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A

Erratum

In calculating the volume of the sample cell an arithematical error

was made. The volume used for calculating the values of the bulk volume solids

that appear in Table III was 163.4 c.c., whereas the correct volume is 226 c.c.

The volume fractions in Table III should be multiplied by this factor (0.725)

and they then become:

Sample
Correct Bulk

Volume Fraction Solids
Lo.6

aml

'”

A

42.3
46.8

46.2

47.5

Since the value for the volume fraction of solids appears as a factor

&gt;f the denominator of the expression for the theoretical effective thermal

sonductivity of a powder in a vacuum (Eq. 8166), the theoretical values for

the conductivity should all be multiplied by the reciprocal of the above factor

‘or 1.38). The main effect of this can be seen by comparing the arbitrary

multiplicative factors given in Table IV with the above factor. They now

hecome*

Sample
Vi

Ted

Correct Multiplicative
FarntnAr

0.585
0.805
1.27

1.12

1l.5G

Tt can be seen that this correction reduces the error of the larger

samples (and the average error) but increases the error of the smaller samples.

lhe latter is probably due to the fact that the effects of surface reflections

in reducing the transmission where neglected in the theoretical treatment.
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ABSTRAUT

The mechanisms of heat transfer in powders
were studied both theoretically and experimentally.
Radiation as a mechanism of heat transfer was examined

in detail, by making experimental measurements of effective
thermal conductivities of powders in a vacuum and
comparing these values with values calculated from
infra-red measurements.

A theory was developed to predict the effective
conductivity ¢f a powder due to radiation from infra-red
transmission and emissivity measurements. The equations
derived show that the conductivity depends on such optical
constantsastheabsorption and scattering coefficients
of the solid material of which the powder is made, as
vell as the temperature. porosity. and particle size.

For most ceramic materials the expression for
the theoretical radiation conductivity is the product
of two terms: One gives the effective conductivity for
3 powder made of an opaque material and is derived by
considering transfer between the surfaces; this term
depends on the cube of the temperature, the particle
size, the emissivity, and inversely on the solid fraction.
The second term is a correction factor for the effect of
semi-transparent materials. This correction factor takes
into account the fact that the materials are not really
opaque, and that radiation can pass through the particles;
also radiation arises and is absorbed in the body of
the material rather than just on the surface. This
correction factor varies non-linearly in the opposite
manner as the optical thickness (the product of an
extinction coefficient and the actual thickness). It
has a value of one for opaque materials of a large optical
thickness and gets as large as ten, or larger, for some
&gt;f the common denser ceramic materials.



Experimental measurements were made on a cylindrical
type apparatus and correlated with values predicted
oy theory from infra-red transmission measurements which
vere performed on the same materials. Qualitative
agreement between theory and experiment was excellent,
large conductivities being associated with small optical
paths and hicher emissivities, while low conductivity
powders were composed of materials with low emissivities
and large optical thicknesses. The lattice conductivity
of the solid was found experimentally not to be a
significant factor in radiation conduction; this agrees
with the theoretical predictions. Some of the materials
neasured were a group of samples made up of different
size particles of stabilized zirconia; others consisted
of alumina of various optical properties, ranging from
an extremely porous sample to a powder crushed from large
single crvstals.

In the case of the zirconia samples, sufficient
neasurements were made to investigate the quantitative
agreement of theory and experiment. Two discrepancies
vere found: the first, an additive one, was due to point
contact conduction which was not included in the
theoretical investigation; the second, a multiplicative
error is probably due to non-symmetry in the particle
size distribution and in the curve of effective radiation
conductivity against particle size as well as other
causes. The proper temperature dependence was given by
the theory as shown by the fact that the corrected curves
had the same shape as the experimental ones.

Phesis Supervisor: F.H. Norton

M™Mtle: Professor of Ceramics
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[. INTRODUCTION

The transition from materials with relatively few,

randomly distributed, pores to powders with continuous

pore structure has a profound effect on the effective thermal

conductivity. If the material is a mixture of solid and

pores where the solid is continuous, the thermal conductivity

is characteristic of the solid. The properties of the low

resistance (solid) material predominate and the effect of the

nigh resistance (pore) material is only to decrease the

conduction in proportion to the volume fraction present.

This situation holds to approximately 30 to 40°70 pores.

In material where the porous phase is continuous there

is no high conductivity path and the situation is one where

resistances are placed in series. Here the characteristics

of the high resistance material (pore) predominate. Powders

can have relatively low pore fractions (25°/0 or less) and

still the effective thermal conductivity will be a function

of the pore phase rather than the solid phase. Materials with

high porosities such as porous insulating brick fall in between

these two situations since here there is only a thin high

conduction path.

Therefore, it is the orientation of the phases with

respect to each other more than merely the porosity that deter-

mines the effective thermal conductivity of a mixture of solids

and pores. This is more important because the ratio of thermal

conductivities of solids and pores is usually at least two

yrders of magnitude. In addition to the usual. well-defined



cases, there are situations where fine layer-like pores

occur at low porosity. Here, even though the solid is

continuous, the effect of the small amount of pores on

the thermal conductivity is profound and much more than

vould be expected from the pore fraction present.

It was the purpose of this thesis to study the con-

ductivity of materials in which the low conductivity phase

is continuous. In these materials at temperatures under

1000 - 1500°¢. gas conduction seems to be the major

nechanism of conduction. The effects that arise in this

situation have been extensively studied both theoretically in

the framework of the kinetic theory of gases, and experimentally

It was thought that radiation might be a significant part

of the total heat transfer in a powder, especially at high

temperatures. An apparatus was therefore designed to study

this by measuring effective conductivity in a vacuum where it

was thought that radiation would be the predominating mechanism

of conduction. Another purpose of this investigation was to

extend the temperature range at which measurements of powder

conductivity can be made since this was quite limited in the

literature. In addition to measuring the conductivity experi-

mentally a theoretical study was initiated to determine the

important factors in heat transfer by radiation through powders

and to see whether effective conductivities could bepredicted

or adjusted from knowledge of the properties of the materials

making up the powder.



[I. LITERATURE SURVEY

Experimental wathods

'wo steady state methods have been used in determining

the thermal conductivity of granular or fibrous substances;

these are by using cylinders (1) (2) (3) (4), either with

cuard rings or long enough so that the central portions

san be considered infinitely long cylinders (this condition

is fulfilled if the cylinders are four times as long as

their diameters (5) ), and using circular plates provided

vith guard rings which insure flat isotherms in the measured

regione.

Long cylinders have at least one surface kept at a

constant temperature, usually by a carefully controlled

slectric heater or by condensing steam. The other surface

can be allowed to reach steady state conditions and the

thermal conductivity determined by the power used and the

iifference in temperature between the two surfaces. This

method can only be used when it is possible to measure

the power input or the power conducted away; i.e. either

when an electric heater is used or when the power is

measured by means of a calorimeter (4).

Another method is to measure the rise in temperature

of the cooler surface from the instant of the start of

neating, and then Py means of a solution of the complete



lLaPlace equation such as a formula developed by Williamson

and Adams (6) compute the thermal conductivity.

The thermal conductivity can also be determined by

using flat circular plates (7) (8). The hot plate in this

case must be surrounded by a guard ring maintained at the

same temperature in order to have perpendicular heat flow

in the measured section. Only two plates can be used if

the temperature rise in the unsteady state is made use

of to calculate the thermal conductivity. Otherwise, there

must be two cold plates, one on each side of the hot plate,

and the power input and temperature difference are measured

in the steady state. Waddams (7) experimented with dif-

Ferent positions of the plates and found the following:

if the heat flow is horizontal the thermal conductivity

is 9°/0 greater than if the heat flow is vertical: however

it makes no difference which plate is above the other.

From this he inferred that no horizontal convection currents

Flow.

Be. Previous Theories

Awbery and Saunders (9) (10) developed an equation

predicting the thermal conductivity of powders. They

assumed that conduction of the gas in the interstices

contributed only a negligible amount of heat transfer.

Later experimenters (8) have shown that the transfer

contributed by point to point contacts are by far the

minor part of the total heat transfer, whereas gas

~onduction is the most important mechanism of heat



transfer in granular or fibrous masses at low temperatures

(under 1000 - 1500°C.). Therefore, this formula does not

jescribe the phenomena.

Schuman and Voss (2), using a quasi-mathematical

approach, attempted to develop a formula which would

satisfy known specific cases. These cases are the

following:

"1) whe:l a =J then K = Ky

2) A K - K,

3) {  J K ss 0

‘4 ) K. = Kg K = £_

5) K an
— J) K z= na

6) g,=0 K = K_a’

')) K, z= CD K  } 3

|

vy

|

:
\

i &amp;-

{

( ¢

{ rf

Nhere:

Ko» Ky» and XK are the thermal conductivities

of A, B, and AB respectively; (a) is the

volume fraction of A.



Conditions (1), (2), (4), and (5) are obvious.

Condition (3) follows from the assumption that there are

only point contacts between grains. Condition (7) can

be shown to be true when the grains are in contact with

cach other and even if two adjacent grains make point

contact of a certain type. Condition (6) is assumed as

a working hypothesis to be proved by experiment.

They use as. a model for calculations a block of

naterial in which the rectangular hyperbola xy = p(p+l)

iivides one substance from the other. Then (a) equals

p(p+1)log(*iP-p). If the heat is conducted in the y

direction only, and 4Q is the quantity of heat conducted

through the strip of thickness dx in unit time, and © is

the temperature at the point is contact of the two materials.

“hen

K_K,dx
— dx — (1-0 dx = . . . a b

9 = kK, 35 = 1-502 (Eliminating OK (15) E, 5-9)TK.(Gp(8

Integrating

K' = Q = “ap [1 + p1+p) (Ky Kp) logK_+p(K_-K,) K_+p(K_-K.)
Ko (14D)

K.p
(

where K? is the effective conductivity of the composite

material. Let K = K a +(1-a’ JK?, and K satisfies all the

conditions. Therefore K is the thermal conductivity as

jefined by the above equations.



These formulas give no more than a very approximate

solution (within at least 40%°/o0 of the measured values).

However they do describe the phenomena qualitatively.

In another article (3) Burke, Schuman and Parry de-

rived and proved the law of squares 3 i.e., heating

times of two geometrically similar bodies are proportional

to the squares of two corresponding linear dimensions.

They also solved the problem of heat conduction for slabs,

cylinders, cylindrical annuli and spheres, given definite

initial and surface temperatures and constant thermal

diffusivity.

Wilhelm, Johnson, Wynkoop and Collier (12) assembled

experimental thermal conductivity data determined from

19%33 to 1948 and compared these conductivities with those

calculated by Schuman and Voss. They found that. on the

average, experimental values were larger than those computed

by the formulas. It was observed that among experimental

data, when a number of different fluids were used as the

interstitial medium in the same bed, the difference between

experimental and calculated conductivities was approximately

constant and independent of the conductivity of the fluid.

A hypothesis was reached therefore that the conductivity

through solid to solid contact points could not be neglected

2s Schuman and Voss had done. A difference. . between

the experimental and the calculated values of conductivity

vas computed and was related in a logarithmic equation



vith a term, K/aj; where K_= the thermal conductivity of

he solid, and a = the fraction void. The equation is:

log, (A x 107) = m+n(K./a) (10

where m = 0.859 ¥ 0.051, and n = 3.12 ¥ 0.29. With this

correction added to Schuman and Voss?'® values the two sigma

limit is reduced from 11.6 °/o to 8.5 °/o.

Kistler (11), while studying the structure of silica

aerogels, developed a formula for the conductivity of the

ras within the gel. His assumptions were: K = BCvn, and

n = 0.35pvEl, where K is the coefficient of heat conduction,

B is a constant, Cv is the specific heat of a gas at constant

volume, mn is the viscosity, @ is the density, v the

arithmetical average velocity of the molecules and P the

nean free path. Thus

K = R*9 (1.

vhere K? is a function of the pressure, temperature and

composition of the gas. He assumed a large number of

molecules randomly distributed through the aerogel (which

is composed mostly of free spaces) starting from rest and

moving in straight lines in all directions until they collide

with structural elements of the gel (whose structure is

assumed to be random).



Then he derived the equation:

14
Pb, = 037 ( J!

vhere 7, is the mean free path of the gas in the aerogel,

and I is the mean free path of a highly attenuated gas

in the aerogel. Dividing equation (12) into (11):

_ 7) _ E71 _ KL
&lt;, = KD, L+2 +2 (

fhen the molecules are moving in straight lines between

surfaces with only occasional impacts in between, as is

the case within aerogels at low pressures,

MCvI¥
K = == = 1022 (1

where M is the molecular weight of the gas, and I is the

number of impacts of molecules on a unit area in a second.

[ = 1.99x10%° ©
VMT

Thus

K, = 0.058VI/T Cv, =i { .

where ¥ is the normal mean free path of the gas at the



ro om

4

given temperature and a pressure of one millimeter. This

equation assumes that a molecule comes to thermal equilibrium

with the surface on which it strikes before it departs,

and that all the impacts of gas molecules within the aerogel

are with surfaces. This last assumption will change the

value of the constant 0.058, and so, make it independent

of the temperature. The conduction due to continuous

structure was estimated by using the asymptotic value at

low temperature.

From this equation and the experimental values of

the thermal conductivity of the gels Kistler calculated

the mean free path of a highly attenuated gas within the

serogely the values obtained for three different gasses

agreed. Kistler was primarily interested in the structure

rather than the thermal conductivity and this method

provided him with a means for evaluating the effective pore

size of silica aerogels.

Verschoor and Greebler (8) developed equations to

describe the thermal conductivity of fibrous masses using

kinetic theory. Their assumptions were: The thermal con-

ductivity of a gas is proportional to the mean free path

of its constituent molecules and to the gas’ density; fibers

lie in planes parallel to the mat which they form but that

are otherwise randomly orientated; the direction of heat

flow is perpendicular to the planes in which the fibers lie;

fibers are uniform in diameter and the insulation is free

From nonfibrous solid particles.



The probability that a gas molecule will suffer a

collision with a fiber in the path interval ox is:

Lox, where D is the diameter of a single fiber, and

f is the volume fraction fiber of fibers. From kinetic

theory: = 1-e"¥/L8 where Vf, is the probability that a

cas molecule in a free gas will collide with another molecule

before moving a distance x, and Lg is the mean free path

of the free gas. V- 1-e X/LL where Lf is the mean free

path for molecule fiber collisions.

If one sets x equal to Ax, equates Yr and Ves

expands and retains only first power terms in Ax, then

Lf = 0.785 D (at very low pressures). The probability

that a random gas molecule will travel a distance x and
1 1

then strike another molecule is [e*(5F + Iz] £2 which

is the probability of an intermolecular collision for all

values of x. The mean free path, L, is equal to SL
Le+LfT °°

interchanging Lg and Lf gives the identical expression

for I, the mean free path for molecule fiber collisions.

This L is the mean free path for all gas molecules within

a fibrous insulation. Assuming that random molecule-fiber

collisions do not appreciably affect the molecular-velocity

distribution (Maxwellian), the thermal conductivity of the

as (Ked) is evaluated in the same way as a free gas (Kg)

except that IL must be used as the mean free path instead

of Le. Thus

Red = Kg
Lf

Lf+Lg
[| |



Verschoor and Greebler also considered the transfer

of heat by radiation through a fibrous mass. They assumed

the fibrous insulation to be successive plates of fiber

perpendicular to the direction of heat flow. The average

spacing is Lf since this is the average distance that a

photon of the radiation field can move in the direction

of heat flow before encountering a fiber. The heat energy

received by the mean plane, at an absolute temperature Tm,

from all the other planes closer to the hot plate surface

can be evaluated from the Stefan-Boltzmann radiation law.

If a is the fraction of incident radient energy absorbed

by a single fiber plane (actually, by a single fiber),

this heat energy is given in consistant units by the

following series expression:

d
2Lf

w= 5 olny, + Bfam* op f1-??
n=1

(1

Since d/2Lf, measured in consistant units, is very large

we may extend the upper limit of the series to infinity.

If Lf/d(at) is very small compared with Tm. which is the

case for most practical applications of fibrous insulations.

the solution yields approximately:

dm = 40Tm’ LfAt
da’ ( 1¢;



Division of Qm by the temperature gradient, at, and

converting to practical units (BTU in/hr sq ft deg F):

3

Rra = 2.74x1012 To Ls
oi

(1

Verschoor and Greebler then ran experiments, using mats

of specially prepared glass wool, to test this theory’s

predictions with respect to the pressure dependence of

the thermal conductivity. Their theory correlated quite

well with the experimental evidence; the differences were

attributed to convection which was not comsidered in their

study. They are now studying infrared transmission in

order to analyze the mechanisms of heat transfer at high

temperatures, particularly radiation.

Deissler and Eian (13) investigated the thermal con-

ductivity of powders by calculating the conductivity for

spheres and cylinders in square arrays and interpolating

from these the conduction of a powder with any void fraction.

The heat flow through a representative sample of

spheres in cubic array is:

19 = I xaxEe(1%) (0°

yy

 nT xdx £1Q = 5 ToT ok8 =



 ol

where dQ is the heat flow through the infinitesimal cylindrical

clement of thickness dx, Ks is the thermal conductivity

of the solid, Kg is the thermal conductivity of the gas,

and t is the temperature at the surface of the sphere.

Elimination of t, substitution of x=cos@e and dx = -sin6de,

integration and replacing Q by K (since unit dimensions

were used) results in:

K_ _1__&amp; _ Kg vy. Kgh , 1 _ IXe=3 “Ez Tie [(z5-1)- loge 21 + 1 - 3
(=-1)

(2.

vhere K is the effective thermal conductivity of the powder.

Similarly, for cvlinders in cubic array:

K — _n___ -—
Kg ~ K

&amp; 238-1) (

LL sin”t (28-1)
 B_) WoEz_ K2.2
Ks —7' 202- (2)

(2 J)

It was assumed that the heat flow is in the same direction

at every point; that is, the bending of the heat-flow lines

is neglected. The fraction void, a, for the spheres

is 0.475, for cylinders 0.214. The values of K/Kg are

known also for the cases when a is OQ or 1. From these

four values a set of curves were interpolated to give the

thermal conductivity of the gas, the conductivity of the

solid, and the fraction of space occupied by the gas.



Deissler and Eian then experimentally determined the thermal

conductivity of a powder consisting of Magnesium oxide

and argon, helium, or air in the temperature range 200 to 800

degrees PF. This gave them varying ratios of Ks/Kg. A

plot of these values showed reasonably good correlation

with the analytical curve. At high temperatures the

deviation, a maximum of 20%/0, may be caused by errors

in the conductivities used for the constituents of the

powder or by factors neglected in the analysis (perhaps

radiation). The value of K/Kg seemed to have a strong

dependence on the gas used.

\
J cummary of Theories

No one theory seems to describe the experimental

facts adequately but it seems that the following precepts

are justifiable by the available data:

(1) The conduction of the gas in the interstices

is the main mechanism of heat transfer, at least at moderate

cemperatures.

(2) The conduction due to point contact of the grains

is very small so long as sinering does not occur.

(3) Radiation becomed effective only at high temperatures



ITI. PLAN OF WORK

The purpose of this thesis was to study the transfer

of heat, by radiation, in powders with the object of being

able to predict the effective conductivity of a powder

from knowledge of the properties of the solid from which

the powder is made. Furthermore, it was desired to find

in which way to adjust the properties in order to obtain

some particular conductivity and to find out which properties

of the solid are important in determining the effective

conductivity of the powder.

The theoretical study of the conductivity due to

radiation of a powder was based on general equations derived

by Hamaker (15) for the interaction of radiation light

scattering materials in the presence of a temperature

gradient. These general equations were solved for the

specific case of layers under the conditions which obtain

in a powder. Then, using a multilayer system as a model

for a powder, relationships were derived for the effective

conductivity of the powder in terms of properties of the

30lid. and the porosity and particle size of the powder.

The properties of the solid used as parameters in

addition to the lattice conductivity were the scattering

and absorption coefficients. Obtaining valid scattering

and absorption coefficients presents a problem because

they are likely to vary not only with wavelength, but also

vith temperature: furthermore the spectral distribution



of the radiation present is a function of temperature.

Since the scattering coefficient depends on geometric

factors and on the index of refraction, neither of which

change drastically with temperature, it was thought that

the monochromatic scattering coefficient itself would not

vary much with temperature. Therefore equations were

derived which allowed the scattering coefficient to be

calculated from infra-red transmission measurements at

room temperature. These room temperature values were then

ased to calculate average scattering coefficients at the

temperature of interest by using as a weighting function

the Planck equation giving black body radiation intensity.

Equations were also derived relating the absorption coefficient

to the emissivity and scattering coefficient, and these

values were therefore automatically corrected for both

temperature and wavelength dependence since total emissivities

at the particular temperature were used.

In order to measure experimentally the effective

conductivity of a powder due to radiation, an apparatus

capable of measuring very low conductivities in a vacuum

vas designed and built. In a vacuum radiation was the

predominant mechanism of heat transfer since point contact

conduction was small and could be determined from the

conductivity value at low temperatures. The infra-red

transmission of the same materials used as powder samples

vas measured and emisgsivities of these materials were
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obtained from the available literature. Then, using the

equations derived in the theory section, the experimental

values of conductivity of the powder were correlated with

~he properties of the solid.

[Va TTRO.Y OF HEAT CCHDUCTION BY RADIATION

A. Introduction

As a first attempt at calculating the heat transfer

by radiation through powders, an equation was derived for

heat transfer between opaque parallel plates. This approach

vas used because it was thought that ceramic materials

are quite opaque to infra-red radiation and therefore all

the interaction with radiation takes place at the surface:

incoming radiation being converted to lattice vibrations

at the hotter surface, being transferred to the other

surface by lattice conduction only, and then being reconverted

to radiation at the ¢ooler surface, and thereby passed

on to the next particle. This approach implies that the

penetration of infra-red radiation into the body is neglible.

or in other words the mean free path for a photon entering

a body is small compared to the dimensions of the body.

This derivation is shown in Appendix I.

Some experimental measurements which disagreed with

the above relations by a large amount caused a closer look

into the situation that obtains under these conditions.
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Some preliminary measurements showed that if one considered

3ll the radiation that passed through a specimen one obtained

a rather high transmission. The usual method of measuring

infra-red transmission is to pass parallel light through

the specimen and focus the radiation that remains in the

beam onto the detecter by means of a lens that is placed

3t a considerable distance from the specimen and therefore

subtends only a small part of the total solid angle. This

is satisfactory if the beam remains parallel, but in the

case of ceramic materials, the exit beam is dispersed over

a wide angle due to scattering. Thus, while usual measure-

nents show an insignificant amount of energy passing through

a specimen, techniques which measure the total amount of

energy appearing on the other side give transmission values

as high as 70°/0 for the same material. As a result of

these preliminary infra-red measurements it was realized

hat before one could calculate radiation heat transfer

through powders, one would have to first investigate the

interaction of radiation with the solid particles from

which the powder was made.

B. Narrow Angle vs. Wide Angle Measurements

First of all, we define an absorption coefficient

(a) by stating that aldx is the amount of radiation absorbed

from the flux I on passing through an infinitesmal layer dx.

