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ABSTRACT

Digital technology is changing the industrial sector, yet how to make rational use of some
technologies and create considerable value in a variety of industrial scenarios is an issue. Many
digital industrial companies have stated that they have helped clients with their digital
transformation, create much value, but the real effects have not been shown in public. Venture
capitals firms have made huge investment in potential digital industrial startups. Numerous
industrial IoT platforms are emerging in the market, but a number of them fade soon after. Many
people have heard about industrial maintenance technology, but they have difficulty in
differentiate concepts such as reactive maintenance, planned maintenance, proactive
maintenance, and predictive maintenance. Many people know that big data and Al are essential
in industrial sector, but they do not know how to process, analyze, and extract value from
industrial data and how to use Al algorithms and tools to implement a research project.

This thesis analyzes the entire digital industrial ecosystem in various dimensions such as
initiatives, technologies in related domains, stakeholders, markets, and strategies. This work also
analyzes of the predictive maintenance solution in various dimensions such as background,
importance, suitable scenarios, market, business model, and technology. The author plans an
experiment for the predictive maintenance solution, including goal, data source and description,
methods and steps, and flow and tools. Then author uses a baseline approach and an optimal
approach to implement the experiment, including data preparation, selection and evaluation of
both regression and classification models, and deep learning practice through neural network
building and optimization. Finally, contributions and expectations, and limitations and future
research are discussed. This work uses a system approach, including system architecting, system
engineering, and project management, to complete the process of analysis, design, and
implementation.

Thesis Supervisor: Dr. Donna H Rhodes
Title: Principal Research Scientist, Sociotechnical System Research Center
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Chapter 1: Introduction

The digital age is here. We have seen and heard about cutting edge digital technologies such as

Artificial Intelligence (AI), Big Data and Analytics, cloud computing, edge computing, Internet

of Things (IoT), etc. Digital technology has powered a revolution of social network and

consumer markets in the past two decades. Currently, digital technology is transforming the

industrial sector. Imagine that aircraft engines will remind technicians of their overhaul, and

steam turbines will communicate with each other to produce electricity more efficiently. These

scenarios that happened in science fictions and movies will come to pass in the future. Digital

technology makes it happen.

1.1 Problem Statement

Digital industry is here, yet how to make rational use of certain technologies and create

considerable value in various industrial scenarios is a problem.

It is better to break down this complicated problem into a few questions:

* What is the most urgent industrial issue to be addressed?

* What is the most valuable and feasible solution to this problem?

" What is the most suitable technology for this solution?

* How to design a validation experiment?

* How to make rational use of certain techniques and tools to implement an experiment?

It has been at least six years since the beginning of Industry 4.0 or Industry Internet. There has

been too much advertisement and boasting. Many digital industrial companies have claimed that

they have helped customers create much value, but the real effects have not been shown in

public. As a digital industrial leader, GE has spent billions of dollars on the development of

digital technologies. However, GE sold its industrial solution division in September 2017

because of its unexpected outcomes. Venture capitals firms have made significant investment in

the potential digital industrial startups. Numerous industrial IoT platforms are emerging in the
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market, but a number of them fade soon after because of a lack of data, domain expertise, and

practical experience. Some people doubt about the future of the digital industry.

Many people have heard about industrial maintenance technology, but they have been confused

about concepts such as reactive maintenance, planned maintenance, proactive maintenance, and

predictive maintenance. What are problems in other industrial scenarios such as operations or

quality control besides maintenance? Please see the figure 0 below for the Industrial IoT problem

taxonomy raised by Hitachi.

Figure 1. Industrial IoT Problem Taxonomy (Source: [1])

Many people know that big data is essential in industrial sector, but they do not know what

characteristics industrial data have, or how to process, analyze, and extract value from industrial

data. Many people value Al and have high expectations for of Al's performance in industry,

however, they do not know in what kind of industrial scenarios Al plays a valuable role, or what

kind of Al methods are suitable for certain industrial problem, or how to use Al algorithms and

tools to implement a research project.

