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Doctor of Philosophy in Chemistry

Abstract

Density functional theory (DFT) has become the de facto method for quantum mechanical
simulations of molecules and solids because of its high performance to cost ratio. In this
thesis, we discuss two aspects of DFT simulations in complex chemical systems: systematic
improvement of the accuracy of density functional approximations and proper utilization of
DFT methods for efficient modeling of electronic properties.

We first develop the many-pair expansion (MPE) method, which is a density functional
hierarchy that systematically corrects any deficiencies of an approximate density functional
to converge to the exact energy. We show that MPE gives accurate results for 1D/2D
Hubbard and ID Peierls-Hubbard models, suggesting its ability to remove strong correlation
errors. Applying MPE to unsaturated hydrocarbons in the Pariser-Parr-Pople lattice model,
we find that it deals very well with dispersion interactions. Afterwards, we describe our
efforts to implement MPE for molecular systems. A new density decomposition method, self-
attractive Hartree (SAH), is developed to generate localized and smooth fragment densities.
The SAH decomposition is shown to be useful for extracting chemical bonding information
directly from the electron density and further applied to develop a simple and accurate
hydrogen bonding strength indicator. Using SAH fragment densities, we demonstrate that
MPE provides accurate description of reaction energies and bond breaking processes for a
few small molecules, even with a low-level starting functional and low orders of expansion.

To show how DFT methods can be properly utilized to obtain electronic properties of
interest, we employ the theoretical investigation of organic light-emitting diodes (OLEDs)
as an example. We adopt a hybrid quantum mechanics/molecular mechanics (QM/MM)
approach to reveal the charge and energy mechanisms of a host-guest phosphorescent OLED
in condensed phase, emphasizing the importance of incorporating environment effects. We
then show successful computational design of new thermally activated delayed fluorescence
(TADF) materials using conventional time-dependent DFT method, while point out the
need for better excited-state DFT methods. Finally, we develop efficient computational
screening protocols to study TADF materials based on a restricted open-shell Kohn-Sham
approach.

Thesis Supervisor: Troy Van Voorhis
Title: Haslam and Dewey Professor of Chemistry
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Chapter 1

Introduction

The application of quantum mechanics to the hydrogen molecule by Heitler and London

in 1927 marks the first quantum chemical calculation of the molecule [1]. The primary

goal of quantum chemistry is to solve the motions of electrons in atoms and molecules.

During more than 90 years of development, the main efforts in this field have been made

to search for faster and more accurate approximate solutions to the electronic Schr6dinger

equation [2, 31. Nowadays, quantum chemistry has become a significant part of chemical

and materials science research. It not only provides understanding and explanations of

material properties and reaction mechanisms, but also begins to give accurate predictions

and guidance to experiments.

Quantum chemistry methods are especially suitable for calculating the geometrical struc-

tures [41, thermochemistry [5], reaction barriers [6], spectroscopy [7] and other electronic

properties of molecular and solid materials. The advancement in algorithms and computing

power makes it possible to accurately treat systems containing hundreds or even thousands

of atoms [8, 9]. The quantum chemistry tools are thus applied to study important and com-

plex chemical systems in a wide range of applications [101. Some of these applications are the

understanding and design of catalytic processes in materials and enzymes [11, 12, 13], solar

energy harvesting and conversions [14, 15], the design of electroluminescent emitters [16, 17]

and the understanding of active-site chemistry [18, 19, 20].

Without the use of density functional theory (DFT) [21, 22], many of these applica-

tions would be intractable. Although DFT may not provide the benchmark-level accuracy

as some other quantum chemistry methods, its high computational accuracy to cost ratio
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makes it the workhorse for quantum chemical simulations. Despite much success in its for-

mulations and applications, DFT still suffers from notable systematic errors due to the use

of approximate density functionals [23]. For example, common density functionals cannot

accurately describe the bond breaking processes in molecules. In reality, one encounters an

ever-growing list of specific density functionals that have been tailored to particular phys-

ical conditions [24, 25, 26]. That is to say, there is no known universal density functional

that can deal with all chemical applications and no method exists to systematically improve

an approximate density functional. This is highly undesired from a practical perspective,

as it would be very difficult for an inexperienced DFT user to choose the right functional

for a given application. In addition, even with the appropriate functional, DFT simula-

tions may still be insufficient to accurately predict electronic properties in complex chemical

systems. For instance, to understand the charge transfer mechanisms in disordered organic

semiconductors, one needs methods to correctly incorporate the condensed phase effects and

accurately estimate the excited-state energies of materials.

In this thesis, we would like to tackle the above problems from two aspects. First, we

develop a new DFT-based approach, many-pair expansion (MPE), that is capable of system-

atically correcting deficiencies in any approximate density functional and finally converges

to the exact energy. The resulting method is shown to improve the performance of ap-

proximate DFT calculations in a series of important chemical problems. Second, we show

how DFT methods can be used properly for efficient condensed phase modeling of organic

light-emitting diodes (OLEDs) [271 and computational screening of thermally activated de-

layed fluorescence (TADF) materials [281. The resulting simulations lead to understanding

of important charge and energy transfer mechanisms in OLED devices and design of new

highly efficient TADF emitters.

In this chapter, we review some of the underlying quantum chemistry and condensed

phase simulation tools for this work. We start from the wavefunction theory including

Hartree-Fock and configuration interaction methods, and then extensively introduce the

Kohn-Sham (KS) density functional theory. Except for regular KS-DFT methods, we also

review several unconventional DFT methods that are useful for our method development

and OLED applications. We then turn our focus to incorporating environment effects in

DFT simulations, where we review the implicit and explicit environment models for efficient

condensed phased modeling of complex chemical systems. Finally, we outline the structure
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for the rest of this thesis.

1.1 Wavefunction theory

The main interest of quantum chemistry methods is to find solutions to non-relativistic

time-independent Schrddinger equation:

H4!({ri}, {RA}) = E'I({r}, {RA}) (1.1)

where H is the Hamiltonian of the system, T ({ri}, {RA}) is the wavefunction of the system,

E is the total energy, {ri} and {RA} represent the positions of electrons and nuclei in the

system. The Hamiltonian H can be expressed as:

h v -_ h2E 2 ZAZBe 2 _ ZAe 2  2 
E , (1.2)

2MA&2mA< 47 iE R AB Ai47forAi 4rEoTijMA VimV1 A<B A, io~

where i, j refer to electrons and A, B refer to nuclei. For simplicity, we adopt the atomic

units from now on, so the Hamiltonian can be simplified as:

1t v2-11,2+1 AB Z (1.3)
2MA I:A 2 .RAB rAi rij

A i A<B A,i i<j

The five terms in Eq. 1.3 are the kinetic energy operator for nuclei and electrons, repul-

sion between nuclei, attraction between nuclei and electrons, repulsion between electrons,

respectively.

Since nuclei are much heavier than electrons, electrons move much faster than nuclei.

One can then consider the electrons to be moving in the field of fixed nuclei in a molecule.

This leads to Born-Oppenheimer (BO) approximation [29], which assumes the motions of

nuclei and electrons can be separated. One can first freeze the nuclei positions so that the

kinetic energy of nuclei is neglected and the attraction between nuclei becomes a constant

in Eq. 1.3. Such assumption results in the electronic Schr6dinger equation:

HejI4({ri}; {RA}) = Eej({RA})'({ri}; {RA}), (1.4)
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with the electronic Hamiltonian

Nei=_I- E Z+Y . (5)
2 A,i Ai <3

Solving the electronic Schrddinger equation yields the electronic energy Ee,({RA}) and

electronic wavefunction I({ri}; {RA}), both of which depend parametrically on the nuclear

coordinates {RA}. The total energy of the system with fixed nuclear positions {RA} can

thus be computed as:

Etot({RA}) = Eel({RA}) + E Z Z (1.6)
A<B R AB

To solve the full Schr6dinger equation in Eq. 1.1, one can construct the nuclear Schr6dinger

equation to describe the motion of nuclei:

Hnucx({RA}) = EX({RA}) (1.7)

with the nuclear Hamiltonian

Hnuc =- Aj V + Eel({RA}) + . (1.8)
AA A<B (18

Note that the electronic total energy Ett({RA}) in Eq. 1.6 provides the potential for the

nuclear motions. The solution to Eq. 1.7 gives the ground-state energy of the whole system

and the nuclear wavefunction X({RA}).

Specially, the focus of quantum chemistry methods is to solve the electronic Schr6dinger

equation described in Eqs. 1.4-1.6, which is also central to the methods and applications

in this thesis. Therefore, we will only further review and discuss the efforts for solving the

electronic Schr6dinger equation from now on.

1.1.1 Hartree-Fock method

The Schr6dinger equation provides an exact way to describe a quantum system, but it is

too complicated to be solved. As commented by Paul Dirac [30}, "the underlying physical

laws necessary for the mathematical theory of a large part of physics and the whole of

chemistry are thus completely known, and the difficulty is only that the exact application
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of these laws leads to equations much too complicated to be soluble." In reality, one always

has to make approximations to solve the electronic Schrddinger equation efficiently. Among

all such approximations, Hartree-Fock (HF) is the most simple one but also provides the

foundation for other more complicated quantum chemistry methods. In this section, we

review the formalism of the Hartree-Fock method and we follow the derivation in Ref. [3].

Before we delve into the Hartree-Fock method, we need to find a way to represent the

many-electron electronic wavefunction J({ri}; {RA}). First, we add a spin coordinate W for

electron spins into the wavefunction, and two spin functions a(w) (spin up) or 3(w) (spin

down) are introduced. The new coordinate is x = {r, w} and the electronic wavefunction is

IF'(x1, x2 , ... , xN) for an N-electron system. Note that we drop the implicit dependence on

{RA} for simplicity.

A straightforward idea is to expand the many-electron wavefunction XP (xL, x2, ... , xN) us-

ing some mathematical expression of a set of one-electron spin orbitals {X(x)}, where X(x) =

4O(r)a(w) for spin-up electrons and X(x) =4(r)3(w) for spin-down electrons. Here, {?$(r)} is

the one-electron space orbitals. The expansion of the wavefunction I (x1, x 2 , ---, xN) should

at least satisfy two requirement:

1. All electrons are mathematically indistinguishable.

2. The many-electron wavefunction must be antisymmetric with repect to the interchange

of the coordinate x of any two electrons [311:

P(x1, ... , xi, -... , xj,..., xN) = -P(xj, ... , xj,.., i ... X, XN). (1.9)

For this purpose, the antisymmetric N-electron wavefunction can be expanded using the

determinant:

X1(x1) X2(xl) ... XN(x1)

1 X1(x2) X2(x2) ... XN(X2)
'I(Xl, x2,---, xN) = , (1-10)

XI(xN) X2(XN) ... XN(XN)

which is called a Slater determinant [32]. The Slater determinant has N electrons occupying

N spin orbitals without specifying which electron is in which orbital, and is often shortened
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as IX1X2---XN). Note that normally orthonormal spin orbitals {X(x)} are used to construct

the Slater determinant. It provides the basis for representing the many-electron wavefunction

in most of the popular quantum chemistry methods.

The Hartree-Fock method assumes that the exact N-electron wavefunction of the system

can be approximated by a single Slater determinant. One can then apply the variational

theorem to minimize the ground-state energy (X1X2...XNIHtXlX2...XN) with respect to the

spin orbitals {X(x)} to determine the best set of spin orbitals within the single determinant

approximation. With the orthonormal constraint for spin orbitals {X(x)}, one can construct

a Lagrangian

L[{X(x)}] = (X1X2...XNIXlX2...XN) - ( jJ((Xi X) i (1-11)

ii

where Eij are the undetermined Lagrange multipliers. Take the first variation 6L = 0, one

arrives at the Hartree-Fock equations:

h(x1)Xi(x1) + [dx2IXj(x2) 12 1Xi(x1) - dx2 (x2)Xi(x2)rg1 Xi (x1)

= EiXi(x1). (1.12)

h(xi) is the one-particle Hamiltonian which includes the potential energy from the attraction

of nuclei and kinetic energy of a single electron. The second term in Eq. 1.12 describes the

Coulomb interaction of an electron in spin orbital Xi with the average charge distribution

of other N - 1 electrons in the other spin orbitals. Here, we can define a Coulomb operator

as:

J3 (xi) = dx2IXj(x2)ri, (1.13)

which represents the average local potential at x, arising from an electron in Xj. The third

term in Eq. 1.12 is called the exchange term and arises from the antisymmetric nature of

the singlet determinant. We can also define an exchange operator Kj (x1 ) by expressing its

operation on a spin orbital Xi:

Kj(x[)Xi(xJ) dx2X*(x2)Xi(2)r'] X (x1). (1.14)
PA1
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Inserting Eq. 1.13 and Eq. 1.14 into Eq. 1.12, and realizing

[Ji(x1 ) - Ki (xi)] xi(xi) = 0, (1.15)

we obtain a more concise Hartree-Fock equation:

[h(xi) + Jj (xi) - Kj (xi)x i(xI) = Eixi(x1). (1.16)

We can further define a new operator as:

f(xi) = h(xi) + Jj (x1 ) - K (x1 ), (1.17)

where f(xi) is called the Fock operator. The Hartree-Fock expression is further simplified

as:

f (xi)Xi (X1) = Ei Xi (Xi).(.)

Now it becomes clear that the Hartree-Fock method is a mean-field method, which means

instead of explicit Coulomb interactions, each electron only feels an average electric field

generated by its surrounding electrons.

To solve for the Hartree-Fock equation in Eq. 1.18, we introduce a set of atomic orbital

basis functions {#,}. Then we can expand the spin orbitals using

Xi (1.19)

Insert Eq. 1.19 into Eq. 1.18, left multiply by 0* and integrate the equation, we arrive at

Ci (#, f |0) = ei Ci (0,4I1) , (1.20)
LI V

which is also called the Roothaan equation. Introducing the matrix element notation

F -i (#1,1I)
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we obtain the final working equation for the Hartree-Fock method:

FC = SCE, (1.22)

where F is the Fock matrix, S is the overlap matrix, E and C are the eigenvalue and

eigenvector matrices. By using some linear algebra tricks, it turns out that solving Eq. 1.22

is equal to diagonalizing the Fock matrix F. However, one may notice that the Fock matrix

F depends on the eigenvector matrix C, which is the solution of diagonalizing F. Therefore,

one needs to start with an initial guess of C and perform Eq. 1.22 iteratively until the solution

C converges. Because of this process, Hartree-Fock is often referred to as the self-consistent

field (SCF) method.

Hartree-Fock is a crude approximation that causes large errors in both electronic wave-

function and energy. The mean-field approximation, which replaces the instantaneous

electron-electron repulsion with the repulsion of each electron with an average electron charge

cloud, makes the electron correlation to be completely missing in the Hartree-Fock method.

Meanwhile, Hartree-Fock assumes the wavefunction can be written as a single Slater deter-

minant, which is also an inaccurate approximation in many cases. Thus, many wavefunction

methods have been developed based on Hartree-Fock, which are called post-Hartree-Fock

methods, in order to capture the missing electron correlation in Hartree-Fock.

1.1.2 Configuration interaction

In Hartree-Fock theory, one assumes the antisymmetric wavefunction of the system can be

expanded using a single Slater determinant, which is not true. In theory, an arbitrary N-

electron wavefunction can only be expressed exactly as a linear combination of all possible

N-electron basis functions formed from a complete set of one-electron basis functions. In

reality, the N-electron basis functions can be chosen as N-electron Slater determinants

and one-electron basis functions are spin orbitals {Xi(x)}. Hartree-Fock just picks one of

all possible N-electron Slater determinant for the N-electron wavefunction expansion - no

wonder it performs poorly in many chemical systems.

The idea of using all possible Slater determinants for the wavefunction expansion leads to

the development of the configuration interaction (CI) method [33]. For simplicity, suppose

we have already solved the Hartree-Fock equation for an N-electron (N is an even number)
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system in a finite one-electron basis set {0} and obtained a set of 2K spin orbitals {Xi}.

The determinant formed from the N lowest energy spin orbitals is the HF determinant <b0.

Meanwhile, we can also form a large number of other N-electron determinants from the

2K spin orbitals. For example, instead of using the occupied HF orbital Xa, we can use an

unoccupied HF orbital Xr in the determinant, leading to a new determinant Yh. The notation

<D' means we "excite" one electron from occupied HF orbital Xa to unoccupied HF orbital

Xr, and this is called a singly excited determinant. Similarly, a doubly excited determinant

rs can be formed by replacing the occupied HF orbitals Xa and Xb with unoccupied HF

orbitals X, and Xs. In this way, we can form up to N-tuply excited determinants so that

we have formed all possible N-electron Slater determinants in the given finite one-electron

basis set. These Slater determinants are often referred to as "configurations".

Using these N-electron Slater determinants, we can expand the electronic wavefunction

4 as:

if = cr<s + E a [a +c stc + --+ , (1.23)
ar a<b a<b<c

r<s r<s<t

where co, cr and crs are the expansion coefficients for the HF, singly excited and doubly

excited determinants. Eq. 1.23 is a called a full configuration interaction (FCI) expansion,

which includes all possible configurations to expand the wavefunction T. Using this ex-

pansion, one can then apply the variational theorem to minimize the ground-state energy

('II'1) with respect to the CI coefficients {co, {cr}, {c;}, ... }. This method is called full

configuration interaction method, which can be seen as a direct matrix mechanics solution

to the electronic Schr6dinger equation. Note that we use a finite one-particle basis set {}

here, so Eq. 1.23 is still not an exact expansion of the wavefunction IQ, which means the

FCI solution is not the exact solution to the Schr6dinger equation. Ideally, if we adopt an

infinitely large one-particle basis set and employ all possible determinants, we can reach an

exact solution, which is called a complete CI. In practice, we always need to use a finite

one-particle basis and FCI is the best solution we can obtain within the given basis set.

FCI can be applied to accurately compute not only the ground state, but also the excited

states of both closed-shell and open-shell molecules. The difference between the FCI ground-

state energy and the HF energy defines the electron correlation energy:

Ecor EFCI - E (1.24)
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Unfortunately, the FCI method is too expensive to be solved because there are too many

Slater determinants involved. Employing configuration state functions or efficient algorithms

can speed up the FCI calculations, but generally FCI still has a factorial scaling with respect

to the system size. This high computational scaling limits FCI to be only applied to small-

sized molecules, which makes it to serve as a benchmark method to evaluate the performance

of other quantum chemistry methods.

Truncating the FCI expansion is another idea to enable efficient CI calculations. Real-

izing that the Hamiltonian is a combination of one-particle and two-particle operators, one

assumes that the singly and doubly excited determinants are the most important configura-

tions, because they are the only determinants that can directly interact with the reference

HF determinant (Do. This approximation leads to methods such as the CI singles (CIS) and

CI singles and doubles (CISD). It is indeed a good approximation as it reduces the number of

configurations significantly while can still account for about 95% of the electron correlation

in CISD [33]. However, the CI truncation also brings errors. One most severe problem is

that truncated CI methods are not size extensive, which means the energy calculated for

non-interacting particles does not scale linearly with the particle numbers.

In this thesis, we employ the FCI method as the high-level theory to correct the errors

in density functional theory. Density decomposition methods are developed so that the FCI

method is still affordable for the studied systems. In addition to CI, many other quantum

chemistry methods have also been developed, among which the most commonly-used ones

are the many-body perturbation theory [34] and coupled-cluster theory [35]. Especially,

coupled-cluster singles and doubles with perturbative triples (CCSD(T)) [36] is now the

"gold standard" for computing weakly-correlated chemical systems. CCSD(T) results are

used as a reference to test the performance of our methods on thermochemistry in this

thesis. We will not further review these methods but now turn our attention to the density

functional theory.

1.2 Density functional theory

In Section 1.1, all quantum chemistry methods use the wavefunction Q(x 1 , x 2 , ... , xN) as

the key quantity to describe the system. In the density functional theory (DFT), the key

quantity becomes the electron density p(r), which is defined as the integral over the spin
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coordinates of all electrons and over all but one of the spatial variables:

rr 2
p (r) - N - I' (x1, x2, ., xN) dwldx 2 ... dXN. (1.25)

The physical meaning of p(r) is that it determines the probability of finding any of the N

electrons within volume dr. The wavefunction IQ (xI, x 2 , ---, XN) of an N-electron system

includes 3N space variables, while the electron density p(r) always only has three space

variables. Therefore, employing the electron density as the basic quantity reduces the com-

plexity in the wavefunction significantly and may lead to much lower computational scaling.

In addition, unlike the wavefunction, the electron density is a variable that can be measured

experimentally, so it can be used to directly compare the theory with experiments.

In 1964, Hohenberg and Kohn established the foundation for the density functional

theory [371. They stated in the first Hohenberg-Kohn theorem that, the external potential,

and hence the total energy, is a unique functional of the electron density. This theorem

proves that the electron density p(r) uniquely determines the Hamiltonian operator (i.e.,

the external potential vet(r)) and thus all the properties of the system. Thus, the electron

density p(r) can be used as the fundamental variable in quantum chemistry. The second

Hohenberg-Kohn theorem states that, the functional that delivers the ground state energy

of the system, gives the lowest energy if and only if the input density is the true ground state

density. This theorem provides the variational principle for the density functional theory. It

also indicates that the electron density in DFT needs to be "v-representable", which means

p(r) has to be the corresponding density of some external potential vet(r).

Hohenberg-Kohn theorems guarantee that there exists a universal functional Flp(r)],

that predicts the electronic ground state of all molecules and materials exactly. However,

knowing the existence of such a functional does not mean we can also write it down. Actually,

it is the birth of the Kohn-Sham theory that puts DFT into the successful practical use.

1.2.1 Kohn-Sham density functional theory

One of the most difficult tasks in DFT is to design an accurate functional to compute the

kinetic energy. The Thomas-Fermi model [38, 39] is one such approximate functional:

TTF[p(r)] = -(37r 2 ) 2 / 3  p(r)5/ 3dr, (1.26)
10
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but all such approximations produce large errors for kinetic energies of atoms and molecules.

In 1965, Kohn and Sham designed a nice framework to deal with this problem [21].

The Kohn-Sham density functional theory (KS-DFT) assume there is a fictitious system of

non-interacting electrons that has the same density as our interested system of interacting

electrons. This non-interacting fictitious system can be represented using a single Slater

determinant of orthonormal orbitals {Ji}, just as in the Hartree-Fock theory. So the electron

density can be represented as:
N

p(r) = > 0i(r) 1 2 . (1.27)
i=1

Then the kinetic energy of the interacting electrons can be approximately computed as the

kinetic energy of the non-interacting fictitious system:

N

T[p(r)] ~ Ts[{Vi}] = - I J(r)V2@ bi(r)dr. (1.28)
i=1

The nucleus-electron attraction energy is

Vne[p(r)] = p(r)vN(r)dr, (1.29)

where vN(r) is the nuclear potential, and the electron-electron repulsion energy Vee[p(r)]

can be approximated by the classical Coulomb self energy

J[p(r)] = p(r)p(r2 dridr2 . (1.30)

Thus, the KS-DFT total energy of the interacting system is expressed as

E[p(r)] = T,[{)}] + Vne[p(r)] + J[p(r)] + Exc[p(r)], (1.31)

where the last term Exc[p(r)] is called the exchange-correlation (XC) energy. The XC energy

functional describes all the errors made by the approximations above:

Exc[p(r)] = T[p(r)] - Ts[{$i}] + Vec[p(r)] - J[p(r)]. (1.32)

If we know the exact form of the XC functional, we would solve the Schrddinger equation

exactly. Thus, KS-DFT is also a formally exact theory. However, in reality, the analytic

32



form of the XC functional is never known and one always has to approximate this term.

Compared to the orbital-free DFT, the KS-DFT energy is an implicit density functional

that explicitly depends on the KS orbitals. However, the strength of such scheme is that,

it captures most of the contributions of the kinetic energy and electron-electron repulsion

through T,[{Vi}I and J[p(r)], and one just needs to find a good approximation to the last

piece - XC functional.

Take the variational minimization of Eq. 1.31 with respect to the orbital bi(r) yields the

Kohn-Sham equation:

( V2 + v(r))i(r) = Eci4(r), (1.33)

where v,(r) is the effective potential

V.(r) = vN(r) + pr/ dr' + v,,(r), (1.34)

and v.c(r) is the exchange-correlation potential

Vc(r) .p] (1.35)

Solving Eq. 1.33 employs a similar self-consistent field algorithm as in the Hartree-Fock

method. KS-DFT is operationally an independent-particle theory and is as simple as, if not

simpler than, the Hartree-Fock theory. But it delivers the exact electron density and other

electronic properties in principle. KS-DFT with a good approximate XC functional can

describe the electron correlation much better than HF. Thus, most of the development in

the field of DFT has been focused on searching for better XC functionals since the foundation

of KS-DFT.

1.2.2 Jacob's ladder of density functional approximations

In this section, we review some of the efforts made for developing XC functionals. The central

idea of designing approximate XC functionals is that one hopes to achieve better accuracy

by using more and more complicated design ingredients in the functionals. This idea is

summarized by John Perdew's Jacob's ladder of density functional approximations [40, 411,

as shown in Figure 1-1. According to the design ingredients used in the functional, one puts

the XC functionals onto different rungs of this ladder, and expects the functionals on the
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higher rungs have better performance than the lower ones.

Chemical Accuracy
(1 kcal/mol)

+ Unoccupied 4g(r) Rung 5: B2PLYP, XYG3

+ Occupied ip (r) *. Rung 4: B3LYP, M06-2X

+ 172p(r) or T Rung 3: TPSS, M06-L

+ Vp(r) Rung 2: PBE, BLYP

+ p(r) A Rung 1: Slater, VWN

Hartree World

Figure 1-1: John Perdew's Jacob's ladder of density functional approximations to the
exchange-correlation energy.

We start from the "Hartree world" [421, where no XC functional is used in the KS-DFT

(Eq. 1.31). Our final goal of density functional development is to be able to describe the

thermochemistry within the accuracy of 1 kcal/mol, which is called the "chemical accuracy".

The simplest density functionals depend only on the electron density p(r), which are called

the local density approximation (LDA), or local spin-density approximation (LSDA) [401:

ELSDA [p,p] = p(r)cxc(pa, p#)dr, (1.36)

where the p, and p3 are the spin-up and spin-down electron densities and exc(Pa, pO) is

the exchange-correlation energy per electron of an uniform electron gas of density (pa, po).

LDA (LSDA) functionals define Rung 1 of the Jacob's ladder. An example of the LSDA

approximation is the Slater exchange functional [221:

E Slter P~j 3(3)1/3
E aater ( 2 14 p/3dr. (1.37)

LDA (LSDA) generally tends to underestimate the exchange energy and overestimate the

correlation energy. It assumes the density is the same everywhere, which is a poor estimation
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especially for molecules where the electron density changes rapidly in many regions.

It is therefore natural to introduce an ingredient that can account for inhomogeneities in

the density, which is the electron density gradient Vp(r). This gives rise to the generalized

gradient approximation (GGA), which is located on Rung 2 of the Jacob's ladder [40]:

EGGA pQ, = P(r)Exc(PaP,,VP,VPo)dr- (1.38)

The GGA functionals show great improvement over the LDA functionals, predicting good

results for molecular geometries and ground-state energies. Several popular GGA functionals

are PBE [43], BLYP [44, 45] and PW91 [46], among which PBE is still the most commonly-

used functional in materials science nowadays.

The improvement from LDA to GGA suggests the idea of adding more design ingre-

dients works well. Following this idea, one can add one more ingredient, the Laplacian

of electron density V2 p(r) or the kinetic energy density T = - >] IVbI 2 , which capture

the second derivative information of the density. This leads to the third rung, meta-GGA

functionals [40]:

EmGGA[PC P,] = p(r)Exc(pa, P3, VPa, VP, V2p,, 2P, ra, TQ,)dr. (1.39)

Adding the second derivative information indeed sometimes results in better performance.

For example, compared to PBE (GGA), TPSS (meta-GGA) [47] greatly improves atomiza-

tion energies for molecules and surface energies for solids [231.

Another route to design more accurate density functionals is to add ingredients of KS

orbitals. First such development is the introduction of HF exchange into the XC functionals,

which is also called the exact exchange (EXX) functional in DFT:

Ejxx - 1 ( r) b(r)j(r)*')(r')/i(r') drdr'. (1.40)
X 2 ir - r/1

The mixture of HF exchange and GGA (and meta-GGA) functionals results in the hybrid

functionals (Rung 4 on the Jacob's ladder), where the percentage of HF exchange can be de-

termined non-empirically [48] or by fitting to reproduce accurate thermochemistry data [491.
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The latter way leads to the construction of the famous B3LYP functional [49, 50]:

E 3LYP = cXEHF S(1 - - ax)E4sIater + a EB88 + (1 - ac)EVWN + ac4cP, (1.41)

where cx = 0.20, ax = 0.72 and a, = 0.81. The inclusion of the HF exchange help signifi-

cantly reduce some errors (one of them is called self-interaction error) in GGA (meta-GGA)

functionals, which we will further discuss in later chapters. Such correction leads to very

successful applications of KS-DFT to chemistry problems and the hybrid functionals are

especially good at predicting molecular structures and reaction energies. To date, B3LYP

is still the most widely used functional in DFT applications.

The fifth rung on the Jacob's ladder utilizes unoccupied KS orbitals. For example, the

second-order perturbation theory (PT2) correlation energy using KS orbitals and eigenval-

ues [51] may be partially used in the construction of correlation functionals, such as in

B2PLYP [52] and XYG3 [53] functionals. Another type of functionals [54, 551 use the idea

of the fluctuation dissipation theorem [56, 57] and thus employ the random phase approxi-

mation (RPA) correlation energy.

Overall speaking, the idea of constructing density functionals according to the Jacob's

ladder shows promise towards better density functionals. However, problems exist for such

a density functional hierarchy. The most severe problem is, in many cases, the functionals

on higher rungs are not necessarily better than the ones on lower rungs [23]. For particular

applications, it is entirely possible that PBE (Rung 2) is more accurate than PBEO (Rung

4). Such uncertainty is what makes DFT less reliable than wavefunction theory, in which

one almost always obtain better accuracy by inputting more computational power. This

is partly because common density functionals have serious systematic errors, such as the

self-interaction error, inability to describe strong correlations or dispersion interactions [23].

In reality, one almost always needs to carefully benchmark the performance of approximate

functionals before drawing any reliable conclusions from KS-DFT calculations. Thus, the

biggest challenge in density functional development is probably to design a hierarchy that

can systematically improve the performance of approximate DFT calculations, which is also

the main goal of this thesis.
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1.3 Unconventional DFT methods

In this section, we review some of the unconventional DFT methods that either provide the

basis for our new DFT method development or serve as a tool for applications in OLED

simulations in this thesis. These methods are unconventional in the sense that they are

not regular ground-state or excited-state KS-DFT methods, but are especially efficient at

dealing with some particular chemical problems.

1.3.1 Restricted open-shell Kohn-Sham

In this section, we review an unconventional KS-DFT based excited-state method - restricted

open-shell Kohn-Sham (ROKS) [58, 59]. Accurate methods for modeling electronically ex-

cited states are playing an increasingly important role in the design of optoelectronic mate-

rials including photovoltaics [14], light-emitting diodes [16] and field-effect transistors [60].

