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It was proposed recently by Loureiro and Boldyrev [Phys. Rev. Lett. 118, 245101 (2017)] and Mallet et al.
[Mon. Not. R. Astron. Soc. 468, 4862 (2017)] that strongly anisotropic current sheets formed in the inertial range
of magnetohydrodynamic turbulence become affected by the tearing instability at scales smaller than a critical
scale λc, and larger than the dissipation scale of turbulence. If true, this process can modify the nature of energy
cascade at smaller scales, leading to a new, tearing-mediated regime of magnetohydrodynamic (MHD) turbulence.
In this work, we present a numerical study of strongly anisotropic, two-dimensional turbulent eddies, and we
demonstrate that the tearing instability can indeed compete with their nonlinear evolution. The results, therefore,
provide direct numerical support for the picture that a new regime of MHD turbulence can exist below λc.
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I. INTRODUCTION

Plasma turbulence occurring in natural systems, such as
the interstellar medium, the solar corona, solar wind, planet
magnetospheres, etc., typically spans a very broad range of
scales and affects important phenomena like plasma heating,
particle acceleration and scattering [1,2]. At scales larger than
the ion kinetic scales, the plasma dynamics can be modeled
in the framework of magnetohydrodynamics (see, e.g., [1–5]).
Magnetohydrodynamic turbulence can be viewed as nonlin-
ear Alfvénic modes or eddies propagating along the local
background magnetic field. Such eddies are expected to be
anisotropic with respect to the background field (see, e.g., [6]).
Moreover, they assume the shapes of ribbons or current sheets
at progressively smaller scales (see, e.g., [7–11]). This picture
is consistent with (and may provide an explanation for) the
numerically observed morphology of small-scale current struc-
tures in magnetohydrodynamic (MHD) turbulence [1,12–17].

Given a very large Reynolds number, the ribbonlike eddies
in the inertial interval of MHD turbulence may become affected
by the tearing instability. This question was first addressed
in [18] in the framework of the Iroshnikov-Kraichnan (IK)
model of MHD turbulence [19,20]. The tearing mode consid-
ered in [18] was essentially isotropic, which fit an assumption
of the IK model that MHD turbulence consists of isotropic
(characterized by a single size) weakly interacting Alfvén
waves at each scale [21]. Moreover, the tearing mode con-
sidered in [18] required the presence of a significant velocity
shear tuned to the magnitude and scale of the magnetic field
[22–24]. The growth rate of this mode depended on the velocity
shear, and it reduced to the standard Furth-Killeen-Rosenbluth
(FKR) result [25] as the velocity shear decreased [24].

In [26] and [27] it was proposed that MHD turbulence
should rather be modified at small scales by highly anisotropic
tearing modes, which are beyond the FKR regime. It was con-
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jectured that a new, tearing-mediated energy cascade should
exist in the range of scales intermediate between the Alfvénic
inertial interval and the dissipation scale of MHD turbulence.
The transition scale to the tearing-mediated regime depends
on the model shape assumed for the turbulent eddies. If the
sheared magnetic structures have a “tanh-like” profile [28],
the scale is given by λc ∼ LS

−4/7
L , where L is the outer scale

of turbulence and SL is the corresponding Lundquist number.
For a “sine-like” profile that is arguably more appropriate for
turbulent systems and that we study in this work, the transition
scale is estimated slightly differently, λc ∼ LS

−6/11
L [29,30].

It was estimated that such a regime becomes relevant if
the magnetic Reynolds number [31] of turbulence becomes
very large, Rm � 106 (see, e.g., Ref. [29]). Due to this severe
computational constraint, direct numerical evidence in support
of the tearing-mediated turbulence regime does not exist [32].

