
LEARNING TO COLLABORATE
ROBOTS BUILDING TOGETHER

by
Kathleen Sofia Hajash

B.Arch - California Polytechnic State University, San Luis Obispo (2013)

Submitted to the Department of Architecture and the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degrees of

Master of Science in Architecture Studies
and

Master of Science in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

June 2018

© 2018 Kathleen S. Hajash. All rights reserved.

The author hereby grants MIT permission to reproduce and to distribute publicly paper and electronic
copies of this thesis document in whole or in part in any medium now known or hereafter created.

Signature of Author: ___
Kathleen Hajash

Department of Architecture
Department of Electrical Engineering and Computer Science

May 23, 2018

Certified by: __
Skylar Tibbits

Assistant Professor of Design Research
Thesis Advisor

Certified by: __
Patrick Winston

Ford Professor of Artificial Intelligence and Computer Science
Thesis Advisor

Accepted by: __
Sheila Kennedy

Professor of Architecture
Chair of the Department Committee on Graduate Students

Accepted by: __
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee for Graduate Students

__
Skylar Tibbits

Assistant Professor of Design Research
Thesis Advisor

__
Patrick Winston

Ford Professor of Artificial Intelligence and Computer Science
Thesis Advisor

__
Terry Knight

Professor of Design and Computation
Thesis Reader

Abstract • 3

ABSTRACT
Since robots were first invented, robotic assembly has been an important area of research in both academic
institutions and industry settings. The standard industry approach to robotic assembly lines utilizes fixed robotic
arms and prioritizes speed and precision over customization. With a recent shift towards mobile multi-robot
teams, researchers have developed a variety of approaches ranging from planning with uncertainty to swarm
robotics. However, existing approaches to robotic assembly are either too rigid, with a deterministic planning
approach, or do not take advantage of the opportunities available with multiple robots. If we are to push the
boundaries of robotic assembly, then we need to make collaborative robots that can work together, without human
intervention, to plan and build large structures that they could not complete alone. By developing teams of robots
that can collaboratively work together to plan and build large structures, we could aid in disaster relief, enable
construction in remote locations, and support the health of construction workers in hazardous environments.

In this thesis, I take a first step towards this vision by developing a simple collaborative task wherein agents learn
to work together to move rectilinear blocks. I define robotic collaboration as an emergent process that evolves
as multiple agents, simulated or physical, learn to work together to achieve a common goal that they could not
achieve in isolation. Rather than taking an explicit planning approach, I employ an area of research in artificial
intelligence called reinforcement learning, where agents learn an optimal behavior to achieve a specific goal
by receiving rewards or penalties for good and bad behavior, respectively. In this thesis, I defined a framework
for training the agents and a goal for them to accomplish. I designed, programmed and built two iterations of
physical robots. I developed numerous variations of simulation environments for both single and multiple agents,
evaluated reinforcement learning algorithms and selected an approach, and established a method for transferring
a trained policy to physical robots.

Thesis Advisor: Skylar Tibbits
Title: Assistant Professor of Design Research, Department of Architecture, MIT

Thesis Advisor: Patrick Winston
Title: Ford Professor of Artificial Intelligence and Computer Science, EECS, MIT

LEARNING TO COLLABORATE
ROBOTS BUILDING TOGETHER

by
Kathleen Sofia Hajash

Submitted to the Department of Architecture and the
Department of Electrical Engineering and Computer Science

on May 23, 2018 in partial fulfillment of the requirements for the degrees of

Master of Science in Architecture Studies and
Master of Science in Electrical Engineering and Computer Science

Acknowledgements • 5

ACKNOWLEDGMENTS

Thank you Skylar Tibbits, Patrick Winston and Terry Knight for your

critical feedback and inspiring conversations. Each of you played an

invaluable role in the development and refinement of this thesis. Thank

you Skylar for your insightful guidance, pointed questions, and continued

support. Thank you for the advice on research, robots, life, and everything

in between. Thank you Patrick for inspiring me through your lectures on

A.I., the thought-provoking class discussions in 6xxx, and advice on life

and writing. Thank you for inspiring my new perspective in understanding

human intelligence, A.I., and the human mind. Thank you Terry for

always taking the time to give me honest, in-depth, and critical feedback.

Thank you for changing the way I think about computation, making and

designing and for being there from the beginning of my time at MIT to

the end. This thesis and my experience at MIT would not be the same

without each of you.

Thank you to everyone at Self-Assembly Lab–especially Skylar, Jared,

Schendy, Björn, Mattis, Christophe, and Riley–for an inspiring research

environment, insightful conversations, continued support, as well as

plenty of laughs, adventures, and ice cream.

Thank you to everyone in the Design and Computation community–

especially Athina, Maroula, Oscar, Paloma, and Shokofeh–for the critical

discussions, study sessions, feedback, and coffee breaks.

Thank you Caris, Hosea, Igor, John, and Tailin for your invaluable advice

and feedback on reinforcement learning.

Thank you to everyone at Architecture Headquarters, CRON, and of

Acknowledgements • 6

course Inala for making these past two years run smoothly and always

being there to help out.

Thank you MIT Department of Architecture, MIT IDC, and the Harold

Horowitz (1951) Student Research Fund for the resources, facilities and

financial support that made this all possible.

Thank you Kathy, Nava, Melissa, and Adrian for your continued

friendship, inspiring conversations, dinner breaks, Skype calls, and

unwaivering support throughout the years.

Thank you David for your tremendous amount of support, inspiration,

motivation, and patience over the past two years.

Thank you to my parents, Donna and Andy, and my brother, John for

sticking by me throughout my adventures across the country. Thank

you for the incredible amount of patience, love, and support you have

provided me from day one.

This thesis is dedicated to my family, especially my Busia, Dza dza,

Grandma, and Grandpa who will always stay with me and continue to

inspire me by their courage, love, compassion, and dedication.

Table of Contents • 7

1. INTRODUCTION

2. BACKGROUND
2.1 Collaboration

2.2 Robotic Assembly

2.3 Reinforcement Learning

3. A NEW THEORY OF ROBOTIC COLLABORATION

4. APPROACH
4.1 Defining The Toy Task

4.2 Building The Robot

4.3 Developing The Simulation Environment

4.4 OpenAI Gym Framework + Choosing an RL Algorithm

4.5 Troubleshooting

4.6 CNN vs. Low-Dimensional Observation Space

4.7 Improving the Environment with DDPG

4.8 Moving to a Decentralized Approach: MADDPG

4.9 Holonomic vs. Non-Holonomic Control

4.10 Framework for Simulation-to-Real-World Transfer

4.10 Analysis + Limitations

5. CONCLUSION
5.1 Contributions

5.2 Future Work

APPENDIX

TABLE OF CONTENTS

Introduction • 9

I envision a future where an architect can design a building and send a 3D

model or sketch1  to a group of mobile robots that self-organize to build

directly from that model. As the robots start construction, the architect can

observe the process, realize that she wants to make changes to the design,

update the model, and resend to the robots. They would immediately

switch to the new model and make any updates necessary. The robots

could be a diverse group with many different functions and skills between

them. Some could lay rebar, while others could pour and print concrete.

Others may climb walls to detail hard to reach places. They would have

different strengths and have to communicate and negotiate roles within

the group. In essence, the robots would work together to build the physical

manifestation of the 3D model, responding to changes in environment,

updates in the model, or surprises in the material. They would have the

intelligence to solve complex problems, the social skills to negotiate and

communicate, and the physical abilities to build.

From the first industrial robotic arm to Marvin Minsky’s Tentacle Arm,

robotic assembly has been a focus of research since the beginning of

robotics in early 1960s (“Real-World Machines,” 1968; Stone, 2004).

In practice today, robots are often used for repetitive or dangerous tasks,

such as assembly lines in the automotive industry. The setup for assembly

lines is extremely time-consuming, requiring a highly skilled technicians

to program and test the robots to achieve the high-precision necessary. By

repeating the same task, the return on time invested is through speed and

efficiency but is typically lacking in flexibility. In academia, some researchers

have taken a distributed approach and built many small, cheap robots that

can assemble a large structure faster than one could alone. Others have

[ 1 ] 
When complete control is desired, the

final structure could be determined
by a 3D model. In other situations
such as rebuilding after a disaster,

the goal may be to build many
shelters quickly but the specifics are
not as important. Here, the robots

could work with certain parameters
(height, width, and enclosure

parameters), the site-specific
constraints, and material constraints

to build an appropriate shelter.

CHAPTER 1

INTRODUCTION

Introduction • 10

developed new methods of coordination between multi-robot teams. While

these approaches make great strides forward, they are often too rigid, not

allowing for variability in the environment or changes in material. Small

changes could disrupt the entire process. If we are to push the boundaries

of robotic assembly forward, then we need to make collaborative robots

that can work together, without human intervention, to plan and build

large structures that they could not complete alone. I argue for a flexible,

collaborative, and interactive system that can adapt and learn over time.

In order to have a discussion about collaborative robots, it is first important

to define collaboration in terms of this thesis. There are certain terms that

have many definitions and can mean something different to every person.

Minsky (2007) described these terms as suitcase words, as they embody

many different definitions all packed into a single word. Like consciousness

and intelligence, I argue that collaboration is another suitcase word.

While collaboration has been a focus of research in many disciplines, such as

business, politics, and national security, there is no consensus on a general

theory of collaboration. Some researchers have undertaken studies and

attempted to define common metrics by which we can evaluate collaboration

(Thomson, Perry, & Miller, 2007). Collaboration is an evolving process

whereby parties with different viewpoints, backgrounds, or resources come

together to achieve a goal, either shared or individual, going beyond the

capabilities of a single party. Collaboration, cooperation and coordination

are often confused because they are similar forms of interaction, but the

cooperation and coordination are static structures that can be contained

within collaboration.

I define robotic collaboration as an emergent process wherein agents learn

about each other and their environment through interacting and develop

new rules and patterns of behavior enabling them accomplish something

that they could not do alone. To take a first step towards this vision, I

have developed a group of agents that learn how to collaborate and work

together to move rectilinear blocks (Fig. 1). These aspects of collaboration

and learning are the key differences from current methods in robotic

assembly. By taking a collaborative approach to robotic assembly, I can

define a strategy wherein the process will consistently be more robust,

Introduction • 11

flexible, and adaptive than coordinated interaction.

To do this, I prioritize the interaction between robots over physical hardware

or complex formal designs. Rather than taking an explicit planning approach,

I apply an area of research in artificial intelligence called reinforcement

learning. Drawn from behavioral psychology, reinforcement learning is

a machine learning approach where agents learn an optimal behavior to

achieve a specific goal by receiving rewards or penalties for good and bad

behavior, respectively. By altering the reward structure to be individual or

collectively shared, I evoke different behaviors - for example competitive

versus collaborative.

The priority of this research is to develop robots that learn to collaborate to

assemble something they could not complete alone. This is the first phase

of a larger effort to advance robotic assembly towards utilizing autonomous

collaborative robots. More specifically, I propose a multi-robot scalable

system wherein robots can operate in dynamic environments and, in real-

time, evaluate their surroundings to adjust their next steps.

In this thesis, I define a framework for training the agents2 and a goal for

them to accomplish. Using this framework, I designed, programmed and

built two iterations of physical robots. I developed numerous variations

of simulation environments for both single and multiple agents, evaluated

reinforcement learning algorithms and selected an approach, and established

a method for transferring the trained policy to physical robots.

By developing teams of robots that can collaboratively work together

to plan and build large structures, we could aid in disaster relief, enable

construction in remote locations, and support the health of construction

workers in hazardous environments. Collaborative robots would have the

ability to evaluate their surroundings, negotiate roles amongst themselves,

communicate tasks, and pool their skills. This approach is scalable, robust,

and adaptive to changes over time. In addition, this technology would

contribute greatly to the architecture, engineering, and construction (AEC)

industry in speed and customization.

For example, It does not take much imagination to picture a city recently

ravaged by a hurricane. It can take years to rebuild and sometimes months

[ 2 ] 
In this thesis, agents refers to both

simulated agents and physical
robotic agents. I explain the

terminology between agents, robots
and robotic agents in Section 4.1.

Figure 1.
Three rectilinear blocks that the

agents learn to move together.

Introduction • 12

to even clear the debris. What if we could deliver a team of mobile robots

that could work together to clear debris and rebuild in a particular site?

Rather than making one or two huge expensive robots, we could send a

dozen smaller robots that could combine their abilities to achieve more

than a single robot. This would lead to a more flexible system, where robots

would not be limited to their own individual abilities, but those pooled as

a group. Other applications may include construction in remote locations

such as military deployment, hard to reach sites, or even Mars.

My research is developed in six primary stages: (1) define the toy task; (2)

build the robots and the puzzle to assemble; (3) develop the 2D simulation

of a single agent and single block; (4) expand simulation to include multiple

agents; (5) move to a decentralized approach with each agent learning

separately; (6) build framework for learning transfer from 2D simulation

to physical robots in multi-agent collaborative environment.

Following this introduction, I cover the following topics. In Chapter 2, I

dive into the background information of three important areas of research

relevant to this thesis: collaboration, robotic assembly, and reinforcement

learning. In Chapter 3, I define a new theory of robotic collaboration,

grounded on research presented in Chapter 2.

In Chapter 4, I outline my approach to building collaborative agents. I define

a toy task for evoking collaborative behavior. I develop an environment,

in both the simulated and real world, for training agents to move blocks.

I present my process of testing multiple physics engines and simulation

environments, iterating through a variety of environments with the number

of agents ranging from zero to ten, and evaluating different reinforcement

learning approaches. I build a framework for simulation-to-real-world

transfer. Lastly, I review and evaluate my research, highlighting the successes,

limitations, and challenges.

