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POINTED HOPF ACTIONS ON FIELDS, II

PAVEL ETINGOF AND CHELSEA WALTON

Abstract. This is a continuation of the authors’ study of finite-dimensional pointed Hopf algebras H which

act inner faithfully on commutative domains. As mentioned in Part I of this work, the study boils down to

the case where H acts inner faithfully on a field. These Hopf algebras are referred to as Galois-theoretical.

In this work, we provide classification results for finite-dimensional pointed Galois-theoretical Hopf al-

gebras H of finite Cartan type. Namely, we determine when such H of type A×r
1

and some H of rank

two possess the Galois-theoretical property. Moreover, we provide necessary and sufficient conditions for

Reshetikhin twists of small quantum groups to be Galois-theoretical.

1. Introduction

The goal of this paper is to continue the study of finite-dimensional pointed Hopf actions on commutative

domains over an algebraically closed field k of characteristic zero, which we started in [15]. 1 By [15, Lemma 9

and Remark 3], this reduces to the study of Hopf actions on fields containing k. Moreover, by passing to

appropriate Hopf quotients, it suffices to consider inner faithful actions, i.e., those not factoring through a

‘smaller’ Hopf algebra (Definition 2.2), and we will do so throughout the paper. Since faithful actions of

finite groups on fields are studied by Galois theory, in [15] we made the following definition.

Definition 1.1. A Hopf algebra H over k is said to be Galois-theoretical if it acts inner faithfully on a field

containing k.

Examples of Galois-theoretical Hopf algebras are provided in [15, Theorem 2]. They include Taft algebras,

uq(sl2), and twists of small quantum groups. At the same time, it is shown in [15] that many familiar

examples of finite-dimensional Hopf algebras (such as gr(uq(sl2)) and generalized Taft algebras) are not

Galois-theoretical.

Our goal here is to classify Galois-theoretical finite-dimensional pointed Hopf algebras in as many cases

as possible. We believe that the methods of this paper with some additional work can lead to a complete

solution of this problem, at least in the special case when the group of grouplike elements is abelian.

Recall that an important invariant of a pointed Hopf algebra is its rank θ (Definition 2.4). Our first result

discusses the rank one case. Namely, let H be a finite-dimensional pointed Hopf algebra of rank one. Then by

[16, Theorem 1(a)], H is generated by the group of grouplike elements G = G(H) and a (g, 1)-skew-primitive

element x, for some g contained in the center Z(G) of G.

Theorem 1.2 (Theorem 4.2). Let H be a finite-dimensional pointed Hopf algebra of rank one, as above.

Then, H is Galois-theoretical if and only if the Hopf subalgebra generated by {g, x} is a Taft algebra.

For finite-dimensional pointed Hopf algebras H of higher rank, we make the following assumptions for the

rest of the paper, unless stated otherwise.

2010 Mathematics Subject Classification. 13B05, 16T05, 81R50.
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1The reference numbers for the published version of [15] differ from the reference numbers of the preprint version; see the
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Hypothesis 1.3. Take H to be a finite-dimensional pointed Hopf algebra and assume that G = G(H) is

abelian. Now the associated coradically graded Hopf algebra gr(H) is isomorphic to the bosonization of a

Nichols algebra B(V ) by kG (see Proposition 2.5). In other words, H is a lifting of B(V )#kG. Assume that

B(V ) is of finite Cartan type (see Definition 2.6(b)). 2

Under the hypotheses above,H is generated by G and (gi, 1)-skew-primitive elements xi for gi ∈ G, so that

gixj = χj(gi)xjgi, where χj is a character of G. If xni

i = 0 for some ni ≥ 2, then H is a finite-dimensional

Hopf quotient of the (typically infinite-dimensional) pointed Hopf algebra H(G, g1, . . . , gθ, χ1, . . . , χθ) of

rank θ from Definition 3.1.

For this reason, the following theorem will play a central role in this paper. For any g ∈ G and χ ∈ Ĝ

(the character group of G), let Ig,χ := {1 ≤ i ≤ θ | gi = g, χi = χ}.

Theorem 1.4 (Theorem 3.3). Let L be a field containing k and equipped with a faithful action of G. Then,

the extensions of the G-action on L to a (not necessarily inner faithful) H(G, g1, . . . , gθ, χ1, . . . , χθ)-action

are defined by the formula

(1.5) xi 7→ wi(1− gi),

where wi ∈ L is such that g · wi = χi(g)wi for all g ∈ G.

Moreover, for each g, χ, the skew-primitive elements {xi | i ∈ Ig,χ} are linearly independent as k-linear

operators on L if and only if so are the elements wi; this can be achieved by an appropriate choice of wi.
3

Using this result, we provide in Example 3.14 an illustration of how to construct an inner faithful action

of a finite-dimensional pointed Hopf algebra on a field as an extension of a faithful group action.

Now we continue our study in the coradically graded case. We have the following result for type A×θ
1 .

Theorem 1.6 (Theorem 4.5). Let H be a finite-dimensional pointed coradically graded Hopf algebra of finite

Cartan type A×θ
1 . Then, H is Galois-theoretical if and only if the Hopf subalgebra H ′ of H generated by

{g1, . . . , gθ, x1, . . . , xθ} is the tensor product of

• Taft algebras T (n, ζ),

• Nichols Hopf algebras E(n), and

• book algebras h(ζ, 1).

See [15, Sections 3.1, 3.2, 3.4] for the presentations of T (n, ζ) (=:T (n)), E(n), and h(ζ, 1), respectively.

The next theorem describes the Galois-theoretical properties of finite-dimensional pointed coradically

graded Hopf algebras of rank two.

Theorem 1.7 (Theorem 5.7). Let H be a finite-dimensional pointed coradically graded Hopf algebra of rank

two, subject to condition (2.8) on the values of χi(gi). Then, H is Galois-theoretical if and only if the Hopf

subalgebra H ′ generated by g1, g2, x1, x2 is one of the following:

(a) of type A1×A1, namely

• the tensor product of Taft algebras T (n, ζ)⊗ T (n′, ζ′) for n, n′ ≥ 2, or

• the 8-dimensional Nichols Hopf algebra E(2), or

• the book algebra h(ζ, 1);

(b) of type A2, B2, or G2 with χ2(g1) = 1 or χ1(g2) = 1 (here, H ′ is isomorphic to a twist u≥0
q (g)J); or

2In fact, all finite-dimensional pointed Hopf algebras with G abelian, and with all prime divisors of |G| being > 7 (subject to

additional mild conditions), are liftings of bosonizations of Nichols algebras of finite Cartan type by kG [10]. See Theorem 2.9

for more details.
3In many cases, |Ig,χ| ≤ 1, and the condition that {xi | i ∈ Ig,χ} are linearly independent boils down to the condition xi 6= 0

as operators on L.
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(c) one of the 34-dimensional (resp. 55-dimensional, 77-dimensional) Hopf algebras of type A2 (resp.

B2, G2) from [6, Theorem 1.3(ii) (resp. (iii), (iv))], where χ2(g1), χ1(g2) 6= 1.

Due to the complexity of the rank two case, we leave the general study of coradically graded Galois-

theoretical Hopf algebras of higher rank to future work.

Next, we discuss the Galois-theoretical properties of liftings H of coradically graded finite-dimensional

pointed Hopf algebras in the cases when H is of finite Cartan type A×θ
1 and of rank two. To our knowledge,

liftings of Nichols algebras of type G2 are unclassified, so we do not address this case here.

Theorem 1.8 (Theorem 6.1). Let H be a lifting of bosonization of a Nichols algebra B(V ) of finite Cartan

type as classified in [5] for type A×θ
1 . Then, H is Galois-theoretical if and only if the Hopf subalgebra of

H generated by {g1, . . . , gθ, x1, . . . , xθ} is the quotient by a group of central grouplike elements of a tensor

product of:

• u′q(gl2), the Hopf algebras from [15, Definition 11],

• Taft algebras T (n, ζ),

• Nichols Hopf algebras E(n), and

• book algebras h(ζ, 1).

Theorem 1.9 (Propositions 6.2, 6.3). Let H be a lifting of bosonization of a Nichols algebra B(V ) of finite

Cartan type as classified in [7] for type A2, and in [14] for type B2. Here, we assume that the braiding

parameter is a root of unity of odd order m > 1, with m ≥ 5 for type A2, and m 6= 5 for type B2. In either

case, if H is Galois-theoretical, then H is coradically graded.

Finally, we address the Galois-theoretical property of twists of small quantum groups.

Theorem 1.10 (Propositions 7.1 and 7.3). Let g be a finite-dimensional semisimple Lie algebra with Cartan

matrix (aij). Let q ∈ k be a root of unity of odd order m ≥ 3, with m > 3 for type G2. For parts (d) and

(e) below, we also require that m is relatively prime to det(aij), and to 3 in type G2. Let J be a Drinfeld

twist coming from the Cartan subgroup of the small quantum group (i.e., a Reshetikhin twist). Then:

(a) uq(g) is Galois-theoretical if and only if g = sl2.

(b) u≥0
q (g) is Galois-theoretical if and only if g = sl2.

(c) gr(uq(g)) is not Galois-theoretical.

(d) uq(g)
J can be Galois-theoretical if and only if g = sln, and in this case, there are only two of such

twists J for n ≥ 3, and one (namely, J = 1) for n = 2.

(e) There are precisely 2rank(g)−1 twists J for which u≥0
q (g)J is Galois-theoretical.

In the theorem above, twists are counted up to gauge transformations, as gauge equivalent twists produce

isomorphic Hopf algebras.