11
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1.2 Research Objectives

The primary objective of this research is to figure out the most valuable and urgent industrial

scenario and issue as well as the most suitable technology that is able to solve the problem in this

scenario. To investigate these industrial scenarios and issues, I overview and analyze the entire

ecosystem of the digital industry. I then formulate a valuable and feasible solution to the problem

in the scenario. After analysis of this solution, I design an experiment, implement it, and evaluate

the result in order to make sure this solution is indeed able to optimize results and create value.

Finally, I summarize not only the experiment but also the entire approach and find out where

there is room for improvement in the future research.

The second objective is to demonstrate how to use Al technologies such as machine learning and

deep learning to solve industrial problems step by step through hands-on practice in an

experiment that particularly designed for this solution.

This research is a good opportunity for me to not only review knowledge and skills I learned in

the core course of the System Design and Management program but also apply it in practice by

using system thinking to analyze and solve a problem from industry.

In sum, all of the efforts would not only help people to better understand the ecosystem of digital

industry and related valuable solutions but also benefit my future endeavors in the digital

industry.

1.3 Research Approach

This investigation uses a system approach, including system architecting, system engineering,

and project management, to complete the process of analysis, design, and implementation. This

thesis describes the approach of this research as follows:
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1. Introduction: The motivations and objectives of this research on how to figure out the

industrial scenario, issue, and technology, and how to implement a solution to solve the

problem.

2. Ecosystem Analysis: The analysis of the entire digital industrial ecosystem in various

dimensions such as initiatives, technologies in related domains, stakeholders, markets,

and strategies.

3. Solution Analysis: The analysis of the predictive maintenance solution in various

dimensions such as background, importance, suitable scenarios, market, business model,

and technology.

4. Experiment Design: The plan for the predictive maintenance solution, including goal,

data source and description, methods, steps, and tools.

5. Experiment Implementation: The baseline approach and optimal approach to

implement the experiment, including data preparation, selection and evaluation of both

regression and classification models, deep learning practice through neural network

building and optimization.

6. Conclusion: Summary, contributions and expectation, and limitations and future research

13



Chapter 2: Ecosystem Analysis

2.1 Background Analysis

"In the future, all the manufacturers make the machines, the machines can not only produce the

products, the machines must have talked the machine, must have think, and the machine is not

going to be supported by oil by electricity, the machine is going to be supported by data. In the

future world, business will not focus on the size, business will not focus on standardization and

the power, they will focus on the flexibility, nimbleness, customization, and user friendliness."

-- said by Jack Ma (founder and executive chairman of Alibaba Group) on the Hannover Messe

2015

These words represent future manufacturing in both German and US philosophies. The Germans

call it smart manufacturing to meet requirement of customization, socialization, and flexibility,

while Americans call it intelligent manufacturing to highlight the intelligence of physical system
[2]

2.1.1 Industry 4.0

Industry 4.0 is a name for the current trend of automation and data exchange in manufacturing

technologies. The term "Industrie 4.0" originates from a project in the high-tech strategy of the

German government, which promotes the computerization of manufacturing. The term "Industrie

4.0" was revived in 2011 at the Hannover Fair [3]. The roadmap of industrial revolutions is shown

in the figure 2 below.
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From Industrie 1.0 to Industrie 4.0:
Towards the 4th Industrial Revolution

I AW 71
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Industrie 2.0

E
0

I

Figure 2. Roadmap of Industrial Revolutions (Source: [4])

Industry 4.0 focuses on cyber-physical production systems for mass customization. With the

cyber-physical system, Industry 4.0 promotes digitalization and smartness of information of

supply, manufacturing, and sales, achieves fast, effective, and customized supply of products for

a reasonable price based on semantic technologies and service matchmaking, and enables Plug &

Produce and Multi adaptive Smart Factories. In Industry 4.0 scenario, plant workers are assisted
[4]

by collaborative robots, intelligent industrial systems, augmented reality devices, etc

Industry 4.0 is a success story of a strategic public-private partnership and secures Germany's

economic power as a leader in manufacturing. Typical industry giants in Germany are Siemens,

SAP, Bosch, etc. Industry 4.0 is the foundation of digital economy.

Four design principles in Industry 4.0 are shown in the figure 3 below.
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Figure 3. Design Principles in Industry 4.0

2.1.2 Industrial Internet

As an industry giant in US, GE promoted digital industry and woke up as a software and

analytics company. GE proposed the Industrial Internet concept in late 2012 through the

whitepaper - Industrial Internet: Pushing the Boundaries of Minds and Machines by Peter C.