In Chapter 5, I present the primary contributions of this research, which

include: developing a new theory of robotic collaboration, implementing

novel collaborative behavior between agents, developing and fabricating of

a team of multiple robots, building a framework for transferring learning

from simulation to real world, presenting an evaluation of existing

Introduction • 13

coordinated interaction between robots, and evaluating reinforcement

learning algorithms for methods of collaborative assemblies with multi-

robot teams. In addition, I outline future work.

Background • 15

In this chapter, I outline the three main areas of research relevant to

this thesis: collaborative behavior, robotic assembly, and reinforcement

learning. In the first section, I give an overview of collaboration from a

variety of viewpoints and highlight the differences between collaboration,

coordination, and cooperation. In the second section, I present relevant

research on robotic assembly and multi-agent environments including

robotic assembly lines, agent-based systems, swarm robotics, and multi-

robot coordination. Lastly, I present a general outline of reinforcement

learning, a subset of machine learning and argue why this approach is

relevant.3

2.1 COLLABORATION

Over the past few decades, collaboration has received a lot of attention

from researchers in fields ranging from microeconomics and business to

politics and behavioral science. However, there is still a lack of consensus

on a cohesive definition and overarching theory of collaboration (Gray

& Wood, 1991; Thomson, Perry, & Miller, 2007). Collaboration can be

understood at three different levels: interpersonal or team-based, intra-

organizational, and inter-organizational (Colbry, Hurwitz, & Adair, 2014).

The most relevant theory on collaboration comes from Gray who defined

collaboration as “a process through which parties who see different aspects

of a problem can constructively explore their differences and search for

solutions that go beyond their own limited vision of what is possible” (Gray,

1989, p. 5). This description can be used to describe collaboration from

the scale of individuals to organizations or even governments. It contains a

number of important points worth unpacking. The most important point

[ 3 ] 
This thesis only includes a general

overview of reinforcement learning
(RL) for purposes of understanding

the research. For readers interested in
learning more, I provided detailed

resources in the appendix.

CHAPTER 2

BACKGROUND

Figure 2.
(Opposite) This thesis consists of the

intersection of three areas of research:
collaboration, robotic assembly, and

learning.

Background • 16

is that collaboration is a process–not something that is fixed or static.

Gray expands on this point by describing it as “an emergent process rather

than a prescribed state of organization,” wherein one can begin to understand

the origins and evolution of the organization over time (Gray, 1989, p.

15). In addition, collaboration is an active process where both parties are

participating, learning about each other, and searching for a mutually

beneficial solution. There is always a phase of exploration, especially at

beginning of establishing a collaborative relationship, where each party

needs to learn about the other’s capabilities, motivations, constraints, and

final goals. Through this exploration it is possible to establish a framework

for the relationship, or alliance, but it is important to remember that this

framework is fluid and will often adjust over time.

Another key point in collaboration is that by coming together, the

collaborative alliance can produce a result that is greater than one could

alone. This can often be through vision, physical resources, or abilities.

Because collaboration is voluntary and both parties can leave at any time,

there is typically a mutually beneficial goal that brings groups together,

something they could not achieve alone.

COLLABORATION: PRECONDITIONS, PROCESS AND OUTCOMES

In “Collaborative Alliances: Moving From Practice to Theory,” Gray and

Wood (1991) outline six theories of collaboration by evaluating nine

research articles studying collaboration in a variety of settings, including

resource dependence theory, social ecology theory, negotiated order theory,

etc. The vast range of applications and settings for collaborative alliances

makes it difficult for a single theory to emerge. Through their analysis, Gray

and Wood (1991) defined three primary components of collaboration–

preconditions, process, and outcomes–yet they note that the process is the

least studied area.

The preconditions are the factors that make a collaboration possible.

These are the motivations that each party may have and the environmental

conditions that facilitated to alliance to form. The players may have a

shared vision, or they may have different goals but can only achieve their

individual goals by working together.

Background • 17

Next is the process by which collaboration happens. In their synthesis of

theories, Wood and Gray (1991) noted that only three of the six theories

addressed process and argue that more research is needed to understand

what contributes to the active collaborative process. Those theories that

address the collaborative process view it not as a stagnant process or a fixed

structure, but as a phenomenon that is dynamic and ever evolving.

The last component of collaboration is the outcome, which includes the

metrics by which groups can evaluate the success of the collaboration.

To evaluate these outcomes, researchers asked questions regarding which

problems were solved and to whom did they benefit, if the alliance transform

through the process and did it survive, and if participants agree on shared

norms (Gray & Wood, 1991).

Noting the lack of empirical data, Thomson et al. (2007) undertook

a research effort to understand and measure the collaborative process.

They describe five primary dimensions of collaboration: governance,

administration, mutuality, norms and organizational autonomy (Thomson

et al., 2007). Governance and administration share similarities in that they

are about structural organization. Governance applies to the process of all

parties jointly defining the rules and structures that will guide the future

of their relationship, while administration is more about management,

communication, implementation and coordination. Mutuality refers to the

interdependence that both parties share; each benefit from their relationship,

but not necessarily in the same way. Norms are mostly about the trust that

both parties must develop for one another. As they each contribute to the

collaboration, the trust can grow. Lastly, organizational autonomy refers

to the fact that each party comes to the table voluntarily and they may

have competing interests between their interest of their alliance and the

self-interest of their respective organizations.

COLLABORATION, COOPERATION AND COORDINATION

Now that I have established a general understanding of collaboration, it is

important to clarify how collaboration is distinct from coordination and

cooperation; each is a distinct and separate concept of interaction (Gray

& Wood, 1991; Rogers & Whetten, 1982). As Gray and others undertook

Background • 18

an effort to define collaboration in the late 1980s and 1990s, Rogers and

Whetten (1982) sought to organize and evaluate the existing research on

coordination stemming back to the 1950s. Inter-organizational coordination

is a “process whereby two or more organizations create and/or use existing

decision rules that have been established to deal collectively with their

shared task environment” (Rogers & Whetten, 1982, p. 12). 	

In clarifying the differences between cooperation and coordination, Rogers

and Whetten evaluated the two theories on the following five axes: rules

defined, goals emphasized, linkages between parties, resources dedicated,

and level of autonomy maintained. In Table 1, I include the five categories

as listed in Rogers & Whetten (1982, p. 13) and their descriptions for

cooperation and coordination with an additional column for collaboration.

Cooperation (Table 1, Col. B) is the least structured of the three methods

of interaction. It requires a significant amount of trust as there are no

formal rules for the relationship, but there is also less commitment and

risk involved. There are typically no formal linkages between parties, either

horizontally or vertically in structure. Each party has their own goals–they

may commit fewer resources than coordination and do not abandon any

autonomy in their ability to make decisions (Rogers & Whetten, 1982).

Coordination (Table 1, Col. C) is the most structured and formal of the

three methods of interaction. It employs specific rules for shared goals and

structured linkages between organizations as the relationships can grow

complex to avoid inefficiency. As the relationship, linkages and interactions

grow in complexity, it may be likely that the organizations have to relinquish

some aspects of their full autonomy. In addition, coordination is likely to

require high ranking personal in order to make decisions quickly and a

significant amount of resources (Rogers & Whetten, 1982).

In collaboration, (Table 1, Col. D) all parties either maintain full autonomy

or, in special cases, agree as a group to give certain aspects of their autonomy

to the alliance as a whole (Wood & Gray, 1991). In contrast to cooperation,

collaboration does mandate rules to guide the process, but all parties come

to the table without rules in place and must jointly and explicitly decide

what those rules are (Thomson et al., 2007; Wood & Gray, 1991). Groups

Background • 19

can either have shared goals or different goals, but may have complementary

resources that make a collaboration mutually beneficial (Thomson et al.,

2007; Wood & Gray, 1991).

It is important to keep these definitions of cooperation, coordination, and

collaboration in mind throughout the rest of this thesis. The most important

axes are the formal structure, level of autonomy maintained, and the goals

as shared or individual (Fig 2). To summarize, in cooperation, parties work

together to achieve separate goals with few rules guiding their relationship

and maintaining their individual autonomy. In coordination, parties work

together with formal rules to achieve a common goal, relinquishing a

significant amount of autonomy. Lastly, in collaboration, parties work

together to achieve individual and shared goals. They jointly decide on

rules that guide their interaction and the maintain a significant amount of

autonomy. An significant aspect of collaboration is that by coming together,

the parties are able to achieve more together than alone. The distinction

between the three theories provides a framework for understanding the

different approaches to robotic assembly.

In the following section, I describe a number of techniques for multi-

robot environments. The majority of researchers describe their multi-

robot environments as cooperative or coordinated, while a couple claim

[A] Criteria*

Rules and formality

Goals and activities
emphasized

Implications for vertical/
horizontal linkages

Personal resources involved

Threat to autonomy

[B] Cooperation*

No formal rules

Individual organization’s
goals and activities

None, only domain
agreements

Relatively few–lower
ranking members

Little threat

[C] Coordination*

Formal rules

Joint goals and activities

Vertical or horizontal
linkages can be affected

More resources involved –
higher ranking members

More threat to autonomy

[D] Collaboration

Jointly define formal or
informal rules

Both shared and individual
goals and interests

Typically horizontal
linkages between
organizations

More resources involved –
higher ranking members

Maintain autonomy, but
can be conflicted between
organizational self-interest
& collective interest

Table 1.
This table outlines the primary
difference between cooperation,

coordination and collaboration. The
columns labeled with an asterisk (*)

are taken from Rogers & Whetten
(1982) while the third column is
completed by compiling research
from Wood & Gray (1989) and

Thomson et al.(2007).

Background • 20

to be collaborative. I present an argument for why none of them are truly

collaborative, and why collaboration is vital in advancing autonomous

multi-robot assembly.

2.2 ROBOTIC ASSEMBLY

While automated devices powered by water originated in 3000 B.C. with

the Egyptians, the first modern robot was not invented until the 1950s

(Hall, 1985). This history of robots has deep roots in both academic

research and industrial applications. After inventing the first modern-day

robot in 1954, George Devol was joined by Joseph Engelberger to develop

the first industrial servo-controlled robot, Unimate (Stone, 2004). GM

purchased the first Unimate in 1961, and from there robotics began to play

a huge role in industry settings taking over tasks that were too dangerous

or repetitive, as well as assembly of automobiles, computers, motors, and

even robots (Hall, 1985).

Concurrent with industry, research labs were instrumental in advancing

robotic research. By 1968, Marvin Minsky had developed the Tentacle Arm

which used vision to stack blocks of varying sizes (“Real-World Machines,”

1968). Stanford Research Institute (SRI) quickly followed with the Stanford

arm in 1969 and developed Shakey in 1972 as the first mobile robot capable

of reasoning about and navigating its surroundings (Stone, 2004).

MICRO-WORLDS + BLOCKS WORLD

The idea of working in a simplified world of blocks has strong roots at the

Massachusetts Institute of Technology (MIT). In 1970, Minsky and Papert

sent out an internal MIT memo describing micro-worlds, a simplified and

“fairyland” environment, as a new focus of research arguing that it allows

them to focus on important topics without the challenges of the realities

in the physical world (Minsky & Papert, 1970). Among the micro-worlds

is the “blocks world,” used as a robotics environment and a children’s

story environment (Minsky & Papert, 1971). Patrick Winston (1970)

developed a program that could learn to recognize block configurations

by being presented examples, near-misses, and non-examples. Separately,

Terry Winograd (1971) implemented the blocks world for his program

SHRDLU, whereby human users place requests to move blocks using

Figure 3.
Diagram mapping cooperation,
collaboration and coordination
along two axes (autonomy and

formal structure). In cooperation,
parties work towards individual

goals, while in coordination
parties work towards shard goals.

Collaboration can include both
shared and individual goals.

collaboration

cooperation

coordination

formal structure

au
to

no
m

y

Background • 21

natural language.

Drawing from this foundation of micro-worlds, I developed a toy problem

within my own simulated “blocks world.” While this is a simplified problem

using blocks, it is intended to simulate a simple physical task in the real

world for eventual transfer and not exist solely in the “fairyland” realm. In

Chapter 4, I explain my process of defining and building a blocks-based

environment. As this thesis is about collaboration between agents, I focus

the remainder of this section on approaches that utilize two or more agents,

including agent-based modeling, distributed swarm robotics, and multi-

robot coordination.

AGENT-BASED MODELING

Agent based modeling (ABM) is a popular approach for simulating

complex systems and identifying emergent, bottom-up patterns, especially

in political, social, and economic sciences (Bonabeau, 2002). Examples

of applications include social interaction, traffic flow (automobile and

pedestrians), market simulation, and diffusion, to name a few (Bonabeau,

2002; Chen, 2012; Macal & North, 2005). While there is significant

debate about what constitutes an agent, there is agreement that agents

are independent, discrete, autonomous, and interact in an environment

with other agents (Bonabeau, 2002; Macal & North, 2005). The scale of

ABM tends to vary from small simulations capable of handling dozens to

hundreds of agents to larger simulations modeling thousands to millions

of agents (Macal & North, 2005). Based on this research, I classify ABM

as coordinated interaction because agents act based on fixed rules that

guide their behavior.

There is some confusion about the differences between ABM and multi-

agent systems (MAS). While some recognize ABM and MAS as the

same approach (Chen, 2012), Niazi and Hussain (2011) performed a

scientometric survey4  of over a thousand articles covering the concept

of “agents,” arguing that they are distinct but similar domains. MAS are

more associated with artificial intelligence and robotics, while ABM is

often applied to the social, biological, and environmental sciences (Niazi

& Hussain, 2011).

[ 4 ] 
Scientometrics is “the quantitative
study of scientific communication”

(Niazi & Hussain, 2011, p. 4)

Background • 22

While this thesis involves agents and emergent behavior, it is situated more

in the realm of MAS than in ABM. As discussed above, ABM focuses

on emergent patterns at a scale of interaction (dozens to millions) much

larger than the scope of this thesis (two to four). In addition, ABM is more

associated with simulating a complex system of interaction between many

agents in order to understand more about the system or predict implications

of a decision. As a MAS, this thesis employs methods of artificial intelligence

to engineer emergent behavior.