Many of the molecules of interest are too large (>100 atoms) to be studied with high-

level wavefunction-based methods like CASPT2 [611 or coupled-cluster [7], which are known

to give quite accurate results for small organic molecules [62]. As a result, DFT-based

approaches are the only viable post-Hartree-Fock computational tools for studying such

molecules. The most standard DFT-based excited state method is linear response time-

dependent density functional theory (TDDFT) [63, 64]. Despite the dominance of TDDFT

in organic materials simulation, ROKS is a similarly reliable excited-state method and per-

forms better than TDDFT in some applications involving charge-transfer excited states.

or

Ground-state KS Mixed-spin KS Triplet KS
determinant determinant determinant

Figure 1-2: Kohn-Sham excited-state determinants used to represent ROKS Si state.

ROKS operates as a ground-state KS-DFT approach to access the lowest singlet excited
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state (Si). In many optoelectronic applications, the lowest singlet excited state energy is

primarily concerned. The central idea of ROKS is to follow a non-Aufbau rule of occupying

electrons when solving a KS-DFT equation. Instead of occupying all electrons on lowest-

energy spin orbitals, one electron is "excited" to the lowest unoccupied orbital, leading to

two different kinds of restricted open-shell determinants: a mixed-spin KS determinant and

a triplet KS determinant, as shown in Figure 1-2. The Si state can be represented using

these two determinants, whose energy is expressed as [581:

EROKS - 2Em[{#i}] - Et[{#0}I, (1.42)

where s, m and t denote the singlet excited state, mixed-spin determinant, and triplet

determinant, respectively. Variational minimization of the ROKS energy in Eq. 1.42 with

respect to the KS orbitals leads to an eigenvalue equation:

FC =CE, (1.43)

but the Fock matrix F is much more complicated than a normal KS-DFT Fock matrix,

which we will not further discuss.

ROKS has been shown to be competitive with TDDFT for excited-state energies and

geometries of organic molecules when hybrid and range-separated functionals are used [59].

Particularly, since ROKS operates like a ground-state method, it may not share the problem

of TDDFT to significantly underestimate the charge-transfer excited states. Therefore, in

this thesis, we employ ROKS to study the excited states of OLED molecules. A special type

of the studied OLED molecules is the thermally activated delayed fluorescence (TADF)

OLED, which possesses charge-transfer excited states and small singlet-triplet energy gap.

1.3.2 Constrained density functional theory

In this section, we review an unconventional KS-DFT method to treat charge transfer (CT)

problems - constrained density functional theory (CDFT) [65, 66, 67]. Marcus theory [68, 69]

provides a closed form expression for the charge transfer rate. Its practical use hinges on

the possibility of calculating diabatic charge-localized states [70, 71] which have similar

electronic configurations at all nuclear coordinates. For instance, in a charge separation

process, an electron transfers from the donor (D) to the acceptor (A); hence, DA is one
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diabatic state and D+A- is the other. Standard KS-DFT methods diagonalize the effective

electronic Hamiltonian; therefore, they generate adiabatic states that are approximations to

the true eigenstates of the Hamiltonian for the D-A system.

To obtain an charge-localized diabatic state, one wants to explicitly constrain the electron

density to the corresponding configuration (e.g., D+A- or DA) and perform all calculations

under the constraint. This is achieved in constrained density functional theory (CDFT)

through minimization of the total energy functional under an additional constraint that the

charge densities of fragments integrate to the predefined numbers of electrons. Since there

is no unique way to partition the electron density into fragments, a weight function wc(r) is

introduced to define a charge constraint on the chosen fragment (may be D or A):

Jwc(r)p(r)dr = Nc. (1.44)

While there is much freedom in the definition of the weight function wc(r), in the majority of

implementations it is based on Becke grid weights [721 or Hirshfeld density partitioning [731.

Despite this ambiguity, the electronic couplings computed with CDFT states show only

limited sensitivity to the choice of the weight function [741. Then, a constraining potential

V is introduced as the Lagrange multiplier so that minimizing the energy of the systems

subject to the constraint in Eq. 1.44 is equivalent to finding the stationary point of

W [p,V] = E [p] + Vc wc(r)p(r)dr + N) (1.45)

with respect to p and V. This leads to Kohn-Sham equations that need to be solved to

obtain a KS charge-localized state:

(- I2 + vN(r) + f / ) dr' + vIc-(r) + Vcwc(r) ) )i(r) = Eioi(r), (1.46)
2 ir - r

where Vcwc(r) is the constraining potential that enforces the proper charge on the chosen

fragment. Since the optimal Lagrange multiplier V is not known a priori, it has to be

optimized together with the electron density p. In practice, this is done by adding an extra

optimization loop to enforce Eq. 1.44 at each SCF cycle [75].

The CDFT diabatic states can then be used to compute useful quantities in Marcus

theory [66]. For example, the free energy difference between two diabatic states DA and
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D+A- and the inner-sphere reorganization energy can be computed as:

AG = E(D+A~jD+A~) - E(DAIDA), (1.47)

= E(D+A-IDA) - E(D+A-ID+A-), (1.48)

where E(alb) means the energy of state a calculated at the equilibrium structure of state b.

In this thesis, we employ CDFT to investigate the charge transfer mechanisms in a condensed

phase OLED simulation.

1.3.3 Potential inversion in KS-DFT

In this section, we review a technique that allows one to calculate KS kinetic energy and

orbital-dependent exchange-correlation functional directly from the given electron density,

which is called the potential inversion. In KS-DFT, the kinetic energy functional T [p] is

known not as an explicit functional of the electron density p(r), but as an implicit functional

of p(r), through the dependence on one-electron KS orbitals {#i(r)}. This dependence

makes the kinetic energy an explicit functional of KS orbitals T8 [{#j(r)}]. One has to first

know the KS orbitals {#i(r)} to be able to compute T,[{0i(r)}]. Many exchange-correlation

functionals are also implicit density functionals. One example is the exact exchange (EXX)

functional defined in Eq. 1.40, which is again an explicit functional of KS orbitals {#i(r)}

and very important for constructing hybrid functionals.

An interesting problem is that, if an electron density pin (r) is given a priori, how can

one compute the implicit density functionals such as the KS kinetic energy T[pin]? Such

technique is called the potential inversion [76, 77, 78]. Instead of optimizing the electron

density p(r) in a standard KS-DFT equation, we try to search for the effective KS potential

v,(r) (Eq. 1.34) that produces pin(r) through an eigenvalue equation. With the effective KS

potential v, (r), one can then obtain the corresponding KS orbitals and compute all implicit

density functionals.

The potential inversion technique is needed for two reasons. First, it would help the

development of better explicit density functionals. Assume we can get the highly accurate

density pin(r) from high-level wavefunction theory calculations (e.g. FCI, CCSD(T)) or

experiments. Using the potential inversion method, one can obtain the highly accurate

effective KS potential v,(r), and thus the exchange-correlation potential v.,(r) (Eq. 1.35).
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Note that vxc(r) is coming from the functional derivative of Exc[p] with respect to the density

p(r). This highly accurate vxc(r) can therefore serve as a guidance to design more accurate

XC functional Exc[p]. Because of this reason, the potential inversion is often referred to

as optimized effective potential (OEP) [79, 80, 81, 821. Second, the potential inversion

provides a framework for developing new fragment-based DFT methods. Fragment-based

DFT methods have been developed recently due to its potential to provide faster and more

accurate DFT simulations. If we manually partition the system into several fragments

and want to treat these fragments separately, the potential inversion provides a way to

directly compute the KS-DFT energy for a given fragment density. This technique has been

extensively used in methods such as DFT embedding [83, 84] and partition DFT [85], and

also lays the foundation for our many-pair expansion method in this thesis.

Now we review a numerical method for performing potential inversions in the KS-DFT

framework and closely follow the algorithm proposed by Wu and Yang [77, 861. For an N-

electron spin-compensated system and a given input electron density pin(r), the KS kinetic

energy is defined as [87, 22]:

N/2

T,[pi.]J= min 2Z(#iitli) , (1.49)

where {ji(r)} are doubly-occupied KS orbitals that need to be searched through the kinetic

energy minimization. The electron density p(r) computed from the KS orbitals

N/2

p(r) = 2 #oi(r) 12(1.50)

should be equal to the input electron density

p(r) = pin(r). (1.51)

Therefore, the evaluation of T,[p] is a constrained minimization problem. We introduce a

potential v(r) as the Lagrange multiplier and define the following functional of KS orbitals

{#i(r)} and the potential v(r):

N/2

Ws[{oi}, v(r)] = 2 (Oi I t|#i) + ]v(r) (p(r) - pin (r)) dr. (1.52)
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Optimizing Ws[{#i}, v(r)] with respect to KS orbitals {#i(r)}, one arrives at

(t + v(r))#i(r) = Ei(r), (1.53)

so {#i(r)} can be calculated as the eigenfunctions of the operator t + v(r).

In order to use standard linear algebra techniques, we need a way to represent the

potential v(r). Here, we expand v(r) as:

v(r) = vN (r) + vo (r) + btt (r), (1.54)
t

where vN(r) is the nuclear potential of the system, vo(r) is a fixed reference potential, and

{bt} are the coefficients for the linear combination of a set of finite basis functions {gt(r)}.

For atoms and molecules, {gt(r)} can be chosen as the standard Gaussian basis set or

Coulomb potential of the Gaussian basis functions. For vo(r), the Fermi-Amaldi potential

is suggested [76]:

vo(r)= N-1 -Pnr dr', (1.55)

which provides the correct long-range behavior of the exact v(r). Since vN(r) and vo(r) are

both fixed potentials, optimizing W, [{o}, v(r)] with respect to v(r) is equivalent to optimiz-

ing W.[{#i}, v(r)] with respect to the coefficients {bt}. The first derivative of W,[{o}, v(r)]

with respect to {bt} can be computed as:

OWs [{Oi}, v (r)]
-bt J (p(r) - pin(r))g(r)dr, (1.56)

and the second derivative is

O2Ws {I }i, v (r)] = c 2 nc (oij gu(r)1#a) (a lgt(r)j#i)+cc. (.)
tu Ei - Ea(1.57)

j a

using Eq. 1.52 and Eq. 1.54. In this way, the constrained minimization of T'[p] is turned

into the unconstrained maximization of Ws[{ i}, v(r)]. With the first and second analytic

derivatives, one can employ a standard Newton optimization method to find the converged

coefficients {bt} and thus the effective potential v(r). With the effective potential v(r), KS

orbitals and other implicit exchange-correlation functionals can also be obtained.

In this thesis, the potential inversion technique serves as a critical tool for our MPE
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method development. We will further discuss the practical use of this tool in the later

chapters.

1.4 Incorporating environment effects

One important goal of this thesis is to properly use available DFT methods for efficient

modeling of electronic properties of complex chemical systems. One such chemical system is

organic light-emitting diodes (OLEDs) [27] and we are particularly interested in the charge

transfer (CT) properties of OLEDs. CT reactions usually occur in condensed phases, and

the environment can have a significant effect on the electronic structure of reactants and the

resulting reaction mechanisms. In fact, the environment's degrees of freedom play a crucial

role in the CT process; their fluctuations make two diabatic states transiently isoenergetic,

at which point the electron hop happens. On average the environment stabilizes localized

charges through polarization of its electron density, alignment of multipole moments and

geometric deformation (polaron formation). For these reasons accounting for the presence

of the environment in DFT simulations of CT is of fundamental importance.

Unfortunately, although DFT is already an efficient electronic structure method, it is

still impossible to carry out full DFT simulations of large-scale (>10000 atoms) condensed

phase chemical systems. In practice, we only perform DFT calculations for the molecules

involved in the charge transfer reactions, which are embedded in the environment described

by more crude models. The methods for including embedding effects can be divided into

explicit and implicit models, depending whether surrounding molecules are present explicitly

in the simulations or are replaced by a dielectric continuous medium.

In Marcus theory [68, 69] for CT reactions, two thermodynamic properties need to be

evaluated - the driving force and the reorganization energy. The driving force is the dif-

ference between the free energies of the initial and final diabatic states, so the role of the

environment model is to describe the stabilization of the charges after the environment's

degrees of freedom have been equilibrated. Calculations of the reorganization energies are

more complicated as it is a non-equilibrium property, which requires calculations of the

energy of one diabatic state in the equilibrium structure of the other. It is particularly

challenging for the outer sphere component of the reorganization energy, which is associated

with the rearrangement of surrounding molecules and its treatment depends on the type of
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the model used. In this section, we briefly review the most commonly used implicit and

explicit environment models for condensed phase simulations.

1.4.1 Implicit environment model

In implicit environment models [88, 891, the molecule or the reactive complex is placed

inside a cavity resembling its molecular shape. The cavity is constructed either as a union

of van der Waals spheres or is enclosed inside an isosurface of the molecule's electron density.

All the space outside of the cavity is filled with a continuous medium characterized by its

dielectric constant, which is usually assumed to be frequency independent. The presence of

the molecular system inside the cavity induces charges in the dielectric, which generate an

effective reaction field interacting with the embedded electron density. The free energy of

interactions with the environment can be calculated by solving the Poisson equation for the

apparent charge on the surface of the cavity. The surface charge c-(r,) generates a Coulomb

potential

#(r) = J rs dr, (1.58)

which is then added to the Hamiltonian of the embedded molecule. In the self-consistent

reaction field (SCRF) [901 family of approaches, the equations for the electronic structure

of the embedded system and the surface charge on the cavity are solved iteratively until

convergence. The converged electron density and electrostatic potential are used to compute

the electrostatic contribution to the embedding free energy

AGes = 2 J ,crac(r)p(r)dr, (1.59)

where the reaction field #reac(r) is the difference between electrostatic potentials of a molecule

in the cavity and vacuum. Apart from the electrostatic component, the free energy of cavi-

tation and dispersion/repulsion interactions can be accounted for in implicit models. These

contributions are usually highly parametrized to fit to experimental or other theoretical

data.

The implicit models used most frequently in computational studies of charge transfer

reactions in condensed phases are the polarizable continuum model (PCM) [91] in its sev-

eral variants [921, conductor-like screening model (COSMO) [93, 94} and the SMx family of

models [95, 96], where the latter are based on solution of the generalized Born instead of the
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Poisson equation. The common advantage of these methods is that they are computationally

very efficient and account for the majority of important effects resulting from interaction

with the environment. However, they rely on many fitted parameters, so transferability and

accuracy are often an issue. Also, the specific interactions between the molecules, e.g., hy-

drogen bonding, are not accounted for in continuum models. Another challenge of modeling

of CT reactions with implicit environment is that they assume thermodynamic equilibrium

and there is no direct way to freeze environment's geometric relaxation in calculations of

reorganization energies. Extensions of implicit models to non-equilibrium structures assume

that the bulk dielectric constant has a slow and fast (Q,) component [97], where the latter is

associated with electronic polarization only (high-frequency component). Then, E. can be

used in calculations of reorganization energies, which is a qualitative yet efficient approach.

1.4.2 Explicit environment model

While implicit models are efficient, they necessarily ignore the fact that the environment is

composed of individual molecules. Conversely, in explicit environment models the molecular

system of primary interest is surrounded by a number of discrete molecules that constitute

its environment. Various models differ by how interactions between different part of the

total system are treated. The conceptually simplest approach is to do DFT calculations

on the whole supersystem without singling out its individual components. Since a very

large number of environment molecules often need to be added, this approach can become

impractical due to steep computational scaling of conventional DFT methods. Additionally,

it may be difficult to disentangle the properties of the embedded system and the environment

if their states begin to mix. This can be further exacerbated by errors of the computational

method, e.g., delocalization error of approximate density functionals.

These problems can be efficiently solved by employing hybrid quantum mechanics/molecular

mechanics (QM/MM) methods [98, 99, 100]. The supersystem is partitioned into the em-

bedded fragment, usually the solute molecule or the donor-acceptor complex, and the en-

vironment. The active subsystem is treated at the quantum-mechanical level (e.g., DFT),

while the environment is described by a classical force field which does not explicitly account

for the presence of electrons. The Hamiltonian for the total system is therefore partitioned
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into the QM, MM and interaction terms

Htotal = HQM + HMM + HQM/MM, (1.60)

where HQM is the Hamiltonian accounting for interactions of nuclei and electrons of the em-

bedded fragment, HMM accounts for interaction of MM atoms, and HQM/MM couples these

two subsystems. The wavefunction of the quantum subsystem is optimized by minimizing

the energy of the total system, therefore the polarization of the embedded subsystem by the

environment is taken into account through the electrostatic term in the interaction Hamil-

tonian. The final interaction energy is given by the expression that accounts for Coulomb

interaction between solute and MM atoms represented by point charges and the additional

empirical term representing van der Waals interactions:

EQM/MM - -JZE Ri 'P(r')dr + E1 i I +Z + Vdw(Ri, Rj)
iEMM iEMMjEQM - iEMMjEQM

(1.61)

In simulations of CT reactions, it is important to also include the polarization of the

environment due to the presence of the donor-acceptor complex. The relaxation of the

environment's electron density is the major contribution to the overall outer sphere reor-

ganization energy and is chiefly responsible for the stabilization of charged diabatic states.

Including this effect in QM/MM calculations requires the use of a polarizable force field in

the MM part. A simple yet effective way of including polarization of MM atoms is based

on Drude oscillators [1011, i.e. fictitious charged and massless particles that are harmon-

ically bound to nuclei. Drude particles are free to move around the atom to which they

are anchored in response to the electric field of other atoms and Drude particles as well the

electron density of the QM region. The energy associated with Drude particles is

EDrude Z kIdi - riI2  Z J +E (1.62)
2 .. Idi - rj, .. di - djl'

where qfD and kf are the charge and spring constant of the Drude particle. In practice, often

a constant value is assumed for the spring constant and the charges of Drude particles are

fitted to reproduce molecular polarizability or atomic polarizabilities obtained through the
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distributed multipole analysis [102]. Since the position of Drude particles and the electron

density of the QM region depend on each other, calculations cycle between the optimization

of the wavefunction and the position of Drude charges until self-consistency is reached. In

this thesis, we adopt the polarizable QM/MM method to account for the disordered and

electrostatic environment for charge transfer properties of OLEDs.

1.5 Structure of this thesis

Here, we summarize the structure of the remaining parts of this thesis. In Chapter 2,

we develop a new fragment-based DFT method - many-pair expansion (MPE). We start

by introducing the several systematic errors in common density functional approximations,

and then describe the idea of utilizing a many-pair expansion to systematically improve the

accuracy of an approximate density functional. After the description of MPE formalisms, we

illustrate that MPE performs very well on two important problems: (1) strong correlations in

1D/2D Hubbard and ID Peierls-Hubbard models; (2) dispersion interactions in unsaturated

hydrocarbons in the Pariser-Parr-Pople (PPP) model.

In Chapter 3, we develop a new density decomposition method - self-attractive Hartree

(SAH). We first introduce the purposes for this new method: generating density fragments

for applying MPE to molecular systems and extracting chemical bonding information from

the electron density. After deriving the detailed algorithms for the SAH decomposition, we

demonstrate that it provides an effective tool to visualize different bonding patterns from the

input density. In addition, we demonstrate that it can be used to identify specific chemical

bonds in molecular complexes and provides a simple and accurate electrostatic model of

hydrogen bonding.

In Chapter 4, we implement MPE for molecular systems with ab initio Hamiltoni-

ans in Gaussian basis sets. The SAH decomposition is employed to generate localized

v-representable pair densities for performing MPE calculations. We demonstrate that MPE

at the second order (MPE2) already predicts accurate molecular and reaction energies for a

series of small molecules and hydrogen chains, even with the low-level EXX functional as its

starting point. We also show that MPE correctly describes the symmetric bond breaking in

hydrogen rings, indicating its ability to remove strong correlation errors.

In Chapter 5, we start to explore the application of conventional DFT methods in com-
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plex chemical systems, with the organic light-emitting diode (OLED) host-guest systems as

an example. We employ a combined molecular dynamics and polarizable QM/MM method

to conduct condensed phase simulations for a host-guest phosphorescent OLED. Particularly,

we focus on understanding two problems: (1) how electrons and holes recombine directly on

the guest emitters; (2) how how excitons are quenched and utilized for light emission. By

revealing the underlying charge and energy transfer mechanisms, we suggest useful strategies

for designing better OLED host-guest systems.

In Chapter 6, we study thermally activated delayed fluorescence (TADF) materials,

which can be applied as efficient OLED emitters. We first describe our efforts for rational

design and computational screening of TADF OLED emitters using conventional excited-

state DFT methods, in collaboration with experimentalists. This study leads to the design

of new highly-efficient TADF emitters and also points out the need for better computa-

tional screening protocols. Afterwards, we develop new ROKS-based screening protocols for

accurate and efficient predictions of important TADF properties.

Finally, we summarize all important findings in this thesis and conclude in Chapter 7.

The direction for the future work is outlined.
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Chapter 2

Many-pair expansion

2.1 Introduction

Density functional theory (DFT) has been the workhorse for quantum mechanical sim-

ulations of molecules and solids due to its high performance to cost ratio [103, 104, 1051.

Although there exists a universal density functional that predicts the exact ground-state elec-

tronic properties [371, its analytic form is unknown. The Kohn-Sham (KS) framework [21]

is thus employed to perform DFT calculations, in which the exchange-correlation (XC)

functional always needs to be approximated. Despite the great success and popularity of

KS-DFT, its application can still suffer from large systematic errors because of the use of

approximated XC functionals [231.

One major reason for systematic failures in density functional approximations is the self-

interaction error (SIE), also known as the delocalization error, which originates from the

dominating Coulomb term that pushes electrons apart [106, 107, 108]. The self-interaction

error leads to underestimation of the band gaps of materials, the barriers of chemical re-

actions and the charge transfer excitation energies for commonly-used semi-local density

functionals. Another systematic failure for approximate DFT calculations is their inability

to describe degenerate or near-degenerate states, which often appear in the breaking of chem-

ical bonds, transition metal systems and strongly correlated materials [109, 110, 1111. Such

behavior occurs when the independent-particle picture breaks down, and is attributed to

the strong (or static) correlation error. Furthermore, semi-local functionals cannot properly

account for long-range interactions (i.e., dispersion interactions) because non-local contri-

butions to the electron correlation are missing [112, 113], putting serious limitations on
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applicability of DFT to intermolecular interactions.

Specific functionals and methods have been developed to overcome these systematic

errors. For the self-interaction error, the most common solution is to add the exact ex-

change (EXX) into the XC functional, giving rise to hybrid [49 and range-separated [1141

functionals. The challenge is to design a matching correlation functional, which would not

only include the dynamic part, but also account for the static correlation. In addition,

the Perdew-Zunger self-interaction correction [106] is designed to remove the spurious one-

electron self-interaction in approximate functionals, though its performance is often not

satisfactory [1151. Recently, the localized orbital scaling correction (LOSC) method shows

promise for removing the delocalization error by properly treating the fractional electron

distribution [116]. Efforts to correct strong correlation errors include adding a Hubbard-

like repulsion term (DFT+U) [117], combining DFT with dynamic mean field theory [118]

or multi-configurational self-consistent field calculations [119], using the strong-interaction

limit of the Hohenberg-Kohn functional [120] or inverting KS potential from accurate den-

sity matrix renormalization group calculations [121]. The problem of missing dispersion

interactions has also triggered development of various methods to include them in DFT cal-

culations. The conceptually simplest approach is to add a dispersion energy correction based

on the known asymptotic limit of dispersion energy, in which the leading term behaves as

-C 6 /R , where R is the distance between interacting atoms and C6 coefficients are either

tabulated or computed from density [122, 123, 124, 125, 126, 127, 128, 129]. A less em-

pirical route to dispersion in DFT are van der Waals correlation functionals, which model

dispersion energy through a non-local functional of the density [130, 131, 132, 133, 134].

Finally, functionals using unoccupied Kohn-Sham orbitals are also capable of accounting for

long-range correlations. They either take the form of double hybrids [52, 135], which add a

fraction of correlation energy calculated from perturbation theory or make use of the adia-

batic connection fluctuation-dissipation theorem [136, 137, 57] to calculate the correlation

functional.

As briefly overviewed, there are multiple ways to correct for a particular deficiency of an

approximate exchange-correlation functional. Unfortunately, none of these is able to cure all

problems at the same time. Different correction schemes often rely on empirical parameters

that have been fitted to a particular data set and their reliability is difficult to predict.

Also, improving one property may lead to deterioration of another as it is often the case
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for self-interaction corrections [115, 138]. In other words, there is no established systematic

and practical way to improve DFT results that starts from any approximation and performs

uniformly better for the whole spectrum of properties and systems. Therefore, the biggest

challenge in density functional development is probably to design a scheme to systematically

improve the approximate functionals. One such possible DFT hierarchy is represented by

Perdew's "Jacob's Ladder" [41]. According to the ingredients (density, density gradient,

kinetic energy density, KS orbitals, etc.) utilized in approximate functionals, one puts the

functionals onto different rungs of this hierarchy. The higher rungs are expected to give

better accuracy as they use more design ingredients, but this is not necessarily true. In

practice, one still needs to carefully benchmark the performance of approximate functionals

for a particular class of problems before drawing any reliable conclusions.

To address this problem, we propose the many-pair expansion (MPE) [139] in this chap-

ter, which is a hierarchy of density functional approximations that systematically corrects

any deficiencies of an approximate functional to converge to the true ground-state energy.

The total density is first decomposed into a sum of localized, nodeless two-electron (pair) den-

sities (pi). These pair densities are used to construct relevant four- (pi+pj), six- (pi+pj+pk),

... electron densities. Numerically exact results for these few-particle densities can then be

used to correct an approximate density functional via any of several many-body expan-

sions. We first apply the proposed MPE method to several important model systems: the

Hubbard [1401 and Peierls-Hubbard [141] models in 1D and the Hubbard model in 2D. We

show that MPE gives accurate results and is numerically convergent for strongly correlated

systems: applying successively higher order corrections leads to systematic improvement of

the results. To elucidate how MPE deals with long-range Coulomb interactions, we use the

Pariser-Parr-Pople (PPP) [142, 143, 144] lattice Hamiltonians for polyacetylene as well as

stacked ethylene and benzene molecules [1451. We show that MPE corrections decay rapidly

with distance and low orders of expansion are sufficient to obtain accurate results.

2.2 Theory

2.2.1 Many-pair expansion formalism

We first describe the general formalism of the many-pair expansion (MPE) for spin-compensated

systems, using the water molecule as an example, as shown in Figure 2-1. An extended for-
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malism for spin-uncompensated systems (the many-electron expansion, MEE) can be found

in Ref. [1391. Given a 2N-electron system, we decompose its total electron density pT(r)

into a sum of pair densities {pj(r)}:

N

pT (r) = pi(r), pi(r)dr = 2. (2.1)
i=1

Note that by a pair density we mean one-particle density that integrates to two electrons

and not a two-particle density p(r, r'). For the water molecule, one obtains five pair densities

from the density decomposition (1-pair terms in Figure 2-1). We will later stipulate that

these pair densities need to be numerically v-representable [1461. We can further construct

two-pair, three-pair, ... densities by adding several of the decomposed pair densities (2-pair

and 3-pair terms in Figure 2-1). Then, assume we can compute the energy of any given

electron density p(r) with an approximate density functional Ea [p] while we can obtain the

exact energy Ev[p] only for a few electrons at once. Computing the exact energy Ev[p] is

equivalent to solving the full configuration interaction (FCI) problem [147, 1481 constrained

to give p(r) as the ground-state density. The energy correction for p(r) can thus be defined

as AE[p] = Ev[p] - Ea[p]. We then consider the following hierarchy of approximations to

the true energy of this 2N-electron system

Eo[pT] Ea[PT],

N

E1[{p}] Eo[PT] + AE[p],

N

E2[{pj}] aE1 [{pj}J + Z(AE[pi + p3] - AE[p] - AE[pj]),
i<j

N

E3[{pj}} E 2[{pj}] + 1: (AE[pi + pj + pk] - AE[pi + pj] - AE[pj + Pk] - AE[pi + pkI
i<j<k

+ AE[pi] + AE[pj] + AE[pkl),

... (2.2)

In this many-pair expansion, we start from the approximate DFT result (Eo[PT]) and

systematically correct its error by applying corrections calculated for a few electrons at a

time. As shown in Eq. 2.2, only Eo[pTI is an explicit functional of PT(r), while all higher
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1-Pair
Terms (5):

Terms (10): .

Figure 2-1: Illustration of MPE using the water molecule as an example. The pair densi-

ties are generated using the self-attractive Hartree decomposition algorithm, which will be

introduced in Chapter 3.

orders are functionals of the pair densities {pi(r)}. Once the density decomposition (Eq. 2.1)

is prescribed, MPE becomes an implicit functional of the total density pT(r). This is similar

to orbital-dependent functionals [149], which are implicit functionals of the density, through

explicit dependence on orbitals defined by Kohn-Sham equations. We also want to point out

that MPE is closely related to the many-body expansion for intermolecular interactions [150,

1511, and the method of increments [1521. MPE has the important property that EN[pT]

gives the exact energy for 2N electrons no matter what approximate functional Ea [PT] is

chosen. It thus provides a hierarchy of approximations within the context of DFT analogous

to the many-body theory for the Green's function [153] and the coupled-cluster expansion

of the wave function [35].

In order to compute the MPE energies, we need the approximate DFT and exact ground-

state energies for various fragment densities pq(r) (pq(r) can be any one-, two-, three-, ...

pair density). Assuming the approximate density functional is defined within the Kohn-

Sham framework, Ea [Pq] can be obtained via potential inversion techniques [76, 77, 781. To
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solve a non-interacting potential inversion problem for a given density Pq(r), we search for

a local potential v., (r) such that

p[vs](r) = pq(r), (2.3)

i.e., the input density pq(r) is the ground-state density of a non-interacting system in the

sought external potential v,(r). The non-interacting Slater determinant 4 is constructed

out of orbitals {#k(r)}. To find the orbitals {#k(r)}, we search for the stationary point of

the Lagrangian

LKS[100, V ( V2 1() + v.(r)(p[v,](r) - pq(r))dr, (2.4)

where v,(r) is the Lagrange multiplier enforcing the density constraint. For a given v,(r),

each KS orbital #k(r) satisfies a one-electron Schr5dinger equation:

12
-- V2 q (r) + v,(r) Ok(r) = Ek k (r), (2.5)

2

and the density can then be expressed as

OCC
p[vs](r) = 2 Y k (r) 2 . (2.6)

k

Since the potential vs(r) that yields pq(r) through Eqs. 2.5 and 2.6 is not known, we need to

find it numerically to satisfy Eq. 2.3. We start with an initial guess vsO(r) and use Newton's

method [1541 to find an improved potential

vJ+1(r) = v (r) + ((Pq(r') - p[vs](r')) dr', (2.7)

where Jp(r')/6v,(r) denotes the response kernel, which can be computed analytically from

the perturbation theory

Ip(r') 4 E (r)Oa(r)#(r)Oa(r') (2.8)
vs (r) i a - Ea

The Newton's search using Eqs. 2.5-2.8 is iterated until Eq. 2.3 is satisfied. Then the DFT

energy for pq(r) can be computed using the converged KS orbitals: Ea[pq] = Ea[{ok}].