In this work, we propose a method for studying anisotropic
MHD turbulence in the tearing-mediated interval with a two-
dimensional setup that models the transverse dynamics of
a current sheet. Our method is somewhat analogous to the
reduced-MHD approach (RMHD) in simulations of MHD
turbulence (see, e.g., Refs. [1,3,33,34]). The RMHD equations
apply when the simulation domain (a rectangular box) is
permeated by a strong background magnetic field B0, say in
the z direction. Assume that the rms values of magnetic and
velocity fluctuations are normalized to unity, vrms ∼ brms ∼ 1.
For the turbulence to be critically balanced at the largest scale,
one needs to elongate the box in the z direction proportionally
to the value of B0. In the case B0 � brms, the fluctuations of
the z components of the magnetic and velocity fields can then
be neglected, and the MHD system is approximated by the
reduced-MHD equations (see also [35,36]).

The novelty of our approach is that instead of studying
turbulence driven at large scales, we study the evolution of
a particular highly anisotropic eddy that is expected to exist
at scales much smaller than the outer scale of the turbulence.
For that we stretch the box in the x direction as compared
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to the y direction, Lx � Ly . For the eddy to be critically
balanced, we need the following conditions at the box scale:
Lz/B0 ∼ Lx/bx ∼ Ly/by , where bx ∼ vx and by ∼ vy are
typical fields in the x and y directions. The box-sized eddies
in such turbulence are effectively very anisotropic current
sheets. It is important to note that such eddies cannot be in
a steady state; they are destroyed by nonlinear interaction on
their Alfvénic time scale τA ∼ Lx/bx . During their lifetime,
however, they tend to develop small-scale turbulence inside
them that, for a sufficiently large Reynolds number, should
resemble regular, although very anisotropic, MHD turbulence.

If we increase the resistivity, however, the large-scale
magnetic fluctuations will become subject to tearing instability
(see, e.g., Refs. [25,37,38]). The analysis of [29] shows that the
fastest-growing tearing mode in such an eddy has the growth
rate γt ∼ (bx/Ly )S−3/7, where the local, eddy-scale Lundquist
number is defined as S = bxLy/η and the magnetic field is
measured in Alfvénic units [39]. For the tearing rate to become
comparable to the eddy turnover rate γ ∼ 1/τA ∼ bx/Lx , we
need to require S = Sc ∼ (Lx/Ly )7/3. Therefore, if we need
to perform computations with a large Lundquist number S, we
have to choose a very anisotropic box.

On the other hand, in order to reliably measure the scaling
properties of the turbulence, the Reynolds number should be
large. The local Reynolds number measuring the strength of the
nonlinear interaction is defined as Re = byLy/η. It is smaller
than the Lundquist number. For critically balanced fluctuations
by ∼ bx (Ly/Lx ), the Reynolds number corresponding to Sc

would thus be Rec ∼ (by/bx )Sc ∼ (Lx/Ly )4/3. The Alfvénic
evolution time τA of such an eddy increases with the box
elongation. If we assume that in order to resolve the inertial
interval we need at least Re ∼ 2000, and Ny = 512 grid points
in the shortest, Ly direction (see, e.g., [40]), we encounter
prohibitively strong limitations for the numerical simulations
in both the number of grid points and the running time.

In an attempt to overcome these limitations, we use a
simplified, two-dimensional setup. Although two-dimensional
MHD is different from its three-dimensional counterpart,
there are certain similarities between strong turbulence in the
two cases. As observed numerically (see, e.g., [15,41–43]),
two-dimensional turbulence tends to form sheetlike magnetic
structures at small scales, and its energy spectrum is close
to −3/2, similar to the three-dimensional case. The eddy
turnover rate should therefore scale in the same way as in three-
dimensional turbulence. We believe that this should suffice for
our study of the interplay of tearing and Alfvénic dynamics, at
least on a qualitative level.

