trips in the

afternoon from around campuses. It would be interesting to analyze trip destinations as well to see if

students (or trips starting and ending close to universities) exhibit different temporal patterns than other

users such as off peak trips. I hypothesize that streetlights is a proxy for less safe areas, and truck routes

are a proxy for main arterials. This suggests that people are likely avoiding less safe areas and preferring

stations that are closer to main roads.

During PM peak, the time period with the highest number of trips, more bike infrastructure and safety

factors show up for both men and women. Similarly, in late night, more bicycle infrastructure and safety

variables show up for both men and women. Late night similarities between men and women illustrate

both genders exhibit similar behavior. For example, men and women who choose to ride at night have

similar preferences or constraints, since they are willing to ride at night, which is perceived to be less safe

because visibility and other safety concerns may exist.
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Looking at variables that were in the model consistently for women, distance to separated bicycle facility

was statistically significant only for women during all time periods. This variable was not statistically

significant for men in any model. This indicates that women have more trips origins at stations that are

closer to separated bike facilities, regardless of the time of day. Given that literature has shown that

women prefer to be separated from traffic often due to an increase in perceived safety, this correlation is

likely due to women desiring more perceived safety in bicycle infrastructure. It is surprising that other

safety variables were not consistently statistically significant in the models for women since the literature

notes that this is a key difference between men and women's bicycle preferences. As mentioned later in

my limitations in Section 6.2, this could be due to the safety variables capturing different than expected

aspects.

These results show many similarities in factors effecting bikeshare usage between men and women. Many

of these variables have shown up in previous literature as well, such as population, jobs, station capacity,

and distance to CBD. But, a noticeable difference in factors related to trip origins is that women

apparently prefer stations closer to separated bike facilities, at all time periods, all else equal.
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6 CONCLUSIONS
This analysis found many similarities in the factors that impact where male and female Hubway users

start their trips. Five takeaways from the regression analysis and trip data analysis are listed below:

* Trip origins by men and women do have similarities

* The rank of stations by trip origin is almost the same for men and women, when

aggregated for a full 24 hour period

" Men and women take almost the same percentage of trips during each time period

* Men take significantly more trips than women

* There are differences in which factors are related to ridership for men and women

* Factors that were statistically significant in a majority of the models for both male and female trip

origins include station capacity, distance to CBD, and parking meters

" The only variable that was different for men and women across all models was distance to

separated bike facility, which was statistically significant for all female models and none of the

male models.

o This is supported by previous research that women prefer separated bicycle facilities

6.1 Policy Implications
In order to decrease the gender gap in cycling, planners, advocates and policy makers need to better

understand the role of different land use, bicycle infrastructure, safety, transit and demographic factors. I

suggest three policies to help planners and city officials decrease this gap.

6.1.1 'No One Size Fits All' Strategies for Bicycle Planning

The large difference in ridership for men and women indicates that more strategies for increasing

ridership need to be focused on women. The difference in spatial distribution of trips, difference in

frequency, and differing variables across models supports that there should be different tactics for

increasing ridership for men and women. When planning bicycle facilities, the differences in gender of

users should be better understood locally for the specific environment to pick interventions that can

decrease the gender gap in cycling.

The varied preferences throughout the day also should be a part of bicycle infrastructure and network
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planning. Even though late night users are a small portion of overall trips, incorporating additional safety

aspects into bicycle infrastructure so that some safety concerns are addressed could increase female

ridership. For example, adding more separated bicycle facilities on all streets, not only the ones that are

most unsafe, or most used, such as Beacon/Hampshire Street that runs through Somerville and

Cambridge.

6.1.2 Improved Hubway Station Placement for Gender Equity
The results give detailed information for factors affecting usage at different times of day. This analysis

gives Hubway a baseline for how these factors differ by gender. As Hubway becomes Blue Bikes and

starts a massive expansion, new stations can be placed at locations that have more factors that are related

to increased usage by women. Additionally, the amount of overlap in factors affecting both men and

women could be used to create a base typology for factors that can lead to Hubway usage to help cities

and Hubway locate stations around factors that will lead to usage.

