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ABSTRACT
Since robots were first invented, robotic assembly has been an important area of research in both academic 
institutions and industry settings. The standard industry approach to robotic assembly lines utilizes fixed robotic 
arms and prioritizes speed and precision over customization. With a recent shift towards mobile multi-robot 
teams, researchers have developed a variety of approaches ranging from planning with uncertainty to swarm 
robotics. However, existing approaches to robotic assembly are either too rigid, with a deterministic planning 
approach, or do not take advantage of the opportunities available with multiple robots. If we are to push the 
boundaries of robotic assembly, then we need to make collaborative robots that can work together, without human 
intervention, to plan and build large structures that they could not complete alone. By developing teams of robots 
that can collaboratively work together to plan and build large structures, we could aid in disaster relief, enable 
construction in remote locations, and support the health of construction workers in hazardous environments. 

In this thesis, I take a first step towards this vision by developing a simple collaborative task wherein agents learn 
to work together to move rectilinear blocks. I define robotic collaboration as an emergent process that evolves 
as multiple agents, simulated or physical, learn to work together to achieve a common goal that they could not 
achieve in isolation. Rather than taking an explicit planning approach, I employ an area of research in artificial 
intelligence called reinforcement learning, where agents learn an optimal behavior to achieve a specific goal 
by receiving rewards or penalties for good and bad behavior, respectively. In this thesis, I defined a framework 
for training the agents and a goal for them to accomplish. I designed, programmed and built two iterations of 
physical robots. I developed numerous variations of simulation environments for both single and multiple agents, 
evaluated reinforcement learning algorithms and selected an approach, and established a method for transferring 
a trained policy to physical robots.
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I envision a future where an architect can design a building and send a 3D 

model or sketch1  to a group of mobile robots that self-organize to build 

directly from that model. As the robots start construction, the architect can 

observe the process, realize that she wants to make changes to the design, 

update the model, and resend to the robots. They would immediately 

switch to the new model and make any updates necessary. The robots 

could be a diverse group with many different functions and skills between 

them. Some could lay rebar, while others could pour and print concrete. 

Others may climb walls to detail hard to reach places. They would have 

different strengths and have to communicate and negotiate roles within 

the group. In essence, the robots would work together to build the physical 

manifestation of the 3D model, responding to changes in environment, 

updates in the model, or surprises in the material. They would have the 

intelligence to solve complex problems, the social skills to negotiate and 

communicate, and the physical abilities to build. 

From the first industrial robotic arm to Marvin Minsky’s Tentacle Arm, 

robotic assembly has been a focus of research since the beginning of 

robotics in early 1960s (“Real-World Machines,” 1968; Stone, 2004). 

In practice today, robots are often used for repetitive or dangerous tasks, 

such as assembly lines in the automotive industry. The setup for assembly 

lines is extremely time-consuming, requiring a highly skilled technicians 

to program and test the robots to achieve the high-precision necessary. By 

repeating the same task, the return on time invested is through speed and 

efficiency but is typically lacking in flexibility. In academia, some researchers 

have taken a distributed approach and built many small, cheap robots that 

can assemble a large structure faster than one could alone. Others have 

[ 1 ]  
When complete control is desired, the 

final structure could be determined 
by a 3D model. In other situations 
such as rebuilding after a disaster, 

the goal may be to build many 
shelters quickly but the specifics are 
not as important. Here, the robots 

could work with certain parameters 
(height, width, and enclosure 

parameters), the site-specific 
constraints, and material constraints 

to build an appropriate shelter.

CHAPTER 1

INTRODUCTION
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developed new methods of coordination between multi-robot teams. While 

these approaches make great strides forward, they are often too rigid, not 

allowing for variability in the environment or changes in material. Small 

changes could disrupt the entire process. If we are to push the boundaries 

of robotic assembly forward, then we need to make collaborative robots 

that can work together, without human intervention, to plan and build 

large structures that they could not complete alone. I argue for a flexible, 

collaborative, and interactive system that can adapt and learn over time. 

In order to have a discussion about collaborative robots, it is first important 

to define collaboration in terms of this thesis. There are certain terms that 

have many definitions and can mean something different to every person. 

Minsky (2007) described these terms as suitcase words, as they embody 

many different definitions all packed into a single word. Like consciousness 

and intelligence, I argue that collaboration is another suitcase word. 

While collaboration has been a focus of research in many disciplines, such as 

business, politics, and national security, there is no consensus on a general 

theory of collaboration. Some researchers have undertaken studies and 

attempted to define common metrics by which we can evaluate collaboration 

(Thomson, Perry, & Miller, 2007). Collaboration is an evolving process 

whereby parties with different viewpoints, backgrounds, or resources come 

together to achieve a goal, either shared or individual, going beyond the 

capabilities of a single party. Collaboration, cooperation and coordination 

are often confused because they are similar forms of interaction, but the 

cooperation and coordination are static structures that can be contained 

within collaboration. 

I define robotic collaboration as an emergent process wherein agents learn 

about each other and their environment through interacting and develop 

new rules and patterns of behavior enabling them accomplish something 

that they could not do alone. To take a first step towards this vision, I 

have developed a group of agents that learn how to collaborate and work 

together to move rectilinear blocks (Fig. 1). These aspects of collaboration 

and learning are the key differences from current methods in robotic 

assembly. By taking a collaborative approach to robotic assembly, I can 

define a strategy wherein the process will consistently be more robust, 
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flexible, and adaptive than coordinated interaction.

To do this, I prioritize the interaction between robots over physical hardware 

or complex formal designs. Rather than taking an explicit planning approach, 

I apply an area of research in artificial intelligence called reinforcement 

learning. Drawn from behavioral psychology, reinforcement learning is 

a machine learning approach where agents learn an optimal behavior to 

achieve a specific goal by receiving rewards or penalties for good and bad 

behavior, respectively. By altering the reward structure to be individual or 

collectively shared, I evoke different behaviors - for example competitive 

versus collaborative. 

The priority of this research is to develop robots that learn to collaborate to 

assemble something they could not complete alone. This is the first phase 

of a larger effort to advance robotic assembly towards utilizing autonomous 

collaborative robots. More specifically, I propose a multi-robot scalable 

system wherein robots can operate in dynamic environments and, in real-

time, evaluate their surroundings to adjust their next steps. 

In this thesis, I define a framework for training the agents2 and a goal for 

them to accomplish. Using this framework, I designed, programmed and 

built two iterations of physical robots. I developed numerous variations 

of simulation environments for both single and multiple agents, evaluated 

reinforcement learning algorithms and selected an approach, and established 

a method for transferring the trained policy to physical robots. 

By developing teams of robots that can collaboratively work together 

to plan and build large structures, we could aid in disaster relief, enable 

construction in remote locations, and support the health of construction 

workers in hazardous environments. Collaborative robots would have the 

ability to evaluate their surroundings, negotiate roles amongst themselves, 

communicate tasks, and pool their skills. This approach is scalable, robust, 

and adaptive to changes over time. In addition, this technology would 

contribute greatly to the architecture, engineering, and construction (AEC) 

industry in speed and customization. 

For example, It does not take much imagination to picture a city recently 

ravaged by a hurricane. It can take years to rebuild and sometimes months 

[ 2 ]  
In this thesis, agents refers to both 

simulated agents and physical 
robotic agents. I explain the 

terminology between agents, robots 
and robotic agents in Section 4.1.   

Figure 1. 
Three rectilinear blocks that the 

agents learn to move together. 
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to even clear the debris. What if we could deliver a team of mobile robots 

that could work together to clear debris and rebuild in a particular site? 

Rather than making one or two huge expensive robots, we could send a 

dozen smaller robots that could combine their abilities to achieve more 

than a single robot. This would lead to a more flexible system, where robots 

would not be limited to their own individual abilities, but those pooled as 

a group. Other applications may include construction in remote locations 

such as military deployment, hard to reach sites, or even Mars.

My research is developed in six primary stages: (1) define the toy task; (2) 

build the robots and the puzzle to assemble; (3) develop the 2D simulation 

of a single agent and single block; (4) expand simulation to include multiple 

agents; (5) move to a decentralized approach with each agent learning 

separately; (6) build framework for learning transfer from 2D simulation 

to physical robots in multi-agent collaborative environment.

Following this introduction, I cover the following topics. In Chapter 2, I 

dive into the background information of three important areas of research 

relevant to this thesis: collaboration, robotic assembly, and reinforcement 

learning. In Chapter 3, I define a new theory of robotic collaboration, 

grounded on research presented in Chapter 2. 

In Chapter 4, I outline my approach to building collaborative agents. I define 

a toy task for evoking collaborative behavior. I develop an environment, 

in both the simulated and real world, for training agents to move blocks. 

I present my process of testing multiple physics engines and simulation 

environments, iterating through a variety of environments with the number 

of agents ranging from zero to ten, and evaluating different reinforcement 

learning approaches. I build a framework for simulation-to-real-world 

transfer. Lastly, I review and evaluate my research, highlighting the successes, 

limitations, and challenges.

In Chapter 5, I present the primary contributions of this research, which 

include: developing a new theory of robotic collaboration, implementing 

novel collaborative behavior between agents, developing and fabricating of 

a team of multiple robots, building a framework for transferring learning 

from simulation to real world, presenting an evaluation of existing 
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coordinated interaction between robots, and evaluating reinforcement 

learning algorithms for methods of collaborative assemblies with multi-

robot teams. In addition, I outline future work. 
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In this chapter, I outline the three main areas of research relevant to 

this thesis: collaborative behavior, robotic assembly, and reinforcement 

learning. In the first section, I give an overview of collaboration from a 

variety of viewpoints and highlight the differences between collaboration, 

coordination, and cooperation. In the second section, I present relevant 

research on robotic assembly and multi-agent environments including 

robotic assembly lines, agent-based systems, swarm robotics, and multi-

robot coordination. Lastly, I present a general outline of reinforcement 

learning, a subset of machine learning and argue why this approach is 

relevant.3 

2.1 COLLABORATION

Over the past few decades, collaboration has received a lot of attention 

from researchers in fields ranging from microeconomics and business to 

politics and behavioral science. However, there is still a lack of consensus 

on a cohesive definition and overarching theory of collaboration (Gray 

& Wood, 1991; Thomson, Perry, & Miller, 2007). Collaboration can be 

understood at three different levels: interpersonal or team-based, intra-

organizational, and inter-organizational (Colbry, Hurwitz, & Adair, 2014). 

The most relevant theory on collaboration comes from Gray who defined 

collaboration as “a process through which parties who see different aspects 

of a problem can constructively explore their differences and search for 

solutions that go beyond their own limited vision of what is possible” (Gray, 

1989, p. 5). This description can be used to describe collaboration from 

the scale of individuals to organizations or even governments. It contains a 

number of important points worth unpacking. The most important point 

[ 3 ]  
This thesis only includes a general 

overview of reinforcement learning 
(RL) for purposes of understanding 

the research. For readers interested in 
learning more, I provided detailed 

resources in the appendix. 

CHAPTER 2

BACKGROUND

Figure 2. 
(Opposite) This thesis consists of the 

intersection of three areas of research: 
collaboration, robotic assembly, and 

learning. 
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is that collaboration is a process–not something that is fixed or static. 

Gray expands on this point by describing it as “an emergent process rather 

than a prescribed state of organization,” wherein one can begin to understand 

the origins and evolution of the organization over time (Gray, 1989, p. 

15). In addition, collaboration is an active process where both parties are 

participating, learning about each other, and searching for a mutually 

beneficial solution. There is always a phase of exploration, especially at 

beginning of establishing a collaborative relationship, where each party 

needs to learn about the other’s capabilities, motivations, constraints, and 

final goals.  Through this exploration it is possible to establish a framework 

for the relationship, or alliance, but it is important to remember that this 

framework is fluid and will often adjust over time. 

Another key point in collaboration is that by coming together, the 

collaborative alliance can produce a result that is greater than one could 

alone. This can often be through vision, physical resources, or abilities. 

Because collaboration is voluntary and both parties can leave at any time, 

there is typically a mutually beneficial goal that brings groups together, 

something they could not achieve alone. 

COLLABORATION: PRECONDITIONS, PROCESS AND OUTCOMES

In “Collaborative Alliances: Moving From Practice to Theory,” Gray and 

Wood (1991) outline six theories of collaboration by evaluating nine 

research articles studying collaboration in a variety of settings, including 

resource dependence theory, social ecology theory, negotiated order theory, 

etc. The vast range of applications and settings for collaborative alliances 

makes it difficult for a single theory to emerge. Through their analysis, Gray 

and Wood (1991) defined three primary components of collaboration–

preconditions, process, and outcomes–yet they note that the process is the 

least studied area. 

