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The elastic and thermal transport properties of opaque materials may be measured using transient
grating spectroscopy (TGS) by inducing and monitoring periodic excitations in both reflectivity
and surface displacement. The ‘phase grating’ response encodes both properties of interest, but
complicates quantitative analysis by convolving temperature dynamics with surface displacement
dynamics. Thus, thermal transport characteristics are typically determined using the ‘amplitude
grating’ response to isolate the surface temperature dynamics. However, this signal character re-
quires absolute heterodyne phase calibration and contains no elastic property information. Here, a
method is developed by which phase grating TGS measurements may be consistently analyzed to de-
termine thermal diffusivity with no prior knowledge of the expected properties. To demonstrate this
ability, the wavelength-dependent 1D effective thermal diffusivity of pure germanium is measured
using this type of response and found to be consistent with theoretical predictions made by solving
the Boltzmann transport equation. This ability to determine elastic and acoustic properties from a
single set of TGS measurements will be particularly advantageous for new in situ implementations
of the technique being used to study dynamic materials systems.

I. INTRODUCTION

Optically heterodyne amplified transient grating spec-
troscopy (TGS) measurements are a powerful tool used
in the study of surface thermal transport [1], elastic me-
chanical performance [2], film properties [3–6], and a va-
riety of other dynamic processes [7–9]. TGS has proven
a particularly useful tool for studying the properties of
heterostructures [10] as well as short-wavelength, non-
ballistic heat transport in semiconductors [11]. Recently,
TGS has become of particular interest in the study of
the effects of ion irradiation on material properties, as
the micron-scale excitations imposed can be tuned to
match the length scale of imposed damage profiles [12–
15]. Advances in time-resolved implementations of this
and similar methods have drawn attention as potential
in situ measurement tools given their ability to recover
elastic and thermal properties using a non-contact and
non-destructive methodology [16,17].

In common implementations, TGS uses two pulsed
lasers crossed at the surface of a sample under interroga-
tion to generate a pulsed, spatially periodic intensity pat-
tern on this surface. Laser heating in this periodic pat-
tern induces a periodic material excitation in both tem-
perature and surface displacement, u(t), due to thermal
expansion. In most materials, the complex reflectivity,
r∗(t) = r0[1 + r′(t) + ir′′(t)], is temperature-dependent,
indicating that periodic ‘gratings’ in both reflectivity and
surface displacement will be present following excitation.
The dynamics of these gratings are monitored by record-
ing the intensity of the first order diffraction of a quasi-
continuous wave probing laser from the surface gratings.
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In the ‘boxcar’ geometry used for TGS measurements
made here [18], the diffracted signal is spatially over-
lapped with a reference oscillator to heterodyne amplify
the recorded signal. Johnson, et al. showed that the
total optical intensity of heterodyne response for TGS
measurement made in the ‘reflection geometry’, i.e. for
opaque materials, is given by

I(t, φ) = trI0pR0[r′(t) cosφ−(r′′(t)−2kpu(t) cosβp) sinφ],
(1)

where I0p is the initial intensity of both the reference os-
cillator and probing beams, tr is the attenuation factor
of the neutral density filter normally placed in the refer-
ence oscillator path, R0 = |r0|2 is the reflectivity of the
sample, kp is the optical wave vector, βp is the angle of
incidence of the probe beams onto the sample surface (as
shown in Fig. 1), and φ is the heterodyne phase difference
between the reference and probe beams [1].

Eq. (1) holds only in the regime where the reference
oscillator intensity is much greater than the diffracted
signal intensity, which is true in TGS experiments. This
form indicates that by setting the heterodyne phase in
experiment to φ = 0 or φ = π, the real component of
the reflectivity change, r′(t), may be isolated. This se-
lection of phase is referred to as the ‘amplitude grat-
ing.’ If the phase is chosen to be φ = ±π/2, the ‘phase
grating’ may be selected, which is comprised of a com-
bination of the imaginary part of the reflectivity, r′′(t),
and the surface displacement, u(t). Both the gratings in
reflectivity and displacement will thermally equilibrate
following excitation, with decay rates determined by the
thermal diffusivity of the material in question and the
wavelength of the imposed excitation, Λ. The surface
displacement component may contain one or more sur-
face acoustic oscillations depending on the surface struc-
ture and composition of the material in question. It is
these acoustic modes which may be analyzed to deter-
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mine information like elastic properties and surface lay-
ering structure [3,19].

