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Abstract 

 

This paper addresses the potential of multi-objective optimization (MOO) in conceptual 

design to help designers generate and select solutions from a geometrically diverse range 

of high-performing building forms.  With a focus on the long span building typology, this 

research employs a MOO approach that uses both finite element structural modeling and 

building energy simulations simultaneously to generate optimized building shapes that 

are not constrained to regular, rectilinear geometric configurations.  Through a series of 

case studies that explore performance tradeoffs of enclosed arches and static overhangs in 

different climates, this paper shows how MOO can yield architecturally expressive, high-

performing designs, which makes the process more attractive to designers searching for 

creative forms.  It also provides new insight into specific design responses to various 

climatic constraints, since optimization that considers both structure and energy can shift 

best solutions in unexpected ways.  Finally, by displaying performance results in terms of 

embodied and operational energy, this paper presents new data showing how 

considerations of structural material efficiency compare in magnitude to total building 

energy usage.  Together, these three contributions can influence current sustainable 

design strategies for building typologies that have significant structural requirements.      
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1. Introduction 

 

In the conceptual design of buildings, many traditional optimization methods have 

seen only limited application, despite the emphasis contemporary designers place on 

building performance.  This is largely due to the complex requirements of contemporary 

architecture, and the fact that human intuition and judgment are still central to the design 

process.  Even as early as the conceptual design phase, architects must simultaneously 

consider and prioritize a multitude of interrelated design objectives, and while an 

increasing number of these objectives are quantitatively measureable, many are not.  Two 

of the most important objectives related to building performance are the embodied and 

operational energy used in a building’s materials and operations, respectively.   Often, the 

goals of reducing each of these quantities trade off with one another, as well as with other 

qualitative design goals, in unexpected ways.   

1.1 Embodied and operational energy 

In contemporary design, a high-performance, sustainable building has been 

identified as one that minimizes energy consumption throughout the four main stages of a 

building’s lifetime: materials manufacturing, construction, use and maintenance, and end 

of life [1].  The International Energy Agency estimates that buildings accounted for 

nearly a third of total final energy consumption globally in 2013 [2], a number which 

includes the substantial embodied energy of building materials as well as the operational 

energy used to keep buildings lit, heated, and cooled.  The need for a reduction in energy 

consumption and carbon emissions due to buildings has been well documented.  In light 

of this, a conceptual designer could simply convert every aspect of the design to a unit of 



emissions and run a traditional optimization to find a single solution.  However, in 

practice this would hamper the ability of designers to express preference, and also ignore 

financial constraints and other architectural complications that influence the development 

of a real building.  As such, architects often find a pure performance optimization 

approach reductive, overly simplified, and deterministic, which can lead to resistance 

towards the adoption of optimization methods in design [3].   

Furthermore, for long-span roofs and other large structures with specific spatial 

requirements, consideration of form can dominate the conceptual design phase.  This is 

especially true because structural efficiency depends more on the geometry of a building 

than on material, sizing, and other building characteristics developed in later stages, and 

because structural material makes up a more sizable portion of the overall embodied 

energy.  For example, De Wolf [4] found that the amount of embodied energy within a 

building’s 50-year lifecycle usage can range from 4-22% of the total.  When considering 

carbon emissions instead of energy consumption, the embodied portion can rise to as high 

as 80% of total emissions, depending on which exact source is consulted.  As shown by 

Kaethner and Burridge [5], the material contained in the substructure and superstructure 

can be responsible for over half of these embodied emissions. 

With more emphasis on cutting operational energy usage while pushing towards 

net zero buildings, the embodied energy of future buildings will make up an increasingly 

larger portion of total energy usage over their lifetimes (Fig. 1) [6].  Consequently, this 

paper focuses on multi-objective optimization (MOO) with structural efficiency and 

operational energy efficiency as the two measurable objectives, since a MOO approach 



gives the designer flexibility but encompasses the most significant quantitative 

performance goals of contemporary architecture.     

 

1.2 Multi-objective optimization 

 

Although MOO has demonstrated a greater potential than traditional optimization 

to assist conceptual designers in generating and deciding between high-performing, 

early-stage designs, it too has seen only limited use in practice.  This lack of application 

can be attributed to the complicated model translation that must occur between design 

and analysis software, the often linear process in which members of a design team are 

only given small latitude to ‘optimize’ for their own performance goals without 

reference to other disciplines, and the difficulty of using optimization within a process 

that includes subjective preferences and design goals that are difficult to formulate 

numerically [7]. Related fields such as aerospace, mechanical, and other pure 

engineering design disciplines have been more successful than architecture in 

overcoming some of these obstacles [8].  The differences in scale, production, and 

customization of buildings when compared with airplanes or cars have contributed to a 

building industry that is more fragmented and mostly unexposed to optimization 

workflows.  For a conceptual MOO procedure to become popular with building 

designers looking for original, expressive forms, researchers must overcome difficulties 

of non-quantitative objectives and disconnected disciplines while showing how an 

integrated process can lead to a diverse range of design outcomes that meet a variety of 

aesthetic preferences.  

Many academic researchers have addressed the limitations of multi-optimization 

for use in conceptual design, but few have studied the strong link between architectural 



form and different performance metrics simultaneously in a way that demonstrates the 

significant potential of MOO to influence the leading edge of architectural design. A 

large number of the major contributions in the field, which are described in detail and 

cited in the next section, have been restricted to geometries that are primarily made of 

rectangular boxes, which are easy to model in terms of energy usage.  However, even 

within the typology of the long span roof, there are a wide variety of architectural forms 

and corresponding building shapes and structural systems that could be optimized for 

performance.  In addition, researchers have been largely unable to define a clear way for 

architects to interact with MOO data, which can include performance feedback from 

multiple engineering disciplines in different units and scales, in a way that leads to good 

design decisions. In order to have greater impact on innovative and creative architectural 

practices, it is important to develop methodologies that effectively navigate meaningful 

tradeoffs and produce design examples that are applicable to a wider range of building 

geometries.      