Finally, the varied preferences throughout the day indicate that planning facilities only for the morning

and evening peak may not benefit all cyclists. In particular, thinking about perceived safety for women

during the late night period needs to be addressed differently than safety in other time periods. These

results indicate that at night, female trip origins are higher where there are more people, something that

station placement can directly impact. This could be due to certain types of places generating late night

trips (for example, a cluster of bars or restaurants). But this relationship should be explored more.

6.1.3 Increase Use of Separated Bike Facilities in Cities
The results show that the main difference between where men and women start their bikeshare trips is that

female trip origins are correlated with being closer to separated bicycle facilities, while male trip origins

are not. This relationship should not be interpreted as increasing separated bike facilities will lead to more

women ridership, but the correlation is still important. Where possible, cities should advocate for

separated bike lanes. This can lead to increased perceived safety, which previous research has shown is
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preferred for female riders. Additionally, Hubway should look to place stations closer to separated bicycle

facilities since that is shown to increase female ridership.

6.2 Limitations
One limitation in using regressions as a method is that the models are only as good as the data. Data

limitations include data consistency across three municipalities, and measurement error for manually

calculated variables such as streetlights, and major universities.

Data limitations also extend to availability of factors that I initially wanted to include. For example, I

chose parking meters to measure safety, but the analysis suggests that parking meters may be a proxy for

something like commercial corridors or areas with activity. Similarly, I intended for bicycle crashes to be

a measure of general safety, but literature revealed it might also be a proxy for activity. I had initially

used bike crashes instead of vehicle crashes because I was not able to find data for all three municipalities

on overall vehicle crashes. One limitation with bicycle crashes is that the data was from different years for

Boston, Cambridge and Somerville. This could be problematic since bicycle activity has increased over

the years, so this variable may be representing different realities as entered in the models.

Some variables that were removed in the base model were shown in other research to be statistically

significant, including land use mix and total length of bike facilities. This may be due to measurement

error or data quality, since I was combining data from three different municipalities.

Specifically, my safety variables, which research indicates are important factors that women consider

when riding, may not have directly accounted for safety. Length of truck route, and streetlights had the

opposite signs than expected, and as mentioned above, may have been accounting for other factors not

related to safety. A better measure of safety would be to include the bike level of stress calculation which

factors in speed, average annual daily traffic, and number of lanes into one score. Additionally, with

additional time or resources, more precise data could have been collected, such as perceived safety.

Women think about safety in many ways that are more complicated to measure (for example deciding not
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to pick up a bike at night because there is no street activity or because there are a lot of men close by).

Identifying these specific safety variables that impact women could have also been useful.

Endogeneity between docks at a station and trip origins, as well as between bike activity and trip origins

was identified in the model but not accounted for. Docks was both a measure for demand but also

contributes to demand. Bike activity is also likely both a measure and a contributor. Discussing with

Hubway what factors influence where they place stations could help clearly identify what factors are

accounting for where they place stations. To circumvent the problem, the model would ideally be able to

include the amount of demand at a station, if there was an unlimited supply of bikeshare bikes. Bicycle

redistribution may exacerbate this since Hubway move bikes away from low ridership stations to higher

ridership stations throughout the day. A better measure may be an average number of available bikes per

station per hour. This could capture a more precise measure of bikeshare demand at a station.

Finally, it is important to keep in mind that I model trips, not the individuals making the trips, nor the

details about trip types or purposes. The literature notes that preferences vary by experience level, trip

type and purpose so such analysis could shed light on who chooses to use Hubway, as well as when,

where and why they do.

6.3 Future Research
Future studies should continue to explore what factors impact women's ridership. One approach that I

could have benefited from is combining qualitative methods with quantitative data. Interviewing Hubway

users about what factors impact where they start or end their trip could better inform what quantitative

data should be used or collected.