To obtain the exact energy of the same density Pq(r), we can apply a similar potential
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inversion construction except that now we are searching for the exact wave function in a

fully interacting system [155]. The interacting wave function T is a stationary point of the

Lagrangian

L Exact+I, = vex (r)(p[vex](r) - pq(r)) dr, (2.9)
k k<l

where vex(r) enforces the density constraint. The interacting wave function T is the ground

state of the interacting Schrddinger equation

[ -^+ + Vex (f)] IT) = EIT), (2.10)

and the corresponding density is

p[vex](r) = (TI6(i - r)14). (2.11)

The search for the external potential Vex(r) employs the similar algorithm as in the non-

interacting case, except that we use numerical finite differences to compute the response

kernel 6 p(r')/6 vex(r). Once the converged potential Vex(r) is found, the exact energy can

be obtained as the expectation value of the interacting Hamiltonian Ev[pq] = (PI]1XP).

From the process of computing Ea[pq] and E [pq], it is clear that Pq(r) must be the

ground-state density of some potential so that we can find its corresponding wave function

and energy. In other words, the fragment density Pq(r) must be non-interacting and inter-

acting v-representable, which needs to be enforced by the density decomposition in Eq. 2.1.

Although the sufficient conditions for v-representability are not known [1561, this is un-

likely to be a problem in practice provided that pair densities are sufficiently smooth. Note

that even non-v-representable densities can be approached arbitrarily close with smooth po-

tentials [157, 158] and that within the finite basis set approximation even node-containing

densities can be effectively v-representable [159].

2.2.2 Relation to Perdew-Zunger self-interaction correction

The MPE (or MEE) hierarchy systematically removes any possible errors of an approximate

density functional Ea [p]. In particular, it can be seen as a method to systematically remove

the self-interaction error, which is one of the major sources of density functional approx-
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imation failures. For this reason it is instructive to establish a connection between MPE

and the Perdew-Zunger self-interaction correction (PZ-SIC) [1061. PZ-SIC is exact for any

one-electron system, while MPE converges to the exact energy for an arbitrary number of

electrons; therefore, the latter can be viewed as a generalization of the former. Nevertheless,

several important differences need to be noted.

For an N-electron system, the PZ-SIC can be written in the following form

N

Esic[{pi}1 = Ea[p] + (EExx [pi] - Ea[pil), (2.12)

where Ea is an approximate functional of the total energy, EEXX is the functional using the

exact exchange for the exchange-correlation part and the sum runs over a set of one-electron

densities. For a one-electron system (N = 1), PZ-SIC is equivalent to the first order of

MEE (which uses one-electron density as the smallest fragment), because in the absence

of electron-electron interactions EEXX is the exact functional. In a many-electron case,

Eq. 2.12 and MEEl are still formally equivalent, but they are defined on a different set of

admissible one-electron densities {pj. In PZ-SIC p, = 1#1 are orbital densities, where {o}

are occupied Kohn-Sham orbitals or localized orbitals obtained through a unitary transfor-

mation. As orbitals are in general excited states of a one-electron Schr6dinger equation,

they exhibit pronounced nodal surfaces and, as a result, the corresponding densities are

not smooth. Considering that Ea [p] is an approximation to the ground-state functional,

its performance for such excited-like, non-smooth densities is likely to be much worse than

for the total density, which naturally is a ground state of some potential. This caveat has

been linked to the often unsatisfactory performance of PZ-SIC [115]. The complicated nodal

structure of higher-lying orbitals is a consequence of their mutual orthogonality. Recently,

it has been proposed to use complex orbitals [160, 161, 1621 in PZ-SIC as the nodes of the

real and imaginary parts do not need to coincide, so the resulting densities are considerably

smoother. A similar problem with orbital nodes appears for functionals using the ratio of

von Weizsicker and exact non-interacting kinetic energy densities to detect one-electron re-

gions of the density [163, 1641. Recently a density-based alternative to this detector has been

shown to be free of the nodal problem [165, 166, 167]. In MEE one-electron densities {pi}

are required to be v-representable (be ground states of some potential). In practice, this

means that orbital densities are not allowed and that admissible densities should be smooth.
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This requirement makes the energies Ea [pi1 compatible with the approximate total energy

Ea[p], as in both cases a ground-state functional is applied to densities that are known to be

ground states. V-representability of one-electron densities needs to be assured by the initial

decomposition, which is not uniquely defined. This is a similar situation as for PZ-SIC,

which is not invariant with respect to orbital rotations. In both cases, the partitioning of

the total density may be optimized variationally.

Another possible reason why PZ-SIC can deteriorate some results is that the SIE often

mimics to some extent static correlation [168], so removing it destroys the helpful compensa-

tion of errors in DFT. PZ-SIC is designed to remove only the one-electron SIE, which is easy

to define for every orbital separately and can be eliminated by the use of the one-electron

self-interaction-free exact exchange functional. Unfortunately, as PZ-SIC does not add any

correlation beyond the initial approximation, it can destroy the balance between exchange

and correlation functionals in modeling of the total exchange-correlation hole. Also, PZ-

SIC has no means to correct for the many-electron self-interaction error [1691, which is also

pervasive in approximate density functionals. In contrary, MPE (MEE) is able to systemat-

ically remove the many-electron SIE and include the corresponding degree of many-electron

correlation. In the MPE formalism pair densities are treated at the first order, so MPE1

in addition to correcting for the one-electron self-interaction corrects the correlation energy

of two electrons within each pair. This allows to account for possible static correlation and

for example correctly dissociate the H 2 molecule. At higher levels, more electrons are corre-

lated at a time, so many-electron self-interaction and many-electron strong correlations are

treated in a balanced way.

2.3 Results: strong correlation

2.3.1 One-dimensional Hubbard model

t t t t t

Figure 2-2: Illustration of one-dimensional Hubbard model.
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To test the performance of MPE on strongly correlated systems, we first consider the

one-dimensional Hubbard model (shown in Figure 2-2) described by the Hamiltonian

fI = ti + &t+ u + U Z di,3 dj, (2.13)

where tj -- t. The first term describes hopping of electrons between neighboring sites and the

second describes on-site repulsion of opposite spin electrons characterized by the parameter

U. This model has been used extensively in solid-state physics to describe the transition

between conducting and insulating systems, and also novel superconducting effects. It de-

scribes potentially strongly correlated electrons on a lattice and often serves as a benchmark

for electronic structure methods [170, 1711 as the exact solution, based on the Bethe Ansatz,

is known [172]. Different formulations of DFT exist for the Hubbard model, which differ by

the choice of the basic variable in lieu of real-space density [173, 174, 175]. In this work, the

density of the system is understood as the diagonal of the density matrix in the site basis.

Since the model has translational symmetry under periodic boundary conditions (p.b.c.),

the ground-state density is equal at each site and amounts to p, = N ,Va = 1,... , N,

where Nce is the the number of electron pairs distributed over N sites of the lattice.

As the total ground-state density is known, we can decompose it to a sum of pair den-

sities (Eq. 2.1), in principle, by any prescription that assures v-representability. One of the

necessary conditions for a density to be v-representable on a lattice with p.b.c. is that it

is positive at each site [156]. Here, we relax this restriction, requiring only that pi be non-

negative, which is feasible if we also allow infinite vi . In practice, we want to partition total

density in such a way that pair densities are compact. Physically, this would allow to inter-

pret them as localized electron pairs and to capture most of correlation. A viable procedure

to achieve such decomposition is to recall the Boys orbital localization criterion [1761, which

minimizes the spatial spread of orbitals. Applying this procedure to the ID Hubbard model

results in pair densities composed of contiguous blocks (Figure 2-3). All numerical results

presented in this section are based on this prescription.

For a typical filling, the localization results in pair densities that are inhomogeneous:

they equal NOCC/N for the central site(s) but only contain part of the density on the edge

sites (see Figure 2-3a). In this case, the MPE1 correction is a sum of many slightly different
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(a) _

(b)

Figure 2-3: Localized pair densities for 1D Hubbard model at (a) non-periodic filling
((n)=0.9), (b) periodic filling ((n)=1.0). Lattice sites are represented by black circles, while
each pair density is marked by one color. The black dashed line is the total density for each
site. Note that the pair density picture is incomplete in (a) because remainder of the lattice
is truncated.

energies:

Ei[p] = Eo[p] + AE[pi] + AE[p 2] + AE[p 3] + .... (2.14)

However, for certain fillings (such as 1/2 or 1/3), the partitioning procedure leads to pair

densities that repeat periodically along the chain (see Figure 2-3b), resulting in an energy

E1 [p] = Eo[p] + NoccAE[pi]. Note that this transition happens abruptly - starting from a

periodic filling and adding even one electron pair results in a completely aperiodic filling.

As a result, the MPEn energy is not a smooth function of filling. A way to resolve this is to

average energies over different possible pair density partitions. In practice, we perform the

averaging by adding an additional constraint on p1,1 = -Y and integrating over y C (0, (n)]

(n)

EAMPE[P] =]J EMPE (-y) dy (2.15)

We evaluate this integral by quadrature, which then directly mimics the average that is done

for the aperiodic filling case (Eq. 2.14).

As the approximate functional in Eq. 2.2, we use the exact exchange (EXX) and local

density approximation (LDA). Exact diagonalization (full configuration interaction) is used

to compute E, [p]. Because LDA can be exact for homogeneous Hubbard model by design, we

fit the LDA energy per site to the Bethe Ansatz energies to obtain LDA exchange-correlation

energies. Here we show the fitted LDA exchange-correlation energies in Figure 2-4, which

we use for our LDA-(A)MPE calculations.
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Figure 2-4: Fitted LDA exchange-correlation energy per site as a function of site occupancy

(n).

To compute EXX (LDA) and exact energies for the fragment density Pq, we need to search

for the potentials v, and ve in Eq. 2.5 and Eq. 2.10. When doing the potential inversion

calculations (Eqs. 2.3-2.11) in the site basis, the density and potential are represented as

vectors p and v, while the coordinates r and r' become the lattice site indices. As a

result, 6p(r)/6v(r') is replaced by a Jacobian matrix dp/dv. We start the calculations

by building the non-interacting and interacting Ne-site Hubbard Hamiltonians with the

initial guess for potential vO(1,2,..., N,) such that for site a, vo(a) = oc if pq(a) = 0.

By diagonalizing the Hamiltonian H[v0 ], we obtain the eigenvalues {E} and eigenvectors

{i} and the corresponding density p[v0]. As the Jacobian dp/dv may be ill-conditioned

or singular, to compute Newton steps in Eq. 2.7 we use Tikhonov regularization [154]

[Vi+1 -V = VDUT [1p - p[vi]] (2.16)

D = , (2.17)

where o-i are singular values of the Jacobian and U, V are unitary matrices obtained through

singular value decomposition (SVD) [86, 177]. We set the regularization parameter A = 10-6.

In Figure 2-5, we plot the averaged MPE (AMPE) energy curve of a 500-site ID Hubbard

model as a function of the site occupancy (n). We perform MPE calculations up to the 4 th
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Figure 2-5: Energy per site and its errors for ID Hubbard model as a function of site

occupancy (n).

order (Eq. 2.2), which means we only need to do exact calculations on up to 4 electron pairs

at a time. Thanks to the locality of interactions (A)MPE at any level scales linearly with

the system size as opposed to factorial scaling of exact diagonalization (FCI). The exact

Bethe Ansatz (BA) results are presented for comparison. Overall, the AMPE energy curves

are in excellent agreement with the BA curve. Even at 1"t order, EXX-AMPE is in good

agreement with the reference, whereas LDA-AMPE deviates more significantly. Considering

that, by design, LDA is exact for the homogeneous Hubbard model, the poor performance

of LDA-AMPE1, teaches us something about LDA: while it is exact for the uniform system,

treatment of two- and many-electron interactions is unbalanced. Adding in the correct

interactions for each pair then makes the results worse because the many-electron errors

are exposed and only summation up to the N-pair contribution makes the resulting errors

cancel. Starting from the 2 nd order, curves representing EXX-AMPE and LDA-AMPE

energies become visually indistinguishable and the latter are suppressed in Figure 2-5 for

clarity. As can be seen, when we apply successive higher order corrections, the AMPE

energies converge quickly towards the exact result, which confirms that our method can be

systematically improved. For reference, the MPEn energies are visually indistinguishable
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Figure 2-6: Energy for 30-site Peierls-Hubbard model as a function of bond shift parameter

# (U=8, (n)=1, w = 2.8t).

from the AMPEn energies, except at the periodic fillings, where the MPEn results would be

discontinuous.

2.3.2 One-dimensional Peierls-Hubbard model

As the second example, consider the Hubbard model with a Peierls distortion (t2j-1

t2j, j = 1,. .. , N/2)[141]. This model reflects the spontaneous symmetry breaking of the

ID periodic lattice resulting, for example, from alternating single and double bonds in a

conjugated polymer like polyacetylene. Such displacement with respect to the symmetric

Hubbard model can be described with a bond shift parameter # = }(R2j-1 - R2j), where Ri

denotes the bond length between sites i and i+ 1. The Hamiltonian takes the form of Eq. 2.13

with t2j-1 = te-0 and t2j = tek. Keeping the analogy with polyacetylene, we recognize that

the Peierls-Hubbard model only treats the 7r electrons. To incorporate the additional energy

cost of stretching and squeezing the underlying a bonds, for a given displacement # we add

a harmonic term N #2 to the total energy, where w=2.8t gives approximately the correct
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physics for U=8. We restrict our model to 30 sites, in which case numerically exact results

are easily obtained from DMRG [178, 1791. As can be seen in Figure 2-6, the exact curve

has a symmetric double well shape characteristic of the expected symmetry breaking. EXX

results reproduce this qualitative feature, but are far too high in energy and the predicted

bond shifts are too large. LDA results in a uniform downward shift with respect to EXX

such that the LDA energy is correct for # = 0. For #$ # 0, LDA predicts energies which are

far too low, which is again a manifestation of many-electron self-interaction errors in LDA.

At half filling, the Peierls-Hubbard model presents an interesting challenge for MPE.

Assuming partitioning into non-overlapping pair densities (Figure 2-3b), EXX-MPE and

LDA-MPE are equivalent as the LDA correction is exactly canceled out at the 1 " order.

Averaging leads only to a uniform shift, therefore, only EXX-(A)MPE is explicitly considered

in Figure 2-6 and in the following discussion. The pair densities (Figure 2-3b) naturally break

the symmetry of the lattice when 0 # 0 - the pairs either localize on a 2j - 1, 2j bond or

on a 2j, 2j + 1 bond. In the former case, for # < 0 (t2j_ > t2j), the short double bonds

are located between two sites occupied by the same density pair, MPE therefore will give

a better description than for # > 0, where the short double bonds are located between

different density pairs. This is clearly demonstrated in Figure 2-6, where the 2j - 1, 2j is

chosen, leading to a very accurate treatment for negative 0, but strong overcorrelation for

positive 0. Particularly at high orders, MPEn does an impressive job of reproducing the

energy dispersion about the minimum, but the global behavior is unsatisfactory.

To recover the symmetric shape, we again apply the averaging procedure for MPE. By

averaging over different pair density partitions, AMPE results do not rely on particular

pair density positions. Thus, AMPE avoids MPE's asymmetry problem and finds two local

minima correctly. The AMPEn minima clearly approach the DMRG ones as n increases.

Nevertheless the convergence to the exact result is rather slow. On the other hand, when

# < 0, MPE is more accurate than AMPE, which suggests that some a priori knowledge of

the electronic structure could perhaps be used to improve the results - an ansatz capable of

picking out the "best" density pattern might be able to capture MPE's accuracy near the

minimum together with AMPE's global symmetry.
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2.3.3 Two-dimensional Hubbard model

Finally, we note that MPE is not in any way restricted to ID systems. For example,

Figure 2-7 show results for the 2D Hubbard model, whose sites form a two-dimensional

square lattice. Due to the macroscopic degeneracy of the model, there are many equivalent

density partitionings making it difficult to arrive at definitive MPEn numbers for the model.

Still, as an illustration we present MPEn energy curves for 8 x 8 sites at half filling (Figure 2-

7), using an aligned A - A - A - A arrangement of the ID partitions in Figure 2-3b to tile

2D space. We use auxiliary field quantum Monte Carlo (AFQMC) [180] data as reference. It

can be seen in the figure that MPE gives accurate results for half-filling 2D Hubbard model,

even at U=8. Similarly to the ID case, MPE results are also systematically improved by

applying higher order corrections in the 2D model. For instance, at U=4, the EXX-MPEn

error relative to the AFQMC estimates goes from 23% to 7.8% to 1.5% as n goes from 1 to

3. This result demonstrates the applicability of MPE to higher dimensional systems.

e e e e el -0.4
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1W W EO -0. - MPE
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Figure 2-7: Performance of MPE for 2D Hubbard model. (a) Pair densities for 2D Hubbard

model at half filling. Each density pair is marked by a blue rectangle. Note that the pair

density locations are shifted by one site every other row. Periodic boundary conditions are

applied in both directions. (b) Energy per site for a 2D Hubbard model of 8 x 8 sites at half

filling as a function of correlation strength U.

2.4 Results: dispersion interaction

Dispersion forces result from interaction of instantaneous dipole moments, which in turn are

generated by electron correlations. This is a weak but long-range effect, which lies at the
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heart of supramolecular chemistry and is decisive for the existence and structure of many

systems of biological or technological importance. Unfortunately, being an effect of elec-

tron correlations, dispersion interactions are completely absent in the Hartree-Fock theory.

Also, while the exact exchange-correlation functional takes account for these interactions,

common semi-local approximations to the correlation functional are intrinsically unable to

capture this effect due to its fundamentally non-local character. In this section, we discuss

the performance of MPE on dispersion interactions, using lattice models for unsaturated

hydrocarbons as an example.

2.4.1 Pariser-Parr-Pople model

To model the electronic structure of 7r electrons, we employ the Pariser-Parr-Pople (PPP)

model, defined by following Hamiltonian

a= t' j + j+, + Vi(ehdi-1)(td -1). (2.18)

j7 i i~j

This can be viewed as an extension of the Hubbard model, which in addition to on-site

repulsion characterized by the parameter U, accounts for long-range electron-electron inter-

actions determined by the inter-site potential Vi. A common choice for Vij is the Ohno

potential [1811, which is an interpolation between the on-site interaction U and asymptotic

1/r dependence of the Coulomb potential. The Ohno potential has the following form

U
V - = U(2.19)

V/1 + (Urij/e2)2'

where rij is the distance between sites i and j, and e is the elementary charge. The pa-

rameters t and U are usually fitted to reproduce experimental data. For two carbon atoms

separated by 1.4 A, the standard PPP parameters are U = 11.26 eV and tij = -2.4 eV.

Further, we assume exponential dependence of the transfer integral on the bond distortion

0 = (1.4 - rj), i.e. tkj = -2.4e 4 eV, for covalently bound sites. The parameter a = 3.785

was fitted to reproduce the transfer integral t = -2.9 eV for ethylene (r = 1.35 A).

Further in this work we consider only hydrocarbons whose all site occupations are equiv-

alent by symmetry. Additionally, each sp2 carbon atom contributes only one electron to the

7 framework, so we will consider only half-filled PPP models. This means that for each site
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k the ground-state density is just Pk = 1. We impose these constraints to avoid the need

for optimization of the density. This restriction is not a limitation of MPE itself, but makes

the initial study simpler and faster without any substantial loss of generality.

Figure 2-8: Density partitioning in a half-filled system with bond-alternation. Each color
block represents one pair density.

For the models considered, the density partitioning is particularly straightforward as it

is always possible to choose a pattern where each pair occupies two neighboring sites and all

pairs do not overlap with each other. For systems with alternating bond lengths, we allocate

a pair to sites connected by a shorter bond, while longer bonds connect sites occupied by

two different pairs (Figure 2-8). We have shown that such decomposition leads to a quick

convergence of MPE energies for the Peierls-Hubbard model. This also corresponds well

with intuition that tells us that electron pairs would localize on double (short) carbon-

carbon bonds rather than on single (long) ones.

2.4.2 Decay of MPE corrections in polyacetylene

Due to locality of interactions in the Hubbard model, MPE has O(N) scaling at any order,

where N, is the size of the system. In the PPP model, the presence of long-range interactions,

requires to calculate energy corrections for every possible combination of pair densities. This

immediately leads to O(NM) where M is the order at which MPE is truncated. However, we

can expect that energy corrections will decay rapidly with the distance between electron pairs

that are correlated. If we could neglect contributions from combinations of pair densities

separated by a distance greater than some threshold, MPE would still scale linearly with

the size.

To check how rapidly MPE correction vanish with the distance between pair densities,

we first consider a 100-site model for trans-polyacetylene with imposed cyclic boundary

conditions. The bond lengths are 1.36 A and 1.44 A for the the double and single bond,

respectively. We consider four types of pair density patterns (see Figure 2-9) that have one

gap in the partitioning. For MPE2, one pair density is fixed and the other one is moved

along the chain (MPE2 (1+1)). Similarly, for MPE3 (2+1) and MPE4 (3+1), two and three
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MPE2(1+1)

MPE3(2+1)

MPE4(3+1)

MPE4(2+2)

Figure 2-9: Four pair density patterns considered in the analysis of the MPE corrections

decay rate. Each block represents one pair density and the blocks with the same color are

fixed as contiguous. Shift = 2 for all patterns.

adjacent pair densities are fixed, and the remaining one is translated by two sites at a time.

Additionally, for MPE4 we consider a (2+2) pattern, where two adjacent pair densities are

fixed and the remaining two are translated as contiguous blocks.

0.00040
- MPE2 (1+1) 1o - MPE2 (1+1) .

0.00035 - MPE3 (2+1) - MPE3 (2+1)
- MPE4 (3+1) 0 -- MPE4 (3+1)

0.00030- MPE4 (2+2) - MPE4 (2+2)

0.00025- 10- a(MPE2)= -5.97

~0.00020 1
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0.00015 -
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0.00000c loll -_ __'-
2 3 4 5 6 1 2 3 4 5 6 7 8 9 10

Shift (pairs) Shift (pairs)
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Figure 2-10: (a) Decay of MPE corrections as a function of the distance between pair

densities in polyacetylene. Shift denotes the distance between two contiguous blocks of

fragment densities measured in number of pair density translations. (b) Decay of MPE

corrections on a double logarithmic scale and a monomial fitted to be tangent to the MPE2

curve at shift-10.

Figure 2-10a shows decay of the magnitude of MPE2 - MPE4 energy corrections as a

function of separation between localized pair densities. Energy corrections for contiguous

blocks of pair densities (shift = 1) are suppressed as they are up to three orders of magnitude
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larger than for a pattern with a gap between the pairs. It is evident that corrections

decay rapidly and fall below 10-6 eV beyond the separation of 5 localized pairs (10 sites).

More insight can be gained from plotting the same data on a double logarithmic scale

(Figure 2-10b), this time including also the corrections for contiguous blocks. For shift

= 1, the corrections are 0.19 eV, 0.020 eV and 0.0050 eV for MPE2, MPE3 and MPE4,

respectively. This already shows that, if pairs are localized in space, corrections decay quickly

with the level of the MPE, each being an order of magnitude smaller than the preceding

one. Furthermore, the magnitudes of corrections fall off rapidly also with the separation

between localized pairs. The decay is polynomial as the dependence on the separation is

approximately a straight line on a double logarithmic scale. The blue broken line in Figure 2-

10b is tangent to the MPE2 curve at shift = 10 and it follows closely the MPE2 curve for

shifts greater than 4. The slope is -5.97, which means that MPE2 corrections decay as 1/R6

in the asymptotic range, which corresponds to the fact that they account for unscreened

long-range correlations due to dispersion interactions.

The rapid decay of MPE corrections, both with the level of the expansion and the

distance between pairs being correlated, is very promising for the applications of MPE.

First, we can truncate the expansion at low orders as there is no need to correlate more

than a few electron at a time. This behavior has already been shown for Hubbard and

Peierls-Hubbard Hamiltonians. Second, we can suppress the corrections for pairs separated

by large distances, which would reduce the polynomial O(N) scaling at the cost of some

small loss in accuracy. Both these features hinge on the decomposition of the total density

to well localized pair densities, which is an essential component of MPE calculations.

2.4.3 Ethylene dimer

To study how MPE accounts for dispersion interactions, we first start with a model for

the ethylene dimer. Dispersion interactions in this system are dominated by correlations of

7r electrons, which are the most polarizable. In reality different orientations of the dimer

strongly affect the interaction energy [182]. This includes also the dispersion contribution

due to the directional character of the 7r cloud. The anisotropy cannot be accounted for

in the model Hamiltonian that we use, which is represented in the basis of four sites in

the positions of carbon atoms only. Therefore, we stipulate that our model represents a

configuration where two ethylene molecules are stacked perfectly on top of each other and
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interact mostly through 7r - 7r stacking.

Since there are no electron clouds that could overlap in the lattice version of the PPP

model and all sites are charge neutral, there is no interaction between two molecules at the

mean-field level. Allowing electrons on both molecules to correlate, generates a force that is

attractive at all separations. The lack of short-range repulsion due to wavefunction overlap

causes that MPE interaction energies do not behave like in real 7r-7r interacting complexes.

In particular, they cannot predict the existence of an equilibrium distance. To account for

this effect, we add a pairwise correction to the energy that depends exponentially on distance

between interacting sites:

Erep = E exp(-rij/D) (2.20)
i AjEB

where E = 377.2 eV, D = 0.3455 A, and rij is the distance between sites i and j belonging

to two different molecules. The parameters of this potential have been chosen so that the

total MPE2 interaction energy closely follows the Buckingham potential from the MM3 force

field [1831 at all distances. Note that when comparing energy differences at fixed distances,

the repulsive part will cancel out, so its particular form is somewhat arbitrary in this case.
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Figure 2-11: (a) Dissociation curve of the ethylene dimer calculated from MPE2 with a

repulsive correction and the decomposition to its attractive and repulsive components. For

comparison, a Buckingham potential from the MM3 force field using the same parameters

is shown. (b) Dispersion energy of the ethylene dimer calculated from MPE2 and monomial

fits to its asymptotic limit (double logarithmic scale).

Figure 2-11a shows the dissociation curve calculated at the MPE2 level, which is exact

for the four-electron PPP Hamiltonian used to model the interaction. Naturally, the curve
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has the qualitative character of the potential energy surfaces of a van der Waals complex.

The shapes of MPE2 and Buckingham potentials are very similar at all separations, differing

mostly by a slight shift at the short and intermediate range, which justifies the parameteri-

zation of the repulsion correction we use. The attractive (MPE2) and repulsive components

of the total interaction energy are also plotted in Figure 2-11a. To analyze the behavior

of the attractive part of the total MPE2 (exact) interaction energy, we plot its absolute

value on the double logarithmic scale (Figure 2-11b). Since the attractive component of the

MPE2 interaction energy is pure dispersion, it should scale like R- 6 at large separations

between monomers. The broken blue straight line in Figure 2-11b is a monomial fitted to

be tangent to the dispersion energy curve at R = 50 A. Its slope is -5.98, which matches

the asymptotic limit almost perfectly. The exact dispersion energy approaches this limit

rather slowly and at 10 A the slope is still noticeably smaller. This is expected since the

Ohno potential that has been used in the PPP Hamiltonian reaches the 1/r dependence

of the true Coulomb potential only at infinity. For this type of two-electron interactions,

the correct long-range scaling of the dispersion energy is ((e 4 /U 2 ) + R2)- 3 (see Eq. 2.19).

The red curve in Figure 2-11b is a similarly fitted monomial of V(e4 /U 2 ) + R2 plotted as a

function of R. It follows the exact dispersion energy much closer and around 7 A these two

curves become visually indistinguishable.

2.4.4 Benzene dimer

As a second example, we study the model for a parallel stacked benzene dimer. The same

parameters have been used as for the ethylene dimer, both in the PPP Hamiltonian and

the repulsive energy correction. Assuming that the density is decomposed into maximally

localized pairs, two types of partitioning are possible (Figure 2-12). Unless otherwise stated,

we will assume the partitioning of the D3h symmetry, which makes both benzene molecules

symmetric. Figure 2-13 shows MPE potential energy surfaces up to the 6th order, which is

equivalent to the exact diagonalization (FCI) for the entire system.

As the MPE1 energy adds only a portion of intramolecular correlation energy, the inter-

action energy is exactly the same as for the EXX, so both curves are on top of each other.

MPE2 adds pairwise correlations between electron pairs on two separate benzene molecules

and leads to a minimum at 4.1 A. Compared to the exact result, the equilibrium distance is

about 0.1 A too long and the interaction energy is underestimated by almost 37%; also the
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D3h C3v

Figure 2-12: Two types of maximally localized density partitions of a benzene dimer. We
assume the D3h partitioning to be the default due to its higher symmetry. Numerical results
indicate that the convergence of MPE strongly depends on the decomposition.
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Figure 2-13: MPEO-MPE6 dissociation curves of the benzene dimer. All bonds are equivalent

(t1 = t2 = -2.4 eV), density partitioning has D3h symmetry.

long-range decay is too quick. MPE3 corrects this result substantially, yielding the correct

equilibrium distance. The binding energy is overestimated by approximately 8% at equilib-

rium, but the interaction energies are very accurate beyond 6 A. Interestingly, MPE4 gives

a substantial overcorrection, shifting the minimum again to 4.1 Aand underbinding by over

15%. MPE5 is only a slight improvement, while MPE6 is a relatively significant correction

leading to the exact result. Overall, already MPE2 captures the qualitative behavior of

the PES and locates the equilibrium distance fairly accurately. The deterioration of MPE4
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energies compared to MPE3 might be related to the fact that three pairs are conjugated

within a benzene ring.

We can break the conjugation completely by setting every second transfer integral to

zero (Figure 2-14a); thus generating effectively a Kekule structure of the benzene molecule.

The geometry of the dimer is not changed, so all two-electron interactions in the PPP

Hamiltonian are the same as in the original dimer model. In this case MPE2 leads to

approximately 45% overbinding. MPE3 energies are already close to the reference, indicating

that three-pair correlations can be important even in the model with broken conjugation.

MPE4 and MPE5 results are visually indistinguishable from the reference values. This

example confirms that in the presence of conjugated electron pairs, the convergence of MPE

is likely to be more challenging.

0.0020
xMPE= EXX x0-4 MPEO= EXX

0.0015 -MPE1 0.004 - MPE1
MPE2 MPE2

0.0010 - MPE3 - MPE3
-- MPE4 0.002 MPE4

0.0005- MPE5 MPE5
-- MPE6 =FC1 MPE6 =FC1

00000 - .0.000

-0.0005

-0.002-
-0.0010-

-0.0015 -0.004

-0.00201
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

R (A) R (A)

(a) (b)

Figure 2-14: MPEO-MPE6 dissociation curves of the benzene dimer. (a) With broken con-
jugation within a ring. The alternating resonance integrals are ti = -2.4 eV and t2 = 0 eV,
density partitioning has D3h symmetry. (b) With rotated density decomposition pattern.
All bonds are equivalent (t1 = t2 = -2.4 eV), density partitioning has C3, symmetry.

The results presented so far were obtained with pair densities on one benzene that are

mirror reflection of the pair densities on the other molecule (left-hand side of Figure 2-12).