Similarly, a scattering coefficient (s) is defined by requiring

that the flux removed from I by scattering while passing
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through an infinitesmal layer dx be equal to sI dx. While

ve know that the radiant energy removed from the beam by

absorption is converted into lattice energy, the fate of

he scattered radiation is not so clear. In fact, it is

the latter which causes the great difference between the

two types of measurements.

We can write differential equations for the two cases,

For a narrow aperature apparatus the change in I is merely

the amount removed from the beam or

dI/dx = -(a+s)I (

The general solution of this equation is

 aA

-(94+8,%¥
(.

exclusive of suitable arbitrary constants. From this we

see that in this case (a) and (s) are equivalent, since

cach is a mechanism by which energy is removed from the

beam, and an extinction coefficient can be defined simply

as the sum of the absorption coefficient and the scattering

coefficient. We also note that (s) is a function of the

solid angle that the collimating lens subtends, the smaller

the aperture the larger the scattering coefficient.

Ne have assumed in the paragraphs above that conditions

of measurement are such that any energy deflected from the
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beam is permanently removed, and cannot be deflected back.

However, under certain conditions (especially in wide

angle measurements as we shall see) some of the energy

which is scattered can after several scatterings find its

wey back into the beam. Furthermore, each scattering center

is exposed to light scattered by the other particles and

the light of the original beam may have suffered extinction

by the other particles. Lf these effects are strong, we

speak of multiple scattering. This situation (that of

nultiple scattering) is of more practical interest than

the narrow angle case outlined above, because heat transfer

in large bodies turns out to be a case of multiple

scattering.

Cu Multiple Scattering in Non-radiating Layers

Let us consider the single dimensional case of

multiple scattering only for simplicity. We divide the

total radiant flux into two parts:

I = The flux in the direction of the

positive x axis

J = The flux in the nexative x axis

(26,

(&gt;

The definition of (a) remains the same as that in the

previous case, but now we must realize that the scattering

coefficient is a measure of the amount of energy scattered

out of the flux in one direction, and which therefore

appears in the flux in the other direction. Hera. then.



in calculating the change in the flux, we must not only

take into account that some energy is removed from the

beam by scattering and absorption, but also, that some

energy, that scattered from the backward flux, is

reintroduced into the forward beam. This produces the

following equation for the change in the flux I:

1I/dx = =-(a+s)I + so [

and an analagous equation for the change in J:

1J/dx = (a+s)d- sJ =

These equations were originally developed by Schuster (14)

to describe the transmission of light through fog. These

equations can also be used to describe transmission measure-

ments under wide angle conditions and where certain other

assumptions are valid. These assumptions have to do with

the neglect of sidewise scattering. It is therefore

assumed that any energy scattered sidewise out of the beam

is compensated by energy scattered sidewise into the beam

from neighboring regions. This is true if the area

investigated is either small in cross section compared

vith the total cross section of the sample or is large

compared with the thickness of the sample. It is also

assumed that the incident radiation is diffuse since this

is a one-dimensional calculation. Under proper experimental

conditions these assumptions are approximately fulfilled.



and in practical heat transfer problems, it can easily be

seen that this case, that of multiple scattrcring, is the

actual one.

The equations above show that in the case of multiple

scattering the absorption and scattering coefficients are

not equivalent. Furthermore a simple exponential equation

vill not describe the phenomena.

In Appendix A a more rigorous mathematical treatment

of multiple scattering is given. In this section here

only the results of some of those calculations will be

shown along with a discussion of the physical significance

of the equations derived and their meaning with respect

Fo heat transfer by radiation in solids and powders.

The solution of Schuster’®s equations is shown in

Appendix A to be:

OX —0,X[ = A(1-8_)e © + B(1+B.)e

0 ox =O ox
J = A(1+4B_)e + B(1-B,6)e

(30°

(3!

Nhere

J
™

= + Va(a+2s)

_ | a30 = + (a+28)

{ 5c

(33%



Both roots being taken with the positive sign. In these

equations A and B are constants to be determined by the

boundary conditions. Though J, and Ps are functions of

(a) and (s) which arise from the mathematical solution

of the equations, it is found that a physical significance

can also be attached to these constants themselves. This

will have importance in understanding the effective thermal

conductivity of a powder due to radiation since this

conductivity depends on these two constants (og and By)

in a simple way as will be shown later.

In order to find the physical significance of these

bwo constants ©, and By)» we first solve the general

aquations (30 and 31) for the special case of a laver

which is infinitely thick. The end conditions in this

case are that the incident flux on the front surface has

an arbitrary value (x,) and that this flux vanishes at

che back surface; or. formally:

[=I atx=20
I = (O at ¥ = MO

Substituting these relations into the general equations:

T
y = A(1-B.) + B(1+B8,)

gg m® J 0
=0=2401-B le ® +B (1-Be °

(34,

{-



These two equations are fulfilled if

Cl O

3nd

B = I /\1+B,) [

and the solution for this particular case (that of an

infinitely thick layer) is

-0 X
=Te ©

(1-8,) o -0 x
If = 1, (1+B,)

{ &amp;

oY

(%

Ne can see from equation (37) that Cs measures the rate

of decay of the incident beam Ie This means that g is

similar (though not exactly mathematically analagous) to

an extinction coefficient. In the ensuing discussion (9)

will be treated as an extinction coefficient. but it should

be remembered that it is not the usually defined extinction

coefficient. It will be seen later. where surface effects

are important, that the product 0 x represents an optical

thickness. That is, for two different materials the

surface effects and the decay of licht intensity will be

equal if the g.X product is equal for the two different

materials even though © o and x might not be individually

equal. It should also be noted that © depends on the



absolute magnitude of (a) and (s). This is as it should

bes Bg will be seen to depend only on the ratio of (a)

to (s) and not on their absolute magnitude. In summary

we see that a, behaves as an extinction coefficient and

equal effects will be caused by equal optical thickness

(ox product).
Looking at equation (30) we see that at the front

surface

(1-8)
7 JT = —2

°° (1+8,)
( -

since x equals zero. But the value of (J,/T,) at the front

surface is equal to the reflectivity by definition; from

the value of the reflectivity it is possible to find the

absorptivity since the absorptivity plus the reflectivity

must add up to one. The absorptivity is therefore:

Y

2Bo (=€)
(1+8.)

(UC;

Since, according to Kirchhoff’®s law, the absorptivity and

the emissivity are equal we can see the physical significance

of the constant (B,) from the above equation. Evidently

the emissivity and the constant (B,) are interconnected,

with the emissivity of a material depending only on the

value of the constant (Bg) for the material in the simple

manner given by equation (40).



To pursue this matter even further: Hottel (1€)

found that if one considers radiation heat transfer

retween two infinite parallel plates one has to use an

cffective emissivity rather than the actual emissivity

if the materials because the radiation reflected and re~~ ~~ ~fed

from each surface. This effective emissivity is the sum of

an infinite series of these re-reflections and according

0 Hottel depends in the following way on the emissivity:

= _£_
= Dag (41

If we solve equation (40) for (B,) we find that (Bg)

also equals (5) and therefore (B,) represents the

effective emissivity between two infinite planes. We will

find that this analogy will be useful when discussing the

;hermal conductivity of powders using a model of flat plates.

If both parts of the fraction comprising the right

hand side of equation (33) for (B,) are divided by Vs,

she equation becomes:

NE [ as35 = a/s +2 (4

From this we see that (By) » and therefore the emissivity

of a material, depends only on the ratio between the absorption

coefficient and the scattering coefficient of the material

and not on their 2bsolute value.



Ye see then that this method of approach allows us

to calculate various parameters of materials such as their

reflectivity, emissivity or absorptivity, and transmisivity

(the general equations can be solved for thin layers as

well as infinitely thick layers as was shown here, the

other solutions are shown in the appendix). Furthermore

these properties of materials are found to be simple

functions of two intensive variables of the material; one.

an extinction coefficient, and the other an effective

emissivity. These constants are simple functions of the

absorption and scattering coefficient, and either set of

~onstants can be used as the independent parameters.

Since transmittance of a layer, as well as other

optical properties such as reflectance, can be measured,

such a measurement furnishes a method of determining the

scattering and absorption coefficients. For instance it

is shown in the appendix that if the total transmission

of two samples of different thickness (Dy and D,) is

measured, than the constant (J_,) can be found from the

following equation:

. . 5

sin h 6,04 _ sin h oP»

T. T,
= sin h © (D,-D,) (45°

where (19) and (75) are the measured transmissions:

Or if one of the thicknesses is twice the other. then the

following equation holds:



T,(14 +1). lr

cosho D = 21, CLA

Once the constant CY is determined, (B.7 can be found

from an equation which describes the transmittance of as

layer as a function of its thickness and optical constants

(see equation 45).

[f£ j+ 3&lt; desired. the absorption coefficient (a) and the

scatterir— «

hy mean:

fficient

ejuaticnrs

T  rc Tqition bt elrlowl

can be found from (o,) and (B,)

(= tt. predict transmittances

and reflectances for various samples of the material, the

knowledge of the ovtical constants of the material will

later be shown t¢ be useful in predicting heat transfer

by radiation through the material as well as in calculating

effective thermal conductivities due to radiation for

rowders made of the material.

To summarize this section, if the general equations

are solved for the transmission (1), reflectance (p) and

absorotance (oa) of a laver of thickness (D) one obtains:

g =

gon
A

1/1
0)

T/T.

amount absorbed _

 B®
2\

(1+8,, )sinho D+2B _cosho D
2

(1-8, )sinho D
. 2

(1+B, )sinho D+2B_cosho D

2B,LB,sinh. oD+coshoD-1]
(1+B .©)sinho _D+28 cosho .D

{ oi

( LLG

= g (47



D. Radiating Isothermal Layers

¥hile in the above discussion only absorption and

scattering of radiation is considered, it should be realized

that if the material reaches a sufficiently high temperature

it will radiate itself (so-called thermal radiation).

The amount of this radiation is a function of the temperature

(according to the Stefan-Boltzmann law) as well as other

parameters. Hamaker (15) has taken this radiation into

account by introducing an additional term into the general

differential equations derived by Schuster. In accordance

vith Kirchhoff's law (that the absorptivity is equal to

the emissivity) an amount of radiation equal to (aE_dx)

will be emitted in each direction; (E_) designates the

black-body radiation at the temperature and wavelength

in question.

The general eguations

dTI/dx = -=(a+s)] +sJ +aRE

1J/dx = (a+s8)J = sI - aE

then become:

(48 ]

(U4  A

xJ

And the general solution is:

rv
1

 §

0X -0Xx
= A(1-B )e + B(1+B_le + E_

0X —0,X
- A(1+B.)e + B(1-B.)e + BE

(50)

(51



where (A) and (B) are again to be found from the boundary

~onditions.

If, for instance, these equations are solved for a

layer, it will be found that the solutions have the following

form: The amount of radiation coming from the front surface

&gt;on which a flux of I is incident (there is no flux

incident on the back surface) is:

iy
—

2 . s

I_(1-B,")sinho D+E 2B [PB sinh 0 D+cosh © _D-1l
2 .

(1+B )sinh 0 _D+2B_cosh 0 _D
[tJ

‘hile the amount of radiation appearing at the back surface is:

_ I2B, + E28, [Bp sinh 0 D+cosh 0 D-1l
D ZN tt mmm nw

(1+8," )sinh O_D+2B_cosh 0D
(5-

Comparing these equations with those for a non-radiating

body, we see that they are made up of one term which describes

the reflectivity or transmissivity, plus another which

describes the emissivity (or absorptivity). It is then

possible to rewrite the equations above in the following

form, where (1), (Pf), and (eg) are defined by equations

(45), (46), and (47):

I. = PI, +eB_ ( Ge.

r=n Tl +eB



Furthermore, if we solve this case for the emissivity,

it will be the same as the absorptivity found in the

non-radiating case or equation (24) as is required by

Kirchhoff?’s law.

These calculations are then useful in predicting the

interaction of radiation with heated materials. In particular

they allow us to calculate the emissivity of materials

from knowledge of their optical constants. Also, since

the emissivity of an infinitely thick sample is one of

the properties that it is possible to measure, this would

allow us to find the constant (B,) directly from a single

measurement.

BE. Radiating Layers with Temperature Gradient

As a continuation of this treatment and in order to

use this method as a means of predicting heat transfer

it is necessary to consider the situation where a temperature

gradient is present in the sample under investigation.

This complicates matters since now temperature. and

therefore the radiant flux, is a funetion of position.

Furthermore, the spectral distribution of the radiant

cnerey changes with temperature. The latter is important

vhen the absorption coefficient and scattering coefficient

change with wavelength. Hamaker presents for this case

a set of equations in which total radiation only is considered

3s a function of temperature. This introduces an error

vhich will be small for small temperature gradients and



can be minimized further by using absorption and scattering

coefficients which are averaged for the spectral distribution

of black body radiation for the temperature in question.

Since the total black body radiation flux is a

single-valued function of temperature it can be used as

an independent variable instead of temperature thus simplifying

the equations. In particular, if the temperature gradient

is small compared to the absolute temperature, then the

total black body radiation (E) at temperature (T) can be

approximated by:

H, = E_ + bu T-T ) (

There

) = 4 g'mp °T (5

BE, is the total radiation corresponding with a temperature

(T,) which is close to the temperature being considered;

(0?) is the Stefan-Boltzman radiation constant.

[f we add to the equations already shown a heat balance

equation expressing the fact that heat is neither accumulated

nor produced within the body, we have the following set

&gt;Ff equations to describe the situation:

al _
Ie = -(a+s)I+sJ+aE / w

i JC



dJ _ -sJ-
 = (a+s)=-sd-aB

2,

£ dg + a(I+J) = 2a

(&amp;

(6,0)

lhe complete solution of these equations Hamaker

shows to be:

= A(1-B)EX + B(1+B)e PF + C(gx-B) + F

4 = A(148)e’F + B(1-8)e~0% ui0x+B) + F

0 ox =O
f = =AKe - Be” © + Cox lh

(61,

[ 6

[ ©

here

 5s = +|V({I+K) [ala+ds) | = oO, [+IVT+) |]

3 =  og __
94°98

2b 2bB
= koK = k(a+28)

( ie

 ¢

"68

The constants (4), (B), (C), and (F) are to be

determined from the boundiry conditions which can be four

of the possible six conditions, three at each surface: the

temperature gradient, the temperature, and the amount of

incident radiant energy.



[t is worthwhile to consider equations (61 = 63%) in

more detail following a discussion in Hamaker. The two

exponential terms in each equation will diminish rapidly

as we move away from the value of x at the surfaces.

T'his suggests that these terms will be of importance only

in the neighbourhood of the boundary planes where they

provide certain corrections required to fulfill the boundary

conditions. In the center of a thick layer, then, we

would expect that the temperature and radiation fluxes

vould vary linearly with distance and be represented by

the linear terms in the equations in question. The situation

vill be like that sketched schematically in figure lg: the

deviations from linearity near the surface being due to

the exponential terms. These surface corrections will

oe discussed later where it will be seen that they play

a2 predominant part in determining the conductivity of a

powder.

From this it may be inferred that the total transfer

of heat, which is constant over the entire layer, will

depend only on the temperature gradient in the interior,

that is on the constant (CC). To verify this. we find the

total heat flow in the positive direction which is:

ar _-k dB, (q_2 m= -k7= + (I-J) = B a= + (I-J) (6/

fhich after inserting equations (61 - 63) becomes:



y= cE + 2p) = -cop 1H (&amp;

The exponential terms cancelling out. In practical appli-

cations where the total transfer of heat is known, this

cquation will be an easy method of finding the constant (C).

In the region where (I), (J), and (E) are linear functions

of (x) we have from equation (63):

nL dE _Db dr“a dx To dx ( AU

Vhich introduced into equation (68) leads to:

h] 2b ar
~ -[ k tl a+28) ] dx = =k(1+%) al

If (V) represents the amount of heat transferred by lattice

(70

conduction. then:

aI
T= &lt;k3= ('/.

And the remainder of the transfer in equation (70) must

oe due to radiation. Then, if (U) represents the heat

;ransfer by radiation:

2b aT_ arU = -_75a dx = - Kk dx (7.

As might have been expected, (U) is proportional to (Db).

the black-body radiation.



Furthermore on dividing equation (72) by equation (71)

ve obtain:

i$ = (J/V [

which means that the constant (K) represents the ratio

of the heat transfer by radiation to that by lattice

~onduction.

EF. Surface Effects in Semi-Transparent Layers

When considering heat transfer in thick opaque layers,

the surface effects will be negligible and the heat transfer

#ill be determined by (k) and (X). However, in two cases,

that of very transparent materials such as glass and that

of thin layers, the surface effects will be important and

night even predominate. We can consider the interface

between two materials as being a region where the ratio

of lattice conductivity to radiation conductivity is

changing from the equilibrium value found in the center

region of one of the materials to the equilibrium value

found in the center of the other region. The surface is

therefore a region where radiation is being converted to

lattice conduction or vice versa. In addition we should

note that the extent of the non-linear region near the

surface is also an indication of the extent of penetration

of radiation through the surface into the body of the layer.
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If two layers of different properties are in contact,

it is worthwhile to find both how the gradient in the linear

portion in the center of each varies with these properties,

and also how the non-linear portion at the surface behaves.

To examine this we first note that (Q), the total amount

of heat transfer, is constant in both layers. Also, (Q)

is always equal to the sum of (U) the heat transfer by

radiation and (V) the heat transfer by lattice conduction.

Ne know that (V) at any point is proportional to the

thermal conductivity of the solid times the temperature

ocradient at that point since this is the definition of

the thermal conductivity. In the center of a thick piece

of material we have seen, equation (73), that {¥) is the

ratio of (U) and. (V); therefore in the center, (U) is

proportional to CK) times the thermal conductivity times

the temperature gradient. In the following equations this

is expressed formally; in these expressions the subscript (c)

refers to the center of a thick layer, (s) refers to its

surface, and the subscripts (1) and (2) refer to the

Jifferent materials in contact: (If there is no subscript

(¢) or (s). the relation is valid anywhere.)

Since

~ = [f Vv ( 74



and

J = k(dT/dx) {

and

J = KV, = Kk(dT/dx) (75)

Then

J, (1+ K)k(4T/dx) a ( ,

Furthermore, for two layers (since (Q) is always the same):

(1+ #.)k, (aT/dx) 4 = (1+ K,)k,(aT/dx), (7.

FEN

(dT/dx) 4 (1+ K 5k,
(AT/3x) , , = (1+ Kk, (7 Q,

Since (1+ &amp; )k is the total effective thermal conductivity

at the center of the laver., we see that the ratio of the

temperature gradients at the center of two layers in contact

varies inversely as the ratio of the total effective

conductivity of the layers; this is as we might expect

and is the same as the case where only lattice conduction

is considered.
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le note that (V) and (T) (where it is defined) are

both continuous functions. Then at the interface. in

&gt;rder for (V) to be continuous.

k, (AT/dx) 4 = k,(&amp;T/éx) , ( &amp;

re

(dT/dx) 4 _ k,
(4T/ax) 5 - ky ((&amp;

And we see that the ratio of the temperature gradients

at the interface between two materials is inversely

proportional to the ratio of the lattice conductivities

of the solids.

We would finally like to find the direction in which

fhe gradient changes in going from the center of a layer

Fo its surface which is in contact with a dissimilar

material. We will see that this depends on the value of

(X) of the two materials. Let us consider that we are

going from the center of a layer to the surface of that

layer and that the surface is in contact with a material

which has a larger value of (XK). Since (f) in the second

naterial is larger, (U/V) in the second material is larger

(becauseK=U/V),and (U/V) at the interface will be

intermediate between that at the center of the two materials.



or, since

Ko &gt; Ky

Is1 Ua
Vs1 &gt; Vel

(RZ

( 2

substituting U = (Q-V):

Voy &gt; Q-Viq
Val Vai

9 15&gt; 8-1
Var Voi

(1

(

and

Vol 2 Vqq ( &amp;

or (since V = k(dT/dx) and k has the same value in the

renter and the surface)

(dT/dx) ,¢&gt; (aT/dx1) 4 (= {

#e have found then that when going from a material

&gt;f low ( XX) to one of higher (¥) the gradient in the center



of the first material is larger than the gradient at the

surface. We could have done this for the case where the

second material had a smaller value of (¥) than the first

naterial, and would have found, of course, that in this

case the gradient would have been smaller in the center

of the first material than at its surface. We also note

that the direction of change (i.e., whether the gradient

is smaller or larger at the surface compared to the

center) depends only on whether (&amp; ) is larger in the

second material than in the first.

To illustrate the relations above let us consider

the case of heat transfer from a hot dense ceramic refractory

chrough a layer of glass to a vacuum. This situationis

shown in figure l. The temperature increases from right

to left (i.e., the refractory is on the left), and we

have assumed in this illustration that the materials are

thick enough so that there is some linear region in the

center. Then, since the total conductivity of the

refractory is larger than that of the glass, according

to equation (79), the gradient in the center of the glass

is steeper than that at the center of the refractory.

I'he gradient at the surface of the refractory is less

than that at the center of the refractory because the

value of ({ ) is greater in the glass than it is in the

refractory. ZTFor the same reason, the gradient at this

surface of the glass is steeper than it is in the center of

the glass. Finally the ratio of the gradients at this



interface is (kp/kq) where (kp), the lattice conductivity

&gt;f the refractory is considerably larger than (ke) the

lattice conductivity of the glass. At the other surface

of the glass we see that the gradient decreases at the

surface since we are going to a material with an infinitely

high value of (f ) (the vacuum). Another way of looking

at this is that since the conductivity of the vacuum is

zero, (all the transfer is by radiation) there can be no

lattice conduction at this surface and the gradient must

therefore be zero also.

From the above discussion we see that we can find

how temperature gradients change both on passing from one

material to another, and from the center of one layer to

its surface when in contact with a different material.

However we have made no mention of the absolute values

of the gradients at the surfaces of the materials or of

the exact shape of the curve where the gradient changes

from the value at the center to that at the surface. Nor

has the extent of these surface aberrations been considered.

These values can only be found by using the complete

equations derived in Apvendix A and do not lend themselves

bo a simple qualitative discussion. However we can see

that the extent of the surface effects ihto the center

of the layer, and the penetration of radiation below the

surface of the layer will be a function of the extinction

coefficient ( 0) of the material. In the next section

ve will show how this effects the effective thermal con-

ductivity of powders due to radiation.
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Jae Qualitative Extension to Multilayer Systems

It *s possible from the discussion on the previous

pages to obtain a qualitative idea of how the effective

conductivity of a powder due to radiation might vary by

ising as a model for the powder a multilayer system. In

this section we will consider the effective conductivity

of a system of many parallel infinite layers. We will

assume that the conductivity of this system is the same

as that of a powder where the average particle size is

the same as the thickness of the layers, and the porosity

and other properties are the same.

Ne can for convenience divide the range of various

size lavers into three cases: One where the mean free path

of the radiation is much smaller than the thickness: in

other words the radiation is absorbed and emitted essentially

from the surfaces, and the extent of the surface effects

are small compared to the thickness of the layer. The

second case is when the surface effects extend a sienificant

distance into the layer and therefore one must consider

radiation which is absorbed and emitted within the layer.