Evans and Marco Annunziata. Industrial Internet was referred to as Industrial IoT or IIoT later.

Based on GE's estimation, the Industrial Internet could be a $225 billion market by 2020. GE

Digital was built to explore digital transformation, and lay a solid digital foundation in GE. With

significant investments and resources in the Industrial Internet, GE is driving its own digital

industrial transformation. With its experience and expertise accumulated during its own

transformation, GE is helping customers achieve their digital transformation [5]. Other typical

industry companies in US are Honeywell, Emerson, Rockwell, etc.
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As a "network of networks", the "regular" Internet networks people with information, while the

Industrial Internet connects machines, devices, systems, plants, industries and people to collect,

process, analyze industrial customers' data, and create value through data-driven digital

technologies [6.

Through a convergence of Operation Technology (OT) and Information Technology (IT), the

Industrial Internet is weaving together OT systems with IT systems, and achieving end-to-end

automation solution for complex processes: production monitoring, repair and maintenance, and

asset management and optimization.

As one of the members, GE co-founded the Industrial Internet Consortium (IIC) to accelerate the

development, adoption, and widespread use of Industrial Internet, and create value from

connected and intelligent machines, devices, systems, and people at work.

To achieve consistency of Industrial Internet systems, the Industrial Internet Consortium (IIC)

proposed the Industrial Internet Architecture Framework and Industrial Internet Reference

Architecture. Based on the architecture, Industrial Internet system has become a distinct domain,

similar to control, operations, information, application, and business [71. Please see the figure 4

below for the overview of functional domains and the figure 5 below for the mapping between a

three-tier architecture to the functional domains.
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Figure 4. Functional Domains (Source: [7])
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2.1.3 Made in China 2025

In 2015, the Chinese government established the "Made in China 2025" initiative to upgrade

China from a manufacturer of quantity to that of quality.

"Made in China 2025" proposed that persist in the basic principle of "innovation-driven, quality

first, green development, structural optimization, and talent-based", and persist in the basic

principle of "market-oriented, government guided, current status-based, long-term targeted,

comprehensive progressive, and breakthrough at key points, independent development, and open

and collaborative". Through "three steps" to achieve the strategic goal of being a strong

manufacturing country [.

"Made in China 2025" clearly defined 9 strategic tasks, prioritized them, and proposed 8

strategic supports and guarantees. This timeline of this goal is shown in the figure 6 below, and

10 key areas that promote breakthroughs are shown in the figure 7 below. Typical industry

companies in China are Huawei, SANY, Foxconn, etc. In addition, BAT (Baidu, Alibaba,

Tencent) are seizing this great opportunity to enter this market.

Worilargest Bem a BeCOme inlddle-level Do= aleading
2Ot5 manafloflng 2 layer among the 0 * muntactulug
of gnds owu tne econonies por

Figure 6. Goals of Made in China 2025 (Source: [9])
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Electrical Nar g saving and Numerical

equipment mahns materials% %eTne~ control tools
ve hile and robotics

11KUjjf iformatlon Aerospace Railway Ocean MedicaltieKY S~I technology equipment equipmeint engineering devices

vessels

Figure 7. 10 Key Areas that Promote Breakthroughs (Source: [9])
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2.1.4 The Industrial Value Chain Initiative (IVI)

Founded in Japan, IVI is a forum to design a new society through combining manufacturing and

information technologies, and for all enterprises to collaboratively take an initiative. Typical

industry companies in Japan are Hitachi, Mitsubishi, Yokogawa, etc.

Traditionally, Japanese industrial companies make everything they need by themselves. This is

not sustainable in the globalized world today. IVI aims at creating a mutually connected system

architecture for a cooperation among companies, in particularly, small and mid-sized enterprises

(SME's). IVI offers opportunities for correlated companies to leverage their own strengths and

advantages to interact and work with each other in order to scale up their business size and

explore emerging market in the digital industry.

Connected Manufacturing and Loose Standards are two principles of IVI.

* Connected Manufacturing: prevent from overburden, waste, and unevenness through

connecting plants and enterprises; create smart value chains based on industrial

automation and human ability simultaneously.