Understanding the experience levels of Hubway users would be an area for future research, and allow for

more substantial policy implications. For example, the literature notes that cycling preferences vary by

experience level. My analysis could not account for experience level of each user, or overall how

experienced Hubway users are. If all women were very experienced riders but men had a lower
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experience level, there could be more similarities than otherwise would occur if the experience level was

consistent. I would expect that since fewer women are biking generally, so the women who ride Hubway

might have a higher experience level than men. A survey of Hubway users' experience could help

identify what type of cyclists are using Hubway. This would clearly indicate which types of cyclists are

being captured with Hubway subscribers. For example, if Hubway users are all 'strong and fearless' type

of cyclists results such as bicycle infrastructure not having an impact on usage would not be surprising.

Analyzing the same dataset with the same methods but further dividing the data into age groups could

also produce useful results. There might not enough observations for women's trips to allow such a

detailed age analysis, but this analysis could further refine preferences for different demographics of the

population. Especially when many cities use the phrase "8 to 80" in their bicycle policy to express

planning facilities that can be used safely by someone from age 8 to 80. An analysis on factors that impact

usage by age group could yield useful information on how to actually plan for '8 to 80'.

To gain more granular insights into gender differences in biking, route level data should be analyzed for

bike share users. Cities may now have more availability of this data with dockless bikesharing systems

expanding in the greater Boston region. These systems collect route level data for cyclists, so analysis on

where users are riding and how this differs for men and women would produce more insightful

information.
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APPENDIX A: DEPENDENT VARIABLE HISTOGRAM
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APPENDIX B: DEPENDENT VARIABLE HISTOGRAMS
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APPENDIX C: TRIP ORIGINS FOR ALL STATIONS

Station Total Femal Male Femal Male Femal Male Femal Male
Trips e AM AM e Mid Mid e PM PM e Late Late