The paper is organized as follows. Background material on Hopf algebra actions and pointed Hopf algebras

of finite Cartan type is provided in Section 2. Preliminary results on the Galois-theoretical property of

finite-dimensional pointed Hopf algebras of finite Cartan type are provided in Section 3. Here, we prove

Theorem 1.4 and define minimal Hopf algebras which will be used throughout this work. Next, in Section 4,

we study the Galois-theoretical property in the type A×θ
1 case, which includes the rank one case; we establish

Theorems 1.2 and 1.6 here. In Section 5, we restrict our attention to the coradically graded case and study

Galois-theoretical H of rank two; namely, we prove Theorem 1.7. Then, in Section 6, we determine when

liftings of bosonizations of certain Nichols algebras of finite Cartan type are Galois-theoretical; we verify

Theorems 1.8 and 1.9 here. Finally, in Section 7, we prove Theorem 1.10 on the Galois-theoretical property

of twists of small quantum groups. Suggestions for further directions of this work are presented in Section 8.
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2. Background material

In this section, we provide a background discussion of Hopf algebra actions and pointed Hopf algebras of

finite Cartan type. We set the following notation for the rest of the article. Unless specified otherwise:

k = an algebraically closed base field of characteristic zero; all unadorned tensor products are over k

ζ, q = a primitive root of unity in k of order n and m, respectively

H = a finite-dimensional Hopf algebra with coproduct ∆, counit ε, antipode S

G = the group of grouplike elements G(H) of H

Ĝ = character group of G = {α : G→ k
×}

Ig,χ = the index set {i | gi = g, χi = χ} for given elements g ∈ G, χ ∈ Ĝ

qij = the scalar χj(gi) for χj ∈ Ĝ and gi ∈ G

ni = the order of qii
(aij) = the Cartan matrix associated to a finite-dimensional semisimple Lie algebra

L = an H-module field containing k

F = the subfield of invariants LH

E = an intermediate field of the extension LH ⊂ L
G
GYD = the category of Yetter-Drinfeld modules over kG

(V, c) = finite-dimensional braided vector space in G
GYD with basis x1, . . . , xθ

Since G is abelian by Hypothesis 1.3, we have that V is just a G-graded G-module.

2.1. Hopf algebra actions. We recall basic facts about Hopf algebra actions; refer to [17] for further

details. A left H-module M has a left H-action structure map denoted by · : H ⊗M →M .

Definition 2.1. Given a Hopf algebra H and an algebra A, we say that H acts on A (from the left) if A is a

left H-module, h ·(ab) =
∑

(h1 ·a)(h2 ·b), and h ·1A = ε(h)1A for all h ∈ H , a, b ∈ A. Here, ∆(h) =
∑
h1⊗h2

(Sweedler notation). In the case that H acts on a field L, we refer to L as an H-module field.

We restrict ourselves to H-actions that do not factor through ‘smaller’ Hopf algebras.

Definition 2.2. Given a left H-module M , we say that M is an inner faithful H-module if IM 6= 0 for

every nonzero Hopf ideal I of H . Given an action of a Hopf algebra H on an algebra A, we say that this

action is inner faithful if the left H-module (algebra) A is inner faithful.

When given an H-action on an algebra A, one can always pass uniquely to an inner faithful H-action on

A, where H is some quotient Hopf algebra of H .

Next, we consider elements of a field L invariant under the H-action on L.

Definition 2.3. Let H be a Hopf algebra that acts on a field L containing k from the left. The subfield of

invariants for this action is given by

LH = {ℓ ∈ L | h · ℓ = ε(h)ℓ for all h ∈ H}.

2.2. Pointed Hopf algebras of finite Cartan type. Let us begin with a discussion of pointed Hopf

algebras. A nonzero element g ∈ H is grouplike if ∆(g) = g⊗ g, and the group of grouplike elements of H is

denoted by G = G(H). An element x ∈ H is (g, g′)-skew-primitive, if for grouplike elements g, g′ of G(H),

we have that ∆(x) = g ⊗ x + x ⊗ g′. The space of such elements is denoted by Pg,g′ (H). The coradical H0

of a Hopf algebra H is the sum of all simple subcoalgebras of H . The coradical filtration {Hn}n≥0 of H is

defined inductively by

Hn = ∆−1(H ⊗Hn−1 +H0 ⊗H), for n ≥ 1
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where H =
⋃

n≥0Hn. We say that a Hopf algebra H is pointed if all of its simple H-comodules (or equiva-

lently, if all of its simple H-subcoalgebras) are 1-dimensional. When H is pointed, we have that H0 = kG

and H1 = kG +
∑

g,g′∈G Pg,g′(H). Following [16], we measure the complexity of a pointed Hopf algebra by

considering its rank.

Definition 2.4. Let H be a Hopf algebra with coradical filtration {Hn}n≥0, where the coradical H0 is a

Hopf subalgebra and H is generated by H1 as an algebra. The rank of H is θ if dim(k⊗H0
H1) = θ + 1.

To study finite-dimensional pointed Hopf algebrasH , it is convenient to assume that G = G(H) is abelian

(as we have done in Hypothesis 1.3) since we have the following result.

Proposition 2.5. [12] Let H be a finite-dimensional pointed Hopf algebra with an abelian group of grouplike

elements G. Then, the associated coradically graded Hopf algebra gr(H) is isomorphic to a bosonization

B(V )#kG of a Nichols algebra B(V ) by the group algebra kG. In other words, H is generated by grouplike

and skew-primitive elements.

Proof. This follows from [12, Theorem 4.15]. Namely, such an H satisfies the Andruskiewitsch-Schneider

conjecture [8, Conjecture 1.4]: it is generated in degree one (by grouplike and skew-primitive elements). �

We refer the reader to [9, Section 2] for a review of Nichols algebras associated to braided vector spaces.

Now we consider a special subclass of the finite-dimensional pointed Hopf algebras, those of finite Cartan

type. Refer to [9, Section 1.2] and [10] for further details.

Definition 2.6. Let (V, c) be a finite-dimensional braided vector space.

(a) (V, c) is of diagonal type if there exists a basis x1, . . . , xθ of V and scalars qij ∈ k
× so that

c(xi ⊗ xj) = qijxj ⊗ xi

for all 1 ≤ i, j ≤ θ. The matrix (qij) is called the braiding matrix.

(b) (V, c) is of finite Cartan type if it is of diagonal type and

(2.7) qii 6= 1 and qijqji = q
aij

ii

where (aij)1≤i,j≤θ is a Cartan matrix associated to a finite-dimensional semisimple Lie algebra.

(c) The same terminology applies to the Nichols algebra B(V ) and a Hopf algebra H when gr(H) ∼=

B(V )#kG. In this case, H is a lifting of a finite-dimensional pointed Hopf algebra of finite Cartan

type, and further, trivial lifting when H is coradically graded.

Note that since G(H) is abelian here, the corresponding braided vector space (V, c) is automatically of

diagonal type; indeed, it suffices to choose xi to be eigenvectors of the G-action. See [15, Theorem 2] for

examples of finite-dimensional pointed Hopf algebras of finite Cartan type.

Motivated by Proposition 2.5, we now give the precise presentation of finite-dimensional pointed Hopf

algebras H where the order of G(H) has large prime divisors; H is of finite Cartan type in this case.

Notation [Φ+, α, nI ]. In the case where V is of finite Cartan type, let Φ be the root system of the Cartan

matrix (aij)1≤i,j,≤θ, and let Φ+ be the subset of positive roots. Let α1, . . . , αθ be the simple roots. We write

i ∼ j if the roots αi and αj are in the same connected component of the Dynkin diagram of Φ. Let X be

the set of such connected components. Assume that

(2.8) qii has odd order, and is prime to 3 if i lies in a component G2.

The order of qii and of qjj are equal when i ∼ j. So, we set nI to be the order of any qii with αi ∈ I of X .
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Theorem 2.9. (a) [10, Theorem 0.1(2)] Let H be a finite-dimensional pointed Hopf algebra, where G is

abelian so that the prime divisors of |G| are > 7. Then, H is of finite Cartan type.

(b) [8, Theorem 4.5] Let H be a finite-dimensional pointed Hopf algebra of finite Cartan type, with G

abelian. Let (qij := χj(gi)) be the braiding matrix of H and assume (2.8). Then, H is generated by G and

by (gi, 1)-skew-primitive elements xi for gi ∈ G and i = 1, . . . , θ. Further, gr(H) ∼= B(V )#kG is subject to

the relations of G along with the following relations:

gxi = χi(g)xig for all i, and all g ∈ G

adc(xi)
1−aij (xj) = 0 for all i 6= j

xnI
α = 0 for all α ∈ Φ+

I , I ∈ X .

Here, (adcxi)(y) = xiy − (qij1 · · · qijt)yxi for y = xj1 · · ·xjt . �

3. Preliminary results on pointed Galois-theoretical Hopf algebras

We begin this section by examining actions of Hopf algebrasH(G, g1, . . . , gθ, χ1, . . . , χθ), which are infinite-

dimensional when θ ≥ 2. We also define and discuss minimal Hopf algebras, which will be used throughout

the rest of the paper.

3.1. On the Hopf algebras H(G, g1, . . . , gθ, χ1, . . . , χθ). We consider the actions of the Hopf algebra

H(G, g1, . . . , gθ, χ1, . . . , χθ) defined below.

Definition 3.1. Let G be a finite abelian group. Let gi ∈ G be an element of order ni ≥ 2, for i = 1, . . . , θ.

Fix characters χi : G → k
×, for i = 1, . . . , θ, so that qii := χi(gi) has order ni. Let g := (g1, . . . , gθ) and

χ := (χ1, . . . , χθ). The Hopf algebra H(G, g, χ) is generated by G and (gi, 1)-skew-primitive elements xi, for

i = 1, . . . , θ, subject to the relations of G,

xni

i = 0 and gxi = χi(g)xig,

for all g ∈ G.

Thus, H(G, g, χ) is a quotient of the bosonization of k〈x1, . . . , xθ〉 by kG, by the Hopf ideal of relations

(xni

i )θi=1. If θ ≥ 2, then H(G, g, χ) is infinite-dimensional. For a given i, the subalgebra of H(G, g, χ)

generated by {gi, xi} is a Taft algebra.

Proposition 3.2. Let H be a finite-dimensional pointed Hopf algebra of rank θ with G = G(H) abelian,

generated by G and (gi, 1)-skew-primitive elements xi for i = 1, . . . , θ. Then, any inner faithful action of H

on a field L ⊃ k descends from an action of H(G, g, χ) on L (via a surjective Hopf algebra homomorphism

H(G, g, χ) → H) so that, for any g, χ, {xi | i ∈ Ig,χ} are linearly independent as k-linear operators on L.

Proof. Suppose H is Galois-theoretical, and we are given an inner faithful action of H on a field L ⊃ k.

