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Erratum

In calculating the volume of the sample cell an arithematical error
was made. The volume used for calculating the values of the bulk volume solids
that appear in Table III was 163.4 c.c., whereas the correct volume is 226 c.c.
The volume fractions in Table III should be multiplied by this factor (0.725)
and they then become:

Correct Bulk

Sample Volume Fraction Solids
M 42,6
L 2.3
K 46.8
N 46.2
3 k7.5

Since the value for the volume fraction of solids appears as a factor
of the denominator of the expression for the theoretical effective thermal
conductivity of a powder in a vacuum (Eq. al66), the theoretical values for
the conductivity should all be multiplied by the reciprocal of the above factor
(or 1.38). The main effect of this can be seen by comparing the arbitrary
multiplicative factors given in Table IV with the above factor. They now

become :

Correct Multiplicative

Sample Factor
M 0.585
L 0.805
K 1.27
N 1.12
1 1.56

It can be seen that this correction reduces the error of the larger
samples (and the average error) but increases the error of the smaller samples.
The latter is probably due to the fact that the effects of surface reflections

in reducing the transmission where neglected in the theoretical treatment.
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ABSTRACT

The mechanisms of heat transfer in powders
were studied both theoretically and experimentally.
Radiation as a mechanism of heat transfer was examined
in detail, by making experimental measurements of effective
thermal conductivities of powders in a vacuum and
comparing these values with values calculated from
infra-red measurements.

A theory was developed to predict the effective
conductivity of a powder due to radiation from infra-red
transmission and emissivity measurements. The eguations
derived show that the conductivity depends on such optical
constants as the absorption and scattering coefficients
of the solid material of which the powder is made, as
well as the temperature, porosity, and particle size.

For most ceramic materials the expression for
the theoretical radiation conductivity is the product
of two terms: One gives the effective conductivity for
a powder made of an opaque material and is derived by
considering transfer between the surfaces; this term
depends on the cube of the temperature, the particle
size, the emissivity, and inversely on the solid fraction.
The second term is a correction factor for the effect of
semi-transparent materials. This correction factor takes
into account the fact that the materials are not really
opaque, and that radiation can pass through the particles;
also radiation arises and is absorbed in the body of
the material rather than just on the surface. This
correction factor varies non-linearly in the opposite
manner as the optical thickness (the product of an
extinction coefficient and the actual thickness). It
has a wvalue of one for opaque materials of a large optical
thickness and gets as large as ten, or larger, for some
of the common denser ceramic materials.



Experimental measurements were made on a cylindrical
type apparatus and correlated with values predicted
by theory from infra-red transmission measurements which
were performed on the same materials. Qualitative
agreement between theory and experiment was excellent,
large conductivities being associated with small optical
paths and higher emissivities, while low conductivity
powders were composed of materials with low emissivities
and large opbical thicknesses. The lattice conductivity
of the solid was found experimentally not to be a
significant factor in radiation conductionj; this agrees
with the theoretical predictions. ©Some of the materials
measured were a group of samples made up of different
size particles of stabilized zirconiaj; others consisted
of alumina of various optical properties, ranging from
an extremely porous sample to a powder crushed from large
single crystals.

In the case of the zirconia samples, sufficient
measurements were made to investigate the guantitative
agreement of theory and experiment. Two discrepancies
were found: the first, an additive one, was due to point
contact conduction which was not included in the
theoretical investigation; the second, a multiplicative
error is probably due to non-symmetry in the particle
size distribution and in the curve of effective radiation
conductivity against particle size as well as other
causes. The proper temperature dependence was given by
the theory as shown by the fact that the corrected curves
had the same shape as the experimental ones.

Thesis Supervisor: F.H. Norton

Title: Professor of Ceramics
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I. INTRODUCTION

The transition from materials with relatively few,
randomly distributed, pores to powders with continuous
pore structure has a profound effect on the effective thermal
conductivity. If the material is a mixture of solid and
pores where the solid is continuous, the thermal conductivity
is characteristic of the solid. The properties of the low
resistance (solid) material predominate and the effect of the
high resistance (pore) material is only to decrease the
conduction in proportion to the volume fraction present.

This situation holds to approximately 30 to 40°/o0 pores.

In material where the porous phase is continuous there
is no high conductivity path and the situation is one where
resistances are placed in series. Here the characteristics
of the high resistance material (pore) predominate. Powders
can have relatively low pore fractions (250/0 or less) and
still the effective thermal conductivity will be a function
of the pore phase rather than the solid phase. Materials with
high porosities such as porous insulating brick fall in between
these two situations since here there is only a thin high
conduction path.

Therefore, it is the orientation of the phases with
respect to each other more than merely the porosity that deter-
mines the effective thermal conductivity of a mixture of solids
and pores. This is more important because the ratio of thermal
conductivities of solids and pores is usually at least two

orders of magnitude. In addition to the usual, well-defined



cases, there are situations where fine layer-like pores
occur at low porosity. Here, even though the solid is
continuous, the effect of the small amount of pores on
the thermal conductivity is profound and much more than
would be expected from the pore fraction present.
It was the purpose of this thesis to study the con-
ductivity of materials in which the low conductivity phase
is continuous. In these materials at temperatures under
1000 - 150000. gas conduction seems to be the major
mechanism of conduction. The effects that arise in this
Situation have been extensively studied both theoretically in
the framework of the kinetic theory of gases, and experimentally.
It was thought that radiation might be a significant part .
of the total heat transfer in a powder, especially at high
temperatures. An apparatus was therefore designed to study
this by measuring effective conductivity in a vacuum where it
was thought that radiation would be the predominating mechanism
of conduction. Another purpose of this investigation was to
extend the temperature range at which measurements of powder
conductivity can be made since this was quite limited in the
literature. In addition to measuring the conductivity experi-
mentally a theoretical study was initiated to determine the
important factors in heat transfer by radiation through powders
and to see whether effective conductivities could bepredicted
or adjusted from knowledge of the properties of the materials

making up the powder.



II. LITERATURE SURVEY

A, Experimental Methods

Two steady state methods have been used in determining
the thermal conductivity of granular or fibrous substances;
these are by using cylinders (1) (2) (3) (4), either with
guard rings or long enough so that the central portions
can be considered infinitely long cylinders (this condition
is fulfilled if the cylinders are four times as long as
their diameters (5) ), and using circular plates provided
with guard rings which insure flat isotherms in the measured
region,

Long cylinders have at least one surface kept at a
constant temperature, usually by a carefully controlled
electric heater or by condensing steam. The other surface
can be allowed to reach steady state conditions and the
thermal conductivity determined by the power used and the
difference in temperature between the two surfaces. This
method can only be used when it is possible to measure
the power input or the power conducted away; i.e. either
when an electric heater is used or when the power is
measured by means of a calorimeter (4).

Another method is to measure the rise in temperature
of the cooler surface from the instant of the start of

heating, and then Py mezns of a solution of the complete



LaPlace equation such as a formula developed by Williamson
and Adams (6) compute the thermal conductivity.

The thermal conductivity can also be determined by
using flat circular plates (7) (8). The hot plate in this
case must be surrounded by a guard ring maintained at the
same temperature in order to have perpendicular heat flow
in the measured section. Only two plates can be used if
the temperature rise in the unsteady state is made use
of to calculate the thermal conductivity. Otherwise, there
must be two cold plates, one on each side of the hot plate,
and the power input and temperature difference are measured
in the steady state. Waddams (7) experimented with dif-
ferent positions of the plates and found the following:
if the heat flow is horizontal the thermal conductivity
is 90/0 greater than if the heat flow is vertical; however
it makes no difference which plate is above the other.

From this he inferred that no horizontal convection currents

flow.

B. Previous Theories

Awbery and Saunders (9) (10) developed an equation
predicting the thermal conductivity of powders. They
assumed that conduction of the gas in the interstices
contributed only a negligible amount of heat transfer.
Later experimenters (8) have shown that the transfer
contributed by point to point contacts are by far the
minor part of the total heat transfer, whereas gas

conduction is the most important mechanism of heat



transfer in granular or fibrous masses at low temperatures
(under 1000 - 1500°C.). Therefore, this formula does not
describe the phenomena.

Schuman and Voss (2), using a quasi-mathematical
approach, attempted to develop a formula which would
satisfy known specific cases. These cases are the
following:

(1) when a = O then K = K

b

(2) a=1 K =K,
(3) K, = 0 K =20
(4) K, = K K=K,
(5) K, = ® K = @
(6) K =0 K = K&
(7) K, = @ K = o

Where:

Ko Kb, and K are the thermal conductivities

of A, B, and AB respectively; (a) is the

volume fraction of A.

(1)

(2)

(3)

(4)

(5)

(6)

(2



Conditions (1), (2), (4#), and (5) are obvious.
Condition (3) follows from the assumption that there are
only point contacts between grains. Condition (7) can
be shown to be true when the grains are in contact with
each other and even if two adjacent grains make point
contact of a certain type. Condition (6) is assumed as
a working hypothesis to be proved by experiment.

They use ds a model for calculations a block of
material in which the rectangular hyperbola xy = p(p+l)
divides one substance from the other. Then (a) equals
p(p+l)log(l%R—p). If the heat is conducted in the y
direction only, and dQ is the quantity of heat conducted
through the strip of thickness dx in unit time, and © is

the temperature at the point is contact of the two materials,

then
K K, dx
g & _ g (-9)dx _ b
Q= Tage % lye - EHREsENg O (l—y+p)+KbTy-p) (8)
Integrating
, p(1+p) (K —Ky) K, (1+p)
Kl =Q=¢ +p(K =) KK, K)  °8 TKp (9)

where K? is the effective conductivity of the composite
material. Let K = Kaa’+(l-a’)K’, and K satisfies all the
conditions. Therefore K is the thermal conductivity as

defined by the above equations.



These formulas give no more than a very approximate
solution (within at least 40°/0 of the measured values).
However they do describe the phenomena qualitatively.

In another article (3) Burke, Schuman and Parry de-
rived and proved the law of squares ; i.e., heating
times of two geometrically similar bodies are proportional
to the squares of two corresponding linear dimensions.

They also solved the problem of heat conduction for slabs,
cylinders, cylindrical annuli and spheres, given definite
initial and surface temperatures and constant thermal
diffusivity.

Wilhelm, Johnson, Wynkoop and Collier (12) assembled
experimental thermal conductivity data determined from
1933 to 1948 and compared these conductivities with thése
calculated by Schuman and Voss. They found that, on the
average, experimental values were larger than those computed
by the formulas. It was observed that among experimental
data, when a number of different fluids were used as the
interstitial medium in the same bed, the difference between
experimental and calculated conductivities was approximately
constant and independent of the conductivity of the fluid.

A hypothesis was reached therefore that the conductivity
through solid to solid contact points could not be neglected
as Schuman and Voss had done. A difference, & , between
the experimental and the calculated values of conductivity

was computed and was related in a logarithmic equation



with a term, Ks/a; where KS= the thermal conductivity of

the solid, and a = the fraction void. The equation is:
loglo(a X 105) = m+n(K5/a) (10)

where m = 0.859 ¥ 0.051, and n = 3.12 £ 0.29. With this
correction added to Schuman and Voss®'® values the two sigma
limit is reduced from 11.6 °/o to 8.5 °/o.

Kistler (11), while studying the structure of silica
aerogels, developed a formula for the conductivity of the
gas within the gel. His assumptions were: K = BCvn, and
n = 0.35pvE, where K is the coefficient of heat conduction,
B is a constant, Cv is the specific heat of a gas at constant
volume, n is the viscosity, @ is the density, v the
arithmetical average velocity of the molecules and 2 the

mean free path. Thus
K = K'% (11)

where K? is a function of the pressure, temperature and
composition of the gas. He assumed a large number of
molecules randomly distributed through the aerogel (which

is composed mostly of free spaces) starting from rest and
moving in straight lines in all directions until they collide
with structural elements of the gel (whose structure is

assumed to be random).



Then he derived the equation:

f " |

a L+7

where fa is the mean free path of the gas in the aerogel,

and L is the mean free path of a highly attenuated gas

in the aerogel. Dividing equation (12) into (11):

K7L KL

= ’ = =

K, = K ﬁa L+2 T+1

When the molecules are moving in straight lines between
surfaces with only occasional impacts in between, as is

the case within aerogels at low pressures,

_ McvI®

K = 5.06 x 1022

where M is the molecular weight of the gas, and I is the

number of impacts of molecules on a unit area in a second.

l6 P

I =1.99x10
VT

Thus
a

K, = 0.058Vi/T Cve, 51%75

where PO is the normal mean free path of the gas at the

(12)

(13)

(14)

(o)



10

given temperature and a pressure of one millimeter. This
equation assumes that a molecule comes to thermal equilibrium
with the surface on which it strikes before it departs,

and that all the impacts of gas molecules within the aerogel
are with surfaces. This last assumption will change the
value of the constant 0.058, and so, make it independent

of the temperature. The conduction due to continuous
structure was estimated by using the asymptotic value at

low temperature.

From this equation and the experimental wvalues of
the thermal conductivity of the gels Kistler calculated
the mean free path of a highly attenuated gas within the
aerogel; the values obtained for three different gasses
agreed. Kistler was primarily interested in the structure
rather than the thermal conductivity and this method
provided him with a means for evaluating the effective pore
size of silica aerogels.

Verschoor and Greebler (8) developed equations to
describe the thermal conductivity of fibrous masses using
kinetic theery. Their assumptions were: The thermal con-
ductivity of a gas is proportional to the mean free path
of its constituent molecules and to the gas; density; fibers
lie in planes parallel to the mat which they form but that
are otherwise randomly orientated; the direction of heat
flow is perpendicular to the planes in which the fibers lie;
fibers are uniform in diameter and the insulation is free

from nonfibrous solid particles.
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The probability that a gas molecule will suffer a

collision with a fiber in the path interval &x is:

4f Ax,
nD °?

f is the volume fraction fiber of fibers. From kinetic

where D is the diameter of a single fiber, and

theory: }%= l—e_x/Lg, where'yé is the probability that a
gas molecule in a free gas will collide Wifh another molecule
before moving a distance x, and Lg is the mean free path
of the free gas. %& l-e_x/Lf, where Lf is the mean free
path for molecule fiber collisions.
If one sets x equal to Ax, equates Y. and Vé’
expands and retains only first power terms in Ax, then
Lf = 0.785 B (at very low pressures). The probability
that a random gas molecule will travel a distance x and

1_

<10
=x(fF + Ig)] %é, which

then strike another molecule is [e
is the probability of an intermolecular collision for all
values of x. The mean free path, L, is equal to i%%%% 3
interchanging Lg and Lf gives the identical expression

for L, the mean free path for molecule fiber collisions.
This L is the mean free path for all gas molecules within

a fibrous insulation. Assuming that random molecule-fiber
collisions do not appreciably affect the molecular-velocity
distribution (Maxwellian), the thermal conductivity of the
gas (Ked) is evaluated in the same way as a free gas (Kg)

except that L must be used as the mean free path instead

of Lg. Thus

Lf

Ked = Kg Ttite (1e)
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Verschoor and Greebler also considered the transfer
of heat by radiation through a fibrous mass. They assumed
the fibrous insulation to be successive plates of fiber
perpendicular to the direction of heat flow. The average
spacing is Lf since this is the average distance that a
photon of the radiation field can move in the direction
of heat flow before encountering a fiber. The heat energy
received by the mean plane, at an absolute temperature Tm,
from all the other planes closer to the hot plate surface
can be evaluated from the Stefan-Boltzmann radiation law.
If a is the fraction of incident radient energy absorbed
by a single fiber plane (actually, by a single fiber),
this heat energy is given in consistant units by the

following series expression:

d
2Lf

o= 5 ol(r, + Bam* - p*10a)nt (17)
n=1

Since d/2Lf, measured in consistant units, is very large
we may extend the upper limit of the series to infinity.
If Lf/d(at) is very small compared with Tm, which is the
case for most practical applications of fibrous insulations,

the solution yields approximately:

3
Qm = 4UT§aLfAt (18)
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Division of Qm by the temperature gradient, %E, and

converting to practical units (BTU in/hr sq ft deg F):

-13 Tm’Lf
az

Kra = 2.74x10 (19)
Verschoor and Greebler then ran experiments, using mats

of specially prepared glass wool, to test this theory’s
predictions with respect to the pressure dependence of

the thermal conductivity. Their theory correlated quite

well with the experimental evidence; the differences were
attributed to convection which was not considered in their
study. They are now studying infrared transmission in

order to analyze the mechanisms of heat transfer at high
temperatures, particularly radiation.

Deissler and Eian (13) investigated the thermal con-
ductivity of powders by calculating the conductivity for
spheres and cylinders in square arrays and interpolating
from these the conduction of a powder with any void fraction.

The heat flow through a representative sample of

Spheres in cubic array is:

n Ks (1-%)
dQ = 5 xd&x =53¢ (20)
or
dg= E Xy 4 (21)

2 1l-sin ©
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where dQ is the heat flow through the infinitesimal cylindrical
element of thickness dx, Ks is the thermal conductivity

of the solid, Kg is the thermal conductivity of the gas,

and t is the temperature at the surface of the sphere.
Elimination of t, substitution of x=cos@ and dx = -sin€de,
integration and replacing Q by K (since unit dimensions

were used) results in:

E .1 % Kg 1y- Kg _I
52~ 3 EE s [(Ks 1)- loge Ks] # 1~ 5 (22)
(KS-l)

where K is the effective thermal conductivity of the powder.

Similarly, for cylinders in cubic array:

K

Kg ~ 2TCEE 1) (BB W ks EKgo2 o
(Ks— ) Ks~ ) EKE-(KE)

It was assumed that the heat flow is in the same direction
at every point; that is, the bending of the heat-flow lines
is neglected. The fraction void, a, for the spheres

is 0.475, for cylinders 0.214. The values of K/Kg are
known also for the cases when a is O or 1. ZFrom these

four values a set of curves were interpolated to give the
thermal conductivity of the gas, the conductivity of the

solid, and the fraction of space occupied by the gas.
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Deissler and Eian then experimentally determined the thermal
conductivity of a powder consisting of Magnesium oxide

and argon, helium, or air in the temperature range 200 to 800
degrees F. This gave them varying ratios of Ks/Kg. A

Plot of these values showed reasonably good correlation

with the analytical curve. At high temperatures the
deviation, a maximum of 200/0, may be caused by errors

in the conductivities used for the constituents of the

powder or by factors neglected in the analysis (perhaps
radiation). The value of K/Kg seemed to have a strong

dependence on the gas used.

i Summary of Theories

No one theory seems to describe the experimental
facts adequately but it seems that the following precepts
are justifiable by the available data:

(1) The conduction of the gas in the interstices
is the main mechanism of heat transfer, at least at moderate
temperatures.

(2) The conduction due to point contact of the grains
is very small so long as sinering does not occur.

(3) Radiation becomed effective only at high temperatures.



ITII. PLAN OF WORK

The purpose of this thesis was to study the transfer
of heat, by radiation, in powders with the object of being
able to predict the effective conductivity of a powder
from knowledge of the properties of the solid from which
the powder is made. Furthermore, it was desired to find
in which way to adjust the properties in order to obtain
some particular conductivity and to find out which properties
of the solid are important in determining the effective
conductivity of the powder.

The theoretical study of the conductivity due to
radiation of a powder was based on general equations derived
by Hamaker (15) for the interaction of radiation light
scattering materials in the presence of a temperature
gradient. These general equations were solved for the
specific case of layers under the conditions which obtain
in a powder. Then, using a multilayer system as a model
for a powder, relationships were derived for the effective
conductivity of the powder in terms of properties of the
solid, and the porosity and particle size of the powder.

The properties of the solid used as parameters in
addition to the lattice conductivity were the scattering
and absorption coefficients. Obtaining valid scattering
and absorption coefficients presents a problem because
they are likely to vary not only with wavelength, but also

with temperature; furthermore the spectral distribution



17

of the radiation present is a function of temperature.

Since the scattering coefficient depends on geometric

factors and on the index of refraction, neither of which
change drastically with temperature, it was thought that

the monochromatic scattering coefficient itself would not
vary much with temperature. Therefore equations were

derived which allowed the scattering coefficient to be
calculated from infra-red transmission measurements at

room temperature. These room temperature values were then
used to calculate average scattering coefficients at the
temperature of interest by using as a weighting function

the Planck equation giving black body radiation intensity.
Equations were also derived relating the absorption coefficient
to the emissivity and scattering coefficient, and these

values were therefore automatically corrected for both
temperature and wavelength dependence since total emissivities
at the particular temperature were used.

In order to measure experimentally the effective
conductivity of a powder due to radiation, an apparatus
capable of measuring very low conductivities in a vacuum
was designed and built. In a vacuum radiation was the
predominant mechanism of heat transfer since point contact
conduction was small and could be determined from the
conductivity value at low temperatures. The infra-red
transmission of the same materials used as powder samples

was measured and emissivities of these materials were
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obtained from the available literature. Then, using the
equations derived in the theory section, the experimental
values of conductivity of the powder were correlated with

the properties of the solid.

IV. THEORY OF HEAT CONDUCTION BY RADIATION

A. Introduction

As a first attempt at calculating the heat transfer
by radiation through powders, an equation was derived for
heat transfer between opaque parallel plates. This approach
was used because it was thought that ceramic materials
are quite opaque to infra-red radiation and therefore all
the interaction with radiation takes place at the surface:
incoming radiation being converted to lattice vibrations
at the hotter surface, being transferred to the other
surface by lattice conduction only, and then being reconverted
to radiation at the cooler surface, and thereby passed
on to the next particle. This approach implies that the
penetration of infra-red radiation into the body is neglible,
or in other words the mean free path for a photon entering
a body is small compared to the dimensions of the body.
This derivation is shown in Appendix I.

Some experimental measurements which disagreed with
the above relations by a large amount caused a closer look

into the situation that obtains under these conditiomns.



19

Some preliminary measurements showed that if one considered
all the radiation that passed through a specimen one obtained
a rather high transmission. The usual method of measuring
infra-red transmission is to pass parallel light through

the specimen and focus the radiation that remains in the
beam onto the detecter by means of a lens that is placed

at a considerable distance from the specimen and therefore
subtends only a small part of the total solid angle. This
is satisfactory if the beam remains parallel, but in the
case of ceramic materials, the exit beam is dispersed over

a wide angle due to scattering. Thus, while usual measure-
ments show an insignificant amount of energy passing through
a specimen, techniques which measure the total amount of
energy appearing on the other side give transmission values
as high as 70°/o for the same material. As a result of
these preliminary infra-red measurements it was realized
that before one could calculate radiation heat transfer
through powders, one would have to first investigate the
interaction of radiation with the solid particles from

which the powder was made.