If in the latter case, the layers are thin enough, there

may be no sign of linear temperature gradient. The final

case is when the particles are so small that there is

essentially no individual interaction with the radiation,

but the system acts as a whole and the temperature gradient

3CTr0SsS each particle is insignificant.
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These three cases are sketched schematically in

figures 2, 3, and 4; the left hand set of illustrations

show the temperature gradients, while the right hand set

represent the path of rays of radiations, or at least

cheir points of origin and the point where they are

absorbed. These illustrations are for the material in

a vacuum for simplicity, however similar considerations

vould be valid for layers with interstitial gasses.

In these illustrations we have kept the layer thickness

constant and shown the effects of decreasing extinction

coefficient (that is the third case has a smaller extinction

coefficient than the second, etc.). However it should

be noted that the important parameter is the optical

thickness mentioned earlier. This parameter, the product

of the extinction coefficient and the actual thickness

is the significant one in determining how far the surface

effects extend into the layer. Materials with equal

optical thickness have equal proportions of non-linear

temperature gradients regardless of the absolute wvalues

of the thickness or the extinction coefficient. With

this in mind we could as well have allowed the thickness

fo decrease in the illustrations, but the figures are

oresented as they are for clarity. The important distinction

between the three cases then is that the first is for very

large optical thicknesses, the second for an intermediate

range, and the last represents very short optical thicknesses.



To consider the effective conductivity of the first

case, illustrated in figure 2, we must first know that

“he effective conductivity of the space between the layers

is much smaller than the lattice conductivity of the solid

for the particle sizes and materials and temperatures in

vhich we are interested. This means that if we consider

a system of layers between two surfaces at different

temperatures, we will find that the temperature drop across

she solid lavers is small compared with the temperature

drop across the spaces between them. Furthermore, since

the surface effects are negligible the temperature drop

across the solid is a function of the total amount of solid,

and increasing the number of spaces by making the layers

thinner (while keeping the porosity constant) will not

change the total Cope RL drop across the solid.

However it will increase the number of spaces. Since these

spaces are thermal resistances, increasing the number of

pores will decrease the effective conductivity. The effect

is analagous to that of using radiation shields to decrease

radiant heat losses: the more shields in a given distance

the less the transfer or the lower the effective conductivity.

It is also easy to see that increasing the solid

fraction (while keeping the thickness of the individual

layers constant) also increases the number of spaces in

a given distance and therefore will also decrease the

2cffective conductivity, other things remaining equal.
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Finally, if we consider the heat transfer by radiation

across the space itself, we can see that it depends on

the emissivity (or more exactly the effective emissivity(B)

since this is a situation of radiation transfer between

two infinite parallel surfaces). It also depends on the

total amount of radiation which in turn can be shown to

depend on T° (AT):

Since

3 oc (AD) ( a;

and

y= x A=
 ee AX (8 luz

-—

if we use this equation (89) to define the effective

conductivity of the space (k_) then from these equations

ve can see that

K_ a: m2 (YD

&gt;ther things (such as ( Ax), the thickness of the space)

remaining constant.

The effective conductivity in this case then depends

linearly on the particle size, the effective emissivity, the

~ube of the temperature and inversely on the solid fraction.
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The intermediate case illustrated in figure 3 is the

case where surface effects extend a significant distance

into the sample or in other words, radiation penetrates a

significant distance past the surface. This is the most

important case from a practical viewpoint since in the

particle size range and the optical property range of most

ceramic materials it is found that the optical thickness

falls into this intermediate range. The effective con-

ductivity of these systems will still depend on the

smissivity and the cube of temperature (since it still

jepends on the amount of radiation present); it will also

still depend on the thickness of the layers and inversely

on the solid fraction since these factors will change the

number of layers and therefore the number of thermal

resistances present. But we find that now the effect of

changing the thickness is more complicated since when

the thickness changes the proportion of non-linear

temperature gradient region also changes.

We can understand this by noting that the radiation

coming from a layer is proportional to the temperature

of the part from which the radiation is emitted, and the

emissivity of the layer itself. Therefore, since the

radiation is being emitted from the non-linear region (rather

than just the surface), as the non-linear region increases,

the temperature of the radiation area changes. In the

case that we are considering (layers in a vacuum) we can



see (from figure 3) that the radiation will be emitted

from a hotter region, and be absorbed in a cooler region, and thus

the héat transfer across the space between layers will

increase when the optical thickness decreases.

As the non-linear region becomes larger another

affect appears: when the linear region in the center

jisappears completely we can no longer consider the layer

as a thick piece with surface effects, but must realize

that the emissivity of this thin layer is different from

-hat of an infinitely thick layer. This latter effect

must also be accounted for. We can understand this most

easily by considering the radiation which now might pass

completely through a particular layer. Then, as particle

size decreases, we decrease the effective conductivity

by introducing more pores, but this effect is ameliorated

since, because of the decreased optical thickness, more

radiation gets through the layer.

We find that the conductivity in this case depends

on the same factors as the previous case as well as an

additional factor which is a function of the optical thickness.

This factor is non-linear: it is one for large optical

shicknesses and increases as the optical thickness decreases.

A quantitative discussion of this factor will be found

nn the next section.

The final case shown in figure 4 is that of very

small optical thicknesses. Here a photon will, on the

sgverage pass through many lavers before interacting.
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When the optical thickness is small enough there will be

no lattice conduction across a layer and therefore no

temperature gradient in it. Increasing the number of

layers in a given distance will have no effect and the

conductivity will be independent of layer thickness;

It will depend only on the optical constants of the solid

and in fact will be equal to the effective radiation

conductivity of the solid itself divided by the solid

fraction. The actual temperature of any particle will

be the temperature of the radiation in that region and

the radiation reaching it will come from many layers away.

For a given pore fraction and optical constants we see

that when this situation is reached it is impossible to

lower the effective conductivity any further by reducing

che layer thickness. It will be shown in the next section

that this case is not likely to be realized in practice

since other factors enter in.

H. Quantitative Discussion of Multilayer Systems

Tsing the theory discussed in the previous sections

and derived rigorously in the Appendix A, it is possible

to formulate equations to describe the effective conductivity

of the three cases discussed in the immediately preceding

section. We can now show how these equations derived

mathematically predict the same sort of variation that

were shown by the qualitative discussion. The equations

that will be shown in this section will be for a material
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in a vacuum. The material will, in the center of a thick

layer, also have only a small proportion of the total heat

transfer carried by radiation (i.e., the constant (¥{) is

small compared to one). This latter condition will be

found to be the case with most poly-crystalline ceramics

as will be shown in the results section. Furthermore,

we will assume that the lattice conductivity of the solid

material is much larger than the effective conductivity

due to radiation of the space between the layers. This

condition is also found to hold in the temperature and

particle size range of this investigation when actual values

sre compared. While these assumptions are made in this

section to simplify the discussion of equations which

vould otherwise be too complicated to get any physical

meaning from, the theory itself is not limited by any such

assumptions: the complete equations for the most general

case are presented in the acvvendix. The effects to be

expected in special cases where the above limitations do

not apply can be inferred from these complete equations

by reasoning similar to that which will be presented here.

The first case that we will investigate 1s the one

of very opague layers. Here we can calculate an effective

conductivity by assuming that there is a high conductivity

(the solid) and a low conductivity (the space) material

in series with each other. It is assumed that the energy

is transferred across the space by radiation, is converted

co lattice vibrations at the surface. is carried across
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the solid layer by lattice vibrations and then emitted

at the next surface in the form of radiant energy. The

significant thing here is that the conversion from radiant

energy to lattice vibrations and vice versa takes place

on the surface itself, with no penetration of radiation

into the interior of the solid. We then need to consider

only the emissivity of the material as if it were an

infinitely thick sample. We do have to take into account

the reflection from the opposite surface since the absorptivity

is not one; this necessitates the correction due to Hottel (16)

mentioned in the previous discussion and means that we

should use the constant ((B) = ge) instead of the

emissivity (g€). The results of this calculation which

is shown in detail in the appendix give as an effective

conductivity (k.) for a powder in a vacuum:

bBD
Ke = Ter [G

As we predicted in the qualitative discussion the

conductivity does depend directly on the layer thickness (D)

and the effective emissivity and inversely as the solid

fraction (1-p). It also depends on the cube of the

absolute temperature (since b = 4 0°),

The next case which is studied is that where the same

conditions hold (i.e., the material is in a vacuum, the

constant (¥) is much smaller than one, and the conductivity

of the solid is much larger than the effective conductivity

yf the space) but where the optical thickness is not very



large. This is the region where surface effects become

important, and radiation penetrates into the body a sig-

nificant amount or even perhaps through several layers.

For this case we must use the complete theory derived in

the previous pages, taking into account multiple scattering,

absorption and re-emission, as well as temperature gradients.

I'he procedure carried through rigorously in the appendix,

is to solve equations (61 - 63) for the boundary conditions

present in the actual case. These conditions are the

incident radiation on each surface and the temperature

oradient on each surface. This procedure provides equations

describing the resulting emitted radiation from each

surface as well as the temperature of each surface. Using

these equations we can derive an effective conductivity

for a system made up of layers of material in question.

vhen this is done, and the results simplified to conform

sO the conditions we have specified above, the following

expression for the effective conductivity of a system made

of layers which are semi-transparent is obtained:

K_
_ _bBD_ _ sinhoD
- (1-p [cosho D-1] (9,

Phis e. .xcosion can be divided into two parts: the first part:

PED Ly



is identical with the expression shown in the previous

section and therefore represents the conductivity of a

system of opaque layers. The second part:

sinho D
[cosho D-1]

represents the correction that must be applied to the

conductivity of opague materials for the effects of

radiation which penetrates the surface. As is to be expected

this term depends only on the optical thickness (5 D) of

the material. Furthermore, the smaller the optical

~-hickness, the larger this correction factor becomes.

corresponding to the effective conductivity being raised

by more and more radiation passing through the layers.

Ne can easily find the value of this factor when the

optical thickness becomes large. ©Since the hyperbolic

sine approaches the hyperbolic cosine when the argument

becomes large; and they both become rapidly much larger

than one, the value of the correction factor becomes one

for large values of the optical thickness(ocD). More

Formally:

3inh x — cosh x, as ¥—&gt; © {



also,

~osh x =1 =— - cosh x, as XxX—&gt;® (

~herefore

sinh x/(cosh x = 1) —&gt;1, as x—&gt; © (
;

This means that for large optical thicknesses the complete

equation (92) approaches as a limit equation (91) which

was derived for that case (large optical thicknesses).

Ve now have a mathematical basis for the predictions

made in the previous section on how the effective conductivity

might be changed by the increasing importance of surface

osffects. Furthermore if we introduce actual numbers into

“he correction factor above, as will be done in the results

section, we will find that the value of the factor can

easily become ten or larger for common ceramic material.

This, therefore is a very significant correction and shows

the necessity for making this complete calculation rather

than relying on an opaque situation.

Finally we come to the case where the optical thickness

of the layer is very small. This corresponds to the mean

free path of the radiation being much longer than the

layer thickness and therefore any particular ray will travel

through many layers before suffering any interaction.

As we saw qualitatively before this situation, in the

limit, produces a minimum conductivity below which it is
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not possible to go even if the thickness is reduced even

further. To see this mathematically we find from the

definitions of the hyperbolic functions in terms of infinite

series that the limits of these functions as the argument

approaches zero are:

limit sinh x = xX
Ee)

&amp;

limit (cosh x - 1) = &gt;

w=(0)

(O&amp;

(55

If we introduce these values into the complete equation (92)

ve obtain the limiting effective conductivity for very

small particle sizes:

 2bB/glimit k_ = Zhisy
D-—%0

(100

If we substitute the definition of K = shi (equation (66))

into this we find that the minimum possible effective

conductivity is:

Aae (1-0) (101)

That is (remembering that (K ) is the ratio of radiation

conductivity to lattice conductivity in the solid) the

ninimum possible effective conductivity of the powder is
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the radiation conductivity of the solid divided by the

solid fraction. Since the latter is less than or equal

50 one, the minimum effective conductivity of the powder

is increased above the radiation conductivity of the solid

by any porosity present.

The above discussion is theoretical and when we

investigate the actual case we find several factors which

might cause discrepancies. First of all we have considered

the solid as a homogeneous material with scattering and

absorption coefficients which are intensive properties.

As far as the scattering coefficient is concerned, this

is only an avproximation. Virtually all the scattering

in common ceramic materials comes from the pores in these

materials. This scattering is due to the fact that the

radiation has to pass across an interface of the pore where

the index of refraction changes. Also, since the surface

of the pore is not a plane, the radiation will be scattered

in a pattern depending on several factors rather than

simply being reflected (or partially reflected). However

there 1s another surface where the index of refraction

changes; this is the surface of the layer itself. When

the layer is thick, the reflection from this surface is

much less than the effects of scattering from the pores

v¥ithin the solid. But, if the layer becomes thin enough.

there will be very few pores (and therefore very few scat-

ering centers) in it, and the scattering from the surface

of the layer itself might become significant with respect
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to the scattering from the pores within the layer. This

situation in an actual case might reduce the conductivity

below the theoretical minimum by effectively changing the

value of the scattering coefficient of the solid.

In addition, in a real case, the particles of a powder

are not layers, but are irregular shapes and will touch

at points. These points will conduct a small amount of

heat, and this amount might become significant for very

small particle sizes.

To summarize the theoretical picture of the variation

of the effective conductivity of a powder in a vacuum with

respect to particle size, we have drawn figure 5. The

straight dotted line represents the conductivity of opaque

layers which is linear with respect to optical thickness

and therefore particle size and goes from zero (at zero

thickness) to infinity (for infinitely thick particles).

This must be multiplied by the correction factor which

is shown as the dashed line. At high optical thicknesses

this factor is one, and it increases as the optical thick-

ness decreases until at small values of the optical

thickness it is proportional to the reciprocal of the

optical thickness. The product of these two terms. whieh

represents the theoretical conductivity, is shown as the

solid line. At small optical thicknesses it is the product

of a term which is proportional to the thickness and one

vhich is proportional to the reciprocal of the thickness:
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it is therefore a constant in this range. At large optical

thicknesses the theoretical conductivity 1s the product

&gt;f a term which is proportional to the optical thickness

2nd a constant (which is equal to one): the theoretical

conductivity in this latter region is therefore proportional

co the optical thickness.
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I EXPERIMENTAL

A. Thermal Conductivity Measurements - Introduction

In designing an apparatus to measure the thermal

conductivity of a powder, the thing that plays the largest

part in determining the configuration of the apparatus

is the fact that the effective thermal conductivity of

a powder is, under certain conditions, lower than any

other known material. This means that it is impossible

0 insulate a powder sample in such a way that heat flow

can be produced only in the desired direction. For example

if a temperature gradient is impressed on the ends of a

rod of metal, and the metal is placed in an insulating

material, the heat flow along the rod can be used as a

measure of ive thermal conductivity since, the radial flow

can be reduced to an insignificant fraction of the

longitudinal flow by insulaters which have thermal conduct-

ivities orders of magnitudes lower than the metal.

If the sample is a powder, this method is not practical

simply because it is not possible to obtain a material

of a lower conductivity, much less one of a conductivity

several orders of magnitude lower. To see how serious

this situation is, we can compare some approximate thermal

conductivity values for various materials at room temperature.

Most metals fall in the region 0.1 to 1.0 cal/sec. cn. Sp.
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Solid ceramics fall in the region 0.005 to 0.1 cal./sec.

0
mm. C. except for unusual cases.

In comparison. the effective thermal conductivity

of powders are generally in the region 5 x 1072 to

1 x 1072 cal./sec. cm. °C. and sometimes fall as low

2s 1 x 10™°. Thus the conductivity of a powder is

several orders of magnitude lower than solids in general

and in particular than the solid from which it is made.

Another property of a powder that determines the

form of equipment used is that it is of course a loose

naterial. This means that not only must the sample itself

he contained. but also the heaters and thermocouples

must be self-supporting or in any event, must not depend

on the sample itself for support.

Other considerations that enter into the choice of

nethod are, for example, the desirability of having a

small sample volume since the grinding and sizing of the

samples is a tedious and difficult process, to say nothing

of the fact that some of the samples may be expensive to

procury and accuracy and the temperature range desired.

It was decided that the best form of apparatus consistant

with the above requirements would be a hollow ceramic ¢ylinder

with a small heater running down its longitudinal axis.

Thermocouples with their beads lying on a radius and their

leads running longitudinally would serve to measure the

temperature gradient produced by the center heater (the

neat flow would be radially out from the center heater



while the isotherms would have a cylindrical shape). The

cylinder would be made long enough so that the region in

the center, where the measurements would be made, would

be a close approximation to an infinitely long cylinder.

In this way the powder itself would provide its own guarding

to compensate for end effects. The center heater and thermo-

couples would be supported at the ends of the cylinder

and the cylinder itself would form the container for the

sample. The thermal conductivity would be calculated by

measuring the power supplied to the center heater and the

semperature drop between the thermocouples.

In addition to the center heater which will provide

the measuring gradient, a heater would be wound on the main

cylinder. This two heater system has several advantages:

1. The outside heater, on which there are no size restrictions

can be used to supply most of the heat losses of the apparatus

and keep the apparatus at the desired average temperature.

This allows the center heater, which has to supply only

the small amount of heat to provide the necessary temperature

oradient across the sample, to be kept to a minimum size.

For a given thermocouple separation. it is advantageous

Co keep the ¢enter heater as small as possible in order

to keep the sample small.

2. Without an extra heater on the outside either a large

amount of insulation would have to be used or the gradient

across the sample would be larger than desired because
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of the extremely low conductivity of the powder sample.

5. The two heater system allows a great amount of versa-

tility while using the apparatus since it allows the

rradient and the average temperature to be varied inde-

pendently of each other. This is a real advantage in

checking the heat flow within the apparatus.

Thus a two heater system is necessitated by, and takes

advantage of, the very low thermal conductivity of a powder.

The rest of the apparatus, in addition to the electrical

parts necessary to supply and measure the power to the

heaters, would consist of a frame to support the cylinder

and keep tension on the thermocouples: insulation surrounding

the cvlinder: and a vacuum chamber surrounding the whole

;0 provide the desired versatility of environment.

B. Description of Thermal Conductivity Apparatus

The final arrangement of the apparatus is shown in

Figure 6. The sample is placed in an Alumina tube (marked

outside tube). A radial temperature gradient is developed

by the center heater which is on the longitudinal axis

of the cylinder. The temperature gradient through the

sample is measured by two thermocouples whose leads run

longitudinally through the powder and whose beads are

placed on the same radius as each other. The alumina tube

containing the sample is held in a stainless steel support

frame which is attached to the vacuum system. It is insulated
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5. APPARATUS FOR MEASURING THE EFFECTIVE THERMAL CONDUCTIVITY OF POWDERS



with zirconia grog which is contained in a can formed

from insulating brick. An extra platinum winding is

placed around the outside tube as the outside heater to

allow the system to reach the desired temperature. A

vacuum tight chamber is placed around the entire apparatus

and power leads are lead from a power supply through it

to the cell. A gas inlet is provided for allowing gas

into the chamber when this is desired. This tube is

connected to the vacuum gauges when the system is under

Jacuun.

The sample containing tube itself is a cylinder of

alumina which was slip cast from pure alumina to an

inside diameter of 4.05 cm. It is 18cm. long. End caps

vere cast to fit it; these end caps are shown in fissure 7.

he center heater and its leads passes through the hole

at the center. The other small holes are to allow the

thermocouples to pass through. The top cap has an additional

two holes cut out to allow the powder to be placed in

the cell and to be removed. There are also holes in both

end..caps to fit the support rods. All these parts after

casting were preferred to approximately 1100°%., then

fitted and finished. They were then fired to approximately

1800°¢

The platinum outside heater was wound around the outside

of the alumina tube. It was wound from 0.016 inch diameter

dlatinum wire and was spaced at 8 turns per inch.
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coating of Norton alundum cement was then placed on it

and was fired to approximately 1300°¢. The cell, when

assembled with center heater and end caps in place, was

held together with alundum cement and was fired to ap-

proximately 1300°¢. before being put into use.

The arrangement of the center heater is shown in

Figure 8. It was made in this fashion in order to obtain

sufficient surface area to keep the dissipation per unit

surface to a low enough value and also to make the heater

sufficiently rigid. The heater wire is 0.016 in. diameter

vire of platinum 80°/0. rhodium 20° /6. It is wound on

a center tube of extruded alumina, 3 mm. outside diameter

at a svacing of 11.5 turns to the inch. A groove to secure

the heater-wire was machined into this inner tube with

a diamond saw and slits were cut into it near the center,

2l1so with the diamond saw. The leads to measure the

potential drop in the heater wire were spot welded onto

che heater wire 1.48 inches apart and then led through

bhe slits cut for them into the center of the tube and

chen out through its ends. These leads were 0.010 inches

iiameter pt. 80°/0. rh. 20°%/0 alloy also in order to

ninimize thermoelectric effects since the voltage drops

involved were small and were measured with a voltmeter

which was sensitive to both A.C. amd D.C. An outside

-ube of 1/4 inches 0.D. and 3/8 inches I.D. also of

extruded alumina fitted closely around the winding and

serves to hold it in place in the grooves. This tube had
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he additional functions of increasing the strength and

rigidity and of smoothing out the temperature along the

heater. It also served to electrically insulate the powder

sample being measured from the heater, thereby reducing

“he ac voltage which otherwise appeared on the thermocouples

ind was a problem at higher temperatures.

The cell is supported in a framework made of

lin.x 1/4 4ip.stainless steel bars as shown in figure 6.

Alumina rods, 2 in. long, fit into holes in the end caps

of the cells and conaect to the cross bars of the steel

frame. These cross bars also are used to suspend the

tops of the thermocouples and to align the weights on the

Yottom of the thermocouples which keep them in tension.

The thermocouples are insulated from the frame by pieces

formed from cast alumina shaped on a diamond saw and are

held by small stainless steel chocks with set screws.

Phe frame itself is bolted to the top of the vacuum

chamber and therefore forms an integral part of it.

A cylindrical shell 1 inch thick by six inches

outside diameter by 12.5 inches length is supported

on the bottom cross piece of the frame. This shell is

cut from K30 insulating brick. and is built up from

10 pieces. The space between the sample cell and the

insulating shell is filled with Norton insulating zirconia

ITO.



The vacuum chamber consists of a copper tube / inches

diameter with flanges to fit o rings. The bottom plate

leads to the vacuum pumps while the top plate is a brass

iisc 1/2 inch thick which contains vacuum seals to feed

through power leads, thermocouple leads and a tube which

is connected to the vacuum gauges and the gas train when

it is used. The vacuum is obtained by a National

Research Corp. diffusion pump backed up by a Cenco Megavac

forepump. For much of the work the diffusion pump was

not needed and the forepump was used alone. A National

Research Corp. thermocouple gauge was used to measure

pressures in the range to approximately one micron.

Below that an ionization gauge was used.

The thermocouples used were platinum vs. platinum 10°/0

rhodium. They were calibrated before use against a standard

platinum rhodium couple which had been standardized at

the National Bureau of Standards. They were 0.010 inches

in diameter as this was the minimum diameter wire which

could be handled and used conveniently without breaking.

The thermocouples were colinear and were made by a process

described in Appendix F. They were annealled and straightened

carefully before use to remove all kinks.