In response, this paper demonstrates how MOO can be used to generate 

geometrically diverse architectural design solutions in different climate regions through 

three case studies of buildings with long span roofs. Since selecting the right building 

shape and form in the early stages has a large effect on the overall success of a building 

with demanding structural and spatial requirements, the case studies focus on these large-

scale conceptual design decisions. 

The optimization method in this paper uses simulation to focus simultaneously on 

both the embodied energy found in structural material and the operational energy of the 

building.  The case study results are presented in terms of overall energy requirements, 



but the embodied and operational components are kept independent since the two are not 

always equal when time, financing, and other practical realities of construction are taken 

into account.  These results demonstrate the utility of separating structural efficiency 

(primarily upfront emissions and cost) and operational energy efficiency (emissions and 

cost over time) in optimization for conceptual design, as well as showing the effect of the 

two separate objectives on architectural form.  Overall, this paper illustrates how the 

application of MOO can yield a wide range of expressive, high-performance designs, 

provides increased awareness of how architects might respond to particular climates 

while designing long span buildings, and contextualizes structural efficiency within the 

broad goals of sustainable design.  

  

2. Literature review 

 

2.1 Optimization for structure or energy 

 This research builds on a wide body of existing scholarship concerning the 

integration of visual criteria into optimization algorithms, geometry optimization for 

building performance, and multi-objective optimization in architectural design.  A brief 

overview of major contributions is given here, beginning with research that focuses 

exclusively on either structure or energy usage.  Mueller and Ochsendorf [9] created 

structureFIT, which is a browser-based conceptual design tool that allows users to 

progressively express preference by selecting parent structures for the next iteration of an 

interactive evolutionary algorithm. Coley and Schukat [10] optimize lighting and space 

conditioning systems to minimize overall energy usage and set up a system to present 

optimal designs for aesthetic evaluation.  Caldas and Norford [11] find that energy 

optimization problems can be used to generate designs that minimize capital and 



operating costs, emissions, or maximize thermal comfort. Wang et al. [12] apply a multi-

objective genetic algorithm while considering lifecycle cost and lifecycle energy usage as 

different objectives. Asl et al. [13] establish and test an optimization method for whole 

building energy performance and daylighting.  Magnier and Haghighat [14] use surrogate 

modeling and genetic algorithms to optimize a building design for thermal comfort and 

operating energy.  Karatas and El-Rayes [15] optimize for operational energy 

performance, social quality of life, and lifecycle cost. 

2.2 MOO with global building geometry variables 

 

Other researchers have applied MOO to building design with significant 

geometric design variables. Marks [16] explores shape optimization for minimizing 

initial building cost and annual heating cost for a variety of building plans.  Khajehpour 

and Grierson [17] optimize commercial buildings for minimum capital and operating cost 

and maximum income, as well as for profitability and safety [18]. Suga et al. [19] 

generate Pareto-optimal solution sets for window design optimization with energy 

consumption, cost, uniformity, and draft performance as objectives.  Tuhus-Dubrow and 

Krarti [20] use a genetic algorithm to optimize for lifecycle cost in a conceptual building, 

but they also consider the relationship between operational and embodied energy when 

compared across climates. Diakaki et al. [21] propose a multi-objective approach to 

optimizing the window type, wall insulation material, and wall insulation thickness of a 

building for costs and savings. Fialho et al. [22] investigate the effects of varying 

building materials and orientations on construction costs and energy efficiency using a 

multi-objective optimization algorithm.  Basbagill et al. [23] extend MDO methods by 

using probability distribution functions to support sequential conceptual design decision-



making for an H-shaped building.  Negendahl and Nielsen [24] explore folded facades 

while optimizing for energy use, capital cost, daylight distribution and thermal indoor 

environment. 

2.3 MOO for structure and energy 

 

Additional existing research proposes workflows that allow designers to explore 

different structural shapes while also optimizing for energy or other objectives.  Von 

Buelow [25] aims to combine performance feedback from a variety of simulation 

programs (structural, lighting, acoustical) with aesthetic preferences in design through the 

use of interactive evolutionary algorithms.  By breeding designs that have different 

fitness functions and storing multiple alternatives in a searchable, graphical database, von 

Buelow’s proposed workflow gives designers the opportunity to pursue multiple design 

objectives and visualize tradeoffs between them. Flager et al. [26] propose a framework 

for automating the prototyping, simulation, and analysis tools required to run an 

optimization, and then use this framework to optimize a classroom design for structural 

cost and lifecycle energy cost. Krem et al. [27] demonstrate how the position of a 

structural core and the shape of the floor plan in a high rise building affects its energy and 

structural performance differently depending on the climate and location of the building. 

Quaglia et al. [28] use parametric modeling and performance simulations to generate an 

optimal solution set for the design of origami-inspired, rapidly deployable shelters.  

Mendez Echenagucia [29] presents shape optimizations for a number of competing 

performance objectives, including acoustics, structural efficiency, and energy efficiency.  

 



2.4 Unmet needs: geometric diversity, knowledge of tradeoffs, and context for structural 

optimization 

 

This paper adds to the existing knowledge of multi-objective optimization for 

structure and energy in a number of ways. First, it employs MOO on structural typologies 

and building shapes that are not primarily rectangular, demonstrating that the technique, 

which involves both structural finite element and energy surface models, can be used on 

more expressive architectural designs.  While testing generalizable, known architectural 

problems, this research also generates diverse results that may be structurally, 

geometrically, and architecturally interesting.  In different climates, the optimization 

results are often surprising or unexpected.  Finally, this paper compares structure-energy 

tradeoffs in absolute energy units, which contextualizes structural efficiency and presents 

a fuller picture of how structural optimization can influence architectural forms even 

while emphasizing overall design sustainability. 