B. Narrow Angle vs. Wide Angle Measurements

First of all, we define an absorption coefficient
(a) by stating that aldx is the amount of radiation absorbed
from the flux I on passing through an infinitesmal layer dx,
Similarly, a scattering coefficient (s) is defined by requiring

that the flux removed from I by scattering while passing
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through an infinitesmal layer dx be equal to sI dx. While
we know that the radiant energy removed from the beam by
absorption is converted into lattice energy, the fate of
the scattered radiation is not so clear. In fact, it is
the latter which causes the great difference between the
two types of measurements.

We can write differential equations for the two cases.
For a narrow aperature apparatus the change in I is merely

the amount removed from the beam or

dI/dx = -(a+s)I (24)
The general soluticn of this equation is

I = e-(a+s)x (25)

exclusive of suitable arbitrary constants. From this we
see that in this case (a) and (s) are equivalent, since
each is a mechanism by which energy is removed from the
beam, and an extinction coefficient can be defined simply
as the sum of the absorption coefficient and the scattering
coefficient. We also note that (s) is a function of the
solid angle that the collimating lens subtends, the smaller
the aperture the larger the scattering coefficient.

We have assumed in the paragraphs above that conditions

of measurement are such that any energy deflected from the
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beam is permanently removed, and cannot be deflected back.
However, under certain conditions (especially in wide

angle measurements as we shall see) some of the energy
which is scattered can after several scatterings find its
way back into the beam. Furthermore, each scattering center
is exposed to light scattered by the other particles and
the light of the original beam may have suffered extinction
by the other particles. <If these effects are strong, we
speak of multiple scattering. This situation (that of
multiple scattering) is of more practical interest than

the narrow angle case outlined above, because heat transfer
in large bodies turns out to be a case of multiple

scattering.

Ce Multiple Scattering in Non-radiating Layers
Let us consider the single dimensional case of
multiple scattering only for simplicity. We divide the

total radiant flux into two parts:

I = The flux in the direction of the
positive x axis (26)
J = The flux in the negative x axis (27)

The definition of (a) remains the same as that in the
previous case, but now we must realize that the scattering
coefficient is a measure of the amount of energy scattered
out of the flux in one direction, and which therefore

appears in the flux in the other direction. Here, then,
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in calculating the change in the flux, we must not only
take into account that some energy is removed from the
beam by scattering and absorption, but also, that some
energy, that scattered from the backward flux, is
reintroduced into the forward beam. This produces the

following equation for the change in the flux I:

dI/dx = -(a+s)I + sd (28)

and an analagous equation for the change in J:

dJ/dx = (a+s)d- gI (29)

These equations were originally developed by Schuster (14)
to desScribe the transmission of light through fog. These
equations can also be used to describe transmission measure-
ments under wide angle conditions and where certain other
assumptions are valid. These assumptions have to do with
the neglect of sidewise scattering. It is therefore
assumed that any energy scattered sidewise out of the beam
is compensated by energy scattered sidewise into the beam
from neighboring regions. This is true if the area
investigated is either small in cross section compared

with the total cross section of the sample or is large
compared with the thickness of the sample. It is also
assumed that the incident radiation is diffuse since this

is a one-dimensional calculation. Under proper experimental

conditions these assumptions are approximately fulfilled,
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and in practical heat transfer problems, it can easily be
seen that this case, that of multiple scattering, is the
actual one.

The equations above show that in the case of multiple
scattering the absorption and scattering coefficients are
not equivalent. Furthermore a simple exponential equation
will not describe the phenomena.

In Appendix A a more rigorous mathematical treatment
of multiple scattering is given. In this section here
only the results of some of those calculations will be
shown along with a discussion of the physical significance
of the equations derived and their meaning with respect
to heat transfer by radiation in solids and powders.

The solution of Schuster'’s equations is shown in

Appendix A to be:

o.X -0 X
I = A(l-Bo)e A B(l+B°)e 9 (30)

g X -g X
J = A(1+B )e LA B(1-B,)e e (31)

o, = + Va(a+2s) (32)

Bg = # ‘(aiEs (33)
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Both roots being taken with the positive sign. In these
equations A and B are constants to be determined by the
boundary conditions. Though g and BO are functions of
(a) and (s) which arise from the mathematical solution

of the equations, it is found that a physical significance
can also be attached to these constants themselves. This
will have importance in understanding the effective thermal
conductivity of a powder due to radiation since this
conductivity depends on these two constants (co and Bo)

in a simple way as will be shown later.

In order to find the physical significance of these
two constants (Go and Bo), we first solve the general
equations (30 and 31) for the special case of a layer
which is infinitely thick. The end conditions in this
case are that the incident flux on the front surface has
an arbitrary value (IO) and that this flux vanishes at

the back surface; or, formally:

I a8k X = 0

H
]

I =0atx =
Substituting these relations into the general equations:

I, = A(1-B,) + B(1+B,) (34)

O @ 0 oo (55)

o
I,=0 = A(1-B,)e + B (1-B,)e @
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These two equations are fulfilled if

A =0
and
B = I./(1+B,) (36)

and the solution for this particular case (that of an

infinitely thick layer) is

it

I = Ioe Ox (37)
(l—BO) -0 %

Jd = Io W e o] (38)

We can see from equation (37) that 0  measures the rate

of decay of the incident beam Io' This means that 00 is
similar (though not exactly mathematically analagous) to

an extinction coefficient. In the ensuing discussion (Uo)
will be treated as an extinction coefficient, but it should
be remembered that it is not the usually defined extinction
coefficient. It will be seen later, where surface effects
are important, that the product on represents an optical
thickness. That is, for two different materials the
surface effects and the decay of light intensity will be
equal if the dox product is equal for the two different

materials even though i and x might not be individually

equal. It should also be noted that 00 depends on the
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absolute magnitude of (a) and (s). This is as it should
be; Bo will be seen to depend only on the ratio of (a)
to (s) and not on their absolute magnitude. In summary
we see that 9, behaves as an extinction coefficient and
equal effects will be caused by equal optical thickness
(cox product).
Looking at equation (38) we see that at the front

surface

(1-8,)
F /B o e (39

(1+8,)
since x equals zero. But the value of (JO/IO) at the front
surface is equal to the reflectivity by definition; from
the value of the reflectivity it is possible to find the
absorptivity since the absorptivity plus the reflectivity

must add up to one. The absorptivity is therefore:

28,
(1+8,)

« = (=€) (40)
Since, according to Kirchhoff?s law, the absorptivity and

the emissivity are equal we can see the physical significance
of the constant (Bo) from the above equation. Evidently

the emissivity and the constant (Bo) are interconnected,

with the emissivity of a material depending only on the

value of the constant (Bo) for the material in the simple

manner given by equation (40).
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To pursue this matter even further: Hottel (16)
found that if one considers radiation heat transfer
between two infinite parallel plates one has to use an
effective emissivity rather than the actual emissivity
if the materials because the radiation reflected and re-reflected
from each surface. This effective emissivity is the sum of
an infinite series of these re-reflections and according

to Hottel depends in the following way on the emissivity:

& = Beg (41)

If we solve eguation (40) for (Bo) we find that (Bo)
also equals (E%E) and therefore (Bo) represents the
effective emissivity between two infinite planes. We will
find that this analogy will be useful when discussing the
thermal conductivity of powders using a model of flat plates.

If both parts of the fraction comprising the right
hand side of equation (33) for (B, ) are divided by Vs,

the equation becomes:

B, = | 22— (42)

From this we see that (Bo), and therefore the emissivity
of a material, depends only on the ratio between the absorption
coefficient and the scattering coefficient of the material

and not on their absolute wvalue.



We see then that this method of approach allows us

to calculate various parameters of materials such as their

28

reflectivity, emissivity or absorptivity, and transmisivity

(the general equations can be solved for thin layers as
well as infinitely thick layers as was shown here, the
other solutions are shown in the appendix). Furthermore

these properties of materials are found to be simple

functions of two intensive variables of the material; one,

an extinction coefficient, and the other an effective
emissivity. These constants are simple functions of the
absorption and scattering coefficient, and either set of
constants can be used as the independent parameters.

Since transmittance of a layer, as well as other
optical properties such as reflectance, can be measured,
such a measurement furnishes a method of determining the
scattering and absorption coefficients. For instance it
is shown in the appendix that if the total transmission
of two samples of different thickness (Dl and D2) is
measured, than the constant (00) can be found from the
following equation:

. : g
sin h OOD sin h oD2

1 .
- = sin h o (D,-D,)
To T1 ‘ o] X T2

where (11) and (12) are the measured transmissions:

{43

Or if one of the thicknesses is twice the other, then the

following equation holds:
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To(1T,41)
ik
coshcoD = ———5;1**

(44)
Once the constant (co) is determined, (Bo) can be found

from an equation which describes the transmittance of a

layer as a function of its thickness and optical constants

(see egquation 45).

If it is desired, the absorption coefficient (a) and the
scattering coefficient (s) can be found from (co) and (Bo)
by means of eguations (32) and (33).

In addition to allowing one to predict transmittances,
and reflectances for various samples of the material, the
knowledge of the optical constants of the material will
later be shown to be useful in predicting heat transfer
by radiation through the material as well as in calculating
effective thermal conductivities due to radiation for
powders made of the material.

To summarize this section, if thé general equations
are solved for the transmission (1), reflectance (p) and

absorptance (o) of a layer of thickness (D) one obtains:

3
T = Ip/1 = 5T Po 2 s (45)
(l+B0 )51nhooD+ Bocos g,
(1-8,°)sinho D
e = J /T -
o’ "o . B (46)
(1+B, )31nhcoD+260coshdoD
28 [B _sinh. D+cosho D-1]
— amount absorbed i 0 "0 [6) o e (47)

o (1+B02)sinhcoD+2socoshdoD
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D, Radiating Isothermal Layers

While in the above discussion only absorption and
scattering of radiation is considered, it should be realized
that if the material reaches a sufficiently high temperature
it will radiate itself (so-called thermal radiation).
The amount of this radiation is a function of the temperature
(according to the Stefan-Boltzmann law) as well as other
parameters. Hamaker (15) has taken this radiation into
account by introducing an additional term into the general
differential equations derived by Schuster. In accordance
with Kirchhoff’s law (that the absorptivity is equal to
the emissivity) an amount of radiation equal to (andx)
will be emitted in each directionj (EO) designates the
black-body radiation at the temperature and wavelength
in question.

The general equations then become:

dI/dx = -(a+s)I +sdJ +aE (48)

dJ/dx

(a+8)J - sI = ak, (49)

And the general solution is:

5 4 g X

A(1-B))e % % B(l+Bo)e- LA E, (50)

=
1

ag -
A(1+B,)e ot B(1-B,)e o*

o
]

+ B (51)

o)
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where (A) and (B) are again to be found from the boundary
conditions.

If, for instance, these equations are solved for a
layer, it will be found that the solutions have the fbllowing
form: The amount of radiation coming from the front surface
on which a flux of I is incident (there is no flux

incident on the back surface) is:

2 . .
Io(l-Bo )31nhG°D+EOBBO [Bos1nh 0 D+cosh GOD—l]

e s (52)
(l+Bo )sinh OOD+2Bocosh GOD

While the amount of radiation appearing at the back surface is:

i a -
+ E 2B, [Bos1nh 0 D+cosh 0 D 1]

ID = . ) (55)
(l+Bo )sinh 0,D+2B cosh O D

Comparing these equations with those for a non-radiating

body, we see that they are made up of one term which describes
the reflectivity or transmissivity, plus another which
describes the emissivity (or absorptivity). It is then
possible to rewrite the equations above in the following

form, where (1), (P), and (¢) are defined by equations

(45), (46), and (47):

Jo = PI, +eE

. 3 (54)

Ip = I, +eE, (55)
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Furthermore, if we solve this case for the emissivity,
it will be the same as the absorptivity found in the
non-radiating case or equation (24) as is required by
Kirchhoff’s law.

These calculations are then useful in predicting the
interaction of radiation with heated materials. In particular
"they allow us to calculate the emissivity of materials
from knowledge of their optical constants. Also, since
the emissivity of an infinitely thick sample is one of
the properties that it is possible to measure, this would
allow us to find the constant (Bo) directly from a single

measurement.

E. Radiating Layers with Temperature Gradient

As a continuation of this treatment and in order to
use this method as a means of predicting heat transfer
it is necessary to consider the situation where a temperature
gradient is present in the sample under investigation.
This complicates matters since now temperature, and
therefore the radiant flux, is a function of position.
Furthermore, the spectral distribution of the radiant
energy changes with temperature. The latter is important
when the absorption coefficient and scattering coefficient
change with wavelength. Hamaker presents for this case
a set of equations in which total radiation only is considered
as a function of temperature. This introduces an error

which will be small for small temperature gradients and
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can be minimized further by using absorption and scattering
coefficients which are averaged for the spectral distribution
of black body radiation for the temperature in question.

Since the total black body radiation flux is a
single-valued function of temperature it can be used as
an independent variable instead of temperature thus simplifying
the equations. In particular, if the temperature gradient
is small compared to the absolute temperature, then the
total black body radiation (E) at temperature (T) can be

approximated by:

E = E, +b(T-T,) (56)
where
b =4 0T ° (57)

Eo is the total radiation corresponding with a temperature
(To) which is close to the temperature being considered;
(0?) is the Stefan-Boltzman radiation constant.

If we add to the equations already shown a heat balance
equation expressing the fact that heat is neither accumulated
nor produced within the body, we have the following set

of equations to describe the situation:

o

= —(a+s)I+sJ+aE (58)
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ad (a+s)=-sJ-ak (59)

_ % EE’ + a(I+J) = 2aE (60)

The complete solution of these equations Hamaker

shows to be:

I = A(1-B)E* + B(1+B)e ™ + C(ox-B) + F (61)
J = A(1+B)e X + B(1-B)e "% + C(Ox+B) + F (62)
E = -A%e’® - B{e™ X 4+ Cox + F (63)
where

o = +I[V(T¥Mla(aras)Il= o , [+ 1 V(TF0) | ] (64)
b= (65)
§ = Klaizs) - Fo° (66)

The constants (A), (B), (C), and (F) are to be
determined from the boundary conditions which can be four
of the possible six conditions, three at each surface: the
temperature gradient, the temperature, and the amount of

incident radiant energy.
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It is worthwhile to consider eguations (61 - 63) in
more detail following a discussion in Hamaker. The two
exponential terms in each equation will diminish rapidly
as we move away from the value of x at the surfaces.

This suggests that these terms will be of importance only

in the neighbourhood of the boundary planes where they
provide certain corrections required to fulfill the boundary
conditions. In the center of a thick layer, then, we

would expect that the temperature and radiation fluxes

would vary linearly with distance and be represented by

the linear terms in the equations in question. The situation
will be like that sketched schematically in figure 1l; the
deviations from linearity near the surface being due to

the exponential terms. These surface corrections will

be discussed later where it will be seen that they play

a predominant part in determining the conductivity of a
powder.

From this it may be inferred that the total transfer
of heat, which is constant over the entire layer, will
depend only on the temperature gradient in the interior,
that is on the constant (C). To verify this, we find the
total heat flow in the positive direction which is:

Q= xE+ (-0 -"F £, 1 (67)

Which after inserting equations (61 - 63), becomes:
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Q = -C(— + 2B) = -C2B
The exponential terms cancelliing out. In practical appli-
cations where the total transfer of heat is known, this
equation will be an easy method of finding the constant (C).

In the region where (I), (J), and (E) are linear functions

of (x) we have from equation (63%):

o

- 3 g=§-’ = (69)

Which introduced into equation (68) leads to:

Q = ~-L k T ] %% = =k(1+ %) %% (70)

If (V) represents the amount of heat transferred by lattice
conduction, then:

ar
Vo= -kgy (71)
And the remainder of the transfer in equation (70) must
be due to radiation. Then, if (U) represents the heat

transfer by radiation:

2b dT dT

U=-at2s & - "k & (72)

As might have been expected, (U) is proportional to (b),
the black-body radiation.
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Furthermore on dividing equation (72) by equation (71)

we obtain:

K= U/V (733

which means that the constant (K) represents the ratio
of the heat transfer by radiation to that by lattice

conduction.

F. Surface Effects in Semi-Transparent Layers

When considering heat transfer in thick opaque layers,
the surface effects will be negligible and the heat transfer
will be determined by (k) and (¥). However, in two cases,
that of very transparent materials such as glass and that
of thin layers, the surface effects will be important and
might even predominate. We can consider the interface
between two materials as being a region where the ratio
of lattice conductivity to radiation conductivity is
changing from the equilibrium wvalue found in the center
region of one of the materials to the equilibrium wvalue
found in the center of the other region. The surface is
therefore a region where radiation is being converted to
lattice conduction or vice versa. In addition we should
note that the extent of the non-linear region near the
surface is also an indication of the extent of penetration

of radiation through the surface into the body of the layer.
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If two layers of different properties are in contact,
it is worthwhile to find both how the gradient in the linear
portion in the center of each varies with these properties,
and also how the non-linear portion at the surface behaves.
To examine this we first note that (Q), the total amount
of heat transfer, is constant in both layers. Also, (Q)
is always equal to the sum of (U) the heat transfer by
radiation and (V) the heat transfer by lattice conduction.
We know that (V) at any point is proportional to the
thermal conductivity of the solid times the temperature
gradient at that point since this is the definition of
the thermal conductivity. In the center of a thick piece
of material we have seen, equation (73), that (¥) is the
ratio of (U) and (V); therefore in the center, (U) is
proportional to (f{) times the thermal conductivity times
the temperature gradient. In the following equations this
is expressed formally; in these expressions the subsecript (c)
refers to the center of a thick layer, (s) refers to its
surface, and the subécripts (1) and (2) refer to the
different materials in contact: (If there is no subscript

(¢) or (s), the relation is valid anywhere.)
Since

Q=0+7V (74)
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and
V = k(dT/dx) (75)
and
U= KV, = Xk(dT/dx), (76)
Then
Q = (1+ K)k(dT/dx) (77)

Furthermore, for two layers (since (Q) is always the same):

(1+ Kl)kl(dT/dX)cl = (l+ Kg)kg(dT/dX)c2 (78)
or

(ar/ax),; (1 K0k

@, - O K5 e

Since (1+ % )k is the total effective thermal conductivity
at the center of the layer, we see that the ratio of the
temperature gradients at the center of two layers in contact
varies inversely as the ratio of the total effective
conductivity of the layers; this is as we might expect

and is the same as the case where only lattice conduction

is considered.
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We note that (V) and (T) (where it is defined) are
both continuous functions. Then at the interface, in

order for (V) to be continuous,

k, (d1/ax); = k,(d1/ax)_, (80)
or

(dT/dx) 9 k,

(dT/dxjse - EI (81)

And we see that the ratio of the temperature gradients
at the interface between two materials is inversely
proportional to the ratio of the lattice conductivities
of the solids.

We would finally like to find the direction in which
the gradient changes in going from the center of a layer
to its surface which is in contact with a dissimilar
material. We will see that this depends on the value of
(X) of the two materials. Let us consider that we are
going from the center of a layer to the surface of that
layer and that the surface is in contact with a material
which has a larger value of (). Since () in the second
material is larger, (U/V) in the second material is larger
(because K= U/V), and (U/V) at the interface will be

intermediate between that at the center of the two materials.



Or, since

Usl Ucl
vsl > vcl

substituting U

Q-Vg1 5 -V,
vsl vV

el

or

\ >V

el sl

or (since V = k(dT/dx) and k has the same value in the

center and the surface)
(dT/dX)cl> (dT/dX)Sl

We have found then that when going from a material

41

(82)

(83)

(84)

(85)

(86)

(87)

of low (X ) to one of higher (¥ ) the gradient in the center
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of the first material is larger than the gradient at the
surface. We could have done this for the case where the
second material had a smaller value of (#) than the first
material, and would have found, of course, that in this
case the gradient would have been smaller in the center
of the first material than at its surface. We also note
that the direction of change (i.e., whether the gradient
is smaller or larger at the surface compared to the
center) depends only on whether (K ) is larger in the
second material than in the first.

To illustrate the relations above let us consider
the case of heat transfer from a hot dense ceramic refractory
through a layer of glass to a vacuum. This situation is
shown in figure 1. The temperature increases from right
to left (i.e., the refractory is on the left), and we
have assumed in this illustration that the materials are
thick enough so that there is some linear region in the
center. Then, since the total conductivity of the
refractory is larger than that of the glass, according
to equation (79), the gradient in the center of the glass
is steeper than that at the center of the refractory.

The gradient at the surface of the refractory is less

than that at the center of the refractory because the

value of (K ) is greater in the glass than it is in the
refractory. For the same reason, the gradient at this
surface of the glass is steeper than it is in the center of

the glass. Finally the ratio of the gradients at this
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interface is (kR/kG) where (kR), the lattice conductivity
of the refractory is considerably larger than (kG) the
lattice conductivity of the glass. At the other surface

of the glass we see that the gradient decreases at the
surface since we are going to a material with an infinitely
high value of (¥ ) (the vacuum). Another way of looking

at this is that since the conductivity of the vacuum is
zero,(all the transfer is by radiation) there can be no
lattice conduction at this surface and the gradient must
therefore be zero also.

From the above discussion we see that we can find
how temperature gradients change both on passing from one
material to another, and from the center of one layer to
its surface when in contact with a different material.
However we have made no mention of the absolute wvalues
of the gradients at the surfaces of the materials or of
the exact shape of the curve where the gradient changes
from the value at the center to that at the surface. Nor
has the extent of these surface aberrations been considered.
These values can only be found by using the complete
equations derived in Appendix A and do not lend themselves
to a simple qualitative discussion. However we can see
that the extent of the surface effects into the center
of the layer, and the penetration of radiation below the
surface of the layer will be a function of the extinction
coefficient ( o) of the material. In the next section
we will show how this effects the effective thermal con-

ductivity of powders due to radiation.
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G, Qualitative Extension to Multilayer Systems

It is possible from the discussion on the previous
pages to obtain a qualitative idea of how the effective
conductivity of a powder due to radiation might wvary by
using as a model for the powder a multilayer system. In
this section we will consider the effective conductivity
of a system of many parallel infinite layers. We will
assume that the conductivity of this system is the same
as that of a powder where the average particle size is
the same as the thickness of the layers, and the porosity
and other properties are the same.