The preconditions are the factors that make a collaboration possible. 

These are the motivations that each party may have and the environmental 

conditions that facilitated to alliance to form. The players may have a 

shared vision, or they may have different goals but can only achieve their 

individual goals by working together. 
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Next is the process by which collaboration happens. In their synthesis of 

theories, Wood and Gray (1991) noted that only three of the six theories 

addressed process and argue that more research is needed to understand 

what contributes to the active collaborative process. Those theories that 

address the collaborative process view it not as a stagnant process or a fixed 

structure, but as a phenomenon that is dynamic and ever evolving. 

The last component of collaboration is the outcome, which includes the 

metrics by which groups can evaluate the success of the collaboration. 

To evaluate these outcomes, researchers asked questions regarding which 

problems were solved and to whom did they benefit, if the alliance transform 

through the process and did it survive, and if participants agree on shared 

norms (Gray & Wood, 1991). 

Noting the lack of empirical data, Thomson et al. (2007) undertook 

a research effort to understand and measure the collaborative process. 

They describe five primary dimensions of collaboration: governance, 

administration, mutuality, norms and organizational autonomy (Thomson 

et al., 2007). Governance and administration share similarities in that they 

are about structural organization. Governance applies to the process of all 

parties jointly defining the rules and structures that will guide the future 

of their relationship, while administration is more about management, 

communication, implementation and coordination. Mutuality refers to the 

interdependence that both parties share; each benefit from their relationship, 

but not necessarily in the same way. Norms are mostly about the trust that 

both parties must develop for one another. As they each contribute to the 

collaboration, the trust can grow. Lastly, organizational autonomy refers 

to the fact that each party comes to the table voluntarily and they may 

have competing interests between their interest of their alliance and the 

self-interest of their respective organizations. 

COLLABORATION, COOPERATION AND COORDINATION

Now that I have established a general understanding of collaboration, it is 

important to clarify how collaboration is distinct from coordination and 

cooperation; each is a distinct and separate concept of interaction (Gray 

& Wood, 1991; Rogers & Whetten, 1982). As Gray and others undertook 
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an effort to define collaboration in the late 1980s and 1990s, Rogers and 

Whetten (1982) sought to organize and evaluate the existing research on 

coordination stemming back to the 1950s. Inter-organizational coordination 

is a “process whereby two or more organizations create and/or use existing 

decision rules that have been established to deal collectively with their 

shared task environment” (Rogers & Whetten, 1982, p. 12). 	

In clarifying the differences between cooperation and coordination, Rogers 

and Whetten evaluated the two theories on the following five axes: rules 

defined, goals emphasized, linkages between parties, resources dedicated, 

and level of autonomy maintained. In Table 1, I include the five categories 

as listed in Rogers & Whetten (1982, p. 13) and their descriptions for 

cooperation and coordination with an additional column for collaboration. 

Cooperation (Table 1, Col. B) is the least structured of the three methods 

of interaction. It requires a significant amount of trust as there are no 

formal rules for the relationship, but there is also less commitment and 

risk involved. There are typically no formal linkages between parties, either 

horizontally or vertically in structure. Each party has their own goals–they 

may commit fewer resources than coordination and do not abandon any 

autonomy in their ability to make decisions (Rogers & Whetten, 1982). 

Coordination (Table 1, Col. C) is the most structured and formal of the 

three methods of interaction. It employs specific rules for shared goals and 

structured linkages between organizations as the relationships can grow 

complex to avoid inefficiency. As the relationship, linkages and interactions 

grow in complexity, it may be likely that the organizations have to relinquish 

some aspects of their full autonomy. In addition, coordination is likely to 

require high ranking personal in order to make decisions quickly and a 

significant amount of resources (Rogers & Whetten, 1982). 

In collaboration, (Table 1, Col. D) all parties either maintain full autonomy 

or, in special cases, agree as a group to give certain aspects of their autonomy 

to the alliance as a whole (Wood & Gray, 1991). In contrast to cooperation, 

collaboration does mandate rules to guide the process, but all parties come 

to the table without rules in place and must jointly and explicitly decide 

what those rules are (Thomson et al., 2007; Wood & Gray, 1991). Groups 
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can either have shared goals or different goals, but may have complementary 

resources that make a collaboration mutually beneficial (Thomson et al., 

2007; Wood & Gray, 1991). 

It is important to keep these definitions of cooperation, coordination, and 

collaboration in mind throughout the rest of this thesis. The most important 

axes are the formal structure, level of autonomy maintained, and the goals 

as shared or individual (Fig 2). To summarize, in cooperation, parties work 

together to achieve separate goals with few rules guiding their relationship 

and maintaining their individual autonomy. In coordination, parties work 

together with formal rules to achieve a common goal, relinquishing a 

significant amount of autonomy. Lastly, in collaboration, parties work 

together to achieve individual and shared goals. They jointly decide on 

rules that guide their interaction and the maintain a significant amount of 

autonomy. An significant aspect of collaboration is that by coming together, 

the parties are able to achieve more together than alone. The distinction 

between the three theories provides a framework for understanding the 

different approaches to robotic assembly. 

In the following section, I describe a number of techniques for multi-

robot environments. The majority of researchers describe their multi-

robot environments as cooperative or coordinated, while a couple claim 

[A] Criteria*

Rules and formality

Goals and activities 
emphasized

Implications for vertical/
horizontal linkages

Personal resources involved

Threat to autonomy

[B] Cooperation*

No formal rules

Individual organization’s 
goals and activities

None, only domain 
agreements

Relatively few–lower 
ranking members

Little threat

[C] Coordination*

Formal rules

Joint goals and activities

Vertical or horizontal 
linkages can be affected

More resources involved –
higher ranking members

More threat to autonomy

[D] Collaboration

Jointly define formal or 
informal rules

Both shared and individual 
goals and interests

Typically horizontal 
linkages between 
organizations 

More resources involved –
higher ranking members

Maintain autonomy, but 
can be conflicted between 
organizational self-interest 
& collective interest

Table 1.
This table outlines the primary 
difference between cooperation, 

coordination and collaboration. The 
columns labeled with an asterisk (*) 

are taken from Rogers & Whetten 
(1982) while the third column is 
completed by compiling research 
from Wood & Gray (1989) and 

Thomson et al.(2007). 
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to be collaborative. I present an argument for why none of them are truly 

collaborative, and why collaboration is vital in advancing autonomous 

multi-robot assembly. 

2.2 ROBOTIC ASSEMBLY

While automated devices powered by water originated in 3000 B.C. with 

the Egyptians, the first modern robot was not invented until the 1950s 

(Hall, 1985). This history of robots has deep roots in both academic 

research and industrial applications. After inventing the first modern-day 

robot in 1954, George Devol was joined by Joseph Engelberger to develop 

the first industrial servo-controlled robot, Unimate (Stone, 2004). GM 

purchased the first Unimate in 1961, and from there robotics began to play 

a huge role in industry settings taking over tasks that were too dangerous 

or repetitive, as well as assembly of automobiles, computers, motors, and 

even robots (Hall, 1985). 

Concurrent with industry, research labs were instrumental in advancing 

robotic research. By 1968, Marvin Minsky had developed the Tentacle Arm 

which used vision to stack blocks of varying sizes (“Real-World Machines,” 

1968). Stanford Research Institute (SRI) quickly followed with the Stanford 

arm in 1969 and developed Shakey in 1972 as the first mobile robot capable 

of reasoning about and navigating its surroundings (Stone, 2004). 

MICRO-WORLDS + BLOCKS WORLD 

The idea of working in a simplified world of blocks has strong roots at the 

Massachusetts Institute of Technology (MIT). In 1970, Minsky and Papert 

sent out an internal MIT memo describing micro-worlds, a simplified and 

“fairyland” environment, as a new focus of research arguing that it allows 

them to focus on important topics without the challenges of the realities 

in the physical world (Minsky & Papert, 1970). Among the micro-worlds 

is the “blocks world,” used as a robotics environment and a children’s 

story environment (Minsky & Papert, 1971). Patrick Winston (1970) 

developed a program that could learn to recognize block configurations 

by being presented examples, near-misses, and non-examples. Separately, 

Terry Winograd (1971) implemented the blocks world for his program 

SHRDLU, whereby human users place requests to move blocks using 

Figure 3. 
Diagram mapping cooperation, 
collaboration and coordination 
along two axes (autonomy and 

formal structure). In cooperation, 
parties work towards individual 

goals, while in coordination 
parties work towards shard goals. 

Collaboration can include both 
shared and individual goals.  

collaboration

cooperation

coordination

formal structure

au
to

no
m

y
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natural language.  

Drawing from this foundation of micro-worlds, I developed a toy problem 

within my own simulated “blocks world.” While this is a simplified problem 

using blocks, it is intended to simulate a simple physical task in the real 

world for eventual transfer and not exist solely in the “fairyland” realm. In 

Chapter 4, I explain my process of defining and building a blocks-based  

environment. As this thesis is about collaboration between agents, I focus 

the remainder of this section on approaches that utilize two or more agents, 

including agent-based modeling, distributed swarm robotics, and multi-

robot coordination. 

AGENT-BASED MODELING

Agent based modeling (ABM) is a popular approach for simulating 

complex systems and identifying emergent, bottom-up patterns, especially 

in political, social, and economic sciences (Bonabeau, 2002). Examples 

of applications include social interaction, traffic flow (automobile and 

pedestrians), market simulation, and diffusion, to name a few (Bonabeau, 

2002; Chen, 2012; Macal & North, 2005). While there is significant 

debate about what constitutes an agent, there is agreement that agents 

are independent, discrete, autonomous, and interact in an environment 

with other agents (Bonabeau, 2002; Macal & North, 2005). The scale of 

ABM tends to vary from small simulations capable of handling dozens to 

hundreds of agents to larger simulations modeling thousands to millions 

of agents (Macal & North, 2005).  Based on this research, I classify ABM 

as coordinated interaction because agents act based on fixed rules that 

guide their behavior. 

There is some confusion about the differences between ABM and multi-

agent systems (MAS). While some recognize ABM and MAS as the 

same approach (Chen, 2012), Niazi and Hussain (2011) performed a 

scientometric survey4  of over a thousand articles covering the concept 

of “agents,” arguing that they are distinct but similar domains. MAS are 

more associated with artificial intelligence and robotics, while ABM is 

often applied to the social, biological, and environmental sciences (Niazi 

& Hussain, 2011). 

[ 4 ]  
Scientometrics is “the quantitative 
study of scientific communication” 

(Niazi & Hussain, 2011, p. 4)
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While this thesis involves agents and emergent behavior, it is situated more 

in the realm of MAS than in ABM. As discussed above, ABM focuses 

on emergent patterns at a scale of interaction (dozens to millions) much 

larger than the scope of this thesis (two to four). In addition, ABM is more 

associated with simulating a complex system of interaction between many 

agents in order to understand more about the system or predict implications 

of a decision. As a MAS, this thesis employs methods of artificial intelligence 

to engineer emergent behavior. 

DISTRIBUTED SWARM ROBOTICS

With early roots in agent-based systems (Macal & North, 2005), swarm 

robotics is a decentralized and distributed approach to robotic assembly. 

Here, researchers utilize swarm robotics to assemble blocks or building 

components into larger structures. Swarm robotics is “a field of multi-

robotics in which large number of robots are coordinated in a distributed 

and decentralised way” (Navarro & Matia, 2012). This strategy completely 

eradicates any restrictions on the build volume because the work is split 

between many autonomous mobile robots. 

In the project, TERMES, Peterson, Nagpal, and Werfel (2011) created 

climbing robots that could stack blocks to build specified structures. As 

part of an effort to move towards autonomous on-site robotic construction, 

Melenbrink, Kassabian, Menges, and Werfel (2017) developed a simulation 

wherein agents could build a cantilevered structure through local awareness, 

checking the forces of the structure they were building. In typical swarm 

projects, the robots are all identical and complete the same tasks. They 

operate autonomously, sensing their local surroundings to avoid obstacles 

and one another. Unfortunately, the most interaction the robots have with 

one another is to avoid collision. If a block is larger than expected, these 

robots cannot work together to move it into place. They must always operate 

as individuals and can never improvise to lend a hand or arm.