For each 1 ≤ i ≤ θ, consider the Hopf subalgebra Hi ⊂ H generated by gi and xi. By [16, Theorem 1(a)],

Hi is a generalized Taft algebra T (ni,mi, αi), where mi divides ni. Since Hi is Galois-theoretical, by [15,

Propositions 10(3) and 21] we must have that Hi is an ordinary Taft algebra T (ni, ζi), that is, x
ni

i = 0 and

gixi = qiixigi for some qii ∈ k
× with ord(qii)= ni. By taking χi ∈ Ĝ with χi(gi) = qii, this implies that the

H-action on L descends from an H(G, g, χ)-action.

Moreover, sinceH acts inner faithfully on L, the operators defined by xi on Lmust be linearly independent.

Indeed, if {xi | i ∈ Ig,χ} are linearly dependent, then there exists an element f =
∑

i aixi, for ai ∈ k not

all zero, that acts on L as zero. So, 〈f〉 forms a Hopf ideal (as f is (g, 1)-skew-primitive), which contradicts

inner faithfulness. �

Proposition 3.2 shows that it is important to determine the structure of the H(G, g, χ)-module fields L.

This is done in the following theorem.
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Theorem 3.3. Let L be a field containing k and equipped with a faithful action of G. Then, the extensions

of the G-action on L to a (not necessarily inner faithful) H(G, g, χ)-action are defined by the formula

(3.4) xi 7→ wi(1− gi),

where wi ∈ L is such that g · wi = χi(g)wi for all g ∈ G. In other words, xi acts as wi(1 − gi), as k-linear

operators on L.

In this case:

(a) L is a Galois extension of the field of invariants F = LH = LG; and

(b) L is also a Galois extension of the intermediate field E = LH′

= LG′

, where G′ is the subgroup of G

generated by g1, . . . , gθ, and H
′ is the Hopf subalgebra of H generated by G′ and {xi}

θ
i=1.

Moreover, for each g, χ, the skew-primitive elements {xi | i ∈ Ig,χ} are linearly independent as k-linear

operators on L if and only if so are the elements wi; this case can be achieved by an appropriate choice of

elements wi ∈ L.

Remark 3.5. For any χ : G→ k
×, there exists w ∈ L× such that g ·w = χ(g)w for all g ∈ G. The element

w is unique up to multiplying by an element of F := LG. This follows by the Normal Basis Theorem: L is

a free FG-module of rank one. As a consequence, the extension of the G-action to an H(G, g, χ)-action as

in Theorem 3.3 is unique up to renormalization, xi 7→ λixi for λi ∈ F .

Proof of Theorem 3.3. Take F := LG. Since L is a free FG-module of rank one by the Normal Basis Theorem,

for each α ∈ Ĝ, we can choose uα ∈ L× such that g ·uα = α(g)uα; see Remark 3.5. Here, uαuβ = ψ(α, β)uαβ ,

where ψ is a 2-cocycle of Ĝ with values in F×; that is to say, ψ(α, β)ψ(αβ, γ) = ψ(β, γ)ψ(α, βγ) for all

α, β, γ ∈ Ĝ. This follows from the associativity of L: (uαuβ)uγ = uα(uβuγ).

Since gxi = χi(g)xig for all g ∈ G, we claim for all α ∈ Ĝ that

(3.6) xi · uα = ci(α)uαχi
,

where ci(α) ∈ F satisfies two conditions:

(3.7) ci(α) = 0, if α(gi) = 1;

(3.8) α(gi)ψ(α, βχi)ci(β) + ψ(αχi, β)ci(α) = ψ(α, β)ci(αβ).

To verify (3.7), note that if α(gi) = 1, then uα ∈ Lgi . Since xni

i = 0, we can employ [15, Theorem 11(i)]

to get xi · uα = 0. So, we conclude that ci(α) = 0. To verify (3.8), compare the coefficients of uαβχi
in the

equation xi · (uαuβ) = xi · (ψ(α, β)uαβ) (using the coproduct of xi on the left hand side).

Let Ki := ci(χi). Then, setting α = χi and β = χm−1
i , we get from (3.8):

Kiψ(χ
2
i , χ

m−1
i ) + qiiψ(χi, χ

m
i )ci(χ

m−1
i ) = ψ(χi, χ

m−1
i )ci(χ

m
i ).

Thus, setting bi(m) =
ci(χ

m
i )

qmii ψ(χi, χm
i )

, we get

Ki ψ(χ
2
i , χ

m−1
i )

qmii ψ(χi, χm
i )ψ(χi, χ

m−1
i )

+ bi(m− 1) = bi(m).

Using the 2-cocycle property of ψ, we get that
Ki

qmii ψ(χi, χi)
+ bi(m − 1) = bi(m). Since bi(0) = 0 by (3.7),

we get bi(m) =
Ki

ψ(χi, χi)
(q−1

ii + q−2
ii + · · ·+ q−m

ii ). Hence

(3.9) ci(χ
m
i ) = Ki(1 + qii + · · ·+ qm−1

ii )
ψ(χi, χ

m
i )

ψ(χi, χi)
= K̂iψ(χi, χ

m
i )(1− qmii ),
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where K̂i =
Ki

ψ(χi, χi)(1 − qii)
.

Now let β ∈ Ĝ be a function so that β(gi) = 1, and set α = χm
i in (3.8) to get

(3.10) ψ(χm+1
i , β)ci(χ

m
i ) = ψ(χm

i , β)ci(χ
m
i β).

We get by (3.9) and (3.10) that

ψ(χm+1
i , β)K̂iψ(χi, χ

m
i )(1− qmii ) = ψ(χm

i , β)ci(χ
m
i β).

Hence

ci(χ
m
i β) = K̂i(1− qmii )

ψ(χiχ
m
i , β)ψ(χi, χ

m
i )

ψ(χm
i , β)

= K̂i(1 − qmii )ψ(χi, χ
m
i β).

Since any α ∈ Ĝ is of the form χm
i β, where β(gi) = 1, and 0 ≤ m ≤ ord(gi)−1, we have that

(3.11) ci(α) = K̂i(1− α(gi))ψ(χi, α).

By setting wi := K̂iuχi
, we get

wi(1− gi) · uα = K̂iuχi
(1− α(gi)) uα = K̂i(1− α(gi))ψ(χi, α)uαχi

.

Thus by (3.6) and (3.11), we get that xi 7→ wi(1− gi). Moreover, g ·wi = χi(g)wi for all g ∈ G, as required.

Conversely, if we choose wi ∈ L such that g ·wi = χ(g)wi for g ∈ G, then it is easy to see that the formula

xi 7→ wi(1 − gi) defines an extension of the G-action to an H(G, g, χ)-action.

Next, it is clear that the elements {xi | i ∈ Ig,χ} are linearly independent as k-linear operators on L for

each g, χ if and only if so are the elements wi. The latter can be achieved since dimk F = ∞.

Now we establish statements (a) and (b) as follows. By [15, Corollary 13], we have that LH = LG(=: F )

and the extension LG ⊂ L is Galois. For the same reasons, we also have that L is a Galois extension of

E := LH′

= LG′

. �

Remark 3.12. In (3.4), we have wi = µiuχi
, where µi ∈ F , uχi

∈ L, so that g ·µi = µi and g ·uχi
= χi(g)uχi

.

In several computations below, we take µi = 1 for all i without loss of generality, since g commutes with µi.

Corollary 3.13. Let G be a finite group, not necessarily abelian, and consider the Hopf algebra H(G, g, χ):=

H(G, g1, . . . , gθ, χ1, . . . , χθ) defined as above, with gi belonging to the center Z(G) of G. Then, extensions

of a faithful G-action on a field L ⊃ k to a (not necessarily inner faithful) H(G, g, χ)-action are given by

formula (3.4) as in Theorem 3.3.

Moreover, for each g, χ, the (g, 1)-skew-primitive elements {xi | i ∈ Ig,χ} are linearly independent as k-

linear operators on L if and only if so are the elements wi, and this can be achieved by an appropriate choice

of the wi.

Proof. Adapt the proof of Theorem 3.3, except that F = LZ(G), not LG, and G/Z(G) may act nontrivially

on F . So, {wi} are unique not up to elements of F , but up to elements of LG = FG/Z(G). �

We now provide an example of how to construct an inner faithful action of a finite-dimensional pointed

Hopf algebra on a field as an extension of a faithful group action.

Example 3.14. Let m ≥ 2 and let q be a root of unity in k with ord(q2)=m. Consider the small quantum

group uq(sl2) generated by a grouplike element k, a (k, 1)-skew-primitive element e, and a (1, k−1)-skew-

primitive element f , subject to relations:

ke = q2ek, kf = q−2fk, em = 0, fm = 0, km = 1, ef − fe =
k − k−1

q − q−1
.
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Here, G(uq(sl2)) = Zm and the Hopf algebra H(G, g, χ) is generated by k, e, f , subject to the first five

relations. To show that the action H(G, g, χ) on a field descends to an action of uq(sl2), we only need to

work with the last relation of uq(sl2).

We construct an action of uq(sl2) on k(z) as follows. Let G = Zm = 〈k〉 act on k(z) by k · z = q−2z.

Take x1 = e and x2 = kf ; these elements are (k, 1)-skew-primitive. Then χ1(k) = q2 and χ2(k) = q−2, as

ke = q2ek and k(kf) = q−2(kf)k. The last relation of uq(sl2) then has the form

(3.15) q2x1x2 − x2x1 = (k2 − 1)(q − q−1)−1.

Thus, by Theorem 3.3, we get that the condition for the H(G, g, χ)-action on k(z) to descend to an action

of uq(sl2) is

q2w1(1− k)w2(1− k)− w2(1− k)w1(1− k) = (k2 − 1)(q − q−1)−1,

i.e., after simplifications on the left hand side,

w1w2(q
2 − 1)(1− k2) = (k2 − 1)(q − q−1)−1.

Thus, the condition is w1w2 = −q(q2 − 1)−2. Now, set

w1 = (1 − q−2)−1z−1 and w2 = −q−1(q2 − 1)−1z

to get the action of e and f . Namely, we chose w1 as above to get that e, which acts as w1(1 − k), satisfies

e · z = 1. On the other hand, kf , which acts as w2(1 − k), satisfies

kf · z = −q−1(q2 − 1)−1(1 − q−2)z2 = −q−3z2.

Hence, f · z = q4kf · z = −qz2. This recovers the action from [15, Proposition 25(2)].

