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Abstract The Massachusetts Institute of Technology Integrated Global System Model (IGSM) is
designed for analyzing the global environmental changes that may result from anthropogenic causes,
quantifying the uncertainties associated with the projected changes, and assessing the costs and
environmental effectiveness of proposed policies to mitigate climate risk. The IGSM consists of the
Massachusetts Institute of Technology Earth System Model (MESM) of intermediate complexity and the
Economic Projections and Policy Analysis model. This paper documents the current version of the MESM,
which includes a two-dimensional (zonally averaged) atmospheric model with interactive chemistry coupled
to the zonally averaged version of Global Land System model and an anomaly-diffusing ocean model.

1. Introduction

There is significant uncertainty in projections of future climate associated with uncertainty in possible
pathways of economic development and corresponding anthropogenic emissions of different gases as well
as with uncertainty in climate system response to these emissions. Climate system properties that determine
its response to transient forcing differ significantly among simulations of atmosphere-ocean general
circulation models (AOGCMs, e.g., Andrews et al., 2012; Forster et al., 2013; Intergovernmental Panel on
Climate Change, IPCC, 2013) and Earth System Models (ESMs, Friedlingstein et al., 2006, 2014) leading to a
large spread in projected future atmospheric CO2 concentrations and radiative forcing for a given emission
scenario. These properties include climate sensitivity, the rate at which the deep ocean absorbs heat, and
the strength of the carbon cycle and carbon-climate feedbacks. There are additional uncertainties in the
forcing itself, especially in the forcing associated with aerosol-cloud interaction.

Unfortunately, the available directly measured ocean, land, and atmospheric data can only place limited
constraints on some of these key quantities (e.g., Andronova & Schlesinger, 2001; Forest et al., 2008;
Gregory et al., 2002; Libardoni & Forest, 2011). As a result, uncertainties in climate sensitivity or aerosol forcing
have not been reduced over the last few decades in spite of significant efforts and are unlikely to be
substantially reduced within the next decade or more, when important policy choices must nevertheless
be made. These uncertainties, in turn, result in a rather wide uncertainty in projected future climate change.

To place our current understanding of potential future climate change within the context of these
uncertainties, the latest report of Intergovernmental Panel on Climate Change (IPCC, 2013) provides
probability intervals for projected changes of future climate, based on a multimodel ensemble (MME).
There are, however, well-known problems with MMEs, such as small sample size and the fact that different
models are neither independent nor equally plausible (IPCC, 2013, and literature referenced there). In
addition, there are no guaranties that the existing AOGCMs and ESMs sample the full ranges of uncertainties
in different climate characteristics, consistent with observed climate change, or moreover, sample these
ranges systematically. An alternative approach is to estimate the probability distributions of climate
parameters based on available data for past climate and then carry out large (few hundred members)
ensembles of future climate simulations by sampling parameter values from these distributions. Even with
much greater computational power than is available today, however, it will not be possible to carry out
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such an exercise using a fully complex state-of-the-art AOGCM or ESM.
Therefore, such studies (Knutti et al., 2003; Rogelj et al., 2012; Sokolov
et al., 2009; Webster et al., 2003, 2012) are usually carried out with Earth
System Models of Intermediate Complexity (EMICs).

The EMICs occupy a place between simple conceptual models and
comprehensive global circulation models (Claussen et al., 2002). It has
been shown that, with an appropriate choice of parameter values, EMICs
can reproduce global mean changes simulated by different AOGCMs
and ESMs under different forcing scenarios (Meinshausen et al., 2011;
Raper et al., 2001; Sokolov et al., 2003). Model intercomparisons also have
shown that in many cases changes in climate predicted by models of
intermediate complexity are very similar to those obtained in the
simulations with AOGCMs (Gregory et al., 2005; Stouffer et al., 2006).

The structure and complexity of different submodels of a particular EMIC
depend on the type of issues to be addressed by the model. The
Massachusetts Institute of Technology (MIT) Earth System Model (MESM)

is designed to provide the flexibility and computational speed required to handle uncertainty analyses while
also representing more detailed physics, chemistry, and biology closer to that of the more computationally
intensive ESMs. Within the MIT Integrated System Model (IGSM), the MESM is linked to a model of human
interactions, the Economic Projections and Policy Analysis (EPPA) model (Y.-H. Chen et al., 2016), so that
the consequences of various economic and policy decisions on future climate may be evaluated. In previous
publications, the acronym IGSM was used for both the Integrated System Model as a whole (i.e., MESM plus
EPPA) and its climate component (i.e., MESM alone). Here we use the acronym MESM for the latter.

The MESM can be run in both concentration-driven and emissions-drivenmodes. As a result, it can be used to
quantify uncertainties in future climate. To do this, the MESM is first used to produce probability distributions
for the climate sensitivity, the rate of heat uptake by the deep oceans, and the net forcing due to
aerosol-radiation interaction by comparing observed temperature changes over the twentieth century with
the results of historical (concentration-driven) simulations in which model parameter values are varied over
wide ranges (Forest et al., 2002, 2008; Libardoni, 2017; Libardoni & Forest, 2011, 2013). The constructed
distributions are then used to carry out ensembles of future climate emissions-driven simulations and
produce probability distributions for changes in different climate variables. Uncertainty in climate system
response is then combined with uncertainty in anthropogenic emissions (Webster et al., 2002, 2008) to
estimate overall uncertainty in possible anthropogenic climate change (Sokolov et al., 2009; Webster et al.,
2003, 2012). The first version of the MESM, developed in the mid-1990s (Prinn et al., 1999; Sokolov &
Stone, 1995, 1998), has since been continually modified and extended (Sokolov et al., 2005). Different
versions of the MESM have been used in a number of model intercomparison projects (e.g., Brasseur et al.,
2016; Brovkin et al., 2006; Eby et al., 2013; Gregory et al., 2005; Petoukhov et al., 2005; Plattner et al., 2008;
Olsen et al., 2013; Stouffer et al., 2006; Zickfeld et al., 2013). The MESM shows generally comparable results
to those of more complex models. For example, a study of the impact of aviation emissions on atmospheric
chemical composition and climate shows that the MESM performs within the envelope of the more complex
3-D chemistry-climate models (Brasseur et al., 2016; Olsen et al., 2013).

In this paper, we describe the current version of the MESM, as of the middle of 2017. Description of the model
components is given in section 2. Section 3 provides a comparison of simulated present-day climate and
historical climate change with results produced by CMIP5 models and available observations.

2. Model Description

The major model components of the MESM (Figure 1) include the following:

1. an atmospheric dynamics, physics, and chemistry model, which includes a submodel of urban chemistry;
2. an ocean model with carbon cycle and sea ice submodels; and
3. a linked set of coupled process-based land models: the Terrestrial Ecosystem Model (TEM), a fully

integrated Natural Emissions Model (NEM), and the Community Land Model (CLM), that simulate

Figure 1. Massachusetts Institute of Technology Earth System Model of
intermediate complexity (MESM).

10.1029/2018MS001277Journal of Advances in Modeling Earth Systems

SOKOLOV ET AL. 1760



terrestrial water, energy, carbon, and nitrogen budgets including carbon dioxide (CO2) and trace gas
emissions of methane (CH4) and nitrous oxide (N2O).

The earth system depicted in Figure 1 represents a fully coupled system that allows simulation of critical
feedbacks among its components. Time steps used in the various submodels range from 10 min for
atmospheric dynamics, to 1 month for TEM, reflecting differences in the characteristic time scales of different
processes simulated by the MESM. The major model components of the MESM and linkages are
summarized below.

2.1. Atmospheric Dynamics and Physics

The MIT two-dimensional (2-D) atmospheric dynamics and physics model (Sokolov & Stone, 1998) is a zonally
averaged statistical dynamical model that explicitly solves the primitive equations for the zonal mean state of
the atmosphere and includes parameterizations of heat, moisture, and momentum transports by large-scale
eddies based on baroclinic wave theory (Stone & Yao, 1987, 1990). The model’s numerics and
parameterizations of physical processes, including clouds, convection, precipitation, radiation, boundary
layer processes, and surface fluxes, build upon those of the Goddard Institute for Space Studies (GISS)
GCM (Hansen et al., 1983). The radiation code includes all significant greenhouse gases (H2O, CO2, CH4,
N2O, CFCs, and O3) and multiple types of aerosols (e.g., SO2, black and organic carbon). Anthropogenic
aerosol is treated differently in concentration-driven and emissions-driven simulations. In historical
simulations, forcing due to anthropogenic aerosol is parameterized through changes in surface albedo using
historical data on SO2 emissions. In future climate simulations, concentrations of SO2, black and organic
carbon are calculated by the chemistry model using emissions provided by the EPPA model. The model does
not have any parameterization of indirect aerosol effects; however, the strength of the aerosol forcing can
be varied.

The model’s horizontal and vertical resolutions are variable, but the standard version of the MESM has 4°
resolution in latitude and 11 levels in the vertical.

The MIT 2-D atmospheric dynamics and physics model allows up to four different types of surfaces in the
same grid cell (ice-free ocean, sea ice, land, and land ice). The surface characteristics (e.g., temperature, soil
moisture, and albedo) as well as turbulent and radiative fluxes are calculated separately for each kind of
surface, while the atmosphere above is assumed to be well-mixed horizontally in each latitudinal band.
The area weighted fluxes from different surface types are used to calculate the change of temperature,
humidity, and wind speed in the atmosphere. The moist convection parameterization, which was originally
designed for the GISS Model I (Hansen et al., 1983), requires knowledge of subgrid-scale temperature
variance. Zonal temperature variance associated with transient eddies is calculated using a parameterization
proposed by Branscome (see Stone & Yao, 1987). The variance associated with stationary eddies is repre-
sented by adding a fixed variance that follows more closely the climatological pattern (see Figure. 7.8b of
Peixoto & Oort, 1992). In addition, the threshold values of relative humidity for the formation of large-scale
cloud and precipitation vary with latitude to account for the dependence of the zonal variability of relative
humidity on latitude. Zonal precipitations simulated by the atmospheric model are partitioned into land
and ocean components using present-day climatology. These changes led to an improvement in the zonal
pattern of the annual cycle of land precipitation and evapotranspiration (Schlosser et al., 2007). While the
land/ocean partition of precipitation will likely be changing over time, it is kept fixed in our simulations.