DISTRIBUTED SWARM ROBOTICS

With early roots in agent-based systems (Macal & North, 2005), swarm

robotics is a decentralized and distributed approach to robotic assembly.

Here, researchers utilize swarm robotics to assemble blocks or building

components into larger structures. Swarm robotics is “a field of multi-

robotics in which large number of robots are coordinated in a distributed

and decentralised way” (Navarro & Matia, 2012). This strategy completely

eradicates any restrictions on the build volume because the work is split

between many autonomous mobile robots.

In the project, TERMES, Peterson, Nagpal, and Werfel (2011) created

climbing robots that could stack blocks to build specified structures. As

part of an effort to move towards autonomous on-site robotic construction,

Melenbrink, Kassabian, Menges, and Werfel (2017) developed a simulation

wherein agents could build a cantilevered structure through local awareness,

checking the forces of the structure they were building. In typical swarm

projects, the robots are all identical and complete the same tasks. They

operate autonomously, sensing their local surroundings to avoid obstacles

and one another. Unfortunately, the most interaction the robots have with

one another is to avoid collision. If a block is larger than expected, these

robots cannot work together to move it into place. They must always operate

as individuals and can never improvise to lend a hand or arm.

In the distributed swarm approach, the robots are coordinated in that they

are working together with a shared goal of building a structure, but they

are designed and programmed in such a way that they could operate in

isolation or with others. They cannot tell the difference. To facilitate this,

Background • 23

every building component is scaled to the size of an individual robot. If the

robots encountered a larger brick or two were accidentally fused together,

they would not be able to move it and would require human intervention.

In this instance, I argue for robots that can evaluate if they need aid from

another robot, call for assistance, and move the larger block together. This,

I argue, is robotic collaboration.

MULTI-ROBOT COORDINATION

Over the past decade, architectural researchers have been increasingly

exploring fabrication and assembly processes with multiple robots. In 2011,

the Southern California Institute of Architecture (SCI-Arc) opened Robot

House, a lab with five Staubli robotic arms with intersecting work spheres

(Winstanley, 2011). Over the years, SCI-Arc students have demonstrated

expertise in planning complex interactions and coordination of multiple

robotic arms to build glass sculptures, display light-shows, paint portraits,

and more (Testa, 2017). In 2016, ETH Zurich opened their own Robotic

Fabrication Lab (RFL) with four industrial six-axis robotic arms (Gramazio

Kohler Research, 2016). Unfortunately, while this coordination is impressive,

it is also extremely tedious work, requiring careful planning and meticulous,

slow test runs.

Other researchers have taken an aerial approach to assembly, using drones

to aid in larger scale constructions, unhindered by the limited work-sphere

of fixed robotic arms. Augugliaro et al. (2014) used a group of four drones

to autonomously assemble a multi-story structure. Felbrich et al. (2017)

used drones to bridge the spatial gap between two fixed robotic arms by

passing a fiber effector for winding back and forth, similar to a weaving

shuttle. Both of these approaches were centrally controlled with a dispatcher

sending tasks to the various robots in a predetermined sequence.

Lastly, there has been significant research in assembly with multi-robot

teams using a planning approach from artificial intelligence. Here, a planner

takes in a variety of constraints and parallelization, returning an optimal

plan and set of instructions for completing the task. Dogar et al. (2015)

developed a multi-scale perception system that utilizes computer vision

in combination with other sensors to alternate between different levels of

Background • 24

precision when assembling a scaled-down plane wing. Knepper, Layton,

Romanishin, and Rus (2013) built a series of pre-planners, planners and

control systems that can take data on individual components and determine

the way the pieces fit together, an assembly sequence and lastly dispatch

the instructions to a group of robots.

While Dogar et al. (2015) and Knepper et al. (2013) make great strides

in multi-robot assembly, their systems are rigid with specific modes

of interaction between the agents. For example, when the robots are

transporting a panel in Dogar et al. (2015), they execute an algorithm

called “fleet control,” where each robot grabs the panel at some location,

then the robots move as one to transport the panel. If there is a narrow

pathway or obstacles where the robots need to reorganize around the panel,

they would not be able to do so.

For all of the projects described above, I argue that the missing ingredient

is collaboration. All of the multi-robot teams act in coordination, but not

collaboration. Coordination, as described in Section 2.1, is a predetermined

process with a fixed set of rules for interaction. In these projects, the

robots worked together to execute pre-planned steps without the ability

to improvise interaction or change steps based on current environmental

factors. Their interaction with each other is specified and does not vary.

In contrast, collaboration is a more flexible process wherein robots work

together to complete tasks through responding to their environment,

improvisation, and defining their own rules for interaction.

2.3 REINFORCEMENT LEARNING

Concluding this review of robotic assembly, I argue that collaborative

behavior is the missing ingredient in current approaches. By interacting

with each other and their environment, robots can learn how to work

together to achieve something that they could not do alone. In order for

the agents, simulated or physical, to learn, I employed an approach called

Reinforcement Learning (RL). Drawn from behavioral psychology, RL is

an area of research within machine learning (ML) and artificial intelligence

(AI) whereby agents learn behavior by interacting with their environment

and receiving reward signals as feedback.

Background • 25

In this section, I present an overview of reinforcement learning, outline

recent advances in deep reinforcement learning (Deep RL), and evaluate

relevant research in multi-agent and multi-robot domains, as well as

simulation-to-real-world transfer.

ROBOTICS + REINFORCEMENT LEARNING OVERVIEW

Reinforcement Learning (RL) is based on Markov decision processes (MDPs)

or, as is often in robotic situations, partially-observable Markov decision

processes (POMDPs). In an MDP, an agent exists in an environment in

discrete time (Fig. 4). At each timestep, the agent receives an observation

about the current state s of the environment. The agent then chooses an

action a to perform in the environment. As a result of that action a , the

agent transitions to a new state s’ and receives a reward r (Sutton &

Barto, 2017). A formal definition of an MDP is a 5-tuple that contains: a

finite set of states S , a finite set of actions A , a transition function that

maps the probability that an action a in state s at timestep t will

result in transitioning to state s’ at timestep t+1 , a reward r after

each transition, and a discount factor.

Agents are “complete, interactive, goal-seeking” meaning they “have explicit

goals, can sense aspects of their environments, and can choose actions to

influence their environments” (Sutton & Barto, 2017, p.3). In a POMDP,

the agent is not able to see the entire state of the world; therefore, it is

partially-observable. Rather than receiving the full state of the environment

at each timestep, the agent receives an observation of the environment

from its perspective.

With MDPs and POMDPs, the agent has either a probabilistic or

deterministic model that maps states to action. In other words, it has a

policy that tells the agent what action to take at each timestep. In RL, the

goal is to learn the optimal policy that maximizes its reward. Over the years,

researchers have developed a variety of approaches to learn the optimal

policy, and these primarily break down into two categories: dynamic

programming including value iteration, policy iteration, and Q-learning;

and policy gradient methods including actor-critic policy gradient and

monte-carlo policy gradient. 5 

[ 5 ] 
For more detailed information about
these approaches and the foundations
of reinforcement learning, (Sutton &

Barto, 2017) is a keystone resource.

Background • 26

To understand RL, it can help to think about it in terms of training a

dog (Fig. 5). In this example, the dog is the agent, and the trainer is the

environment. The trainer gives the dog a signal, for example a hand sign to

sit. The dog receives this observation from the environment. In reaction, the

dog either sits or not. If the dog successfully sits, then the trainer rewards

it with a treat, i.e. positive reinforcement. If not, then the trainer does not

award the dog anything and continues to send it the signal. In RL, instead

of treats, the agent receives numeric points, either positive or negative, as

rewards. Every time the dog sits, the environment resets to its initial state

with the dog not sitting and no signals. Then training begins again.

This is an example of an episodic task where the agent learns through a

series of episodes that end when the agent enters the terminal state or

reaches the maximum number of steps in an episode, whichever comes

first. A continuing task does not have a terminal state and has an infinite

horizon in terms of time. As the aim of RL is to maximize its reward, a

continuing task has an additional challenge when it comes to finding a

maximum over infinite time. To handle this issue, RL employs the use of a

discount rate, a parameter [0, 1], that makes earlier rewards have a higher

impact over rewards later on in time (Sutton & Barto, 2017). The task

that this thesis addresses is an episodic task; therefore I focus my attention

on episodic learning.

Action and state (or observation) spaces can either be continuous or discrete.

Using an action space as an example, continuous refers to when the action

can be any floating point number within a specified range, such as linear

Figure 4.
Diagram showing cyclical agent-

environment interaction in an MDP.
Adapted from Sutton & Barto

(2017, p. 38)

Background • 27

velocity. In contrast, a discrete action space consists of a set of separate

and distinct actions from which one of those actions can be selected at any

time. For example, up, down, left and right could be a discrete action space.

In addition, rewards are often shaped or discrete. The example of teaching a

dog to sit =(Fig. 5) is an example of discrete rewards. The dog either receives

a +1 or a 0 at the end of each episode based on whether the it successfully sits

or not. Shaped rewards are often used in continuous state (or observation)

space to give the agents hints to the goal state. For example, if the goal of

an agent is to move to a specific target, a shaped reward would be a living

penalty based on the agent’s distance to the target. If the agent is far away,

it receives a larger penalty than when it is close to the target. Video games

are ideal for RL because of the preprogrammed rewards for achieving

success in the game and the discrete set of actions from which to choose.

In terms of robotics, there are three primary approaches to programming

robots and giving them new skills: direct programming, imitation learning,

and reinforcement learning (Kormushev, Calinon, & Caldwell, 2013). Direct

programming is a low-level approach and tends to be more deterministic.

Imitation learning includes multiple approaches, from teleoperation, to

physically moving the robot into place and recording the motion, to the

robot learning by observing a demonstration of the task (Kormushev et al.,

2013). In contrast, the main ambition of robotic RL is to give the robots

the “ability to learn, improve, adapt and reproduce tasks with dynamically

changing constraints based on exploration and autonomous learning”

(Kormushev et al., 2013, p. 122). While there are two primary approaches–

Figure 5.
Reinforcement learning diagram

comparing a dog to the agent and a
trainer to the environment

Background • 28

value-function-based and policy-search–in robot reinforcement learning,

policy-search is more common because it can handle high-dimensional

state and action spaces (Kober, Bagnell, & Peters, 2013).

ADVANCES IN DEEP REINFORCEMENT LEARNING

Over the past five years alone, researchers have made great strides forward

against some long-standing challenges in RL. Neural Networks (NN) and

Deep Neural Networks (DNN) 6  in combination with hardware advances

have enabled researchers to work on harder problems and even work

directly with images (raw pixels) as input. Depth of a network refers to

the number of hidden layers used in the network, with deep generally

meaning more than one. Since the breakthrough in image classification

in the annual Imagenet competition (Krizhevsky, Sutskever, & Hinton,

2012), convolutional neural networks (CNN) and deep neural networks

have become increasingly popular.

Drawing from recent advances in image classification and speech

recognition, researchers at Google DeepMind integrated CNNs with

a version of the traditional Q-learning algorithm,[ 7 ] presenting a new

algorithm Deep Q-Network (DQN) that learned how to play seven Atari

2600 games purely through pixels (Mnih et al., 2013). DQN could take

high-dimensional continuous data as input, opening the door to using

raw pixels as input without post-processing or specified contour and

shape detection. Unfortunately, DQN was restricted to low-dimensional

discrete data as output, therefore limiting its applications. It is possible to

discretize7 continuous actions, but for complex controllers for robotic arms

with 6-axis, the discretized spaces become intractable–also known as the

curse of dimensionality (Bellman, 1957).

To address this issue of continuous control in action spaces, Lillicrap

et al. (2015) developed an algorithm called deep deterministic policy

gradient (DDPG), based on deterministic policy gradient (Silver et al.,

2014) and taking insights from DQN (Mnih et al., 2013). Using the

same network architecture and hyper-parameters, DDPG was able to find

competitive policies for over 20 simulated physics-based tasks. In addition,

they demonstrated the algorithm’s ability to learn from low-dimensional

[ 6 ] 
To learn more about neural

networks, convolutional neural
networks and deep learning, I have

a section on learning resources in the
appendix.

[ 7 ] 
Discretizing refers to the process of

turning a continuous action, such as
velocity, into a discrete set of actions.

Background • 29

observational data (location, velocity, etc.) and high-dimensional data such

as raw pixels, also called “end-to-end learning.”

In RL, there is a trade-off between exploration and exploitation. Exploitation

refers to following the current policy by selecting the best known action,

while exploration would be trying a new action (Sutton & Barto, 2017).

This can be compared to a common example of selecting a restaurant for

dinner. Exploitation would be choosing your favorite restaurant, while

exploration would be choosing a new restaurant which could potentially

be your new favorite or be considerably worse. A standard approach to

adding more exploration is to add noise to the action selection process. In

recent advances, it was found that adding parameter space noise to existing

RL algorithms can improve exploration and performance (Plappert et al.,

2017). This approach was demonstrated using both algorithms mentioned

above, DQN (Mnih et al., 2013) and DDPG (Lillicrap et al., 2015), as

well as TRPO (Schulman, Levine, Moritz, Jordan, & Abbeel, 2015).8

Lastly, there is great interest in the interaction between multiple agents

and understanding how they evolve together, both in competitive and

cooperative environments. Lowe et al. (2017) expanded on the DDPG

algorithm to include learning for multiple agents. They present a general-

use and flexible multi-agent learning algorithm called multi-agent deep

deterministic policy gradient (MADDPG) (Lowe et al., 2017).