MIT at Mass Ave / Amherst St 19085 688 2093 1421 5078 1509 6572 276 1309
South Station - 700 Atlantic Ave 19016 763 5826 513 2259 1773 7252 98 429
Central Square at Mass Ave / Essex St 13271 731 2316 664 1700 1690 4695 303 1115
MIT Stata Center at Vassar St / Main St 13046 130 607 796 3349 1269 6330 75 465
Kendall T 12760 593 1834 768 3166 1035 4715 102 526
Nashua Street at Red Auerbach Way 11722 1154 6998 222 756 550 1658 40 296
Beacon St at Massachusetts Ave 11197 1254 2137 528 1551 1133 3008 266 1128
MIT Vassar St 10184 667 3176 304 2057 523 2768 96 539
MIT Pacific St at Purrington St 10034 696 2569 489 2032 700 2422 154 878
Charles Circle - Charles St at Cambridge St 9702 1092 2139 471 1088 1130 2997 116 567
Ames St at Main St 9479 260 962 709 2425 807 3655 102 520
One Kendall Square at Hampshire St / Portland St 9417 610 1714 628 1819 773 3106 103 577
Back Bay T Stop - Dartmouth St at Stuart St 9289 701 2766 261 883 901 3257 120 323
Copley Square - Dartmouth St at Boylston St 8927 582 1372 496 1231 1262 3387 153 400
Harvard Square at Mass Ave/ Dunster 8529 294 885 564 1536 1135 3032 244 801
Boston City Hall - 28 State St 8300 529 1873 350 1541 660 2963 53 282
University Park 7686 475 1589 267 1335 552 2455 177 805
Lechmere Station at Cambridge St / First St 7219 676 1499 280 1117 576 2775 35 233
Boylston St at Fairfield St 7029 495 1217 368 1162 615 2717 73 345
Christian Science Plaza - Massachusetts Ave 6985 750 1428 334 811 811 1958 151 595
Central Sq Post Office / Cambridge City Hall 6897 815 1324 442 1046 596 1873 167 573
Cross St at Hanover St 6874 656 2023 300 849 551 1901 121 351
Yawkey Way at Boylston St. 6630 531 1575 379 840 616 1777 155 646
Arch St at Franklin St 6604 134 1255 330 1210 681 2838 31 96
Cambridge St at Joy St 6497 441 1898 276 891 712 1714 69 342
Congress St at Sleeper St 6468 98 954 263 1731 541 2693 31 153
Prudential Center - Belvedere St 6465 594 1242 324 746 553 2496 101 314
Kenmore Square 6431 402 1541 276 991 657 1638 166 657
Boylston St at Massachusetts Ave 6328 583 1328 345 863 668 1620 162 654
Boston Medical Center - E Concord St 6241 244 1641 488 1135 777 1730 59 134
Inman Square at Vellucci Plaza / Hampshire St 6189 889 2192 303 743 458 1089 81 336
Davis Square 5971 446 998 293 538 954 2010 221 500
Washington St at Rutland St 5954 435 2271 203 499 618 1567 62 173
Rowes Wharf at Atlantic Ave 5810 299 1847 77 483 433 2436 29 196
Boylston St at Arlington St 5546 267 745 307 830 595 2495 49 222
Porter Square Station 5514 783 2092 164 416 594 1002 125 269
Post Office Square - Pearl St at Milk St 5485 137 844 217 936 532 2719 9 83
Cambridge St - at Columbia St / Webster Ave 5252 701 1729 294 530 543 1046 59 286
Washington St at Waltham St 5196 481 1937 205 547 414 1260 49 180
Boylston St at Berkeley St 5170 165 749 324 1201 453 2080 31 149
Aquarium T Stop - 200 Atlantic Ave 5168 518 1862 126 496 412 1388 59 275
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Longwood Ave at Binney St 5136 273 553 314 987 847 1756 72 295
Tremont St at West St 5107 199 836 224 926 583 1906 80 325
Harvard Square at Brattle St / Eliot St 5008 269 565 527 978 694 1581 105 281
Surface Rd at India St 4978 228 1704 88 657 323 1796 25 152
Commonwealth Ave at Buick St 4967 359 1245 316 781 560 1263 98 311
359 Broadway - Broadway at Fayette Street 4955 923 1664 257 642 327 908 33 154
Lower Cambridgeport at Magazine St 4920 478 1266 272 638 618 1323 61 192
Packard's Corner - Commonwealth Ave 4892 570 1708 195 662 311 918 78 308
Lafayette Square at Mass Ave 4869 280 781 250 886 436 1516 164 514
Chinatown Gate Plaza 4859 274 820 205 772 461 2077 41 189
Warren St at Chelsea St 4842 822 1746 273 451 442 862 36 105
Harvard University Housing - 115 Putnam Ave 4806 648 1533 283 743 377 885 37 228
Landmark Center - Brookline Ave at Park Dr 4783 272 951 298 845 534 1487 74 306
HMS/HSPH - Avenue Louis Pasteur 4778 150 321 343 991 932 1781 77 173
Newbury St at Hereford St 4772 388 900 243 663 611 1392 144 392
Boylston St at Washington St 4717 265 797 227 661 508 1797 66 366
Cambridge Main Library 4711 519 1101 378 689 698 963 76 258
Beacon St at Arlington St 4694 341 1042 208 556 591 1639 67 218
B.U. Central - 725 Comm. Ave. 4659 244 501 414 942 711 1377 111 304
Tremont St at E Berkeley St 4640 490 1556 200 577 307 930 99 349
CambridgeSide Galleria - CambridgeSide PL 4637 128 437 311 1040 636 1952 32 99
One Broadway / Kendall Sq at Main St / 3rd St 4628 254 334 257 970 507 2140 21 139
Harvard University / SEAS Cruft-Pierce Halls 4486 113 439 203 983 519 1935 59 227
Lewis Wharf at Atlantic Ave 4418 491 1526 145 536 291 1086 21 143
Binney St / Sixth St 4418 167 894 217 629 494 1757 34 173
Brigham Circle - Francis St at Huntington Ave 4343 307 778 171 736 470 1514 52 253
South End Library - Tremont St at W Newton St 4328 519 1529 239 516 406 810 42 151
Northeastern University - North Parking Lot 4324 495 775 248 618 422 1296 84 365
Harvard University Gund Hall 4311 318 628 377 850 521 1229 89 269
Ink Block - Harrison Ave at Herald St 4291 545 1234 242 440 527 964 80 235
Ruggles T Stop - Columbus Ave 4261 259 1401 183 485 558 1079 62 214
Purchase St at Pearl St 4162 166 803 222 615 525 1753 14 61
Park Dr at Buswell St 4064 308 1413 172 493 410 933 42 272
Congress St at North St 3958 342 1068 122 524 319 1379 57 143
Stuart St at Charles St 3936 255 845 117 561 344 1334 59 393
Harvard University River Houses at DeWolfe St 3811 561 932 240 507 392 825 73 262
Beacon St at Washington / Kirkland 3773 714 1359 139 356 204 728 59 151
Harvard Kennedy School at Bennett St 3754 119 277 248 862 649 1323 73 196
Sidney Research Campus/ Erie Street 3730 231 1261 218 785 244 888 19 75
Third at Binney 3723 269 481 195 516 460 1564 32 172
Seaport Square - Seaport Blvd at Northern Ave 3652 142 471 170 521 452 1724 29 130
Dana Park 3638 557 1358 142 449 219 692 36 136
Charles St and Beacon St 3545 303 946 166 435 430 949 74 185
Coolidge Corner - Beacon St @ Centre St 3540 394 1446 165 386 285 537 40 139
Watermark Seaport - Boston Wharf Rd 3540 111 364 147 692 333 1704 32 151
Kendall Street 3533 67 409 184 541 455 1691 17 151
EF - North Point Park 3453 187 695 148 521 516 1204 35 135