Given the ability to isolate the reflectivity dynamics in
the amplitude grating response, most authors choose this
signal character when measuring thermal performance
using TGS [1,11]. However, amplitude grating measure-
ments require absolute heterodyne phase calibration and
only contain information regarding thermal transport
characteristics. The phase grating response, in contrast,
allows for simultaneous determination of both thermal
and acoustic properties. This is a distinct advantage for
time-resolved, in situ TGS implementations seeking to
retain as much information about sample performance as
possible in a single set of measurements. Measurements
made in this manner also have the advantage of being in-
sensitive to deviations in the heterodyne phase at which
data is collected, rendering experimental measurement of
thermal transport easier to implement in practice. In this
work, a method is constructed by which a determination
of thermal performance may be made using phase grat-
ing measurements. The method proposed here is bench-
marked by measuring the grating-wavelength-dependent
thermal diffusivity of pure Ge from Λ = 3.6 to 9.8 µm.
Measured values of thermal diffusivity are compared to
the expected thermal diffusivity at these wavelengths as
computed using a variational solution to the Boltzmann
transport equation and found in good agreement. Using
this analysis, best practices are recommended for phase
grating thermal transport determination in future stud-
ies.

II. METHODS

To investigate the thermal performance characteriza-
tion using phase grating TGS, a series of measurements
are carried out on pure, un-doped, germanium single
crystals purchased from the MTI corporation. Three sin-
gle crystals with surface orientations {001}, {011}, and
{111}, each polished to a surface roughness of <8 Å
are used. TGS measurements are carried out along
primary surface directions 〈100〉{001}, 〈111̄〉{011}, and
〈112̄〉{111} by fixing the rotation of the sample with re-
spect to the optical arrangement. These directions are
indicated by the manufacturer and confirmed by com-
paring the measured surface acoustic wave velocity to
values computed for these surface directions using elas-
tic theory [20,21]. In materials with phonon-dominated
thermal transport, several authors have shown that ther-
mal diffusivities measured using short-wavelength excita-
tions, like those used in TGS, will be smaller than bulk
diffusivities [4,11]. In brief, this reduction occurs due to
the exclusion of long-wavelength ballistic phonons from
the heat transport process. For SiGe alloys, Huberman
et al. have implemented a variational approach to solv-
ing the Boltzmann transport equation (BTE) for short-
wavelength, 1D periodic excitations [11]. That method
allows for the calculation of the expected value of the

effective thermal diffusivity in pure Ge comfortably in-
cluding the normal operating range of TGS test wave-
lengths of Λ = 1−10 µm. Using these calculated values as
a benchmark, phase grating thermal transport measure-
ments may be quantified by collecting data at a variety
of TGS wavelengths on only a small number of samples.

Experimental TGS measurements are made using a
dual heterodyne phase collection (DH-TGS) optical ge-
ometry [17]. A schematic diagram of the optical ar-
rangement used for these experiments is shown in Fig. 1.
Excitations are generated using a passively Q-switched,
532 nm, solid state laser with a pulse length of 300 ps,
and a repetition rate of 1 kHz as a pump laser (TEEM
Photonics STG-03E-120). At the sample surface, the
laser spot size is 140 µm. The probing laser source is a
785 nm, CW diode laser (Thorlabs LD785-SEV300 with
controller LTC100-B) modulated to a repetition rate of
1 kHz with a 25% duty cycle using an optical chopper
wheel and a spot size at the sample surface of 105 µm.
The probe laser is RF modulated in this way to reduce
sample heating while matching the repetition rate of the
pump laser. Silicon avalanche photodiodes (Hamamatsu
C5658) with a 50 kHz–1 GHz bandwidth are used to de-
tect the heterodyne-amplified probe signal. Their out-
puts are concurrently recorded on a dual-band 5 GHz
digital oscilloscope. Each measurement is taken as the
average of 10000 laser shots to reduce noise. All mea-
surements are made in rough vacuum (< 15 mTorr) to
remove the possibility of exiting acoustic oscillations in
air near the sample surface.