  

 

3. Methodology 

 

To demonstrate the capabilities of MOO in the conceptual design of long span 

structures, three case study models were developed and analyzed.  The procedure for 

testing the case studies included the development of a parametric design space, using a 

MOO algorithm to find the Pareto front of best performing designs, visualizing the results 

in a way that designers can easily compare between samples, and analyzing the overall 

data across different forms and contexts (Fig. 2).  The design lessons learned from the 

combination of these three case studies could be applied to a variety of architectural 

programs that contain large, open, conditioned volumes, such as airports, convention 

centers, or stadiums. 



 

3.1 Problem selection 

 

While demonstrating the potential of a multi-objective optimization framework 

for conceptual design, this paper seeks to explore two generalizable architectural 

problems that trade off between structure and operational energy.  The first problem is 

the enclosed arch, where a higher arch rise can lead to greater structural efficiency, but 

also results in greater interior volume and envelope surface area.   The significance of this 

architectural problem is demonstrated by a spirited debate about the Montreal Olympic 

Stadium (Fig. 3) [30] between the engineer Anton Tedesko and architect-engineer Frank 

Moffet in a 1976 issue of Civil Engineering, the journal of the American Society of Civil 

Engineers [31].  Tedesko, with support in later letters from Professor David Billington of 

Princeton University, argued that the architecturally arbitrary form of subtly sloped 

cantilevers required massive section sizes and wasted material, while Moffett commented 

that the lower slope results in operational energy savings [32].  Although the argument 

was never resolved, modern optimization techniques and performance simulations can 

address this tradeoff quantitatively. 

The second architectural problem is the cantilevered overhang, which can allow 

for efficient shading strategies in certain climates and orientations, but may require more 

structural material to build.  Roof overhangs are common architectural elements, and 

have been used as a passive cooling strategy since ancient vernacular dwellings [33].  

Overhangs have many different functions, including protecting an open window from 

wind and rain or providing a covered entrance in the case of a transit terminal, but their 

influence on building energy usage can be substantial: a case study by Raeissi and Taheri 

[34] shows that an optimized static overhang design lead to a 12.7% reduction of cooling 



loads with only a marginal increase in heating loads.  However, when overhangs are 

formed by a large cantilevered structure, such as in the Suvarnabhumi Airport [35], they 

can substantially affect the amount of structural material required by a design, creating a 

tradeoff similar to the enclosed arch.  These two architectural problems can also be 

explored simultaneously, as in the example of the Qingdaobei Station in China, a bus 

terminal completed in 2014 [36].  

3.2 Design space formulation 

 

The performance implications of the enclosed arch and the cantilevered overhang 

are explored through three different long span building case studies.  The first design is 

an enclosed, trussed arch, which can vary in terms of truss depth, overall height, and two 

skew parameters. This design has no large windows, as would be the case for a hangar, 

warehouse, roller skating rink, or possibly the main span of a sports arena.  As a result, 

the optimization isolates the pure arch rise tradeoff between structure and energy without 

interference from daylighting effects.  Although the geometry of the case study is an 

extruded arch, a revolved arch or dome, such as the Montreal Olympic Stadium, would 

show the same tradeoff.  The second design is a ‘PI’ structure, which contains two 

columns and a spanning truss that cantilevers past the columns on both sides, resembling 

the Greek letter.  Although the parameterization of this design creates a few opportunities 

for other small performance tradeoffs, it primarily studies how designers might choose an 

appropriate overhang configuration for optimal daylighting performance.  The last case 

study is the ‘x-brace’, which consists of a three-hinged arch supporting cantilevering roof 

beams through a series of vertical struts, inspired by the Qingdaobei Station. The x-brace 

geometry studies both the arch and overhang tradeoffs simultaneously.  



In each of these designs, the main two-dimensional structural system is arrayed 

longitudinally, with transverse beams spanning in between the arches, PIs, and x-braces 

to create the enclosed volume.  Since all of the case studies have a long main span, there 

is free interior floor space between the supports, allowing for easy occupant movement 

and a variety of interior programs.  For each of the case studies, the total floor area 

remains constant at 3,500 m2.  The decision to parameterize different structural and 

envelope geometries while treating floor area as a given parameter realistically represents 

the typical architectural process, in which the programmatic area requirements would 

drive the design.  This value, rather than conditioned volume or another metric, would be 

most important to both the client and architect.  As such, the energy usage metrics given 

in the results section are normalized by floor area.    

In the PI and x-brace cases, the enclosure consists of a panelized curtain wall 

system that mixes regularly spaced transparent glazed panels with spandrel glass panels 

concealing interior insulation.  This configuration captures the effects of geometric 

changes on both natural daylighting and heat transfer through the building’s envelope. 

The arch enclosure contains no glazing and is entirely insulated.  A parametric model of 

each design was generated in Rhinoceros [37] and Grasshopper [38] based on a number 

of global geometric parameters, which are given in Table 1.  To prepare for evaluation of 

both structural and energy performance, the model included linear elements representing 

steel structural members, as well as surfaces representing the exterior envelope of the 

building.  An abstraction of the structural steel geometry is used to represent the overall 

building shape in the results section.  The enclosure boundary for each case study 



approximately follows the line of the main structural elements on the outside of each 

truss, excluding the overhangs. 

 

Arch PI X-Brace 

  Variable Range 

 

Range Variable Range 

x1 Top Skew -2.5 m < x < 2.5 m Overhang Length 1 m < x < 15 m Starting Edge Height 12 m < x < 21.3 m 

x2 Bottom Skew -2.5 m < x < 2.5 m Left Column Height 4 m < x < 10 m Starting Overhang Length 7.6 m < x < 12.2 m 

x3 Height of Lower Chord 3 m < x < 10 m Right Column Height 4 m < x < 10 m Starting Hinge Height 7.6 m < x < 15.2 m 

x4 Left Width at Support 0 m < x < 6 m Truss Height 0 m < x < 10 m Angle Arch A -0.150 rad < x < 0.150 rad 

x5 Right Width at Support 0 m < x < 6 m Column Width 0.25 m < x < 1 m Angle Arch B -0.150 rad < x < 0.150 rad 

x6 Truss Depth 0 m < x < 10 m N/A N/A N/A N/A 

 