However, MPE results clearly depend on the way how the total density is decomposed. To

investigate this effect we consider also a pattern where pair densities on one benzene are

rotated by 600 with respect to the other one (right-hand side of Figure 2-12). Comparing

Figures 2-14b and 2-13 reveals that the choice of partitioning is decisive for the convergence

of MPE results. For the C3, partitioning (Figure 2-14b), MPE2 produces only a shallow
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minimum at 4.8 A and the binding energy is underestimated by approximately 80%. MPE3

corrects this result to a major extent, exhibiting a minimum that is only 12% too low, but

MPE4, instead of getting closer to the reference, leads to even greater overbinding. MPE5

is again very close to the exact result.

The example of benzene dimer shows that the convergence of MPE interaction energies

may be non-monotonic. This points to the fact that MPE may behave less well if density

decomposition breaks a system of strongly delocalized electrons. In such case the results are

also sensitive to the partitioning pattern. Good results obtained with MPE3 suggest that

the order of the expansion needs to be somehow balanced with the number of electron pairs

that are delocalized.

2.4.5 Ethylene and benzene stacks

Interaction energy is non-additive and so is the dispersion energy component [184, 185].

The non-additivity of dispersion results from dynamical screening of polarizabilities by the

surrounding subsystems and from the truly many-body nature of interactions between them,

which cannot be reduced to a sum of pairwise contributions. Due to its long-range character,

dispersion is a collective effect, whereby the total stabilization energy grows superlinearly

with the size of the system. These effects contribute to the overall cooperativity of binding of

van der Waals complexes. To study how the MPE interaction energy scales with the system

size, we consider stacks of ethylene and benzene molecules. To ensure equivalence of sites and

thus uniform site densities, we impose cyclic boundary conditions. The distances between

monomers are fixed at 4.1 A for ethylene and 4.0 A for benzene stacks. Figures 2-15 and 2-

16 show additional stabilization per monomer due to intermolecular dispersion interactions

as a function of the number of monomers in the system. To facilitate comparison, plots show

relative changes with respect to the interaction energy of a trimer for every MPE level.

For the ethylene stack, MPE3 and MPE4 energies are visually indistinguishable, so

MPE3 is already the converged result. Cooperativity of dispersion interactions is noticeable

as additional molecules in the stack lower the stabilization energy per monomer. This

monotonic decrease fiats out at 7 monomers for all considered levels of MPE. This indicates

that while MPE2 underestimates the additional stabilization by about 25%, it properly

scales with the system size. The converged total interaction energy per monomer is 0.76

meV, so the cooperativity effect accounts for about 3% of the total value.
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Figure 2-15: MPE2-4 stabilization energies per monomer of an ethylene stack. Inset shows
the linear arrangement of ethylene molecules in the stack. The distance between monomers
is 4.1 A and cyclic boundary conditions are imposed.
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Figure 2-16: MPE2-4 stabilization energies per monomer of a benzene stack. Inset shows
the linear arrangement of benzene molecules in the stack. The distance between monomers
is 4.0 A and cyclic boundary conditions are imposed.
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The results for benzene stacks are qualitatively similar. The relative effect of adding

MPE3 corrections is more pronounced as MPE2 recovers less than 50% of the additional

stabilization. Adding MPE4 correction stabilizes the system further; however, the effect is

comparatively small. For 7 and 8 monomers in the stack, some loss of accuracy becomes

apparent due to accumulation of numerical errors. Contrary to the total interaction energy

in the benzene dimer (Figures 2-13 and 2-14), additional stabilization due to many-body

interactions between different monomers seems to converge monotonically with the level

of MPE. As the total MPE4 interaction energy per monomer stabilizes at 4.7 meV, the

additional stabilization due to cooperativity accounts for almost 5% of the effect.

These applications of MPE to the PPP hamiltionian clearly show that already low levels

of the expansion successfully recover the dispersion interactions, which are absent in the

mean field description. As all the terms are defined as density functionals, the implication is

that MPE provides an efficient way to formulate a dispersion correction scheme for any class

of approximate exchange-correlation functionals. The procedure is completely non-empirical

and naturally accounts for both intra- and inter-molecular dispersion. As it does not assume

the asymptotic 1/R6 dependence, it works equally well at any separation between interacting

subsystems and does not require any damping at short ranges. The effect of cooperativity of

many-body interactions is properly accounted for and the scheme goes beyond the pair-wise

additive correction and effectively includes the dynamical dielectric screening effects. These

attractive characteristics warrant pursuing further development of the proposed scheme and

incorporating it in practical DFT computations.

2.5 Conclusions

In this chapter, we have developed the many-pair expansion method and shown MPE is a

systematically improvable hierarchy of density functional approximations to the total energy

of a quantum many-body problem. Through applications to 1D/2D Hubbard models and

ID Peierls-Hubbard model, we demonstrate MPE provides systematic improvement to the

description of strongly correlated systems, which posts significant challenges for almost all

approximate density functionals. Even at low levels of expansion, MPE can give accurate

predictions for strongly correlated electrons in DFT. The study of more challenging Peierls-

Hubbard model points out the importance of using optimal partitioning of the total density.
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In the later work on PPP Hamiltonians for several ir-electron systems, we reveal that

energy corrections decay rapidly with the distance between pair densities. For a large system

this observation allows to neglect a vast number of corrections, leading to reduced scaling

at the cost of introducing small error. Additionally, we have shown that the convergence

of the expansion depends on the partitioning of the total density. In particular, an optimal

partitioning leads to accurate results already at low orders, making MPE calculations prac-

tical for large systems. It has been shown that already MPE2 recovers the qualitative and

semi-quantitative features of dissociation curves of van der Waals complexes and recovers

the 1/R 6 long-range asymptotic behavior of dispersion energy. The importance of three-pair

contributions has been shown on the example of stacked benzene molecules.

In conclusion, we have shown relatively low orders of MPE expansion are able to account

for both strong and weak long-range correlations, for which common density functional

approximations fail miserably. MPE thus shows promise for dealing with a wide range of

applications using a universal method within the DFT framework. In this chapter we focus

on model systems, while we would like to extend MPE to real molecular systems with ab

initio Hamiltonians in the following chapters.
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Chapter 3

Self-attractive Hartree decomposition

3.1 Introduction

In this chapter, we develop a new density partitioning method - self-attractive Hartree

(SAH) [1861, for two purposes. First, the SAH decomposition provides a unique tool to

generate pair densities in the implementation of the many-pair expansion for molecular

systems. The v-representability requirement for pair densities makes the implementation of

molecular MPE difficult, because there is no easy way to partition the molecular density

into sufficiently smooth fragments in finite Gaussian basis sets. In addition, we also require

the pair densities to be localized to accelerate the convergence of MPE series so that low

orders of expansion are enough for accurate results. This localization requirement is similar

to employing localized molecular orbitals (LMOs) [1761 in the method of increments [1871.

Unfortunately, pair densities constructed out of LMOs cannot meet the v-representability

criterion in MPE due to the existence of nodes. Another straightforward idea may be

partitioning the density of a 2N-electron system equally into N pair densities. In that

case, the pair densities are satisfactorily smooth but highly delocalized, leading to poor

convergence of MPE expansions. The proposed SAH decomposition is able to satisfy both

v-representability and localization requirements to be used in molecular MPE. However, we

will not further discuss the use of the SAH decomposition in MPE in this chapter but leave

this topic to Chapter 4. Second, we would like to develop a tool to extract chemical bonding

information directly from the electron density. This is the main focus of this chapter.

Quantum chemistry methods are widely used to explain and predict chemical phenom-

ena by calculating the structures and properties of molecules. However, there is no direct
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and unambiguous mapping between quantum chemical calculations and classical chemical

concepts like chemical bonding, atomic charges, resonance and conjugation [188, 189, 190,

191, 192, 193, 194]. These chemical concepts, though mostly empirical and not observable,

still play a critical role in the description and understanding of chemistry. They are closely

related to a more general concept of individual electron pairs and their localization in space,

which naturally cannot be rigorous in a system of many indistinguishable particles. Never-

theless, such conceptual tools are extremely useful to facilitate understanding in structures

of molecules with unusual bonding [195], intermolecular interactions [196, 197], chemical

reactivity [198], etc.

A natural framework to conceptualize electron pairing is the mean-field approximation

to a many-electron wavefunction. Molecular orbitals (MO), which are the building blocks of

a Slater determinant wavefunction, describe electrons moving in an effective field of all the

others. However, canonical molecular orbitals (CMO) are typically delocalized over large

fragments of the system which impairs their interpretative significance. A solution to this

problem exploits the non-uniqueness of MOs in the Slater determinant and transforms CMOs

to localized molecular orbitals (LMO) through a unitary transformation. Various orbital

localization schemes have been proposed in the literature. They either rely on maximization

of some localization measure [199, 176, 200, 201, 202] or take advantage of the localized

atomic basis set to find localized and fully occupied natural orbitals (eigenvectors of the

idempotent density matrix) [203, 196, 204]. In addition to conceptual advantages, LMOs

have also found numerous applications in reduced scaling electronic structure methods [205,

206, 207, 2081. Nevertheless, interpretative power of orbitals has fundamental limitations.

MOs are required to be mutually orthogonal which results in a complicated nodal structure

which often interferes with a clear cut interpretation. Another deficiency of the orbital

picture is that it does not account for electron correlation effect, which is described by

interaction of different orbital configurations. While the concept of orbitals can be restored

by diagonalizing the one-particle density matrix, the number of these natural orbitals with

non-zero occupations far exceeds the number of electrons, limiting their interpretive value.

Additionally, orbital analysis is not directly applicable to results obtained with orbital-free

methods like orbital-free DFT [2091 or direct density matrix optimization [210].

When looking for alternatives to the orbital analysis, it is tempting to focus on the elec-

tron density as the descriptor of a many-electron system. This is appealing since the density
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is well defined in any ab initio electronic structure method and is also available experimen-

tally from X-ray measurements. The first Hohenberg-Kohn theorem [211] guarantees that

the electron density embodies all the information about the system, but extracting it is in

general a daunting task. In particular disentangling different pairs of electrons and probing

their localization is very difficult as contributions from different electrons are washed out.

Still, there are a range of theoretical tools to analyze electron density distributions. The

most prominent is perhaps the quantum theory of atoms in molecules (QTAIM) [212, 213].

In QTAIM, the physical space is divided into non-overlapping sectors separated by zero-

flux density surfaces. Each sector contains one nucleus; thus it defines an atom in the

molecule and its net charge. Within this theory the Laplacian of the density is also used to

probe local density concentrations, which correspond to atomic shells and chemical bonds.

Other scalar fields developed to analyze the electron density include localized electron lo-

cator (LED) [214], single-exponential decay detector (SEDD) [215, 216, 217] and density

overlap regions indicator (DORI) [218]. An alternative way to define atoms in molecules

is the Hirshfeld partitioning [73], which splits the total density based on contributions of

atomic densities to the density of a promolecule. Contrary to QTAIM, the resulting atoms in

molecules are overlapping and their densities are smooth functions. Another interesting ap-

proach to density partitioning is proposed by partition DFT (PDFT) [85], which introduces

a local partition potential to represent the molecular density as a sum of non-interacting

fragments with fractional number of electrons.

Direct decomposition of the electron density into one-electron densities, rather than

atoms or molecular fragments, has not been much exploited in the literature. In this chapter,

we present a new method to decompose the electron density into localized one-electron

densities. Our aim is to devise an algorithm which gives subsystems that are ground states

of an effective one-particle Hamiltonian. Such approach assures that fragment densities

are both smooth and localized in space. We start by following the mathematical idea of

maximizing the self-repulsion energy within fragment densities, similar to the Edmiston-

Ruedenberg (ER) localization [199]. However, the problem is cast in a form of coupled

self-consistent field (SCF) equations, by including the kinetic energy of electrons in order

to regularize the solutions of the localized decomposition. The resulting non-orthogonal

ground-state solutions define electron pairs and reveal chemical bonding patterns which are

consistent with the non-orthogonal Valence Bond (VB) theory [219]. Unlike in the QTAIM
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approach, our decomposed electron pairs are smooth and can better illustrate the chemical

bonds visually. Furthermore, we apply this method to hydrogen-bonded systems to show it

can not only visualize chemical bonding in molecular complexes but also accurately measure

the strength of hydrogen bonding directly from the input electron density.

3.2 Theory

3.2.1 Localization of fragment densities

Given any spin-compensated molecule with 2N electrons, we want to decompose its electron

density (which is an input density in our method) p,(r) into a sum of one-electron densities

{pi,,(r)} such that

N

p.(r) = pi,,(r), pi,,(r)dr = 1, pi,,(r) > 0, o {at, f}. (3.1)

Since p0 (r) is equal to pf(r) in the remainder of the manuscript, we drop the spin label

throughout and refer to pin(r) as the input density (pijn(r) = p,(r) = pfl(r)) and pi(r) as

one-electron densities (p,(r) = pi,a(r) = pi,fl(r)). The generalization to spin-uncompensated

systems is straightforward, however the qualitative insights might not be as clear in this

case.

In order to obtain localized one-electron densities, we start with the ER criterion to

maximize the self-repulsion energy within the one-electron densities:

EER[{pi} = PJ (r)pij()drdr'. (3.2)

To find the maximizer of Eq. 3.2 subject to constraints in Eq. 3.1, we can express one-

electron densities in terms of non-orthogonal auxiliary orbitals to assure that they are not

negative

pj(r) = I<Oi(r) 2, (3.3)
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and search for a stationary point of the following Lagrangian:

N pr)(r') IJ N N

L[{p }, p(r), {r-i}] =r r~ drdr'- p(r)(Ep (r)-pin(r))dr+ EEj ( pi(r)dr - I),
i

(3.4)

where p(r) and {E} are Lagrangian multipliers. The resulting Euler-Lagrange equations

have the following form:

2 pI(r),1 dr' = p(r) - qi. (3.5)

However, solutions of Eq. 3.5 would not yield a satisfactory decomposition. Since we are

constraining one-electron densities only to be non-negative, maximization of self-repulsion

would result in fragments whose densities sharply drop to 0 outside of some regions of

space. Consequently, the input density would be decomposed into a set of non-overlapping

fragments. This is highly undesired from the numerical perspective, as it would make it

impossible to expand the auxiliary orbitals {#i(r)} in a basis set of some smooth functions,

e.g. Gaussians. It is also undesired from the conceptual standpoint, as we would like to

think about electron pairs as localized but still overlapping and with a smooth decay of their

probability densities, rather than confined to finite volumes of space. Figure 3-1 illustrates

the non-smooth and smooth decompositions of the density, where the latter (Figure 3-1b) is

the preferred choice. We also note that the non-overlapping fragment densities from Eq. 3.5

are different from the densities in QTAIM. QTAIM in general produces fragment densities

which account for partial charge transfer and do not integrate to integers, while solutions of

Eq. 3.5 always integrate to one electron.

- ------------------------------ --------------

(a) (b)

Figure 3-1: Illustrations for density partitioning. (a) Non-smooth decomposition of the

density from direct maximization of self-repulsion. (b) Smooth decomposition of the density

from regularized localization.
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3.2.2 Regularization of the Lagrangian

A way to assure smooth decay of fragment densities is to regularize the Lagrangian in Eq. 3.4

by adding a term that penalizes any possible sharp features. This can be realized by adding

the non-interacting kinetic energy as a regularization term. Consequently, we construct a

regularized Lagrangian which corresponds to minimization of the sum of the kinetic energy

Ek[#i}] = JV i(r)12dr (3.6)

and the self-attraction energy, which is just negative of the self-repulsion (Eq. 3.2), subject

to constraints in Eq. 3.1. In Eq. 3.6, Ek is the sum of kinetic energies of localized electrons

rather than the real kinetic energy of the whole system. Since simultaneous minimization

of the self-attraction and kinetic energy are conflicting requirements, minimization of their

sum would give solutions that are regularized compared to the solutions of Eq. 3.5. We can

have more control over the level of regularization by scaling the self-attraction energy by a

parameter a (>0), which results in the following form of a regularized Lagrangian:

L[{#4}, p(r), {ei}] = 2EJ IV~i(r)I2dr- N _______drdr'

N N

p(r)( pi(r) - pin(r))dr - Ei pi(r)dr - 1), (3.7)

where pi(r) = I i(r)12.

Solving for stationary points of this Lagrangian = 0) gives the following set of

equations:

- V2 - 2a ( dr' + p(r)]# i(r) = Efji (r). (3.8)
2 J r -r

Eq. 3.8 is a set of N equations for N auxiliary orbitals. They have a similar form to

Hartree equations [421 which describe self-interacting charged particles. However, instead

of a repulsive potential in the Hartree equation, we have a potential -2af _ijr-)2 dr'. This

potential describes a rather peculiar interaction as charge distributions are now experiencing

self-attraction. In addition, all the subsystems feel a common external potential p(r) which

constrains the sum of one-electron densities to be the input electron density. Therefore,

Eq. 3.8 can be interpreted as describing self-attracting electrons in a common external field.
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In analogy to the Hartree equation, Eq. 3.8 can be solved in a self-consistent procedure using

standard SCF techniques. As a result, we obtain a set of localized fragment densities that

sum up to the total density, therefore we name this procedure the self-attractive Hartree

(SAH) decomposition of the electron density.

Meanwhile, Eq. 3.8 has another feature that each qi is a ground-state solution of a Kohn-

Sham (KS) equation, meaning that each one-electron density is v-representable by design.

This is similar to solving field theory equations with quartic interactions, where the sym-

metry is spontaneously broken, leading to many ground-state solutions [220]. This is also

a very attractive feature that can be exploited in the development of DFT. For instance,

such densities might mitigate some of the problems of Perdew-Zunger self-interaction correc-

tion [1061, which are related to the appearance of nodes in KS orbitals [221, 222, 223, 224].

They could also be very useful in methods such as subsystem DFT [225] and wavefunction-in-

DFT embedding [83, 84]. Particularly, they are crucial for the development of the many-pair

expansion (MPE) [139, 145] for molecular systems.

3.2.3 Basis set implementation

To solve Eq. 3.8 using standard linear algebra techniques, we need to have a way to represent

the potential p(r) and to calculate its matrix elements < ilp(r)lj > in some convenient

basis. To this end we introduce an auxiliary basis set {xp}[226 , 227] composed of Gaussian-

type atomic orbitals. Then the external potential p(r) can be expanded using the nuclear

potential and Coulomb potentials of functions in the auxiliary basis set [81]:

S bt~) ~ - f Xt (r'),,
p(r) = vn.c(r) + v bt(r) = vns(r) + 1 bt j Ir dr', (3.9)

where vnuc(r) is the nuclear potential of the system and {bt} are the coefficients for the

potential basis functions. In this work, we use the nuclear potential vnuc(r) in order to

recover the proper density cusps at the nuclei. However, we also notice adding vnuc(r) is not

necessary if the auxiliary basis set {XP} is large enough because the nuclear potential can

be well represented by the potential basis set. The same basis set can be used to represent

the self-attraction potential by expanding one-electron densities in the auxiliary basis set

p(r) = k#i(r)E2 ~ dpxp(r), (3.10)
P
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with density fitting coefficients [228, 2291

dcp = Y(iilQ)(QIP)r, (3.11)
Q

where

(iijQ) = f (r)#i(r)XQ(r') drdr', (3.12)
ii1) - f I - r /I

(QIP) J XQ(r)Xp(r') drdr'. (3.13)WIP) ff r - r/1

By inserting Eq. 3.10 and Eq. 3.9 into Eq. 3.8, we obtain the final working equation:

[ V2 + vuc (r) - 2a Ed' 5p(r) + E btt(r)]#i(r) = esi~(r). (3.14)
2 P

We use a constrained SCF algorithm composed of an outer loop and an inner loop to

solve Eq. 3.14 under the constraints in Eq. 3.1, see Algorithm 1. In the outer loop, we

perform the normal SCF procedure for each one-electron density respectively to update

#i(r) (and {d' } according to Eq. 3.11) iteratively. Note the constraint f pi(r)dr = 1 is

automatically fulfilled by occupying one electron in the lowest orbital of each #j(r). In the

inner loop, {bt} is updated for all N SCF equations through the Wu-Yang potential inversion

technique [77, 861 to satisfy EN p2 (r) = pin(r). This constraint is enforced by searching for

{bt} that gives W = 0, where

N

W = i (r) ( pi(r) - pin(r))dr. (3.15)

This search can be achieved using the Newton's root-finding method, and the analytic Ja-

cobian 9 is available:

awu N 6WU 6pi(r) o&p(r') dd,
Obt JJ 6pi (r) 6p (r') Obt

5u(r) -2 Oft (r)#() (r)7r)-x~'drdr'
a

N vir

=2 (3.16)
0 aE a P-E
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where 9 is the lowest and only occupied orbital for ith fragment density, #q is the virtual

orbital for the same fragment density, Ei and e? are the occupied and virtual orbital energies.

Algorithm 1: SAH decomposition
Input : the total electron density pin
Initialize: a: localization parameter; {o}: auxiliary orbitals for one-electron

densities {pi}; {bt}: coefficients of the external potential A; E, = 10-6:
SCF convergence criterion; E2 = 10-5: density matching criterion

while EN 11p+1 - p,|j > c, do
Compute one-electron density coefficients {d' } according to Eq. 3.11;
while IIaII > E2 do

Construct N Fock matrices {Fi} according to Eq. 3.14;
Diagonalize Fock matrices {Fi} and obtain temporary orbitals {#i};
Compute the density matching function W according to Eq. 3.15;

Update {bt}: b = b + (W) -W, acoording to Eqs. 3.15-3.16;
end
Construct updated Fock matrices {F +1};

Obtain new orbitals {#}+1} and one-electron densities {pi+1;
end

3.3 Computational details

For simplicity, we only use the electron density from quantum chemical calculations as the

input. All quantum chemical calculations are done using Q-Chem 4.2 software package [2301.

The ground state geometries are first optimized using the second-order Moller-Plesset (MP2)

method [34] for all single molecules in cc-pVTZ basis set [2311 and hydrogen-bonded dimers in

aug-cc-pVTZ basis set [2321. Unless otherwise specified, we then obtain the electron density

from DFT calculations with B3LYP functional [491 for single molecules in uncontracted

cc-pVTZ (u-cc-pVTZ) basis set and hydrogen-bonded dimers in uncontracted aug-cc-pVTZ

(u-aug-cc-pVTZ) basis set. We do not use the electron density from correlated wavefunction

methods in this paper so the electron correlation effects are not covered. However, the

formalism of SAH decomposition allows for analysis of correlated electron densities and this

will be investigated in the future work.

For the SAH decomposition, u-cc-pVTZ and u-aug-cc-pVTZ basis sets are used for single

molecules and hydrogen-bonded dimers respectively to expand orbitals {#i(r)} in Eq. 3.14.

Meanwhile, the auxiliary basis set {xp(r)} for expanding potentials in Eq. 3.14 needs to be

constructed carefully. As known from the literature, the potential inversion and optimized
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effective potential (OEP) techniques are numerically unstable in finite basis sets [233, 234].

Several solutions exist to avoid ill-conditioning problems in potential inversions [235, 236,

237, 821. Here, we follow the work of Gdrling and co-workers [235], to balance the orbital

and auxiliary basis sets. The auxiliary basis set is constructed out of the orbital basis

by removing some of the most compact and diffuse functions. The detailed description of

balanced orbital and auxiliary basis sets can be found in the Appendix. VMD [2381 and

Molden [239] are used to generate fragment density pictures.

3.4 Results: chemical bonding from SAH
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Figure 3-2: Analysis of the self-repulsion energy (EER) and the kinetic energy (Ek) of frag-

ment densities in a water molecule. The least localized one-electron density (isovalue=0.025

a.u.) is shown for different a values.

We first perform a numerical analysis of SAH decomposition for the water molecule in

order to make the best choice of the parameter a in Eq. 3.14. Figure 3-2 shows the self-

repulsion energy (EER, see Eq. 3.2) and the kinetic energy (Ek, see Eq. 3.6) of all fragment

densities in H 20 as a function of the parameter a. As mentioned before, a controls the

ratio of EER to Ek in the Lagrangian, and thus plays an important role in balancing the

extent of localization and smoothness. As can be seen, when a increases, the optimized
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one-electron densities indeed have larger EER and Ek, indicating the one-electron densities

are more localized but less smooth.

To show how fragment densities look like as a changes, we also plot the least localized

one-electron density in H2 0 for different a values in Figure 3-2. Starting from small a values

(e.g., a = 0.5), the Ek term is dominating in the optimization of the Lagrangian. Hence,

the one-electron densities are very smooth but delocalized, and the least localized one still

resembles the total density of a water molecule. It is obvious that a = 0.5 is too small to

give localized and meaningful fragment densities. When a is increased to 2, the EER and Ek

terms are both playing important roles in the process of the Lagrangian optimization. One

can see in Figure 3-2 that the least localized one-electron density at a = 2 is both localized

and smooth. Particularly, it actually resembles the O-H bond, suggesting we can already

extract useful chemical bonding information by using a = 2 . As a is further increased to

4, the least localized one-electron density does not change much: it is a little more localized

and still looks smooth. However, it is not the case when we have a even higher value a = 8.

When a is too large, the role of the regularization term Ek fades away, which results in

the irregular shapes and nodes in fragment densities. Note that the existence of nodes is

entirely due to the use of a finite basis for both orbitals and potentials. In a complete basis

set limit, no nodes should exist because all one-electron densities are ground-state solutions

by construction. It has been found that the presence of spurious nodes in the lowest-lying

orbitals is rather a rule even in regular Kohn-Sham calculations with atomic basis sets [240].

From this analysis, using a values from 2 to 4 is reasonable for generating both localized

and smooth one-electron densities in H2 0.

We further present a more detailed analysis of our partitioning approach for six molecules

in Figure 3-3, in which all normal bonding patterns are included. Instead of EER and Ek,

we plot EER/Ek as a function of 10g2(a). Since we want to have a large EER and a small

Ek at the same time, computing EER/Ek may be helpful to pick the best a, with which

EER/Ek should have the maximum value. As shown in Figure 3-3, the EER/Ek curves for

CH4 , N 2 , C2 H4 and H 20 have maxima around a = 3 ~ 4. However, for molecules that have

heavier atoms, larger a values are needed to achieve the maximum EER/Ek. For example,

from H 2 0 to H 2 S to H 2Se, the a value for maximum EER/Ek increases from a = 4 to a = 7

to a > 10.

To choose one unified a parameter for all molecules, we take a more detailed look at the
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Figure 3-3: EER/Ek for six molecules.
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Figure 3-4: Comparison of the least localized one-electron densities generated using different
a values for three molecules: (a) H20 (isovalue = 8 x 10-3 a.u.); (b) H2 S (isovalue = 4 x 10-3
a.u.); (c) H 2Se (isovalue = 4 x 10-3 a.u.).
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one-electron densities for H20, H 2S and H2 Se. As shown in Figure 3-4, the least localized

one-electron densities generated using a = 2 are localized and smooth for all three tested

molecules. However, when using a = 4, the one-electron densities have nodes and are not

perfectly smooth, no matter what maximum a values these molecules have in Figure 3-3.

This pattern has been observed for all tested molecules and 2 is the largest value for a that

does not produce obvious nodes. Therefore, we choose a = 2 for all remaining molecular

systems analyzed in this article. We also note that for much heavier atoms than the tested

ones the optimum a values may change and need to be chosen carefully.

(a) (b) (c)

(d) (e) (f)

Figure 3-5: Localized and smooth pair densities of six molecules (a 2, isovalue 0.03 a.u.
for a-e, isovalue = 0.02 a.u. for f): (a) CH 4 , (b) H 20, (c) C2 H4 , (d) 1,3-Butadiene, (e) N2 ,
(f) BeO.

Since the spin-up one-electron densities are the same as their spin-down counterparts,

they naturally form localized electron pairs. Such pair densities are very useful in illustrating

chemical bonds, as shown in Figure 3-5. The first molecule tested is CH4 (Figure 3-5a). As

can be seen, the total electron density of CH4 is decomposed into 5 localized and smooth

pair densities. One of them is a core pair density on the carbon atom and the others are four
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C-H single-bonding pair densities. This bonding pattern is in agreement with VB theory:

the covalent bond is formed between two atoms where each atom contributes one electron.

Similarly, it is shown in Figure 3-5b that the total density of H 20 is partitioned into 5

pair densities, including one core pair density and two 0-H single-bonding pair densities.

Moreover, there are two more pair densities located around the oxygen atom, which are

recognized as the non-bonding lone pairs. As shown in this example, one strength of SAH

decomposition is it explicitly breaks symmetry so that lone pairs in agreement with chemical

intuition can be extracted directly from the electron density. This result is similar to Boys

and ER localizations, but different from Pipek-Mezey localization or NBO analysis, in which

the o- and 7r symmetry is preserved for lone pairs [241, 242, 243]. Another strength of our

method is that, unlike other density-based methods such as QTAIM, it is more useful in

visualizing chemical bonds by generating very smooth pair densities.

The bonding situation becomes more complicated when it comes to C2 H4 (Figure 3-5c).

Among the 8 resulting pair densities, two core pair densities and four C-H single bonds

are apparently identified. The other two overlapping pair densities (green) sitting between

two carbon atoms constitute the C=C double bond. This is reminiscent of the VB picture

of a "banana bond" that results from two equivalent tetrahedral orbitals from each atom,

originally proposed by Pauling [244]. We see it as a natural result of our design principle

because decomposing the double bond into two pair densities from the middle guarantees the

pair densities are nodeless and localized simultaneously. We further apply our partitioning

scheme to 1,3-butadiene to test its performance for the linear conjugated molecules. As

shown in Figure 3-5d, the bonding pattern in 1,3-butadiene is clearly revealed: two C=C

double bonds (green) on 1,3-positions and one C-C single bond (orange) between the middle

two carbon atoms. In Figure 3-5e, the triple bond pattern is shown for N 2 . This triple bond

is formed by a --bonding pair density (green) and two pair densities (orange) similar to the

double bonding densities in Figures 3-5c and 3-5d. Two blue pair densities represent the

lone pairs for two nitrogen atoms.

In addition to covalent bonding, SAH decomposition is also able to reveal ionic bonding.

Figure 3-5f is an example. In BeO, the beryllium atom loses its electrons to the oxygen atom

and these atoms form the ionic bond through the electrostatic attraction. Decomposing the

electron density of BeO, there is one pair density (blue) that shows strong charge transfer

character. It completely comes from the beryllium atom but is now shared between the two
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atoms, which is a sign of ionic bonding. However, this pair density is not fully located on the

oxygen atom, suggesting that these two electrons are not completely transferred from the

beryllium atom to the oxygen atom. This result agrees well with the partial charge study

using the Hirshfeld analysis [245].

(a) (b) (c)

(d) (e)

Figure 3-6: Localized and smooth pair densities of three molecules with nontrivial bonding

patterns (a = 2). (a) Benzene (isovalue = 0.03 a.u.). (b) Single bonding pair densities of

benzene (isovalue = 0.03 a.u.). (c) Double bonding pair densities of benzene (isovalue =
0.03 a.u.). Two pair densities contribute to one double bond. (d) B 2H6 (isovalue = 0.025
a.u.). (e) BH 3NH3 (isovalue 0.015 a.u.).

