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ApS TRACT

A vehicle is assumed to be navigating in the vicinity of a planet such
as the Earth. The vehicle carries an accelerometer platform which, in
general, is isolated from angular motions of the vehicle and is caused to
rotate independently in inertial space by means of angular inertial
sensors ('"inersors'') such as gyroscopes.

A navigation coordinate frame, zt » can be defined which is fixed with

respect to the planet. General navigation equations can be derived which
express the gyro drive signals and the position coordinates, z' , in terms
of the accelerometer outputs, subject only to the condition that the input
axes of the accelerometers follow the unit vectors of the navigation coordi-
nate frame. To solve these equations in any particular coordinate frame.
five classes of parameters are needed:

1.» The transformation equations from the Earth-centered, Earth-
fixed Cartesian yi frame to the arbitrary z' are needed. The trans-
formation equations enter the navigation equations as elements of
the metric tensor of the z' space and as certain partial derivatives
of the form Yi 32} »

2. G or g must be known as a function of the z* in order to

interpret the accelerometer outputs in terms of acceleration.

3. The inertial angular velocity of the accelerometer platform,
UJ);a : is needed. This is measured with gyroscopes or with more
exotic inersors,

C4|



I'welve initial conditions are required:
a. Vehicle position, z} .
b. Vehicle velocity, 2!.

Platform orientation,

Platform angular velocity

These must be inserted initially and may be updated en route.

5. Time and the inertial angular velocity of the planet are .
needed. The spin rate of the Earth measures time to one part in 10.

Several z' coordinate frames are examined and applied to suitable

missions. In particular, the definitions of coordinate frames to mecha-
nize various "vertical' directions in vehicles above the Earth are dis-

cussed. A novel integral mechanization of the longitude channel is
derived for use in any symmetric coordinate frame. Some examples
are analysed in detail.

The limitations on the navigation process imposed by astronomic and
geodetic limitations are considered at length. It is shown that the con-

ventional Earth-centered, "inertially-non-rotating' coordinate frame,
x; » actually rotates at 10 %deg. /hr. in inertial space. Furthermore,
the angular velocity of the Earth relative to the x; frame does not lie
entirely along the geographic polar axis but has a component of
5% 16% deg. /hr. perpendicular to it. Other limitations of this nature
are discussed including some which cause errors as large as one

mile if uncorrected. Figures 5-14 and 5-15 summarize these
limitations.

Mathematical models of the gravity field are proposed for use in
various coordinate frames, to navigational accuracy. The horizontal
components ofgand G in several coordinate frames are considered
in detail as functions of altitude. The effect on the system of an

imperfect knowledge of g§ is examined.

Unusual problems connected with inertial navigation on other planets
of the solar system are considered briefly, The entire thesis is written
to allow immediate application to navigation on these planets.

Thesis Supervisors: Dr. Walter Wrigley, Professor of Instru-
mentation and Astronautics.

Robert Louis Halfman, Associate Professor
of Aeronautics and Astronautics.

John Hovorka, Lecturer, Department of
Aeronautics and Astronautics.
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Chapter One

INERTIAL SPACE AND TIME

"..... the great success of Newtonian physics led to the para-
doxical situation of the adherence to the concepts of absolute
time and absolute space, on the one hand, and their absence
from practical physics, on the other."

Max Jammer
Reference 180, p. 138.

1.A. INTRODUCTION,

The concepts of time and inertial space are fundamental in me-

chanics and hence in its application to inertial navigation. Time is

regarded as the independent variable in the formulation of the laws of

mechanics. Inertial space is a coordinate frame in which these laws

can be written in a particularly simple manner. The aim of this chap=

ter is to consider briefly the meaning and the measurement of these

concepts.



l.B. INERTIAL SPACE.

The laws of mechanics owe their present form to the concept of

force developed during Newton's time. Force is not essential to me-

chanics; it is "but an invention to satisfy our desires for explanation”

(Ref. 180, p. 209). Several formulations of the laws of motion have

been based on energy, momentum, the Lagrangian, the Hamiltonian

and similar force-free concepts.

[n the Newtonian formulation, objects are considered to exert

forces on each other which are dependent on their relative positions

and velocities. The present configuration of the bodies allows the

forces to be calculated; the forces determine the change in configura-

tion. As Jammer observes in CONCEPTS OF FORCE (ibid.), force

is merely an artificial intermediary between the present and future

configurations of a group of material bodies.

Macroscopic forces are conventionally divided into contact,

gravitational and electromagnetic forces. Atomic and nuclear inter-

actions are of no direct interest to the navigation system engineer.

Newton's formulation of mechanics implicitly defines inertial

space as any coordinate frame in which the acceleration of a particle

is proportional to the net force acting on it. In order to operationally

specify such an inertial frame, a hypothetical experiment is neces-

sary. Two small test particles could be selected and all other masses

in the universe removed to a large distance. Then all contact forces



on the two particles could be removed. Since all other masses are

at a large distance, the net force on each particleispresumably.zero

and the particles move in straight lines at constant velocity in inertial

space. The origin of a coordinate frame could be located on either -

test particle and the coordinate frame oriented so both particles

appear to move in straight lines. Such a coordinate frame is inertial

by virtue of Newton's L.aw. Furthermore, any other coordinate frame

which does not rotate relative to this one and whose ..origin moves at

constant velocity relative to it is also inertial.

This hypothetical experiment is unsatisfactory because it has

never been performed and cannot be performed. The effect of a large

mass at a large distance is unknown; the experiment is not opera-

tional. Still, the definition implies that if space is homogeneous so

that the results of the hypothetical experiment do not vary from place

to place, all inertial coordinate frames are relatively non-rotating and

differ at most by a constant relative linear velocity.

Einstein's theory of gravitation is another formulation of the laws

of mechanics, provided that only gravitational forces are included;

electromagnetic and atomic (contact) forces must be omitted. | In

Einstein's view, particles always follow geodesic paths in a warped

four dimensional space. The curvature of the space depends only on
the mass density distribution theonghouk the space. The Newtonian
observer, seeing the particles follow curved paths (geodesics in the
warped space), conceives that forces act on the particles. The

Einsteinian observer substitutes the geometrical picture of a curved



space for the concepts of force and inertial space. The Newtonian

equations are true only in the privileged inertial frame; the relati-

vistic equations are true in any coordinate frame whatsoever since

the curvature tensor transforms in the same manner as the energy~

momentum tensor. At velocities much less than that of light, both

formulations yield identical results but through different mechanical

models. At high velocities, the results differ. Limited experi-

mental evidence to date indicates that the Einsteinian formulation is

more nearly correct than the Newtonian (see refs. 161, 166, 172,

181 and 186, for example).

If the Einsteinian observer selects a coordinate frame at ran-

dom, the particles appear to travel in non-geodesic paths; "forces"

act on them. It is only when the observer selects the proper co-

ordinate frame that the particles appear to move on a geodesic path.

This preferred coordinate frame is calculable from the mass density

distribution in space. Professor J. A. Wheeler, in a lecture at

M.I. T. on October 22, 1959, suggested the following analogy. Suppose

the path of an aircraft, flying from New York to London, is observed

on a Mercator map. The airplane appears to move in an arc since it

is following a geodesic path on the surface of the Earth. The ob-

server — attribute the curved path to the existence of a force attract-

ing the aircraft toward the north pole or he can realize that a coordi-

nate transformation onto a sphere will remove the polar force. The

"force" has been transformed away by a suitable choice of coordinates.



The geometric interpretation has been successfulinpractice

only for a limited number of special cases, the equations being too

difficult to solve in the presence of many particles. Furthermore,

electromagnetic and atomic forces have not been incorporated into

the theory. Persons such as J. A. Wheeler in the United States and

V. Fock in the U.S. S. R. are presently attempting to include electro=

magnetic forces in a "unified field theory." In such a theory, parti-

cles might follow geodesic paths in a four, five or six dimensional

space where the local curvature of the space would be determined by

the mass and charge distributions and by the relative velocities of the

particles. Atomic and nuclear interactions are far from being self-

consistent much less being included in a unified field theory.

Newtonian mechanics substitutes the concepts of force and inertial

space for Einstein's geometric concept of geodesic paths in a space

warped by the presence of mass. However, the inertial space con-

cept is still a useful approximation at low velocities. To assess its

accuracy and applicability three questions must be answered:

Where may the origin of an inertial frame be placed?

&gt; How must the inertial fram be oriented?nt

3. How accurately do the Newtonian laws hold in this

inertial frame?



1.C. THE ORIGIN OF AN INERTIAL COORDINATE FRAME.

The existence of inertial coordinate frames in Newtonian me-

chanics is a postulate. Thus it must be assumed that at least one in-

ertial frame exists. This distasteful assumption essentially postulates

the existence of an absolute space and is responsible for Einstein's

alternative formulation of mechanics without a preferred inertial

frame.

The classical reasoning proceeds as follows. Assume that the

inertial frame, Sp» exists. Suppose that the masses m, and m, exert

a mutual gravitational attraction, Fao , and that the remaining masses

in the universe exert the gravitational and electromagnetic forces, Fe,

and Fy ~~ on m, and Fe, and Ba on m,. Suppose a coordinate frame,

Sys non-rotating relative to Sos is placed on m,. Let R, locate m,

in S, and R, locate m, in S,. Then:

F FR = + F + G,m, R, = - Fe, G,

°® ee — -— —

m,(R, +R) =F, +E, +F,
&lt;0)

SE (Eos — Ee) y (Ee _Fe M+ MaeR, =(®. mM, ALY a) * mm, Feo 1d)

Hence if Sy is inertial, S, is also inertial to the extent that differences

of the gravitational and electromagnetic accelerations are negligible

within S,. In S,, the apparent gravitational force on m, must be in=~

creased from = to Jeaemm, in the usual two-body problem

'Ref. 219. po. sm



If an inertial coordinate frame is centered on a body which is

massive compared to nearby bodies of interest, my, + m, #m, and the

gravitational force which appears to act on the smaller body is much

greater than the gradient forces. Thus, operational inertial co=

ordinate frames on large planets and satellites are useful because the

planet's gravitational attraction is far greater than the gradient forces

exerted by nearby bodies. But, if an operational inertial frame is

placed at the mass center of a small artificial or natural satellite,

the gradient force of the primary may be comparable to, or larger than

the attraction of the satellite. For such a coordinate frame to be use=~

ful, the gradient forces must be explicitly included as an apparent

additional gravitational force.

For example, suppose m, is the Sun. A heliocentric coordinate

frame, centered at the mass center of the Sun and non=rotating relative

to the distant galaxies (see Section 1.D), is a convenient inertial co=-

ordinate frame for computing the orbits of planets and solar system

probes. The closest large mass to the Sun is the triple star

system Alpha Centauri. This star system causes a gravitational dif-

ference across the diameter of the Earth's orbit:

WM: 5 an% on = 4= inxe
(1-2)

AG _Ms (NeY 40g 3 yg"9. me (5) Tem 3x0 jee
where:

is the universal gravitational constant.

or is the mass of these stars ® two Sun masses (Ref. 168)



~~ is the distance of these stars from the solar system =

4. 3 light years.

iN

me.

Ce

“4

is the radius of the Earth's orbit around the Sun =

1. 6 X 107° light year.

is the mass of the Earth.

is a radius of the Earth = 4000 miles.

is any value of the Earth's surface gravity.

This difference of 3 X 10719 gee would take 14.5 years to produce a one

foot displacement on a test body in the heliocentric inertial frame. Thus,

the center of the Sun is suitable as an origin for a highly accurate inertial

frame, if the mass of the Sun is increased by the mass of the planet

when computing the orbit of that planet.

The effects of very distant stars and galaxies may be important

in determining the inertia of bodies within the solar system, as dis-

cussed in Section 1. D.

The mass center of the Earth is also a convenient origin for an

inertial frame which is useful in the study of orbits of the Earth and

of lunar satellites and for the investigation of phenomena near the sur-

face of the Earth. An Earth-centered frame, non-rotating relative to

the distant galaxies, is an accurate inertial frame for most purposes

but, when necessary, the gravity gradients of the other objects in the

solar system can be included. The largest gradient is that caused by

the Moon, because of its proximity. The difference in gravity on both

sides of the Earth, caused by the gradient of the Moon's gravitational

field ia:



- 3 -1

_— RL =| qee
Ye Me \ [Ty

where Tam is the distance between the mass centers of the Earth and

Moon. 1077 gee can be neglected for applications to small devices on

the Earth but must be included, for example, when studying long-term

effects on the orbits of Earth satellites.

The mass center of an artificial satellite of the Earth is also a

suitable location for an inertial coordinate frame, if the axes are prop-

erly oriented so as to be non-rotating relative to the distant galaxies.

Because the gravitational attraction of an artificial satellite on a nearby

body is small compared to the gradients of the gravitational fields of

the Earth and Moon, a satellite-centered, inertial frame must ex-

plicitly include gradients.

i.D. MACH'S PRINCIPLE.

Suppose an experiment is performed in which a pail of water is

given different angular velocities relative to the Earth while observing

the surface of water in the pail. Except at the equator, it will be

found that a particular angular velocity of the pail relative to the Earth,

namely that in which the pail is non~rotating relative to the distant

galaxies, causes the water surface to be flat.

Newton maintained that absolute rotation could be detected by ob-

serving the plane of oscillation of a free pendulum or the surface of the



water in the pail. The modern observer might make the same claim

for a rate gyro. The absolute coordinate frame thus defined appears

not to rotate relative to the distant galaxies. Clemence (Ref. 162) be=~

lieves that the "kinematic" inertial space defined by the distant galaxies

does not rotate faster than 0.1 second of arc per century (3.2 X 10"11

deg. /hr.) relative to the "dynamic" inertial space defined by Newton's

laws. Nevertheless, the concept of an absolute space is repugnant

in an operational sense since only relative motions are detectable and

all experimental efforts to find an absolute inertial space (the ether,

for example) have failed.

The key to the paradox, that absolute space was theoretically nec-

essary but unmeasurable in practice, is the realization that if the sur-~

face of the water in the pail is curved when the pail rotates relative to

the fixed stars, sthat an interaction must exist between the water and

the stars. "(Newton's) simple assumption that the surface of the water

in the pail would be as curved even if it were rotating in free space, as

when rotating in space filled with starry matter, is not susceptible

of physical verification” (Ref. 180, p. | 106). It is only the relative

angular velocity between the pail of water, the pendulum or the rate

gyro and the stars that is relevant or observable. Hence a proper formu-

lation of mechanics should not involve an absolute inertial space but

should contain only the relative motion between the observer and the

fixed stars. Kinematically, only the relativemotion is observable so

dynamically, nothing else should be necessary. But Newton's formula-

tion gives preferred status to the inertial frame; only in that coordinate



frame is torque equal to the time rate of change of angular momentum.

Additional terms are required in arbitrarily rotating frames. Clearly

there must be a physical interaction between the fixed stars and local

matter which results in a Coriolis and centripetal force when there is

relative angular motion. This is the generalized form of Mach's

principle.

The plane of a swinging pendulum rotates relative to the Earth be-

cause the distant stars, rotating around the Earth, apply Coriolis and

centripetal forces to the pendulum. Thus, the assumption of an abso~

lute inertial space has been replaced by the assumption of a long-range

interaction between local matter and the distant stars. The latter

assumption is to many persons the less objectionable, especially if

direct experimental evidence of the long-range interaction should be

found.

Sciama, at the University of Cambridge, has been studying long-

range interactions which might yield the Coriolis and centripetal

forces (Refs. 201, 202 and 203). His "gravmagnetic" 1 interaction,

suggested by analogy to the electromagnetic forces, has also been sug-~

gested by Wheeler and other unified field theorists on other grounds.

Clearly, a covariant formulation of mechanics which does not pre-

suppose an absolute inertial space but uses : and A interactions

between mass particles may soon be a reality. ’

These same long-range interactions may also account for the in-

ertia of all bodies. When a body accelerates relative to the distant
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stars, a 7 interaction results which is proportional to acceleration and

which local observers may interpret as the inertial reaction. This -

classical form of Mach's principle is vital in modern cosmology since

it offers the exciting possibility that the structure of the distant universe

might be discerned by means of purely local measurements.

Ll. E. THE ORIENTATION OF AN INERTIAL COORDINATE FRAME.

Mach's principle asserts that inertia and inertial space are related

to interactions between local matter and the distant stars. The local

orientation of an inertial coordinate frame and the inertia of a local body

then depends on a large number of statistical interactions. A measure

of the angular stability of the inertial reference frame is the change in

spacing between the heavenly bodies. Many heavenly bodies appear to

have "proper motions" caused by:

i. relative motions between galaxies, motions of stars within

the Milky Way galaxy and orbital motions within multiple star

groups. The Milky Way galaxy rotates as a whole with an average

period of 200 X 10° years (Ref. 207) or at 2 X 10” 10 deg. /hr. but

since the Sun participates in this rotation, only the radial gradient

of tangential velocity is observable as "star=streaming." This re-

sults in an apparent parallax caused by the Sun's motion in the

Milky Wavy.

2. apparent parallax caused by the Earth's annual motion

around the sun.

 MD



The largest measured proper motion is 10. 3 seconds of arc per year

for Barnard's star. Typical maximum proper motions are one second

of arc per year (Ref. 156, p. 509). The measurement of proper

motion from photographic plates is complicated by the unknown motion

of those stars used as references. Galactic proper motions have not

yet been detected but are presently being sought (Ref. 163, pp. 2-64).

Thus, star motions are less than 0.1 second of arc per year =

3 X 1077 deg. /hr. and, as noted in Section 1.D., galactic motions do

not exceed 3 X 10” 1! deg. /hr. Thus, 1077 deg. /hr. is an upper bound

on the inherent error in the angular orientation of inertial space, mani~

fested by motion among the fixed stars.

It has thus far been implied that all inertial frames are relatively

non-rotating since each does not rotate relative to the same bulk of

fixed stars and galaxies. However, the theory of relativity appears to

inject a small qualification.

Measurements which are made between relatively accelerating orbi=-

tal bodies do not agree, though each presumably qualifies as an origin

for an operational inertial frame. In particular, the results of such

measurements can be "explained" by postulating that an observer in

each frame sees the other's inertial axes rotating relative to the fixed

stars at a rate:

o_%- 5. F

dt v2 IV, xf, |
where:

 Lr __ !
Ya = | = V&amp;/™

Vis the velocity of one body in an inertial frame cen-

tered at the other.



Lp is the acceleration of one body, in an inertial

frame centered at the other.

For a circular orbit:

3
dg _ Yo= | V.f ~Mf _ Vo
dt % °T 2d  2ac

This result was originally derived by Thomas {Ref. 237, pp. 162-3)to

explain the radiation from an electron accelerating around a nucleus.

As an illustration, consider observers on the Earth and Sun.

Each can establish a coordinate frame which he regards as non-rotating

relative to the fixed stars. But if the solar observer makes measure-

ments in the Earth coordinate frame or the Earth observer in the solar

frame, each believes the other's "inertial" frame to be rotating relative

to the fixed stars at a rate Lo. , for a circular orbit.

2r Cc

Each observer maintains‘that his own coordinate frame is indeed

inertial but that the other's is not. This situation, so typical in rela-

tivity, results because of the necessity of using light signals to com-=-

municate between frames.

For example, measurements of the precession of the apsides of the

Moon's orbit relative to the fixed stars will differ by this amount, as

observed bv heliocentric and Earth-centered observers.

The angular velocity of a terrestrial inertial coordinate frame rela-

tive to the fixed stars, as observed in solar coordinates. or vice=versa,

J (62009)’© 300 -lo
= = ————————| =| x10 deg.
dt 2(93 x18) 18¢3060x3600)"1.6~10 3-/ he



whereas between the Earth and an orbiting satellite:

25000)’ zdo _ _ -

dt = 2(2-2x1d 186200 52380)“ 6 x10 dey./hr

These magnitudes are considerably less than can be observed using

non-astronomic instrumentation. Indeed, when considering such low

angular rates, the definition of a meaningful experimenttomeasure

the relative angular velocity of such non-coincident coordinate frames

is not immediately obvious because the two observers cannot communi-

cate simultaneously.

10” deg. /hr. represents a lower limit to the accuracy of inertial

velocity measurements made between Earth satellites and the Earth.

Another limitation on the definition of angular velocity may result

from the quantization of angular momentum implied by wave mechanics.

On an atomic scale, angular momentum can occur only in integral

multiples of i. Even if this quantization also exists on a macroscopic

scale, it would not be readily detectable since the increments of nh are

so small, they appear continuous. For example, consider a gyroscope

whose inner gimbal has a moment of inertia of three gm. —crn® about its

output axis (one tenth that of a HIG -4 gyroscope). The angular velocity

of this gimbal can change in increments no smaller than:

-23

aw=40 =F 7x10 deg./hr
The servo loop on the output axis cannot null the angular velocity of the

gimbal to better than a multiple of 1022 deg. /hr., a dozen and a half

orders of magnitude from present performance levels. Section 1.7.

summarizes this section.

-



i. FF. TIME SCALES.

The universe might be described, at-any time, by giving the energy

states of all atoms and the positions and velocities of all particles in the

manner of Laplace's omniscient mathematician. Time is then a meas-

ure of the changes in these states; when the universe passes from one

condition to another it has aged. A totally new state, never experienced

before, is called the future. The probability of the universe repeating

a long sequence of states is so miniscule that we say time never repeats

itself.

To define time by means of a sequence of repetitive events is a

tautology. Repetition implies a prior definition of time since different

classes of repetitive events proceed at different rates and can be used

equally well to define different time scales. Some common time scales

measured by repetitive events are discussed below.

For civil affairs, a suitable time scale must be readily measured

and generally accepted. The rotation rate of the Earth commonly meas-

ures the civil day and the passage of the seasons, the civil year. Mean

solar time is discussed in Section 1. G.

For astronomic purposes, these are not necessarily adequate. The

primary use of time astronomically is to predict the relative positions

of the heavenly bodies. The equations which define these positions are

the Newtonian equations of dynamics, modified by relativistic correc-

tions as needed for a solar system observer. Except at enormously

hich velocities within the solar svstem. time "decouples" from the



three space dimensions in the same manner for all observers. Thus,

the independent variable in these equations is "gravitational" or

"ephemeris" time. Hence, if it is believed that the equations of motion

of a heavenly body, say the Earth, can be written quite completely,

then the position of that body in the heavens will measure Ephemeris

Time, by inverting the equations of motion. Indeed, the Ephemeris

Time scale was formally introduced into the American Ephemeris and

Nautical Almanac in 1960. Ephemeris Time is measurable to between

one part in 108 and one part in 1019, depending on the length of the in-

terval to be measured (Ref. 162, p. 8).

Atomic physics has introduced an important frequency scale. When

atoms are excited they absorb energy and later reradiate it, at discrete

frequencies. These frequencies can be reproduced to one part in 1010

or better thus defining a time interval scale but not a time-epoch scale.

The comparison between the ephemeris and atomic time scales over

periods of many years is now a major problem in physics. Since Milne's

cosmology (Ref. 192) makes use of two different fundamental time

scales, which are presently changing relative to each other at the rate

of one part in 10? per year (Ref. 164, p. 571), there is some specula-

tion that their physical counterparts are the atomic and Ephemeris Time

scales (for example, Ref. 166). If the comparison shows that the two

time scales proceed at different rates, interest will surely be intensi-

fied into the possibility that the gravitational constant, the velocity of

light and the ratio of inertial to gravitational mass may be functions of

annct



l.G. ASTRONOMIC TIME SCALES.

(f the Earth were a point mass circling a spherical Sun, in the

absence of other planets and satellites, the orbit would be a plane

ellipse, non-rotating in inertial space, as described in Appendix C..

The presence of the Moon and the other planets and the finite size of

the Earth (the ellipticity of the Sun is so small it has never been meas-

ured) cause the orbit elements to change measurably. For example,

the ephemeris (Ref. 156, pp. 490-91) gives the present rates of change

or some orbit elements as:

Les 47 sec. arc/century

Le = 54.77 sec. arc/century

whe 0.01 sec. time/century

4€=~0.0000418 century
The projection onto the celestial sphere of the Sun's apparent path

relative to the stars, as viewed from the Earth, is called the ecliptic.

A mean ecliptic is defined which precesses at a uniform rate relative

to the fixed stars. The Sun's apparent perturbations are always within

one half second of arc of the mean ecliptic (Ref. 163).

The spin axis of the Earth does not maintain a fixed inertial direc-

tion. A slow change in direction of the Earth's axis results from the

“gravitational gradient" torques exerted on the Earth by the Sun, the

Moon and the planets (Ref. 55). The motion of the spin axis has three

major components:

=



1. a gross non-uniform motion in a cone of half~angle 23° 27

whose axis is approximately perpendicular to the ecliptic. The

period is 25, 800 years.

2. an oscillation whose double-amplitude is eighteen seconds

of arc about the cone. The period is 18.6 years.

{ an irregular "planetary precession" at 0.1 second of:arc

per vear.

This complicated motion of the spin axis is regarded as being made up

of two parts. One is a uniform conical precession. The other is a small

irregular nutation about the mean precessing spin axis. The terminology

follows that used for the classical spinning top (Ref. 219, p. 159 £f.).

As the spin axis changes its orientation in space, the Earth's mantle

itself wobbles relative to the spin axis, as discussed in Appendix A.

This "migration of the pole" is independent of the inertial orientation

of the gpin. axis.

The precession and nutation of the Earth's spin axis in space

causes the celestial equator to precess and nutate. A mean celestial

equator is defined perpendicular to the mean precessing pole. The

equinox is defined as the intersection of the ecliptic and the celestial

equator. The direction along which the Sun crosses from the southern

to the northern celestial hemisphere is called the vernal equinox:

. the "true equinox" or "equinox of data" is the intersection

of the instantaneous ecliptic with the instantaneous celestial

equator.

&gt; the "mean equinox" is the intersection of the mean ecliptic

i



and the mean equator.

3. a "fixed equinox" is the position of the mean equinox at some

specified date, say midnight January 1, 1950 or 1960.

The various equinoxes have been used historically as origins for the

measurement of right ascension. The celestial equators have been

used as references for the measurement of declination.

A fixed equinox is truly an inertially non-rotating line. The mean

equinox is not; it precesses uniformly along the mean equator at a rate

of about fifty seconds of arc per year (1.6 X 107° deg. /hr. ). The dif-

ference in orientation between the mean and true equinox is the "nuta-

tion of the equinoxes," resolved into a nutation in right ascension and a

nutation in declination. The former measures the difference between

mean and true sidereal time.

The true and mean sidereal days are defined as the intervals between

successive transits of the true and mean vernal equinox over the astro-

nomic meridian. The true and mean sidereal days never differ in length

by more than 0.01 second of time (Ref. 188, p. 226). Sidereal time is

the fundamental time observation which the astronomer makes.

Mean solar time is theoretically defined in terms of the mathemati-

cally uniform motion of a fictitious mean Sun along the mean ecliptic.

Simplified tables are included in the national ephemerides to allow mean

solar time to be calculated from sidereal time.

Ephemeris Time is defined in terms of the motion of the Earth

20



around the Sun. Ephemeris Time differs from mean solar time by

virtue of the changes in the spin rate of the Earth and discrepancies

between the periods of the mean Sun and the actual Sun. Since the Moon

moves across the heavens ten times faster than the Sun, Ephemeris

Time is actually measured using the motion of the Moon, as discussed

in Section 1. H.

Mean solar time, as measured at Greenwich, is now known as

Universal Time. It was formerly known as Greenwich Mean Time in

England and as Greenwich Civil Time in the United States.

l.H. THE MEASUREMENT OF TIME.

Ephemeris Time is defined using the motion of the Earth in the

solar system and is measured using the position of the Moon, for con-~

venience. Brown's "Tables of the Motion of the Moon" (Ref. 160) predict

the Moon's position versus Ephemeris Time. The Markowitz Dual=-Rate

Moon Camera can photograph the Moon against a star background to

measure its position accurately. Brown's tables are entered with this

observed position to find the tabulated Ephemeris Time of observation.

In the words of the 1960 ephemeris, "...the measure of time is deter-

mined by the inverse relation expressing the time as a function of the

position, and this relation is the practical means of determining its

numerical value." (Ref. 156, p. 482.),

Mean sidereal time is defined by successive meridian transits of

J a



the mean vernal equinox. Sidereal time is the fundamental time of ob-

servation for astronomers. Mean solar time is found from sidereal

time using the equation of thé mean Sun in the ecliptic. The raw Uni-

versal Time (mean solar time at Greenwich) is designated UT. When

corrected for migration of the poles and for the seasonal variation in

spin rate of the Earth, it is designated UT, and rarely differs from

UT_ by more than 0.1 second (Ref. 188). uT, cannot be calculated ex-~

actly until some months after observation but an approximate UT, is

broadcast on radio and corrected by means of later published tables.

UT, is broadcast by NSS, operated by the United States Naval Observa-

tory, and by WWYV, operated by the National Bureau of Standards. The

American Practical Navigator (Ref. 4, p. 491) claims that NSS broad-

casts utr, to an accuracy of 0.01 second but that WWV is reliable only

for frequency.

Bv comparing UT, with Ephemeris Time, the non-seasonal com-=

ponent of the fluctuation in spin rate of the Earth is detectable, statisti=

cally. This fluctuation is generally not larger than one part in 10° per

day and one part in 10% over longer periods of time, as discussed in

Appendix A.

Between astronomic observations, time is kept by pendulum clocks.

quartz crystal clocks, atomic clocks or combinations thereof. The

Shortt Pendulum Clock was universally in use before World War II.

Its pendulum oscillates in a vacuum and receives impulses every thirty

seconds as it passes through the vertical position. The Shortt Clock is

discussed in detail bv Bomford (Ref. 87, pp. 232-233). It can maintain



an accuracy of 0.01 to 0.02 second for several days, according to that

reference.

Quartz clocks were introduced about 1944. They are thermo-

statically controlled quartz-crystal oscillators, discussed in detail by

Smith (Ref. 205). He gives their accuracy as one part in 16% per year

when oscillating at 1000, 000 cps, but notes that the crystal deteriorates

with age in several years. Observatories commonly use many (five

to twelve) such clocks whose crystals are differently aged and plot the

error curves for each clock from sidereal measurements.

Atomic clocks produce a constant frequency output equal to the fre=-

quency of one of the spectral lines reradiated after absorption of energy

by Cesium, Rubidium or Ammonia molecules. Microwave energy is

supplied to a tube of this material and the frequency servoed to that of

maximum absorption for one spectral line. The resonant frequency is

then used to control the frequency of a quartz clock. The bandwidth at

resonance is narrowed by reducing the density and temperature of the

confined gas. Lyons (Ref. 227) discusses atomic clocks in detail. The

Cesium clock is reputed to have an accuracy of one part in 1019 indefi~

nitely at present (Ref. 170). The absence of long term drift makes the

atomic clock ideal for relativity experiments, time~keeping, navigation

velocity measurements (Doppler shifts), etc.
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l.J. SUMMARY.

Included among the information required by the inertial navigator

are time and the inertial angular velocities of his instruments and

of the Earth.

Time interval, not time epoch, is implicit in the navigation process

since it is the independent variable of integration in the computer. Time

interval or frequency is also necessary in the power supply of a device

such as a gyro wheel. The ultimate accuracyofEphemerisTimeis at

least one part in 1919 as measured in astronomic observatories. How-

: 9 .

ever, for accuracies greater than a part in 10°, it may be necessary to

distinguish between atomic and Ephemeris Times. Since solid-state

properties of materials regulate the computer processes, the computer

operates on an atomic time scale. The inertial sensors must function

on a hybrid time base whose exact definition awaits the unification of me=

chanics and atomic physics. The inertial behavior of the sensors intro-

duces Ephemeris Time but material properties such as viscosity, which

balance the inertia forces, are derived atomically. For accuracies

greater than one part in 108, relativistic navigation equations are re=-

guired at orbital speeds.

; 2 ol

For accuracies poorer than one part in 10°, mean solar or mean

sidereal time can be substituted for Ephemeris Time and the spin rate

of the Earth assumed uniform. For accuracies less than one part in 10°

the distinction between true sidereal and mean sidereal time is not dis-

~ernible.

)



The measurement of the inertial angular velocity of the instrument

package is presently limited by imperfections in the sensors (gyro

drift) not by limitations on the nature of inertial space. However, it

appears that if inertial sensors improve to an accuracy of 1077 deg. /hr.,

relativistic effects may require a redefinition of the term "inertial

angular velocity." At 107 deg. /hr. the measurement of inertial space

by means of the fixed stars becomes suspect and at 10711 deg. /hr.,

it becomes useless.

Knowledge of the inertial angular velocity of the Earth is necessary

in order to transform inertial measurements into an Earth-bound co-

ordinate frame. The spin rate of the Earth is conventionally given as

the mean sidereal period, 86, 164.09 ephemeris seconds. Clearly this

is not the correct inertial period since sidereal days are measured be-

tween transits of the precessing mean equinox. The time between

transits of a fixed star, the inertial day, is 86, 164. 10 ephemeris seconds,

a difference of one part in 10” compared to the mean sidereal day. The

spin rate of the Earth can be considered constant to one part in 10°

The adjective "sidereal" is used in two different senses by astron-

omers. Sometimes, as in "sidereal year," it refers to rotation in inertial

space. Otherwise, as in "sidereal day, " it refers to rotation relative

to the equinox. This writer suggests that "sidereal" be replaced by "in-

ertial” or "equinoctial" when referring to inertial space or the equinoxes,

respectively.

Tne inertial precession of the Earth's spin axis and its migration

y=™



relative to the geographic polar axis cause the Earth-centered "inertially-

non-rotating” coordinate frame, x, to have an inertial angular velocity

perpendicular to the spin axis of about 360° X sin 231 per 25,800 years

or 6.4 X 10” 7 degree per hour. Hence, if the nutation is included, the

component of inertial angular velocity normal to the instantaneous spin

axis probably does not exceed 107° deg. /hr. Migration of the instan-

taneous pole relative to the geographic pole causes the Earth to have an

angular velocity of 5 X 107° deg. /hr. relative to Xs perpendicular to

the polar axis.

Figure 5-14 shows a tabular summary of this chapter.
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Chapter Two

THE SHAPE, ANGULAR VELOCITY

A NL GRAVITY FIELD OF A PLANET

2. A, INTRODUCTION,

A planet such as the Earth, is of interest to navigators as a base on

which to locate points of interest and as the source of gravity and

magnetic fields. Besides locating origins, destinations and check-

points, the navigator uses the planet's surface as a reference for the

measurement of velocity and direction.

The direction of the gravity field around the planet is of interest

since most instruments must be oriented in some known way relative

to the planet and the gravity field provides a convenient direction. In

particular, the inertial navigator must know the components of gravity

in his navigational coordinate frame so he can subtract them fram the

accelerometer outputs (see Chapter Four). But in order to relate the



accelerometer outputs to the accelerometer's position relative to the

planet, the navigator must know the angular velocities of inertial

space and of the planet with respect to the accelerometer platform,

Consequently, this chapter considers the size, shape, angular

velocity and gravity field of a planet in general. The Moon, Mars and

Venus are considered because they are likely to be the earliest ex -

plored. Jupiter is discussed as a typical major planet. All are re-

ferred to as the ''navigable planets' fort convenience. Chapter Three

is concerned entirely with geodesy, the science of locating points on

the surface of the Earth, and Chapters Four and Five apply this

information to navigation,

2.B. GRAVITY POTENTIAL AND GRAVITATIONAL POTENTIAL

OF A ROTATING MASS.

The Newtonian gravitational potential at the point (x,y,z) of a

collection of N masses, m; , located at the points (xe, Va 5 Zi

:

~ oe
J

J =N Ym: 1a (2-1)
” 2 [ox-x2)y +(y-%) +(2-2

where ¥ is the Newtonian constant of gravitation=6. 668%10° 2 dyns-crit J

_ (Ref. 154, pg. 282). V is a scalar function of position and de-
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fines a scalar field at each point in space. The gravitational force

acting on a point test mass, dmy, is:

dF, = dm, V Vv

where V is the vector gradient operator defined in Appendix D for those

coordinate frames of interest in this thesis. The gravitational force per

unit mass defines the vector gravitational field at each point in space,

in magnitude and direction.

Suppose a test mass is constrained not to move relative to a co-

ordinate frame whose origin is located at the center of mass of the N

particles and which is non-rotating in inertial space. Then if the only

forces which act on the test particle are the gravitational force, dmsG,

and the constraint force, dF, , the specific constraint force, f, 35

clearly is the negative of thefgravitational force:

dF. + dmg G = 0

d.% -.G
dm.

(2-2)

Hence the constraint force measures the gravitational field.

Suppose the collection of N masses rotates rigidly at a constant

angular velocity, Wp . Then a constraint force, f , is needed to hold

the test mass fixed in this rotating coordinate frame:

fo =-G +Wx(W xr)
= TV +Wx(@, xT)

(2-3)

where r is the instantaneous position vector locating the test mass.



Figure 2-1

THE SPHERICAL AND
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Figure 2-2

THE GEOID AND COGEOID OF A PLANET
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Since the curl of Wx (W), r) is zero, f, can be expressed as the

gradient of a scalar potential, U:

g =v U
U=1YV+v (2 4)

where V is the gravitational potential of Equation (2-1) and the

rotation potential, V', is: , ,
Oe S WP

(2-5)

in cylindrical coordinates. s is the distance from the axis of rotation

to the test mass. V' in spherical coordinates is:

2 2 2

A =e It cos L. (2 5)

where Lg is the geocentric latitude, Figure 2-1, and in confocal,

ellipsoidal coordinates:
2 2

Wie C 2 1
Vv! — e——2 cosh $ cos TM (2-7)

where c is the focal distance of the ellipsoid representing the geoid

of the planet. § and Y] are the elliptic and hyperbolic coordinates,

respectively, as defined in Appendix C.

Using the results of Appendix D.5., the rotation potential in

o2ographic coordinates is:

J We&gt;=(p+h5) co o* L
3 2 3)

here:

Liq

la

is the geographic latitude of the test mass,

is its height above the reference ellipsoid

To



Bs is the prime radius of curvature of the ellipsoid at a point

geographically below the test mass.

Thus, in a uniformly rotating coordinate’ frame, a position-de-

pendent potential, U, can be defined whose gradient at any point, P,

is the specific force necessary to hold a test mass fixed at P in the

rotating coordinate frame. Following Wrigley (Ref. 82, pg. 6) Uis

designated the ''gravity potential, If the test mass is moving relative

to the rotating coordinate frame, the constraint force cannot, in general,

be derived from a position-dependent potential and Coriolis’ Law must be

ised in its entirety.

Clearly, the constraint force can be regarded as the sum of two

components. One is equal and opposite to the gravitational attraction

hetween the collection of N particles and the test mass. The other

component provides sufficient centripetal acceleration to constrain the

test mass to a circular path in inertial space.

 J



2.C. THE SHAPE OF A ROTATING FLUID,

The study of the shape and gravity field of the planets logically be-

gins with an examination of the possible shapes that can be assumed by

a fluid rotating rigidly at constant speed relative to inertial space, in

hydrostatic equilibrium and held together by its own gravitation, This

problem was considered at the turn of the century by Poincaré (Ref. 138)

and later by Lamb (Ref, 226). The condition which such a bid must

satisfy is that three surfaces; the interface between the fluid and the

surrounding medium, a surface of constant pressure and an equipotential

surface of gravitation and rotation (constant U), must all coincide

(Ibid. , pg. 698).

The interface must be a surface of constant pressure since a fluid

in equilibrium cannot sustain shear. No matter what the shape” of the

surface or the internal density distribution, the center of volume of the

interface must coincide with the mass center of the rotating mass since

it is a bounding equipotential and contains all of the rotating mass

(Ref. 87, pg. 334).

Lamb shows that any mass of fluid which is non-rotating in inertial

space must assume the equilibrium form of a sphere, independent of its

internal density distribution (Ref. 226, pg. 699). As its inertial angu-

lar velocity increases from zero, the sphere elongates along its equator



Figure 2-3

THE MACLAURIN ELLIPSOIDS
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since the mass attraction is inadequate to supply the centripetal ac-

celeration required to hold a spherical form.

The elongated shape assumed by the fluid is not uniquely determined

by the inertial angular velocity, For a homogeneous fluid which is

rotating at a constant inertial angular velocity in hydrostatic equi-

librium, two families of possible shapes are of interest. One is a

family of ellipsoids of rotation called MacLaurin ellipsoids which are

symmetrical about the axis of rotation. The meridian eccentricity, €

which results from any angular velocity, Wp, is shown in Figure 2-3

in non-dimensional form. Appendix C derives the relation between

Wk |
 MiP and € but the graph is calculated from data in Reference 226,
2px
pg. 702. For any angular velocity, two ellipsoidal surfaces are possi-

ble but only one is stable (solid line). Clearly, for speeds above
2

= 0.1868, the MacLaurin family is not stable and the fluid assumes

an elongated, non-ellipsoidal shape. For any lower speeds:

c

a &lt; Xr &lt; 0.1%C3

the fluid can assume an oblate ellipsoidal shape whose meridian eccen-

tricity decreases to zero as the angular velocity of the fluid tends to

Zeer OD.

A second family of shapes that can be assumed by a homogeneous

rotating fluid are the triaxial ellipsoids of Jacobi, Figure 2-4 shows



Figure 2-4

POSSIBLE ELLIPSOIDAL SHAPES

OF A HOMOGENEOUS ROTATING FLUID
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the ratios of the two equatorial principal axes of these ellipsoids to

the length of the polar axis, with W, as a parameter (Refs. 138, pg.

163 and 226 pg. 705). The 45° straight line locus from W = 0

to 2 0.1868 represents the MaclLaurin family. The hyperbola-

like locus is the Jacobi family. As the angular velocity of the fluid

increases from zero, the shape of the fluid progresses from that of a

sphere through either the family of MacLaurin ellipsoids or the Jacobi

ellipsoids and then to elongated but non-ellipsoidal forms which finally
Z

Wie |break up when —— =
P 2wpY 2

LS

Figure 2-5 shows the ratio Ae for the navigable planets. Since
S O1

each is € 0.1868, any of these planets can assume the shape of a

stable MacLaurin ellipsoid based on the accepted value of its average

density. The shapes of planets, as distinguished from those of ideal

fluids, are discussed in Section 2. E.

2. D. THE GEOID AND COGEOID.,

The shape of the Earth has been extensively studied. Simple ob-

servation indicates that the surface of the Earth is not ellipsoidal.

The surface features vary 50,000 feet from mountain top to ocean

depth and are a very complex surface for mapping or navigation.

y -



Figure 2-5

ANGULAR VELOCITY CHARACTERISTICS

OF THE NAVIGABLE PLANETS
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The surfaces of constant gravity potential, U, of the Earth, includ-

ing Newtonian gravitation and rotation, are called geops. These are

much smoother than the actual surface, undulating only about 200

meters (Ref. 122, pg. 151). The smoothness of the geops compared

to the surface leads to the conclusion that large mass excesses on the

surface of the Earth, which should cause a larger rise in the geops

than is noted, are compensated by mass deficiencies below the surface

This is the theory of isostasy (Ref. 121, pg. 172 ff,) which postulates

that about 30 to 100 kilometers below the surface, the pressure of the

overlying rock is uniform, averaged over areas of several square

miles and that the material above floats hydrostatically.

Over the oceans, the geops are generally parallel to the mean water

surface, undulating slightly near such ocean features as trenches,

islands and continental shelves. They rise slightly under mountains

(but only about 100 meters under a 20,000 foot mountain) whereas in

valleys, the valley floor dips below them. The geops are affected

somewhat by the passage of the Sun and Moon overhead since these

heavenly bodies change the gravitational potential slightly,

Figure 2-6 shows a point, P, fixed to the surface of the Earth.

