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Abstract. The Prize-collecting Steiner Forest (PCSF) problem is NP-
hard, requiring extreme computational effort to find exact solutions for
large inputs. We introduce a new heuristic algorithm for PCSF which pre-
serves the quality of solutions obtained by previous heuristic approaches
while reducing the runtime by a factor of 10 for larger graphs. By decreas-
ing the draw on computational resources, this algorithm affords systems
biologists the opportunity to analyze larger biological networks faster
and narrow their analyses to individual patients.

Keywords: Prize-collecting Steiner Forest

1 Introduction

The Prize-collecting Steiner Tree Problem (PCST) is a widely studied problem
in the combinatorial optimization literature [2]. In PCST, we are given a graph
G = (V,E) such that vertices are assigned prizes ∀v ∈ V : p(v) ∈ R+ and edges
are weighted with costs ∀e ∈ E : c(e) ∈ R+. The objective is to find a tree
T = (Vt, Et) which minimizes:

c(T ) =
∑
e∈Et

c(e) +
∑
v 6∈Vt

p(v) (1)

Vertices with prize p(v) = 0 are referred to as Steiner nodes, and vertices with
p(v) > 0 are called terminal nodes [7].

By adding an artificial root node to the input graph with edges from root
to every other node with weight ω, we construct an augmented graph G′ =
(V ∪root, E∪Eroot), where Eroot = e(root,v∈V ) with associated cost function ∀e ∈
Eroot : c′(e) = ω. The solution to the Prize-collecting Steiner Forest Problem



(PCSF) on graph G is the solution to PCST on G′ with a slightly modified
objective function [8]:

c(T ) =
∑

e∈Et\Eroot

c(e) +
∑
v/∈Vt

p(v) +
∑

e∈Eroot

c′(e) (2)

The parameter ω regulates the number of selected outgoing edges from the root,
which determines the number of trees in the forest. The final forest is obtained by
removing the root from T as well as the edges emanating from it, such that the
single tree solution connected by root becomes a solution of disconnected com-
ponents. A desirable forest can be obtained by running the method for different
values of ω.

The PCSF problem from combinatorial optimization maps nicely onto the
biological problem of finding differentially enriched sub-networks in the interac-
tome of a cell. An interactome is a graph in which vertices represent biomolecules
and edges represent the known physical interactions of those biomolecules. We
can assign prizes to vertices based on measurements of differential expression of
those cellular quantities in a patient sample and costs to edges from confidence
scores for those intra-cellular interactions from experimental observation (high
confidence means low edge cost), yielding a viable input to the PCSF prob-
lem. Vertices of the interactome which are not observed in patient data are not
assigned a prize and become the Steiner nodes.

An algorithm to approximately solve the Prize-Collecting Steiner Forest
problem can then be applied against this augmented interactome, resulting in
a set of subgraphs corresponding to subsections of the interactome in which
functionally related biomolecules may play an important concerted role in the
differentially active biological process of interest. Thus, PCSF, when applied in
a biological context, can be used to predict neighborhoods of the interactome
belonging to the key dysregulated pathways of a disease.

The PCSF problem is NP-hard, and therefore requires tremendous amounts
of computation to determine exact solutions for large inputs. In biology, large
networks are the norm. For example, the human Protein-Protein Interaction
(PPI) network has some 15,000 nodes and 175,000 edges [1]. Adding metabo-
lites for a more complete interactome yields inputs of some 36,000 nodes and
over 1,000,000 edges. We require efficient algorithms to investigate these huge
biological graphs for each patient, which requires solving PCSF many times.

We present a heuristic algorithm for PCSF which outperforms other heuristic
approaches from the literature in computational efficiency for larger graphs by
a factor of 10, while preserving the quality of the results. Our algorithm, MST-
PCSF, builds from the ideas presented in [24, 25], using a greedy clustering
pre-processing step which divides large input graph into smaller clusters, and a
heuristic to find approximate solutions for each cluster.