107

F-- - - - - - - - -- - - -- I - .7



Columbus Ave at Massachusetts Ave 3433 424 1038 204 335 409 672 77 207
TD Garden - West End Park 3401 497 2631 19 77 20 149 2 5
175 N Harvard St 3400 356 1053 116 466 227 925 40 174
State Street at Channel Center 3391 150 936 74 583 326 1238 16 50
Harvard Law School at Mass Ave / Jarvis St 3346 232 550 189 575 406 990 112 275
Allston Green District - Griggs St 3315 667 1282 154 433 166 356 111 98
Boylston St at Dartmouth St 3310 187 430 179 520 357 1442 38 130
W Broadway at D St 3261 472 1631 62 262 156 499 19 76
Silber Way 3232 177 440 254 617 426 1079 60 165
Roxbury Crossing T Stop - Columbus Ave 3228 300 1181 114 431 247 712 34 153
Spaulding Rehabilitation Hospital 3212 122 587 278 459 634 1021 18 69
W Broadway at Dorchester St 3048 468 1276 101 293 126 470 19 87
Union Square - Somerville 3044 509 1121 120 367 160 511 41 188
Seaport Hotel - Congress St at Seaport Ln 2986 61 358 131 528 282 1518 9 93
Harvard University Radcliffe Quadrangle 2920 500 665 278 301 230 640 108 152
Soldiers Field Park - 111 Western Ave 2919 324 771 184 410 289 744 25 137
Conway Park - Somerville Avenue 2888 436 1003 136 293 203 464 92 253
Linear Park - Mass. Ave. at Cameron Ave. 2811 821 1011 122 221 220 331 17 40
ID Building West 2797 21 98 169 566 311 1575 7 49
Fan Pier 2679 55 111 76 640 163 1501 13 119
Main St at Austin St 2666 286 1231 152 324 200 391 9 43
ID Building East 2620 6 72 138 644 400 1310 4 45
Colleges of the Fenway - Fenway 2599 181 306 189 327 450 970 63 110
Congress St at Northern Ave 2570 81 383 118 467 172 1194 31 111
South Boston Library - 646 E Broadway 2559 382 1233 81 226 137 328 21 79
Union Square - Brighton Ave at Cambridge St 2397 329 948 123 294 120 396 21 120
Jackson Square T Stop 2319 507 566 98 394 152 424 33 94
Wentworth Institute of Technology 2121 143 288 105 277 334 728 52 184
Edwards Playground - Main St at Eden St 2116 276 1309 63 92 99 212 5 12
Andrew T Stop - Dorchester Ave at Dexter St 2095 200 1040 59 126 121 437 20 55
Burlington Ave at Brookline Ave 2019 100 653 85 314 143 501 46 164
The Lawn on D 2008 108 438 148 243 237 707 20 96
Green Street T Stop - Green St at Amory St 1929 584 597 88 173 92 290 12 66
Dorchester Ave at Gillette Park 1914 232 677 75 194 188 401 15 77
Washington St at Lenox St 1862 181 628 113 273 154 420 2 57
Wilson Square 1853 312 790 56 152 114 323 23 76
Innovation Lab - 125 Western Ave 1824 87 277 155 355 208 662 21 54
Lesley University 1760 262 694 93 194 116 226 38 92
Brookline Village - Station Street @ MBTA 1747 159 737 80 239 132 314 17 44
Commonwealth Ave At Babcock St 1684 213 707 51 182 121 274 20 102
Bunker Hill Community College 1658 235 950 66 111 55 204 6 26
Brian P. Murphy Staircase at Child Street 1653 152 774 30 73 121 423 8 54
Hyde Square - Barbara St at Centre St 1627 281 686 63 188 78 251 14 40
Washington Square at Washington St. 1622 267 722 90 183 71 166 12 41
Teele Square at 239 Holland St 1584 349 734 32 86 145 164 5 52
JFK Crossing at Harvard St. / Thorndike St. 1530 363 716 40 100 59 141 14 76
Verizon Innovation Hub 10 Ware Street 1483 60 372 59 216 145 382 54 182