We can for convenience divide the range of various
size layers into three cases: One where the mean free path
of the radiation is much smaller than the thickness; in
other words the radiation is absorbed and emitted essentially
from the surfaces, and the extent of the surface effects
are small compared to the thickness of the layer. The
second case is when the surface effects extend a significant
distance into the layer and therefore one must consider
radiation which is absorbed and emitted within the layer.
If in the latter case, the layers are thin enough, there
may be no sign of linear temperature gradient. The final
case is when the particles are so small that there is
essentially no individual interaction with the radiation,
but the system acts as a whole and the temperature gradient

across each particle is insignificant.
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These three cases are sketched schematically in
figures 2, %, and 4; the left hand set of illustrations
show the temperature gradients, while the right hand set
represent the path of rays of radiations, or at least
their points of origin and the point where they are
absorbed. These illustrations are for the material in
a vacuum for simplicity, however similar considerations
would be valid for layers with interstitial gasses.

In these illustrations we have kept the layer thickness
constant and shown the effects of decreasing extinction
coefficient (that is the third case has a smaller extinction
coefficient than the second, etc.). However it should
be noted that the important parameter is the optical
thickness mentioned earlier. This parameter, the product
of the extinction coefficient and the actual thickness
is the significant one in determining how far the surface
effects extend into the layer. Materials with equal
optical thickness have equal proportions of non-linear
temperature gradients regardless of the absolute values
of the thickness or the extinction coefficient. With
this in mind we could as well have allowed the thickness
to decrease in the illustrations, but the figures are
presented as they are for clarity. The important distinction
between the three cases then is that the first is for very
large optical thicknesses, the second for an intermediate

range, and the last represents very short optical thicknesses.
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To consider the effective conductivity of the first
case, illustrated in figure 2, we must first know that
the effective conductivity of the space between the layers
is much smaller than the lattice conductivity of the solid
for the particle sizes and materials and temperatures in
which we are interested. This means that if we consider
a system of layers between two surfaces at different
temperatures, we will find that the temperature drop across
the solid layers is small compared with the temperature
drop across the spaces between them. Furthermore, since
the surface effects are negligible the temperature drop
across the solid is a function of the total amount of solid,
and increasing the number of spaces by making the layers
thinner (while keeping the porosity constant) will not
change the total temperature drop across the solid.
However it will increase the number of spaces. ©oSince these
spaces are thermal resistances, increasing the number of
pores will decrease the effective conductivity. The effect
is analagous to that of using radiation shields to decrease
radiant heat losses: the more shields in a given distance
the less the transfer or the lower the effective conductivity.

It is also easy to see that increasing the solid
fraction (while keeping the thickness of the individual
layers constant) also increases the number of spaces in
a given distance and therefore will also decrease the

effective conductivity, other things remaining equal.
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Finally, if we consider the heat transfer by radiation
across the space itself, we can see that it depends on
the emissivity (or more exactly the effective emissivity(B)
since this is a situation of radiation transfer between
two infinite parallel surfaces). It also depends on the
total amount of radiation which in turn can be shown to

depend on T (A T):

Since

Q cc T°(AT) (88)
and

Q =k, a3 (89)

if we use this equation (89) to define the effective
conductivity of the space (ke) then from these equations

we can see that
k o T3 (90)
e ¥,

other things (such as ( Ax), the thickness of the space)
remaining constant.

The\effective conductivity in this case then depends
linearly on the particle size, the effective emissivity, the

cube of the temperature and inversely on the solid fraction.
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The intermediate case illustrated in figure 3 is the
case where surface effects extend a significant distance
into the sample or in other words, radiation penetrates a
significant distance past the surface. This is the most
important case from a practical viewpoint since in the
particle size range and the optical property range of most
ceramic materials it is found that the optical thickness
falls into this intermediate range. The effective con-
ductivity of these systems will still depend on the
emissivity and the cube of temperature (since it still
depends on the amount of radiation present); it will also
still depend on the thickness of the layers and inversely
on the solid fraction since these factors will change the
number of layers and therefore the number of thermal
resistances present. But we find that now the effect of
changing the thickness is more complicated since when
the thickness changes the proportion of non-linear
temperature gradient region also changes.

We can understand this by noting that the radiation
coming from a layer is proportional to the temperature
of the part from which the radiation is emitted, and the
emissivity of the layer itself. Therefore, since the
radiation is being emitted from the non-linear region (rather
than just the surface), as the non-linear region increases,
the temperature of the radiation area changes. In the

case that we are considering (layers in a vacuum) we can
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see (from figure 3) that the radiation will be emitted
from a hotter region, and be absorbed in a cooler region, and thus
the heat transfer across the space between layers will
increase when the optical thickness decreases.

As the non-linear region becomes larger another
effect appears: when the linear region in the center
disappears completely we can no longer consider the layer
as a thick piece with surface effects, but must realize
that the emissivity of this thin layer is different from
that of an infinitely thick layer. This latter effect
must also be accounted for. We can understand this most
easily by considering the radiation which now might pass
completely through a particular layer. Then, as particle
size decreases, we decrease the effective conductivity
by introducing more pores, but this effect is ameliorated
since, because of the decreased optical thickness, more
radiation gets through the layer.

We find that the conductivity in this case depends
on the same factors as the previous case as well as an
additional factor which is a function of the optical thickness.
This factor is non-linear; it is one for large optical
thicknesses and increases as the optical thickness decreases.
A quantitative discussion of this factor will be found
in the next section.

The final case shown in figure 4 is that of very
small optical thicknesses. Here a photon will, on the

average pass through many layers before interacting.
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When the optical thickness is small enough there will be
no lattice conduction across a layer and therefore no
temperature gradient in it. Increasing the number of
layers in a given distance will have no effect and the
conductivity will be independent of layer thickness;

It will depend only on the optical constants of the solid
and in fact will be equal to the effective radiation
conductivity of the solid itself divided by the solid
fraction. The actual temperature of any particle will

be the temperature of the radiation in that region and

the radiation reaching it will come from many layers away.
For a given pore fraction and optical constants we see
that when this situation is reached it is impossible to
lower the effective conductivity any further by reducing
the layer thickness, It will be shown in the next section
that this case is not likely to be realized in practice

since other factors enter in.

H. Quantitative Discussion of Multilayer Systems
Using the theory discussed in the previous sections

and derived rigorously in the Appendix A, it is possible

b

to formulate equations to describe the effective conductivity

of the three cases discussed in the immediately preceding
section. We can now show how these eguations derived
mathematically predict the same sort of variation that
were shown by the qualitative discussion. The equations

that will be shown in thissection will be for a material
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in a vacuum. The material will, in the center of a thick
layer, also have only a small proportion of the total heat
transfer carried by radiation (i.e., the constant (¥ ) is
small compared to one). This latter condition will be
found to be the case with most poly-crystalline ceramics
as will be shown in the results section. Furthermore,
we will assume that the lattice conductivity of the solid
material is much larger than the effective conductivity
due to radiation of the space between the layers. This
condition is also found to hold in the temperature and
particle size range of this investigation when actual values
are compared. While these assumptions are made in this
section to simplify the discussion of equations which
would otherwise be too complicated to get any physical
meaning from, the theory itself is not limited by any such
assumptions; the complete equations for the most general
‘case are presented in the appendix. The effects to be
expected in special cases where the above limitations do
not apply can be inferred from these complete equations
by reasoning similar to that which will be presented here.
The first case that we will investigate is the omne
of very opaque layers. Here we can calculate an effective
conductivity by assuming that there is a high conductivity
(the solid) and a low conductivity (the space) material
in series with each other. It is assumed that the energy
is transferred across the space by radiation, is converted

to lattice vibrations at the surface, is carried across
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the solid layer by lattice vibrations and then emitted

at the next surface in the form of radiant energy. The
significant thing here is that the conversion from radiant
energy to lattice vibrations and vice versa takes place

on the surface itself, with no penetration of radiation

into the interior of the solid. We then need to consider

only the emissivity of the material as if it were an
infinitely thick sample. We do have to take into account

the reflection from the opposite surface since the absorptivity
is not one; this necessitates the correction due to Hottel (16)
mentioned in the previous discussion and means that we

should use the constant ((B) = §%E) instead of the

emissivity (€). The results of this calculation which

is shown in detail in the appendix give as an effective

conductivity (ke) for a powder in a vacuum:

e 1-p (91)

As we predicted in the qualitative discussion the
conductivity does depend directly on the layer thickness (D)
and the effective emissivity and inversely as the solid
fraction (1-p). It also depends on the cube of the
absolute temperature (since b = 4 9°'7%),

The next case which is studied is that where the same
conditions hold (i.e., the material is in a vacuum, the
constant (¥ ) is much smaller than one, and the conductivity
of the solid is much larger than the effective conductivity

of the space) but where the optical thickness is not very
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large. This is the region where surface effects become
important, and radiation penetrates into the body a sig-
nificant amount or even perhaps through several layers.

For this case we must use the complete theory derived in
the previous pages, taking into account multiple scattering,
absorption and re-emission, as well as temperature gradients.
The procedure carried through rigorously in the appendix,

is to solve equations (61 - 63) for the boundary conditions
present in the actual case. These conditions are the
incident radiation on each surface and the temperature
gradient on each surface. This procedure provides equations
describing the resulting emitted radiation from each
surface as well as the temperature of each surface. Using
these equations we can derive an effective conductivity

for a system made up of layers of material in question.

When this is done, and the results simplified to conform

to the conditions we have specified above, the following
expression for the effective conductivity of a system made

of layers which are semi-transparent is obtained:

r bBD sinho D

e 1-p) ~ [cosho D-1] (92)

This expression can be divided into two parts; the first part:

(1-p (93)



is identical with the expression shown in the previous
section and therefore represents the conductivity of a

system of opaque layers. The second part:

sinhg D
[cosho D-1]

represents the correction that must be applied to the

conductivity of opaque materials for the effects of
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(94)

radiation which penetratesthe surface. As is to be expected

this term depends only on the optical thickness (g D) of
the material. Furthermore, the smaller the optical
thickness, the larger this correction factor becomes,
corresponding to the effective conductivity being raised
by more and more radiation passing through the layers.
We can easily find the value of this factor when the
optical thickness becomes large. Since the hyperbolic
sine approaches the hyperbolic cosine when the argument
becomes large; and they both become rapidly much larger
than one, the value of the correction factor becomes one
for large values of the optical thickness(oD). More

formally:

sinh x — cosh x, as x> ®

(95)
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also,

cosh x =1 — cosh x, as x—>»® (96)
therefore

sinh x/(cosh x - 1) —>1, as x >® (97)

This means that for large optical thicknesses the complete
equation (92) approaches as a limit equation (91) which
was derived for that case (large optical thicknesses).

We now have a mathematical basis for the predictions
made in the previous section on how the effectiveée conductivity
might be changed by the increasing importance of surface
effects. Furthermore if we introduce actual numbers into
the correction factor above, as will be done in the results
section, we will find that the value of the factor can
easily become ten or larger for common ceramic material.
This, therefore is a very significant correction and shows
the necessity for making this complete calculation rather
than relying on an opaque situation.

Finally we come to the case where the optical thickness
of the layer is very small. This corresponds to the mean
free path of the radiation being much longer than the
layer thickness and therefore any particular ray will travel
through many layers before suffering any interaction.

As we saw qualitatively before this situation, in the

limit, produces a minimum conductivity below which it is
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not possible to go even if the thickness is reduced even
further. To see this mathematically we find from the
definitions of the hyperbolic functions in terms of infinite
series that the limits of these functions as the argument

approaches zero are:

limit ginh X = X
X —» 0 (98)

limit (cosh x - 1) = g
il (99)

If we introduce these values into the complete equation (92)
we obtain the limiting effective conductivity for very

small particle sizes:

2bB/g

limit kg = 7725

D—>e

(100)

If we substitute the definition of K = %gﬁ (equation (66))
into this we find that the minimum possible effective

conductivity is:

ke = TIZET (101)

That is (remembering that (K ) is the ratio of radiation
conductivity to lattice conductivity in the solid) the

minimum possible effective conductivity of the powder is
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the radiation conductivity of the solid divided by the
solid fraction. BSince the latter is less than or equal

to one, the minimum effective conductivity of the powder
is increased above the radiation conductivity of the solid
by any porosity present.

The above discussion is theoretical and when we
investigate the actual case we find several factors which
might cause discrepancies. First of all we have considered
the solid as a homogeneous material with scattering and
absorption coefficients which are intensive properties.

As far as the scattering coefficient is concerned, this

is only an approximation. Virtually all the scattering

in common ceramic materials comes from the pores in these
materials. This scattering is due to the fact that the
radiation has to pass across an interface of the pore where
the index of refraction changes. Also, since the surface
of the pore is not a plane, the radiation will be scattered
in a pattern depending on several factors rather than
simply being reflected (or partially reflected). However
there is another surface where the index of refraction
changes; this is the surface of the layer itself. Ihen

the layer is thick, the reflection from this surface is
much less than the effects of scattering from the pores
within the solid. But, if the layer becomes thin enough,
there will be very few pores (and therefore very few scat-
tering centers) in it, and the scattering from the surface

of the layer itself might become significant with respect
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to the scattering from the pores within the layer. This
situation in an actual case might reduce the conductivity
below the theoretical minimum by effectively changing the
value of the scattering coefficient of the solid.

In addition, in a real case, the particles of a powder
are not layers, but are irregular shapes and will touch
at points. These points will conduct a small amount of
heat, and this amount might become significant for very
small particle sizes.

To summarize the theoretical picture of the variation
of the effective conductivity of a powder in a vacuum with
respect to particle size, we have drawn figure 5. The
straight dotted line represents the conductivity of opagque
layers which is linear with respect to optical thickness
and therefore particle size and goes from zero (at zero
thickness) to infinity (for infinitely thick particles).
This must be multiplied by the correction factor which
is shown as the dashed line. At high optical thicknesses
this factor is one, and it increases as the optical thick-
ness decreases until at small values of the optical
thickness it is proportional to the reciprocal of the
optical thickness. The product of these two terms, which
represents the theoretical conductivity, is shown as the
solid line. At small optical thicknesses it is the product
of a term which is proportional to the thickness and one

which is proportional to the reciprocal of the thickness;
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it is therefore a constant in this range. At large optical
thicknesses the theoretical conductivity is the product
of a term which is proportional to the optical thickness
and a constant (which is equal to one); the theoretical
conductivity in this latter region is therefore proportional

to the optical thickness.
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V. EXPERIMENTAL

A, Thermal Conductivity Measurements - Introduction

In designing an apparatus to measure the thermal
conductivity of a powder, the thing that plays the largest
part in determining the configuration of the apparatus
is the fact that the effective thermal conductivity of
a powder is, under certain conditions, lower than any
other known material. This means that it is impossible
to insulate a powder sample in such a way that heat flow
can be produced only in the desired direction. For example
if a temperature gradient is impressed on the ends of a
rod of metal, and the metal is placed in an insulating
material, the heat flow along the rod can be used as a
measure of its thermal conductivity since, the radial flow
can be reduced to an insignificant fraction of the
Jlongitudinal flow by insulaters which have thermal conduct-
ivities orders of magnitudes lower than the metal.

If the sample is a powder, this method is not practical,
simply because it is not possible to obtain a material
of a lower conductivity, much less one of a conductivity
several orders of magnitude lower. To see how serious
this situation is, we can compare some approximate thermal
conductivity values for various materials at room temperature:

Most metals fall in the region 0.1 to 1.0 cal/sec. cm. °C.
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S0lid ceramics fall in the region 0.005 to 0.1l cal./sec.
em. °C. except for unusual cases.

In comparison, the effective thermal conductivity
of powders are generally in the region 5 x lO_5 to
1 x 10~2 cal./sec. cm. °C. and sometimes fall as low
as 1 x 10™°. Thus the conductivity of a powder is
several orders of magnitude lower than solids in general
and in particular than the solid from which it is made.

Another property of a powder that determines the
form of egquipment used is that it is of course a loose
material. This means that not only must the sample itself
be contained, but also the heaters and thermocouples
must be self-supporting or in any event, must not depend
on the sample itself for support.

Other considerations that enter into the choice of
method are, for example, the desirability of having a
small sample volume since the grinding and sizing of the
samples is a tedious and difficult process, to say nothing
of the fact that some of the samples may be expensive to
procur; and accuracy and the temperature range desired.

It was decided that the best form of apparatus consistant
with the above requirements would be a hollow ceramic ¢ylinder
with a small heater running down its longitudinal axis.
Thermocoﬁples with their beads lying on a radius and their
leads running longitudinally would serve to measure the
temperature gradient produced by the center heater (the

heat flow would be radially out from the center heater
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while the isotherms would have a c¢ylindrical shape). The
cylinder would be made long enough so that the region in
the center, where the measurements would be made, would
be a close approximation to an infinitely long cylinder.
In this way the powder itself would provide its own guarding
to compensate for end effects. The center heater and thermo-
couples would be supported at the ends of the cylinder
and the cylinder itself would form the container for the
sample. The thermal conductivity would be calculated by
measuring the power supplied to the center heater and the
temperature drop between the thermocouples.

In addition to the center heater which will provide
the measuring gradient, a heater would be wound on the main
cylinder. This two heater system has several advantages:
l. The outside heater, on which there are no size restrictions,
can be used to supply most of the heat losses of the apparatus
and keep the apparatus at the desired average temperature.
This allows the center heater, which has to supply only
the small amount of heat to provide the necessary temperature
gradient across the sample, to be kept to a minimum size.
For a given thermocouple separation, it is advantageous
to keep the c¢enter heater as small as possible in order
to keep the sample small.
2. Without an extra heater on the outside either a large
amount of insulation would have to be used or the gradient

across the sample would be larger than desired because
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of the extremely low conductivity of the powder sample.
3. The two heater system allows a great amount of versa-
tility while using the apparatus since it allows the
gradient and the average temperature to be varied inde-
pendently of each other. This is a real advantage in
checking the heat flow within the apparatus.
Thus a two heater system is necessitated by, and takes
advantage of, the very low thermal conductivity of a powder.
The rest of the apparatus, in addition to the electrical
parts necessary to supply and measure the power to the
heaters, would consist of a frame to support the cylinder
and keep tension on the thermocouples; insulation surrounding
the cylinderj; and a vacuum chamber surrounding the whole

to provide the desired versatility of environment.

B Description of Thermal Conductivity Apparatus

The final arrangement of the apparatus is shown in
Figure 6. The sample is placed in an Alumina tube (marked
outside tube). A radial temperature gradient is developed
by the center heater which is on the longitudinal axis
of the cylinder. The temperature gradient through the
sample is measured by two thermocouples whose leads run
longitudinally through the powder and whose beads are
placed on the same radius as each other. The alumina tube
containing the sample is held in a stainless steel support

frame which is attached to the vacuum system. It is insulated
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with zirconia grog which is contained in a can formed
from insulating brick. An extra platinum winding is
placed around the outside tube as the outside heater to
allow the system to reach the desired temperature. A
vacuun tight chamber is placed around the entire apparatus
and power leads are lead from a power supply through it

to the cell. A gas inlet is provided for allowing gas
into the chamber when this is desired. This tube is
connected to the vacuum gauges when the system is under
vacuum,

The sample containing tube itself is a cylinder of
alumina which was slip cast from pure alumina to an
inside diameter of 4.05 cm. It is 1l8cm. long. End caps
were cast to fit it; these end caps are shown in figure 7.
The center heater and its leads passes through the hole

at the center. The other small holes are to allow the
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thermocouples to pass through. The top cap has an additional

two holes cut out to allow the powder to be placed in

the cell and to be removed. There are also holes in both
end..caps to fit the support rods. All these parts after
casting were preferred to approximately llOOOC., then
fitted and finished. They were then fired to approximately
1800°¢.

The platinum outside heater was wound around the outside

of the alumina tube. It was wound from 0.016 inch diameter

platinum wire and was spaced at 8 turns per inch. A
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coating of Norton alundum cement was then placed on it
and was fired to approximately 150000. The cell, when
assembled with center heater and end caps in place, was
held together with alundum cement and was fired to ap-
proximately lBOOOC. before being put into use.

The arrangement of the center heater is shown in
Figure 8. It was made in this fashion in order to obtain
sufficient surface area to keep the dissipation per unit
surface to a low enough value and also to make the heater
sufficiently rigid. The heater wire is 0.016 in. diameter
wire of platinum 800/0, rhodium 20°/¢. It is wound on
a center tube of extruded alumina, 3 mm. outside diameter
at a spacing of 11.5 turns to the inch. A groove to secure
the heater-wire was machined into this inner tube with
a diamond saw and slits were cut into it near the center,
also with the diamond saw. The leads to measure the
potential drop in the heater wire were spot welded onto
the heater wire 1.48 inches apart and then led through
the slits cut for them into the center of the tube and
then out through its ends. These leads were 0,010 inches
diameter pt. 800/0, rh. 200/0 alloy also in order to
minimize thermoelectric effects since the voltage drops
involved were small and were measured with a voltmeter
which was sensitive to both A.C. amd D.C. An outside
tube of 1/4 inches O0.D. and 3/8 inches I.D. also of
extruded alumina fitted closely around the winding and

serves to hold it in place in the grooves. This tube had
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the additional functions of increasing the strength and
rigidity and of smoothing out the temperature along the
heater. 1t also served to electrically insulate the powder
sample being measured from the heater, thereby reducing
the ac voltage which otherwise appeared on the thermocouples
and was a problem at higher temperatures.

The cell is supported in a framework made of
lin.x 1/4 in.stainless steel bars as shown in figure 6.
Alumina rods, 2 in. long, fit into holes in the end caps
of the cells and connect to the cross bars of the steel
frame. These cross bars also are used to suspend the
tops of the thermocouples and to align the weights on the
bottom of the thermocouples which keep them in tension.
The thermocouples are insulated from the frame by pieces
formed from cast alumina shaped on a diamond saw and are
held by small stainless steel chocks with set screws.
The frame itself is bolted to the top of the vacuum
chamber and therefore forms an integral part of it.

A cylindrical shell 1 inch thick by six inches
outside diameter by 12.5 inches length is supported
on the bottom cross piece of the frame. This shell is
cut from K30 insulating brick, and is built up from
10 pieces. The space between the sample cell and the
insulating shell is filled with Norton insulating zirconia

grog.
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The wvacuum chamber consists of a copper tube 7 inches
diameter with flanges to fit o rings. The bottom plate
leads to the wvacuum pumps while the top plate is a brass
disc 1/2 inch thick which contains vacuum seals to feed
through power leads, thermocouple leads and a tube which
is connected to the vacuum gauges and the gas train when
it is used. The vacuum is obtained by a National
Research Corp. diffusion pump backed up by a Cenco Megavac
forepump. For much of the work the diffusion pump was
not needed and the forepump was‘used alone. A National
Research Corp. thermocouple gauge was used to measure
pressures in the range to approximately one micron.

Below that an ionization gauge was used.

The thermocouples used were platinum vs. platinum 100/0
rhodium. They were calibrated before use against a standard
platinum rhodium couple which had been standardized at
the National Bureau of Standards. They were 0.010 inches
in diameter as this was the minimum diameter wire which
could be handled and used conveniently without breaking.