The atmospheric model’s climate sensitivity can be changed by varying the cloud feedback. Namely, the
cloud fraction used in radiation calculation (Crad) is adjusted as follows:

Crad ¼ C°· 1:0þ κ·ΔT srfð Þ; (1)

where Co is a cloud fraction simulated by the model, ΔTsrf is the difference of the global-mean surface air
temperature from its values in the control climate simulation, and κ is a parameter used to vary climate
sensitivity. The unperturbed climate sensitivity of the current version of MESM is 2.8 K. Climate sensitivity
for the given value of κ is calculated from an equilibrium 2 × CO2 simulations with mixed layer ocean model.

This method was proposed by Hansen et al. (1993) and was extensively tested in simulations with the MIT
climate model (Sokolov & Stone, 1998). The choice of cloud feedback seems very natural because
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differences in climate sensitivity between different AOGCMs are to a large extent caused by large differences
in this feedback (Bony et al., 2006; Cess et al., 1990; Colman, 2003; Webb et al., 2006; Williams et al., 2006). The
method was later modified by using κ of different signs for high and low clouds (Sokolov, 2006), accounting
for the fact that the feedback associated with changes in cloud cover has different signs for high and low
clouds. Therefore, using different signs in equation (1) depending on cloud heights minimizes the value of
κ required to obtain a specific value of climate sensitivity. In addition, the use of the modified method
improves the agreement in simulated changes in surface fluxes between the MIT climate model and different
AOGCMs. This approach to changing climate sensitivity was also tested in simulations with CAM3 (Sokolov &
Monier, 2012), by comparison with a perturbed physics approach. This approach, while allowing climate sen-
sitivity to systematically change over a wide range, does not reproduce uncertainty in geographical structure
of surface warming.

2.2. Urban and Global Atmospheric Chemistry

To calculate atmospheric composition, the model of atmospheric chemistry includes the chemistry of
climate-relevant gases and aerosols at two domains: the urban scale and the global scale. The urban model
is a subgrid-scale chemistry model whose emissions and pollutants are exported (along with emissions from
nonurban areas) into the 2-D global zonal-mean model of atmospheric chemistry, which is linked to the
atmospheric dynamics and physics model described above. This atmospheric model provides wind speeds,
temperatures, solar radiation fluxes, and precipitation to both the urban and global-scale chemistry models.
The details of the subgrid-scale urban chemistry model and the 2-D zonal-mean atmospheric chemistry
model, and their coupling, are described below.
2.2.1. Urban Atmospheric Chemistry
Urban emissions and air pollution have a significant impact on global methane, ozone, and aerosol chemistry,
and thus on the global climate. However, the nonlinearities in the chemistry cause urban emissions to
undergo different net transformations than rural emissions, and thus urban chemistry is treated separately
from nonurban emissions within the MESM. Accuracy in describing these transformations is necessary
because the atmospheric life cycles of exported air pollutants such as CO, O3, NOx, and VOCs, and the clima-
tically important species CH4 and sulfate aerosols, are linked through the fast photochemistry of the hydroxyl
free radical (OH) as we will emphasize in the results discussed later in section 3. Urban air shed conditions
need to be resolved at varying levels of pollution. The urban air chemistry model must also provide detailed
information about particulates and their precursors important to air chemistry and human health, and about
the effects of local topography and structure of urban development on the level of containment and thus the
intensity of air pollution events. This is an important consideration because air pollutant levels are dependent
on projected emissions per unit area, not just total urban emissions.

The urban atmospheric chemistry model has been introduced as an additional component to the original
global model (Prinn et al., 1999) in MESM (Calbó et al., 1998; Mayer et al., 2000; Prinn et al., 2007). It was
derived by fitting multiple runs of the detailed 3-D California Institute of Technology (CIT) Urban Airshed
Model, adopting the probabilistic collocation method to express outputs from the CIT model in terms of
model inputs using polynomial chaos expansions (Tatang et al., 1997). This procedure results in a reduced
format model to represent about 200 gaseous and aqueous pollutants and associated reactions over urban
areas that is computationally efficient enough to be embedded in the global model. The urban module is for-
mulated to take meteorological parameters including wind speed, temperature, cloud cover, and precipita-
tion as well as urban emissions as inputs. Calculated with a daily time step, it exports fluxes along with
concentrations (peak and mean) of selected pollutants to the global model.
2.2.2. Global Atmospheric Chemistry
The 2-D zonal-mean model that is used to calculate atmospheric composition is a finite difference model in
latitude-pressure coordinates, and the continuity equations for the trace constituents are solved in mass con-
servative, of flux, form (see Wang et al., 1998 for a more complete description). The model includes 33 che-
mical species with 41 gas-phase and 12 aqueous-phase reactions (Wang et al., 1998). For the longer-lived
species (CFCl3, CF2CL2, N2O, CO, CO2, NO, NO2, N2O5, HNO3, CH4, CH2O, SO2, H2SO4, HFC, PFC, SF6, and black
carbon and organic carbon aerosols), the chemistry model includes convergence due to transport, parame-
terized north-south eddy transport, convective transport, and local true production and loss due to surface
emissions, deposition, and chemical reaction. For the very reactive atoms (e.g., O), free radicals (e.g., OH),
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and molecules (e.g., H2O2), concentrations are unaffected by transport due to their very short lifetimes, and
only their chemical production and loss (in both the gaseous and aqueous phase) is considered. The scaven-
ging of carbonaceous and sulfate aerosol species by precipitation is also included using a method based on a
detailed 3-D climate-aerosol-chemistry model (Wang, 2004). Water vapor and air (N2 and O2) mass densities
are computed using full continuity equations as part of the atmospheric dynamics and physics model
(described above) to which the chemical model is coupled.
2.2.3. Coupling of Urban and Global Atmospheric Chemistry
The urban chemistry module was derived based on an ensemble of 24-hr-long CIT model runs and thus is
processed in the IGSM with a daily time step, while the global chemistry module is run at 10-min time step
for advection and scavenging, and 3-hr time step for tropospheric reactions. The two modules in the IGSM
are processed separately at the beginning of each model day, supplied by emissions of nonurban and urban
regions, respectively. At the end of each model day, the predicted concentrations of chemical species by the
urban and global chemistry modules are then remapped based on the urban to nonurban volume ratio at
each model grid. Beyond this step, the resultant concentrations at each model grid will be used as the back-
ground concentration for the next urban module prediction and also as initial values for the global chemistry
module (Mayer et al., 2000).

2.3. Ocean Component

The ocean model used in the version of MESM described in this paper consists of a mixed-layer model with a
horizontal resolution of 4° in latitude and 5° in longitude and a 3,000-m-deep anomaly-diffusing oceanmodel
(ADOM) beneath. Mixed-layer depth is prescribed based on observations as a function of time and location
(Hansen et al., 1983). In addition to the temperature of the mixed layer, the model also calculates the average
temperature of the seasonal thermocline and the temperature at the annual maximum mixed-layer depth
(Russell et al., 1985). Heat mixing into the deep ocean is parameterized by the diffusion of the difference
of the temperature at the bottom of the seasonal thermocline from its value in a preindustrial climate
simulation (Hansen et al., 1984; Sokolov & Stone, 1998). Since this diffusion represents a cumulative effect
of heat mixing by all physical processes, the values of the diffusion coefficients are significantly larger than
those used in the subgrid scale diffusion parameterizations in ocean global circulation models (OGCMs).
The spatial distribution of the diffusion coefficients used in the diffusive model is based on observations of
tritium mixing into the deep ocean (Hansen et al., 1988). The rate of oceanic heat uptake is varied by
multiplying diffusion coefficients by the same factor in all locations.

The coupling between the atmospheric and oceanic models takes place every hour. The heat flux (FH) at the
longitude-latitude point (i, j) is calculated as follows:

FH i; jð Þ ¼ FHZ jð Þ þ ∂FHZ=∂Tszð Þ jð Þ� Ts i; jð Þ � Tsz jð Þð Þ; (2)

where FHZ ( j) and (∂FHZ/∂Tsz) ( j) are zonally averaged heat flux and its derivative with respect to surface
temperature, and Ts(i, j) and Tsz( j) are surface temperature and its zonal mean.

Fluxes of sensible heat and latent heat are calculated by bulk formulas with turbulent exchange coefficients
dependent on the Richardson number and, therefore, on surface temperature. However, to account for
partial adjustment of near-surface air temperature to changes in fluxes, the derivatives of these fluxes are
calculated under commonly used assumption that the exchange coefficients are fixed. A more detailed
discussion of the technical issues involved in the calculations of these fluxes and their derivatives is given
in Kamenkovich et al. (2002).

The mixed-layer model also includes specified vertically integrated horizontal heat transport by the deep
oceans, a so-called Q-flux. This flux has been calculated from a simulation in which sea surface temperature
and sea ice distribution were relaxed toward their present-day climatology with a relaxation coefficient of
300 W m�2/K, corresponding to an e-folding time-scale of about 15 days for the 100-m-deep mixed layer.
Relaxing SST and sea ice on such a short time scale, while being virtually identical to specifying them, avoids
problems with calculating the Q-flux near the sea ice edge.

A thermodynamic ice model is used for representing sea ice. The model has two layers and computes ice
concentration (the percentage of area covered by ice) and ice thickness.
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An alternative version of MESM was developed by replacing the simplified ocean model with the MIT 3-D
OGCM (Dutkiewicz et al., 2005). A detailed comparison of the results of simulations with the two versions
of the MESM was carried out to evaluate the performance of the ADOM on different time scales by
Sokolov et al. (2007). This comparison led to significant modification of the ocean carbon model originally
used in ADOM (Holian et al., 2001). In the current version of the MESM, the formulation of carbonate
chemistry and parameterization of air sea carbon fluxes are similar to the ones used in the MIT 3-D OGCM
(Dutkiewicz et al., 2005).