The more interesting cases are to apply SAH decomposition to some nontrivial bonding

situations. Figure 3-6a shows the bonding patterns in the benzene molecule. The pair

densities look like a cyclohexatriene structure, also known as the Kekul6 structure, where

the C-C single bonds (orange, Figure 3-6b) and Cz=C double bonds (one green and one cyan

pair densities constitute one double bond, Figure 3-6c) alternate in the benzene ring. This

again agrees with VB theory, which explains the benzene structure as a resonance between

two Kekul6 structures. Our individual pair densities break the symmetry in benzene, while
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they still add up exactly to the total symmetric electron density. This feature is different

from LMO methods, in which the symmetry is normally maintained. It is also different

from typical VB theory, in which single resonance structure does not have symmetric total

density. Comparing Figure 3-6a with Figure 3-5d, one realizes that the C=C double-bonding

pair densities have a larger overlap with the C-C single-bonding pair densities in the benzene

molecule, making sure the electron densities between every two carbon atoms are same.

The other nontrivial bonding molecules we study are B2 H6 and BH 3 NH 3 . These two

molecules have unusual bonding due to the electron-deficient nature of boron. The bonding

between the two boron atoms in B 2H 6 is mediated through a bridging hydrogen atom,

which leads to a 3-center 2-electron bond. As shown in Figure 3-6b, the two 3-center 2-

electron bonds (green) in B2 H6 are successfully revealed. In BH 3NH 3 , borane can bind with

ammonia through a dative bond (or a charge-transfer bond). We show this bonding pattern

in Figure 3-6c. The green pair density completely comes from the nitrogen atom (as a lone

pair) but now serves as an N-B single bond.

3.5 Application: hydrogen bonding

We have demonstrated that SAH decomposition can clearly reveal chemical bonding in

single molecules. Here, we further apply it to hydrogen-bonded dimer systems, to show that

this method can be a useful tool to analyze non-covalent interactions as well. Hydrogen

bonding is one of the most significant non-covalent interactions, and being able to measure

the strength of a hydrogen bond is crucial for understanding the related chemical properties,

such as the structures of DNAs and proteins. Many quantum chemical calculations have been

performed to explain the hydrogen bonding strength by computing the binding energy of the

hydrogen-bonded systems [246, 247, 248]. However, direct calculations are not applicable

when multiple or intramolecular hydrogen bonds exist and special treatment of the system

is needed [249, 250, 251, 252]. Therefore, our goal is to develop a method for the local

measurement of the hydrogen bonding strength based on our SAH pair densities.

3.5.1 Hydrogen bonding strength indicator

We first use the water dimer as an example in Figure 3-7a to show the density decomposition.

The total electron density of a water dimer is decomposed into 10 pair densities, to which
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(a) (b)

Figure 3-7: (a) SAH decomposition (a = 2, isovalue 0.03 a.u.) of a water dimer. (b)

The hydrogen bond is defined as electrostatic attraction between a lone pair density in

the proton-accepting water monomer and a hydrogen nucleus in the proton-donating water

monomer.

each water monomer contributes 5 pair densities. From our method, the concept of a

water monomer can be easily recovered from the electron density of a water cluster. More

importantly, the hydrogen bond in the water dimer can be identified. According to the

IUPAC definition [253], the hydrogen bond is formed between a hydrogen atom (that is

covalently bound to a highly electronegative atom) and the lone pair of another highly

electronegative atom. Hence, we define the hydrogen bond as the interaction between a

hydrogen atom in the proton-donating molecule and a lone pair density in the proton-

accepting molecule, shown in Figure 3-7b. It is then interesting to investigate whether the

classical electrostatic attraction between the lone pair density and the hydrogen nucleus can

be employed as a hydrogen bonding strength indicator.

To confirm our hypothesis, we apply the density partitioning scheme to 13 hydrogen-

bonded dimers (proton donor. . proton acceptor): H 20... H 20, H2 0. .. NH 3 , NH 3 . NH3 ,

HF- . HF, HF--. NH 3 , HF. . H 20, HF .- HCN, CH 4 -- NH3 , NH4+.-- H 20, H 30+. - H 20,

H2 0 ... OH-, H2 0. . CN-, H20... CCH-. We compute the electrostatic attraction energy

to measure the hydrogen bonding strength:

Eattr = JPLP(r)VH(r)dr , (3-17)

where PLP(r) is the lone pair density on the proton acceptor and VH(r) is the nuclear

potential of the hydrogen atom participating in the hydrogen bonding. When there is more

than one lone pair density on the proton acceptor like H 20 and HF, we choose the lone pair
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that gives largest Eattr. For charged hydrogen-bonded systems, we put the excess charge

on the central atom and take it into consideration when computing Eattr. For example, the

positive charge in NH4 +. H20 is placed on the nitrogen atom, while the negative charge

in H2 0. --CN is placed on the carbon atom. Then for positively charged systems we add

the attraction between the excess positive charge and the lone pair to Eq. 3.17:

Eattr = PLP (r) VH (r)dr + JPLP(r)V (r)dr (3.18)

where V+(r) is the potential of the positive charge. Similarly, for negatively charged systems

we add the attraction between the excess negative charge and the hydrogen nucleus to

Eq. 3.17:

Eattr = PLP (r) VH (r) dr + Jp-r)VH(r)dr , (3-19)

where p (r) is the electron density of the negative charge.
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Figure 3-8: The correlation between the binding energy and the electrostatic attraction

energy defined in Eqs. 3.17-3.19 for 13 hydrogen-bonded dimers. (a) The B3LYP binding
energy correlates with the attraction energy from the B3LYP density. (b) The MP2 binding

energy correlates with the attraction energy from the HF density.

To examine whether this simple prescription can indicate the strength of hydrogen bond-

ing, we compare Eattr (Eqs. 3.17-3.19) with the binding energy (BE) of the dimer systems

in Figure 3-8. The BE is calculated using DFT with B3LYP functional in Figure 3-8a and

MP2 in Figure 3-8b, both with the counterpoise correction [254] to account for the basis

set superposition error. Eattr in Figure 3-8a is computed using B3LYP calculated electron

94



density as the input for SAH, while in Figure 3-8b the input is HF electron density. As can

be seen in Figure 3-8a, there is a very strong correlation (R 2 = 0.984) between Eattr and the

BE, suggesting the electrostatic attraction between the SAH lone pair and the hydrogen nu-

cleus is a good indicator of the BE. It might be more surprising to find that Eattr calculated

from decomposed Hartree-Fock densities correlates with MP2 binding energy equally well

(R2 = 0.986) as shown in Figure 3-8b. This correlation means the very accurate hydrogen

bonding strength from MP2 is recovered from the electron density computed by a low level

of theory (HF). Our results indicate that the electrostatic interaction is indeed dominant in

hydrogen bonding [255, 256] and SAH pair densities are very useful in capturing two main

related effects: (1) the electrostatic interaction between the lone pair and the proton; (2)

the sharing of the lone pair electrons between the electronegative atom and the hydrogen

atom. In summary, through the use of our SAH decomposition, one can identify hydrogen

bonds in a complicated molecular system and estimate the strength of these hydrogen bonds

directly from the electron density.

3.5.2 Comparison with other methods
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Figure 3-9: (a) The correlation between the MP2 binding energy and the electron density
at the hydrogen bond critical point p(rc). (b) The correlation between the MP2 binding
energy and the kinetic energy density integrated within the reduced density gradient volume

G(so.5).

We further compare our SAH-based hydrogen bonding strength indicator (HBSI) with

two other methods. The first method is from Parthasarathi et al. [251] and based on Bader's
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QTAIM. The electron density at the hydrogen bond critical point (p(rc)) was shown to

correlate well with the binding energy so it can be used as a HBSI (denoted by AIM-HBSI).

The other method[252] we consider here is based on the non-covalent interactions (NCI)

index [257]. Lane et al. [252] found that the hydrogen-bonded OH-stretching red shifts

correlate strongly with the kinetic energy density integrated within the reduced density

gradient volume (G(sO.5 )) that describes a hydrogen bond. This method is denoted by NCI-

HBSI. These two methods are both density-based so it is interesting to compare them with

SAH-HBSI. We computed p(rc) and G(so.5) for 13 hydrogen-bonded dimers tested above

using Multiwfn [258] and NCImilano [259]. The HF/u-aug-cc-pVTZ density is used as the

input and the results are shown in Figure 3-9.
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Figure 3-10: The performance of three HBSIs on 8 neutral hydrogen-bonded dimers. (a)
SAH-HBSI. (b) AIM-HBSI. (c) NCI-HBSI.

Comparing Figure 3-8b with Figure 3-9, it can be seen that our SAH-HBSI has an
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obviously better correlation (R2 = 0.986) with the binding energy than AIM-HBSI (R2 
=

0.838) and NCI-HBSI (R2 = 0.761). The main difference is for the charged hydrogen-bonded

dimers. Since we explicitly include the electrostatic interaction due to the excess charge

as shown in Eqs. 3.18-3.19, the binding energies of charged hydrogen-bonded dimers are

correctly described. In AIM-HBSI and NCI-HBSI, only the electron density information in

the hydrogen bond region is utilized and no such correction exists. Thus, these two methods

fail to predict the hydrogen bonding strength for charged hydrogen-bonded dimers. However,

we note that all three methods perform similarly well for neutral hydrogen-bonded dimers,

as presented in Figure 3-10.

3.5.3 Intramolecular hydrogen bonding

(a) (b) (c)

Figure 3-11: The structures of 1,n-alkanediols: (a) 1,2-ethanediol (ED); (b) 1,3-propanediol
(PD); (c) 1,4-butanediol (BD).

To demonstrate the usefulness of our approach on more complicated systems, we apply

SAH-HBSI to a series of 1,n-alkanediols: 1,2-ethanediol (ED), 1,3-propanediol (PD) and 1,4-

butanediol (BD) (see Figure 3-11). Intramolecular hydrogen bonds exist in these molecules

and direct binding energy calculations are not applicable for estimating the hydrogen bond-

ing strength. Previous experimental and theoretical studies [260, 261, 262] show that the

intramolecular bonding strength increases as the alkane chain length increases.

We perform SAH decomposition on 1,n-alkanediol series using the electron density com-

puted at the HF/u-aug-cc-pVTZ level and the geometries optimized at the MP2/aug-cc-

pVTZ level. We compute the electrostatic attraction energy (Eattr) between the lone pair

density and the hydrogen nucleus involved in the intramolecular hydrogen bonds based on

Eq. 3.17. Using the calculated Eattr, we can estimate the MP2 binding energy from the
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Molecule Eatt, (Ha) SAH-estimated Binding Av (cm- 1)[2601
Energy (kcal/mol)

ED 0.494 1.66 47
PD 0.581 3.92 71
BD 0.657 5.91 157

Table 3.1: Hydrogen bonding strengths of 1,n-alkanediols series based on SAH-HBSI. Eattr
is computed according to Eq. 3.17 using HF/u-aug-cc-pVTZ densities and MP2/aug-cc-
pVTZ geometries. The MP2 binding energies are estimated from the linear fit for neutral
H-bonded dimers in Figure 3-8b. Av is the red shift of the first OH-stretching transition of
1,n-alkanediols compared to free OH groups, calculated using the CCSD(T)-Fl2a/cc-pVDZ-
F12 method.

linear fit for neutral hydrogen-bonded dimers in Figure 3-8b. The results are presented in

Table 3.1. The red shifts (Av) of the first OH-stretching transition of 1,n-alkanediols com-

pared to free OH groups in Ref. [2601 are also presented. One can see SAH-HBSI sucessfully

predicts the increasing strength of the intramolecular hydrogen bonding as the alkane chain

length increases. More interestingly, the SAH-estimated MP2 binding energies can be used

to directly compare the strength between different hydrogen bonds. For example, the esti-

mated MP2 binding energy for BD (5.91 kcal/mol) is larger than the binding energy of the

water dimer (4.69 kcal/mol), indicating BD's stronger hydrogen bonding strength.

3.6 Conclusions

In this chapter, we present a new decomposition method for deciphering chemical bonding

from the electron density. The proposed SAH decomposition adopts the idea of minimizing

self-attraction energies and regularizing the shapes of one-electron densities simultaneously,

and can be solved by an efficient constrained-SCF algorithm. We show that our approach

successfully illustrates the chemical bonding patterns in single molecules and molecular com-

plexes, which agree well with non-orthogonal VB theory. We further apply it to hydrogen-

bonded systems and propose a simple way to accurately measure the hydrogen bonding

strength. The SAH decomposition is purely density-based, making it easy to be combined

with any quantum chemistry methods. Another feature is it generates smooth and nodeless

pair densities by construction. Thus it is more suitable for visualizing the chemical bonding

than other density-based methods.

The future applications should focus on three aspects. First, the nature of our method
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makes it effective in revealing fragment properties in complex systems. For example, we

would like to study properties of water monomers in liquid water, such as their charge,

dipole and polarizability [2631. Besides, we would also like to investigate the hydrogen

bonding formation and strength in biological systems, such as proteins and DNAs, based

on the proposed hydrogen bonding strength indicator. Second, as SAH decomposition can

be used with any input electron densities, it would be attractive to combine it with X-ray

measurements to extract chemical bonding information directly from experimental densities.

Third, due to the smooth (v-representable) nature of the resulting fragment densities, this

method is a good starting point for the many-pair expansion method [139, 1451, which we

will further discuss in Chapter 4. This important feature of v-representability also makes

it interesting to be adopted in other DFT methods, such as self-interaction correction [1061

and subsystem DFT [2251.
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Chapter 4

Many-pair expansion: towards real

molecules

4.1 Introduction

In Chapter 2, we have proposed the many-pair expansion (MPE) [139, 145], which is a

hierarchy of density functional approximations that systematically corrects any deficien-

cies of an approximate functional to finally converge to the true ground-state energy. We

have shown that MPE gives accurate results for several important lattice models, including

1D/2D Hubbard [140] and ID Peierls-Hubbard [141] models, indicating its capability of

correcting strong correlation and self-interaction errors. In addition, we have applied MPE

to polyacetylene as well as stacks of ethylene and benzene molecules in the Pariser-Parr-

Pople (PPP) lattice model [142, 144] and demonstrated it deals very well with long-range

Coulomb interactions [145]. In Chapter 2, the usefulness of MPE has only been proved

in model Hamiltonians. Therefore, in this chapter, we extend MPE to real molecules by

implementing it using ab initio Hamiltonians in Gaussian basis sets. By employing the

self-attractive Hartree (SAH) decomposition [186] developed in Chapter 3, we obtain local-

ized and v-representable density fragments, which allows us to perform numerically stable

MPE calculations for molecules. We test the performance of MPE for the thermochemistry

of a few small molecules and hydrogen chains as well as the symmetric bond breaking of

hydrogen rings, and show that low orders of expansion are sufficient to obtain accurate re-

sults. Furthermore, we show that this method is numerically convergent for various systems
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and problems tested, suggesting its potential to serve as a systemically improvable density

functional hierarchy for molecular systems.

4.2 Theory

4.2.1 Implementation of MPE for molecules

The general formalisms of the many-pair expansion and self-attractive Hartree decomposi-

tion have already been discussed in Chapter 2 and Chapter 3. Here, we continue to discuss

how to use SAH-generated pair densities in MPE calculations for molecules. From the SAH

decomposition, we construct relevant fragment densities pq(r). Then we compute the DFT

energy EA[pq] as described in Eqs. 2.3-2.8, using Wu-Yang potential inversion algorithm.

Similar to Eq. 3.9, we expand the Lagrange multiplier v8 (r) in Eq. 2.4 using Coulomb po-

tentials of functions in the auxiliary basis set {xp(r)}:

vs(r) = v,,c(r) + Ecp p(r) = v,,,(r) + ' Xp(r') dr', (4.1)
P IP

where {cp} are the coefficients for the potential basis functions. Then Eq. 2.4 becomes

LKS[{#k}, {cP}I = I V2 II) vnuc(r) + E cpj5p(r)) (p[vs](r) - pq(r))dr, (4.2)

and each KS orbital #k(r) satisfies the equation

- V2 + vnuc(r) + E c5p(r) #k(r) = Eksk(r). (4.3)
P

The density p[vs](r) can be computed using Eq. 2.6. To optimize the Lagrangian in Eq. 4.2,

we analytically compute the gradient of LKS with respect to coefficients {cp}

aLKS - J ip(r)(p[vs](r) - pq(r))dr, (4.4)
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and the Hessian

0CC

4OLQ /]p(r) - 4 z z r)a(r)i(r')(r') - EQ(r')drdr'

= 4 Z(iaIXP) Qkiqa IXQ) (4.5)
i Ei-Ea

Note that the magnitude of the gradient in Eq. 4.4 is an indicator for the density matching.

With analytic gradient and Hessian, we can use a standard Newton's method to find the

optimized potential expansion coefficients {cp}. Once the converged KS orbitals {#k(r)}

are found, the DFT energy for pq(r) can be computed: Ea[pql E[{#k}].

To obtain the exact energy of the same fragment density Pq(r), we apply an interacting

Wu-Yang potential inversion algorithm. We first expand the potential vex(r) in Eq. 2.9:

vex(r) = v.,,(r) + Z fpp(r) = vanc(r) + E fpJ xr dr'. (4.6)
P P

Then Eq. 2.9 becomes

LExact[,Q,,{fP}] 1 1
2k k<1 k

+ (vnUC(r) + 1 fpi5p(r)) (p[vex](r) - pq(r))dr. (4.7)
P

and I is the ground state of the interacting Schrddinger equation

[~ Z P~ Ii 7- + Vnuc(-) + 1: fp5 p(f)]J) = EI'). (4.8)

The density p[vex](r) can be computed using Eq. 2.11. The optimization of the Lagrangian in

Eq. 4.7 can also be performed using a standard Newton's method, as in the non-interacting

case. The analytic gradient can be computed as

OLExact = J (r)(P[vex](r) - pq(r))dr, (4.9)
&fp

while the Hessian needs to be computed using the finite difference method. The converged

interacting wave function T can then be used to compute the exact energy for the fragment

density pq(r): Ev[Pq] = (TI|j4). Note that although there is no guarantee that the SAH
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pair densities are also interacting v-representable, our numerical tests show that one can

usually find the corresponding potential vex(r) in the interacting potential inversion as long

as the pair densities are non-interacting v-representable in the given basis set.

With the approximate DFT and exact energies for fragment densities, the MPE energies

can be finally computed according to Eq. 2.2 at the desired levels. In this study, due to

the high computational cost of interacting potential inversion calculations, we perform MPE

calculations up to the second order (MPE2), which means we only correct the DFT energies

for one-pair and two-pair densities.

As discussed in Chapter 3, the quality of SAH pair densities is affected by the choice of

the parameter a. A small a value results in pair densities that are not localized enough,

while a large a value may give rise to sharp changes and nodes in pair densities. Note that

although the SAH pair densities are ground-state solutions of Kohn-Sham equations, they

can still possess nodes due to the use of finite basis sets. Therefore, we want to choose the

maximum a value that still maintains smoothness in pair densities. In this work, we choose

a = 4 for all tested molecules and show the dependence of MPE energies on the choice of a

is weak in a later section.

By comparing Eq. 3.14 and Eq. 4.3, one may realize that the potential v,(r) in the

non-interacting potential inversion for one-pair densities are already pre-defined by the SAH

decomposition:

v.(r) = vnuc(r) + E cp p(r) = vnuc(r) - 2aZ dp 5p(r) + Y bt 5 t(r). (4.10)
P P t

Thus, the expansion coefficients for one-pair densities {cp} can be directly obtained from

cp = -2a - dp + bp, (4.11)

without doing the potential inversion procedure in Eqs. 4.2-4.5.

4.2.2 Energy estimation for non-v-representable densities

For fragment densities larger than one-pair densities, there is no guarantee that they are also

v-representable. Although they are constructed from adding smooth one-pair densities, it

may still be difficult to find the corresponding converged potentials in the potential inversion
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processes, due to the use of finite basis set. Without the converged potentials v,(r) and

vex(r), the DFT and FCI energies for the fragment density Ea [Pq] and E [PqJ cannot be

computed. For example, in the water molecule, the two-pair density that comes from adding

two lone-pair densities is not v-representable in the chosen basis set.

For simplicity, assume this two-pair density comes from adding the first and second pair

densities Pq (r) = P1+2(r) = p1(r) + P2(r). We need to estimate the contribution to the

energy correction from this non-v-representable two-pair density in Eq. 2.2: EC"[P1+2] =

AE[PI+ 2] - AE[pi] - AE[P2], where only AE[pi] and AE[p 2] can be accurately computed.

A straightforward way is to approximately compute the energy correction term AE[P1+ 2]-

Although the converged potential for non-interacting potential inversion v,(r) cannot be

found, we can instead search for the potential iU (r) that gives the most closely approximate

density P1+2(r), which is the potential that gives the smallest gradient (Eq. 4.4) norm in

the optimization of the Lagrangian in Eq. 4.2. Using the approximate potential iY(r), we

can estimate the DFT energy for P1+2(r): Ea[Pi+21 -~ Ea[51+ 21. An interacting potential

inversion can then be performed exactly for the same approximate density 51+2(r) to obtain

its FCI energy E [ 1+21. Since p1+ 2 (r) is a non-interacting v-representable density, we find

in practice the convergence of its interacting potential inversion is normally good. The

estimation to Eco"[Pl+2] can thus be calculated as:

Eco"[Pl+2] = AE[P1+ 2] - AE[p1] - AE[P2] AE[51+21 - AE[pi] - AE[p 2

~ Ev[51+ 2] - Ea[P1+ 2] - AE[p1 ] - AE[p 2 . (4.12)

Nevertheless, the approximation in Eq. 4.12 may still lead to large energy errors when

the density error ||W|| is large, where

W, = p(r)(;1+2(r) - P1+2 (r))dr, (4.13)

because P1+2(r) $ pi(r)+P2(r). To solve this problem, we introduce a "top-down" correction

scheme. Once we get the approximate two-pair density ;51+ 2 (r), we use this density as the

input to perform a new SAH decomposition to generate two new one-pair densities:

51+2(r) -A H 51(r) + p2 (r), (4.14)
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where i (r) and P2(r) resemble the original one-pair densities p1(r) and P2(r). In this way,

we rebuild the one-pair densities whose sum equals to p1+2(r) and then estimate Ec"'r[Pl+2]

using:

E corr[P+2 = AE[P1+ 21 - AE[pl] - AE[p 2] AE[N+2) - AE[ 1 ] - AE[p 2]

Ev [;5+2 - Ea[;5+ 2] - (E[ VJ - Ea[V11) - (Ev[P2] - Ea[p2]) (4.15)

Here, we compute the DFT and FCI energies for new one-pair densities j (r) and 2 (r), and

use those energies to estimate Ec"[P1+21. This is a better cancellation of error compared

to Eq. 4.12 due to the density match 1+2 (r) = j(r) + P 2 (r).

fa

E

0
LU

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-r- uDZ, Approx
-y- uDZ, Top-down ~
-0- uTZ, Approx

- uTZ, Top-down
- -

A-

- -

4W

i i 44444444

1.0 1.5 2.0 2.5 3.0 3.5 4.0

-1og1001W

Figure 4-1: The errors of energy estimation for a two-pair fragment density
bond) in H 20.

(core + O-H

We conduct a specific numerical test to show the energy errors associated with the es-

timations made in Eqs. 4.12 and 4.15, as shown in Figure 4-1. The two-pair density of

interest is constructed from adding the core pair density and O-H bonding pair density

in H2 0, where both non-interacting and interacting potential inversions can converge very

well. We choose this two-pair density because its correct DFT and FCI energies are known

so that they can serve as the reference values. We manually stop the non-interacting po-

tential inversion process under different thresholds so that the density error is chosen to be:

|iWil = 10-4, 10-3, 5 x 10-2, 10-2, 5 x 10-1, 10-1 au. Using these approximate densities,
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we compute ECo"[P1+21 according to Eqs. 4.12 (marked as "Approx") and 4.15 (marked as

'Top-down") in two different basis sets: uncontracted cc-pVDZ (uDZ) and uncontracted cc-

pVTZ (uTZ) [2311 in Figure 4-1. One can see when the density error increases, the energy

error of Eco"[P+ 2l can be as large as 2 mHa in uDZ basis and almost 4 mHa in uTZ basis

for the "Approx" scheme. Applying the "Top-down" correction scheme reduces the energy

error to under 0.5 mHa in uDZ basis and approximately 1.5 mHa in uTZ basis. There-

fore, the "Top-down" correction scheme reduces the energy errors of the "Approx" scheme

by approximately 2-4 folds, but still leads to notable errors. In practice, for some non-v-

representable two-pair densities, the non-interacting potential inversion process may only be

converged to give I WI = 0(10-2 a.u.), so the energy errors of Ec"[pi+ 2] are estimated to

be 0(mHartree). We find that molecules with lone pairs or multiple bonds tend to have this

numerical instability in MPE calculations. In this work, only the MPE2 results involving

CH2 , H 20 and HF are affected by this numerical error.

4.3 Computational details

The ground state geometries of tested small molecules are optimized using the coupled-

cluster singles and doubles (CCSD) method [2641 in the cc-pVTZ basis set [231] using Q-

Chem 4.2 software package [230]. For SAH decomposition and MPE calculations, two basis

sets are used for tests: (a) uncontracted cc-pVDZ [231], abbreviated as uDZ; (b) uncon-

tracted cc-pVTZ for non-hydrogen atoms and uncontracted cc-pVDZ for hydrogen atoms,

abbreviated as uTZ. The input electron density for all molecules is obtained through Hartree-

Fock (HF) calculations in uDZ and uTZ basis sets. In this study, we only use the exact

exchange (EXX) functional as our approximate density functional, and perform all MPE cal-

culations starting from EXX results. Coupled-cluster singles and doubles with perturbative

triples (CCSD(T)) [36] energies are computed using Q-Chem 4.2 package as the reference

for thermochemistry results. Density matrix renormalization group (DMRG) [178] energies

are calculated using PySCF package [2651 and BLOCK code [179, 266] as the reference for

hydrogen ring bond breaking results.

As discussed in Chapter 3, the potential inversion and optimized effective potential

(OEP) techniques are numerically unstable in finite basis sets [233, 2341. Several solutions

exist to avoid ill-conditioning problems in potential inversions [235, 236, 237, 82]. Here, we
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follow the work of G6rling and co-workers [235] to balance the orbital and auxiliary basis

sets. This leads to our use of uncontracted orbital basis sets in this work. Meanwhile, the

corresponding auxiliary basis set {Xp(r)} for expanding potentials is carefully constructed

out of the orbital basis set by removing some of the most compact and diffuse functions.

The detailed description of balanced orbital and auxiliary basis sets can be found in the

Appendix. VMD [238] and Molden [2391 are used to generate fragment density pictures.

4.4 Results

4.4.1 Thermochemistry

We first test the performance of MPE on the thermochemistry of molecules. DFT is known

to perform very well for thermochemistry due to the effective description of dynamic corre-

lations [23]. Hybrid and double-hybrid functionals [49, 26, 531 are especially efficient, whose

parameters are normally fitted to reproduce experimental thermochemistry data. However,

even for thermochemistry, approximate functionals cannot achieve the chemical accuracy

of 1 kcal/mol for random chemical reactions. Thus, systematic improvement of density

functional calculations is still needed for the accurate description of thermochemistry.
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Figure 4-2: Errors of MPE energies for a series of small molecules using CCSD(T) results
as the reference. (a) uDZ basis set. (b) uTZ basis set.

We apply MPE to a series of small molecules on their equilibrium geometries, including

BeH2 , BH 3 , CH2 , CH 4 , H20 and HF, and show the errors of total molecular energies in

Figure 4-2. As can be seen, MPE at the first order (MPE1) reduces the errors of EXX
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significantly - more than 50% for all tested molecules in both basis sets, meaning that the

correlation energy inside each electron pair is very large. However, MPE1 results still possess

considerable errors, indicating that correcting the energy errors at only one-pair level is not

enough. MPE at the second order (MPE2) further reduces the errors and gives very accurate

total energies for BeH 2 , BH3 , CH2 and CH4 . Although MPE2 causes over correlations for

H 20 and HF, which may result from the numerical instability in the potential inversions and

low order of MPE expansion, it is still a great improvement over EXX and MPE1. This result

suggests that adding in correct pair-pair interactions is crucial for the accurate description

of dynamic correlations in molecules. More importantly, Figure 4-2 demonstrates that when

we apply successive higher order corrections, the MPE total energies become more accurate

and converge quickly towards the highly accurate results.

Comparing Figure 4-2a and Figure 4-2b, one may notice that the MPE results are more

accurate in the larger uTZ basis set despite the larger EXX errors. As shown in Eq. 4.4 and

Eq. 4.9, the quality of density matching in the potential inversions are determined by the

size of the auxiliary basis set {xp(r)}. Therefore, the superior performance of MPE in the

larger basis set is probably due to the better density matching in the potential inversions,

which implies MPE would be even more accurate when approaching the complete basis set

limit.
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Figure 4-3: Absolute errors of MPE reaction energies using CCSD(T) results as the reference.
(a) uDZ basis set. (b) uTZ basis set.

We then investigate the performance of MPE for four chemical reactions, as shown in

Figure 4-3. In both basis sets, MPE1 improves the description of reaction energies over
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Figure 4-4: Absolute errors of MPE reaction energies compared to several popular density

functionals in the uTZ basis set. CCSD(T) results are used as the reference. Note that all

MPE calculations use EXX as the starting functional.

EXX for all chemical reactions considered. In the uDZ basis set (Figure 4-3a), MPE2

performs better than MPE1 in the first three reactions but worse in the last one. Although

MPE provides successive improvement for the first three reactions, the absolute error of

MPE2 reaction energy can still be larger than 5 kcal/mol. However, in the larger uTZ

basis set (Figure 4-3b), the MPE results get much better. There is clearly systematic

improvement of MPE reaction energies for all four chemical reactions. Meanwhile, the

absolute errors of MPE2 reaction energies are small in the uTZ basis set, all of which are

below 2 kcal/mol. This result again shows the importance of accurate density matching in

the potential inversions - the larger basis set results in better performance of MPE.

In Figure 4-4, we further compare the performance of MPE with several popular density

functionals on the same four reactions in the uTZ basis set. The considered functionals

involve PBE (GGA) [431, B3LYP (hybrid GGA) [49] and M06-2X (hybrid meta-GGA) [26].

One may notice that none of these three functionals is able to predict all reaction energies

within 2 kcal/mol of error like MPE2. For example, PBE is the best functional for describing

the second and third reactions, but it poses absolute errors of more than 5 kcal/mol for the

other two reactions. Overall, Figures 4-3 and 4-4 demonstrate that, even with the worst

performer EXX functional as the starting point, MPE is able to systematically correct the
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approximate functional and provides an accurate description of thermochemistry at a low

second order of expansion.

The thermochemistry of hydrogen molecular chains presents an interesting challenge

for density functional approximations. In spite of the simple model, commonly-used GGA

and hybrid functionals have been shown to fail in accurately describing the decomposition

of hydrogen chains into hydrogen molecules [267, 268]. The failure is attributed to the

inaccurate characterization of the delocalized electron distribution across more than one

H 2 unit, which is caused by the self-interaction error (delocalization error) present in these

approximate functionals. We therefore test the performance of MPE on the decomposition

of a hydrogen chain H 2n into n hydrogen molecules, whose reaction energy can be calculated

as:

AE = nE(H2 ) - E(H2n), (4.16)

where n is the number of H 2 units in the hydrogen chain. The bond lengths between two

adjacent H atoms in the hydrogen chains and hydrogen molecules are set to be 0.75 A. The

static correlation becomes another source of error for the tested methods due to the equal

spacing between H atoms in the H 2n chain, but it is not dominant because of the small bond

length.