2 Related Work

The authors in [2] initially studied the prize-collecting traveling salesman prob-
lem, and proposed a 3-approximation algorithm. A 2-approximation with O(n3logn)



running time is proposed in [3] by using the primal-dual method, improved by [4]
to O(n2logn) execution time. That runtime was maintained in [5], which im-
proved the approximation factor to 2− 2

n .
Exact methods were devised in [6,7] using mixed integer linear programming,

and a branch-and-cut algorithm based on directed edges was proposed to solve
the model. An exact row generation approach was presented in [9] using a new
set of valid inequalities.

A relax-and-cut algorithm was studied in [10] to develop effective Lagrangian
heuristic. A multi-start local search algorithm with perturbations was integrated
with variable neighborhood search in [11]. Seven different variations of PCST
were studied in [12], and polynomial algorithms were designed for four of them.
Some lower bound and polyhedral analyses were performed in [13–16]. A tabu-
search metaheuristic, and a combination of memetic algorithms and integer pro-
gramming were employed in [17,18] for PCST.

The application of the PCST approach in Biology has led to important re-
sults. The specific biological problems were to identify functions of molecules [19],
to find protein associations [20], and to reconstruct multiple signaling path-
ways [21]. We have been developing heuristic and matheuristic PSCT algo-
rithms [24,25] for similar applications, and in this study we aim to extend these
ideas to a forest approach in order to make more realistic biological inferences.

3 Algorithm: MST-PCSF, a fast heuristic algorithm for
the PCSF problem

The proposed MST-PCSF heuristic algorithm is composed of two distinct phases.
First, we cluster the input graph to transform a global problem into a set of
smaller local problems. Second, we bypass the intractability of PCSF by instead
solving the Minimum Spanning Tree Problem (MST) on an altered representa-
tion of the input graph. These simple ideas dramatically reduce the time needed
to obtain high quality solutions to the Prize-collecting Steiner Forest Problem.

3.1 Greedy Clustering transforms a global problem into a set of
local problems

The intuition behind the clustering phase of the algorithm is that, in the context
of biological interaction networks, we anticipate finding within the expression
data groups of dysregulated terminal nodes joined by moderately high confidence
edges and Steiner nodes, forming independent high-prize, low-cost patches in
the input graph. Simply put, we anticipate the clusters exist quite strongly in
the data, and constituent trees from the optimal solution forest will be split
between these clusters, but will not span multiple clusters. Clustering therefore
is a sensible first step.

PCSF has proven more apt for the problem of highlighting disease-relevant
networks than PCST because in a tumorous cell, for example, multiple functional
pathways may be simultaneously active and dysregulated, but non-overlapping.



If we seek to find a tree, we are forced to incorporate spurious edges in our
solution. If we seek to find a set of disconnected trees, however, we only select
the edges needed to connect the high-prize terminals.
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Figure 1: Clustering phase of MST-PCSF 

(A) The original network, such that terminal nodes are 
represented in yellow, Steiner nodes are in brown, 
edges are in blue and edge thickness relates to cost. 
(B) Compute All-Paths Shortest Path from every 
terminal to every terminal on the graph, resulting in a 
matrix of shortest path distances.
(C) Choose a terminal at random and evaluate which
terminals are reachable, assign them to a cluster. 
(D) Iteratively select nodes assigned to the cluster and
find additional nodes which satisfy the clustering 
criterion with respect to other nodes in the cluster. 
(E) Cluster is full when no more terminals satisfy the 
criterion. Start a new cluster with an unclustered node.  

a b c d e f g
a 0.0 1.1 0.9 1.3 2.5 2.3 2.2
b 1.1 0.0 1.0 1.1 1.5 1.6 2.0
c 0.9 1.0 0.0 0.6 1.8 1.6 1.5
d 1.3 1.1 0.6 0.0 1.2 1.0 0.9
e 2.5 1.5 1.8 1.2 0.0 0.7 1.6
f 2.3 1.6 1.6 1.0 0.7 0.0 0.9
g 2.2 2.0 1.5 0.9 1.6 0.9 0.0