Suppose P and the mass centers of the Earth and Moon are in line, as

shown. Then the magnitude of the downward force on P is approxi-

~



Figure 2-6
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mg and m,, are the masses of theEarthand Moon. ry is the distance

of the Moon from the Earth and re is the radius of the Earth.

An observer in Earth-centered coordinates can derive this grav-

itational field from a scalar potential, Vj:
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When the Moon moves from the +x to the -x axis, Vp changes by:
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In order to restore the potential to its constant value, the point, P,

must move an amount Ar. relative to the Earth:
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The change in height of the geop caused by the Sun is:
-6

mg = 3.3%10 m_

r. = 4000 miles

8
r = 10 miles

-4
Ar, = 10 foot

The change in height of the geop caused by the Moon is:

m,, = mg /82

Tw ~ 240,000 miles

AT. = 0.23 foot

Hence the maximum displacement of any geop near the Earth's surface

caused by the motions of the heavenly bodies is a three inch diurnal

rise and fall, This is negligible compared to the one meter present

accuracy in the measurement of the geoid. It sets a lower bound on the

accuracy of a levelling survey (Section 3.D.).

Similarly, a change in the Earth's spin rate of one part in 10° will

cause a change in the elevation of the geons at the equator of An} where:

q=G-Werl,
= 99 aN3 he = OMe“3% Too

AN

T
AW: oo WelleAle———=0.007ft,

; GQ + We Ne (J. 0)



which is insignificant, Even at twice the radius of the Earth, the

change in the gravity field that results from small changes in the

Earth's spin rate is insignificant.

The geop coinciding with mean sea level is singled out as the

'"'geoid.' The relation between the actual sea level at various points

on the Earth and the geoid is exceedingly difficult to measure, A

purely stagnant ocean should coincide with the geoid. However, wave

action, the tides propelled around the Earth each day by the Sun and

Moon and the presence of winds and currents all cause the sea level to

depart from the geoid. Stommel (Ref. 144) estimates the variation

caused by winds and Coriolis-driven currents to be #* 4 feet and

geodetic surveys have confirmed this (Section 3, D.).

The geops lie beneath the surface of the Earth in places and thus are

not bounding equipotentials of the mass of the Earth. Hence the centers

of volume of those geops which are not entirely external to the surface

need not coincide with the mass center of the Earth (Ref. 87, pg. 334),

Bomford (Ibid., pg. 336) estimates a discrepancy of only one meter

between the center of volume of the geoid and the mass center of the

Earth. Since navigation beneath the surface of the Earth is of little

present interest (the case of a submarine which travels outside the

rocky surface of the Earth but beneath substantial amounts of water is

considered separately) , only those geops external to the Earth are

considered. g =w U is normal to the ceops bv definition.



It is clear that the knowledge of the direction of gravity determines

a lower limit of accuracy for navigation. Section 2.F, shows that it

is convenient to define the direction of the actual gravity vector, 2,

at a point by specifying the direction of a reference gravity field, g'

at that point and the "deflection of the vertical," S., which is the vector

angle from g'to g. The selection of a reference direction at any

point is discussed in Section 2. F. Thus, a complete knowledge of g

requires the definition of a reference vector gravity field and the

measurement of the vector deflection of the vertical throughout space.

Clearly this is impractical but a compromise between measuring the actua

field fully and relying exclusively on the reference field can be effected.

The compromise involves the definition of the cogeops, each of which

is a bounding equipotential of a fictitious Earth and is obtained by re-

moving the mass outside the geoid according to a prearranged scheme.

Consider a geop, say the geoid. Figure 2-2 shows the surface of

the Earth, the geoid and an ellipsoid of rotation used as a reference

surface (Section 3.G.). The cross-hatched area protrudes from the

geoid. To obtain the cogeoid, this external material is removed and

the new equipotential is computed. The removal of mass depresses

the equipotential slightly, exposing more mass outside the new equi-

potential. This too is removed. This removal is repeated until the

equipotential approaches a limiting surface called the "cogeoid"

which contains all the remaining mass of the Earth (Ref. 87, pg.339).



The mass of the atmosphere is ignored since near the surface of the

FEarth, the atmosphere reduces gravity by only one part in 10°

(Ref. 104, pg. 60).

This same process process can be repeated with each geop to get

a corresponding cogeop at the same potential. Clearly, in removing

mass outside the geoid, the mass of the Earth has been reduced

slightly. This is unimportant for navigation since it merely changes

the magnitude of gravity but not its direction. However, if the

mass center of the total mass removed is not at the mass center of

the Earth, the new mass center of the fictitious Earth will be displaced

as much as 600 meters (Ref. 87, pg. 335) from that of the actual

Earth. Thus, the compensation schemes for det~rmining the mass

removal must insure that the mass center of the Earth is not displaced

and must assume some density distribution in the removed material

to enable the separation of the geoid to the cogeoid to be computed.

Many compensation schemes exist such as the Bowie, Airy, Hayford

and Pratt compensations (Refs. 87, pgs. 338-363; 104, pgs. 148-183).

The cogeops are clearly not unique but depend on the compensation

scheme used. Those geops which lie entirely outside the surface of

the Earth coincide with the cogeops at the same potential.

The cogeops and cogeoid are important because they are bounding

aquipotentials of the contained mass. Thus. their centers of volume



lie at the mass center of the Earth, if they are correctly compensated.

Because of this, the theorems of Stokes and Vening-Meinesz can be

used to find their shapes relative to an assumed reference surface,

purely from gravity measurements. Such a procedure is called a

"gravimetric survey" and is discussed in Section 3.J.2. From these

same gravity measurements, the absolute deflection of the vertical

can be calculated relative to some assumed reference surface, whose

origin is at the mass center of the Earth. Such deflections of the

vertical are especially valuable since they cannot be found by astro-

geodetic methods.

The shape of the geoid of another planet cannot be evaluated until

extensive gravimetric and astrogeodetic surveys have been initiated.

Hence, for the use of early visitors to the planets, such niceties as

the difference between the geoid, cogeoid and reference surface must

be ignored and all reference be made to a combined reference surface

and provisional geoid established by indirect methods as in Section 2. E,

Accurate values of surface gravity, size and shape must await a land-

ing followed by gravimetric and astrogeodetic surveys. The early

vehicles are advised to be self-adaptive to small changes in gravity

and the reference coordinate frame.

i



2. E, THE SHAPES AND ANGULAR VELOCITIES OF THE PLANETS.

The first visits to other planets, whether by manned or automatic

vehicles, will be conducted in appalling ignorance of the size, shape

and gravity fields of the planets, as noted in Section 2. D. Hence,

early astronauts must have advance estimates available of the gravity

field and of the size and shape of the planet before arrival, This

section will discuss suitable reference surfaces for the navigable

planets and the inertial angular velocities which these reference sur

faces must have.

Figure 2-5 shows the ratio JAI for the navigable planets. Since
e

each is 0.1868, any of these planets can assume the shape of a Mac-

Laurin ellipsoid based on the accepted value of its average density, as

discussed in Section 2, C. The assumptions that lead to an ellipsoidal

form are:

IL. The body is homogeneous.

2. The body cannot sustain inertial shear (it is in internal

2quilibrium) or tension.

3. The body rotates rigidly,

4. The rigidly rotating body turns at constant angular velocity

in inertial space.

These assumptions are considered one at a time insofar as they

pertain to a planet.



i. The planets cannot be homogeneous since the weight of the

overlying material must cause enormous internal pressures which

would result in the segregation of material by density and in an in-

crease in density because of compression and change of crystal phase.

At least three density discontinuities are known within the Earth

(Ref. 104, pgs. 6-13) including the now famous Mohorovicic discontinuity

through which the '"Mohole' is to be drilled (Ref. 85).

Density inhomogenieties can be especially prominent in planets

such as Jupiter and Saturn which have gaseous and liquid outer layers

of unknown depth. Jeffreys, Message and others (Refs. 119; 120; 128)

at the University of Cambridge in England are deduc ing the density

distributions within the planets on the basis of observations of the plan-

et's satellites. This interesting geophysical study is possible since,

as shown in Appendix F, the orbit of a satellite precesses at a rate

determined by constants in the spherical harmonic expansion of the

gravitational potential. In turn, these constants are functions of the

density distribution. within the planet (Ibid. also Refs. 121, pgs. 145-

162 and 133 ff,). Hence, by observing the motion of a planet's satellites

the density distribution within the planet may be inferred. Jeffreys

(Ref. 121, pegs. 157 ff.) states that Venus, the Earth and Mars have

cores whereas the Moon does not.

The assumption of fluid equilibrium is resonable for the planets



since they probably originated as hot, fluid masses which later cooled

to their present temperatures (Ref. 121, pgs. 283-284). However,

even if the planets condensed from cold dust (Ibid. and Ref, 200,

pg. 133), they have been rotating about their present spin axes long

enough to be in hydrostatic equilibrium unless large internal stresses

can be sustained without flow.

Recent studies by O'Keefe (Ref. 135) of artificial Earth satellite

orbits show that the equipotential surfaces of the Earth are not sym-

metric about the equatorial plane but in fact are slightly pear-shaped

(that is, the potential contains odd spherical harmonics of third order

and higher, Section 2, F.5.). This result is of enormous interest to

geophysicists since it indicates the existence of stresses within the

Earth. Though Brenner et al, (Ref. 90) have disputed the existence

of odd harmonics, O'Keefe's results apprear substantially correct.

3. Rigid rotation is an excellent mathematical model for the rocky

planets such as the Moon, Venus, Mars and the Earth but is less pre-

cise for Jupiter and the other major planets. In the former group of

planets, the mantle rotates slowly relative to the core (0.22°/yr. in

the case of the Earth, according to Reference 104, pg. 28). Further-

more, the core itself is probably not rigid, In the case of Jupiter,

which has fluid outer shells, the angular velocity is a function of radius

and latitude. The 1960 Nautical Almanac (Ref. 156, pg. 422) gives the



period in the equatorial belt as 9"50™303 003 (System I) and in temper-

ate latitudes as 9h55™40S 632 (System II), a difference of 0.8%.

It might also be expected that the amplitude of the polar migration

for a highly spherical planet such as Venus may be considerably larger

than for the Earth.

nN

Though the angular velocity of Mars (and perhaps of Jupiter)

appears to be known almost as accurately as that of the Earth, the

author knows of no data concerning spin rate fluctuations or polar

migration of any planets other than the Earth,

However, in spite of the fact that the assumptions of page 4} are not

fully justified, an oblate ellipsoid of rotation should be suitable as an

analytic surface on which any of these planets can be mapped. In par-

ticular, the Earth is conventionally mapped onto such an ellipsoid whose

dimensions are discussed in Section 3. G. There is some evidence that

those equipotential surfaces of gravitation and rotation (the surfaces of

constant U) which lie near the surface of the Earth resemble the tri-

axial ellipsoids of Jacobi more than the symmetric ellipsoids of Mac-

Laurin,” The principal diameters of such a triaxial ellipsoid appear to

lie in the equatorial plane and differ by 150 meters (Ref. 200, pg. 120).

200 meters (Ref. 87, pg. 386) or 212 meters (Ref. 104, pg. 80)

depending on whose inconclusive evidence is used... The fact that the

= 0



surfaces of constant U may resemble slightly triaxial ellipsoids or

slighly pear-shaped figures is of little concern to navigators in the

selection of a reference surface. It is evident that if pear-shapedness

and triaxiality are small, an ellipsoid of rotation will be a more con-

venient surface than either a triaxial ellipsoid or pear-shaped figure,

even if the latter are more nearly correct representations of the outer

equipotential surfaces.

The size and shape of a reference surface to represent the Earth is

obtained from careful gravimetric and astrogeodetic survey data

(Chapter Three) but for a planet, this is presently impossible. Only a

limited number of indirect methods is available:

The distance to the Moon is known to 0.1 km. (one part in 10° )

from radar measurements (Ref. 208, pg. 70) while the distances to the

other navigable planets are known to one part in 10° A, U. (Ref. 156,

tables of each planet). However, since the A, U. is known only to one

part in 10° or 10° (Ref. 197, pg. 696), the distance in terms of accel-

erometer or Doppler radar calibrations in a navigation system is only

4known to one part in 103 or 10

Hence by measuring the size of the planet's disc on a photographic

plate, the linear diameter of the planet is found to an accuracy of 0.3%

for Mars and 1% for Jupiter. (Ref. 197, pg. 709), Figure 2-8. The

aY



Figure 2-3

KINEMATIC PROPERTIES OF THE PLANETS
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sizes of Mercury and the outermost planets are known much less ac-

curately but are of no interest here, Figure 2-8 shows the geometric

eccentricities of the planets observed by measuring the image of the

planet in a telescope.

2, As discussed in Appendix F, observations of a planet's satellites

determine the constants in the spherical harmonic expansion of the

gravitational potential, MacCullagh's Theorem (Section 2. F. 5.) shows

that 4, , the coefficient of the second harmonic, is:

where: I-
-

T - I.-1I
z m_a”

2 -11)

and I. are the polar and equatorial moments of

the planet.

a is the mass of the planet.

is its semi-major axis

The flattening or eccentricity can be calculated from J, if a density

distribution is assumed. The eccentricity calculated this way is called

the '""dvnamic eccentricity," Figure 2-8.

Based on presently available information, the size and eccentricity

of ellipsoids of rotation which are suitable as reference surfaces for

the planets are shown in Figure 2-8. The selection of a reference sur-

face for the Earth is discussed in detail in Section 3. G.
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The Earth, Mars and Jupiter spin far more rapidly than they re-

volve around the Sun. However, the Moon, and probably Venus, rotate

in inertial space at their orbital rates, probably because of tides which

acted on them before they solidified (Ref. 121, Chap. 8). These tides

cause the primary's and secondary's spin rates to decrease and cause

the orbit rate to accelerate until first the secondary rotates at orbit

rate and finally the primary does too. Presently, though these planets

are relatively solid, the body tides are strong enough to maintain equal-

ity between the orbit and spin rates of the secondary.

The spin rates of Mars and Jupiter probably fluctuate no more than

that of the Earth. The most rapid secular fluctuation would occur for

Venus, if its spin rate were not yet equal to its orbit rate (Ref. 195,

pg. 262). Though Venus would then slow down twice as rapidly as does

the Earth (Ibid.), its day would lengthen only 0.003 second/century.

Figure 2-8 shows the author's compilation of information concerning

the spin rates of the navigable planets. Sidereal rates refer to rotation

relative to the planet's mean vernal equinox (which precesses in inertial

space) whereas inertial rates are relative to inertial space.

The Moon and probably Venus have had their spin rates slowed to

their orbit rates. Venus period is something between 23 hours (Ref.

169, pgs. 8-10) and its orbital period, 224.7 mean solar days (Ref, 208,

5g. | 1 RB



The inertial spin rate of the Moon remains very nearly constant

except for gravitational gradient effects. Figure 2-7 shows the Moon

orbiting the Earth in an exaggerated plane elliptic orbit. The 65

angle between the axis of rotation of the Moon and the normal to the

Moon's orbit is assumed to be zero. (@#t)is the angle between the radius

vector connecting the centers of the Earth and Moon and the smallest

principal axis of inertia of the Moon, Because of the gradient of the

Earth's gravitational field at the Moon, the Earth exerts a torque on

the Moon of magnitude (Refs. 55 and 121, pg. 252).

Gu Sin2d+¥) +.

where:

G, = {fm
[™

Cy is the Moon's principal moment of inertia about the

spin axis (maximum moment of inertia)

“ is the Moon's moment of inertia about the principal

axis pointed toward the Earth (minimum I)

lo is the intermediate principal moment of inertia of the

Moon.

CA is the distance between the macs centers of the Earth

and Moon.

This small torque causes small variations in the inertial angular vel-

ocity of the Moon, If Y is the angle between the Moon and a uniformly

rotating reference grid. in the plane of the orbit:

3
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which is a second order "gravitational pendulum'' oscillation whose

natural frequency, Wy , is:

OF =n (Lh =p rds gy,Te ( I, ) 2. 1, Worerr (2-12)

Observations show that (Ref, 121, pg. 252}:

Ih = 0.0002

so the natural period is fifty months, Thus the Moon's inertial spin

rate has a superimposed fluctuation whose period is fifty months and

whose amplitude is not observable but is variously estimated as

+ 2x10 radian (Ibid.) and +1 foot at the surface of the Moon (Ref.

200, pg. 169) = +1.74%10 radian. On this basis, the extreme

instantaneous Moon rate fluctuates 4 x 16] orbit rate. Hence even

including random fluctuations in rate such as occur on the Earth, the

Moon's angular velocity is likely to be constant within one part in 10"

DY netter.,

The librations of the Moon are not caused by variations in the Moon's

inertial spin rate. These librations are an apparent oscillation of the

Moon with respect to a line of sight from the Earth's surface. They

result because:

The changing angle, ¢ in Figure 2-7 allows the Earth observ-



er to see more than half the Moon.

2. The 63 ° angle between the Moon's spin axis and orbit axis allows

the Earth observer to see "over the north pole'' and "under the south

pole.

2 The varying inclination of the Moon's orbit to the ecliptic allows

the Earth observer to see more than half the Moon.

1 The diurnal parallax, which causes an Earth observer to move

8000 miles per day perpendicularly to the line of sight to the Moon,

permits the Earth observer to see around both sides of the Moon.

These librations permit the Earth observer to see 59% of the Moon's

surface (Ref. 158, pg. 134).

As noted in Appendix A, the writer knows of no published informatipn

relating to the migration of the pole of the other planets, Figure 2-8

summarizes the selection of reference surfaces for the planets and of

the inertial angular velocities which these surfaces must have. The

specification of the gravity and gravitational field of a planet, in

particular, the Earth, is discussed in Section 2. F.

~



2, F. THE GRAVITY AND GRAVITATIONAL FIELD OF THE EARTH.

A
ay Fa _"LY ‘¢ODUI TION.

The gravitational field around a planet is always of interest to a

navigator but is of special interest to the inertial navigator since the

accuracy with which he can determine position depends directly on how

well he can subtract gravitation from his accelerometer outputs.

However, the actual gravitational field around a planet is not thorough-

ly predictable because of density inhomogenieties within the planet.

Hence it is proposed that the navigator establish a reference gravity or

gravitational field which is a simple function of position outside the

planet and which closely approximates the actual field. The navigator

normally uses the reference field in place of the unpredictable actual

field, accepting any difference between them as an irremovable error.

If large local discrepancies exist and are predictable, they can be in-

cluded in the gravity calculation.

This section considers the establishment of reference gravity and

gravitational fields, in a variety of coordinate frames, in the space

surrounding a planet.

Near the Earth, the reference field is defined in such a manner as

ro correspond closely to the usual definition of gravity, g =% U.

-
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Density irregularities in the Earth cause the actual surfaces of con-

stant U to be "bumpy" but the reference U surfaces must be smooth-

ed for convenience of computation.

At larger distances, when g can no longer be taken normal to the

reference ellipsoid, the gravitational field, G = V , 1s more useful.

This is especially clear in Figure 2-9 which shows contours of con-

stant U and V. At large distances from the planet, the constraint

force,-g, acting on a test mass which is fixed with respect to the

planet, is nearly perpendicular to the axis of rotation, in a direction

bearing little relation to the navigation problem.

The rotation potential, V', is discussed in Section 2.B., and ex-

pressed in several coordinate frames of interest. Thus, only the

Newtonian gravitational potential of a mass having the shape and

density distribution which the planet assumes under rotation need be

investigated in more detail.

At very large distances from the planet, its potential becomes

measurably disturbed by the presence of other heavenly bodies. Hence

if G or g is to be predicted, an ephemeris of these heavenly bodies

is required. Section 2.F.2. discisses this problem in more detail.
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2.F.2, PERTURBATION OF A PLANET'S GRAVITATIONAL

FIELD BY HEAVENLY BODIES.

The gravitational potential, V, at any point, P, is the sum of the

potentials of all the masses in the universe. But a planet is not an

isolated mass in empty space; the Sun, other planets and satellites

come near it and affectits gravitational field. Section 2. E, shows that

the maximum variation in the vertical component of gravitation near

the surface of the Earth caused by motions of the heavenly bodies is

two parts in 107 in magnitude and 0.026 seconds of arc in angle

(Ref. 104, pgs. 119-120). The change in gravitation caused by removal

of the Earth's atmosphere would be one part in 10° (Ibid. , pg. 60).

[f a vehicle navigates at a distance, rp , from the mass center of

a planet of mass, my, then nearby heavenly bodies perturb the geo-

centric horizontal component of gravitation which acts on the vehicle.

If the vehicle navigates in planetocentric coordinates, an observer on

° ° * ° ° Y Mp

the planet detects a gravitational force on the vehicle which is T=
D

plus a force equal to the vector difference between the heavenly body's

attraction on the mass centers of the planet and vehicle. The horizontal

-6
component of this perturbing acceleration does not reach 10 gee for a

vehicle near the Earth, unless it is more than half way to the Moon.

©
Hence, within about one part in 10 and 0.05 seconds of arc, the

3



gravity or gravitational field near the surface of the Earth is a vector

function of position only and does not depend on time, as it would at

large distances where an ephemeris of the heavenly bodies would be

needed to find the local gravitational potential. Also to this accuracy

yA
the mass of the atmosphere is negligible and VV V = 0 everywhere

outside the Earth's surface. Thus, the derivations of Section 2. B.

concerning the potential function of an isolated mass are applicable

near the surface of the Earth and analagously, near the surfaces of

the other planets

-} +,3., THE GEODETIC MEASUREMENT OF GRAVITY.

A gravity survey at a sequence of fixed points on a planet measures

g =v U. Gravity surveys have been made on the surface of the Earth

by the government geologic and geodetic surveys, the oil companies

and by university and military groups. Since the gravity force is the

ne g ative of the constraint force needed to hold a test mass fixed

relative to the rotating planet, it can be measured directly only where

such a constraint force is readily applied; namely on the solid surface

»f the planet.

The conventional unit of measuring gravity is the gal = one cm./

= -~ id - At a fixed station on the Earth, the absolute value of 2



can be found to about one milligal (Ref. 92) after several hours of

timing a pendulum. Gravity differences between stations are usually

measured to 0.1 milligal (Ref. 104, PE. 156) but can be measured to

-9
one microgal (10 gee) using Earth tide meters (Ibid., pg. 120), When

measurements are made to 0.1 milligal or less, the effect of the pas-

sage of the Moon overhead must be included.

I'he classical definition of the deflection of the vertical is the angle

between g and the normal to the r~ference ellipsoid at the observing

point. At fixed points on the Earth, the deflection of the vertical can be

measured to better than 0.3 second of arc astrogeodetically and to three

seconds of arc or worse gravimetrically (Chapter Three).

In a vehicle moving with respect to the Earth, gravity must be in-

ferred from the reading of a vertical accelerometer or its equivalent.

An observer on the vehicle measures the "vertical" component (assum-

ing he can both define and locate a suitable vertical) of the vehicle's

inertial acceleration minus gravitation, This accelerometer measures

a sum of gravity, acceleration relative to the Earth and Coriolis

corrections caused by the rotation of the Earth, The Vening-Meinesz

submarine gravimeter can read gravity to five milligals (Ref. 104,

pgs. 117-118), after a half-hour reading interval. Very recently,

successful airborne measurements of gravity have been made to a

claimed accuracy of ten milligals, averaged over thirty to sixty mile
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distances (Refs. 131 and 148), Such results are not sufficiently ac-

curate for geophysical prospecting but may be suitable for gravimetric

surveys. Section 5,F.3. discusses the measurement of gravity fram

a moving vehicle in more detail.

Deflections of the vertical are not directly measurable from a mov-

ing vehicle. The required astrogeodetic angles cannot be measured

accurately enough or rapidly enough from a moving vehicle nor can

geodetic position on the reference ellipsoid be found sufficiently ac-

curately., However, if detailed measurements of gravity are available

over the entire Earth, the deflections of the vertical may be calculated

averywhere (Section 3.J.2.]J.

The measurement of gravitation outside the atmosphere can be made

to some extent by observing the orbits of Earth satellites. As explained

in Appendix F, observations of the perturbations of the orbit permit the

observer to determine the relative weight of each harmonic in the po-

tential expansion. The scale of the potential must be determined by

means of ground measurements.

The older method of computing gravitation above the Earth is dis-

cussed by Jeffreys (Ref. 121, pgs. 135-138} and outlined in Section

2. F.5. In this method, V is inferred from measurements of gravity

&gt;n the Earth.

NA



2. F.4. ANOMALIES AND THE DEFLECTION OF THE VERTICAL,

A map of the actual G or ‘g field is technologically not feasible.

Instead, reference g and G fieldsare defined in the space around the

planets which are as nearly identical as possible to the actual fields,

yet are simply expressed. Hence, four fields can be defined at each

point in space:

Actual and reference gravitation, G and G', respectively.

Actual and reference gravity, g and g', respectively.

The following definitions will be adopted.

The gravitational anomaly at any point is:

5G = |G] -|&amp; (2-13)

and the graviiy anomaly is:

6g =|2] -|e'| (2-14)

T'he gravitational deflection of the vertical is the vector angle from G'

Foy ~
= A

§,=G'x G 12 -15})

and the gravity deflection of the vertical is:

5. = g8'x&amp; (2-1 5)

In conventional geodesy, the reference direction of the vertical used

to define the gravity deflection of the vertical is the normal to the local

reference ellipsoid but for navigation purposes, the reference direction

must sometimes be a function of altitude. The gravity deflection of the



vertical is commonly resloved into two components, The magnitude

of the north component, called the 'prime deflection of the vertical,"

measures the west deflection of g from the meridian plane. The

magnitude of the east component, called the "meridian deflection of the

vertical,'" measures the north deflection of g§ from the normal to the

reference ellipsoid.

If the actual fields were well-enough known, the reference fields

could be defined in such a way as to minimize the mean square anoma-

ly, mean square deflection or some other error parameter, subject to

suitable constraints on the reference field to make it smoother than the

actual field, The definition of a reference field in this manner is cur-

rently a major problem in geodesy (Refs. 98, 104 and 123 for exam ple).

Insufficient information is currently available to carry out this procedure

so the reference fields are established on theoretical grounds subject

to general confirmation by measurement.

Clearly, the anomalies and deflections of the vertical are dependent

as much on the definition of the reference field as on the measurement

of the actual field.

The behavior of the deflection of the vertical with respect to some

reference field at appreciable heights above the reference ellipsoid

has not been measured. However a crude estimate can be made as

re

"1™



follows:

If an anomalous mass were embedded near the surface of the Earth,

its gravitational field would fall with the square of the distance from it

but the deflection of the vertical would fall as the cube of the distance.

However, if the anomalous mass consists of a mass deficiency

"floating'' vertically above a mass excess, the gravitational field would

fall as the cube of altitude above the dipole and 6,, would fall roughly

as the fourth power of altitude at large distances. Near the anomalous

dipole mass, the deflection increases from zero at the dipole to a maxi-

mum at some altitude and then falls with the fourth power of altitude.

If the anomalous mass or dipole is eighty kilometers below the sur

face of the Earth (Ref. 87, pg. 308), then at an altitude of forty kilo-

meters, the deflection of the vertical is reduced between:

0 3
(25) = 0.30

4
80 \ _

(=o) = 0,20

Til

of its value at the surface. Hence the deflection of the vertical might

be expected to fall to se of its surface value at an altitude of 25 miles.

Because of the small angles involved, this is true of either the gravity

or gravitational anomaly when compared to any reference direction

which is approximately radial.
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This writer knows of no information concerning precise esti-

mates of the geographic horizontal component of gravity at alti-

tudes of tens of miles above the Earth,

These data concerning anomalies and deflections of the vertical

are used in Chapter Five. Typical deflections of the vertical and

magnitude anomalies are shown in Figure 2-10

Figure 2-10
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2. F.5, ANALYTIC EXPRESSIONS FOR GRAVITATION.

At very large distances from a distributed mass such as a planet,

the gravitational potential is independent of the shape and density dis-

tribution within the planet since it appears to be a point mass. Hence

the simplest approximation is:

&gt; Ymp
IgA

(2-17)

where r is the distance of the test mass from the mass center of the

planet.

For closer distances or higher accuracies, a second order approxi-

mation is used called '"MacCullagh's Theorem, ' which expresses the

potential at a distance point, P, in terms of certain moments of

inertia of the planet(Ref. 236, pgs. 340 ff,):

YMe T,+1,+1,-3V = 1 + ==n’ m,n =) 2-18)

where:

[,. I. and Ia are moments of inertia of the planet

about any three orthogonal axes through its mass

center. OO.

[op is the moment of inertia of the planet about

the line.’ oP

If the planet is symmetric about an axis of figure but has otherwise

rn



arbitrary density distribution and shape:
2 £

lap = Ig sin Li. + I;cos Lg

xXhe - oD
andl

is the moment of inertia about the principal

axis of symmetry = I;

is the traneverse principal moments of

inertia = I, = T,

Then:
V = ey rdidep, (sin L¢)] 2-19)

E, (x) is the Legendre polynomial of second degree.

For still higher accuracy or closer distance, the MacCullagh form-

ula is not adequate to approximate the actual field near the planet. The

potential of the purely radial field is disturbed both by the grossly non-

spherical distribution of the planet's mass and by the local surface ir-

regularities. The actual field around the planet has the general char-

acter of the MacCullagh approximation with local superimposed pertur-

bations.

Appendix B develops a convenient tool for describing the actual

gravitational field quantitatively. Omitting the small effect of the

(3
mass of the atmosphere,WV V = 0 everywhere outside the planet.

Hence V can be expressed as an infinite sum of spherical harmonics

in the spherical coordinates A , L. and r

0



00 a=. nh

V “TL 2. (bys mA + cpmSin mA) (TP, sin *e
(2-

Here, cos mA Bm(sin Lec) is a typical tesseral harmonic of order m

and degree n, defined uniquely at each point of the unit sphere. The

tesseral harmonics of order zero, | (sin L.), are the Legendre

polynomials of the first kind, P, (sin L.). The higher order tesseral

harmonics vary both with latitude and longitude.

Equation (2-20) can theoretically match the actual measured field

to arbitrary accuracy by using enough terms, bpm and Cys but no more

° © @  ~ © © - ©

accurately than one part in 10 if G is to be a function of position alone).

In general, the equation is embarrassingly rich in arbitrary constants

considering the meager gravitational data available, although Zhongolo-

vich and Kaula, for example, have attempted to fit observed gravitation-

al data into this form (Refs. 104, pg. 270 and 124).

As a result, the actual potential field is usually assumed to arise

from a mathematical model of the planet consisting of an inhomogeneous

ellipsoid of rotation whose potential is in the form:

Mp anALL 4 A &lt;
V = = PIENG ) F, (sin L,) (2-21)

and which is covered by a thin skin whose density varies with latitude

and longitude to produce the observed perturbations compared to

Equation (2-20). Equation (2-20) is the most general form for the pot-



ential distribution around a symmetric planet in spherical coordinates.

If the origin of coordinates is at the mass center of the planet, J; =0

Ref. 187, pg. 334). The MacCullagh approximation is merely a trun-

cation of the remaining series at the second term. Section 2.C., shows

that if a planet were in fluid equilibrium and unable to sustain internal

tension and shear, it must be symmetric about a plane through the

mass center and perpendicular to the axis of rotatior. Hence all odd

Ja must vanish in such a case.

Several methods exist for estimating the Jy, coefficients of a planet.

Perhaps the simplest is to assume that the planet is a homogeneous

ellipsoid of rotation whose meridian eccentricity is that observed by

means of geodetic or telescopic shape measurements. Then Mac-

Cullagh's Theorem gives the potential to second order as:

1 &lt;1, = DE"b

% ma*
2 2

21-38) F(sin Lo) | (2-2 2)

The higher order J, are obtained from the closed form expression for

the potential of a homogeneous ellipsoid of rotation given in cylindrical

coordinates in Appendix E, The potential is transformed from cylin-

drical coordinates to spherical coordinates in Appendix E to give:

 Vv (mel 1 eV ON, FO nlc) ~-]“7-HERREL)EE)RRRL-3-23)



For a homogeneous International reference ellipsoid:

fa”

I.

 TF = - 0.0013445
L

'}

3 er. 3,87 x10Ja=3%T
Figure 2-11 clearly shows that these are not good approximations to the

measured J, for the Earth,

A more refined estimate is to retain the ellipsoidal shape of the

planet but assume an unknown radial density distribution. Then by re-

quiring that U = V + V' be constant (independent of Lg) when the

equation for the reference ellipsoid:

Mees Le rnsimle — |
— + T= =

L

is substituted, Jeffreys (Ref. 121, pgs. 1364137) shows that:

= Erp. Bf

J3 = 0

where:

Tq =

he| ab

4
— 7f-5n)eff
we al(-f)

‘m.

(2-24)

A -b

n is not directly measurable on the Earth but it can be calculated in-

5
directly with sufficient accuracy to find J, to one part in 10

Gravity on the reference ellipsoid is the gradient of J, whose
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Figure 2-11

GRAVITATIONAL POTENTIAL OF THE EARTH

FROM OBSERVATIONS OF ARTIFICIAL SATELLITES

Calculated from Reference 134, pg. 903 and Appendix E.
The potential is assumed to be symmetric about the

geographic pnlar axis and to have the form:
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magnitude Jeffreys calculates as (Ibid., pgs. 129-131):

Shag” 4] on the ellipsoid
2 A

g,q [1 + B,sin Lq + B,sin 214] (2-25)

where:

eq, is the equatorial value of gravity on the surface of

the reference ellipsoid

5 Is2 17
By, =gn-f+yn - in

B= deo 5n)
A gravity measurement made at some known latitude together with geo-

detic information about Lg, a and f of the reference ellipsoid allows

the calculation of n, B, and B4 , and therefore of Jq and Jg4.

A third and more direct method of measuring the actual Jy, is to

observe the perturbations in the orbits of satellites around the Earth,

By observing the artificial satellite, 195882, O'Keefe and others were

able to estimate the first few Jn for the Earth very exactly (Refs.

134 and 135), Their results are summarized in figure 2-11 from which

it is evident that the odd Jy term may not be zero. Though other authors

have questioned O'Keefe's calculations (Ref. 90), rebuttals by O'Keefe

(Ref. 133 and a letter in the July, 1960 SCIENTIFIC AMERICAN)

strongly indicate that the existence of an odd Ja term is incontrovert-

ible. The odd Legendre polynomials are not symmetric about the

equator so the existence of odd harmonics would mean that the gravi-

tational field and hence the geoid are not symmetric about the equator.

7H



If the odd Jy, were not zero, the Earth would be said to be slightly pear-

shaped.

Even the two-dimensional series, Equation (2-21), is too complicat-

ed for navigation. Instead, only the most significant terms are re-

tained to describe the reference field and the remaining terms omitted

as an irremovable error. Except possibly on the highly elliptic Jovian

planets, the series for the reference potential can always be truncated

after several harmonics. Since the spherical harmonics are orthogonal

the coefficients of the lower order terms do not depend on the presence

or absence of higher order terms. Hence Jp, Jq and J4 are independ-

ent of the term at which the series is truncated.

By including more In terms in the mathematical model of V, the

gravitational field can be predicted more exactly, Hgwever, the navi-

gation system designer prefers a simple computation to a small incre-

ment in predictability. The difference between the actual components

of gravitation and those predicted by the mathematical model is regard-

ed as anomalous. An enormous number of tesseral harmonics would be

needed to analytically represent local deflections of the vertical with any

degree of fineness,

Section 2. F. 6. shows that the uncertain Ja term affects the horizon-

tal component of G about as much as does the J, term, on the reference



ellipsoid. Hence if Jy is included in the mathematical model, the

unknown Jq should also be included. But even if J3 were certain,

Equation (2-28) shows that it appears in an awkward manner in the

gravitational expressions. Furthermore, when calculating the hori-

zontal components of G, as in Sections 2. F.6. to 2, F.8., it is found

that the effect of the J, term extends only to order 16° gee or less.

which is negligible for this discussion since navigation accuracies often

require only 5% 10” gee and since deflections of the vertical alone

may exceed 5 % 10° gee. In view of these complications, the mathe-

matical model is regarded as reliable only to the second harmonic but

is calculated with the fourth harmonic included, in order to assess its

effect. Hence: ym, at G 4 ooXie 18 reac) + JER) ee
The next few subsections calculate the horizontal components of

gravity and gravitation in ellipsoidal, geographic and spherical co-

ordinates, using Equation (2-26) with appropriate values of Jy,
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2.F.6. HORIZONTAL GRAVITATION AND GRAVITY

IN SPHERICAL COORDINATES.

Spherical coordinates are recommended for navigation at large dis-

tances from the Earth where G is of more interest than g. In spheri-

cal coordinates, the horizontal direction is perpendicular to the radius

vector from the center of the Earth. The horizontal component of

reference gravitation, Go is assumed to be composed of two parts;

one, G _, derived from the rational potential of Equation (2-26) and

one, 6G, , caused by surface irregularities within the Earth, Bis
n

is the local "deflection of the vertical" with respect to the field of the

inhomogeneous ellipsoidal model Earth.

The rational portion of the geocentric horizontal component of

gravitation, G,!, is

CooL VvCle THC ol

me (Yon2023,+3(RYE Lemmi)

v2 ACATE sintl—3 )| (2-27)
where Ge. = GL + 5 Gy and a is the equatorial semi-diameter of

the reference ellipsoid. For the Earth, the only planet whose Jp

larger than n = 2 have been measured, the J, are taken from Figure

~5
2-11, If G,_ is to be calculated to an accuracy of 10 gee, then to

TQ



sufficient accuracy on the International reference ellipsoid:

Is = -0.001083
~-6

J3 =+2.3%10

I, -+2.0%10°°

and numerically:

_ a4. a Sl =o
 = 1.591 (sin 2Le [1-0.00106(=N5 sin L~¢om )

3

L L

~0154( (7sin? L, - 3) cm. / sec, 2.28}

Clearly for Tx, the J3 and Jy terms are equally large. Furthermore

the effect of J4 is exceedingly complicated because sin 2L. does not

readily factor out. Hence the Ja term is hereafter omitted and includ-

ed in 6G,_ and the potential taken as:

/
m z 4

TF [1+ (FH Bylsin Lo) + 34(3) BylsinLe)] (2-26)

as discussed earlier in Section 2. F.5. The Ja term is carried in order

to estimate its effect but is omitted in establishing a mathematical

model of G. The mathematical model is thus taken in the form:

a 4 2
+ = -1,591 (=) sin 2L.J1 - 0. 00154(%) (7 sinfL_-3)]
~ n il .z (2-29)

cm. /&lt;ec.

ffurther studies might investigats the systematic effect on a navigation

system of non-zero Jy and Jc terms.

 pr
-3

. is never larger than 1.6X10 gee in the space surrounding the



Earth. Thus, if Jy and J, are neglected, G| can still be calculated

-6
to 3X10 gee which is adequate for navigation accuracy near the Earth

-G
Hence within 5X10 gee:

: 4

Gy = -1,591 (2) sin 2L¢ cm. [sec? (2-30)

I'he actual horizontal component of gravitation, G, ., at any point

can be taken as the RMS sum of G,' and the horizontal gravitation

caused by mass anomalies. Figure 2-12 shows Gy. as a function of

altitude in the vicinity of 45° latitude.

r~
-

is zero within 10 gee for r&gt;r, where r, 1S:

-5_3 Q &amp;yme
10 - 3n(R) o”

r, = 3.57 a = 14,100 miles = 22,800 km.

Thus, below 14,000 miles, the gravitational field of the Earth is not

Le =?

radial, within 10 gee.

Horizontal gravitation and gravity can be calculated on the surface of

the reference ellipsoid, using the radius of the ellipsoid as given in

-6
Equation (C-&amp;). Substituting into Equation (2-27) to 5X10 gee:

2 2
GI =3 5,1M)42€sinL,)sin2L

telhzo 5 Ja or | sin L.) sin C

Evaluating this on the International ellipsoid:

(2-11)

2
G/ = - 1,602 sin 2L. cm. /sec.

Lelh =o _5
3 to 10 gee

Gi] = -1,602 sin 2L + 0.0054 sin 4L. cm. [sect
hy=0 to 5x10 ° gee

20)



Figure 2-.c2

MAGNITUDE OF THE HORIZONTAL COMPONENT OF GRAVITY AND GRAVITATION

VERSUS ALTITUDE

The RMS sum of 6G, caused by mass anomalies, and G', caused by the non-
spherical mass distribution, yields an order-of-magnitude estimate of the
horizontal component of gravity or gravitation.
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This is the geocentric horizontal component of gravitation which is

computable as a function of latitude.

A mathematical model of the systematic, geocentric horizontal

component of § can be constructed in a similar manner:

0]

b

. = Gy, - SE rosin 21, (2-32)

On the reference ellipsoid, this becomes:

Wea (Ect -TNR EEAIClraCo7)[sinacc

Fg,{med wie &amp; :23: 2 8 7 sin 4L

Substituting Jy from Equations (2-24)

/ = - 1,299 sin 2L em. [sect
g c

clh=0 (2-33)

within 3X 10©gee. Hence the aon - mation:

YMe sin 2L
/ = -f 7Le Th=0

-6
is only accurate to 3 X 10 zee.

yy,



2. F. 7. HORIZONTAL GRAVITY AND GRAVITATION

IN GEOGRAPHIC COORDINATES.

Geographic coordinates are ro-commended for navigation within

forty miles of the Earth's surface. Near the Earth, the navigation

equations are probably best expressed in terms of g since Blq is

nearly zero and since geophysical data concerning deflections of the

vertical are so expressed. In geographic coordinates, the horizontal

direction at any point is perpendicular to the projected normal to the

reference ellipsoid. The metric tensor and other geometric properties

of the geographic coordinate frame are discussed in Appendix D. 4.

Gq and Big , the geographic horizontal components of gravitation

and gravity, are found from the empirical spherical harmonic expansion,

Equation (2-26), and the relations:

G/ ei WV — \ _ PAY

Mo hy ily Ruthy Oy
/ = av + Vv’

NE ( oy Ig )
(2-34)

where Ph is the local meridian radius of curvature of the reference

ellipsoid. The transformation equations from spherical coordinates to

geographic coordinates are given in Equations(D-14), The rotation poten-

tial in geographic coordinates is given in Equation (2-8) from which:

A A i

3 = = PE (Parhg JP thy)snZLy(2-29)
22



where G is the local prime (east-west) radius of curvature of the

reference ellipsoid. Gy and 21 are found by expanding or in
J

terms of the geographic coordinates hq and Lg :

meq. _ -; d(sinko)QV {Mp ON py TMQ oo) Bint)
3 ™ ol Io lg (2-36)

wh are.

R =]1 +g adslel, 53,(3) Bi inko)]
 (3, +21, GRES L=3)]

A direct calculation from the transformation equations shows that:

dn __ 2€sin2ly  Pmthg
ws (1-Esitlayr “2bq (\-€ sin 3) nl

sinke) — a (Pm thy)
in ow oh

tT. 2
5 - 14M 2 Ents (hs)

® (1- € sntlg)r ©

, 3 2 (Recthy)a ST
o/ ={Me Sin Ls | _Ra’€ + \Recthy —
§7@ Tz [Tesh

whatrFa, (Bethy) (2-37)

 hb

Equation (2-37) can be further expanded in a power series in 1) and €.