The thermocouples were colinear and were made by a process
described in Appendix F. They were annealled and straightened
carefully before use to remove all kinks.

Power was obtained from a 115 volt source and was
stabilized by a Raytheon voltage stabilizer. It was
controlled by variable transformers.

The voltage for the center heater was dropped by

an additional transformer to the low voltage desired with
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a high current capacity. The voltage at the center heater
potential leads was measured with a Weston Thermocouple
voltmeter of 0.50/0 of full scale accuracy. It read up

to 20 volts on four scales the lowest of which indicated
0.5 volts full scale. Since the resistance of the potential
leads was significant with respect to the voltmeter resist-
ance, their resistance was measured at each reading and

the voltage read was corrected for their effect. Current
was read on a Weston ammeter with a full scale reading

of 10 amps and an accuracy of 3/4 of lo/o of full scale.

A supplimentary ammeter was used when needed for low

ranges. The ammeter was left connected in series with

the center heater all the time since its resistance had

a significant effect on the circuit. The voltmeter con-
duction was insignificant with respect to the portion of

the center heater which it shunted and had no visible effect

on the indication of the ammeter.

C. Experimental Procedure for Thermal Conductivity
Measurements

For filling and emptying, the apparatus was hung
by the top of the vacuum chamber between two stands. A
convenient amount of powder was weighed out. Then as much
as would fill the cell was poured in through a funnel. The
apparatus was tapped so that the top surface became level
and some more powder was poured in. This was continued

until the cell was completely filled. The amount of powder
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remaining was weighed and the weight of the powder used
was obtained by difference.

Then the shell of insulating brick was put in place
and held there with nickel wire, and the bubble zirconia
insulation was poured into the space between the cell and
the shell.

After the o rings and their grooves were cleaned,
the apparatus was lifted onto the vacuum chamber and the
forepump was started.

When the vacuum was down to approximately 150 microns,
a little power was usually put to the heaters, since this
facilitated outgassing which otherwise would take a con-
siderable time, After outgassing, the power to the heaters
was increased so that the gradient across the thermocouples
was approximately 100 C. degrees, and the average temper-
ature was whatever was desired. After some time the temp-
eratures and voltages and current were read. The reading
was repeated at the same power level after an hour or two
in order to insure that the apparatus was in egquilibrium.
It was determined that about © hours was sufficient for
even the low conductivity powders to reach equilibrium.
Some of the powders with a higher conductivity in the
range of about 5 x 10~% reached equilibrium in only four

hours.
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Da Testing of Thermal Conductivity Apparatus
1. Limits of use

The heater designs were found to be sufficient for
the materials used. The designed maximum temperature of
use was the limit of platinum rhodium thermocouples, or
approximately 150000. In practice it was found that while
the apparatus could probably reach such temperatures, it
was not advisable to do so because all the powders used
sintered to a small extent at temperatures considerably
under 150000. Since this sintering had a large non-
reproducible effect on the thermal conductivity, all the
runs were stopped short of the temperature at which any
noticeable sintering would occur. The highest average
temperature at which the apparatus was run was 150000.
This was during a run made on a coarse zirconia powder
which did not sinter easily. The limiting factor here
was that the zirconia becomes a semiconductor at these
temperatures and the resistance between the thermocouples
dropped to a value which seemed to cause considerable
error in the readings. The apparatus except for this
diffieulty, performed satisfactorily and seemed to be capable
of going to higher temperatures. This difficulty might be
expected with some other refractory powders, but could
be alleviated by coating the thermocouples with a refractory
cement which would then act as an insulator and extend

the use limit if desired. It was noticed
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in this and subsequent runs that the outside alumina tube

on the center heater reduced the AC voltage that appeared

on the thermocouples to negligible amounts. In runs where

a bare wire center heater was used, this AC voltage was

a severe problem. In addition to the AC voltage which had
appeared as a vibration of the galvonometer image of the
potentiometer, there was an even more annoying effect

which was manifested by erratic readings of the galvonometer,
and the image swinging in a random fashion over several
degrees. This latter effect was probably due to partial
rectification of the A? fields at point contacts or some
similar effect. It was completely removed when the insulated
center heater system was used.

The apparatus was designed to measure low conductivity
materials (i.e., on the order of 1072 to 1072 C.g.S. units)
and the center heater was fabricated accordingly. In practice
the highest conductivity measured was Jjust under 6x10—3;
this was an unusually high conductivity for a powder and
was measured in helium gas which has a very high conductivity.
The apparatus functioned satisfactorily in this range,
the center heater providing a measuring gradient of 50 deg.
across the thermocouples with no noticeable damage.

There was vittually no lower limit to the values of
thermal conductivity which could be measured. The lowesth:
that occurred during the course of the work was on the
order of 2 or 3 x 10”7 but much lower conductivity materials

could easily be measured if they can be found.
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On the other hand it was found difficult to measure
conductivities at temperatures much under 20000, though
some measurements were made at 130 and 15000. The temperature
at which it is impossible to get accurate values is a
function of the conductivity measured; it 1s possible to
go to lower temperatures for lower conductivity materials.
Measurements could be made at lower temperatures if the
outer insulation in the apparatus were removed. and even
lower temperatures could be reached if a cooling coil
were used.

This lower temperature 1limit is due to the fact that
even with the outside heaters completely off, there is
some heat coming from the center heater which must be
dissipated through the outside insulation thus causing
a gradient through it.

2e Elimination of Gas Conduction

The apparatus was designed to be used under vacuum
S0 that gas conduction could be eliminated. When the mean
free path of the gas molecules becomes equal to the size
of the pore spaces, so-called molecular conduction takes
place. In this region (when the mean free path is limited
by the pore size) the thermal conductivity of the gas
becomes much smaller than that of the free gas for two
reasons.

First of all, according to the kinetic theory of gases,
the thermal conductivity of a gas is directly proportional

to the average velocity of the molecules, their mean free
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path, and the density of the gas. If the mean free path
of the molecules is then limited by the walls of the
enclosure, the conductivity of the gas in the pore will
drop below that of the free gas other things being equal.

The other factor is that when a gas molecule collides
with a wall it does not, in one collision, reach thermal
equilibrium with the wall. The heat transfer between walls
caused by the gas molecules bouncing between them is
much lower than one would expect from the number of
collisions which occur. The heat transfer is sometimes
four or five times less than that expected and can be as
little as 0.05 as much as that predicted under these
conditions (the region of so called molecular conduction).
See Knudson (17).

Because of these two factors the effective thermal
conductivity of a gas at low pressures becomes negligible.
The pressure at which the conductivity is sufficiently
low is a function of the temperature as well as the pore
size. By comparison of experimental evidence (such as
that of Diessler and Eian (13)) and theoretical mean free
paths and particle sizes it was decided that if the pressure
were kept under 10 microns, only molecular conduction
would be taking place, and that it would be insignificant
with respect to the remaining conduction in all but the
cases of very low conductivities. The measured pressure
during the runs in this work was of the order of one to

two microns.
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In order to check experimentally the wvalidity of the
above assumption about the absence of gas conduction, the
effects of varying the vacuum were measured directly during
one run. First the conductivity was measured with the
diffusion pump on at pressure of approximately 0.2 microns
as indicated by an ionization gauge. Then the diffusion
pump was shut off and the pressure rose to approximately
2 microns under the forepump alone. The change in measured
conductivity was insignificant, being less than the leO_5
where the conductivity being measured was about 4X10—4
confirming the predictions of the paragraph above.

The system with no apparatus in it could be evacuated
to a pressure of 0.004 microns by the diffusion, forepump
combination, but this value was raised considerably when
the loaded apparatus was in place since the outgassing
problems were large. In practice, only the forepump was
used since the pressure of under two microns which it
provided was low enough.

s Experimental Error of Thermal Conductivity

Apparatus

Perhaps the largest source of error occurs because
the gradient in the center of the apparatus is not that
of an infinite cylinder as assumed. In order to check
this the conductivity of a material was measured as a
function of power input to the center heater at a constant
mean temperature. It was felt that if the gradient in the

center differs from that of an infinite cylinder, or if
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there is a residual temperature gradient with no power
input to the center heater, then the calculated conductvity
will vary when the gradient varies. As Figure 9 shows,
the variation of the temperature gradient with input power
to the center heater was linear. Though there was a
small zero offset due to a gradient being present when
there was no power supplied to the center heater, the maximum
error encountered was less than 5°/o. It was decided that
if the gradient across the thermocouples was on the order
of 100 degrees then the érror would be less than about 100/0.
This was checked later when in the course of a run, the
conductivity was measured with two widely different gradients
180 and 100 degrees. The difference in conductivity was
only 1.7 per cent. Other checks showed similar results
and the differences were less than 10°/o. If more accurate
results are desired, a complete set of data of power versus
gradient for each mean temperature can be obtained and
in this way errors such as that due to a residual gradient,
can be eliminated. This was not done in this work due
to the large number of experimental points which would
be required.

The errors which o¢cur in the thermocouples can be
estimated from the data in Table I which is the record of
a calibration test for two thermocouples against one which

had been standardized by the National Bureau of Standards,
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TABLE I

RECORD OF THERMOCOUPLE CALIBRATION

All Readings in Millivolts

Standard (before) Thermocouple I Thermocouple II Standard (after)

11,967 11.917 11.915 11.962
10.979 10.934 10.9%6 10.983
9.959 9917 9.918 2.958

8.0%3 7.998 7.996 8.033
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Every precaution was taken to keep the thermocouples
free from factors which might effect their accuracy.
They were made in a way which minimized plastic deformation
and were carefully annealed both before fabrication and
before use in the apparatus. Both thermocouples in the
apparatus were always made from the same piece of platinum
or platinum-rhodium wire in order to minimize the effects
of possible composition variations in the thermocouple
materials. For the same reason, both thermocouples were
always subjected to identical treatment; this procedure
serves to decrease the error in the difference reading
even though it might not effect the error in the absolute
temperature measurement which was small anyway. Because
of these procedures, and as shown by the calibration data,
it was thought that the experimentally measured temperature
difference was accurate to 0.5 degrees or better except
where conduction through the sample might cause additional
errors.

E. Infra-Red Measurements

The infra-red transmission of the samples were
measured on a Baird Associates? recording infra-red
spectrophotometer. ©OSOince the anticipated transmission
of the samples was rather low, the scale of the spectro-
photometer was enlarged in the following way: Before a
sample was measured, a run was made with a screen in front
of the sample beam. This screen was cut so that 950/0

of its surface was opaque. It therefore allowed through
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it five percent of the light that impinged on it (this
was not exactly true due to diffraction effects and possibly
other errors). The magnification of the electrical system
wgs set so that this five per cent transmission was
approximately full scale. This curve then served as a
reference curve when the samples were run. The samples
were compared to the five per cent curve, after the zero
error was corrected and in this way an absolute measure
of transmission was obtained.

A so-called microbeam condensor was used in order
to utilize an optical system with as wide an aperture as
possible. Though an integrating sphere type of apparatus
would have been even better, there was not one available
which would make measurements out far enough into the
infra-red, their limit being about 2.7 microns due to the
infra-red absorption of water absorbed on the surfaces.
The microbeam condensor had coated lens of a plang-convex
shape. The collimating lens had a diameter of 0.85 inches
and was plaged 0.60 inches from the sample. It therefore
collected 1/5.42 of the light which passed through the

sample assuming that light was scattered into a diffuse

pattern.



88

F, Preparation of Samples
1 Thermal Conductivity Powder Samples

The raw materials for the zirconia samples was Norton
insulating zirconia grog which had been ball milled for
approximately 24 hours dry and 1 hour wet. After adding
%%/0 Carbowax by weight it was pressed into plates about
1/8 inch thick in a two by four inch die at a total load
of 100,000 1lbs. These cakes were prefired to 1300°c.
then crushed in a mortar and pestle to the proper particle
size. The powder was then fired to approximately 190000.
in a small gas-oxygen fired pot kiln, resieved to the
desired particle size, and was then ready for use.

The porous alumina sample was obtained from the
Coors porcelain company (their designation (A1-100)) and
crushed in a mortar and pestle to the desired size. The
dense alumina sample was crushed from scrap slipcast material
in a roll mill to the desired particle size and passed
through a magnetic separater to remove bits of metal.
The single crystal alumina sample was made by crushing
Linde single crystal alumina boules first in a steel
mortar and pestle, -then in a steel ball mill. The sample
was then passed through a Ferro filter to remove large
pieces of metal, and then washed several times with acid
and then water to remove all traces of contamination.
It was then dried and used.

The magnesia samples were made in a manner similar

to the zirconia samples except that the starting material
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was reagent grade magnesium carbonate which was calcined
to 1400°C.
2o Infra-red Transmission Samples

The samples which were to be used for the measurement
of infra-red transmission properties were prepared in the
same manner as the powder samples in that they were dry
pressed from finely powdered raw materials and then
prefired. After prefiring, they were sanded down to a
convenient thickness and then fired in the same way as
the regular samples. They were then ground on diamond
laps to the thickness desired and until the thickness
was uniform over the surface to be measured. The samples
were then fired to approximately 70000. to remove any
water that had been adsorbed during the grinding process
and to burn off any resin from the laps that might have
gotten onto the samples. In some previous work it was
noticed that there were some absorption peaks presumably
from adsorbed water and some from some organic substance.
The firing treatment was undertaken to prevent this occurance.
The samples, after firing, were held in a dessicater until
the actual transmission measurement. In spite of this
treatment, the spectra still showed evidences of absorption
due to water vapor in the region from 2.8 to 3.8 microns.
These absorption areas were smoothed over in using the
spectra to calculate the absorption and scattering coefficients
since it was felt that after heating in a vacuum to 800 to

1000°¢. very little of this water would remain.
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Ge Particle Size Measurement

Though all the powder samples were screened to provide
a uniform particle size sample, the screen size does not
provide the correct average particle size to be used in
calculating the thermal conductivity as derived by the
theory. The problem is caused not only by the effects
of particle shape (the particles had an irregular shape
and in some cases were slightly elongated), but also because
the desired quantity is the average radiation path length.
This length is the one which would be measured if a line
were placed through the sample and the average segment
in the particles found.

The measurement was made by mounting a sample of the
powder in a plastic matrix and then grinding and polishing
it to a smooth surface. When this surface was viewed under
a microscope it showed the cut surfaces of the particles.
Then the sample was passed under the cross-hairs of the
microscope eyepiece using a graduated stage to record the
distance while the cross-hairs were in the particle, and
another movement when the cross-hairs were passing through
the space between the particles. The average path length
was then the total distance travelled through the particles
divided by the number of particles. An average of one

to two hundred particles was used.



V1 RESULTS AND DISCUSSION

A, Measurements on Zirconia Samples
l. Infra-red Transmission

In Figure 10 can be seen a reproduction of an original
infra-red spectrogram of samples of the stabilized zirconia
which was used as a thermal conductivity sample. The
top two lines (the ones which are nearly coincident),
represent the transmission through a screen in which light
is allowed to pass through only five percent of the area.
This curve then, gives a reference from which absolute
transmissions can be calculated. The next three curves
from top to bottom, represent transmission curves for three
samples of porous zirconia of 0.030 cm., 0.046 cm., and
0.067 em. thickness respectively. The bottom curve is
a zero curve run with an opaque shield in front of the
beam.

Several features can be seen from these curves.
First of all, the transmission increases to a maximum at
approximately 5 microns then decreases to the onset
of absorption, until the transmission at about 77 microns
becomes very small. The transmission then seems to rise
for all samples nearly equally as the wavelength increases
still further; but this increase is only an apparant one
and is actually due to radiation being emitted from the
sample since the emissivity of the sample is quite high
in this range. The transmission value shown in this

region can not be converted into any absolute measurement



because of the method of operation of the machine unless
the absolute amount of radiation from the spectrophotometer
source is known. In practice, the amount of light being
emitted from the source can very slightly with time;

this is the most likely reason for the variation of the
apparent transmission of the samples in the long wavelength
region.

In order to make use of the spectrographs to calculate
absorption and scattering coefficients, total absolute
transmission values are desired. Several corrections
must be applied to the values in Figure 10 to convert them
to total absolute transmission.

First of all the zeroreading must be subtracted
from both the sample curve, and the five percent curve.
Then if the corrected transmission value is divided by
the corrected five percent value and multiplied by five,
the absolute percentage of light transmitted through the
apparatus is obtained. However, the collecting lens of
the microbeam: condensor does not collect the total amount
of light which is transmitted in the hemisphere, but
rather only a portion of it proportional to the solid
angle which it subtends. This solid angle fraction was
calculated in the previous section and is E%EE 5
Therefore, the total absolute transmission is the absolute

transmission above multiplied by 5.42.
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When these corrections are applied, a curve such as
the dots in figure 11 is obteined. A dip is noticed in
this curve from 2.8 microns, to approximately 5.5 microns.
This infra-red absorption is due to adsorbed water, or
perhaps water combined on the surface to form a hydrate.
Since it is unlikely for this film to remain on the
particles after they are heated to approximately 1000°¢C.
in a vacuum, in the ensuing treatment this dip due to
the absorption of adsorbed water will be smoothed over.
The final curves of total percent transmission are given
in figure 11 for the five samples measured. The thickness
of these samples were 0.0l11] cm., 0.030 cm., 0.016 cm.,
and 0.067 cm. The thinnest sample having the greatest
transmission of course.

One should note that there are other errors which
decrease the accuracy of these measurements, but which
can not be easily corrected for. Among these are the usual
errors in the electronic, mechanical, and optical systems
involved; these errors are magnified in these measurements
because of the very low transmissions measured. There is
some black-body radiation emitted from the samples even
at these temperatures; this can not be corrected for since
the irradience of the light source is not known. As was
seen in figure 10 this radiation becomes important only
at longer wavelengths. An additional error is due to
the fact that while the reference screen has five percent

of its actual area removed, the effective area can be different
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from this due to diffraction effects.

Now that we have the transmission curves in figure 11
it is well to review the plans that we have for putting
them to use. The primary purpose of obtaining them is
to use them to calculate absorption and scattering
coefficients making use of the equations in the theory
section and from these to calculate effective thermal
conductivities. But rather than a monochromatic coefficient
of the material at room temperature, what is needed is
an effective coefficient averaged for black-body radiation
at the temperature in question. We will obtain these by
first finding an effective scattering coefficient by
using the black-body equation as a weighting function.It
is assumed that the monochromatic scattering coefficient
does not change with the temperature of the material.

Then using this effective scattering coefficient and
measured emissivities, at the temperature in question,

of infinitely thick bodies, the effective absorption
coefficients will be calculated. Finally, from these
constants and others that are already known, an effective
conductivity due to radiation will be calculated, and
compared with that which has been measured experimentally.

2. Monochromatic Coefficients at Room
Temperature

Since we have measured the transmission of five samples

of différent thickness, we can take the transmission value

for each of these samples at a particular wavelength and

95
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obtain curves of transmission versus thickness at a specific
wavelength. These curves for several wavelengths are
shown in figures 12 and 15.

If one picks from one of these curves several pairs
of values such that one thickness is twice that of the
other, it is possible to make use of equation (338):*

12(Tl+l)

coshooD T"cl—_ (a38)

to calculate the constant (00) for each pair of measurements.
The average value of these measurements is then the
desired constant (oo) at that wavelength.

The other radiation constant (Bo) can now be found

for several thickness using equation (a#4l):

1-tcosho D ” 1~tcoshe D 2
By = 15inc D Tsinho D -1 (as1)
or

TsinhcoD
By = 2[l—rcosho°D (a42)

whichever is more accurate.

See Appendix A for derivations of all equations used

in this section.
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And an average value found for (BO). For the curve at
5.0 microns the value of (Bo) found is 0.1%6, and that
of (oo) is 24.5., In order to check the validity of
equation (a28)

2B
T = & (a28)

2.
(l+B0 )51nhcoD + 2BocoshdoD

for describing these phenomena, we use the above values
of (co and Bo) to calculate the theoretical dependence
of transmission with sample thickness. This has been
done and is shown as the open circles in figure 12.
These points fall quite close to the experimental line
except for the thinner region. Some deviation for very
thin layers is to be expected because the impinging
radiation is not truly diffuse as has been assumed and
also because surface reflections have been neglected.
That the rest of the experimental curve agrees in shape
with the theoretical curve is gratifying and indicates
that an équation of this nature is the proper one to
describe transmission through materials where scattering
is present as well as absorption. It should be noted
that it is impossible to fit a simple exponential equation
to this shape curve.

The values of (co) and (Bo) for the range of the
wavelengths measured are tabulated in Table II and

shown graphically in figure 1l4.
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From the definitions of (co) and (BO):

o, = Va(a+2s) (a13)

)

Bo E ]2+2s e

it is possible to calculate monochromatic room temperature

values for the abrorption constant (a), and the scattering
constant (s). These values are given in Table II and shown
graphically in figure 15.

As can be seen in figure 15 the absorption coefficient
increases approximately exponentially with increasing
wavelength in the region measured and shows a so-called

cutoff of approximately 5.5 microns. This data agrees
with data in the literature for single crystal zirconia
(the infra-red transmission of zirconia is very similar
to that of alumina).

However, in the literature transmission values for
a particular thickness are usually reported rather
than a calculated absorption coefficient which would be
much more general and valid for any thickness. This
situation is deplorable because in addition to causing
anyone wishing to compare data of different thicknesses
to go to a lot of arithmetical work, it also causes a
misleading value of the cutoff to be assumed, since the
actual value of the cutoff depends on the thickness
measured as was seen in figure 11 of the transmission

curves for zirconia, and will be seen also in the
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TABLE II

Room Temperature Values of (00), (Bo), L8

and (s) for various wavelengths for Zirconia

Wavelength fg ) o ‘ (fi (Szl
(microns) (em ) (Dimensionless) (cm ) (em™ ™)
2.0 8.0 0.0295 0.2%6 156
3.0 10.9 0.0467 0.507 116
5.5 11.4 0.0528 0.602 108
4.4 162 0.0827 1.54 975
5.0 24.5 0.1%6 o 1 ) 89.0
2D 24.6 0.187 6.48 89.5

6.0 47.6 0.270 12.8 8l.8
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transmission curves for polycrystalline alumina which are
to be presented.

The scattering coefficient (s) is found to decrease
logarithmically in this region. This means that there
must be a maximum in the curve of scattering coefficient
versus wavelength at some shorter wavelength than was
measured here. This is not in agreement with scattering
theory which predicts a maximum in the scattering coefficient
at a longer wavelength.

For zirconia, this should give a maximum at approximately
% microns since the pores are approximately 0.8 microns
in diameter as seen on the microphotographs (figure 26).