3.2. The Nichols algebra relations. We now return to our main problem: determining when a finite-

dimensional pointed Hopf algebra H with an abelian group of grouplike elements G is Galois-theoretical. By

Proposition 2.5, H is generated by G and (gi, 1)-skew-primitive elements xi, for i = 1, . . . , θ.

Assume that H is coradically graded, i.e., H is the bosonization B(V )#kG. In this case, H is a quotient

of H(G, g, χ) of Definition 3.1. The kernel of the surjective homomorphism φ : H(G, g, χ) → H is generated

by some noncommutative polynomials Pα in the xi, which are relations of the Nichols algebra B(V ). Note

that since H is coradically graded, we can choose Pα to be homogeneous of some degree di(α) in each xi.

Consider any action of H(G, g, χ) on L such that G acts faithfully. By Theorem 3.3, this action is given

by the formula xi 7→ wi(1 − gi). Then, Pα acts on L by the operator
∏

i w
di(α)
i Qα, where Qα is an element

of kG. Note that Qα is independent of the choice of the wi and the choice of module field L.

Proposition 3.16. Let H be a finite-dimensional, pointed, coradically graded Hopf algebra with an abelian

group of grouplike elements G. Then, H is Galois-theoretical if and only if the elements Qα ∈ kG vanish for

all α.

Proof. To prove the forward direction, assume that H is Galois-theoretical, and acts inner faithfully on a

field L. Then, we can pull back the action of H on L to an action of H(G, g, χ), where Pα acts by zero.

Since H acts on L inner faithfully, each xi acts by nonzero. So, each wi is nonzero. Thus, Qα = 0 for all α,

as desired.

Conversely, fix a faithful action of G on a field L. Note that since Qα = 0, the formula xi 7→ wi(1 − gi)

defines an H-action on L. Pick {wi | i ∈ Ig,χ} to be linearly independent; we have shown in Theorem 3.3 that

this can be achieved. Then, the xi act by linearly independent operators on L. By [17, Corollary 5.4.7], any

nonzero Hopf ideal in H intersects the k-span of {xi | i ∈ Ig,χ} in H nontrivially. Therefore, the H-action

on L is inner faithful. �
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This gives an effective criterion of Galois-theoreticity for coradically gradedH : the relations Pα are known,

which allows one to calculate explicitly the elements Qα.

Example 3.17. In contrast with Example 3.14, take H = gr(uq(sl2)). We then have a single relation

P1 = q2x1x2 − x2x1 of B(V ) to consider. The corresponding element of kG is

Q1 = q2(1− χ2(k)k)(1 − k)− (1 − χ1(k)k)(1 − k) = (q2 − 1)(1− k2) 6= 0.

This shows that gr(uq(sl2)) is not Galois-theoretical due to Proposition 3.16.

We will use the Galois-theoreticity criterion above in a number of other examples below.

Proposition 3.18. Let H be a finite-dimensional pointed Hopf algebra with an abelian group of grouplike

elements G. If H is Galois-theoretical, then a nontrivial lifting of H cannot be Galois-theoretical.

Proof. Let H̃ be a lifting of H . Assume that L is an inner faithful H̃-module field. Then by Proposition 3.2,

H̃ is a Hopf quotient of H(G, g, χ). Further, the action of H̃ on L descends from an action of H(G, g, χ) on

L. But since H is Galois-theoretical, we have Qα = 0 for all α by Proposition 3.16. So, for any action of

H(G, g, χ) on L the elements Pα act by zero. In particular, the above action of H(G, g, χ) factors through

H . So, H̃ is a Hopf quotient of H , of the same dimension as H . Hence, H̃ = H (i.e., the action of H̃ on L

is, in fact, and action of H), that is, H̃ is a trivial lifting of H . �

3.3. Minimal Hopf algebras. Let H be a pointed Hopf algebra with G = G(H) abelian (so, generated by

grouplike and skew-primitive elements by Proposition 2.5), and consider the following notation.

Notation [G′, H ′]. Let G′ ⊂ G be the subgroup generated by all g ∈ G for which there is a nontrivial

(g, 1)-skew-primitive element in H . Let H ′ be the subalgebra of H generated by G′ and all of the (g, 1)-

skew-primitive elements for g ∈ G′.

Clearly, G′ is a normal subgroup of G and H = kG⊗kG′ H ′.

Definition 3.19. We say that H is minimal if H = H ′.

Example 3.20. We have the following examples of minimal pointed Hopf algebras from [15]:

(a) Taft algebras T (n, ζ) with G′ = 〈g〉 ∼= Zn;

(b) E(n) with G′ = 〈g〉 ∼= Z2;

(c) generalized Taft algebras T (n,m, α) with G′ = 〈g〉 ∼= Zn;

(d) book algebras h(ζ, p) with G′ = 〈g〉 = Zn;

(e) H34 with G′ = 〈g〉 = Z3; and

(f) uq(sl2) with G
′ = 〈k〉 = Zm.

To study the Galois-theoretical properties of pointed coradically graded Hopf algebras with G(H) abelian

(as in Sections 4 and 5), we may focus on the case of H being minimal due to the following result.

Proposition 3.21. Suppose H is a finite-dimensional, pointed, coradically graded Hopf algebra with G =

G(H) abelian. Then, H is Galois-theoretical if and only if so is the minimal Hopf subalgebra H ′.

Proof. Using the notation from the beginning of Subsection 3.2, we get that the elements Qα for both H

and H ′ are the same. So by applying Proposition 3.16 to both H and H ′, we get the desired result. �

4. Coradically graded Galois-theoretical Hopf algebras, type A×θ
1

We begin this section by classifying finite-dimensional, pointed, Galois-theoretical Hopf algebras of rank

one (of type A1). We then study the Galois-theoretical property of pointed coradically graded Hopf algebras

of finite Cartan type A×θ
1 ; these are known as bosonizations of quantum linear spaces.
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4.1. Type A1: Galois-theoretical Hopf algebras of rank one. We determine precisely when a finite-

dimensional pointed Hopf algebra H of rank one is Galois-theoretical. We also determine in this case the

structure of the H-module fields L. The classification of finite-dimensional pointed Hopf algebras of rank

one is provided in [16]; we repeat their result below.

Theorem 4.1. [16, Theorem 1(a)] Let G be a finite group with character map χ : G → k
×, and take

g ∈ Z(G) and α ∈ k. Every finite-dimensional pointed Hopf algebra of rank one is generated by G and a

(g, 1)-skew-primitive element x, subject to the group relations of G and the relations

xm = α(gm − 1) and ax = χ(a)xa

for all a ∈ G. �

Note that in this situation, m is the order of the root of unity χ(g). The main result for the rank one

case is as follows.

Theorem 4.2. Let H be a finite-dimensional pointed Hopf algebra of rank one with G = G(H), not neces-

sarily abelian. Then:

(a) H is Galois-theoretical if and only if the Hopf subalgebra H ′ generated by {g, x} is a Taft algebra

T (n, ζ). In this case, if H acts inner faithfully on a field L, then

(i) L is a Galois extension of the field F = LG = LH ;

(ii) L is also a cyclic extension of degree n of the intermediate field E = LT (n,ζ) = LZn .

(b) Moreover, H acts inner faithfully on any field containing k which admits a faithful action of G, so

that x acts by nonzero.

Proof. (a) First, let us assume that H is Galois-theoretical. Consider the Hopf subalgebra H ′ of H generated

by g and x. We know by Theorem 4.1 that H ′ is a generalized Taft algebra T (n,m, α), where n ∈ Z+ so

that m divides n. Now, by [15, Propositions 10(3) and 21] we must have that H ′ is an ordinary Taft algebra

T (n, ζ).

Conversely, assume that the minimal Hopf subalgebra H ′ generated by g and x is a Taft algebra. Then,

H ′ is Galois theoretical by [15, Proposition 17]. Thus, H is Galois-theoretical by Proposition 3.21.

(i,ii) Apply classical Galois theory and [15, Theorem 11].

(b) Apply Corollary 3.13. �

4.2. Type A×θ
1 : bosonizations of quantum linear spaces. According to [5, Theorem 5.5], every finite-

dimensional pointed coradically graded Hopf algebra of finite Cartan type A×θ
1 is isomorphic to a bosonization

of a quantum linear space. The latter is a braided Hopf algebra in G
GYD defined in [5, Section 3]; its

bosonization by kG is defined as follows.

Definition 4.3. [5] Let θ ≥ 1 and let G be a finite abelian group. The bosonization of a quantum linear

space is a Hopf algebra

B(G, g, χ) := B(G, g1, . . . , gθ, χ1, . . . , χθ),

generated by G and (gi, 1)-skew-primitive xi for gi ∈ G, with i = 1, . . . , θ. Given characters χ1, . . . , χθ ∈ Ĝ

with qii := χi(gi) having orders ni ≥ 2, we have that B(G, g, χ) is subject to the relations of G and

gxi = χi(g)xig, xni

i = 0, xixj = χj(gi)xjxi,

for all g ∈ G and i 6= j. We also assume that

(4.4) χj(gi)χi(gj) = 1

for all i 6= j.
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Note that B(G, g, χ) is a finite-dimensional Hopf algebra quotient of the Hopf algebra H(G, g, χ) defined

in Section 3.1. Moreover, (4.4) implies that B(G, g, χ) is of Cartan type A×θ
1 .

Theorem 4.5. The Hopf algebra B(G, g, χ) is Galois-theoretical if and only if the minimal Hopf subalgebra

B′ of B(G, g, χ) generated by {g1, . . . gθ, x1, . . . , xθ} is the tensor product of Taft algebras T (n, ζ), Nichols

Hopf algebras E(n), and book algebras h(ζ, 1). In this case, if L is an inner faithful B(G, g, χ)-module field,

then:

(i) L is a Galois extension of the intermediate field F = LB = LG; and

(ii) L is also a Galois extension of the intermediate field E = LB′

= LG′

, where G′ is the subgroup of G

generated by g1, . . . , gθ.

Proof. If B′ is the tensor product of T (n, ζ), E(n), or h(ζ, 1), then B′ is Galois-theoretical by [15, Proposi-

tions 10(5), 17, 19, 22]. Now, B(G, g, χ) is Galois-theoretical by Proposition 3.21.