Enough terms are carried to insure that 2s and Gly are accurate
-5

to 5X10 gee for hy &lt; 0.01 ( hq { 40 mi.). To sufficient accuracy:
o

Lr 2 2 1 4 2 1 c 4 2
= = al l-€sin Iq t+€sin Lqcos Lg +€ sin L_cos L +21

. J 9 9 J o

€ _. 4 ) hg 23 sin Ly +32) ]
1.3 2 2.2 . 2 hq

= 1 tg J,[3 sin Lg - 1 +€sin Ly (9 sin Lq 7) + 22(1-
2

-3 sin Lg )] + 5 J, P, (sin Lg)



t hy. &amp; 4
 5S 1+ (ha) + oo(2+ Sein Lg) (2.38)

2 2 2 .4= BG: :|(7si7L-3-17¢ sin Lg +Z1€s1, Ly)+
 A+ 213 (3-Tsin Ly)]

Substituting Equations (2-38) into (2-37):

’ _YMe Sin 2ly L 2 4 hy hg 2
21 = 25 [ + M sin Lg + NsinLg + P= + Ql)

(2-39)
where: 24° Tt 271 4 15 2

L=3g +e e202 Te-3 J, € -2 TL. —-3 6
P 2 3

4,35 4 2251 2% 457 4 cfwea
M=2€"+27,+6J,€ —E RE 5 12 € &gt; Ym,

4 11S 4 QSN= 635,61 2 J et- 2
_ ap? 15%Wed 15¢.2_4 55 2.2 )-P=-3e-7¢ Im, FILE 4 z €Sn 1)

—15 J, (Teilq-3)
&amp;

Evaluating the constants numerically:

-5
L =3.05x%x10

-5
M=7.05%X10

N = 1.2%x10°

2
P= -0.01106 + 0.000391 sin Lg

0 =0.00786

-5
Hence within 5x10 gee, g' is perpendicular to the ellipsoid on its

surface since L + M + N® 0. To the same accuracy, for hg { 0.01,
Oo.

2

the da) and by ein, terms are negligible. Thus:
= -5.44 (ha sin 2Lq cm. /sec?

* { hq € 35 naut. mi.
ag 9

2 i 0D)



=&gt;
214 is entirely negligible within 10 gee when hq is less than hg,

ho,5.44 5 = 0.01

he = 7.3 mi. = 38,000 ft.

Below 38,000 feet, the geographic horizontal component of g results

entirely from mass anomalies in the surface of the Earth, to this ac-

curacy. The deflections of the vertical from this model g field must

either be found empirically at each point or accepted as an irremovable

error. Figure 2-12 shows that the deflection of the vertical at

this altitude is probably less than thirteen to fifteen second of arc, cor

-D
responding to 7X 10 gee of horizontal gravity.

The systematic, geographic horizontal component of gravity can be

evaluated in geographic coordinates by setting UJ},p= 0 in Equations (2-39)

I Me Sin LL . 4 h h 1

tI M,sin’Lqt Nysin'Lg + P= + Q,(2Y ]
$ACf = I~

L - 0.00349

(2-41)

M, =1.17x% 16

-6
N, = - 1.14%10

P, = - 0.00760 + 0.000391 sin'Lq

0, = 0.00786

These terms are larger than the corresponding terms in the gravity

expression, Equation (2-39). The simplest approximation below forty

miles altitude is:
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G' = 490 sin 2L. [0.00349 + 1.1710 sin’L. -0 00760 2
Ly = sin 2Lg [0. 9 +1. sin Lg -O0. a |

cm. [sec 0 h,&amp; 40 mi. (2-42)

~~ h
within 10 gee. The 3 term can be neglected below 58,000 ft,

-5
10 gee:

 0)

J L

G,, = 1.7] sin 2Lq [1 + 0.0335 sin Lql cm. sec” (2-43)

Below 58,000 feet, the primary contribution to the horizontal com-

ponent of gravitation in geographic coordinates is the large L; term.

2, F.8, HORIZONTAL GRAVITATION IN ELLIPSOIDAL COORDINATES.

FEllipsoidal coordinates are recommended for navigation over altitude

ranges of several thousand miles, when the ellipsoidal shape of the Earth

must be considered. For such applications, G, not g, is of direct in-

terest as explained in Section 2, F.1l. In ellipsoidal coordinates, the

horizontal direction at any point is tangent to the ellipsoid through that

point which is confocal to the reference ellipsoid. Two methods are

used to evaluate Gy , the systematic horizontal component of gravita-

tion in ellipsoidal coordinates. One uses the theoretical closed form

expression for the potential of a homogeneous ellipsoid of rotation,

Equation (E-2). The other method for finding Gn uses the spherical

harmonic expansion, Equation (2-26) with empirically determined Jn.
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c is the focal distance of the reference ellipsoid, { and T) are the

elliptic and hyperbolic coordinates, as discussed in Appendix C.

Appendix E derives the horizontal components of gravitation of a

homogeneous ellipsoid of rotation in ellipsoidal coordinates as:

 23YMe Sinin 27 —of5 EE fers eetiang)] =
TanB = csch ge

This can be expanded to 10 gee in a ferries which is valid everywhere

outside the reference ellipsoid:

¢ : _ | —- { ‘ i -

Scosh sinh} 25a 1S sinh] 35 cnh®] G3 sinh] ]

G7 _YMP Sinln | _l2 + Tin ML _ 2 Sian +24 sin 14+ 40 - --]
nC 5¢T sinht 14 sinh™{ 56 sinh¥§

(2-44)

On the International ellipsoid where {1 and cosh] = i
2

cosh {,= Zz = 148.8

sinh™{_= 147.8

on = 1.341 cm. /sec’

: / =3

Hence, in order to calculate Gn to 10 gee, the first two terms in

Fquation (2-44) are needed.

Tf Gm , as calculated from Equation (2-44), were correct then g,

as calculated from this same equation, must be perpendicular to the

reference ellipsoid at its surface. This boundary condition can be

checked by evaluating g, at { =,

IR



/ i WV WV
In = cleosh{- wo) (on Tin ) (2-45)

V' is given by Equation (2-7) so:

’ 2. 3

y =— WeC coc iainlmno 2 |

Thus, on the International ellipsoid:

al = c! eb — wv
" N° C (cosh {— cos) in

I Sinem Me (0 _ 2 \_ WEE, 2In (RR ony [20 Gs 35 smh|, ) — 3 cosh 3,
=0.3750 sin 2M) em. / sect (2-46)

-5
which is not zero, within 10 gee. Clearly, Equation (2-44) is not a

/ —

good approximation to Gn since g makes an angle of 1.3 minutes of

arc with the ellipsoid at 45° latitude. Thus, the potential of a homo-

geneous ellipsoid of rotation is not a satisfactory approximation to the

: a 1
potential of the Earth, within 10 gee.

The only form in which the actual potential distribution is more ac

curately given is Equation (2-26), the spherical harmonic expansion
 /

using emprical values of Jy . Thus, to obtain Gs, Equation (2-26)

must first be transformed from spherical to ellipsoidal coordinates

with the substitution:

et = (sinh? § + cost )

tan Li. = tanh { tanN

20



sin Lo = sinh”§ sin“
3 Sinh \ + cos MN

and expanded in a power series in sinh{ The author has performed

this laborious calculation with the result:

Neo a
oo a

an+E? Asan+B A n+ oaMm Sin ~”C sinh [ * sinh*{
|3 (ANT 4 =

: “zc J I 2
B -—3(&amp;)L Z

I o.2 q4
C = 503 + 30 (&lt;) Je + 35 (ZT) Je!

. 3 Qe &amp;
D=-7ll+6(g) +5 (FT) J!

S142 &amp;* J, + (ff I

This expression for V in ellipsoidal coordinates can be verified by

evaluating it for a homogeneous ellipsoid of rotation and comparing it

to Equation (E-6) , the series expansion of the theoretical equation.

For a homogeneous ellipsoid of rotation, the Jy, given on page

713 can be substituted into Equation (2-47):

A B
a

2
5

e
35

 ~~
»4 ) D =

©
x:

or
n

— a.
»

3

When these constants are inserted into Equation (2-47), the resulting

expression for the potential is identical to Equation (E-6), obtained

by expanding the closed form theoretical expression, Equation (E-3).

20



Thus, Equation (2-47) is verified,

[J ay LJ Al &amp;

v

sotential ot £quation (2-47), Gy is:

n [ , 2Csinn+DJ YMe Sin nN, _ - 2By =A &lt;&lt; sinh (Costco nh A sinh {

afme siz [ (4C-R)sinML+2D] TGF [ FTAs (2-48)
The latter form is suitable for on-board machine commnutation. The

boundary condition which this equation must satisfy is that on the ref-

erence ellipsoid, By, must be zero. Using the measured J,, for the

International ellipsoid:

A = +0,2584

C = - 0.0355

B J. 4195

D = - 0.1911

and for {-3. near 45° latitude:

1 .

, =ot — Lhe C cocht Ginn,

n hi 2. (oh {y= cost)
0.0132 cm. [sect

-5
The boundary condition for Equation(2 -48) is satisfactory to 10 gee.

Thus: -5
to 2x10 gee:

nL 2
GJ = 37650 So cm. [ sec.

. sinh! {
from 10 gee to 2 x10” gee:

(2-49)

/ nL ' T

clos reso Sat | 1 oats noms (2-50)SEN | sinh”§ cm.-fce 7
- C.
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Large, known deflections of the vertical in ellipsoidal coordinates may

be mechanized by the inertial navigator,

Gn
-5

can be neglected entirely, to 10 gee, if £1, (r &gt; r, ):

T6kn =0. 01
sinh i. n

. _ 1sinh . = 44 = 2

r. =23,000 km.=14,000 mi.

Hence beyond 14,000 miles, G is entirely vertical in ellipsoidal co-

-5
ordinates, to 10 gee. From the Earth's surface to 14,000 miles

(3.2&lt; { &lt; 4.5), the horizontal component of G is given by Equation

-9
(2-49) to 10 gee. Figure 2-12 shows typical values of Gn versus

altitude, for the Earth.

2. F.9. THE MAGNITUDE OF GRAVITY ON THE EARTH,

As noted in Section 2. F.3., the magnitude of gravity can be measur

ed direc tly only when the observer can constrain himself to be fixed

relative to the Earth. Gravity measurements at a sequence of fixed

points yield a map of [El . A theoretical expression for El as a

function of position can be derived from an assumed potential. The

oravity anomaly is the difference between the actual and model g fields

Using the potential of Equation (2-26), |g] can be found on the ellip-

3 ?



soid by means of the method outlined in Section 2. F. 5. Above the el-

lipsoid, Ig] could be found exactly by computing |&lt;u| in geographic

coordinates for hq &gt;0. This would entail a lengthy procedure such as

was used in the preceding three sections to find the horizontal compon-

ents of gravity. This calculation is not performed because the navigator

is not interested in the exact vertical component of gravity, On the

other hand, the gravimetric geodesist is interested almost exclusively

in the field on the reference ellipsoid. Equation (2-25) is conventional-

ly used to compute the reference magnitude of gravity on the surface of

the ellipsoid.

Within 500 meters above the reference ellipsoid, the gravimetric

geodesist computeg gp=o2ccording to:
- 39

g. = Eyv=ot 5h

more exactly:or

2-51)

? LL dg
5 = got hy 2 &gt;

Heiskanen (Ref. 107, pgs. 53-54) evaluates the latter on the Inter-

national ellipsoid:

b -— By.
2

~(0.30877 - 0.00044 sin Ly) hq + 0.073 hy
melers kmtrs.

(2-52)

In practice, the height of the observer above the ellipsoid, hg , is

taken as the measured height of the observer above mean sea level, as

determined from a levelling survey. A height error of ten feet pro-

NY



~b
duces a one milligal (10 gee) error in the magnitude of gravity. The

actual direction of g does not coincide with the direction of the ref-

erence g because of local deflections of the vertical but since the

deflection is usually less than twenty seconds of arc, the gravity mag.

9 =
nitude error is only ih 5X10 gee, neglgible for most purposes.

F'igure 2-13 shows the parameters that have been proposed recently

to describe the magnitude of gravity on various ellipsoids. The equator

al value of gravity on the reference ellipsoid, Beq » 18 established by

measuring the absolute value of gravity at some point of supposedly

known geographic latitude on that ellipsoid.

By international agreement, Beg, i8 determined by the value of abso-

lute gravity at Helmert Tower, Potsdam, East Germany when the lati-

tude of the tower in the European grid is substituted into the standard

gravity formula, Two limitations arise in establishing Beg,+ First, the

ellipsoid of the European grid does not have its center at the mass cen-

ter of the Earth, Second, during the Cold War, access to Potsdam has

been limited to the Scandinavian countries. Though comparisons with

Potsdam have been infrequent, the Western countries have made exten-

sive intercomparisons of gravity between major cities and observatories

by flying calibrated gravimeters from point-to-point, It is generally

believed that the International value, Bey = 978.0490 cm, [sect , is too

high by ten to fifteen milligals (Refs. 92, pg. 157 and 107, pg. 75).



Figure 2-13. GRAVITY FORMULAE ON REFERENCE ELLIPSOIDS

% . &amp; 2 . -

% = g, 1 1 + B, sin Lg + B, sin 2Lq + D, cos Lg cos 2(A Ao)]
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Triaxial ellipsoids are occasionally proposed to represent the geoid

(Section 2.E.)}. Then a triaxial gravity formula is needed to specify

gravity on its surface. Such an equation is (Ref. 215, pg. 2-58):

1 2

Shoo Hog, [Lt B,sin’Lq + Bysin 2Lq + Dycos Lycos 2( AA]

where Ao is the geographic longitude of the shorter equatorial axis. More

refined estimates assume a geoid which is slightly perturbed from the

shape of an ellipsoid of rotation and evaluate lanl the perturbed

surface (Ref. 87, pgs. 326 - 327).

By calculating gravity as if the Earth were an ellipsoid of rotation, a

-D
systematic error is introduced whose magnitude is about gD,=2%10 gee

from Figure 2-13. Thus if the Earth is triaxial but is assumed to be

an ellipsoid of rotation for convenience of computation, the position error

is only about one tenth of a mile.

The gravity field of an inhomogeneous ellipsoid of rotation is a suitable

model for the reference gravity field of the Earth, for navigational accurac

 7%



Chapter Three

GEODETIC COORDINATES

"To increase accuracy, map-makers gradually expanded the
scale of their maps, first to six yards to the mile, then 100 yards

'And then came the grandest idea of all! We actually made a
map of the country on the scale of a mile to a mile!’

'Have you used it much ?' I enquired.
'It has never been spread out yet, ' said Mein Herr. 'The

farmers objected: they said it would cover the whole country, and
shut out the sunlight! So we now use the country itself as its own
map and I assure you it does nearly as well. '"

Charles L. Dodgson (Lewis Carroll)
Reference 100.

3,A. INTRODUCTION.

The aim of geodesy is to assign coordinates to each fixed point on

the Earth in some readily measured and commonly accepted coordinate

frame which rotates with the Earth. The classical methods have inferred

the coordinates of points from length and angle measurements made on

the surface of the Earth.

3



The past decade has seen an intense revival of interest in geodesy.

Electronic distance measuring devices and satellites, both active and

passive, have literally added the new dimension of height to the classi-

cal tools and have increased the rapidity and accuracy of the geodetic

processes. Furthermore, the requirements of the ballistic missile

program have emphasized that the independent national geodetic grids

do not yield sufficiently accurate navigational data for unmanned vehicles

traveling between grids.

This, the most important current problem in geodesy, is of vital

interest to the navigator. The problem is to give the coordinates of all

points on the Earth in a single coordinate frame instead of giving them ir

independent local frames of limited extent. The writer has called this

branch of the subject "World-Wide Geodesy" and discusses it in Sec-

tion 3. K. after first presenting some necessary preliminaries.

A truly exciting prospect awaits the geodesist after the other planets

have been visited. Surveys on these planets will unquestionably be nec-

essary to guide the terrestrial visitor. Omitting the small possibility

that native populations have already surveyed these planets, the geode-

sist will conduct surveys there, doubtless patterned after Earth-bound

surveys but with the added advantage of external observation.

J 3 GEODETIC COORDINATE FRAMES

Chapter Two discusses the shapes of the constant potential surfaces

near the Earth. The surfaces of constant gravitational potential, V, and
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the surfaces of constant gravity potential, U, are illustrated in Fig-

ure 2-9. The positions of these surfaces near the Earth are shown to

be independent of the motion of the Sun and Moon within three inches

(Section 2. D.).

The family of surfaces of constant U are the geops. That geop

which approximately coincides with mean sea level is identified as the

geoid. Because of density inhomogenieties, the geoid does not have the

shape of an oblate ellipsoid of rotation as is consistent with the geoid of

a homogeneous rotating fluid. Instead, the geoid undulates about +100

meters relative to such an ellipsoid and probably is best approximated

by a slightly triaxial ellipsoid whose principal axes are along the polar

axis and in the equatorial plane near the 0° and 90° meridians.

In any event, for geodetic purposes, the Earth is usually mapped onto

a mathematically exact ellipsoid of rotation. The geodesist attempts

to place the center of this ellipsoid at the mass center of the Earth and

to align the axis of symmetry of the ellipsoid with the geographic polar

axis of the Earth (Appendix A).

Figure 3-1 shows the surface of the Earth, the geoid and an ellip-

soid which has been established for mapping purposes (a "reference

ellipsoid"). By definition, points above or below the ellipsoid are pro-

jected onto it along extended normals to the ellipsoid. The height of a

point above the ellipsoid, measured along the normal to that ellipsoid,

is called the orthometric height, h, of the point.

The angle between the normal to the ellipsoid which passes through

IO



P and the equatorial plane of the ellipsoid is the geodetic latitude of

Pp, Lop. The angle between meridian planes of the ellipsoid through P

and through Greenwich is the geodetic longitude of P, Apo measured

positive east. Geodetic distance and azimuth are similarly measured

with respect to projections of lines onto the ellipsoid.

If the center of the reference ellipsoid is located at the mass center

of the Earth and its axis of symmetry lies along the geographic polar

axis, then the adjective "geodetic" will be replaced by "geographic."

The ellipsoid is then most suitable for world-wide maps. Then geo-

detic latitude, Lp, becomes geographic latitude, Loo and Ap becomes

Be The coordinates Ly and Ny are the geographic coordinates, as de =

fined in Appendix D. The metric properties of the geographic coordinate

space are elaborated in Appendix D and Chapter Four.

The height of the geoid above a reference ellipsoid at any point is

conventionally designated N(L.p., Ap). N of course depends on the size.

shape, orientation and location of the ellipsoid. A fundamental problem

of geodesy is to measure N for any particular ellipsoid, as a function

of Ln and Ne.

bh the height above the reference ellipsoid, is necessary in the

navigation equations of Chapters Four and Five. However, the height

above the geoid, hg, is of more direct interest and more easily meas-

ured. hg, bh, and N are related according to:

h =hy+N sre

01



For use in the reduction of level surveys, to be discussed in Sec~

tion 3. D., the concept of potential height is defined. The geops sur-

rounding the Earth are arbitrarily numbered and the numbers called

'potential height." Two common methods of numbering exist:

The "geopotential number" at an altitude hg is h, where:

hs=hg,

ho=| g(h)dh|
It has the units of gravity X height, usually expressed in kilogal=-

meters and will not be used hereafter in this thesis. The potential

of any geop is thus referred to the potential of the geoid.

2. Dynamic height, hy is:

\ he=hs,

hp= q. | q(h)dh
h.=0

where g_ is the value of gravity at some reference point, conven=

tionally on the reference ellipsoid at 45° latitude or where sin’ bs =

Ideally, to calculate the dynamic height or geopotential number at

a point, g should be measured at each height above the geoid and tke

integral (3-2) or (3-3) computed. These integrals are independent of

the path of integration since V Xg = 0 outside the Earth. In practice.

such complete gravity data is neither available nor necessary. If g

is given by its value on the ellipsoid, reduced by a first order free-air

correction, the theoretical value can be substituted for the measured

value to an accuracy of better than 0.1 per cent to relate hp and bh,

instead of hg and hg:

No



he = | +0. a hYq Jeq( 0.0053 sin Ly-2%8 ) (2-51)

3
— — . t do]

ho= 3, (1+0.0053 Ty) Je (socms3sity=23 )dh,
h hy= Q.0 053hg (sin ‘Lg— Sin*La,) (3-4)

This equation is used in the reduction of level surveys (Section 3.D.).

References 87, pp. 152 ff. and 152, p. 36 discuss dynamic height and

geopotential number in detail.

Appendices C and D discuss confocal ellipsoidal coordinates,

which are symmetric about the geographic polar axis. This coordinate

frame is useful for navigation since it goes from geographic coordinates

at the surface of the Earth (where one confocal ellipsoid coincides with

the reference ellipsoid representing the geoid) to geocentric coordinates

at great distances. The ellipsoidal coordinate, £, can be used as a non=-

dimensional measure of "hyperbolic height.”

,,C. TYPES OF GEODETIC SURVEYS.

The classical survey techniques may be divided into three general

~lasses:

|. vertical control surveys.

2. horizontal control surveys

3. gravimetric surveys.

The vertical control survey seeks to find the height, he, of each

fixed point on the Earth above the reference ellipsoid. Section 3.D.

1



discusses how this survey measures height above sea level and from

that infers hq and hy.

The horizontal control survey seeks to establish two other inde=

pendent coordinates needed to locate a point on the Earth. Geodetic

latitude and longitude, L+ and Aq, are by far the most commonly meas=~

ured horizontal control coordinates. On continuous land masses, tke

astrogeodetic survey supplies the horizontal control data. Astrogeodetic

surveys can be triangulations (Section 3. E.), trilaterations or traverses

(Section 3. F.) in which distance and angle measurements on the Earth

are combined with astronomic measurements to give the horizontal con-

trol coordinates.

Gravimetric surveys infer the shape but not the size of the geoid

from measurements of the magnitude of gravity at many points on the

Earth. The technique is new and potentially very valuable since it pro-

vides deflections of the vertical with respect to a reference ellipsoid

which is centered at the mass center of the Earth; data not otherwise

obtainable. Its chief limitation is a lack of sufficient gravity data on

the Earth. Section 3.J. discusses the gravimetric survey in detail.

The use of satellites for geodetic purposes is described in Sections

2.F.5 and 3.K. Their chief value is for geodetic measurements across

oceans, which are a firm barrier to the classical survey techniques.

The over-all procedure of a geodetic survey is as follows:

{. In the field, geometric nets are laid out. Angles, lengths,

heights, gravity, astronomic latitudes, longitudes and azimuths are

3



measured.

2. The field data are analysed to determine the most probable

values of the measured quantities. The size and shape of a refer-

ence ellipsoid are selected.

3. An origin is selected for the survey. The reference ellipsoid

is arbitrarily oriented and displaced at the origin.

4. Observations are reduced to the reference ellipsoid. The

coordinates of the observation points on the reference ellipsoid

are computed.

5. The ellipsoid is mapped onto a flat surface. This is the

final result for a human navigator.

6. An optimum ellipsoid is selected. Coordinates on the

arbitrary ellipsoid are mapped onto the optimum ellipsoid.

7. A single ellipsoid is selected for world-wide coverage. Cc-

ordinates on the local ellipsoid are mapped onto the world-wide

ellipsoid. This is the final result for automatic navigation.

3.D. THE GEODETIC LEVEL SURVEY.

The aim of the geodetic level survey is to find the height of each

point on the Earth's surface (or at least, the height of each survey sta-

tion) above the reference ellipsoid. This height, designated in Sec-~

tion 3. B. by bh is exceedingly difficult to measure and of no interest

outside geodesy. Hence, the level survey attempts to measure, he.

the height of each point above the geoid. It is he that is shown on

"0R[



Figure 3-2
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topographic maps because gravity drives things "downhill" according

to he, not h _.

The general procedure of a level survey is illustrated in Figure 3-2.

A net of geometric figures is laid out over the area to be levelled. The

lengths of the sides of the figures are about 100 to 200 miles (Ref. 87,

p. 171). Wherever possible, these nets are brought to coastal points

and tied to sea level as at A, B, C and D. The height differences be-

tween all vertices are measured by a-process to be described below.

Over small areas where the geops are roughly separated by the same

distances, orthometric height is used but as the extent of the survey

increases, dynamic height is used to eliminate the systematic error

caused by changes in the separation between geops as a function of lati-

Fade.

A least-squares adjustment of the net, to be discussed below, gives

the height of each vertex above "mean sea level," which is taken to be

the geoid and in cases where N cannot be found, is also taken as the

reference ellipsoid. To measure the height differences between vertices.

a process called spirit leveling is used. Figure 3-3 illustrates this

process on a flat, gravity-deflection~free Earth. An invar rod, cali-

brated in length units, is placed at the initial vertex, erected to the

vertical with a spirit level and guyed in place. About 75 yards along the

line to the next vertex, a geodetic level (telescope plus spirit level) is

aligned perpendicular to the vertical and about 75 yards still further

along, another invar rod is erected. Then by reading the calibrations
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on both rods through the telescope, the height difference between the

feet of the rods can be calculated. This process is repeated starting

at the first vertex and proceeding across the terrain in 150 yard incre-

ments until the second vertex is reached, a distance of 100 tc 200

miles. The level instruments and rods are set up on any suitable hard

ground between these vertices,but every five miles or so, a permanent

concrete benchmark is established for use as a local elevation refer-

ance and for possible later relevelling. References 136. 141 and i42

discuss the leveling procedure in exhaustive detail.

The rods must be close together and at roughly equal distance from

the telescope to minimize refraction error (U.S.C. G. S. maximum dis-

tance is 150 meters). Rays of light from the rod to the telescope are

often curved one second of arc (Ref. 87, p. 167), the refraction angle

increasing with the length of sight. Hence, extremely short lines are

necessary. On a statistical basis, the use of a large number of short

lines does not degrade the accuracy as much as expected since the

error appears to increase only with the square root of the number cf

sights (Ibid., p. 177).

The curvature of the Earth does not modify the results of Figure

3-3 because of the shortness of the lines. However, the presence of

gravity deflections of the vertical does affect the height since the rods

and level telescopes will be slightly inclined with respect to each other

However, the error varies as the cosine of the small defiection of the

vertical and is conventionally omitted.
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Consequently, the level survey, beginning at some benchmark,

M, measures the orthometric height of any points on which the rods are

mounted, with respect to M,. When the line from M, has proceeded

to the next benchmark, M, (about five miles from M,), the measured

orthometric height between M, and M, is corrected to dynamic height

with Equation (3-3), disregarding N if it is not known. Thus, the sur

vey is propagated over extensive areas in terms of dynamic height.

At the points A, B, C and D of Figure 3-2, where ocean ties are

possible, tide gauges or "marigraphs" are located near the open sea.

Sea level records are taken for at least a year, preferably more

(Ref. 87, pp. 192-193), -and a mean sea level established at each point

The mean sea level at each point is assumed to be the geoid and, when

N is unknown, is also assumed to be the reference ellipsoid, for pur-

poses of height computation. All mean sea levels throughout the world

are thus assumed to lie on the same geop; the geoid. For example, the

survey of the United States in 1929 used 26 tidal points in the Atlantic

Ocean, Pacific Ocean and Gulf of Mexico, all assumed to lie on the

geoid (Ref. 137, pp. 10 and 152).

The entire survey net is then reduced by means of a least-squares

solution in dynamic height. The measured height at each point, he,,

is assumed to be the actual height, hy, , plus a residual, 6h,,. Equa-

tions for the heights of all vertices via different paths in the net are

written and a solution found for the most probable value of the 6 hy,.

The equations are linear in 8 hy, with constant coefficients and are
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readily programmed for digital computers so extensive areas can be

reduced simultaneously. In earlier years, it was the practice to reduce

several small regions independently in order to lessen the labor of com-

putation, but such a procedure introduced arbitrary constraints (hence

distortions) into the net.

Even more sophisticated reductions allow for the possibility that

the surface of the ocean is acted on by forces other than Newtonian

gravitation and the centripetal acceleration of rotation so that the ocean

level is not a surface of constant U. The mean sea levels at the tidal

stations are then also assumed to contain residual errors and are in-

cluded in the reduction.

Using such a technique it was found that mean sea level at Old Point

Comfort, Virginia is three feet lower, relative to the geoid, than at

Prince Rupert, Canada, 2300 miles away (Ref. 152, p. 42). In the well-

known case of the Panama Canal, the Atlantic and Pacific are so close

that a level survey can bridge them with little error. Mean sea level

in the Atlantic is 2/3 foot lower than in the Pacific (Ibid.). These re-

sults tend to confirm Stommel's calculations, mentioned in Section 2. D.

that sea level can vary as much as four feet above the geoid because of

currents and the Coriolis force.

The accuracy of a level survey is difficult to estimate. The U.S. C. G.
~

 -—

standard for first order geodetic levelling is an error of e mm. ina

length d km. where (Ref. 142, p. 2):

Seam 4d..
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Over very large distances, errors appear to accumulate with length,

not with the square root of length. Estimates vary from 0.0003 to

0.001 ft. /mile (Ref. 87, p. 177). The International Geodetic Associa-

tion in 1912 established a probable error of (Ibid. ):

2 L 2

(p.e.) =" d +g4d? )

xwha»e

nN &lt; Imm /Jkm (0.004 ft/mi.)

0 &lt; 0.2 mm./km. (0.00 ft./mi)

L. G. Simmons (Ref. 152, p. 4) estimates that the maximum levelling

error in the center of the North American Continent is two feet. These

errors are all with respect to the geoid, generally assuming that the

tidal gauges are at the geoid. This assumption probably introduces an

additional error of two feet.

[n the course of a horizontal control survey, the height of each ob-

servation point above the reference ellipsoid is needed. Lacking in-

formation about N , the height of the geoid above the ellipsoid, it is

commonly assumed that the geoid is nearly coincident with the ellipsoid.

Where N is measurable (Section 3.J.) its accuracy is poorer than that

of ha so that at worst, h_ is known within fifty meters in mountainous

ATeEas.

Level surveys have identified remarkable tectonic changes in the

Earth such as a 7-3/4 foot drop of the area surrounding the Hall of

Records building in San Jose California from 1912 to 1954 (Ref. 137,

po. 10),
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For navigation, level surveys provide the vertical coordinate

of points on the Earth's surface and assist in interpreting the accuracy

of position data as supplied by geodetic surveys.

3 ti, GEODETIC TRIANGULATION.

} E.1 GENERAL PROCEDURE.

The purpose of the triangulation is to establish a reference

ellipsoid and to give the geodetic latitude and longitude of each observa-

tion station on the Earth's surface, on that ellipsoid. ' The triangula-

tion survey is the oldest and most accurate survey technique now

available.

The general procedure of the survey is to lay out a network of

geometric figures, usually triangles, as in Figure 3-2 on the area to

be surveyed. In general, a theodolite is erected successively at each

vertex of the net and the angles between all other visible vertices ob-

served. Occasional measurements of length are made and the remain-

ing distances between vertices calculated from the measured lengths

and angles. Astronomic measurements are made at intervals in the

net in order to limit accumulated position errors. A least-squares

adjustment then distributes observation errors through the net and

results in the most probable values for the lengths, angles and geodetic

azimuths in the net.
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Having done this, the dimensions of a reterence ellipsoid are se-

lected, based on the results of past surveys. One observation station in

the survey is selected as the origin of the survey and the ellipsoid is

oriented and displaced as desired at the origin. It is here that an error

in locating the center of the ellipsoid relative to the mass center of the

Earth will occur. The observer on the Earth does not know what orienta-

tion or vertical displacement of the ellipsoid is required in order to

place its center at the mass center of the Earth. Then, using equations

based on the size and shape of the reference ellipsoid and knowing the

length, approximate geodetic azimuth and approximate geodetic lati-

tude of each vertex in the net, the exact geodetic latitude, longitude,

and azimuth of each vertex are computed.

The usual survey ends after assigning a gepdetic latitude and longi-

tude to each observation station and by preparing maps of the survey.

Strictly, the survey can finally be recomputed to second order to im-

prove the accuracy in several respects, notably in the optimum selection

of the size, shape and orientation of the reference ellipsoid. Such

programs have only recently been undertaken.

3.D. 2. INSTRUMENTATION.

The geodetic survey must be conducted in the field under the most

primitive conditions, and hence of necessity uses only a few types of

instruments. Devices are needed to measure angle, length and

astronomic latitude, longitude and azimuth (and hence time, also).
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The geodetic theodolite is invariably used to measure angies.

This instrument is a telescope mounted in calibrated altitude=-azimuth

gimbals, with provisions for spirit=leveling. References 87 and 101

discuss the geodetic theodolite in detail.

The vertices of the triangulation net are identified by permanent

concrete benchmarks over which tripods or portable "Bilby towers"

are erected, as high as 130 feet to view the other vertices. The theodo-

lite incorporates an optical collimator for use in plumbing the instrument

directly over the benchmark. The Bilby tower is composed of two inde=-

pendent structures; the center one for the instrument and tke outer one

for the observer (Ref. 101, pp. 26-96).

Angles are usually read to a probable error of 0.1 to 0. 3 second

of arc (Refs. 87, p. 67 and 113, p. 95) which accuracy can be improved

by a factor of five or ten by averaging many readings (Ref. 87, p. 18).

The classical instrument for measuring length, and that most

prevalent today, is the invar tape or rod. The U.S.C. G.S. uses 50

meter flat invar tapes (Ref. 152, p. 5). Each tape is calibrated bv

the National Bureau of Standards to an accuracy variously given as one

in 10° (Ref. 101, p. xvii) and 2 in 10° (Ref. 152, p. 5) under standard

conditions of support. In the field, four tapes are used to measure

each base line; two have a positive coefficient of thermal expansion

and two negative. The tension and method of support are carefully

controlled and the temperature measured. Wind screens keep the tape

hanging freely. The criteria for first order base line measurements

require a probable error of one in 10° for each length measurement



but Simmons (Ref. 152, p. 5) suggests that the actual accuracy of meas-

urement is only four to five parts in 10°, a more realistic but perhaps

still optimistic figure.

Two electromagnetic devices have been introduced recently to meas-

ure distance. In operation both insert an integral number of standing

half-wavelengths between stations.

One of these devices, built in Sweden by Svenska AB Gasaccumu-

lator, is the Geodimeter (Ref. 145). The Geodimeter transmits a visible

light beam of constant frequency, intensity-modulated by a Kerr cell.

from one station to a reflector at the other station and back. An electric

signal proportional to the modulating frequency is passed through a cali=-

brated variable delay line and compared to a signal activated by the

return beam. The delay is varied until both signals null each other.

Then the time of transit is given directly by the delay in the delay line.

If the velocity of light in the air is known, the distance between stations,

along the path taken by the beam, can be calculated. Changes in the

delay time of any number of half modulating cycles are undetectable

by a simple null measurement, thus leading to an ambiguity in the

distances of half a wavelength of the modulating frequency. To resolve

this ambiguity, a second measurement is made at a different constant

modulating frequency which is not an integral multiple of the first.

The instrument's accuracy is limited chiefly by uncertainties in

the velocity and path length of the light beam. The velocity of light in

vacuo is probably known to somewhere between two and fifteen parts
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in 10° (Refs. 146, p. 68 and 152, p. 5) although the manufacturers of

the Tellurometer claim one part in 10° (Ref. 125) However, the Geodi-

meter operates over terrain of uncertain temperature and humidity and

over an optical path of unknown length.

The "average error" for the Model 4 Geodimeter is given by the

manufacturer as 0. 04 foot +5 parts in 10° at a range of four miles

(Ref. 145), which is one part in 185, 000 at 20 miles. Reference 137

however, is more enthusiastic and claims one part in 3 X 10° for bases

in Thailand measured by the U.S. Army Map Service, on page 7, and

one part in 500, 000 compared to taped baselines, on page 8.

To reduce atmospheric variations between stations and to improve

the signal-to-noise ratio, measurements are made only at night. The

optimum range is one to twenty miles though operation to thirty miles

is possible (Ref. 145).

The Tellurometer is a similar device, built by Tellurometer, Inc.,

Union of South Africa, and operating at microwave frequencies{Refs. 125

and 139). The master transmitter is mounted at one point and an active

slave station (transponder) at the distant point. The device has the

same problems as the Geodimeter with respect to the unknown velocity

of light and path length in the atmosphere and in addition, has a wider

beam width so spurious reflection from the ground and from solid ob-

jects is troublesome. It suffers from the additional disadvantage that

powered active stations are necessary at both observation points but

offsetting these is the advantage that observation points need not be

 1
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intervisible since microwave radiation can penetrate fog and timber

(Ref. 139, p. 34). The optimum range is 10 to 25 miles, though the

device can be used from 1/2 to 35 miles (Ibid. ).

Though their accuracy is nominally poorer than tape, these elec-

tronic devices can measure a twenty mile long line at once without the

error-accumulating procedure of measuring it in fifty meter segments

over hill and dale. They will probably eventually replace tapes for

the measurement of distance. Vertical angles or height differences

are needed in conjunction with these devices to reduce the measured

lengths to the horizontal.

3. E.3, TRIANGULATION FIELD PROCEDURE.

A triangulation begins with a reconnaissance of the area tc be sur-

veyed (Ref. 101, p. 1 ff., p. 193). The net of triangles is designed

so that in the solutions for the unknown sides, the probable errors for

the computed lengths will be as low as possible. A parameter called

"strength of figure" is used as a figure of merit for the shape of the

net (Section 3. E. 4). The lengths of the sides of the triangles, for

the usual geodetic survey, are about thirty kilometers (Ref. 113, p. 94)

The vertices of the triangles are identified by permanent concrete

benchmarks, on which instruments are mounted WV sing Bilby towers

as noted in Section 3.D.2. To measure angles, the theodolite is placed

-



on one station and focussed lights are placed on the other stations,

aimed toward the first. All measurements are made at night to reduce

refraction errors over hot ground. The observer then reads "rounds"

of horizontal angles between all visible stations as many as thirty to

forty times each to improve the accuracy by accumulating large angle

readings. The readings are made in the form of sums of angles such as

Reading 1: Angle 1 + angle 3 + angle 5.
Reading 2: Angle 2 + angle 3 + angle 6.
Reading 3: Angle 1 + angle 2 + angle 4.
etc.

Section 3. E. 6. discusses the reduction of this data to usable form.

Vertical angles are read but cannot be used in place of the levelling

survey discussed in Section 3.D. since the refraction errors over such

large distances are hopelessly large for levelling purposes. Refraction

of the light beams occurs in the plane of the axis of the beam and the

direction of the temperature gradient. Thus, over hilly country, lateral

as well as vertical refraction errors exist. It is for this reason that

observations are made only at night.

Occasionally, natural landmarks such as a church steeple are se=

lected to be vertices of the triangulation net. A theodolite cannot be

located at such a point during the course of a survey; hence angles are

read to it from other points. Such a point is called an “unoccupied” or

"intersected" point.

References 87, 101 and 117 discuss the field procedures in detail.

The oceans are entirely unmapped, astrogeodetically, though a very

few gravimetric measurements have been made using underwater and
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submarine gravimeters (Ref. 107, pp. 113-117). The major obstacle

is the absence of fixed points, which can be retrieved at will, on which

instruments can be mounted. Recently, Ewing, Worzel and Talwani

suggested a technique for establishing such fixed points in the ocean

(Ref. 152, pp. 7-19). They suggest placing an array of acoustical

transponders on the bottom of the sea which will define an underwater

"benchmark." By interrogating the transponders with Sonar, a ship can

determine its distance from the "center" of the benchmark. The authors

suggested measuring distances between such benchmarks by timing the

passage of underwater explosions. Though the method appears imprac-

tical because of the uncertain velocity and path of the underwater long-

distance sound waves, Hiran or Transit satellite observations may

provide a more accurate means of locating the underwater benchmarks.

The development of ship-borne stable platforms may make astronomical

measurements possible at these benchmarks.

A network of recoverable benchmarks would allow the entire surface

of the Earth to be covered with a geodetic net. This would facilitate

intercontinental ties and provide considerable information to the geo~-

physicist concerning the precise shape of the geoid.

3.E. 4. INSERTION OF BASE LINES

Base lines are measured to establish a distance scale for the

triangulation. A base line is about three to six kilometers long (Ref. 113,

p. 2) and is usually measured by taping. Base lines are inserted into
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the triangulation net wherever the probable error in computing sides

of the triangles (as measured by the strength of figure parameter) in-

creases to a preset limit. The definition of strength of figure and its

application are described in Reference 101, pages 267-270. Figure 3=5

shows these preset limits for a first order survey. Typically, a base

line is inserted every ten to twenty triangles (Ref. 113, p. 94). As

few base lines are used as possible because of the time and cost of

tape measurements.

The short base line is tied into the net of forty mile triangles by

means of auxiliary triangles which have necessarily poor strength of

figure, thus degrading the over-all distance accuracy still further.

Electronic distance measuring devices, though of nominally poorer

accuracy than tape, allow an entire side of the triangulation net to be

measured as a base line.

Standard base lines exist in several countries, for checking tapes,

Geodimeters and Tellurometers and for insuring that all mations use

the same length standards. They are measured by means of the highly

accurate Vaisala light interferometer (Ref. 115). Some existing

standard base lines are shown in Figure 3-4,

3.E.5. AZIMUTH CONTROL.

The triangulation procedure calculates the size and shape of the

net of triangles determined by the observation points. The orientation

of the net on the Earth's surface must be established separately. This
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Figure 3-4

STANDARD BASE LINES

Date Country

1947 Finland

1953

1957

Argentina

Netherlands

1058 Germany |
Data irom Reference 103

Length

864 meters

480 meters

576 meters

864 meters
(2 sections)

Accuracy

1 in 17 x 10°

l in 9 x 10°

l in 11 x 10°

1 in 20 x 10°

requires that the azimuth of each line, reduced to the ellipsoid, be

known relative to the geodetic meridian.

Astronomic azimuth, A, , as measured in the field, is not the

same as geodetic azimuth, Ams as defined on the mapping surface. The

astronomic meridian is the plane containing the instantaneous spin axis

which is parallel to g. Since g and the spin axis are skew lines, the

plane of the astronomic meridian of a point does not contain that point.

The geodetic meridian is the plane defined by the radius vector from

the center of the ellipsoid to the observation point and the geographic

polar axis. Allowing for polar migration separately, the two azimuths

differ if the prime deflection of the vertical is not zero.

Geodetic azimuth is not measurable but can be calculated from meas-

ured quantities. Theoretically, one calculation of geodetic azimuth

should orient the entire net but in practice, errors accumulate and the

error in azimuth increases, unbounded. Hence, in any net, azimuth
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Figure 3-5

ACCURACY REQUIREMENTS

FOR HORIZONTAL CONTROL

First Order Triangutation

Strength of Figure
Desirable limit between bases.
Maximum limit between bases.

Desirable limit, single figure,
Maximum limit, single figure.

(riangle Closure
Average not to exceed.
Maximum not to exceed.

Number of Observations with a One
Second Direction Theodolite

Base Measurement
Actual error not to exceed.
Probable error not to exceed.

Discrepancy between two measurements
of a section not to exceed.

Astronomic Azimuth
Probable error.

30
1i0
15
25

 Il sec. of arc
3 sec. of arc

| y

I part in 300, 000
1 part in 1,000,000

10 Jkm. millimetry

0.3 sec, of arc

First Order Traverse

Closing Error in Position Less Than,
Probable Error of Main Angles.
Number of Stations Between Laplace Stations
Astronomic Azimuth, Probable Error.