8
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Figure 4-5: Errors of the hydrogen chain reaction energies per H 2 unit in the uDZ basis set.
CCSD(T) results are used as the reference.

111



The errors of the hydrogen chain decomposition energies per H 2 unit compared to

CCSD(T) is shown in Figure 4-5. The popular GGA functional PBE is shown to over-

estimate reaction energies severely: about 7 kcal/mol of error per H 2 unit for H 10 chain

decomposition, indicating the large delocalization error in the PBE functional. On the

other hand, the EXX functional significantly underestimates the reaction energies, with the

similar magnitude of errors as PBE. This behavior is associated with the so-called local-

ization error in literature, due to the neglect of electron correlation in the EXX functional.

The hybrid functional B3LYP reduces the errors by one third compared to PBE because

of the mixing of EXX, but still poses substantial errors. Furthermore, the errors of all

three functionals increase as the hydrogen chain length becomes longer, which suggests the

delocalization/localization errors are more severe in more extensive electron density distri-

butions.

As seen in Figure 4-5, MPE1 provides a significant improvement over EXX, where the er-

rors of reaction energies are already smaller than B3LYP by including the correct correlation

for each electron pair in the hydrogen chain. The higher order MPE2 produces even better

results: errors for different lengths of hydrogen chains are all reduced to almost zero, which

indicates that including one-pair and pair-pair electron correlations is sufficient to remove

all localization errors present in the EXX functional for hydrogen chains. In addition, this

systematic improvement does not deteriorate as the chain length becomes longer, showing

the ability of MPE to deal with systems with different electron density distributions.

In all test cases for thermochemistry, we use the Hartree-Fock (HF) density as the input

to perform MPE calculations. Due to this approximate total electron density, MPE will

not converge to the true exact (FCI) energy. Instead, MPE energies converge to the FCI

energy constrained to the given HF density, which equals to inverting the full interacting

Schr6dinger equation with the density constraint. The HF density is known to be a good

approximation of electron density for equilibrium molecular structures [2691, so we expect

it causes small energy errors. Our results above also show the effect of using HF density is

small for the description of thermochemistry.

4.4.2 Strong correlation

To test the performance of MPE on strongly correlated molecular systems, we study the sym-

metric bond breaking process in hydrogen rings using MPE. Hydrogen rings have recently
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emerged as a benchmark for new electronic structure methods [270, 271], as the strength

of correlation can be tuned from weak to strong by changing the hydrogen atom spacing.

Despite the simple model, the strong electron correlations present in stretched hydrogen

rings require the correlation methods to be capable of treating full Coulomb interactions.

Meanwhile, hydrogen rings in a realistic basis set have multiple orbitals per site as well as

long-range interactions, making them more complicated compared to the one-dimensional

(1D) Hubbard model [140]. We have shown that MPE can deal with strong correlations

in 1D Hubbard model very well [1391, so it is interesting to investigate its performance on

hydrogen rings, which reflects the challenge of real molecular systems.
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Figure 4-6: Energies per H atom in the H8 ring in the uDZ basis set. SAH decomposed pair

densities are shown as an inset.

We first show the energies per H atom in the H8 ring in the uDZ basis set in Figure 4-

6. The DMRG result is presented here as a highly accurate answer for comparison. The

EXX functional is shown to predict much higher energies compared to DMRG around the

equilibrium distance, indicating it is incapable of describing dynamic correlations in the

H8 ring. When the H-H distance gets longer, the strong (static) correlation becomes more

dominant, leading to even worse performance of EXX functional. This is expected for all

single-determinantal approximate KS-DFT methods. Adding in correct one-pair correla-

tion in MPE1 results in a great improvement over EXX. The equilibrium-geometry result
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of MPE1 is already accurate compared to DMRG. More importantly, in the bond-breaking

region, MPE1 reduces the EXX errors substantially because the use of FCI brings in cor-

rect multi-determinantal interactions at the two-electron level. This correction cannot be

achieved using traditional single-reference correlation methods such as CCSD. As can be

seen in Figure 4-6, CCSD describes the dynamic correlations very well but collapses when

the H-H distance is long [2711. Despite the much better accuracy than EXX, it is clear that

MPE1 is still insufficient for accurate estimation of strong correlations since the error per

atom is still as high as 0.02 Ha at RH-H = 3.0 A.

Including pair-pair electron correlations leads to further improvement in MPE2 compared

to MPE1. MPE2 is still accurate around the equilibrium distance and further reduces the

MPE1 errors at longer H-H distances. Nevertheless, unlike in thermochemistry cases, even

MPE2 cannot treat strong correlations in the stretched H8 ring accurately. This result

can be attributed to two reasons. First, the second order of expansion for MPE may not be

enough for this problem. Higher order of expansions, where six or more electron correlations

are correctly computed, may be needed. Second, a more important reason might be that

we employ the HF density as the input for MPE calculations here. As already shown in

Figure 4-6, EXX, which is the counterpart method of HF in DFT, is a very poor solution

for the strong correlation problems. Using bad input electron density from HF may cause

MPE to finally converge to the inaccurate result, i.e., it is possible in this case even MPE4

is not satisfactory. Therefore, to achieve a correct description of strong correlations, we may

want to have better input electron density. Such density may be obtained through multi-

configurational SCF calculations, or more ideally, from the optimization of self-consistent

MPE calculations. We will not discuss the optimization of input density here and leave it

for the future work.

We also apply MPE to the H6 ring in the uDZ basis set to test its performance for a

hydrogen ring with different size, as demonstrated in Figure 4-7. MPE1 and MPE2 give

similar accuracy at long H-H distances compared to Figure 4-7: MPE1 provides a significant

improvement over EXX and MPE2 further reduces the errors of MPE1, while both MPE1

and MPE2 pose errors of more than 0.01 Ha per atom at RH-H = 3.2 A. Around the

equilibrium distance, however, the performance of MPE is not as satisfactory as in the H 8

ring. Both MPE methods overcorrelates for about 0.01 Ha per atom compared to DMRG

and MPE2 provides no improvement over MPE1. This result is surprising considering there
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Figure 4-7: Energies per H atom in the H6 ring in the uDZ basis set. SAH decomposed pair

densities are shown as an inset.

are only six electrons in this system, meaning that MPE3 is the "exact" answer. We suspect

such behavior is related to the aromaticity of the system: the H6 ring can be viewed as

an aromatic ring while the H8 ring is anti-aromatic. In aromatic systems, specific order

of MPE (for example, MPE3) and better density decomposition may be needed to achieve

high accuracy, which is also found in the previous MPE study of benzene dimer in the PPP

model [145] in Chapter 2.

4.4.3 Dependence on localization parameter a

All MPE results shown above are based on pair densities generated by the SAH decomposi-

tion using the localization parameter a = 4 for Eq. 3.14. We choose a = 4 because it is the

maximum value that still maintains smoothness in pair densities so that the ill-conditioning

problems in potential inversions can be mostly avoided. Meanwhile, the resulting pair densi-

ties are localized enough to make sure MPE energies converge quickly to the accurate result.

Here, we test the performance of MPE with different a values (a = 1.5, 2,3,4) to show its

dependence on the parameter a.

We fist show the dependence of MPE on the localization parameter a for the total

molecular energy of BH3 in Figure 4-8a. For all four a values tested, the MPE1 energy is
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quite stable, while the MPE2 energy becomes slightly better when larger a value is used.

Similar results can be observed in Figure 4-8b, where we test the dependence of MPE on a

for the reaction energy of Be + H 2 -4 BeH 2 . Both MPE1 and MPE2 predict better reaction

energies when larger a values are used. However, the difference of MPE2 reaction energy for

using a = 1.5 and a = 4 is just 1 kcal/mol. Overall speaking, we find that more localized

SAH decomposition (larger a value) leads to better accuracy of MPE, and the dependence

of MPE on the parameter a is not strong. Thus, we believe a = 4 is a suitable choice for

this study, and a > 4 should be used in the future MPE study as long as the potential

inversions remain numerically stable.

4.5 Conclusions

In this chapter, we extend the many-pair expansion to molecular systems with ab initio

Hamiltonians. We employ the self-attractive Hartree decomposition to generate localized

and v-representable pair densities as the basic fragment densities in molecular MPE. To

perform numerically stable potential inversions, we introduce auxiliary basis sets to repre-

sent the external potentials and construct the orbital and potential basis sets in a balanced

fashion. Our numerical study shows that MPE predicts accurate molecular and reaction en-

ergies for a few small molecules and hydrogen chains, even with the low-level EXX functional

and a low second order of expansion. The description of thermochemistry is systematically
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improved as successive higher order MPE corrections are applied. Meanwhile, through the

hydrogen chain case, we demonstrate the potential of MPE to serve as a method to system-

ically remove the many-electron self-interaction error in approximate density functionals.

The study of bond breaking processes in hydrogen rings exhibits the ability of MPE to deal

with strong correlations, but also points out the need for better input density or density

decomposition in MPE. In conclusion, this work shows that MPE provides a promising

framework to systematically improve density functional calculations of molecules. We will

further discuss the direction of future MPE work in Chapter 7.
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Chapter 5

Condensed phase simulation of

host-guest OLEDs

5.1 Introduction

In the previous chapters, we have presented a method to systematically improve the accu-

racy of density functional calculations. While our work to extend the many-pair expansion

to more realistic systems is still ongoing, we also want to point out that conventional DFT

methods can be powerful tools to model electronic properties of complex chemical systems as

long as they are utilized properly. In this and next chapters, we explore this aspect of DFT

simulations by using organic light-emitting diodes (OLEDs) [271 as an example. We choose

OLEDs as the model system because of two reasons. First, to understand the charge and en-

ergy transfer mechanisms in OLEDs, both ground-state (e.g., ionization potential (IP) and

electron affinity (EA)) and excited-state (e.g., T1 and Si excitation energies) energetic prop-

erties need to be accurately calculated, which posts a challenge to DFT methods. Second,

OLEDs are disordered condensed phase systems, whose electronic properties are affected

significantly by the molecular environment. This requires one to correctly incorporate envi-

ronment effects into DFT simulations using the methods we mentioned in Chapter 1. In this

chapter, we carry out condensed phase simulations to investigate the charge recombination

and energy transfer processes in host-guest phosphorescent OLEDs [272].

Organic light-emitting diodes (OLEDs) have attracted significant attention for broad

applications in displays and lighting because of their high electroluminescence (EL) efficiency,
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flexibility and low manufacturing cost [273, 274, 275, 276, 277]. In order to improve the EL

efficiency, various fluorescent and phosphorescent materials have been introduced as OLED

emitters. Because the ratio of singlet and triplet excitons under electrical excitation is 1:3

due to spin statistics [278, 279, 280], the internal quantum efficiency (IQE) of traditional

fluorescent OLEDs is limited to 25%. Phosphorescent OLEDs (PhOLEDs), on the other

hand, can achieve 100% IQE by harvesting both singlet and triplet excitons through strong

spin-orbit coupling [281, 282, 283, 284] and thus obtain high external quantum efficiency

(EQE) over 20% [285, 286, 287, 2881. Recently, a new type of fluorescent OLEDs, thermally

activated delayed fluorescence (TADF), is developed to also achieve 100% IQE through

efficient reversed intersystem crossing from the T1 state to Si state [289, 290].

No matter what kind of emitter is adopted, the host-guest system is necessary in OLED

devices to achieve high external quantum efficiency. In host-guest systems, emitters (guests)

are dispersed homogeneously into host materials in order to minimize triplet-triplet annihi-

lation and exciton quenching [291, 292]. As shown by numerous experiments [293, 294, 295],

the electroluminescence efficiency of OLEDs is affected significantly by different choices of

host-guest combinations because guest exciton formation relies on efficient charge and en-

ergy transfers from the host. Other important properties, such as the color purity [296] and

exciton lifetime [297] in OLED devices, also rely on tailored host-guest design. Therefore,

understanding host-guest interactions and how they affect energy and charge transfers is

crucial for improving performance of OLED devices.

However, the mechanism of guest exciton formation in host-guest systems is not well

understood and generally two hypotheses have been proposed. First, the holes and electrons

recombine primarily on the host, and then the excitation energy is transferred from the host

to the guest. This process happens through Fdrster resonance energy transfer (FRET) [298]

for singlet excitons and Dexter energy transfer (DET) [299] for both singlet and triplet

excitons. Several new design strategies based on this mechanism are suggested, such as

introducing triplet sensitizers [300], exciplex [301] or TADF molecules [302] to assist energy

transfer to the emitters. Second, several other studies reported that charge trapping at guest

molecules is the main cause for guest exciton formation [303, 304]. This mechanism assumes

the guest can capture a charge carrier as a trap site. Such charge carrier can then recombine

with a charge carrier of opposite sign to form an exciton. However, it should be pointed

out even if some guests may trap charge and form excitons directly, effective quenching of
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host excitons is still necessary to avoid host emission [274]. Therefore, it is believed both

mechanisms should contribute to the guest emission in a certain ratio [305, 306].

Ir Si Si

N
3

0
Ir(ppy)3 BTDF

Figure 5-1: Molecular structures of Ir(ppy)3 and BTDF.

In this chapter, we present a theoretical investigation on a model PhOLED emission

layer to understand these two mechanisms, in which the organometallic complex fac-tris(2-

phenylpyridine) iridium (fac-Ir(ppy) 3 ) and 2,8-bis(triphenylsilyl) dibenzofuran (BTDF) are

chosen as the guest and host, as shown in Figure 5-1. Ir(ppy)3 is a well-known green phos-

phorescent emitter reported to achieve a maximum EQE over 20% [285, 286, 307, 308], which

makes it a good candidate for full color displays. BTDF is an electron-conducting host de-

signed for hole-conducting deep-blue emitters where the maximum EQE of such OLEDs are

above 17% [309]. Andrienko and coworkers did a number of computational studies on the

morphology and charge transfer properties of BTDF-hosted PhOLEDs on various length

scales [310, 3111. While several theoretical methods exist for treating charge transfer prob-

lems in organic optoelectronics [312, 313], we use a combined molecular dynamics (MD) and

quantum mechanics/molecular mechanics (QM/MM) approach [314, 315, 316]. Particularly,

we are interested in two problems: (1) how electrons and holes recombine from the host to

the guest; (2) assuming a host exciton is formed, how such host exciton is quenched for guest

emission. Understanding the charge recombination and host exciton quenching mechanisms

would be of great importance for improving formation and utilization of excitons for guest

emission and thus lead to better host-guest design.
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5.2 Mechanism of charge recombination on the guest

5.2.1 Computational methods

We begin our study on the Ir(ppy) 3-BTDF system with a molecular dynamics (MD) simula-

tion, where the simulation box contains 15 Ir(ppy)3 and 250 BTDF molecules that are treated

classically (Figure 5-2, left panel). We set the guest to host mass ratio to be approximately

6% to match the experimental values of Ir(ppy) 3 -doped systems (3%-10%) [285, 308, 307].

From the MD trajectory, we extract snapshots and then perform a large number of polar-

izable QM/MM (QM/MMpol) single-point calculations on the cation, anion and neutral

states of the guest and the host, in order to obtain IPs and EAs of both species. For each

snapshot, a host or a guest molecule is chosen as the QM region (Figure 5-2, right panel),

while all the other molecules are described by MM force fields. In addition, as we find the

hole transfer from the host to the guest is thermodynamically downhill while the electron

transfer is mostly uphill, we also want to investigate the electron transfer from the host to

the positively-charged guest and the formation of excitons on the guest. Thus, we also per-

form excited-state QM/MMpol calculations. The details of MD and QM/MM simulations

are described below.

MD QM/MM

Figure 5-2: Left: Disordered cell of the Ir(ppy)3 (green)-BTDF(gray) system generated by
MD simulation. Right: Illustration of QM/MM simulation.

MD Simulation. To start the MD simulation, the host and guest molecules are inserted

randomly into a simulation box as the initial configuration using PACKMOL package [317].
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We anneal the system from OK to 500K during 2ns and then simulate the system at 500K in

an NPT ensemble for another 2ns to make sure the equilibrium density is reached. The host-

guest system is equilibrated at the high temperature (500K) so that the molecules become

uncorrelated in space and well-sampled amorphous structures can be obtained. The system

is then cooled to the room temperature (300K) during Ins, after which a 3ns simulation in

NPT ensemble at 300K is performed. The final 2ns of the NPT dynamics is sampled at 0.2ns

intervals to obtain 10 snapshots for QM/MM calculations. MD simulations are performed

with a time step of 0.001ps, Berendsen pressure coupling [3181 (reference pressure 1 Bar,

time constant of Tp=Ips, and compressibility 4.5 x 10-5 Bar-1), and the grid-based particle

mesh Ewald technique [319] for electrostatic interactions. All MD simulations are carried

out using GROMACS 4.5.5 package [320] and OPLS force field [321, 309].

To more accurately describe the charge distributions of both host and guest in the force

field, we carry out DFT calculations to obtain the CHELPG (Charges from the Electrostatic

Potential on a Grid based method) charges [322], which are used to re-parametrize the OPLS

charges. The geometries are first optimized using B3LYP functional [49] and 6-311G** basis

set [323], while LANL2DZ effective core potential basis set is used for iridium [324]. Then

single-point calculations are performed at the same level of theory to obtain CHELPG

charges [325].

QM/MM Calculations. All of the QM/MM calculations are done using the CHARMM

[326]-QChem [230] interface [327]. All density functional theory (DFT) calculations for

QM regions are performed with QChem 4.1 package using the PBEO functional [328] and

6-31G* basis set [323] for BTDF and LANL2DZ [324] effective core potential basis set

for Ir(ppy)3. All of the excited state calculations are done using a restricted open-shell

Kohn-Sham (ROKS) approach [59]. ROKS calculates the lowest singlet excited state (Si)

energy by optimizing the KS orbitals to minimize a linear combination of single-determinant

energies.

The QM/MM method must take the polarizable organic semiconductor environment

into account apart from the electrostatic effects. Therefore, we introduce fictitious "drude"

charges in our QM/MMpol method that are harmonically attached to MM charges [1011.

These classical drude particles are allowed to respond instantaneously to the electric fields

and correspondingly move to their local energy minima positions. The induced polarization
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can thus be simulated through such simple treatment. The drude charge parameters are

fitted to reproduce the polarizability of the host and guest computed employing DFT.

With QM/MMpol computed energies, we calculate IPs and EAs of the host and guest

using the ASCF method:

IP = E+ - Eo (5.1)

EA = Eo - E_ (5.2)

where E+, E_, EO are the energies for cation, anion and neutral states.

We perform QM/MMpol calculations on all 250 host molecules and 15 guest molecules

from the MD simulation box. The QM region is either a host or a guest molecule. To make

the sampling representative enough, we perform calculations for 2 snapshots of 250 host

molecules and 10 snapshots of 15 guest molecules.

Reaction Coordinate. To understand the charge recombination in a host-guest system,

it is significant to know the hole and electron energy levels of the host in different molecular

environment, i.e., bulk phase and near the guest. Since the guest is doped into the host at

a small ratio, it can be assumed that the charges are first transferred to the host which is

far away from the guest (similar to bulk phase) and then to the host near the guest and

finally to the guest. Thus, we need a definition for the "distance" between the host and

guest. However, distance between molecules is poorly defined in such system because the

molecules are about the similar size (-1 nm) as the space between their centers of mass (1-5

nm). Besides, as there are many guest molecules in the simulation box, it is ambiguous to

determine which host-guest distance to use for a specific host.

In this study, we introduce a new reaction coordinate - the "host-guest interaction en-

ergy", to evaluate the influence of the guest on the host energy levels. Since the electrostatic

energy between two molecules is inversely proportional to their distance, this energy can be

used to indirectly measure the distance. To avoid the ambiguity of choosing specific host-

guest electrostatic energy, we evaluate the electrostatic effects of all guests on one host by

calculating its IP/EA under two different electrostatic environments. Therefore, we define

the host-guest interaction energy as the difference of two sets of the host IP/EA. The three

steps to obtain the host-guest interaction energy are:
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1. Calculate the IP/EA (marked as IP(on)/EA(on)) of the host molecules.

2. Turn off all MM and drude charges on all guests, then re-calculate the IP/EA (IP(off)/EA(off))

of the same set of host.

3. The host-guest interaction energy is given by:

JAIP = jIP(off) - IP(on) (5.3)

IAEA = |EA(off) - EA(on) (5.4)

Using the difference of IP or EA values due to the existence/absence of the guest charges, we

find a better way to describe the electrostatic and polarizable effects on the host energetics

caused by the guest.

5.2.2 Simulation Results

We first show electron affinities and ionization potentials of the host as a function of the host-

guest interaction energy in Figures 5-3 and 5-4. Eq. 5.4 was employed to compute the host-

guest interaction energy as the reaction coordinate for EA, while for IP we used Eq. 5.3. In

experiments, -IP and -EA of solid materials are usually measured relative to the reference

energy levels using ultraviolet photoemission spectroscopy (UPS) and inverse photoemission

spectroscopy (IPES) [329, 3301. In some literatures, -IP and -EA are called the highest

occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energies,

though which is not strictly accurate. Here, we plot -IP and -EA to be consistent with

the experiments.

Clearly there is much scatter in the data (Figures 5-3 and 5-4), although there is also a

trend. To be quantitative about the scatter and trend of EA as a function of the distance

from the guest, we need to use the data to estimate both the average value of EA at a

given point on the reaction coordinate and also its standard deviation. For this purpose

we use the kernel density estimation (KDE), a statistical tool for reconstructing probability

distributions from scattered data [331, 3321. We use a small Gaussian distribution (the

kernel) centered on each data point to simulate its probability. The overall probability

distribution of EA is thus given by Eq. 5.5, where |AEAjI is each data point's value of

IAEA, N is the number of data points and a is the coefficient of the Gaussian distribution.
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Figure 5-3: Electron affinities of the host as a function of the host-guest interaction energy
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deviation (EA UEA)-

We choose a = 300 so that the probability estimation is close to the true probability while

the probability curve is kept smooth. The average and the standard deviation of EA are

given by Eq. 5.6-5.7, where EAj is each point's value of EA. For IP, the same equations are

used but EA data are replaced by IP data.

1 aN
p(IAEAi) = e-a(-AEAj-jAEAli)2 (5.5)

1 N EA- -e-"(jAEAj-jAEAjj )2

EA(IAEA) = N/A EZ='1 E p(IEA EA (5.6)
p(IAEAI)

Ak r Z_1E=I(EAj - EA(IAEA)) 2 . e-c(AEA-(AEA7i) 2

a-(IAEAI) = V (AA)(5.7)
p(JAEAI)

Through this KDE procedure, we obtain a smooth moving average curve, which is very

useful to describe the IP/EA trend at different distance. Meanwhile, the standard deviation

provides a quantitative view of the broadness of the data distribution. It can be seen in

Figure 5-3 that the host -EA becomes a little lower as the host-guest interaction energy
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deviation (IP alp). The guest IP (5.10 eV) is not shown as it is much higher than the

host IP.

increases. Note that when the host-guest interaction energy is large, the host molecule is

close to a guest. The fact that the change of moving average is not much indicates that

the host-guest distance is not a key factor for changing host EA values. A recent QM/MM

study of host-guest OLEDs suggests this is because any trend in energy levels is suppressed

by the large energetic disorder in OLEDs [333]. In addition, as shown from the scatter plot

and the standard deviation (CEA), the distribution of the host EA is broader as the host

gets nearer the guest. This change has an effect on the electron transfer from the host to

the guest. When the host is far from the guest, -EA EA is higher than the guest -EA

(-0.66 eV), which suggests that the electron transfer would mostly be thermodynamically

downhill. However, as the host gets closer to the guest, the distribution of the host EA is

approaching the guest EA. Finally, most of the host -EA data are even lower than the guest

-EA, causing the electron transfer to be much less efficient because the electron transfer

becomes an uphill process.

Similar to electron affinities, ionization potentials of the host also show a wider distri-

bution as the host-guest interaction increases, see Figure 5-4. However, this change does
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Functional/Basis 6-31G* 6-31+G* 6-311G*
PBEO 6.63/0.87 6.82/0.96 6.81/0.88

B3LYP 6.44/0.54 6.69/0.98 6.68/0.89
PBE 6.08/0.89 6.33/1.29 6.31/1.22

Table 5.1: Basis set and functional effects on BTDF IP/EA values. All numbers are in eV.

Functional/Basis LANL2DZ CRENBL
PBEO 5.13/0.64 5.17/0.92

B3LYP 4.98/0.65 5.13/0.91
PBE 4.86/0.92 5.03/1.20

Table 5.2: Basis set and functional effects on Ir(ppy)3 IP/EA values. All numbers are in eV.

not affect the hole transfer from the host to the guest, because the guest -IP (-5.10 eV) is

much higher than the host -IP in spite of the broader distribution. Therefore, it is always

a thermodynamically downhill process for the hole transfer to the guest.

From our QM/MMpol simulations, the averaged IPs/EAs of Ir(ppy)3 and BTDF are

5.10/0.66 eV and 6.60/0.47 eV. The experimental values of the IP and EA are 5.1-5.3 eV and

1.9 eV for Ir(ppy)3 [334, 3351, while for BTDF the IP and EA are 6.54 eV and 1.68 eV [311].

Our calculated IPs agree very well with the experiments, but the EAs are underestimated.

Possible reasons may be that the basis sets used in DFT are not large enough or the drude

particle parameters in QM/MM simulations are not accurate. It should also be considered

that the experiments have errors, especially for the measurement of EAs.

To understand the basis set and functional effects on IP/EA data, we did a small batch

of QM/MM calculations employing larger basis sets and different functionals. All 15 guests

and randomly selected 15 hosts in one snapshot are chosen as the test set. Tested basis

sets include 6-31G*, 6-31+G* and 6-311G* for BTDF, as well as LANL2DZ and CRENBL

[3361 (larger than LANL2DZ) for Ir(ppy) 3. Tested functionals are commonly-used GGA

functional PBE [43], and hybrid functionals PBEO and B3LYP [49]. The averaged QM/MM

results for the host and guest are shown in Tables 5.1-5.2. Larger basis sets (especially

6-31+G* and CRENBL) give EA values that are around 0.3 eV closer to the experiment

compared to 6-31G* and LANL2DZ. Some particular functional (PBE) also gives better

transport gap compared to experimental values. However, the IP/EA values of BTDF and

Ir(ppy) 3 change in the same direction. The relative energy level relationship between the

host and guest is not altered, so our conclusion about the charge recombination will not be

affected. Thus, our basis sets and functional are sufficient for obtaining useful insights.
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Since the driving force for the electron transfer step is uphill for many host-guest pairs,

such a process cannot contribute significantly to efficient charge recombination on the guest.

In this work, we would like to search for a recombination pathway where the reaction steps

are all downhill. Transferring holes from host to guest first is the only candidate to achieve

high recombination efficiency based on Figures 5-3 and 5-4. Therefore, it is reasonable

to further consider the electron transfer from the host to the positively-charged guest. To

obtain the host electron affinity near a guest cation, we perform QM/MMpol calculations on

all host molecules in one snapshot where one guest is positively charged, shown in Figure 5-

5. Note that the QM region is still one host molecule while the environment has changed

due to the existence of the guest cation. Instead of the host-guest interaction energy, we

use the host-guest+ interaction energy here as the reaction coordinate. The only difference

is that EA(on) in Eq. 5.4 is now the host EA from the calculation with the existence of a

guest cation. Because the electron transfer to a guest cation would induce the formation of

an exciton, it is necessary to compute the guest exciton energy level to compare with the

host EA. We carry out QM/MMpol calculations on the guest utilizing the ROKS approach

to obtain S1 energy (Esi) and (-IP + Es,) is used as an estimation to the guest exciton
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energy level. As there are fewer data points, we choose a = 30 for the KDE procedure

here (Eqs. 5.5-5.7). As seen from Figure 5-5, there is a strong correlation between the host

EA and the host-guest+ interaction energy: -EA becomes significantly lower when the

interaction energy is larger. It is also observed that all host electron affinities are above

the guest exciton energy level (-2.18 eV), even for the ones that are very close to the

guest. The electron transfer from the host to the guest cation becomes thermodynamically

downhill due to the strong attraction of the guest holes. Therefore, this process completes

the recombination pathway, and this is the only pathway that could possibly contribute to

efficient electron-hole recombination directly on the guest.

5.2.3 Charge recombination pathways

To understand the distribution in Figures 5-3 and 5-4, we relate the host-guest interaction to

the host-guest distance and their relative orientations. In a QM/MMpol calculation of E+

and E_ of a host molecule, the dominant electrostatic interaction is charge-dipole interaction

between the host and its surroundings, while for EO the dipole-dipole interaction dominates.

Meanwhile, there are many possible relative molecular orientations between the host and

guest, which results in a distribution of host EA and IP. When the host-guest interaction

energy for a host molecule is large, at least one guest is close to the host. As a result,

the molecular environment of this host is different from its bulk phase, as the guest has a

distinct dipole moment from the host. In our model, Ir(ppy)3 has a larger dipole (6.18D)

than BTDF (0.87D) based on the DFT calculations. Therefore, the host near the guest has

a broader distribution of EA and IP than in the bulk phase, as shown in Figures 5-3 and

5-4.

In Figure 5-5, a guest cation exists in the environment. Thus, the dominant electrostatic

interaction between the host and guest becomes charge-charge interaction for E_ and dipole-

charge interaction for E0 . Correspondingly, the EA distribution has a very strong correlation

with the host-guest+ interaction energy because the electrostatic interaction is much stronger

than in Figures 5-3 and 5-4.

To better understand how charges recombine on the guest, we present Figure 5-6 and

Figure 5-7 to explicitly describe the related processes. In Figure 5-6, we demonstrate the

charge migration from the host to the guest through the direct charge trapping, while the

electron transfer to the guest cation is shown in Figure 5-7. As shown in Figure 5-6, the
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Figure 5-6: Charge recombination on the guest through direct electron and hole trapping.
The standard deviations are shown by the blue/red regions around the energy levels.

charge migration to the guest can be divided into two steps: (1) from the bulk phase host

to the host close to the guest; (2) from the nearby host to the guest. As the average EA and

IP is similar between the host in the bulk phase (small host-guest interaction) and the host

near the guest (large host-guest interaction), the first step is just as charge migration in the

host material. However, the second step is different for the electron and hole transfer. For

the electron transfer, as the host becomes closer to the guest, the host -EA is slightly lower

and its distribution becomes broader. As a result, many electrons get trapped on the host

whose -EA is below that of the nearby guest. Therefore, the electron migration is not as

fast as from the host bulk phase to the guest. On the other hand, the hole transfer remains

fast as the host is approaching the guest, because it is impossible to trap holes on the host

whose -IP is always much lower than that of the nearby guest.
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Figure 5-7: Charge recombination on the guest through electron transfer to the guest cation.
The standard deviations are shown by the red regions around the energy levels.

It is clear that the hole transfer is the only downhill process to transfer charge from

host to the neutral guest, we therefore consider the electron transfer from host to the guest

cation. In Figure 5-7, owing to the existence of the hole on the guest, the electron energies

of the guest and the nearby host both become lower. Furthermore, the guest -EA lowers

more than the host, causing the guest electron levels to be below the host electron levels.

As a result, the electrons would not be trapped by the host and can recombine with the

holes on the guest quickly.