A variety of TGS test wavelengths may be chosen in
experiment using a custom volumetric diffraction optic
with many etched patterns. Each pattern, in conjunction
with the optical geometry, fixes the nominal wavelength,
Λ0, at which the periodic excitation is projected [18].
However, as minor misalignments may affect this pro-
jected grating spacing, the actual projected grating is
calibrated before experiments at each wavelength using a
tungsten reference sample with a known surface acoustic
wave speed. Here, six grating spacings are used ranging
from 3.6 to 9.8 µm and the maximum deviation of any
of the calibrated grating spacings from the nominal grat-
ing spacings is measured at 0.28%. Measurements will
be referred to in the text by their nominal grating spac-
ings, though for each fit the calibrated spacing is used
as a fixed parameter. At 3.6, 4.8, and 6.4 µm, 10 mea-
surements are made on each of the three single crystal
orientations for a total of 30 points per grating spac-
ing. Each measurement point is mechanically translated
across the sample surface to provide a spatial average.
Analysis of these measurements shows no statistical dif-
ference between values of thermal diffusivity measured on
each sample. Therefore, the remaining measurements at
5.5, 8.5, and 9.8 µm were carried out solely on the {001}
Ge crystal, using 30 spatially separated spots each.

Effective thermal diffusivities are extracted from TGS
measurements using non-linear least squares curve fit-
ting. All fitting and analysis is conduced here using
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FIG. 1. Top-view schematic diagram of DH-TGS arrangement used in this work. Following the beam splitter in the probe
path, the two vertically separated probe beams are not rendered. The angle of incidence of the probe beams, βp, onto the
sample surface is indicated. More details on the optical arrangement can be found in [17].

the Matlab platform (version R2016b, Mathworks Inc.)
using the ability to fit to arbitrary, user-defined func-
tional forms. All fits are un-weighted and computed
using the Levenberg-Marquardt algorithm [22]. Best-
practices described herein are referred to using non-
platform-specific terms and may be implemented using
any scientific data analysis tool. All original data files,
scripts used to process them, and resultant measurements
can be found in the permanent GitHub repository for this
manuscript [23].

III. GRATING THERMAL TRANSPORT

In order to extract thermal property information from
TGS measurements, the temperature and displacement
dynamics resulting from an infinite 1D periodic excita-
tion have been analytically investigated. Kading, et al.
showed that in the limit of surface energy absorption and
isotropic thermal diffusivity the surface temperature dy-
namics, and therefore the reflectivity dynamics, of a grat-
ing excited by a delta function laser impulse should follow

{r′(t), r′′(t)} ∝ 1√
t

exp
(
−q2αt

)
, (2)

where α is the isotropic thermal diffusivity and q = 2π/Λ
is the imposed grating wave vector [24]. In the same
limits, the surface displacement takes a profile of the form

u(t) ∝ erfc
(
q
√
αt

)
, (3)

where erfc(·) is the complimentary error function. As
the penetration depth of the 532 nm laser excitation is
about 9 nm in Ge, this surface excitation approxima-
tion is good for the material system considered here [25].
Similarly, the isotropic diffusivity approximation is ap-
propriate for bulk materials with cubic symmetry, but
may fail for systems with hexagonal symmetry or het-
erostructures. These forms have both been used with
success to determine thermal diffusivities from TGS ex-
periments [1,4,13]. In practice, TGS measurements often

make use of the heterodyne phase dependence in Eq. (1)
to construct a composite trace which is the difference of
two measurements made at complimentary heterodyne
phases such that

Itot(t) = I(t, φ1)− I(t, φ2)

∝ [r′(t) (cosφ1 − cosφ2)

− (r′′(t)− 2kpu(t) cosβp) (sinφ1 − sinφ2)] .

(4)

In this manner, systematic background noise may be re-
moved from the composite measurement without chang-
ing the dynamics of the response.

A. The amplitude grating

Using the construction of Eq. (4), complete amplitude
grating measurements may therefore be collected by mak-
ing two measurements at φ1 = 0 and φ2 = π either
sequentially or concurrently using the dual heterodyne
phase collection geometry [17]. Since the grating wave
vector, q, is fixed by the experiment, this composite trace
may be fit using non-linear least squares optimization to
the form

IA(t) =
A√
t

exp(−q2αt) +B, (5)

where A and B are constants, to uniquely determine
the thermal diffusivity of the sample in question. This
method has been used to study thermal transport in a va-
riety of systems including thick PbTe films [1], bulk SiGe
alloys [11], and bulk GaAs [26]. However, as mentioned
above, measurements of this type do not retain any infor-
mation related to acoustic properties as those properties
are uniquely contained in u(t). In addition, measure-
ments made in this manner rely on an absolute calibra-
tion of the heterodyne phase used in experiment, which is
practice is quite difficult. If measurements are collected
at heterodyne phases off from 0 or π, some contribution
to the signal intensity will be made by the displacement
response and fitting to Eq. (5) will not return the correct
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FIG. 2. Components of the phase grating thermal transport
model calculated using Eq. (6). Parameters are extracted
from one measurement point on a {111} Ge sample as Λ =

6.39 µm, α = 0.267 cm2/s, and β = 2.25× 10−5 s1/2.

value for thermal diffusivity. Johnson, et al. note this
strict phase requirement and recommend the use of a
reference sample for phase calibration [1]. Absolute opti-
cal measurements of heterodyne phase without the use of
a reference sample are possible, but implementing these
methods may not be practical for all applications [27].