MULTI-ROBOT + MULTI-AGENT RL

To demonstrate the variety of applications MADDPG could be applied

to, Lowe et al. (2017) built eight multi-agent environments including

cooperative navigation, keep-away, and predator-prey, among others. The

environments were either cooperative or competitive, and some included

aspects of communication. In earlier work in the multi-agent domain,

Mordatch and Abbeel (2017) demonstrated how simulated agents could

develop compositional language in order to collaborate and achieve specific

goals. They trained the agents using reinforcement learning with carefully

designed goals to encourage communication and coordination. These

projects is an ideal example of using reinforcement learning to promote

group interaction and complex behavior.

[ 8 ] 
Baseline versions of these algorithms

are all posted on OpenAI’s github
account under baselines. https://

github.com/openai/baselines

Background • 30

Working with robotic reinforcement learning poses many challenges,

and this can quickly become intractable when working with multiple

mobile robots. Amato et al. (2015) developed a tractable approach to

solving decentralized partially observable Markov decision processes (Dec-

POMDPs) using macro-actions that extend over time (e.g. go to drop-off

area, pick up small box, etc.) rather than selecting actions at each timestep.

Then they used memory-bounded dynamic programming to solve the

Dec-POMDP with macro-actions, and develop a deterministic policies

for the robots to follow in the real world.

In 1997, Matarić built four foraging robots that learned to move small

pucks from one place to another. To minimize the learning space, she used

a fixed set of four programmed behaviors (safe-wandering, dispersion,

resting, and homing) and a state space that consisted of combinations of

four conditions (have-puck, at-home, near-intruder, and night-time). The

agents learned a value function that mapped conditions to behaviors. Both

Amato et al. (2015) and Matarić (1997) minimized the search space by

simplifying the state and action spaces into predefined states or packaged

actions allowing the algorithm to learn the mapping between the actions

and states that are temporally extended.

Researchers at X and Google Brain9 have developed a process for speeding

up the training process by using multiple robots (Yahya, Li, Kalakrishnan,

Chebotar, & Levine, 2016). In this experiment, they set up four robotic

arms to work separately to open a door. Each door handle was slightly

different, creating variability in the environment they were engaging. At

specific time intervals, the robots would sync their training data to share

what they’ve learned. The idea is that when they sync their data they are

sharing their experiences and progressing much faster than they would alone.

Because training in the real world is costly in both time and resources,

simulations can be an another alternative. Unfortunately, there are many

challenges in transferring learning from simulation-to-real-world due to the

inconsistencies between the two environments. Some approaches include

improving simulation or learning more robust control policies, but these

often run more slowly in training or lose performance in the real world

(Christiano et al., 2016). One recent approach addresses these challenges

[ 9 ] 
X, formerly Google [X], is Google’s

“moonshot factory” that is responsible
for projects such as Loon and Google
Glass. Google Brain started as a deep

learning and artificial intelligence
project at X, but grew so successful

that it became its own research team
at Google.

Background • 31

by starting with a poor inverse dynamics model of the robot and learning

to improve the model through training (Christiano et al., 2016). This

method works with motion planning, learning, and optimization among

other approaches for generating policies through simulation. Bousmalis

et al. (2017) addressed the challenge of learning transfer in the context

of a robot grasping task by adding layers of randomization (visuals and

dynamics) as well as feature and pixel-level domain adaptation. Given a

rendered image from the simulation, their GraspGAN model could generate

synthetic images that resembled true images of the scene.

Figure 6. Goal task: robots collaborate to move blocks to complete puzzle in specified location.

A New Theory of Robotic Collaboration • 33

CHAPTER 3

A NEW THEORY OF ROBOTIC
COLLABORATION

Building upon the three stages of collaboration–preconditions, process, and

outcomes10–I present a new theory of robotic collaboration. Here, I define

robotic collaboration as an emergent process through which individual

agents (simulated and physical)–which may have different knowledge,

abilities, or intelligence–interact with each other and their environment

and learn how to work together to achieve a common goal. Agents with

similar or different abilities work together to achieve more than they could

alone. They start without any knowledge about the environment or each

other and have to interact and explore in order to learn what to do.

In the context of Reinforcement Learning (RL), Sutton and Barto (2017,

p.3) define an agent as “complete, interactive, and goal-seeking,” and

they explain that an agent could be a component of a larger systems,

such as a monitor for a robot’s battery-level. In this setting of robotic

collaboration, I revise this definition as a collaborative agent to be complete,

interactive, social, collaborative, and goal-seeking. As Sutton and Barto

(2017) encourage a broader concept of what a complete agent could be,

I encourage researchers to conceptualize a collaborative agent at multiple

scales–as an individual, autonomous robot or as a smaller component of a

larger system controlling a robot, building or ecosystem. In the complex

robot, certain components, such as the cooling system, vision system and

power supply, could be formulated as separate agents that collaborate with

each other in order to achieve an shared goal.

Robotic collaboration goes beyond typical robotic assembly because the

collaborative and learning-based approach is scalable, robust, and adaptive.

First, robotic collaboration is scalable because more robots are not only

able to accomplish a task faster but they can also combine their abilities to

[ 10 ] 
These three stages are outlined in

Section 2.1

A New Theory of Robotic Collaboration • 34

achieve more than they could alone–either by pooling the same strengths

or combining different skillsets. In contrast, swarm robotics is limited by

the capabilities of a single robot where adding more robots only multiplies

the capabilities but does not generate more potential. Second, robotic

collaboration is robust because is learning is often more flexible in the

physical world than more deterministic, planning-based approaches in

robotic coordination. In robotic collaboration, there is no prescribed

structure for interaction or pre-packaged actions to select. Lastly, robotic

collaboration is adaptive because the robots can learn from experience and

adjust over time based on the circumstances.

PRECONDITIONS: ENCOURAGING INTERACTION

In the context of robotic collaboration, I define the preconditions as the

environment developed by the designer to promote collaboration. The

environment includes a task that is difficult to complete without the

combined abilities and interaction between the multiple robots. As described

earlier, the environment could be the physical world in which robots are

assembling a chair or the environment could be the entire control system

of a robot.

In one instance, multiple robots may come together to build a shelter

after a natural disaster. One robot has the parameters and constraints for

designing and building the shelter, another set of robots have more adept

vision capabilities, while another set of robots has the strength and dexterity

to assemble the structure. The robots have different capabilities, knowledge,

and intelligence, and by coming together, they are able to build the shelter.

The common goal, differing abilities and physical environment are the

preconditions that encourage interaction and collaboration.

The toy task that I have defined in this thesis is for the agents to move

a heavy block to a specified location. The block is too heavy for a single

robot to move easily, in addition, the robots to not have any way to grasp

or latch onto the block, therefore, manipulation is difficult alone. Some

of the physical parameters of this environment include: type of control

system; strength of agent; vision or observation; size, shape, and density

of block; margin of error for goal; number of blocks; number of robots.

A New Theory of Robotic Collaboration • 35

Another component that can drastically change the agent’s behavior and

interaction with others is the reward structure. Typical reinforcement

learning experiments use a shared reward for coordination and separate

rewards for competition. I argue for a third method of structuring the

reward similar to a concept in negotiation called “value creation.” This

would consist of having separate rewards structures for each agent, but

rather than being purely competitive, both agents benefit from actions

where they work together.

PROCESS: EMERGING BEHAVIORS

In previous research outlined in Section 2.1, there was less theory and

understanding on the collaborative process, more so than the other two

phases. This thesis provides an opportunity to develop specific preconditions

that will facilitate collaboration and to evaluate the types of collaborative

behavioral patterns that emerge. While successful outcomes and solutions

are important, these emergent behaviors are the priority of this research.

These emergent and sometimes unexpected behaviors are one of the real

strengths of this process, in comparison to typical planning or even RL-

based approaches that use pre-programmed actions. In those instances,

the behavior is always expected and defined in advance, not allowing for

much flexibility in application.

OUTCOMES: EVALUATING SUCCESS

While secondary to the emerging behaviors, it was important to determine

the metrics by which I can evaluate the success of the collaborative agents.

The standard approach in RL is to plot the reward history and number of

timesteps necessary for each episode. Depending on the task, an increase

in timesteps (e.g. an agent learning to walk) or a decrease in timesteps

(e.g. an agent completing a tasks) may be desired. Another approach is to

render and record the trained agents for a series of episodes and evaluate the

interaction between agents. In this way, I classified the variety of techniques

the agents learned for collaborating to move and manipulate the block in

my toy task. I evaluated how quickly the agents were able to move the block

into place, how frequently they could achieve the specified goal, and how

quickly they were able to learn how to work together.

Figure 7. Conceptual diagram of robots moving blocks into place

Approach • 37

CHAPTER 4

APPROACH

In this thesis, I address the challenge of multi-robot assembly by developing

collaborative agents that learn how to work together to move blocks. In

Chapter 2, I describe relevant research on collaboration, multi-agent

environments, and reinforcement learning. In Chapter 3, I present a new

theory on robotic collaboration and argue how this goes beyond current

practices. In this chapter, I describe my approach to collaborative robots

and discuss how my methods have evolved and shifted over time. I begin

by defining a toy task–three blocks for the agents to assemble into a

puzzle (Fig. 7)–and end with a framework for transferring learning from

simulation to real-world.

A significant part of my overall process has included repetitively simplifying

the problem that I am addressing in order to make it tractable. The problem

I have chosen is significant because it includes a multi-agent environment,

agents manipulating an object, and a multi-step task. In addition, operating

in continuous action and state space means there is essentially an infinite

number of state and action pairs possible, meaning it is highly unlikely

that it will ever be in the same state again. Other challenges exist around

defining a task that is both learnable and general,11 choosing the description

for the state space, and defining the reward function.

4.1 DEFINING THE TOY TASK

From the beginning, I knew it was important to the minimize complexity

of the robots and the structure for them to assemble. With this in mind, I

sought to create a simple structure–an arch composed of five blocks (Fig.

8). I designed a robot with four dimensions of control; it had a round

base, two motorized wheels, and a single axis arm controlled by a servo

[ 11 ] 
The term “learnable” means that the
task is simple enough that the agent

will be able to find a solution. While
the term “general” means that the

task is not too specific that the policy
is overfitting and would not be able
to find a solution in any alternative

setups.

Approach • 38

near the base. An electromagnet was placed at then end of the arm with a

universal joint connecting it to the arm. The joint made it difficult for the

robot to move a block in a controlled way alone, but it also allowed for

more flexibility when transporting a block with other robots. Overall, the

four dimensions of control were the two wheels, the single axis arm, and

the electromagnet for picking up blocks.

As I was evaluating next steps, I realized that, even in simulation, multiple

agents learning to assemble an arch in three-dimensional continuous space

was still too difficult of a challenge to begin with. To simply the problem,

I decided to minimize unnecessary dimensions of complexity, in both

the robot and environment design, by removing the third dimension and

moving to a 2D (or 2.5D in the physical world) environment. Now, the

robots cannot lift or grab objects but only push around blocks with their

chassis.

Next, I addressed the structure for them to assembly. Moving from 3D

to 2D, I could no longer frame the problem as a spatial architectural

structure, so I sought to create a puzzle composed of three distinct blocks.

The rectilinear blocks, resembling pieces of the game Tetris, were selected

from a 9-square grid and fit together to form a square (Fig. 9). Each block

is unique in size, form, and mass, with the heavier blocks difficult for one

robot to move alone, forcing collaboration.

Figure 8.
(Left) Builder Robot 0.0 concept

design. (Right) Toy task of building
an arch out of five blocks

Figure 9.
(Left) Builder Robot 1.0 concept

design. (Right) Toy task of
assembling a puzzle out of three

blocks

Raspberry Pi 2
+ motor HAT

batteries

DC motors

acrylic chassis

metal ball caster
for stabalization

Approach • 39

Figure 10.
(Left) Octagonal plan of Builder

Robot 1.0 (Right) Builder Robot 1.0

Through this design process, I defined a toy task that can be implemented

in both a 2D simulation environment and the real-world. I developed

the toy task by designing the physical robot and blocks first because my

ultimate goal is to implement this in the real-world. In the end, the goal of

each agent, simulated and physical, is to move the blocks to their specified

final location and rotation. At the beginning of each episode, the blocks are

initialized in random locations within the work area, and the agents have

to move the blocks to their final location within a certain margin of error.

Before moving on, it is important to take a moment to discuss terminology

used in this thesis–specifically the use of agent, robot, and robotic agent.

Agent is the most general term and applies to both the simulated agent and

the physical robotic agent. Robot refers to the physical robot and is typically

used when discussing the physical hardware or software of the robot or the

vision system for identifying the robot in the real-world implementation.

Robotic agent refers to the physical implementation of the agent acting

with a learned policy or in training.

4.2 BUILDING THE ROBOT

As discussed above, it was important to not make the robot any more

complicated than necessary to exhibit collaborative behavior. I designed and

built the second iteration of the simple robot (Fig. 10) and the lightweight

blocks it would assemble. This robot was small, about 6” in diameter, and

R
aspberry Pi 2

+ m
otor H

AT

batteries

D
C

 m
otors

acrylic chassis

m
etal ball caster

for stabalization

Approach • 40

it was controlled by a Raspberry Pi 3–a tiny computer the size of a credit

card enabled with bluetooth and wifi. A stepper/DC motor hat, sitting

on top of the Raspberry Pi, allowed easy control of the DC motors that

powered the two wheels.

The motorized wheels were centered on the chassis, allowing the robot to

have tight and controlled movement. Two ball casters, located in the front

and back, stabilized the robot. The robot did not have any armatures and

interacted with its environment solely through pushing around blocks with

its chassis. The plan of the chassis was in the form of an octagon–providing

the robot with plenty of pushing surfaces for moving the blocks. The edges

allowed the robot to push the blocks at different angles, as well as turn the

block by rotating its chassis.