For this specific host-guest system, we find one possible charge recombination mechanism

to be the direct charge trapping. This finding could be significant for designing efficient host-

guest systems. If this mechanism is dominant in a host-guest system, fast and well-balanced

charge transfers should be the topmost consideration in experiments. Taking our system as

an example, the electron energy of the host should be high enough in order to make the

direct electron transfer as fast as the hole transfer. In addition, although the large offset

between host and guest IPs gives fast hole transfer, it may create a narrow recombination

zone in the emission layer which is far away from the electron transport side. As a result,

this imbalance of hole and electron transfer would cause the degradation of OLED devices

[3371. Thus, to make the offset of energy levels appropriate is also helpful. However, we also

note that this mechanism may not be universal in all host-guest systems. One needs to do
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analysis on more host-guest combinations to gain a comprehensive understanding.

5.3 Mechanism of host exciton quenching

We have now studied the charge recombination mechanism in this BTDF-Ir(ppy) 3 PhOLED

and found a charge trapping route existing in this system for direct exciton formation on

the guest. However, it is still not clear how host excitons are quenched in this system. We

herein examine all possible energy and charge transfer routes from excited host to the guest

to study how host excitons can be efficiently harvested for guest emission. Using the MD

simulation trajectory, we perform polarizable QM/MM (QM/MMpol) calculations on the

ground and excited states of the host (75 molecules in 2 snapshots) and guest (15 molecules

in 10 snapshots).

5.3.1 Energy transfer from excited host to guest

The lowest excited-state energies at MD-sampled ground-state geometries are calculated

first (Figure 5-8a), to which we will refer as unrelaxed exciton energies. Unrestricted DFT

(UDFT) and a restricted open-shell Kohn-Sham (ROKS) method [59] are employed to com-

pute the T1 and Si states respectively. This scheme has been shown to provide accurate pre-

diction of excited-state energies for OLED molecules [338J. These QM/MMpol excited-state

energies (150 data points for each state) are then used to construct probability distributions

by applying a kernel density estimation (KDE). Oscillator strengths are not considered in

Figure 5-8 as T1 states are dark, making this figure a density of states (DOS) plot. As seen

in Figure 5-8a, the unrelaxed T 1 and Si energies of BTDF are higher than those of Ir(ppy)3

as expected, which guarantees that guest excitons would not transfer energy back to the

host.

To investigate the energy transfer mechanism from excited host to the guest, we then

simulate T1 and Si energies of BTDF at its optimized excited-state geometries (Figure 5-

8b), to which we will refer as relaxed exciton energies. Note that the unrelaxed/relaxed Si

exciton energy is equivalent to the Si vertical absorption/emission energy. As MD simulation

only samples ground-state structures, the excited-state geometry optimization is further

performed for the host within the non-polarizable QM/MM (QM/MMnonpol) framework

where drude charges are turned off. To reduce the computational cost, we freeze geometries
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Figure 5-8: (a) Simulated DOS distributions for
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distributions for unrelaxed excitons on the guest.

unrelaxed T1 and Si excitons on the host
excitons on the host compared to the DOS

of all MM molecules and only optimize the geometry of the selected host molecule in the T1

or Si state. QM/MMpol calculations are then carried out on the optimized excited-state

geometries to obtain relaxed exciton energies of the host.

Since 75% of excitons generated from electron-hole recombinations are triplet [279], it
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is important to harvest triplet host excitons to achieve high electroluminescence efficiency.

Thus we discuss the triplet energy transfer first. In particular, only Dexter energy transfer

(DET) is possible here, whose rate can be expressed as [2991:

kDET OC Jexp(-2RDA/L), (5.8)

where RDA is the distance between donor (D) and acceptor (A), L is the sum of van der

Waals radius. J is the normalized spectral overlap that is proportional to the overlap

between DOS of donating and accepting states. It is demonstrated in Figure 5-8b that the

DOS of relaxed T1 excitons of BTDF overlaps substantially with the DOS of unrelaxed T1

excitons of Ir(ppy)3. This clearly suggests that triplet host excitons are allowed to transfer

the excitation energy efficiently to the guest because the DET rate is proportional to the

normalized spectral overlap J. The DET rate is also affected significantly by the electronic

coupling between donor and acceptor, indicated by its exponential relationship to RDA/L.

Nevertheless, when there is an appreciable ratio (for example, > 2 wt%) of guest molecules

doped in host materials, most host molecules are adjacent to a guest molecule [3061. This

wave function overlap term would not be the limiting factor then. This analysis therefore

reveals that triplet host excitons in this system can lead to guest emission through efficient

DET.

The quenching mechanism for singlet host excitons is more complicated. It is shown

in Figure 5-8b that there is no DOS overlap between relaxed Si excitons of BTDF and

unrelaxed Si excitons of Ir(ppy)3, making the energy transfer between these two states

impossible. Meanwhile, it is known that the host normally does not emit in PhOLED

devices so singlet host excitons must be quenched. Although Ir(ppy) 3 Si absorption energy

is substantially lower than BTDF Si emission energy, it is still possible for singlet host

excitons to transfer energy to the guest if Ir(ppy) 3 has absorbing singlet states with energy

levels around 4.0 eV. It is therefore interesting to take higher singlet excited states of the

guest into consideration. To obtain the full absorption spectrum in the range of 2.5 to 4.5

eV, time-dependent DFT (TDDFT) is employed within the QM/MMnonpol framework to

compute the first 25 singlet excited states. The full singlet absorption spectrum of guest and

Si emission spectrum of host are shown in Figure 5-9a. As can be seen, our results are in

good agreement with other TDDFT calculated and experimental spectra for Ir(ppy)3 [3391.
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Figure 5-9: (a) Full singlet absorption spectrum of the guest (in the range of 2.5 to 4.5 eV)
compared with Si emission spectrum of the host. (b) DOS distributions of unrelaxed Si8
and S1 S excitons on the guest and relaxed Si excitons on the host.

Ir(ppy)3 has dense singlet energy levels in the shown spectrum range due to the existence of

iridium and its symmetric structure, leading to a small overlap between the host Si emission

spectrum and the guest singlet absorption spectrum. Particularly, Figure 5-9b indicates that

the DOS of unrelaxed SI8 excitons on the guest overlaps considerably with that of relaxed

136



host S1 excitons.

As a dipole-dipole interaction process [340], the FRET rate can be expressed as [298]:

kFRET O RA 6, (5.9)
RDA

where J is the spectral overlap and 02 is the dipole orientation factor. According to Eq. 5.9,

FRET not only relies on the overlap of DOS distributions, but also requires strong absorption

and emission intensities. However, the absorption intensity of Ir(ppy)3 is weak around 4.0

eV (Figure 5-9a), where the peak of host Si emission spectrum is located on. FRET would

thus not be effective due to the resulting small spectral overlap. On the other hand, DET is

an electron exchange process whose rate only depends on the overlap of DOS distributions.

Therefore, effective DET is allowed to occur from singlet host excitons to the high-lying

singlet excited states of the guest, as suggested by the significant DOS overlap in Figure 5-

9b. To conclude, in this case, it is DET rather than FRET that allows energy transfer from

singlet host excitons to the guest.

5.3.2 Charge transfer from excited host to guest

In addition to the energy transfer mechanism, the charge transfer mechanism should also

be explored, where host excitons break up and then reform on nearby guests. The key

step is that a local host exciton is dissociated into an electron and a hole on a host-guest

(H-G) pair, after which they can recombine on the guest. It is challenging to estimate the

reaction energy of this process because the exciton binding energy and the energy difference

between singlet and triplet excitons need to be evaluated. Thus, we propose to exploit

thermodynamic cycles to address this problem and we focus on the exciton dissociation

process, as shown in Figure 5-10. In Figure 5-10a, the first possible exciton dissociation

process is demonstrated: it breaks up to form a guest cation and a host anion. Here, the

binding energy between the guest cation and host anion may be large enough to stabilize the

products and reduce the energy barrier considerably. It is therefore natural to investigate

the reaction from G.-. H* complex to G+.. H- complex. Five thermodynamic steps are

proposed to compute its reaction energy:

1. G. . H* -+ G+H*: G. ..H* complex is dissociated into independent G and H*. BE(G. ..H*)

refers to the binding energy of G and H*.
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tion of the process that a host exciton is dissociated to form a host cation and a guest anion.
(c) The calculated probability distribution of reaction energy for the thermodynamic cycle
in (a). (d) The calculated probability distribution of reaction energy for the thermodynamic
cycle in (b).

2. G+H* -* G++H*: a hole is added to the guest. IP(G) is ionization potential of G.

3. G++H* - G++H: the host exciton is quenched. Here singlet or triplet emission energy

of H is calculated, and marked as Eem (H).

4. G++H - G++H-: an electron is added to the host. EA(H) is electron affinity of H.

5. G++H -+ G+- H-: independent G+ and H- bind together to form G+. - H- complex.

BE(G+- -- H-) refers to the binding energy of G+ and H-.
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As a result, the reaction energy of first exciton dissociation process can be expressed as:

AE1 = -BE(G ... H*) + IP(G) - Eem(H) - EA(H) + BE(G+ - H-). (5.10)

Similarly, the reaction energy of the other exciton dissociation process (Figure 5-10b) where

a guest anion and a host cation are generated can be calculated as:

AE2 = -BE(G ... H*) - EA(G) - Eem(H) + IP(H) + BE(G - H+). (5.11)

To obtain EA, IP and Eem(H), we perform QM/MMpol calculations on 25 host-guest

pairs in 2 snapshots. The distance between centers of mass of each host-guest pair is less than

12 A to guarantee the electronic coupling for charge transfer is not a limiting factor. Besides,

BE(G ... H*) and BE(G+. -- H-) need to be calculated for the chosen host-guest pair. An

efficient way to evaluate the binding energy for the host-guest pairs is to employ constrained

DFT (CDFT) [65] with a polarizable continuum model (PCM) [341]. The binding energy

BE(G+... H-) can be calculated as:

BE(G+ - - -H-) = E(G+ - - H) - E(G+) - E(H-). (5.12)

To obtain E(G+ ... H-), we use CDFT to constrain a positive charge on the guest and a

negative charge on the host for a host-guest complex. E(G+) and E(H-) are energies of inde-

pendent guest cations and host anions that can be obtained by normal DFT calculations. As

electrostatic interaction is dominant here, we apply the PCM model in all DFT calculations

with dielectric constant of the host (e = 2.82) [3091 to accurately simulate the electrostatic

environment. The binding energy BE(G ... H*) is more difficult to evaluate. It is hard to

constrain the singlet excitation locally on the host molecule of a host-guest complex because

the excitation energy of the host is higher than the guest. However, unlike in G+ ... H,

BE(G ... H*) only involves two neutral species, where H* provides a similar electrostatic

environment as H. Therefore, we estimate BE(G ... H*) using the binding energy between

ground-state G and H (BE(G ... H)):

BE(G ... H*) ~ BE(G ... H) = E(G ... H) - E(G) - E(H), (5.13)
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where E(G - - -H), E(G) and E(H) are all computed using normal DFT/PCM.

The results are presented in Figure 5-10c and 5-10d. As suggested by probability distri-

butions, the reaction energies for both exciton dissociation processes are appreciably uphill

by 0.8 eV or more. The triplet host exciton dissociation process has higher energy barrier

due to its lower energy. It is also noticed that the energy barrier is lower in the first dis-

sociation process (G... H*-+ G+. - -H-) than in the second. However, even for singlet host

excitons in first dissociation process, the energy barrier is still substantial, which is due

to the large local exciton binding energy of the host. Therefore, we conclude this charge

transfer mechanism for quenching host excitons is unlikely to be efficient. Because exciton

binding energies are similar in OLED molecules, this mechanism is probably inefficient for

most OLED host-guest systems unless the band offset is massive.

5.4 Conclusions

In this chapter, we investigate the charge recombination and energy transfer in a model

PhOLED host-guest system consisting of Ir(ppy)3 and BTDF employing the QM/MM tech-

nique. Using IPs and EAs of the guest and host from QM/MM calculations, we introduce

a new reaction coordinate to account for the influence of the guest on the energetics of the

host, which is also correlated with the distance between them. We show that the larger

host-guest interaction results in broader distributions of the host IP and EA. Then we de-

scribe a molecular picture of charge recombination on the guest through a charge trapping

route: holes are transferred to the guest first, after which the electrons are attracted by

the holes to form excitons on the guest. In addition, we reveal that energy transfer is the

primary quenching mechanism for host excitons, while the charge transfer mechanism is

unlikely to occur because of high energy barrier for exciton dissociation. Triplet host ex-

citons are harvested through effective Dexter energy transfer to the T1 state of guest due

to excellent spectral overlap. Singlet host excitons, on the other hand, are forbidden from

transferring energy to the Si state of the guest. Through more detailed analysis, we demon-

strate that some of high-lying singlet states of guest overlap substantially with host Si state

and therefore play a significant role in energy transfer for utilizing singlet host excitons.

We note that mechanisms uncovered here may not be general to all OLED host-guest

systems. For example, the IP/EA energy level alignment in different host-guest system may
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be different, which can lead to other charge recombination pathways. Meanwhile, the DET

mechanism for quenching triplet host excitons may not be universal as the relaxation of

triplet states will largely affect the spectral overlap between the host and the guest. The

singlet exciton energy transfer will depend strongly on the presence and absorption intensity

of high-lying excited states of the guest.

Nevertheless, this study provides important insights into better host-guest design. The

charge recombination results suggest that consideration of the energy level change in a host-

guest mixture environment may be needed to gain more accurate insight into the energy level

alignment. Fast well-balanced charge trapping routes for host-guest systems may be critical

for improving the device efficiency. Our host exciton quenching study suggests efficient

energy transfer from host to guest can be utilized as an alternative strategy to the energy

level alignment. In such case, charge trapping in the guest is not necessary so that better

charge carrier mobility and lower driving voltage can be achieved [305]. We also highlight

the necessity to evaluate high-lying excited states of the guest in host-guest design because

they may be crucial in facilitating energy transfer in host-guest systems. Our future work

should study more different host-guest combinations, take host-guest excimers into account,

and investigate the effects of intersystem crossing and non-radiative decay on the exciton

quenching mechanisms.

Using the condensed phase simulation of host-guest OLED as an example, we illustrate

how to properly utilize DFT methods to model electronic properties of complex chemical

systems. The study on the charge recombination mechanism in OLEDs emphasizes the

importance of incorporating environment effects into DFT simulations, which is crucial for

capturing the energy level changes in different molecular environment. In addition, the

study on the host exciton quenching mechanisms points out the significance of utilizing an

accurate and efficient excited-state DFT method. In conclusion, existing DFT methods

provide a powerful tool for simulating complex chemical systems, but better DFT-based

methods for condensed phase simulation are still needed. We will further discuss the future

directions in this aspect in Chapter 7.
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Chapter 6

Computational design of thermally

activated delayed fluorescence

materials

6.1 Introduction

Since the first report by Tang and VanSlyke in 1987 [27], multilayered organic light emitting

diodes (OLEDs) have attracted interest for utilization in high efficiency illumination and

flexible displays [273, 274, 276, 277]. OLEDs using fluorescent materials are limited to have

low internal quantum efficiencies (IQEs) of 25% due in part to the inherent limitation of

electrical excitation, which generates singlets and triplets in a 1:3 ratio [278, 279, 2801. High

quantum yield OLEDs with Ir or Pt phosphorescent materials have been intensely investi-

gated for the last several decades and now achieve 100% IQE [281, 282, 283, 2841. Although

phosphorescent materials have defined the present state of OLED technology, there are sig-

nificant issues including cost, stability of blue emitters, and strong triplet-triplet annihilation

at high current density [342]. As a result of recent efficiency increases, thermally activated

delayed fluorescence (TADF) has become a viable alternative for harvesting both singlet

and triplet state in OLEDs [28, 343, 3441. TADF is based on reversible intersystem crossing

from thermally equilibrated triplet and singlet excited states, and competitive luminescence

from the singlet states, as shown in Figure 6-1. If nonradiative pathways are negligible then

TADF can achieve 100% electroluminescence IQE [290]. An advantage of TADF materials
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is that they can be purely organic materials and do not require expensive metallic elements

such as Pt and Ir, which also offers new design opportunities for both molecules and devices.

Intersystem crossing

Fluorescence

- IIST

Reverse
Intersystem
crossing

TADF Phosphorescence

so
Figure 6-1: Illustration of thermally activated delayed fluorescence.

TADF is only possible at appreciable rates if the energy gap (AEsT) between the Si and

T1 states is smaller than or comparable to kBT. This can usually achieved by the spatial

separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO), which minimizes the exchange interaction between the two singly

occupied orbitals in excited states and thus leads to charge transfer (CT) excited states.

Meanwhile, efficient radiative decay from the S1 state to the ground state So is also required,

which is usually manifested by large transition dipole moment or oscillator strength (f).

Although for a compound to possess a large f value requires substantial overlap between

HOMO and LUMO, a small AEST can be realized only when this overlap is diminished.

Therefore, substantial efforts have been made to utilized molecular design strategies to solve

this dilemma [345], which are often based on modifications of donor-acceptor (D-A) type

fluorophores [346, 344, 347].

In addition to the AEsT-f dilemma, OLED applications also frequently require emit-

ted radiation of a particular color, thereby constraining suitable values of emission energy

(Eemit) to a narrow interval. It is therefore useful to have computational tools for prediction

of photophysical properties like AEsT, Eemit, quantum yields, etc., of molecules with CT
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excited states, as it allows screening of molecules for use in TADF-based OLEDs. Unfor-

tunately, many of the molecules of interest are too large (>100 atoms) to be studied with

high-level ab initio wavefunction-based methods like CASPT2 [611 or coupled-cluster [71,

which are known to give quite accurate results for small organic molecules [62]. As a result,

density functional theory (DFT)-based approaches are the only viable post-Hartree-Fock

computational tools for studying such molecules.

In this chapter, we describe the application of density functional theory on the compu-

tational design of TADF materials. Instead of complicated condensed phase simulations, we

focus on predicting excited-state state properties of single TADF molecule in vacuum, which

is also challenging for common excited-state DFT methods. By showing several successful

computational designs of TADF materials, we illustrate the usefulness of DFT simulations in

predicting photophysical properties for experiments. Meanwhile, we note that conventional

excited-state DFT methods still need improvements, leading to our development of a new

computational protocol for computing TADF properties based on a restricted open-shell

Kohn-Sham (ROKS) approach.

6.2 Computational screening of TADF materials

In this section, we describe our efforts to design new TADF materials, in collaboration with

experimentalists. To achieve high TADF efficiency, we adopt two different molecular design

strategies (Figure 6-2): (1) through-space interaction based on donor-acceptor homoconju-

gation [348]; (2) dihedral angel tuning of D-A type fluorophores [349].

Twisted D-A connection Through-space interaction
(Conventional) by homo-conjugation

Figure 6-2: TADF design strategies explored in this work.
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6.2.1 Computational details

The most standard DFT-based excited state method is linear response time-dependent

density functional theory (TDDFT) [63, 641. One of the earliest protocols for predicting

TADF properties was designed by Adachi and co-workers [350, 351], who attempted to

obtain estimates for AEST from the difference between Si and T energies obtained at So-

optimized geometries with TDDFT employing semi-local hybrid functionals like B3LYP [49]

or PBEO [3281. This approach, however, may not be effective for molecules with very high

CT character, as semi-local TDDFT systematically underestimates the energy of CT states

in general [352, 353, 354, 355. Nevertheless, because of its simplicity and efficiency, it can

still serve as a computational screening tool for the TADF molecular design.

Therefore, in this work, we first use TDDFT calculations to guide our TADF materials

design. All DFT computations are carried out using the Q-Chem 4.1 software package [230].

The gas-phase ground state geometry optimizations for all TADF molecules are performed

using the B3LYP exchange-correlation functional in the 6-31G* basis set [323]. Then time-

dependent DFT is adopted at the same level to estimate the excitation energies.

6.2.2 Through-space interaction from homoconjugation

Although the most commonly employed TADF design strategy is to twist the donor-acceptor

connection [344, 356] (left panel in Figure 6-2), an alternative approach is a through-space

interaction where electronic systems are in communication by homoconjugation [357] but are

sufficiently separated to create a small singlet-triplet energy gap AEST (right panel in Fig-

ure 6-2). The design we report here places the donor and acceptor on the different fins of a

triptycene scaffold. These structures display homoconjugation and many triptycene deriva-

tives display intrinsically high thermal stability, which is critical to OLED manufacturing

and operation [358, 359].

We design the donor-acceptor triptycenes, TPA-QNX(CN)2 and TPA-PRZ(CN)2, as

novel TADF materials (Figure 6-3). The triphenylamine (TPA) functions as the donor and

dicyanoquinoxaline (QNX) or dicyanopyrazine (PRZ) is the acceptor. We perform TDDFT

calculations to estimate the singlet-triplet energy gap AEST and oscillator strength f for

these two compounds and first show their molecular orbitals in Figure 6-4. Figures 6-4a and

6-4b reveal that the HOMO is located on the TPA moiety, while the LUMO is localized on
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TPA-PRZ(CN)2

Figure 6-3: Chemical structures of triptycene-based TADF materials.

(a) (b)

'p

(c) (d)

Figure 6-4: Molecular orbitals of the TADF compounds. (a) HOMO of TPA-QNX(CN)2. (b)
LUMO of TPA-QNX(CN)2. (c) HOMO of TPA-PRZ(CN)2. (d) LUMO of TPA-PRZ(CN)2.

147



the QNX moiety, suggesting that the HOMO and LUMO are very well separated on TPA-

QNX(CN)2 from our design. Similarly, a good HOMO-LUMO separation is also observed

for TPA-PRZ(CN)2 in Figures 6-4c and 6-4d.

Compound Si (eV) T1 (eV) AEST (meV) f
TPA-QNX(CN)2 2.25 2.14 111 0.084
TPA-PRZ(CN)2 2.33 2.25 75 0.008

Table 6.1: TDDFT calculation results of TPA-QNX(CN)2 and TPA-PRZ(CN)2.

We then present the TDDFT results for these two compounds in Table 6.1. As can be

seen, the singlet-triplet energy gap AEST of TPA-QNX(CN)2 is only 111 meV, indicating

that the small HOMO-LUMO overlap leads to small AEST. Meanwhile, the oscillator

strength f of TPA-QNX(CN)2 is 0.084, which is substantial considering such a small HOMO-

LUMO overlap. This is probably a result of homoconjugation interactions between the sp2

C's attached to the bridgehead carbons. Thus, the small singlet-triplet gap and substantial

oscillator strength suggest TPA-QNX(CN)2 is a good candidate as a TADF emitter. TPA-

PRZ(CN)2 has a even smaller AEST of 75 meV, but the oscillator strength drops to only

0.008. This is expected to cause the singlet radiative decay rate to be too small and may

yield worse TADF efficiency than TPA-QNX(CN)2 despite the smaller AEsT.

Then we conduct experiments to test the photophysical and device properties of these

two new TADF emitters. As the focus of this section is the computational design, we only

present the TADF-OLED device experimental data. For more details the readers are referred

to Ref. [3481. OLED devices using the newly-designed triptycenes as the emissive element are

fabricated within the following architecture: ITO (132 nm)/MoO3 (5 nm)/TcTa (30 nm)/10

wt% triptycene:mCP (30 nm)/TmPyPb (40 nm)/LiF (0.8 nm)/Al (100 nm) (Figure 6-5a).

The electroluminescence spectra of OLED devices based on TPA-QNX(CN)2 and TPA-

PRZ(CN)2 are shown in Figure 6-5b. The electroluminescence emission maxima are 573 nm

(CIE = 0.45, 0.54) for TPA-QNX(CN)2 and 542 nm (CIE = 0.43, 0.55) for TPA-PRZ(CN)2.

We obtain external quantum efficiencies (EQE) in OLEDs based on TPA-QNX(CN)2 with

values up to 9.4% (Figure 6-5c, red line). This exceeds the highest EQE values for OLED

devices based on simple fluorescence materials of around 5%. We attribute the increased

performance of TPA-QNX(CN)2 to its TADF properties. Our highest EQE of OLEDs

using TPA-PRZ(CN)2 as an emitter are 4.0% (Figure 6-5c, blue line). The lower EQE

compared to the TPA-QNX(CN)2 OLED is consistent with our computational predictions
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Figure 6-5: (a) Energy band diagrams and device structure of the OLED devices. The
emissive layers are coevaporated with 10 wt% of triptycene molecules in host mCP. TcTa,
Tris(4-carbazoyl-9-ylphenyl)amine; mCP, 1,3-Bis(N-carbazolyl)benzene; TmPyPb, 1,3,5-
Tris(3-pyridyl-3-phenyl)benzene. The energy values are all given in eV. The thicknesses
are in nm. (b) Electroluminescence spectra. (c) The EQE, current density of the OLED,
using the triptycene emitters.

and we attribute the worse performance of the TPA-PRZ(CN)2 OLED to its low oscillator

strength. This result suggests the importance of achieving balanced singlet-triplet gap and

oscillator strength through molecular design.

In summary, we designed donor-acceptor triptycenes TPA-QNX(CN)2 and TPA-PRZ(CN)2

as novel TADF emitters. These newly designed triptycene-based TADF materials make use

of the physical separation of the donor and acceptor groups on different fins of the trip-

tycene scaffold. The intramolecular orbital overlap is accomplished by homoconjugation.
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Multilayer OLED devices using these new triptycene emitters demonstrate yellow emission

with high EQE up to 9.4%. The good performance of designed TADF materials suggests

our TDDFT-based computational screening tool provides efficient and useful predictions of

the TADF properties.

6.2.3 Dihedral angel tuning

In this section, we describe the successful transformation of a fluorophore CZ-TRZ into a

series of deep blue TADF emitters by applying two design strategies: (1) homoconjugation

through incorporation of a triptycene scaffold and (2) manipulation of dihedral angles by

methyl substitution (Figure 6-6a). Although the parent molecule CZ-TRZ 1 emits deep

blue light, most TADF molecules having this basic structure have substituents that shift

the S1 emission to sky-blue or green [344, 360, 3611. We surmise that homoconjugation

could decrease AEST while maintaining a high Si energy and have shown that the trip-

tycene framework can be utilized to form TADF emitters. Here, we hypothesize that the

homoconjugation effect could be more generally applied if the triptycene scaffold could be

incorporated into the carbazole donor as the triptycene-fused carbazole (TCZ). In addition

to employing the TCZ moiety as the donor, we also carry out methyl substitutions at various

positions of the phenyl linker in CZ-TRZ, leading to a series of new TCZ-TRZ compounds

(Figure 6-6b).

- yN
2 TCZ-TRZ R" = H; N -N

Cpd 1 CZ-TRZ: no triptycene, no Me 3 TCZ-TRZ(Me): R2 = Me;
1S~ ~Cpd 2 TCZ-TRZ: triptycene, no Me . R T ZRMp~1 ce, no5 TCZ-TRZ(Me~p): R

1
" =Me;Cpd 3-6: triptycene with Me substitution(s) 6 TCZ-TRz(Me2o): R1 ,2 Me.

R3 R1

Me Ph Homoconjugation of N

'N Triptycene Scaffold \N-- N . .-Dihedral Angle Tuning b
Me 02 Ph Methyl Substitution

(a) (b)

Figure 6-6: (a) Homoconjugation and dihedral angle tuning. (b) Chemical structures of
Compounds 2-6.

We perform time-dependent density function theory (TDDFT) calculations to estimate

the singlet-triplet energy gap AEsT and oscillator strength f of Compounds 1-6, as shown
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Compound Si (eV) Ti (eV) AEST f angle 01/02
(meV) (deg)

1 3.05 2.70 346 0.315 51.5/0.9
2 2.95 2.66 292 0.276 51.6/0.8
3 2.88 2.76 116 0.081 69.5/0.4
4 2.99 2.72 271 0.243 51.5/25.1
5 2.94 2.83 108 0.073 69.6/26.9
6 2.99 2.90 89 0.053 69.1/34.1

Table 6.2: TDDFT calculation results of Compounds 1-6.
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Figure 6-7: Molecular orbitals of Compounds 1-3. (a) HOMO of Compound 1. (b) HOMO
of Compound 2. (c) HOMO of Compound 3. (d) LUMO of Compound 1. (e) LUMO of
Compound 2. (f) LUMO of Compound 3.

in Table 6.2. Compounds 1 and 2 are calculated to have similar values for f, implying that

both should exhibit strong fluorescence. The estimated AEsT of 2 (0.292 eV) is smaller

than that of 1 (0.346 eV), while the Si energy of 2 remains high at 2.95 eV. Substituting

hydrogen with methyl on the phenylene ring at a position ortho to the carbazole results in

sterically induced twisting [356, 362}. As the dihedral angle 01, defined by the carbazole
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plane and the phenylene plane (Figure 6-6a), changes from 51.60 in 2 to 69.50 in 3, the

AEST of 3 is further reduced to 0.116 eV. However, when the phenylene ring is substituted

at a position ortho to the triazine as in 4, the AEST stays almost unchanged at 0.271 eV

despite an increase in dihedral angle 02, defined by the triazine plane and the phenylene

plane (Figure 6-6a). As a result, the calculated values of f and AEsT for 5 and 6 are

similar to that of 3. The HOMOs and LUMOs of compounds 1-3 are depicted in Figure 6-

7. While all LUMOs localized on the triazine are qualitatively similar, the HOMOs of 2

and 3 extend to the neighboring phenyl rings because of the homoconjugation effect, which

reduces HOMO and LUMO overlap at the phenylene compared to 1. The overlap is further

reduced in 3 because of the larger 01. In sum, our TDDFT calculations predict Compounds

3, 5, and 6 are likely to be efficient blue TADF emitters.
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Figure 6-8: Transient decay of Compounds 1-6 (measured in codeposited
DPEPO).

film (15 wt%) in

We then carry out experiments to investigate the photoluminescence properties of the

newly designed compounds in toluene and bis[2-(diphenylphosphino)phenyl ether oxide

(DPEPO) films (doped at 15 wt%). We first measure the PL quantum yields (PLQYs)

of Compounds 1-6 to evaluate their potential performance in OLED devices. In solution,

Compounds 2 (PLQY = 0.77) and 4 (0.80) exhibite high PLQY values comparable to those

of 1 (0.78), while the values for Compounds 3 (0.60), 5 (0.46), and 6 (0.47) are much

lower. This is consistent with the trend of TDDFT-calculated oscillator strength values in

Table 6.2. Time resolved photoluminescence measurements are then performed on doped
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films (Figure 6-8). For prompt fluorescence, Compounds 1-6 show similar decay lifetime

ranging from 7.2 to 10.6 ns. While 1 barely has any delayed emission, Compounds 2-6

clearly exhibit delayed emission with lifetimes ranging from 37 to 58 ps. More importantly,

the delayed component is more prominent in compounds with 01 (3, 5, and 6) larger than

that of the others (2 and 4). This observation is again consistent with our TDDFT predic-

tion: increasing dihedral angle 01 results in smaller AEST and thus leads to stronger TADF

character.
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Figure 6-9: (a) EL spectra of 2 (black) and 3 (red) with their location in the CIE color

space at 50 cd/m2 . (b) EQEs of 2 and 3 as a function of current density.