Vertical and horizontal transports of the total dissolved inorganic carbon, though, are parameterized by
diffusive processes. The values of the horizontal diffusion coefficients are taken from Stocker et al. (1994),
and the coefficient of vertical diffusion of carbon (Kvc) depends on the coefficient of vertical diffusion of heat
anomalies (Kv). Originally, Kvc was assumed to be proportional to Kv (Prinn et al., 1999; Sokolov et al., 2005).
This assumption, however, does not work well in the presence of the vertical transport of carbon due to
the biological pump. In the present version of MESM, Kvc is, therefore, defined as

Kvc ¼ Kvco þ rKv (3)

Where Kvco represents mixing due to the biological pump and rKv due to physical processes. Values of Kvco
and r are chosen based on comparison with results obtained in simulations with MIT 3-D OGCM and
observations (see section 3.1). Because Kvco is a constant, the vertical diffusion coefficients for carbon have
the same latitudinal distribution as the coefficients for heat anomalies. For simulations with different rates
of oceanic uptake, the diffusion coefficients are scaled by the same factor in all locations. Therefore, rates
of both heat and carbon uptake by the ocean are defined by the global mean value of the diffusion
coefficient for heat. In the rest of the paper the symbol Kv is used to designate the global mean value.

Comparisons with 3-D ocean simulations have shown that the assumption that changes in ocean carbon can
be simulated by the diffusive model with fixed diffusion coefficient works only for about 150 years. On longer
time scales, the simplified carbon model overestimates the ocean carbon uptake. However, if Kvc is assumed
to be time dependent, the MESM reproduces changes in ocean carbon as simulated by the 3-D OGCM on
multicentury scales (Sokolov et al., 2007). Thus, for the runs discussed here, the coefficient for vertical
diffusion of carbon was calculated as

Kvc tð Þ ¼ Kvco þ rKvð Þ f tð Þ (4)

Where f(t) is a time-dependent function constructed based on the analyses of the depths of carbon mixing in
simulations with the 3-D OGCM.

Overall results presented by Sokolov et al. (2007) show that in spite of its inability to depict feedbacks
associated with the changes in the ocean circulation and a very simple parameterization of the ocean carbon
cycle, the version of the MESM with the ADOM is able to reproduce the important aspects of the climate
response simulated by the version with the OCGM through the 20th and 21st centuries and can be used
to produce probabilistic projections of changes in many of the important climate variables, such as surface
air temperature and sea level, through the end of the 21st century.

The MESM also has been shown, with an appropriate choice of the model’s cloud feedback and effective
diffusion coefficients, to reproduce the transient surface warming and sea level rise due to thermal expansion
of the ocean as calculated in various coupled AOGCMs for 120–150-year time scales (Sokolov et al., 2003;
Sokolov & Stone, 1998).

2.4. Land Component

The land component of the MESM estimates how fluxes of heat, water, carbon, and nitrogen, both within land
ecosystems and between land and the atmosphere, vary across the globe over time. In addition, the land
component estimates how soil moisture and the storage of carbon and nitrogen in vegetation and soils vary
across the globe over time. The land fluxes and storages are estimated based on values of near-surface
atmospheric states (e.g., air temperature, humidity, pressure, and wind speed) and fluxes (radiation and
precipitation), as well as atmospheric chemistry (carbon dioxide and ozone), determined by the atmospheric
component of the MESM, along with external data sets that prescribe the distribution of land cover and soil
texture across the globe. The land component estimates of albedo, sensible heat, latent heat,
evapotranspiration, and fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are then
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used by the atmospheric component of the MESM to determine changes in atmospheric physics and chem-
istry. In order to assess the value of global land resources, estimates of net primary production (NPP) are used
by the EPPA model in the MIT IGSM to indicate how this ecosystem service influences economic activity.

Global processes in the land component are represented with a dynamically linked set of terrestrial
biogeophysical (i.e., water and energy budgets) and biogeochemical (i.e., carbon and nitrogen budgets
including carbon dioxide, methane, and nitrous oxide fluxes) submodels. These biogeophysical and
biogeochemical calculations are organized into a single, self-consistent framework for the global terrestrial
environment and hereafter referred to as the Global Land Systems (GLS) framework (Schlosser et al., 2007).
The GLS framework, employs three coupled submodels to represent the terrestrial water, energy, and
ecosystem processes:

1. The CLM described by Bonan et al. (2002) calculates the global, terrestrial water and energy balances.
2. The TEM of the Marine Biological Laboratory (Felzer et al., 2004; Melillo et al., 1993, 2009; Tian et al., 1999;

Xiao et al., 1997, 1998) simulates carbon and nitrogen fluxes and the storage of carbon and nitrogen in
vegetation and soils including the uptake and release of CO2 associated with NPP, decomposition, and
carbon sequestration or loss.

3. The NEM described by Liu (1996) and Prinn et al. (1999) simulates CH4 and N2O fluxes.

Water, energy, and carbon are conserved among these submodels. The GLS is also designed to be flexible
and runs either with the meridional resolution (4°) of the zonally-averaged atmospheric model within the
MESM or over a latitude-longitude grid for targeted studies (e.g., 2° × 2.5° as in Gao et al., 2013 and 0.5°×
0.5° as in Melillo et al., 2009). Herein we describe the coupled configuration of the GLS used within the
MESM. In this GLS configuration, a vegetation mosaic scheme has been used to represent the distribution
of vegetation within a latitudinal zonal band at the same spatial resolution for all submodels. Each latitudinal
band is represented with a mosaic of 35 land cover or IGSMVEG types (Schlosser et al., 2007) based on the
presence or absence of a dominant tree, shrub, or grass cover, ecological region (i.e., boreal, temperate,
and tropical), moisture status (upland, floodplain, or wetland), and land management (crop and pasture).
The distribution of land cover types within a latitudinal zonal band is based on aggregating the area of
various potential vegetation (i.e., natural vegetation in the absence of human activity) types of an underlying
finer spatial resolution land cover data set (0.5o latitude × 0.5o longitude, Schlosser et al., 2007) found within a
latitudinal zonal band. In most applications of the GLS within the MESM, the mosaic of land cover within each
latitudinal zonal band has been assumed to remain constant through time such that the potential impacts of
land use change on the ability of land to store carbon and nitrogen have not been considered. However, a
scheme for incorporating the influence of land use change on land carbon dynamics in the GLS has been
developed and applied in Eby et al. (2013) and Zickfeld et al. (2013).

To simulate the effects of climate and atmospheric chemistry conditions on land biogeophysics and
biogeochemistry, the land surface estimates of solar radiation, air temperature, and atmospheric
concentrations of carbon dioxide and ozone by the atmospheric component of the MESM are used directly
by the GLS models for all 35 land cover types within a particular latitudinal zonal band. In contrast, zonal
estimates of precipitation by the atmospheric component of MESM undergo some additional processing
before being used by the GLS models. Because the emission of trace gases, such as CH4 and N2O, depends
on episodic precipitation events and different land covers within a latitudinal band may experience very
different amounts of precipitation (e.g., tropical rain forests versus arid shrub lands), a couple of procedures
have been developed that provide a statistical representation of the episodic nature and spatial distribution
of land precipitation. A statistical procedure based on a Poisson-based arrival process is employed to enable
the episodic nature of precipitation events, with occurrence and duration resolved at an hourly time step so
that this allows for soils in the land component to become wetter during some time periods to support
production and emissions of trace gases than would be possible if rainfall was assumed to be distributed
uniformly over the day (see Schlosser et al., 2007 for more details). An additional procedure is used within
the zonal land cover mosaic framework to account for the varying degree of precipitation amounts that are
received between the ocean and land as well as across the various vegetation regimes. A monthly zonal cli-
matology is constructed from monthly observational estimates from the Global Precipitation Climatology
Project Version 2 (GPCP, Adler et al., 2003), which prescribes the ratio of total land/ocean precipitation
received as a fraction of the total zonal precipitation. This zonal, monthly climatology is applied at every
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time step in theMESM in order to partition the simulated zonal precipitation rates over land and ocean. A simi-
lar mapping between the GPCP precipitation over the potential vegetation distribution at the 0.5° latitude ×
0.5° longitude spatial resolution described above allows a further partitioning of the zonal land precipitation
among all land cover types aggregated across each latitudinal band (see Schlosser et al., 2007 for more details).

For targeted studies, two approaches have been used to expand the mean latitudinal zonal estimates from
the atmospheric component of the MESM to develop gridded estimates (over land) for the GLS component.
In Melillo et al. (2009), themonthly zonal changes in climate are distributed to the 0.5° × 0.5° spatial resolution
by applying the changes in climate estimated by the atmospheric component of the MESM to a baseline
climate (Cramer & Leemans, 2001) as described previously by Xiao et al. (1997). Zonal changes in the effects
of ozone on biogeochemistry have been downscaled as described by Felzer et al. (2005). In the Melillo et al.
(2009) approach, general patterns of climate within a latitudinal band remain unchanged throughout the
simulation. To overcome this problem, other studies (e.g., Fant et al., 2016; Gao et al., 2013; Schlosser et al.,
2014) use a different approach to downscale the MESM climate based on Schlosser et al. (2013). Briefly, the
method maps the zonal means of a MESM variable of interest in longitude via transformation coefficients
derived from observations to obtain the baseline climatology. To account for climate change, the method
tracks the characteristic patterns of response from the CMIP simulations of future climate outcomes, and
through a climate-sensitivity normalization and Taylor expansion framework, the climatological patterns
are augmented according to MESM’s global temperature response.

Below we highlight the key features of each of the land submodels and modifications made to these
submodels for their implementation in the MESM.
2.4.1. The Community Land Model
As in previous implementations of land biogeophysical and hydrologic processes within the IGSM framework,
we have drawn from the CLM (Lawrence et al., 2011). The CLM has been developed from a multiinstitutional
collaboration of land models and serves as the core land system model for energy, water, carbon, and
nutrient cycle studies within the Community Earth System Model (Oleson et al., 2010). CLM has also been
widely used and documented in land data assimilation research (e.g., Zhang et al., 2012), hydrologic studies
at the global (e.g., Pu & Dickinson, 2012), regional (e.g., Swenson et al., 2012; Zampieri et al., 2012), and river
basin (e.g., Vano et al., 2012) scales, as well as coupled climate prediction studies (e.g., Tseng et al., 2012; Xin
et al., 2012). CLM is also benchmarked within the iLAMB framework (e.g., Randerson et al., 2009).