Power was obtained from a 115 volt source and was

stabilized by a Raytheon voltage stabilizer. It was

controlled by variable transformers.

I'he voltage for the center heater was dropped by

ari additional transformer to the low vol tace desired with



a high current capacity. The voltage at the center heater

potential leads was measured with a Weston Thermocouple

voltmeter of 0.5%/0 of full scale accuracy. It read up

to 20 volts on four scales the lowest of which indicated

0.5 volts full scale. Since the resistance of the potential

leads was significant with respect to the voltmeter resist-

ance, their resistance was measured at each reading and

the voltage read was corrected for their effect. Current

was read on a Weston ammeter with a full scale reading

of 10 amps and an accuracy of 3/4 of 1°/0 of full scale.

A supplimentary ammeter was used when needed for low

ranges. The ammeter was left connected in series with

the center heater all the time since its resistance had

3 Significant effect on the circuit. The voltmeter con-

duction was insignificant with respect to the portion of

the center heater which 1t shunted and had no visible effect

yn the indication of the ammeter.

~
“ 8 Experimental Procedure for Thermal Conductivity

Measurements

For filling and emptying, the apparatus was hung

by the top of the vacuum chamber between two stands. A

convenient amount of powder was weighed out. Then as much

as would fill the cell was poured in through a funnel. The

apparatus was tapped so that the top surface became level

and some more powder was poured in. This was continued

until the cell was completely filled. The amount of powder



remaining was weighed and the weight of the powder used

vas obtained by difference.

Then the shell of insulating brick was put in place

and held there with nickel wire, and the bubble zirconia

insulation was poured into the space between the cell and

she shell.

After the o rings and their grooves were cleaned,

che apparatus was lifted onto the vacuum chamber and the

Forepumn was started.

When the vacuum was down to approximately 150 microns.

5 little power was usually out to the heaters, since this

Facilitated outgassing which otherwise would take a con-

siderable time. After outgassing, the power to the heaters

vas increased so that the gradient across the thermocounles

vas approximately 100 C. degrees, and the average temper-

ature was whatever was desired. After some time the temp-

eratures and voltages and current were read. The reading

vas repeated at the same power level after an hour or two

in order to insure that the apparatus was in eaguilibrium.

It was determined that about ¢ hours was sufficient for

even the low conductivity powders to reach ecuilibrium.

come ©” the powders with a higher conductivity in the

range of about 5 x 10~4 reached equilibrium in only four

nNours.



) Testing of Thermal Conductivity Apparatus

1. Timits of use

The heater designs were found to be sufficient for

the materials used. The designed maximum temperature of

nse was the limit of platinum rhodium thermocouples, or

approximately 1500°¢. In practice it was found that while

she apparatus could probably reach such temperatures, it

vas not advisable to do so because all the powders used

sintered to a small extent at temperatures considerably

ander 1500°¢. Since this sintering had a large non-

reproducible effect on the thermal conductivity, all the

runs were stonpec short c¢© + temperature ~* which any

noticeable sintering woul { fom
C21 + p&gt; .verage

- 2 nO
- 500 O.tempercture at whicl: the apparat:

This was during ¢ run made on &amp;

which did not sinter easily. The limiting factor here

vas that the zirconis becomes a semiconductor at these

temperatures and the resistance between the thermocouples

dropped to a value which seemed to cause considerable

error 1n the readings. The apparatus except for this

1iffieulty, performed satisfactorily and seemed to be capable

Of going to higher temperatures. This difficulty migcht be

expected with some other refractory powders, but could

oe alleviated by coating the thermocouvles with a refractory

cement which would then act as an insulator and extend

she uge limit 1f desired. Tt was noticed



irn this and subsequent runs that the outside alumina tube

or. the center heater reduced the AC voltage that appeared

or. the thermocouples to negligible amounts. In runs where

2 bare wire center heater was used, this AC voltage was

a severe problem. In addition to the AC voltage which had

appeared as a vibration of the galvonometer image of the

potentiometer, there was an even more annoying effect

which was manifested by erratic readings of the galvonom fy Tv

and the image swinging in a random fashion over several

degrees. This latter effect was probably due to partial

rectification of the AC fields at point contacts or some

similar effect. It was completely removed when the insulated

center heater system was used.

The apparatus was designed to measure low conductivity

materials (i.e., on the order of 10”? to 1072 C.ZeS. units)

and the center heater was fabricated accordingly. In practice

the highest conductivity measured was just under 6x10™7;

this was an unusually high conductivity for a powder and

vas measured in helium gas which has a very high conductivity.

The apparatus functioned satisfactorily in this range,

the center heater providing a measuring gradient of 50 deg.

across the thermocouples with no noticeable damage.

There was vittually no lower limit to the values of

thermal conductivity which could be measured. The lowest:

that occurred during the course of the work was on the

order of 2 or % x 107° but much lower conductivity materials

could easily be measured if thev can be found.
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On the other hand it was found difficult to measure

conductivities at temperatures much under 200°¢, though

some measurements were made at 130 and 150°C. The temperature

at which it is impossible to get accurate values 1s a

function of the conductivity measured; it is possible to

x0 to lower temperatures for lower conductivity materials.

Vleasurements could be made at lower temperatures if the

outer insulation in the apparatus were removed. and even

lower temperatures could be reached if a cooling coil

vere used.

This lower temperature limit is due to the fact that

even with the outside heaters completely off, there is

some heat coming from the center heater which must be

dissipated through the outside insulation thus causing

a gradient through it.

2. Elimination of Gas Conduction

T’he apparatus was designed to be used under vacuum

sO that gas conduction could be eliminated. When the mean

free path of the gas molecules becomes egual to the size

of the pore spaces, so-called molecular conduction takes

place. In this region (when the mean free path is limited

by the pore size) the thermal conductivity of the gas

ocecomes much smaller than that of the free gas for two

reasons.

First of all, according to the kinetic theory of gases,

the thermal conductivity of a gas is directly proportional

Fo the average velocity of the molecules. their mean free



path, and the density of the gas. If the mean free path

of the molecules is then limited by the walls of the

enclosure, the conductivity of the gas in the pore will

irop below that of the free gas other things being equal.

The other factor is that when a gas molecule collides

with a wall it does not, in one collision, reach thermal

squilibrium with the wall. The heat transfer between walls

caused by the gas molecules bouncing between them is

much lower than one would expect from the number of

collisions which occur. The heat transfer is sometimes

Four or five times less than that expected and can be as

little as 0.05 as much as that predicted under these

conditions (the region of so called molecular conduction).

See Knudson (17).

Because of these two factors the effective thermal

conductivity of a gas at low pressures becomes negligible.

The pressure at which the conductivity is sufficiently

low is a function of the temperature as well as the pore

size. By comparison of experimental evidence (such as

that of Diescsler and Eian (13)) and theoretical mean free

paths and particle sizes it was decided that if the pressure

were kept under 10 microns, only molecular conduction

would be taking place, and that it would be insignificant

with respect to the remaining conduction in all but the

cases of very low conductivities. The measured pressure

during the runs in this work was of the order of one to

ro mierons.,
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In order to check experimentally the validity of the

above assumption about the absence of gas conduction, the

effects of varying the vacuum were measured directly during

"ne run. First the conductivits was measured with the

diffusion pump cr ci preasu~- “Nm 7CL.2 microns

ns indicated bt ¢n icnizatic: = Co

&amp;
re .

ciffusion

pump was shut ¢” and the pm sure

2 microns under the forepump alone. Th

~~roximately

. in measured

conductivity was insignificant, being less than the 1x10™°

where the conductivity being measured was about 4x10”

confirming the predictions of the paragraph above.

The system with no apparatus in it could be evacuated

to a pressure of 0.004 microns by the diffusion, forepump

combination, but this value was raised considerably when

"he loaded sappoaratus was in place since the outgassing

problems were large. In practice, only the forepump was

sed since the pressure of under two microns which it

&gt;rovided was low enough.

3 Experimental Error of Thermal Conductivity

Apparatus

Perhaps the largest source of error occurs because

che gradient in the center of the apparatus is not that

of an infinite cylinder as assumed. In order to check

this the conductivity of a material was measured as a

functicn of power input to the center heater at a constant

nean temperature. It was felt that if the gradient in the

renter differs from that of an infinite cvlinder. or if



there is a residual temperature gradient with no power

input to the center heater, then the calculated conductvity

vill vary when the gradient varies. As Figure 9 shows,

the variation of the temperature gradient with input power

to the center heater was linear. Though there was a

small zero offset due to a gradient being present when

here was no power supplied to the center heater, the maximum

srror encountered was less than 59/0. It was decided that

if the gradient across the thermocouples was on the order

of 100 degrees then the error would be less than about 10°/0.

This was checked later when in the course of a run, the

conductivity was measured with two widely different gradients

180 and 100 degrees. The difference in conductivity was

only 1.” per cent. Other checks showed similar results

and the differences were less than 10°/o0. If more accurate

results are desired. a complete set of data of power versus

sradient for each mean temperature can be obtained and

in this wav errors such as that due to a residual gradient.

cal be eliminated. This was not done in this work due

tc the large number of experimental points which would

he required.

The errors which o¢cur in the thermocouples can be

2stimated from the data in Table I which is the record of

3 calibration test for two thermocouples against one which

had been standardized by the National Bureau of Standards.
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TABLE I

RECORD OF THERMOCOUPLE CALIBRATION

Standard (before)

11.967

10.979

3.959

3.0%5

A, Readings in Millivolts

Thermocouple I Thermocouple II Standard (afte~’

11.917

10.954

9.917

7.998

11.915

10.956

9.918

11.962

10.98%

9.958

7.996 8.0%%



Every precaution was taken to keep the thermocouples

free from factors which might effect their accuracy.

They were made in a way which minimized plastic deformation

and were carefully annealed both before fabrication and

hefore use in the apparatus. Both thermocouples in the

apparatus were always made from the same piece of platinum

or platinum-rhodium wire in order to minimize the effects

of possible composition variations in the thermocouple

materials. For the same reason, both thermocouples were

always subjected to identical treatment; this procedure

serves to decrease the error in the difference reading

sven though it might not effect the error in the absolute

temperature measurement which was small anyway. Because

of these procedures. and as shown by the calibration data,

it was thought that the exverimentally measured temperature

difference was accurate to 0.5 degrees or better except

vhere conduction through the sample might cause additional

27 Trors.

B. Infra-Red Measurements

The infra-red transmission of the samples were

measured on a Baird Associates? recording infra-red

spectrophotometer. Since the anticipated transmission

»f the samples was rather low, the scale of the spectro-

photometer was enlarged in the following way: Before a

sample was measured, a run was made with a screen in front

of the sample beam. This screen was cut so that 95°/o

»f its surface was opaque. It therefore allowed through



it five percent of the light that impinged on it (this

nas not exactly true due to diffraction effects and possibly

other errors). The magnification of the electrical system

vas set so that this five per cent transmission was

approximately full scale. This curve then served as a

reference curve when the samples were run. The samples

vere compared to the five per cent curve, after the zero

error was corrected and in this way an absolute measure

&gt;f transmission was obtained.

A so-called microbeam condensor was used in order

bo utilize an optical system with as wide an aperture as

possible. Though an integrating sphere type of apparatus

vould have been even better, there was not one available

vhich would make measurements out far enoush into the

infra-red, their limit velng about 2.7 microns due to the

infra-red absorption of water absorbed on the surfaces.

The microbeam condensor had coated lens of a planoc-convex

shape. The collimating lens had a diameter of 0.85 inches

and was plaged 0.60 inches from the sample. It therefore

collected 1/5.42 of the liecht which passed throuch the

sample assuming that light was scattered into a diffuse

pattern.
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&amp; Preparation of Samples

1s Thermal Conductivity Powder Samples

The raw materials for the zirconia samples was Norton

insulating zirconia grog which had been ball milled for

approximately 24 hours dry and 1 hour wet. After adding

39/0 Carbowax by weight it was pressed into plates about

1/8 inch thick in a two by four inch die at a total load

of 100,000 lbs. These cakes were prefired to 1300°¢c.

then crushed in a mortar and pestle to the proper particle

size. The powder was then fired to approximately 1900°c¢.

in a small gas-oxygen fired pot kiln, resieved to the

desired particle size. and was then ready for use.

The porous alumina sample was obtained from the

Coors porcelain company (their designation (A41-100)) and

crushed in a mortar and pestle to the desired size. The

dense alumina sample was crushed from scrap slipcast material

in a roll mill to the desired particle size and passed

through a magnetic separater to remove bits of metal.

The single crystal alumina sample was made by crushing

Linde single crystal alumina boules first in a steel

mortar and pegtle, -then in a steel ball mill. The sample

vas then passed through a Ferro filter to remove large

pieces of metal, and then washed several times with acid

and then water to remove all traces of contamination.

It was then dried and used.

The magnesia samples were made in a manner similar

0 the zirconia samples except that the starting material



was reagent grade magnesium carbonate which was calcined

to 1400°C.

2. Infra-red Transmission Samples

The samples which were to be used for the measurement

of infra-red transmission properties were prepared in the

same manner as the powder samples in that they were dry

pressed from finely powdered raw materials and then

prefired. After prefiring, they were sanded down to a

convenient thickness and then fired in the same way as

the regular samples. They were then ground on diamond

laps to the thickness desired and until the thickness

was uniform over the surface to be measured. The samples

vere then fired to approximately 700°¢. to remove any

water that had been adsorbed during the grinding process

and to burn off any resin from the laps that might have

gotten onto the samples. In some previous work it was

noticed that there were some absorption peaks presumably

from adsorbed water and some from some organic substance.

lhe firing treatment was undertaken to prevent this occurance.

I'he samples, after firing, were held in a dessicater until

the actual transmission measurement. In spite of this

treatment, the spectra still showed evidences of absorption

due to water vapor in the region from 2.8 to 3.8 microns.

These absorption areas were smoothed over in using the

spectra to calculate the absorption and scattering coefficients

since it was felt that after heating in a vacuum to 800 to

1000°¢. very little of this water would remain.



Particle Size Measurement

Though all the powder samples were screened to provide

a uniform particle size sample, the screen size does not

provide the correct average particle size to be used in

calculating the thermal conductivity as derived by the

theory. The problem is caused not only by the effects

of particle shape (the particles had an irregular shape

and in some cases were slightly elongated), but also because

the desired guantity is the average radiation path length.

This length is the one which would be measured if a line

were placed through the sample and the average segment

in the particles found.

The measurement was made by mounting a sample of the

powder in a plastic matrix and then grinding and polishing

it to a smooth surface. When this surface was viewed under

a microscope it showed the cut surfaces of the particles.

Then the sample was passed under the cross-hairs of the

microscope eyepiece using a graduated stage to record the

Jistance while the cross-hairs were in the particle, and

another movement when the cross-hairs were passing through

the space between the particles. The average path length

vas then the total distance travelled through the particles

divided bv the number of particles. An average of one

50 two hundred particles was used.



[T RESULTS AND DISCUSSION

_ Measurements on Zirconia Samples

le Infra-red Transmission

In Figure 10 can be seen a reproduction of an original

infra-red spectrogram of samples of the stabilized zirconia

which was used as a thermal conductivity sample. The

top two lines (the ones which are nearly coincident),

represent the transmission through a screen in which light

is allowed to pass through only five percent of the area.

This curve then, gives a reference from which absolute

Eransmissions can be calculated. The next three curves

from top to bottom, represent transmission curves for three

samples of porous zirconia of 0.0%0 cm., 0.046 cm., and

0.067 cm. thickness respectively. The bottom curve is

5 Zero curve run with an opague shield in front of the

he am.

Several features can be seen from these curves.

First of all, the transmission increases to a maximum at

approximately 5 microns then decreases to the onset

of absorption, until the transmission at about 7 microns

becomes very small. The transmission then seems to rise

for all samples nearly equally as the wavelencth increases

still further; but this increase is only an apparant one

and is actually due to radiation being emitted from the

sample since the emissivity of the sample is quite high

in this range. The transmission value shown in this

region can not be converted into any absolute measurement



because of the method of operation of the machine unless

the absolute amount of radiation from the spectrophotometer

source is known. In practice, the amount of light being

emitted from the source can very slightly with time:

this is the most likely reason for the variation of the

apparent transmission of the samples in the long wavelength

regione.

In order to make use of the spectrographs to calculate

absorption and scattering coefficients, total absolute

transmission values are desired. Several corrections

nust be applied to the values in Figure 10 to convert them

50 total absolute transmission.

First of all the zero reading must be subtracted

from both the sample curve, and the five percent curve.

Then if the corrected transmission value is divided by

the corrected five percent value and multiplied by five,

the absolute percentage of light transmitted through the

apparatus is obtained. However, the collecting lens of

the microbeam: condensor does not collect the total amount

of light which is transmitted in the hemisphere, but

rather only a portion of it provortional to the solid

angle which it subtends. This solid angle fraction was

calculated in the previous section and is =i .

Therefore. the total gbsolute transmission is the absolute

transmission above multiplied by 5.42.
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hen these corrections are applied, a curve such as

the dots in figure 11 is obtained. A dip is noticed in

this curve from 2.8 microns, to approximately 5.5 microns.

This infra-red absorption is due to adsorbed water, or

perhaps water combined on the surface to form a hydrate.

Since it is unlikely for this film to remain on the

particles after they are heated to approximately 1000°¢.

in a vacuum, in the ensuing treatment this dip due to

the absorption of adsorbed water will be smoothed over.

The final curves of total percent transmission are given

in figure 11 for the five samples measured. The thickness

of these samples were 0.Cl1 c¢cm., 0.0350 cm., 0.016 cm.,

ond 0.0€¢7 cm. The thinnest sample having the greatest

transmission 6° course.

One should note that there are other errors which

lecrease the accuracy of these measurements, but which

can not be easily corrected for. Among these are the usual

errors in the electronic, mechanical, and optical systems

involved; these errors are magnified in these measurements

because of the very low transmissions measured. There is

some black-body radiation emitted from the samples even

at these temperatures; this can not be corrected for since

the irradience of the light source is not known. As was

seen in figure 10 this radiation becomes important only

at longer wavelengths. An additional error is due to

he fact that while the reference screen has five percent

Of its actual area removed. the effective area can be different
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From this due to diffraction effects.

Now that we have the transmission curves in figure 11

it is well to review the plans that we have for putting

them to use. The primarv purpose of obtaining them is

to use them to calculate absorption and scattering

coefficients making use of the equations in the theory

section and from these to calculate effective thermal

conductivities But rather than a monochromatic coefficient

&gt;f the material at room temperature, what is needed is

an effective coefficient averaged for black-body radiation

at the temperature in question. We will obtain these by

first finding an effective scattering coefficient by

using the black-body equation as a weighting function.Ilt

is assumed that the monochromatic scattering coefficient

joes not change with the temperature of the material.

Then using this effective scattering coefficient and

neasured emissivities. at the temperature in guestion,

of infinitely thick bodies, the effective absorption

coefficients will be calculated. Finally, from these

~onstants and others that are already known, an effective

ronductivity due to radiation will be calculated. and

~ompared with that which has been measured experimentally.

Do Monochromatic Coefficients at Room

Temperature

Since we have measured the transmission of five samples

~f différent thickness. we can take the transmission value

For each of these samples at a particular wavelength and
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obtain curves of transmission versus thickness at a specific

vavelength. These curves for several wavelengths are

shown in figures 12 and 15%.

[If one picks from one of these curves several pairs

of values such that one thickness is twice that of the

other, it is possible to make use of equation (a%8):~

T~(14 +1). 2-17
cosho | D = 21, (53

0 calculate the constant (o,) for each pair of measurements.

The average value of these measurements is then the

desired constant (o,) at that wavelength.

The other radiation constant (B,) can now be found

For several thickness using equation (a4l):

L-Tcosho D | 1-7cosho D 2
5 = tsinc D - wt 1sinho D LE (54 ]

yor

18inho D
30 = 2[1-tcosho _D [ ad).

vhichever is more accurate.

a)
See Appendix A for derivations of all equations used

in this section.
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And an average value found for (By) - For the curve at

5.0 microns the value of (B,) found is 0.1%6, and that

of (c.) is 24.5. In order to check the validity of

aquation (a28)

2B
Cg, }

, EN
(1+B, )sinho D + 2B, cosho D

for describing these phenomena, we use the above values

of (a, and B,) to calculate the theoretical dependence

of transmission with sample thickness. This has been

one and is shown as the open circles in figure 12.

These points fall quite close to the experimental line

sxcept for the thinner region. Some deviation for very

-hin lavers is to be expected because the impinging

radiation is not truly diffuse as has been assumed and

3lso because surface reflections have been neglected.

That the rest of the experimental curve agrees in shape

vith the theoretical curve is gratifying and indicates

hat an equation of this nature is the proper one to

jescribe transmission through materials where scattering

is present as well as absorption. It should be noted

-hat it is impossible to fit a simple exponential eguation

to this shape curve.

The values of (o,) and (B,) for the range of the

wavelengths measured are tabulated in Table II and

shown graphically in figure 14.
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From the defiritions of (o,) and (B):

3 - Vala+2s) (alZ
-

9 © er (a14’

it 1s possible to calculate monochromatic room temperature

values for the abrorption constant (a). and the scattering

constant (s). These values are given in Table II and shown

crapvhically in figure 15.

As can be seen in figure 15 the absorption coefficient

increases approximately exponentially with increasing

wavelength in the region measured and shows a so-called

cutoff of avproximately 5.5 microns. This data agrees

vith data in the literature for single crystal zirconia

‘the infra-red transmission of zirconia is verv similar

to that of alumina).

However, in the literature transmission values for

a particular thickness are usually reported rather

than a calculated absorption coefficient which would be

much more general and valid for any thickness. This

situation is deplorable because in a.dition to causing

anyone wishing to compare data of different thicknesses

to go to a lot of arithmetical work, it also causes a

misleading value of the cutoff to be assumed, since the

actual value of the cutoff depends on the thickness

neasured as was seen in figure 11 of the transmission

rurves for zirconia. and will be seen also in the
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TABLE II

Room Temperature Values of (0), (B,) 4 (a),

snd (8) for various wavelengths for Zirconia

%
Vavelength -1

(microns) (cm )

2.0 = , 0

5.0 10.9

Ae5 11.4

16.2

24.5

H 4

560

5.5 Te

5.0 7.6

(a)
(Dimen: onless) Cem™ 1)

0.0295 0.236

0.0467

0.0528

0.0827

0.507

0.602

1.354

0.136

0.187

3.3%

6.48

0.270 12.8

(s)
(em™1)

136

116

108

97.5

89.0

89.5

21.8
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transmission curves for polycrystalline alumina which are

;0 be presented.

The scattering coefficient (s) is found to decrease

logarithmically in this region. This means that there

must be a maximum in the curve of scattering coefficient

versus wavelength at some shorter wavelength than was

measured here. This is not in agreement with scattering

theory which predicts a maximum in the scattering coefficient

at a longer wavelength.

For zirconia, this should give a maximum at approximately

5 microns since the pores are approximately 0.8 microns

in diameter as seen on the microphotographs (figure 26).

A similar case of the scattering coefficient maximum

occurring at a considerably lower wavelength than is to

he expected from the Mie theory was found by Lee (18.).

his discrepancy is probably caused by the fact that the

size of the pores varies over a considerable range rather

than being a single size as is required by the theory.