Conversely, if B(G, g, χ) is Galois-theoretical with inner faithful module field L, then by Theorem 3.3 and

Remark 3.12, xi acts as wi(1 − gi). Thus for i 6= j, the relations giwj = χj(gi)wjgi, xixj − χj(gi)xjxi = 0,

and (4.4) imply that

wi(1− gi)wj(1 − gj)− χj(gi)wj(1− gj)wi(1 − gi)

= wiwj [(1 − χj(gi)gi)(1− gj)− χj(gi)(1 − χi(gj)gj)(1− gi)]

= wiwj [(1 − χj(gi))(1 − gigj)] = 0.

Using the notation of Subsection 3.2, we have Qij = (1−χj(gi))(1− gigj). So, Qij = 0 by Proposition 3.16,

and either χj(gi) = 1 or gigj = 1 for all i 6= j.

To proceed, define a graph Γ whose vertices are labelled 1, . . . , θ, where we have an edge i—j if and only

if χj(gi) 6= 1. In this case, gigj = 1.

Then, any connected component C of Γ has order equal to the order of an element gi for i ∈ C; this does

not depend on i. (This value is also the order of χi(gi) and nilpotency order of xi, as the Hopf subalgebra

generated by {gi, xi} is a Taft algebra by [15, Proposition 10(3)] and Theorem 4.2(a).) We let H(C) be the

minimal Hopf subalgebra of B(G, g, χ) generated by {gi, xi}i∈C .

Sublemma 4.6. Suppose Γ is connected and has order 2. Then, Γ is a complete graph, and H(Γ) = E(θ).

Proof of Sublemma 4.6. Suppose that there are edges i—j and j—r in Γ, so we have χj(gi) 6= 1 and

χr(gj) 6= 1. Then gi = gj , as Γ has order 2. Moreover, χr(gi) = χr(gj) 6= 1, so i—r. Thus, Γ is a complete

graph. Since Γ has order 2, we have that ord(gi) = 2. Now since gigj = 1, we get that gi = gj for all i 6= j.

Thus, H = E(θ).

Sublemma 4.7. Suppose that Γ is connected, has more than one vertex, and has order n > 2. Then, Γ has

two vertices, and H(Γ) is a book algebra h(ζ, 1).

Proof of Sublemma 4.7. Suppose that we have i—j—r in Γ. Then, let g := gi, so gj = g−1 and gr = g.

Hence,

(4.8) χs(gi) = χs(gj)
−1 = χs(gr)

for all s. Thus, by (4.4) and (4.8),

χj(gi) = χj(gj)
−1 = χj(gr) = χr(gj)

−1 = χr(gi) = χi(gr)
−1 = χi(gj) = χj(gi)

−1,

so χj(gi) has order 2. This yields a contradiction, as χj(gi) = χj(gj)
−1 by (4.8), which has order n > 2.

Thus, Γ has two vertices, say 1 and 2, connected with an edge. Set g1 = g, g2 = g−1 and x1 = y, x2 = g−1x,

so that ∆(x) = 1⊗ x+ x⊗ g, ∆(y) = g⊗ y+ y⊗ 1. Moreover, take χ1(g2) = ζ−1 for ζ a primitive n-th root

of unity, so that χ2(g1) = ζ and xy = yx. Now, H(Γ) is the book algebra h(ζ, 1) generated by g, x, y.
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Sublemma 4.9. We have that B′ ∼= H(C1)⊗ · · · ⊗H(Cm), where Cj are the components of Γ.

Proof of Sublemma 4.9. We only need to show that G(B′) = G(H(C1))× · · · ×G(H(Cm)). Suppose that we

have a relation h1 · · ·hm = 1, where hj ∈ G(H(Cj)). Our job is to show that hj = 1 for all j. To do so, note

that for hr =
∏

t∈Cr
gpt

t , we get χi(gt) = 1 for i ∈ Cj , t ∈ Cr and j 6= r. Hence, χi(hr) = 1 for i ∈ Cj with

j 6= r. Since h1 · · ·hm = 1, we get that hj =
∏

r 6=j h
−1
r and χi(hj) = 1 for all j. This implies that hj = 1, as

desired.

By Sublemmas 4.6 and 4.7, H(Cj) is E(n), a book algebra, or a Taft algebra; the latter occurs if Cj has

only one vertex. Hence, if B(G, g, χ) is Galois-theoretical, then B′ is as claimed by Sublemma 4.9.

(i,ii) Apply classical Galois theory and [15, Theorem 11]. �

5. Coradically graded Galois-theoretical Hopf algebras, rank two

In this section, we study the Galois-theoretical properties of finite-dimensional pointed Hopf algebras of

rank two that are coradically graded. Recall we assume that G = G(H) is an abelian group, and as a result,

H ∼= B(V )#kG with braiding matrix (qij = χj(gi)).

The finite Cartan types of rank two are A1×A1, A2, B2, or G2, with corresponding Cartan matrices (aij):
(
2 0

0 2

) (
2 −1

−1 2

) (
2 −2

−1 2

) (
2 −1

−3 2

)

A1 ×A1 A2 B2 G2

We have the following lemma.

Lemma 5.1. Let H ∼= B(V )#kG be a finite-dimensional, pointed, coradically graded Hopf algebra of rank

two, not of type A1×A1, subject to (2.8). Let {xi}i=1,2 be a basis of (gi, 1)-skew-primitive elements for the

graded braided vector space V . Let H ′ be the minimal Hopf subalgebra generated by g1, g2, x1, x2.

Then, H ′ is a finite-dimensional Hopf algebra quotient of H(〈g1, g2〉, g1, g2, χ1, χ2) from Section 3.1 subject

to relations:

adc(xi)
1−aij (xj) = 0 for all i 6= j and xnα = 0,

for non-simple roots α, where xα are the Cartan-Weyl root elements, and n = ord(g1) = ord(g2). Here,

(adcxi)(y) = xiy − (qij1 · · · qijt)yxi for y = xj1 · · ·xjt .

Proof. This is a special case of Theorem 2.9. In particular, n = ord(g1) = ord(g2) as the Hopf subalgebras

generated by {gi, xi}, for i = 1 or 2, are Taft algebras. �

The exact form of xα will not be important for us, due to the following result.

Lemma 5.2. Retain the notation from Theorem 2.9 and Subsection 3.2. Suppose that each gi is a power of

a grouplike element g of order n, and gxα = ζxαg for a primitive n-th root of unity ζ. Then the element

Qα ∈ kG corresponding to the relation xnα is equal to 0.

Proof. Let L be a module field for H(G, g, χ). By Theorem 3.3, xα acts on L by wQ(g), where w is a

monomial in terms of the wi, and Q(g) ∈ k[g]/(gn − 1). Hence, the expression xnα acts on L by (wQ(g))n,

which is wn
∏n−1

i=0 Q(ζig). Therefore, Qα =
∏n−1

i=0 Q(ζig).

By Theorem 3.3, Q(g) is a multiple of 1− g. Hence, we have that Qα is a multiple of
∏n−1

i=0 (1− ζig). But∏n−1
i=0 (1− ζig) = 1− gn = 0, so we get the desired result. �

The proof of the main result, Theorem 5.7, boils down to two cases: (a) q12 = 1 or q21 = 1, and (b)

g21g2 = 1 or g1g
2
2 = 1. We proceed in case (b) below.
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Proposition 5.3. Retain the notation from Lemma 5.1. Assume that q12, q21 6= 1. If g21g2 = 1 or g1g
2
2 = 1,

then H ′ is Galois-theoretical if and only if either

• H ′ is one of the 34-dimensional Hopf algebras H34 of type A2 from [6, Theorem 1.3(ii)];

• H ′ is one of the 55-dimensional Hopf algebras H55 of type B2 from [6, Theorem 1.3(iii)]; or

• H ′ is one of the 77-dimensional Hopf algebras H77 of type G2 from [6, Theorem 1.3(iv)].

Proof. By (2.7), we have that q−a12

11 q12q21 = 1 and q12q21q
−a21

22 = 1. So there exists a unique primitive n-th

root of unity ζ, and a scalar λ ∈ k, such that q11 = ζa21 , q12 = ζa12a21λ−1, q21 = λ, q22 = ζa12 .

If g21g2 = 1, then we can take g := g1 so that g2 = g−2, where ord(g1)= n ≥ 3. Now

gx1 = ζa21x1g, g−2x1 = λx1g
−2, gx2 = ζa12a21λ−1x2g, g−2x2 = ζa12x2g

−2.

The first two equations yield λ = (ζa21 )−2, and the last two equations yield ζa12 = (ζa12a21λ−1)−2. Thus,

(5.4) ζa12 = ζ−2a12a21−4a21 .

In type A2, we have that a12 = a21 = −1. So, n = 3 by (5.4) and we get by [6, Theorem 1.3(ii)] that H ′

is an 34-dimensional Hopf algebra H34 of type A2. In type B2, we have that a12 = −2 and a21 = −1. So,

n = 2 by (5.4), which contradicts (2.8). In type G2, we have that a12 = −1 and a21 = −3. So, n = 7 and

H ′ is the bosonization of one of the Nichols algebras from [6, Theorem 1.3(iv)].

If g1g
2
2 = 1, then we can take g := g2 so that g1 = g−2. Similarly, one gets

(5.5) ζa21 = ζ−2a12a21−4a12 .

In type A2, we have that n = 3 by (5.5). So again, H ′ is an 34-dimensional Hopf algebra H34 of type A2. In

type B2, we have that n = 5 by (5.5). Therefore, H ′ is a bosonization of one of the Nichols algebras from

[6, Theorem 1.3(iii)]. In type G2, we have that n = 1 by (5.5), which yields a contradiction.

Hence, if g21g2 = 1 or g1g
2
2 = 1, then H ′ is either one of the

(i) 34-dimensional Hopf algebras H34 of type A2 from [6, Theorem 1.3(ii)] where g21g2 = g1g
2
2 = 1;

(ii) 55-dimensional Hopf algebras H55 of type B2 from [6, Theorem 1.3(iii)] where g1g
2
2 = 1; or

(iii) 77-dimensional Hopf algebras H77 of type G2 from [6, Theorem 1.3(iv)] where g21g2 = 1.

Now let us show that each of the Hopf algebras above is Galois-theoretical.

First, the Hopf algebra in (i) has braiding matrix q11 = q12 = q21 = q22 = a primitive third root of unity,

and is Galois-theoretical by [15, Proposition 23].