A similar case of the scattering coefficient maximum
occurring at a considerably lower wavelength than is to
be expected from the lMie theory was found by Lee (18.).
This discrepancy is probably caused by the fact that the
size of the pores varies over a considerable range rather
than being a single size as 1s required by the theory.

In addition, the pores are non-spherical, and the theory
was derived for spherical scattering centers.

The behavior of the scattering and absorption
coefficients with respect to wavelength provide an
explanation for the shape of the transmission curves
as seen in figure 1l. In the region from 2 to approximately
5 microns, the transmission is quite high and increases
to a maximum. *f the reflectance were measured it would

be found to be very close to one minus the transmission
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since the absorption coefficient is small in this region
and most of the light removed from the incident beam is
scattered backwards. The increasing transmission with
wavelength is caused by the scattering coefficient’s
decreasing with wavelength in this region.

The transmission reaches a maximum at some wavelength
and then decreases rapidly due to the exponential increase
in the absorption coefficient. The transmission becomes
quite low after this point and the reflectance is also
low since now the light instead of being scattered back
is absorbed in the sample and converted to heat energy.

It should be noticed that the wavelength at which the

maximum in transmission occurs varies with the thickness

of the sample since the relative amounts of scattering

and absorption vary with thickness but not necessarily

in a simple way. For this reason, as was mentioned before,

it is important to quote scattering and absorption

coefficients rather than simply show a transmission curve

for a particular thickness which later might be misleading.
e Coefficients at Elevated Temperatures

Our purpose in calculating the constants above is
of course to use them to calculate the effective thermal
conductivity for radiation of a powder composed of this
material. Unfortunately the radiation in any practical
situation is not monochromatic, but spreads out over a

considerable range. 1t is not even possible to use the
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value at the maximum intensity of the radiation in

question since both black-body radiation and the coefficients
are not symmetrical and do not vary linearly. Considerable
error could be introduced that way since black body radiation
extends over a range of several microns on each side of

the maximum and considerably more than half the radiation

has a longer wavelength than the maximum.

Another problem is that the absorption and scattering
coefficients are not necessarily constant at all temperatures.
In fact the absorption coefficient has been shown
experimentally to change (see for example Lee (18)) as
the temperature is increased above room temperature; this
agrees with the theoretical prediction that the slope of
the edge of the band will be proportional to KT, and
therefore as T increases, the end of the band will
broaden out as shown experimentally in the above reference.

This effect should not be so troublesome with the
scattering coefficient however. The scattering coefficient
depends mainly on geometrical factors such as pore size,
shape, and number, and these would not be expecied to change
drastically with temperature. The other important factor
in determining the scattering coefficient is the index
of refraction, and while this probably changes with
temperature, it is expected that it does not change very
much for any particular wavelength. Therefore, while we
cannot expect the monochromatic absorption coefficient

to remain constant as the temperature varies, we would
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expect the monochromatic scattering coefficient to be
practically independent of temperature. Forgetting

about the absorption coefficient, for a moment, we will
calculate an effective scattering coefficient at a
particular temperature by using the black-body radiation
distribution at that temperature as a weighting function
in averaging the scattering coefficient. The monochromatic
intensity distribution of illumination for a black-body

is given by the Planck eguation:

29=5
EA = M (102)
ech/ZKT_l

where (E).) is the monochromatic intensity, (h) is Planck’s
constant, ( } ) is the wavelength, (C) is the velocity of
light and (K) is the Boltzmann constant.

Values calculated from this equation at various
temperatures and wavelengths appear in the International
Critical Tables (20). The procedure is to multiply the
scattering coefficient at a particular wavelength by the
monochromatic intensity at that wavelength. This is done
at a sufficiently small wavelength increment over the
region where there is significant black-body radiation.
Then all the products are added, and the sum is divided
by the total black-body intensity at the temperature in

question; or:
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(103)

o)
s-E~qAR
eff zg: 4 }
@

E

(=

where (seff) is the effective scattering coefficient for
a particular temperature; (Sl ) is the monochromatic
scattering coefficient at wavelength ( ) ); and (El ) is
the monochromatic intensity at wavelength () ) and the
temperature in question and is given by equation (102);
(A Q) is the wavelength increment.

In this manner a scattering coefiicient has been
calculated as a function of temperature. It is plotted
in figure 17. This graph can be described by two straight
lines intersecting at between 500 and 600°C. The
significance of this point of inflection is not known
except as simply a mathematical result of the calculations
above.

In order to calculate an effective absorption
coefficient as a function of temperature we make use of
equation (a59) for the emissivity of an infinitely thick

sample:

€o= Tip (a59)

The emissivity of a thick sample of the exact same

material as was used in this study was measured by
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Plunkett (19), and his data is shown in figure 18. Using
these values of the emissivity and the values of the
scattering coefficient calculated above, the absorption
coefficient was calculated in the range of 900 to
150000. Unfortunately emissivity data is not available
in the rest of the range and it was necessary to extrapolate
the absorption coefficient into the rest of the area of
interest. Due to the large extrapolation there is the
possibility of considerable error in the absorption coef-
ficient at lower temperatures. The absorption coefficient
is shown in figure 16.

Having calculated the absorption and scattering coefficients
it is now possible to find all the other coefficients as a
function of temperature. The values for (o, B, b, and K)
will be found in figures 19 and 20.

4, Comparison of Theoretical and Experimental

Thermal Conductivity

Using these constants the effective thermal
conductivity due to radiation for a powder in a vacuum
can be calculated. This has been done for a series of
thicknesses which correspond to the effective particle
size of the powders whose thermal conductivity was
measured. The particle sizes of these samples as well
as their measured bulk volume fraction of solids (i.e.,
any pore within a particle is considered to be solid for

the purpose of this constant) are given in Table III.
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TABLE TIIT

Particle Sizes and Bulk Densities of Zirconia Samples

Sample Particle Size Bulk Volume Fraction
(em.) Solid (percent)

M 0.0063 58.8

L 0.0147 58.3

K 0.0237 64.6

N 0.0%00 63.8

I 0.0465 65.5
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Figures 21 to 25 show the theoretically calculated effective
thermal conductivity due to radiation as the solid line
in the lower part of the graph.

For each sample the experimentally determined thermal
conductivity is shown by the points on the graph. As can
be seen, in all cases but that of the smallest sample size,
the measured thermal conductivity is considerably larger
than the theoretically predicted effective thermal
conductivity due to radiation.

In sample M (figure 21) which was the sample with
the finest particles, it is quite possible that the
particle size was so small that a sign;ficant amount of
extra scattering centers were added due to the reflections
at the surface of the particles. This will change the
scattering coefficient (s), from that measured in the
solid material, and will probably lower the measured
effective conductivity. It seems that this is the explanation
for the experimental conductivity being lower than the
theoretical conductivity at least im the high temperature
range of this sample.

In the other samples, the discrepancy between pre-
dicted and measured conductivities was much larger. Let
us consider bringing them into closer agreement by
requiring them to agree at two points, using an arbitrary
multiplicative and an arbitrary additive constant for
each sample in order to bring this about. The dashed lines

in the graphs have been drawn in this way. The theoretical
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values were adjusted to be the same as the experimental
values at 200 and 90000. by finding two constants, one

a multiplicative one, and the other an additive one to

use to adjust the theoretical curves. These constants

are tabulated in Table IV. It should be emphasized that

the dashed line was not drawn simply as the best fit through
the experimental points, but was derived from the predicted
values by the use of these two arbitrary constants.

The solid > circled points between 400 and 600°C. for
samples K and N (Figure 23 and 24) were taken while the
temperature was ascending. There is reason to believe
that these points are higher than the smooth curve drawn
between the other values and especially the values
obtained at the same temperature but on the way down after
the apparatus had reached its maximum temperature
because of a film of water vapor or hydroxide on the
surface of the particle. This effect together with more
data on the subject of the effects of water on the
effective thermal conductivity is elucidated further
in Appendix E.

With the exception of the points mentioned above,
the experimental data lies quite close to the adjusted
predicted curves. In fact in most of the cases, the
dashed line is the one that would probably be drawn to
describe the experimental data. This then constitutes
considerable agreement with the theory. The actual shape

of the curve is not a simple one, nor is it one which
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TABLE IV

Correction Factors for Theoretical Curves

Sample Multiplicative factor Additive factor
M 0.808 1.5%107°
L 1.11 3.,0x10™7
K 1.76 3,2x10™7
N 1.55 2.5%x10™°
3 2.16 2.1x107°
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can be described by a curve based on the cube of the
temperature. This means that the mechanism is probably
correct; i.e., the heat transfer under these conditions
is due largely to radiation the value of which is deter-
mined by the absorption and scattering coefficients of
the solid. However, we should look to the basic
assumptions to determine where they might have introduced
large discrepancies.

First of all it is necessary to realize that conduction
across point contacts has been neglected in theoretical
treatment. One would expect point contact conduction in
this system to be constant with respect to temperature
(since the conductivity of solid zirconia is) and from
previous experimentor’s values, and the low temperature
values obtained here, point contact conduction is found.
to be of the order of magnitude of the additive constant
found above; i.e., from 1—5X10_5. Also, one would expect
the point contact conduction to increase with decreasing
particle size. Again the additive constants found
do this in general, with the exception of the finest particle
size sample. 1t seems logical then, to assume that the
experimental results are larger than the predicted
results by an amount that is constant for a particular
particle size and is caused by conduction across point

contactse.
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We are left then with the question of why it is
necessary to multiply the theoretical values by some
arbitrary constant in order to get them to agree with
the experimental points, even though when this is done
they have the desired temperature dependence. One of the
reasons for this is likely to be the point contact conduction
seen above. This added conduction mechanism will not
only add to the total conductivity, but can also change
the gradient in a particle which will in turn change
the radiant heat transfer between particles. Since for
the samples measured, point contact was a significant part
of the total transfer, one would think that its effect
on the gradient, and therefore on the radiant transfer
would also be significant. On the other hand this is
unlikely to produce a multiplicative factor which is
independent of temperature. Rather, it should produce
a correction which depends on the relative amounts of
radiation and point contact conduction and would therefore
decrease with temperature. Also, since radiation transfer
increases while point contact conduction decreases with
increasing particle size, one would expect that the
correction factor would decrease with increasing particle
size, while in fact, it seems that it increases with
increasing particle size.

The other major sources of possible error are due
to geometrical assumptions made in order to simplify the

mathematics. First of all it was assumed that heat transfer



was across flat plates placed perpendicular to the heat
flow lines. In other words, we have considered only the
one dimensional case and tried to apply its results fo
an actual system where heat is of course flowing in
three dimensions. This has undoubtedly produced errors,
but it is difficult to estimate the &tent or nature of
these errors without a much more complicated calculation.
Another assumption that is not fulfilled in the
experimental conditions is that the particle size is
constant through the sample. This is true to a limited
extent only since there is a range of particle sizes in
each sample; but even more important: the path length
both for radiant conduction and lattice conduction varies
over a wide range through the sample simply because the
particles are not planes, but are irregular shaped pieces.
Though the path length was averaged automatically by the
method of determining it, it is likely that this will give
an incorrect answer for the effective particle size, since
the radiant conductivity is not a linear function of the
particular size. Furthermore the path length distribution
might not be symmetrical about the measured average and

in order to properly calculate an effective conductivity,

one would have to take into account the actual distribution

of path lengths in the system rather than a single average

value.

124



125

B. Measurements on Alumina Samples

l. Introduction

In order to further test the theory derived in this
paper, samples were made from alumina of various micro-
structures. Une set of samples had various particle
sizes but were all made from a very porous alumina.
Another sample was made from a material which had been
fabricated in a way which gave it the rather dense
structure of usual laboratory ware. Still a third
material was made by crushing single crystal boules to
give a sample which had virtually no internal pores or
scattering centers.

Because of the importance of the microstructure of
the so0lid in determining the optical properties of the
solid and therefore the effective radiation thermal con-
ductivity of the powder microphotographs of the materials
used for samples have been prepared. These microphotographs
are shown in figures (26 to 40). Figures 26, 27, 28, and
29 show polished sections of the Zirconia, Porous Alumina,
Dense Alumina, and single crystal Alumina respectively.
These photographs were all taken at 500x magnification.

In addition, figures 30 - 40 are shown at 50x magnification
in order to show the relative particle siZze of the samples.
24 Very Porous Alumina
The very porous material chosen was a sample

of Coors Al-100 pure alumina which was kindly supplied
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35. Photomicrograph of Sample S, Porous Alumina 50 X
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38. Photomicrograph of Sample P, Porous Alumina 50 X



/39

\*
-

>0

[

3
A

ins

un

Al

)




VE 74

1icrograph of Sample T, Single Crystal Alumina

b



141

Coors Porcelain Co. This material had a porosity of ap-
proximately thirty percent. It was chosen specifically
to compare with the rather porous zirconia used in the
previous measurements because, while it had similar
transmission characteristics in the single crystal, the
extreme porosity of the alumina gave it a very high
scattering coefficient. According to the theory derived
here, this should cause a powder made of it to have a
lower conductivity than that of an equivalent zirconia
powder even though the conductivity of the solid alumina
would be on the order of twice that of the zirconia. A
micrograph of the extreme pore structure of these alumina
samples is shown in figure 27.

In figure 41 can be seen total absolute transmission
curves versus wavelength for several thicknesses of the
porous alumina (Coors Al-100) from which samples P, Q,
R, and S were made. These transmission curves were
obtained from original spectrograms in the same manner
that figure 11 was obtained from the original zirconia
spectrograms (figure 10); the corrections required are
outlined in the section on the infra-red transmission
of the zirconia.

Figure 41, the alumina transmission curves, has
features which are similar in all respects to figure 11
the corresponding curves for the zirconia sample;
however, the effects are considerably more pronounced in

the alumina graphs than they were in the case of the
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zirconia. For instance, the maximum tramsmission is

larger in the alumina graphs even though the thinnest
alumina sample was thicker than the thinnest zirconia
sample; on the other hand the transmission of the

thickest alumina sample (which was not quite as thick as

the thickest zirconia sample) was less than the transmission
of the thickest zirconia sample.

The alumina transmission curves have their peaks at
approximately the same range of wavelengths as the zirconia
transmission curves, but the peaks themselves are sharper,
and the shift to shorter wavelengths is greater for the
alumina samples.

The effects mentioned above are even more evident
if the transmission at a particular wavelength is plotted
against thickness of the sample. This has been done
for the alumina infra-red transmission at 5 microns
(figure 42) and corresponds to the zirconia transmission
at the same wavelength as shown in figure 12. A comparison
of these graphs shows the higher initial transmission of
the alumina but a much steeper drop off, indicating
a considerably larger extinction coefficient for the
alumina than the zirconia. Unfortunately the shape of
this curve makes it impossible to use the simplified
equation (equation a38) to solve for the absorption and
scattering coefficients as was done for the zirconia.

The reason for this is that it is impossible to draw the

graph uniquely for the points that are available; if, as



Total transmission (percent)

S5

50

45

40

35

30

25

20

g

oy

42,

0.0l

0.02

0.03

0.04

Thickness (cm)

0.05

0.06

MONOCHROMATIC TOTAL TRANSMISSION VERSUS THICKNESS OF
COORS Al1-100 POROUS ALUMINA AT 5.0 MICRONS

144



145

for the zirconia, a curve through the points were drawn,
and pairs of points picked off from this curve such that
the thickness of one measurement of a set was twice the
thickness of the other, then considerable error might result
because the curve drawn might differ by a large amount
from the curve that would be drawn if more complete data
for the dependence of transmission on thickness were known.
The other alternative is to use the more general
equation (equation a%4):
Eifgzggl = Ei2E2992 - sinhco(Dl—D?) (a34)
v 1
which can be used to solve for the desired coefficients
regardless of the relationship between the two points
selected. Then the equation above might be solved for
any pair of measurements at a particular wavelength and
the values found for several pairs of measurements at
that wavelength averaged in order to obtain the value
of the constant (Bo).
Unfortunately equation (a34) above can not be solved
analytically, but must be solved graphically. This
involves an enormous amount of calculation for the number
of points that would be needed in this work. An alternative
would be to program a computer to solve the equation and
then use all the permutations of measured values of transmissions

at a particular wavelength. Time did not allow following
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this course; therefore, a quantitative discussion similar
to that on the zirconia samples was not undertaken.

BEven without finding numerical values for the
absorption and scattering coefficients, there is considerable
qualitative information that can be obtained from the
infra-red curves obtained. 1t is obvious from the steepness
of the curves of transmission versus thickness at constant
wavelength that the extinction coefficient for the material
is very large; and furthermore it is much larger than the
extinction coefficient of the zirconia. It is further
suspected that this high extinction coefficient is due
to a lérge scattering coefficient rather than a large
absorption coefficient because of the high transmission
for thin samples. Actually, a high scattering coefficient
would necessitate a high absorption coefficient because
the large multiple scattering would cause a long path length
and the absorption is a function of the actual path length
that light must take to traverse the specimen rather than
the thickness of the specimen. But the important thing
to notice is that the ratio of the scattering coefficient
to the absorption coefficient seems to be much higher in
this set of measurements (the alumina series) than in the
zirconia series.

This large ratio of the scattering coefficient to
the absorption coefficient is corroborated by values for
the emissivity of this material. The emissivity of a

thick piece of this material (Coors Al-100 alumina) was
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measured by Plunkett (19); his data is shown in figure 43.

From equation (a59):

e 00 (a59)

we see that the emissivity (sa) and (Bo) which was shown
to be a function of (a/s) only rather than the absolute
value of (a) or (s) (see equation (a60)) are interdependent.

From the above eguation, then:

Bo = 2—5(1) (104)
and since (aoo) must be bepween O and 1, (BO) increases
with increasing_gsa) though not linearly.

The above relations indicate that since the emissivity
of the alumina is smaller than that of the zirconia, the
constant (Bo) and the absorption coefficient to scattering
coefficient ratio must also be smaller for the alumina
than the zirconia. Now by looking at the equation for
the effective conductivity, we can make some predictions
as to the relative conductivities of the alumina and the
zirconia based on the above data. The effective conductivity

in a vacuum due to radiation is given by:

_ 2(1+K)bBDsinhoD
ke = (1-P)[2(coshoD-1)+ K oDsinhoD] (aleb)
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Thé constant (b) is the same for all samples, and is a
function of the temperature only. The constant (K ) is
very small for both of these materials and the part of
the denominator, £oDsinhoD is found to be nearly
insignificant with respect to 2(coshoD-1l) for the wvalues
of K, 0 and D of these materials. Also, the ratio of
[sinh x] to [2coshx - 1] does not change drastically for
small changes in x, especially if x becomes large,
whereupon this ratio approaches 1.

From the above we see that if two samples have the
same particle size and porosity, and if the value of the
constant (o) is similar for both materials, then we can
get an idea of the relative radiation conductivities of
the two materials, by comparing the constant (B)* for
the two materials. That such is the case we can see by
comparing the effective conductivities of the alumina
samples (figures 44-47) to the conductivity of the
zirconia samples of the same size.

For instance sample Q (figure 46) in the alumina
series has an effective particle size of 0.0167 cm. as

compared with an effective particle size of 0.0147 cn.

Very often in this discussion the constant (B) will be
used for (Bo) and the constant (o) for (co). For a
Justification of this (for these systems only) see

Appendix B.
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for sample L (figure 22) in the zirconia series. In spite
of having a somewhat larger particle size, the alumina
sample has a slightly lower conductivity as would be
predicted from the fact that its emissivity and therefore
the constant (B) is smaller than the game! .constants for
zirconia. The conductivity at low temperatures (100°¢.)
is higher for the alumina than the zirconia. This is
undoubtedly caused by the considerably greater solid
conductivity of the alumina. Furthermore, the conductivity
at a particular temperature does not increase as much with
increasing particle size for the alumina as it does for
the zirconia.
e Dense Alumina

As a further qualitative check on the theory, a sample
of relatively dense alumiha was run. This material is the
sort that is usually used for laboratory ware, and is much
denser than the Coors Al-100 of the previous samples. Its
density is of the order of 90 to 95°/o of theoretical
density. A photomicrograph of its surface is seen in
figure 28. Since it is denser, one would expect that the
scattering coefficient and therefore the ratio of the
scattering coefficient to the absorption coefficient to Dbe
considerably smaller. Also, one would expect the constant (B)
to be larcger since it depends inversely on the ratio of the
scattering coefficient to the absorption coefficient.

That this is so is seen by the fact that the emissivity



of this material is larger than that of the very porous

material. Figure 48 is the emissivity of the same dense
alumina as was used to make these samples as measured by
Plunkett (19).

However, when we look at the measured conductivity
of sample J (figure 49) we find that its conductivity is
even higher than we would expect from the differences
in emissivity. It is approximately twice that of the
zirconia sample of comparable particle size and, as we
saw before, the very porous alumina had a conductivity
lower than the zirconia. In order to explain this high
conductivity, we must look at the significance of the
constant (o) and its effect on the effective radiation
conductivity.

If we look back at the definition of o (or actually

o, - see footnote on previous page)
g Va(a+es)

we see that (o) depends on the absolute magnitude of the
scattering and absorption coefficients rather than only
on the ratio between the two like the constant (B). The
constant (o) therefore behaves like an extinction

coefficient and can be considered as such. Furthermore,

we can think of an effective optical thickness as being

equal to (o) times the actual thickness. In this way
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we can compare materials with different optical constants
and different thicknesses. For instance it was shown in
the theory section how the temperature gradient changes
accordingly to the optical thickness of the section.

In short, surface effects are more important where the
optical thickness is small and become negligible when

the optical thickness is large. It should be noted

that the important parameter is the optical thickness
(6D) rather than actual thickness. We have shown in

the theory section of this thesis how the effective thermal
conductivity depends on the product of a factor giving
the conductivity of opague layers (i.e., layers of large
optical thickness):

bBD
(1-P)

and a term which depends on the optical thickness:

sinhaD

coshoD-1

This correction factor approaches one for very large

values of oD, can become quite large for even the values

of oD which are likely in these materials, and of course
approaches infinity when oD approaches zero. As an indication
of the order of magnitude of oD for an actual case we see

that for the zirconia samples (the only material for which
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there is sufficient data) oD varies from 0.2 to 2.0 and
the correction factors Sinh oD/(CoshoD-1) are about 10
and l.% respectively for these values. That this correction
factor is quite large shows the necessity of calculating
heat transfer by the rather complicated methods shown
here rather than by only considering absorption and emission
as a surface phenomena using the usual measured emissivities.