Finally we present the electroluminesence (EL) data of OLED devices employing Com-

pounds 2 and 3 as emissive dopants in Figure 6-9. We obtain maximum external quantum

efficiencies (EQEs) of 10.4 and 11.1% in devices employing 2 and 3, respectively (Figure 6-

9b). These values exceed the theoretical limit of typical fluorescence materials and are 2.5

times higher than the 4% EQE for 1 [363], providing additional evidence that these mate-

rials exhibit TADF. However, the devices using Compounds 4-6 as emitters showed lower

EQEs, which is attributed to their weak absorption, low PLQYs, and rapid degradation

under electrical excitation. The EQEs and CIE values for Compound 2 and 3 at 50 cd/m2

are 3.4%, (0.159, 0.142) and 2.0%, (0.170, 0.179), respectively, suggesting their usefulness

as deep blue OLED emitters. The readers are referred to Ref. [349] for more experiment

details.

In summary, we successfully transform fluorescent emitter 1 to TADF emitters 2 and 3

with EQEs surpassing 10% while maintaining the deep blue emission. Our results indicate

that the introduction of a homoconjugative triptycene scaffold enhanced the TADF proper-
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ties by effectively reducing the overlap between HOMO and LUMO, while the dihedral angle

tuning does not yield significant improvement of device performance because it has conflict-

ing effects in PLQYs and AEST. Nevertheless, the good agreement between the theory and

experiment data indicate the TDDFT-based computational method can be an efficient tool

to estimate TADF properties for materials without too strong CT character (AEST > 100

meV).

6.3 Prediction of TADF energetics based on a ROKS approach

We have shown that TDDFT calculations based on So optimized geometries and typical

hybrid functionals (e.g., B3LYP) provide efficient predictions of the singlet-triplet energy

gap AEST and the Si emission energy for the triptycene-based and TCZ-TRZ-based TADF

molecules. However, these molecules do not possess very strong CT character, which can

still be treated by TDDFT with semi-local hybrid functionals at a reasonable accuracy.

For molecules with very strong CT character, this TDDFT protocol tends to underestimate

AEsT [338]. Meanwhile, we also note that the accurate estimation of the Si emission energy

is due to the cancellation of errors: TDDFT with B3LYP underestimates CT states [352,

353, 354, 3551, while using Si absorption energy as the prediction for the Si emission energy

results in overestimation. Therefore, more accurate computational protocols for efficient

predictions of TADF energetics are still needed.

Another method proposed by Adachi and co-workers [3641 tried to determine the ideal

TDDFT functional for each structure by empirically calculating an "optimal" percentage

of exact exchange from ground-state calculations that estimated the extent of CT. Any

semi-local hybrid functional employing close to the calculated exact-exchange percentage

was postulated to be effective for TDDFT studies. An alternative approach would be to

use range-separated hybrid functionals [365, 3661 that were developed for the purpose of

performing TDDFT on CT states. This was also tested by Adachi and co-workers, who

however reported that range-separated functionals like CAM-B3LYP [367] or LC-wPBE [368]

tended to overestimate absorption energies (Eabs) for common TADF molecules, indicating

that the range separation parameters for such molecules were not optimal for the length

scale of charge transfer in such systems. This was not particularly surprising, as such

parameters are often strongly system dependent [369], although it is possible to "tune" them
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for individual systems [370]. Recently, Penfold [371] and Bredas et al. [17] independently

used tuned range-separated functionals to investigate TADF molecules and discovered that

such an approach gave AEST values that are fairly consistent with experimental data.

There also exist time-independent excited-state DFT techniques like ASCF [372], which

offer alternate routes for studying CT excited states. Such methods generally do not rely

on linear response theory and can therefore be expected to not share the deficiencies of

semi-local TDDFT with regard to CT states. In particular, it is possible to use a restricted

open-shell Kohn-Sham (ROKS) approach [58, 59] to obtain energies of the Si state, which

offers a new way to estimate emission wavelengths. Additionally, the Hohenberg-Kohn

theorem [37] indicates that ground-state spin density functional theory (SDFT) should be

able to estimate the energy of the first excited triplet (Ti) state, as it is the ground state

within the subspace of all triplet electronic states. This indicates that a combination of

ROKS and SDFT could also be employed to calculate AEST, thereby implying that such a

combination could be useful as a fast and reliable computational screen for potential TADF

molecules.

In this section, we address these questions by devising two computational protocols [338]

that use a combination of ROKS and SDFT to estimate photophysical properties includ-

ing Eabs (S1 vertical absorption energy), Eemit (S1 vertical emission energy), Eo-o (gap

between the minimum Si energy and the minimum So energy), and AEST (gap between

the minimum Si energy and the minimum T1 energy). Consequently, these protocols are

compared with two TDDFT-derived protocols against a test set of 27 TADF compounds

(Figure 6-10) with available experimental data [346, 364, 373, 374]. This reveals that while

it is possible to use cancellation of errors to obtain some useful results from TDDFT, such

approaches in general do not lead to accurate estimations of all desired parameters. On

the other hand, semi-local hybrid functional-based ROKS/SDFT-based approaches lead to

very accurate predictions of Eemit, AEST, etc., without having to resort to cancellation of

errors or parameter optimization. Overall, it appears that ROKS with semi-local hybrid

functionals provides a reliable and fast alternative to estimating properties of CT states and

can thus be used as a screen for potential TADF molecules.
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Figure 6-10: Structures of all the TADF molecules in the test set.
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6.3.1 Computational protocols

All the calculations are done with the QChem 4.2 package [2301, employing the PBE [431,

B3LYP [49], PBEO [3281, and LC-wPBE [3681 (with the QChem default Coulomb atten-

uation parameter w = 0.3 bohr 1 and zero short-range HF exchange) functionals. Most

calculations employed the 6-31G* basis set [3231, although some B3LYP calculations are

repeated with the larger cc-pVTZ basis [2311 to investigate the basis set dependence of the

parameters measured. The Tamm-Dancoff approximation (TDA) [375, 376, 377] is not in-

voked in TDDFT calculations. Solvent effects are not taken into consideration in this study

nor is the effect of zero-point energy of molecular vibrations taken into account.

SI S1

so So so

Nuclear Coordinates Nuclear Coordinates Nuclear Coordinates
Protocol A Protocols B and C Protocol D

Figure 6-11: Photophysical parameters measured by the protocols. The arrows only indicate
energy gaps and not nuclear coordinates of transitions.

The protocols themselves are as follows:

(1) Protocol A: S0 geometry is optimized using ground-state DFT, and TDDFT is then

employed to find the energies of the Si and T1 states at this geometry. The resulting vertical

absorption energy Eabs is then assumed to be a reasonable estimate for both Eemit and E0 0o

(Figure 6-1 1, left panel). AEST is assumed to be the difference between Si and T1 energies

at the equilibrium S0 geometry. This is the computationally cheapest of all the protocols,

as it involves only one ground-state geometry optimization. However, it compromises the

physics as real TADF molecules have nonzero experimental Stokes shifts and is not at all

likely to be effective when the exact functional is employed.

(2) Protocol B: So geometry is optimized using ground-state DFT, while both S1 and T1

geometries are optimized by TDDFT. TDDFT is then employed to find Eabs and Eemit as

the vertical transition energy between the So and S1 surfaces, starting from the equilibrium
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So and Si geometries, respectively. Eo-o is obtained from the difference in the equilibrium

Si and So energies (found by TDDFT and ground-state DFT, respectively), and AEST is

given by the difference between equilibrium Si and T energies (found by TDDFT). Unlike

Protocol A, this protocol does not compromise the physics, as the calculated parameters

correspond exactly with experimentally measured ones.

(3) Protocol C: So geometry is optimized by ground-state DFT, while the T geometry

is optimized with restricted open-shell DFT (RO-DFT). The equilibrium Si geometry is

obtained via ROKS. The energy differences are then found in the same manner as Protocol

B, except that ROKS and RO-DFT are used instead of TDDFT to calculate Si and T

energies, respectively. RO-DFT is preferred over unrestricted open-shell DFT for accessing

T1 energies in order to avoid systematic errors in AEsT. Like Protocol B, the parameters

calculated with this protocol also correspond exactly to experimentally measured ones.

(4) Protocol D: So geometry is optimized by ground-state DFT, while the T1 geometry

is optimized with RO-DFT. It is assumed that the equilibrium S1 geometry is fairly well

approximated by the T1 geometry (which is definitely the case for molecules with large CT

character where AEST is small), and the energy differences are then found in the same man-

ner as Protocol C. Overall, only two geometry optimizations (both of which were formally

in the ground state) are employed, making this significantly cheaper than Protocol C.

The accuracy of the different protocols are compared by applying them to a set of relevant

TADF chromophores, as shown in Figure 6-10. The experimental results are collected from

work by Adachi et al [346, 364, 373, 3741.

6.3.2 Performance on TADF test sets

The errors associated with Protocols A and B are given in Table 6.3, while the errors for

Protocols C and D can be found in Table 6.4. Because of the wide spectrum of values for the

experimental AEsT associated with the test set, we report the errors in log(AEsT) instead

of errors in AEST.

TDDFT results: Protocols A and B. Protocol A fares quite badly in estimating

Eabs with all the functionals. This is unsurprising for semi-local PBE, B3LYP, and PBEO

calculations in light of the large CT nature of the Si state, which leads to systematic
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Parameter measured PBE B3LYP PBEO LC-wPBE
RMSE (ME) RMSE (ME) RMSE (ME) RMSE (ME)

Eabs (Protocols A and B) 1.38 (-1.31) 0.57 (-0.45) 0.43 (-0.28) 0.74 (0.72)

Eemit (Protocol A) 0.81 (-0.75) 0.25 (0.11) 0.35 (0.28) 1.29 (1.28)

Eemit (Protocol B) 1.48 (-1.45) 0.65 (-0.62) 0.49 (-0.44) 0.66 (0.63)

Eo-o (Protocol A) 1.00 (-0.95) 0.26 (-0.10) 0.23 (0.07) 1.04 (1.03)

Eo-o (Protocol B) 1.30 (-1.25) 0.52 (-0.46) 0.37 (-0.28) 0.82 (0.81)

log(AEST) (Protocol A) 0.92 (-0.74) 0.68 (-0.37) 0.45 (-0.09) 0.76 (0.71)

log(AEsT) (Protocol B) 1.45 (-1.34) 1.04 (-0.85) 0.85 (-0.60) 0.74 (0.69)

Table 6.3: Errors associated with energy estimates from TDDFT-derived protocols. ME =
mean error; RMSE = root mean squared error. Errors in Eabs, Eemit, and EO-0 have the

unit eV. Both protocols calculate absorption energy in the same manner and thus have the
same errors associated with that parameter.

underestimation of Si energy. Even the long-range corrected LC-wPBE is not successful

in estimating Eabs, although it systematically overestimates energy unlike the other three.

This behavior indicates that the length scale of charge transfer for the test set molecules is

smaller than w- 1 and is consistent with what was reported earlier by Adachi et al. [364].

However, the spurious TDDFT red-shift of energies in the B3LYP and PBEO calculations are

comparable to the Stokes shift for many of the molecules, resulting in a cancellation of errors

that permits ET[DFT to be a fairly accurate estimate of E Ejot. With B3LYP, it is also

possible to get reasonable estimates of EELxt by using E2 DFT, although PBEO significantly

overestimates this parameter (possibly on account of using a greater percentage of exact

exchange than B3LYP). The energy shifts for PBE are too large for a similar cancellation

of errors to occur there, and LC-wPBE overestimates energies, making such a cancellation

impossible.

This cancellation of errors however is not applicable to the AEST estimates, and Protocol

A does not perform particularly well on that front. PBE and B3LYP both have large

systematic errors as TDDFT artificially increases the extent of CT in the Si and T states

in a bid to lower their energies. This spuriously increased CT character leads to a smaller

than expected energy gap, causing underestimation of AEsT. PBEO however has a smaller

systematic error in AEST, possibly on account of the larger proportion of exact exchange

being employed in the functional (a trend that can also been seen in the decreased errors on

going from PBE to B3LYP). LC-wPBE on the other hand, significantly overestimates AEST,
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which is consistent with the CT length scale being smaller than w- 1. Consequently, single-

functional Protocol A calculations cannot generally be used to get accurate ideas about

AEST and Eemit simultaneously. The former is predicted best with PBE0 and the latter

by B3LYP. However, Protocol A does not require excited-state geometry optimizations and

is thus attractive as a preliminary screen for OLED materials, even if two calculations with

different functionals are required.

Protocol B has no cancellation of errors to fall back upon, and thus consistently un-

derestimates Eemit and E-00 with PBE, B3LYP, and PBEO. The AEsT estimates are also

considerably underestimated (by nearly an order of magnitude) and are in fact much worse

than Protocol A estimates. This is a consequence of TDDFT further enhancing the CT

character of SI/T states by distorting the equilibrium geometry in an attempt to spu-

riously lower the energy. LC-wPBE again overestimates parameters significantly, for the

same reason as earlier [364]. Despite Protocol B being the most computationally expensive

of the protocols tested (as it requires three geometry optimizations, two of which were in

the excited state), it proves to be the least effective in predicting energies. This behavior

is consistent with earlier studies and only serves to reinforce the notion that TDDFT with

traditional functionals is unsuitable for predicting energies of CT states.

Parameter measured PBE B3LYP PBEO LC-wPBE
RMSE (ME) RMSE (ME) RMSE (ME) RMSE (ME)

Eabs (Protocols C and D) 0.69 (-0.64) 0.18 (-0.06) 0.28 (0.11) 0.82 (0.75)

Eemit (Protocol C) 0.53 (-0.49) 0.19 (0.00) 0.20 (0.10) 0.79 (0.45)

Eemit (Protocol D) 0.52 (-0.48) 0.22 (0.02) 0.23 (0.11) 0.85 (0.79)

E- 00 (Protocol C) 0.56 (-0.54) 0.14 (0.02) 0.17 (0.11) 0.70 (0.66)

E-00 (Protocol D) 0.55 (-0.52) 0.23 (0.10) 0.27 (0.19) 1.09 (1.03)

log(AEsT) (Protocol C) 0.73 (-0.55) 0.35 (-0.17) 0.27 (-0.07) 0.58 (-0.06)

log(AEsT) (Protocol D) 0.49 (-0.34) 0.35 (-0.03) 0.32 (0.04) 0.64 (0.25)

Table 6.4: Errors associated with energy estimates from ROKS-derived protocols. ME
mean error; RMSE = root mean squared error. Errors in Eabs, Eemit, and Eo-o have the
unit eV. Both protocols calculate absorption energy in the same manner and thus have the
same errors associated with that parameter.

ROKS results: Protocols C and D. Protocols C and D attempt to circumvent the

red-shifting of energies by using ROKS and restricted open-shell DFT (RO-DFT) instead of
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TDDFT to access the Si and T surfaces, respectively. While it is possible to use unrestricted

open-shell DFT (UO-DFT) to access T1 energies instead, we choose to use RO-DFT as Si

energies are always accessed by a restricted method (ROKS) and thus using UO-DFT triplet

energies could lead to a systematic error in AEST from the extra stabilization recovered by

the unrestricted calculation on the triplet. Nonetheless, we compared UO-DFT and RO-

DFT calculation results for the case of the B3LYP functional and find that the numbers are

not significantly different, further suggesting that performing RO-DFT is sufficient.

Though Protocol C is not a particularly cheap protocol (it requires three geometry

optimizations, although only one of them is in the excited state), it gives quite accurate

estimates of Eabs, Femit, and E0 _0 with B3LYP and PBEO. The near zero mean errors of

B3LYP calculations are of particular interest, as they indicate there is no systematic bias

unlike Protocol B with B3LYP. Interestingly, PBEO mean errors are consistently greater

than B3LYP errors by approximately 0.1 eV, possibly on account of PBEO blue-shifting the

energies more due to greater exact exchange. PBE still underestimates energies, but the

deviation is still much less than Protocol B (by approximately 0.5 eV) or even Protocol

A. LC-wPBE still overestimates energies, and the deviations here are comparable to the

TDDFT deviations, suggesting that these are more a consequence of the functional than the

method.

The trends in AEST obtained from Protocol C are somewhat more interesting. B3LYP

and PBEO have the smallest RMS errors, which coupled with their relatively small mean

errors indicate that these two are best suited for calculating AEST (PBEO being somewhat

better than B3LYP). Like in TDDFT calculations, PBE significantly underestimates AEST,

although the errors are smaller. On the other hand, LC-wPBE has an extremely small mean

error along with a fairly large RMS error, indicating that a lot of noise is associated with

calculations based on this functional but not much of a bias, which stands in direct contrast

to the large Protocols A and B mean errors. This indicates that the ROKS/RO-DFT combi-

nation does not add a systematic bias to AEsT for LC-wPBE calculations, unlike TDDFT

- although AEST calculations are still fairly inaccurate because this functional causes a

large blue-shift of the Si and T energies, which leads to a lot of noise. Overall, Protocol C

is found to give very accurate energies with B3LYP and PBEO and should be the method

of choice if sufficient computational resources for S1 geometry optimization are available.

It is also possible to reduce the S1 optimization cost by using T1 optimized geometries as
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the starting guess, as those are expected to be closer to equilibrium Si geometry than So

geometries or ground-state force field fits for TADF molecules.

Protocol D aims to attain accuracy comparable to Protocol C at a lesser computational

cost by approximating the equilibrium Si geometry with the equilibrium T geometry. This

approach is reasonable for systems exhibiting TADF, as AEsT is very small in these cases,

indicating that the Si and T surfaces are near parallel. Overall, Protocol D Eemit estimates

are quite close to Protocol C estimates and thus correspond well to experimental values

for B3LYP and PBEO functionals. PBE calculations also give E0 _0 similar to Protocol

C, although the other three functionals overestimate this parameter relative to Protocol C

(although the shift is only of the order of 0.1 eV on average for PBEO and B3LYP).

This deficiency is somewhat compensated by the lack of apparent systematic bias in

AEST calculated with PBEO and B3LYP. PBE underestimates AEST as in all previous

calculations, while LC-wPBE overestimates AEST on average - unlike in Protocol C. Overall,

all the functionals overestimate AEST with Protocol D, relative to Protocol C, as Protocol D

slightly overestimates Si energy as it is evaluated close to but not at the minima. However,

this slight blue-shift of AEST improves the mean accuracy of both PBEO and B3LYP and

allows Protocol D with these two functionals to be either better than or as effective as

Protocol C in estimating Eemit and AEST, the two parameters of greatest interest for

OLED screening. Protocol D with B3LYP/PBEO is therefore the method we recommend be

used first, with Protocol C only being used for the cases where D predicts large AEST (>

0.5 eV), indicating smaller than expected CT character that causes our assumption about

similarities in equilibrium Si and T geometries to break down.

Overall, it can be seen that ROKS-derived protocols employing B3LYP or PBEO yield

numbers that are much closer to experimental values than the equivalent TDDFT-based

protocols. We believe this is on account of ROKS computing the optimal orbitals for the

excited-state self-consistently without any interference from the So state (though So orbitals

serve as an initial guess). TDDFT on the other hand accesses excited states via linear

response from the So density, leading to the possibility of ground-state contamination when

employed with approximate functionals despite TDDFT being guaranteed to be exact with

the exact functional [631. Such contamination would be especially problematic for CT states

as these states are very far off from the So state in terms of density, leading to a spurious

lowering of energy that SCF methods like ROKS avoid by explicitly calculating the excited-
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state density independent of the So state. Similar reasons explain the lesser accuracy of T1

energies obtained by TDDFT compared to formally exact SCF methods like RO-DFT and

UO-DFT. The ROKS part of this analysis is functional dependent: TDDFT is guaranteed

to give the exact answer with the exact functional, while no equivalent assurance exists for

ROKS. However, ROKS appears to give a more accurate picture of CT states than TDDFT

with commonly used semi-local hybrid density functionals like B3LYP and PBEO at least,

and both seem to be incorrect to a roughly equal extent with PBE or LC-wPBE functionals.

6.4 Conclusions

In this chapter, we have shown successful applications of the conventional excited-state DFT

method (TDDFT with B3LYP functional) for designing new TADF materials. Using two

design strategies, we have designed the triptycene-based and TCZ-TRZ-based compounds,

and shown they exhibit good TADF properties and OLED device performance. These results

indicate that conventional TDDFT methods can serve as a useful computational design and

screening tool as long as employed properly, although they also possess systematic errors. To

address the problems existing in TDDFT, we have developed new computational protocols

that are very well suited for studying molecules with large CT character, based on the

ROKS/RO-DFT approach. Our numerical tests show that such ROKS-based protocols

perform better than TDDFT on the TADF molecules. In conclusion, we have demonstrated

how to choose suitable exicted-state DFT methods for studying photophysical properties

of particular interest in this work, using the OLED emitters with TADF character as an

example.

Our results however neglected the impact of the surroundings on the photophysics of

these TADF molecules, mainly because the effects of the surrounding molecules are difficult

to account for. This study only performed calculations on molecules that were experimen-

tally studied in non-polar solvents like cyclohexane (E, = 2.03) or toluene (E, = 2.39), in

part because the small dielectric constants should have a proportionately small effect on the

photophysics. In the future, it would be interesting to examine how these protocols could

be extended to deal accurately with the effects of the surroundings - for example, to tell

the difference between the Stokes shift in solution versus in a film. We are also currently

unable to predict quantum yields from first principles, which is another important param-
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eter to be considered for practical applications. Our future work therefore shall focus on

properly accounting for solvent effects on photophysical properties and ab initio quantum

yield prediction in order to enable more efficient design of organic semiconductors involving

CT states.
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Chapter 7

Conclusions

In this thesis, we present our efforts on two aspects of DFT simulations in complex chemical

systems: (1) building a systematically improvable density functional hierarchy, and (2)

applying DFT methods to model electronic properties in a proper manner.

In Chapters 2-4, We have developed a new fragment-based density functional hierar-

chy, many-pair expansion (MPE), in order to systematically correct the deficiencies of any

approximate density functional. We have shown that MPE at low orders can already ac-

curately describe strong corrections presented in 1D/2D Hubbard and ID Peierls-Hubbard

lattice models and dispersion interactions presented in the PPP model, which are two big

challenges for commonly-used density functionals. We have also extended MPE to molecular

systems and demonstrated that MPE at a low second order provides accurate predictions

for molecular and reaction energies of a series of small molecules and also correctly describes

the bond breaking processes in hydrogen rings. More importantly, for most of the systems

and problems tested, MPE is able to provide systematic improvement of approximate den-

sity functional calculations as successive higher order corrections are applied, as long as a

suitable density partitioning method is prescribed. During the implementation of MPE in

molecular systems, we have developed a new density partitioning method, self-attractive

Hartree (SAH), which not only provides the foundation for molecular MPE calculations,

but also shows promise as a tool to analyze chemical bonding from the electron density.

Furthermore, we have shown that the SAH decomposition can be utilized to study monomer

properties in molecular complexes and locally measure intra- and inter-molecular hydrogen

bonding strength.
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Systematic improvement of approximate density functionals is probably the biggest chal-

lenge in the field of DFT. The work in this thesis is encouraging as MPE shows promise to

provide such a framework towards this goal. Nevertheless, we also note MPE needs further

development to be finally employed in routine DFT simulations of materials. The future

work of MPE should focus on four aspects.

First, more realistic density functionals should be used to test the performance of MPE.

In this thesis, only the EXX functional is employed to test the performance of MPE in

molecular systems. As correlation is completely missing in the EXX functional, the MPE

convergence may be slow in systems where EXX is performing poorly. Combining MPE with

more complicated functionals, it is possible that we can achieve better MPE convergence than

EXX-MPE due to the introduction of correlation functionals. On the other hand, for modern

functionals, especially empirically-tuned functionals such as B3LYP, it remains unclear if

adding corrections in small fragments will ruin the original balance between the exchange

and correlation functionals. Therefore, in addition to EXX, we should test whether MPE

can also systematically improve the DFT calculations with commonly-used LDA, GGA,

meta-GGA and hybrid functionals. Especially, we want to investigate how MPE can be

applied to remove the delocalization error and strong correlation error in these functionals.

Considering the elegance in MPE formalisms and the excellent performance of LDA-MPE

in the ID Hubbard model, we hope MPE can achieve better performance when combined

with more realistic density functionals.

Second, faster implementation is needed for applying MPE to more realistic chemical

systems. Although the MPEm correction is an O(N') method (N is the number of elec-

tron pairs), its speed is usually hindered by the large prefactor due to expensive interacting

potential inversion calculations. This limits MPE to be only applicable to small molecules

and/or at low orders. To make MPE faster, two different ways may be explored. The first

strategy is to combine DFT embedding methods [83, 84] with MPE to avoid doing interact-

ing potential inversions. Instead of partitioning the density into pair densities in MPE, we

may partition the external potential into "pair potentials" which give pair densities in the

framework of DFT embedding. Starting from the partitioned potentials, the calculation of

FCI energies does not require doing potential inversions any more. Our SAH decomposition

method provides the possibility for such potential partitioning and we are actively exploring

this new idea. The second strategy is to exploit the locality in SAH fragment densities and
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using local correlation methods [207, 378, 379] as the alternative to FCI. In this thesis, all

fragment calculations in molecular MPE use the basis set of the whole system, which signif-

icantly limits the application of MPE. However, it is entirely possible to adopt localization

correlation methods to accelerate the time-consuming FCI calculations considering our SAH

fragments are highly localized. Note that we have already exploited locality in the lattice

model studies of MPE, where MPE at all orders can be seen as near-linear-scaling methods

with different prefactors.

Third, a density optimization scheme is needed for more accurate MPE calculations.

MPE is formally a density functional hierarchy that converges to the exact energy if the

input density is exact. However, in reality, MPE results may converge to the inaccurate

answer due to the use of bad approximate DFT density. One can already see such effects

from the case of hydrogen ring bond breaking. Therefore, a self-consistent MPE scheme

may be needed, where the MPE energies are used to optimize the input density and thus

lead to better MPE results.

Fourth, MPE may be used as a tool to analyze the density functional errors and develop

better density functionals. As shown in this work, MPE is able to reveal how approximate

functionals perform for particular fragment densities by comparing with the exact correla-

tion and interaction energies from FCL Such analysis provides useful insights for functional

development. New density functionals can thus be designed by optimally tuning parameters

(e.g., range-separation parameter, percentage of EXX) for specific molecule so that cer-

tain fragment correction/interaction energies (e.g., pair-pair interactions) can be accurately

described, leading to improved description of the whole molecule.

In Chapters 5-6, we have applied various DFT methods to study organic light-emitting

diodes (OLEDs). We first show a condensed phase modeling of the emission layer of a

phosphorescent OLED, consisting of guest and host materials. Using combined MD and

QM/MM simulations, we have uncovered the charge recombination pathways and host exci-

ton quenching mechanisms in the studied host-guest OLED. Based on the revealed mecha-

nisms, we have proposed several strategies for designing better host and guest combinations.

Then we utilize several excited-state DFT methods to computationally screen thermally ac-

tivated delayed fluorescence (TADF) materials, which results in successful design of new

efficient TADF emitters. In addition, we have developed a more accurate excited-state DFT

protocols to predict TADF energetics based on a ROKS approach.
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Using the example of OLED simulations, we have shown that DFT methods provide effi-

cient modeling of electronic properties in complex chemical systems when employed properly.

Incorporating environment effects and utilizing accurate excited-state methods are espe-

cially important for obtaining electronic properties in systems like organic semiconductors.

Looking forward, several more developments should be considered. First, other electronic

properties should be considered in OLED simulations. In this thesis, we have only modeled

energy-related properties, while several other important electronic properties may also be

needed. For example, for more comprehensive understanding of charge and energy transfer

mechanisms, the electronic coupling between involving states should be considered. To more

accurately predict TADF properties, an ab initio method to predict quantum yields is highly

desired. Second, better methods to describe the environment effects are needed. In this the-

sis, we adopt a polarizable QM/MM method for the condensed phase simulation, where the

classical MM force field is used to describe the environment. However, the classical force

fields are usually not optimized for the interested organic semiconductor systems, which may

introduce unexpected errors. Meanwhile, some parameters for particular chemical structures

are missing in the force field, which requires extra efforts in fitting force field parameters

to DFT or experimental results. Therefore, more accurate while still efficient first-principle

methods may be needed to describe the environment effects. Subsystem DFT [225] and the

recently-developed embedded mean-field theory [380] are possible methods to be explored.
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Appendix A

Construction of auxiliary basis sets in

SAH and MPE calculations

In Chapter 3, in order to implement self-attractive Hartree decomposition using standard

linear algebra techniques, we need to have a way to represent the potential P(r) in Eq. 3.8.

We introduce an auxiliary basis set {xp} [226, 227] composed of Gaussian-type atomic

orbitals. Then the external potential p(r) can be expanded using the nuclear potential and

Coulomb potentials of functions in the auxiliary basis set [81] as shown in Eqs. 3.9-3.14.

To solve Eq. 3.14, potential inversion techniques need to be exploited to guarantee density

matching. As pointed out by many authors, potential inversion and optimized effective

potential techniques are numerically unstable in finite basis sets [233, 234]. G6rling and co-

workers proposed a solution by carefully balancing the orbital ({o}) and auxiliary basis sets

{XP} [235]. We follow their idea to decontract the orbital basis and remove some of the most

compact and diffuse functions to generate auxiliary basis sets. In Chapter 4, we adopt the

same orbital and auxiliary basis sets to perform potential inversions in MPE calculations.

Here we describe how to construct the orbital and auxiliary basis sets for SAH and MPE

calculations. In this thesis, the orbital basis is constructed using uncontracted cc-pVDZ,

cc-pVTZ [231] or aug-cc-pVTZ basis set [232]. The corresponding auxiliary basis sets are

listed in Table SA.1 for elements including H, Be, B, C, N, 0, F, S and Se.

169



Auxiliary basis

Removed Added

Element Orbital Basis L Tight Diffuse Exponent

H cc-pVDZ 0 1 1

cc-pVTZ 0 1 1

1 1

aug-cc-pVTZ 0 1

Be cc-pVDZ 0 3 1

1 1

cc-pVTZ 0 3 1

1 1

3 1

B cc-pVDZ 0 3 1

1 1

cc-pVTZ 0 3 1

11

2 1 0.2109

3 1

C cc-pVDZ 0 3 1

1 1

cc-pVTZ 0 3 1

1 1

2 1 0.3499

3 1

aug-cc-pVTZ 0 3 1

1 1

2 1

3 1 1

N cc-pVDZ

cc-pVTZ

0

1

0

3

3

1

1

1
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aug-cc-pVTZ

cc-pVDZ

cc-pVTZ

aug-cc-pVTZ

cc-pVDZ

cc-pVTZ

aug-cc-pVTZ

1

3

0

1

2

3

3

1

3

3

3

1

1

1

1

1

1

3 1 1

S cc-pVTZ 0 4 1

1 1 1

2 1

3 1

cc-pVTZ 0

1

4

1

1

1
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0

F

0.7163

0.9684

Se



2 1

3 1

Table A. 1: The construction of auxiliary basis sets for elements used in this thesis. The
auxiliary basis set is designed for specific orbital basis by removing several basis functions
from uncontracted orbital basis. The second column shows the reference uncontracted orbital
basis for generating auxiliary basis. The third column shows the angular quantum number
of removed/added Gaussian functions. The fourth and fifth column shows the number of
most compact and diffuse Gaussian functions removed from the uncontracted orbital basis.
The last column shows the exponent of the added Gaussian functions in the auxiliary basis.
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