We use Proposition 3.16 to check that the Hopf algebra in (ii) is Galois-theoretical. Namely, we need

each of the elements Qα ∈ kG corresponding to relations of the Hopf algebra to be 0. We take g1 = g3 and

g2 = g, where ord(g) = ord(ζ) = 5. Apply Lemma 5.2 to conclude that the elements Qα corresponding to

the relations x5α = 0 are 0. The remaining relations of the Hopf algebra in this case are

adc(x1)
3(x2) = x31x2 − (q211q12 + q11q12 + q12)x

2
1x2x1 + (q311q

2
12 + q211q

2
12 + q11q

2
12)x1x2x

2
1 − q311q

3
12x2x

3
1 = 0,

adc(x2)
2(x1) = x22x1 − (q21q22 + q21)x2x1x2 + (q221q22)x1x

2
2 = 0.

To compute the element Q12 ∈ kG corresponding to the relation adc(x1)
3(x2), we use Theorem 3.3 and

Remark 3.12. For instance, x31x2 acts as

[w1(1− g1)]
3w2(1 − g2) = w3

1w2[(1− q211q12g1)(1 − q11q12g1)(1 − q12g1)(1 − g2)],

so (1− q211q12g1)(1− q11q12g1)(1− q12g1)(1− g2) is a summand of Q12. Now we obtain that the element Q12

is 0 by the Maple code below:

Q12:= (1-q11^2*q12*g1)*(1-q11*q12*g1)*(1-q12*g1)*(1-g2)

-(q11^2*q12+q11*q12+q12)*(1-q11^2*q12*g1)*(1-q11*q12*g1)*(1-q21*g2)*(1-g1)

+(q11^3*q12^2+q11^2*q12^2+q11*q12^2)*(1-q11^2*q12*g1)*(1-q21^2*g2)*(1-q11*g1)*(1-g1)
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-q11^3*q12^3*(1-q21^3*g2)*(1-q11^2*g1)*(1-q11*g1)*(1-g1);

g1:=g^3; g2:=g; zeta:=exp((2/5)*Pi*I);

q11:=zeta^(-1); q12:=zeta^2*lambda^(-1); q21:=lambda; q22:=zeta^(-2);

collect(simplify(Q12),[g],’distributed’);

## The only powers of g that arise are 0, 10.

simplify(coeff(Q12,g,0)+coeff(Q12,g^(10)));

>> 0

Similarly, we obtain that the element Q21, corresponding to the relation adc(x2)
2(x1), is 0 as follows:

Q21:= (1-q21*q22*g2)*(1-q21*g2)*(1-g1)

-(q21*q22+q21)*(1-q21*q22*g2)*(1-q12*g1)*(1-g2)

+(q21^2*q22)*(1-q12*q12*g1)*(1-q22*g2)*(1-g2);

g1:=g^3; g2:=g; zeta:=exp((2/5)*Pi*I);

q11:=zeta^(-1); q12:=zeta^2*lambda^(-1); q21:=lambda; q22:=zeta^(-2);

collect(simplify(Q21),[g],’distributed’);

## The only powers of g that arise are 0, 5.

simplify(coeff(Q21,g,0)+coeff(Q21,g^(5)));

>> 0

Now we use Proposition 3.16 to check that the Hopf algebra in (iii) is Galois-theoretical, in the same

fashion as above. We take g1 = g and g2 = g5, where ord(g) = ord(ζ) = 7. Apply Lemma 5.2 to conclude

that the elements Qα corresponding to the relations x7α = 0 are 0. We obtain that the elements Q12 and

Q21, corresponding to remaining relations adc(x1)
2(x2) and adc(x2)

4(x1), respectively, are 0 by the following

Maple code:

Q12:= (1-q11*q12*g1)*(1-q12*g1)*(1-g2)

-(q11*q12+q12)*(1-q11*q12*g1)*(1-q21*g2)*(1-g1)

+(q11*q12^2)*(1-q21*q21*g2)*(1-q11*g1)*(1-g1);

Q21:= (1-q21*q22^3*g2)*(1-q21*q22^2*g2)*(1-q21*q22*g2)*(1-q21*g2)*(1-g1)

-(q21*q22^3+q21*q22^2+q21*q22+q21)* (1-q21*q22^3*g2)*(1-q21*q22^2*g2)*(1-q21*q22*g2)*(1-q12*g1)*(1-g2)

+(q21^2*q22^5+q21^2*q22^4+q21^2*q22^3+q21^2*q22^3+q21^2*q22^2+q21^2*q22)

*(1-q21*q22^3*g2)*(1-q21*q22^2*g2)*(1-q12^2*g1)*(1-q22*g2)*(1-g2)

-(q21^3*q22^6+q21^3*q22^5+q21^3*q22^4+q21^3*q22^3)

*(1-q21*q22^3*g2)*(1-q12^3*g1)*(1-q22^2*g2)*(1-q22*g2)*(1-g2)

+(q21^4*q22^6)*(1-q12^4*g1)*(1-q22^3*g2)*(1-q22^2*g2)*(1-q22*g2)*(1-g2);

g1:=g; g2:=g^5; zeta:=exp((2/7)*Pi*I);

q11:=zeta^(-3); q12:=zeta^3*lambda^(-1); q21:=lambda; q22:=zeta^(-1);

collect(simplify(Q12),[g],’distributed’);

## The only powers of g that arise are 0, 7.

simplify(coeff(Q12,g,0)+coeff(Q12,g^(7)));

>> 0

collect(simplify(Q21),[g],’distributed’);

## The only powers of g that arise are 0, 21.

simplify(coeff(Q21,g,0)+coeff(Q21,g^(21)));

>> 0

Thus, by Proposition 3.16, the Hopf algebras in (ii) and (iii) are Galois-theoretical as well. �
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Now let us deal with case (a) discussed before Proposition 5.3, i.e., q12 = 1 or q21 = 1. Let ũ≥0
q (g) be the

positive part of the small quantum group of adjoint type, see [15, Definition 12]. Note that in our situation

(of rank 2), we have ũ≥0
q (g) = u≥0

q (g) unless we are in type A2 and n is divisible by 3.

Proposition 5.6. Retain the hypotheses of Lemma 5.1. Suppose that q12 = 1 or q21 = 1. Then,

(a) H ′ is isomorphic to a Drinfeld twist ũ≥0
q (g)J , where g is a finite-dimensional simple Lie algebra of

type A2, B2, or G2, described in [15, Definition 12]; and

(b) H ′ is Galois-theoretical.

Proof. (a) It is easy to see that the subgroup generated by g1, g2 has to be isomorphic to Zn ×Zn. The rest

is a straightforward verification; namely, the twist J can be chosen so that the skew primitive elements of

ũ≥0
q (g)J have corresponding braiding parameters where either q12 or q21 is equal to 1.

(b) This follows from [15, Proposition 38] and part (a). �

Now we state and prove the main result of this subsection.

Theorem 5.7. Let H be a finite-dimensional, pointed, coradically graded Hopf algebra of rank two, subject

to (2.8). Let {xi}i=1,2 be a basis of (gi, 1)-skew-primitive elements for the graded braided vector space V .

Then, H is Galois-theoretical if and only if the minimal Hopf subalgebra H ′ of H generated by g1, g2, x1, x2
is either

(a) of type A1×A1, namely

• the tensor product of Taft algebras T (n, ζ)⊗ T (n′, ζ′) for n, n′ ≥ 2,

• the 8-dimensional Nichols Hopf algebra E(2), or

• the book algebra h(ζ, 1);

(b) of type A2, B2, or G2 with q12 = 1 or q21 = 1 (here, H ′ is isomorphic to a twist ũ≥0
q (g)J ); or

(c) of type A2, B2, or G2 with q12, q21 6= 1, where H ′ is one of the

• 34-dimensional Hopf algebras of type A2 from [6, Theorem 1.3(ii)]

(here, g21g2 = g1g
2
2 = 1 and ord(gi) = 3),

• 55-dimensional Hopf algebras H55 of type B2 from [6, Theorem 1.3(iii)]

(here, g1g
2
2 = 1 and ord(gi) = 5), or

• 77-dimensional Hopf algebras H77 of type G2 from [6, Theorem 1.3(iv)]

(here, g21g2 = 1 and ord(gi) = 7).

Proof. Both directions for part (a) hold by Theorem 4.5. So, we only need to study types A2, B2, G2.

Consider the Serre relation of H given below:

(5.8) adc(xi)
1−aij (xj) = 0 if i 6= j.

Recall that (adcxi)(y) = xiy − qij1 · · · qijtyxi for y = xj1 · · ·xjt .

For types A2 and G2, we have that (5.8) yields the following Serre relation for H :

x21x2 − (q11q12 + q12)x1x2x1 + q212q11x2x
2
1 = 0.

If H is Galois-theoretical with module field L, then apply Theorem 3.3, Remark 3.12, and (2.7) to conclude

that

(5.9)
w1(1− g1)w1(1− g1)w2(1− g2)− (q11q12 + q12)w1(1− g1)w2(1− g2)w1(1− g1)

+q212q11w2(1− g2)w1(1− g1)w1(1− g1) = 0.
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Using the notation of Subsection 3.2, direct computation with gixj = χj(gi)xjgi, χj(gi) = qij , and (5.9)

yields

(5.10)

Q12 = (q11q12q21 − q11q12)(q12 − q11q12q21)g
2
1g2 +q12(q21 − 1)(q11 + 1)(q11q12q21 − 1)g1g2

+(q11q12q21 − 1)(1 − q12q21)g2
+(q11q12 − 1)(q12 − 1) = 0.

That is, we employed Proposition 3.16. By (2.7), we have that q11q12q21 = 1. So, (5.10) implies that

(1− q11q12)(q12 − 1)(g21g2 − 1) = 0.

So again by (2.7), q12 = 1 or q21 = 1, or g21g2 = 1. Now apply Propositions 5.3, 5.6, and 3.21 to yield parts

(b) and (c) in the case that H is of type A2 or G2.

For type B2, we have that (5.8) yields the following Serre relation for H :

x22x1 − (q22q21 + q21)x2x1x2 + q221q22x1x
2
2 = 0.

Arguing as above, with q12q21q22 = 1, we conclude that

(1− q21q22)(q21 − 1)(g1g
2
2 − 1) = 0.