1 part in 25,000
1.5 sec. of arc

10 to 15
0.5 sec, of arc

References 101 and 149, pgs. 10-11

 ,



control stations called "Laplace stations" are inserted at intervals of

about ten to twenty triangles or, following recent practice, one for

sach base line (Ref. 113, p. 94).

At a Laplace station, astronomic measurements of latitude and

longitude are made and the astronomic azimuths of some lines in the

triangulation net are measured. If necessary, the astronomic meas=

urements are corrected from the instantaneous pole to the geographic

pole.

The geodetic latitude and longitude of each point in the net can be

calculated as explained in 3. E. 6. in terms of the geodetic latitude and

longitude at the origin, which are assumed. If the axis of the reference

ellipsoid is constrained to be parallel to the geographic polar axis, it

is clear that the meridian deflection of the vertical, §, , is:

Ven = Ls -— Li ~}

and the prime deflection of the vertical is:

my = (Ag—Ng) cos Lg 3?

if Ny = Ng at Greenwich. §, is also related to the astronomic and

geodetic azimuths:

[3 -8)

Hence, equating Equations (3-7) and (3-8):

Aw =A - (Na—= Ng) tan L 3-9

Thus at any Laplace station, the geodetic azimuth can be computed

from the measured astronomic azimuth, astronomic longitude and the
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calculated geodetic longitude and latitude. The prime and meridian

deflections of the vertical can also be calculated at the Laplace stations.

Consequently, in the reduction of the horizontal control survey, azimuths

are reduced to the ellipsoid within an error of about 0.3 seconds of arc

(Ref. 113, p. 95 and Figure 3-5), that remains bounded because of the

use of Laplace azimuth control.

The deflection of the vertical at any point can be measured by

establishing a Laplace station there, measuring the astronomic latitude

and longitude and comparing to the calculated geodetic latitude and longi-

tude. However, the cost and the length of time of measurement involved

in establishing a Laplace station at each point of the survey is pro-

hibitive.

3. E.6. SURVEY REDUCTION.

The taped lengths are measured along or above the surface of the

Earth, not on the ellipsoid. When these lengths are reduced to the

ellipsoid, along the normals to the ellipsoid, they will be too long or

too short depending on whether they are above or below the ellipsoid.

the measured line lies at an average height, hg , above the ellipsoid

then the measured length, d,, , must be reduced to:

_Pa J
©oh 9

q

on the ellipsoid. pq is the radius of curvature of the ellipsoid at the

latitude and azimuth of the line being measured (Appendix C). In order
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to maintain an accuracy of one part in 10° on the ellipsoid, the reduction

must be applied when hq exceeds twenty feet.

The reduced height can be written as:

Ca the Mm Pe + 2piN+hg) *{hN)° d= Pa +Ing Far N Ch (3-10)

In practice, he is known from a level survey to an accuracy of about

two feet (Section 3.D.). Hence the reduction:

_— A

; hs
can be made accurately. However, the Molodensky correction, wo

A

is more difficult to calculate since N is known imperfectly, if at all.

N cannot be calculated until first order astrogeodetic and gravimetric

surveys have been completed. Fortunately, if the reference ellipsoid

is properly chosen, the Molodensky correction is appreciable only in

mountainous areas where the geoid and ellipsoid are most widely sepa-

rated. It has been applied only in rare cases. For example, in the

traverse from Scandinavia to South Africa, the Molodensky correction

accumulated to a ninety meter distance error (Ref. 98, p. 76).

The raw angle data are in the form of sums of angles between

stations measured in a plane perpendicular to g at the theodolite sta=

tion. These sums include repetitions of the angles in order to improve

the accuracy of the readings. If Ml; are the number of repetitions,

the measured data are in the form:

2K



N

Y n&amp;;
i=

A field reduction selects the most probable value of 6; » 8 by a. least

squares solution, subject to the constraint that

 Oo= 3601 64
about each observation station. Weighting factors are often inserted to

account for visibility, size of the angle, etc. (Ref. 140, pp. 97-121).

Clearly, this reduction distributes errors only among those angles

taken about the same point. Strictly, the errors should be distributed

throughout the net but are not because of the numerical complexity

which would thereby be engendered.

The angles are measured perpendicular to local gravity, not per=-

pendicular to the ellipsoid normal. The difference varies as cos 6,

which is so nearly unity that it is not taken into account.

The lengths and angles comprising the triangulation net on the

ellipsoid are then obtained. If de; are the lengths reduced to the

ellipsoid and 8,4; = ¢: are the angles of the triangles, already once re-

duced, then relations must be satisfied of the form:

0°+E;= 18EE

dei _” dej
sin §; sin §;

in each triangle. E; is the spheroidal excess of the ith triangle, given

in Appendix C. Because of measurement errors, de: and ¢; will not
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satisfy such relations so another least squares reduction is needed.

The angles and lengths are written as sums of most probable values plus

residuals:

b. =o + 00:

and solutions found for 8§¢; and &amp;dgi. In this least-squares adjustment,

as many triangles should be reduced simultaneously as possible in order

to distribute errors over as large a net as possible without constraint.

In years past, the enormous labor involved has restricted the size of the

nets which could be reduced simultaneously. The advent of digital com=~

puters has made the reduction of large nets possible. For example,

1100 stations in Alaska were adjusted simultaneously, a feat requiring

the simultaneous solution of 3400 linear equations for the residuals

(Ref. 137, p. 6).

Rainsford discusses calculation procedures for survey reductions

employing routines which identify blunders (Ref. 140, passim).

The adjustment procedure requires the knowledge of approximate

latitude for computation of the spheroidal excess before the exact geodetic

latitude can be calculated.

The final step in the reduction of the classical geodetic survey is

to calculate the geodetic latitude and longitude of each observation

station. First, the dimensions of a reference ellipsoid (of rotation) are

assumed. This requires two parameters, a and € or more commonly,
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a and f where the flattening, f, is related to € in Appendix C.

Then a Laplace station is selected as the origin of the survey. At

the origin, the astronomic latitude and longitude are measured as usual

and the geodetic latitude and longitude are assumed. Section 3.(G,shows

how the assumption of geodetic latitude and longitude at the origin fixes

the orientation of the reference ellipsoid relative to the Earth. Meas-=

ured astronomic azimuths are converted to geodetic azimuths using

Equation (3-9).

The reduction then proceeds outward from the origin. a and f of

the reference ellipsoid are known. Lv of the origin is known. Then

from the length and azimuth of a line from the origin, formulae such

as Reference 87, pp. 83-94 give the difference in geodetic latitude and

difference in geodetic longitude between the ends of the line. In this

manner, the survey is propagated outward from the origin.

Theoretically, the measured azimuth at the origin is sufficient to

orient the entire net but as noted earlier, cumulative errors cause the

net to "swerve" with respect to the geodetic meridian as the distance

from the origin increases. Hence, Laplace control is used at intervals

to correct the azimuths. A least-squares error criterion is used to

distribute azimuth errors throughout the net, thus minimizing the im-

portance of the measurement at any one azimuth station.

Thus, on the assumed reference ellipsoid, Ly and Ay can be cal-

culated for each point. For visual use, the ellipsoid is then mapped onto

a plane surface using any of a number of transformations discussed in
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Section 3. H.

The calculated Ly and Ay of each point depends directly on the

arbitrary choice of size and shape of the reference ellipsoid and on the

geodetic latitude and longitude assumed for the origin. The selection

of optimum ellipsoids is discussed in Sections 3. G. and 3. K.

The adjustment procedure can be summarized as follows:

a. Reduce the measured lengths to the ellipsoid using the results

of the level survey and using N, where available.

b. Compute the most probable values of the measured angles from

the "rounds" measured in the field, using a least-squares adjustment.

c. Establish the dimensions of a reference ellipsoid.

d. Adjust the triangulation net by least-squares. Calculate the

spheroidal excess for each triangle and reduce the net to find the most

probable values of the lengths and angles.

e. Assume values for L; and Ay at the origin.

f Calculate L. and Ay of all observation stations, using formulae

for that particular reference ellipsoid, working outward from the origin.

g. Optimize onto the best-fitting ellipsoid.

h, Make maps.

. 8.7. ACCURACY.

Lengths of the base lines are nominally measured to a probable

error of one part in 10° (Figure 3-5) but in fact are probably accurate to
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only about four or five in 10° (Ref. 152, p. 5) especially after reduction

to the ellipsoid.

[ndividual angle measurements are made to about 0.2 to 0.3 second

of arc (Ref. 113, p. 95 and Figure 3-5) and are averaged to about 0. 1

second. Astronomical angles are about equally accurate.

Calculations are carried to eight digits in length and to 0.01

second of arc, in angle. After adjustment, the triangles close within

one second of arc (Ref. 149, p. 10) and lengths are accurate to about

one in 100, 000 (Ref. 87, p. 63). Some exceptionally accurate surveys

have been made, notably the 2500 kilometer "ring" around the Baltic

Sea which reportedly closed within 2.5 meters (one part in 10°) accord

ing to Heiskanen (Ref. 103).

Meade (Ref. 152, p. 31) estimates that in the United States, the

position error in a first order survey between two points d,,, kilometers

apart is:

0.059 als meters

which is one pax&gt;t in 200. 000 at 1000 miles

3.

3

a.

 FE |

TRILATERATION AND TRAVERSE.

TRAVERSE

The immediate aim of a horizontal control survey is to provide

benchmarks to which local surveys can be tied. Secondarily, the
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results are of invaluable geodetic importance. Thus, in large, un=

populated areas, the cost of a triangulation may not be justified. In=-

stead, a less accurate survey procedure called a "traverse" has been

used for horizontal control.

The traverse is simply a straight-line measurement of distance

and azimuth, perhaps along a highway or railroad track, interspersed

with many azimuth control (Laplace) stations to bound the errors.

The traverse procedure is not well-regarded by geodesists be-~

cause of the lack of control on errors. Figure 3-5 shows the U.S.C. G. S.

specifications for a first order traverse. Ultimately electronic dis-

tance measuring techniques combined with more frequent astronomic

measurements may improve the accuracy of the traverse until it is

comparable to that of a triangulation. Bomford (Ref. 87, pp. 63-65)

suggests that with Laplace stations spread every two miles, the traverse

accuracy should equal or exceed the triangulation accuracy.

Many areas of the western United States are still connected to the

East by means of traverses.

3.F. 2. TRILATERATION.

The classical survey measures angles because the painfully slow

process of measuring length with a tape is relatively inaccurate, ex-

pensive and slow. Since World War II, a plethora of electronic distance
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measuring tools have become available. Among them are the Geodimetex

and Tellurometer, Hiran (high-precision Shoran), Loran and Radar.

These devices either measure length between two points or distance

from some fixed stations.

The first three devices are widely used in attempts to achieve

geodetic accuracy. Geodimeters and Tellurometers are being taken to

observation stations by helicopter, Jeep or backpack and used to meas-

ure lengths between hitherto inaccessible stations. Laplace stations

are interspersed for azimuth control. Then, the survey is reduced as

discussed in Section 3. E. 6.

A major objection to the trilateration is that just enough information

is obtained to solve the triangles whereas the triangulation contains a

considerable redundancy of measured angles to check errors.

Presently, Hiran, the most accurate of the radar- or hyperbolic=

type devices is said to give an accuracy as high as one part in 240, 000

(Ref. 35). The Geodimeter and Tellurometer give about one part in

10° or slightly better (Section 3. E. 2.). There is every reason to be=

lieve that with the increased use of trilateration, it will replace tri=-

angulation, to geodetic accuracy.

The U.S. Army Map Service, U.S. Air Force and various oil

companies have made much use of trilateration. Over-all probable

errors have been estimated as one part in 200, 000 for a 1000 mile

Hiran survey (Ref. 50). The 10, 000 km. Hiran survey around the

Caribbean Sea, closing a loop from Florida, around the Gulf of Mexico,
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through Venezuela to Trinidad and returning to Florida reportedly

closed within 25 meters (Ref. 98, p. 73).

J «.. SELECTION OF A REFERENCE ELLIPSOID.

An observer outside the Earth would view the selection of a refer

ence ellipsoid as follows. First the size and shape are defined. Then

the ellipsoid's center is located as close to the mass center of the

Earth as possible. Finally, the ellipsoid is oriented to place its axis

of symmetry parallel to the geographic polar axis of the Earth. Points

on the Earth map onto the ellipsoid along the normal to the ellipsoid.

The external geometric interpretation shows that seven parameters are

needed to fully define a symmetric ellipsoid, nine to define a triaxial

ellipsoid:

Size, a, and shape, f, of a symmetric ellipsoid or the

three principal semi=diameters of a triaxial ellipsoid.

2. Position of the origin, three parameters.

Orientation of the ellipsoid, two parameters, for a sym-=-

metric ellipsoid; three for a triaxial ellipsoid.

Because the geodesist cannot view the Earth from afar, this pro-

cedure is in fact impossible. The Earth~bound observer must select

an origin and define the seven parameters of a symmetric ellipsoid as

follows:

|

?

Size, a, and shape, f, as before.

Geodetic latitude and longitude of the point on the ellipsoid



Figure 3-6

DIMENSIONS OF PROPOSED

REFERENCE ELLIPSOIDS

Author

Everest

Bessel

Clarke

Clarke

Hayford
[international)

Heiskanen

Heiskanen

Krasovsky

Krasovsky
Triaxial

Jeffreys

Hough (U.S. Army
Map Service

Date

1830

1841

1866

1880

1909

1928

192Q

‘g38

1942

.948

‘9584

meters meters

6377,276 '6356,075

6377,397 6356,079

6378, 206

6378,301

 6356, 584

6356, 566

6356,9126378, 388

(gravith etric)
5378, 400 6357, 010’

6378,206 6356, 846

5378. 245 6356, 863

6378, 099 6356, 631

$378,270  6356. 794

300.8

1299.15

294.98

293.47

297.00

297.3

298.2

298.6

298.3

297.1C

297.0

Notes

Triaxial, A,=0°
a,-a, = 242 m,

Triaxial,A=34°E.
a, —a, = 165 m

Triaxial,A,= 15°F
a, -a,= 212 m.

Data from References 87, pg. 306; 98; 107, pgs. 80 and 230; 149,
Hayford gave minor axis as 6356,909 meters which is arithmetically
inconsistent with 1/f = 297. 00,



which is to coincide with the origin of the survey.

3. Height of the ellipsoid above the ground surface at the

origin of the survey.

4. Orientation of the ellipsoid. This requires two more

parameters, implied in the Laplace control equations.

The size and shape of the reference ellipsoid are selected from the

results of past surveys, Figure 3-6. The origin should be selected in

an area in which the geoid is smooth. Thus, the ellipsoid can be ori=-

ented parallel to the geoid without introducing large deflections of the

vertical throughout the remainder of the net.

The definition of the two orientation parameters is clear if the

Earth can be viewed externally. The center of the ellipsoid is fixed

and two parameters are needed to orient its axis. However, to an

Earth-bound observer, the situation is more complicated. The Laplace

control equations, Equations (3«6) through (3-8), are true only if the

axis of the ellipsoid is parallel to the geographic polar axis; two ori-

entation parameters of the axis of the ellipsoid relative to the geo-

graphic polar axis have been implicitly introduced and set equal to

zero. One parameter is essentially an independent specification of

64 in such a manner that 8, , L, and L, satisfy Equation (3-6). The

other parameter is either 6, at the origin or A; of a line radiating from

the origin, both defined so as to satisfy Equations (3-7) and (3-8) at

the origin. This procedure insures that the Laplace conditions include

the constraint that the axis of the ellipsoid be parallel to the geographic

polar axis of the Earth. . If these constraints were not incorporated in
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the Laplace equations, the axis of the reference ellipsoid would not be

parallel to the geographic polar axis. However, Laplace control can-

not influence the location of the center of the ellipsoid relative to the

mass center of the Earth. The orientation of a triaxial ellipsoid re-~

quires the independent specification of geodetic azimuth.

The dimensions of the reference ellipsoid used by the U.S.C. G. S.

are those of the Clarke Ellipsoid of 1866, Figure 3-6. The origin in

the United States, and since 1913 throughout North America, is a

benchmark in Kansas known as Meade's Ranch (Ref. 149, pp. 13-14).

The International Ellipsoid of 1924 is used throughout most of Western

Europe (Section 3. K. and Figure 3-6).

Having selected and oriented an ellipse, is this the best orientation

size and shape? To answer this question, a criterion for “best” must

be defined. In years past, the "best" size and shape was that which

represented the "figure of the Earth" most exactly. Today, the ellip-

soids being proposed are so nearly alike that arguments as to which

best represents the geoid are tautological, especially since a large

error is introduced because of the separation between the center of

the ellipsoid and the mass center of the Earth.

A better criterion is to select the size, shape and orientation which

minimizes some parameter such as mean square N or mean square

5, over the surveyed area. The optimization can be performed ana-

lytically using the equations shown in Reference 87, pp. 127-132 for

transforming from one ellipsoid to another. Analytically, the Earth
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can be mapped onto an arbitrary ellipsoid and then transformed to some

ellipsoid of unknown parameters where the parameters are found by

minimizing integrals of the form:

PPL, Ar) dS
~~  - 9

(3-11)

bon + 6.) dS

Several recent attempts have been made to do this (Refs. 113 and 152,

p. 30). A major problem is a lack of information concerning N, 06m

and 6, relative to the first assumed ellipsoid. Section 3.J. discusses

some means of measuring N, 8, and 8p over large areas. Meade

(Ref. 152, p. 30) states that attempts are underway to reduce the entire

European land mass simultaneously, allowing enough degrees of free~

dom to select an optimum N, 8, and 6, at the origin. This procedure

requires the repeated solution of ten thousand simultaneous equations,

using a digital computer, for various values of N, &amp;6y and 6p at the

origin until values are found which minimize the integrals, Equa-

tions (3-11).

The optimum ellipsoid for a restricted area on the Earth's surface

will not generally have its center at the mass center of the Earth,

especially if the surveyed area is small. Conversely, an ellipsoid

whose center is at the mass center of the Earth will fit poorly, locally

compared to an ellipsoid which has the optimum local orientation.

Section 3. K. pursues this problem further.

- =
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It is noteworthy that the navigator does not require position coordi-

nates on an optimum ellipsoid. Any ellipsoid is satisfactory for naviga=-

tion provided that all points on the Earth are mapped onto the same

ellipsoid and provided that the components of g and Wg are known in

the geographic coordinate frame defined by that eilipsoid.

3, H. MAPS.

The results of a geodetic survey are three coordinates, Lx, Ay

and hg of each point in the surveyed area relative to an assumed refer-

ence ellipsoid. For visual use, these must be presented on a map which

should show relative position, direction, distance, shape and area and

be readily constructed (Ref. 109, p. 2).

Accurate maps must be made on flat surfaces for convenience in

printing, manufacture, storing and handling. Thus, the mapping prob-

lem consists essentially of devising coordinate transformations which

will map each point of the reference ellipsoid onto a fiat surface with

a minimum of distortion. A purely distortion-free transformation

(isometric) is possible only between surfaces of the same Gaussian

curvature (Ref. 221, p. 260) so a distortion-free map from an ellip-

soid onto a plane is impossible.

Mapping schemes can be generally divided into two broad cate-

gories; projective and analytic. In the former, some physical process

is used to project points from one surface onto the other, as ina
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radial projection from a sphere onto a tangent plane. In the latter

category, a complex coordinate transformation is used with no simple

physical model. Maps from an ellipsoid onto a plane (as distinguished

from maps onto a plane from a sphere) are usually analytic, not pro-

jective. Many books on mapping exist (Refs. 4, 89, 109, and 221)

which discuss a large number of maps, each suitable to some special

purpose. This section discusses the two most common maps; the

Lambert conformal and transverse Mercator projections. One or the

other of these has been adopted by every state of the Union for presenting

the results of first order surveys. Though both are analytic maps, an

approximate projective model exists to describe each transformation.

The Lambert conformal conic projection projects points from the

ellipsoid onto a circular cone whose vertex is on the axis of the refer~

ence ellipsoid. The cone slices into the reference ellipsoid as in

Figure 3-7, intersecting it in two standard parallels of latitude, north

and south of the central region of the map. Note that distortion is inde-

pendent of east-west position so the map can have an indefinite east~

west extent. However, distortion changes markedly with north-south

position. On the standard parallels of latitude, the north-south and

east-west scales are substantially exact. Between the standard

parallels the ellipsoid is above the cone and projected lengths are too

small. Outside the standard parallels, the projected lengths are too

large and the scale increases rapidly with distance from the standard

parallels. In order that the error nowhere exceed one part in 10, 000,

the maximum north-south extent of the map must be 158 miles and the
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standard parallels placed 2/3 this distance apart (Refs. 87, pp. 132~

151 or 89, pp. 310-328). Since there is no limit to the east-west extent

of this map, it is used to represent areas such as the state of Massachu-

setts or Long Island which have predominate east-west extents. The

transformation equations from Lv and My to the Lambert x and vy

grid coordinates are found in Reference 147.

The transverse Mercator projection projects points from the

ellipsoid onto an elliptic cylinder whose axis intersects the axis of the

reference ellipsoid and is perpendicular to it, Figure 3-7. The size and

shape of the cylinder are such that it slices into the reference ellipsoid

along two plane ellipses, parallel to and equidistant from the central

meridian of the map. Note that distortion is independent of north-south

extent. However, distortion changes markedly with east~west position.

On the two elliptic intersections between the ellipsoid and the cylinder,

the north-south and east-west scales are substantially exact. Between

these intersections, the ellipsoid is above the cylinder so projected

lengths are too small. Outside these intersections, projected lengths

are too large and the scale increases rapidly with distance from the

central meridian. In order that the scale error be nowhere greater than

one in 10, 000, the east-west extent of the map must be limited to 158

miles and the elliptic intersections must be about 2/3 this distance

apart. There is no limitation on the north-south extent of a transverse

Mercator projection so it is used to represent areas such as Michigan

or California which have extensive north-south dimensions. The trans-

formation equations from L+ and Ay to Mercator x and y grid

4
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coordinates are given in Reference 147.

For local manned navigation missions, it is assumed that the pilot

has a map drawn in transverse Mercator or Lambert grid coordinates

and would like his navigation device to read out in these same coordi~

nates, not in latitude and longitude. Section 5.D briefly considers the

mechanization of an inertial navigator in map grid coordinates.

3.J. THE MEASUREMENT OF GEOIDAL HEIGHTS AND THE

DEFLECTION OF THE VERTICAL.

3.J.1. GEOIDAL PROFILES

The height of the geoid above a reference ellipsoid is needed in the

accurate reduction of the horizontal control survey and to compute bq

the geographic height of a point on the Earth's surface with respect to

the reference ellipsoid.

In an area which has already been surveyed to first order but in

which the Molodensky, or N, correction has been omitted because N

is unknown, N can be calculated by the measurement of geoidal profiles.

Suppose the survey has been reduced to a reference ellipsoid, omitting

the Molodensky correction and that at some point, the principal deflec=-

tions of the vertical are 6 and 60 . Then in a direction at an azimuth

A, the deflection is &amp;

— ’

Sa = Sa cos A + do Sih A 2)

b



Figure 3-8. Figure 3-9 shows a vertical section of the Earth at an

azimuth A. Since g is normal to the geoid:

tan 5, ~~ 6a
-

x
(3

where x is horizontal distance.

ventiorally, §,, and §, are positive when g is southwest of the normal

to the ellipsoid. Hence the difference in elevation between the geoidal

heights at points P, and P, is:

\ _ Np, A. |
&gt;

X 3}

Thus, if a survey is taken alceng a line at azimuth A, the geoidal height

differences are found approximately by taking the average 6, tetween

P, and P,

Np, &lt;n = SalatOne) py
2 \

| 3 { 3

[n practice, the procedure for a gecidal profile is as follows:

1. A route is mapped over the area to be surveved, near

previously surveyed benchmarks.

b. The route is subdivided into straight-line segments at rnown

constant azimuths, Reference 87, p. 249 gives the typical length cf

a segment as ten to twenty miles. The route begins at the origin

of the survey where Ny has been arbitrarily defined.

=.Atsuccessive points along the profiie lire, astroncmic

latitude and longitude are measured and geodetic latitude and longi-

tude computed. &amp;y and §, are computed using Equations (3-5)
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and (3-8), and 6, using Equation (3-12). Equation (3-15) is used

to calculate AN, and hence N, since N, is known or assumed at

the origin.

5, and N are referred to the ellipsoid which was arbitrarily estab=

lished at the origin of the survey and whose center is not necessarily

at the mass center of the Earth. Hence, geoidal heights calculated in

different geodetic nets are not comparable. Bomford (Ref. 88, p. 251)

estimates that with line segments fifteen miles long, N can be calculated

to an accuracy of 1-1/2 to 3 feet.

3.J.2. GRAVIMETRIC SURVEYS.

The gravimetric survey attempts to calculate the geoidal height and

deflection of the vertical relative to an ellipsoid which is centered at

the mass center of the Earth. The method is indirect and uses as its

basic data mez surements of the magnitude of gravity throughout the

world.

Referring to Section 2. D., the geoid is the equipotential surface of

Newtonian gravitation and rotation. The cogeoid is a hypothetical

boundary equipotential of the Earth. It is obtained by removing and add-

ing mass to the Earth according to some compensation scheme until a

limiting equipotential surface is obtained from which no mass protrudes.

This cogeoid is a function of the compensation scheme used.

The magnitude of gravity can be measured on the surface of the
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Earth and occasionally under the sea, on the surface of the sea and in

the air. For any known compensation scheme which converts the

geoid into a cogeoid, the gravity values on the geoid can also be con-

verted into corresponding gravity values on the cogeoid, geo. In prin-

ciple, g can be measured at each point on the Earth and reduced to

the cogeoid beneath.

The size and shape of a reference ellipsoid can be defined theoreti-

cally. The value of gravity, hy? at every point on the reference

ellipsoid can be calculated using Equation (2-25).

The gravimetric survey makes use of the calculated anomaly,

Ze= 8h, * tO evaluate N, Sm and 6p, of the cogeoid relative to an ellip-

soid whose mass center is at the center of the Earth and which has the

assumed dimensions. Since N, §&amp;y and §p are referred tc the cogecid,

not the geoid, the subscripts "c" will be used. The calculation of N,

Suc and 8, from the computed anomaly is based on the theorems of

Stokes and Vening~Meinesz (Ref. 107, pp. 63-69) which express them.

at any point, Py, in terms of the following integrals over the entire

surface of the Earth:
oe

eof | PONg
x . 1 dN. ~ A

Me TTR: gv ad

2 = dNe (os A
*S Re dY

(3-16)

here:
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_sinY Y_ YoF(Y) = allie cse Gn 5 cosY = 3 cos ¥ Ing (sin ssi)

Rg = any radius of the earth.

9. = any value of gravity on the reference ellipsoid.

The integration is taken over a sphere whose radius is approximately

that of the Earth, instead of over the ellipsoid, to sufficient accuracy,

considering the sparse gravity data which is available. 4 can be in-

terpreted geometrically as the geocentric angle from P, , at which

N and &amp;, are to be measured, to the point at which g is measured.

[t is assumed that the angle between the geoid and cogeoid is small

so the deflection of the vertical of the geoid and cogeoid relative to the

ellipsoid are equal. Heiskanen (Ref. 107, p. 73) estimates that these

deflections of the vertical differ by no more than 0.1 second of arc.

The height between the geoid and the cogeoid can be calculated for any

compensation scheme so N can be found from Ng .

Clearly, a lack of information about g in an extensive area de=-

grades the accuracy of N and &amp;,. For example, values of ge do not

exist over most of the world's ocean areas. Errors in g, in distant

parts of the world do not affect N, 6, and 6p too severely because the

function, F(y), attenuates with increasing U. However, the areas

over which g. is unknown are so large that the weighted effect on N,

bu and 6, is large.

Heiskanen and his associates at the Ohio State University Mapping

and Charting Laboratory have continued Tanni's work to establish a

gravimetric geoid. Heiskanen has divided the globe into 1° x 1°
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spherical quadrilaterals and estimated the average magnitude of gravity

within each quadrilateral. In the case of unsurveyed areas, such as

the Pacific Ocean, he has assumed a value zero for g.—he {Ref. 107,

p. 271). By numerical integration of Equations (3-16) N, 6, and &amp;p

are found everywhere.

The error casued by omission of data is difficult tc assess. In the

vicinity of PF, , gravity must be known very well to get accurate results

hut the effect of distant areas is not as clear (Ref. 114). For example,

Heiskanen estimates that if g,—g, is assumed to be zero for ail points

J &gt; 20°, the error in N is only 13 meters (Refs. 107, pp. 271ff. and

114) and if the area of radius y &gt; 25° around the antipode of F| is omit-

ted, the error is five meters (Ref. 107, p. 271 ff.). If g - g, is

assumed to be zero for ¢ &gt; 3°, the error in the defiection cf the vertical

is only four seconds of arc and if gc ~ En, = 0 for y &gt; 20°, the error is

only two seconds of arc (Ibid.).

Figure 3-10.

Typical Heights of Columbus Geoid

above Reference Ellipsoid
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The gravimetric geoid calculated from the 1° x 1° quadrilaterals

is called the Columbus Geoid (Refs. 105 and 107, p. 289 ff.). Two

meter contours are given in the United States and Europe and ten meter

contours elsewhere, all with respect to a reference ellipsoid of flat-

tening 1/297.00. Figure 3-10 shows typical heights of the geoid above

the ellipsoid. An additive elevation constant corresponds to the value

of Seq, used in the theoretical gravity formula. The Columbus geoid,

though admittedly crude, shows no triaxiality.

The ideal astrogeodetic survey would use gravimetric data to decide

on N, and §,, at the origin and thereby provide "gravimetric control

stations" to control N, 64 and 6p in the same manner that Laplace

stations control azimuth. This has not yet been done except on an experi-

mental scale (Ref. 107, p. 269 and 98) because of the lack of adequate

gravity data over the entire Earth. Gravimetric values of &amp;, are espe-

cially valuable since they reduce the necessary accuracy in rueasuTing

astronomic longitude in the astrogeodetic survey. Rice (Ref. 107,

p. 268) found that the accuracy of gravimetric deflections of the vertical.

in areas covered heavily with gravity measurements, can equal or sur-

pass that of astrogeodetic deflections.

In order to obtain more gravity coverage over the Earth, the U.S.

Air Force has been conducting experiments to measure gravity over

large areas from an airplane (Refs. 131 and 148 and Sections 2. F. 3 and

5.F.3.). In future years, as more gravity data accumulates, this

method may become more valuable. The U.S.C. G. S. plans to cover

the United States with ground gravity stations at six mile intervals



(Ref. 101, p. 19). Also, gravimeters are being exchanged between

nations to insure identical calibration throughout the Western world.

Section 3. K. discusses world-wide geodetic ties in more detail.

3, K. WORLD-WIDE GEODESY.

} X.1. INTERGRID TIES

Most of the advanced nations of the world have established their

own geodetic programs. Each nation (occasionally, each region, as in

the case of the United States, Alaska, Canada and Mexico) has estab-

lished triangulation ox trilateration nets and occasionally traverse lines

to cover its land area. The nets of each nation are surveyed and ad-

justed independently. Each nation chooses dimensions for a reference

ellipsoid, chooses an origin and then orients its ellipsoid independ-

ently of the others.

By international agreement at the 1924 annual meeting of the Inter-

national Geodetic Association in Madrid, most of the countries of the

world adopted the same ellipsoid dimensions; those of the Hayfeord ellip-

soid of 1909, renamed the International ellipscid. The assumed dimen-

sions are those shown in Figure 3-6, although Hayford's original

specification contained an inconsistency between a, b and f caused by

an arithmetic error. Those nations such as the United States which had

begun geodetic programs eariy, had accumulated such a large body of

data on their own national ellipsoids that a change to the International
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was prohibitive.

The navigator, travelling across the world, must be independent

of local reference ellipsoids and would like to operate on a world-wide

ellipsoid. The need for accurate world-wide satellite tracking and

navigation, the need to guide ballistic missiles and other unmanned

vehicles and the invention of electronic distance measuring devices have

brought about a renaissance in geodesy, with emphasis on world-wide

intergrid comparisons. Failing the establishment of a world-wide grid,

the geodesist or navigator would like to know the relative displacements

between the national reference ellipsoids. These could be specified by

giving the x, y and z rectangular coordinates of the center of one

ellipsoid in the coordinates of another or by giving the geodetic latitude,

longitude and height in one grid of a point in another. Some national

datums are shown in Figure 3-11.

lf different ellipsoids are used by countries which are located on

the same land mass, they can be readily tied together by triangulation

across the national boundaries. In the past, nationalistic impulses and

a lack of motivation have mitigated against such cooperation. Heiskanen

estimates that the coordinates of an unspecified European point or

points, possibly Potsdam, East Germany, differ by 95 meters in the

Danish and Swedish systems, 250 meters in the Danish and German

systems and 191 meters in the English and French systems (Ref. 107,

Ps 233).

The misorientations of the ellipsoids can be quite pronounced. For
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Figure 3-11

NATIONAL GEODETIC DATUMS

Dimensions of Reference Ellipsoids

Nation

or Region

United States of

America, Canada,
Mexico

Germany

Europe

IT SSS R.

India

Japan

Manchuria

ire Shown in Figure 3-6

Name of Reference

Datum Ellipsoid

North American
Datum of 1927

Clarke, 1866

Bessel

International

Krasovsky,
1942

Everest

Tokyo Datum Bessel

Manchurian

Principal System Bessel

Origin

Meade's Ranch,
Kansas

Potsdam, East
Germany

Same

Pulkovo Observ-

atory

Kalianpur

Tokvo

Shinkyo

Data from References 87; 98: 107, pg. 234; 149
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example, Japan's reference ellipsoid is a Bessel ellipsoid and India's

is an Everest ellipsoid but both are poor fits, even within their own

countries, because they are badly oriented (Refs. 87, p. 130; 98, p. 78

and 152, p. 30). The origin of the Japanese system, Tokyo, happens

to be on a sharp geoidal slope where &amp;y was arbitrarily chosen to be

zero, thus making the Tokyo datum a poor fit to the geoid in much of

Japan. The Manchurian Principal System (also a Bessel ellipsoid but

differently oriented) appears to be a better fit.

A comparison between ellipsoids separated by a body of water is

impossible by the classical astrogeodetic techniques. Heiskanen, in

1959, estimated that distances between points in the Eurasian and North

American land masses might be in error by as much as five miles (Ref.

102) though other estimates are as low as 100 meters (Ref. 152, p. 31).

The most probable separations are on the order of 500 to 1000 feet

{Refs. 87, p. 337 and 146, p. 12). Several techniques have evolved to

connect geodetic nets separated by bodies of water. These divide into

two broad categories; those which simultaneously triangulate an object

from two grids and those which observe a moving object successively

in each grid, its trajectory being inferred between observations.

A rocket, flare or artificial satellite can be equipped with a flashing

strobe light and launched into orbit. At least two observers, at known

locations in each of the grids to be connected, view the object and tri-

angulate it simultaneously. Each observer can compute the position of

the strobe light in his own grid. Thus, the coordinates of one point,

the flare or strobe light, are found simultaneously in two grids.
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The observation of a flashing light instead of a steady flare reduces

the need for accurate time information since, if the flash is fast enough.

the observers need only be certain that they are all observing the same

flash. More important, this method makes it unnecessary to know the

object's trajectory.

The most serious objection to the simultaneous triangulation of a

flashing light is that at large distances, it appears near the horizon and

the refraction error will, for example, exceed five minutes of arc in

the vertical plane, at a five degree elevation angle (Ref. 4, p. 430).

Simmons (Ref. 152, p. 6) believes that although most of the vertical

refraction is predictable, there is still an uncertainty of five to ten sec=-

onds of arc. He also states that horizontal angles can be measured to

one second of arc but in view of atmospheric turbulence, this appears

optimistic. Furthermore, additional errors are introduced by the poor

strength of figure of the vertical triangles. In spite of this, the observa-

tion of flares has been widely used to connect islands to nearky mainlands

Artificial satellites are an extremely useful geodetic tool. If the

nets to be connected are close together, the satellite can be triangulated

simultaneously from several stations in each net as described above.

If the orbit of the satellite can be calculated at any instant (Appen-

dix F), then the satellite can be observed against a star background by

observers in one grid as it passes overhead near the zenith and again

by observers in another grid, perhaps fifteen to thirty minutes later.

The time of each observation must be measured carefully, both grids
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being on the same time scale. If the orbit is known, the observers can

find the coordinates of each observation point in the other grid. A

serious limitation to such a method is the effect of short-period per-~

turbations of the satellite about the mean, plane elliptic orbit. Because

the path of the satellite is calculated from relatively few observation

stations, many observations are required to identify short-period trends.

If unpredictable perturbations are large, the satellite will not follow the

predicted orbit between the observation stations and the triangulation

would be in error. Reference 146, pages 30 ff. gives the position error

of a 1000 mile high satellite as 300 feet. It is probably safe to say that

the usual position error is three times as large. The triangulation error

will be roughly as large as the error in satellite position.

Section 2. F.5 discusses the use of artificial satellites for com=

outing the form of the gravitational potential of the Earth.

The Transit satellite (Refs. 29 and 43) is placed in orbit and its

position calculated as a function of time. With this orbital information,

and with a measurement of the Doppler shift of a signal from the satel-

lite during an overhead pass, ground observers can calculate their

position on a reference ellipsoid of any assumed size and shape, centered

at the mass center of the Earth. Since the first such satellite has just

been launched (April, 1960), it appears to be too early to assess the

accuracy of Transit, even if the satellite orbit could be predicted pre~

ciselv

A third method of effecting intercontinental ties is to triangulate

~~



an aircraft simultaneously from two geodetic nets. Hiran (high-~

precision Shoran) is often used for this purpose (Refs. 35 and 50). A

Hiran receiver-transmitter in the aircraft simultaneously measures

the distance of the aircraft from four transponders, two in each grid

on the ground, as a function of time. The result is a series of coordi-

nates of the same point, the aircraft, in both nets. By continued applica-

tion of such a trilateration, a Hiran tie has been extended from Canada

to Scotland by the U.S. Air Force (Refs. 116, p. 1 and 146, p. 11).

Section 3.F. 2. gives the best over-all accuracy of a Hiran trilatera-

tion as one in 2 X 10° which at least equals that of a conventional tri-

lateration.

Another triangulation technique which has been used for long-range

intergrid ties is to observe the times at which the Moon cccults a particu-

lar star, from points in two different grids. (Ref. 108). The method is

limited by uncertainties in the rugged surface of the Moon since observer

in different grids on the Earth observe the occultation behind different

points on the Moon. The best published accuracy claims an eleven meter

error for a 400 kilometer tie (Ref. 113, p. 99), an error of one in

40, 000. The method of lunar occultations was used to locate the South

-

Pacific island of Palau (Ref. 137, pp. 17-18) and is being extended to

other islands in the Marianas and Carolines (Ibid. and Ref. 108).

A similar triangulation method observes solar eclipses from stations

n different geodetic grids (Ref. 113).
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3. K.2. WORLD-WIDE REFERENCE ELLIPSOIDS.

The various national ellipsoids have different sizes, shapes and

center positions. If Laplace control is exact, they all have nominally

parallel axes of symmetry. Whitten (Ref. 152, p. 31) estimates that

all their axes of symmetry are within three seconds of arc of each

other. Section 3.G. showed the difficulty of placing the center of a

reference ellipsoid at the mass center of the Earth. The separation

between the ellipsoid's center and the mass center of the Earth is esti=

mated by Rice to be 100 meters (Ibid.) by Bomford to be 300 meters

(Ref. 87, p. 337) and by Williams to be about 500 feet (Ref. 146). In

order to estimate the separation between the centers of two ellipsoids,

a geodetic tie must connect them. Consequently, even if the triangula-

tion within a net were perfect, the navigator must accept an error as

large as 1000 feet or more if he travels from grid to grid, unless all

grids are converted to a world-wide datum.

The U.S. Army Map Service combined astrogeodetic and gravi=-

metric data to select a world-wide ellipsoid. The result is the Hough

ellipsoid (Refs. 91 and 98) whose dimensions are shown in Figure 3-6.

The computations were based on the following published astrogeodetic

1LTYCS

. surveys of the U.S., Canada, Alaska and Mexico on the

North American Datum of 1927.

2. three long north-south arcs and several shorter north-

south and east-west arcs in the Western Hemisphere. One long arc
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extends the length of North and South America. One of the short

arcs extends east-west from Colombia to Trinidad.

. a survey "ring" around the Caribbean. This was triangu-

lated over land and trilaterated using Hiran over the island chains

{see also Section 3.F. 2. and Ref. 116, p. 7).

4. national geodetic surveys of Europe.

5. the North African triangulation grid and the thirtieth meridian

traverse north from South Africa. These surveys are tied to Europe

from North Africa to Crete to Greece and from North Africa through

the Levant to Greece, thus forming a closed Eastern Mediterranean

ping."

6. the Soviet grid, which overlaps the European grid at Pulkovc

on the west and the Manchurian grid on the east.

7. the Manchurian Principal Grid, to which the Korean and

Japanese surveys were reduced.

The technique used by Mrs. Fischer, of the Army Map Service, was first

to select more than 100 points in Eurasia at the corners of 5% x 5° squares

and place all of them on a common ellipsoid. Then, she optimized the

change=-of-ellipsoid formula to find the parameters a, f, Ny, Sm, and

Op, (the latter three at the origin) which would minimize the mean

square N over the entire net. This resulted in an optimum astrogeodetic

Eastern Hemisphere ellipsoid.

131 similar points in the Western Hemisphere were analysed to

find the optimum ellipsoid there. An ellipsoid with the dimensions of

the Hough ellipsoid was found to yield a sufficiently small NZ, though
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not the unconstrained minimum, Lacking published intercontinental

ties, Mrs. Fischer finally assumed that the world-wide ellipsoid has

the dimensions of the Hough ellipsoid. Using gravimetric data, she

was able to coarsely locate both hemispheres with respect to each

other. Intergrid ties and improved geodetic data over hitherto unmapped

regions will improve the selection of a world~wide optimum reference

ellipsoid.

Using the Hough ellipsoid in its optimum Western Hemisphere

orientation, it is found that at Meade's Ranch, 6 and dp are about

one second of arc and Ny is about ten meters (Ref. 98, p. 75). Thus,

Meade's Ranch is a good origin, being on a gentle, geoidal slope.

3. K. 3. SUMMARY.

The geodesist can find the relative location of two fixed points on

a well-surveyed land mass to within twenty meters, an ample accuracy

for any navigation application. Relative locations between islands and

continents can probably be specified to 300 meters because of uncer~

tainties in the relative orientation of the respective reference ellipsoids.

The navigator does not ask that the world be mapped onto the opti~

mum ellipsoid; any ellipsoid is satisfactory if it is universally used.

For navigation applications, all points on the Earth should be mapped

onto an ellipsoid whose dimensions are mutually agreed upon, though not

necessarily optimum. Its orientation should be fixed with respect to
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the Earth. Gravimetric and satellite measurements should be used to

ascertain the proper deflection of the vertical and geoidal height needed

at each national origin to retain the agreed~-upon-orientation for the

world-wide ellipsoid.

Finally, the vector angular velocity of the Earth and the vector

gravity must be known in the geographic coordinates defined by the ellip

soid (Sections 2.F. and 4. G.). The location of the center of the world-

wide ellipsoid relative to the mass center of the Earth does not affect

the position accuracy between points on the surface of the Earth. How-

ever, it does affect the mechanization of the inertial navigation equations

Because the center of the ellipsoid will rotate around the spin axis of

the Earth, a centripetal force field would be created which must be

included in the navigation equations. For example, if a 107° gee

threshold is assumed for the accelerometers, the center of the world-

wide ellipsoid may be no more than 2000 meters from the mass center

of the Earth.
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Chapter Four

THEORY OF COORDINATE TRANSFORMATIONS

4, A, THE METRIC TENSOR.