II. NUMERICAL METHOD

We solve the incompressible MHD equations in a two-
dimensional anisotropic periodic box with the pseudospectral
code SNOOPY [44]. The equations are

∂tv = −(v · ∇)v − ∇P + B · ∇B + ν∇2v + f, (1)

∂tB = ∇ × (v × B) + η∇2B, (2)

where v(x, y, t ) is the velocity field, B(x, y, t ) =
b0 sin(2πy + φ)x̂ + b(x, y, t ) is the magnetic field, P is the

pressure, and f (x, y, t ) is the external force. The magnetic field
is measured in Alfvénic units, vA = B/

√
4π
. The large-scale

magnetic field b0 sin(2πy + φ)x̂ is not an exact solution of
the resistive MHD equations, therefore the kyLy/(2π ) = ±1
components of the magnetic field can change in time. We,
however, update these particular components at each time
step to ensure that the amplitude b0 does not change. The
dimensionless pressure P ensures the incompressibility of the
flow. For simplicity, we choose Pm = ν/η = 1. We normalize
the variables in such a way that Ly = 1 and b0 ∼ 1. The time
is measured in units of Ly/b0.

Currently, the exact dynamics of current sheet formation
in MHD turbulence is not well understood [45]. The fluctu-
ations inside our anisotropic eddy therefore are excited from
zero level by an eddy-scale driving force. The amplitude of
the anisotropic, solenoidal random force f (x, y, t ) is chosen
to ensure vx ∼ vrms � b0; the box anisotropy requires fy ∼
fx (Ly/Lx ). The force is applied in Fourier space; we force
the modes kxLx/(2π ) = ±1,±2, kyLy/(2π ) = ±1,±2, with
amplitudes drawn from a normal distribution and refreshed
independently on average every τf ∼ 1 (a time short compared
to the Alfvénic time of the eddy).

We simulate a strongly anisotropic eddy with dimen-
sions Lx×Ly = 64×1. It is interesting to point out that in
isotropically driven MHD turbulence, such structures are
expected to exist at scales ∼107 times smaller than the outer
scale of turbulence. We choose the numerical resolution of
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FIG. 1. Time history of energy components. Top panel: S =
64 000, middle: S = 16 000, bottom: S = 4000. The fluctuating vy

and by fields are initially generated by the driving force at the
level corresponding to 1/64 of their x-components. They grow due
to nonlinear energy redistribution and/or tearing instability until
they reach the magnitude of the x-components, at which point the
anisotropic eddy is destroyed.
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FIG. 2. Compensated energy spectrum for the setup with S =
64 000, shown at several instances of the eddy evolution. At the latest
time interval, the eddy has been destroyed by the nonlinear interaction.
The spectrum at this stage is close to the spectrum of steady-state
Alfvénic MHD turbulence.

Nx×Ny = 32 768×512 grid points. As discussed above, in
order for the tearing-instability rate to match the eddy-turnover
rate, the local Lundquist number, defined as S = b0Ly/η,
should satisfy S � (Lx/Ly )7/3 ∼ 14 000, while for S �
14 000 the turbulence is expected to resemble the standard
MHD turbulence [29].

III. RESULTS

We performed three simulations that differ only in the value
of the Lundquist number: S = 64 000, 16 000, and 4000. It is
important to note that if tearing were irrelevant, the Lundquist
number would not affect the time it takes to disrupt the eddy.

Consider first the case of the largest Lundquist number S =
64 000. As seen in Fig. 1 (first panel), the anisotropic eddy
is gradually destroyed by growing fluctuations of the by and
vy fields. The growth is slow, with a time scale comparable
to the Alfvénic time scale, τA ∼ 65. This time is shorter than
the tearing time estimated as τt ∼ (Ly/b0)S3/7 ∼ 115. It is
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FIG. 4. Alignment angle as a function of the short coordinate y

for the setup S = 64 000 averaged over different periods of the eddy’s
evolution.

therefore expected that the tearing effects are not important,
and indeed the spectrum of the turbulence developing inside
the eddy during the eddy evolution is more consistent with
that observed in Alfvénic turbulence (−3/2) in [10,40,46–54]
than with the prediction for the tearing-dominated turbulence
(−19/9), as is shown in Fig. 2. Typical current structures in this
case are shown in Fig. 3. Plasmoidlike structures are not very
common. Even when they appear, they do not have a chance
to survive or grow to large scales. This is consistent with the
expectation that the shearing flows associated with Alfvénic
fluctuations tend to impede the tearing activity.