The blocks were made from a lightweight extruded polystyrene foam for

ease of movement (Fig. 11). An overhead camera provided a global view

of the work area. By building the robot first and testing its capabilities,

I was able to build a more realistic simulation environment for training.

To control the robot, I developed a custom control interface using

TouchOSC, an application that sends and receives Open Sound Control

(OSC) or MIDI messages over wifi. A desktop application enables users to

design a custom interface with buttons, sliders and toggles. Using the python

library, PyOSC, I developed a control system for the robot that listened

for instructions from my custom phone application.12 The controller sends

a rotation angle and desired speed to the robot. In Section 4.9, I revisit

[ 12 ] 
PyOSC is not currently up-kept

and only works with Python 2.7,
not 3.5+. Python-osc is an alternate
library that is up-kept as of the time

of this thesis.

Figure 11.
Manually controlled Builder Robot

1.0 pushes block into place.

Approach • 41

the robot’s physical hardware and software and make the improvements

necessary for transferring learning from simulation to the real-world.

4.3 DEVELOPING THE SIMULATION ENVIRONMENT

After building the robot and the blocks it interacts with, I moved on to the

simulation and choosing a physics engine. In my first attempt, I designed

an environment in Blender, an open source 3D modeling environment

and used Modular OpenRobots Simulation Engine (MORSE) for the

simulation environment and physics engine. Using linear velocity and

turning angle, I manually controlled a robot to test the environment (Fig.

12). While adapting the simulation for Reinforcement Learning (RL), I

ran into some key issues in resetting the environment for training. When

training an RL agent using episodic time, resetting an environment to its

initial state is a mandatory feature.

Because of this keystone issue, I decided to evaluate different physics engines

and simulation environments with more documentation and support for

RL. After looking at pyBox2D, MuJoCo and Bullet, I decided to start with

pyBox2D because of the ease of setup and ability to develop quick proof-

of-concepts. MuJoCo and Bullet are both 3D simulation environments

that include 3D rendering and a physics engine. They are both popular in

the research community in academia and industry, used by groups such

as OpenAI, Google Brain, DeepMind, Standford AI Lab, and University

of Washington.

Moving forward, I decided to use PyBox2D, a 2D physics engine and

simulator, and PyGame for 2D rendering. I developed a manually controlled

2D environment to test out the controls (Fig. 13). At the beginning of each

episode, the blocks are randomly placed within the field and the goal is

to complete the puzzle as fast as possible, using the white octagonal agent

to push the blocks. Small blue dots near the center of the screen mark the

final location of each block. The game checks if each block is in its correct

location and rotation given a specified margin of error.

In this initial simulation, the actions available are solely the linear velocity

in the x and y-axis. These controls are similar to holonomic control but

lack control of the angular velocity. Holonomic control refers to when the

Figure 12.
MORSE manually controlled

simulation environment

Approach • 42

degrees of freedom (DOF) match the degrees of motion (DOM), while

non-holonomic control is when the DOF is greater than the DOM (Ben-

Ari & Mondada, 2018). A common example of holonomic control is a cart

on casters; the cart can freely rotate and move in the x and y-axes. A car,

only having two DOM, is an example of non-holonomic control. It can

move forward and backward and can turn, but it cannot move sideways.

Fig. 14 graphically demonstrates the DOM available to the agent with

holonomic control and non-holonomic control.

4.4 OPENAI GYM FRAMEWORK + CHOOSING AN RL ALGORITHM

After testing the manually controlled simulation implemented with PyBox2D

and PyGame, I moved on to build a environment to be controlled by a

reinforcement learning algorithm. As discussed previously, reinforcement

learning is a machine learning approach whereby an agent (or multiple

agents) exists and acts in an environment. At each timestep, the agent

chooses an action to perform in the environment, which returns a reward

and an observation of the current state of the environment (Sutton &

Barto, 2017).

In 2016, OpenAI released OpenAI Gym, “a toolkit for reinforcement

learning research that contains a diverse collection of tasks (called

environments) with a common interface” (Brockman et al., 2016). The

aim was to present a collection of benchmark tasks (Fig. 15) that all

researchers had access to and could easily compare results. The common

interface that Brockman et al. described is the abstracted structure that a

researcher interacts with each environment, irrelevant of the type (classic

control, algorithmic, Atari, pybox2D, MuJoCo, etc.).

Each environment class contains the following methods: step, reset, render,

Figure 15.
OpenAI gym environments:

(A) Cartpole; (B) 2D Walker;
(C) Atari Pong; (D) Atari Breaker

Figure 14.
Diagram showing the degrees of
motion of holonomic and non-

holonomic control for the agents.

holonomic non-holonomic

Figure 13.
Manually controlled environment

to test the controls and physics
implementation.

Approach • 43

close, and seed. At the end of each episode, the reset method resets the

environment to its initial state. The step method takes the action as input

and returns: the agent’s observation; the reward for the previous action

and transition into the current state; a boolean done indicating whether

the episode is complete; and an info dictionary with optional diagnostic

information. See Table 2 for sample code that shows the initialization of

the environment, Cartpole-v0, and twenty episodes where the agent takes

a random action for each of the 100 steps per episode. If render is called,

then a graphical window will display the agent acting in its environment,

otherwise the calculations will run behind the scenes. Rendering is

computationally expensive, so it is best to avoid using except with testing

or debugging.

To develop my own environment, I used OpenAI’s “box2d” environments as

a framework for adapting my manually controlled simulation to work within

the OpenAI Gym structure. By following their example and maintaining

the common interface, I could use existing algorithms and documentation

specifically for OpenAI Gym. To assess the success of my environment

design, I determined that rather than implement my own version of an

RL algorithm, I would use one of OpenAI’s baseline implementations.

Starting in 2017, OpenAI began open-sourcing baseline implementations of

well-known algorithms based on best-practices in order to “make sure that

apparent RL advances never are due to comparison with buggy or untuned

versions of existing algorithms” (Sidor & Schulman, 2017, p.1). By using

one of OpenAI’s implementations, I could adapt the code for my own

use and ensure that there were no bugs in the unedited implementation.

Keeping the algorithm constant, I could evaluate the success of my simulated

environment.

Table 2.
Example code from simple cartpole
environment. Edited excerpt from

OpenAI gym documentation

import gym
env = gym.make(‘CartPole-v0’)
for i_episode in range(20):
 observation = env.reset()
 for t in range(100):
 env.render()
 print(observation)
 action = env.action_space.sample() # random action
 observation, reward, done, info = env.step(action)

Approach • 44

Next, I chose an RL algorithm to test my environment. The task at hand

helps to determine which algorithm to choose. As discussed in Section

2.3, the observation and action space can either be discrete or continuous,

meaning it can either be clearly separate and distinct with a fixed number

of observations or actions (e.g. left, right, up, and down) or it can operate

within a continuous range (e.g. linear velocity). I chose OpenAI’s baseline

implementation of Deep Deterministic Policy Gradient (DDPG) with

parameter noise (Plappert et al., 2017). This algorithm is ideal for my

research because it is can operate over continuous action space, ideal for

robotic control, as well as both high and low dimensional continuous

observation space.

It was important for the algorithm to accommodate both low and high-

dimensional observation space because my end-goal was to transition from

low-dimensional observation data, such as location, rotation, and linear

velocity, to high-dimensional observation data, such as raw pixels, i.e.

images. In using raw pixels as observations, the algorithm takes in direct

data on each pixel, typically 3 channels for RGB or 1 channel for grayscale.

4.5 TROUBLESHOOTING

My first implementation (Fig. 16) was composed of a single agent and

the same three rectilinear blocks that I designed in Section 4.1 (Fig. 9).

The main decisions that I made were about the action space, observation

space and reward structure. In this iteration, I decided to discretize the

action space into eight actions: North, Northeast, East, Southeast, South,

etc.. The observation description contained global location and rotation

information about the agent and each block. In addition, I tracked how

many blocks were in their final location.

The reward structure was composed of three main parts: a living penalty,

block reward, and puzzle completion reward. Because of the complexity of

the problem, I decided to use reward shaping for the living penalty to give

the agent hints toward good observation-action pairs. The living penalty,

awarded at each timestep, was calculated as the distance between each

block and its final location. The further the block was away from its final

location, the higher the penalty. This was intended to motivate the agent

Figure 16.
First iteration of environment:

RobotPuzzle-v0. It contains a single
agent with three unique blocks that

form a square. The agent is tasked
with moving the blocks to their

specified location, demarcated by
small blue dots near the center of the

screen.

Approach • 45

to move the blocks closer to their final location quickly.

A reward of +10 was awarded for each block moved into its final position,

and -10 was deducted if the block was moved out of place. Once the

puzzle was completed, an award of +1000 would be given. Unfortunately,

no positive rewards were ever given. Upon training and testing, the agent

failed to learn any useful behavior.

In order to troubleshoot the environment, I simplified the simulation to

include a single block and no agent. At the beginning of each episode, the

block is initialized at a random location and rotation. I changed the action

space to be continuous and control the linear velocity (x, y) and angular

velocity of the block. I also updated the observation description to contain

the block’s relative location and rotation information as well as its distance

away from its final location.

Lastly, I discretized the reward structure and provided positive reinforcement

for moving towards the final goal. I weighed location-based rewards heavier

than rotation-based rewards. At each timestep, the block was rewarded +1

for moving towards the goal, -5 for moving away, and -3 for not moving

at all. In addition, small rewards of +/- 0.5 was given for rotating towards/

away from the final position, with a final reward of +1000 for moving into

place. These adjustments proved successful. By simplifying the environment

and maintaining a consistent training algorithm, I was able to improve my

design and create a trainable environment. Initializing from any random

location and rotation, the block learned to move itself to the specified

location and rotation within a fine margin of error (Fig. 17).

4.6 CNN VS. LOW-DIM OBSERVATION SPACE

At this point, I decided it was time to see if I could use pixels as input.

The most common approach to learning directly from pixels, also called

“end-to-end” learning, is to use convolutional neural networks (ConvNets

or CNN). CNNs are similar to neural networks, but they assume their

Figure 17.
Simplified environment of block
learning to move itself in place.

Approach • 46

input is an image. They are typically composed of three different types of

layers: a convolutional layer, pooling layer and fully-connected layer (cite).

The convolutional layer is the workhorse of the CNN and is essentially

responsible for learning a set of filters typically used to identify relevant

features for the particular application. The number of filters matches the

depth of the convolutional layer.13 Using OpenAI’s CNN implementation

drawn from the Deep Q-Network (DQN), I added three convolutional

layers to the beginning of both the actor and critic networks of the DDPG

baseline.

In addition to adding these convolutional layers, I took a number of

important steps to improve the network as outlined in Lillicrap et al. (2015).

First, to minimize the number of parameters, I scaled down rendered

image to a manageable size for the network, 160x120x3 (width x height x

RGB depth),14 and converted from an 8-bit RGB (i.e. an integer between

0 and 255) into a floating point number between 0 and 1, inclusive. For

the network to understand motion, I evaluated two approaches: taking the

difference between two frames (Karpathy, 2016) or feeding the network a

series of images (Lillicrap et al., 2015; Mnih et al., 2013; Plappert et al.,

2017). I chose to send the network a series of images, or observations, as

this was the approach documented by Lillicrap et al. (2015) and Mnih et

al. (2013). Fig. 18 shows four such observations sent to the network. Lastly,

I employed a frame-skipping technique (Lillicrap et al., 2015; Mnih et al.,

2013), where the agent only sees an observation and chooses an action

every nth timestep, and the action is repeated for the intermediary steps.

This minimizes computation and essentially allows the agent to act n times

more in the same amount of time.

After setting everything up and running some tests, I set the network to train

for a few days. The network was computing between 0.5 and 1.0 steps a

second, compared to approximately 160 steps a second with low dimensional

data. This occurred for two reasons: (1) rendering the environment rather

than calculating everything behind the scenes is much slower; (2) CNNs

are computationally expensive and can significantly increase training time.

In the end, I decided to stick with low-dimensional observations because

of the speed of prototyping and training. Learning directly from raw

sensory data is a well-established research challenge, especially in robotic

[ 13 ] 
 For more information about CNN
or NN, refer to Section 2.3 or to the

learning resources in the appendix.

[ 14 ] 
If you are using a computer with
a high-resolution screen or retina

screen (mac), you may input
160x120 as your screen size, but
receive a vector twice the size. In

that case, you can either downsample
the image or input the dimensions as

half the size that you want.

Figure 18.
Observations extracted from the

high-dimensional input to the
CNN. Each observation contains a

sequence of three renderings captured
from three different timesteps to

capture motion. In this way, the NN
can infer motion.

Approach • 47

control, and while it is a desirable facet of research, it is not necessary for

the scope of this thesis.

4.7 IMPROVING THE ENVIRONMENT WITH DEEP DETERMINISTIC
POLICY GRADIENT (DDPG)

After deciding to focus on low-dimensional observations, I updated my

environment to include a single agent with one block. Now, the agent took

the actions in the environment, rather than the block. The agent’s action

space was continuous and controlled the linear velocity (x, y) and angular

velocity of the block. This gave the agent holonomic control, where the

degrees of freedom matched the degrees of motion. The majority of the

following tests involve adjusting the observation description and reward

function to incentivize the agent to learn an optimal policy. It is always

import to test this because the agent will act to maximize rewards, which

may or may not be what the designer intended.

Moving from images to low-dimensional observational data, I needed to

capture information that would have been evident from images, such as

the block shape. At each timestep, the observation included the absolute

location and rotation of the agent, the agent’s relative location to the block,

the block’s relative location and rotation to the final location, and a boolean

that represented the agent’s contact with the block. To represent the shape

of the block, I included the absolute location of each boundary vertex.

I discretized the reward function by assigning a fixed reward/penalty for

the block moving towards its final position, away from it or not at all. I did

the same for the block rotational position and the agent’s position relative

to the block. In addition, I gave a small reward for contact with the block

and a large penalty when the agent was in contact with the wall.