H

ω

(F) Repeat steps B-E until there are no remaining unclustered nodes from the graph in A.
(G) The raw clustering of the graph in A may have many singletons and doubletons.
(H) Merge singleton and doubleton clusters with their nearest cluster, return the final clustering



The clustering is performed by considering the pairwise relationship of ter-
minal nodes. Two terminal nodes i and j are clustered together if they satisfy
the strict clustering criterion: Di,j < p(i) & Di,j < p(j), which worked best of
those we tested for biological networks. After clustering the graph, singleton and
doubleton clusters are merged with their nearest neighbor clusters, since those
subgraphs harbor very little biological information on their own.

Algorithm 1 MST-PCSF, Clustering phase

Initizalization:
Set U = {v : p(v) > 0}, the set of ’unassigned terminals’.
Set A = ∅, the set of ’assigned terminals’.
Vector C such that |C| = |U | and Ci ← 0 for all i : 1...U
Matrix D ∈ R|U|×|U| such that Di,j is the weighted distance of the shortest path
from vi to vj for all pairs vi, vj ∈ U
clusterID ← 0

Algorithm
while U is not ∅ do

clusterID ← clusterID +1;
Remove arbitrary vertex vi from U and insert it into A.
while A is not ∅ do

Remove arbitrary vertex va from A.
Ca = ClusterID
for each vu ∈ U do

if (Da,u < p(va) & Da,u < p(vu) then
Remove vu from U and insert it into A.

end if
end for

end while
end while
for each singleton and doubleton cluster Gk = (Vk, Ek) do

Let Gmink = min
∑

vi∈Vk

∑
vj /∈Vk

Dij , the closest subgraph to Gk.

Consolidate Gk with the nearest cluster Gmink

end for

Output terminals set A, assignment vector C representing the final clustering.

3.2 Solving MST on an altered representation of the input graph
bypasses the complexity of PCSF

In the second phase of the algorithm, we bypass the complexity of PCSF by find-
ing instead the tree covering every terminal node with minimum total edge costs,
called the Minimum Spanning Tree. The altered representation of the original
network is the set of complete subgraphs composed exclusively of terminals from
each cluster, in which each edge is weighted with the shortest path distance be-
tween the terminal nodes. We can solve MST on this representation quickly and



then project the solution back into the original graph, and finally, disconnecting
nodes too expensive to retain in the solution.

A B C

D E F

Fig. 2: MST-Phase of MST-PCSF
(A) Construct the complete graph from the terminal nodes in the clustered subgraphs
(B) Add an artificial root node with an edge from that root to every other nodes with cost ω.
      or use the already-existing node specified as the root by the user.
(C) Determine the MST of this augmented graph by Prim’s algorithm.
(D) Interpolate the Steiner nodes from the original graph.
(E) Prune all leaves for which the prize of the leaf is less than the cost of the edge.
(F) Output a forest of subgraphs for further investigation.

Algorithm 2 MST-PCSF, MST phase

Initizalization:
For each subgraph Gs, construct the complete subgraph of the terminal nodes in
Gs called G′s=(V ′s , E

′
s), such that each edge ∈ E′s is weighted with the cost of the

shortest path between the terminals it connects in Gs.

Algorithm
Add a vertex called Root and edges from Root to each terminal with cost ω.
This produces a new graph which is the union of each of the G′s subgraphs and Root.
Find the minimum spanning tree of the new graph to obtain MST = (Vmst, Emst)
Interpolate the omitted Steiner nodes in the edges of MST from G
for each leaf node v ∈MST and associated parent node v′ do

if p(v) < connection cost then
remove v from MST ;

end if
end for
Remove Root from MST leaving behind a forest of subgraphs we call F .

Output F , an approximate solution to the PSCF problem on graph G.



The algorithmic steps in (Figure 2 A-D) can be repeated several times in
order to decrease the tree cost further, by adding the Steiner nodes incorporated
in the solution tree (Figure 2-D) into the cliques constructed in the next iteration
(Figure 2-A), yielding better results at each iteration until convergence. However,
we only perform a single iteration of those steps for our results in this work.