Now we see that for samples with & relatively large
optical thickness, or for two materials with an approxi-
mately equal optical thickness, the value of the constant
(B) is the determining factor in the effective conductivity
due to radiation, other things being equal. However as
the optical thickness becomes smaller, the value of the
constant (o) also becomes important and the conductivity
increases above what one might expect from only the relative
magnitude of (B). Such is undoubtedly the case with
sample J of high fired alumina. Here the emissivity and
therefore (B) is slightly higher than the very porous
alumina and the zirconia of the samples, but more important,
the material is considerably more transparent and therefore
for equal particle sizes, the optical thickness is much
less. This effect is the cause of the very much higher
measured conductivity.

4, Single Crystal Alumina
As a final sample a single crystal alumina was chosen.

This material had an extremely low scattering coefficient
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as compared to the previous samples and therefore the ratio
of absorption coefficient to scattering coefficient and
the constant (B) would be somewhat larger. More important,
the optical thickness involved would be very small no
matter what the particle size since the material is
extremely transparent at least until the cut-off.
Therefore, one would expect this material to have a higher
effective thermal conductivity than any of the previous
samples.

The measured conductivity of sample T, composed of
single crystal alumina particles is shown in figure 50.
It is seen that its conductivity is higher than that of
the sample J which was composed of the dense alumina even
though the latter had a considerably 3largepr particle
size. This constitutes a final qualitative wverification

of the theory.
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C. Summary of Data

In order to summarize the experimental data, figures
51 to 5% have been drawn. These figures help us generalize
the effects of various parameters on the effective
conductivity. For instance it is seen from figures 51,
the effective conductivity of the zirconia powders, and
52, the effective conductivity of the porous alumina
powder, that the conductivity always increases with increasing
particle size (except for samples K and N which had
different bulk densities). Comparison of figures 51 and
52 shows not only that the conductivity of the porous
alumina powder is lower than the conductivity of a zirconia
powder of the same size, but also that the spread of
conductivities for a given size range is less for the alumina
than it is for the zirconia when the difference in point
conbact conduction is taken into account. This smaller
spread for the alumina is to be expected because the emissivity
of the alumina is less than that of the zirconia, while
the extinction coefficient is greater.

Figure 5% shows, on one graph, curves for the effective
conductivity of all four materials studied. These curves
are all for powders with approximately the same particle
size. The important thing to be seen here is that the
effective conductivity of the powder increases with increasing
transparency of the solid from which it is made. The

conductivity of the single crystal material is many times
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that of the porous alumina showing the importance of
microstructure over chemical composition. The asymptotic
value at low temperatures indicates that point contact
conduction is greater for the high conductivity solids,
sinele crystal and dense alumina, than for the low conduct-
ivity solids, zirconia and porous alumina, as is to be

expected.
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VII CONCLUSIONS

The following conclusions may be drawn from the
results of this thesis:

1. The effective thermal conductivity of powders
due to radiation can be predicted from measurements of
infra-red properties of the solid from which the particles
of the powder are made. For the usual ceramic materials
this prediction can be made on the basis of the two most
important factors:

a.) The first of these factors is directly proportional
to the total emissivity of the material in bulk, the size
of the particles and the cube of the temperature, and
inversely proportional to the pore fraction. This part
of the conductivity is that which would be calculated if
the particles were perfectly opague and the radiation
transfer occured only between surfaces.

b.) The second factor is a correction of the above
for the fact that the materials are not opague but allow
a significant amount of radiant energy to pass through
them., This factor is a function of the optical thickness
of the particles;the smaller the optical thickness, the
more radiation passes through and the larger must be the
correction. However this correction does not depend
linearly on the optical thickness. This factor varys from

close to one to nearly ten for the zirconia samples
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investigated in this work, and undoubtedly becomes much
larger for materials which are more transparent to infra-red.

&% The relations shown above giveﬁ excellent
qualitative predictions and therefore are a good basis
for material design. The quantitative agreement is not
as good as is desired. Part of the discrepancy is due
to the point contact conduction which was not taken into
account in the theoretical treatment. Its magnitude was
found to be about 2 to 10 x 10~ cal.cm./OC.cmoesec.
There seems to be a multiplicative error which is a
function of the particle size. This is probably due to
some of the basic assumptions made in deriving the
theory. The effects of the three dimensional case, and
the particle size distribution being the most likely
causes, The arbitrary multiplicative factor and the
correction for point contact conduction bring the
theoretical predictions into close agreement with the
experimental results indicating that the theory gives
the correct temperature dependence.

B The theory predicts correctly the transmission
of radiation through the solid material from which the
powders were made, and can be used for calculating the
transmission of semi-transparent materials. This transmission

can be calculated on the baéis of absorption and scattering

coefficients.
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4, The tange of conductivities encountered in
powders is large. In a powder consisting of a material
which is transparent to infra-red such as many single
crystal ceramics, the conductivity due to radiation
can become as large, and at high temperatures, larger
than that due to gas conduction. On the other hand by
proper choice of materials, and the use of fine particles,
it is possible to produce a powder with an extremely low
conductivity due to radiation. This conductivity can be

* at 1000°C. (this value probably includes

as low as 1.5x10°
about 3 to 4 x 1072 due to point contact conduction).

5. As a final conclusion it is thought desirable
to recommend the steps to be taken in order to produce
a material of the lowest possible thermal conductivity.
It is easily seen that the most important factor is particle
size. Decreasing the particle size not only decreases
the radiant heat transfer, but also decreases the effective
conductivity of the gas in the interstices. This latter
effect becomes more important at higher temperatures as
the mean free path of the gas molecules increases with
temperature. Experimental evidence bearing this out is
available (23) and (24), The only limit on decreasing
the particle size is evidently the conduction at point
contacts which can easily become significant as soon as
the particles begin to sinter. The reason for this is
that the conductivity of the solid is several orders of

magnitude larger than the effective conductivity of the



le8a

powder so that any solid conduction path will produce a
significant amount of conductivity. Ior this reason it
is advisable to use a material which is difficult to
sinter. The optimum particle size then depends on the
sinterability of the powder, and whether the conductivity
is lowered more by the decrease in particle size than

it is increased by the added sintering at the temperature
of use. The lattice conductivity of the solid is omne

of the least important parameters until the particles
start to sinter.

*he desirable optical properties for the lowest
possible conductivity can be summarized by saying that
the absorption coefficient should be as small as possible,
while the scattering coefficient should be as large as
possible. This will produce the largest possible scat-
tering to absorption coefficient ratio which in turn will
produce the smallest possible emissivity. If the
scattering coefficient is large the extinction coefficient
will also be large, and this will cause a large optical
thickness. The latter will in turn prevent energy from
passing through the particles thus reducing the conductivity.
In order to realize the above in actual situations it is

necessary to use a material whose single crystals are as

transparent as possible to as long wavelengths as possible.
However the material itself should be as porous as possible

and have the smallest possible pore size.
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VIIT SUGGESTIONS FOR FUTURE WORK

In the course of this work several research topics
presented themselves as logical continuations of phases
of this work. These include both further experimentation
and further investigations into the theory of heat transfer
by radiation, such as the following:

1. An attempt to derive absorption and scattering coefficients
from more basic constants (such as porosity, pore size,

and shape, index or refraction, etc.) by means of the llie
theory of scattering, and the methods of multiple '
scattering.

e Take into account the three-dimensional aspects of
radiation and surface reflections (this would improve

the agreement for thin layers).

% Take into account the three-dimensional aspect of

heat transfer in powders and the effects of the distributed
sizes of particles.

4, Bxtension of the theory to other materials and
situations such as heat transfer in glass, high temper-
ature coatings, emissivity of layers of small optical
thickness, etc.

In addition to the theoretical studies mentioned above
the following experimentation could, with advantage, be
carried out:

i lMore numerous experiments such as were carried out

in this work. This would serve to check the theory more
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closely and perhaps to point out the parameters which are
important in causing discrepancies from the theory. It
would also be useful to have reference to the absorption
and scattering coefficients of common materials for

design purposes.

2e It would be useful to measure the conductivity of
powders with gasses in the interstices to check the pre-
dictions of the kinetic theory of gasses with respect to
gas conduction, and the theory presented here for radiation
conduction in the presence of interstitial gasses. While
there is some data along these lines in the literature,

it is not nearly sufficient to check the theory adequately.
S It would be desirable to make measurements at about
room temperature in a high vacuum in order to find very
low conductivity materials. Such materials evidently

exist on the Moon (see Appendix D) and it would be useful
to investigate this in order to gein some insight into

the structure of the surface of the Moon.



APPENDIX A

RIGOROUS DERIVATION OF EQUATIONS

1. Introduction and Basic Assumptions

It was realized during this investigation that,
although ceramic materials appear opaque, they actually
allow a considerable amount of radiation to pass through
them. Single crystals of most materials are good trans-
mitters, some out to the long wavelengths of the infra-red
spectrum. The apparent opaqueness of polycrystalline
materials is then due to the scattering of the radiation
in the body rather than absorption alone. In order to
find an expression for transfer of heat by radiation
through powders it is first necessary to understand the
mechanisms of interaction of radiation with solids. The
basic method which will be used is that of dividing the
light flux into two parts: one flowing in a positive
direction, and the other in a negative direction.A set of
simultaneous différential equations are used to describe
these fluxes and the other necessary parameters. This
method was originally developed by Schuster (14) to
describe the transmission of light through fog. Since
only a forward and a backward flux are considered, this
is a one-dimensional calculation and therefore has as a
basic assumption that the incident radiation is diffuse
(i.e., has an equal value for all angles of incidence),

and that the radiation scattered sideways is compensated
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by an equal contribution from neighbouring parts of the
layer (i.e., the area investigated is either small in cross
section compared with the total cross section of the
sample or is large compared to the thickness of the sample).
These conditions are usually met in practical heat transfer
problems, but it is necessary to be careful that they are
also fulfilled during experimental measurements of transmission.

In a continuation of Schuster’s work Hamaker (15)
has solved this set of simultaneous differential equations
for the simple case of a scattering and absorbing medium
and then gone on to derive sets of equations for cases
where there is, in addition to scattering and absorption,
emission within an isothermal body; he also discusses the
case where there is emission within a body in which there
is a temperature gradient. Hamaker has found the general
solutions of these sets of equations and has then applied
them to some specific cases. The treatment here starts
with Hamaker’s general solutions and, with the use of
suitable boundary conditions, solves for the expressions
required to find the necessary scattering and absorption
coefficients from such data as the transmission of thin
layers and the emissivity; the expressions describing
the emitted radiation and temperature drop across individual
layers under the conditions which obtain in a powder sample
are also derived. These last expressions are then used
to find an effective thermal conductivity for a powder

by assuming that the powder consists of layers. In all
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these célculations only monochromatic radiation has been
considered. The scattering coefficients where measured

under monochromatic conditions and are not expected to

change significantly at a particular wavelength as a

function of temperature. The absorption coefficients where
calculated in a way which automatically takes into

account both the wavelength distribution of light emitted

at a specific temperature and the temperature dependance

of the monochromatic absorption coefficient (this method

will be shown later). However, in using these coefficients
to predict thermal conductivity, the fact that the wavelength
distribution of black-body emission changes with temperature
was not taken into account. This then implies the assumption
that the temperature gradient across the sample which is
being measured is small and the expressions became strictly
valid (with respect to this assumption) only when the gradient

approaches zero.

2 Non-Radiating Layers

The total radiant flux is divided into two parts:

I

il the flux in the direction of the positive x axis

J

the flux in the direction of the negative x axis
An absorption coefficient, (a), is defined by assuming that
(aldx) is the amount of the radiation absorbed from the
flux (D) on passing through an infinitesmal layer, (dx);

A scattering coefficient, (s), is similarly defined by

assuming that the flux scattered backward from (I)(and
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therefore added to J) in an infinitesmal layer (dx) is
(sI dx). On passing through this layer (I) will then be
diminished by the amount absorbed and the amount scattered,

but will be increased by the flux lost by scattering from

(J), or:

dI/dx = -(a+s)I + sd (al)
similarly:

dJ/dx = (a+s)J - sI (a2)

These are Schuster’s equations; they are valid (within
the basic assumptions mentioned earlier) for a material
in which both scattering and absorption take place. If

there is no scattering (i.e., if (s) is zero) then the

-a X
solution is I = ge ° ; where (g) depends on the boundary

conditions and (ao) is then the absorption coefficient
of the non-scattering medium. This expression is of
course the Baer-Lambert law for the attenuation of
radiation in an absorbing medium.

On the other hand if there is negligible absorption,

(or a_ is zero) then we have:

o

dI/dx = dJ/dx = s[J-I] (a3)

These equations have a general solution of the form:
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I = Ax+k d = Ax+k2 (34)

1’
where (kl) and (ka) depend on the boundary conditiomns.
Since dI/dx = A, A = s(k2—kl). If I = I0 at x=0, and

J = 0 at x=D for a sample of thickness (D) and incident

radiation (Io), then k
sDT
) e
ks = 1i9s’

Then the desired solutions are:

1= IO and 0 = s(kg—IO)D+k2 or

A l+s(D=-x)
I=I[55—"] (a5)
and
J = s8I, [%f%;] (a6)

The transmission (1) of a sample of thickness (D) can be
found by dividing the forward flux at the back surface (ID)

by the incident radiation (Io) or:

I
I ws-py) 2
LN e T+sD (a7)

0

The reflectivity (@) can be found by dividing the backward
flux at the front surface (Jo) by the incident radiation

(Io) or

J
Tg D-0O 1 sD___ e

= sli 5 1+sD

(a8)

The sum of the reflectivity and the transmission is unity

as is to be expected.



These expressions can be used to describe the case
where no absorption is present. They are also useful for
finding the scattering coefficient (s) under experimental
conditions where there is negligible absorption, the
calculation being a simple one.

As shown by Hamaker, the solution of Schuster’s
complete equations can be found by putting

ox

-0X
= Cle + 02e

=
!

T = OLeE CLLe"ox

5

only two of the four constants C1 oels 04 being arbitrary.

.The complete solution being:

0 X -0 X
T = A(l—Bo)e + B(1+Bo)e
o X -0 X
J = A(l+B°)e + B(l—Bo)e
where
g, = Va(a+2s)
a _%

Bo =V (a+2s) = a+2s

both roots being taken with the positive sign. In these
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(a9)

(al0)

(all)

(al2)

(al?)

(all4)



equations (A) and (B) are constants to be determined by
the boundary conditions. The case which is important
here is that of a layer of thickness (D) illuminated on
one surface (the front one) by a flux (Io). This means
that the boundary conditions are: I = I0 at x = 0,

Jd =0 at x = D. In addition to the complete expressions
for I(x) and J(x), the quantities usually desired are

I at x =D or ID and perhaps J at x = 0 or Jo.

Then
Io = A(l—Bo) - B(1+BO)

and

6. D "
0 = A(1+B)e © + B-B) °

or

—doD
=1 (1=B e

- (l+B)2e°°D-(l-Bo)2e"°°D
and
oD
o
) Io(l+8°)e
i o D -g_D
(1+8,)% © -(1- )% ©

substituting these constants in equations (all) and (al?2)
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(al5)

(alb)

(al?)

(al8)
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o] D -0_X -0 D o x
[(l+B ) e © AT (1-80)2e ©%e %]
I =1, 5D — =o.p (al9)
(1+8, )7e ~ {138 ) e
oD -0 x -0 D d X
(e @ g % Ly © %3 (1= B
Jd =1, o, D —OOD (a20)
(18, )%e - (1-8)°e
By finding the forward flux (ID) at the back surface
(x = D) we can determine the transmission of a sample:
5 5 (a2l)
I, [(1+8)°=(1-8,)"] I 4B,
1y = 5 D 5D " o D 5D
(l+Bo) e © -(1-8, )2e (1+BO) e ° -(1-B, )2e
which gives the transmission of a sample in terms of the
incident light (IO), the thickness, and scattering and
absorption coefficients.
The reflectivity of a sample is found by solving for
the backward flux (J ) at the front surface (x = 0):
o] D —GOD
Io(l-B )[e -e ]
Jo = oD -0 D (a22)

(1+48,)% © -(1-B,)% °

Normally, the relative transmission (ID/IOS 7) and
the relative reflectivity (JO/Io = @) would be used.

It is also possible to find an expression for the
amount of radiation absorbed in a sample of thickness

(D), relative to the incident radiation (Io)
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(this quantity, the relative absorptivity, is defined as «)
in two ways: From the relation « +@+ T = 1, @ = 1-( +71)

and since (Q) and (1) are known, (o) can be found. The
relative absorptivity (a) can also be derived by integrating
the absorption in each infinitesmal layer of the sample:
Since (alIdx) is the amount absorbed ffom (I) and (aJdx)

that from (J) in the distance dx: da = a(I/IO+J/JO)dx.

If this expression is integrated over the total thickness:

an expression for a is arrived at:

D
o = fdcx = a f (I/Io+ J/Jo)dx (a23)
(@]

The resulting expression for the absorptivity is
GOD —GOD
280£(l+Bo)e +(l—Bo)e -2]

SRk o D -0 D
(1+4B,)% © -(1-B )% °

(a24)

It has been found useful in further calculations to intro-

G e, _-o

duce the identities 2sinh@ = eg—e- and 2cosh® = e +e .

The expressions for T, ¢, and o then become:

EBO
T = o (a25)
(1+B0 )51nhcoD+EBocoshcoD

(1-B_% )sinho D
¢ - (1+B.%) (')nh D 20 h i
+B° Sinho D+ Bocos GOD

EBo[BosinhcoD+coshcoD-l]

x = A : (a27)
(1+Bo )51nhc°D+EBocoshdoD
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A convenient method of solving for the absorption
and scattering coefficients (a and s) would be to measure
the transmission of several samples of various thicknesses.
However, in order to calculate the coefficients from this
data it is necessary to solve the equation for (1), for
(B,) or (o,):
since

2B

Bl 5 (a28)
(1+Bo )51nhcoD + 2BocoshooD

T =

- 20 .
2B, = tsinho D + 2tB cosho D + 1B ~sinhoD (a29)
or
tsinho D = 50[2 - 2vcosho D - rBosinhooDJ (a30)

If samples of thickness (Dl) and (DE) and transmissions
(ﬁl) and (12) respectively are considered, then
sinhooDl 2 - ETlcoshooDl - Tlﬁosinho D

4 - o5 (a31)
1251nh00D2 2 - 212cosh00D2 - 125031nhcoD

2



or
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51nhcoD

181

b T 2Tltesinh(ooDl)cosh(ong) -

tltgﬁosinh(ooDl)Sinh(aoDe) =

212sinhooD2 - ETlresinh(ooDz)cosh(ooDl) -

and

but since

51nhUoDl

¥z
If sample

then

sinhEGoD
ks

Tltzﬁosinh(coDl)sinh(dobg) (a32)

(a33)

[sinh(coDl)cosh(ong) - sinh(ooba)cosh(coDl)]

sinh©coshe - sinhgcosh® = sinh(0 - ¢)

sinthD2 .
- —_TI—_ = Sln.b.O'o(Dl'—Dg) (334)

]

thicknesses are chosen such that Dl = 2D 2D

2

51nhaoD

ik

sinho D (a35)
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but since sinh2® = 2sinh©cosh®
2Sinh(coD)cosh(coD) SinhdoD
pe — T = SinhOoD (a36)
2 1
or
2cosho D
0 1
SR = (a37)
o 3
12(11+l)
coshcoD = -§;I——— (a38)

(00) can be evaluated from these expressions and (Bo) can
be found by referring to the expression for (1) as a
function of (00), (D), and (BO) as:

2B, = 2tB cosho D + t(1+62)sinhoD (a%9)

Then

. 280[ 1—TCOSh0'0D ] 3 602 =0 (5.40)
tsinhooD
and
l—TCOShUOD / l-tcoshooD >
Bo = tsinho D - [ tsinho D 1= -1 (a41)

(the negative root being the physically significant one)
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If (Bo) is small, as will often be found in actual
cases, then (Boa) is insignificant with respect to one
and:

rsinhcoD
o 2[1-TcoshcoDT (a42)

This expression will be found to be not only simpler, but

also more accurate when (Bo) is small, (B°<: 0,2 - 0,1):

5 Radiating Isothermal Layers

Hamaker has also found the general solution for the
case where there is a light scattering layer at uniform
temperature. Here in addition to the ffaction of the
forward radiant flux absorbed (aldx) there is an amount
emitted in the forward direction equal to (aEde) in order
to conform to Kirchhoff’s law. (Eo) designates the black-body
radiation at the temperature and wavelength in question.
This same amount of energy,(andx), will of course be emitted
in the backward direction also. The differential equations

are then,

dI/dx

-(a+s)I + sJ + aBg (a43)

dJ/dx = (a+s)J - sI -~ aE (a4s4)

(o)
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The general solutions of these equations are given by

Hamaker:
0 X -0 X

I = A(l—Bo)e 4 B(1+Bo)e + By (a45)
0 X -0 X

J = A(l+Bo)e + B(l—Bo)e + E0 (alt6)

An important case is again the situation when there is
an incident flux (Io) on the front surface and no backward

flux at the back surface (JD = 0).

then
T = A(l—Bo) - B(l+Bo) + B (a4?)
and
o D -0 D
0 = A(1+B)e ° 4+ B(1-B,)e SN E, (au8)
giving
(1-8)e © (I.E) + (14B)E
-B e = + (1+
=1 0 . ) . ; 0 (249)
(1+8,)% © - (1-g)2 ©
and
"
B = (1+B,) = (I=Ey) + (1-B,)E, (a50)

(l+Bo)2eo°D - (1-50)2e"°°D



185

whence

-0 D O X
—[(1-80)23 O (T,-E,)+(1-B, )E le °

o D -0 X
+ [(14B,)% © (I,-E)+(1-B 2)E Je ° )
I = *
2 O'OD > -UOD 0o
i} - e
(1+8,)"e (1-B,)"e e
and 5
=gy o X
-[(1-B,)e © (I,-E,)+(1+B,)°E e °
c D -0 X
+ [(1-B,%)e © (I,-E )+(1-B)°E Je ©°
+ E
il 2 0,0 2 ~9,D .
(1+BO) e - (l—'Bo) e (352)

As before, finding the resulting flux at the back surface (ID):

oD
~[(1-8)°(I -E )+(1-BD)E e © ]

-0 D
+ (l+802)(IO-EO) it (l-Boe)Eoe ©
T = + B
D 2 9,0 5> =0 D o (a53)
(1+B,)"e - (1-8B,)"e
or, rearranging terms:
0., D -0 D
: 4B I, 5 {1 48+(1-B,%) e °=e © 3
D ~ oD N ™ B c D —o D
(l+Bo)2e . —(l-Bo)2e ;i (l+Bo)29 © -(1-50)2e s

(a54)
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On checking with the previous section it is found
that the coefficient of (IO) is equal to the transmission (1)
of a non-radiating layer and the coefficient of (Eo),
after rearrangement of the terms, is the same as the
absorptivity (a) of the layer. This latter is to be
expected since the coefficient of (Eo) in the above equation
represents an emissivity of the layer (&) which should
equal the absorptivity according to Kirchhoff’s law.
(Note that (g) is defined as the amount of energy emitted
by the layer in question divided by the amount of black-body
radiation from an eqguivalent area and therefore depends
on the thickness.)