After training, the agent learned to interact with the block but was not

able to move it towards the goal (Fig. 19). Because the agent started at the

center of the environment everytime, it had trouble learning to first move

to the other side of the block. Instead, it typically pushed the block to the

wall, then would push against the block while rotating in an attempt to

get behind it. Overall, it appeared to be a challenge for the single agent to

have control manipulating the block.

Approach • 48

IMPROVING THE REWARD FUNCTION

At this point, I made important changes to the reward function to improve

the behavior. First, I changed the living penalty to the sum of the distance

between the agent and the block, agent_dist, and the distance between

the block and its goal position, block_dist (Fig. 20). After testing this

reward function without any additional weights, I observed that the agent

did not learn any ideal behavior. I then added weights to the each distance

in order to give priority to the distance between the block and its goal,

block_dist, over the distance from the agent to the block, agent_dist. I

thought that because this distance was more important that I needed to

give it a higher weight. Unfortunately, the agent did not learn any useful

behavior, so I switched the weights giving a higher weight to the distance

between the agent and the block, agent_dist. This change resulted in the

agent successfully interacting with the block. Upon reflection, when dealing

with a multi-step task, it makes sense to weigh the earlier step heavier than

the following steps as the agent needs to complete it first.

In addition, I also added a reward based on change in distance for both

agent_dist (agent_delta) and block_dist (block_delta). This reward is

negative when moving away from its goal and positive for moving towards

it. I added weights to these as well, but this time gave a higher weight to

the block_delta because overall these rewards are smaller than the distance

based rewards. This addition seemed to improve the behavior.

ADDING A SOFT CONTACT

Another challenge in this task is that the agent may not know which

direction to move. When the observation space is too large and the agent

is constantly initializing in random locations, it may never reach its gaol

Figure 19.
Top and bottom rows are two
separate episodes of the agent

manipulating the block. As
mentioned, it pushes the block to the
wall then attempts to move it away

by turning its chassis.

Figure 20.
Diagram illustrating the two

distances used for reward shaping:
(a) agent_dist; (b) block_dist

a

b

Approach • 49

state to receive the final reward. One way to help is to implement a soft

contact between the agent and the block. Soft contact is when the agent

constantly applies a small force on the block, even when it is far away, giving

the agent a sense of which direction to move. I manually implemented soft

contact as a linear force based on the distance from each agent to the block.

I used an exponential function, force = base**(-agent_dist), for a quick

fall-off, and experimented with the base until it seemed to be appropriate.

TESTING A NEW ALGORITHM

To see if another algorithm may work better, I tested Proximal Policy

Optimization (PPO) (Schulman, Wolski, Dhariwal, Radford, & Klimov,

2017). The experiments began with promising results around 1M timesteps,

then after training for an additional 5 million timesteps, the magnitude of

agent’s actions would decrease to be so small that it would barely move at

all. By recording and plotting the variance of the actions over each episode,

I observed that the variance drastically decreased over time. The training

time was much faster than DDPG, so it could be used to test out different

parameters in the reward function, but not for any extensive training.

Concurrently, I decided to see if the agent could learn a much simpler toy

task. For each episode, I placed the agent in a fixed location with the block

in between the agent and the goal. After approximately 1 M timesteps, it

was easily able to learn an optimal policy to move the block to the goal. This

was simple to learn because as soon as it learned that it needed to move up

a specific way to push the block into place, it could easily repeat it. It was

consistently starting in the same position, so there was less variability in

the observation. Unfortunately, this toy task is too simple and produced a

policy that could not generalize to any other initialization location.

MULTIPLE AGENTS + SIMPLIFYING THE TASK

Given the scale of the environment and the fact that a single agent seemed

to be struggling to manipulate the block alone, I decided to add another

agent to the environment and experiment with their interaction. It was

an ideal time to see what collaborative behavior would emerge between

the two agents. In this scenario, even though I included multiple agents,

they were both centrally controlled by the same learning algorithm. There

Approach • 50

was a single observation and a single reward function and the action space

expanded to include controls for both agents (Fig. 21).

The observation included information about each agent and the goal

block. Each agent’s global location and rotation, relative location to the

goal block, linear and angular velocity, and contact with the block were

all documented. In addition, the observation included the goal block’s

relative location and rotation to the goal location and the global location

of the block’s vertices.

After seeing the agents develop some collaborative behavior for manipulating

the block, but fail to successfully move it to the goal location, I determined

that the goal was too specific for the agents to be successful early on. I

decided to make the problem easier by making the margin of error larger and

removing rotation from the requirement to be in place. After implementing

these changes, the agents began successfully moving the blocks in place

(Fig. 22). Some specific behaviors that emerged were turning the block

together, taking turns to push the block, and guiding from different angles.

PREPARING SIMULATION TO MATCH REAL WORLD

In my near-term next steps, I aim to transfer this learning from simulation

to physical robots. While there are many challenges in transferring learning

from simulation to real-world, there are some steps I took to prepare

the simulation for transfer. First, it was important to make sure that the

Figure 22.
(Opposite) Series of screenshots from

testing episodes show collaborative
behaviors agents learned for moving

the block, such as rotating, pinching,
and guiding.

Figure 21.
Reinforcement learning diagram

showing how the centrally controlled
agents receive the same observation

and reward.

ENVIRONMENT AGENT_0
AGENT_1

Action: a

Reward: r

Obs: o

Approach • 51

Ep
is

od
e

A

Ep
is

od
e

B

Ep
is

od
e

C

Ep
is

od
e

D

Approach • 52

simulated screen would match the overhead camera. The proportions needed

to match, as well as the Cartesian coordinate system and dimensions. I

normalized all of the distances so that the width ranged from [0, 1] and the

height was scaled respectively. I maintained soft forces for initial learning

and decreased the strength of the force over time.

I simplified the environment so that the agents always initialized in the

left third, the block in the middle third and the goal in the right third.

(Fig. 23) I also made the margin of error very large at the beginning of

each training session and decrease in size over time. This allowed for easy

wins towards the beginning, with the task becoming more difficult as

the training progressed. I removed the walls and assigned a large penalty

if the agent moves out of bounds and a smaller one if the agent pushes

the block out of bounds. Both of these penalties decay over time so that

if they agent moved out of bounds in the last few timesteps it received a

smaller penalty than if it did in the first few timesteps. The rewards for each

episode’s terminal state typically ranged from lowest score to highest in this

order: agent moved out of bounds, agent stayed in bounds (often going in

circles), agent pushed block out of bounds, and agent pushed block to goal.

The reward was based on four changes in the state: distance of agent to

block, agent_dist; change of distance at each timestep between agent and

block, agent_delta; distance of block to goal, block_dist; delta distance

between block and goal, block_delta. I ran a series of tests where I changed

the weight for each variable of the reward function, i.e. [25, 50, 100] for

delta distances and [0.1, 0.25, 0.5, 1.0] for distances. I initially tried to

Figure 23.
In oder to better match the real

world, the updated environment
does not have boundary walls and

the agent has non-holonomic control,
similar to the way the physical robots

move.

Approach • 53

evaluate each test based on the reward or number of timesteps, but the

plot of the reward history fluctuated significantly and purely increasing the

timesteps may mean that the agent is learning to go around in circles without

producing any meaningful behavior. Instead, I chose which parameters

to test further by running each model without any parameter noise for 5

epochs and evaluating the behavior visually. Concluding those tests, the

best parameters seemed to be 25 (agent_delta), 0.25 (agent_dist), 100

(block_delta), 0.0 (block_dist).

To improve performance further, I will need to tune the hyper-parameters

of the network, specifically the learning rate of the actor and critic networks

and the parameter noise. Using a randomized approach for choosing hyper-

parameters (Bergstra & Bengio, 2012), I will take the top two parameter

settings for the reward functions and test the each environment ten times

with randomly initialized hyper-parameters.

SEEING AS THE AGENT SEES

To understand what the agent “sees,” I experimented with some visualization

tweaks to the renderer (Fig. 24). The agent receives its observation as an array

of numbers. There are no labels or background information for the agent

to understand what the numbers mean. It learns purely through interacting

with the environment and receiving rewards based on its actions. To give

a sense of what the agent “sees,” I removed extraneous information such

as boundaries and filled shapes and included only points and relational

information. In this example, observational data includes the global location

and rotation of each agent and the block’s vertices. It also includes the

relative location between each agent and the block and between the block

and the goal–represented by the dashed line. The large circle around the

goal represents the margin of error allowed for completing the puzzle. This

episode is early in training, so the margin of error is significantly large.

4.8 MOVING TO A DECENTRALIZED APPROACH: MADDPG

Because my main goal is collaborative behavior learned through

interaction between agents, I believed that using a centrally controlled

learning algorithm was not as true to the theory as necessary. As a result,

I decided to test OpenAI’s multi-agent deep deterministic policy gradient

Approach • 54

(MADDPG) implementation with separately trained agents. In order to

use this implementation, I needed to change my environment design to

consist of separately controlled agents with their own unique observations

(Fig. 25).

As described in Section 2.3, OpenAI developed eight multi-agent particle

environment with a variety of competitive and cooperative tasks to test

MADDPG. These particle environments were simple enough that the

researchers implemented them with their own physics calculations. I utilized

their framework to program a new environment using pyBox2D for a

physics engine, contributing a new environment framework to the multi-

agent gym environments. As in the previous DDPG controlled multi-agent

environment, the agent’s controls are non-holonomic, meaning it cannot

move sideways. The actions adjust the linear and angular forces, allowing

it to drive around similar to the physical robots. In addition, I added the

boundary walls back to this simulation to avoid the agents moving out of

Figure 24.
The two images are snapshots from
the same simulation with different

rendering techniques. The top more
similarly represents what the agent

might see, while the bottom is a full
representation of the objects in the
environment that people can easily

perceive.

Approach • 55

the frame and ending the episode early. Lastly, I made the margin of error

larger, so that it was easier for the agents to move the block into place.

I used a continuous action space between [-1, +1] to control the linear and

angular forces controlling the robot. This was multiplied by a maximum

force of 0.25. After training for 1M, the agent did not seem to learn

anything. I hypothesized that it was because the agent was not exploring far

enough to be able to find any success to guide it. On my next test, I increased

the maximum force to 1.0. After training approximately 1M timesteps,

the agents did learn to move the blocks in place, but the MADDPG

implementation allowed the agents to choose actions between [-120, +120].

Upon closer evaluation of the code, I observed that the actions were

selected from a Gaussian distribution. This means that while larger numbers

are probabilistically unlikely, it is possible for them to be selected, with

increasing likelihood especially if those actions repeatedly result in high

rewards. I wanted to keep the actions restricted to be between [-1, +1],

so I clipped the selected actions to be between [-1, +1]. This eventually

resulted in returning “not a number” or NaN for the state, reward, and

action. Further work is needed to develop a successful and controlled

MADDPG implementation.

Action: a_1

Action: a_0

Reward: r_0

Reward: r_1

Obs: o_0

Obs: o_1

ENVIRONMENT AGENT_0 AGENT_1

Figure 25.
Reinforcement learning diagram
showing how in a decentralized

multi-agent environment, agents
receive the their own observation
and reward and take their own

actions.

Approach • 56

4.9 HOLONOMIC VS. NON-HOLONOMIC CONTROL

After running numerous tests in environments with holonomic control

(using DDPG) and non-holonomic control (using DDPG and MADDPG),

I determined that the control can have drastic influence on the success of

the agent in an environment. The agents with holonomic control developed

more complex collaborative behaviors than agents with non-holonomic

control (Fig. 26). When the agents had non-holonomic control, i.e. moved

similar to a car, they needed to initialize in the simplest setup in order to

reliably move the block successfully. This simple initialization mandated

that the agents always appeared on the left third of the screen facing right,

the block appeared in the middle third, and the goal on the right. If the

agents initialized facing a random direction or in a random location, then

they would not be able to find a solution.

This appeared to be because the agents needed to be facing the correct

direction before they could successfully move the block. The non-holonomic

control added significant complexity to the problem. In contrast, with

holonomic control, it was easier for the agents to explore the state space

because they could freely move in any direction. After making this discovery,

I started experimenting more with holonomic control in environments

with more agents.

An important component of collaboration is that by working together the

agents can achieve more than one could alone. To test this in a more extreme

environment, I doubled the size of the block and increased the density

of the block so that a single agent could barely move the block. Only by

working together could the agents move the block to the goal within the

maximum timesteps. I tested this new block with ten agents and then five.

In the environment with ten agents, there were two primary results. The

Figure 26.
(Left) Holonomic controlled
environment. (Right) Non-

holonomic controlled environment.

Approach • 57

first, which is to be expected with so many agents, is that the agents got in

each other’s way and pushed the block to the wall (Fig. 27, left). With all

of the agents starting in different directions, they each arrive at different

sides of the block and start working against each other. This is what often

happens when collaboration goes wrong–too many people are trying to

take the lead and, as a result, things often get worse.

The second more surprising result was that the agents started acting like

gears and took a mechanical approach to moving the blocks (Fig. 27, right).

Because the block was so heavy, the agents could move the block faster

by stacking themselves together and rotating like gears. This worked well

when the block was near the wall, but was more difficult when it moved

further away.

In the final simulation, I tested five agents with the same large block. This

number appeared to be just right where some agents collaborated to move

the block, while others went off into corners. Overall, they did not get

in each other’s way as much as ten agents did. In Fig. 28, the agents use

the mechanical gear strategy to move the block away from the wall, then

they continue to push on different parts of the block before moving into

a linear formation for the final push.

4.10 FRAMEWORK FOR SIMULATION-TO-REAL-WORLD TRANSFER

The last phase is to transfer the policy from simulation to real world.

As described in Section 2.3, learning transfer is a non-trivial task where

many issues can arise. In this section, I lay out a framework for learning

transfer with many of the components implemented separately, but not

yet combined into a complete system.