B. The phase grating

In comparison, making a complete phase grating mea-
surement requires taking the difference of two measure-
ments made at φ1 = π/2 and φ2 = −π/2. Excluding
the contribution of u(t) due to acoustic oscillation, the
complete phase grating signal is given by

IP (t) = A

[
erfc

(
q
√
αt

)
− β√

t
exp

(
−q2αt

)]
+B, (6)

where β is a constant describing the ratio of displacement
and reflectivity contributions and A and B are again am-
plitude constants. Fig. 2 shows the displacement, reflec-
tivity, and complete phase grating response calculated
based on Eq. (6) for best-fit parameters from a measure-
ment at 6.39 µm on Ge, and Fig. 3 shows measured ampli-
tude and phase grating data for an excitation wavelength
of 4.8 µm.

Unlike amplitude grating measurements, Eq. (6) is
robust against small changes in heterodyne phase. A
phase grating measurement made at φ1 = π/2 + δ1 and
φ2 = −π/2 + δ2 for δi � π/2 will, by Taylor expansion,
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FIG. 3. Experimental amplitude and phase grating data for
Λ0 = 4.8 µm on a {011} Ge crystal. The inset shows the fil-
tered Fourier transform of both amplitude and phase grating
responses. The retention of a small peak in the Fourier trans-
form of the amplitude grating data indicates either a slight
offset in the heterodyne phase or a small pump/probe spatial
mismatch.

follow

Itot = A [u(t) + cr′(t)(δ1 + δ2)− dr′′(t)] +B

= A

[
erfc

(
q
√
αt

)
+
c (δ1 + δ2)− d√

t
exp

(
−q2αt

)]
+B

= A

[
erfc

(
q
√
αt

)
− β√

t
exp

(
−q2αt

)]
+B

(7)

where c and d above are constants which may be com-
bined with the phase offsets δi to give the fitting con-
stant β. This expression is, of course, the same form
as Eq. (6). Therefore, in practice, phase grating mea-
surements need be made only by roughly optimizing the
heterodyne phase to the correct value and thermal pa-
rameters may still be extracted.

This approximate optimization may be conducted by
making use of the acoustic component of u(t). These os-
cillations are evident in Fig. 3, and the inset shows the
Fourier transform of the response, by which the domi-
nant frequencies may be easily identified. By adjusting φ
to ±π/2, the amplitude of these acoustic oscillations will
be maximized. By using the real-time Fourier transform
capability of any modern digital oscilloscope, φ may be
set and manually optimized to very close to this value
by maximizing the intensity of the peak due to acoustic
oscillations. Phase grating responses optimized in this
manner do not require absolute phase calibration, and
thermal diffusivities fit to such profiles are insensitive to
small deviations in heterodyne phase. All phase grating
measurements carried out here use this method of opti-
mization.
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C. Parameter estimation

Two major difficulties arise in näıvely using a stan-
dard non-linear least squares optimization algorithm
with Eq. (6) to extract thermal diffusivity values from
TGS measurements. The presence of the imposed acous-
tic oscillation from u(t) is not taken into account in
Eq. (6) and complicates finding robust optimal values for
α. This detail is discussed at length in Section IV. Addi-
tionally, for some values of α and β a näıve fit will tend to
ignore the maximum in the thermal response profile seen
at t0 in Fig. 2. In these cases, the value of β is under-
estimated; the fit parameters represent a local minimum
and will not return an accurate value for α. This ten-
dency can be overcome by providing a good initial guess
for both α and β, which is often possible when measuring
materials with known or expected properties.