The role of coordinate transformations in navigation is greatly il-

luminated by the use of tensor calculus, the general theory of coordi-

nate transformations. This chapter discusses those aspects of three-

dimensional tensor calculus which are applicable to navigation. Com-

plete treatments of the subject are found in References 225 and 237.

Suppose vy, , Ya and yy are orthogonal Cartesian coordinates which

are transformed to some arbitrary curvilinear coordinates z', z* and

73 according to the transformation:

nosy. (21) 4-1)

where the only restriction on the transformation is that it be single-

valued, continuous and differentiable. z‘' are the contravariant com-

ponents of the position vector Zz as discussed in Section 4.C. The
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upper index is not an exponent, Since the y coordinate frame 1s Carte-

sian, there is no distinction between the covariant coordinate, Vi and

the contravariant coordinate, y'(see Section 4.B.).

The Jacobian matrix of this transformation has the elements 24

A (1 = re - *
4 a

aN{
“732 (4-2)

Some interesting properties of this matrix are discussed in Section 4, B.

The differential distance between neighboring points at any time is

(ds)® = (dy, + (dy,)’ + (dyy)
O(a i\a NZL Wali)

(3 ¥) (5 02 3 02
&gt;r more briefly:

2 NE WNT," j(ds) = = 2202 = 9. dz021 ek | I:
where summation is understood on a repeated index. The matrix elements

21k are the covariant elements of the metric tensor 2. This tensor de-

scribes the nature of the transformed space at each of its points.

3

C carly, the individual terms:

We i yzidzkt 92% z37) = 2

Wi dN. Kgok 55 0% oz

(no sum)

110 sum)
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are identical so Bik = BK) and the matrix of the covariant elements of

the tensor is symmetric.

The contravariant elements of the metric tensor, Z , are gl where

the matrix product of the covariant and contravariant elements

hn gl =
= §

gi 10" = [I]

i 1

as shown on page 171. Since Le; ] is symmetric, its inverse, [g" 1

is also symmetric. The notation of Equation (4-4) is that of matrix

algebra (Ref. 223, Chap. 1). The metric tensor should be regarded

as having intrinsic significance for any particular coordinate trans-

formation. Convenience dictates whether covariant and contravariant

components are used

In any coordinate frame, Bi or g') has nine elements of which

six are independent since the matrices are symmetric. The character

of the new coordinates can be inferred from either matrix:

If all six independent elements are general functions of position,

the new coordinates are non-orthogonal and curvilinear.

’ If all elements are constant, the coordinate axes are straight

lines but do not necessarily intersect orthogonally. For example,

Appendix G discusses such an oblique coordinate frame in detail.

r
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3, If the diagonal elements are functions of position but the off-

diagonal elements are zero, the coordinates are curvilinear and orthogo-

nal, Examples are the ellipsoidal and geographic coordinates discussed

in Appendix D. When the Qt matrix is diagonal, the non-zero
2

elements are often designated hy and the matrix written:

19]=

9 { |=

3
{

-~

ww

~

N

~~ OD

“3

“

We
QO 1 |

0 T.* 0 he

(4 - -y

 7) |

If the off-diagonal elements are zero and the: diagonal elements

are unity, the new coord:nat~s 2r~ rectangular Cartesian.

5. If the off-diagonal elements are zero and the diagonal elements

are constant but different, the coordinates are rectangular with different

scales along the three axes.

Figure 4-1 summarizes the results of this section.
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4.B., COVARIANT AND CONTRAVARIANT ELEMENTS OF TENSORS,

Formally, the M

T.,
lyK

IVT © J

M 1ndices]

where the indices take on the independent values 1, 2, 3, ..., are the

covariant elements of a tensor if, under a transformation of coordinates.

Equation (4-1), the elements transform according to the rule:

8 Apdy Np
Eo Pen-- zt wl at

A ~ }

The superprefix y or z indicates the coordinate frame in which the

elements of T are expressed. They are the contravariant elements of

a tensor if they transform according to:

20k --_ MN pp -- DET OF 92°
op Ye An

Mixed contravariant-covariant elements can be defined analagously,

Since y is Cartesian, no distinction is made between ye and «

T has significance by itself as a tensor though its elements differ

in different coordinate frames and in covariant or contravariant form.

A tensor of order two, T ; thus has nine contravariant or covariant

elements which can be written as square 3X 3 matrices. The elements

of higher order tensors cannot be so represented in a two dimensional

array. A first order tensor is called a vector and its elements are

often called components. First and second order tensors transform

as follows:
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pT= CT;
Jr,

et

7,T

} AT
2p

-| Tem. 2“iK (4-8)

Any vector, V, which may represent position, angular velocity or

acceleration has covariant and contravariant components in any coor-

dinate system. In Cartesian coordinates,these components are equal

and can be found by either of two methods:

1 The covariant components are the dot products (orthogonal

—— [=

projections) of V onto the unit vectors vy.

v
I. = Mey.

The superprefix, Vv, indicates that thei th component is taken in the Y

frame. It is used only where ambiguity might arise as to which frame

the vector is resolved into. The circumflex accent indicates a unit

vector.

) The contravariant components are obtained by resolving Vv

along the Cartesian y: coordinate axes so that V is the parallogram

sum of the component vectors.

S 4,

In curvilinear coordinates, this definition of covariant and contravar-

lant components must be modified slightly as discussed in 4. C.

Nhen the yr are transformed into the 7» by Equation 1, the

rr’
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%
components Iv. of all vectors along yY are transformed into Ve and

Ey along 2 . The covariant and contravariant components of V in the

new frame will not be equal if the new frame is not Cartesian. The

formal rules for computing the covariant and contravariant components

in z from the Cartesian components are.

Covariant
2, 0d Wy.
Vi = 33¢ Vi

Contravariant Fy = nN WW,
A

(4-9

Before discussing the physical significance of the covariant and

contravariant components, consider the properties Of the transformation,

Equation (4-1):

The inverse is:

The matrix:

. _ dg ] =q;- dzdy; = = dz J

, Jz

x= 35,
[2]

4-10)

is the inverse of [a.. ] since their matrix product is the unity matrix,
|]

Consider an arbitrary vector, V, whose covariant 2 components

are fy. . Then:

tv. _ 045 Ay.
yee 1

2:. ~ Vi

Cv. = [a7a' |] [dvi |

al
v.V.

4

(4-11)

where [aT ] is the matrix whose elements are those of [a]. inter-
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Figure 4-1

COVARIANT AND CONTRAVARIANT PROPERTIES

OF VECTORS AND TENSORS

yd is Cartesian

o

zt is arbitrary

sor
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Differential Distance

Jacobian Matrix

Metric Tensor

Relations between Covariant and
Contravariant Elements of
Metric Tensor

Covariant Form
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No

changed about the principal diagonal, 3; = aj The contravariant

transformation in matrix form is:
L

PLA
ON J

4 Av. = ag tv;

Wu

Bvi] = [a7] [2 vi; ]

Hence, the covariant and cont—~vrr?ant components are equal if and

(4-12)

only if:
-1 T

This is the condition for an orthogonal transformation which is a rigid

rotation from the yy Cartesian frame to the 2 Cartesian frame. Thus,

the covariant and contravariant components are equal only in Cartesian

frames.

If *he ran ~‘ormation, Equation (4-1), is a rotation:

Wien Ql 5 = 2 4
The matrix [a]then has only a single real eigenvalue, unityyand the only

real eigenvector is the axis of rotation.

For any [a], the covariant elements of the metric tensor are ex-

pressible in terms of 24

2, . =Am Am
Y zy 2!

= 8m. 2m)

lg; 1= [7] [al

= ra qm)

(4-13)

Equation (4-13) can be used to relate the covariant and contra-
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variant components of V . Starting with:

[ve l= [aT] [Ms]
vis Pg

multiply the second by [a] :

a1 [V1 = [a] [7'10%v; T= [Pv]
and substitute into the first:

*vi1= [a (FV = fg 117] (4-14)

Hence, the matrix of the covariant elements of the metric tensor trans-

forms the contravariant components of V into the covariant components.

The matrix of the contravariant elements of the metric tensor is the

inverse of the covariant matrix:

[o Pyle Tse 1a

E__( -1 2

vse ved
® 2

 [gh 1 vi]
-| -1  %

= [1 [aT] [Tv]

Consequently, the elements of [g Y ] are:
“ -

A = 3% 32
| Nn Nm

Thus , Equations (4-14) and (4-15) relate the covariant and contravariant

elements of a vector Vv . It is clear once more that the covariant and

contravariant forms of the metric tensor are identical if and only if:

le 1= leg;
£ I x | 1
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Using the contravariant elements of the metric tensor, the differen-

tial distance between neighboring points can be found. Starting from

Equation (4-3):
(ds

L N

= }

= gi dz dz (4 -
-

= dz. dz' = dz. ot* dz,

pK dz, dz, (4-17

Thus, the differential distance can be expressed in terms of covariant

differentials of z or contravariant differentials of z.

It is of interest to find the covariant form of the differential trans-

formation:  KX
dz’ JZ dy;

3;
From Equation (4-14):AS follows.

K d

daz"
= Bux " :

iz,, o

i ba by20
m

The inverse is found by multiplying Equation (4-18) by zZ

m 044
dy. = OZ d

Y.-~= &lt;_ Zm

1 0Ys

(4-14)

(4-1 8)

(4-19)

Thus, given the transformation of Equation (4-1), the covariant or

contravariant differentials of z can be expressed in terms of differentials

af yv. Figure 4-1 summarizes the results of this section.
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4.C, COMPONENTS OF VECTORS.

Unfortunately if z' is not measured along a straight line coordinate

 OW; 3 Co | |
axis, —t and —— have dimensions so the covariant and contravari-

32! 0Y ;
3 —- : s

ant components of a vector, V, do not have the same dimensions as the

Cartesian components. Thus, neither is a component in the physical

sense, A rate gyro or accelerometer measures the component: of Vv

along its input axis where V is inertial angular velocity or linear ac-

celeration in inertial space minus gravitation. The physical component

of V in any direction is the dot product of V with a unit vector, P, in

A
that direction. If p has the covariant and contravariant components,

p- and pt in the z frame, the physical component of V along p is:

\ t
‘ = P viPv or P. V

— A

where the superprefix indicates resolution of V along p. Wherever

possible ambiguity might arise as to whether V; is a covariant or

physical component of Vv, the prefix, 'p'" will be used to identify the

physical component, Par, . Except in this chapter, V: is always a

physical component.

As an example, consider the oblique coordinate system of Appendix

G. The coordinate axes are non-orthogonal straight lines. Let the

contravariant components of the two unit vectors be:

] 0

[a]=]

via



Then Appendix G calculates the covariant and contravariant components

of a vector, V, from the formal rule, Equation (4-9):

ve] =v
| cos 30

| cos 15°|
7 l= V2 es 5

Appendix G also calculates the orthogonal projections of V onto the

coordinate axes. These are simply the dot products of V with unit

vectors along these coordinate axes and are identical to the covariant

components. Since there are no scale factors, the covariant components

are identical to the physical components. The parallelogram sum of

the contr»2variant comnonents are shown to be V

In a curvilinear orthogonal frame:
hy 2
n, 0

he1=: |

0

¢

0 0 hy
and the three unit vectors are:

1 ITa l= |
0

r J

He)]
Then the covariant components of a vector, V, are:

in terms of which the contravariant components are:

Vi
wr (no sum) (4-20)



and the physical components are:

\V-vei (no sum)
bh:

(4-21)

In a general non-orthogonal system, the physical components are

the covariant components multiplied by scale factors which are

functions of position and direction. The contravariant components

are linear combinations of the covariant components:

vt = gt) V3 4 5)

Figure 4-1 summarizes the resits of this section. Section 4, G.

illustrates the resolution of an angular velocity vector into covariant

and contravariant components in several coordinate frames.

1 D, COVARIANT FORM OF NEWTON'S LAW,

The physical components of force, inertial angular velocity and

inertial acceleration are of utmost importance in inertial navigation.

Two of these are related by Newton!s Law:

F =m R]

f= R],
where fr is the total specific force acting on m. This law is true only

in an inertial reference frame. For example, if the coordinates are

transformed by means of a time-dependent rotation, the law is not true
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unless Coriolis, centripetal and angular acceleration terms are added.

Can Newton's Law be written in "covariant form" so it is true in any

form? Reference 237, pages 150 to 151, shows that it can be so

written in either of the following forms:

: iz’ s n, r dz de’
Tr

ALP LI gazTow {sm dt dt

(4-22)

(4-23)

These forms relate the covariant or contravariant components of force.

velocity and acceleration in any coordinate frame, whatsoever, Under

an arbitrary time-dependent transformation, both sides of this equation

transform the same way, leaving the form of the law unchanged.

[s n, r] and OR are the Christoffel symbols of the first and second

kind respectively:

! J rm ? rn _ 2) (4-24)(mn 2] 23 { Clim gy Hen So
lo nl: iL [m n, 5] (4-25)

It can be readily shown that the covariant and contravariant forms of

Newton's Law are identical. Multiply Equation (4-23) by g.

2,
7 dz

Serr 7 Been

dz"
SE re

dz"dz’* Cer gf [m mela It

n 5192 dz’mon Slee JE

which is exactly the form of Equation (4-22). Since f_ and fq
T
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are first order tensors, the quantities on the right side of Equations

(4-22) and (4-23) must also be first order covariant and contravariant

tensors respectively. They are designated:

fre o (82)
r= (4)

(4-26)

S
where the symbol, 5t , is the absolute derivative operator, defined

by Equations (4-22) and (4-23) (Ref. 237, pgs. 49-50). These are

concise expressions of Newton's Law in covariant form.

By direct differentiation of Equation (4-24) with BS; - in Ae

the Christoffel symbols can be expressed as:

[ m n, r| _ Ok Ade
2" w™ae”

p &lt; + (4-27
om alee [rm no] = 3% 2d |

0 AT" AE"

Morse and Feshbach (Ref. 230, pg. 47) further simplify the

Christoffel symbols of the second kind for the special case of an orthog-

nal coordinate frame:

0 Y= dhe{4 cl =% dz"

\ i)
E (yt Ohi

Vite 0, 0lj LST Th me
(;4] =o

‘no sum)

(no sum)

{no sum)

* kk

(4-28)
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The Christoffel symbols of the first kind can be calculated from

Equations (4-25) and (4-28) for the case of orthogonal coordinates:

Thus:

or
Re we dm af = ge [mono]

[m n, pl

[ ii, i] =n,
H i 33k (no sum[44,8] =[§44] =n, |

[344] = -n2 ee
rw (no sum)

(4-29)

(4-30)

[i], k]=0 izj#£k

Reference 237, pages 44 to 45 and 151, shows that the covariant

forms of Newton's Law, Equations (4-22) and (4-23) can be transformed

to the form:

wher -

dar _ MT
ro Tt dz" 12"

Sa, dE 7
27h dt dt

4 1)

and has the physical significance of kinetic energy. These are the

familiar Lasrange equations of motion. fy , usually called the

components of the generalized force, are in reality the covariant

comvonents of force which do work of amount:

- CoC g
dW=frdz" = ff dz,

Hence the Lagrange equations are not merely energy relations in

the dvnamic system; they are force equations in covariant form.

f 2Q



When so expressed, the covariant equations of motion of a particle

are valid in any coordinate frame whatever; no privileged position is

attached to an inertial frame except that the equations are simplest

in that frame. The desire to do the same for angular motions with

respect to the fixed stars prompts the discussion of Sections 1.D. and 1, E,

The elegance of the covariant form of Newton's Law should not be

minimized though its practical use is rare. It is used in Section 4. E,

to transform Newton's Law into arbitrary rotating curvilinear coordi-

nates in order to express the output of an accelerometer.

4. E, ACCELEROMETER OUTPUT IN AN ARBITRARY, UNIFORMLY

ROTATING COORDINATE FRAME,

1. E.1. INTRODUCTION.

Consider a vehicle navigating near the surface of a uniformly rotat-

ing planet. Suppose a navigation coordinate frame, whose origin is at

the mass center of the planet, locates the vehicle in three dimensions

relative to the planet. Since the coordinates are in general curvilinear

and non-orthogonal, the unit vectors have unique but different directions

at each point in space.

An observer aboard the vehicle wishes to make measurements in
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this coordinate frame by aligning a "stable platform" with the unit

vectors, independent of the angular motion of the vehicle (Section

5.B.). The control system which decouples the stable platform from

angular motions of the vehicle and causes it to align with the coordi-

nate axes is assumed to be fast and accurate enough so its errors are

negligible.

A vector accelerometer is mounted on the stable platform. ''Vector

accelerometer' is a generic term for an instrument which measures

the three physical components along its "input axes'' of the inertial

acceleration minus gravitation, Section 5. B. Each instrument has

three outputs, each one proportional to one of the physical components

being measured, in the ideal case. If the input axes are rigidly fasten-

ed together, certain additional re~trictions must be imposed on the

navigation coordinate frame since in general, the angles between the

unit vectors would be functions of position.

This section derives the accelerometer output in terms of the angu-

lar velocity of the planet and the metric properties of the navigation

coordinate frame. It is assumed that the accelerometer input axes

are aligned with the unit vectors of the navigation coordinate frame.

To navigate with the accelerometer input axes oriented otherwise re-

quires additional coordinate transformations, though it is sometimes

dan ™

120)



4, E.2. GENERAL DERIVATION OF ACCELEROMETER OUTPUT.

Suppose that three arbitrary curvilinear coordinates, z', z“ and

23 locate the vehicle (more exactly, they locate the accelerometer

since the vehicle itself can be a quarter of a mile long) with respect to

the planet. The inertial angular velocity of the planet, We , is

assumed to be constant in direction and magnitude. No assumptions

are made about the i”) in order to permit the use of coordinates which

are not symmetric about the axis of rotation of the planet. Examples of

such unsymmetric coordinates are those based on a triaxial reference

ellipsoid or on a false-pole coordinate frame (whose pole is on the

equator, to permit operation near the geographic poles with unambigu-

ous position coordinates),

Let x; be planetocentric, inertially non-rotating Cartesian coordi-

nates oriented so xy lies along the geographic polar axis and x, and

kK, lie in the equatorial plane. Let y; be planetocentric Cartesian co-

ordinates which rotate with the planet and are oriented so y, is parallel

to xy whereas y, and y, lie in the equatorial plane. At some instant of

time, t=0, x, and y, coincide. Section 1l.J. shows that the Xe coordi-

-6
nate frame actually has an inertial angular velocity of 10 deg. /hr.

and that y; rotates relative to x; not only about the polar axis but also

-5
with a component of angular velocity, 5%10 deg./hr. , perpendicular
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to the polar axis, These small effects are neglected in this section

on the assumption that the inertial instruments are incapable of detect-

ing them,

TT and y. coordinates are related by the equations:

&gt;

| 2H Yj
cosWet  —snWet 0
Sin Wpt Cos Wet C

oO 0

fa|
|

(4-32)

The z* are curvilinear coordinates related to the Y; by the time-in-

dependent transformation:

7. = v. (23)

To derive the kinematic acceleration of the accelerometer, fe

write Newton's Law in x. and transform successively to y. and then

to z~ . In the Cartesian x and v frames, there is no distinction be-

tween covariant and con‘~*~~riantcomponents

»

rp

ro d . .

coegelag yy tag vo)
y, + 2 2] Yj + 2] Y; (4-33)

° oe 2

[a] and [a] are matrices whose elements are d a,» and d
dt dat" Y

respectively. The equation is transformed into y by multiplying

Equation (4-33) by " and summing over i

} $ -l pre -i ' ’ =| .9
. ’ = 1 i - + 2 a » a, o + a ’ a.. Ye.
 t xi oi gq Yj Kt i) 7)
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, =v 23 8 . 3 i a. .
fr = % t 2 ag 2 Yj toa: 2 Yj (4-34)

Since the transformation from y to z is independent of time, it follows

that:

 oe Px 8 Nx om °
ICO So 2 ' Cri &gt;

A -35)

I'ransform Equation (4-34) into covariant force components in the Z

frame and substitute from Equation (4-35)

:
-—

Vic J
wr

3 Wem, Okdz" oem ids ad 2g fae
Ceo TI RTL

32 Aa 2 (z™ RY (4-36)

Using Equations (4-13) and (4-27), this has the form:

: _ 8 dz" yj. (gt ) ¥ 2 Ma Bydz" Ki 2 z™ + Be a3 tg pe)
(4-37)

where the absolute derivative, defined in Equation (4-26), is taken

within the rotating frame and arises from motion within that frame

whereas the other two terms arise from rotation of the frame and from

coupling between motion within the frame and rotation of the frame.

Equation (4-37) is easily verified for the case of non-rotating co-

. *9

ordinates for which [a] = [a] = 0. Then:

x. § (dEt=SS(5)
which is Newton's Law in covariant form, Equation (4-26).
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In an arbitrary curvilinear =z frame, the unit vectors change direc-

tion from point to point in such a manner that the angles between them

change. As a result, the input axes of a rigid accelerometer could not

lie along these unit vectors at all points in space. Thus the navigation

coordinate frame must be constrained to require that the angles between

the unit vectors be independent of position. A triad, composed of the

three unit vectors, must move through space as a rigidly connected

framework, for engineering convenience (see Section 5.D.1.).

The simplest rigid configuration is that in which the unit vectors are

everywhere orthogonal, Then from Equations (4-30) and (4-37), the

three covariant force componats in z are:

L Rn 24,SE +n Oa) — nefSer a Ane] — nid) +n, 21.3 22 a Mizay 4 20 am dy 38 + 2h, 2!
oz} Wz Li . » ) 1

~ Wy( AN 2 = 0 *
e(ONE +05)22 (4-38)

0e ~ / 3h, eV oh - az" : 3h, 2)

: frm 2a hay (22) - hyo (2!) = h, ot (2%)+ 2h, #32 z+
’ Sm 3 LOY d MW. , 2 &gt;+ &gt; 2?) +20,2 (8. Ph) wi SRSR3

or . \&amp; Ma j-n2 3 hs =

fr =h 23 he EF-h 23) —h.5(3) + 2h (57: 2
&gt; ON, A, aN, im ? pb)Sy 2) t 20,2 - 3B 2) Wp (y, 21 +3, 2)
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The physical components of specific force are 1/h; times the

covariant components. The accelerometer measures .~ f - G

(Figure 5-1):

H 1
£

fo. =f. - h, G,

2 ®

h, fo, = fr, - h, *G,

~ x

h, fa. = Tr, - hy, Gy (4-39)

The electrical outputs of an accelerometer are related to the components

of fq along its input axes by means of the performance function of

the accelerometer.

t.#, ACCELEROMETER OUTPUT IN SYMMETRIC, ORTHOGONAL

CURVILINEAR COORDINATES.

4. F.1, SYMMETRIC COORDINATES

An important class of orthogonal coordinate frames are symmetric

about the geographic polar axis of the planet. When using such frames,

it is convenient to define the geographic meridian plane as any plane con-

taining the geographic polar axis and to select the geographic longitude,

Ag, as a coordinate. Aq is the angle between the meridian plane con-

taining the vehicle and the reference meridian plane ( on the Earth, the

geographic meridian plane of Greenwich), measured positively eastward.
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The other two coordinates locate the vehicle in the meridian plane.

For example, Figure (5-6) shows three coordinate frames which are

A
symmetric about the geographic polar axis. In each case, z' is oriented

‘ A

eastward, normal to the meridian plane containing the vehicle. z* is

A

horizontal and north and z? is vertically up. The direction of the ver-

tical is defined differently in each coordinate frame.

1, Spherical Coordinates. 2z' lies along the radius vector

from the mass center of the Earth.

5. Geographic Coordinates.

normal to the reference ellipsoid.

2! lies along the projected

c. Ellipsoidal Coordinates. Z' is normal to an ellipsoid

which is confocal to the reference ellipsoid and which passes

through the vehicle.

Appendix D discusses-the geometry of these coordinate frames in

detail.

The transformation from y; to z3 in symmetric coordinates is

af the form:

y, = 8, (z" 2°) cos Aq

Vv, = S, (z=, 2° ) sin Ay

LS
Va = Sp, (z".2%) (4-40)

Because the coordinates are orthogonal, the metric tensor is diagonal

and the non-zero terms are:
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CL Wi ot
2 = hn wos Ia
Lor de (dS 2)292 = hq = = (3) +( 3%

Cohn = WONAUNT,05)= h = 3 =( _0&gt;\ 3

5h tw w@ (hp) (53)
Equations (4-38) then become:

(4-41)

fe =hin + 2(uhe + A) (23 22 + iA 2°)
= 9 [hi A)']

2 — 12Ll dh, = he 23 oh, ‘VF . 2\&gt;i, h, 2 h, 2 (5.2 a Fak )-h 5 (Werh) hyd (3)

0 2%s, syodhs 23 Oh 52 :b= hs +h, 2( 37 2 tZ TE ) ~h pe) —h, 23 ET
(4-42)

In symmetric orthogonal coordinate frames, Equations (4-42) can be

checked by a more direct method, that of Lagrange.

The kinetic energy can be written in the generalized coordinates u‘

vher =

i
1 = Wet +A

 Zz
1

2
«

-

sy rvoy ey,

in which case:

— bd

&gt; g; u u Co
J, e 2 1 .. &gt; 1 oF)

[ h, (Wp +A) + h, (z*) + hy; (=z

The h; are as in Equations (4-41) since they are independent of A
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Then the covariant components of force, found by substituting into

Equation (4-32), are identical to Equations (4-42), obtained by special-

izing the general Equations (4-38). The physical components are 1/h;

times the covariant components. The accelerometer measures the

physical components of Ta = £,- G which are related to the covariant

components by Equations (4-39).

Note the particularly simple form of the longitude equation. In terms
z

of the physical components of force in the longitude direction, Ea 4
I

(4-42)3Wp +A= hz h, (f+ G)dt
Thus, longitude could be obtained very simply in any symmetric

orthogonal system by means of a weighted integral of the output of an

ideal accelerometer.

The calculation of the other two components of fo , which the accel-

erometer measures, can be simplified if z3 measures altitude in some

way (z3 can be r, hq or § of Appendix D, for example). In such a

*3 . . .

case, z ~ 0 for a vehicle such as a ship or transport aircraft whose

paths are sensibly horizontal. Then:

h, fo, = fre -h.G,
2 ve ah, *\2 Oh. 12 :_

= h, 2% ~h 3; (Wied) thy3oe(2 ) ~h2G, (4-43)

hsfo, = fry —~h Gs

 ol1 2 - h, J 23 (W poh) 1, 2hz —= hss
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The last equation could not be used for navigation but might be used to

infer the value of gravity or gravitation from measurements made by

the vertical accelerometer. Clearly though z&gt; may be negligible,

zd would not necessarily be small compared to h,Gy .

i. F.2. ACCELEROMETER OUTPUT IN SPHERICAL COORDINATES,

[he covariant elements of the metric tensor are shown in Equation

(D-4), Thus longitude can be calculated from Equation (4-42):

) r

=~ +

[In the mechanization of this equation, the calculated value of G; must

be zero unless information is available about the prime deflection of the

vertical. Improper knowledge of G, will produce an error in the integral

and hence in A :

T'he latitude and vertical mechanizations, and the differential form

of the longitude mechanization, are found from Equations (4-43) and (444):

ft, = AA cos Lc+2 (We+A)(n cosk, - nt. sin.) -G,

ve “Zor . |

Ha=N le +R(Wpt A)3H+200, —G,

2 oe eo 2 «2 c
ft. =n — (WetA) cos’ fl. — Gj,

2 3

(4-45)



Section 5.E.2. shows the spherical equations in terms of g, instead

of G . In this mechanization, T is the distance from the center of the

Earth to the vehicle which is a function of latitude, even if the vehicle

flies at constant altitude on an ellipsoidal Earth, Section 5. E. 4. D.

1. F,3, ACCELEROMETER OUTPUT IN GEOGRAPHIC COORDINATES.

The covariant elements of the metric tensor are shown in Equation

D-12). Thus the integral mechanization of the longitude channel is:

N=) om A . (4-46)A=" (Phy) cos’Ly [nae GJeasLydt
The latitude and vertical mechanizations and the differential form of the

longitude mechanization are:

 a, = (6 +hy cms + 2(utp A) cosy =(Bnthe)yminly],
2fo,= (0 +ha )L 1) E = (Pnthe La + (Pothe JW sinZly, 3 [n€ 3inZly | op |3 (+ IX #1) Z 12 ay * thle

 =. —(Pth ) : =ay \q Ge 3) (Wet A cos Ly (3 hq) Lg -— G, (4-47)

Ce and Ca are the prime and meridian radii of curvature of the
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reference ellipsoid. hy is height above the reference ellipsoid, not

above the geoid or the terrain. Section 5. F. discusses suitable

approximations to the calculation of hq for various applications,

Section 5. F. 3. discusses_the use of the last equation for the measurement

of gravity.

Section 5. F. I. shows the geographic equations in terms of g

instead ofG.

4, F,4. ACCELEROMETER OUTPUT IN ELLIPSOIDAL COORDINATES.

The covariant elements of the metric tensor are given in Equation

'D-16). Thus, the integral form of the longitude mechanization is:

A= Opt rier |(Fa tf Geosh{osmdt (4-48
The latitude and vertical mechanizations and the differential form of the

longitude mechanization are:

fa. = Coch{casm 2 t2cC ( wpe A)(1 sinh eosn,~MCosh | Siam) Gy
f J CT sinhz] CSin2 2 ,2 +1] e0= ha CE aay “2 oF (oH A= J,
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fa — Y Csink :=hy [+ nt (3) + SShh2 (cosh’[- odY%[£m

~(werA) eos | o Gs aid

. Qa. GYROSCOPE DRIVE SIGNALS IN ARBITRARY ROTATING

COORDINATES.

1.G. 1. GENERAL DRIVE SIGNALS.

Sections 4. E. and 4. F. discuss the outputs of a vector accelerometer

mounted on a stable platform, if that platform is caused to follow an

arbitrary navigation coordinate frame. This section considers the

kinematics of driving the platform to follow that frame.

Some device is needed on the stable platform to provide information

about the angular velocity of the platform in inertial space, W,. "

Such an inertial sensor (''inersor') might be a star-tracker, gyroscope

or other instrument sensitive to angular motions in inertial space. The

terms ''gyroscope! or "inersor'" are hereafter used as generic terms

to denote an instrument which measures the component along its input

5



axis of its angular velocity in inertial space, Figure 5-1. Three such

instruments or their equivalent, mounted on the stable platform, with

their input axes non-coplanar will fully specify the angular velocity of

the stable platform in inertial space. A control system i$ readily

designed to cause the stable platform to align with the unit vectors of

the navigation coordinate frame, independent of angular motions of the

vehicle provided that the gyros are sypplied with the correct components

of the desired angular velocity of the platform in inertial space. The

physical mechanization of such a control system is discussed in

Section 5.B. In this chapter, perfect alignment is assumed.

If arbitrary coordinates, z* , are used, which rotate with the planet,

a general scheme for computing the physical components ofWy along

the z' axes must be partly geometric. The angular velocity of the

platform in inertial space can usually be resolved geometrically into

the Cartesian vy coordinates, Since y is a Cartesian frame, the co-

variant. contravariant and physical components of Wa are all

identical and are designated Aw).

The covariant components along the z' can be found from the

seometrically resolved components along \r:

043 yy.‘We=37YS (4-50)

and the physical components along z' are:
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2

Ws
PW: = he (no sum) (4-51)

These are the required gyro drive signals in arblwrary rotating coordi

nates,

I'he polar migration, astronomic precession and nutation are ne-

glected but could be included in the navigation equations by allowing

the y, and y, components of We to be non-zero. For example,

migration of the pole can be included as follows. Let s be the angle

between the instantaneous pole and the geographic pole in a meridian

{ west of Greenwich (Figure A-3). Then:

y
We = We S cos Y

We, = WS shy

Wie, = We

where Wie, might include some major components of the spin rate

fluctuation, Omission of the polar migration compensation merely

causes the inersors to exhibit an apparent drift rate which fluctuates

with periods of 439 days, one year, etc. More important, when

sufficiently accurate inersors are developed, they could be used to

measure the polar migration.

For the case of orthogonal symmetric coordinates, as discussed in

Section 4. F., the physical components of W, along z' can be expressed



more simply. The geographic, spherical or ellipsoidal longitude, A

locates the meridian plane containing the vehicle in the y; frame. With-

in the meridian plane, let 23 make an angle, L, with the Vy, -Y, plane

where the following physical interpretations can be ascribed to L:

2? spherical coordinates, L = Lg¢

3. geographic coordinates, L = Le

~

iy ellipsoidal coordinates, L = i.

The components of W,, in the y, frame are.

1

W,,
L Sin A

_L Cos A

(Wy, +?

(4-52)

and the transformation from the vy, frame to the symmetric z) frame

is given in Equations (4-40), Thus:

0,- 2 Ww;
*w = -ht

“W, = (Wye oN]

F,= (Wye + A) a

(4-53)

£
— ’ WW:

The physical components of Wg along the z' are pw
L

Pu - -. L

(no sum):

| -y 0

"Ww, = h, (WA)Too 4-54)
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°\ 052
Flo, = (Wye +Ly FEE (4-54)

These are the signals which must drive the stable platform in inertial

space if it is to follow the navigation coordinate frame. Equations

(4-54) are specialized for three symmetric coordinate frames of in-

terest in the next three subsections.

t.C.2. GYRO DRIVE SIGNALS IN SPHERICAL COORDINATES.

n spherical coordinates, Equation {(D-3) can be substituted into

(4-54) to find the gyro drive signals®

WW, = Le

"W, = (Wp A) cos Lc
“Wy = (Wor) sin Le

4-55)

4.G.3. GYRO DRIVE SIGNALS IN GEOGRAPHIC COORDINATES,

The gyro drive signals in geographic coordinates are found by

substituting Equations (D-9) into (4-54):

Ly, =— Cs (4-56)
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N dRec t L |- 2A C sbw, = UE Roth York? TINS (Whe ) as Ly
(4-56)

9% — ~ -*

Equations (4-55) and (4-56) are identical to those predicted geometri-

cally and hence confirm the theory of Section 4. G., In more compli-

cated coordinates, these might not be as readily predicted geometrically.

1,G.4. GYRO DRIVE SIGNALS IN ELLIPSOIDAL COORDINATES.

In ellipsoidal coordinates, the gyro drive signals can be found by

substituting Equations (C-14) into (4-54). The ellipsoidal latitude, Lg

can be expressed in terms of { and nN using Figure (C-3):

faa Lg = coth i tan,

i. n sinh 2§ — {sinzv_
= 2(cosW — cos" TM)

Thus the gyro drive signals are:

» ®

2) y _ § SIn 20,—MNsinh23
LT = 2 (cosh™ — cos)

(4-57)

(4-58)

1 Q~



 = (Wp +A) sinh§cosTL
27 (cosh — cos")

(4-58)

“W, - {Wet A ) Cosh \Sin NL
— 2 \!

(cosW=§ — cos Mm) /2

These are predictable geometrically, with some difficulty. For large

: the ellipsoidal drive signals approach the spherical drive signals,

as expected. Near the surface of the planet, L-—-&gt; Lg and Equations

4-58) approach Equations (4-56),
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Chapter Five

\PPLLIED INERI1AL, NAVIGATION

5.A, THE PROBLEM.

Consider a vehicle navigating near the surface of a

uniformly rotating planet, say the Earth. The vehicle may

be located with respect to the Earth by giving its three

coordinates in a navigation coordinate frame which is fixed

relative to the Earth. The coordinates of all points on the

Earth can be specified in this navigation coordinate frame.

The operator of the vehicle may prefer his position to

be specified either in terms of the navigation coordinates,

such as latitude, longitude and height or distance and

direction to his destination. The former would probably be

desired on a slow-moving ship; the latter on an aircraft.

If the instantaneous navigation coordinates of the vehicle

and of the destination are known, the distance and direction

ro the destination can be calculated.

The navigation coordinates of the vehicle can be

measured in many ways. The most direct method is to locate
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the vehicle with respect to ground stations whose coordi-

nates are known. This can be done visually or electronically

but is subject to the limitations that communication is

often unavailable, unreliable or inaccurate and that radia-

tion must be emitted or received.

The navigation coordinates can also be measured by

sighting celestial bodies and solving the resulting celestial

triangles. If the navigator knows the time of observation

and knows the coordinates of the stars from an ephemeris, he

can calculate his astronomlc latitude and longitude. A

coordinate transformation then yields the navigation coordi-

nates, subject to the geodetic limitations discussed in

Chapter Three. This method is limited by the necessity of

obtalning clear skies for a star-sight, by the unknown

deflection of the vertical, by the need for a stable

platform from which to measure and by the length of tlme

usually needed to make a measurement.

Inertial navigation 1s a means of measuring the naviga-

tion coordinates by measuring the forces acting on test

masses carried aboard the vehlcle and solving the equations

of dynamics, with the proper initial conditions, to find

the navigation coordinates of these test masses, and hence

of the vehicle, as functions of time. Near a planet, pure

inertial navigation is impossible in all three dimensions

58 shown in Section 5.E.3. In two dimensions, no external
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information is required but the system 1s sensitive to

instrument errors, being essentially an open-loop or dead-

reckoning device. Inertial navigation may be supplemented

by external velocity, position or orientation information

to form a hybrid system, as discussed in Section 5.C.

5.B. THE INSTRUMENTATION OF AN INERTIAL NAVIGATOR.

The force sensors are basic to an inertial navigation

system. The archetypal force sensor is a single-axis

accelerometer, Figure 5-1. This device can be pictured

as a case on which a fixed direction is designated the

"input Axis." The instrument generally has some inertial

acceleration, f. , in a gravitational field, G. The

ideal, single-axis accelerometer measures the component

along its input axis of f - G. The actual output of an

ideal single-axls accelerometer, f,. , 1s: fa. = Sa(f=G).

where Sq is a non-dynamic sensitivity.

The output of a "velocimeter" or "integrating acceler-

ometer" is the time integral of fa! . Accelerometers may

contain, for example, a restrained sliding mass or pendulum,

an unbalanced single-degree-of-freedom gyroscope or an

unbalanced, eddy-current-restrained rotor. "Exotic'acceler-

ometers based on solid-state properties of certain materials
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are presently under study. Actual accelerometers are

subject to linearity, resolution, threshold and saturation

errors and to cross-coupling of acceleration and angular

motion from the other axes into the input axis.

A "vector accelerometer" measures more than one

component of [I - G. It may consist of a rigid array of

single-axis accelerometers whose input axes are non-coplanar.

Its output is a vector, Ty each of whose components is

proportional to a component of fr -T along one of the

input axes. The single-axis accelerometers are commonly

agsembled so their input axes are nominally orthogonal,

thus measuring the components of fo -G in a nominally

orthogonal coordinate frame. A vector accelerometer can

be mounted on an "accelerometer platform."

In order to interpret fq in terms of position in the

navigation coordinate frame, the angular velocity of the

accelerometer platform in the coordinate frame must be

known. If the accelerometer's angular motion is aimless

and unmeasured, its output is useless. Sensing the angular

motion of the accelerometer platform 1s the function of the

angular inertial sensors.

The fundamental sensor of angular motion in inertial

space 1s designated an "inersor." The most commonly used

inersor, the gyroscope, is built in single-degree-of-

freedom and two-degree-of-freedom forms.
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The single-axis ilnersor can be plctured as a case on

which a fixed direction is designated the "input axis,”

Figure 5-1. If an ldeal single-axls lnersor has an angular

velocity, Wg in inertlal space, its electrical output

measures the component of We along its input axls. An

integrating lnersor measures the time integral of Uieqa,

In general, the output of an integrating inersor has no

direct physical Interpretation but 1s used only for

engineering convenience. If the input axis has a fixed

inertial direction, the time integral of the component

of inertial angular velocity along its input axis has the

physical interpretation of angle of rotation about the

input axis.

A "vector inersor" 1s a rigid array of three single-axis

inersors whose input axes are non-coplanar. Each single-~

axls instrument measures the component of Wg along its

input axis so as a whole, the vector inersor measures Ws

In practice, the input axes are usually made nomlnally

orthogonal.

The output of an 1deal vector integrating inersor 1s

a vector, each of whose components ls the time integral of

the component of Ws along the input axis of one of the

single-axlis instruments. This vector has no physical

significance except if the lnersor always maintains nearly
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the same nominal inertial orientation. In that case, the

output measures its vector angle of departure from the

nominal orientation.

A two-degree-of-freedom lnersor consists of a source of

angular momentum, gimballed or otherwise supported with

respect to a case. Pickoffs on the device measure two

orientation parameters of the case relative to the source

of momentum. Thus the device measures orientation with

respect to some previously defined line in inertial space.

In order to measure the three independent angular

velocities of the accelerometer platform, two two-degree-

of -freedom InerEors or one two-degree and one single-degree

of freedom inersor or three single-degree-of-freedom

inersors are needed. For precision applications, the

inersors are used as nulling instruments.

The only inersors which have thus far attained engineer-

ing application are single-degree and two-degree-of-freedom

gyroscopes. The output of an actual gyroscope 1s not

merely proportional to the component of WJ, along its

input axis but may also include instrument noise errors,

acceleration-dependent errors and terms proportional to

other components of We and their derivatives. Fluld

and alr supported single-degree-of-freedom gyroscopes have

been in general use for nearly ten years. Now, gas spin
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bearing and cryogenic two-degree-of-freedom gyroscopes are

being developed and exotlc sensors, using nuclear and solid-

state properties of materials, are being studiled.

Inersors are used to measure the angular velocity of

the accelerometer platform in inertial space. Two general

methods are in common use.

In one method, the vector accelerometer and the requl-

site number of inersors are rigldly mounted relative to

each other as a "stable platform" or "space integrator.”

The platform is isolated from angular motions of the

vehicle which carries it by means of three or four servo-

driven gimbals. The inersors are so connected that the

stable platform will maintain a fixed orientation in

inertial space, independent of angular motions of the

vehicle, unless commanded to change its orientation in

response to an external signal to the inersors (Ref. 16).

The system mechanization which results when the stable

platform carries both inersors and accelerometers has been

called an "analytic mechanization" by Wrigley et al.

(Ref. 82).

In another method of mechanization, the inersors and

accelerometer platform are physically separate. The

inersors are allowed to remain non-rotating in inertial

space or are rotated in some prescribed manner. Then,
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the angle between the accelerometer platform and the

inersors is measured. This mechanization, which Wrigley

et al. called "geometric,"notonlymeasuresthe angular

velocity of the accelerometer platform relative to the

inersors but has the added advantage of measuring the

angle between them directly. It leads to a geometric

analog of the inertial navigation problem in which the

gimbals serve many of the functions which the computer

performs in the analytic mechanization. The entire

assembly of accelerometers and inersors must be isolated

from angular motions of the vehicle by means of three or

four servo-driven gimbals.

The design of the gimbals, servos and electronics for

a stable platform in order to achieve adequate 1solation

from angular motions of the vehicle is itself a highly

developed art (Refs. 8, 16, 42 and 73). The stable platform

will normally engage in small coupled oscillations whose

amplitude is several seconds of arc, about the nominal

commanded orientation, exclusive of gyro drift.

The trend in future stable platforms appears to be to

mount much of the electronic equipment on the platform.