* Loose Standards: use an adaptable model instead of a rigid system. A strict standard faces

challenges in complex manufacturing settings with old and new elements, while a loose

standard in the reference model enables interconnection case-by-case [1O]. Please see the

figure 8 below for the loose standard in the reference model.

Loose Standard - Reference Model

specification

F . actorydin h eIo r
operation ~ l - I\P0b:r

An sie A n steB

Refeence model ,..

A.... ... - c

specfication

Figure 8. Loose Standard in the Reference Model in IVI (Source: [10])
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2.1.5 Alternatives Initiatives

Many European countries joined the German industry 4.0 initiative, to name a few: Sweden,

Austria, Ireland, France, etc. The representative industrial companies are ABB, Schneider, and

the like. Through the Horizon 2020 program, the European Commission is promoting the

development and adoption of digital technologies in European countries to reshape their

industries. Enormous progress is witnessed in 3D printing, additive manufacturing, IoT, and

robotics in Europe in these years.

In Asia-Pacific region, besides China and Japan, many other Asian countries such as India, South

Korea, Singapore are taking initiatives to motivate implementation of the digital industry.

Besides major company like Samsung, some potential startups such as Flutura and Altizon are

coming into our sight.

I use the term "digital industry" to represent all alternatives of Industry 4.0 in the following

paragraphs.

2.2 Technology Analysis

The digital industry is driven by technology. Key technologies contribute to the digital industry

include but no limited to [6] [111.

- Sensors and actuators

- Robotics

- M2M and machine protocols

- Network and IoT

- Control systems, SCADAs, DCSs, PLCs

- Data management and data analytics

- Al and machine learning

- Network and connectivity

- Cloud computing
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- Edge computing

- Mobile and Wearables

* HMI, UI/UX

- Augmented Reality (AR) & Virtual Reality (VR)

- Digital Twins

- Cybersecurity

Block Chain

Like sensor and industrial control system (ICS), traditional industrial technologies lay a solid

foundation for the digital industry. Digital technology is a new power that transforms the

industrial sector throughout the world. Based on BCG's research, nine technology trends form

the building blocks of Industry 4.0, showing in the figure 9 below. In addition, a digital compass

in a McKinsey report illustrated digital technologies and their value propositions. Please see the

figure 10 below for the digital compass. I would like to introduce key technologies that exert

significant impact in the digital industry.

AugmmedIndustry

rn~ ~A

M la

I.0 H~e -ionta ano aa

Nine Technologies Are
Transforming industrial Production

Figure 9. Technologies that Transform Industrial Production (Source: [12])
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'Maintenance, repair, and operations.
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Figure 10. Digital Compass (Source: [13])

2.2.1 IT/OT Convergence

As is known to all, Information Technology (IT) needs not any words here. I would like to

introduce OT here.

Operational Technology (OT) - the hardware and software dedicated to detecting or causing

changes in physical processes through direct monitoring and/or control ofphysical devices such

as valves, pumps, etc. Simply put, OT is the use of computers to monitor or alter the physical

state of a system, such as the control system for a power station or the control network for a rail

system. The term has become established to demonstrate the technological and functional

differences between traditional IT systems and Industrial Control Systems environment.
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-- Wikipedia [14]

Here is an analogy. The Internet is a central nervous system, the cloud acts as a brain, while OT

components make up the body, giving the Internet eyes and ears, arms and fingers to gather

information and act upon that information. OT components have capabilities for local

automation and execution.

Good examples of OT are Industrial Control Systems (ICSs) such as Distributed Control

Systems (DCS), Programmable Logic Controllers (PLC), Supervisory Control and Data

Acquisition (SCADA) Systems, and Remote Terminal Unit (RTU). ICSs are used to monitor and

control the processes and interactions among sensors and actuators.

ICSs process operational data from electronic devices, telecommunications, computer systems,

and monitor various process values, such as temperature, pressure, flow, level, etc. ICSs also

control engines, conveyors, pumps, valves, fans and other machines and equipment to regulate

corresponding process values to prevent them from dangerous conditions. ICSs process real time

or near-real time data with high requirements of availability and reliability.