In the distributed swarm approach, the robots are coordinated in that they 

are working together with a shared goal of building a structure, but they 

are designed and programmed in such a way that they could operate in 

isolation or with others. They cannot tell the difference. To facilitate this, 
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every building component is scaled to the size of an individual robot. If the 

robots encountered a larger brick or two were accidentally fused together, 

they would not be able to move it and would require human intervention. 

In this instance, I argue for robots that can evaluate if they need aid from 

another robot, call for assistance, and move the larger block together. This, 

I argue, is robotic collaboration.

MULTI-ROBOT COORDINATION

Over the past decade, architectural researchers have been increasingly 

exploring fabrication and assembly processes with multiple robots. In 2011, 

the Southern California Institute of Architecture (SCI-Arc) opened Robot 

House, a lab with five Staubli robotic arms with intersecting work spheres 

(Winstanley, 2011). Over the years, SCI-Arc students have demonstrated 

expertise in planning complex interactions and coordination of multiple 

robotic arms to build glass sculptures, display light-shows, paint portraits, 

and more (Testa, 2017). In 2016, ETH Zurich opened their own Robotic 

Fabrication Lab (RFL) with four industrial six-axis robotic arms (Gramazio 

Kohler Research, 2016). Unfortunately, while this coordination is impressive, 

it is also extremely tedious work, requiring careful planning and meticulous, 

slow test runs.   

Other researchers have taken an aerial approach to assembly, using drones 

to aid in larger scale constructions, unhindered by the limited work-sphere 

of fixed robotic arms. Augugliaro et al. (2014) used a group of four drones 

to autonomously assemble a multi-story structure. Felbrich et al. (2017) 

used drones to bridge the spatial gap between two fixed robotic arms by 

passing a fiber effector for winding back and forth, similar to a weaving 

shuttle. Both of these approaches were centrally controlled with a dispatcher 

sending tasks to the various robots in a predetermined sequence. 

Lastly, there has been significant research in assembly with multi-robot 

teams using a planning approach from artificial intelligence. Here, a planner 

takes in a variety of constraints and parallelization, returning an optimal 

plan and set of instructions for completing the task. Dogar et al. (2015) 

developed a multi-scale perception system that utilizes computer vision 

in combination with other sensors to alternate between different levels of 
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precision when assembling a scaled-down plane wing. Knepper, Layton, 

Romanishin, and Rus (2013) built a series of pre-planners, planners and 

control systems that can take data on individual components and determine 

the way the pieces fit together, an assembly sequence and lastly dispatch 

the instructions to a group of robots. 

While Dogar et al. (2015) and Knepper et al. (2013) make great strides 

in multi-robot assembly, their systems are rigid with specific modes 

of interaction between the agents. For example, when the robots are 

transporting a panel in Dogar et al. (2015), they execute an algorithm 

called “fleet control,” where each robot grabs the panel at some location, 

then the robots move as one to transport the panel. If there is a narrow 

pathway or obstacles where the robots need to reorganize around the panel, 

they would not be able to do so. 

For all of the projects described above, I argue that the missing ingredient 

is collaboration. All of the multi-robot teams act in coordination, but not 

collaboration. Coordination, as described in Section 2.1, is a predetermined 

process with a fixed set of rules for interaction. In these projects, the 

robots worked together to execute pre-planned steps without the ability 

to improvise interaction or change steps based on current environmental 

factors. Their interaction with each other is specified and does not vary.  

In contrast, collaboration is a more flexible process wherein robots work 

together to complete tasks through responding to their environment, 

improvisation, and defining their own rules for interaction.

2.3 REINFORCEMENT LEARNING

Concluding this review of robotic assembly, I argue that collaborative 

behavior is the missing ingredient in current approaches. By interacting 

with each other and their environment, robots can learn how to work 

together to achieve something that they could not do alone. In order for 

the agents, simulated or physical, to learn, I employed an approach called 

Reinforcement Learning (RL). Drawn from behavioral psychology, RL is 

an area of research within machine learning (ML) and artificial intelligence 

(AI) whereby agents learn behavior by interacting with their environment 

and receiving reward signals as feedback. 
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In this section, I present an overview of reinforcement learning, outline 

recent advances in deep reinforcement learning (Deep RL), and evaluate 

relevant research in multi-agent and multi-robot domains, as well as 

simulation-to-real-world transfer.

ROBOTICS + REINFORCEMENT LEARNING OVERVIEW

Reinforcement Learning (RL) is based on Markov decision processes (MDPs) 

or, as is often in robotic situations, partially-observable Markov decision 

processes (POMDPs). In an MDP, an agent exists in an environment in 

discrete time (Fig. 4). At each timestep, the agent receives an observation 

about the current state  s  of the environment. The agent then chooses an 

action  a  to perform in the environment. As a result of that action  a , the 

agent transitions to a new state   s’   and receives a reward  r (Sutton & 

Barto, 2017). A formal definition of an MDP is a 5-tuple that contains: a 

finite set of states  S , a finite set of actions  A , a transition function that 

maps the probability that an action  a  in state  s  at timestep  t  will 

result in transitioning to state  s’  at timestep  t+1 , a reward  r  after 

each transition, and a discount factor. 

Agents are “complete, interactive, goal-seeking” meaning they “have explicit 

goals, can sense aspects of their environments, and can choose actions to 

influence their environments” (Sutton & Barto, 2017, p.3). In a POMDP, 

the agent is not able to see the entire state of the world; therefore, it is 

partially-observable. Rather than receiving the full state of the environment 

at each timestep, the agent receives an observation of the environment 

from its perspective. 

With MDPs and POMDPs, the agent has either a probabilistic or 

deterministic model that maps states to action. In other words, it has a 

policy that tells the agent what action to take at each timestep. In RL, the 

goal is to learn the optimal policy that maximizes its reward. Over the years, 

researchers have developed a variety of approaches to learn the optimal 

policy, and these primarily break down into two categories: dynamic 

programming including value iteration, policy iteration, and Q-learning; 

and policy gradient methods including actor-critic policy gradient and 

monte-carlo policy gradient. 5   

[ 5 ]  
For more detailed information about 
these approaches and the foundations 
of reinforcement learning, (Sutton & 

Barto, 2017) is a keystone resource.
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To understand RL, it can help to think about it in terms of training a 

dog (Fig. 5). In this example, the dog is the agent, and the trainer is the 

environment. The trainer gives the dog a signal, for example a hand sign to 

sit. The dog receives this observation from the environment. In reaction, the 

dog either sits or not. If the dog successfully sits, then the trainer rewards 

it with a treat, i.e. positive reinforcement. If not, then the trainer does not 

award the dog anything and continues to send it the signal. In RL, instead 

of treats, the agent receives numeric points, either positive or negative, as 

rewards. Every time the dog sits, the environment resets to its initial state 

with the dog not sitting and no signals. Then training begins again.

This is an example of an episodic task where the agent learns through a 

series of episodes that end when the agent enters the terminal state or 

reaches the maximum number of steps in an episode, whichever comes 

first. A continuing task does not have a terminal state and has an infinite 

horizon in terms of time. As the aim of RL is to maximize its reward, a 

continuing task has an additional challenge when it comes to finding a 

maximum over infinite time. To handle this issue, RL employs the use of a 

discount rate, a parameter [0, 1], that makes earlier rewards have a higher 

impact over rewards later on in time (Sutton & Barto, 2017). The task 

that this thesis addresses is an episodic task; therefore I focus my attention 

on episodic learning.

Action and state (or observation) spaces can either be continuous or discrete.  

Using an action space as an example, continuous refers to when the action 

can be any floating point number within a specified range, such as linear 

Figure 4. 
Diagram showing cyclical agent-

environment interaction in an MDP.
Adapted from Sutton & Barto 

(2017, p. 38)
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velocity. In contrast, a discrete action space consists of a set of separate 

and distinct actions from which one of those actions can be selected at any 

time. For example, up, down, left and right could be a discrete action space. 

In addition, rewards are often shaped or discrete. The example of teaching a 

dog to sit =(Fig. 5) is an example of discrete rewards. The dog either receives 

a +1 or a 0 at the end of each episode based on whether the it successfully sits 

or not. Shaped rewards are often used in continuous state (or observation) 

space to give the agents hints to the goal state. For example, if the goal of 

an agent is to move to a specific target, a shaped reward would be a living 

penalty based on the agent’s distance to the target. If the agent is far away, 

it receives a larger penalty than when it is close to the target. Video games 

are ideal for RL because of the preprogrammed rewards for achieving 

success  in the game and the discrete set of actions from which to choose.

In terms of robotics, there are three primary approaches to programming 

robots and giving them new skills: direct programming, imitation learning, 

and reinforcement learning (Kormushev, Calinon, & Caldwell, 2013). Direct 

programming is a low-level approach and tends to be more deterministic. 

Imitation learning includes multiple approaches, from teleoperation, to 

physically moving the robot into place and recording the motion, to the 

robot learning by observing a demonstration of the task (Kormushev et al., 

2013). In contrast, the main ambition of robotic RL is to give the robots 

the “ability to learn, improve, adapt and reproduce tasks with dynamically 

changing constraints based on exploration and autonomous learning” 

(Kormushev et al., 2013, p. 122). While there are two primary approaches– 

Figure 5. 
Reinforcement learning diagram 

comparing a dog to the agent and a 
trainer to the environment
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value-function-based and policy-search–in robot reinforcement learning, 

policy-search is more common because it can handle high-dimensional 

state and action spaces (Kober, Bagnell, & Peters, 2013). 

ADVANCES IN DEEP REINFORCEMENT LEARNING

Over the past five years alone, researchers have made great strides forward 

against some long-standing challenges in RL. Neural Networks (NN) and 

Deep Neural Networks (DNN) 6  in combination with hardware advances 

have enabled researchers to work on harder problems and even work 

directly with images (raw pixels) as input. Depth of a network refers to 

the number of hidden layers used in the network, with deep generally 

meaning more than one. Since the breakthrough in image classification 

in the annual Imagenet competition (Krizhevsky, Sutskever, & Hinton, 

2012), convolutional neural networks (CNN) and deep neural networks 

have become increasingly popular.  

Drawing from recent advances in image classification and speech 

recognition, researchers at Google DeepMind integrated CNNs with 

a version of the traditional Q-learning algorithm,[ 7 ] presenting a new 

algorithm Deep Q-Network (DQN) that learned how to play seven Atari 

2600 games purely through pixels (Mnih et al., 2013). DQN could take 

high-dimensional continuous data as input, opening the door to using 

raw pixels as input without post-processing or specified contour and 

shape detection. Unfortunately, DQN was restricted to low-dimensional 

discrete data as output, therefore limiting its applications. It is possible to 

discretize7 continuous actions, but for complex controllers for robotic arms 

with 6-axis, the discretized spaces become intractable–also known as the 

curse of dimensionality (Bellman, 1957). 

To address this issue of continuous control in action spaces, Lillicrap 

et al. (2015) developed an algorithm called deep deterministic policy 

gradient (DDPG), based on deterministic policy gradient (Silver et al., 

2014) and taking insights from DQN (Mnih et al., 2013). Using the 

same network architecture and hyper-parameters, DDPG was able to find 

competitive policies for over 20 simulated physics-based tasks. In addition, 

they demonstrated the algorithm’s ability to learn from low-dimensional 

[ 6 ]  
To learn more about neural 

networks, convolutional neural 
networks and deep learning, I have 

a section on learning resources in the 
appendix.

[ 7 ]  
Discretizing refers to the process of 

turning a continuous action, such as 
velocity, into a discrete set of actions.
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observational data (location, velocity, etc.) and high-dimensional data such 

as raw pixels, also called “end-to-end learning.” 

In RL, there is a trade-off between exploration and exploitation. Exploitation 

refers to following the current policy by selecting the best known action, 

while exploration would be trying a new action (Sutton & Barto, 2017). 

This can be compared to a common example of selecting a restaurant for 

dinner. Exploitation would be choosing your favorite restaurant, while 

exploration would be choosing a new restaurant which could potentially 

be your new favorite or be considerably worse. A standard approach to 

adding more exploration is to add noise to the action selection process. In 

recent advances, it was found that adding parameter space noise to existing 

RL algorithms can improve exploration and performance (Plappert et al., 

2017). This approach was demonstrated using both algorithms mentioned 

above, DQN (Mnih et al., 2013) and DDPG (Lillicrap et al., 2015), as 

well as TRPO (Schulman, Levine, Moritz, Jordan, & Abbeel, 2015).8

Lastly, there is great interest in the interaction between multiple agents 

and understanding how they evolve together, both in competitive and 

cooperative environments. Lowe et al. (2017) expanded on the DDPG 

algorithm to include learning for multiple agents. They present a general-

use and flexible multi-agent learning algorithm called multi-agent deep 

deterministic policy gradient (MADDPG) (Lowe et al., 2017). 