In addition, the pores are non-spherical, and the theory

vas derived for spherical scattering centers.

The behavior of the scattering and absorption

coefficients with respect to wavelength provide an

explanation for the shape of the transmission curves

as seen in figure 11. In the region from 2 to approximately

&gt; microns, the transmission is quite high and increases

a AL o

Eu a maximum. ff the reflectance were measured it would

oe found to be very close to one minus the transmission
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since the absorption coefficient is small in this region

and most of the light removed from the incident beam is

scattered backwards. The increasing transmission with

wavelength is caused by the scattering coefficient’s

decreasing with wavelength in this region.

The transmission reaches a maximum at some wavelength

and then decreases rapidly due to the exponential increase

in the absorption coefficient. The transmission becomes

quite low after this point and the reflectance is also

low since now the light instead of being scattered back

is absorbed in the sample and converted to heat energy.

Tt should be noticed that the wavelength at which the

naximum in transmission occurs varies with the thickness

of the sample since the relative amounts of scattering

and absorption vary with thickness but not necessarily

in a simple way. For this reason. as was mentioned before,

it is important to quote scattering and absorption

~oefficients rather than simply show a transmission curve

for a particular thickness which later might be misleading.

3. Coefficients at Elevated Temperatures

Our purpose in calculating the constants above is

rf course to use them to calculate the effective thermal

conductivity for radiation of a powder composed of this

naterial. Unfortunately the radiation in any practical

situation is not monochromatic, but spreads out over a

~onsiderable range. Jit is not even possible to use the



NE|

value at the maximum intensity of the radiation in

question since both black-body radiation and the coefficients

are not symmetrical and do not vary linearly. Considerable

error could be introduced that way since black body radiation

axtends over a range of several microns on each side of

the maximum and considerably more than half the radiation

nas a longer wavelength than the maximum.

Another problem is that the absorption and scatiocring

coefficients are not necessarily constant at all temperatures

In fact the absorption coefficient has been shown

sxperimentally to change (see for example Lee (18)) as

che temperature is increased above room temmerature; this

agrees with the theoretical prediction that the slope of

she edge of the band will be proportional to KT, and

therefore as T increases. the end of the band will

broaden out as shown experimentally in the above reference.

This effect should not be so troublesome with the

scattering coefficient however. The scattering coefficient

depends mainly on geometrical factors such as pore size.

shape, and number, and these would not be expected to change

drastically with temperature. The other important factor

in determining the scattering coefficient is the index

of refraction, and while this probably changes with

temperature, it is expected that it does not change very

much for any particular wavelength. Therefore, while we

cannot expect the monochromatic absorption coefficient

-0 remain constant as the temperature varies. we would
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expect the monochromatic scattering coefficient to be

practically independent of temperature. Forgetting

sbout the absorvtion coefficient, for a moment, we will

calculate an effective scattering coefficient at a

particular temperature by using the black-body radiation

distribution at that temperature as a weighting function

in averaging the scattering coefficient. The monochromatic

intensity distribution ¢© illumination for a black-body

is given by the Planck equation:

0 21hgA 2
A ch/agT

(1C2

where (Eq) is the monochromatic intensity, (h) is Planck’s

constant, ( )}) is the wavelength, (C) is the velocity of

light and (K) is the Boltzmann constant.

Values calculated from this eguation at various

temperatures and wavelengths appear in the International

Critical Tables (20). The procedure is to multiply the

scattering coefficient at a particular wavelength by the

nonochromatic intensity at that wavelength. This is done

at a sufficiently small wavelength increment over the

recion where there is significant black-body radiation.

Then all the products are added. and the sum is divided

oy the total black-body intensity at the temperature in

question; or:
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(103)

where (Sere) is the effective scattering coefficient for

3 particular temperature; (59 ) is the monochromatic

scattering coefficient at wavelength ( 1); and (Ej ) is

the monochromatic intensity at wavelength ( ) ) and the

temperature in question and is given by equation (102);

(OQ) is the wavelength increment.

In this manner a scattering coefricient has been

calculated as a function of temperature. It is plotted

in figure 17. This graph can be described by two straight

lines intersecting at between 500 and 600°C. The

significance of this point of inflection is not known

axcept as simply a mathematical result of the calculations

above.

In order to calculate an effective absorption

coefficient as a function of temperature we make use of

aquation (a59) for the emissivity of an infinitely thick

sample:

28,
"© TB,“oo (a59"

The emissivity of a thick sample of the exact same

naterial as was used in this study was measured by



Plunkett (1°). and his data is shown in figure 18. Using

these values of the emissivitv end the values of the

scattering coefficient calculat-™ abcw PE
il absorption

coefficient was calculated in th

15c0°¢. Unfortunately emissivitv dats i. not available

in the rest of the range and it was necessary to extrapolate

She absorption coefficient into the rest of the area of

interest. Due to the large extrapolation there is the

possibility of considerable error in the absorption coef-

ficient at lower temperatures. The absorption coefficient

is shown in ficure 16.

Having calculated the absorption and scattering coeff; "ient-

it is now possible to find all the other coefficients as a

function of temperature. The values for (o, B. b. and K)

will be found in figures 19 and 20.

al Comparison of Theoretical and Exverimental

Thermal Conductivity

Using these constents the effective thermal

conductivity due to radiation for a powder in a vacuum

ran be calculated. This has been done for a serjes of

thicknesses which corresnond to the effective particle

size of the powders whose thermal conductivity was

measured. The particle sizes of these samples as well

3s their measured bulk volume fraction of solids (i.e...

any pore within a particle is considered to be solid for

she purpose of this constant) are civen in Table IIT.
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TABLE TIT

Particle Sizes and Bulk Densities of Zirconia Samples

Sample Particle Sizc

(cm)

D.0063%

0.0147

0.0237

0.0300

0.0465

Bulk Volume Fraction

Solid (percent)

58.8

58¢3

64.6

65.8

65.5
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Figures 21 to 2° show the theoretically calculated effective

thermal conductivity due to radiation as the solid line

in the lower part of the graph.

For each sample the experimentally determined thermal

conductivity is shown by the points on the graph. As can

be seen, in all cases but that of the smallest sample size,

the measured thermal conductivity is considerably larger

than the theoretically predicted effective thermal

conductivity due to radiation.

In sample M (figure 21) which was the sample with

che finest particles, it is guite possible that the

particle size was so small that a significant amount of

extra scattering centers were added due to the reflections

at the surface of the particles. This will change the

scattering coefficient (ss). from that measured in the

501id material. and will probably lower the measured

cffective conductivity. It seems that this is the explanation

for the experimental conductivity beine lower than the

theoretical conductivity at least in the high temperature

range of this sample.

In the other samples, the discrepancy between pre-

dicted and measured conductivities was much larger. Let

us consider bringing them into closer agreement by

requiring them to agree at two points, using an arbitrary

multiplicative and an arbitrary additive constant for

cach sample in order to bring this about. The dashed lines

in the granvhs have been drawn in this wavy. The theoretical
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values were adjusted to be the same as the experimental

values at 200 and 900°C. by finding two constants. one

a multiplicative one, and the other an additive one to

ase to adjust the theoretical curves. These constants

are tabulated in Table IV. It should pe emphasized that

the dashed line was not drawn simply as the best fit through

the experimental points, but was derived from the predicted

values by the use of these two arbitrary constants.

The salid: circled points between 400 and 600°C. for

samples K and N (Figure 23 and 24) were taken while the

temperature was ascending. There is reason to believe

chat these points are higher than the smooth curve drawn

between the other values and especially the values

obtained at the same temperature but on the wav down after

che apparatus had reached its maximum temperature

because of a film of water vapor or hydroxide on the

surface of the particle. This effect tocether with more

data on the subject of the effects of water on the

effective thermal conductivity is elucidated further

in Appendix E.

With the exception of the points mentioned above,

the experimental data lies quite close to the adjusted

predicted curves. In fact in most of the cases, the

dashed line is the one that would probably be drawn to

describe the experimental data. This then constitutes

considerable agreement with the theory. The actual shape

Of the curve is not a simple one. nor is it one which
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TARLE IV

Jorrection Factors for Theoretical Curves

sample Viultiplicative factor

N..8Cc

l.11

1.76

1.55

2.16

Additive factor

1.5%107°
3.0x107°
3.2x10™7
2.5%x1077
5 14102
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can be described by a curve based on the cube of the

semperature. This means that the mechanism is probably

correct; i.e., the heat transfer under these conditions

is due largely to radiation the value of which is deter-

mined by the absorption and scattering coefficients of

the solid. However, we should look to the basic

assumptions to determine where they might have introduced

large discrepancies.

First of all it is necessary to realize that conduction

across point contacts has been neglected in theoretical

treatment. One would expect point contact conduction in

-his system to be constant with respect to temperature

(since the conductivity of solid zirconia is) and from

previous experimentor’®s values, and the low temperature

values obtained here, point contact conduction is found

to be of the order of magnitude of the additive constant

found above: i.e., from 1-5x10~°. Also. one would expect

the point contact conduction to increase with decreasing

particle size. Again the additive constants found

do this in general, with the exception of the finest particle

size sample. 1t seems logical then. to assume that the

experimental results are larger than the predicted

results by an amount that is constant for a particular

particle size and is caused by conduction across point

rontacts.



We are left then with the question of why it is

necessary to multiply the theoretical values by some

arbitrary constant in order to get them to agree with

the experimental points, even though when this is done

they have the desired temperature dependence. One of the

reasons for this is likely to be the point contact conduction

seen above. This added conduction mechanism will not

only add to the total conductivity, but can also change

the gradient in a particle which will in turn change

she radiant heat transfer between particles. Since for

the samples measured, point contact was a significant part

of the total transfer, one would think that its effect

on. the gradient, and therefore on the radiant transfer

vould also be significant. On the other hand this is

unlikely to produce a multiplicative factor which is

independent of temperature. Rather. it should produce

2 correction which devends on the relative amounts of

radiation and point contact conduction and would therefore

decrease with temperature. Also, since radiation transfer

increases while point contact conduction decreases with

increasing particle size, one would expect that the

correction factor would decrease with increasing particle

size, while in fact, it seems that it increases with

increasing particle size.

The other major sources of possible error are due

to geometrical assumptions made in order to simplify the

nathematics. PFirst of all it was assumed that heat transfer



was across flat plates placed perpendicular to the heat

flow lines. In other words, we have considered only the

one dimensional case and tried to apply its results fo

sn actual system where heat 1s of course flowing in

three dimensions. This has undoubtedly produced errors,

sat it is difficult to estimate the xtent or nature of

these errors without a much more complicated calculation.

Another assumption that is not fulfilled in the

experimental conditions is that the particle size is

constant through the sample. This is true to a limited

extent only since there is a range of particle sizes in

cach sample: but even more important: the path length

noth for radiant conduction and lattice conduction varies

over a wide range through the sample simply because the

particles are not planes, but are irregular shaped pieces.

Though the path length was averaged automatically by the

method of determining it, it is likely that this will give

an incorrect answer for the effective particle size, since

the radiant conductivity is not a linear function of the

particular size. Furthermore the path length distribution

night not be symmetrical about the measured average and

in order to properly calculate an effective conductivity,

one would have to take into account the actual distribution

of path lengths in the system rather than a single average

7alue.



} Measurements on Alumina Samples

1 e Introduction

[n order to further test the theory derived in this

paper, samples were made from alumina of various micro-

structures. One set of samples had various particle

sizes but were all made from a very porous alumina.

Another sample was made from a material which had been

fabricated in a way which gave it the rather dense

structure of usual laboratory ware. Still a third

material was made by crushing single crystal boules to

rive a sample which had virtually no internal pores or

scatterin.: centers.

Because of the importance of the microstructure of

the solid in determining the optical properties of the

301id and therefore the effective radiation thermal con-

ductivity of the powder microphotographs of the materials

ased for samples have been prepared. These microphotographs

are shown in figures (26 to 40). Figures 26, 27, 28, and

29 show polished sections of the Zirconia, Porous Alumina,

Dense Alumina, and single crystal Alumina respectively.

These photographs were all taken at 500x magnification.

In addition, figures 30 - 40 are shown at 50x magnification

in order to show the relative particle size of the samples.

2. Very Porous Alumina

The very porous material chosen was a sample

bf Coors Al1-100 pure alumina which was kindly supplied
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27. Photomicrograph of Polished Surface of Porous Alumina

"Coors A1-=100) 500 ¥X
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°’8., Photomicrograph of Polished Surface of Dense Alumina 500X
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29. Photomicrogranh of Polished Surface of Single

crystal Alumina 500X
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50. Photomicrograph of Sample M, Zirconia 50X
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51. Photomicrograph of Sample L, Zirconia 50 X
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30, Photomicrograph of Sample K, Zirconia 50 X
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3%, Photomicrograph of Sample N. Zirconia 50 X
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34, Photomicrograph of Sample I, Zirconia 50 X
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55. Photomicrograph of Sample S. Porous Alumina 50 X
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56. Photomicrograph of Sample R, Porous Alumina 50 X
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57. Photomicrograph of Sample Q, Porous Alumina 50 X
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38. Photomicrograph of Sample P, Porous Alumina 50 X
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39, Photomicrograph of Sample J, Dense Alumina 50 X
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40, Photomicrograph of Sample T, Single Crystal Alumina 50 X
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Coors Porcelain Co. This material had a porosity of ap-

proximately thirty percent. It was chosen specifically

to compare with the rather porous zirconia used in the

previous measurements because, while it had similar

sransmission characteristics in the single crystal, the

sxtreme porosity of the alumina gave it a very high

scattering coefficient. According to the theory derived

here, this should csuse a powder made of it to have a

Lower conductivity than that of an equivalent zirconia

boowder even though the conductivity of the solid aluminas

vould be on the order of twice that of the zirconia. A

nicrogcraph of the extreme pore structure of these alumins

samples is shown in ficure 27.

In ficure 41 can be seen total absolute transmission

~urves versus wavelength for several thicknesses of the

sorous alumina (Coors Al1-100) from which samples P, Q,

R, and S were made. These transmission curves were

obtained from original spectrograms in the same manner

that figure 11 was obtained from the original zirconia

spectrograms (figure 10): the corrections required are

outlined in the section on the infra-red transmission

O&gt;f the zirconia.

Figure 41, the alumina transmission curves, has

features which are similar in all respects to figure 11

the corresponding curves for the zirconia sample;

nowever, the effects are considerably more pronounced in

the alumina graphs than thev were in the case of the
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zirconia. For instance, the maximum tramsmission is

larger in the alumina graphs even though the thinnest

alumina sample was thicker than the thinnest zirconia

sample; on the other hand the transmission of the

thickest alumina sample (which was not quite as thick as

“he thickest zirconia sample) was less than the transmission

&gt;f the thickest zirconia sample.

The alumina transmission curves have their peaks at

approximately the same range of wavelengths as the zirconia

-ransmission curves, but the peaks themselves are sharper,

and the shift to shorter wavelengths is greater for the

lumina samples.

The effects mentioned above are even more evident

if the trznsmission at a particular wavelength is plotted

against thickness of the sample. This has been done

for the alumina infra-red transmission at 5 microns

(figure 42) and corresponds to the zirconia transmission

2t the same wavelength as shown in figure 12. A comparison

of these granhs shows the higher initial transmission of

the alumina but a much steeper drop off. indicating

a considerably larger extinction coefficient for the

alumina than the zirconia. Unfortunately the shape of

this curve makes it impossible to use the simplified

equation (equation a38) to solve for the absorption and

scattering coefficients as was done for the zirconia.

T'he reason for this is that it is impossible to draw the

craph uniquely for the points that are available: if, as
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for the zirconia, a curve through the points were drawn,

and pairs of points picked off from this curve such that

he thickness of one measurement of a set was twice the

thickness of the other, then considerable error might result

because the curve drawn might differ by a large amount

Prom the curve that would be drawn if more complete data

For the dependence of trensmission on thickness were known.

The other alternative is to use the more general

squation (ecuation a’4):

TT.
= sinho_(D,-D,) ( 934

which can be used to solve for the desired coefficients

regardless of the relationship between the two points

selected. Then the equation above might be solved for

any pair of measurements at a particular wavelength and

the values found for several pairs of measurements at

that wavelength averaged in order to obtain the value

of the constant (B_.).

Mafortunately equation (a34) above can not be solved

analytically, but must be solved eraphically. This

involves an enormous amount of calculation for the number

yf points that would be needed in this work. An alternative

vould be to program a computer to solve the equation and

hen use all the permutations of measured values of transmissions

at a particular wavelength. Time did not allow following
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this course; therefore, a quantitative discussion similar

0 that on the zirconia samples was not undertaken.

Even without finding numerical values for the

absorption and scattering coefficients, there is considerable

jualitative information that can be obtained from the

infra-red curves obtained. It is obvious from the steepness

of the curves of transmission versus thickness at constant

wavelength that the extinction coefficient for the material

is very large; and furthermore it is much larger than the

extinction coefficient of the zirconia. It is further

suspected that this high extinction coefficient is due

tO a large scattering coefficient rather than a large

absorption coefficient because of the high transmission

for thin samples. Actually, a high scattering coefficient

vould necessitate a high absorption coefficient because

the large multiple scattering would cause a long path length

and the absorption is &amp; function of the actual path length

that light must take to traverse the specimen rather than

the thickness of the specimen. But the important thing

to notice is that The ratio of the scattering coefficient

to the absorption coefficient seems to be much higher in

this set of measurements (the alumina series) than in the

zlrconia series.

This large ratio of the scattering coefficient to

the absorption coefficient is corroborated by values for

the emissivity of this material. The emissivity of a

-hick piece of this material (Coors Al1-100 alumina) was
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neasured by Plunkett (19); his data is shown in figure 43.

from equation (a59):

 Oo
0

®® 1+8 (a59

ve see that the emissivity (ey) and (Bg) which was shown

0 be a function of (a/s) only rather than the absolute

value of (a) or (s (see equation (a6Q)) are interdependent.

From the above equation, then:

 _- fo
0 2-&amp;

(104

and since (egg) must be beyween O and 1, (By) increases

vith increasing (g_) though not linearly.

The above relations indicate that since the emissivity

&gt;f the alumina is smaller than that of the zirconia, the

constant (B,) and the absorption coefficient to scattering

~oefficient ratio must also be smaller for the alumina

“han the zirconia. Now by looking at the equation for

~he effective conductivity, we can make some predictions

as to the relative conductivities of the alumina and the

zirconia based on the above data. The effective conductivity

in a vacuum due to radiation is given by:

_ 2(1+K)bBDsinhoD
= (1-P)[2(coshoD-1)+ K ocDsinhoD]

n (a166°
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The constant (b) is the same for all samples, and is a

function of the temperature only. The constant (K) is

very small for both of these materials and the part of

the denominator, [KoDsinhoD is found to be nearly

insignificant with respect to 2(coshoD-1) for the values

of K, 0 and D of these materials. Also, the ratio of

[sinh x] to [2coshx - 1] does not change drastically for

small changes in x, especially if x becomes large,

vhereupon this ratio approaches 1.

From the above we see that if two samples have the

same particle size and porosity, and if the value of the

constant (0) is similar for both materials. then we can

set an idea of the relative radiation conductivities of

the two materials, by comparing the constant 3) * for

the two materials. That such is the case we can see by

comparing the effective conductivities of the alumina

samples (figures 44-47) to the conductivity of the

zirconia samples of the same size.

For instance sample Q (figure 46) in the alumina

series has an effective particle size of 0.0167 cm. as

compared with an effective particle size of 0.0147 cm.

¥

Very often in this discussion the constant (B) will be

used for (B,) and the constant (og) for (o,). For a

justification of this (for these systems only) see

Appendix B.
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for sample IL (figure 22) in the zirconia series. In spite

yf having a somewhat larger particle size, the alumina

sample has e slightly lower conductivity as would be

rredicted frcm the fact that its emissivity and therefore

the constant (LL ir smaller than the ssme! constants for

zirconia. The ccnductivity at lc temperatures (100°¢.)

is higher for the alumina than the zirconia. This is

andoubtedly caused bv the considerably greater solid

conductivity of the alumina. Furthermore, the conductivity

at a particular temperature does not increase as much with

increasing particle size for the alumina as it does for

-he zirconia.

“a Dense Alumina

As a further cualitative check on the theory, a sample

&gt;f relatively dense alumina was run. This material is the

sort that is usually used for laboratory ware, and is much

jenser than the Coors Al1-100 of the previous samples. Its

lensity is of the order of 90 to 95°/0 of theoretical

density. A photomicroeraph of its surface 1s seen in

Ficure 28. Since it is denser. one would expect that the

scattering coefficient and therefore the ratio of the

scattering coefficient to the absorntion coefficient to be

~onsiderably smaller. Also. one would expect the constant (RG

to be larcer since it depends inversely on the ratio of the

scattering coefficient to the absorption coefficient.

That this is so 1s seen by the fact that the emissivity



of this material is larger than that of the very porous

naterial. Figure 48 is the emissivity of the same dense

slumina as was used to make these samples as measured by

Plunkett (19).

However, when we look at the measured conductivity

of sample J (figure 49) we find that its conductivity is

even higher than we would expect from the differences

in emissivity. It is approximately twice that of the

zirconia sample of comparable particle size and, as we

saw before, the very porous alumina had a conductivity

lower than the zirconia. In order to explain this high

conductivity, we must look at the significance of the

constant (0) and its effect on the effective radiation

conductivity.

If we look back at the defiaition of vu (or actually

Y - see footnote on previous page)

Js = Val(a+2s) (=,

ve see that (0) depends on the absolute magnitude of the

scattering and absorption coefficients rather than only

on the ratio between the two like the constant (B). The

constant (og) therefore behaves like an extinction

coefficient and can be considered as such. Furthermore,

we can think of an effective optical thickness as being

sgual to (0) times the actual thickness. In this wav
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ve can compare materials with different optical constants

and different thicknesses. For instance it was shown in

-he theory section how the temperature gradient changes

sccordingly to the optical thickness of the section.

In short, surface effects are more important where the

optical thickness is small and become negligible when

she optical thickness is larce. It should be noted

that the important parameter is the optical thickness

(0D) rather than actual thickness. We have shown in

he theorv section of this thesis how the effective thermal

ronductivity depends on the product of a factor giving

the conductivity of ovague lavers (i.e.. layers of laree

yptical thickness):

b 3D
(1-P)

snd a term which depends on the optical thickness:

sinhoD
~oshoD=1

This correction factor approaches one for verv larce

7alues of oD. can become quite larce for even the values

 FP oD which are likely in these materials. and of course

sporoaches infinity when oD approaches zero. As an indicatior

YF the order of magnitude of oD for an actual case we see

that for the zirconia samples (the only material for which



there is sufficient data) oD varies from 0.2 to 2.0 and

the correction factors Sinh oD/(CoshoD-1) are about 10

and 1. respectively f:— these values. That this correction

factor is quite large show. the necessity of calculating

heat transfer by the rather complicated methods shown

here rather than by only considering absorption and emission

as a surface phenomena using the usual measured emissivities.