Within the current version of the MESM, we have employed CLM Version 3.5 that largely follows the detailed
documentation provided by Oleson et al. (2010) as well as many of the features highlighted by Lawrence et al.
(2011). We however have made some modifications to CLM’s configuration used within the MESM. Within
CLM’s surface soil hydrologic formulation, infiltration of rainfall in the uppermost layer of the soil required
further refinement for its implementation in MESM. In the initial testing of CLM within the MESM’s zonal
configuration, it was found that CLM produced excessive infiltration into the soil column. This resulted in
an appreciably low bias in runoff and subsequently an excessive amount of evapotranspiration as compared
to our previous versions of CLM implemented in the model and also against a multimodel consensus of
estimates (Schlosser et al., 2007; see Figure 15). The algorithm that describes the infiltration rate, qinmax, into
the uppermost soil layer can be summarized as

qinmax∼ 1� 2bψsucsat

dz

� �
�Fdry�Ksat (5)

where b is the Clapp-Hornberger parameter, ψsucsat is the soil suction from the top layer of soil, dz is the
thickness of the top soil layer, Fdry is a dryness factor of the upper soil layer, and Ksat is the saturated hydraulic
conductivity. This infiltration formulation closely follows that of the classic Green-Ampt formulation (1911) for
enhanced (i.e., values greater than saturated hydraulic conductivity) infiltration rate for dry soils—and will
sustain this condition for dry soils (i.e., subsaturated) in the uppermost soil layer. The inherent assumption with
this formulation is that saturated and unsaturated conditions in the uppermost soil layer will occur sporadically
over a large heterogeneous landscape of intermittent precipitation. However, within our zonally resolved
implementation of CLM, we have removed this enhancement effect. While the MESM does resolve the tem-
poral episodic nature of precipitation provided to the GLS (see Schlosser et al., 2007)—the spatially heteroge-
neous nature of these conditions is not comprehensively resolved. Therefore, we simply set the maximum
infiltration rate equal to saturated hydraulic conductivity. As a result of this modification, we find that our
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estimates of runoff and subsequent evapotranspiration are more aligned with present-day estimates from the
more detailed models—judged commensurately on a zonally averaged basis (discussed in section 3.3).

The CLM, as well as atmospheric physics, is run at an hourly time scale in order to resolve diurnal variations in
the surface energy budget and associated radiative and turbulent heat exchange as well as momentum flux
between the land and atmosphere. All inputs to CLM that require a temporal sampling resolution at the time
step are provided by the atmospheric model (as shown in Figure 1); CLM then calculates surface heat, water,
and momentum fluxes that are passed back to the atmospheric model. The calculations of soil/vegetation
water and energy states and fluxes (and corresponding storages and temperatures) are averaged and
accumulated as necessary given the time steps of TEM and NEM. CLM provides estimates of soil moisture
and temperature profiles, as well as evapotranspiration rates that are required inputs for the TEM andNEM com-
ponents and used to estimate fluxes of CO2, N2O, and CH4 between terrestrial ecosystems and the atmosphere.
2.4.2. The Terrestrial Ecosystem Model
The TEM is a process-based biogeochemistry model that uses spatially referenced information on
atmospheric chemistry, climate, elevation, soil texture, and land cover to estimate monthly fluxes and pool
sizes of carbon, nitrogen, and water among vegetation, soils, and the atmosphere. The TEM is well
documented and has been used to examine patterns of land carbon dynamics across the globe including
how they are influenced by multiple factors such as CO2 fertilization, ozone pollution, climate change and
variability, and land use change, (Felzer et al., 2004, 2005; Galford et al., 2010, 2011; Kicklighter et al., 2012,
2014; Melillo et al., 2009, 2016; Reilly et al., 2007, 2012; Sokolov et al., 2008).

In TEM, the uptake of atmospheric carbon dioxide by vegetation, also known as gross primary production or
GPP, is dependent upon photosynthetically active radiation (PAR), leaf phenology, air temperature,
evapotranspiration rates, atmospheric concentrations of carbon dioxide and ozone, the availability of
inorganic nitrogen in the soil, and the ratio of carbon to nitrogen (C:N) of new plant biomass (Felzer et al.,
2004; McGuire et al., 1997; Raich et al., 1991; Tian et al., 1999). Carbon dioxide is released back to the
atmosphere from terrestrial ecosystems as a result of the autotrophic respiration (RA) of plants and the
heterotrophic respiration (RH) associated with the decomposition of detritus. NPP, which is an important
source of food and fiber for humans and other organisms on Earth, is the net uptake of atmospheric carbon
dioxide by plants and is calculated as the difference between GPP and RA. Heterotrophic respiration depends
upon the amount of soil organic matter, the C:N ratio of the soil organic matter, air temperature, and soil
moisture (McGuire et al., 1997; Raich et al., 1991; Tian et al., 1999). Within an ecosystem, carbonmay be stored
either in vegetation biomass or in detritus (i.e., litter, standing dead, and soil organic matter). In TEM, the
carbon in vegetation biomass and detritus are each represented by a single pool. The transfer of carbon
between these two pools is represented by litterfall carbon (LC), which is calculated as a proportion of
vegetation carbon. Changes in vegetation carbon (ΔCVeg, also known as biomass increment), detritus
(ΔCSoil), and terrestrial carbon (ΔCTot) are then determined as a linear combination of these fluxes:

ΔCVeg ¼ GPP–RA–LC (6)

ΔCSoil ¼ LC � RH (7)

ΔCTot ¼ ΔCVeg þ ΔCSoil ¼ NPP � RH ¼ GPP � RA � RH (8)

Carbon sequestration in undisturbed terrestrial ecosystems can be estimated by the GLS either as the sum of
the estimated changes in carbon in vegetation and detritus or by the difference between NPP and RH
(equation (8)) which is also known as net ecosystem production or NEP.

An important feature of TEM is that the model simulates the influence of terrestrial nitrogen dynamics on
terrestrial carbon dynamics. First, the uptake of carbon dioxide by plants is assumed by TEM to be limited
by nitrogen availability in most land ecosystems on Earth. Tropical forests are the only exceptions, where
nitrogen availability is not assumed to limit GPP under contemporary conditions. The effect of nitrogen
limitation on GPP is determined by first calculating GPPC assuming no nitrogen limitation:

GPPC ¼ f CO2; ETð Þ f PARð Þ f CANOPYð Þ f LEAFð Þ f Tð Þ f O3; ETð Þ (9)

where CO2 is atmospheric CO2 concentration, ET is evapotranspiration, PAR is photosynthetically active
radiation, CANOPY is the relative state of a vegetation canopy recovering from a disturbance as compared
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to the canopy state of a mature, undisturbed stand, LEAF is the monthly
leaf area relative to the maximum leaf area of a stand, T is air temperature,
and O3 is atmospheric ozone concentration. The influence of atmospheric
CO2 and O3 concentrations on GPP depends on the status of vegetation
stomates, which close during drier conditions (i.e., low ET) to reduce the
uptake of CO2 or O3 and open during wetter conditions (i.e., high ET).
Details of equation (9) have been described elsewhere (e.g., Felzer et al.,
2004; McGuire et al., 1992, 1995, 1997; Pan et al., 1998; Raich et al., 1991;
Tian et al., 1999).

If GPP is limited by nitrogen availability, GPPN is then calculated based on the effects of nitrogen supply on
net primary production (NPPN):

NPPN ¼ PCN NUPTAKE þ NMOBILð Þ (10)

GPPN ¼ NPPN þ RA (11)

where PCN is the carbon to nitrogen ratio (C:N) of newly produced plant tissue, NUPTAKE is the amount of inor-
ganic nitrogen acquired by plants from the soil and NMOBIL is the amount of vegetation labile nitrogen mobi-
lized during a particular month (McGuire et al., 1997; Pan et al., 1998; Tian et al., 1999). Similar to GPPC, NUPTAKE
also depends on local environmental conditions (Felzer et al., 2004; McGuire et al., 1992; Raich et al., 1991):

NUPTAKE ¼ f NAVL;H2Oð Þ f CANOPYð Þ f Tð Þ f O3; ETð Þ

where NAVL is soil available nitrogen and H2O is soil moisture. Monthly GPP is then determined as follows:

GPP ¼ min GPPC;GPPNð Þ (12)

In TEM, the uptake of atmospheric CO2 by plants is assumed to follow Michaelis–Menten kinetics such that
the effect of atmospheric CO2 at time t as modified by ET on the assimilation of CO2 by plants is
parameterized as follows:

f CO2 tð Þð Þ ¼ Cmax CO2 tð Þð Þ= kc þ CO2 tð Þð Þ (13)

where Cmax is the maximum rate of C assimilation, and kc is the CO2 concentration at which C assimilation
proceeds at one-half of its maximum rate (i.e., Cmax). Because the response of carbon uptake by plants to
atmospheric CO2 concentrations is uncertain (Sokolov et al., 2009), we examine the influence of this
uncertainty on terrestrial carbon dynamics by adjusting the value of kc in our uncertainty analyses.

The NEM has been embedded within the TEM infrastructure as described in Schlosser et al. (2007) to estimate
CH4 and N2O fluxes, which are not estimated by TEM. As such, the CH4 and N2O flux estimates by NEM are
directly based onmonthly TEM estimates of soil organic carbon. Although the simulated carbon and nitrogen
dynamics of NEM are still mostly separated from those in TEM, the embedded NEM provides a platform for

Table 1
Percentiles for Climate Parameters

Climate
sensitivity

K

Square root of
diffusion

coefficient cm/s1/2

Radiative forcing due to
aerosol radiation interaction

averaged for 2001–2010 W/m2

5% 2.4 0.9 �0.47
50% 3.2 1.8 �0.24
95% 4.6 3.7 �0.05

Figure 2. Frequency distribution of (a) ECS, (b) TCR, and (c) TCRE. Vertical line shows median value, and horizontal bar
shows 90% probability interval. Red line CMIP5 estimate, from Table 9.5 of IPCC (2013) for TCR and from Gillet et al.
(2013) for TCRE. ECS = equilibrium climate sensitivity; TCR = transient climate response; TCRE = transient climate response
to cumulative carbon emission.
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improving the linkages between the two biogeochemistry models. For example, NEM estimates of CH4

emissions diminish the stock of soil organic carbon and associated CO2 emissions estimated by TEM. The
embedded NEM allows simulation of daily CH4 and N2O emissions based onmonthly estimates of soil organic
carbon by TEM combined with the CLM estimates of daily soil temperatures, daily and hourly soil moistures,
hourly rainfall intensities, and storm durations. CLM also provides all data on soil properties required by
TEM/NEM. Fluxes of CO2, CH4, and N2O are passed to atmospheric model and are used in calculations of
the corresponding gases by the atmospheric chemistry submodel.