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Danehy Park 1481 208 380 96 126 279 325 22 44
Brighton Center - Washington St 1364 132 466 69 296 100 225 17 47
Mt Auburn 1330 146 393 94 187 182 271 10 41
Somerville City Hall 1329 199 613 54 156 63 163 18 44
Magoun Square at Trum Field 1316 212 626 36 129 67 182 7 40
Brighton Mills - 370 Western Ave 1280 175 488 64 176 58 254 13 49
Museum of Science 1276 62 329 60 122 169 479 12 39
Powder House Circle - Nathan Tufts Park 1230 244 483 59 87 69 173 14 35
Hayes Square - Vine St at Moulton St 1177 265 457 34 115 100 166 6 21
S Huntington Ave at Heath St 1164 121 381 50 218 77 248 4 29
Dudley Square - Dudley St at Warren St 1113 109 270 52 297 68 252 5 45
Rindge Avenue - O'Neill Library 1093 253 450 83 70 76 87 15 17
New Balance - 20 Guest St 1082 113 198 43 170 140 346 7 60
Murphy Skating Rink - 1880 Day Blvd 1048 110 430 47 178 50 197 2 25
Curtis Hall - South St at Centre St 1015 136 405 56 139 77 169 5 23
Boston Convention and Exhibition Center 1009 42 94 31 185 121 473 18 40
Packard Ave / Powderhouse Blvd 1007 161 317 65 117 84 207 12 43
Broadway St at Mt Pleasant St 919 83 382 28 148 32 207 5 32
Ryan Playground - Dorchester Ave 887 107 496 34 54 43 78 3 38
Alewife Station at Russell Field 856 52 250 42 105 134 227 13 25
Alewife MBTA at Steel Place 842 45 205 24 88 182 271 7 16
Washington St at Melnea Cass Blvd 836 71 189 111 120 158 167 3 17
E Cottage St at Columbia Rd 799 146 275 30 129 17 92 2 12
JFK/UMass T Stop 764 126 237 18 95 42 224 3 15
Egleston Square - Atherton St at Washington St 631 186 275 9 59 7 54 4 31
Clarendon Hill at Broadway 621 120 293 41 80 30 43 5 9
Newmarket Square T Stop 609 44 103 44 126 40 205 4 28
Washington St at Brock St 581 127 217 12 81 19 101 3 19
Maverick Square - Lewis Mall 521 7 61 25 49 152 201 19 7
Roxbury YMCA - Warren St at MLK Blvd 491 95 162 16 116 17 67 14
University of Mass Boston - Integrated Sciences 409 1 11 18 69 96 206 8
NCAAA - Walnut Ave at Crawford St 404 65 246 6 28 6 27 1 20
Airport T Stop - Bremen St at Brooks St 403 39 37 34 45 59 155 9 24
Piers Park 392 153 70 19 44 37 63 6
Upham's Corner 391 7 114 9 74 18 97 18
East Boston Neighborhood Health Center 369 1 8 2 63 40 198 5 50
Savin Hill T Stop - S Sydney St at Bay St 328 56 157 9 56 10 25 2 12
Bowdoin St at Quincy St 277 9 76 26 37 10 25 3 15
Central Square - East Boston 271 11 120 1 73 9 48 1 4
Fresh Pond Reservation 260 25 95 19 28 23 62 2 3
MLK Blvd at Washington St 250 54 67 19 47 5 50 1 6
Oak Square - 615 Washington St 232 12 103 15 44 3 40 14
Upham's Corner T Stop - Magnolia St 190 12 49 4 49 2 54 1 5
Glendon St at Condor St 190 30 106 20 6 6 22
Grove Hall Library - 41 Geneva Ave 179 2 26 8 45 80 17 1
Orient Heights T Stop - Bennington St 163 8 13 28 43 19 48 2 2
Walnut Ave at Warren St 139 6 59 7 24 7 29 6
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Bennington St at Byron St 119 14 17 8 7 36 28 1 8
Franklin Park Zoo - Franklin Park Rd 116 7 9 4 35 13 42 5
Chelsea St at Saratoga St 108 4 67 11 7 6 11 2
Franklin Park - Seaver St at Humbolt Ave 106 3 47 8 14 17 14
Columbia Rd at Ceylon St 93 5 9 7 13 7 41 10
The Eddy - New St at Sumner St 92 1 21 9 14 18 23 2 4