4 Results

We compare the performances of MST-PCSF and the message passing algorithm
(MSGP), a broadly used heuristic algorithm for PCST and PCSF. The MSGP
algorithm has been used to predict unknown protein associations [20], find hid-
den components of regulatory networks [22], and reconstruct cell-signaling path-
ways [21]. We test the performances of these algorithms on small benchmark
instances from the literature, as well as medium and large networks generated
from real biological data. We use the default parameters for MSGP, except the
reinforcement parameter g, which is set to 0.001 as in [21]. The computational
studies are performed on a server equipped with an AMD Opteron(tm) Proces-
sor 6320 and shared memory of 256 GB. A single core is used while running the
experiments. We run the algorithms for values of ω = {1, 2} for medium and
large instances, and we used ω = {5, 8} for small instances due to their higher
edge costs.

The first of these domains is a set of benchmark instances for PCST algo-
rithms from the literature [11] called the D instance set, which is composed of
smaller networks of roughly 1,000 nodes and 25,000 edges. However, since the
algorithms we compare solve PCSF, we modify the D instances by adding a
root node beforehand, and specify they use that node as their root. For these
small inputs, MSGP provides slightly higher upper bounds while MST-PCSF
outperforms MSGP in average running time. (Table 1)

The second domain is phosphoproteomic data from the Glioblastoma patients
in [21]. These graphs are obtained by using differentially expressed genes as
terminals by mapping them onto the human PPI network. As our PPI, we use
STRING (version13), in which the network edges have a experimentally-derived
confidence score s(e) [1]. The low confidence edges with s(e) < 0.5 are removed
to improve the reliability of the findings. We convert edge confidence into edge
cost: c(e) = max(0.01, 1− s(e)). For these networks, the upper bounds of MST-
PCSF and MSGP are comparable for both values of ω while MST-PCSF is an
order of magnitude faster. (Table 3)

Our largest graphs are generated by mapping the phosphoproteomic data
from the Breast Cancer patients in [23] onto an integrated interactome of proteins
and metabolites, resulting in networks with 36,897 nodes and 1,016,288 edges.
Here as well, each network represents a single patient (Table 2). For these large
networks, MST-PCSF arrives at similar results in a tenth the time.



Table 1. Performances of MST-PCSF and MSGP for the D instances [21]. The perfor-
mance of the message passing algorithm [20] and the proposed heuristic are displayed
under MSGP and MST -PCSF for ω = {5, 8}. We report the upper bounds obtained
from the methods under OBJ column. The running times of the methods are provided
in seconds under t(s) column.

ω = 5 ω = 8
MSGP MST-PCSF MSGP MST-PCSF

Instance V E T OBJ t(s) OBJ t(s) OBJ t(s) OBJ t(s)