Table 1. Design space variables for each case study 

 

Four different model locations were selected for simulation to test how optimal 

building forms change for different climates.  These four locations represent the main 

world climate zones as described in Köppen-Geiger classification: cool, temperate, arid, 

and tropical [39].  The cool location, Boston, has both heating and cooling loads but is 

heating dominated. The second location, Sydney, is in a temperate climate zone where 

the required cooling load is slightly higher than Boston’s, but the heating load is very 

small. The arid location is Abu Dhabi, which has no heating load but is dominated by 

cooling loads that are roughly five times higher than those required by Boston and 

Sydney.  The selected tropical location is Singapore, which is also dominated by high 

temperatures year-round.  However, the average high temperatures are less extreme than 

in Abu Dhabi and do not swing as much either monthly or daily.  A summary of these 

climate characteristics is given in Table 2. Each model was simulated with a west-east 

orientation of the longer axis, allowing for maximum daylighting effects on the north and 

south sides of the building where the majority of windows are located.  When placed in 

different climates, the structural performance does not change—however, the way in 



which structure trades off with operational energy is different, as is the best energy form 

for each location. 

Climate Characteristics  

 Abu Dhabi Boston Singapore Sydney 

Köppen-Geiger  BWh DFa Af CFa 

IECC Climate Zone 1 5 1 3 

Latitude 24.43 N 42.37 N 1.37 N 33.95 S 

Longitude 54.65 E 71.03 W 103.98 E 151.18 E 

Elevation 7 m 6 m 15 m 6 m 

HDD18 54 3,134 0 751 

CDD10 6,417 1,609 6,664 2,922 

Heating Design Temp (oC) 13 -14 23 6 

Cooling Design Temp (oC) 

(Dry Bulb) 43 31 32 29 

 

Table 2. Climate characteristics for each case study location. Values from [40]. 

 

3.3 Performance evaluation 

 

The performance of each design was measured using Grasshopper plug-ins that 

enable simulations using Rhinoceros geometry as an input. The structural optimization 

objective was to minimize the amount of steel required, and the energy optimization 

objective was to minimize the annual operational energy of the building, which includes 

requirements for lighting, heating, and cooling.  Formally, the optimization problem is 

defined as: 

min 𝑱(𝒙), where                                                        (1) 

                         𝑱(𝒙) =  [
𝐸𝑒(𝒙)

𝐸𝑜(𝒙)
] 

Ee(x) = embodied energy of steel structure 

Eo(x) = building operational energy 

                        𝒙 =  [

𝑥1

⋮
𝑥𝑛

]  as defined in Table 1 



There are no constraints on the problem except for the variable bounds and the internal 

code checks of the structural evaluation.  To convert the amount of steel into embodied 

energy, the mass of each design was multiplied by an embodied energy coefficient.  

Although the model generates idealized operational energy loads already in the correct 

energy units, these loads were converted to primary energy requirements using assumed 

equipment and transmission efficiencies.  The conversion processes for both embodied 

and operational energy are explained in greater detail in Section 3.5. 

Structural performance was quantified using Karamba [41], a finite element 

analysis tool embedded in Grasshopper.  Dead load, symmetrical live load, and 

asymmetrical live loads on each side of the structure were all considered as part of 

combination structural load cases.  The values of these loads are given in Table 3, and are 

broad and appropriately conservative in keeping with assumptions that are made in 

practice for structural form generation in early stage design.  To calculate the overall 

weight of structural material, Karamba’s sizing optimization feature (OptiCroSec) was 

used.  This feature applies a procedure for steel beams according to Eurocode 1993-1-1 to 

check if a section is sufficient for the axial, bending, torsion, sheer, and buckling loads 

imposed on each member.  It then searches through a structural section library to 

determine the smallest member that can adequately handle each load before outputting 

the total weight of the structural system.  This process is done iteratively for statically 

indeterminate structures, where an initial cross section is first chosen to calculate section 

forces in each beam.  The whole sizing procedure is described in more detail in the 

Karamba User Manual [42].   



A number of simplifying assumptions were made to the structural model to reflect 

the level of analysis typically used by conceptual designers in practice.  Drift limits and 

lateral loads were not considered for the structural evaluation, since this paper 

emphasizes the governing gravity load cases and sizing for a low-rise, long span roof.  

Lateral loads could be taken up by another system determined in a later design phase, 

such as shear walls or braced frames. The structural evaluation also does not account for 

global buckling effects, such as lateral torsional buckling, since it is assumed that the 

main spanning system represented by the model could be braced by out of plane 

members. Nevertheless, the overall model is a reasonable approximation for structural 

performance in conceptual design, provided that these additional issues are considered 

and checked as the design is refined. 

Structural Model Assumptions 

Steel Beam Elements 

X-Brace and PI: Wide Flange Beam Sections 

Arch: Round Hollow Steel Sections 

Dead Load 7.18 kPa 

Live Load 3.48 kPa 

Load Cases  

Dead Load 

Dead Load + Full Live Load 

Dead Load + Live Load applied 

asymmetrically to each side 

 
Table 3. Modeling assumptions for the structural models. 

 

The energy evaluation was performed using Archsim [43], a Grasshopper plug-in 

that connects Rhinoceros geometry with EnergyPlus [44], a widely used energy analysis 

and thermal load simulation program made available by the U.S. Department of Energy.  

Archsim assigns material properties to each surface of the model, creates thermal zones, 

and runs a whole-year simulation, returning the total amount of energy required to keep 

the building appropriately lit and temperature-controlled for an entire year. This model 



accounts for both solar and temperature effects. The envelope assumptions were created 

based on an International Energy Conservation Code (IECC) compliant building in each 

of the separate regions [45].  Other model settings were based on ASHRAE standards, 

including required heat recovery effectiveness, mechanical ventilation rate, and lighting 

power density (Table 4).  Although ASHRAE 62.1 specifies a minimum combined 

outdoor air rate of 4.1 L/s/person for “transportation waiting”, airports and related 

buildings could contain spaces with other uses and occupant densities, such as “retail”, 

which requires a combined 7.8 L/s/person [46].  As such, a conservative assumption of 7 

L/s/person was used for the case studies. To allow for direct comparison of architectural 

form across climates, assumptions about structural loads were held constant.  