3. Model Evaluation

As mentioned earlier, the MESM can be run either in concentration-driven or emissions-driven mode. In
historical simulations, the MESM is forced by the prescribed changes in greenhouse gases and ozone
concentrations, aerosols, and solar irradiance. Greenhouse gas concentrations and stratospheric aerosols
from volcanic eruptions are taken from the NASA GISS modeling group forcing suite. Miller et al. (2014)
describe the methods for updating the greenhouse gas concentrations from Hansen et al. (2007) and the
volcanic aerosol optical depths from Sato et al. (1993). Sulfate aerosol loadings are from Smith et al. (2011)
extended by Klimont et al. (2013), solar irradiance is from the Kopp and Lean (2011) data set, and ozone con-
centrations are from the SPARC data set used in the CMIP5 experiments (Cionni et al., 2011). In future climate

simulations, the MESM is driven by anthropogenic emissions of different
gases produced by the MIT EPPA model (Paltsev et al., 2005).

3.1. Distribution of Climate Parameters and Characteristics
Describing Model Response to External Forcing

To determine climate model parameters that produce changes in surface
air and ocean temperatures consistent with available observations, 1,800
historical simulations from 1861 to 2010 were carried out changing climate
sensitivity, the rate of ocean heat uptake, and the strength of aerosol for-
cing over wide ranges. Probability distributions for climate parameters
were constructed using the methodology described in Forest et al.
(2002, 2008) and Libardoni and Forest (2011, 2013). Detailed descriptions

Figure 3. Distribution of climate sensitivity and the rate of ocean heat uptake (square root of vertical diffusion coefficient).
Red dots show values of CS and SQRT(Kv) for 400 samples.The contour lines are for the 5th, 10th, 25th, 50th, 75th, 90th,
and 95th percentiles.

Table 2
Median Values and 90% Probability Intervals for Surface Air Temperature
Anomaly Relative to 1986–2005 Mean in Simulations With RCP8.5 Scenario

CMIP5 MESM

2046–2065 2.0 (1.4, 2.6) 1.7 (1.3,2.0)
2081–2100 3.7 (2.6, 4.8) 3.1 (2.6,3.8)
2181–2200 6.5 (3.3, 9.8) 7.0 (5.7,8.9)
2281–2300 7.8 (3.0, 12.6) 8.9 (6.9,11.0)

Note. CMIP5 results are from Table 12.2 of IPCC (2013). RCP =
Representative Concentration Pathways; CMIP5 = Coupled Model
Intercomparison Project Phase 5; MESM = MIT Earth System Model of
intermediate complexity; MIT = Massachusetts Institute of Technology.
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of the distributions obtained using different observational data sets, different estimates of natural variability,
and other assumptions are given in Libardoni (2017). Below we describe our final distributions and present
the results of simulations with the set of climate parameters sampled from it. This distribution is derived
using multiple data sets for changes in surface temperature from 1905 to 2010 and in ocean heat content
from 1990 to 2010. Individual distributions were merged across all-surface data sets to produce the final
distribution. Estimates of natural variability from all CMIP5 models were used to estimate the noise-
covariance matrix.

Table 1 shows medians and 90% probability intervals for model climate parameters from the distribution
used in this paper. The median values for equilibrium climate sensitivity (ECS, Figure 2a) is rather close to
the median climate sensitivity of CMIP5 AOGCMs (3.2 K), while the 90% probability interval is shifted toward
higher values compared with the CMIP5 models (1.9 to 4.5 K).

To assess uncertainty in the transient climate response (TCR, i.e., temperature change in the time of CO2

doubling), we carried out a set of climate simulations with a 1% per year increase of CO2 concentration using
400 samples of climate parameters. To estimate uncertainty in the carbon cycle, we calculated carbon uptake
by the ocean and terrestrial ecosystems in these simulations. As discussed above, the vertical diffusion

Figure 4. Time series of global mean surface air temperature and precipitation relative to 1861–1880 mean. The
simulations with the MESM are shown in blue (ensemble mean and 1 standard deviation in shading) and the simulations
from the CMIP5 MME are shown in red (MMEmean and 1 standard deviation in shading). After 2006, simulations under the
RCP8.5 are used. Observations are shown in black lines, namely the HadCRUT4 (Morice et al., 2012) and global
reconstructed precipitation (REC) data (Smith et al., 2012) for temperature and precipitation, respectively. MESM = MIT
Earth System Model of intermediate complexity; MIT = Massachusetts Institute of Technology; CMIP5 = Coupled Model
Intercomparison Project Phase 5.

Figure 5. Changes in ocean heat content relative to 1971 in the top 700 m (a) and top 2000 m (b). Black lines are ensemble
of MESM simulations. Blue lines are ensemble means. Red lines are observations from Levitus et al. (2012). MESM = MIT
Earth System Model of intermediate complexity; MIT = Massachusetts Institute of Technology.
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coefficient for carbon depends on the vertical diffusion coefficient for heat
anomalies. As a result, uncertainty in oceanic carbon uptake is defined by
the uncertainty in the heat uptake. In all simulations described in this
paper we used Kvco = 1 cm2/s and r = 0.52 (equation (3)). Uncertainty in
the terrestrial carbon uptake was taken into account by varying the half-
saturation constant, kc (equation (13)). The results of CO2 enrichment stu-
dies suggest that plant growth could increase by 24%–54% in response to
doubled CO2 given adequate nutrients and water (Curtis & Wang, 1998;
Gunderson & Wullschleger, 1994; McGuire et al., 1992; Norby et al., 1999,
2005; Raich et al., 1991). In the stand-alone TEM, a value of 400 ppmv
CO2 is chosen for the half-saturation constant, kc, so that f(CO2(t))
increases by 37% for a doubling of atmospheric CO2 (e.g., McGuire et al.,
1997; Pan et al., 1998). A 24% and 54% response to doubled CO2 would
correspond to kc values of 215 and 800 ppmv CO2, respectively. Changes
in kc affect strengths of both carbon-concentration and carbon-climate
feedbacks (Sokolov et al., 2008). It should be noted that, because TEM
takes into account nitrogen limitation on carbon uptake, terrestrial carbon
feedback in our model is weaker than in models which do not consider
impact of nitrogen availability (Eby et al., 2013; Plattner et al., 2008;
Sokolov et al., 2008).

Based on a comparison of the TEM version implemented in the MESM with
other terrestrial carbonmodels (Sokolov et al., 2008) and results from stand-
alone TEM simulations, different values of kc are used for nitrogen-limited
and nonlimited ecosystems. In the simulations discussed below, the value
of kcwas varied from 200 to 800 ppmv CO2 for nitrogen-limited ecosystems
and from 75 to 300 ppmv CO2 for ecosystems with no nitrogen limitations.

Total carbon uptake can be estimated from available data on carbon emis-
sions and observed CO2 concentrations and is less uncertain than carbon
uptake by the ocean and carbon uptake by terrestrial ecosystem separately.
To take this into account, low values of Kv (small carbon uptake by the
ocean) are coupled with high values of kc (large terrestrial carbon uptake).

A dependency between the diffusion coefficients for heat and carbon
imposes a correlation between heat and carbon uptake which, in turn,
may lead to a correlation between, for example, TCR and the airborne
fraction of carbon emissions. The latter will be weakened by the anticorre-
lation between oceanic and terrestrial carbon uptakes. We discuss the
uncertainty in the implied carbon emissions and their airborne fraction
in the next section.

Figure 2b shows frequency distributions for TCR from 400 simulations. The
median value for TCR (1.7 K) is close to that for CMIP5 model (1.8 K), while
the 90% probability interval (1.4–2.0 K) is significantly narrower than
estimates based on CMIP5 models (1.2–2.4 K). The relatively small range
of TCR in our simulations is explained in part by the correlation between

climate sensitivity and the rate of oceanic heat uptake imposed by observations (Figure 3). Another charac-
teristic often used to describe transient model response to forcing is a realized warming defined as a ratio of
TCR to equilibrium climate sensitivity (ECS, Millar et al., 2015). In our simulations, this characteristic ranges
from 0.35 to 0.66 (90% interval) with a median value of 0.54. The fact that these values are smaller than
corresponding values for CMIP5 model (0.46–0.72 and 0.58) indicates that the rate of oceanic heat uptake
in CMIP5 models is most likely smaller than in our simulations.

The transient climate response to cumulative carbon emission (TCRE), is defined as the ratio of surface
warming to cumulative implied carbon emissions at the time of CO2 doubling from simulations with a 1%
per year increase in CO2 concentrations (Matthews et al., 2009). Values of TCRE in MESM simulations vary

Figure 6. (a) Terrestrial, (b) oceanic carbon uptake, and (c) implied carbon
emissions. Data for comparison are from Le Quere et al. (2016). MESM =
MIT Earth System Model of intermediate complexity; MIT = Massachusetts
Institute of Technology.
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(90% range) from 1.2 to 1.9 K/EgC (Figure 2c). According to Gillet et al. (2013), a similar range for CMIP5
models is 0.8–2.4 K/EgC. At the same time, observationally constrained range, obtained using CMIP5
simulations and observed temperature to 2010, is 0.7–2.0 K/EgC (Gillet et al., 2013).

It should be noted that ranges of ECS, TCR, and TCRE shown on Figure 2 are not the full ranges which can be
spanned with MESM. In historical simulations used to obtain climate parameter distributions (Libardoni,
2017), ECS was varied from 0.5 to 9.5 °C and the diffusion coefficient from 0 to 64 cm2/s. The TCR range
corresponding to these ranges in model parameters is 0.4–4.9 °C. The ECS distribution in Figure 2a is the
posterior distribution obtained by Libardoni (2017). Distributions for TRC and TCRE are distributions obtained
using model parameters sampled from distribution from Libardoni (2017). As a result, these are
observationally constrained distributions.

To evaluate the uncertainty in long-term climate system response implied by the distribution of climate
parameters described above, we carried out an ensemble of simulations using RCP8.5 GHGs concentrations.
Comparison between the results from this ensemble and those from the multimodel CMIP5 ensemble are
presented in Table 2. The MESM simulates less surface warming during the 21st century than the CMIP5
ensemble which, in part, may be explained by the fact that most of CMIP5 models overestimate warming
in the first decade of the 21st century. At the same time, MESM simulates stronger temperature increase
during 22nd and 23rd centuries than the CMIP5 models. It should be kept in mind that from the 39 CMIP5
models that ran the RCP8.5 simulation, only 12 were run beyond 2100. As can be seen on Figure 12.5 of
IPCC (2013), the multi-model mean surface warming in 2100 is smaller for these 12 models than for all 39
models. The use of a different number of CMPI5 models in different simulations somewhat complicates
the comparison between CMIP5 and MESM results. The estimates for ECS and TCR, shown above, are from
simulations with 23 and 30 CMIP5 models, respectively (Table 9.5 in IPCC, 2013). The TCRE estimates are
based on the results of 15 CMIP5 ESMs (Gillet et al., 2013).