D01-A 1001 1255 5 21 0.44 21 0.04 26 0.44 26 0.04

D01-B 1001 1255 5 25 0.44 25 0.04 40 0.44 40 0.03

D02-A 1001 1260 10 46 0.44 46 0.05 58 0.44 58 0.04

D02-B 1001 1260 10 50 0.44 50 0.05 80 0.44 80 0.04

D03-A 1001 1417 83 630 0.65 631 0.53 787 0.70 795 0.54

D03-B 1001 1417 83 782 0.66 782 0.56 1131 0.67 1156 0.53

D04-A 1001 1500 250 928 0.64 942 0.86 1164 0.63 1174 0.80

D04-B 1001 1500 250 1129 0.66 1137 0.85 1574 0.83 1591 0.84

D05-A 1001 1750 500 1777 0.85 1791 1.90 2130 0.84 2191 1.84

D05-B 1001 1750 500 2108 0.78 2125 2.09 2787 0.82 2832 2.12

D06-A 1001 2005 5 21 0.61 21 0.04 26 0.62 26 0.06

D06-B 1001 2005 5 25 0.60 25 0.04 40 0.62 40 0.05

D07-A 1001 2010 10 46 0.67 46 0.05 58 0.68 58 0.08

D07-B 1001 2010 10 50 0.67 50 0.11 80 0.68 80 0.06

D08-A 1001 2167 83 630 0.82 640 0.64 763 0.85 789 0.62

D08-B 1001 2167 83 753 0.84 759 0.66 994 1.56 1012 0.66

D09-A 1001 2250 250 918 1.73 927 0.98 1080 0.95 1117 0.94

D09-B 1001 2250 250 1099 1.29 1119 1.03 1367 1.03 1403 1.03

D10-A 1001 2500 500 1569 1.21 1598 2.36 1705 1.37 1742 2.36

D10-B 1001 2500 500 1812 1.13 1839 2.44 2058 1.25 2074 2.43

D11-A 1001 5005 5 21 1.53 21 0.08 26 4.11 26 0.07

D11-B 1001 5005 5 24 1.57 24 0.07 36 4.12 36 0.08

D12-A 1001 5010 10 42 1.61 42 0.10 50 3.66 50 0.12

D12-B 1001 5010 10 43 1.56 44 0.11 50 2.57 52 0.10

D13-A 1001 5167 83 454 4.72 473 1.13 463 2.48 476 1.09

D13-B 1001 5167 83 501 2.46 514 1.09 510 3.11 530 1.10

D14-A 1001 5250 250 615 3.32 640 1.68 624 3.89 655 1.69

D14-B 1001 5250 250 675 4.16 698 1.67 690 2.10 711 1.69

D15-A 1001 5500 500 1057 3.72 1069 3.68 1076 2.43 1083 3.73

D15-B 1001 5500 500 1124 2.69 1144 3.65 1147 2.73 1156 3.74

D16-A 1001 25005 5 18 30.12 19 0.28 22 22.92 22 0.28

D16-B 1001 25005 5 19 22.28 21 0.27 22 24.87 24 0.27

D17-A 1001 25010 10 28 27.29 30 0.40 31 20.27 33 0.39

D17-B 1001 25010 10 28 28.28 30 0.40 31 30.67 33 0.43

D18-A 1001 25167 83 225 16.16 249 3.96 231 27.75 253 3.96

D18-B 1001 25167 83 233 19.73 257 3.93 238 22.58 260 3.95

D19-A 1001 25250 250 314 16.42 342 5.88 321 32.38 345 5.87

D19-B 1001 25250 250 320 29.35 350 5.88 323 29.35 353 5.91

D20-A 1001 25500 500 542 29.84 546 11.97 545 26.37 549 12.00

D20-B 1001 25500 500 543 19.81 547 11.99 545 32.22 550 11.95

mean 531 7.05 541 1.84 623 7.91 637 1.84
std 573 10.28 579 2.83 698 11.36 709 2.83



Table 2. The comparison results of the methods for the Breast Cancer network in-
stances generated based on phosphoproteomic data in [23]. The performance of the
message passing algorithm [20] and the proposed heuristic are displayed under MSGP
and MST -PCSF for ω = {1, 2}.

ω = 1 ω = 2
MSGP MST-PCSF MSGP MST-PCSF

Instance V E T OBJ t(s) OBJ t(s) OBJ t(s) OBJ t(s)