The scaling of the alignment angle between the magnetic
and velocity fluctuations, defined as θλ = sin−1(〈δvλ×δbλ〉/
〈|δvλ||δbλ|〉) (see, e.g., [52] for more details), is also broadly
consistent with MHD turbulence, even though its overall
magnitude changes during the eddy evolution, as shown in
Fig. 4.

The case of S = 4000 is shown in the bottom panel of Fig. 1.
The Lundquist number is small enough so that the tearing time,
τt ∼ 35, is shorter than the Alfvénic time. Therefore, we would
expect the eddy to be disrupted faster than in the top panel
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FIG. 3. Typical contours of the current jz for S = 64 000. The top panel shows a section of the domain at t = 41, while the bottom one
shows a different section at t = 45. The plasmoid-like structures are not common in the flow; when present, they do not fully develop due to
Alfvénic shearing flows.
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FIG. 5. Compensated energy spectrum for setup S = 16 000 for
several intermediate moments during the eddy evolution. The spec-
trum broadens in k-space and seems to approach the slope of −19/9,
consistent with the prediction for the tearing-mediated turbulence,
before the eddy is destroyed at late times.

(S = 64 000), due to the action of the tearing instability. This
observation is consistent with the conjecture (and may serve
as proof of the principle) put forward in [26,27,29] that the
tearing instability can compete with the Alfvénic evolution of
very anisotropic eddies [55].

Finally, in the middle panel of Fig. 1 we show the case S =
16 000 where the Alfvénic and tearing times are comparable.
The energy evolution is similar to that in the case of S =
64 000, although the saturation of the growing y components
seems to start at a slightly earlier time, in accordance with
the increasing importance of the tearing process. This case is
especially important for our consideration. The energy spec-
trum of the fluctuations is shown in Fig. 5 for several different
instances during the eddy evolution. We observe that as the
turbulence is developing inside the eddy, its spectrum broadens
in k-space and approaches a slope close to −19/9, consistent
with the prediction for the tearing-mediated turbulence [29].
In this case, the tearing instability has a better chance to
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FIG. 7. Alignment angle for setup S = 16 000 averaged over
different periods of the eddy’s evolution.

compete with the Alfvénic fluctuations. The more pronounced
plasmoidlike current structures observed in this case—see
Fig. 6—strengthen this interpretation. At the very late stages
of the eddy evolution, when the anisotropic eddy is destroyed,
the spectrum of the resulting steady-state fluctuations seems to
be approaching the shallower −3/2 spectrum of regular MHD
turbulence.

The alignment angle measured for the case of S = 16 000,
however, shows a difference with the predictions of [29].
Figure 7 shows that the alignment angle does not increase
at small scales, as predicted in [29]. The reason for that is
presently not clear. It may be related to the principal differences
between the two- and three-dimensional cases, to the limited
Reynolds number, or it may indicate that the assumption of
Alfvénization of tearing-mediated turbulence made in [29] is
incorrect.

IV. CONCLUSIONS

It has been proposed in [26,27,29] that tearing instability
can play a significant role in the inertial interval of magnetic
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FIG. 6. Typical contours of the current jz for S = 16 000. The top panel shows a section of the domain at t = 40, while the bottom one
shows a different section at t = 45. The tendency of turbulence to create plasmoid-like structures is more pronounced as compared to the case
depicted in Fig. 3.
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turbulence at small scales. Very recently, detailed analytical
and observational studies of this phenomenon have been
conducted [56–59]. In this work, we have presented a nu-
merical study of an interplay between Alfvénic and tearing
instabilities in MHD turbulence. Our results indicate that the
tearing instability can indeed modify the dynamics of highly
anisotropic turbulent eddies. In agreement with the analytic
predictions, this process can lead to a new regime of MHD
turbulence at scales larger than the dissipation scale.
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