Energy Model Assumptions  

 Abu Dhabi Boston Singapore Sydney 

Roof R-Value 3.67 K*m2/W 4.52 K*m2/W 3.67 K*m2/W 3.67 K*m2/W 

Wall R-Value 2.29 K*m2/W 2.75 K*m2/W 2.29 K*m2/W 2.75 K*m2/W 

Window U-Value 2.84 W/K*m2 2.16 W/K*m2 2.84 W/K*m2 2.61 W/K*m2 

Window SHGC 0.25 0.40 0.25 0.25 

Window-to-Wall Ratio 0% for Arch / 30% for PI and X-brace 

Schedule Equipment, lighting, ventilation all on (Airport Usage) 

Heating Set Point 20o C 

Cooling Set Point 26o C 

Mechanical Ventilation 7 L/s/person 

Heat Recovery Sensible, 50% recovery effectiveness 

Infiltration 0.1 ACH 

Occupancy 0.2 p/m2 

Equipment 12 W/m2 

Lighting Power Density 12 W/m2 

Daylighting Continuous dimming, 500 Lux Target 

 
Table 4. Modeling assumptions for the energy models. Values from [40] , [45], [46]. 
 
 

3.4 Optimization method 

 

In multi-objective optimization, there are a number of potential methods for 



selecting the best design based on designer preference. These include using a priori 

articulation of preferences, where a composite weighted objective function is created at 

the outset, a posteriori optimization articulation of preferences, where the designer 

chooses from a number of equivalently optimal designs after an optimization has been 

run, and interactive articulation of preferences, where a designer gives input while the 

algorithm is running [47]. This paper contains sets of solutions that would be presented to 

a designer as part of an a posteriori process. 

Specifically, the multi-objective genetic algorithm NSGA-II (Non-Dominated 

Sorting Genetic Algorithm II) [48] was used to iteratively approach the Pareto front over 

multiple generations of design alternatives.  This algorithm starts with a population of 

design samples, evaluates their performance, and breeds the next generation through 

crossover and mutation between the highest performing designs.  The NSGA-II also 

employs a diversity-preservation mechanism to ensure a representative spread along the 

entire Pareto front, and uses the concept of elitism to speed up computation.  Because the 

algorithm is stochastic, there is no guarantee that the exact Pareto solution will be found, 

but this method has been demonstrated to perform well on a wide range of engineering 

problems.  The algorithm was implemented within the Grasshopper platform using the 

open source JMetal library [49].  This implementation was then applied to each of the 

parametric models to approximate the Pareto front of the objective space. For each case 

study, the algorithm used a generation size of 50 and was stopped at a maximum of 20 

generations due to computational constraints.  This generation size led to non-dominated 

sets of approximately 10-40 designs across the different case studies, which clearly show 

the transition of building geometries along the Pareto front between the best structural 



and energy performers.  Since the variables in the design problem are continuous, the 

automated algorithm for finding the Pareto front is more computationally practical than 

an exhaustive search and produces a higher resolution on the front per total number of 

evaluations than a sparse sampling method.      

Fig. 4 shows an example of this implementation of the NSGA-II by indicating 

successive generations of solutions with increasingly darker points.  As the algorithm 

runs, it gradually moves in objective space from a random cloud of performances towards 

a set of Pareto optimal points. In addition to the NSGA-II optimization, the best structural 

solution for each case study was computed using the gradient-free, deterministic 

algorithms available in Goat [50]. The ability of the NSGA-II to locate a near structurally 

optimal design at one extreme of the Pareto front varied across the case studies, and thus 

the independently determined structural optimum is also presented in the results.  

Although a range of theories exists concerning how to select the best design out of 

a given Pareto front, this research presents the entire fronts without a single chosen 

solution.  It is assumed that in an architectural application, designers would be tasked 

with selecting a final design while relying on additional inputs, priorities, and preferences 

that exist outside of the optimization problem itself.  Thus, the entire Pareto set represents 

a final result of the MOO process.     

 

3.5 Data processing 

 

For direct comparison, the results of each performance simulation are normalized 

by the constant enclosed floor area, and are thus presented in GJ per m2 for both the 

embodied energy of the structure and the annual operational energy.  To calculate the 

embodied energy of the structural system, the weight of the sized steel structure was 



multiplied by an embodied energy coefficient provided by Hammond and Jones [51].  

The operational energy simulation results are given in Joules, but require a conversion 

from idealized lighting, cooling, and heating loads to primary energy requirements.  The 

efficiencies and coefficients of performance used in this paper match those detailed in 

Bourgeois et al. [52].  These conversion assumptions are given in Table 5.   

 
Conversion Assumptions 

Embodied Energy Coefficient for Steel 24.4 MJ / kg  

Heating Assumptions 
85% Site Efficient 

10% Transmission Losses  

Cooling Assumptions 
Coefficient of Performance - 3 

33% Conversion Efficiency 

Lighting Assumptions 
100% Site Efficient 

33% Conversion Efficiency 

 

Table 5. Assumptions for conversion to embodied and primary energy.  Values from [51] 

and  [52].   

 

4 Case study results 

 

4.1 Shape and location of Pareto fronts 

 

The performance and optimization results for all three case studies are presented 

in this section.  Fig. 5 gives the Pareto front found by the algorithm between the two 

objectives for each structural configuration and location.  In each of these plots, a single 

design generated at any point during the algorithm is represented as a grey circle, while 

the Pareto optimal points are colored black.  In a few cases, these plots display one or two 

additional Pareto points than were not returned in the last generation of the NSGA-II, but 

were included in the overall dataset and determined to be Pareto optimal during post-

simulation analysis.  Since results are normalized and given in GJ per m2, all plots have 

the same aspect ratio and can be compared directly, although the locations of the axes 

change based on the specific climate and structural system being modeled.  For 



conciseness, this results section will often refer to embodied energy simply as structure, 

and operational energy as energy.  Thus, structural efficiency refers to performance on 

the horizontal axis, and energy efficiency refers to performance on the vertical axis.  The 

general directions of left, right, top, and bottom within this established coordinate system 

will be used to explain performance throughout this section. 