A2-A0CM 36892 1016411 122 35.71 1668 35.64 148 36.69 1221 36.89 131

A2-A0D2 36892 1016411 226 66.38 1653 66.50 260 67.53 2067 67.50 235

A2-A0EV 36892 1016411 69 18.29 1329 18.35 86 19.55 1780 19.60 78

A2-A0EY 36892 1016411 118 40.56 1962 40.70 158 41.77 2355 41.91 126

A2-A0SW 36892 1016411 60 14.45 1622 14.50 83 15.45 1550 15.50 68

A2-A0T6 36892 1016411 92 30.92 1615 31.05 119 32.18 1633 32.31 100

A2-A0YC 36892 1016411 182 48.04 1576 48.17 236 49.04 1844 49.17 195

A2-A0YD 36892 1016411 55 17.92 1573 17.92 78 18.92 1787 18.92 69

A2-A0YF 36892 1016411 165 48.31 2003 48.27 212 49.54 984 49.65 185

A2-A0YM 36892 1016411 236 61.89 1912 62.07 304 62.91 1560 63.19 244

A7-A0CE 36892 1016411 142 38.35 1486 38.42 176 39.61 1772 39.68 150

A7-A13F 36892 1016411 139 43.42 1365 43.57 181 44.42 1515 44.57 147

A8-A06Z 36892 1016411 112 36.24 1462 36.42 141 37.76 1456 37.94 120

A8-A079 36892 1016411 77 25.77 1599 25.96 93 26.77 2029 26.96 94

A8-A09G 36892 1016411 186 46.65 1882 46.61 222 47.61 2126 47.73 214

AN-A04A 36892 1016411 208 63.40 1828 63.41 254 64.58 1940 64.41 241

AN-A0FK 36892 1016411 81 21.82 1677 21.89 104 22.99 1535 23.06 98

AN-A0FL 36892 1016411 126 35.63 1891 35.87 157 36.75 1759 36.99 134

AO-A0JC 36892 1016411 76 22.32 1661 22.39 94 23.32 1844 23.39 84

AO-A0JE 36892 1016411 116 31.60 2214 31.70 151 32.88 1846 32.97 124

AO-A0JM 36892 1016411 216 59.34 2334 59.60 261 60.79 1971 61.09 222

AO-A126 36892 1016411 51 16.26 1595 16.30 72 17.26 1519 17.30 59

AO-A12B 36892 1016411 148 43.94 2091 43.94 193 45.88 1655 45.72 156

AO-A12D 36892 1016411 211 54.94 1492 55.09 265 56.00 1935 56.18 217

AO-A12E 36892 1016411 146 39.68 1943 39.78 183 40.98 2246 40.81 154

AO-A12F 36892 1016411 167 44.88 2282 45.16 228 46.02 2301 46.30 175

AR-A0TR 36892 1016411 120 32.08 1756 32.28 154 33.08 1830 33.28 128

AR-A0TT 36892 1016411 164 43.05 1872 43.33 223 44.22 1636 44.50 191

AR-A0TV 36892 1016411 201 57.08 2323 57.27 276 58.20 3149 58.44 208

AR-A0TX 36892 1016411 169 46.36 1929 46.48 225 47.73 2088 47.74 176

AR-A0U4 36892 1016411 154 41.16 2093 41.39 210 42.48 2044 42.70 162

AR-A1AP 36892 1016411 109 32.49 1569 32.50 152 33.52 1584 33.54 117

AR-A1AS 36892 1016411 181 48.69 2111 48.91 246 49.93 2301 50.09 186

AR-A1AW 36892 1016411 116 31.48 1494 31.72 143 32.65 1831 32.89 124

BH-A0AV 36892 1016411 137 40.06 1918 40.20 163 41.84 1653 41.98 143

BH-A0BV 36892 1016411 220 57.43 1674 57.58 251 58.52 1641 58.58 228

BH-A0DG 36892 1016411 209 62.49 1707 62.58 278 63.56 1924 63.70 217

BH-A0E9 36892 1016411 107 35.57 1907 35.45 153 36.35 1412 36.45 115

BH-A18N 36892 1016411 176 47.57 1567 47.58 243 48.73 2306 48.87 184

BH-A18U 36892 1016411 72 23.87 1507 23.91 94 24.87 1281 24.91 80

C8-A12T 36892 1016411 87 20.25 1604 20.31 105 21.51 1735 21.57 95

C8-A12U 36892 1016411 87 27.03 1927 27.15 104 28.02 1598 28.15 95

C8-A12V 36892 1016411 94 26.38 2159 26.54 111 27.38 1958 27.54 101

C8-A130 36892 1016411 84 26.88 1078 27.06 124 27.88 1225 28.06 92

C8-A131 36892 1016411 187 53.48 1762 53.77 222 54.57 2113 54.80 195

C8-A138 36892 1016411 191 51.18 1939 51.14 235 52.13 1675 52.19 212

D8-A142 36892 1016411 135 41.35 1437 41.20 169 42.03 1051 42.20 143

E2-A154 36892 1016411 145 42.36 1773 42.50 174 43.47 1810 43.61 153