Similarly the flux reflected and radiated from the

front surface (Jo) is found:

2 GoD 2
(1-B2)e © (I_-E) + (1-B,)°E,
-0 D
- [(1-B,De © (I -E)) + (1+B)°E]
d = + B
o] 2 doD 5 -UOD o]
(1+BO) e = (l_BO) e (3.55)
L
oD -0 D =
[(l_B 2)(9 0 - 0 Y11 f_—LB+(1—B 2)[eUOD_ O'OD
J, = 2 & _ + E {1 - - s ]
0 P coD 2 —GOD > UOD 5 -coD
QB3 e © ~(1-8 ) ¢ (1+p )78 = ~(1-8.)"e

(a56)
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which is the same as

J, = @I, + €EBg (a57)

where ( Q) is the reflectivity found in the previous
section and (g) is again an emissivity relative to the
black-body radiation of a body at the temperature in
question. The emissivity of a body of thickness (D)

at uniform temperature is, in simplest form, then:

EBOEBosinhdoD + cosho D - 1]

£ = 5T (a58)
(l+B0 )31nh00D + 2BocoshcoD

if (D), or more important (GOD), becomes large then

sinho D ~wcosho D >>1 and we have (as D-> o)

2B _(1+B.) 28
(l+Bo )+2Bo 0
giving the emissivity of an infinitely thick specimen (this
is the emissivity that would (or should be) be quoted in
the literature). It is interesting to note that since:
o va _ v a/s
8 = a+2s a/s+2 (a60)

(Bo), and therefore the emissivity of an infinitely thick
sample, depends only on the ratio of (a) to (s) and not on

their absolute values.
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It has been shown by Hottel (16) that if two parallel

infinite layers are interchanging radiation, a corrected

§§E) must be used in radiation transfer

emissivity (g* =
calculations because of the radiation reflected back and
forth between the two layers. Using the above expression
for Ea) we find that

_2Bo_

1+B

» [®) )

- 1+B

o

giving a physical Significance to (Bo).

Also, since (a) and (s) are positive, a £ (a+2s) and

a . a . .
2 28 <ls i < 1 and 048041 as is required.
il

Also, since Bo<l, T'?la 1 + _% =2, 13178 <l,
o e ©

28
o e i :
1+B° 1l and o1 The expression above for (509 gives

a useful method of finding (a) at elevated temperatures
when (s) is known as a function of wavelength. Then an
average (s) can be found for the temperature in question
by using the black-body emission versus wavelength tables
as a weighting function. Since the value of (s) at a
particular wavelength would not be expected to change with
temperature, this average value of (s) can be used in
conjunction with an experimentally obtained value of

(aa) at the temperature in question to obtain a value for

(a) which then automatically gives the correct value for
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wavelength distribution at that temperature. This method
of obtaining the constant (a) is desirable’. since the
absorption coefficient at a particular wavelength does

change with temperature.

4, Radiating Layers with Temperature Gradient
(General Solutions)

The next case that Hamaker has treated is the situation
where there is not only internal emission of radiation,
but also where the temperature varies within the specimen.
Heat transfer by both radiation and lattice conduction
take place and the resulting temperature gradient and
surface emission vary accordingly.

Now in the differential equations the black-body radiation
varies with temperature, and a new heat balance equation
must be introduced expressing the fact that heat is neither

accumulated nor produced within the body:

kd°T

5= + a(I+J) = 2aE(T) (ab2)
dx

(k) being the lattice thermal conductivity. The first
term on the left side represents the heat accumulated by
conduction; the second term gives the heat absorbed, and
the sum of these equals the heat loss by radiation (the
term on the right).

E(T), the total black-body radiation, is given by the

Stefan-Boltzmann equation:

BE(T) = 01T4 (ab3)
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where (01) is the Stefan-Boltzmann radiation constant
and (T) is the absolute temperature. If the temperature
is high and the temperature gradient not too large then

(E) may be represented by
E = Eo + b(T—TO) (ablt)

where b = 401T05, (TO) is a temperature close to the

actual temperature concerned, and (Eo) is the corresponding total
radiation. When the above equation holds the temperature

may be fixed equally as well by (E) as by (T) and, since

Hamaker has found this to simplify matters, (E) has been
retained in the equations rather than (T). The set of

simultaneous differential equations is then:

dI/dx = -(a+s)I + sJ + aE (a65)

dJ/dx = (a+s)J - sJ - aE (ab6)
k d2E

- == a(I+d) = 2aBk (a67)
b dx

Hamaker shows that the complete general solution of these

equations is

i A(l—B)edx + B(l+[3)e_cnc + C(ox-B) + F (a68)

J

A(1+B)eGx + B(l—B)e—cx + C(ex+B) + F (a69)

E =-Ahk e - Bke™ ™* 4 Cox + F (a70)
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where

g = + IJEa% +a(a+28)| = + l,/2a%+002 l (a?71)

, o
T a+2s (a72)
2b _ 2bB
K= k(a+2s) =~ ko (a73)

The constants (A), (B), (C) and (F) are to be determined
from the boundary conditions which can be four of the
possible six conditidénsy, three at each surface: the
temperature, the temperature gradient, and the amount of

incident radiant energy.

B Radiating Layers with Temperature Gradients
(Particular Solutions)

Hamaker goes on to some practical applications of
these equations and a discussion of the system when wavelength
must be considered as a variable. For the purposes of
this study, the most interesting case is that of a layer
of thickness (D) with incident radiation (Io) on the
front surface (x=0), and (JD) on the back surface (x=D).
The other two boundary conditions are supplied by requiring
the heat removed or introduced by conduction from or to
the gas at each surface to be egqual to the heat absorbed
or lost by conduction to or from the solid at each surface.

This means that:



k(32
gas solid

atT
keg(gx)
at each surface (kg is the thermal conductivity of the
gas, and (k) is the thermal conductivity of the solid).

Since (E) will be used as a variable instead of (T) we

have as the boundary conditions:

bk
(= - b(ED) - 26

solid . solid ' gas

by differentiating equation(a?70) for E we obtain:

(%}E;) = -AK 0e%% + BKoe %% iCo
solid

and the four boundary conditions are:

Ig = A(1-B) + B(1+B) - CB + F
Iy = A(1+8)e%? + B(1-B)e™ P 4 C(oD+B) + P
bk
-—125(%) = oK [B-A] + Co
gas
bk
_Eg(%g) - of{[Be_GD - AedD] + Co

gas
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(a74)

(a?75)

(a76)

(a?7?7)

(a?78)

(a79)

(a80)



From these four simultaneous eguations it is then
possible to solve for the desired constants (4), (B),

(C) and (F). They are:

bk
[e~%P_1] [o(IO—JD)+TE£(%'jTE)g(GD + 2B)1]

A =
26 {2[coshoD-1]1 + [2B(1+ K )+ KoDlsinhoD}
bk
oD ar
5 e -1 fol1-dp] + +5(5) o[0D+281 }
26 { 2[coshoD-11 + [2B(1+K) +KoDlsinhoD]
4bk
. -20 K sinh(oD) [T ~Jp] + Tg(%)g[coshoD—l+Bsinth]
20 { 2[coshoD-1] + [2B(1+ K )+ Kch]sinth}
20 {Io[costh-l+(B+BK + KoD)sinhoD]
+ JD[coshoD-l+B(1+Rf)sinth]]
bk
" 2—ks(g—§)g[coshch-l+Bsinth]
' =

26 { 2[coshoD-1] + [2B(1+ K )+ KoD]sinhoD}

Introducing these constants into equations (a68), (a69),
and (a70) we obtain general expressions for (I), (J), and

(E), under these conditions:

195

(a8l)

(a82)

(a83)

(a84)



(poge muber missing)

1oL
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(1-8)e7*[e™%P-11[0(I ~Ip)+ n(cD+28)] (a85)
+ (148)e” % [e7P 11 [0 (I -3 )+ n(0D+28)]

5 [0x—B]{4 n(coshoD-1)+2sinhoD[2B7 —cl{(IO-JD)]?

T =
+F
20 { 2[coshoD-1] + [2B(1+K) + KoDlsinhoD
(1+B)e = [e"%P=1] {c[Io—JD]+ﬂ[ﬁD+2B]]
+ (1-8)e " [e"P.1] { olI ~Tp]+ n[cp+esj}
+ [ox+B] {# nlcoshoD-1]+2sinhoD[2pn -0 K(I -Jp)1} .
d = +

20 { 2[coshoD-11+[2B(1+ K )+ KoDJsinhoD] (a86)

K e*11-67"1 {61 -3} 14 [oD+28]

+-Ke'dx[l~ecn] {c[IO—JD]+ﬂ [cD+28]]

+ ox {41 [coshoD-11+2sinhoD[2B" -0 K(IO-JD)]}

+ F
(a87)

20 {2[coshoD-1] '+ [2B(1+ K )+ KoD]sinhoD}
These egquations are cumbersome and are not the ones that
might be checked by experiment. What is desired are the
expressions for (IB{%}CEO), and (ED) which can be derived
by introducing x=0 and x=D into the general expressions.
When the terms are grouped and the exponentials converted

to hyperboliec funections there results:
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o {I,28(1+ K)sinhoD+JIy[2(coshoD-1)+ K oDsinhoD]}

e 2811{ -2[cosh0D—l]+oDsinhcsD}

o i2[cosh0D—l] + [2B(1+K)+ KoD]sinhoD} (a88)

o {IO[E(COShGD-1)+ KoDsinhoD] + JD2B(1+ r{)sincD}

- 2Bn§ -2[coshgD-1] + oDsinhoD }

o { 2[coshoD-1] + [2B(1+ K )+KoDsinhoD ] (a89)

o { Io[(l- K ) (coshoD-1)+(B+B K + #oD)sinhoD]
+ Jp(1+ K)[(coshoD-1+BsinhoD]]

- 7 { [(1+ K)oD+2B K](c:osth—l)+Bcstinhch}

o {2[cosh0D-l] + [2B(1+ )+ KcD]sinho'D} (a90)

o { Io(l+ ) [coshoD-1+BsinhoD]
+ JD[(1+I{ )(coshoD-1) + (B+BK + Kch)sinhoD]}

+ M [ [(1+ K)oD+2B K](coshaD-l)+BchinhoD}

o [2[coshoD—l] + [2B(1+K )+ f(cD]sinhoD} (a9l)
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It is possible to handle these expressions more easily

if the following functions are defined:

2B8(1+K )sinhoD

£y® 2[coshoD-1] + [2B(1l+K )+ KoD]sinhoD

2[coshoD-1] + KoDsinhoD

2[coshoD-1] + [2B(1+ K )+ KoD]sinhoD

(1- K)[coshoD-1] + [B(1+ K )+ ¥oD]lsinhoD

5 2[coshoD-1] + [2B(1+ K )+ K ocD]lsinhoD

(1+ L) [coshoD-1+BsinhoD]

-plil

2[coshoD-1] + [2B(1+K )+ KoDlsinhoD

[-2(coshoD-1) + oDsinhoD]

2[coshoD-1] + [2B(1+K)+ KoDlsinhaD

[(1+ g )oD+2BK J[coshoD-1] + BoDsinhoD

2[coshoD-1] + [2B(1+ K )+ KoDlsinhoD

(a92)

(a93)

(a94)

(a95)

(a96)

(a97)
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At this time it is noted that:

£, 48, =1, + £, =1 ‘ (a98)
and that
£5 = £, = K f5 (a99)

These relationships will be useful later when these
equations are applied to powder systems,

Using these functions (fl, fe,— -) and the definition
K = %gﬁ we can simplify equations (a88-a91) considerably.
They now become:

Ip = £9I, + £50p + f5r<k ( ) (al00)
Jo = £5I, + £, - f5kk ( ) (al0l)
By, = £, + £,0p - f¢ ( ) (al02)
B 1, + £50, ¢ f6K§§( ) (al03)

where ( ) still refers to the temperature gradient in

the gas at the interface between the gas and the solid.
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6. Solution of Equations of Multilayer Systems

If we consider a powder as being a series of layers
in series with the surrounding medium it is possible to
solve for the radiation, heat flow, and temperatures inside
the system and then for an effective conductivity. If
the subscript (n) refers to the nth particle, the lowest
numbers being the hottest (i.e., heat flows in the direction
of increasing n);the subscript (on) referring to the face
(x=0) of the nth particle with heat flowing in the
direction of increasing (x)j; the subscript (Dn) referring
to the colder face of the nth particle; and if we make

use of the fact that Jon = d and T

D(n-1) on_ ID(n—l), we

can transform equations (al00) and (alQOl) into:

and

Jon = f2lp(n-1)" 190 (ns1)* f5f(k (& ) S (a105)
but since fl = l—f2, we obtain, on substituting

~Ip(n-1)* falp(na1) o ~f1I5(p-1) in equation (alO4) and
—Jo(n+1)+ f2Jo(n+l)f°r -flJo(n—l) in eguation (a2l05):

Ton = Jo(ns1) ~ F2llncac1yTocas1yd + f5f(kg(dx)g - (a107)
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Similarly substituting for fQJo(n+l) in equation (al04)

and fEID(n—l) in equation (al05) we obtain:
o =g N > 1 - £ Kk (dT) =19 (2108)
Dn o(n+l) 1" D(n=l) “o(n+l)" 5
Jon— ID(n—l)+ fltID(n—l)—Jo(n+l)J - f5 K k ( ) = 0 (al09)
applying equation (al0l) to the (n+l)th layer:
il f
. - _5
Tpn = £, Jo(n+1) £, Jo(ns2) * fg‘Kk e ) (al10)
and eguation (al00) to the (n-1)th layer:
1 fl 5%

Jon = £, D(n-l) ID(n—E)" fi K k ( ) (alll)
substituting (all0) into (al08):
Jo(n+l)- o(n+2)+ f Kl{(: ) £5 o(n+1)

or, since l-f2=f] and dividing by flz

o(n+l) Jo(n+2) fEEID(n 1) Jo(n+l):I + f5FCk ( ) (all3)

Similarly substituting equation (alll) into (2l109) and

gimplifying:
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Ipa-1)"To(n-2) * follp(n-1)"Jo(n+1)! 5Kk (GZ) =0 (all4)

from equations (al06), (al07), (all3), and (all4) it is

seen that:
Jon_Jo(n+l) N J0(n+l)-Jo(n+2) T Im(n—2) " ID(n-l) -
Ip(n-1) ~ Iosn™:'pa ® In(a+1) = Inca+1) ~ In(nse2) (all5)

furthermore:

-f2[I )]+ff{k( )

ID(n—l) _ Jo(n+l) =lID(n—2) D(n—l)-Jo(n+l

- fg[I ] + f ( )

Jo(n+1) D(n-l)-Jo(n+l)

2f2[I

ID(n+2) - Jo(n+l); D(n+1)_Jo(n+l)]

+

dT
K £=
2f kg(i )g

5 (alls6)

or by repeated substitutions similar to equation (all6)

if there are (j) particles:

ID(n-l) £ Jo(n+l) y Iol_JD;j_(j—l)fEEID(n-l)"Jo(IHl)jl

+ (j- l)f Kk ( ) (all?)
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and

I, -dn+(3-1)EK k_(35) (all7a)
ID(n—l) _ JO(D+1) = ol Dj-l-+f (]_l§ |24 dx |24
2 (3
and
J

on Jo(n+l) 3 Jo(n+l)— Jo(n+2) = Ipy- ID(n+l) -

. i 2 fetlol- JDjj - f5ﬁck ( ) D
D(n+l) D(n+2) 1 + fgfj—l)

Since the amount of heat transferred by the gas conduction

is the same everywhere in the system, it would simplify

matters if we make the substitution:

ar, _ - ]

(dx)g = D(%]—Dl) on (a119)

b

where DD represents the distance across a pore, and

]

[E -E
D(n-%) on is the temperature drop across a pore.

We can evaluate the latter term from equations (al02) and

(al03):

[Bp(n-1)"Bond = f4Ip(n-2)*T3Ion* ek K, o

o ID(n 1) o(n+l) (al20)
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or, on substituting for ID(n-2) and Jon from equations

(all4) and (al07) and using the relationship f5-f4 f{f

] =11 Kf:l

[ED(n—l)_Eon D(n-1)" Jo(n+l)3[f2_ 5

f
Kk( ) f5] (al2l)

or, substituting from equation (all9) for ( ) and solving

for [E 13

D(n—l)_ on
““D(n-1) - Es 8 &
1 +KbD [E— e f5]

D

finally by substituting for [ID(n-l)_Jo(m»l)] from
equation (all?), again solving for [ED(n l) ] and
reducing to simplest terms, we finally obtain the latter

as a function of (Iol), (JDj)’ and (kg):

[Iol— JDj][f2_ K f5]

[(E B ] =
D(n-1) “on gk, (£c[145,(3-1)]
1+£,(3-1) + bﬁi { 5 = f5[Kf5(j-1)+1]

(al23)

1f we introduce eguation (al23) into equation (all8)

we have:
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Son Jo(n+1)= Jo(n+l)— Jo(n+2)= Ipn™ ID(n+l)= ID(n+l)—ID(n+2)=

Kk f.f
& 276 _ 2

Kk f
1+f2(j_l)+'—b‘ﬁ§ { 8_6 [l+f2(j-l)]—f5[Kf5(j-1)+l]} (al24)

Using the above equation one can now solve for any desired

term. For instance:

Kk I.f
Y Er .26 _ 2
(To1~Tpy] {f2+ o5l 5 Kt ]}
Ip1 = o1 °
ol
Kk, (fg
1+f,(3-1)+ Fﬁi {§~[1+f2(j-1)-f5[ K £5(3-1)+1] (al25)
and
Kk £.f
" g 2.6 2
L nTaingd [ RSES -ke 1
Dn ol” - KE, (£, _ (a126)
1+£,(3-1)+ Bﬁi {B—[l+f2(j-l)—f5[ Rf5(j—1)+1J}
Similarly:
Kk _ £.F
. N T2 6 2
(g—n+l)[Iol-JDj]{.f2+ ) [—E__ -fff5 ]}
g = Jdo0 + i)
on DJ

Kk, (£
1ok, (=104 Eﬁf {6—6~[l+f2(j—l)]—f5[Kf5(j-l)+l]} (al2?7)
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and substituting into equations (al02) and (al03):
[T .-J..1 A[£f,(j-1)-n+1]14f .+ —Eg[—g—-{2 - Kf 2]1
017°Dj 4\d 2% D 5

E = f,T . +f,d

on 370l T4 D1 Kk f6 _ !

1+ (3 1)+ 5D {E—[l+f2(g-l)]-f5[lff5(3—l)+1]}
P (a128)
and
(k f.f
: _ __Br 26 _ 2
[Iol—JDj] {[fa(a—l) n+1] [f2+ pr[ 5 Kf5 }f
6
- 58 [f - Kf ]}
Bpn=filerttalng + (e,

, 4
1+£, (3-1)+ =2 pr ¥B§El+f2(j-lﬂ-f5[f{f5(j—l)+l]} (al29)

These relationships allow us to calculate any desired
radiation terms or temperature in a system if the incident
radiations, the conductivity of the gas, the scattering
and absorption coefficients, the average temperature, the
conductivity of the solid and the average size and

number of particles in the system are known.,
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e Derivation of an Effective Thermal
Conductivity
Using equations (al25-al29) it is possible to derive
an effective thermal conductivity of the system. We first
define an effective thermal conductivity (ke) by the

following equation:

a4

Q =k (Fs) (al30)
or

- Ax
ke = ETQ (al31)

where (Q) is the heat flowing across a unit area under
the influence of a temperature drop (4 T), which occurs
over a representative distance (4 X). We will take as
a representative distance the length from the top surface

of one layer to the top and surface of the next.

then
ax = - [D + DD] (al32)

where (D) is the thickness of a layer and (Dp) is the

thickness of a pore.

The temperature drop across this section is then:

]
O(D.gl) (8155)

AT
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which from equation (al28) is found to be:

Re, Lofe 2
£ [== - Kf 3}
£101-JDj]{ 2* oD ' B 5

B

: Kk f6
il+f2(j-l)+ Bﬁi {—§[l+f2(j—l)] - f5[ Kfs(j—l)+l]}

(al34)

The total heat flowing can be found if we consider any
surface; there the heat flow is equal to the difference
between the forward and backward radiation fluxes plus
the heat conducted by the gas. The latter is equal to
the temperature drop across a pore times the thermal

conductivity of the gas divided by the distance across

the pore. Or:

= ID(n—l)— Jon +Eﬁ§ |:EiD(n—:L)- Bon? (al35)

Introducing equations (al25-al29) into equation (al35),
clearing of fractions and reducing to the simplest
terms, we obtain:

KLty

k
" £ _ &
[Tgy-9p;1 2.+ Bl -ty v 41, 1}

Q =

k (T
1+f2(j—l)+ %ﬁi'{E§[l+f2(j-l)]—f5E Kf5(j—1)+1is (al36)
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Then from equations (al’32-al?6) we find:

k_ Kf_f
b(D+D,) {fl+ng[ 86 1. fl+4f42]}
k = - P
e Kk Tk
£, 4+ B [ g e _ Kf523 (al37)

P

Since the pore size of a powder is difficult to measure,
but the particle size and porosity can be measured we
would like to substitute for (DD) a function of the

porosity (p) and (D) the particle size.

or

D
Dy = %l-p5 (al39)

DP+D T (alq'o)
then the conductivity becomes:

Dko {flprB+kg(l—p)[f(f6f1—f18+48f42]}

e " [ig) {fapnskc+25(1-p)kg[f2f6-Jth52]} (alsl)
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(note that we have also substituted (g%g) for (K ) in the
second part of the denominator and cleared of fractions.)

At thic point, in order to simplify the above expression
to one that can be used, it is necessary to make the
tedious substitution for (fl) through (f6) from equations
(a92-a(97). If this is done and the proper algebraic
simplifications performed and all the mistakes removed,
one arrives at a final complete expression for the

effective thermal conductivity of a powder:

2kc(1+K) {PDbBsinhoD + (1-P)(1+ K )k, [coshaD-11]

® " (1-P) {Pk[2(coshoD-1)+ KoDsinhoD1+2(1-P) (1+ K )k, [coshoD-17]

(al42)

If the particles of a powder are very opaque, it is possible
to calculate the effective conductivity of the powder by
considering that radiation is emitted from one surface,
absorbed on the next, and transmitted through the particle
by lattice conduction. In this case then, it is assumed
that all the interaction of radiation with the solid,
takes place right on the surfaces, or that the mean free
path of the radiation in the solid is much smaller than
the particle size and that the amount of radiation trans-
mitted by the solid is insignificant.