However, for materials with unknown properties, pro-
viding these initial estimations may be problematic. In
these cases, it is possible to pre-compute initial guesses
for α and β. For profiles with a maximum present, the
location of t0 can be found analytically by solving

∂IP (t)

∂t

∣∣∣∣
t0

= 0, (8)

which yields the following expression for t0:

t0 =
β

2

[
q
√
α√
π
− βq2α

]−1
. (9)

By noting that this expression is only physically mean-
ingful if t0 > 0, the maximum value of β possible for this
feature to appear is

βmax =
1

q
√
πα

, (10)

for a measurement conducted with a given value of q on
a material with a thermal diffusivity α. This expression
becomes of use when noting that simple maxima may
be easily identified using standard data processing tools.
Therefore, when attempting to extract values for ther-
mal diffusivity from TGS measurements with no prior
knowledge of the expected value (like the phase grating
measurement in Fig. 3), we may pre-compute guesses for
α and β using a simple algorithm and by noting that
Eq. (9) may be inverted to read

β =
q
√
α√
π

[
q2α+

1

2t0

]−1
. (11)

The pre-computation algorithm then proceeds by the fol-
lowing steps:

1. Find t0 from the measured response by taking the
location of the absolute maximum of the profile.

2. Perform an initial fit to the measured data using
solely an erfc(·) to describe the thermal decay. This
provides a initial estimation for α.

3. Calculate an initial estimate of β using Eq. (11),
t0, and the initial estimate of α.

4. Re-fit the measured response to the form of Eq. (6)
by fixing β to the calculated value and varying only
α.

5. From the new value of α, re-compute β using
Eq. (11) and t0.

6. Iterate steps 4 and 5 until the values of α and β
converge.

For an idealized thermal decay which includes no acous-
tic oscillation, this procedure should converge to the true
value of α and β. However, the acoustic oscillation nor-
mally included in u(t) most often causes a value of t0 to
be found which is close to, but not the true value of t0
as determined by Eq. (9). However, these values may be
taken as initial guesses in a full fit of Eq. (6), allowing all
four parameters (A, B, α, and β) to vary. It is the output
of this final fit which is indicative of the true value of ther-
mal diffusivity for a given TGS measurement. All anal-
ysis carried out here uses this pre-computation method
with a fixed number of iterations (10, in this case) to
supply starting points for the optimization of α for each
profile.

D. Acoustic oscillations

Previously, Hofmann et al. have used phase grating
TGS measurements to determine changes in the thermal
performance of ion irradiated tungsten [13]. In their case,
phase grating measurements were necessary due to the
lack of a discernible amplitude grating response. Phys-
ically, this indicates that there is very little change in
the reflectivity of tungsten as a function of temperature.
This allowed them to fit phase grating measurements to a
form of Eq. (3) only, without needing to include the sec-
ond term present in Eq. (6). They noted that the best fit
value of α from their procedure seemed to depend on the
starting point at which the profile was fit with respect
to the observed acoustic oscillation. However, by fitting
their data to Eq. (3) with the addition of a decaying si-
nusoidal oscillation, the variation in the best-fit value of
α at different fit start times was reduced.

This variation in best-fit value with fit starting time is
also observed in the data collected here, which includes
a non-negligible contribution in reflectivity change in the
phase grating response. Therefore, like Hofmann et al.,
data here are also fit with the addition of a decaying si-
nusoidal contribution to account for acoustic oscillations.
Following parameter pre-computation, the final fit to ex-
perimental data is of the form

IP (t) = A

[
erfc

(
q
√
αt

)
− β√

t
exp

(
−q2αt

)]
+B sin (2πft+ θ) exp (−t/τ) + C,

(12)

http://dx.doi.org/10.1063/1.5026429
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where A, B, and C are amplitude constants, f is the
frequency of the acoustic oscillation, θ is the acoustic
phase, and τ is the acoustic decay constant. In this fit the
free parameters are A, B, C, α, β, θ, and τ . The acoustic
frequency f is not taken as a free parameter, unlike the
procedure followed by Hofmann et al., as that frequency
is easily identifiable by analyzing the power spectrum of
the measured response (see Fig. 3). For each fit, that
frequency and the grating wave vector, q, are provided
as fixed parameters.

Similar to the estimation steps taken for the parame-
ters α and β prior to complete non-linear optimization,
the acoustic decay parameter τ may be estimated by one
of several methods and provided as a start point for the
fit to Eq. (12). First, this decay time may be estimated
from the Q-factor of the power spectrum of each mea-
surement. The Q factor is computed by fitting the peak
in the power spectrum to a Lorentzian to extract the full-
width at half maximum, ∆f , and peak frequency f0. As
Q = f0/∆f the decay time is then computed as

τ =
Q

πf0
=

1

π∆f
. (13)