MULTI-ROBOT + MULTI-AGENT RL

To demonstrate the variety of applications MADDPG could be applied 

to, Lowe et al. (2017) built eight multi-agent environments including 

cooperative navigation, keep-away, and predator-prey, among others. The 

environments were either cooperative or competitive, and some included 

aspects of communication. In earlier work in the multi-agent domain, 

Mordatch and Abbeel (2017) demonstrated how simulated agents could 

develop compositional language in order to collaborate and achieve specific 

goals. They trained the agents using reinforcement learning with carefully 

designed goals to encourage communication and coordination. These 

projects is an ideal example of using reinforcement learning to promote 

group interaction and complex behavior. 

[ 8 ]  
Baseline versions of these algorithms 

are all posted on OpenAI’s github 
account under baselines. https://

github.com/openai/baselines
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Working with robotic reinforcement learning poses many challenges, 

and this can quickly become intractable when working with multiple 

mobile robots. Amato et al. (2015) developed a tractable approach to 

solving decentralized partially observable Markov decision processes (Dec-

POMDPs) using macro-actions that extend over time (e.g. go to drop-off 

area, pick up small box, etc.) rather than selecting actions at each timestep. 

Then they used memory-bounded dynamic programming to solve the 

Dec-POMDP with macro-actions, and develop a deterministic policies 

for the robots to follow in the real world.  

In 1997, Matarić built four foraging robots that learned to move small 

pucks from one place to another. To minimize the learning space, she used 

a fixed set of four programmed behaviors (safe-wandering, dispersion, 

resting, and homing) and a state space that consisted of combinations of 

four conditions (have-puck, at-home, near-intruder, and night-time). The 

agents learned a value function that mapped conditions to behaviors. Both 

Amato et al. (2015) and Matarić (1997) minimized the search space by 

simplifying the state and action spaces into predefined states or packaged 

actions allowing the algorithm to learn the mapping between the actions 

and states that are temporally extended. 

Researchers at X and Google Brain9 have developed a process for speeding 

up the training process by using multiple robots (Yahya, Li, Kalakrishnan, 

Chebotar, & Levine, 2016). In this experiment, they set up four robotic 

arms to work separately to open a door. Each door handle was slightly 

different, creating variability in the environment they were engaging. At 

specific time intervals, the robots would sync their training data to share 

what they’ve learned. The idea is that when they sync their data they are 

sharing their experiences and progressing much faster than they would alone. 

Because training in the real world is costly in both time and resources, 

simulations can be an another alternative. Unfortunately, there are many 

challenges in transferring learning from simulation-to-real-world due to the 

inconsistencies between the two environments. Some approaches include 

improving simulation or learning more robust control policies, but these 

often run more slowly in training or lose performance in the real world 

(Christiano et al., 2016). One recent approach addresses these challenges 

[ 9 ]  
X, formerly Google [X], is Google’s 

“moonshot factory” that is responsible 
for projects such as Loon and Google 
Glass. Google Brain started as a deep 

learning and artificial intelligence 
project at X, but grew so successful 

that it became its own research team 
at Google. 
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by starting with a poor inverse dynamics model of the robot and learning 

to improve the model through training (Christiano et al., 2016). This 

method works with motion planning, learning, and optimization among 

other approaches for generating policies through simulation. Bousmalis 

et al. (2017) addressed the challenge of learning transfer in the context 

of a robot grasping task by adding layers of randomization (visuals and 

dynamics) as well as feature and pixel-level domain adaptation. Given a 

rendered image from the simulation, their GraspGAN model could generate 

synthetic images that resembled true images of the scene.   



Figure 6. Goal task: robots collaborate to move blocks to complete puzzle in specified location. 
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CHAPTER 3

A NEW THEORY OF ROBOTIC 
COLLABORATION

Building upon the three stages of collaboration–preconditions, process, and 

outcomes10–I present a new theory of robotic collaboration. Here, I define 

robotic collaboration as an emergent process through which individual 

agents (simulated and physical)–which may have different knowledge, 

abilities, or intelligence–interact with each other and their environment 

and learn how to work together to achieve a common goal. Agents with 

similar or different abilities work together to achieve more than they could 

alone. They start without any knowledge about the environment or each 

other and have to interact and explore in order to learn what to do. 

In the context of Reinforcement Learning (RL), Sutton and Barto (2017, 

p.3) define an agent as “complete, interactive, and goal-seeking,” and 

they explain that an agent could be a component of a larger systems, 

such as a monitor for a robot’s battery-level. In this setting of robotic 

collaboration, I revise this definition as a collaborative agent to be complete, 

interactive, social, collaborative, and goal-seeking. As Sutton and Barto 

(2017) encourage a broader concept of what a complete agent could be, 

I encourage researchers to conceptualize a collaborative agent at multiple 

scales–as an individual, autonomous robot or as a smaller component of a 

larger system controlling a robot, building or ecosystem. In the complex 

robot, certain components, such as the cooling system, vision system and 

power supply, could be formulated as separate agents that collaborate with 

each other in order to achieve an shared goal. 

Robotic collaboration goes beyond typical robotic assembly because the 

collaborative and learning-based approach is scalable, robust, and adaptive. 

First, robotic collaboration is scalable because more robots are not only 

able to accomplish a task faster but they can also combine their abilities to 

[ 10 ]  
These three stages are outlined in 

Section 2.1
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achieve more than they could alone–either by pooling the same strengths 

or combining different skillsets. In contrast, swarm robotics is limited by 

the capabilities of a single robot where adding more robots only multiplies 

the capabilities but does not generate more potential. Second, robotic 

collaboration is robust because is learning is often more flexible in the 

physical world than more deterministic, planning-based approaches in 

robotic coordination. In robotic collaboration, there is no prescribed 

structure for interaction or pre-packaged actions to select.  Lastly, robotic 

collaboration is adaptive because the robots can learn from experience and 

adjust over time based on the circumstances. 

PRECONDITIONS: ENCOURAGING INTERACTION 

In the context of robotic collaboration, I define the preconditions as the 

environment developed by the designer to promote collaboration. The 

environment includes a task that is difficult to complete without the 

combined abilities and interaction between the multiple robots. As described 

earlier, the environment could be the physical world in which robots are 

assembling a chair or the environment could be the entire control system 

of a robot. 

In one instance, multiple robots may come together to build a shelter 

after a natural disaster. One robot has the parameters and constraints for 

designing and building the shelter, another set of robots have more adept 

vision capabilities, while another set of robots has the strength and dexterity 

to assemble the structure. The robots have different capabilities, knowledge, 

and intelligence, and by coming together, they are able to build the shelter. 

The common goal, differing abilities and physical environment are the 

preconditions that encourage interaction and collaboration.

The toy task that I have defined in this thesis is for the agents to move 

a heavy block to a specified location. The block is too heavy for a single 

robot to move easily, in addition, the robots to not have any way to grasp 

or latch onto the block, therefore, manipulation is difficult alone. Some 

of the physical parameters of this environment include: type of control 

system; strength of agent; vision or observation; size, shape, and density 

of block; margin of error for goal; number of blocks; number of robots. 
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Another component that can drastically change the agent’s behavior and 

interaction with others is the reward structure. Typical reinforcement 

learning experiments use a shared reward for coordination and separate 

rewards for competition. I argue for a third method of structuring the 

reward similar to a concept in negotiation called “value creation.” This 

would consist of having separate rewards structures for each agent, but 

rather than being purely competitive, both agents benefit from actions 

where they work together. 

PROCESS: EMERGING BEHAVIORS

In previous research outlined in Section 2.1, there was less theory and 

understanding on the collaborative process, more so than the other two 

phases. This thesis provides an opportunity to develop specific preconditions 

that will facilitate collaboration and to evaluate the types of collaborative 

behavioral patterns that emerge. While successful outcomes and solutions 

are important, these emergent behaviors are the priority of this research. 

These emergent and sometimes unexpected behaviors are one of the real 

strengths of this process, in comparison to typical planning or even RL-

based approaches that use pre-programmed actions. In those instances, 

the behavior is always expected and defined in advance, not allowing for 

much flexibility in application. 

OUTCOMES: EVALUATING SUCCESS

While secondary to the emerging behaviors, it was important to determine 

the metrics by which I can evaluate the success of the collaborative agents. 

The standard approach in RL is to plot the reward history and number of 

timesteps necessary for each episode. Depending on the task, an increase 

in timesteps (e.g. an agent learning to walk) or a decrease in timesteps 

(e.g. an agent completing a tasks) may be desired. Another approach is to 

render and record the trained agents for a series of episodes and evaluate the 

interaction between agents. In this way, I classified the variety of techniques 

the agents learned for collaborating to move and manipulate the block in 

my toy task. I evaluated how quickly the agents were able to move the block 

into place, how frequently they could achieve the specified goal, and how 

quickly they were able to learn how to work together. 



Figure 7. Conceptual diagram of robots moving blocks into place



Approach • 37

CHAPTER 4

APPROACH

In this thesis, I address the challenge of multi-robot assembly by developing 

collaborative agents that learn how to work together to move blocks. In 

Chapter 2, I describe relevant research on collaboration, multi-agent 

environments, and reinforcement learning. In Chapter 3, I present a new 

theory on robotic collaboration and argue how this goes beyond current 

practices. In this chapter, I describe my approach to collaborative robots 

and discuss how my methods have evolved and shifted over time. I begin 

by defining a toy task–three blocks for the agents to assemble into a 

puzzle (Fig. 7)–and end with a framework for transferring learning from 

simulation to real-world.

A significant part of my overall process has included repetitively simplifying 

the problem that I am addressing in order to make it tractable. The problem 

I have chosen is significant because it includes a multi-agent environment, 

agents manipulating an object, and a multi-step task. In addition, operating 

in continuous action and state space means there is essentially an infinite 

number of state and action pairs possible, meaning it is highly unlikely 

that it will ever be in the same state again. Other challenges exist around 

defining a task that is both learnable and general,11 choosing the description 

for the state space, and defining the reward function. 

4.1 DEFINING THE TOY TASK

From the beginning, I knew it was important to the minimize complexity 

of the robots and the structure for them to assemble. With this in mind, I 

sought to create a simple structure–an arch composed of five blocks (Fig. 

8). I designed a robot with four dimensions of control; it had a round 

base, two motorized wheels, and a single axis arm controlled by a servo 

[ 11 ]  
The term “learnable” means that the 
task is simple enough that the agent 

will be able to find a solution. While 
the term “general” means that the 

task is not too specific that the policy 
is overfitting and would not be able 
to find a solution in any alternative 

setups.
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near the base. An electromagnet was placed at then end of the arm with a 

universal joint connecting it to the arm. The joint made it difficult for the 

robot to move a block in a controlled way alone, but it also allowed for 

more flexibility when transporting a block with other robots. Overall, the 

four dimensions of control were the two wheels, the single axis arm, and 

the electromagnet for picking up blocks. 

As I was evaluating next steps, I realized that, even in simulation, multiple 

agents learning to assemble an arch in three-dimensional continuous space 

was still too difficult of a challenge to begin with. To simply the problem, 

I decided to minimize unnecessary dimensions of complexity, in both 

the robot and environment design, by removing the third dimension and 

moving to a 2D (or 2.5D in the physical world) environment. Now, the 

robots cannot lift or grab objects but only push around blocks with their 

chassis. 

Next, I addressed the structure for them to assembly. Moving from 3D 

to 2D, I could no longer frame the problem as a spatial architectural 

structure, so I sought to create a puzzle composed of three distinct blocks. 

The rectilinear blocks, resembling pieces of the game Tetris, were selected 

from a 9-square grid and fit together to form a square (Fig. 9). Each block 

is unique in size, form, and mass, with the heavier blocks difficult for one 

robot to move alone, forcing collaboration. 