Eventually, the use of isolation gimbals may give way to

body-mounted accelerometer platforms. If the accuracy of

inersors increases at its present rate (for example,

Ref. 36 states that 107% deg./hr. cryogenic gyros are
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Figure 5-2

THE NAVIGATION PROCESS
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under development), the polar migration and astronomic precession

will have to be inserted into the navigation equations in a few more years,

as shown in Section 4.G. 1.

5.C. THE NAVIGATION PROCESS.

5 I I INTRODUCTION.

The navigator, whether human or automatic, must obtain three, or

sometimes two coordinates of the vehicle in a navigation coordinate

frame which is fixed with respect to the planet. The inertial navigator

seeks to determine these coordinates by measuring the forces on test

masses aboard the vehicle and solving the equations of motion for the

positions of these masses. The accelerometers, which contain these

test masses, are mounted on a platform which is given some prescribed

angular velocity in inertial space.

Figure 5-2 outlines the five classes of parameters which are always

needed to determine the navigation coordinates no matter what coordinate

frame is used. These are discussed one at a time in the following five

subsections.
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5.C.2., THE NAVIGATION COORDINATES AND NAVIGATION

EQUATIONS.

The navigation equations express the kinematic relations between the

navigation coordinates, z% , the physical components of the inertial

angular velocity of the inersors, (WJ, , and the accelerometer outputs,

fq . To define these coordinates, the intermediary coordinate frames

xs and y; must be defined as in Sections 4.E. 1. and 5.D. 1.

The mass center of a planet is a suitable origin for an operational

inertial coordinate frame, within limits discussed in Sections 1. J. and

4.E.1, Such a frame is the planet-centered, '"inertially-non-rotating"

Cartesian coordinate frame, Xe whose x5 axis lies along the geo-

graphic polar axis of the planet. This coordinate frame has an inertial

angular velocity determined by the astronomic precession and polar

migration of the planet. In the case of the Earth, x, is inertial for

-0
angular velocity measurements greater than 10 deg. /hr. and for

. ad

acceleration measurements insensitive to 10 gee.

The planet-centered, planet-fixed Cartesian frame, yi os is funda-

mental for defining positions on a planet. Its origin coincides with that

of x. at the mass center of the planet and its y, axis coincides with

xy - The v; coordinate frame actually rotates relative to x; about

A

an axis which very nearly coincides with Xs -Y, . The period of rotation
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about the common x, - y, axis is constant to one part in 107 and

equals 86,164.10 mean solar (Ephemeris) seconds. The component of

relative angular velocity perpendicular to X3-¥a is about 5» 10 “deg. / hr.

The navigation coordinates, zd , are contravariant coordinates

(coordinates in the usual sense) which are related to the ye by means

of the time-independent transformation, y; = ye (z” ). Covariant

coordinates do not generally exist since the equations, dzg = g.- dz
3

are not integrable.

The physical components of a vector, such as Wo or fa , are

neither its covariant nor contravariant components but are related to

them according to Equation (4-21), Where the symbol, V; , is used

without further specification, it hereafter refers to a physical compon-

ent of the vector, V, and not to a covariant component. In Cartesian

coordinates, there is no distinction between covariant and contravariant

components.

The first task of the navigation system designer is to select the

navigation coordinate frame and the accelerometer tracking frame (Section

5.D..}. Then he must derive the navigation equations which compute

the navigation coordinates and inersor drive signals in terms of the

accelerometer outputs and certain other parameters (Figure 5-2).

Finally, the equations must be simplified for convenient computation with

a digital computer. Except in certain particular mechanizations, the



accelerometer platform aligns with the unit vectors of the navigation

coordinate frame.

Equations (4-37) relate the arbitrary non-orthogonal curvilinear
®

coordinates, z% , to the kinematic output of the accelerometers, for the

case in which the input axes of the accelerometers align with the unit

vectors of the navigation coordinate frame. These navigation equations

always involve’ partial derivatives, un . Many of these derivatives
Zz

combine to form elements of the metric tensor but except in the case of

a symmetric, orthogonal system (Equations 4-38), some partial deriva-

tives are always required in addition to the elements of the metric tensor

Some basic limitations on the navigation equations are shown in Figures

5-14 and 5-15,

5.C.3. THE INERTIAL ANGULAR VELOCITY OF THE ACCELEROMETER

PILLATFORM.

The inertial angular velocity of the accelerometer platform is needed

in order to interpret the accelerometer outputs in terms of position.

In the analytic mechanization, ),q is known from the gyro drive signals:

in the geometric mechanization, from the gimbal angle drives. The

actual platform angular velocity differs from the commanded Wa
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because of errors in the computed drive signals and gyro drift (Sections

5.E.4.B. and 5.E.4.C,)

5. C. 4. GRAVITY AND GRAVITATION.

The components of gravity or gravitation along the input axes of the

accelerometers are required everywhere in the region of navigation. At

each point, the component of G along the accelerometer input axis must

be added to the output of that accelerometer, Tous to obtain the indicated

components of kinematic inertial acceleration, fr, . If G is imperfectly

calculated at any point, the corrected accelerometer output will not be

f_ but will be in error by the error in calculating G. Chapter Two

discusses the prediction of G and E in the space surrounding a planet.

Though the results are applicable to any planet, detailed data is available

only for the Earth.

At any point near the Earth, the gravity field is by definition perpen-

dicular to the local geop. Thus at a geop, the component of g along the

geop is zero. But if the geoid is approximated by an ellipsoid of rotation

the component of g along the ellipsoid is not zero unless the geoid is

parallel to the ellipsoid there.

— _ ~-5

For navigation purposes, resolution of G or g below 10 gee is
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seldom necessary but even to this fineness, the g or G field around the

Earth is exceedingly complicated. At any point near the Earth, neither

G nor T generally lies along the geographic, spherical or ellipsoidal

vertical; there is a "horizontal component of G or ‘g. This horizontal

component is treated as the sum of a systematic horizontal component,

gL or G, plus a deflection of the vertical, Svq, or Bvq, where

L may be L, , Lg or Lo. The mathematical model of the systematic

horizontal portion ofgor G is selected to match as nearly as possible

the actual horizontal component yet be simple enough for on-board compu-

tation. Section 2.F.5, discusses mathematical models which use one

or two terms of the spherical harmonic expansion of the gravitational

potential of the Earth. Any fine-structure difference between the

actual and model components of G and g causes a deflection of the

vertical. Equations (2-30), (2-40), (2-42), (2-49) and (2-50) show

suggested models for the horizontal components of gravity and gravitation

within navigational distances of the Earth whereas Figures 2-10 and 2-12

show sample deflections of the vertical with respect to these models. It

is essential to note that the amount of the deflection depends as much

on the selection of a r~“arence ellipsoid as on the existence of mass

anomalies within the Earth,

In local-level mechanizations, the navigation equations contain only

the horizontal components ofgandG. If inertial navigation is to achieve
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an RMS position error of "several hundred feet by 1963-1965" (Ref, 76),

the horizontal components of g§ or G in the navigation coordinate frame

cannot be omitted from the navigation equations.

On the surface of the Earth, the projected normal to the reference

ellipsoid is implicitly used as a reference direction for measuring the

deflection of the vertical. Deflections of the vertical at sea and at alti-

tudes above the Earth have not been measured directly. In the former

case, deflections of the vertical over the oceans probably do not materially

differ from those over land because of the mountainous nature of the ocean

floor: in the latter c ase, it is likely that deflections of the vertical increase

slightly with altitude before decreasing to zero at large distances from the

Earth.

, . ; Zz 2 }

The navigation equations contain”G and G, or g, and 2, , the hori-

zontal components of G or § in the navigation coordinate frame. These

must be mechanized to solve the equations correctly. A knowledge of

horizontal gravity or gravitation is essential if the accelerometer platform

is to properly align with the navigation coordinate frame at all times.

If the horizontal component of gravity is not inserted en route, the

platform will tend to align with g instead of with the navigation coordinate

frame, the difference increasing as the vehicle speed decreases. This

causes a position error since not only do the navigation equations omit
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the proper horizontal components of g but the metric of the actual space

which the platform follows is so complicated that the navigation equations

are in fact incorrect.

The effect of an anomalous horizontal component of gravity is usually

analysed by assuming that the platform does align exactly with the navi-

gation coordinate frame and that the horizontal components of gravity are

forcing functions in the navigation equations.

[n the majority of missions, the horizontal components of gravity tend

to average out to zero during long voyages but the random fluctuations of

gy and g, cause fluctuations in the position error. To first order, an

error in horizontal gravity has the same effect as an accelerometer

error, Section 5.E. 4. A, For any desired course and speed, the power

spectral density of horizontal gravity, 9,35) can be estimated and the

power spectral density of position error, ¢ ), found as in Equation
Xo

(5-19). The mean square position error is:

MS (x) = 0 d.. (s)ds

Wilmoth (Ref. 79) attempts a simplified form of this calculation. RMS

position errors in typical regions of the Earth, caused by the omission of

random horizontal components of gravity from the mechanization, appear

to be on the order of several hundred feet.
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The next subsection discusses some effects of deflection of the vertical

on system alignment,

35 , GC. 5, ALIGNMENT.

5 Go. 5. A, LIN VOD UCTION,

Twelve initial conditions must be inserted during the initial alignment

and again en route, whenever it is desirable to realign the system.

Realignment may be necessary to update the initial conditions because

of cumulative errors, because of a loss of reference due to power

failure or because of the necessity of repairing the system en route.

The twelve initial conditions are the initial position and velocity of

the vehicle and the initial orientation and angular velocity of the accelero-

meter platform. If inersor errors are neglected, only nine of these are

independent because of the constraint imposed by the feeding-back of

inersor drive signals from the computer. The precise definition of

positions and orientations on the Earth are problems in geodesy

(Chapter Three): their measurement is an instrumentation problem.

In order to perform the alignment, external measurements of z* and
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Figure 5-3
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z' and of platform orientation relative to the z' must be made, These

are difficult processes at best since no physical vectors correspond to

the unit vectors of the navigation coordinate frame.

Such independent measurements of position or velocity of the vehicle

or of orientation of the accelerometer platform can have the effect of

damping the navigation system. If the system is realigned at discrete

time intervals en route, it is damped discontinuously because system

errors are suddenly reduced at discrete times. If sufficiently accurate

external information is available continuously, damping of the system is

continuous, System damping is discussed in detail by Wrigley (Ref. 82),

Duncan (Ref. 19), Fried (Ref. 24) and Stevens (Ref. 71)

5. C.5.B. ANGULAR ALIGNMENT,

The platform must be oriented relative to the unit vectors of the

navigation coordinate frame about the level and azimuth axes. When the

vehicle is stationary on the Earth, level axis alignment is normally

accomplished by quick-torquing the platform until the horizontal accelero-

meter outputs are nulled., Azimuth alignment in a stationary vehicle is

accomplished optically (if the area has been previously surveyed) or by

gyrocompassing. In the gyrocompass mode, the azimuth gvro is
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Figure 5-4
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torqued until the inertial rate indicated by the east gyro is zero, The

input axis of the east gyro then points east within geodetic limitations.

If the deflection of the vertical is not zero at the point of departure

and if the platform is levelled along g there, its initial orientation with

respect to the navigation coordinate frame is incorrect. Since deflections

of the vertical of ten or more seconds of arc are common, the accelero-

meter platform will be misaligned by this amount in the level axes.

Though it is not immediately obvious, an error in azimuth results

if the platform is aligned in a region of non-zero prime deflection of the

vertical, The presence of a prime deflection of the vertical means that

g and the geographic polar axis are skew lines and cannot be coplanar.

Consequently, an astronomic north sight at an elevation, E, is projected

along the astronomic vertical onto the reference ellipsoid with the

geodetic azimuth:

A a &gt; tan oO (5-1)
instead of at an azimuth, A, =0., Figure 5-3. Similarly, from Figure

5-4, the astronomic horizontal component of vertical Earth rate does

not point toward geodetic north. This is because a component of

vertical Earth rate, W_06p sin L , is projected along the astronomic

east-west direction. Hence a stationary, astronomically-level gyro-

cornpass points north with a geodetic azimuth A,

)



Ag = 6p tan L (5-2)

In surveyed areas, these azimuth errors can be calculated and corrected

by compensating the east accelerometer with the local east horizontal

component of g. However if the platform is aligned in an unsurveyed

area, its geodetic azimuth can be in error by twenty seconds of arc or

more. Such azimuth errors would presumably result wherever en

route alignment is attempted.

If the platform is initially aligned in a surveyed area, the misalignment

could be removed by inserting the horizontal component of gravity into the

mechanization. For example, in a north-seeking, locally-level system,

g, is added to the output of the east accelerometer and g, to the north

accelerometer. With these level axis compensations, the platform would

be properly aligned with the unit vectors of the navigation coordinate frame

so azimuth measurements would be geodetically correct.

Enroute alignment may procede in essentially the same manner

except that en route gyrocompassing requires an independent knowledge

of vehicle vel ocity in order to identify the horizontal component of

Earth rate.

A major obstacle to en route alignment is the absence of measure-

ments of the deflection of the vertical at altitudes and in unsurveyed

areas. These deflections of the vertical at sea and at altitude are not
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less than those on the surface of the Earth and hence cause position and

azimuth errors comparable to those resulting from alignment in un-

surveyed areas of the Earth's surface. A lower limit on the accuracy

attainable without access to deflections of the vertical might be one third

to one half mile.

5.C.5.C. INSERTION OF VEHICLE VELOCITY.

External measurements of vehicle velocity, which are more accurate

than the accumulated inertial velocity, can be inserted into the navigation

system as shown in Figure 5-5. The indicated velocity, st , is based

on combined inertial and external measurements. The externally-derived

and indicated velocity signals are compared and the difference used to

correct the velocity integrator, throughafilter. Hence if the two

velocity measurements differ persistently, the difference tends to drive

the indicated velocity to match the externally-derived velocity,

The externally-measured velocity must be resolved into the navigation

coordinate frame. Very commonly, the stable platform gimbals perform

this resolution. In Figure 5-5, the heading angle resolver indicates this

resolution (in azimuth) and the hy are scale factors to convert the

externally-measured velocity components to rates of change of navigation
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Figure 5-5
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coordinates. Alternatively, the system could be mechanized to yield

the indicated physical components of velocity, h; z\ (no sum), which

could be directly compared to the external velocities.

The non-inertial and indicated velocities are both apt to differ sta-

tistically from the true velocity. The difference is probably a non-

stationary stochastic process reflecting noise in the gyros, accelero-

meters and external sensors. Thus the system design of a hybrid

navigator reduces to the selection of an optimum filter, G(s), which

will minimize some function of the indicated velocity error. If the

velocity difference can be considered stationary (for any particular

operating regime) and thus characterized by its autocorrelation function.

the powerful Wiener -Lee procedure (Ref. 232) could be used to select

an optimum filter to minimize the mean square velocity error. The

optimum filter may adapt to different operating regimes.

The earliest external velocity aid was derived from air-speed (or

water -speed) measurements and was often called "air-mass damping."

Because of the unknown velocity distribution of the wind, large constant

and stochastic errors resulted thus causing large position errors. The

best filter would still produce a large mean square position error.

Today airborne velocity measurements are frequently made with

Doppler radar (Refs. 19, 24 and 25 for example). The usual Doppler
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radar radiates a pattern of narrow beams from the aircraft. The antennas

are either stabilized with respect to the navigation coordinates or held

at a constant attitude relative to the airframe. By observing the Doppler

frequency shifts between pairs of these beams and resolving through the

stable platform, the components of the aircraft's velocity relative to the

surface are obtained, resolved into indicated navigation coordinate axes.

The frequency shifts between various pairs of beams are compared in order

to reduce the frequency stability requirements of the transmitter. In the

crudest systems, the antennas are levelled with a pendulum and the

velocity resolved in azimuth through a magnetic compass.

Over sloping ground, the Doppler rad ar does not measure velocity
t

relative to the ellipsoid. The fractional error is of the order 2

where © is the ground slope. Hence over a 4% ground slope, the

velocity error is 0.08% or 1.5 knots at Mach Three. Thus ground slope

variations can significantly spread the frequency spectrum of the

reflected beams.

When ocean currents cause the water to move en masse relative to

to the Earth or when sea spray disturbs the water surface, a measure-

ment of velocity relative to the sea surface does not give ground speed

over the ellipsoid. The constant error caused by systematic ocean

currents or spray can only be corrected if the water's velocity relative

to the Earth is known. This is seldom possible,even approximately.
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Non-systematic errors caused by waves, spray, terrain slope and finite

beam width cause the returned frequency spectrum to be widened, thus

making the measurement of exact ground speed less precise. The

selection of an optimum coupling filter, G(s), depends on the power

spectral density of the Doppler velocity signal. Hence over different

types of terrain or sea states, different filters could be used, the filter

characteristics being adjusted automatically or by the navigator. A near

minimum mean square error is thus possible over a wide variety of

terrain,

A very stable frequency source such as an atomic clock can be carried

aboard a vehicle and compared in frequency to a similar unit on the

ground. The Doppler shift between them would measure the rate of

change of the line of sight distance to the ground station. Three such

frequency measurements, in non-coplanar directions, would give three

independent components of the aircraft velocity in a non-orthogonal

coordinate system. The aircraft velocity vector could then be readily

reconstructed.
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5. C.5.D, INSERTION OF VEHICLE POSITION.

External measurements of vehicle position are required for initial

alignment and may be used en route to damp system errors.

in order to define position on the Earth, the discussion of Chapter

Three regarding the establishment of reference ellipsoids is reviewed.

On a well-surveyed, continuous land-mass, an ellipsoid can be selected

to optimally represent the geoid. The projection of any point of the land-

mass onto the ellipsoid can be located within fifty meters. The definition

of an optimum ellipsoid to represent the geoid over oceans or unsurveyed

land is necessarily crude. Furthermore the selection of a single ellipsoid

to represent the geoid over land masses separated by water is complicated

by the difficulty of making accurate intergrid ties over water. Thus

although observers on different land-masses may use ellipsoids of

identical dimensions, the centers of these ellipsoids may lie as much as

one third of a mile apart. An unknown separation between reference

ellipsoids on different continents introduces distance and direction errors

between points on these continents. Also since the origin of an operationa’

inertial frame must be at the mass center of the Earth, the center of an

offset ellipsoid will accelerate in a circle in the inertial frame, creating

a general centripetal force field over the entire Earth. The geodetic

coordinates of the points of departure and destination must be known on
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the same world-wide reference ellipsoid.

Electronic position aids such as Tacan, Shoran or Loran (Refs.

4, Chap. 12; 30,35,50, 59 74) yield two coordinates of the vehicle's

position and can be used to periodically reset the position integrators.

Such position aids cannot correct velocity, levelling or azimuth errors.

Such electronic aids locate the vehicle with respect to fixed ground

stations which have been previously surveyed relative to local geodetic

grids. If the relation between the local grid and a world-wide reference

is known, the vehicle can be located in a world-wide reference frame.

A star -tracker carried aboard the vehicle can potentially provide

position and orientation information (Refs. 20 and 31). If the vehicle

operates at a sufficiently high altitude that cloud cover is improbable

and that the ratio of star signal to background optical noise is adequate

then a telescope aboard the vehicle can accurately locate stars relative

to the inertial platform.

Fhree non-coplanar star sights, either taken simultaneously with

three telescopes or successively with one, permit the position of the

vehicle and orientation of the platform to be found simultaneously. The

local deflection of the vertical must be known for high precision. With

three star sights and a known deflection of the vertical, the accelerometer

platform can be realigned relative to the navigation coordinate frame in
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all three axes and the two position integrators can be reset to updated

values, If the position of the vehicle is known from other external in-

formation (perhaps Shpran or Transit satellite), then only three orienta-

tion parameters are unknown, These can be found from two star sights.

The addition of a Doppler radar would permit updating of the velocities

and hence the reinsertion of nine of the twelve initial conditions,

The Transit satellite program suggests the possibility of periodic

position checks, perhaps every three hours, anywhere on the Earth within

a few more years (Refs. 29 and 43). By recording the Doppler shift

versus time of a transmitted signal from the satellite and knowing the

satellite's orbit, the most probable position of the observer can be

inferred, on an ellipsoid whose center is at the mass center of the Earth.

It is expected that a small receiver-transmitter -computer will be availa-

ble to perform this task. Since the satellite moves too rapidly for an

optical sighting, it cannot be used to update the platform orientation.

5.C. 6. TIME AND THE ANGULAR VELOCITY OF THE PLANET,

The angular velocity of the planet is needed to permit coordinate

transformations from inertial space to the planet. With sensitive enough

inersors, the polar migration and astronomic precession must be included
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in the transformation from inertial to planet coordinates( Section 4.G. 1.).

Time is needed as the explicit variable of integration in the computer.

7
On the Earth, to an accuracy of one part in 10 , time is measured by

We while Earth rate is constant and equal to the inertial spin rate, not

the sidereal rate, Section 1. J.

Figure 5-14 shows some limitations on the measurement of time.

5,D. THE SELECTION OF A COORDINATE FRAME.

5.0.1, INTRODUCTION.

As has already been noted, the navigation system designer's first
4

task is to select a navigation coordinate frame, 72 , and derive the

transformation equations from y. to z} . As discussed in Section 4. E,

the navigation coordinate frame selected will of necessity be orthgonal.
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The selection of an orthogonal system for which Bi = 0

when 1 # J simplifies the navigation equations (4-37) to

the form (4-38). Furthermore, an accelerometer platform

is most readily constructed with 1ts accelerometers rigidly

mounted relative to each other. Thus, it could not align with

the unit vectors of a curvilinear, non-orthogonal coordi-

nate frame unless the accelerometers were rotated relative

to each other on the platform; a complexity gaining nothing

in return. If fixed mounted, non-orthogonal accelerometers

are used, the navigation coordinate axes are non-orthogonal

straight lines. Such an oblique system has no advantages

over a Carteslan frame and has the disadvantage of non-zero,

off-diagonal metric elements and thus more complicated

navigation equations.

Hence, except to analyze the effect of unintentional

non-orthogonality of components, all navigation equations

must be written in orthogonal, though perhaps curvilinear,

coordinate frames.

Though systems are sometimes mechanized in the x; or

Yi coordinate frames, 1t is often more convenient to

select a coordinate frame which 1s related to the surface

of the Earth.

Tne Earth rotates about an instantaneous spin axis which

itself migrates relative to the mantle, roughly in a conical
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spiral whose maximum half-angle 1s one half second of arc

and whose predominate periods are 365 and 439 days (see

Appendix A). A geographic polar axis 1s selected, fixed

in the Earth, at approximately the mean position of the

migrating spin axis.

The "figure of the Earth" is commonly defined in terms

of the equipotentials of gravity near its surface (the

geops), Figure 2-9. One of these equipotentials of g,

which approximately coincides wlth mean sea level, is

identified as the geold. Section 2.D. shows that the shape

of the geoid varies only about three inches with motions of

the heavenly bodies and 1s approximately described as an

ellipsold of rotation about the geographic polar axis. The

geoid is always within 100 meters of a well-chosen elliposid

of rotation. Any meridian section of the ellipsoid 1s an

ellipsoid of eccentricity, € =0.082 (Figure 3-7).

Geodesists upially spesify the ellipticity or flattening,
f = S-b . Though some measurements show that

triaxial ellipsoids of ellipsolds of slightly different

dimensions may match the geoid more exactly (Sections 2.F.9.

and Figures 2-13 and 3-6), the navigator is not so much

inberested in the best shape of the geold as in insuring

that observers everywhere on the Earth use the same ellipsoid

for mapping purposes. The International ellipsoid of 1924

(Figures 2-13 and 3-6) 1s used throughout this thesis.
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Height above the ellipsoid is definable in a number of

ways. Each of the next three sections discusses a coordi-

nate frame resulting from a different definition of height,

Figure 5-6.

5.D. 2. GEOGRAPHIC COORDINATES.

The simplest method of defining height for vehicles

within 35 nautical mlles of the surface of the Earth, is

to measure geodetic height, hq , along that projected normal

to the ellipsoid which passes through the point in question.

A line along this projected normal is geographically

vertical.

Section 3.B. introduces the terms, "geodetic longitude

and latitude," A, and L, , when referring to calculated

longitude and latitude on some local reference ellipsoid

of unknown center position. Geographic longltude, Ay

latitude, Lg , and height, hq , refer to these same

coordinates on a world-wlde reference elllpsoild whose

origin is sufficiently close to the mass center of the

Earth. These are a generalization of the geographic coordi-

nates, Ao and Ly , defined by Wrigley et al. (Ref. 82,

pg. 19). The covariant elements of the metric tensor for

the geographic coordinate frame are shown in Equation (D-12).



The geographic coordinate frame has the virtue that the

surface defined by hq = 0 coincides with the reference

ellipsoid.

The suggested mathematical model for the systematic

horizontal components of gravity is, from Equation (2-40):

3. =0

(2-40)
oy 2

[seccmnil(22)sin2 94 o8—-5.4/ —

9,

This model gives the systematlc horizontal component of

gravity to an accuracy of 1072 gee, The actual horizontal

component of gravity may commonly differ as much as 5 x 10-2

gee from this model. In regions where such large differences

occur, it may be desirable to compute the actual horizontal

component of gravity from gravimetric data and store it in

the vehicle's navigation computer.

Section 5.F. mechanlzes three typical navigation systems

in geographlc coordinates. Figure 5-§ summarizes relevant

properties of this coordinate frame.

5.D.3. SPHERICAL COORDINATES.

For vehicles at large distances from a planet, say the

Earth, the spherical coordinate frame is simplest for
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navigation since the exact shape of the planet 1s no longer

of interest. A vertical line in this frame has a direction

along the radius vector to the mass center of the Earth

(or to the center of the reference ellipsoid). The geo-

centric coordinates, Ae s Le and r, are merely the

spherical coordinates of the point in question in the Earth-

fixed, Cartesian coordinate frame, y; . Equation (D-4) gives

the covariant elements of the metric tensor of this coordi-

nate frame.

At orbital distances, where non-gravitational forces

are negligible, the horizontal lnertial positions

may be calculated by integrating the computed gravitational

field. Unless drag forces or gravitational gradients can

be detected, accelerometers aboard the vehicle measure

nothing. Since an error in the computation of gravity

causes an unbounded position error, 1t is especially

important thatGbe calculated accurately enough so no

appreciable systematic error exists.

The systematic horizontal components of G and E are:

G' = 0
4

G, = -1.591(Z) sin 2L,
(2-30)

2
cm. [sec

Jigv=o) = ©
(2-33)

/ -

320) = —3.30 Sin [Ay cm.[sec
The accuracy of calculation is limited by anomalies.

) =
1 b



Section 5.E. uses spherical coordinates to mechanize

an inertial navigation system for a ship. Figure 5-8

summarizes the navigational properties of this frame.

5.D.4., CONFOCAL ELLIPSOIDAL COORDINATES.

If the ellipsoidal shape of the Earth is important

while navigating over an altitude range of several thousand

miles, a coordinate frame is suggested consisting of

ellipsoids of rotation which are confocal to the reference

ellipsoid. The resulting confocal ellipsoidal coordinates

are discussed in Appendix C and D.5. A vertical line in

ellipsoidal coordinates 1s parallel to the normal to that

ellipsoid which passes through the point in question. The

covariant elements of the metric tensor of this coordinate

frame are shown in Equation (D- 16),

These coordinatesareconvenientsincethe reference

2llipsold is the surface defined when the elliptic variable,

( , takes on some value, {. . Furthermore, when { —&gt; oo

at large distances, these coordinates become spherical.

Equation (2-49) shows that the systematic horizontal

component of gravitation is:
/ _

G'=0
1 nz

G, = 376%0 30
-5 Sinh {

vithin 2 x 10 gee,

(2-49)



Because of the complexity of the ellipsoidal coordi-

nates, they are suggested only in applications such as

launching a twenty-four hour satellite where navigation is

necessary over a wide altitude range while still referring

precisely to points on an ellipsoidal Earth. Figure 5-6

summarizes important navigational properties of this frame,

5.D.5. LOCAL-LEVEL COORDINATE FRAMES.

The accelerometer platform is most often required to

align with the unit vectors of a local-level coordinate

frame. This procedure has the advantages:

A. the orientation of the accelerometers relative to

g varies only slightly. Thus, the accelerometers can be

better designed. This applies equally well to the lnersors

if they are mounted on the accelerometer platform.

8. a vertical accelerometer 1s unneccssary; the two

horizontal channels are stable,

C. the attitude of the vehicle 1s readily derived from

the isolation gimbal angles.

The direction of the vertical 1s elther geographic,

ellipsoidal or spherical, as discussed in the preceding

three sections. The platform's azimuth orientation may be:

» 1 CB



A north-pole seeking as in Sections 5.E. and 5.F.

false-pole seeking, when navigating near the Earth's

poles. A false pole 1s selected, perhaps on the equator

at the Greenwich meridian, and the platform is driven in

azimuth so the input axis of one accelerometer always

points toward it in the same manner that the north acceler-

ometer points toward the north pole in the conventional

north-seeking system. The false-pole mechanization is

simplest in spherical coordinates, with ellipticity correc-

tions for the radius and horizontal gravity. A simplified

B.

false-pole coordinate frame is discussed in Reference 45,

C. qreat-circle seeking, in which case the azimuth

gyro is driven to align the input axis of one accelerometer

with the direction along a desired great-circle course.

D. free-azimuth, in which case the vertical component

of Wa is zero; the azimuth gyro is not torqued. This

azimuth mechanization retains the attitude advantages of

the local-level systems and yet does not sacrifice accuracy

because of errors in the azimuth gyro torquer.

In order to remain locally level, the gyros on the

platform must be driven with the components along thelr

input axes of the desired inertial angular velocity. These

gyro drive signals are derived from rates of change of the

navigation coordinatesasinSection 4.G. This procedure

) 1
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is known as Schuler tuning since to first order, it results in 84 minute

oscillations in the two level channels, as shown in Section 5, E. 3. No

actual tuning occurs; the oscillations merely result from the mechaniza-

tion of the navigation equations.

Azimuth errors must increase unbounded with time since gyro drift

and torquer errors are not self-correcting. Thus though the level

platform provides a heading reference, the reference deteriorates with

time unless externally corrected.

5, 0.6. NON-LEVEL SYSTEMS.

A, inertially-non-rotating coordinate frame in which the inersors

hold the accelerometer platform nominally non-rotating in inertial

space. Then the accelerometers measure x, a, , which lend them-

selves readily to computation of the Xe Since all the "G, components

contain a vertical component of gravitation, this mechanization is general

ly unstable. The mechanization is useful for short times of operation

in which case the y; or zt can be calculated by means of a coordinate

transformation. Hgwever, all three components of G must be calculated

in the Earth-centered, Cartesian frame. On the contrary, only the hori-

zontal components of are needed in a local-level mechanization.

These are usually regarded as zero.
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B. cylinder, tangent to the Earth. The locally-level

great-circle mechanization discussed in 5.D.5.C. places

the input axis of the range accelerometer parallel to the

plane of the great circle at all times. When deviating

off the great-circle, that platform remains level; rotating

around the range accelerometer's input axis. In the

tangent cylinder mechanization; the input axls of the range

accelerometer also remains parallel to the plane of the

great-circle at all times but when the vehicle departs from

the great-circle plane; the platform remains perpendicular

to. that plane instead of remaining locally level. Figure 5-7

shows this distinction clearly. The cross-track channel is

biased by the amount of horizontal gravity perpendicular to

the great circle. For small departures, y, from the great-

circle, the cross-track horizontal component of gravity is

re.
roughly 9 nw

©. plane, tangent to the Earth. For operation near a

fixed base, the tangent cylinder can be unrolled into a

tangent plane. When the vehicle departs from its base,

its platform remains parallel to the level plane at the

base. Any desired azimuth orientation can be used with the

tangent plane mechanization. If the azimuth drive is

simply 0, Sinkgage and does not change as the vehicle

moves away from its base, the coordinate outputs can be

expressed in a simple x-y rectangular grid which coincides
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with the vehicle operator's maps. Gravity can be approxi-

mately computed as:

x
Jx=-9 n. 9-97

D. inertial great-circle., This mechanization is

suitable for orbital vehicles which fly on a nominal great-

circle course in inertial space. A platform on board such

a vehicle could be torqued to follow either an inertial

cylinder, passing through the orbit or inertial, spherical

coordinates. These are analagous to the use of a tangent

cylinder or local-level; great-circle mechanization on the

Earth,

E. ‘Body-mounted accelerometer platform which is

rigidly mounted on the vehlcle and participates in 1ts

comparatively violent angular motions. Inersors on the

vehicle measure its orientation or angular velocity rela-

tive to the navigation coordinates so the accelerometer

outputs can be transformed into “hese coordinates and

integrated. Component limitations presently mitigate

against the use of body-mounted systems for inertial grade

applications, though they are widely used for autopilots.

Reference Three discusses some of the pertinent problems.

F. map grid coordinates. Geodetic maps are often

plotted in local x-y rectangular grids which distort the

spherold onto a plane. The extent of the maps is small
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enough so the distortion 1s acceptably small (Section 3.H.).

Since navigators often use such grids, it may sometimes be

desirable for an inertial navigator to read-out in grid

coordinates. The grid coordinates can either be calculated

directly from the accelerometer outputs using suitable

navigation equations which are mechanized in grid coordinates

or they can be calculated from geodetic latitude and longi-

tude by means of a coordinate transformation.

5.D.7T. APPLICATIONS.

The selection of a coordinate frame wlll depend on the

application. Some examples are discussed in this section,

A. A ship, operating in moderate latitudes, should

navigate in a geographic coordinate frame so the computed

coordinates will be lmmediately familiar to the crew.

Section 5.F. mechanlzes such a system and shows that since

the height of the ship above the reference ellipsoid

probably does not exceed 300 feet, it 1s always negligible

in the navigation equations.

B. A submarine; cruising in polar waters, would

probably navigate in false-pole latitude and longitude

coordinates. As a practical consideration, a conventional

second mode of operation is necessary for lower latitudes.
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C., An aircraft, which flies nominal great-circle

missions, might navigate in tangent cylinder or local-level,

great-circle coordinates.

D. The guidance system for a satellite-launching

booster might be mechanized in the Earth-centered inertial

coordinate frame, Xs os because the satellite orbit is

defined in inertial space. In this case, the Earth is of

interest only to furnish initial conditions and as the

source of a gravitational field. For ease in initial

alignment, the platform would be maintalned locally-level

prior to launching.

®. A short-range helicopter could probably use a

tangent plane, grid coordinate system. The navigation

system would then be relatively simple and would read-out

in coordinates which correspond to the pilot's map.

5.D.8. COMPUTER OPTIMIZATION.

For each application; the system designer must select

navigation and tracking coordinates and derive simplified

navigation equations. This has been largely an art during

the twelve year history of inertial navigation.

Slearly, certain coordinate frames require consider-

ably less calculation than others, for any given application.



I% 1s interesting to speculate whether the general naviga-

tion equations, Equations (4-38), could be used to optimize

a navigation system with respect to minimum size or weight,

subject to certain operating constraints such as desired

accuracy and vehicle motion,

The optimization of the computer 1s simplified by

recognizing that digital computers are in nearly universal

use today. The number of computations to be performed per

unit time is a direct criterion of the size and reliability

of a digital computer.

Thus, the optimization problem may be phrased, "What

choice of transformation equations:

yi = Yi (Z*)
will result in a minimum number of computations per unit

time, subject to certain constraints on the vehicle's

motion and the desired accuracy?"

The solution of this variational problem is far from

obvious. This writer suggests that future studies investi-

gate the possibility of using Equations (4-38)to select

optimum navigation coordinate frames (implicitly restricted

to the case where the accelerometers align with the unit

vectors of the navigation coordinate frame). It should

not be surprising, however, if the selection of coordinate

frames continues to be a matter of engineering judgment

for a long time to come.
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5. KE, NAVIGATION ERRORS IN SPHERICAL COORDINATES,

5. E. 1. INTRODUCTION.

in this section, spherical coordinates are used to illustrate the

mechanization of an inertial navigation system. An ellipsoidal,

rotating Earth and a realistic gravity field are assumed. However

the vehicle is assumed to operate solely on the surface of the reference

ellipsoid at a speed of less than twenty knots. The desired accuracyis

one mile.

Let x; be the Earth-centered, 'inertially-non-rotating' coordinate

frame discussed in Sections 4, E., 2. and 5.C. 2. whose Xa axis lies

along the geographic polar axis. In this frame, the reference ellipsoid

rotates at a constant speed, W,., about the x4 axis to an accuracy of

5 % 10 deg. /hr., limited by migration of the pole.

Let the spherical coordinates A : L. and r locate the vehicle in

the planet-fixed Cartesian y, frame where A and L. are the

spherical lo ngitude and latitude and r is the radius.

The accelerometer platform, on which the gyros are mounted, is

always driven to be nominally perpendicular to the radius vector. Any

azimuth mechanization could be used, for each of which the azimuth

&gt; 10



gyro drive signals would be different. For this example, the platform

is north-seeking in azimuth, Thus the platform nominally aligns with
A A

the spherical unit vectors, AL. and rr

5. E.2. THE NAVIGATION EQUATIONS.

The navigation equations in spherical coordinates are given in

Equations (4-44) and (4-45). Equation (4-44), for the longitude

channel, is the integral form of the first of the differential equations,

(4-45), as can be verified by direct differentiation.

An alternative derivation uses Coriolis Law to derive the components

of acceleration in spherical coordinates in terms of the components in

rectangular coordinates. If Wig is the inertial angular velocity of the

accelerometer platform:

W,, = LA + (We+A)L. cosbe + sin L.)

C FieaTre

Tl FF + Warns) + 2Wa x1 + | *

.Je

€ = tx, - G
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When expanded, these result in Equations (4-45). Equations (4-45) can

be written in terms of gravity, g , not gravitation, G, by using the

relation:

o -: G= We X(Wgx T)

gy”
1

8," Gz — We r sin Li. cos Lg

2 l
2.7 Gyt+Wg r cos L¢

(5-3)

Substituting into Equations (4-45)

ve Q » 0 0

a, = rAcos L - 2rL WA) sin L + 2r (We +A ) cos Lg -g,
[XJ . ’ vo ® &lt;

fa, Le + rN (2W+ A) sin Lecos Lg+ 2rL, -%, (5-4)
3 2 : ? 2

Tr - Tr Le - r\(2W + A ) cos L. -%e,

These are the equations which relate A and Le to the fy;. Since the

vehicle always operates on the reference ellipsoid, r is a known

function of Li. , Equations (C-6) and (C-7), The platform drive signals,

which are the components of Wp along the navigation coordinate axes,

are given in Equations (4-55).

If the geoid were an ellipsoid of rotation enclosing a homogenous

fluid mass, g would be normal to it at its surface so the horizontal

component of g along the ellipsoid would vanish. But Section 2. F. 8,

shows that a gravity field based on such a model is not sufficiently
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accurate. The simplest valid model for the systematic portion of the

Earth's gravitational field postulates an inhomogeneous Earth (whose

density is a function of } ) enclosed by an ellipsoid of rotation. For

such a model, Equation (2-33) gives the systematic horizontal compon-

ents of g on the surface of the ellipsoid as:

gi] =h=9

gy, * - 130 in 2 Le
I-o Qa

0

-5
in spherical coordinates, to an accuracy of 2X10 gee. For the Earth,

Te = 979.1 cm. /sec” and the flattening, f, is 1/297 for the

[nternational ellipsoid. In fact, the geoid undulates slightly, producing

a deflection of the vertical which does not exceed ten seconds of arc in

most places. gy: the vertical component of gravity, has a negative

magnitude and is a weak function of position on the ellipsoid. Hereafter,

let Ey = - 8 in the level equations,

Figure 5-8 shows the mechanization of the two horizontal channels.

The vertical channel is unstable, as shown inSection 5. E. 3. The longi-

tude channel illustrates the integral mechanization which Sections 5, F., 1,

and 5. F.4. show is less practical than the differential mechanization for

slow-moving vehicles. If geographic coordinates are desired, they can

be calculated either from the geocentric coordinates using the trans-

formation:
- = Li. + f sin? i.

or directly, using the geographic mechanization of Section 5. F,
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&gt;. BE. 3. ERROR PROPAGATION,

Suppose the accelerometer platform is misaligned relative tc the
—

unit vectors by a small vector angle ¢

b = dA # 9, L. + $b,

b, is the misalignment about the east axis, do, about north a=d OR

in azimuth, In the misaligned czordinate frame, the accelerometers

-/ y : _y = . Co _

measure f, , which is related to fo according tc the tr  formations

r bh. ~¢  A

fo
{fo

ha

¢, ' 3 Ay)| |
where A- are the instrumentation and arcelerometer errcres,

The compensations shown in Equations {5-4} are computed withcut

knowing the amount of the misalignment, Thus, computed gravity, g'

is added to the accelerometer outputs. Since the compensations are

small, it does not matter to first crder whether they involve the altuil

/
. : /

coordinates, A , Lc and r, or the computed coordinates, A . Li. and

r! The computed coordinates are reiated to the zctui’ accelerometer

outputs according to Equations (5-4), wr.iten entirely in primed

‘computed) quantities. Substituting Equations (5-6) into (3-4) with



primed variables and neglecting small quantities to first order:

~:
/ 4

se
/ / be /

Mm Lc =r Le + gd, + Ag tg, - g,
of se

 mn =r +Ay +g

(6-7)

If 8, and ©, are the gyro drift rates about the latitude and longitude

axes, the level axis errors are:

Yy _ * °

A cosL +6, = A cos Le +9,

Le —6, = Lc - 6,
5 3)

f

and substituting into Equations (5-7) with r’ cos L. =~ r cos Le

A 3 0 eC _A:
t=O Me

Jos A
1. $= +,

+

where W¢ = ne is the square of the Schuler frequency.
e

4

3)

These are the first order error equations in terms of the misalign-

ment angles. Equations (5-8) are the error equations in position.

To first order, the two level axes exhibit undamped oscillations with

Schuler period Js = 84,4 minutes, on the surface of the Earth.

A more detailed analysis which suppresses the accelerometer outputs

and closes a feedback loop through the compensations shows the presence

of a long-period oscillation (Ref. 18). On a stationary vehicle, the

period is the Foucault period, 2w/ Wgsin Li,

PRR
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Using Laplace transforms, the level axis errors are:

~ L 4 A(s)
S +W S$) =S6(s)— —( ) d( ) ( ) Me

(5-10)

2006) LAG) 906) AG)Ax(s)= FR S ($+ wy ) S + W;

where a AL = a (Le -L¢) is typical of the position error, A x. s is the

Laplace transform operator. The last equation also represents the

/ ’
first order error propagation in the longitude channel with Ax =N sl ~

— r cos Lg. Higher order error analyes usually require a digital

computer smulation.

The first order system errors for particular instrument errors

are shown in Figure 5-9. Stochastic errors are discussed in Sections

5. E. 4. A, and 5, E. 4. B.

The correct azimuth drive rate should be (We +A ) sin L, . Because

of gyro and computer errors, the input axis of the north accelerometer

drifts off the geodetic meridian at a rate O_

b, = 6, + SWe*rN)sinl,

(5-11)

=S, + (Je Gosk dL Hie JSin Let 3(Reosl&lt;) Tan Lc

to first order where the lastterm is xan 5 d, , using the terminology

of Equation (5-9). Substituting the first order latitude and longitude

&gt; 5 7



errors from Equation (5-10) into (5-11):

. A.(S) 2 sA (s)
- » S6. Oh Te 3 GU)6): ,
39,(8)= GS, (9)+ Sr EB wg cost, + Few E tne

Hence errors in all three gyros and in both level accelerometers cause

azimuth errors to first order, in accordance with Equation (5-12).