So, by (2.7), q12 = 1 or q21 = 1, or g1g
2
2 = 1. Apply Propositions 5.3, 5.6, and 3.21 to yield part (b) and (c)

in the case that H is of type B2. �

6. Galois-theoretical lifts of type A×θ
1 and of rank two types

In this section, we discuss the Galois-theoretical property of liftings of various finite-dimensional, pointed,

coradically graded Hopf algebras. In particular, we discuss liftings of bosonizations of quantum linear spaces

and of Nichols algebras of types A2 and B2, which are classified by Andruskiewitsch-Schneider [5, 7] and

Beattie-Dăscălescu-Raianu [14]. To our knowledge, the liftings of Nichols algebras of type G2 have not been

classified, so this case is not addressed.

6.1. Lifting bosonizations of quantum linear spaces B(G, g1, . . . , gθ, χ1, . . . , χθ), type A×θ
1 . Recall

that G is a finite abelian group and take θ ≥ 2. The finite-dimensional, pointed Hopf algebras H so that

gr(H) ∼= B(G, g, χ) (of Section 4.2) have been classified in [5, Section 5]. These Hopf algebras, denoted by

A(G, g, χ, α, λ), are generated by G and (gi, 1) skew-primitive elements xi, for gi ∈ G with i = 1, . . . , θ. Take

character maps χi ∈ Ĝ, for i = 1, . . . , θ, so that qii := χi(gi) has order ni. Here, we have that

χi(gj)χj(gi) = 1.

Then A(G, g, χ, α, λ) is subject to the relations of G and

gxi = χi(g)xig, xni

i = αi(1− gni

i ), xixj = χj(gi)xjxi + λij(1− gigj),

for αi, λij ∈ k and i 6= j. We may (and will) assume that λij = 0 if gigj = 1.

Theorem 6.1. Let A′ be the minimal Hopf subalgebra of A = A(G, g, χ, α, λ) generated by {g1, . . . , gθ,

x1, . . . , xθ}. Then, A is Galois-theoretical if and only if A′ is the quotient by a group of central grouplike

elements of a tensor product of

• Hopf algebras u′q(gl2) from [15, Definition 11],

• Taft algebras T (n, ζ),

• Nichols Hopf algebras E(n), or

• book algebras h(ζ, 1).
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Proof. The Hopf algebras u′q(gl2), T (n, ζ), E(n), h(ζ, 1) are Galois-theoretical by [15, Propositions 17, 19, 22,

and 33], and by [15, Proposition 10(5)], so is any tensor product H of these Hopf algebras. Also, it is easy

to check that any quotient of H by a group Z of central grouplike elements is Galois-theoretical, by looking

at the action of H := H/(z− 1, z ∈ Z) on the field of Z-invariants LZ in an inner faithful H-module field L.

So the “if” direction follows from Proposition 3.21.

Conversely, suppose that A(G, g, χ, α, λ) is Galois-theoretical, then so is the subalgebra Ai generated by

gi and xi by [15, Proposition 10(3)]. Since Ai is a generalized Taft algebra, then by [15, Proposition 21],

we get that Ai is coradically graded. Thus, αi = 0 for all i. Now it suffices to show that the minimal Hopf

subalgebra A′ is a central quotient of the tensor product of u′q(gl2), T (n, ζ), E(n), or h(ζ, 1).

Applying Theorem 3.3 and Remark 3.12 to the relation xixj = χj(gi)xjxi + λij(1 − gigj) yields:

wi(1− gi)wj(1− gj)− χj(gi)wj(1− gj)wi(1− gi)− λij(1− gigj)

= [wiwj(1− χj(gi))− λij ](1 − gigj) = 0.

So either wiwj(1 − χj(gi)) = λij or gigj = 1 for all i 6= j.

To proceed, define a graph Γ whose vertices are labelled 1, . . . , θ and which has two kinds of edges —

dotted ones and solid ones. Namely,

∗ a solid edge i—j if and only if gigj = 1.

∗ a dotted edge i · · · j if and only if gigj 6= 1 and wiwj(1 − χj(gi)) = λij , with λij 6= 0.

Thus, i and j are not connected if and only if gigj 6= 1, λij = 0, and χi(gj) = 1. Note that two vertices

cannot be connected by a solid and a dotted edge at the same time.

Note that if i—j then the order of gi equals the order of gj . Also, if i · · · j, then wiwj ∈ k commutes

with gs for all s, and χi(gs) = χj(gs)
−1. So χi(gi) = χj(gi)

−1 = χi(gj) = χj(gj)
−1. Thus if two vertices are

connected by a dotted edge, then gi and gj also have the same order. Hence, to each component C of Γ one

can attach its order, which is the order of gi for any i ∈ Γ. This is also the nilpotency order of xi for any

i ∈ Γ, since αi = 0.

For a component C of Γ, let H(C) be the Hopf subalgebra of A(G, g, χ, 0, λ) generated by {gi, xi}i∈C .

Let us consider the case when Γ is connected. Assume the order of Γ is n > 2. Suppose we have i—j—r

in Γ. Then by the proof of Sublemma 4.7, we come to a contradiction. Suppose now we have i · · · j · · · r in

Γ. Then a similar proof leads to a contradiction:

χi(gj) = χj(gj)
−1 = χr(gj) = χj(gr)

−1 = χi(gr) = χr(gi)
−1 = χj(gi) = χi(gj)

−1.

Finally, suppose that i · · · j—r. Then by the above, i is not connected to r. So, χi(gr) = 1, and χj(gr) =

χj(gj) = 1, a contradiction.

This means that either Γ has one vertex (so, H(Γ) = T (n, ζ)) or two vertices connected by a solid edge

(so, H(Γ) = h(ζ, 1)) or dotted edge (so, H(Γ) = u′q(gl2) or its central quotient; see, e.g. the discussion before

[15, Proposition 30]).

Now assume that Γ is connected and the order of Γ is n = 2. Then by the proof of Sublemma 4.6, Γ is

a complete graph with solid and dotted edges. Indeed, the matrix (χi(gj)) is symmetric (as χi(gj) = ±1),

thus all its entries for i, j ∈ Γ are the same, so they have to be −1.

It is clear that if i—j—r then i—r. Thus, if we only keep the solid edges, Γ will fall apart into components

C1, . . . , Cm, such that for any i ∈ Ck, j ∈ Cl, k 6= l, we have i · · · j. Thus if i, r ∈ Cs and j ∈ Cl, s 6= l, then

wi and wr are both scalar multiples of w−1
j , and gi = gr (as n = 2), so we have a contradiction with inner

faithfulness. Thus, either all edges in Γ are solid or all are dotted. If all edges are solid, then H(C) = E(n)

for some n. Also, we cannot have a dotted triangle with vertices i, j, r, as then wi is proportional to wj
−1,

hence to wr, hence to wi
−1, so wi ∈ k, a contradiction. Thus, if all edges of Γ are dotted (and there is at

least one edge), then |Γ| = 2, and we get the Hopf algebra u′q(gl2) for q = −1.



POINTED HOPF ACTIONS ON FIELDS, II 19

Finally, let Γ be arbitrary. Then, by mimicking Sublemma 4.9, we see that our Hopf algebra A′ is

a quotient of the tensor product of the algebras corresponding to the connected components of Γ by a

subgroup of central grouplike elements. The proposition is proved. �

6.2. Lifting bosonizations B(V )#kG, for V of type A2. Let H be a finite-dimensional, pointed Hopf

algebra so that gr(H) ∼= B(V )#kG, forB(V ) of type A2. Such H have been classified for braiding parameter

q, a primitive m-th root of unity, with m > 1 an odd integer. Namely, by [7, Theorems 3.6 and 3.7] for

m > 3 and by [14, Proposition 3.3] for m = 3.

We proceed in the case when m > 3. In this case, H is generated by G and x1, x2, where xi is (gi, 1)-

skew-primitive and gi ∈ G and is subject to the relations of G,

• gxi = χi(g)xig, for i = 1, 2,

• xmi = µi(1− gmi ), for i = 1, 2,

• [x1x2 − χ2(g1)x2x1]x1 = χ1(g2)x1 [x1x2 − χ2(g1)x2x1],

along with other relations irrelevant to the proof of the result below. Here, µ1, µ2, λ ∈ k, q = χ1(g1) = χ2(g2)

and χ1(g2)χ2(g1) = q−1.

Proposition 6.2. Let H be a finite-dimensional pointed Hopf algebra so that gr(H) ∼= B(V )#kG, for B(V )

of type A2, as above. If H is Galois-theoretical, then H is coradically graded, in which case we are in the

setting of Theorem 5.7(b).

Proof. Suppose that H is Galois-theoretical. Then, the subalgebra Hi generated by gi and xi is also Galois-

theoretical by [15, Proposition 10(3)], for i = 1, 2. Since Hi is a generalized Taft algebra, then by [15,

Proposition 21], Hi is coradically graded. Thus, µ1 = µ2 = 0. Now, H is a quotient of H(G, g1, g2, χ1, χ2)

studied in Section 3.1.

We get by Theorem 3.3 and Remark 3.12 that xi acts as wi(1 − gi) for i = 1, 2. From the relations

giwj = χj(gi)wjgi and χ1(g1)χ1(g2)χ2(g1) = 1 and

[x1x2 − χ2(g1)x2x1]x1 = χ1(g2)x1 [x1x2 − χ2(g1)x2x1] ,

we have that

q21w1(1− g1)w1(1 − g1)w2(1 − g2)− (q12q21 + 1)w1(1 − g1)w2(1 − g2)w1(1 − g1)

+q12w2(1− g2)w1(1− g1)w1(1− g1)

= w1
2w2

[
(q12 − 1)(q21 − 1)(g21g2 − 1)

]
= 0.