3.2. Historical Climate Change

To assess the quality of the method used to obtain the probability distributions for climate model
parameters, we carried out a 400-member ensemble of simulations over the 1861–2010 period using
Latin hypercube sampling of the probability distributions. The model ensemble reproduces the observed
changes in surface air temperature very well (Figure 4a). Temperature averaged over the first decade of
the 21st century increases in our simulations relative to the 1861–1880 mean between 0.67 and 1 K
(90% probability interval) with a mean value of 0.835 K. Corresponding values for the decade of
1986–2005 are 0.53 to 0.85 K and 0.69 K. Similar to the TCR, the range of temperature change simulated
by the MESM ensemble is significantly narrower than the one produced by the CMIP5 models. The
MESM ensemble mean agrees better with the observation than the CMIP5 mean, especially after year
2000, when the CMIP5 models overestimate observed warming. If averages for observed and simulated

Figure 7. Frequency distribution of (a) terrestrial, (b) oceanic carbon uptake, and (c) implied carbon emissions averaged
over years 2000–2009. The black line represents the 90% interval from the MESM ensemble. The red line represents the
AR5 estimate (Table 6.1 in IPCC, 2013) for uptakes and data from Le Quéré et al. (2018) for emissions. MESM = MIT Earth
System Model of intermediate complexity; MIT = Massachusetts Institute of Technology.
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temperature are calculated using the same methodology, then it was shown that the agreement between
CMIP5 models and observations became better (e.g., Cowtan et al., 2015; Richardson et al., 2016). Good
agreement between the MESM results and observations is explained by the fact that the observations
were used to create the distributions for the climate parameters. As shown by Libardoni (2017), the
MESM also overestimates warming during the first decade of the 21st century for climate parameter
distributions based on data through 2000 only.

Changes in global mean precipitation simulated by the MESM (Figure 4b) also agree well with observations,
especially the increase in the last 50 years. Again, the MESM ensemble mean agrees better with the observa-
tions than the CMIP5 models. However, inter-annual variability simulated by MESM is much smaller
than observed.

The MESM simulates a larger increase in the ocean heat content both in the top 700 m and 2,000 m (Figure 5)
compared with observations and the CMIP5 models (Figure 9.17 in IPCC, 2013). At the same time, sea level
increases due to thermal expansion at the rate of 0.85 (0.625–1.4) mm/year between 1971 and 2010 and at

Figure 8. Zonal distribution of (a) surface air temperature (°C), (b) precipitation (mm/day), (c) surface latent heat flux
(W/m2), and (d) surface sensible heat flux (W/m2) averaged over the 1991–2010 period. The MESM simulation with the
median values of climate parameters (climate sensitivity, ocean heat uptake rate, and net aerosol forcing) is shown in blue.
Simulations from the CMIP5MME are shown in red (MMEmean and full range in shading). After 2006, simulations under the
RCP8.5 are used. Observations are shown in black lines, namely the HadCRUT4 (Morice et al., 2012), GPCP v2.3
(Adler et al., 2003), and MERRA2 (Gelaro et al., 2017) for temperature, precipitation, and the heat fluxes, respectively. MESM
= MIT Earth System Model of intermediate complexity; MIT = Massachusetts Institute of Technology; CMIP5 = Coupled
Model Intercomparison Project Phase 5; RCP8.5 = Representative Concentration Pathways 8.5; GPCP v.2.3= Global
Precipitation Climatology Project Version 2.3; MERRA2 = Modern-Era Retrospective Analysis for Research and Applications,
Version 2.
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Figure 9. Latitude-height cross section of (a) temperature (°C), (b) specific humidity (kg/kg), and (c) relative humidity (%) averaged over the 1991–2010 period.
Observations from MERRA2 (Gelaro et al., 2017) are shown on the left panels, the CMIP5 multimodel ensemble mean is shown in the middle panels, and the
MESM simulation with the median values of climate parameters (climate sensitivity, ocean heat uptake rate, and net aerosol forcing) is shown in the right panels.
After 2006, CMIP5 simulations under the RCP8.5 are used. MERRA2 = Modern-Era Retrospective Analysis for Research and Applications, Version 2; CMIP5 = Coupled
Model Intercomparison Project Phase 5; MESM = MIT Earth System Model of intermediate complexity; MIT = Massachusetts Institute of Technology;.RCP8.5 =
Representative Concentration Pathways 8.5.

10.1029/2018MS001277Journal of Advances in Modeling Earth Systems

SOKOLOV ET AL. 1774



the rate of 1.2 (0.96–1.6) mm/year between 1993 and 2010. These trends are not too different from the
estimates given by IPCC, 0.8(0.5 to1.1) mm/year and 1.1(0.8 to 1.4) mm/year, respectively (Table 3.1 in
IPCC, 2013).

While the TEM calculates carbon fluxes for natural ecosystems using potential land cover distribution, CO2

emissions associated with agricultural activity are provided by the EPPA model in the emissions-driven simu-
lations. Nonetheless, terrestrial carbon uptake estimates generally fall within the range of the Global Carbon
Project multimodel analysis (Le Quere et al., 2016) while being smaller than the Global Carbon Project’s esti-
mate obtained as the residual from the global carbon budget (Figure 6a). The median value of the terrestrial
carbon uptake averaged over 2000–2009 (Figure 7a) is about 0.25 GtC/year smaller than the best estimate
provided by IPCC (2013). This can be partially attributed to the fact that nitrogen deposition is not taken into
account. Simulated uncertainties in terrestrial uptake are also smaller than those suggested by IPCC (2013).
Ensemble mean carbon uptake by the ocean (Figure 6b) agrees very well with data from the Global Carbon
Project (Le Quere et al., 2016). However, the range on oceanic carbon obtained in our simulations is slightly
shifted toward high values compare to IPCC estimate (Figure 7b). Implied carbon emissions agree well with
historical estimates from global carbon project (Le Quéré et al., 2018) during the second half of the 20th
century (Figure 6c). In the first decade of the 21st century, implied MESM emissions are 0.2 GtC/year smaller
than estimated by Le Quéré et al. (2018) (Figure 7c). At the same time, estimates of the airborne fraction of
carbon emissions agree well with results of the CMIP5 model reported by Jones et al. (2013). Mean value of
the airborne fraction in the MESM ensemble is 0.5 with a 90% probability range of 0.46–0.53. Mean value
for the CMIP5 models is 0.52 with 70% of the model estimates (9 of 13) falling in the 0.45–0.55 range.

3.3. Present-Day Climate
3.3.1. Meteorological Variables
In this section, we compare annual mean data from our simulations averaged over the 1991–2010 period
with available observations and results from CMIP5 (Taylor et al., 2012) simulations. While estimating

Figure 10. Month versus latitude profiles of land-only precipitation (mm/day) given by observations from the GPCP (upper left); MESM (upper right), as well as two
simulations from the CMIP5 (lower panels). In each of the model-result panels, the correlation of its month versus latitude profile to that of GPCP is given.
The CMIP5 results show two models that were found to have the highest (lower left) and lowest (lower right) pattern correlation with the GPCP observations.
GPCP = Global Precipitation Climatology Project; MESM = MIT Earth System Model of intermediate complexity; MIT = Massachusetts Institute of Technology;
CMIP5 = Coupled Model Intercomparison Project Phase 5.
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changes in global mean temperature and precipitation really well (Figure 4), the MESM simulations have
some difficulties matching the observed zonal distributions for present-day climate. The MESM estimates
somewhat lower temperature in the Southern Hemisphere and noticeably higher temperature in the
midlatitudes in the Northern Hemisphere (Figure 8a). The MESM also overestimates precipitation in the
descending branch of mean meridional circulation in the Northern Hemisphere and underestimates
precipitation in the midlatitude storm track regions (Figure 8b), which shows the limitations of using a
zonal-mean atmosphere model. The MESM realistically simulates the general characteristics of both
surface latent and sensible heat fluxes (Figures 8c and 8d) and their latitudinal distributions fit within the
range of the CMIP5 state-of-the-art climate models except over a few latitude bands, specifically 20°S–
equator and 20°N–35°N for latent heat flux and 90°S–80°S and 65°–75°N for sensible heat flux. Latitude
height cross sections of annual mean temperature, specific humidity, and relative humidity are shown in
Figure 9. The MESM is able to reproduce the overall latitudinal and vertical distributions of temperature
and humidity generally well despite a cold bias in the polar regions, the maximum specific humidity in the
equatorial regions not extending into the upper troposphere and high relative humidity values, especially
in the midlatitudes and polar regions.
3.3.2. Terrestrial Water Cycles
Global precipitation over land constitutes a substantial segment of the terrestrial water cycle and strongly
influences the carbon and nutrient cycles tracked by TEM. As such, we comparedMESM to the observationally
based estimate from the GPCP (Adler et al., 2003; 2012). We find that the MESM estimate of land-only preci-
pitation depicts the key seasonal and zonal attributes to a level that is very comparable with the CMIP5 mod-
els (Figure 10). At the global scale (Table 3), the MESM is closely aligned with the GPCP estimate and also is
centrally placed across the estimates of the CMIP5 models (equally biased high and low across each of these
climate models). Some notable discrepancies are that land-only precipitation is biased low during the NH
summertime midlatitude regions. This deficiency in summertime precipitation contributes correspondingly
to slightly lower evapotranspiration rates compared to most of the CMIP5 models (Figure 11 and Table 3),

Table 3
Summary Statistics for Simulated Fluxes in the Land Water/Energy Cycles

Evaluation with GPCP observed precipitation
(1981–2005) Comparison to MESM simulation (1981–2005)