Figure 8. 
(Left) Builder Robot 0.0 concept 

design. (Right) Toy task of building 
an arch out of five blocks

Figure 9. 
(Left) Builder Robot 1.0 concept 

design. (Right) Toy task of 
assembling a puzzle out of three 

blocks
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Figure 10. 
(Left) Octagonal plan of Builder 

Robot 1.0 (Right) Builder Robot 1.0

Through this design process, I defined a toy task that can be implemented 

in both a 2D simulation environment and the real-world. I developed 

the toy task by designing the physical robot and blocks first because my 

ultimate goal is to implement this in the real-world. In the end, the goal of 

each agent, simulated and physical, is to move the blocks to their specified 

final location and rotation. At the beginning of each episode, the blocks are 

initialized in random locations within the work area, and the agents have 

to move the blocks to their final location within a certain margin of error.

Before moving on, it is important to take a moment to discuss terminology 

used in this thesis–specifically the use of agent, robot, and robotic agent. 

Agent is the most general term and applies to both the simulated agent and 

the physical robotic agent. Robot refers to the physical robot and is typically 

used when discussing the physical hardware or software of the robot or the 

vision system for identifying the robot in the real-world implementation. 

Robotic agent refers to the physical implementation of the agent acting 

with a learned policy or in training.  

4.2 BUILDING THE ROBOT

As discussed above, it was important to not make the robot any more 

complicated than necessary to exhibit collaborative behavior. I designed and 

built the second iteration of the simple robot (Fig. 10) and the lightweight 

blocks it would assemble. This robot was small, about 6” in diameter, and 
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it was controlled by a Raspberry Pi 3–a tiny computer the size of a credit 

card enabled with bluetooth and wifi. A stepper/DC motor hat, sitting 

on top of the Raspberry Pi, allowed easy control of the DC motors that 

powered the two wheels. 

The motorized wheels were centered on the chassis, allowing the robot to 

have tight and controlled movement. Two ball casters, located in the front 

and back, stabilized the robot. The robot did not have any armatures and 

interacted with its environment solely through pushing around blocks with 

its chassis. The plan of the chassis was in the form of an octagon–providing 

the robot with plenty of pushing surfaces for moving the blocks. The edges 

allowed the robot to push the blocks at different angles, as well as turn the 

block by rotating its chassis. 

The blocks were made from a lightweight extruded polystyrene foam for 

ease of movement (Fig. 11). An overhead camera provided a global view 

of the work area. By building the robot first and testing its capabilities, 

I was able to build a more realistic simulation environment for training.

To control the robot, I developed a custom control interface using 

TouchOSC, an application that sends and receives Open Sound Control 

(OSC) or MIDI messages over wifi. A desktop application enables users to 

design a custom interface with buttons, sliders and toggles. Using the python 

library, PyOSC, I developed a control system for the robot that listened 

for instructions from my custom phone application.12 The controller sends 

a rotation angle and desired speed to the robot. In Section 4.9, I revisit 

[ 12 ]  
PyOSC is not currently up-kept 

and only works with Python 2.7, 
not 3.5+. Python-osc is an alternate 
library that is up-kept as of the time 

of this thesis.

Figure 11. 
Manually controlled Builder Robot 

1.0 pushes block into place.  
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the robot’s physical hardware and software and make the improvements 

necessary for transferring learning from simulation to the real-world. 

4.3 DEVELOPING THE SIMULATION ENVIRONMENT

After building the robot and the blocks it interacts with, I moved on to the 

simulation and choosing a physics engine. In my first attempt, I designed 

an environment in Blender, an open source 3D modeling environment 

and used Modular OpenRobots Simulation Engine (MORSE) for the 

simulation environment and physics engine. Using linear velocity and 

turning angle, I manually controlled a robot to test the environment (Fig. 

12). While adapting the simulation for Reinforcement Learning (RL), I 

ran into some key issues in resetting the environment for training. When 

training an RL agent using episodic time, resetting an environment to its 

initial state is a mandatory feature. 

Because of this keystone issue, I decided to evaluate different physics engines 

and simulation environments with more documentation and support for 

RL. After looking at pyBox2D, MuJoCo and Bullet, I decided to start with 

pyBox2D because of the ease of setup and ability to develop quick proof-

of-concepts. MuJoCo and Bullet are both 3D simulation environments 

that include 3D rendering and a physics engine. They are both popular in 

the research community in academia and industry, used by groups such 

as OpenAI, Google Brain, DeepMind, Standford AI Lab, and University 

of Washington.  

Moving forward, I decided to use PyBox2D, a 2D physics engine and 

simulator, and PyGame for 2D rendering. I developed a manually controlled 

2D environment to test out the controls (Fig. 13). At the beginning of each 

episode, the blocks are randomly placed within the field and the goal is 

to complete the puzzle as fast as possible, using the white octagonal agent 

to push the blocks. Small blue dots near the center of the screen mark the 

final location of each block. The game checks if each block is in its correct 

location and rotation given a specified margin of error. 

In this initial simulation, the actions available are solely the linear velocity 

in the x and y-axis. These controls are similar to holonomic control but 

lack control of the angular velocity. Holonomic control refers to when the 

Figure 12. 
MORSE manually controlled 

simulation environment
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degrees of freedom (DOF) match the degrees of motion (DOM), while 

non-holonomic control is when the DOF is greater than the DOM (Ben-

Ari & Mondada, 2018). A common example of holonomic control is a cart 

on casters; the cart can freely rotate and move in the x and y-axes. A car, 

only having two DOM, is an example of non-holonomic control. It can 

move forward and backward and can turn, but it cannot move sideways. 

Fig. 14 graphically demonstrates the DOM available to the agent with 

holonomic control and non-holonomic control. 

4.4 OPENAI GYM FRAMEWORK + CHOOSING AN RL ALGORITHM

After testing the manually controlled simulation implemented with PyBox2D 

and PyGame, I moved on to build a environment to be controlled by a 

reinforcement learning algorithm. As discussed previously, reinforcement 

learning is a machine learning approach whereby an agent (or multiple 

agents) exists and acts in an environment. At each timestep, the agent 

chooses an action to perform in the environment, which returns a reward 

and an observation of the current state of the environment (Sutton & 

Barto, 2017). 

In 2016, OpenAI released OpenAI Gym, “a toolkit for reinforcement 

learning research that contains a diverse collection of tasks (called 

environments) with a common interface” (Brockman et al., 2016). The 

aim was to present a collection of benchmark tasks (Fig. 15) that all 

researchers had access to and could easily compare results. The common 

interface that Brockman et al. described is the abstracted structure that a 

researcher interacts with each environment, irrelevant of the type (classic 

control, algorithmic, Atari, pybox2D, MuJoCo, etc.). 

Each environment class contains the following methods: step, reset, render, 

Figure 15. 
OpenAI gym environments: 

(A) Cartpole; (B) 2D Walker; 
(C) Atari Pong; (D) Atari Breaker

Figure 14. 
Diagram showing the degrees of 
motion of holonomic and non-

holonomic control for the agents. 

holonomic non-holonomic

Figure 13. 
Manually controlled environment 

to test the controls and physics 
implementation. 
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close, and seed. At the end of each episode, the reset method resets the 

environment to its initial state. The step method takes the action as input 

and returns: the agent’s observation; the reward for the previous action 

and transition into the current state; a boolean done indicating whether 

the episode is complete; and an info dictionary with optional diagnostic 

information. See Table 2 for sample code that shows the initialization of 

the environment, Cartpole-v0, and twenty episodes where the agent takes 

a random action for each of the 100 steps per episode. If render is called, 

then a graphical window will display the agent acting in its environment, 

otherwise the calculations will run behind the scenes. Rendering is 

computationally expensive, so it is best to avoid using except with testing 

or debugging.

To develop my own environment, I used OpenAI’s “box2d” environments as 

a framework for adapting my manually controlled simulation to work within 

the OpenAI Gym structure. By following their example and maintaining 

the common interface, I could use existing algorithms and documentation 

specifically for OpenAI Gym. To assess the success of my environment 

design, I determined that rather than implement my own version of an 

RL algorithm, I would use one of OpenAI’s baseline implementations. 

Starting in 2017, OpenAI began open-sourcing baseline implementations of 

well-known algorithms based on best-practices in order to “make sure that 

apparent RL advances never are due to comparison with buggy or untuned 

versions of existing algorithms” (Sidor & Schulman, 2017, p.1). By using 

one of OpenAI’s implementations, I could adapt the code for my own 

use and ensure that there were no bugs in the unedited implementation. 

Keeping the algorithm constant, I could evaluate the success of my simulated 

environment. 

Table 2. 
Example code from simple cartpole 
environment. Edited excerpt from 

OpenAI gym documentation

import gym
env = gym.make(‘CartPole-v0’)
for i_episode in range(20):
    observation = env.reset()
    for t in range(100):
        env.render()
        print(observation)
        action = env.action_space.sample() # random action
        observation, reward, done, info = env.step(action)
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Next, I chose an RL algorithm to test my environment. The task at hand 

helps to determine which algorithm to choose. As discussed in Section 

2.3, the observation and action space can either be discrete or continuous, 

meaning it can either be clearly separate and distinct with a fixed number 

of observations or actions (e.g. left, right, up, and down) or it can operate 

within a continuous range (e.g. linear velocity). I chose OpenAI’s baseline 

implementation of Deep Deterministic Policy Gradient (DDPG) with 

parameter noise (Plappert et al., 2017). This algorithm is ideal for my 

research because it is can operate over continuous action space, ideal for 

robotic control, as well as both high and low dimensional continuous 

observation space. 

It was important for the algorithm to accommodate both low and high-

dimensional observation space because my end-goal was to transition from 

low-dimensional observation data, such as location, rotation, and linear 

velocity, to high-dimensional observation data, such as raw pixels, i.e. 

images. In using raw pixels as observations, the algorithm takes in direct 

data on each pixel, typically 3 channels for RGB or 1 channel for grayscale. 

4.5 TROUBLESHOOTING

My first implementation (Fig. 16) was composed of a single agent and 

the same three rectilinear blocks that I designed in Section 4.1 (Fig. 9). 

The main decisions that I made were about the action space, observation 

space and reward structure. In this iteration, I decided to discretize the 

action space into eight actions: North, Northeast, East, Southeast, South, 

etc.. The observation description contained global location and rotation 

information about the agent and each block. In addition, I tracked how 

many blocks were in their final location. 

The reward structure was composed of three main parts: a living penalty, 

block reward, and puzzle completion reward. Because of the complexity of 

the problem, I decided to use reward shaping for the living penalty to give 

the agent hints toward good observation-action pairs. The living penalty, 

awarded at each timestep, was calculated as the distance between each 

block and its final location. The further the block was away from its final 

location, the higher the penalty. This was intended to motivate the agent 

Figure 16. 
First iteration of environment: 

RobotPuzzle-v0. It contains a single 
agent with three unique blocks that 

form a square. The agent is tasked 
with moving the blocks to their 

specified location, demarcated by   
small blue dots near the center of the 

screen.
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to move the blocks closer to their final location quickly. 

A reward of +10 was awarded for each block moved into its final position, 

and -10 was deducted if the block was moved out of place. Once the 

puzzle was completed, an award of +1000 would be given. Unfortunately, 

no positive rewards were ever given. Upon training and testing, the agent 

failed to learn any useful behavior.

In order to troubleshoot the environment, I simplified the simulation to 

include a single block and no agent. At the beginning of each episode, the 

block is initialized at a random location and rotation. I changed the action 

space to be continuous and control the linear velocity (x, y) and angular 

velocity of the block. I also updated the observation description to contain 

the block’s relative location and rotation information as well as its distance 

away from its final location. 

Lastly, I discretized the reward structure and provided positive reinforcement 

for moving towards the final goal. I weighed location-based rewards heavier 

than rotation-based rewards. At each timestep, the block was rewarded +1 

for moving towards the goal, -5 for moving away, and -3 for not moving 

at all. In addition, small rewards of +/- 0.5 was given for rotating towards/

away from the final position, with a final reward of +1000 for moving into 

place. These adjustments proved successful. By simplifying the environment 

and maintaining a consistent training algorithm, I was able to improve my 

design and create a trainable environment. Initializing from any random 

location and rotation, the block learned to move itself to the specified 

location and rotation within a fine margin of error (Fig. 17). 

4.6 CNN VS. LOW-DIM OBSERVATION SPACE

At this point, I decided it was time to see if I could use pixels as input. 

The most common approach to learning directly from pixels, also called 

“end-to-end” learning, is to use convolutional neural networks (ConvNets 

or CNN). CNNs are similar to neural networks, but they assume their 

Figure 17. 
Simplified environment of block 
learning to move itself in place. 
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input is an image. They are typically composed of three different types of 

layers: a convolutional layer, pooling layer and fully-connected layer (cite). 