Figure 27.
(Left) When collaboration is too
much, all of the agents get in the
way of each other. (Right) When

collaboration turns mechanical, the
agents acts as gears to mechanically

move the block.

Approach • 58

The most important step is to match the observation description from the

simulation to the real-world. As discussed in Section 4.7, I took initial

steps to prepare the simulation to match the physical world. To calculate

the relative position of elements in the observation description, I needed

to be able to extract the global location and rotation information of each

agent and the block as well as the block’s vertex locations. To gather this

data, I installed an overhead camera and used OpenCV, a computer vision

package, to identify various objects.

For information that is more difficult to gather accurately from an overhead

camera, such as linear velocity, angular velocity, and contact, I can first

test to see if they are absolutely necessary for the algorithm to find an

optimal policy. If so, then I can slowly add noise to those data points as the

algorithm learns. This allows the algorithm to use the information while

initially learning but progressively rely less and less on that data. Another

way to account for contact would be to install ultrasonic sensors on each

side of the robot. When the sensor measures an object under a minimum

distance, it can record that it is in contact with that object.

Using color recognition and contour detection, I extracted specific shapes

to identify the block and robots’ information. First, I marked the blocks

with different colored triangles. The system can identify each block based

on the color of their triangle, as well as their location and rotation based

Figure 28.
An environment including five

agents and one heavy block. Three
of the agents collaborate to move the

block to the goal.

a b

c d

Approach • 59

on the orientation of the isosceles triangle (Fig. 29). I developed a program

that would allow users to set the final position simply by moving blocks

into place and pressing a key. The program would then check that each

block was in place before declaring the puzzle complete.

Color recognition and contour detection work best when there are clear

boundaries between shapes and colors. To create a plain background, I used

thick black paper as a non-stick and non-reflective surface for the work

area. I painted the blocks white so they would stand out against the black

surface. The new robots, Builder Robot 2.0, are made out of black acrylic

and sanded down to create a matte to avoid hot spots on reflective surfaces.

The components of Builder Robot 2.0 (Fig. 30) are the same as version 1.0,

but the chassis and control system have been updated. The chassis now has

an enclosed area for the batteries, Raspberry Pi, and motor hat to sit where

the wires are contained. As I am using an overhead camera to identify the

robotic agents, it’s important to hide any extraneous objects that may be

visually distracting the recognition system. Each robot has its own colored

Figure 29.
The vision system can identify each

block’s location and orientation
using the triangle. The user sets

the blocks’ final positions and the
program can identify when the pieces

are in place.

Approach • 60

Figure 30.
Robot Builder 2.0 is built with the
same components as Robot Builder
1.0, but it has an updated chassis

for being identified with computer
vision.

Raspberry Pi + Motor HAT

isosceles triangle for localization and orientation

batteries for Pi + Motor HAT

DC motors + wheels

acrylic chassis

marker, an isosceles triangle pointing forward with its centroid matching

the robot’s centroid. This allows for easy tracking of the robot’s location

and rotation. As for the control of the robot, the DC motors do not have

consistent power from zero to full speed. At low speeds, the motors do not

turn at all. To fix this, I tested the motors to determine at what speed they

started moving. I remapped all speeds to be between the new minimum

and full speed, rather than zero.

To track the block, I initially placed another color-coded isosceles triangle

at the center of the block, matching the centroid position of the triangle

to that of the block while pointing up. As with the robots, this tracked the

position of the centroid and rotation of the robot, but it did not account

for the block’s vertices. Instead, I used a similar approach to identify the

boundary of the block and extract its main vertices. As the block rotated,

the order of the vertices kept shifting. It is mandatory to maintain the

same order throughout all testing. To keep track of the vertices, I rotated

to isosceles triangle to point to the starting vertex and sorted the vertices

based on that point (Fig. 31).

At this point, I had all of the primary components of the observation

description. Next, I tested communication between the computer and

Approach • 61

the robots using the library, PyOSC. I integrated the program that I

had developed for identifying the block and robotic agents with the

communication to send instructions to the robots while tracking their

location. I began testing the controls of the robot in the real-world and in

simulation to evaluate how to match the two environments. The manually-

controlled integrated system (Fig. 32) shows the agent identified on the

left, the block with all of its points numbered and centroid calculated in

the middle, and the final goal position on the right.

The next step is to perform more rigorous system identification to match

the simulation to real world as much as possible. Some issues include

imprecise tracking of points, inconsistent control of the DC motors, and

inconsistent friction that prevents the robot from moving the block in

certain positions. To address the point tracking, I will add a small amount

of noise to the simulation to better match the constant fluctuation of the

points. Rather than use DC motors, I will look into using stepper motors

which are much more consistent in speed and control. This may better

translate from simulation to real world. Lastly, to deal with inconsistent

friction, I will implement a small randomized force that pushes against

the agent in simulation.

Figure 31.
Diagram of the agents pushing the

block, demonstrating the various
components of the vision system

Approach • 62

Figure 32.
Computer vision overlay on view

from overhead camera

 4.11 ANALYSIS + LIMITATIONS

In this section, I use the three phases of robotic collaboration–preconditions,

process, and outcomes–as a framework to evaluate this research. As I

outlined in Chapter 3, the preconditions include the environmental factors

that facilitate collaboration, the process includes the activities that take

place during collaboration, and the outcomes are the results and methods

for which to evaluate the success of collaboration.

In this research, the preconditions are the settings of the environment,

abilities of the agents, and the shared or individual goals. More specifically,

the preconditions include: number of agents; the agent’s control system;

the agent’s strength and observations; the agent’s ability to manipulate

blocks; the size, density and shape of the blocks; the number of blocks;

reward function (shared or individual); environmental settings (friction,

damping, etc.); and initialization settings.

I developed nine different environments, or sets of preconditions (Fig.

33), ranging from a single block as the agent to ten agents manipulating

the block. Within the environmental conditions, I primarily tested the

representation of the observation data, the agent’s control system (holonomic

or non-holonomic), the initialization settings and the number of agents.

Approach • 63

Figure 33.
Overview of environments–or sets of

preconditions–designed, programmed and tested
in this thesis.

robotic
 collaboration

preconditions

Low-Dim
Holonomic

Anywhere Start

Low-Dim
Non-Holonomic

Simple Start

Low-Dim
Non-Holonomic
Anywhere Start

High-Dim (CNN)
Holonomic

Anywhere Start

2 agents 5 agents 10 agents1 agent1 block

Approach • 64

After developing the first simplified environment, I had to decide between

low-dimensional observational data (location, rotation, velocity) and high-

dimensional data (raw-pixels). Due to the extensive training time for

CNN and lack of computing power, I decided to move forward with low-

dimensional observational data. While low-dimensional data is acceptable,

it is not ideal when working with robots in the physical world when data

tends to be noisy and imprecise. With more time and capabilities, I would

push for using raw-data as input.

As discussed in Section 4.9, the agent’s control system dramatically affects

the agent’s ability to learn complex collaborative behaviors. If the agent is

restricted from fully exploring the space by non-holonomic control, the

algorithm may never converge to find an optimal policy. Whereas with

holonomic control, the agent is easily able to explore and is much more

likely to find a successful path to the goal state through random actions.

In addition, the initialization setting was significantly restricted if the agents

had non-holonomic control. This restriction is a important limitation on

the current system. In future work, I would switch back to holonomic

control and build a new robot with omni-wheels to match the simulated

control system.

The most important part of collaboration is the process through which

collaboration occurs. More specifically, the process includes the emergent

behaviors that the agents develop through interacting with each other and

their environment. In my research, I evaluated success through identifying

and analyzing the emergent behaviors . These behaviors were more important

than the specific outcomes.

The most interesting collaborative behaviors emerged in the holonomic–

based environments. In the non-holonomic and simplified environments,

the agents typically learned to move towards the block and push next to

one another. If the agents did not land on the correct side of the block or

missed the goal, there was typically no recovery.

In contrast, in holonomic multi-agent environments, the agents developed

methods for collaboratively rotating the block together and pinching it

between them while moving. Because the block was not too heavy, one

Approach • 65

agent could take the lead pushing the block towards the goal, while the

other agent learned to aid this agent by guiding the block from a different

direction. In the environments with a much larger and heavier block, agents

learned how to take advantage of their octagonal form and the static walls.

By placing themselves next to the walls and with others, the agents learned

to act as gears, mechanically pushing the block when their own strength

was not enough. Each of these behaviors demonstrate a new way to think

about collaborative behavior for moving blocks.

The final outcomes include whether the agents achieved their goal or not.

Through this lens, the only way a collaboration could be successful is for

the agents to move the block into place. Unsuccessful collaborations would

include: the agents pushing the block around, but not to the specified

goal; the agents moving in circles; or the agents going out of bounds or

running into the walls. Another way to evaluate the outcomes in a less

physical and spatial way is to analyze the total reward through training.

If the agents learn to maximize the reward through training, especially if

this is correlated to successfully manipulating the block, then this would

be deemed successful.

Through this research, I realized how difficult this task was, even after

I simplified it to a single block. It is difficult for a number of reasons

which I briefly stated at the beginning of this chapter. First, it is a multi-

agent environment which means that each agent is both observing the

environment–either from its own perspective (MADDPG) or from an

overall perspective (DDPG)–and changing the environment through its

own actions. This makes it increasingly difficult for the agents to know

which actions were important in a successful episode and which were not.

Second, the task requires the agents to manipulate an object. Many

reinforcement learning tasks involve the agent learning how to exist in

an environment without manipulating anything. The tasks could include

walking, landing, flying, driving, or maintaining some level of equilibrium.

Rather than only accounting for itself, the agent must interact with another

object within the environment, adding more complexity to the task.

Third, the task of randomly initialized agents moving a block in place is a

Approach • 66

multi-step task. First the agent has to find the block, then push the block

towards the goal. It not only has to learn what to do, but what to do in a

specific order. This adds to the issue of credit assignment, where the agent

does not know which actions resulted in a win or a loss.

Lastly, this task is difficult because the agent exists in continuous state

space. This means that the agent will never be in the exact same state again.

Therefore, it is difficult for the agent to look back on its past experience and

predict what action to take in an entirely new state. This is exacerbated by

the fact that the agent, block, and goal all initialize in a random location

every episode. Because everything is changing every episode, it may have

difficulty discerning which information is important and relevant to the

successful series of actions, or trajectories.

Conclusion • 67

5.1 CONTRIBUTIONS

In this thesis, I clarified the distinction between collaboration, coordination,

and cooperation and argued why collaboration is important to take robotic

assembly to the next level. I presented an extensive review of multi-agent

environments and assembly processes and evaluated existing coordinated

interaction between robots. I presented an overview of reinforcement

learning (RL), advances in Deep RL, as well as robotic control through

reinforcement learning. I proposed a new theory of robotic collaboration

and presented a framework for evaluating this research.

I designed a toy problem to enable the training of collaborative robots, and

I developed and fabricated a team of multiple robots (two iterations). I built

a new environment within the OpenAI gym framework wherein one or

more agents to learn how to collaboratively move blocks–both centralized

and decentralized control. I tested reinforcement learning algorithms (PPO,

DDPG, MADDPG) for methods of collaborative assembly with multi-agent

teams. I developed a framework for transferring learning from simulation

to physical robots. Lastly, I compiled resources helpful for learning more

about this research.

5.2 FUTURE WORK

As mentioned earlier, this thesis is only the first step in a larger effort to

move towards autonomous collaborative robots. As such, there are many

directions in which this research can and will go. One important step is

to continue a focus on implementing this in the real world with physical

robots. In this thesis, I developed a framework for transferring learning

CHAPTER 5

CONCLUSION

Conclusion • 68

from simulation to real-world. In continuing this direction, I would focus

on system identification to better match the simulation to real world as

well as make adjustments to both the physical robot and digital simulation.

Another approach is to look at methods for speeding up learning in the

physical world without the need for a simulation.

In addition, there are also many directions to go in terms of the different

aspects of collaboration. In this thesis, I explored collaboration as a process

whereby two agents with the same abilities learned to interact to push a

block. Their abilities were somewhat limited in that they could only push

and could not pull or grab. By working with another robot they were able

to pinch, rotate, or guide the block together.

Another aspect of collaboration that I am interested in is when robots have

different skillsets and abilities. Similar to when people come together to

collaborate on a project, the robots would have no prior knowledge about

the other’s abilities and would need to communicate with each other

and negotiate roles. The robots could have different sensing, strength or

manipulation capabilities. They could also have varying knowledge of

the goal or task at hand or intelligence and reasoning capabilities. Alone,

neither robot would be able to complete the entire goal, but by working

together and combining their skills they would be able to achieve much

more. This is why there is power in collaboration. By creating a flexible

system wherein robotic agents can adapt and learn over time, we can advance

robotic assembly to operate in more dynamic and changing environments.

References • 69

Amato, C., Konidaris, G., Anders, A., Cruz, G., How, J. P., & Kaelbling, L. P. (2016). Policy search for multi-
robot coordination under uncertainty. The International Journal of Robotics Research, 35(14), 1760–1778.
https://doi.org/10.1177/0278364916679611

Amato, C., Konidaris, G., Cruz, G., Maynor, C. A., Jonathan, P., & Kaelbling, L. P. (2015). Planning for
Decentralized Control of Multiple Robots Under Uncertainty. In 2015 IEEE International Conference on
Robotics and Automation (ICRA). Institute of Electrical and Electronics Engineers (IEEE). Retrieved from
https://pdfs.semanticscholar.org/d365/3502f61c56485bdbea7092e1652289e84e5b.pdf

Ann Marie Thomson, James L. Perry, & Theodore K. Miller. (2009). Conceptualizing and Measuring Collaboration.
Journal of Public Administration Research and Theory: J-PART, (1), 23. https://doi.org/10.1093/jopart/mum036

Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., … D’Andrea, R. (2014). The
Flight Assembled Architecture installation: Cooperative construction with flying machines. IEEE Control
Systems, 34(4), 46–64. https://doi.org/10.1109/MCS.2014.2320359

Ben-Ari, M., & Mondada, F. (2018). Robotic Motion and Odometry. In M. Ben-Ari & F. Mondada, Elements of
Robotics (pp. 63–93). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-62533-1_5

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of Machine
Learning Research, 13(Feb), 281−305.