Model Correlation Bias

Evaporation Runoff

Correlation Bias Correlation Bias

MESM 0.91 �0.04
CMIP5 Average 0.94 0.03 0.89 0.57 0.70 0.20
ACCESS1–3 0.95 0.48 0.85 0.69 N/A
CanESM2 0.94 �0.50 0.90 �0.02 0.62 �0.43
CCSM4 0.95 0.32 0.90 0.69 0.72 �0.19
CNRM-CM5–2 0.93 0.10 0.90 0.50 0.58 �0.14
CSIRO-Mk3–6-0 0.91 �0.27 0.86 0.01 0.70 �0.24
FGOALS-g2 0.94 0.07 0.87 0.49 0.73 �0.07
GFDL-ESM 0.96 0.32 0.90 0.61 0.77 �0.15
GISS-E2-H 0.89 0.47 0.83 0.73 0.66 �0.35
HadGEM2/CM3 0.93 0.01 0.85 0.48 0.57 �0.21
IPSL-CM5A-MR 0.90 �0.29 0.84 0.27 0.67 �0.19
MIROC5 0.95 0.54 0.86 0.73 0.72 �0.07
MPI-ESM-MR 0.90 �0.25 0.81 0.23 0.50 �0.45
MRI-CGCM3 0.91 0.11 0.83 0.35 0.73 �0.03
NorESM1-ME 0.95 0.20 0.87 0.74 0.70 �0.28

Note. Shown are correlations and bias (mm/day) of precipitation, evapotranspiration, and runoff. The correlations are
performed on the month versus latitude projections shown and discussed. For precipitation, all model simulations are
judged against the GPCP observations. For evaporation and runoff, these metrics are performed for the CMIP5 models
against the MESM result in order to convey the degree of consistency between the more complex CMIP models to
MESM’s intermediate complexity. Note that the ACCESS1–3 outputs of total runoff were not made publicly available
(N/A). Sign convention for bias is positive when CMIP5 value exceeds MESM or model exceeds observation. GPCP =
Global Precipitation Climatology Project; MESM = = MIT Earth System Model of intermediate complexity; CMIP5 =
Coupled Model Intercomparison Project Phase 5; CCSM = Community Climate System Model; GISS = Goddard
Institute for Space Studies.

10.1029/2018MS001277Journal of Advances in Modeling Earth Systems

SOKOLOV ET AL. 1776



although MESM is still within the range of CMIP models. For total runoff, MESM produces more runoff on the
global scale than the CMIP5 models (Table 3), although the predominant seasonal and latitudinal features are
preserved (Figure 12). As previously discussed in section 2.4, the modification of the soil-infiltration scheme
(i.e., removal of enhanced hydraulic conductivity under excessive dry soil conditions) was of considerable
benefit to the performance of evapotanspiration and runoff rates shown here.
3.3.3. Ecosystem Productivity and Natural Emissions of Trace Gases
Net Ecosystem Productivity. The results from the key water and energy fluxes of the land system provide a first-
order expectation to the climatological behavior of the terrestrial carbon cycle within MESM. As in previous
evaluations of the land systems implemented within this Earth-system model framework (Schlosser et al.,
2007), we focus on the net exchange of carbon between the land and the atmosphere, which represents a
key coupling. Further, the TEM model is commonly used in a stand-alone configuration to simulate historical
conditions and thus driven by observed atmospheric conditions (e.g., Zhu et al., 2011), and previous evalua-
tions have used this as a baseline for TEM reduced-form configuration with the MESM framework (e.g.,
Schlosser et al., 2007). We extend this approach by considering the NEP of TEM on a month versus latitude
projection (Figure 13). We find that the implementation of TEM within the MESM structure preserves all of
the salient seasonal and latitudinal attributes as seen in previous evaluations (Figure 19 of Schlosser et al.,
2007), and the characteristics of these patterns are consistent and corroborated by recent and detailed simu-
lations with TEM in stand-alone configuration (e.g., Chen et al., 2011; Lu et al., 2015; Zhu & Zhuang, 2013).
Overall, terrestrial ecosystems represented a net uptake of carbon both globally as well as across all latitudes
through our historical period of evaluation (1981–2005). In addition, the strongest (annual) sinks of carbon
that are found to be across the boreal latitude bands are composed of extensive forest cover. An additional
smaller relative peak is also seen across the southern tropical latitudes. Although these areas are strong sinks
—they carry a distinct seasonality and serve as considerable carbon sources during the late Fall through early
Spring months.

Methane Emissions. In keeping with our overall approach to evaluate the performance of the land biogeo-
chemical fluxes, we have evaluated the methane emissions against previous evaluations of models that

Figure 11. Month versus latitude profiles of evapotranspiration (mm/day) from the MESM (upper right panel), as well as two simulations from the CMIP5
(lower panels). The CMIP5 results show the two models with the highest (lower left) and lowest (lower right) pattern correlation with MESM. Also shown is the
simulation from CCSM4 (upper left) panel. CCSM4 and the GLS component of MESM both use the CLM for the calculation of the land-surface water and energy
budgets. MESM = MIT Earth System Model of intermediate complexity; MIT = Massachusetts Institute of Technology; CMIP5 = Coupled Model Intercomparison
Project Phase 5; CCSM = Community Climate System Model; CLM = community land model.
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Figure 12. Month versus latitude profiles of runoff (mm/day) given by observations from the MESM (upper right panel), as
well as two simulations from the CMIP5 (lower panels). The CMIP5 results show the twomodels with the highest (lower left)
and lowest (lower right) pattern correlation with MESM. Also shown is the simulation from CCSM4 (upper left) panel.
CCSM4 and the GLS component of MESM both use the CLM for the calculation of the land-surface water and energy
budgets. MESM =MIT Earth SystemModel of intermediate complexity; MIT = Massachusetts Institute of Technology; CMIP5
= Coupled Model Intercomparison Project Phase 5; CCSM = Community Climate System Model; CLM = community land
model; GLS = Global Land System.

Figure 13. Simulations of net ecosystem productivity by the Massachusetts Institute of Technology Earth System Model
within the Integrated Global System Model framework. Top panel displays the month versus latitude results averaged
over 1981–2005, and the bottom panel shows the corresponding annual fluxes by latitude. Units are in 109 kg·C/month and
109 kg·C/year, respectively. Shown also in the bottom panel with the shaded red area is the multimodel range from five of
the Coupled Model Intercomparison Project Phase 5 Earth system models that provided data from historical simulations
that cover the evaluation period.
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contain similar core parameterization recipes but also a recent multimodel assessment (the WETCHIMP study
of Melton et al., 2013) with distinct structural differences in overall design as well as implementation of the
participating models. In order to provide the most consistent comparative evaluation in this regard, we
focus on the historical period of 1993–2004. We find that for nearly all latitudes, the annual emission of
methane from MESM falls within the range of the multimodel assessment (Figure 14). The most notable
exception is found at boreal latitudes with the MESM estimate well above the upper bound of the
WETCHIMP range. However, one notable feature of this multimodel assessment is that it did not contain a
model participant with TEM as its core ecosystem model that MESM employs. Looking at model-based
studies that have used TEM as the core ecosystem model (e.g., Zhuang et al., 2004) as well as an
observation-based artificial neural network method (Zhu et al., 2013) to estimate total methane emissions in
boreal latitudes (north of 45°N), they indicate values on the order of 44 to 54 Tg CH4/year. The methane
emission rates from the MESM historical simulation provide a more consistent latitude profile of emission
across the boreal zone in this regard. Given that the higher boreal emission rates are more closely aligned to
the observation-based result, we are confident that the MESM estimate is providing not only a result that is
representative of the core ecosystem model behavior (i.e., TEM) but also a value that is empirically defensible.

Figure 14. Simulations of emissions of methane by the MESM within the IGSM framework. Top panel displays the month
versus latitude results (units in Tg·CH4/month) averaged over 1993–2004, and the bottom panel shows the corresponding
annual fluxes by latitude (units in Tg·CH4/year). Shown also in the bottom panel with the shaded red area is the multimodel
range from the results of WETCHIMP with. More recent studies (not shown in figure) indicate that the excess in emissions
from MESM at high northern latitudes is credible (see corresponding text for details). MESM = MIT Earth System Model
of intermediate complexity; MIT = Massachusetts Institute of Technology; IGSM = Integrated Global System Model.

Figure 15. Simulations of soil emissions of nitrous oxide by the CLMCN-N2O model (Saikawa et al., 2013) forced by two dif-
ferentmeteorological data sets (CAS and GMFD). Shown aremonth versus latitude results averaged over 1981–2005. Units are
in 108 kg·N2O/month. CLMCN-N2O = Community Land Model with Carbon and Nitrogen coupled to a N2O emissions model.
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Nitrous Oxide. In a similar vein to our evaluation of NEP, we find that the MESM historical simulation and a
standalone version of CLMCN coupled to a N2O emissions model (CLMCN-N2O, Saikawa et al., 2013) share
common features but also exhibit distinct differences. It is important, however, to note that this model-to-
model comparison cannot provide any judgment on the fidelity or veracity of either model. Rather, this is
an evaluation of the sensitivity to the configuration and application of the soil N2O emissions module (a var-
iant of the DNDCmodel) within and Earth systemmodel framework. As such, both of the models exhibit con-
sistent latitudinal locations of relative maximum emission rates (Figures 15 and 16)—which occur along the
equator as well as during the summer season in both the northern and southern subtropical bands.
Consistent across all these simulations is that the tropics provide the strongest annual emission source.
While both models provide an additional source of emissions across the mid and higher northern latitude
bands, a distinct difference is seen in the seasonality of this feature. The CLMCN-N2Omodel exhibits a distinct

summertime peak in emissions that is coincident and widespread across
the middle and into higher latitudes. In the MESM zonal configuration—
the extent and summer timing of the peak is aligned with the CLMCN-
N2O estimate between 45° and 75°N; however, for latitudes 25°–45°N
there is an earlier onset and terminus of this feature. Through the course
of a number of variants and sensitivity simulations with the IGSM, we have
identified that the most likely culprit to this behavior lies within the MESM
simulation of land precipitation. When compared to an observationally
based estimate (GPCP), we find that the MESM estimate of precipitation
is biased low during the summertime across the corresponding latitude
bands (Figure 10). In conjunction with low evapotranspiration rates during
the spring (not shown)—soil moisture stores become elevated at these
latitudes and trigger the soil anaerobic conditions necessary for denitrifi-
cation, and thus leads to the earlier emissions peak. However, by the
beginning of the summer—elevated evapotranspiration levels combined
with a precipitation deficit support dry soils and the emissions processes
in MESM become dormant. Nevertheless, we have made salient progress
from our earlier implementation (Schlosser et al., 2007) in providing a
more consistent depiction of soil N2O emissions with a reduced form of

Figure 16. Simulations of soil emissions of nitrous oxide by the Massachusetts Institute of Technology Earth-SystemModel
within the Integrated Global System Model framework. The top panel shows month versus latitude results averaged
over 1981–2005 with units in 108 kg·N2O/month. The bottom panel provides the annual emission rates (108 kg·N2O/year)
for the corresponding latitudes of the top panel. Shown also in the bottom panel with the shaded red area is a range
based on the results from Saikawa et al. (2013) and Hashimoto (2012).