However, for measurements made on materials with non-
lossy acoustic modes, such as the pure surface acoustic
wave modes measured here, the acoustic decay should
be dominated by the ‘walk-off’ effect. Namely, as the
two counter-propagating acoustic waves which comprise
the standing surface acoustic wave under investigation
propagate out of the excitation area, that standing wave
intensity decays [28]. If the beam spot size in the wave
propagation dimension is given by 2a, then the walk-off
time will be τ ≈ a/vg, where vg is the group velocity
of the acoustic mode in question. For the measurements
conducted here on single crystal Ge, the surface acous-
tic wave modes should be nearly dispersionless, meaning
that we have the ability to estimate the walk-off time
from the phase velocity, vp, measured directly in experi-
ment as

τ =
a

vp
=

a

f0Λ
. (14)

Fits using either of these estimations as starting points
for the final optimization may be used, and either may
perform better depending on the conditions of the exper-
iment and the character of the acoustic modes present.
For this work, a constant fixed starting value, the walk-
off estimation, and the Lorentzian fit estimation for τ
were found to produce identical final results. The walk-
off and Lorentzian fit estimations for tau were both found
to slightly under-predict the final optimized value with
the walk-off estimate on average being closer. For the
data presented below, we have used the walk-off estima-
tion method for all analysis to further remove arbitrarily-
chosen fitting parameters.

IV. RESULTS AND DISCUSSION

In the analysis of phase grating thermal transport mea-
surements, the primary challenge arises from the neces-
sity of choosing a time at which to begin the fit of either
Eq. (6) or Eq. (12) to experimental data. In previous
studies using amplitude grating measurements to deter-
mine thermal diffusivity, the choice of fit start time is
not complicated by the presence of an acoustic oscilla-
tion. The choice is determined, rather, by noting that the
t−1/2 dependence in Eq. (2) arises due to a contribution
from cross-plane diffusivity into the bulk of the material
and not from the in-plane diffusion of heat from grating
peak to trough. In these cases, good fits to experimental
data may be found simply by starting the fit late enough
to not be influenced by the divergence in Eq. (2) at t = 0,
and therefore a fixed starting point may be chosen which
is appropriate for a wide range of measurements.

This singular choice of fitting start time it not appro-
priate when fitting phase grating TGS measurements.
Fig. 4 shows the variation in the final best-fit value of
effective thermal diffusivity found using both Eq. (6) and
Eq. (12) as a function of the fit start point on the {111}
Ge sample, measured at 6.4 µm. The point t = 0 is cal-
ibrated as the time of laser impulse, determined in this
case by location of the peak intensity in amplitude grat-
ing measurements made in this geometry, as in Fig. 3.
This point is determined by experiment optical geometry
and electronic settings and may reasonably be character-
ized once for a series of measurements. For fits conducted
both with and without a sinusoidal variation, the best-fit
value of α is initially underestimated at very short time
scales. Following the rapid increase in best-fit value, the
fit values saturate and then oscillate fairly consistently.
In both cases, these oscillations in diffusivity value occur
at the same period as the acoustic oscillation present,
in this case at 2.28 ns. For fits to Eq. (6), oscillations
in α are out-of-phase with the acoustic oscillation, i.e.
maxima in the fit value of the effective diffusivity do not
correspond to maxima in the recorded signal. In con-
trast, fits to Eq. (12) show smaller amplitude oscillations
which are in-phase with the acoustic oscillations in the
recorded signal.

After the initial saturation period, for the example
trace in Fig. 4 the deviation in the best-fit value for α
over one acoustic period is ∆α/α = 9.3% when fitting
to Eq. (6). When fitting to Eq. (12), this deviation over
one period is reduced to ∆α/α = 3.5%. This trend of
a reduction in deviation with the inclusion of a decaying
sinusoidal term is consistent across phase grating data at
different grating spacings. It is also consistent with the
work of Hofmann et al., who noted a reduction in this
deviation from 6% to 1% when including the same os-
cillatory term [13]. The poorer performance in the case
presented here is likely due to the added complexity of the
non-negligible reflectivity component in the phase grat-
ing response. Nevertheless, the reduction in deviation
using Eq. (12) strongly motivates the use of this form to
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and the dashed line is the best-fit value using Eq. (12). An
initial saturation period followed by oscillation in α at the
acoustic frequency are characteristic features observed for all
measurements. The vertical line denotes the final null-point
start time chosen for this measurement.

fit phase grating data of this type.