In the steady-state:

- At A, Tankby = Oy + L800 orl — PETESbe ¢ Autunlc (5-13)
Ww, Q 9

[n this application, the fact that the vehicle is constrained tc the

ellipsoid allows r to be computed as a function of Li. However, in

other applications, the vehicle is free to move vertically and the mecha-

nization becomes more complicated, as in Section 5. F.

The third of Equations (5-7) describes the error propagation in the

vertical channel. Since:

J . Ji _ 10 ~ 24M AN
A n’ 3

it follows that:

where ar = r' - r,

. 16 Mg = A
AT - 3 &amp;v 3 5-14]

The vertical errors increase exponentially to first

order. Altitude cannot be measured inertially for long periods of time

) 5 8



but the vertical channel might be used to provide short-term filtering

for a non-inertial altitude measuring device.

5. E. 4, NUMERICAL EXAMPLE,

A vehicle, assumed to be a ship, operates on the reference ellipsoid

at velocities less than twenty knots. The desired position accuracy is

one mile. The gyro drift rate is 0,005 deg. /hr. (Refs. 36 and 41) and

has known statistical properties discussed on page 263. The accelerome-

-5 »
ter threshold is 5X10 gee and drifts at 10 B ee/hn. The statistical

properties of the accelerometer are discussed on page 261.

The navigation system is designed in detail below. It bears no inten-

tional resemblance to any other navigation system, operation or

contemplated.

oo £.4, A, ACCELEROMETER ERRORS.

A cons cant threshold of 5X10 gee causes a position error of:

« f°Aq 1 - cos
1):

1
Lg t J (1-COS at) naut. mi,

&gt; 57



and a verticality error of:

1 Ao -cos Wt)
3 .

10 (1 - cos Lt) sec. of arc.

A bias drift of 10 gee/hr. causes a noegition error of:

AK = 0.035 (t- 0.224 sinllt) naut, mi.

and a verticality error ~f

® = 2.0 (t-0,224 sin Wt ) sec. of arc

The necessarily small accelerations of the ship minimize the effect

of non-linearity errors in the accelerometer on position and verticality.

Much of the accelerometer error is statistical. If the mean square

accelerometer error is MS(A), with a bandwidth WwW, = 2n/t, the

power spectral density of A can be represented as:

_ Ms(A) TN
$,.® To |- trg®

and the power spectral density of verticality error, 90 , computed
according to:

B (sy=- bw
ab Me ($+21WS+We)(s-2IWS+wy)

5-1 5

where damping has been added to the Schuler oscillation to produce a

convergent mean square verticality error. The mean square verticality

240



error, Ms($ ), can be numerically calculated from page 372 of Reference

&gt; A

seh yo WMS®) HZ (5,
VERON = 0D) {new +2 [0 +0 To

f

Assume that the noise bandwidth, (4, is ten radians per minute so

Wer, = 2mor is much less than unity. Then:

Ms($) = TT ue
Thus if \- 0.1 and the RMS acceleration

RMS{ ¢ ) = 2.0 sec, of arc

-2
error is 2X10 gee:

The correspomding mean square position error is less than a thirtieth

of a mile. Hence the accelerometer causes relatively small system

PYTYOrS.,

The RMS position error caused by the omission of the horizontal

component of gravity from the mechanization is evaluated analagously

to first order, as shown in Section 5.C. 5
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5. E.4.B. GYRO ERRORS IN THE LEVEL AXES,

The effective gyro drift rate is composed of the RMS sum of the

0.005 deg. /hr. drift caused by uncertainty torques and the apparent

drift caused by torquer non-linearity. The latter is negligible about the

east axis because of the slow torquing rate there, but is appreciable in

the north channel. For example, a torquer error of five parts in TO

~-4
causes the near-Earth-rate north gyro drive to be in error by 5X10 ie

0.0075 deg. /hr., Thus the net drift rates are 0.005 deg. /hr. about

the east axis and 0.0125 deg. /hr. about the north axis. Strictly, the error

probabilities in the two channels are different but for simplicity, assume

an average drift rate of 0.008 deg. /hr. in both channels,

A constant gyro drift rate of 0,008 deg. /hr. causes position and

verticality errors:

Ax = 0.48 (t - 0.224 sinUgt )

d= 6.4 sin Ww,t

naut. mi,

sec. of arc

If the ship must realign its platform periodically with a star -*~acker

errors of about fifteen seconds of arc are assumed to result at each

alignment. The errors resulting from initial level axis misalignment

Ir

= 9.20 (1 - cosWgt)

d = 15 (1 - coset)

&gt;
’

“y /

naut., mi.

sec. of arc



The output of a well-constructed gyro consists almost entirely of

noise since predictable errors have largely been eliminated. For

statistical studies, the transfer function of the system can be simplified

 SGAx(s) = eS)

Hs) s axl) — S§G)

Then the mean square error after a long time of operation is:

MS(A x) = ne t [96s W) du

If the autocorrelation function for the gyro noice 1s assumed to be

exponential with a correlation time, Tc , of one minute:

db. , (t)= Ms(&amp;) o
Thus, if the RMS drift rate is 0, 005 deg. /hr.:

MS (px) = 2 rpt MS(G)Te

RMS (ax) = 0.05 [t' naut. mi. (5-17)

The RMS verticality error is correspondingly small, If the gyro is

anbalanced or anisoelastic, it will drift in the presence of vibration or

acceleration. Such erors are neglected in the relatively hospitable

environment of a ship.

&gt;A2



5. EE. 4. C, GYRO ERRORS IN THE AZIMUTH AXIS,

The azimuth angular error, Os: is composed of the initial misalign-

ment, ds, , the net azimuth drift rate = 0.008 deg. /hr. (as on page 262]

and the effects of coupling from the level axes, shown in Equation (5-13),

The magnitudes of the terms in Equation (5-13) are:

S
He cosL = 0.25 sec. of arc

&lt;

t

Welzcot, = §xio des.[hr

en &lt; 20 sec. &amp; arc

Thus, d, has the form:

dy = d, + 0.00% degrees

where b, is the RMS sum of the initial misalignment, ¢, = 15 seconds of
o

arc, and the 20 seconds of arc constant error resulting from level axis

coupling

If the vehicle moves at constant velocity, Vy, virtually no position

error results, to first order, from a small azimuth drift, b, , since

the computer continues to integrate the correct velocity components.

However, to be conservative, it is assumed that the output of the

velocity integrators are always correct. Thus, a cross-track error

pJR



of approximately:

AX = v b,dt

results. Substituting d-

ax =C.0014t + 0.0014  pqut. mi.

The position error resulting from azimuth misatiz LLY znt is small, to

first order.

5. E.4,D, COMPUTER ERRORS,

Errors in the computation of the horizontal component of gravity

produce the same system errors as do accelerometer errors, In

longitude, the systematic horizontal component ofgis zero. In latitude

the systematic horizontal component of § is computed from Equation

=3
(2-33). Its maximum magnitude is 3X10" gee which must be calculated

to an accuracy of 1%. : Hence terms of order Gare indeed negligible.

Because of an unmapped deflection of the vertical at sea, an anomalous

: -5
horizontal component of gravity as large as 5X10” gee may be encounter-

ed unknowingly. The resulting position and verticality error in the

steady-state would be:

A X J T
» 73 (1 - cos Wg t)

10 (1 - cosWgt)

naut., mi,

sec. of arc

AK



If the statistical properties of the horizontal component of g§ were known

their dynamic effect on the system could be estimated. To an overall

accuracy of one mile, the small horizontal components of g can barely

be ignored,

The compensation terms in the navigation equations can be simplified

-5
as follows. They must be calculated to an accuracy of about 2X10 gee

t0 preserve a system accuracy of one mile.

a. In the longitude channel, the term, 2rL,. (We*A) sin Li, need only

be calculated to 10%. To that accuracy, the term can be mechanized as

o

2alic W _sin Lg . If the latitude range of operation is sufficiently small.

sin L., can be taken constant or linearized.

Fo In the latitude channel, the term, r A (2u*A) sin L, cos Le can be

represented as a’AW, sin 2L. which could be further simplified if the

latitude range were sufficiently small,

~

eB In the latitude channel, the term 2 r L. appears. Equation (C-G )

gives the radius of the ellipsoid as a function of latitude. Thus:

»

re

2
 ae
 = 5 sin 2L.. 1

+ -%

and 2 r L.=1,1%X10 gee, which is negligible. This term need not be

mechanized.

2 A 7
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d. The longitude channel contains the term 2x (W, + A }) cos L

~1
whose maximum magnitude is approximately 5%10 gee. This term

need not be mechanized.

e. In order to compute A and L , it is nececsary to divide the

compensated accelerometer outputs by r cos I. and r, respectively.

Errors in the divisor always affect the position error since the

compensation signals must be divided, even when the accelerometer

putput is zero.

The maximum magnitude of the compensations is about 5% 10 gee

which, if divided to an accuracy of 1%, results in a maximum position

error of 0.08 nautical mile. If the ship accelerates to 20 knots in a

short time compared to the Schuler period, and the divisor is calculated

-Z
to 1%, the position error responds as if to an impulse of 20%10 knot

in A(s). The resulting position error is:

0.045 sinWt naut. YY1

Thus, from either viewpoint, r may be approximated as a constant.

An interesting simplification results in the long ude channel if it

is recognized that the differential equation:

F
w

= ahcos L. - 2aL(W,_+A ) sin L

is identical to the integral equation:
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» — ttA Wye Mwstle Chir )eost dt

with constant r. As explained in Section 5. F.1., the integral mechani-

zation is not suitable for low-speed vehicles, where A LL We . For

improved calibration, a may be replaced by the mean radius of

curvature of the ellipsoid in the region of operation.

The RMS system error for a large number of missions is computed

from the RMS sum of the individual errors. The total error at any time

is assumed to be the RMS sum of the per-channel errors. Figure 5-10

shows the RMS position, velocity and azimuth errors for this hypothetical

example. Clearly the system must be realigned approximately every hour

and a half.

5. F. NAVIGATION ERRORS IN GEOGRAPHIC COORDINATES,

5. F.1. THE NAVIGATION EQUATIONS

The previous section mechanizes an inertial navigator in spherical

coordinates in which a systematic horizontal component ofgappears in

the latitude channel. A mathematical model of g is used to compute

&gt; AQ



this horizontal component of gravity which, in turn, compensates the

latitude channel and forces the platform to align with the radius vector

to the center of the reference ellipsoid, within geodetic limitations.

Equations (4-46) and (4-47) show the accelerometer outputs when

the accelerameter platform aligns with the unit vectors of the geograph-

ic coordinate frame. Equation (4-46) gives the integral form of the

longitude mechanization:

Na == Wp * Borhy) eels r9 he “1 Se

For low-speed vehicles, the differential equation is probably more

suitable than the integral equation since the latter computes Wp +A

directly and then subtracts Wj, to calculate the small NA . Thus, a

small fractional error in Ww, would result in a large fractional error
oo

in calculating A . The integral mechanization requires an accurate

multiplication and division; the differential equation requires an accurate

division and several relatively inexact calculations of compensations.

For high-speed vehicles, the integral equation is ideally suited to

digital computation.

Near the Earth, it is preferable to mechanize in terms of |g, not

G since the geographic horizontal component of g on the ellipsoid is

nominally zero:

) "70



g a i. Ww, xX (We * n)

g,
rm
+J

2
8, = G,= (6 A Sin Lg COS Lq

 Zz 2
gq = Gy + (P+ hq JW, cos M9

(5-18)

Substituting into Equations (4-47)

a = Bar hy) Aeschq*20g (Werk Yeocly —2fug Rh) sity,

: 1\ sin ZL «0

i - (Parha)iy +P rhe )A- (zw *A) eh 21ghy
z ,

 3 € Sin 2L 4 ot —Y
2 |-€E%inty 3 z (5-19)

tf h 0 h ( W Neos Lg (Ba h Lq 3A 7 \e9 . id ( 9)

The gyro drive signals are given by Equations (4-56).

Thus the complete equations can be mechanized in the manner of

Section 5. E. The computed compensations and the horizontal components

of gravity are added to the accelerometer outputs, the results divided by

(fw + hg) in latitude or (Co +hy ) cos Ly in longitude and twice integrated.

Lg ’ A and their derivatives are fed back to compute the compensations,

the gyro drive signals and gravity. The longitude channel can be
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Figure 5-11
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mechanized using either the differential or integral form of the naviga-

tion equations, The vertical equation is unstable as before so the height

above the reference ellipsoid must be found by non-inertial means.

5. F. 2, SIMPLIFICATION OF THE MECHANIZATION,.

In this section, typical navigation systems are mechanized in geo-

graphic coordinates for three different applications. One is a surface

ship traveling at twenty knots, Another is a Mach One fighter aircraft

whose altitude limit is 50,000 feet. The third is a supersonic Mach

Three transport limited to 200,000 feet of altitude. For each system

the mechanization equations are suitably simplified and shown in

Figures 5-12 and 5-13,

The operating parameters of the vehicles are summarized in Figure

5-11. For simplicity, the latitude range is supposed to be * 60° so

cL :
lcos Lq| &gt; . The desired position accuracy is on the order of a mile.

The gyro drift rates and velocity computation accuracies are assumed

-4
to be 10 Earth-rate = 0.0015 deg. /hr. (Refs. 36 and 41). The maxi-

=
mum permissible error in computing the compensations is 2X10 gee.

The first order position errors caused by simple accelerometer and gyro

errors are very nearly the same as those shown in Figure 5-9,

2713



Figure 5-12
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Be Fs 2:.A, THE LATITUDE CHANNEL,

I'he three compensation terms in the second of Equations (5-19) are

simplified in Figure 5-12, for each of the three applications. Pp and

Pu are constant to an accuracy of 0.3% and may be taken equal to

24 Where a, may be "tuned" for optimum performance. am may

equal the semi-major axis of the reference ellipsoid or the mean

radius of curvature at the latitude of operation. If the latitude range of

operation is sufficiently limited, sin Ly and cos Lg can often be linearized

or chosen as constants without serious system errors.

2
3 € sin2l.q pt

The term = —21) L is always so small that it need onl2fr ez ) y ¥

be included for the Mach Three vehicle and even then, to an accuracy

of only 15%. Hence switching logic in the computer could be used to

program this term coarsely, in increments, as a function of heading

angle and speed. The 2 Lh, term might be similarly simplified or its

integral could be calculated only during climb or descent maneuvers when

it would be switched in as a fundion of barometric altitude only. This is

especially feasible for the Mach One aircraft since it operates in a

limited latitude range from any one base

The necessary accuracy in computing the divisor, Ba + hg , for the

Mach One and Mach Three aircraft requires a digital computer.
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Figure 5-13

GEOGRAPHIC MECHANIZATION, LONGITUDE CHANNEL
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5. F,2.B, THE LONGITUDE CHANNEL,

The mechanization of the longitude differential equation is similar to

the mechanization of the latitude equation. The same approximations are

permissible and necessary to reduce the calculations to reasonable form.

Figure 5-13 shows the detailed simplification of the mechanization.

The mechanization of the integral equation is conceptually simpler than

that of the differential equation, especially in the case of the Mach Three

aircraft. Instead of computing three complicated compensations to mod-

erate accuracy and one divisor to high accuracy, only one divisor and

one multiplier must be found to high accuracy. The major disadvantage

of the integral formulation appears to result in the slow-speed vehicle

when the direct calculation of WHA , which is only slightly different

than W,. , will result in a verv inaccurate calculation of A at slow speeds.

The integral computation, with digital computers, appears extremely

attractive for the Mach Three transport. Notice that the initial condition

’ 1 ' s

on the velocity integrator is not merely Ao but is (©, +h) (w+ Ae )c 0s Ls,
Ty, is requires the addition of a small, initial condition computer.
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5. FL 3, THE DYNAMIC MEASUREMENT OF GRAVITY.

if the vertical channel were used to measure altitude inertially, the

system errors would increase unbounded. It can however be used to

measure [zl Accurate measurements of |Z] have been made on a

very small fraction of the Earth's surface. Virtually no measurements

have been made in the air or in unexplored regions and relatively few

have been made at sea, Accurate gravimetric measurements should be

~7
in error by no more than 1/2 milligal ( 5X10 gee} but measurements

as inaccurate as ten milligals (10 B oe) are useful in gravimetric geodesy

The output of a vertical accelerometer could be compensated according

to the third of Equations (5-19) to compute gy the vertical component

of gravity, The major difficulty in computing gq from that equation

arises from the large vertical acceleration, hg , of the vehicle, A

sufficiently accurate measurement of hq is presently impossible so g

must probably be obtained by averaging aver a sampling interval, To :

L T
Jaca) = 7 | 9, (1) dt

a

E3(av.) is calculated by integrating each term of Equation (5-19)
4 - 7

separately. An integrating accelerometer measures [tas dt
n

directly. Geodesists rely upon pendulums and mass-spring devices

which must be observed for many minutes to obtain one reading. Such
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devices are essentially averaging accelerometers which measure

AL
 | fi, dt

0

Thompson and Lacoste (Ref. 148) and Nettleton et al, (Ref. 131)

are presently attempting airborne measurements of average gravity

over thirty to sixty mile intervals, with relatively crude compensations,

I'he maximum accuracy in computing the compensations can be

estimated as follows, using Figure 5-11. The two compensation terms

-b
are calculated to 5X10 gee.

The maximum value of (P. + hg J(2W AY ) A cos L on a
P09 " 9

-2
Mach One aircraft is approximately 1.5%10 gee which must be calculated

to 0.03%. This requires that altitude above the reference ellipsoid be

L
known to 5000 feet and that Ce be calculated to order €

The maximum value of (Qu hg ) iy is approximately 1.5 X 10° gee

which must be calculated to 0.3 %., Thus ‘the term (Pw + hy) X ay,

where ay is some mean radius of curvature of the Earth in the vicinity

of operation.

s 2

On a ship, the required accuracy of (6+hq) (2w +A) A cos Lg
‘1

0.2% and the (fn hg ) La term can be omitted entirely,1S

Averaging does not significantly relax these accuracy requirements.

Even if the accelerometer platform is misaligned as much as one minute

of arc from the geographic vertical, the error in |g| is only five parts

3 A



9
in 10 , which is totally negligible. Thus platform oscillations will not

disturb the measurements.

5. FL 4, SUMMARY.

The approximate equations which the navigation computer must solve

are shown below. The necessary accuracy of computation of each term

1s shown:

0.25% 5%,
wo +g TGA (afsintly)wsly=2Q0,Lysinby
fo. TB Tally FA AW, sinlg

13%

B MACH ONE AIRCRAFT,

io

'5.20)

fa, +q = [hot a(itfsin LR Gaslq +2(, +A) (By Casky™ alysinks)
0.0757 257 0.267

vs 2 SinZL
“1 L. — a 2W, +A)A 52fa, + 9,= Ly" af 14+ (asin Ly 2) 9 i] 2

Q.157. on

or alternatively in longitude:
2 hy

. |-2€sin Ly—2+ .1Ny=-We Th [fy i
o 00447
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C. MACH THREE AIRCRAFT.

fo + Q, =|hqt as ¢ fin’Lg) | Acos Ly + ZW) hy © Ly -
0.017, 4.37,

2 (w+ A)Ly sinkq Ih y' ! +£(3 n'y]
0.04% 1p

(5-22)

f+. = : 1 t \ 5 St2t 9. \hq a) #£ (asin Ll L +(2uetA)AHels x
0.02.7, 0.057,

[hyo fsin'L ag.Nn | + Too5 sintlq + AR
157, on

or alternatively, Equation (4-47) can be mechanized in longitude with:

Botha = hq +0. (1+ Fsin“Ly)
A 7 1 ~

(Pothy) = hg + 2ohg(ItFsinLy)7a(t2fsia"Lg)

~5
To an accuracy of 5X10 gee, below 200,000 feet, 8, consists of a

systematic portion (Equation 2-40) and an anomalous portion which

should be stored in an on-board digital computer in regions where it

-5
exceeds 5X10 gee. At altitudes below 35 nautical miles, even the
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systematic portion of horizontal gravity can barely be neglected. The

systematic portion of g, is zero but the anomalous portion of g, should

be programmed as a function of position in regions where it exceeds

- a

5X10 gee.

The details of the first-order error propagation are identical to those

of the spherical mechanization, Section 5. E. 3. Uncoupled, undamped

Schuler oscillations and a Foucault oscillation appear in all three channels

Except in the case of the ship, the distinction between the prime and

meridian radii of curvature must be maintained in at least some of the

compensation terms and altitude must be included in the computations.

The most accurate altitude measurements are required in the integral

mechaniration of the longitude equation for the Mach Three aircraft. Here

since the Ce + hy terms must be mechanized to one part in 50, 000

at maximum altitude, hq must be measured to an accuracy of 600 feet.

A serious limitation results because suitable altitude sensors may not

be available. Since hq is altitude above the ellipsoid, not above the

terrain, a radar altimeter may measure it incorrectly. A barometric

altimeter, which correctly measures potential height, will not function

at extreme altitudes and velocities.

The integral mechanization of the longitude channel avoids the explicit

~aiculation of Coriolis terms, as noted in Section 5, F, 2, B., but instead

RD



requires two accurate multiplications or divisions. If suitable sensors

are available, a digital computer can readily achieve this accuracy.

The altitude rate terms can probably be simplified by computing

their integrals in terms of altitude and adding the integrated compensa-

tion to the output of the velocity integrator.

All questionable simplifications should be investigated by simulation

with a digital computer before being incorporated into the proposed system.

The horizontal component of gravity has been omitted from the mecha-

Lo ~9

nization. An error in computing g, Or g, of 5X10 gee produces a

position error whose maximum amplitude is 0.34 nautical mile. Thus

for high accuracy, it is mandatory that large systematic horizontal

components of gravity be inserted into the navigation equations. The

deflection of the vertical in a geographic coordinate frame can be

referred to the projected normal to the reference ellipsoid.

The navigator must recognize that in most areas of the world, the

deflection of the vertical is unknown relative to any ellipsoid whatsoever.

The deflection of the vertical at altitude can be obtained only by calculation

from gravimetric data.
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5. G, NAVIGATION ON OTHER PLANETS.

It cannot be long before the technological problems of reaching the

Moon and planets will have been solved and vehicles will be navigating

on their surfaces. This thesis has been written in such a manner that

it is applicable to navigation on other heavenly bodies.

Having placed unmanned, and then manned vehicles on a planet, it is

not sufficient to allow them merelv to rest at their landing points; they

must explore the surface. Such exploratory vehicles would roam the

planet's surface establishing bases, taking samples and performing such

experiments as the measurement of gravity and the study of magnetic

fields and seismic disturbances. It would be unfortunate if the vehicle

were unable to find its base, thus granting its possible occupants the

privilege of being the first permanent human inhabitants of the planet.

The heavenly bodies most likely to be explored within the next thirty

years are, in order, the Moon, Mars, Venus and the larger moons of

Jupiter and Saturn. All these bodies are referred to as ''planets'' for

simplicity.

Planetary navigation can be accomplished in many ways:

Visual observation of landmarks will serve to orient the human

occupant or remote television viewer, This navigation technique is

2Q1



decidedly limited in view of the unfamiliar terrain, possible clouds and

dust storms and the probable necessity of navigating beneath the surface

of a liquid on Venus.

/ Electronic beacons or transponders can be located on the surface

in the same manner as Tacan, Loran and Shoran are used on the Earth.

During the first phases of exploration, only homing beacons will probably

be used. Later, Shoran- or Loran- type networks may be established,

Though electronic devices would probably constitute the primary

navigation aids, few vehicles would be entrusted to exclusive dependence

on. one means alone because of the possibility of equipment failure,

Furthermore, electronic beacons are subject to propagation disturbances.

such have been identified on Jupiter, and to solar interference with

transmission, which might be serious on Venus.

Taking their cue from Theseus, the very earliest vehicles may

navigate simply by laying out a cable and following it back to their base.

4 Celestial observations can be used in the same manner as on the

Earth, wherever and whenever visibility permits, Stars, the Sun and

other planets would be observed but with new right ascension and declin-

ation coordinates to correspond to the planet's pole.

It is not feasible to control the exploring vehicle by direct observation

from the Earth.
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3) . Magnetic azimuth measurements may be possible after the

magnetic fields have been mapped. Early explorers certainly cannot

rely upon them.

r

3 Natural and artificial satellites will undoubtedly serve the same

useful purpose on other planets that Transit will on the Earth, A Transit

satellite would be most useful on Venus where optical astronomic

measurements may be impossible. Though Venus has no large natural

moons which might perturb the Transit orbit significantly, the Sun's

gradient at Venus is twice the Moon's gradient at the Earth.

Inertial and inertial-hybrid systems will undoubtedly be carried

aboard any vehicle that ventures more than fifty miles from a base, to

supplement information from electronic and celestial observations.

The navigation process on other planets is complicated ov:

an initially unknown magnetic and gravity field on the planet.

2 an uncertain rotation rate and polar position of some of the

planets. This is true chiefly of Venus and the moons of the major

planets. On the major planets themselves, the angular velocity of the

fluid surface appears to be a function of latitude and altitude,

2 cloud cover (Venus), dust storms (Mars), radio noise (Jupiter)

and liquid surface (Venus, the major planets).

) 2
,
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large eccentricity of a reference ellipsoid which closely approxi-

mates the geoid. This eccentricity is small except for Mars and the

major planets. On these bodies, the flattening exceeds that of the Earth

(f= 1/300) so the geographic mechanization equations become extremely

complicated for high-speed vehicles.

5 large rotation rates of the major planets. This complicates the

mechanization since compensation terms are large. The low rotation

rate of Venus and the Moon may prevent gyrocompassing, even on

stationary vehicles.

On the Moon where visibility is ideal (unless the dust cover is so

thick that vehicles move about in perpetual clouds of stirred-up dust),

a celestial-inertial system will provide supplementary navigation informa-

tion to the network of electronic beacons.

On Mars, dust storms may rule out celestial measurements for periods

of many hours, Therefore a celestial-Doppler-inertial navigation system

may be needed to bound the position errors during periods of poor visi-

hilitv

On Venus, a Doppler-inertial system is needed, supplemented by

an orbiting Transit satellite to insert initial position and possibly

azimuth. The navigation equations on Venus are somewhat simpler

than on the Earth because of a smaller flattening and probably lower

&gt;Q7



Figure 5-14

LIMITATIONS ON THE USE OF INERSORS

FOR TERRESTRIAL INERTIAL NAVIGATION

Limitation

Migration of the Earth's Pole must
be included in the mechanization.

[nersor Uncertainty, deg. /hr.

4 6-0 2-4
10 10 10 10 10 10

Ny
Spin rate fluctuations of the Earth

must be included.

The inertial and sidereal spin
rates differ.

The Earth-centered, ''inertially-
non-rotating' x: coordinate
frame has an inertial angular vel.

Angular velocity of the inertial
frame is a function of the

observer (Thomas).

Star proper motion is measurable

The heliocentric, 'inertially-non-
rotating' coordinate frame has an

inertial angular velocity, viewed
from the Earth.

Ephemeris Time is unsatisfactory.
Laws of dynamics in question.
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Figure 5-15

LIMITATIONS ON THE MEASUREMENT OF POSITION AND

ACCELERATION FOR TERRESTRIAL INERTIAL NAVIGATION
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Position Error, Naut, Mile
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alignment.
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Simplified horizontal gravity formu-
lae in the text can be used.
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the Earth.
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rotation rate. However the slow rotation rate makes the determination

of azimuth initial conditions difficult - a problem common to all forms

of navigation. The inertial navigator provides a stable platform for use

on the possibly-liquid Venusian surface,

Barometric altitude measurements are feasible on Mars and Venus

and possibly on the major planets but certainly not on any of the moons.

though radar or ionizing devices might be used.

I'he hostile environment (pressure, temperature and radiation, for

example) on these planets and the absence of precise physical data make

the problem of planetary navigation unusually challenging.

5. H. RECOMMENDATIONS FOR FUTURE STUDY.

The following areas of inertial navigation are suggested for future

study,

Though only orthogonal navigation coordinate frames are

practical, component misalignment on the platform causes the measure-

ments of acceleration and angular velocity to be made in a slightly non-

orthogonal coordinate frame. The tensor formulation of the navigation

equations in Chapter Four might be applied to study the effect of such

Th



non-orthogonality on system errors. Mr, John Hovorka suggests that

this approach could be extended to the study of flexure, "cocking, and

misalignment within the instruments themselves.

2. Section 5,D.8, introduced the possibility of selecting an optimum

navigation coordinate frame for any particular application. Though the

author believes it unlikely, further study might lead to a procedure which

would select such an optimum system, at least in certain special cases.

3. The problems connected with navigation on the surface of the Moon

and other planets were outlined in Section 5.G, Though practical appli-

cations are still years away, low-level university studies of this problem

should begin now.

T Initial conditions are essential for an inertial navigator. Because of

component limitations, the system errors degrade to such an extent, on

long missions, that it is desirable to realign en route. Potential schemes

for en route alignment and transfer of initial conditions between platforms

should be investigated in detail and applied to particular systems.

a The conventional first-order error analysis of Section 5. E,. 3.

and 5, F'. is usually used to rougly predict system performance, before

studying the mechanization on a digital computer. Two questions arise:

How close do actual flight test results come to the error analysis

predictions ?
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What general criteria should be used to judge the performance

of inertial navigation systems?

Such a study would probably be hampered by the necessity of obtaining

test data from manufacturers of navigation systems.

r

Y The design of a geodetic gyroscope, perhaps to detect the polar

migration or spin rate fluctuations, may soon be practical. It could

be made in any size, allowed to operate under the most rigidly controlled

laboratory conditions and observed frequently to reduce statistical uncer-

tainties.

The necessity of measuring the magnitude of gravity from a moving

vehicle is already established. Though Section 5. F.3. shows that instan-

taneous measurements are difficult because of the unmeasurable vertical

acceleration of the vehicle, average gravity measurements are clearly

practical, perhaps with an accelerometer -type instrument instead of a

pendulum. This investigation should be pursued on an experimental basis,

3. With increasing interest in astronautics, a descriptive and critical

bachelor's or master's thesis on the precise measurement of time is

essential. Such a study would emphasize astronautical and navigational

applications of time measurement. This writer believes that the United

States Naval Observatory would provide information and guidance to such

2 studvv
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Appendix A

CHANGES IN THE VECTOR

SPIN RATE OF THE EARTH

A, lL, INTRODUCTION.

The spinaxis of the Earth does not remain fixed relative to the

Earth but describes a bounded, spiral-like motion of small amplitude

about the "geographic pole.' In addition, the magnitude of the spin rate

varies slightly, This appendix discusses the magnitude and predictabili-

ty of such changes. Their effect on navigation is discussed in Chapter

Fiv~,

A.2. THE DIRECTION OF THE SPIN AXIS RELATIVE TO THE EARTH.

Observatories throughout the world have been repeatedly and accurate-

ly measuring their astronomic latitudes for more than 75 years, In 1891

S.C. Chandler compared many such measurements made by several ob-

servatories over a period of years and concluded that the angle between
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Figure ‘A-1

POSITION OF THE EARTH'S POLE FROM 1949 TO 1955

Plan View Looking Down at North Pole

(from Reference 195, pg. 278)
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the instantaneous spin axis and the local vertical at any point varies

slightly with time (Ref. 121, pg. 212). Since measurements at different

observatories correlated so well, the only reasonable explanation was that

the spin axis migrates relative to the comparatively rigid mantle of the

Earth,

Since the turn of the century, a considerable body of theory and ob-

servation has accumulated concerning the polar migration, Figure A-]

shows the position of the instantaneous north pole as a function of time

from 1949 to 1955, The motion of the polar axis appears bounded, at

least for short geologic times.

The mean position with respect to the mantle during the decade 1900 to

1910 is designated the '"geographic polar axis' (Ref. 195, pg. 278).

The question of whether large excursions of the pole, measured in

thousands of miles, are possible in geologic time is not considered here

since for many decades, the departure of the instantaneous polar axis

from the geographic polar axis is not likely to increase drastically,

Figure A-1 shows the departure of the instantaneous pole from the geo-

graphic pole, at the origin. The x axis measures the angular displace-

ment of the pole along the astronomic meridian of Greenwich, toward

Greenwich, The y axis measures the angular displacement of the instan-

taneous pole along the 90° W. astronomic meridian,
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The migration of the pole relative to the Earth should not be con-

fused with its precession and nutation in inertial space. Physically, the

instantaneous spin axis precesses and nutates in inertial space while the

geographic polar axis '"'wobbles' around it.

A network of six International Latitude Observatories was established

in 1900 along the 39° 8' N. parallel of latitude at the locations shown in

Figure A-2 (Ref, 200, pg. 117),

Figure A-2

INTERNATIONAL LATITUDE OBSERVATORIES

(Ref. 156, pgs. 434-448)

=

Carloforte, Sardinia

Gaithersburg, Maryland

Jakarta. Indonesia

Kitab, Uzbek SSR (Soviet Union)

Mizusawa, Japan

Ukiah, California

39°8¢

39°8!

-6°16!

39°8!

39°8

39°R

-8°19

77°12¢

-106°53"

-66°53"

-141°8"

123°13°
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Cincinnati, Ohio apparently was among the original six but seems to

have been replaced by Jakarta. Each observatory measures its latitude

every night that weather permits and forwards the results to the Inter-

national Latitude Service of the International Astronomical Union

(presently at L'Osservatorio Astronomico di Torino in Turin, Italy)

which collates these data and publishes x and y coordinates of the polar

axis. Inspection of these data indicate that the pole position can usually

be predicted within *0.2 second of arc, one vear in advance,

The simplest mathematical model for studying the migration of the

pole represents the Earth as a torque-free rigid body. The slow pre-

cession and nutation of the geographic polar axis in inertial space is caused

largely by solar and lunar torques which act on the Earth, The most

rapid appreciable period, caused by the inertial precession of the Moon's

orbit, results in a nutation of 18, 6 year period and nine seconds of arc

amplitude. Thus, for intervals on the order of a year, the Earth is

torque-free, as a crude approximation, Making the additional assump-

tion that the Earth rotates rigidly and hence without damping, it executes

a Poinsot motion (Refs. 219, pgs. 159-163 and 238, pgs. 418-429) in

which the vector angular momentum, H, is constant while the spin

rate vector, W,. , and the axis of figure (which are not coincident, in

this mathematical model) rotate about the angular momentum vector

If a, the angle between the spin axis and the axis of figure, is small, the

0-



rate at which W, rotates about H, as viewed by an Earth-bound observer,

is (Ref. 238, pg. 428):

 Xx? 21°

Te = I+ We
W, = TT. |

[ is the polar moment of inertia of the Earth

[ is the transverse moment of inertia of the Earth

Astronomic measurements of the inertial precession rate and calculations

of the solar torque infer that for the Earth (Ref. 87, pg. 337):

-

Le Tx. g. 0032724 +(7x10 )
T

.
N -

We
Wy,=0.0032724 We ==

T,= 305 days

Thus on the assumption that the Earth rotates rigidly and without applied

torques, a natural period of 305 days, called the Euler period, is expect-

ed. However, the observed natural period is 439 days. This discrepancy

between the observed and predicted natural periods is caused by the inap-

plicability of the rigid, torque-free model, Clearly, unless the Earth

has considerable rigidity, a must be zero because the Earth will adjust

its axis of symmetry to follow a slowly changing spin axis. The axis of

symmetry should adjust to the spin axis in approximately the time taken

for elastic waves to traverse the Earth; about one hour. Inglis (Ref.

179) discusses elastic Earth models in detail.

Thus the actual angular motion of the Earth in space consists of an
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inertial precession of the instantaneous spin axis while the Earth itself

wobbles with respect to that axis.

The observed variation in latitude is analysed on a statistical basis

as a response to numerous random impulses of torque (Ref. 213),

Harmonic analysis has identified periods of (Ref, 121, pg. 220):

439 + 5,8 mean solar days

One year

Six months

irregular

The first is the Chandler period and is believed to be the '"305 day"

natural period as modified by elasticity, It is excited by those same

changes in moment of inertia which excite the other harmonics and is

damped by viscous and ol evtromagablic coupling between the mantle and

the core (Ref. 179), by the viscous drag of the oceans and the atmosphere

and by dissipation within the mantle (Ref, 88), Estimates of the damping

ratio vary from 0.013 (Ref. 121, pg. 220) to 0.06 (Ref, 213). These

have been calculated from the "relaxation times' (time for the envelope

of the step response to decay to 1/e of its original value) shown in

these references.

The annual and semi-annual periods are forced responses excited

by ocean currents, atmospheric winds, snowfall and vegetation growth,

Moving currents of mass such as ocean currents and winds have angular

momentum which slightly changes the direction of the total angular
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momentum of the Earth. Snowfall and vegetation growth cause

changes in the elements of the Earth's inertia tensor which act as

disturbing torques on the Earth. For example, as small an effect as

the seasonal growth of vegetation is estimated to cause a polar migra-

tion of 0,004 second of arc (Ref. 121, pg. 226). The irregular

fluctuations in the position of the pole are apparently due to mountain-

building and seismic activity within the Earth, which alter the elements

of the Earth's inertia tensor.

Advanced latitude predictions can account for the Chandler variation

and for much of the annual and semi-annual variations but must neces-

sarily remain ignorant of the bulk of the irregular fluctuations.

Figure A-3 shows a projection onto the celestial sphere of the ast ro-

nomic verticals at Greenwich and at some point, P, and of the geographic

and instantaneous polar axes. D; and D, are the instantaneous and mean

astronomic colatitudes of Greenwich. GC, and C, are the instantaneous

and mean astronomic colatitudes of P. aA is the change in the astro-

nomic azimuth of north, as viewed from P, caused by migration of the

pol=.

A migration of the pole to a point (x,y) in Figure A-1, causes

readily determined changes in the astronomic latitude, longitude and

azimuth, The x and y coordinates of the instantaneous pole can be
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written in polar coordinates, s and ¥:

“an

’

’ =
~~
~

",
a

Then using spherical trigonometry in Figure A-3:

cos C,= cos s cos C, + sin C,sin s cos (AY)

If ="3 a small angle:

COX C,- cos Cy :2 (Cy; -C,) cs 11 ~ , = s gin C,cos (A, +Y)

Thus:

in: *antaneour "mean astronomic latitude = (902C, )- (90°-C,)

: C,-C, = §8 CoS (N +7) = xX cos A, -y sin A,

J. instantaneous - mean astronomic azimuth = AA

sin 8A — sin (My+Y)
sin S sin C,

AA“. s sec Lqp sin (AY)

— sec Lop (x sin \, + y cos A )

.instantaneous - mean astronomic longitude = A, — A

Since the areas of the triangles ABP and ABG are small, the sum bf

the angles of each triangle is nearly 180°, Thus:

N.—A. = s sec Lg, sin (A+Y) - s sec L, sin?

x sind, + yv cosN, ) sec Lp - y sec Lqg

where Lge and Lg are the astronomic latitudes of P and Greenwich,

respectively.

 1 0)



A.3. CHANGES IN THE MAGNITUDE OF THE SPIN RATE,

Comparisons between the Earth's spin rate and the clocks of the

1940's showed a consistent tendency for the clocks to vary in rate

relative to the spin rate of the Earth, In the 1950's, astronomic ob-

servations of the Sun, Moon, Mars and Venus showed that all these

heavenly bodies appeared to accelerate and decelerate in unison,

compared to their predicted positions as established by the rotation

of the Earth, thus leading to the inescapable conclusion that the re-

petitive events established by the rotation of the Earth are not uniform

compared to the repetitive events established by the motions of the planets

or by the radiation from an atom. Since intervals established by the

latter events depend only on the gravitational and atomic constants

being independent of epoch, it is more reasonable (invoking Occam's

Razor) to define uniform time on the basis of the planetary motions

rather than the spin of the Earth. Ephemeris Time was introduced

to avoid ambiguity between such slightly different time scales.

Figure A-4 shows the phase error between a clock pacing the Earth's

spin rate and an ephemeris clock, The estimates are based on recent

and ancient records of astronomic phenomena using the year 1750 as

a reference.
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Figure A-4

VARIATION OF THE SPIN RATE OF THE EARTH

COMPARED TO EPHEMERIS TIME

after Clemence (Ref. 164)

Year

2000 B.C,

1750 A.D,

1850

1900

1940

Earth rate clock minus
Ephemeris Clock

/ ) hours

-

seconds

3.9 SseC.,

24.5 sec,

About twenty year's observations of the Earth's spin rate against

Ephemeris Time have shown that at least three harmonics exist in the

fluctuation of Earth rate (Ref. 188).

A secular decrease in the spin rate causes the days to

lengthen about 0.0016 second per century. This is caused largely by

the viscous drag of the ocean tides which the Sun and Moon sweep across

the Earth each day. In deep water, the tides produce little relative motion

between water and the sea bottom but in shallow seas, considerable

energy dissipation can occur, Figure A-5. Jeffreys (Ref. 121, pg. 244)
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Figure A-5

DAMPING OF THE EARTH'S SPIN RATE

CAUSED BY TIDAL FRICTION

Aft: pr

o

-yy 4

J Cu. 3 ws (Ref, 121, pg. 224)
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Fox Strait

1.4 %
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North Sea

Fnglish Channel
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Asia
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Bering Sea

Malacca Strait
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estimates that the energy dissipation in the eight shallow seas tabulated

in Figure A-5 is 80% of the dissipation needed to account for the ob-

served secular slowing of the Earth,

Since the spin rate of the Earth itself measures mean solar time,

large phase errors can accumulate between mean solar and Ephemeris

Time because of a mere 0.0016 second/century acceleration in the

length of the day. If [{ is the length of the day in ephemeris seconds

and t, is time, in tropical centuries measured from some convenient

reference:
| = 86,400  J, 001 4

D Ea Sec nds

Then after t, centuries the error, tg = mean solar minus ephemeris

time. 18°

t= 29.2 tr seconds

After one century, a phase error of 29.2 seconds accumulates and

. .

after 4000 years, a phase error of thirteen hours accumulates which

is much greater than the 2. 6 hour error noted in the eclipse records.

Both Jeffreys (Ref. 121, Chap. 8) and Russell, Dugan and Stewart

(Ref. 200, pg. 289) mention that the amount of tidal damping in the

past is uncertain. An accumulated phase error should not be confused

with a secular change in the spin rate.

Annual and semi-annual fluctuations of * 0.06 second phase
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error, caused by the same yearly changes in the elements of the inertia

tensor of the Earth as cause the variation in direction of the spin rate,

have been identified (Ref. 206, pg. 100). These are largely predictable

in the form:

Ephemeris Time~— Universal Time = a sinl)ct + b cos Wet

C sin 2Wgt + d cos 2Wt

where a, b, ¢c and d have been measured to an accuracy of one milli-

second, Presently (1959), the coefficients are (Ref. 189, pg. 107):

3 =~ + 22 millisec.

 hb = - 17 millisec.

 -~ wr

d

-

 -—

- 7 millisec.

'] millisec,

&gt;. Irregular fluctuations in the length of the day appear at a maximum

instantaneous rate of 1,4 seconds/year with a phase error of as much as

thirty seconds in recent years (Ref. 260, pg. 290). More typical fluctua-

tions in the length of the day occur at a rate of 1/2 millisecond per year.