In order to provide context, Fig. 6 shows each of these Pareto fronts on the same 

plot.  In this figure, the performance of the structurally optimal solution for each set is 

represented by an asterisk (*).  Since structure is independent of location, the structurally 

optimal solutions are always stacked vertically.  In some cases, the NSGA-II algorithm 

was able to generate a solution on the approximate Pareto front close to the optimal; in 

other cases it was not.  The distance between the highest performing structural solution in 

each generated set and the overall structural optimum is signified by a dotted line.  For 

each structural system, Singapore had the highest energy loads, followed by Boston, Abu 

Dhabi, and Sydney.  The lowest required structural material was found in the arch, and 

the highest amount of structure was required by the x-brace.  This trend generally 

indicates that the arch, PI, and x-brace are ranked in order from most to least structurally 

efficient. 

Although each case study demonstrates a tradeoff between structure and energy 

when a minimum is desired for both, the shape of this tradeoff changes substantially in 

different contexts.  In a few of the plots, there is a gradually sloping curve indicating that 

the building geometry is transitioning between equally affected performance objectives.  

In other cases, the Pareto front appears to be nearly horizontal, indicating that the 

embodied energy of the structure changes more significantly than the operational energy 



of the building within the optimal set.  This is especially true for the PI structure, 

although a horizontal front occurs in the other systems as well.  

 In horizontal Pareto front cases, a designer aiming for the best performing 

geometry would likely select from the solutions farthest to the far left of the front.  In the 

different PI locations, this far left point trends near the structural optimum. However a 

near horizontally Pareto front could also simply indicate a weakness of the evolutionary 

approach and its ability to find optima at an extreme edge of performance space.  In the 

cases where there is a flat Pareto front approximation and a structural optimum that 

performs much worse in terms of energy than the entire approximation set, the actual 

Pareto front is not flat.  Rather, the structural optimum is far away enough in the design 

space from the rest of the high-performing designs that an evolutionary process is 

unlikely to find it.  

On the other extreme, the Singapore x-brace Pareto front is sharply vertical, with 

only a small ‘hook’ towards a few solutions that are slightly better in terms of energy but 

much worse in terms of structure.  This shape indicates that geometric differences have a 

larger effect on the energy performance than on the structure.  Intuitively, this Pareto 

front shape is more likely to occur in a climate dominated by large energy loads rather 

than in more temperate locations.   

When the Pareto front is sloped sharply in both axes, there is an easily identified 

‘knee point’.  A wide variety of definitions exist for this term, but broadly speaking, a 

knee point requires an unfavorably large sacrifice in one objective to gain a slightly better 

performance in the other objective [53].  As such, it is almost always a preferred solution 

if it exists in a bi-criteria optimization problem, although this is not necessarily the case 



when taking aesthetic and other architectural conditions into account.  Due to their 

prominence as preferred solutions in pure optimization problems, the geometries of 

various knee points will be discussed in the next section.  Often in this paper, the clear 

knee point performs almost as well structurally as the optimum, but the energy 

performance of the actual structural optimum is sharply worse than the designs nearest to 

it on the generated Pareto front.  

It is important to consider that the shape of the Pareto front of these conceptual 

designs can be stretched or compressed depending on design assumptions.  For example, 

Fig. 7 shows structure plotted against simple, entire lifetime energy requirements for 

different building lifetime assumptions in a typical structure-energy optimization.  These 

Pareto front shapes, which appear nearly flat when only one year is considered but spread 

out for longer lifespans, stand in contrast with those presented for annual energy 

requirements in the rest of the paper.  For buildings with longer lifetimes, the Pareto front 

stretches vertically, illustrating the increased significance of operational energy in total 

lifecycle usage.  Similarly, these same plots could each show a 50-year lifetime building, 

but with different assumptions about the efficiency characteristics of the envelope and 

mechanical systems.  As building specifications and codes move towards net-zero 

operating design goals, future conceptual design tradeoffs may become flatter in the 

energy axis even when the entire lifecycle is considered, increasing the importance of 

embodied energy in the overall sustainability of a structure.  

 

4.2 Geometric implications 

 

Although objective space plots provide valuable insight into the behavior of 

parametric models, it may be more useful to a visually conscious designer to view the 



geometric configurations of high-performing designs.  Fig. 8 provides samples of 

changing geometry along the Pareto front for each case study and location.  Although the 

number of designs in each Pareto optimal set varies, five representative samples from 

each set are displayed using a 2D visualization of the structural geometry.  The 

visualizations are arranged from the most structurally efficient design at the top to the 

most energy efficient design at the bottom.  For reference, each design’s performance is 

plotted in black and illustrated by the gray bar graphs located to the right of each glyph. 

In the arch case study, there are clear tradeoffs in both the depth of the truss and 

the overall height of the structure.  Each of the locations produces a solution on the far 

left of the Pareto front that looks visually comparable to the structurally optimal solution.  

However, the most energy efficient solutions vary widely.  In Abu Dhabi, Boston, and 

Singapore, the arch truss depth and height decrease when moving towards more energy 

efficient solutions.  This minimizes interior conditioned volume and envelope surface 

area at the expense of a deeper, higher sloped, more structurally efficient design.  On the 

other hand, the Sydney arch becomes larger towards the energy efficient side of its Pareto 

front, which maximizes its surface area.  Sydney’s climate is mild enough that although 

the cooling loads are more substantial than the heating loads, the cooling set point in the 

model (26 degrees Celsius) is above the outside air temperature most of the time during 

the year.  However, a building’s cooling system in Sydney must still offset the heat loads 

due to people, equipment, and other interior elements that produce heat.  In this context, a 

greater surface area allows for more exchange with the cooler outside air, which 

ultimately lowers annual cooling loads.  