The total uncertainty on thermal diffusivity values
measured using amplitude gratings is reported by John-
son et al. to be in the range of 2-3% [1], making the per-
formance variation shown in Fig. 4 less than ideal. One
method of combating this variation would be, for every
measurement analyzed, to perform a series of fits to the
data using sequential start times over one acoustic oscilla-
tion period following the saturation period. The average
of these sequential fits could then be used as the ‘best-fit’
value for the measurement. This procedure is potentially
quite computationally expensive, especially for measure-
ments with low frequency acoustic oscillations.

Instead, a fixed null-point start time selection criterion
may be established to provide results that are consistent
with averages made over an entire acoustic period. Fig. 5
describes these null points by showing both a complete
measurement made at 5.5 µm on a {001} Ge sample in
addition to an insert showing the first 5 ns of the same
trace after shifting t = 0 to the laser impulse time. The
null-points in the inset are computed as mid-points of
sequential maxima and minima in the recorded measure-
ments. Since the oscillations in best-fit values of α are
found to be in phase with recorded acoustic oscillations,
these null-points are good indications of the mean value
of the oscillation shown in Fig. 4. Therefore, by picking
one of these null-points as the start position of the fits to
Eq. (12) a self-consistent best choice fit start point may
be selected individually for each measurement analyzed.

The performance of each null-point start may be eval-
uated, in this case, by direct comparison of the extracted
effective thermal diffusivity to that calculated using the
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FIG. 5. 5.5 µm grating spacing measurement on {001} Ge
with the inset showing the first 5 ns of the trace, rescaled in
time to the laser impulse. The first four null-point points are
labeled on the inset to indicate where start times for model
fitting may be chosen. The scale is in millivolts as measured
on a pair of Si avalanche photodiodes.

method of Huberman et al. This comparison indicates
that the choice of null-point 2, as indicated in Fig. 5, is
the most consistently appropriate choice for start times
for fits to this type of phase grating data. For the ex-
ample measurement analyzed in Fig. 4, this null-point
start time is t2 = 2.00 ns, and is indicated by the dashed
vertical line on that plot. For that trace, the best-fit ef-
fective thermal diffusivity is α = 0.252 ± 0.003 cm2/s,
where the uncertainty is the 1σ confidence interval on
the fit value. In comparison, the average value of the
effective thermal diffusivity fit using Eq. (12), taken
over one acoustic period using t2 as the center point,
is α = 0.248±0.009 cm2/s, indicating that the null-point
2 start does in fact capture the behavior of the period-
averaged effective thermal diffusivity accurately.

Null-point 2, therefore, is taken as the start point of
choice and each TGS measurement is analyzed using a fit
to Eq. (12) following parameter pre-computation as de-
scribed in Section III C. The exception to this proscrip-
tion is the data collected at Λ0 = 3.6 µm on the {111}
oriented sample. That series of measurements includes
an intensity spike which is large compared to the oscil-
lation intensity at the time of the pump laser impulse.
This feature interferes with optimization to Eq. (12) at
short times. As a consequence, those ten measurements
are fit using a null-point 3 start instead of null-point 2.
The average and standard deviation in fit start times for
each grating spacing are given in Table I. The deviation
in start times for 4.8 and 6.4 µm measurement are rel-
atively greater than those for the 5.5, 8.5, and 9.8 µm
measurements as the location of the null-points depends
on the principle acoustic frequency of each measurement,
and this frequency will change as a function of crystal sur-
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8

Grating spacing [µm]
Final fit

start time [ns]
3.6 1.11± 0.35
4.8 1.36± 0.05
5.5 1.48± 0.03
6.4 2.01± 0.05
8.5 2.79± 0.02
9.8 3.21± 0.02

TABLE I. Average fit start times used for TSG measurement
at each grating spacing used on pure Ge. All measurements
use a null-point 2 start except for one third of the measure-
ments made at 3.6 µm which use a null-point 3 start, leading
to the relatively large variation.

face and direction. For measurements made at 3.6 µm,
the large variation in start time is due to the third of
the data set using null-point 3 as opposed to null-point
2. Nevertheless, this start time is extremely consistent
across measurements at a given grating spacing and null-
point; the deviation for each value of Λ at a fixed null-
point is less than or equal to the oscilloscope time step
of 0.05 ns.