Now we see that for samples with a relatively large

optical thickness, or for two materials with an approxi-

mately equal optical thickness, the value of the constant

(B) is the determining factor in the effective conductivity

due to radiation, other things being equal. However as

the optical thickness becomes smaller, the value of the

constant (0) also becomes important and the conductivity

increases above what one might expect from only the relative

magnitude of (8B). Such is undoubtedly the case with

sample J of hieh fired alumina. Here the emissivity and

sherefore (B) is slightly higher than the very porous

slumina and the zirconia of the samples. but more important

the material is considerably more transparent and therefore

for eaual particle sizes. the optical thickness is much

less. This effect is the cause of the very much higher

neasured conductivity.

iL Single Crystal Alumina

As a final sample a single crystal alumina was chosen.

This material had an extremely low scattering coefficient
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as compared to the previous samples and therefore the ratio

of absorption coefficient to scattering coefficient and

the constant (BB) would be somewhat larser. More important.

~he optical thickness involved would be very small no

matter what the particle size since the material is

extremely transparent at least until the cut-off.

Therefore, one would exvect this material to have a higher

affective thermal conductivity than any of the previous

samples.

The measured conductivity of sample T, composed of

single crystal alumina particles is shown in figure 50.

It is seen that its conductivity is higher than that of

the sample J which was composed of the dense alumina even

though the latter had a considerably 31grcer Particle

size. This constitutes a final qualitative verification

of the theory.
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(Or Summary of Data

[n order to summarize the experimental data, figures

51 to 53 have been drawn. These figures help us generalize

the effects of various parameters on the effective

conductivity. For instance it is seen from figures 51,

che effective conductivity of the zirconia powders, and

52, the effective conductivity of the porous alumina

powder, that the conductivity always increases with increasing

particle size (except for samples K and N which had

jifferent bulk densities). Comparison of figures 51 and

52 shows not only that the conductivity of the porous

alumina powder is lower than the conductivity of a zirconia

powder of the same size, but also that the spread of

conductivities for a given size range is less for the alumins

than it is for the zirconia when the difference in point

contact conduction is taken into account. This smaller

spread for the alumina is to be expected because the emissivity

of the alumina is less than that of the zirconia, while

she extinction coefficient is greater.

Figure 5% shows, on one graph, curves for the effective

conductivity of all four materials studied. These curves

are all for powders with approximately the same particle

3ize. The important thine to be seen here is that the

effective conductivity of the powder increases with increasing

transparency of the solid from which it is made. The

conductivity of the single crystal material is many times
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that of the porous alumina showing the importance of

microstructure over chemical composition. The asymptotic

value at low temperatures indicates that point contact

conduction is greater for the high conductivity solids.

single crystal and dense alumina, than for the low conduct-

ivity solids, zirconia and porous alumina, as is to be

axpected.
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II CONCLUSIONS

The following conclusions may be drawn from the

results of this thesis:

1. The effective thermal conductivity of powders

due to radiation can be predicted from measurements of

infra-red proverties of the solid from which the particles

of the powder are made. For the usual ceramic materials

this prediction can be made on the basis of the two most

important factors:

3.) The first of these factors is directly proportional

co the total emissivity of the material in bulk. the size

of the particles and the cube of the temperature, and

inversely proportional to the pore fraction. This part

of the conductivity is that which would be calculated if

the particles were perfectly opague and the radiation

transfer occured only between surfaces.

b.) The second factor is a correction of the above

for the fact that the materials are not opague but allow

a significant amount of radiant energy to pass through

them. This factor is a function of the optical thickness

of the particles;the smaller the optical thickness, the

more radiation passes through and the larger must be the

correction. However this correction does not depend

linearly on the optical thickness. This factor varys from

close to one to nearly ten for the zirconia samples
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investigated in this work, and undoubtedly becomes much

larger for materials which are more transvarent to infra-red.

2. The relations shown above given excellent

qualitative predictions and therefore are a good basis

for material design. The quantitative agreement is not

as good as is desired. Part of the discrepancy is due

to the point contact conduction which was not taken into

account in the theoretical treatment. Its magnitude was

Found to be about 2 to 10 x 10~2 cal.cm./°C.cm.%sec.

I'here seems to be a multiplicative error which is «¢

function of the particle size. This is probably due to

some of the basic assumptions made in deriving the

theory. The effects of the three dimensional case, and

the particle size distribution being the most likely

causes. The arbitrary multiplicative factor and the

correction for point contact conduction bring the

theoretical predictions into close agreement with the

experimental results indicating that the theory gives

"he correct temperature dependence.

5. The theory vredicts correctly the transmission

of radiation through the s0lid material from which the

oowders were made. and can be used for calculating the

transmission of semi-transparent materials. This transmission

can be calculated on the basis of absorption and scattering

roefficients.
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The range of conductivities encountered in

bowders is large. In a powder consisting of a material

which is transparent to infra-red such as many single

crystal ceramics, the conductivity due to radiation

an become as large, and at high temperatures, larger

than that due to «as conduction. On the other hand by

oroper choice of materials, and the use of fine particles,

it is possible to produce a powder with an extremely low

conductivity due to radiation. This conductivity can be

2S low as 1.5x10~% at 1000°¢. (this value probably includes

sbout 3 to 4 x 10™7 due to point contact conduction).

5. Ags a final conclusion it 1s thought desirable

to recommend the steps to be taken in order to produce

3 material of the lowest possible thermal conductivity.

It is easily seen that the most important factor is particle

size. Decreasing the particle size not only decreases

the radiant heat transfer, but also decreases the effective

conductivity of the gas in the interstices. This latter

cffect becomes more important at higher temperatures as

che mean free path of the gas molecules increases with

temperature. Experimental evidence bearing this out is

available (23) and (24), The only limit on decreasing

che particle size is evidently the conduction at point

contacts which can easily become significant as soon as

the particles begin to sinter. The reason for this is

that the conductivity of the solid is several orders of

nagnitude larger than the effective conductivity of the
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powder so that any solid conduction path will produce a

significant amount ¢” conductivity. For tiis reason it

is advisable to use &amp;« material which is difficult to

sinter. The optimum particle size then depends on the

sinterability of the powder, and whether the conductivity

is lowered more by the decrease in particle size than

it is increased by the added sintering at the temperature

of use. The lattice conductivity of the solid is one

of the least important parameters until the particles

start to sinter.

“he desirable optical properties for the lowest

possible conductivity can be summarized by saying that

che absorntion coefficient should be as small as possible,

while the scattering coefficient should be as large as

possible. This will produce the largest possible scat-

tering to absorption coefficient ratio which in turn will

produce the smallest possible emissivity. If the

scattering coefficient is large the extinction coefficient

#ill also be larce, and this will cause a larce optical

thickness. The latter will in turn prevent energy from

passing through the particles thus reducing the conductivity.

In order to realize the above in actual situations it is

necessary to use a material whose single crystals are as

transparent as possible to as long wavelengths as possible.

However the material itself should be as porous as possible

and have the smallest possible pore size.
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JITI SUGGESTIONS FOR FUTURE WORK

[n the course of this work several research topics

presented themselves as logical continuations of phases

of this work. These include both further experimentation

and further investigations into the theory of heat transfer

by radiation, such as the following:

l. An attempt to derive absorption and scattering coefficients

from more basic constants (such as porosity, pore size,

and shape, index or refraction, etc.) by means of the Mie

theory of scattering, and the methods of multivle

scattering.

2e Take into account the three-dimensional aspects of

radiation and surface reflections (this would improve

the agreement for thin lavers).

2 Take into account the three-~-dimensional aspect of

neat transfer in powders and the effects of the distributed

sizes of particles.

I, Extension of the theory to other materials and

situations such as heat transfer in glass. high temper-

ature coatings, emissivity of layers of small optical

thickness. etc.

In addition to the theoretical studies mentioned above

the following experimentation could. with advantage. be

carried out:

Ll. More numerous experiments such as were carried out

in this work. This would serve to check the theory more
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closely and perhaps to point out the parameters which are

important in causing discrepancies from the theory. It

vould also be useful to have reference to the absorption

and scattering coefficients of common materials for

design purposes.

2 It would be useful to measure the conductivity of

bowders with gasses in the interstices to check the vpre-

dictions of the kinetic theory of gasses with respect to

ras conduction, and the theory presented here for radiation

conduction in the presence of interstitial gasses. While

there is some data along these lines in the literature,

it is not nearly sufficient to check the theory adequately.

Se It would be desirable to make measurements at about

room temperature in a high vacuum in order to find very

low conductivity materials. Such materials evidently

exist on the Moon (see Appendix D) and it would be useful

to investigate this in order to gsin some insight into

the structure of the surface of the Moon.



APPENDIX A

RIGOROUS DERIVATION OF EQUATIONS

lo Introduction and Basic Assumptions

It was realized during this investigation that,

although ceramic materials appear opaque, they actually

allow a considerable amount of radiation to pass through

them. Single crystals of most materials are good trans-

mnitters, some out to the long wavelengths of the infra-red

spectrum. The apparent opagueness of polycrystalline

naterials is then due to the scattering of the radiation

in the body rather than absorption alone. In order to

find an expression for transfer of heat by radiation

through powders it is first necessary to understand the

mechanisms of interaction of radiation with solids. The

basic method which will be used is that of dividing the

liecht flux into two parts: one flowing in a positive

direction, and the other in a negative direction.A set of

simultaneous differential equations are used to describe

these fluxes and the other necessary parameters. This

method was originally developed by Schuster (14) to

describe the transmission of light through fog. Since

only a forward and a backward flux are considered, this

is a one-dimensional calculation and therefore has as a

basic assumption that the incident radiation is diffuse

(i.e., has an equal value for all angles of incidence),

and that the radiation scattered sideways is compensated



by an equal contribution from neighbouring parts of the

layer (i.e., the area investigated is either small in cross

section compared with the total cross section of the

sample or is large compared to the thickness of the sample).

These conditions are usually met in practical heat transfer

problems, but it is necessary to be careful that they are

also fulfilled during experimental measurements of transmission

In a continuation of Schuster’s work Hamaker (15)

has solved this set of simultaneous differential equations

for the simple case of a scattering and absorbing medium

and then gone on to derive sets of equations for cases

where there is, in addition to scattering and absorption,

emission within an isothermal body; he also discusses the

~agse where there is emission within a body in which there

is a temperature gradient. Hamaker has found the general

solutions of these sets of eguations and has then applied

Fhem to some specific cases. The treatment here starts

¥ith Hamasker??s general solutions and, with the use of

suitable boundary conditions, solves for the expressions

required to find the necessary scattering and absorption

coefficients from such data as the transmission of thin

layers and the emissivity; the expressions describing

the emitted radiation and temperature drop across individual

layers under the conditions which obtain in a powder sample

are also derived. These last expressions are then used

to find an effective thermal conductivity for a powder

oy assuming that the powder consists of layers. In all



these calculations only monochromatic radiation has ‘been

sonsidered. The scattering coefficients where measured

inder monochromatic conditions and are not expected to

~hange significantly at a particular wavelength as a

function of temperature. The absorption coefficients where

calculated in a way which automatically takes into

account both the wavelength distribution of light emitted

at a specific temperature and the temperature dependance

of the monochromatic absorption coefficient (this method

will be shown later). However, in using these coefficients

to predict thermal conductivity, the fact that the wavelength

distribution of black-body emission changes with temperature

was not taken into account. This then implies the assumption

that the temperature gradient across the sample which is

being measured is small and the expressions became strictly

valid (with respect to this assumption) only when the gradient

approaches zero.

2 Non-Radiating Layers

The total radiant flux is divided into two parts:

I = the flux in the direction of the positive x axis

J = the flux in the direction of the negative x axis

An absorption coefficient, (a), is defined by assuming that

(aldx) is the amount of the radiation absorbed from the

flux (I)on passing through an infinitesmal layer. (dx);

A scattering coefficient, (s), is similarly defined by

assuming that the flux scattered backward from (I) (and



therefore added to J) in an infinitesmal layer (dx) is

(sI dx). On passing through this layer (I) will then be

diminished by the amount absorbed and the amount scattered,

but will be increased by the flux lost by scattering from

(J), or:

1T/dx = -(a+s)I + sd (a:

similarly:

1J/dx = (a+s)J - sI ( e”

These are Schuster’s equations; they are valid (within

the basic assumptions mentioned earlier) for a material

in which both scattering and absorption take place. If

there is no scattering (i.e., if (s) is zero) then the
-a Xx

solution is I = ge © : where (g) depends on the boundary

conditions and (ay) is then the absorption coefficient

of the non-scattering medium. This expression is of

course the Baer-Lambert law for the attenuation of

radiation in an absorbing medium.

On the other hand if there is negligible absorption,

(or a is zero) then we have:

dI/dx = 4J/dx = s[J-I] { =

These equations have a general solution of the form:
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[ = Ax+ky, J = Ax+k, (g/L"

where (kq) and (ky) depend on the boundary conditioémns.

Since dI/dx = A, A = s(ky-kq)e If IT =I, at x=0. and

J = 0 at x=D for a sample of thickness (D) and incident

radiation (I), then k,= I_ and O = s(k,-I_)D+k, or

. - sDI J

2 7 1+Ds°*

Then the desired solutions are:

I - (1+s{D=x) 4
TS To" 1+4Dx

(

and

D-x
J = sI_ [355] (aA

lhe transmission (1) of a sample of thickness (D) can be

Found by dividing the forward flux at the back surface (I)

by the incident radiation (I) or:

Ip _1+s(@-D) _ 1
I ~  1+sD 1+sD

( =

The reflectivity ( ¢) can be found by dividing the backward

flux at the front surface (J7.) by the incident radiation

(I) or

J .
“0 _ D-D sD _
I~ slizepd = TosD e {ass

The sum of the reflectivity and the transmission is unity

aa da ta be expected.
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These expressions can be used to describe the case

vhere no absorption is present. They are also useful for

finding the scattering coefficient (s) under exverimental

~onditions where there is negligible absorption. the

ralculation being a simple one.

As shown bv Hamaker. the solution of Schuster’s

romplete eguations can be found by putting

Oo

o_-

wX i oeCX

Ix | ce”CX

( ~

(a10)

only two of the four constants C, ... C,, being arbitrary.

The complete solution being:

0X 0X
A(1-B e + B(1+B_)e

0X -0 xX
= A(1+B De + B(1-B )eJ

(911

(a1

vhere

J = Va(a+2s)

g
2__ ___0

36 “V(a+2s8) = ag+2s

(ail3

(a]

both roots being taken with the positive sign. In these



equations (A) and (B) are constants to be determined by

the boundary conditions. The case which is important

here is that of a layer of thickness (D) illuminated on

one surface (the front one) by a flux (I) This means

that the boundary conditions are: I = I, at x = 0,

J = 0 at x = D. In addition to the complete expressions

for I(x) and J(x), the quantities usually desired are

[I at x =D or In and perhaps J at x = 0 or J,

Then

[
¥ = A(1-B_) + B(1+B,) (als

and

o,D =0,D
J = A(1+B)e + B(1-B) (al6)

oy

A

-0,D
-I,(1-B,)e
(1+8)%e90P_(1-p_)Ze~90D (al?)

and

B =

oD
I,(1+B.)e

oO -0 D
(1+8_)% © —(1-8_)3 ©

(318

substituting these constants in equations (all) and (al?)
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L

cD -0. x -0 Do x
[(1+8)% Oe © (1-8) Oe 97]
 NE TT, =o.

(1+8.)% © - (1-8.)% |

oD -0 x -0.D ox
[e J e 0 -e Oo e J ] (1-87)

-0. D
(1-8)2e ©

RTA pbsei mito le

( 148_)% ©

{g10°

(aon

By finding the forward flux (I) at the back surface

‘x = D) we can determine the transmission of a sample:

[ry =

&gt; &gt;
I, L(1+p)"-(1-B,)"] I,48,

cD -0. D oD -g D
(1+8_)% © —(1-8_)%e © (148 )%e © —(1-8 )2e ©

(ar

which gives the transmission of a sample in terms of the

incident light (I_), the thickness, and scattering and

absorntion coefficients.

The reflectivity of a sample is found by solving for

she backward flux (J) at the front surface (x = 0):

D -0 D2 % 0
I,(1-B, le -e ]

cD -0 D
(1+8_)% © —(1-B8_)°e ©

 20

Normally, the relative transmission (I,/I_ = 1) and

she relati 1 vi =ive reflectivity (3,/T, =P) would be used.

[t is also possible to find an expression for the

amount of radiation absorbed in a sample of thickness

‘D). relative to the incident radiation (I)
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(this quantity, the relative absorptivity, is defined as a,

in two ways: From the relation a +@+ 7 = 1, a = 1-( +71)

and since (p) and (t) are known, (a) can be found. The

relative absorptivity (a) can also be derived by integrating

the absorption in each infinitesmal layer of the sample:

3ince (aIdx) is the amount absorbed ffom (I) and (addx)

that from (J) in the distance dx: do = a(I/I_+J/J )dx.

If this expression is integrated over the total thickness:

an expression for ao is arrived at:

D

[ a = a ! (I/I + J/J ix
0

A

I'he resulting expression for the absorptivity is

o,D -0,D
28,0(1+8.)® +(1-B)e © -2]
 Low = S=oD
(1+8_)% ° ~(1-B_)°%e °

X

(az3)

(aru

It has been found useful in further calculations to intro-

duce the identities 2sinh® = e®_a~0 and Pcocsh@ = 59,60

The expressions for 1, ¢, and a then become:

2B
(225)

(1+B,° )sinho_D+2B_cosho D

¢ =

x

(1-B.° )sinho 1
2 .

(1+8,, )sinho D+2B8_cosho _D

2B,LB,sinho D+cosho D-1]
(1+8.* )sinho D+28 cosho D

(a26)

(a2!)
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A convenient method of solving for the absorption

and scattering coefficients (a and s) would be to measure

the transmission of several samples of various thicknesses.

Jdowever, in order to calculate the coefficients from this

data it is necessary to solve the equation for (1), for

(B,) or (0):
since

2B. i

(148, )sinho D + 2B.,coshoD

28 = tsinho D + 2tB,cosho D + vB, “sinhoD

ri

( g20"

35

rsinhoD= B,L2 - 2vrcoshoD- 18,5inhc D] (a4 ~~

If samples of thickness (D,) and (D,) and transmissions

($57) and (T,) respectively are considered, then

v,Sinho D, i 2 - 27, cosho JD, - T,B,Sinho D,
T,8inho D, 2 - 21,cosho D, == T,8,8inho D,

{ 25%,
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NT

27, sinho Dy - 21, 1,8inh(0 Dy)cosh(o D,) —

T,7,B,8inh(0 D,)sinh(c D,)

21,8inho D, - 27, 158inh(o Dy) cosh(a D;) -

1, 1,B,8inh(6 Dy)sinh(o D5) (

and

sinho Dy _ sinho JD, i}
T

(a33

[sinh(o_D,)cosh(o,D,) - sinh(o D,)cosh(c Dy)

hut since sinhScosho - sinhocoshe Sn

sinho Dy _ sinho D,
= sinho (D, -D,)

sinh(© - ,

( -

If sample thicknesses are chosen such that D- = 2D~ = 2D

then

Sinh2o D sinho JD
—_— re —— = sinho D Lan
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out since sinh26 = 2sinhecosh®

2sinh(o _D)cosh(o D) sinho JD
~ = sinho D (g3A"

~
J

22cosho JD _oL_
Tq

 (1, +1)
cosho _D = 27,

{=o &amp;
P

(erBNy
—

{o,) can be evaluated from these expressions and (By) can

be found by referring to the expression for (1) as a

function of (o_.), (D)., and (B.) as:

2B, = 21B_cosho D + 7(1+B°)sinhoD |

Then

- 2p l-tcoshoD 1 + B.°
tsinhoD

=UU { ql. ~~

and

3g=
l-7tcosho D l-tcosho D 2
tsinho D = [ tsinho _D = =-1 | a4,

the negative root being the physically significant one)
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[&lt; (B,J is small, as will often be found in actual

cases, then (B.%) is insignificant with respect to one

and:

3, =
tsinho | D

2[1-tcosho DJ
( 41D

This expression will be found to be not only simpler, but

also more accurate when (B,) is small, (B,&lt; 0.2 - 0.1),

5 Radiating Isothermal Layers

Hamaker has also found the general solution for the

case where there is a light scattering layer at uniform

temperature. Here in addition to the ffaction of the

forward radiant flux absorbed (aldx) there is an amount

emitted in the forward direction equal to (aE dx) in order

to conform to Kirchhoff’s law. (E_) designates the black-body

radiation at the temperature and wavelength in question.

This same amount of energy, (aE dx) , will of course be emitted

in the backward direction also. The differential equations

are then.

iI/dx = -(a+s)I + sd + ak

iJ/dx = (a+s)d = sI =- ab,

{ a

re

vy
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The general solutions of these equations are given by

Hamaker:

rr 0X
= A(1-B.)e +

0.X
J = A(1+B,)e 0 +

-0xX
B(1+B Je °

-J .

B.1-B Ye *

ry

R

yin=

(gle

An important case is again the situation when there is

an incident flux (I) on the front surface and no backward

flux at the back surface (J, = 0).

“hen

r = AC1-B_) + B(1+B,) + BE
7

(=2

ana

oD -0g D
0 = A(1+B)e + B(1-B.)e © B. { al

&gt;iving

ly

) -0,D
(1-Bde © (zB) + (1+B,)E,

oD _

(148 )% © _ (1-8 2. 0,0

(44 AN

and

&gt;!

aD
(1+B,) = (TE) + (1-B IE, =

[=
y

V

(148 12.900 _ (1-8_)2a=00D
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vhence

-0_D oc.
[(1-B)% © (1,-B)+(1-B)EJe©

cD -J X

[(1+B,)% © (1 -E_)+(1-B °)E,Je O

1+ B N] &amp;o0
mle (1-8_)26 ©

Le RB

(a5?

ang
-0 D oc

[(1-B,%)e © (I.-E_)+(1+B_)°E_e o*

cD -0

[(1-8,2)e © (1,-B,)+(1-B)%EJe©
oD -g D

(1+8.)% 0 - (1-8.)% 0

bh:

fabs

As before, finding the resulting flux at the back surface (I.):

cD
-((1-8_)2(T _~E_)+(1-8D)E_e © 1

nN
2 EJ

| (148.7) (T-By) + (1-8 2)E_e “0”

+B )%e - (1-B Ye ©

3 (a5~

or, rearranging terms:

[ =

48 I “02,”BI } 48+(1-B_°)le %—¢ “oP.
(14g 12 oD 5 =0,D Bf --+B, )%e -(1- © %o”B.)%e (1+8.)% © =(1-8_)%

{ «45a
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On checking with the previous section it is found

shat the coefficient of (I) is equal to the transmission (71)

of a non-radiating layer and the coefficient of (E,)

after rearrangement of the terms, is the same as the

absorptivity (a) of the layer. This latter is to be

expected since the coefficient of (E,) in the above equation

represents an emissivity of the layer (eg) which should

cqual the absorptivity according to Kirchhoff’s law.

(Note that (eg) is defined as the amount of energy emitted

by the layer in question divided by the amount of black-body

radiation from an equivalent area and therefore devends

on the thickness.)