The convolutional layer is the workhorse of the CNN and is essentially 

responsible for learning a set of filters typically used to identify relevant 

features for the particular application. The number of filters matches the 

depth of the convolutional layer.13 Using OpenAI’s CNN implementation 

drawn from the Deep Q-Network (DQN), I added three convolutional 

layers to the beginning of both the actor and critic networks of the DDPG 

baseline. 

In addition to adding these convolutional layers, I took a number of 

important steps to improve the network as outlined in Lillicrap et al. (2015). 

First, to minimize the number of parameters, I scaled down rendered 

image to a manageable size for the network, 160x120x3 (width x height x 

RGB depth),14 and converted from an 8-bit RGB (i.e. an integer between 

0 and 255) into a floating point number between 0 and 1, inclusive. For 

the network to understand motion, I evaluated two approaches: taking the 

difference between two frames (Karpathy, 2016) or feeding the network a 

series of images (Lillicrap et al., 2015; Mnih et al., 2013; Plappert et al., 

2017). I chose to send the network a series of images, or observations, as 

this was the approach documented by Lillicrap et al. (2015) and Mnih et 

al. (2013). Fig. 18 shows four such observations sent to the network. Lastly, 

I employed a frame-skipping technique (Lillicrap et al., 2015; Mnih et al., 

2013), where the agent only sees an observation and chooses an action 

every nth timestep, and the action is repeated for the intermediary steps. 

This minimizes computation and essentially allows the agent to act n times 

more in the same amount of time. 

After setting everything up and running some tests, I set the network to train 

for a few days. The network was computing between 0.5 and 1.0 steps a 

second, compared to approximately 160 steps a second with low dimensional 

data. This occurred for two reasons: (1) rendering the environment rather 

than calculating everything behind the scenes is much slower; (2) CNNs 

are computationally expensive and can significantly increase training time. 

In the end, I decided to stick with low-dimensional observations because 

of the speed of prototyping and training. Learning directly from raw 

sensory data is a well-established research challenge, especially in robotic 

[ 13 ]  
 For more information about CNN 
or NN, refer to Section 2.3 or to the 

learning resources in the appendix.

[ 14 ]  
If you are using a computer with 
a high-resolution screen or retina 

screen (mac), you may input  
160x120 as your screen size, but 
receive a vector twice the size. In 

that case, you can either downsample 
the image or input the dimensions as 

half the size that you want.

Figure 18. 
Observations extracted from the 

high-dimensional input to the 
CNN. Each observation contains a 

sequence of three renderings captured 
from three different timesteps to 

capture motion. In this way, the NN 
can infer motion.  
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control, and while it is a desirable facet of research, it is not necessary for 

the scope of this thesis.

4.7 IMPROVING THE ENVIRONMENT WITH DEEP DETERMINISTIC 
POLICY GRADIENT (DDPG)

After deciding to focus on low-dimensional observations, I updated my 

environment to include a single agent with one block. Now, the agent took 

the actions in the environment, rather than the block. The agent’s action 

space was continuous and controlled the linear velocity (x, y) and angular 

velocity of the block. This gave the agent holonomic control, where the 

degrees of freedom matched the degrees of motion. The majority of the 

following tests involve adjusting the observation description and reward 

function to incentivize the agent to learn an optimal policy. It is always 

import to test this because the agent will act to maximize rewards, which 

may or may not be what the designer intended. 

Moving from images to low-dimensional observational data, I needed to 

capture information that would have been evident from images, such as 

the block shape. At each timestep, the observation included the absolute 

location and rotation of the agent, the agent’s relative location to the block, 

the block’s relative location and rotation to the final location, and a boolean 

that represented the agent’s contact with the block. To represent the shape 

of the block, I included the absolute location of each boundary vertex. 

I discretized the reward function by assigning a fixed reward/penalty for 

the block moving towards its final position, away from it or not at all. I did 

the same for the block rotational position and the agent’s position relative 

to the block. In addition, I gave a small reward for contact with the block 

and a large penalty when the agent was in contact with the wall. 

After training, the agent learned to interact with the block but was not 

able to move it towards the goal (Fig. 19). Because the agent started at the 

center of the environment everytime, it had trouble learning to first move 

to the other side of the block. Instead, it typically pushed the block to the 

wall, then would push against the block while rotating in an attempt to 

get behind it. Overall, it appeared to be a challenge for the single agent to 

have control manipulating the block. 
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IMPROVING THE REWARD FUNCTION

At this point, I made important changes to the reward function to improve 

the behavior. First, I changed the living penalty to the sum of the distance 

between the agent and the block, agent_dist, and the distance between 

the block and its goal position, block_dist (Fig. 20). After testing this 

reward function without any additional weights, I observed that the agent 

did not learn any ideal behavior. I then added weights to the each distance 

in order to give priority to the distance between the block and its goal, 

block_dist, over the distance from the agent to the block, agent_dist. I 

thought that because this distance was more important that I needed to 

give it a higher weight. Unfortunately, the agent did not learn any useful 

behavior, so I switched the weights giving a higher weight to the distance 

between the agent and the block, agent_dist. This change resulted in the 

agent successfully interacting with the block. Upon reflection, when dealing 

with a multi-step task, it makes sense to weigh the earlier step heavier than 

the following steps as the agent needs to complete it first. 

In addition, I also added a reward based on change in distance for both 

agent_dist ( agent_delta ) and block_dist ( block_delta ). This reward is 

negative when moving away from its goal and positive for moving towards 

it. I added weights to these as well, but this time gave a higher weight to 

the block_delta because overall these rewards are smaller than the distance 

based rewards. This addition seemed to improve the behavior. 

ADDING A SOFT CONTACT

Another challenge in this task is that the agent may not know which 

direction to move. When the observation space is too large and the agent 

is constantly initializing in random locations, it may never  reach its gaol 

Figure 19. 
Top and bottom rows are two 
separate episodes of the agent 

manipulating the block. As 
mentioned, it pushes the block to the 
wall then attempts to move it away 

by turning its chassis. 

Figure 20. 
Diagram illustrating the two 

distances used for reward shaping:  
(a) agent_dist; (b) block_dist 

a

b
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state to receive the final reward. One way to help is to implement a soft 

contact between the agent and the block. Soft contact is when the agent 

constantly applies a small force on the block, even when it is far away, giving 

the agent a sense of which direction to move. I manually implemented soft 

contact as a linear force based on the distance from each agent to the block. 

I used an exponential function, force = base**(-agent_dist), for a quick 

fall-off, and experimented with the base until it seemed to be appropriate. 

TESTING A NEW ALGORITHM

To see if another algorithm may work better, I tested Proximal Policy 

Optimization (PPO) (Schulman, Wolski, Dhariwal, Radford, & Klimov, 

2017). The experiments began with promising results around 1M timesteps, 

then after training for an additional 5 million timesteps, the magnitude of 

agent’s actions would decrease to be so small that it would barely move at 

all. By recording and plotting the variance of the actions over each episode, 

I observed that the variance drastically decreased over time. The training 

time was much faster than DDPG, so it could be used to test out different 

parameters in the reward function, but not for any extensive training.

Concurrently, I decided to see if the agent could learn a much simpler toy 

task. For each episode, I placed the agent in a fixed location with the block 

in between the agent and the goal. After approximately 1 M timesteps, it 

was easily able to learn an optimal policy to move the block to the goal. This 

was simple to learn because as soon as it learned that it needed to move up 

a specific way to push the block into place, it could easily repeat it. It was 

consistently starting in the same position, so there was less variability in 

the observation. Unfortunately, this toy task is too simple and produced a 

policy that could not generalize to any other initialization location. 

MULTIPLE AGENTS + SIMPLIFYING THE TASK

Given the scale of the environment and the fact that a single agent seemed 

to be struggling to manipulate the block alone, I decided to add another 

agent to the environment and experiment with their interaction. It was 

an ideal time to see what collaborative behavior would emerge between 

the two agents. In this scenario, even though I included multiple agents, 

they were both centrally controlled by the same learning algorithm. There 
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was a single observation and a single reward function and the action space 

expanded to include controls for both agents (Fig. 21).

The observation included information about each agent and the goal 

block. Each agent’s global location and rotation, relative location to the 

goal block, linear and angular velocity, and contact with the block were 

all documented. In addition, the observation included the goal block’s 

relative location and rotation to the goal location and the global location 

of the block’s vertices. 

After seeing the agents develop some collaborative behavior for manipulating 

the block, but fail to successfully move it  to the goal location, I determined 

that the goal was too specific for the agents to be successful early on. I 

decided to make the problem easier by making the margin of error larger and 

removing rotation from the requirement to be in place. After implementing 

these changes, the agents began successfully moving the blocks in place 

(Fig. 22). Some specific behaviors that emerged were turning the block 

together, taking turns to push the block, and guiding from different angles.  

PREPARING SIMULATION TO MATCH REAL WORLD

In my near-term next steps, I aim to transfer this learning from simulation 

to physical robots. While there are many challenges in transferring learning 

from simulation to real-world, there are some steps I took to prepare 

the simulation for transfer. First, it was important to make sure that the 

Figure 22. 
(Opposite) Series of screenshots from 

testing episodes show collaborative 
behaviors agents learned for moving 

the block, such as rotating, pinching, 
and guiding.

Figure 21.
Reinforcement learning diagram 

showing how the centrally controlled 
agents receive the same observation 

and reward. 

ENVIRONMENT AGENT_0 
AGENT_1

Action: a

Reward: r

Obs: o
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simulated screen would match the overhead camera. The proportions needed 

to match, as well as the Cartesian coordinate system and dimensions. I 

normalized all of the distances so that the width ranged from [0, 1] and the 

height was scaled respectively. I maintained soft forces for initial learning 

and decreased the strength of the force over time. 

I simplified the environment so that the agents always initialized in the 

left third, the block in the middle third and the goal in the right third. 

(Fig. 23) I also made the margin of error very large at the beginning of 

each training session and decrease in size over time. This allowed for easy 

wins towards the beginning, with the task becoming more difficult as 

the training progressed. I removed the walls and assigned a large penalty 

if the agent moves out of bounds and a smaller one if the agent pushes 

the block out of bounds. Both of these penalties decay over time so that 

if they agent moved out of bounds in the last few timesteps it received a 

smaller penalty than if it did in the first few timesteps. The rewards for each 

episode’s terminal state typically ranged from lowest score to highest in this 

order: agent moved out of bounds, agent stayed in bounds (often going in 

circles), agent pushed block out of bounds, and agent pushed block to goal. 

The reward was based on four changes in the state: distance of agent to 

block, agent_dist; change of distance at each timestep between agent and 

block, agent_delta; distance of block to goal, block_dist; delta distance 

between block and goal, block_delta. I ran a series of tests where I changed 

the weight for each variable of the reward function, i.e. [25, 50, 100] for 

delta distances and [0.1, 0.25, 0.5, 1.0] for distances. I initially tried to 

Figure 23. 
In oder to better match the real 

world, the updated environment 
does not have boundary walls and 

the agent has non-holonomic control, 
similar to the way the physical robots 

move.
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evaluate each test based on the reward or number of timesteps, but the 

plot of the reward history fluctuated significantly and purely increasing the 

timesteps may mean that the agent is learning to go around in circles without 

producing any meaningful behavior. Instead, I chose which parameters 

to test further by running each model without any parameter noise for 5 

epochs and evaluating the behavior visually. Concluding those tests, the 

best parameters seemed to be 25 (agent_delta), 0.25 (agent_dist), 100 

(block_delta), 0.0 (block_dist). 

To improve performance further, I will need to tune the hyper-parameters 

of the network, specifically the learning rate of the actor and critic networks 

and the parameter noise. Using a randomized approach for choosing hyper-

parameters (Bergstra & Bengio, 2012), I will take the top two parameter  

settings for the reward functions and test the each environment ten times 

with randomly initialized hyper-parameters. 

SEEING AS THE AGENT SEES

To understand what the agent “sees,” I experimented with some visualization 

tweaks to the renderer (Fig. 24). The agent receives its observation as an array 

of numbers. There are no labels or background information for the agent 

to understand what the numbers mean. It learns purely through interacting 

with the environment and receiving rewards based on its actions. To give 

a sense of what the agent “sees,” I removed extraneous information such 

as boundaries and filled shapes and included only points and relational 

information. In this example, observational data includes the global location 

and rotation of each agent and the block’s vertices. It also includes the 

relative location between each agent and the block and between the block 

and the goal–represented by the dashed line. The large circle around the 

goal represents the margin of error allowed for completing the puzzle. This 

episode is early in training, so the margin of error is significantly large. 