Using this framework, the best-fit effective thermal dif-
fusivity, taken as the average of 30 measurements at
each grating spacing, is shown in Fig. 6 plotted ver-
sus the calculated value for 1D thermal transport at
each wavelength. Here, averages which are taken over
three Ge crystal orientations, 〈100〉{001}, 〈111̄〉{011},
and 〈112̄〉{111}, are indicated by diamond symbols and
averages of measurements made only on the {001} ori-
ented sample are indicated with circles. Calculations
of the 1D effective thermal conductivity from the BTE
are converted to thermal diffusivity using standard val-
ues for Ge density and heat capacity at room tempera-
ture [29]. These experimentally determined values for ef-
fective thermal diffusivity agree well with those predicted
by the model. Error bars are given as the standard devia-
tion of the spatially averaged data points at each grating
spacing. Calculated in this way, errors range from a max-
imum of ∆α/α = 7.2% for measurement at 6.4 µm to a
minimum of 1.7% at 8.5 µm. Averages which are taken
over multiple samples consistently show larger deviations,
which is to be expected.

In addition to the final best-fit values for thermal diffu-
sivity, it is also instructive to inspect the best-fit profiles
to each measurement. Example experimental traces with
two forms of the best-fit profile are shown for each grat-
ing spacing in Fig. 7. These plots show both the final fit
for the data using Eq. (12) as well as profiles generated
using all the same best-fit parameters, except for setting
the sinusoidal decay constant to τ = 0. This has the
effect of generating a profile that appears to trace the
centroid of the acoustic oscillation. It is perhaps easier
to qualitatively judge the performance of the fit profile
in this manner. Fits reproduce the measured behavior
quite well in general. The one parameter that visually
does not fit as well is the acoustic decay parameter, τ .
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FIG. 6. Average best-fit effective thermal diffusivity versus
applied grating wavelength, Λ. Diamonds symbols indicate
measurements taken on three Ge crystals at different orien-
tations and circles indicate measurements taken only on the
{001} Ge crystal. The solid line indicates the expected ther-
mal diffusivity at these wavelength calculated using a varia-
tional solution to the BTE.

The exponentially decaying term in Eq. (12) is currently
a phenomenological model. Deviations from that behav-
ior in particular are not considered physically significant
in this analysis and further investigation into the govern-
ing mechanisms of that decay may yield more appropriate
models.

The optimization methods developed here have only
considered TGS phase grating responses containing one
dominant acoustic mode. However, responses with mul-
tiple acoustic modes are often seen in practice, for exam-
ple Lamb modes in thin films or pseudo-surface acous-
tic modes in anisotropic crystals [3,30]. For multi-mode
propagation, appropriate terms would need to be added
to Eq. (12) for each mode, and a systematic study con-
ducted to determine a generalized n-mode null-point
start criterion.

V. CONCLUSIONS

This work has explored the use of phase grating TGS
measurements in determining thermal transport proper-
ties of opaque materials. Major takeaways from the an-
alytical and experimental work carried out here include:

� Phase grating TGS measurements have thermal
responses characteristics which are insensitive to
small changes in heterodyne phase. This allows for
characterization without careful control of the ab-
solute heterodyne phase, easing previous practical
experimental constraints.

� Best-fit profiles to phase grating data should use
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FIG. 7. Measured TGS phase grating response (solid black) and model with optimized parameters including acoustic oscillations
(red dashed) and excluding oscillations (solid blue). Model fits excluding acoustic oscillations are computed using the same
best-fit parameters, but setting the decay constant to τ = 0. All data are recorded in a 200 ns window, which is shortened here
to highlight features at short times. (For interpretation of references to color, please refer to the online version of this article).

the form of Eq. (12) to minimize the effect of acous-
tic oscillations on the final value of α.

� Using the characteristic maximum at t0, model pa-
rameters may be estimated in the case that prior
information regarding the thermal performance of
materials under study is unavailable.

� A fixed null-point start time method allows for self-
consistent fitting to measurements made with dif-
ferent acoustic periods without the need for per-
forming many fits over an entire acoustic period.

� Thermal characterization carried out using these
best practices can capture wavelength-dependent
thermal transport in germanium with spatially av-
eraged errors on the order of a factor of two greater
than amplitude grating TGS characterization.

It is important to recall that the motivation for using
the phase grating response is the presence of the acoustic
component of the surface displacement which it contains.
By using the best practices delineated here, both acoustic

(and therefore elastic) property determination and ther-
mal transport determination may be carried out concur-
rently on a wide variety of materials. This ability is a
particularly powerful tool when coupled to experimental
TGS implementations designed as time-resolved diagnos-
tics for dynamically changing materials systems. Given
the non-contact and non-destructive nature of TGS in-
terrogation, the possibilities for future study using these
methods are extremely broad.
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5. Plot of some of the best-fit final profiles (tiled of all
of them?)

6. Final plot of results versus wavelength compared to
BTE calculations
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