It is possible that certain climates have a tall arch as the most energy efficient 

Pareto solution and others have a shallow arch because the structurally optimal 

configuration is generated by truss depths and heights located in the middle of their 

variable ranges.  Thus, it is possible to get structurally worse performance on both sides 

of the optimum, either by making the arch too tall or too shallow.  In Abu Dhabi, Boston, 

and Singapore, the structural performance gets significantly worse as the truss depth and 

arch rise go to minimum values.  However, there is a sharp knee point in the Pareto front 

for the hot climates, which Fig. 8 shows to occur at a design that is visually near the 

structural optimal, but also slightly smaller in terms of surface area and volume.  

In the PI configuration case study, the NSGA-II is also able to find near 

structurally optimal solutions, but the overall nature of the transition to most energy 

efficient design changes for different climates.  The parameterization of the PI model 

allows for similar tradeoffs in truss depth compared to the arch, but because the surface 

area of the envelope changes only slightly with a deeper truss, this single variable has 

much less ability to influence the overall magnitude of operational energy requirements.  

Especially in Abu Dhabi, Boston, and Sydney, the Pareto fronts are nearly horizontal, 

suggesting to a designer that there is little energy penalty for finding a more structurally 

efficient solution.  Although Abu Dhabi, Boston, and Singapore all trend towards a 

shallower truss while moving right along the Pareto front, there is a notable difference in 

the overhang dimensions between the hot and cold climates.  

In Boston, the overhangs remain fairly close to the building envelope, indicating 

that structural efficiency, daylighting potential, and helpful solar gains outweigh the 

benefits of static shading.  In terms of architectural program, a large overhang over an 



entrance or airport drop-off lane may actually decrease the energy efficiency of the 

design in these climates.  The situation in Abu Dhabi and Singapore is the opposite—a 

large overhang cuts out solar gains and leads to lower cooling loads and greater overall 

efficiency.  Sydney’s more energy efficient solutions share this characteristic of larger 

overhangs, but the effect is visually insignificant compared to the increased height and 

surface area of the best energy performers.  Overall, Sydney’s best PI energy solutions 

rely on taller columns to increase surface area, rather than greater truss depth.  

The PI case study also shows the positive performance effects of asymmetry and 

lean.  Due to the combination of dead and live structural loading being modeled, a 

structurally optimal solution is always symmetrical, and there is a potentially significant 

structural penalty to be paid for introducing asymmetry into the system.  However, the 

energy implications of shading, solar gain, and daylighting may push the Pareto optimal 

solutions towards asymmetry in a bi-objective optimization.  In each modeled case study, 

the left side of the structure (when looking at the 2D visualization) faces south, and the 

right side faces north.  In Abu Dhabi and to a lesser extent Singapore, the most energy 

efficient solutions lean noticeably to the south, which leads to smaller wall and glazing 

areas and more effective shading on the south side of the building that sees the most sun. 

This result stands in contrast to the arch case study, where there are no windows and 

consequently no substantial solar gains or daylighting opportunities, leading to 

symmetrical solutions. 

The x-brace model allows for a combination of arch and overhang effects to 

influence its form.  In each climate, the combination of these effects leads to a gradual 

transition between best structure and energy performers. The structurally optimal solution 



is a symmetrical, tall x-brace with highly curved spanning structural members. Although 

the best x-brace structural Pareto solutions are a significant distance away from optimal 

in a few of the climates, each generated front curved towards the structural optimum, 

rather than having a sharp hook like in other examples.  In Abu Dhabi, the geometric 

transition is subtle and difficult to visualize, as all of the solutions are relatively shallow, 

will small surface areas and shading edges that curve down towards the windows they 

protect.  Singapore, which is also in a hot climate, shows a similar response.  However, 

the transition in Boston is much more noticeable, as the main arch members become less 

curved while moving down the front.  The flatter shading elements allow more sunlight 

to enter, which can help offset the dominant heating loads in Boston.  In Sydney, the 

main structural members also become flat but at a higher angle, which generates much 

taller walls and windows.  Again, this leads the Sydney best energy performers to have a 

higher overall surface area and volume than in other climates.   

Although these geometric transitions happen gradually along the Pareto front, 

even at a resolution approximated by a population size of 50 designs, the contrast 

between structural and energy high performers is more noticeable when considering only 

the edges of the Pareto front.  Fig. 9 shows the best structure and energy performers 

generated for each case study, while also giving an indication of the performance range 

of the front in absolute units.  From these images, it is clear that the first three climates 

prefer energy solutions with smaller envelope surface areas, while Sydney prefers the 

opposite.  Large overhangs have the most substantial effect on Abu Dhabi and Singapore, 

but are not found in the Pareto optimal set for Boston.  Asymmetry is also most 

prominent in Abu Dhabi, which is consistent with its increased sensitivity to solar effects.  



The Pareto sets for the PI structure have large ranges of structural performance with only 

minimal changes in energy.  There is no similar trend for the other two systems, as the 

relationship between the structure range and energy range changes for different climates.  

When considering the entire modeling results, there is a substantial amount of geometric 

diversity among the optimal solution sets, as well as a significant difference in the design 

responses to varying climates. 

 

4.3 Frequency of solutions 

 

The methodological choices of the research presented in this paper have some 

influence on the design results, and a brief discussion of the optimization method is given 

here.  In the performance evaluations for each model, the structural calculation was a 

finite element analysis of linear elements and occurred almost instantaneously.  The 

annual energy simulation required substantially more time—although actual 

computational time depends on hardware, on a standard desktop computer each design 

simulation took around 15-20 seconds.  Including some computational time for the 

implementation of the NSGA-II, this resulted in overall runtimes of around 12 hours for 

each case study in each context.  As such, the case studies were generated for a finite 

number of 20 generations rather than until a certain threshold for change in performance 

was reached.   