4.8 MOVING TO A DECENTRALIZED APPROACH: MADDPG

Because my main goal is collaborative behavior learned through 

interaction between agents, I believed that using a centrally controlled 

learning algorithm was not as true to the theory as necessary. As a result, 

I decided to test OpenAI’s multi-agent deep deterministic policy gradient 
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(MADDPG) implementation with separately trained agents. In order to 

use this implementation, I needed to change my environment design to 

consist of separately controlled agents with their own unique observations 

(Fig. 25). 

As described in Section 2.3, OpenAI developed eight multi-agent particle 

environment with a variety of competitive and cooperative tasks to test 

MADDPG. These particle environments were simple enough that the 

researchers implemented them with their own physics calculations. I utilized 

their framework to program a new environment using pyBox2D for a 

physics engine, contributing a new environment framework to the multi-

agent gym environments. As in the previous DDPG controlled multi-agent 

environment, the agent’s controls are non-holonomic, meaning it cannot 

move sideways. The actions adjust the linear and angular forces, allowing 

it to drive around similar to the physical robots. In addition, I added the 

boundary walls back to this simulation to avoid the agents moving out of 

Figure 24. 
The two images are snapshots from 
the same simulation with different 

rendering techniques. The top more 
similarly represents what the agent 

might see, while the bottom is a full 
representation of the objects in the 
environment that people can easily 

perceive.



Approach • 55

the frame and ending the episode early. Lastly, I made the margin of error 

larger, so that it was easier for the agents to move the block into place.

I used a continuous action space between [-1, +1] to control the linear and 

angular forces controlling the robot. This was multiplied by a maximum 

force of 0.25. After training for 1M, the agent did not seem to learn 

anything. I hypothesized that it was because the agent was not exploring far 

enough to be able to find any success to guide it. On my next test, I increased 

the maximum force to 1.0. After training approximately 1M timesteps, 

the agents did learn to move the blocks in place, but the MADDPG 

implementation allowed the agents to choose actions between [-120, +120]. 

Upon closer evaluation of the code, I observed that the actions were 

selected from a Gaussian distribution. This means that while larger numbers 

are probabilistically unlikely, it is possible for them to be selected, with 

increasing likelihood especially if those actions repeatedly result in high 

rewards. I wanted to keep the actions restricted to be between [-1, +1], 

so I clipped the selected actions to be between [-1, +1]. This eventually 

resulted in returning “not a number” or NaN for the state, reward, and 

action. Further work is needed to develop a successful and controlled 

MADDPG implementation. 

Action: a_1

Action: a_0

Reward: r_0

Reward: r_1

Obs: o_0

Obs: o_1

ENVIRONMENT AGENT_0 AGENT_1

Figure 25. 
Reinforcement learning diagram 
showing how in a decentralized 

multi-agent environment, agents 
receive the their own observation 
and reward and take their own 

actions. 
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4.9 HOLONOMIC VS. NON-HOLONOMIC CONTROL 

After running numerous tests in environments with holonomic control 

(using DDPG) and non-holonomic control (using DDPG and MADDPG), 

I determined that the control can have drastic influence on the success of 

the agent in an environment.  The agents with holonomic control developed 

more complex collaborative behaviors than agents with non-holonomic 

control (Fig. 26). When the agents had non-holonomic control, i.e. moved 

similar to a car, they needed to initialize in the simplest setup in order to 

reliably move the block successfully. This simple initialization mandated 

that the agents always appeared on the left third of the screen facing right, 

the block appeared in the middle third, and the goal on the right. If the 

agents initialized facing a random direction or in a random location, then 

they would not be able to find a solution. 

This appeared to be because the agents needed to be facing the correct 

direction before they could successfully move the block. The non-holonomic 

control added significant complexity to the problem. In contrast, with 

holonomic control, it was easier for the agents to explore the state space 

because they could freely move in any direction. After making this discovery, 

I started experimenting more with holonomic control in environments 

with more agents.

An important component of collaboration is that by working together the 

agents can achieve more than one could alone. To test this in a more extreme 

environment, I doubled the size of the block and increased the density 

of the block so that a single agent could barely move the block. Only by 

working together could the agents move the block to the goal within the 

maximum timesteps. I tested this new block with ten agents and then five. 

In the environment with ten agents, there were two primary results. The 

Figure 26. 
(Left) Holonomic controlled 
environment. (Right) Non-

holonomic controlled environment.
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first, which is to be expected with so many agents, is that the agents got in 

each other’s way and pushed the block to the wall (Fig. 27, left). With all 

of the agents starting in different directions, they each arrive at different 

sides of the block and start working against each other. This is what often 

happens when collaboration goes wrong–too many people are trying to 

take the lead and, as a result, things often get worse. 

The second more surprising result was that the agents started acting like 

gears and took a mechanical approach to moving the blocks (Fig. 27, right). 

Because the block was so heavy, the agents could move the block faster 

by stacking themselves together and rotating like gears. This worked well 

when the block was near the wall, but was more difficult when it moved 

further away. 

In the final simulation, I tested five agents with the same large block. This 

number appeared to be just right where some agents collaborated to move 

the block, while others went off into corners. Overall, they did not get 

in each other’s way as much as ten agents did.  In Fig. 28, the agents use 

the mechanical gear strategy to move the block away from the wall, then 

they continue to push on different parts of the block before moving into 

a linear formation for the final push. 

4.10 FRAMEWORK FOR SIMULATION-TO-REAL-WORLD TRANSFER

The last phase is to transfer the policy from simulation to real world. 

As described in Section 2.3, learning transfer is a non-trivial task where 

many issues can arise. In this section, I lay out a framework for learning 

transfer with many of the components implemented separately, but not 

yet combined into a complete system. 

Figure 27. 
(Left) When collaboration is too 
much, all of the agents get in the 
way of each other. (Right) When 

collaboration turns mechanical, the 
agents acts as gears to mechanically 

move the block.
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The most important step is to match the observation description from the 

simulation to the real-world. As discussed in Section 4.7, I took initial 

steps to prepare the simulation to match the physical world. To calculate 

the relative position of elements in the observation description, I needed 

to be able to extract the global location and rotation information of each 

agent and the block as well as the block’s vertex locations. To gather this 

data, I installed an overhead camera and used OpenCV, a computer vision 

package, to identify various objects. 

For information that is more difficult to gather accurately from an overhead 

camera, such as linear velocity, angular velocity, and contact, I can first 

test to see if they are absolutely necessary for the algorithm to find an 

optimal policy. If so, then I can slowly add noise to those data points as the 

algorithm learns. This allows the algorithm to use the information while 

initially learning but progressively rely less and less on that data. Another 

way to account for contact would be to install ultrasonic sensors on each 

side of the robot. When the sensor measures an object under a minimum 

distance, it can record that it is in contact with that object. 

Using color recognition and contour detection, I extracted specific shapes 

to identify the block and robots’ information. First, I marked the blocks 

with different colored triangles. The system can identify each block based 

on the color of their triangle, as well as their location and rotation based 

Figure 28. 
An environment including five 

agents and one heavy block. Three 
of the agents collaborate to move the 

block to the goal.

a b

c d
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on the orientation of the isosceles triangle (Fig. 29). I developed a program 

that would allow users to set the final position simply by moving blocks 

into place and pressing a key. The program would then check that each 

block was in place before declaring the puzzle complete.

Color recognition and contour detection work best when there are clear 

boundaries between shapes and colors. To create a plain background, I used 

thick black paper as a non-stick and non-reflective surface for the work 

area. I painted the blocks white so they would stand out against the black 

surface. The new robots, Builder Robot 2.0, are made out of black acrylic 

and sanded down to create a matte to avoid hot spots on reflective surfaces. 

The components of Builder Robot 2.0 (Fig. 30) are the same as version 1.0, 

but the chassis and control system have been updated. The chassis now has 

an enclosed area for the batteries, Raspberry Pi, and motor hat to sit where 

the wires are contained. As I am using an overhead camera to identify the 

robotic agents, it’s important to hide any extraneous objects that may be 

visually distracting the recognition system. Each robot has its own colored 

Figure 29. 
The vision system can identify each 

block’s location and orientation 
using the triangle. The user sets 

the blocks’ final positions and the 
program can identify when the pieces 

are in place.
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Figure 30. 
Robot Builder 2.0 is built with the 
same components as Robot Builder 
1.0, but it has an updated chassis 

for being identified with computer 
vision. 

Raspberry Pi + Motor HAT

isosceles triangle for localization and orientation

batteries for Pi + Motor HAT

DC motors + wheels

acrylic chassis

marker, an isosceles triangle pointing forward with its centroid matching 

the robot’s centroid. This allows for easy tracking of the robot’s location 

and rotation. As for the control of the robot, the DC motors do not have 

consistent power from zero to full speed. At low speeds, the motors do not 

turn at all. To fix this, I tested the motors to determine at what speed they 

started moving. I remapped all speeds to be between the new minimum 

and full speed, rather than zero. 

To track the block, I initially placed another color-coded isosceles triangle 

at the center of the block, matching the centroid position of the triangle 

to that of the block while pointing up. As with the robots, this tracked the 

position of the centroid and rotation of the robot, but it did not account 

for the block’s vertices. Instead, I used a similar approach to identify the 

boundary of the block and extract its main vertices. As the block rotated, 

the order of the vertices kept shifting. It is mandatory to maintain the 

same order throughout all testing. To keep track of the vertices, I rotated 

to isosceles triangle to point to the starting vertex and sorted the vertices 

based on that point (Fig. 31). 

At this point, I had all of the primary components of the observation 

description. Next, I tested communication between the computer and 
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the robots using the library, PyOSC. I integrated the program that I 

had developed for identifying the block and robotic agents with the 

communication to send instructions to the robots while tracking their 

location. I began testing the controls of the robot in the real-world and in 

simulation to evaluate how to match the two environments. The manually-

controlled integrated system (Fig. 32) shows the agent identified on the 

left, the block with all of its points numbered and centroid calculated in 

the middle, and the final goal position on the right. 

The next step is to perform more rigorous system identification to match 

the simulation to real world as much as possible. Some issues include 

imprecise tracking of points, inconsistent control of the DC motors, and 

inconsistent friction that prevents the robot from moving the block in 

certain positions. To address the point tracking, I will add a small amount 

of noise to the simulation to better match the constant fluctuation of the 

points. Rather than use DC motors, I will look into using stepper motors 

which are much more consistent in speed and control. This may better 

translate from simulation to real world. Lastly, to deal with inconsistent 

friction, I will implement a small randomized force that pushes against 

the agent in simulation. 

Figure 31. 
Diagram of the agents pushing the 

block, demonstrating the various 
components of the vision system
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Figure 32. 
Computer vision overlay on view 

from overhead camera

 4.11 ANALYSIS + LIMITATIONS 

In this section, I use the three phases of robotic collaboration–preconditions, 

process, and outcomes–as a framework to evaluate this research. As I 

outlined in Chapter 3, the preconditions include the environmental factors 

that facilitate collaboration, the process includes the activities that take 

place during collaboration, and the outcomes are the results and methods 

for which to evaluate the success of collaboration.

In this research, the preconditions are the settings of the environment, 

abilities of the agents, and the shared or individual goals. More specifically, 

the preconditions include: number of agents;  the agent’s control system; 

the agent’s strength and observations; the agent’s ability to manipulate 

blocks; the size, density and shape of the blocks; the number of blocks; 

reward function (shared or individual); environmental settings (friction, 

damping, etc.); and initialization settings. 

I developed nine different environments, or sets of preconditions (Fig. 

33), ranging from a single block as the agent to ten agents manipulating 

the block. Within the environmental conditions, I primarily tested the 

representation of the observation data, the agent’s control system (holonomic 

or non-holonomic), the initialization settings and the number of agents.
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Figure 33. 
Overview of environments–or sets of 

preconditions–designed, programmed and tested 
in this thesis.

robotic
 collaboration

preconditions

Low-Dim
Holonomic  

Anywhere Start

Low-Dim
Non-Holonomic 

Simple Start

Low-Dim
Non-Holonomic
Anywhere Start

High-Dim (CNN)
Holonomic  

Anywhere Start

2 agents 5 agents 10 agents1 agent1 block
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After developing the first simplified environment, I had to decide between 

low-dimensional observational data (location, rotation, velocity) and high-

dimensional data (raw-pixels). Due to the extensive training time for 

CNN and lack of computing power, I decided to move forward with low-

dimensional observational data. While low-dimensional data is acceptable, 

it is not ideal when working with robots in the physical world when data 

tends to be noisy and imprecise. With more time and capabilities, I would 

push for using raw-data as input.