Figure 17. Time evolutions of total mass (109 kg) for inert ozone-like and
tracer with dry deposition in simulations with January emissions with
Massachusetts Institute of Technology Earth-System Model (solid lines) and
GEOS-Chem (dashed lines). GEOS= Goddard Earth Observing System.
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the model compared to its more detailed counterpart. The scientific community has recently recognized key
areas for improvement (Butterbach-Bahl et al., 2013) and will continue to make necessary strides in the
detailed modeling of nitrous oxide emissions and verification studies. As such, this strategy will continue
to be a critical element of our model development, particularly with regard to the N2O emissions component.

3.4. Emissions-Driven Projections of Future Climate

In the simulations discussed below, the MESM was forced by anthropogenic emissions calculated by the
EPPA model, including carbon emissions associated with land use. MESM also takes into account natural
emissions of CH4 and N2O calculated by NEM.

Wang et al. (1998) describe a tropospheric chemistry and transport scheme for a chemical tracer used in the
MESM. Tracer transport by eddies, which cannot be explicitly simulated by zonal atmospheric model, is para-
meterized similar to moisture transport. In the framework of the Aviation Climate Change Research Initiative
(ACCRI, Brasseur et al., 2016), the MESM was used in a tracer transport comparison exercise. In these simula-
tions, the ACCRI 2006 fuel burn inventory (Barrett et al., 2010) above 8 km were used as a proxy for tracer
emissions. Simulations were carried out for 6 months starting in January and July with tracers being

Figure 18. Latitude-pressure distributions of ozone-like tracer concentration (ppbm) in simulations with January emissions
for first (top), third (middle), and sixth (bottom) months of simulation. (left column) Results obtained with the MIT MESM.
(right column) Result from GEOS-Chem. GEOS= Goddard Earth Observing System.
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released in the atmosphere during the first month only. Below we show comparisons between results
obtained in simulations with the MESM and GEOS-Chem models for three different types of tracers: an
inert tracer (no losses), a tropospheric ozone-like tracer with a prescribed 21-day e-folding lifetime, and a
tracer with a dry deposition removal process. Results are shown only for simulations that started in
January, because results of simulations that started in July look very similar. The total mass of the tracer
with dry deposition decreases slightly faster in simulations with MESM than with GEOS-Chem, while the
changes for the other two tracers are practically identical in both model simulations (Figure 17). Figure 18
shows latitude- pressure distributions for the ozone-like tracer for the first, third, and sixth months of the
simulations. Because the total mass of the tracer decreases exponentially, data for the third and sixth
months were multiplied by factors of 10 and 104, respectively. In general, the study of the impact of
aviation emissions on atmospheric chemical composition and climate showed that MESM results lie well
within the envelope of the more complex 3-D chemistry-climate models (Olsen et al., 2013).

Our simulations with interactive chemistry start in year 2006 as a continuation of a historical simulation, and
future projections are then usually given to 2100. Here, however, wewill concentrate on short-term simulations
(2006–2015) when model mixing ratios using model emissions can be compared with observed mixing ratios.

As can be seen, the MESM simulates global concentrations of the three major long-lived greenhouse gases
rather well (Figure 19). Figure 20 plots tropospheric mixing ratios for some climate-relevant species (O3,
CH4, CO, SO2, NO, and NO2) as well as the very short-lived OH species from the MESM output and the zonal
average for the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) archived
version of the CESM CAM-Chem, with CAM version 3.5 (available at http://browse.ceda.ac.uk/browse/badc/
accmip). The CESM output has 26 vertical levels, which have been regridded to match the 11-level MESM
output in Figure 20. In general, the MESM results are comparable to the CESM data, with the vertical and lati-
tudinal distributions of O3, CH4, and OH in fairly close agreement. The MESM does not have the hemispheric
asymmetries for CO and NO2 that are shown in the CESM data, and the MESM vertical distribution of SO2

peaks at the third level, as a result of SO2 emissions being distributed evenly in the bottom two layers. In addi-
tion, in contrast to most chemistry models (including the CESM-CAM-Chem), MESM does not use prescribed
surface concentrations as low boundary conditions.

The radiative forcing and the simulated surface air temperature (not shown) are almost identical in historical
(concentration-driven) and emissions-driven simulations. In general, the simulated climates are very similar
during the overlapping period of the two simulations (2006–2010).

4. Conclusions

This paper describes the current version of the MIT Earth System Model. The MESM belongs to the class of
Earth system models of intermediate complexity, which occupy a place between simple conceptual models
and comprehensive global circulation models (Claussen et al., 2002). It provides a physical representation of
key climate processes and feedbacks, while remaining computationally efficient, and thus allowing for large

Figure 19. Observed (red) and projected (black) concentrations of CO2 (left), CH4 (middle), and N2O (right).
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Figure 20. Present-day simulated zonal output from the MESM (left) and zonally averaged output from the CESM
CAM-Chem, CAM version 3.5 archived data from the ACCMIP archive (right) for O3, CH4, CO, SO2, OH, and NO2. The CAM
data have been regridded to match the MESM levels, and only data below the tropopause (here defined as 150 ppbv O3) is
shown. MESM = MIT Earth System Model of intermediate complexity; MIT = Massachusetts Institute of Technology.
CESM CAM = Community Earth System Model, Community Atmosphere Model; ACCMIP = Atmospheric Chemistry and
Climate Model Intercomparison Project.
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ensemble of climate simulations to be conducted at significantly less cost than state-of-the-art climate mod-
els. The number of climate system components and their complexity are defined by the nature of studies for
which the model is intended to be used in. The MESM is designed for and has been used in two major types
of studies. First, the MESM has been used to evaluate the uncertainty in key parameters controlling the cli-
mate system response to changes in external forcing. Large ensembles of climate simulations are run under
historical concentrations of greenhouse gases and aerosols, while the relevant climate model parameters are
systematically varied (e.g., climate sensitivity, rate of ocean heat uptake, and strength of the net aerosol for-
cing). The simulated climate is then compared with available observations using optimal fingerprint diagnos-
tics to derive probability distributions of the parameters (Forest et al., 2002, 2008; Libardoni & Forest, 2011,
2013). Second, the MESM has been used to investigate the uncertainty in future climate projections arising
from the uncertainty in the climate system response to changes in external forcing and the uncertainty in
future human activity. This is done by running large ensemble of climate simulations with Latin hypercube
sampling of the key climate parameters from their probability distributions under various greenhouse gas
and aerosols emissions scenarios developed with the EPPA model (Sokolov et al., 2009; Webster et al., 2012).

Key model requirements to conduct such analysis are as follows: (i) the capability to vary key climate model
parameters over a wide range representative of our current knowledge of the climate system, (ii) computa-
tional efficiency in order to run large ensemble for robust uncertainty quantification, and (iii) the availability
of a comprehensive chemistry model to simulate the fate of various radiatively active chemical species and
their impact on the climate system. Since our studies showed that the rate of heat uptake in a three-
dimensional dynamical ocean general circulation model can only be changed over a rather narrow range
(Dutkiewicz et al., 2005; Sokolov et al., 2007), the version of MESM used in uncertainty studies incorporates
a simplified ADOM, in which the ocean heat uptake rate can be varied over a much wider range.
Computational efficiency, required to perform thousands of simulations, is achieved by using a zonally aver-
aged atmospheric model. Nonetheless, the MESM includes a rather comprehensive chemistry model, which
can simulate the interaction between different chemical species, such as an impact of changes in NOx emis-
sions on methane lifetime, and the interaction between climate and chemistry, such as an impact of changes
in surface ozone concentration on productivity of terrestrial ecosystem (Felzer et al., 2004, 2005). As a result,
the MESM can be used to evaluate the uncertainty in future climate projections associated with different
emission scenarios, accounting for complex interactions and feedbacks between atmospheric chemistry, car-
bon cycle, and climate.

While not originally designed for such purposes, the MESM has also been used for multicentennial climate
simulations, such as projections beyond 2300 to investigate longer-term commitment and irreversibility
(Zickfeld et al., 2013) or preindustrial portions of the last millennium to assess historical carbon-climate feed-
backs (Eby et al., 2013).

The MESM is primarily used to simulate changes in global mean climate variables. In spite of deficiencies in
simulated zonal distributions of different climate variables for present-day climate, it reasonably well simu-
lates zonal structure of climate change. In addition, the MESM has been combined with statistical climate
emulator techniques, such as pattern scaling (Monier et al., 2015; Schlosser et al., 2013), to compute regional
climate information that accounts not only for the uncertainty in the global climate system response and
human activity but also for the uncertainty in the regional patterns of climate change associated with different
climate models. For example, the MESM has been used to derive probabilistic distributions of changes in
temperature and precipitation over Northern Eurasia (Monier et al., 2013). Large ensembles of regional climate
simulations using the MESM were also used to investigate the risk of permafrost degradation and the
associated high-latitude methane emissions (Gao et al., 2013), to compute probabilistic projections of water
stress over a large portion of Asia (Fant et al., 2016), and to examine the climate change and economic growth
prospects for agriculture, road infrastructure, and hydropower generation in Malawi (Arndt et al., 2014).

Overall, the results presented in the paper show that, despite simplifications made in the model, the MESM
simulates rather well changes in observed climate since the middle of the 19th century as well as the main
features of present-day climate. The results of the simulations performed in emissions-driven model also
compare favorably with results obtained with comprehensive climate-chemistry models and available obser-
vations. Therefore, the MESM provide a valuable and efficient tool for climate change modeling, uncertainty
quantification, and climate risk analysis.
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Erratum

In the originally published version of this article, there was an error in the title, “Description and Evaluation of
the MESM” should have been published as “Description and Evaluation of the MIT Earth System Model
(MESM)”. The error has since been corrected and this version may be considered the authoritative version
of record.
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