Until last year, the irregular component of the spin rate fluctuation was

thought to remain constant for long periods of time and then suddenly

change at random intervals of about twenty to forty years. The wide-

spread use of atomic clocks has suggested that the changes occur smooth-

ly and continuously (Ref. 189, pg. 110). In addition, harmonics of one

millisecond amplitude and periods of one-half day, one-half month and

one month, caused by lunar tides within the Earth's mantle, have been

detected (Ref. 188, pg. 228)
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A.4. SUMMARY,

The Earth's spin axis can be rotated as much as 1/2 second of arc

from the mean position, the geographic pole. However if necessary,

advance predictions can usually be made of the position of the pole to

an accuracy of about 0.2 second, one year in advance. The migration

of the pole causes calculable changes in the ‘astronomic latitude,

longitude and azimuth of any point on the Earth of as much as one

second of arc in moderate latitudes,

[f the rotation of the Earth is used as a measure of time interval,

7
an error of one part in 10 during a year's time must be accepted in

the clock, compared to Ephemeris Time.

Information on the variation in spin rate and the migration of the

poles of the other navigable planets does not exist to this writer's

knowledge,
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Appendix B

SPHERICAL HARMONICS

A family of functions ug(x), uy(x), «... un(x) is said to be ortho-

normal with respect to the weighting function, r(x), in the interval

a¢&lt; x&lt;€b if: A 0 n

| | ~ = %= mr(x) up(x) u(x) dx =§,, sl nem
nn

(B-1)

[f such a family is complete, then in the range a&lt; x&lt;¢b, any function,

f(x), satisfying very general conditions (Ref, 222, pg. 231) can be

expressed as a linear combination of the ug(x):

oS :

f(x) = 3° a, ug, (x)
n=0

| B-2)

One means of insuring that a family of uyh(x) is complete is to take the

uy (x) as the solutions of an appropriate Sturm-Liouville problem

( Ref. 223, pgs. 95 ff.). This appendix treats the complete set of ug

generated by the equation:

vd d ft NSL ¢ (ested) + n(n+)y =0 [-3&lt; L&lt;2] (B-3)
which are called Legendre functions of the first kind of degree n,

P. (sin L.). The first few BP, are (Ref. 222, pg. 174):

P, = 1

P, = sinL

3 sinch |
p, = =—%——

-3
P, — 5m Le 3 Sin Le

2

35 sille-30gimLet 3 (B-4)
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The reason for selecting this particular set of up, is now investigated.

[n the space outside a mass, m, the gravitational potential is

described by the equation:

2 VV =0
»

 So

&amp;
where VV is the Laplacian operator whose form is dictated by the co-

ordinate frame in which the problem is to be solved. Thus in the

spherical coordinates of Figure 2-1, if V is not a function of A , the

Laplacian is (Ref. 222, pg. 329):

AR) 2 WY)=37 (T 5) Tote an, (ole ) 0
Assume a solution in the form:

(B-5)

V(r, Lc) = Vv, (r) V, (Le)

whereupon Equation (B-5) separates into two equations:

2 dV dv,
vT= +2n 3; ~ nv) =0

(B-6)

 9 (aol OV. =0ose ju (coskc =) + n(n Vz
The first is Euler's equidimensional equation (Ibid., pg. 14) for which:

(N+!V,(r) = C! r+ C,' - (+1)

On physical grounds. when r- roo . V. should g0 to zero, Thus,

C! must be zero.

The second of Equations (B-6) is the Legendre equation, Equation

'B-3) which has the solution:
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V, (Lg) = dP (sin Le) + d,Q,(sink) (B-8)

where Qn(sin L.) is the Legendre function of the second kind of degree

n which is not finite on the z axis, Hence, in order that V, remain

bounded everywhere outside the mass, d, =0 and n must be a positive

integer (Ibid., pg. 175).

Hence one possible solution of Laplace's equation is:

V(r, Le)= Vy (x) Va (Lo) = Cy 774, B, (sin Le)

and since WV = 0 is linear, a linear combination of solutions is also

a solution:

Oo

V (r, Lg) = &gt; ap Fp (sin Lc) (B 9)
n=0

This expansion can represent any single-valued function of two variables

with a finite number of finite discontinuities. In particular, it can

describe the gravitational potential around a planet if the field (or

function) is symmetric about the z axis. The a, are then usually

normalized to the size of the planet (of mass, mg) 80 that:

n
aq =¥ma J,

/ SIMS in L (B-10}Le) = SedVa(ffBaoinLe)
where { is the Newtonian gravitational constant. a is usually the

semi-major axis of the reference ellipsoid describing the geoid of

the planet but is sometimes its mean radius,
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The symmetry properties of V about the equator, L¢= 0, are now

investigated. Since sin L¢ is an odd function:

Py (L¢) = B(-Le)

P (Le) = - B\(- L¢) n odd

n even

The even harmonics are symmetric about the equator while the odd

harmonics are antisymmetric. Thus, if the planet potential is symmetric

about the equator, it can be described only by even harmonics and con-

versely, if it contains only even harmonics, it is symmetric about Lg= 0.

If the restriction that the potential be symmetric about the z axis

(that is, be independent of A) is removed, the problem of representing

the potential becomes three dimensional, At each point (r, L., A ) in

space, V is uniquely defined as a function of r, L. and A . Bomford

{Ref. 87, pgs. 423 ff.) introduces the tesseral harmonics of order m

and degree n, P _, to describe such a field:

Pn (L)= coil So BR (2)
corresponding to Hildebrand's associated Legendre function of the first

kind of degree n and order m (Ref, 222, pg. 178), The tesseral harmon-

ics of order zero, Fo , are the Legendre functions. In terms of the

tesseral harmonics:

2 i /



VA, Lh S; ‘, )=2. avn=zo &gt; 3) (bmn SMA + Coun SIFn nm) Bam(Le)

(B- 11)

The coefficients, bon and Cran @ Can be adjusted to match any

suitable V in three dimensions. This solution of Laplace's equation

in tesseral harmonics is suited to spherical boundaries where

2
is constant. For ellipsoidal boundary conditions, V V = 0 can

be solved in terms of Lamé functions (Ref. 231, pgs. 1306 ff.).
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Appendix C

CONFOCAL ELLIPSOIDAL COORDINATES

Ellipsoidal coordinates are of interest in this thesis because the

geoids of the Earth and of other planets are conveniently approximated

as oblate ellipsoids of rotation.

C.1, THE PLANE ELLIPSE.

The ellipse is a closed plane geometric figure defined in the Cartesian

coordinates (u,v) by the equation:

2 }
MY —

TT —

Qe be
{8 1)

3 and bo are the semi-major and semi-minor axes, respectively.

(0,0) C

ro 8 —_—D— ——

(co) (00) M

Figure C-1

THE ELLIPSE
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The foci of the ellipse are at u = #c, v = 0 where c is the focal distance

of the ellipse. Several geometric definitions of the ellipse exist and

many elegant properties can be derived (Ref. 221, pgs. 192-197),

Some geometric properties of interest ar

: 2 L
a, focal distance, Fs ag + bg

BD

2
b. semi-latus rectum, p =Dbg/ag

c. eccentricity, &amp; = c/a, &lt; 1

Qe —flattening, f (Ge—be 1 -(1- &amp;
Ae

y

These quantities can all be xur 22sed in terms of =

(€-2)

 ec =f (2-f)

b, = a, (1 - ely"

D = Aa 1. €°

(c-3)

[f the plane ellipse were a meridian section of an ellipsoid of rotation

which represents the geoid of the Earth (where v is the polar axis),

the latitude of a point on the ellipsoid could be defined as:

3. geocentric latitude, Lg , the angle between the u axis and

the radius vector from the origin to the point, C.

\Y
tan Leo = —

C IL

b. ellipsoidal latitude, Lg , the angle between the u axis and

the normal to the ellipse at C. On the reference ellipsoid, Lg= Lg

the geographic latitude.
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_ rr _ Vv

Bn le TT avg 1-€F (C-4)

The angle between the radius vector and the normal to the ellipse at

C is Li — L. where:

tan (L_ - L =(L-
« Le) =(g-gz)mv AY 3

Some important dimensions of the ellipse are.

a The radius vector, r = oC:

bh.Toutes — 2 (c-6)

which can be expanded using the binomial theorem:

2 2 4 2 2

“= al[l -€sin Le - € sin Li cos Le oo.) (c-7)
z 4 2 2

 a [1 Seid L - £sin Le (4-3 sin Le)eu..]
The lengths AC ; and BC, measured along the normal to the

ellipse, can be found from Figure C-1:

Mo = cos Le
RC

Using equations (C-1) and (C-4):
z

RE = Qe
AC 7 | -€g* sntle

i 2

BCT |-~efsimtle

Ine radius of curvature of the ellipse at C is:

Om (1— €%sin?Le)"?

21 =

A sin Le
aC

(c-8)

(c-9)



C.2. THE PLANE HYPERBOLA,

The hyperbola is an open, plane, geometric figure defined in the

Cartesian coordinates (u,v) by the equation:
cA 1
Mv

2 2 =

66 by
The vertices are at u = +a, , v=0 and the fociat u=+c¢, v = 0.

(c-10)

The semi-conjugate axis, by , is defined analagously to the ellipse but

has no direct physical interpretation:

2 1 1
Cc = a, + by

As in the case of the ellipse, several geometric definitions of the

hyperbola are possible and many elegant properties can be derived

(Ref. 231, pgs, 213-220 and 192-197).

The ezc ~"—icity of the hyperbola is defined as for the ellipse:
C== &gt;|

c C
The asymptotes make an angle, , with the ) can be

found from Equation (C-1Q ) as u=~= »

» L

w_, Vv
QA; bu® by

tan.Y] —» 4 we BC mes
A Qy
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C. 3. PLANE CONFOCAL ELLIPTIC COORDINATES,

Consider the (u,v) plane in which a pair of fixed foci, u = =*c,

0, are established. A family of ellipses is constructed each of which

has these foci but whose sizes and eccentricities are different, Figure C-2.

Similarly, a family of hyperbolae can be constructed using the same

two foci. If ag and bg are the semi-major and semi-minor axes of the

ellipses and ay, and by of the hyperbolae, then the families defined

by Equations (C-1 ) and (C-10) are orthogonal everywhere except

at the foci, as shown on page 325 . Except in this appendix, the symbols

3 and b, without subscripts, refer to the ellipse.

If the ellipses and hyperbolae are numbered with the symbols 3 and

 MN respectively, each point in the (u,v) plane can be described by the

numbers ¢ and Y| . Consequently the generalized coordinates

are as suitable for identifying points in the plane as are the Cartesian

coordinates, u and v.

To define the relation between ! , Mn and u,v consider the complex

transformation from:

&gt; . B &lt; F

 og

‘RJ - in,

21Q



aN 1(:]

ua==c cosh } cosN

(A ho ] c

 AD  Nn

0

™

 nN »
ry

| T

Bln
~
or

=

 ————

»

vy = C sinh { sinM,

« 2
NY

Figure C-2, CONFOCAL ELLIPTIC COORDINATES.
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in the form:
Z = c coshw (c-1)

= c cosh ({ + im)

then:

» 3

» c= c | cosh{coshin + sinh { sinh in)

= ¢ ( cosh { cos + i sinh} sin,)

u = c cosh { COST],

(c-12)
7 = ¢C sinh { sinT_

vd

ThA Th = esi
Mo )

A——————— — vo —
: I ni 1C Shey, cosh \ = sinh {=

¥

Thus curves of constant 3 are ellipses for which ap = c cosh{ and

be = ¢ sinh§ whereas curves of constant are hyperbolae for which

a, = C cosY and b,= c sin" . The transformation, Equation (C-| 1)

superimposes an orthogonal net of confocal ellipses and hyperbolae

&gt;n the (u, v) plane, Figure C 2.

The uniqueness of the transformation must be carefully investigated:

a, § =0, TN =0 corresponds to the two foci, u=+c, v=0.

5 f= _ IN| . —- er
a. ¢=0, n= = mT corresponds to the origin of the Z plane, u=v=0.

Each strip in the W plane of width 2Nw mn &lt; (2N+41) m maps into the

entire z plane, for successive integral values of N.

» )



Figure C-3

LATITUDE IN ELLIPTIC COORDINATES

sin L

cos L

tan i,

| a
-

*

nh Sih /Si

(cosh | n

Cosh \ Cos M

(sh| = sin&gt; yh

fan { Tan Ly

i. =

cosh§sim,
(os § = cos™m)"

sinh {cos
(cosh — cs)

coth { fan
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=. The quadrant, ud) 0, v&gt;0, corresponds to the region 1% 0,

0&lt;M &lt;2

Thus the transformation is not a one-to-one correspondence between

yoints in the Z and W planes. An examination of the derivative:

dz
— = c sinh &amp;
dw

shows that singular points occur when:

£. 0 whereupon cosh{sin =0 and sinh { cos™) =0 which occurs

only at {=0, N= Nr corresponding to the points usc, v=0. These

are branch points (Ref. 233, pg. 28).

A

dz = o= which occurs only for ( = oe . The point at infinity
WwW

's an isolated essential singularity (Ibid., pg. 99)

The transformation can be made unique by cutting the (u, v) plane

between the branch points as in Figure C-2, The cut prevents paths

of integration from circling either branch point. Such a cut is

practical in these applications since the interiors of the innermost

ellipsoids are of no interest, being inside the planets. In the region

outside any ellipsoid, { =1.7 0, the (u,v) plane is analytic and

single-valued. The limits on { and T, then are:

y 20

0 &lt;&lt; MN {2m

and nl is specified differently in each of the four quadrants.
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The properties of the ellipse and hyperbola derived in this appendix

can be transformed into elliptic coordinates:

1. ag=c cosh (

d a, =¢ cosM,

for the ellipse:

bg = c sinh{

b,, = Cc sinT)

E = &amp; = seen |
We

f=1-(1-€%)=1-tanh|
D { = aTanh?(tanh } =be 2c sinh {Qe

(C-13)
 iL

Lr 2 | cosh*y cost sinh {- L.=1 « — —

to E cosh cosh’ cosh} —sintn, cosh - Sin

 einll = 1 cosh sin, sinh” §
TER eT cosh™{ wsh|-cog cosh'y —cos™n

__ Sin2M

tan (Lg -Lg ) = PEAR]

Sf
pA 1 = eZ cosh” { - sin'7)) = ec” (sinh + cos n)

oz a (cosh) - ef)
Rac - 2

sinh {
r _ q*(cosh*{~cosn) x

Rope = Cosh} Tank {
« Nz

I, e a (cosh™{ - COS n)
MT cosh®3 Sinh

b
bola = + arTrhype af thenegle optote angasymf the0enttangThe

= + tan). Hence the definition of nN on page 318 is identical to the

generalized coordinate,YT)
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The simplicity of these expressions in elliptic coordinates, as

compared to rectangular coordinates, is apparent,

To establish the orthogonality of the families of intersecting ellipses

and hyperbolae, consider the slope of the ellipse of Equation (C-1}:

ay, = Tanh'{ cath Yeaf vy,
and of the hyperbola of Equation (C-10Q):

8 _ 4 cath {faa
dm

The product of the slopes is -1 except at { =o, MN =Nm. Hence, except

at these points, the curves are orthogonal. The exceptions are the foci,

the two finite singular points of the transformation.

The coordinates ¢ and 7) can be interpreted physically. The

coordinate, { , measures the eccentricity of the ellipse through the

point in question ( € = sech { ). The coordinate, ¥) , is the asymptote

angle of the hyperbola through the point
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C. 4. CONFOCAL ELLIPSOIDAL COORDINATES,

If the confocal elliptic coordinates of Appendix C-3 are rotated in a

right-handed sense about the v axis through an angle, A, measured

from some reference direction, then any point in space can be located

by the three coordinates A ’ Al and { ’ A locates the direction of

the (u, v) plane while t and NN locate the point within the plane.

More exactly, consider the transformation from the Cartesian

Vi, Vz, coordinates in the form:

Vy = ¢ cosh { cosT cos \

y, = ¢c cosh{ cosM sin (C-14)
y, = c sinh{ sinn,

: . . tL

Here, V3 corresponds to v of the previous section and y + Me

L
corresponds to u

As zhown in Figure C-4:

a, the surface of constant A is a plane through the Y3 axis, On the

Earth, if A is measured from the geographic meridian of Greenwich,

it corresponds to east longitude.

b. the surface of constant n is a hyperboloid of revolution of one

sheet whose minimum cross-section radius is a, = C COS nN
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c. the surface of constant { is an oblate ellipsoid of rotation whose

polar axis is bg = c¢ cosh? and whose equatorial semi-diameter is

ag = C sinh }

All the ellipsoids and hyperboloids have the focal circle z=0, vy, |

vy; = c* . The geometric properties of any plane section containing

the x axis are those of the plane elliptic coordinates. The addition

of a third dimension introduces the following additional proverties:

a,
2

volume of the ellipsoid of rotation = $n ag bg 2c cosh sinh 2{

b. radius of curvature in the meridian plane is that for the plane

ellipse, Equations (C-9) and (C-13k).

r~
— radius of curvature in the east-westdirection is the "prime

radius of curvature" which is the length AC in Figure C-1 (Ref. 87.

og. 394):

= te = (c-15Pe= me siayis = Rec )
i. the radius of curvature in a direction at an azimuth, A. is

found from the principal axis transformation:

a| cos A sin A

Cn Cw Po
2a, Since tm and Pp are the orincival radii of curvature, the

(c-16)

total or Gaussian curvature is:

2

(1- € sin’ Le)
=ot
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Polar Axis
—_—— AL

hyperboloid of one

\ sheet

ellipsoid of
rotation

J

Figure C

OBLATE, CONFOCAL ELLIPSOIDAL COORDINATES.

nyperboloid of

one sheet

hyperboloid of

two sheets

triaxial

ellipsoid

Figure C-5

TRIAXIAL CONFOCAL CONICOIDS

(after Hilbert, Ref. 221, pgs. 14-25 and 183-192)
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;, the spherical excess, E, of a spheroidal triangle can be ex-

pressed as follows. Let a triangle whose vertices are at PB ; Py and

Py be drawn on the surface of an oblate ellipsoid of rotation. The

sides are geodesics of length Lj , Lj and Lg. Ty 18 the mean Gaussian

radius of curvature of the triangle, as defined below. Then if the

sides of the triangle are small enough that:

Li V*
(= ) &lt;&lt;Mw

the spherical excess, E = sum of angles of the triangle minus 180°,

is (Ref. 87, pg. 402):

2

E= 12 (+2)
where:

Ase is the area of a plane triangle whose sides

are L, 3 L, and La,

2 2 7

Im = L, + L, + Ly

3
aa
5 M fm, Ce, (m,Cr. CR Or,

 _

Om; and Cr, are the principal radii of curv=tr"re at the vertex LI.
. L

For applications where the ellipsoidal coordinates must be triaxial.

the confocal conicoids are defined as in Figure C-5 by the orthogonal

intersections of families of:

triaxial ellipsoids

hyperboloids of one sheet

hyperboloids of two sheets

) rn



all of which have the same focal curves (Ref. 221, pgs. 19 to 25).

Hilbert discusses the construction of such coordinates (Ibid., pgs.

19 to 25 and 183 to 192!
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Appendix D

PROPERTIES OF SPECIAL COORDINATE FRAMES

D.1, CARTESIAN COORDINATES.

Consider a Cartesian coordinate frame y, , Yas V3 » For definite-

ness, suppose this frame to be fixed in a planet with its origin at the

mass center of the planet. yy lies along the geographic polar axis of

the planet while y, and y, define the geographic equatorial plane.

Let y, lie in the reference geographic meridian on which longitude

1S defined to be zero.

This is the fundamental coordinate frame for all measurements on

the planet. A vehicle moving near the planet is located by means of the

coordinates y, , y, and Ya and the differential distance between

neighboring points is:

2 J
(ds) = (dy, J + (dy,) + (dy,)

I'he gradient operator and Laplacian are:

— NN) A) ay
7 = — + Se + -—

Vy 0, 4 0, 3 Ny
3 2 &gt;

2_ J J
VT, Ye t 532

A NS
where yes is a unit vector in the vy, direction,

2 QT
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D.2. SPHERICAL COORDINATES.

Figure 2-1 defines the spherical coordinate frame in which a point,

P, is identified by the coordinates:

A

J 1m

which are related to the Cartesian coordinates according to:

r. = r cos L¢ cos A

y, = T cosL, sin A (D-3)

y, = Tr sin Lc

The unit vectors form a right-handed system in the order A Le, r.

Hildebrand gives the h: of the metric tensor on pages 328-329 of

Reference 222:

[9 | =

nel &lt; 0

a n"

0 0

0)

0
'D- 1)

That reference also gives the gradient and Laplacian operators as:

A A

= __ A 2 + Le J ]
VET pte on (D-5)

2 __! yo 2 ) Ld (0
v eosLe A neosbe host i) n in 7)
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D.3. CYLINDRICAL COORDINATES.

Figure 2-1 defines a cylindrical coordinate frame in which points are

located by the coordinates §, A and z. If:

7,

=A

3  vy

so the unit vectors form a right-handed system in that order, the

transformation is:

vi = S cos A

Vy = S sin A

va 7

(D-6)

Hildebrand (Ref, 222) gives the h{ of the metric tensor on page 327:

 3q1=]o
Yl =lo s° ©

0 0 |

0
'™y &amp;

The same rel vence gives the gradient and Laplacian operators as:

_ A) Lad oa
V=S%"Ts nC “oz 'D -8)

 eo 1d oY, Ld oOVv = tH) EIR
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Figure D-1

GIEOGRAPHIC COORDINATES

\
Reference Ellipsoid

Normal to the Reference Ellipsoid

Greenwich Meridian
- » P(A, Lg hg)

= Cp
&gt;

%
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D. 4. GEOGRAPHIC COORDINATES,

These coordinates are defined to correspond exactly to the geo-

graphic definition of latitude, longitude and altitude. They are sym-

metric about the Va axis and defined in conjunction with some reference

ellipsoid of rotation. Figure D-1 shows a meridian section of the

reference ellipsoid of rotation whose meridian eccentricity is € . The

geographic coordinates are constructed by projecting downward from any

point, P, along whichever normal to the reference ellipsoid passes

through P. Then a family of curves could be constructed which are

everywhere orthogonal to these normals. The equations of these curves

are complicated but the metric properties of the space can be found

without recourse to them

r Ii ah
8 4B

7

i.

Aq » the usual definition of east longitude.

Lg , the geographic latitude. Lg is the angle between

the equatorial plane of the reference ellipsoid and whichever normal to

that ellipsoid passes through P.

3 = hg , the height of P above the reference ellipsoid. The

symbol, hq , should not be confused with he , the elements of the metric

tensor in an orthogonal @mordinate frame

Fhe unit vectors are right-handed in this order. From Figure D-1, the
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transformation is:

i, (Rpt hq ) cos Lq cos A

y; = (Rg t hq ) cos Lg sin

yy = (Rg t hq ) sin Lg

where Rj. and Rp. are given in Equations (C-8).

(D-9)

Rp C and

Rg are related to the principal radii of curvature of the reference

ellipsoid:

Op = Rac
_ Rec

Pn = Term

The derivatives of Roc Rye and Pm are:
dRa¢ I ul -

dLq 2 (1-€%) Ou Sin ZL4
dRec _ € ]

dL, 7 (msn
9m 32 On cna
dL, 2S era) 0)

(D-10)

(n-1)

from which the differential distance can be evaluated by the laborious

d
process of calculating all of the on ih : Thus, the covariant elements

z

&gt;f the metric tensor are:

[94]=
(© thy Yeo L EN 0 0

0 (Ruthy)
0

~

A
(D-12)
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These can be verified using the derivation of Section 4. F.1, Equations

(4-40) and (4-41) where:

S, 2 3y(z= ,2%=(Rpthg)cosLg

S, (zt ,z3) = (Ree + hq) sin Lg

The fact that lg ] is diagonal shows mathematically that the geographic

coordinates are orthogonal.

The mechanizations of Section 5. F. require an expansion of the

metric elements as follows:

"}
Z 4 I 4. 4 _..

Cha) shy rali+ Sin Lq t= Es Lg |

(Pathe) =he+ ali +e(3s ?Pw 3) 1 1+ € (3s Ly-0)+ 3 Esl (Ein Ly 1)-|

(D-13)
The transformation between spherical and geographic coordinates can

ne found geometrically:

l

Rot hg ) cos’Ly + (Rec + hg ) sin © Lg

a [I re (€- 2)sin"Ls| 2. 2, \k 2
Todi tka (-Einly) hy

sin Lie = (Rp + hy ) sin LC

(0-14)
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At large distances, the geographic coordinates become spherical:

hy, = (Rac +hg ) cos bq — f1&lt;osl¢
h, = (Put hg) —&gt; [Ll

h, = |
The gradient and Laplacian operators are found from the general

expressions given in Reference 222, pgs.324 and 326:

vA 2, Ld [3
(Rpthq)cosLgOA (Pu +hg) 2b Ohg

—

_ J

the Yeo Le IX +S h cosL-(fs hy) cos Ly n° (B+h9) (Pm +h eosLy \

(D-15)

2 [Qothy)eoslyd 1, 2 wi 2]fo, |Sey | ’ ey Gath rho) “h x)
0.5, CONFOCAL ELLIPSOIDAL COORDINATES,

These coordinates are defined py Equations (C-14). The differential

distance is:

2 Wm Wm (0 1](as) == S23 dz dz
1 2

—c* cosh { cos n(d AY + ¢(cosh § - cos I[ (dn} + (d{) ]

and the metric tensor is:

2 2K



(9; =

[cosh] Cos

-

-

-

 Rn

(cosh'§ - cos ) 9

2 (cosh &lt;2)

_

J

D-16)

The gradient and Laplacian operators are found as on the preceding

DARA]

= A 3 i 3, £2
v  ccoshfesm OA + Ccosh| - cos“n)/z (M In, ' { 0% )

boXL Co)
vt =e ht aE) | eh)

: J 9 | (D-17)gos TM. 7m, (Cs )

Comparing the spherical, geographic and ellipsoidal coordinate frames,

it is clear that they represent three ways of defining the vertical above

A Dlanet:

a. along the radius vector (spherical)

5. along the normal to the reference ellipsoid (geographic)

c. along the normal to the local ellipsoid which is confocal

to the reference ellipsoid.

12Q





Appendix E

GRAVITATIONAL POTENTIAL OF A

HOMOGENEOUS ELLIPSOID OF ROTATION

£.1. GRAVITATION IN ELLIPSOIDAL AND CYLINDRICAL

COORDINATES.

Consider a planet-centered ellipsoid of rotation whose axis of

symmetry is the y; axis. Let the y, and y, axes be fixed in the

equatorial plane. If Ya is the axis of a cylindrical coordinate frame,

(s,A , z), then Eichhorn (Ref. 95) gives the potential outside the

ellipsoid as:

Te Sip c (b+) Me a +k

22 CC “|ta [fon (br) (Cem) (E-1)

where:

a is the semi-major axis of the ellipsoid

D iS its Semi-minor axis

1



is its focal distance

P is the density of the ellipsoid

is the Newtonian gravitational constant

WL is the positive solution of the equation:
“- =

&gt; Zz _-
+ — + ==——=

a + MN b+ W

The potential is transformed into the ellipsoidal coprdinates of

Appendix C by the substitution

3 = C cosh | cos,

&lt; sinh { sinT),
+ 1

“\L=¢ cosh {

7

b +\ = c sinh” {

whereupon after some lengthy algebra:

&gt; Me [ 20 cost) + (2-3 cos 1 )(O cosh | = sinh { )]
'E-2)

where:
tan = csch §

1

Mp is the mass of the homogeneous ellipsoid -% ma b P

L 2
This sdution is readily checked by verifying that ¥ V = 0. WV in

ellipsoidal coordinates is given in Equation (D-17).

This expression is equivalent to that obtained independently by

Professor W. Wrigley of the M.I. T. Department of Aeronautics and
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Astronautics in an unpublished memorandum.

The components of gravitation in ellipsoidal coordinates are:

G 7

G =
A QV

Ar OV +1 ;(ach sn) I 23 n,C(cosht| -¢o

(E-3)

_3 Ame _SinlN, .
Gn. = 4 =~ (coh { ~Cog) |-26 +3 (Bush?) |

a, 2X in &lt;ed 36s nhl] =| 74 © (wi{- coin) he = Leos msedh\ + (2 3cas n@sin {
- 2 ta Sh §),

These components are shown in Section 2. F. 8., not to represent

actual field of the Earth to navigational accuracy

E.2. GRAVITY IN ELLIPSOIDAL COORDINATES,

The gravity potential, U, is V + V' where V' in ellipsoidal coordinates

is given by Equation (2-7). The components of gravity areg@ =7 U:

(£-4)

n ) _ Wc .

rm A 2 [2643 (sh § -sioh) 7 oh |
 AR



 —EL Pp L LO31 ~ (cosh ld el - 2cast Seth + (Z-3cos n) x

(@shZ{- 205k) Jue os sinh 2
The gravity force on the surface of a fluid ellipsoid in static equili-

brium must be normal to that surface. Thus on an ellipsoid of

meridian eccentricity € , g,, must be zero. Hence from the pre-

ceding equation:

We = sinh { [-Q + 3 (@cosh { inh { )] (E-5)
4npY Te ZR LT EEE eT

This is the condition which must be satisfied by a rotating homogeneous

ellipsoid of rotation, held together by its own gravitation. It is the equa-

tion of the MacLaurin ellipsoids, Figure 2-3.

fr 3, GRAVITATIONAL POTENTIAL IN SPHERICAL COORDINATES.

The potential is needed in spherical coordinates when navigating in

such coordinates. Though the potential in cylindrical or ellipsoidal

coordinates is expressible in closed form, the potential in spherical

coordinates is not. The conversion from the closed form ellipsoidal

expression to the infinite series in spherical coordinates is accom-

. 1

plished as follows. Outside the ellipsoid cosh (71 and tan is small.
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Thus o can be expanded in the series:

O=Tor &lt;sth =Sin
i ' _-

hy Seinbs|
and the potential becomes:

V
3TMe | 29 - : oO
T= cos © + (2-3 cos n Ii 8 cost | " sinh | )]

some A [+ _ LttesnyJl2ei£T 5ehy 13 5 siahl 35 sinh?

This series is converted to spherical coordinates term-by-term.

From Appendix C:

tan) = cath | tan Le

sinh’§ cos Le
tn gio +n Le

(e-7)

The radius of the ellipsoid is given by Equation (C-13g). Combining:

1+ 3
4- rn 1

cos n—~« + = ) cos’ + 2 cos L .
C

Lr

which can be solved for cos n:

1 cr 2 C 4 4 L
W = cos Le [le = sin Lg +f) (2 cos L_-3 cos Lg

t 1)] (E-8)
4

From the equation for r, to order (£) .

i = (R)| + LE eo Le + &amp;)@E Gos Lem L Sin LeCoSLe) «= |
(e-9)
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rrr =) [erie -(Reasteozedts ==
4

sar =(7)

2 4 4K |

v= (1-1) RRL) + 3 (8) R)Rtsint)+-|
(E-10)

where F,(sin L¢) is the Legendre function of the first kind of order n.

Equation (E-10) is the symmetrical spherical harmonic expansion of the

potential. It is used in Section 2. F. 5.

Thus if a rotating planet had the shape of a homogeneous ellipsoid of

rotation whose meridian eccentricity was © , the theoretical coeffi-

cients of the spherical harmonic expansion of its gravitational potential

would he: 2
—

Ta N

J,
4

3 €
3H

Figure 2-11 compares these to the measured values for the Earth.

They differ from the measured values because of systematic density

irregularities in the Earth. An inhomogeneous ellipsoidal model of

a planet is discussed in Section 2. F. 5.
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Appendix F

[HE ORB1T OF A POINT MASS

Ce  KL wiNG A FINITE-SIZED PRIMARY

The fields of astronomy, geodesy and navigation are concerned

with the orbits of the planets about the Sun and of the natural satellites

about the planets. The character of the gravitational field surrounding

a planet is inferred from motions of its natural and artificial satellites.

Furthermore, artificial satellites can be used for geodetic triangulation

and for navigation. This appendix summarizes the motion of a small

satellite circling a large primary. Oblateness and rotation of the

primary, atmospheric drag and relativistic effects are considered.

Consider the motion of two isolated point masses acted on only

by their mutual gravitational attraction. It is well-known that if an

inertially-non-rotating coordinate frame is erected at either mass

particle, the other describes an unvarying, plane, elliptic orbit about

the first as focus. The orbit can be predicted fully by specifying five

1
-
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Figure F-1

ORBITAL ELEMENTS OF A SATELLITE
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space parameters and two time parameters as follows.

In Figure F-1, (x, , Xp x3) is an inertially-non-rotating

coordinate frame whose origin is at the particle, m, . (y, ’ Vv,

is a triad whose origin is also at m, but which is oriented so vy,

lies in the plane of the elliptic orbit, 7 being the line of apsides

r

(major axis).

The ¥; coordinate frame can be oriented relative to the x,

frame by specifying three successive Euler angles in the following

order. The symbols used are those conventionally used in astronomy

(Ref. 200, pg. 248):

~ “ ~

. Let (§, vy, y,) initially coincide with (x, %, x, .

respectively.

b. Rotate the Ye frame through the angle, Sl , about the

Xq axis to (9), v, , Vs ).

c. Rotate the y, frame through the angle, i, about the

Ay 3 y ~ A A

yy axis, the ''line of nodes," to (y,’ , y, , Va ).

d. Rotate the y. frame through the angle, , about the

Vs axis to (y, 3 Y y Va ), the position of the actual orbit.

cs cr . g @

The elliptic orbit intercepts the line of nodes at two points 180

apart. That point where the satellite crosses the x, - X, plane

from -x5 to +x, is the "ascending node' and the other is the

'descending node."
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For astronomical purposes, the Xi reference is commonly an

equinox. A fixed equinox is inertially-non-rotating but the mean or true

equinox is not. When S is measured along the ecliptic from an equinox,

as in heliocentric problems, it is called the ''longitude of the ascending

node.'" WhenSl is measured along the celestial equator from an

equinox, as in planetocentric problems, it is called the ''right ascension

of the ascending node.'" iis the '"inclination'" and is referred either to

the ecliptic or to the celestial equator, when navigating on the Earth.

wy is the "argument of perigee" or ''argument of perihelion' measured

from the line of nodes to the periapse side of the line of apsides. The

angle Tw =Jl+w , called the "longitude or right ascension of the

periapse,' is often used in astronomy though it is not an angle in the

conventional sense.

Having determined the orientation of the ellipse, its size and shape

are fully specified by the semi-major axis, a, or semi-latus rectum,

D, and by the eccentricity, € (see Appendix C).

This completes the discussion of the geometry of the orbit. JU ,

WwW, i, a and € fully describe the ellipse. In order to predict the

location of the moving satellite on the ellipse at any time, two more

parameters are needed. The mass of the primary plus secondary X

the Newtonian constant of gravitation, Y (m, + m,) , or the satellite

period, T , is needed to set the dynamic time scale. These are

IR”



related by:
3/2

T= 24v O-
Y(Mi+™my) |

The final parameter is an intial condition, t, , which might be the time

of crossing the ascending node or of crossing theperiapse. These seven

parameters enable the future position of the satellite to be calculated

at any time.

If the secondary remains a point mass but the primary is allowed

to have finite size, three complications arise:

a. The primary's gravitational potential may not simply be

\/ = Ln but may include all tesseral harmonics (Appendix B).

9. The primary may have an atmosphere through which the

satellite travels. Aerodynamic drag will then affect the orbit.

zc. Rotation of the primary will cause periodic forces to act

on the satellite if the gravitational field is not symmetric about the

axis of rotation or if appreciable aerodynamic drag exists.

The motions of real planets and satellites are additionally perturbed by

‘he other masses in the universe.

For the simplified case of an isolated primary-satellite system in

which aerodynamic drag is negligible, it is found that the satellite in

general traverses a non-planar, non-closed curve. However, if

{ (m + m,) is known and if, at any time, the satellite's position,

15



T , and velocity, V , relative to an inertially-non-rotating coordinate

frame whose origin is at the mass center of the primary are known,

an instantaneous or ''osculating'' ellipse can be derived. The satellite

is regarded as tracing this osculating ellipse which is continually

changing.

~ Tt ¢: v defines the normal to the instantaneous plane of the

orbi*. The direction of this nprmal fixes the instantaneous £2

1nd

I'ne instantaneous semi-latus rectum 1s:

_ 1

__(n-v)
b= Y (m, + My)

I'he semi-major axis is:

ap

i_2 _ NV

QO IT] ¥ (mM, + mz)
The z2ccentricity is found from:

¢'=1-£
f the angle from the periapse to T is ©:

€ sin Q iY;
TTccos® ~tancos ———« ILIV

If the gravitational potential around the primary is symmetri-

cal about the x, axis, then a, € and i show periodic oscillations with

constant mean values when taken over a full period whereas JU and W

each show a periodic oscillation superimposed on a secular trend

Ref. 132). If the potential does not depart appreciably from that of a

29



point mass, the amplitude of these oscillations is small and a mean

osculating orbit is defined which is described by the mean values of

a,€ , Sl, w and i and which partakes only in the secular trend of 1

and W, The mean osculating orbit is described by a,, €,, i, Jb, and

(J, Where the last two have constant rates of change. «Hence, the nomi

nal satellite motion is a precessing ellipse in a precessing plane be-

cause {and change. Superimposed on the precession of the ellipse

is a slight motion in and out of the plane because Ww , Sb and i oscillate

and a slight change in the size and shape of the ellipse as a and €

oscillate. As long as these oscillations about the mean values are small

the orbit can be defined by the seven ellipse parameters: Qq, i, , SL.

WwW, &amp;,, aT and t, where WwandJUchange slowly with time.

The motion of a satellite about a rotating primary whose potential

contains all tesseral harmonics has not yet been solved. Fortunately

the present accuracy of measurement usually permits the asgumption

of a potential distrihlition which is symmetric about the xy axis. Such

a distribution has been expressed in many ways by many authors

{see Refs. 93, pg. 230; 121, pg. 136; 132. pg.12 134, pg. 902 and 143,

pg. 310) but in this thesis will be written as in Equation (2-19). In that

case, the secular precession is described by the equations:

df. =3" a],
dt ne2

duse = | b. J EL,
2 -



where the a, and b,; depend on the orbit radius, inclination, shape,

etc. Each of the ay, and b, are zero for odd n and for n=0. Odd n

terms cause oscillations but not secular changes in these orbital elements

(Ref. 188, pg. 903). The even terms cause W, and JL, to change secularly

and also cause perturbations in the values of all the elements. Com-

bining the results of Singer (Ref. 143), Cook (Ref. 93), and O'Keefe

(Ref. 134), the a, and bare expressed in terms of the satellite's

angular velocity, Ww, , between successive crossings of the ascending

nod ae

Qe _ wrt YOR,
a = su,(3) cost 1% + 2 1, (3) (&amp; Sin - ). = ww], (8) nti 4)

du = - 34, )z (-2 Sin L)

O'Keefe (Ref. 134, pg. 903) states that there is much controversy

over the form of the higher order terms in these equations. Notice

| cpr. dfle : :

that because J, is negative, It is negative and the line of nodes

regresses in a direction opposite to the direction of travel of the

Lg 4
satellite. du has a positive sign for sin i &lt;x so the line of apsides

mav advance or regress.

Artificial satellites may approach close enough to the primary so

that the drag force is an anpreciable fraction of the local weight but not

so large that drag dominates. In such a case, the orbit is nearly that dis-

cussed above, with additional drag perturbations. The drag force acts

1S 4



in a direction opposite to the velocity of the satellite relative to the

atmosphere. The calculation of the drag perturbation is difficult since

the angular velocity and density distribution of the outer atmosphere

are uncertain. Furthermore, the satellite tumbles in its orbit causing

the drag force to vary with attitude.

The significant alterations in the orbit caused by rag are, from

Nielsen (Ref. 132), that the semi-major axis, a, the eccentricity, &amp;

and the period, T , decrease secularly with superimposed oscillations

at the satellite orbital frequency. The apsides rotate so rapidly that

they mask the advance of the perigee caused by oblateness. Because of

rotation of the atmosphere, Jl and i acquire slight secular rates.

Cook (Ref. 93, pg. 232) estimates that for artificial satellites of

the Earth, the perturbations caused by other masses in the universe

-4
have an effect less than 10 that of the oblateness.

Fer completeness, the well-known advance of the apsides caused by

relativistic effects derives from an addition to the gravitational potential

vo. fern (eit J(%)
This has almost the same effect as an addition to J, but it produces a

minute advance of the apsfides and no change in JL. For close satellites

where such an effect might accumulate to an observable value, atmos-

pheric drag masks it, It is observable at least in the orbits of Mars



and Mercury and with less certainty in the orbits of Venus and the

Earth (Ref. 162, pg. 6).

In addition, the rotation of the primary ''drags' inertial space

along (Thirring Effect) at a slight angular velocity thus causing an

apparent additional precession of the periapse (Ref. 176). This

effect is not observable in any planet or satellite of the solar system.
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Appendix G

EXAMPLE OF AN OBLIQUE COORDINATE FRAME

Consider the two-dimensional oblique coordinate frame shown in

Figure G-1. The coordinate axes are non-orthogonal straight lines.

Since VU , the contravariant components, sum up to V by the

parallelogram rule, the transformation equations from ye to 2} are

obtained simply by resolving the z} components into the Cartesian

Axes,

z cos 30° + z* cos 45°

 = z' sin 30° + 2% sin 45°

Then the Jacobian matrix is:

la] = 3 = Cos 30 @sd5’
Ww sin30° Sin4b’

)

aT] - I 3 Sin30wd5®  sin4%’

(G-1)

(G-2)

yt[si es =sin 15°|=5sTn'30 cos 30.
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Figure G-1

AN EXAMPLE OF AN OBLIQUE COORDINATE FRAME

and z“ are non-orthogonal coordinate axes

x . 3 } ;

¥ and Vv: are contravariant and covariant
components of V

{ER3



The covariant and contravariant elements of the metric tensor are:

g. 1=1[a" 1[a] =| Cos 5 |
|cos 15° lo

IG 3)

SE uN ~G 15°
et leg Igmm eis (G-4)

Since these matrices are not diagonal, the coordinates are formally

shown to be non-orthogonal.

‘Nn Figure G-1, the vector, Vv, has the Cartesian components:

?v.] = V
cos 6 0

| sin 0)
1G -5)

These can be transformed into covariant and contravariant components

in the z frame:

Vv. J Ny. = a, 1y.
Voor) 4 J

vil = [aT 170v] = V4
Cos 30]

cos Is’,
(G-6)

C

a a v. = a) *v.
N; 4)

vs[a1M]=v
-|oo " (G-T7)

The relations connecting the covariant and contravariant components

EO



can

Y YJ (4-14)

vy Vs (4-15)

pe verified as follows:

(Ve 1= lg,1v1 | werd) oecos 15° \ Vers = Vv
cos 30
[cos 9 |

]

G-%)
A

[V'1= 1g 11V; 1 =mnFi5°
-cos \5° cos 30°

~cos iB’ \ Vv cos 15° Vv 2 cos!)

The covariant and contravariant components of V can also be found by

geometric resolution of V as in Figure G-1. Because the scale factors

are unity, the covariant components are the orthogonal projections of \%

onto the z' and z' axes. The contravariant components are the lengths

of the sides of a parallelogram parallel to the coordinate axes:
°

[ cos 30
| cos \5°

[Vi] = Vv | 2 cos 1D”

These are identical to the components obtained by the formal method

of Equations (G-6) and (G-7).

The phvsical components are the orthogonal projections of V onto the

, and 24 axes since the scale factors are unity. Hence the physical

components are identical to the covariant components in this case.
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