As discussed in Section 4.9, the agent’s control system dramatically affects 

the agent’s ability to learn complex collaborative behaviors. If the agent is 

restricted from fully exploring the space by non-holonomic control, the 

algorithm may never converge to find an optimal policy. Whereas with 

holonomic control, the agent is easily able to explore and is much more 

likely to find a successful path to the goal state through random actions. 

In addition, the initialization setting was significantly restricted if the agents 

had non-holonomic control. This restriction is a important limitation on 

the current system. In future work, I would switch back to holonomic 

control and build a new robot with omni-wheels to match the simulated 

control system. 

The most important part of collaboration is the process through which 

collaboration occurs. More specifically, the process includes the emergent 

behaviors that the agents develop through interacting with each other and 

their environment. In my research, I evaluated success through identifying 

and analyzing the emergent behaviors . These behaviors were more important 

than the specific outcomes.  

The most interesting collaborative behaviors emerged in the holonomic– 

based environments. In the non-holonomic and simplified environments, 

the agents typically learned to move towards the block and push next to 

one another. If the agents did not land on the correct side of the block or 

missed the goal, there was typically no recovery. 

In contrast, in holonomic multi-agent environments, the agents developed 

methods for collaboratively rotating the block together and pinching it 

between them while moving. Because the block was not too heavy, one 
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agent could take the lead pushing the block towards the goal, while the 

other agent learned to aid this agent by guiding the block from a different 

direction. In the environments with a much larger and heavier block, agents 

learned how to take advantage of their octagonal form and the static walls. 

By placing themselves next to the walls and with others, the agents learned 

to act as gears, mechanically pushing the block when their own strength 

was not enough.  Each of these behaviors demonstrate a new way to think 

about collaborative behavior for moving blocks. 

The final outcomes include whether the agents achieved their goal or not. 

Through this lens, the only way a collaboration could be successful is for 

the agents to move the block into place. Unsuccessful collaborations would 

include: the agents pushing the block around, but not to the specified 

goal; the agents moving in circles; or the agents going out of bounds or 

running into the walls. Another way to evaluate the outcomes in a less 

physical and spatial way is to analyze the total reward through training. 

If the agents learn to maximize the reward through training, especially if 

this is correlated to successfully manipulating the block, then this would 

be deemed successful. 

Through this research, I realized how difficult this task was, even after 

I simplified it to a single block. It is difficult for a number of reasons 

which I briefly stated at the beginning of this chapter. First, it is a multi-

agent environment which means that each agent is both observing the 

environment–either from its own perspective (MADDPG) or from an 

overall perspective (DDPG)–and changing the environment through its 

own actions. This makes it increasingly difficult for the agents to know 

which actions were important in a successful episode and which were not. 

Second, the task requires the agents to manipulate an object. Many 

reinforcement learning tasks involve the agent learning how to exist in 

an environment without manipulating anything. The tasks could include 

walking, landing, flying, driving, or maintaining some level of equilibrium. 

Rather than only accounting for itself, the agent must interact with another 

object within the environment, adding more complexity to the task. 

Third, the task of randomly initialized agents moving a block in place is a 
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multi-step task. First the agent has to find the block, then push the block 

towards the goal. It not only has to learn what to do, but what to do in a 

specific order. This adds to the issue of credit assignment, where the agent 

does not know which actions resulted in a win or a loss. 

Lastly, this task is difficult because the agent exists in continuous state 

space. This means that the agent will never be in the exact same state again. 

Therefore, it is difficult for the agent to look back on its past experience and 

predict what action to take in an entirely new state. This is exacerbated by 

the fact that the agent, block, and goal all initialize in a random location 

every episode. Because everything is changing every episode, it may have 

difficulty discerning which information is important and relevant to the 

successful series of actions, or trajectories. 
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5.1 CONTRIBUTIONS

In this thesis, I clarified the distinction between collaboration, coordination, 

and cooperation and argued why collaboration is important to take robotic 

assembly to the next level. I presented an extensive review of multi-agent 

environments and assembly processes and evaluated existing coordinated 

interaction between robots. I presented an overview of reinforcement 

learning (RL), advances in Deep RL, as well as robotic control through 

reinforcement learning. I proposed a new theory of robotic collaboration 

and presented a framework for evaluating this research. 

I designed a toy problem to enable the training of collaborative robots, and 

I developed and fabricated a team of multiple robots (two iterations). I built 

a new environment within the OpenAI gym framework wherein one or 

more agents to learn how to collaboratively move blocks–both centralized 

and decentralized control. I tested reinforcement learning algorithms (PPO, 

DDPG, MADDPG) for methods of collaborative assembly with multi-agent 

teams. I developed a framework for transferring learning from simulation 

to physical robots. Lastly, I compiled resources helpful for learning more 

about this research.

5.2 FUTURE WORK

As mentioned earlier, this thesis is only the first step in a larger effort to 

move towards autonomous collaborative robots. As such, there are many 

directions in which this research can and will go. One important step is 

to continue a focus on implementing this in the real world with physical 

robots. In this thesis, I developed a framework for transferring learning 

CHAPTER 5

CONCLUSION
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from simulation to real-world. In continuing this direction, I would focus 

on system identification to better match the simulation to real world as 

well as make adjustments to both the physical robot and digital simulation. 

Another approach is to look at methods for speeding up learning in the 

physical world without the need for a simulation. 

In addition, there are also many directions to go in terms of the different 

aspects of collaboration. In this thesis, I explored collaboration as a process 

whereby two agents with the same abilities learned to interact to push a 

block. Their abilities were somewhat limited in that they could only push 

and could not pull or grab. By working with another robot they were able 

to pinch, rotate, or guide the block together. 

Another aspect of collaboration that I am interested in is when robots have 

different skillsets and abilities. Similar to when people come together to 

collaborate on a project, the robots would have no prior knowledge about 

the other’s abilities and would need to communicate with each other 

and negotiate roles. The robots could have different sensing, strength or 

manipulation capabilities. They could also have varying knowledge of 

the goal or task at hand or intelligence and reasoning capabilities. Alone, 

neither robot would be able to complete the entire goal, but by working 

together and combining their skills they would be able to achieve much 

more. This is why there is power in collaboration. By creating a flexible 

system wherein robotic agents can adapt and learn over time, we can advance 

robotic assembly to operate in more dynamic and changing environments.
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Figure 1.	 Three rectilinear blocks that the agents learn to move together. Image by author. 

Figure 2.	 This thesis consists of the intersection of three areas of research: collaboration, robotic assembly, and 

learning. Image by author. 

Figure 3.	 Diagram mapping cooperation, collaboration and coordination along two axes (autonomy and formal 

structure). In cooperation, parties work towards individual goals, while in coordination parties work 

towards shard goals. Collaboration can include both shared and individual goals. Image by author. 

Figure 4.	 Reinforcement learning diagram. Adapted from Reinforcement Learning: An Introduction  by Sutton, 

R. S., & Barto, A. G. (2017). Cambridge, Massachusetts ; London, England: The MIT Press.

Figure 5.	 Reinforcement learning diagram comparing a dog to the agent and a trainer to the environment. 

Image by author. 

Figure 6.	 Goal task: robots collaborate to move blocks to complete puzzle in specified location. Image by author.

Figure 7.	 Conceptual diagram of robots moving blocks into place. Image by author. 

Figure 8.	 (Left) Builder Robot 0.0 concept design. (Right) Toy task of building an arch out of five blocks. 

Image by author. 

Figure 9.	 (Left) Builder Robot 1.0 concept design. (Right) Toy task of assembling a puzzle out of three blocks. 

Image by author. 

Figure 10.	 (Left) Octagonal plan of Builder Robot 1.0 (Right) Builder Robot 1.0. Image by author. 

Figure 11.	 Manually controlled Builder Robot 1.0 pushes block into place. Image by author.

Figure 12.	 MORSE manually controlled simulation environment. Image by author.

Figure 13.	 Manually controlled environment to test the controls and physics implementation. Image by author.

Figure 14.	 Diagram showing the degrees of motion of holonomic and non-holonomic control for the agents. 

Image by author.
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Figure 15.	 OpenAI gym environments: (A) Cartpole; (B) 2D Walker; (C) Atari Pong; (D) Atari Breaker. URL: 

https://gym.openai.com/envs/#classic_control

Figure 16.	 First iteration of environment: RobotPuzzle-v0. It contains a single agent with three unique blocks 

that form a square. The agent is tasked with moving the blocks to their specified location, demarcated 

by small blue dots near the center of the screen. Image by author.

Figure 17.	 Simplified environment of block learning to move itself in place. Image by author.

Figure 18.	 Observations extracted from the high-dimensional input to the CNN. Each observation contains a 

sequence of three renderings captured from three different timesteps to capture motion. In this way, 

the NN can infer motion. Image by author.

Figure 19.	 Top and bottom rows are two separate episodes of the agent manipulating the block. As mentioned, 

it pushes the block to the wall then attempts to move it away by turning its chassis. Image by author.

Figure 20.	 Diagram illustrating the two distances used for reward shaping: (a) agent_dist; (b) block_dist. Image 

by author.

Figure 21.	 Reinforcement learning diagram showing how the centrally controlled agents receive the same 

observation and reward.  Image by author.

Figure 22.	 Series of screenshots from testing episodes show collaborative methods agents learned for moving the 

block such as rotating and guiding. Image by author.

Figure 23.	 In oder to better match the real world, the updated environment does not have boundary walls and 

the agent has non-holonomic control, similar to the way the physical robots move. Image by author.

Figure 24.	 The two images are snapshots from the same simulation with different rendering techniques. The top 

more similarly represents what the agent might see, while the bottom is a full representation of the 

objects in the environment that people can easily perceive. Image by author.

Figure 25.	 Reinforcement learning diagram showing how in a decentralized multi-agent environment, agents 

receive the their own observation and reward and take their own actions. Image by author.

Figure 26.	 (Left) Holonomic controlled environment. (Right) Non-holonomic controlled environment. Image 

by author.

Figure 27.	 (Left) When collaboration is too much, all of the agents get in the way of each other. (Right) When 

collaboration turns mechanical, the agents acts as gears to mechanically move the block. Image by author.

Figure 28.	 An environment including five agents and one heavy block. Three of the agents collaborate to move 

the block to the goal. Image by author.

Figure 29.	 The vision system can identify each block’s location and orientation using the triangle. The user sets 
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the blocks’ final positions and the program can identify when the pieces are in place. Image by author.

Figure 30.	 Robot Builder 2.0 is built with the same components as Robot Builder 1.0, but it has an updated 

chassis for being identified with computer vision. Image by author.

Figure 31.	 Diagram of the agents pushing the block, demonstrating the various components of the vision system. 

Image by author.

Figure 32.	 Computer vision overlay on view from overhead camera. Image by author.

Figure 33.	 Overview of environments–or sets of preconditions–designed, programmed and tested in this thesis.

Table 1.	 This table outlines the primary difference between cooperation, coordination and collaboration. The 

columns labeled with an asterisk (*) are taken from Rogers & Whetten (1982) while the third column 

is completed by compiling research from Wood & Gray (1989) and Thomson et al.(2007). 

Table 2.	 Example code from simple cartpole environment. Edited excerpt from OpenAI gym documentation. 

URL: https://gym.openai.com/docs/
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APPENDIX

LEARNING RESOURCES

Neural Networks and Deep Learning, by Michael Nielsen

•	 http://neuralnetworksanddeeplearning.com/index.html

CS231n Convolutional Neural Networks for Visual Recognition

•	 http://cs231n.github.io/convolutional-networks/

Andrej Karpathy’s Pong from Pixels

•	 http://karpathy.github.io/2016/05/31/rl/

John Schulman’s Lectures

•	 https://www.youtube.com/watch?v=aUrX-rP_ss4

•	 https://www.youtube.com/watch?v=8EcdaCk9KaQ&t=1653s

Deep Learning for Self-Driving Cars

•	 https://selfdrivingcars.mit.edu/

OpenAI Gym

•	 Documentation: https://gym.openai.com/docs/

•	 Github: https://github.com/openai

My multi-agent environments:

•	 https://github.com/khajash/multiagent-env