110



APPENDIX D: EXPLANATORY VARIABLE DESCRIPTIVE

STATISTICS

Statistic N Mean St. Dev. Min Max

Male Population 188 808.48 547.49 1.95 2,373.63

Female Population 188 842.78 550.67 0.14 2,310.25

Male Jobs 188 2,338.93 4,337.49 6.03 27,999.01

Female Jobs 188 2,352.61 4,099.22 14.13 23,378.51

Average ADT 188 15,648.47 8,903.81 0.00 49815.21

Average Lanes 188 2.74 0.70 0.00 4.67

Parking Meters 188 82.28 97.58 0.00 423

Truck Route/Road 188 0.10 0.14 0.00 0.76

Bus Stops 188 8.53 5.23 0.00 23

Streetlights/Road 188 0.03 0.03 0.00 0.35

Length of Bike Network/Road 188 0.52 0.40 0.00 3.61

Distance to Bike Facility 188 266.84 459.30 1.31 3,161.57

Distance to Separated Bike Facility 188 375.29 325.32 0.40 1,809.52

Bicycle Traffic 188 10.24 10.00 1 51

Docks 188 17.53 4.35 11 46

Land Use Mix 188 0.21 0.14 0.00 0.80

Distance to CBD (ft) 188 12,183.14 6,647.01 438.09 29,263.52

Major University 188 0.21 0.41 0 1

T Station 188 0.46 0.50 0 1

Bus Accessibility 188 192.39 173.44 0.00 888.00
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APPENDIX E: EXPLANATORY VARIABLE HISTOGRAMS
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APPENDIX F: MORAN I TEST

Moran I Statistic Expectation P value

AM Female 0.136 -0.009 0.086

AM Male 0171 -0.009 0.034

Mid Female 0.270 -0.009 0.003

Mid Male 0.297 -0.009 9.56e-04

PM Female 0.269 -0.009 0.004

PM Male 0.354 -0.009 2.24e-04

Late Female 0.389 -0.009 6.961 e-05

Late Male 0.325 -0.009 6.098e-04
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APPENDIX G: CHOROPLETH OF SPATIAL LAG

Figure 6-1 Lagged Mean for Trip Origins

Figure 6-2 Lagged Mean for Male Trip
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Figure 6-3 Lagged Meanfor Female Trip
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