So, q21 = χ1(g2) = 1, q12 = χ2(g1) = 1, or g21g2 = 1. By Theorem 5.7, we have that H is a lift of a

finite-dimensional, pointed, coradically graded Hopf algebra of type A2 that is Galois-theoretical. Now, H

is coradically graded by Proposition 3.18. �

6.3. Lifting bosonizations B(V )#kG, for V of type B2. Let H be a finite-dimensional pointed Hopf

algebra so that gr(H) ∼= B(V )#kG, forB(V ) of type B2. Such H have been classified for braiding parameter

q, a primitive m-th root of unity, with m 6= 5 an odd integer. Namely, by [14, Theorems 2.6 and 2.7], H is

generated by G and x1, x2, where xi is (gi, 1)-skew-primitive and gi ∈ G and is subject to the relations of G,

• gxi = χi(g)xig for i = 1, 2,

• xmi = µi(g
m
i − 1) for i = 1, 2;

• x2[x2x1 − χ1(g2)x1x2]− χ1(g2)χ2(g2)[x2x1 − χ1(g2)x1x2]x2 = 0,

along with other relations irrelevant to the proof of the result below. Here, µ1, µ2, λ ∈ k, q2 = χ1(g1),

q = χ2(g2), and χ1(g2)χ2(g1) = q−2.
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Proposition 6.3. Let H be a finite-dimensional, pointed Hopf algebra so that gr(H) ∼= B(V )#kG, for

B(V ) of type B2, as above. If H is Galois-theoretical, then H is coradically graded, in which case we are in

the setting of Theorem 5.7(b).

Proof. Suppose that H is Galois-theoretical. Then, the subalgebra Hi generated by gi and xi is also Galois-

theoretical by [15, Proposition 10(3)], for i = 1, 2. Since Hi is a generalized Taft algebra, then by [15,

Proposition 21], Hi is coradically graded. Thus, µ1 = µ2 = 0 and m = ord(g1) = ord(g2).

Now, H is a quotient of H(G, g1, g2, χ1, χ2) studied in Section 3.1, and we get by Theorem 3.3 and Re-

mark 3.12 that xi acts as wi(1−gi) for i = 1, 2. From the relations giwj = χj(gi)wjgi, χ1(g2)χ2(g1)χ2(g2) = 1

and

x2 [x2x1 − χ1(g2)x1x2]− χ1(g2)χ2(g2) [x2x1 − χ1(g2)x1x2]x2 = 0,

we have that

w2(1− g2)w2(1− g2)w1(1− g1)− (q21 + q21q22)w2(1− g2)w1(1− g1)w2(1− g2)

+q221q22w1(1− g1)w2(1− g2)w2(1− g2)

= w1
2w2

[
(q−1

12 − 1)(1− q21)(g1g
2
2 − 1)

]
= 0.

So, q12 = 1, q21 = 1, or g1g
2
2 = 1. Since m 6= 5, we have by Theorem 5.7 H is a lift or a finite-dimensional,

pointed, coradically graded Hopf algebra of type B2 that is Galois-theoretical. Now H is coradically graded

by Proposition 3.18. �

7. Galois-theoretical small quantum groups of higher rank

We study the Galois-theoretical property of the small quantum groups uq(g), u
≥0
q (g), and gr(uq(g)), along

with their Drinfeld twists. Here, let g be a finite-dimensional semisimple Lie algebra of type X. Note that

u≥0
q (g), uq(g), and gr(uq(g)) (and their twists) are pointed Hopf algebras of finite Cartan type X, X × X,

and X × X, respectively. We use the notation and terminology of [15, Sections 1.2, 1.4, and 3.9].

Proposition 7.1. Let g be a finite-dimensional semisimple Lie algebra, not of type A×r
1 for r ≥ 2. Let q ∈ k

be a root of unity of odd order m ≥ 3, with m > 3 for g containing a component of type G2. Then, we have

the statements below.

(a) uq(g) is Galois-theoretical if and only if g = sl2.

(b) u≥0
q (g) is Galois-theoretical if and only if g = sl2. In this case, u≥0

q (sl2) is a Taft algebra of dimension

m2.

(c) gr(uq(g)) is not Galois-theoretical.

Proof. We have that both uq(sl2) and u≥0
q (sl2) are Galois-theoretical by [15, Propositions 25(2) and 17].

Moreover, gr(uq(sl2)) is not Galois-theoretical by [15, Proposition 25(1)].

On the other hand, let g have rank ≥ 2. Note that there exists i 6= j, so that aij = −1 with |i − j| = 1,

since g is not of type A×r
1 for r ≥ 2. The Hopf algebras uq(g), u

≥0
q (g) and gr(uq(g)) have a Serre relation

given as follows:

e2i ej − (qd + q−d)eiejei + eje
2
i = 0,(7.2)

where i 6= j as above, and ei is a (ki, 1)-skew-primitive element for a grouplike element ki. Here, d = 1 for

type ADE, d = 2 for type BCF, and d = 3 for type G.

By way of contradiction, suppose that these Hopf algebras H are Galois-theoretical with module field L.

These Hopf algebras are quotients of H(G, g, χ) studied in Section 3.1, so we get by Theorem 3.3 that ei
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acts on L by formula (3.4). By Remark 3.12, ei acts as wi(1− ki). Now the relations between ki and ej of

H from [15, Definition 2] imply that

χi(ki) = q2d, χi(kj) = q−d, χj(ki) = q−d, χj(kj) = q2.

As kiwj = χj(ki)wjki, we have from (7.2) that

0 = wi(1− ki)wi(1 − ki)wj(1− kj)− (qd + q−d)wi(1− ki)wj(1− kj)wi(1− ki)

+wj(1− kj)wi(1− ki)wi(1− ki)

= wi
2wj [(1 − qdki)(1 − q−dki)(1 − kj)− (qd + q−d)(1 − qdki)(1 − q−dkj)(1− ki)

+(1− q−2dkj)(1− q2dki)(1− ki)]

=





wi
2wj [q

−1(q − 1)2(k2i kj − 1)] if d = 1,

wi
2wj [q

−2(q − 1)2(q + 1)2(k2i kj − 1)] if d = 2,

wi
2wj [q

−3(q − 1)2(q2 + q + 1)2(k2i kj − 1)] if d = 3.

Given the conditions on the order of q and the fact that k2i kj 6= 1, we arrive at a contradiction. Thus, uq(g),

u≥0
q (g), and gr(uq(g)) are not Galois-theoretical when g is of rank ≥ 2 not of type A×r

1 . �

The following result characterizes the Galois-theoretical properties of Drinfeld twists of small quantum

groups.

Proposition 7.3. Let g be a finite-dimensional simple Lie algebra, and retain the notation of Proposition 7.1.

Let m be relatively prime to det(aij), and to 3 in type G2. Let J be a Drinfeld twist of uq(g) induced from

its Cartan subgroup. Then, we have the following statements.

(a) There are precisely 2rank(g)−1 twists J (up to gauge transformation) so that u≥0
q (g)J is Galois-

theoretical.

(b) The Hopf algebra uq(g)
J can be Galois-theoretical if and only if g = sln. In this case, there are only

two of such twists J for n ≥ 3, and one (namely, J = 1) for n = 2, up to a gauge transformation.

Proof. (a) [15, Proposition 37] provides 2rank(g)−1 twists giving rise to Galois-theoretical examples, so our

job is to show that no other twist works. Let J be a twist such that u≥0
q (g)J is Galois-theoretical. Then by

the classification in the rank 2 case (Theorem 5.7), for each i, j, either qij = 1 or qji = 1 (and both hold if

i, j are not connected). This defines an orientation on the Dynkin diagram of g (with i→ j if qij 6= 1), and

there are exactly 2rank(g)−1 possibilities. Thus, there are no possibilities for J beyond the above, proving (a).

(b) Let J be a twist such that uq(g)
J be Galois-theoretical, and bJ be the alternating bicharacter corre-

sponding to J as in [15, Proposition 7]. Let us consider generators ei and fj of uq(g)
J , for j 6= i. Together

with Cartan elements, they generate a coradically graded Hopf subalgebra of type A1 × A1. Let Hij be its

minimal Hopf subalgebra. Then by Theorem 5.7, Hij is either a tensor product of two Taft algebras or a

book algebra of type h(ζ, 1).

Let bij := bJ(ki, kj). It is easy to check that the Cartan matrix of Hij has the form

Aij =

(
q2di q−diaijbij

qdjajib−1
ij q−2dj

)

So, if Hij is a tensor product of two Taft algebras, we must have bij = qdiaij . Then bji 6= qdjaji , as the

matrix (diaij) is symmetric, while bij = b−1
ji . Thus, if i—j then Hij or Hji is a book algebra.

If Hij is a book algebra, then

(7.4) q2di = q−diaijbij ,
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and if Hji is a book algebra, then

(7.5) q−2di = qdiaij b−1
ji .

Taking the product of (7.4),(7.5), we get bij = bji, a contradiction. Thus, Hij and Hji cannot both be book

algebras. So, if i—j, then exactly one of the algebras Hij , Hji is a tensor product and exactly one is a book

algebra.

Introduce an orientation on the Dynkin diagram of g by putting i→ j if Hij is a book algebra. If i→ j,

then Hji is a tensor product of Taft algebras, so bji = qdjaji and hence bij = q−diaij . Thus, by (7.4) we have

q2di = q−2diaij . Also q2di = q2dj . So aij = aji = −1, i.e., g is simply laced.

Next, by (the proof of) Sublemma 4.7, we cannot have i → j and r → j for i, j, r distinct, or j → i and

j → r for i, j, r distinct. Hence, the Dynkin diagram of g cannot contain a triple vertex. So the diagram Q

and the Lie algebra g must be of type An−1 for some n. Moreover, the above constraint on the orientation

also implies that all the edges of the Dynkin diagram are oriented in the same direction, i.e. we are left with

just two orientations (which coincide if n = 2, i.e., there are no edges).

Finally, the twists J± corresponding to the remaining two orientations indeed give rise to Galois-theoretical

Hopf algebras by [15, Corollary 31]. The theorem is proved. �

8. Further directions

In this work we studied the Galois-theoretical property of the most extensively studied class of finite-

dimensional, pointed Hopf algebras: those of finite Cartan type. The study of the Galois-theoretical property

of such Hopf algebras of higher rank (≥ 3) is open in general (and some cases of liftings in rank 2 have also

not been treated here). We also suggest the following tasks: investigate the Galois-theoretical property of

finite-dimensional, pointed Hopf algebras H with G(H) abelian

• of standard type (which properly includes finite Cartan type) [1, 11],

• of super type [3], or

• of unidentified type [13].

Moreover, it would be interesting to continue this study for known finite-dimensional, pointed Hopf algebras

over a non-abelian group of grouplike elements [4, 18], or over a cosemisimple Hopf algebra (especially when

the Nichols algebra is of Cartan type A) [2].
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