Similarly the flux reflected and radiated from the

front surface (J,.) is found:

1-82) (1 —E )5) + (1-8 )2E
0 oO

I

-0_D
- [(1-8.%)e © (I_-B.) + (1+B,)°E,]

5 OD 5 0 ~ + E,
(1+B ) e — (1-8) e (a55)

 mr

J
0

. 2 Oo D -J D D — =

[(1-B,7)(e ° -e © YI 1+ (1-8 2)Te © —o “0%
&gt; ou &gt; -0.D * Ey 1- &gt; TY 5 =O D

)"e © =(1-B.) e (1+B8,)%e =~ =(1-B_ )"e ©

{ 456°
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vhich is the same as

J 5
x

—- pL + ek
L"

[7

where ( e) is the reflectivity found in the previous

section and (eg) is again an emissivity relative to the

black-body radiation of a body at the temperature in

question. The emissivity of a body of thickness (D)

at uniform temperature is. in simplest form, then:

—
-
a.

2B,[B sinho D + cosho D - 1]

(1+8_%)sinho_D + 2B_coshoD
{ a Co’

if (D), or more important (oD), becomes large then

sinhoDA=coshoD&gt;&gt;1 and we have (as D&gt; ©)

= =
00

2B, (1+B,) 28,
(1+8_°)+28,, 1+B,

{a =~

ziving the emissivity of an infinitely thick specimen (this

is the emissivity that would (or should be) be guoted in

the literature). It is interesting to note that since:

3, = 1852 = [3455 { a6

(By) and therefore the emissivity of an infinitely thick

sample, depends only on the ratio of (a) to (sg) and not on

“heir absolute wvaliiea.
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It has been shown by Hottel (16) that if two parallel

infinite layers are interchanging radiation, a corrected

emissivity (g* = por must be used in radiation transfer

calculations because of the radiation reflected back and

forth between the two layers. Using the above expression

for €oy we find that

- EF
Tet
op

e - +B,

(aR?

&gt;iving a physical significance to (By)

Also, since (a) and (s) are positive, a £ (a+2s) and

a__ . \ 2 . i
hoy &lt;1; Lom &lt;1 and 0&lt;B,&lt;1 as is required.

. 1 1 2

Also, since Bo&lt;1s B71 1 + “B. &gt;2, T+1/8. &lt;1,

2B
0 - .

+p &lt;1 and En&lt;1. The expression above for (g_) gives

a useful method of finding (a) at elevated temperatures

vhen (s) is known as a function of wavelength. Then an

average (s) can be found for the temperature in question

py using the black-body emission versus wavelength tables

as a weighting function. Since the value of (8) at a

particular wavelength would not be expected to change with

temperature, this average value of (s) can be used in

conjunction with an experimentally obtained value of

(eg) at the temperature in question to obtain a value for

(a) which then automatically gives the correct value for
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wavelength distribution at that temperature. This method

of obtaining the constant (a) is desirable’... since the

absorption coefficient at a particular wavelength does

change with temperature.

Radiating Layers with Temperature Gradient

(General Solutions)

The next case that Hamaker has treated is the situation

where there is not only internal emission of radiation,

but also where the temperature varies within the specimen.

Heat transfer by both radiation and lattice conduction

fake place and the resulting temperature gradient and

surface emission vary accordingly.

Now in the differential equations the black-body radiation

varies with temperature. and a new heat balance equation

nust be introduced expressing the fact that heat is neither

accumulated nor produced within the body:

2
K0L + a(I+3) = 2aE(T)
dx

/ ak,

(k) being the lattice thermal conductivity. The first

term on the left side represents the heat accumulated by

conduction; the second term gives the heat absorbed. and

the sum of these equals the heat loss by radiation (the

term on the right).

E(T). the total black-body radiation, is given by the

stefan-Boltzmann equation:

R(T) = ald a63)
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where (oh) is the Stefan-Boltzmann radiation constant

and (T) is the absolute temperature. If the temperature

is high and the temperature gradient not too large then

(E) may be represented by

E=5 + b(T-T_) {aRd

where b = solr 2, (T,) is a temperature close to the

actual temperature concerned, and (E,) is the corresponding total

radiation. When the above equation holds the temperature

may be fixed equally as well by (E) as by (T) and, since

Hamaker has found this to simplify matters, (E) has been

retained in the equations rather than (7). The set of

simultaneous differential equations is then:

iI/dx = =-(a+s8)]I + sJ + aE

1J/dx = (a+s)d - sd - aB

2
k wd + a(I+d) = 2aE
bh dx

damaker shows that the complete general solution of these

{aS

( aA

( aE -—

aquations is

- A(1-B)e%® + B(1+B)e™%* + C(ox-B) + F

J = A(1+B)e%F + B(1-B)e o% + C(ox+B) + F

Pooh  %9F _ BAe 9X | (ax + T

(a68)

(ako

( 4 70
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vhere

4 | [232 atares) | =+ [J= + 2a2+0 2
0

&gt; 9a+2s

K= —2b__  _ 2bB
~ k(a+2s) = ko

(all

(ag 72&gt;

(ay »N
ho

The constants (A). (B), (C) and (F) are to be determined

from the boundary conditions which can be four of the

possible six conditidns;., three at each surface: the

temperature, the temperature gradient, and the amount of

incident radiant energy.

&gt; Radiating Layers with Temperature Gradients

(Particular Solutions)

Hamaker goes on to some practical applications of

these eauations and a discussion of the system when wavelength

nust be considered as a variable. for the purpose of

his study, the most interesting case is that of a laver

of thickness (3) with incident radiation (T,) on the

front surface (x=0). and (J.) on the back surface (x=D).

The other two boundarv conditionsaresuppliedbyrequiring

the heat removed or introduced by conduction from or to

the gas at each surface to be equal to the heat absorbed

or lost by conduction to or from the solid at each surface.

This meang that:
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dT, |BE oliddT, = 2ke (53 za (a74"

at each surface (k,, is the thermal conductivity of the

ras, and (k) is the thermal conductivity of the solid).

Since (BE) will be used as a variable instead of (7) we

have as the boundary conditions:

GE Load. IEE
dx solid 4x solid k dXoas

(97

&gt;y differentiating equation(a?70) for E we obtain:

2 = -AK ce" + BKoe9%Cc
anlid

(a7

and the four boundary conditions are:

pos = A(1-B) + B(1+B) - CB + F (a77"
Br

F+B)D+(oCD EN-01-B8)e(BD +o
eB)(1+ATn =

Pee aT) = 0K [B=A1 + Co
k dx oas

D-oD _ Ae Co“Sg dn, = 0 K [Be
k dx cas

(a8

(= ro

11a)
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From these four simultaneous equations it is then

possible to solve for the desired constants (4), (B),

‘C) and (F). They are:

A

B .

nNWA

bk

[70-1100(1-0)+5855)(oD+28)]
20 f2[coshoD-1] + [2B(1+ K)+ KoDlsinhoD]

bk

[90-1] [oll -3p] + —2(E) _[oD+2p1}
&gt;g { 2[coshoD-11 + [2B(1+ K) + KoDlsinhoDJ

4bk
-20Ksinh(oD)[I_-Jp] + EB [coshoD-1+BsinhoD]TOT BIIANOTI oT DY fF Tk Max ghtomo AaEe

20 { 2[coshoD-1] + [2B(1+ K)+ K 6D]sinhoD}

(ad

(gD

(

20 {1 [cosnop-1+(p+BK + KoD)sinhoD]

Jp[coshoD-1+8(1+ XK )sinhoD]]

q

bk

2~2(§3) ,[coshoD-1+BsinhoD]
20§2[coshoD-1]1 + [2B(1+K)+KoDlsinhoD}

o—

( a»

Introducing these constants into equations (a68), (at9),

and (87D) we obtain eceneral expressions for (I), (J), and

(E), under these conditions:

bk
/ - —&amp;dT
‘where n . (3%) o



 »Ui

‘pope mmber nissing)LSE me sie vs $y
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(1-8)e*[e™P-11[0(T_-I)+ n(oD+2p)] (a85)

1+8)e X9011[0(13)+n(oD+2B)]

- Lox-p1 {4 n(coshoD-1)+2sinhaD[2B87 -0 K(1,-35)1}
20 { 2[coshoD-11] + [2B(1+K) + XoD]sinhoD {

(1+8)6%%[e 0-1] {ol1 -3,] +nlaD+28]|
(1-8 [e921] { olI -7;]+ nloD+2p1]

Lox+B] {4 hlcoshoD-1]+2sinhoD[2BN -o (I =I)

&gt; { 2[coshoD-11+[28(1+ K )+ KoDlsinhoD! ( 286)

OX -oDK e°*[1-¢"P1 { GLI -3;)]4n [oD+281

on
MH,

2G

i K “0X1 e907) { 6[T 31+" [oD+281]

- ox {47 [coshoD-11+2sinhoD[2BN -o K(I_=J3)]]

(a8)
{ 2[coshoD-11 + [2B(1+ K+ KoDlsinhoD?

These equations are cumbersome and are not the ones that

night be checked by experiment. What is desired are the

expressions for (IP(I(E ), and (En) which can be derived

py introducing x=0 and x=D into the general expressions.

Then the terms are grouped and the exponentials converted

~0 hyperbolic functions there results:
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5 {1.2 B(1+ f¢()sinhoD+J,[2(coshoD-1)+ K oDsinhoD]]

—

\J

om -2[ coshoD-1]+0cDsinhoD l

2[coshoD-1]1 + [2B(1+K)+ KoD]lsinhoD#

(1,02(coshoD-1)+ KoDsinhoD] + Jp2B(1+ f()sinoD]

2gn § —2[coshgD-11 + ~MsinhoD

{ 2[coshoD-1] + [2B(1+ K )+KoDsinhoDY

(588°

{ gC

o { I,0(1-K)(coshoD-1)+(p+BK + KoD)sinhoD]

J 1+ K)[(coshoD-1+BsinhoD]]

1 { [(1+ K)oD+28 K 1(coshoD-1)+BoDsinhoD]
51)
4

3 {2[coshoD-11 + [2B8(1+ f)+ KoDlsinhoD] ( a }

J {1 (1+ K)[coshaD=-1+BsinhoD"

L(1+K )(coshaD-1) + (B+BK + KoD)sinhoD]}

[Y ( 21+ K)oD+28 K1(coshoD-1)+BoDsinhoD
i

™

 ol coshaD-11 + [28(1+K V+ K oDlsinhaD} (49;



It is possible to handle these expressions more easily

if the following functions are defined:

2B(1+K)sinhoD
C1¥ o[coshoD-17 + [2B(1+K )+ KoDlsinhoD

2[coshoD-1] + KoDsinhoD
Reimers— —2

= 2[coshoD-1] + [2B(1+ KK )+ KoD]lsinhoD

(1- K)[coshoD-1] + [B(1+K )+ KoD]sinhoD
fg ® ree —

3 oreoshoD-1] + [2B8(1+ K+ XK oDlsinhoD

(aG2

(9G2

(04°

(1+ K)[coshoD-1+BsinhoD]

&gt;lcoshoD-11 + [2B(1+K )+ KoDlsinhoD

(-2(coshoD~1) + oDsinhoD]

Fe=
wai

STcoshoD-11 + [2B8(1+K)+ KoDlsinhoD

( 50OF

({ 0A

L(1+ Kk )oD+2BX J[coshoD-1]1 + BoDsinhoD
2

&gt;fecoshoD=-11 + [2B(1+ K)i1 KoDlsinhoD (aQ7’
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At this time it is noted that:

L . Ir [, EN ( 908)

and that

K fc ( QC

hese relationships will be useful later when these

sguations are applied to powder systems.

K =

Using these functions (f;, f,,- -) and the definition

shy we can simplify equations (a88-a9l) considerably.

hey now become:

ar
[= £1, + £505 + Tok k (50),

1
dT

C£5T + £10 = fa KE (50),J

« Lg ar8)0= £10 + £,dp = £5 K 555%),

£g aT
E = ful, + f2dq + f6X55(ax)

(a100)

(2101)

(a102&gt;

(al1C -~

dT .

where (&amp;) still refers to the temperature gradient in

the gas at the interface between the gas and the solid.
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Se Solution of Equations of Multilayer Systems

[f we consider a powder as being a series of layers

in series with the surrounding medium it is possible to

solve for the radiation, heat flow, and temperatures inside

the system and then for an effective conductivity. If

he subscript (n) refers to the nth particle, the lowest

numbers being the hottest (i.e., heat flows in the direction

of increasing n);:;the subscript (on) referring to the face

x=0) of the nth particle with heat flowing in the

irection of increasing (x); the subscript (Dn) referring

to the colder face of the nth particle; and if we make

ase of the fact that J = Ip (n-1) and I = Ip(n-1), -

can transform equations (al00) and (8101) into:

dT _
Lon - 1 Ip(n-1)" Fodo(nel)” fe Kk (3%) - {, (a: r ne

and

aT _
Jon ~ folp(n-1y" dg(ne)? fe Kk, (35), = 0 (a10CT

out since £ = 1-f,, we obtain, on substituting

“Ip(n-1)* fon (nal) for 1115(n-1) in equation (al04) and

“Jo(n+1)t Lodo(ne)fOr 1390-1) in equation (al05):

aT
Ion = fon-1) Ey n-1y "90 (ns1) 3 = fe Kk (35) =0

J aly _
an Jolnel) = ln Yo (nat) + f-Kkg(52), = 0

(al A&gt;

(a107
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Similarly substituting for £07 (nel) in equation (alO4)

and fon(nat) in equation (al05) we obtain:

dam ~
[on™ Jone)” F1In(ne1)Jo(ns1): = fs CX (Gx)g = ©

daTy  _

Jon™ Ip(n-1)* T1Ip(n-1)"o(ns1)} = fs K (axle = ©

(a108"

(100°

polvineg equation (al0l) to the (n+l)th layer:

f f
_ 1 - ad 5 dT

lpn = f, Jo(n+1) f, Jo (n+2) + ff, Kk, (55) q (2110

snd eguation (al00) to the (n-1)th layer:

f £
= 1 a - dT

Jon = f, In(n-1) f, 1(n-2) 2 « ko (ax)
2

{ A014 y

substituting (all0) into (alld):

drJo(n+1)~ 1d0(n+2)? fo kk (55) o “fod0(n+1)
dT-f, fly no1Y 0 (nel) - Itc K k (3%)e = 0 {ali

or. since 1-f =f, and dividing by f,:

aT
- f_- Kk (== = 0Jo(n+1) Yo (ns2)TolInn-1) Io (nel)? + 1g (Fa) o (al11~”

Similarly substituting equation (alll) into (&amp;109) and

simplifvine:



=n)

aT -

[p(a-1)"To(n-2) * follp(n-1)"Jo(n+1)) Ts Kk (GF) =&lt; (a114’

from equations (106). (&amp;107), (all3), and (alls) it is

seen that:

Jon™Y0(n+1) = Jo(n+1) Yo (n+2) = Ip(n=-2) = Ip(n-1)

Io(n-1) =~ pn=Ipn~Intnl)=In(n+1) - Inne) (all®’

furthermore:

dT
Ip(n-1) ~ Yo(n+1) = Ip(n-2) ~ fon (n-1Y"J0(n+1)? + fofk, (5%)

aT
o(n+1) ~ TolIpn-1)Jo(ns1)d + Tf (G5)e

In(ns2) ~ Iolns1)™ 28 5041) 0 (nel)?

dT
of Kk, (5), (al: ot

or by repeated substitutions similar to equation (al1l1l6)

if there are (j) particles:

I(n-1) = Jo(n+l) = Io1=9ns=Ci-D EI 0190 (nat) )

aTJ=1) Ff. Kk (Fe (q11?7"
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“nd

* dX
I =d,.+(J-LIfK k_(=)I J = “ol "Dj 5 grdx’g (all7=

and

on™ do (n+l) = Jo(n+l)” Io (n+2) = lpn Ip(n+1)

&amp;T
: oq _ BolT - Jp +] - f_ Kk (5)
D(n+l) D(n+2) 1 + NGEY (all8)

Since the amount of heat transferred by the gas conduction

is the same everywhere in the system, it would simplify

natters if we make the substitution:

£) = “LE (n-1)"Eon]
8 bD_

(5119Y

where D, represents the distance across a pore, and

(Ep (pn_1)"Fon?
H is the temperature drop across a pore.

Ne can evaluate the latter term from ecguations (al02) and

"2103)

LED (n-1)"Eon] = fulp(n-2)*f3Iontfekky gD,
R 3

Fe In n-1)"Tu96 (n+1) (al120"
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or, on substituting for Ip(n-2) and Ton from equations

(alld) and (al0?7) and using the relationship fo-f,.=Kf::

 Ep (n-1)"Fond = [Ipn-1)~ Jo(n+1)ifoKE]
f

aT 6 (all”l’

or, substituting from equation (all9) for (Gg and solving

for (Epin_1)"Eopn?!:

eg 1 Ene)” dome) amK 25]
D(n-1) on = k, fo

 Kf [58 - 2]
(al. 5

Finally by substituting for [Ip (n-1)"90(n+1)A from

equation (all?)., asain solving for (Ep(p-1)~Eon? and

reducing to simplest terms, we finally obtain the latter

as a function of (I) (Ip) and (k,):

En (n-1)" End =
[I,1- Ips 1LE5- K fg] BN

qk (£.[1+F,(3-1)]
1+f,(3-1) + oh | ane - ff (§-1)+1]

(al: =

Lf we introduce equation (al23) into equation (all8)

ve have:
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So Jo(ns1)™ Solnsl)™ Yo(n+2)" Ion pos) Ip(n+1)"In(n+2)™

Kk f.f
_ 8 _2°6 _ 2[T51-9p5) , * oD, L 5 Kg 1

Kk fe+E (3-1) 45° { 5 [142,(3-1)1-£. LK £.(5-1)+13 } (alr!

Using the above equation one can now solve for any desired

erm. FOr 1nstance:

Kk f.f
- EL 26 _ 2,21)[To1-Tp30 { £04 spel 50 - Keg]

[py = 1o7———

Kk, (TgL+£5(3-1)+ $5 | g LL+f,(5-1)-1c( KE (G-1)+1] (al?25’

and

[hy = I=

i, ffgr 276 20119p; {5+ BDL EB - Kf: 11
Co Kk (f. —

L+£,(j-1)+ a {Fenee, (3-1-1. Kr (5-1)+11]
n

(al26)

Similarly:

Jon = Ip;

fk, £-f
(J-n+1) [1 1 -3p.] [ fot poe xe 2

k f oo

+f ~(3-1)+ SE [ener (1-1) 1-2. K£_(3-1)+111 (al27)
 nN

ini
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ond substituting into equations (a2l02) and (al03):

 Kk _f.f
[T51-9p5] fre, Gna fr, 50_ 6 - Kf f

fespi= (C NT!fw

E = fT +f, dn + -
on 3701 “4°Dj KK +

1+£,(3-1)+ 55,  5801ee, (3-1) 1-2,0 (es (3-1)+1]f
 teeen eee SE EE

(a12%

and

(Ck ff
. gr 2°6 2[(T51-Ipyd lie, (3-1)-n1] = D6 - KE f

£6 J
- 58 [f,- Kf]

Inn=fulo1tf2Ip; Kk (+
1+£,(3-1)+ 50. {580 t, (3-10 i £e(3-1)+1]f (al29’

These relationships allow us to calculate any desired

radiation terms or temperature in a system if the incident

radiations, the conductivity of the gas, the scattering

and absorption coefficients, the average temperature, the

conductivity of the solid and the average size and

number of particles in the system are known.
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Derivation of an Effective Thermal

Conductivity

Using equations (al25-al29) it is possible to derive

an effective thermal conductivity of the system. We first

define an effective thermal conductivity (k_) by the

following equation:

AT
2 = =k (3%)

 = 8x9
a © AD

(al3n

(al 4”

vhere (Q) is the heat flowing across a unit area under

the influence of a temperature drop (8 T), which occurs

ver a representative distance (A X). We will take as

3 representative distance the length from the top surface

of one laver to the top and surface of the next.

“hen

ax = - [D+D_] (ai 3,

where (D) is the thickness of a layer and (D,) is the

“thickness of a nore.

The temperature drop across this section is then:

A Ey n-1)"Fond CH



o0

which from equation (al28) is found to be:

Ke ff

[1,,-7p,] fo + IN 2:6 - ke.21}
AT = —

Kk fe142, (3-1)+ BD, (=6r142,3-1)1 - f.L Ko (3-1)+11}
(a1 34"

I'he total heat flowing can be found if we consider any

surface; there the heat flow is equal to the difference

between the forward and backward radiation fluxes plus

the heat conducted by the gas. The latter is equal to

the temperature Aron across a pore times the thermal

conductivity of the gas divided by the distance across

the pore. Or:

k
_ - 2 -

d= Ion Jon bD_ Ep (n-1) Bond

ad

k
- 2 -

Io(n-1) Jon oD (Ep (n-1) Eon] {q] 2

[Introducing equations (al25-al29) into equation (al35),

clearing of fractions and reducing to the simplest

Ferms. we obtain:

Y =

Kk KLE 1- 2 1671 _ 2(Iq Ips fr,+ BD." 5 £y + 4f, 1

Leff, (G-1)+ Ag {Lerner (a1) 1-2a Ko (i-1)+11} [a1 4 r
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Then from equations (al32-al36) we find:

k Kf _f= 61 25]b(D+D,,) {£,+2080 B - f+41L, 1¢
ee ’

Kk ff
 8g r_26 _ 2 (al 2”

Since the pore size of a powder is difficult to measure,

ut the particle size and porosity can be measured we

vould like to substitute for (D_) a function of the

yorosity (p) and (D) the particle size.

D
5 = =P

D+D

I]

(51 28

( a,

and

D
D,+D = ge (ajar

shen the conduciviviity becomes:

K =
oS

Dko { £0DbB+k (1-p)[K fet, -f, B+4p1, 1}tg Tore TATs
(1-0) { £,0DBko+2B(1-p)k [£,£.~ KBE 21} (a4 R
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‘note that we have also substituted (£28, for (K) in the

second part of the denominator and cleared of fractions.)

At thic point, in order to simplify the above expression

to one that can be used, it is necessary to make the

tedious substitution for (f. through (f from equations

(a92-a(97). If this is done and the proper algebraic

a

simplifications performed and all th~ mistakes removed,

one arrives at ¢ final complete expression for the

affective thermal conductivity of a powder:

2k (1+K) {PDbBsinhoD + (1-P)(1+ K)k_[coshaD-11}
K EY emi me toe meter test mtrete emer rma eetreeete eres tree SiSees oo. - “

°  a-p) { Px[2(coshoD-1)+ XoDsinhoD1+2(1-P)(1+K)kTcoshoD-11}

(a14&gt;?

If the particles of a powder are very opaque, it is possible

fo calculate the effective conductivity of the powder by

considering that radiation is emitted from one surface.

absorbed on the next, and transmitted through the particle

by lattice conduction. In this case then, it is assumed

that all the interaction of radiation with the solid.

takes place right on the surfaces, or that the mean free

path of the radiation in the solid is much smaller than

the particle size and that the amount of radiation trans-

nitted by the s0lid is insignificant.