Fig. 10 shows a histogram of the performance results for every solution generated 

through the course of the case studies.  In some of the structural configurations, the 

NSGA-II was able to find the zone of high performance solutions within a few 

generations.  The ease with which certain problems could be mapped is indicated by the 

large spike in frequency of solutions near the edge of optimality; after an initial random 



seed of the entire design space, sometimes as many as 800 of the 1,000 solutions 

considered throughout the entire process fell within the best interval of the histogram.  In 

other cases, the more gradual trend towards optimality indicates a higher degree of 

computational difficulty in surveying the objective space for a given architectural 

problem.  This observation is important to keep in mind when considering which 

tradeoffs can be most effectively navigated through the use of multi-objective 

optimization techniques. 

 

5. Discussion and summary of contributions 
 

This paper makes three key contributions to the broad goal of encouraging 

optimization in integrated conceptual design for high-performance buildings. 

First is the demonstration of how a multi-objective optimization methodology for 

structural efficiency and operating energy efficiency can be used to generate a 

geometrically diverse range of high-performing designs.  The results of the various case 

studies presented in this paper show that although finding expressive architectural forms 

and setting up an intelligent design space requires designer intuition on the front end, a 

MOO approach can push high-performing solutions in interesting, unexpected ways.  

With contemporary computational tools that generate rapid performance feedback in 

conceptual design, this process can already be integrated into a typical design workflow.  

As future theoretical advances are made and software develops, the ease of using MOO 

interactively will only increase.  At the same time, the complexity of these results also 

highlights the role a designer plays throughout the process, as a human must prioritize 

design goals and consider visual impact.  In this way, optimization in design does not 



have to be reductive or overly constraining to a creative architect—it can be used as a 

sophisticated tool to support decisions rather than make them.   

Second, there is value in the broad lessons of the case studies concerning the 

relationship between geometry and performance.  As can be seen by the wide variety of 

Pareto optimal results, the precise nature of tradeoffs between structure and energy are 

not always intuitive, and they are extremely sensitive to context.  However, by restricting 

this research to the architectural typology of a long span building and selecting problems 

that are common to this typology, many of the geometric lessons learned through this 

study could be applied to future designs. 

Third, this paper presents new data showing how considerations of structural 

material efficiency and embodied energy compare in magnitude to total building energy 

usage, and how this knowledge affects sustainable design strategies.  The case studies in 

this paper show that structural embodied energy and annual operating energy 

requirements are on the same order of magnitude, with slight variations due to structural 

system and location.  This is a simplified comparison that does not include all other 

embodied energy in the building, allowances for renovations, changing equipment 

efficiencies, or many other details that would be included in a full lifecycle energy 

analysis.  Nevertheless, the absolute energy comparison shows that at current building 

code levels and reasonably long building lifetimes, structure is entirely overshadowed by 

energy.  Yet as future buildings reach increasingly stringent energy efficiency standards, 

structure may become the dominant objective in MOO methodologies for particular 

building types.   

 



 

5 Future work and concluding remarks  

 

This research could be extended in a number of ways.  One next clear step is to 

look at tradeoffs in terms of monetary cost in addition to energy usage.  Although cost 

and energy are largely correlated, the nature of specific tradeoffs could fundamentally 

change with this different perspective.  Analyzing cost in addition to energy could also 

allow for more specific study of the effects of upfront costs and price changes over time 

on optimized architectural form.  In addition, there are many aspects of the energy model 

that could be added into the parameterization.  Although this study focused on changing 

geometry, the effect of envelope attributes, mechanical system efficiency, and even 

energy modeling assumptions could be explored in an MOO workflow.  Similarly, efforts 

could be made to use more area-specific coefficients for material and energy production, 

as opposed to the broad, standardized assumptions used in this paper.  Additional design 

objectives such as constructability could be added to the MOO process, either 

quantitatively if possible or at least articulated in the discussion of user-evaluated design 

criteria.  Any of this future work could use similar case studies to build on the results of 

this paper, or focus on new problems that are relevant to architectural design. 

In conclusion, this paper is an initial step in demonstrating how MOO can be 

applied to geometrically, architecturally interesting conceptual design problems, leading 

to diverse, high-performing results that are difficult to generate through other means.  

This contribution has the potential to encourage more widespread and effective use of 

optimization in sustainable conceptual design, which can yield significant improvements 

in the overall performance of future buildings. 
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Figures 

Note: These are low-resolution preview images only. 

 

Fig. 1. The contributions of embodied and operational energy to the cumulative total 

energy usage of a typical building.  Values from [6].    

 

Fig. 2. Flowchart describing the computational methodology for generating Pareto 

optimal solution sets of designs for each case study. 



 

Fig. 3. Geometric diagrams of the design space and constructed buildings that correspond 

to each architectural problem.  Images courtesy of [26], [31], [32]. 

 

 

Fig. 4. Demonstration of the NSGA-II multi-objective optimization algorithm 

progressively finding solutions closer to the actual Pareto front using crossover and 

mutation of high-performing designs in the previous generation. 

 



 

Fig. 5. Approximations of the Pareto front between the embodied energy of the structure 

and the annual operational energy of each building design.  

 

Fig. 6. A plot showing the absolute location of each Pareto front along with the 

structurally optimal configuration for direct comparison.  



 

Fig. 7. A comparison of the shape and location of the structure-energy Pareto front for 

different design assumptions concerning the lifetime and operating efficiency of a typical 

building.  

 



 

Fig. 8. Overall building geometry representations of each Pareto front. 



 

 

Fig. 9. The best structure and energy performers from each Pareto optimal set, as well as 

the range of performances generated by the NSGA-II algorithm in each location.  This 

figure also shows the envelope surface area and conditioned volume for each design. 

 

 

Fig. 10. Histograms showing the frequency of performance scores within the 1,000 

solutions evaluated for each case study. 