E2-A158 36892 1016411 169 49.12 2276 49.18 209 50.37 2372 50.38 177

mean 39.91 1768 40.02 179 41.06 1801 41.17 150
std 13.54 288 13.56 63 13.57 379 13.58 52



Table 3. Performances of MST-PCSF and MSGP for the Glioblastoma network in-
stances generated from phosphoproteomic data from [21]. The first four columns pro-
vide instance name, number of total nodes, edges, and terminals for each network.
The performance of the message passing algorithm [20] and the proposed heuristic are
displayed under MSGP and MST -PCSF for ω = {1, 2}. We report the upper bounds
obtained from the methods under OBJ column. The running times of the methods are
provided in seconds under t(s) column.

ω = 1 ω = 2
MSGP MST-PCSF MSGP MST-PCSF

Instance V E T OBJ t(s) OBJ t(s) OBJ t(s) OBJ t(s)

GBM6 15357 175792 108 26.35 338 26.39 22 28.61 262 28.65 22

GBM8 15357 175792 115 25.45 233 25.48 23 27.45 204 27.48 23

GBM10 15357 175792 132 32.85 229 32.91 26 36.96 270 37.02 26

GBM12 15357 175792 135 32.50 228 32.57 27 35.03 234 35.10 27

GBM15 15357 175792 131 30.49 326 30.56 26 33.62 247 33.70 26

GBM26 15357 175792 122 28.42 270 28.46 24 31.02 237 31.04 24

GBM39 15357 175792 123 29.51 166 29.54 25 31.68 163 31.70 25

GBM59 15357 175792 123 26.54 249 26.53 24 29.56 274 29.55 25

GBM-pool 15357 175792 161 42.90 324 42.98 32 50.90 272 50.97 32

mean 30.56 263 30.60 26 33.87 240 33.91 26
std 5.33 57 5.35 3 7.08 37 7.10 3

Finally, we compare the results provided by MST-PCSF and MSGP in Glioblas-
toma patient networks for ω = 1. We excluded the UBC gene from the interac-
tome due to its high node degree. We took the union of output forests for these
9 instances for each algorithm. MST-PCSF provided a subgraph with 269 nodes
and 301 edges and MSGP provided a subgraph of 286 nodes and 364 edges. We
merged the subgraphs into one network, demonstrating the overlap between the
solutions (Figure 3). The methods obtained solutions with 255 common nodes
and 251 common edges. MST-PCSF recovered 89% of nodes and 83% of edges
of the solution provided by MSGP. This result demonstrates that our algorithm
does not merely recover similar quality solutions, but in fact, very similar solu-
tions.

5 Conclusion

We present a new heuristic algorithm for the Prize-collecting Steiner Forest prob-
lem which supersedes the existing algorithms of which we are aware, particularly
on larger-scale graphs common in the application-space of biology. The PCSF
approach is well suited to the problem of predicting disease-relevant subnetworks
from an interactome conditional on observed data gathered from patients. Our
algorithm reduces the requisite computing time to solve PCSF which expedites
existing research and also provides the capacity to analyze these data patient-by-
patient, an operation which previously has been prohibitively computationally
expensive.



Our algorithm accelerates the pace of relevant subnetwork imputation, which
we hope will be a boon for all who apply the Prize-collecting Steiner Forest
approach, in biology and elsewhere.
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Figure 3: A visual representation of the relationship between the solutions obtained
by the MST-PCSF and MSGP algorithms on Gliablastoma patient data.
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