Again, an effective conductivity for radiation of

~4 pore (k,..) will be defined by:

K_. at
3 (33
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vhere (&amp;T) is the temperature drop across the surfaces

of the pore, (D_) is the dimension of the pore along the

direction of heat flow and (Q) is the heat flow per unit

area. The heat flow by radiation across a pore whose

surfaces are at (T. and T,) is given:by:

N= e* 1) cg 4 (q1 LL

where (oh) is the Stefan-Boltzmann radiation constant and

(€*) is the effective emissivity between two surfaces

(e” =p ). However in a previous section it was shown

that €* = Bgys also, we note that (7, %-1,%) = 47° (1, -T,,)

if (7,-T,.) is small compared with T. Using the previous

notation that b= 4G? we have:

) = bR{&amp;AT) (glu&amp;

Or, considering the pore as being between two parallel

plates, the effective conductivity for radiation is:

kp = BBD (alld6

vhere (D.) is the distance across the pore. If we consider

a sample consisting of alternate lavers of solid and pores,

then the temperature drop across any laver (n) is

b,
AN m = ———Qo i " I.
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|ol

and the total temperature drop is

D

pr = J tr = o 2 2
hal nN “7

(574K

k= k for the solid sections and, from equation (aldo)

[bpD, +k] for the pore sections if there is a gas in the

pores.

~hen

: D

nD =

where ( 2.
Ss

{ Pa» ) over

) denotes summing over solid sections, and

the pore sections. Summing we have:

S fo
AT = al As * ©BD_+k

( a14C

(5157

where (4) is the total length of the solid sections,

and ( {) is the length of the pore sections. Finally,

if the total thickness of the sample is (A). then the

2ffective conductivity, (k_), is defined by:

AT
V =k, {al r—

J
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Is Ap /1 = Ke Q {&amp;7 + JToBD, +k]

if i) 1s bae - hg  yf OX Cy then

(al52

(al&amp;57’

and

(q]154

ind

Se = T(1-P) . B
* bED_+k_

(a] &amp;F

From equation (al39) it is noted that (D, = HH ) where

(D) is the thickness of a solid laver. and then:

g
- i-pyrt 8bBDP

(1-p) © a

(2156

Jr

k[bBPD+k_(1-P)]
fe = (1-P)(kP+bBPD+k_(1-P)] (a]-
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The above equation can be derived, as a limiting case, from

squation (al42) by allowing (D) to become large; this is

tantamount to the conditién:used to derive equation (al57)

that the mean free path for radiation is much smaller than

she particle size. If (D), or more specifically, (oD), is

larce, then [sinhoD] and [coshoD-1] become very nearly

gual. In this case eguation (al42) becomes:

{ ~ =

EL

2k (1+ K)I[PDbB + (1-P)(1+ k)k _]
a -—Tg

(1-P)[Pk(2+ KoD) + 2(1-P) (1+ x Vk,
 BL

the additional condition used in deriving equation (al57)

that the amount of heat transferred by radiation through

the solid is small. requires that (&amp;«) is small compared

to one. since ( K) represents the ratio of the radiation

conductivity to that of the lattice conductivity. In that

case, and substituting (£28) for the ( K) that remains in

the denominator. we have:

&lt; =
 ll

ue

k[PDbB + (1-P)k _]

(1-P)[Pk(1 + bRcD) + (1-P)k_]
ko &lt;

(q1 EB"

J

£
k[PDbB + k _(1-P)]

= (1-P)[Pk + PbRBRD + (1-P)k_]
( 51¢

vhich is identical to equation (al57). Note that in this

squation one would use (e¥)(the effective emissivity = zo=
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rather than (B); therefore for opaque materials the effective

conductivity can be calculated without a knowledge of the

scattering and absorption coefficients.

There are several other limiting cases of equation (al4?2

which are interesting. For instance, if the temperature

is so low that the conduction by radiation is negligible

compared to the conduction by the gas we would expect the

conductivity to be:

Z
kk

= Tu (1-P) = Pk + k _(1-P)
fy + £
ky k

E
(al161

which is obtained in a similar manner to equation (al57).

lo obtain equation (al6l) from (al42), we find (k_) as

(b+0). Then, since K=22£ 40

k (1-P) k _[coshoD-1] kk
_ te

Ke (T=F)[Pk+ (1-P)E TTcoshoD-1] Pk + (1-P)k (9160

As the porosity becomes zero, one would expect that the

effective conductivity would approach that of the solid.

Nfhen P = 0,

2k(1+ K) (1+ ¥)k_[cosheD-1]
Ke = 201+RKDk! coshoD-11]

= k(1+K) (a1 RZ

This is the expected value since ( £) represents the ratio

of radiation conductivity to lattice conductivity and,

since (k) is the lattice conductivity, k(1+K) is the

affective conductivity of the solid.
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Another case is the situation when (ol) becomes very

small. Since (sinh oD=&gt;0D) as (oD-&gt;0), and (coshoD-1)—
2n2
En as (oD&gt;0); as (oD) becomes very small,

Ko =

k(1+ 4) [2PbBoD® + (1-P)(1+X )k_0°D°]
 ee Ee

(1-P) fPk[0°D°+ Ko“D7] + (1-P)(1+ K)k_o°D°}
[ a] AL

®

Co k[2PbB/c + (1-P)(1+ K)k_]
(1-P) [Pk + (1-P)k_]

(91 or
Lr.

This shows that the effective conductivity of a powder

reaches a minimum limit as the particle size is decreased.

The actual value of this conductivity depends only on the

ratio of (B/c) rather than their respective values.

In the case of a real powder, there is a possibility

chat the above limit will not hold. and that the conductivity

will continue to decrease with decreasing particle size.

'his is due to the fact that when the equation abhave was

derived. scattering from the surface of the Darticle

was neglected, and only the internal scattering considered.

However, as the particle becomes commensurately small as

the internal pores in the particle. then the seattering

from the surface becomes a significant part of the total

scattering. and must be taken into account.

Experimentally, the only wav to measure the radiation

part of the conductivity is to measure the effective con-

ductivity in a vacuum. Therefore. it is desirable to
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find the limits of the above equations (al42 etc.) when

the conductivity of the gas vanishes. This can be done

by changing the boundarv conditions in the original

solutions (equations a7? and a80) to the requirement that

ED at the surface of the solid is zero. This is the

same as saying that there is only radiation conduction

between the particles. It has been found that the relatic ~hivps

derived by this method are identical to assuming in equation

“al4?2) that k, = 0. In this case equation (al42) becomes:

r = 2(1+A)bBDsinhgD
a ~ (1-P)[2(coshoD-1)+ KoDsinhoD]

(g1&amp;&amp;

riving the effective conductivity of a powder in a vacuum.

Eouation (alé0) becomes:

c, = kbBD |
(1-P) (k+bBD) (al67

giving the conductivity in a vacuum when the amount of radiation

passing through the particles is negligible, and the mean free

path of the radiation in the solid is much smaller than the

dimensions of the particle.

We can also find the limit of equation (al66) as (gD-=0)

similarly to deriving equation (2l65). The smallest possible

conductivity ig in this cage:

_ 2bB/g
 = 11) (916



APPENDIX B

Difference Between {. ana
’ -

)

, and (Bs and the Size of (K

n several places in the discussion of the results

5f this thesis, (0) has been used interchangeably for (o_,

(B) for (B,) and ( AX) has been neglected with resvect to one

This Appendix is written to justify these approximations

For the cases in which thev were used.

First of all we see from the theory section that

KK, represents the fraction of heat transfer in the center

vf a thick layer of a solid which is carried by radiation

as compared to the lattice conduction. Therefore (1+K)k

represents the total effective conductivity of a solid.

Je can also see that from actual data presented for the

zirconia samples that the value of (K) for zirconia never

ets much above 0.02. This fraction must be even smaller

for the porous alumina sample since the lattice conductivity

of this material is on the order of twice that of the

zirconia while the radiation conductivity is much smaller.

For the dense alumina the value is not so definite since

while the lattice conductivity is much larger. the radiation

~onductivity is also larger. ifowever. it is thousht that

sven in the latter case the radiation conductivity is not

a large part of the total conductivity. The single crystal

naterial is not included in this discussion nor is it in
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che range of materials discussed in this Appendix since

it is thought that in this material radiation forms s

significant part of the total conductivity.

If we return to the definition of (o):

[2ab/k+a(a+2s) eR 3s

1lso bv de®‘ nition:

2b
RK = k(a+2s) (al170

[f we substitute [ K(a+2s) = 2b) into the definition of (o):

J  Va(a+2s) (1+ ££) (a17"

out since

}

bl

= + Vala+2s)

= og [+ V(1+K)

(192

(4

Since in the previous paragraph we have shown that (K)

is insignificant with respect to one for the materials

that we are interested in. equation (al?73) shows that for

such a material (0) is nearly equal to (o.).

Also, since bv definition:



J
0 a+2s

2 C

(al

314

 oO
3 = aia (al =

(B.=2L).(0 X20) then .f (0,

Ve should emphasize that the discussion above refers

only to materials in which there is only a small fraction

of the heat transfer carried by radiation in the center

linear region of a thick layer (i.e., where XK&lt;&lt;1). In

nost ceramic refractories this is true. However in some

materials (such as single crvstals and probably glasses)

this is not true. (K) is significant with respect to

ne, and must be taken into account.



APPENDIX Ce.

\nomalous Conductioi vr Magnesium Oxide Powders

Figure 54 shows the results of one run on a sample

&gt;f magnesium oxide powder in oxygen of approximately one

atmosphere of pressure. This sample was composed of dense

barticles (95°/0 theoretical density) of chemically pure

magnesia of particle size (35 to 65 mesh). The temperature

vas cycled with measurements being made along each cycle,

the arrows showing the direction of temperature rise or

fall along each cycle. It can be seen from this figure

that it would not be facetious to sav that not too much

reliability can be placed on any individual measurement

Faken in this series. Similar results were obtained with

ryther macnesia samples. some of them producing measurements

in vacuum at the same temperatures, one of which was more

shan twice the other. After carefully checking the apparatus

and removing any possible sources of such a large error,

and obtaining consistant results with other materials,

it was decided that some unigue properties of magnesia

vere causing this behavior and the following explanation

vas arrived at.

[+t is thought that the combination of two properties

in magnesia was the cause of this rather variable conductivity
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First of all magnesia has, for « ceramic material, an

extraordinarily high lattice conductivity: second, it has

a very high surface activitv wit

being able to form a surface film, perhaps of a hydroxide,

and retain it even to temperatures of 600 to 800°¢C. Evidence

for this comes from infra-red spectrograms which showed

evidence of water absorption at the 2.8 to 3.0 micron band

respect to water; evidently

even though the sample had been previously heated to the

vicinity of 700° C. and immediately on cooling had been

placed in a desiccator.

Evidently because of the high solid conductivity of the

nagnesia any growth of the point contacts will produce a

conductivity which is significant in this rance and, while

pure magnesia is too refractory to sinter avpreciably at

-hese temperatures (these effects are noticed as low as

100°C.). the hvdroxide surface film is probably soft enouch

0 form a bridge between the very high conductivity particles

chus producing the effects seen. This would be enhanced by

Fhe rather hich thermal expansion of macnesia. Also

conductivity due to this source would depend strongly on

the past history of the material which agrees with the

axperiments.



APPENDIX D

iffects of Slight Sintering at Point Contacts (With Respect

-0 Very Low Conductivity Materials)

'his section is presented in view of current interest

in very low conductivity materials. OSome of this interest

lies in speculation about the surface of the Moon which,

from measurements of temperature drop or rise as the sun’s

shadow moves across it. has been shown to have a very low

conductivity (21). The evidence presented here indicates

that such 1 conductivities (less than approximately 1 x 10°

can occu C
.

EU . &amp; powder in a vacuum at least for normally

rYeecuril T BB

1 -camatic change in conductivity due to a

small amount

his is to b+ expected only in the case of magnesia and

sould not occur with other materials. However the change

in conductivity which was brought about by a very small

amount of sintering in this sample was phenomenal.

Figure 55 shows the runs which are cited. The material

 sintering occured in a sample of magnesia.

vas a graded sample of Norton macnorite (a macnesia which

contains perhaps four nercent impurities) of an averace

particle size of approximately 0.0204 cm. The lower curve

1s the conductivity of the material before sintering while

the upper curves show the conductivity measured after the
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the material had sintered to a very slight extent. This

sintering could only have been a slight enlargement of

she point contacts even for the top curve since the material

could not be held in the fingers without crumbling. There

1s considerable inaccuracy 1n these particular curves

but the change in conductivity due to such a slight

gmount of sintering is too much to be ignored. In addition

it should be noticed that the shape of the curve changed

from a rising one due to radiation conductivity to a curve

vhich decreases in the lower temperature ranges (as does

he conductivity of the solid) oes through a minimum and

shen shows the evidence of increasing radiation conduction

cain.

tvew materials with low conductivities showed an

increase i condauctivitv 1° thev were heated to a temper-

slightly. For instance

 ~ 200°C. showed

ature ~7

Samo

3
2 gy

C aid
&gt;

L TT  KF « 1l.cm.

Thi.

Con. 2uen.)

Io Seed Lou [Sy . - a

—

-

¥ sg amount

represent

Figure 46 shower

-
1b LOE recent at 1 Jdegrees.

comnlec™ 11 cn the morous alumina which

 vo ecurve was taken as thevas heated tou hich

temperature was Goer

m1 3

=a ana shows an ineresase inn con-

ductivity proport: duc.

temperatures. At 100°C. this represents a 75 percent

+. the solid conductivitv at those

increase, These last two materials were sintered to an
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2xtent that was not really noticeable when the powder was

removed from the apvaratus. This can be Fjudeed from the

fact that the powder flowed out the small hole in the

apparatus, or a: worst had to be jiesled out with =

vire. Very few clumps of more thsm on. marticle were

noticed, indicating that the sinter? ve gligcht

and must have been only &amp; smal. enlar~eme-~* | ° the point

contacts. These two materials i* shoul’ *

had rather low solid conductivities (th

—~~membered

"nductivity of

sol”¢ zirconia i onlv 4 x 1:7 cegs.’ &amp; Jher=fore from

the abo  eTmerimenta evidence it is hurd to se2 how a

material with &amp; verv Low conductivity can have any

continuous solid structure.



APPENDIX EH

[he Effecss 0. Water on Radiation Conductivity

During several runs which measured the effective

conductivity versus temperature for a magnesia powder with

various gases in the interstices, dips were found in the

3 3 0 3 i

curves in the region of 650° C.z these dips were of various

severity. These runs are shown in figures 56 to 58.

While the accuracy of some of these curves is not good

due to the effects of point contact conduction found in

he magnesia samples, some of these dips are large enough

0 be definitely bevond the range of experimental error.

The lower curve in figure 58 which shows a run with

Helium as the interstitial gas is a good example. In

his run the di» was so large that it could not be ignored.

Of the gases that mirht bave absorption bands which could

cause such a phenomena. water vapor was the most likely

cause: it has a ver © strong absorption band in the wavelength

region corresponding tc these temperatures (2.8 to 3 microns)

and is extremely opaque in this region (22). In order

to test this hypothesis, the helium was run through a

jesicator (drierite, calcium sulphate) before being passed

into the apparatus, and the apparatus was flushed thoroughls

with this dried gas. hen the curve was rerun under these

conditions the upper curve in figure 58 was obtained,
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This curve showed a rise in this region rather than

3 dip. This rise is similar to the solid points seen in

figures 2% and 24; these points were obtained on the heating

cycle of the apoaratus. The cause of this rise is thought

~0 be water adsorbed on the surface of the material

brobably in the form of a hydroxide. Evidence for this

is supplied by infra-red transmission curves which show

sbsorption peaks in the same wavelength region as the

vater vapor absorption. These absorptions were obtained

yn all the c:ramics measured, such as alumina, zirconia,

snd magnesia. They also seem to persist to a high temperatur:

since most of the infra-red samples were heated before

reine measured. and then kept in a dessicator.

It only remains to explain how infra-red absorption

by water (or more exactly the hydroxyl ion) can account

for a lowering of conductivity in one case, and an increase

in conductivity in another. 1t is thoueht that in the

case of gaseous water vapor absorption, the gas merely

acts as an insulator, absorbing the radiation and thereby

decreasing radiation transfer between the tw surfaces.

On the other hand, if the water is present as a surface

film of hydroxide, it would, in effect, increase the

eamigssivity of the material since it increases the absorption

50 scattering coefficient ratio (this will increase the

smissivity as was explained in the body of this paver).

'he effect of the increased emissivity would be to increase



the radiation transfer between the surfaces as is shown

in previous sections and this therefore raises the effective

conductivity.

The shove Jlscussion of the effect of surface films

31s0 probabl—~ provides the explanation for the fact that

integrating snheres used in wide angle infra-red spectrometers

lose their efficiency at wavelengths longer than approximately

2,” microns. These spheres are made by devositing -

coating of very finely divided magnesium oxide by burning

nacnesium.

This material has « low absorption coefficient due

to the transparency of magnesia, and a high scattering

roefficient due to the fine particle size. This hich

scattering to absorption coefficient ratio produces a

reflectivity very close to one as is predicted bv the

theory outlined in the theorv section of this thesis.

However it seems likely that absorption due to the hydroxide

surface film mentioned here becomes larce enouch at 2.7

microns or so, to ruin the excellent reflectivity of this

naterial. I+ 1s likely that because of the excellent

cransmission of magnesia to much loneer wavelengths, the

i1seful range of these integrating spheres micht be

increased. bv preventing the formation of this hvdroxide

Film.



APPENDIX FR

llethod of Fabricating Colinear Thermocouvnles

The technique © which the thermocouples for this

vork were made i~ sketched in figure 59. The wires to

oe fabricated int: thermocouples were first carefully

straichtened and annealed by passing an electric current

through them..Then the ends of the two wires were twisted

together as a“ figure 5C@ with the long parts of

the wires leading away from each other. Then a small

electric spot welder was used to weld the wires together

3s at (b). The ends were untwisted and eut off by a sharp

~hisel under a microscope as at (cc). With practise and

proper care it is easv to cut the ends off very close to

the weld as is shown in the illustration. Finally the

veld is straichtened slightly with a pair of pliers as

at (4d) so it lies in the same line as the leads. The

Final result is actually a scarf joint as is shown at (e,

Figure 60 shows a photomicrograph of an actual thermo-

couple made by this method. The wires in this picture

are 0.070 inches in diameter.

The advantaces of this method are

Lo The procedure is simple (much more so than it sounds)

and requires a minimum of equipment.

°. Very little cold working.
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TEYT FOR EXPLANATION)
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50. Photomicrograph of Thermocouple Bead
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The diameter of the bead is hardly larger than that

of the original wire. (See figure 60)

4. Weld is actually on the bias and forms a very strong

joint. The thermocouples have never failed at the weld,

ond onlv rarely fail near the weld. Nearly all failures

occur in the platinum wire away from any influence of

“he weld.



APPENDIX G

Numerical Calculations

Calculation of Body Factor

3 Thermocouple Separation

The separation between thermocouples was measured by

two methods: First the distance between the holes in the

and caps were measured by direct comparison with a scale

ynder a microscope. Second, radioecranhs were taken of

the anparstus before the first five runs. The thermo-

couple separation was measured from these radiographs

also. Since the eguation for heat flow in an infinite

»v1iinder is:

) =
2n (Ty - T,)ILk
In (r,/, )

(al7-

vhere (9) is the amount of heat flowing in a length (IL)

&gt;f the cylinder when (Ty) and (T,) are the temperatures

at the radii (r,) and (r,) respectively; we see that the

logarithm of the ratio of the radii is the auantity that

appears in the equation rather than the radii themselves.

In Table V are shown the values measured from the holes in

she end cavs and the five radioeranhs. as well as the

logarithm of the ratio of the radii in each case. As can

be seen the maximum deviation from the mean in these values

is 2.1%/6 and the average deviation is onlv 1.29/06. T+



vas decided that this accuracy was sufficient and no more

radiogeraphs were thoucht to be needed. The average value

shown in Table V was used in further calculations.

Db. Complete Rody Factor

From the eguation giving the heat flow in an infinite

cylinder (equation al?76) one can calculate an effective

thermal conductivity if the heat flow and temperature drop

is known, or can be measured. For ease of calculation

it is convenient to divide the equation into two terms:

one, a bodv factor. containing terms which are a function

3f the size of the apparatus and conversion factors: and

two, the terms which are measured for each determination,

namely the temperature difference between thermocouples,

the voltaze anmlied to the central vortion of the center

heater, and the current flowing through the heater. With

the above in mind, the equation for the effective thermal

~onductivity is:

)
(a1'})

iihere the body factor is the term in the first set of

sauare brackets. and the other set of sguare brackets

1lenotes the terms measured for each determination.

For the apparatus used in this study. we have seen

in the previous section that 1In(r,/r,) is equal to

N.805: the lencth of the measured portion of the center
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Thermocouple Separation Measurements

Measurement from

End Caps

Radiograph Bl

Radiograph BZ

Radiograph C1

Radiograph D1

Radiograph El

Radius of Inside
Thermocouple
(inches)

0.222

0.23

0.22

0.23%

0.235

0.228

Radius of Outside
Thermocouple
(inches)

OH%3%

0.57

0.55

0.565

0.565

0.558

Natural
Logarithm
of ratio

0.87"

0.908

0.916

0,7"

0.

0.895

Percent
Deviation
from mean

.9

1,3

2.1

 nN 4

"8

0.0
 rH—ur

Average C.E95 1.2

A
©
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heater is 1.48 inches. Since we desire the final answer

. . 0 2 . .

0 be in c.=.s8. units (cal.cm. C.cm. sec.), we will reguire

some conversion factors; the length of the measured section

of the center heater will be converted to centimeters by

nultiplying it hv ¢ ©

and, sine: “ower wil

co plac ta. factor 4..Ly

{nso Xr aphear in the denominator)

ne surec in watts. we ww, have

 lil a“+ the denominator to convert

vatts to calories. The complete body factor will then

NE®

 0.895 SE

Body factor = 3p .48) (2.54) (4.186)

3.05 « 10~2

2, Calculation of Thermal Conductivity

(al?78)

Jsine ecuation (al?7) and the body factor calculated

in equation (8178) it is possible to calculate the thermal

conductivity when the temperature gradient and power

supplied to the center heater i.. known. For instance for

point (M1¢) taken durin: run Ml. the measured potential

of the inside thermocouple was 2.. +. mv.., and the outside

couple 2€
i

- a MVe.: Tio potentials of the two thermocouples

vere alsc added and subtracted electrically as : check:

she sum of the potentials was 4.742 mv... and the difference

vas 0.915 mv. On consulting tne table of potential versus

temperature for platinum rhodium thermocouples it was

round that the inside thermocoubls wag at 555.7%¢. znd



rs

the outside one was at 255.7°¢., This gives a temperature

difference of 100.0°C. and an average temperature of

305.7°C. as compared with a temperature difference of

100.0°C. and an average temperature of 305.9°C., found

from the sum and differences of the thermocouple potentials

measured directly.

The current in the center heater was 1.196 amps. and

the voltage was 0.280 volts. The latter must be multiplied

yy 33.1/25.5 to correct for a lead resistance of 7.6 ohms

since the resistance of the voltmeter was 25.5 ohms in

“his ranece.

Jeing equation (al?7”) and the body factor calculated

previously we then have for the effective thermal conductivity

ff this materisl:

L $.05x10™21T (1.196)(0.280)(33.1/25.5) .

JeAY% X 1074 cal.cm./°C.cm. “sec.
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