Again, an effective conductivity for radiation of

a pore (kpr) will be defined by:

_ at
Q = k. D (al43)



where (& T) is the temperature drop across the surfaces
of the pore, (DD) is the dimension of the pore along the
direction of heét flow and (Q) is the heat flow per unit
area. The heat flow by radiation across a pore whose

surfaces are at ('I':L and TE) is given:by:
¥ 1 ot s

where (01) is the Stefan-Boltzmann radiation constant and

(e”) is the effective emissivity between two surfaces

£ . . . .
e = 5 ). However in a previous section it was shown

4 _ 4
that % = B, also, we note that (Tl =25 ) = 4T5(T1—T2)
if (Tl_TP) is small compared with T. Using the previous

notation that b554ch5 we have:
Q = b(&aT)

Ory considering the pore as being between two parallel

plates, the effective conductivity for radiation is:

k = bpD
pr P P

where (Dp) is the distance across the pore. If we consider

a sample consisting of alternate layers of solid and pores,

then the temperature drop across any layer (n) is

210

(alas)

(al4s)

(al46)

(als?)
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and the total temperature drop is

D
ar- 2 T o= o 22 (a148)
n n n
kn = k for the solid sections and, from equation (al46)

[bBDD+kg] for the pore sections if there is a gas in the

pores.
then
B, S D
DT = Q ( Z k + bBDD+kg ) (3149)

S P

where ( Z: ) denotes summing over solid sections, and

S
( Z:) over the pore sections. Summing we have:
P
AT = Q[ {s £ ] (al50)

+
* bRD +k,

where (,{S) is the total length of the solid sections,
and ( [p) is the length of the pore sections. Finally,
if the total thickness of the sample is (,(), then the

effective conductivity, (ke), is defined by:

AT
Q = kg Va (al51)



or

/p}

/s
Q =k
e © {k/ * JToBD ¥k ]

if (P) is the porosity, then

poe

and

1
ke = 1-5) B

x T bBED_+k
bB p+

g

From equation (al39) it is noted that (Dp = %%5 ) where

(D) is the thickness of a solid layer, and then:

1
ke (1P , P
k bEDP_ . 4
1-P) g
or
k[bBPD+k_(1-P)]
Xk g

e (1-P)[kP+bBPD+kg(l-P)]

Zhe

(al52)

(al53)

(al54)

(al55)

(al56)

(al57)
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The above equation can be derived, as a limiting case, from
equation (al42) by allowing (D) to become large; this is
tantamount to the condition:iused to derive eguation (al57)
that the mean free path for radiation is much smaller than
the particle size. If (D), or more specifically, (o¢D), is
large, then [sinhoD] and [coshoD-1] become very nearly

equal. In this case eguation (al42) becomes:

2k(1+ K)[PDbB + (1-P)(1l+ Kk )kg]

ks = (A<P)TPk(2+ KoD) + 2(1-P) (1+ Kk _ (al58)

the additional condition used in deriving eguation (al57),
that the amount of heat transferred by radiation through
the solid is small, requires that (& ) is small compared
to one, since ( K) represents the ratio of the radiation
conductivity to that of the lattice conductivity. In that
case, and substituting (%gﬁ) for the ( ¥) that remains in

the denominator, we have:

k[PDbB + (l-P)kg]

Ke = T1-P)[Pk(1 + bBad) + (l—P)kg] (al59)
ko £
or
k[PDbE + k_(1-P)]
ke = TI-B)[PK 7 P6ED ¥ (1-P)E,] (8160)

which is identical to equation (al57). Note that in this

equation one would use (e*)(the effective emissivity = E%E )



rather than (B); therefore for opaque materials the effective
conductivity can be calculated without a knowledge of the
scattering and absorption coefficients.

There are several other limiting cases of equation (al42)
which are interesting. For instance, if the temperature
is so low that the conduction by radiation is negligible
compared to the conduction by the gas we would expect the

conductivity to be:

kk
— = _ £
e = B, @E) T P+ E (1P (a161)

which is obtained in a similar manner to equation (al57).
To obtain equation (al6l) from (al42), we find (ke) as
(b+0). Then, since K= %§+o

k (1-P) k _[coshoD-1] kk
= 23 - g (al62)
e (1-P) [Pk+(l—P)kg] [coshoD-1] Pk + (l—P)kg

k

As the porosity becomes zero, one would expect that the
effective conductivity would approach that of the solid.

2k(1+ K)(1+ KX )kg[coshcsD-l]
e - 2(1+K)kg[costh—1] = k(1+4) (al63)

by

This is the expected value since () represents the ratio
of radiation conductivity to lattice conductivity and,
since (k) is the lattice conductivity, k(1+K ) is the

effective conductivity of the solid.
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Another case is the situation when (oD) becomes very

small. Since (sinh ¢D—=—>¢D) as (ocD->0), and (coshoD-1)—>

e“p*

as (oD*0); as (oD) becomes very small,

k(1+ 4) [2PbBoD> + (l—P)(l+Kf)kg02D2]

e (aled)
®  (1-P) {Pk[c°D°+ X0°D7] + (1-P)(L+ K)kgoene}
or
k[2PbB/c + (1—P)(1+J<)kg]
k. = TPk + (1-P)k,] (al65)

This shows that the effective conductivity of a powder
reaches a minimum limit as the particle size is decreased.
The actual value of this conductivity depends only on the
ratio of (B/c) rather than their respective wvalues.

In the case of a real powder, there is a possibility
that the above 1limit will not hold, and that the conductivity
will continue to decrease with decreasing particle size.
This is due to the fact that when the equation abowe was
derived, scattering from the surface of the particle
was neglected, and only the internal scattering considered.
However, as the particle becomes commensurately small as
the intermnal pores in the particle, then the secattering
from the surface becomes a significant part of the total
scattering, and must be taken into account.

bxperimentally, the only way to measure the radiation
part of the conductivity is to measure the effective con-

ductivity in a vacuum. Therefore, it is desirable to
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find the limits of the above equations (al42 ete.) when

the conductivity of the gas vanishes. This can be done

by changing the boundary conditions in the original

solutions (equations a79 and a80) to the requirement that

( ) at the surface of the solid is zero. This is the

same as saying that there is only radiation conduction

between the particles. It has been found that the relationships
derived by this method are identical to assuming in equation

(al42) that kg = 0. In this case equation (al42) becomes:

_ 2(1+ A )bBDsinhoD

ke = (1-P)[2(coshoD-1)+ KoDsinhoD]) (a166)
giving the effective conductivity of a powder in a wvacuum.
Equation (alé0) becomes:
o
Ke = (T-P)(k+0ED) (2167)

giving the conductivity in a vacuum when the amount of radiation
passing through the particles is negligible, and the mean free
path of the radiation in the solid is much smaller than the
dimensions of the particle.

We can also find the limit of equation (al66) as (oD-=0)
similarly to deriving equation (al65). The smallest possible

conductivity is in this case:



APPENDIX B

Difference Between (o) and (00), (B) and (Bo); and the Size of (K)

In several pléces in the discussion of the results
of this thesis, (o) has been used interchangeably for (ao),
(B) for (Bo) and ( K) has been neglected with respect to one.
This Appendix is written to Jjustify these approximations
for the cases in which they were used.

First of all we see from the theory section that
( K) represents the fraction of heat transfer in the center
of a thick layer of a solid which is carried by radiation
as compared to the lattice conduction. Therefore (1+ K )k
represents the total effective conductivity of a solid.
We can also see that from actual data presented for the
zirconia samples that the wvalue of (K ) for zirconia never
gets much above 0.02. This fraction must be even smaller
for the porous alumina sample since the lattice conductivity
of this material is on the order of twice that of the
zirconia while the radiation conductivity is much smaller.
For the dense alumina the value is not so definite since
while the lattice conductivity is much larger, the radiation
conductivity is also larger. However, it is thought that
even in the latter case the radiation conductivity is not
a large part of the total conductivity. The single crystal

material is not included in this discussion nor is it in
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the range of materials discussed in this Appendix since
it is thought that in this material radiation forms a
significant part of the total conductivity.

If we return to the definition of (o):

o = + VR2ab/kta(a+2s) (al69)

also by definition:

2b
K = k(ailn) (al70)

If we substitute [ K (a+2s) = l‘i—b-] into the definition of (o):

o =+ Va(a+2s)(1+ K ) (al?71)

but since

o = + Va(a+2s) (al?72)

0

g = o‘o[+ 1+ K ] (al73)

Since in the previous paragraph we have shown that (K)
is insignificant with respect to one for the materials
that we are interested in, equation (al?73) shows that for
such a material (o) is nearly egual to (Go).

Also, since by definition:



e e
Bo T a+2s
and
o
p = a+2s

1P (oo4ﬁéo) then (BocaéB).

We should emphasize that the discussion above refers
only to materials in which there is only a small fraction
of the heat transfer carried by radiation in the center
linear region of a thick layer (i.e., where XK <<1). In
most ceramic refractories this is true. However in some
materials (such as single crystals and probably glasses)
this is not true, (K) is significant with respect to

one, and must be taken into account.
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(al?74)

(al?5)



APPENDIX C.

Anomalous Conduction of Magnesium Oxide Powders

Figure 54 shows the results of one run on a sample
of magnesium oxide powder in oxygen of approximately one
atmosphere of pressure. This sample was composed of dense
particles (950/0 theoretical density) of chemically pure
magnesia of particle size (35 to 65 mesh). The temperature
was cycled with measurements being made along each cycle,
the arrows showing the direction of temperature rise or
fall along each cycle. It can be seen from this figure
that it would not be facetious to say that not too much
reliability can be placed on any individual measurement
taken in this series. ©Similar results were obtained with
other magnesia samples, some of them producing measurements
in vacuum at the same temperatures, one of which was more
than twice the other. After carefully checking the apparatus
and removing any possible sources of such a large error,
and obtaining consistant results with other materials,
it was decided that some unique properties of magnesia
were causing this behavior and the following explanation
was arrived at.

It is thought that the combination of two properties

in magnesia was the cause of this rather variable conductivity.
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First of all magnesia has, for a ceramic material, an
extraordinarily high lattice conductivity; second, it has

a very high surface activity with respect to water; evidently
being able to form a surface film, perhaps of a hydroxide,
and retain it even to temperatures of 600 to 800°C. Evidence
for this comes from infra-red spectrograms which showed
evidence of water absorption at the 2.8 to 3.0 micron band
even though the sample had been previously heated to the
vicinity of 7000 C. and immediately on cooling had been
placed in a desicator.

Evidently because of the high solid conductivity of the
magnesia any growth of the point contacts will produce a
conductivity which is significant in this range and, while
pure magnesia is too refractory to sinter appreciably at
these temperatures (these effects are noticed as low as
40000.), the hydroxide surface film is probably soft enough
to form a bridge between the very high conductivity particles
thus producing the effects seen. This would be enhanced by
the rather high thermal expansion of magnesia. Also
conductivity due to this source would depend strongly on
the past history of the material which agrees with the

experiments.,



APPENDIX D

Effects of Slight Sintering at Point Contacts (With Respect

to Very Low Conductivity Materials)

This section is presented in view of current interest
in very low conductivity materials. ©Some of this interest
lies in speculation about the surface of the Moon which,
from measurements of temperature drop or rise as the sum’s
shadow moves across it, has been shown to have a very low
conductivity (21). The evidence presented here indicates
that such low conductivities (less than approximately 1 x 10-4)
can occur only in a powder in a vacuum at least for normally
occuring minerals.

1he most dramatic change in conductivity due to a
small amount of sintering occured in a sample of magnesia.
This is to be expected only in the case of magnesia and
would not occur with other materials. However the change
in conductivity which was brought about by a very small
amount of sintering in this sample was phenomenal.

Figure 55 shows the runs which are cited. The material
was a graded gsample of Norton magnorite (a magnesia which
contains perhéps four percent impurities) of an average
particle size of approximately 0.0204 cm. The lower curve
is the conductivity of the material before sintering while

the upper curves show the conductivity measured after the
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the material had sintered to a very slight extent. This
sintering could only have been a slight enlargement of

the point contacts even for the top curve since the material
could not be held in the fingers without crumbling. There
is considerable inaccuracy in these particular curves

but the change in conductivity due to such a slight

amount of sintering is too much to be ignored. In addition
it should be noticed that the shape of the curve changed
from a rising one due to radiation conductivity to a curve
which decreases in the lower temperature ranges (as does
the conductivity of the solid) goes through a minimum and
then shows the evidence of increasing radiation conduction
again.

Even materials with low conductivities showed an
increase in conductivity if they were heated to a temper-
ature at which they could sinter even slightly. For instance,
Sample I of zirconia after being heated to 150000. showed

a conductivity increase of 4 x 10_5(cal.cm./oc.cm.2

8eC.)
as seen by the solid dot in figure 25. This amount
represented an increase of 100 percent at 100 degrees.
Figure 46 shows a complete run on the porous alumina which
was heated too high. The upper curve was taken as the
temperature was decreasing and shows an increase in con-
ductivity proportional to the solid conductivity at those

temperatures. At 100°C. this represents a 75 percent

increase. These last two materials were sintered to an



extent that was not really noticeable when the powder was
removed from the apparatus. This can be judged from the
fact that the powder flowed out the small hole in the
apparatus, or at worst had to be jizgled out with a
wire. Very few clumps of more than one particle were
noticed, indicating that the sintering was very slight
and must have been only a small enlargement of the point
contacts. These two materials it should be remembered
had rather low solid conductivities (the conductivity of
solid zirconia is only 4 x 1072 cgs.) and therefore from
the above experimental evidence it is hard to see how a
material with a very low conductivity can have any

continuous solid structure.
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APPENDIX E

The Effects of Water on Radiation Conductivity

During several runs which measured the effective
conductivity versus temperature for a magnesia powder with
various gases in the interstices, dips were found in the
curves in the region of 650° C.3 these dips were of various
severity. These runs are shown in figures 56 to 58.

While the accuracy of some of these curves is not good
due to the effects of point contact conduction found in
the magnesia samples, some of these dips are large enough
to be definitely beyond the range of experimental error.

The lower curve in figure 58 which shows a run with
Heliuvm as the interstitial gas is a good example. In
this run the dip was so large that it could not be ignored.
Of the gases that might bave absorption bands which could
cause such a phenomena, water vapor was the most likely
cause: 1t has a very strong absorption band in the wavelength
region corresponding to these temperatures (2.8 to 3 microns)
and is extremely opaque in this region (22). In order
to test this hypothesis, the helium was run through a
desicator (drierite, calcium sulphate) before being passed
into the apparatus, and the apparatus was flushed thoroughly
with this dried gas. When the curve was rerun under these

conditions the upper curve in figure 58 was obtained.
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This curve showed a rise in this region rather than
a dip. This rise is similar to the solid points seen in
figures 25 and 24; these points were obtained on the heating
cycle of the apparatus. The cause of this rise is thought
' to be water adsorbed on the surface of the material
probably in the form of a hydroxide. Evidence for this
is supplied by infra-red transmission curves which show
absorption peaks in the same wavelength region as the
water vapor absorption. These absorptions were obtained
on all the ccramics measured, such aé alumina, zirconia,
and magnesia. They also seem to persist to a high temperature
since most of the infra-red samples were heated before
being measured, and then kept in a dessicator.

It only remains to explain how infra-red absorption
by water (or more exactly the hydroxyl ion) can account
for a lowering of conductivity in one case, and an increase
in conductivity in another. It is thought that in the
case of gaseous water vapor absorption, the gas merely
acts as an insulator, absorbing the radiation and thereby
decreasing radiation transfer between the two surfaces.
On the other hand, if the water is present as a surface
film of hydroxide, it would, in effect, increase the
emissivity of the material since it increases the absorption
to scattering coefficient ratio (this will increase the
emissivity as was explained in the body of this paper).

The effect of the increased emissivity would be to increase
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the radiation transfer between the surfaces as is shown
in previous sections and this therefore raises the effective
conductivity.

The above discussion of the effect of surface films
also probably provides the explanation for the fact that
integrating spheres used in wide angle infra-red spectrometers
lose their efficiency at wavelengths longer than approximately
2.7 microns. These spheres are made by depositing a
coating of very finely divided magnesium oxide by burning
magnesium,

This material has a low absorption coefficient due
to the transparency of magnesia, and a high scattering
coefficient due to the fine particle size. This high
scattering to absorption coefficient ratio produces a
reflectivity very close to one as is predicted by the
theory outlined in the theory section of this thesis.
However it seems likely that absorption due to the hydroxide
surface film mentioned here becomes large enough at 2.7
microns or so, to ruin the excellent reflectivity of this
material. 1t is likely that because of the excellent
transmission of magnesia to much longer wavelengths, the
useful range of these integrating spheres might be
increased by preventing the formation of this hydroxide

Falme



APPENDIX F

Method of Fabricating Colinear Thermocouples

The technigue by which the thermocouples for this
work were made is sketched in figure 59. The wires to
be fabricated into thermocouples were first carefully
straichtened and annealed by passing an electric current
through them..Then the ends of the two wires were twisted
together as at (a) in figure 59, with the long parts of
the wires leading away from each other. Then a small
electric spot welder was used to weld the wires together
as at (b). The ends were untwisted and cut off by a sharp
chisel under a microscope as at (¢). With practise and
proper care it is easy to cut the ends off very close to
the weld as is shown in the illustration. Finally the
weld is straightened slightly with a pair of pliers as
at (d) so it lies in the same line as the leads. The
final result is actually a scarf joint as is shown at (e).
Figure 60 shows a photomicrograph of an actual thermo-
couple made by this method. The wires in this picture
are 0.0I0 inches in diameter.

The advantages of this method are:
l. The procedure is simple (much more so than it sounds)
and requires a minimum of eguipment.

2. Very little cold working.
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METHOD OF FABRICATING COLINEAR THERMOCOUPLES (SEE
TEXT FOR EXPLANATION)
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2%6

5 The diameter of the bead is hardly larger than that
of the original wire. (See figure 60)

4, Weld is actually on the bias and forms a very strong
joint. The thermocouples have never failed at the weld,
and only rarely fail near the weld. Nearly all failures
occur in the platinum wire away from any influence of

the weld.



APPENDIX G
Numerical Calculations

i Calculation of Body Factor

a. Thermocouple Separation

The separation between thermocouples was measured by
two methods: First the distance between the holes in the
end caps were measured by direct comparison with a scale
under a microscope. Second, radiographs were taken of
the apparatus before the first five runs. The thermo-
couple separation was measured from these radiographs
also. ©Since the equation for heat flow in an infinite

cylinder is:

2E(T1 - TE)Lk
2= a (/) (ad76

where (Q) is the amount of heat flowing in a length (L)

of the cylinder when (Tl) and (T2) are the temperatures

at the radii (rl) and (re) respectively; we see that the
logarithm of the ratio of the radii is the gquantity that
appears in the eguation rather than the radii themselves.
In Table V are shown the values measured from the holes in
the end caps and the five radiographs, as well as the
logarithm of the ratio of the radii in each case. As can
be seen the maximum deviation from the mean in these values

is 2.1°/0 and the average deviation is only 1.2%0. It



was decided that this accuracy was sufficient and no more
radiographs were thought to be needed. The average value
shown in Table V was used in further calculations.

b Complete Body Factor

From the eguation giving the heat flow in an infinite
cylinder (equation al?76) one can calculate an effective
thermal conductivity if the heat flow and temperature drop
is known, or can be measured. For ease of calculation
it is convenient to divide the equation into two terms;
one, a body factor, containing terms which are a function
of the size of the apparatus and conversion factors; and
two, the terms which are measured for each determination,
namely the temperature difference between thermocouples,
the voltage applied to the central portion of the center
heater, and the current flowing through the heater. With
the above in mind, the equation for the effective thermal

conductivity is:
2 [ln(re/rl J[ §V)(A)
e 2nL -7

Where the body factor is the term in the first set of
square brackets, and the other set of square brackets
denotes the terms measured for each determination.

For the apparatus used in this study, we have seen
in the previous section that ln(rg/rl) is egual to

0.895; the length of the measured portion of the center
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(al?77)



TABLE V

Thermocouple Separation Measurements

lieasurement from Radius of Inside Radius of Outside Natural Percent
Thermocouple Thermocouple Logarithm Deviation
(inches) (inches) of ratio from mean
End Caps @229 0553 0.876 1.9
Radiograph Bl 0.23 0.57 0.908 1%
Radiograph B2 Qo2 0.55 0.916 2l
Radiograph Cl 0.2% 0.565 0.899 O.4
Radiograph D1 0. 255 0.565 0.877 1.8
Radiograph El 0.228 0.558 0.895 0.0
Average 0.895 1.2

6%c
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heater is i.48 inches. ©Since we desire the final answer

to be in c.g.sS. units (cal.cm./oc.cm.gsec.), we will require
some conversion factors; the length of the measured section
of the center heater will be converted to centimeters by
multiplying it by 2.54 (this will appear in the denominator);
and, since power will be measured in watts, we will have

to place the factor 4.186 in the denominator to convert
watts to calories. The complete body factor will then

be:

0.895
2n(1l.48)(2.54)(4.186)

9.05 x lO—5 (al?78)

Body factor

2 Calculation of Thermal Conductivity

Using equation (al?77) and the body factor calculated
in equation (al78) it is possible to calculate the thermal
conductivity when the temperature gradient and power
supplied to the center heater is known. For instance for
point (M10) taken during run Ml, the measured potential
of the inside thermocouple was 2.831 mv., and the outside
couple 1.918 mv.; the potentials of the two thermocouples
were also added and subtracted electrically as a check;
the sum of the potentials was 4.741 mv., and the difference
was 0.915 mv. On consulting the table of potential versus
temperature for platinum rhodium thermocouples it was

found that the inside thermocouple was at 355.7°¢. and
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the outside one was at 255.700. This gives a temperature
difference of 100.0°C. and an average temperature of
505.700. as compared with a temperature difference of
100.0°C. and an average temperature of 505.900. found

from the sum and differences of the thermocouple potentials
measured directly.

The current in the center heater was 1.196 amps. and
the voltage was 0.280 volts. The latter must be multiplied
by 33.1/25.5 to correct for a lead resistance of 7.6 ohms
since the resistance of the voltmeter was 25.5 ohms in
this range.

Using equation (al?7?7) and the body factor calculated
previously we then have for the effective thermal conductivity

of this material:

=Fac (1.196)(0.280)(33.1/25.5)
3 [9.05x10 71l 1000 ]

B
1l

0.393 x 10_4 cal.cm./oc.cm.asec.
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