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings
of the National Academy of Sciences, 99(suppl 3), 7280–7287. https://doi.org/10.1073/pnas.082080899

Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., … Vanhoucke, V. (2017). Using
Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping. ArXiv:1709.07857
[Cs]. Retrieved from http://arxiv.org/abs/1709.07857

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016). OpenAI
Gym. ArXiv:1606.01540 [Cs]. Retrieved from http://arxiv.org/abs/1606.01540

Chen, L. (2012). Agent-based modeling in urban and architectural research: A brief literature review. Frontiers
of Architectural Research, 1(2), 166–177. https://doi.org/10.1016/j.foar.2012.03.003

Christiano, P., Shah, Z., Mordatch, I., Schneider, J., Blackwell, T., Tobin, J., … Zaremba, W. (2016). Transfer
from Simulation to Real World through Learning Deep Inverse Dynamics Model. ArXiv:1610.03518 [Cs].
Retrieved from http://arxiv.org/abs/1610.03518

Colbry, S., Hurwitz, M., & Adair, R. (2014). Collaboration Theory. Journal of Leadership Education, 13(4),

REFERENCES

References • 70

63–75. https://doi.org/10.12806/V13/I4/C8

Deisenroth, M. P. (2011). A Survey on Policy Search for Robotics. Foundations and Trends in Robotics, 2(1–2),
1–142. https://doi.org/10.1561/2300000021

Dogar, M., Knepper, R. A., Spielberg, A., Choi, C., Christensen, H. I., & Rus, D. (2015). Multi-scale
assembly with robot teams. The International Journal of Robotics Research, 34(13), 1645–1659. https://doi.
org/10.1177/0278364915586606

Dreyfus, H. L. (1981). From micro-worlds to knowledge representation: AI at an impasse. In J. Haugel (Ed.),
Mind Design (pp. 161--204). MIT Press.

Felbrich, B., Fruh, N., & Prado, M. (2017). Multi-Machine Fabrication. In Disruptions + Disciplines. Cambridge,
Mass.

Gray, B., & Wood, D. J. (1991). Collaborative Alliances: Moving From Practice to Theory. The Journal of Applied
Behavioral Science, 27(1), 3–22.

Gray, B. (1989). Collaborating: finding common ground for multiparty problems. Jossey-Bass.

Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2016). Deep Reinforcement Learning for Robotic Manipulation with
Asynchronous Off-Policy Updates. ArXiv:1610.00633 [Cs]. Retrieved from http://arxiv.org/abs/1610.00633

Hall, E. L., & Hall, B. C. (1985). Robotics: A User-Friendly Introduction. New York: Holt Rinehart & Winston.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4, 237–285.

Kassabian, P., Gumpertz, S., Menges, H. A., & Werfel, J. (n.d.). Towards Force-aware Robot Collectives for
On-site Construction.

Knepper, R. A., Layton, T., Romanishin, J., & Rus, D. (2013). IkeaBot: An autonomous multi-robot coordinated
furniture assembly system (pp. 855–862). IEEE. https://doi.org/10.1109/ICRA.2013.6630673

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The International
Journal of Robotics Research, 32(11), 1238–1274. https://doi.org/10.1177/0278364913495721

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2015). End-to-End Training of Deep Visuomotor Policies.
ArXiv:1504.00702 [Cs]. Retrieved from http://arxiv.org/abs/1504.00702

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., … Wierstra, D. (2015). Continuous control with
deep reinforcement learning. ArXiv:1509.02971 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1509.02971

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., & Mordatch, I. (2017). Multi-Agent Actor-Critic for
Mixed Cooperative-Competitive Environments. ArXiv:1706.02275 [Cs]. Retrieved from http://arxiv.org/
abs/1706.02275

Macal, C. M., & North, M. J. (2005). Tutorial on agent-based modeling and simulation. In Proceedings of the
Winter Simulation Conference, 2005. (pp. 14 pp.-). https://doi.org/10.1109/WSC.2005.1574234

Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain. Autonomous Robots, 4(1), 73–83.

Minsky, M. (2006). The Emotion Machine: Commensense Thinking, Artificial Intelligence, and the Future of the
Human Mind. New York : Simon & Schuster, c2006.

References • 71

Minsky, M., & Papert, S. (1971, December 11). Progress Report on Artificial Intelligence. MIT AI Laboratory.
Retrieved from https://web.media.mit.edu/~minsky/papers/PR1971.html

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).
Playing Atari with Deep Reinforcement Learning. ArXiv:1312.5602 [Cs]. Retrieved from http://arxiv.org/
abs/1312.5602

Mordatch, I., & Abbeel, P. (2017). Emergence of Grounded Compositional Language in Multi-Agent Populations.
ArXiv:1703.04908 [Cs]. Retrieved from http://arxiv.org/abs/1703.04908

Navarro, I., & Matía, F. (2013). An Introduction to Swarm Robotics. ISRN Robotics, 2013, 1–10. https://doi.
org/10.5402/2013/608164

Ng, A. (n.d.). Shaping and policy search in Reinforcement learning. University of California, Berkeley. Retrieved
from http://www.cs.ubc.ca/~nando/550-2006/handouts/andrew-ng.pdf

Niazi, M., & Hussain, A. (2011). Agent-based computing from multi-agent systems to agent-based models: a
visual survey. Scientometrics, 89(2), 479–499. https://doi.org/10.1007/s11192-011-0468-9

Petersen, K., Nagpal, R., & Werfel, J. (2011). Termes: An autonomous robotic system for three-dimensional
collective construction. Proc. Robotics: Science & Systems VII.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., … Andrychowicz, M. (2017). Parameter
Space Noise for Exploration. ArXiv:1706.01905 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1706.01905

Rogers, D., & Whetten, D. A. (1982). Inter-organizational Coordination: Theory, Research, and Implementation
(1st edition). Ames: The Iowa State University Press.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization
Algorithms. ArXiv:1707.06347 [Cs]. Retrieved from http://arxiv.org/abs/1707.06347

Sidor, S., & Schulman, J. (2017, May 24). OpenAI Baselines: DQN. Retrieved April 27, 2018, from https://
blog.openai.com/openai-baselines-dqn/

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Deterministic policy gradient
algorithms. In ICML.

Stone, W. L. (2004). The History of Robotics. In T. R. Kurfess (Ed.), Robotics and Automation Handbook. CRC
Press.

Sutton, R. S., & Barto, A. G. (2017). Reinforcement Learning: An Introduction (2nd edition, in progress).
Cambridge, Massachusetts ; London, England: The MIT Press.

Testa, P. (2017). Robot house : instrumentation, representation, fabrication. New York, New York : Thames &
Hudson, 2017.

Winograd, T. (1971, January). Procedures as a Representation for Data in a Computer Program for understanding
Natural Language. Massachusetts Institute of Technology, Cambridge, Massachusetts.

Winston, P. H. (1970, January). Learning Structural Descriptions from Examples. Massachusetts Institute of
Technology, Cambridge, Massachusetts.

Wood, D. J., & Gray, B. (1991). Toward a Comprehensive Theory of Collaboration. The Journal of Applied
Behavioral Science, 27(2), 139–162. https://doi.org/10.1177/0021886391272001

References • 72

Yahya, A., Li, A., Kalakrishnan, M., Chebotar, Y., & Levine, S. (2016). Collective Robot Reinforcement Learning
with Distributed Asynchronous Guided Policy Search. ArXiv:1610.00673 [Cs]. Retrieved from http://arxiv.
org/abs/1610.00673

Figures + Tables • 73

Figure 1.	 Three rectilinear blocks that the agents learn to move together. Image by author.

Figure 2.	 This thesis consists of the intersection of three areas of research: collaboration, robotic assembly, and

learning. Image by author.

Figure 3.	 Diagram mapping cooperation, collaboration and coordination along two axes (autonomy and formal

structure). In cooperation, parties work towards individual goals, while in coordination parties work

towards shard goals. Collaboration can include both shared and individual goals. Image by author.

Figure 4.	 Reinforcement learning diagram. Adapted from Reinforcement Learning: An Introduction by Sutton,

R. S., & Barto, A. G. (2017). Cambridge, Massachusetts ; London, England: The MIT Press.

Figure 5.	 Reinforcement learning diagram comparing a dog to the agent and a trainer to the environment.

Image by author.

Figure 6.	 Goal task: robots collaborate to move blocks to complete puzzle in specified location. Image by author.

Figure 7.	 Conceptual diagram of robots moving blocks into place. Image by author.

Figure 8.	 (Left) Builder Robot 0.0 concept design. (Right) Toy task of building an arch out of five blocks.

Image by author.

Figure 9.	 (Left) Builder Robot 1.0 concept design. (Right) Toy task of assembling a puzzle out of three blocks.

Image by author.

Figure 10.	 (Left) Octagonal plan of Builder Robot 1.0 (Right) Builder Robot 1.0. Image by author.

Figure 11.	 Manually controlled Builder Robot 1.0 pushes block into place. Image by author.

Figure 12.	 MORSE manually controlled simulation environment. Image by author.

Figure 13.	 Manually controlled environment to test the controls and physics implementation. Image by author.

Figure 14.	 Diagram showing the degrees of motion of holonomic and non-holonomic control for the agents.

Image by author.

FIGURES + TABLES

Figures + Tables • 74

Figure 15.	 OpenAI gym environments: (A) Cartpole; (B) 2D Walker; (C) Atari Pong; (D) Atari Breaker. URL:

https://gym.openai.com/envs/#classic_control

Figure 16.	 First iteration of environment: RobotPuzzle-v0. It contains a single agent with three unique blocks

that form a square. The agent is tasked with moving the blocks to their specified location, demarcated

by small blue dots near the center of the screen. Image by author.

Figure 17.	 Simplified environment of block learning to move itself in place. Image by author.

Figure 18.	 Observations extracted from the high-dimensional input to the CNN. Each observation contains a

sequence of three renderings captured from three different timesteps to capture motion. In this way,

the NN can infer motion. Image by author.

Figure 19.	 Top and bottom rows are two separate episodes of the agent manipulating the block. As mentioned,

it pushes the block to the wall then attempts to move it away by turning its chassis. Image by author.

Figure 20.	 Diagram illustrating the two distances used for reward shaping: (a) agent_dist; (b) block_dist. Image

by author.

Figure 21.	 Reinforcement learning diagram showing how the centrally controlled agents receive the same

observation and reward. Image by author.

Figure 22.	 Series of screenshots from testing episodes show collaborative methods agents learned for moving the

block such as rotating and guiding. Image by author.

Figure 23.	 In oder to better match the real world, the updated environment does not have boundary walls and

the agent has non-holonomic control, similar to the way the physical robots move. Image by author.

Figure 24.	 The two images are snapshots from the same simulation with different rendering techniques. The top

more similarly represents what the agent might see, while the bottom is a full representation of the

objects in the environment that people can easily perceive. Image by author.

Figure 25.	 Reinforcement learning diagram showing how in a decentralized multi-agent environment, agents

receive the their own observation and reward and take their own actions. Image by author.

Figure 26.	 (Left) Holonomic controlled environment. (Right) Non-holonomic controlled environment. Image

by author.

Figure 27.	 (Left) When collaboration is too much, all of the agents get in the way of each other. (Right) When

collaboration turns mechanical, the agents acts as gears to mechanically move the block. Image by author.

Figure 28.	 An environment including five agents and one heavy block. Three of the agents collaborate to move

the block to the goal. Image by author.

Figure 29.	 The vision system can identify each block’s location and orientation using the triangle. The user sets

Figures + Tables • 75

the blocks’ final positions and the program can identify when the pieces are in place. Image by author.

Figure 30.	 Robot Builder 2.0 is built with the same components as Robot Builder 1.0, but it has an updated

chassis for being identified with computer vision. Image by author.

Figure 31.	 Diagram of the agents pushing the block, demonstrating the various components of the vision system.

Image by author.

Figure 32.	 Computer vision overlay on view from overhead camera. Image by author.

Figure 33.	 Overview of environments–or sets of preconditions–designed, programmed and tested in this thesis.

Table 1.	 This table outlines the primary difference between cooperation, coordination and collaboration. The

columns labeled with an asterisk (*) are taken from Rogers & Whetten (1982) while the third column

is completed by compiling research from Wood & Gray (1989) and Thomson et al.(2007).

Table 2.	 Example code from simple cartpole environment. Edited excerpt from OpenAI gym documentation.

URL: https://gym.openai.com/docs/

Appendix • 76

APPENDIX

LEARNING RESOURCES

Neural Networks and Deep Learning, by Michael Nielsen

•	 http://neuralnetworksanddeeplearning.com/index.html

CS231n Convolutional Neural Networks for Visual Recognition

•	 http://cs231n.github.io/convolutional-networks/

Andrej Karpathy’s Pong from Pixels

•	 http://karpathy.github.io/2016/05/31/rl/

John Schulman’s Lectures

•	 https://www.youtube.com/watch?v=aUrX-rP_ss4

•	 https://www.youtube.com/watch?v=8EcdaCk9KaQ&t=1653s

Deep Learning for Self-Driving Cars

•	 https://selfdrivingcars.mit.edu/

OpenAI Gym

•	 Documentation: https://gym.openai.com/docs/

•	 Github: https://github.com/openai

My multi-agent environments:

•	 https://github.com/khajash/multiagent-env