OT-standard industrial communications protocols are Modbus, Profibus, etc. Gradually, IT-

standard network protocols such as TCP/IP are being adopted in OT components in order to

reduce complexity and increase compatibility, but the tradeoff is the reduction in security for OT

systems.

ICSs have existed for as long as industrial processes. ICSs take on new meaning with digital

technologies, in particularly, IT/OT convergence. Based on Gartner's prediction, by 2020, 50

percent of OT service providers will create key partnerships with IT-centric providers for IoT

offerings." [15]

IT/OT convergence is reshaping long-standing processes in almost every industry to enable

complex systems to monitor, maintain, control and optimize themselves, and remove the

necessity for human involvement in many industrial scenarios. Through this convergence, best

practices in IT such as software development, deployment and operations are being adopted in

software-defined OT systems. In addition, IT systems such as Enterprise Resource Planning
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(ERP) and Asset Management System are being seamlessly interfaced with OT systems (please

see the figure 11 below), facilitating end-to-end automation solution and application such as

predictive maintenance [16. I will take a deep dive into it in the following chapters.

Figure 11. Convergence of IT/OT Systems (Source: [17])

2.2.2 M2M and Machine Protocols

Machine-to-machine refers to direct communication between devices using any communications

channel, including wired and wireless. Machine to machine communication can include

industrial instrumentation, enabling a sensor or meter to communicate the data it records (such

as temperature, inventory level, etc.) to application software that can use it (for example,

adjusting an industrial process based on temperature or placing orders to replenish inventory).

Such communication was originally accomplished by having a remote network of machines relay

information back to a central hub for analysis, which would then be rerouted into a system like a

personal computer.
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--Wikipedia [18]

Machine-to-machine (M2M) communication represents technological solutions and deployments

enabling machines, devices and objects to communicate with each other without human

interactions.

M2M technology is a basis of the digital industry. It enables the actual connection and

interaction among machines, either directly point-to-point or over the Internet, serial, Ethernet, or

other local LANs under specific protocols.

Compared with Web communication, OT communications are more complicate because they

interact with system-external environments and they need high speed data transmission. Please

see the table 1 below for protocols currently being used in M2M and figure 12 below for

protocols in OSI model. No one protocol seems to become a standard any time soon.
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Figure 12. M2M Protocols in OSI Model (Source: [19])
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Table 1. Protocols for M2M (Source: [20])

PROTOCOL DESCRIPTION

A publish-subscribe protocol used over TCP/IP.
MQ'T

Lightweight, low code footprint, minimal bandwidth.

Constrained Application Protocol
CoAP

Applicationayer protocol used for constrained (low-power, low-memory, etc.) nodes and networks.

Advanced Message Queuing Protocol
AMQP

Application layer, wire-level protocol that supports a variety of messaging patterns.

Updated version of Hypertext Transfer Protocol
HTrP/2

Built with HTRP 1.1 compatibility and performance enhancement in mind.

Internet Protocol Version 6

IPv6 Updated version of the Internet Protocol Version
4, necessary for assigning unique addresses to the rapidly growing number of machines connected to the Internet (due
partially to the increase of Things and M2M connections).

IPv6 over low power Wireless Personal Area Networks

6LoWPAN The 6LoWPAN group has defined encapsulation and header compression mechanisms that allow IPv6 packets to be
sent and received over IEEE 802-154 based networks.

2.2.3 Convergence of H2H, H2M, and M2M

Besides convergence of IT and OT, we also value the convergence of Human-to-Human (H2H),

Human-to-Machine (H2M), and Machine-to-Machine (M2M) communication.

In the past, H2H and H2M technology was widely used. Without machine, human (operators,

engineers, managers) have to communicate with each other and play their own roles in

production process. With the development of ICSs, basic semi-automatic production was

realized through operation on the Human-machine interface (HMI). Please see the table 2 below

for the form and function of H2H, H2M, and M2M.
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Table 2. Form and Function of H2H, H2M, and M2M

Form

Convergence of H2H, H2M, and M2M:

Different kinds of machines, such as on-site

instruments and devices, operation systems,

and information systems, have been

connected to each other through network.

Human such as operators, engineers and

managers, are also involved in the network.

Function

M2M: Machines are able to communicate

with each other to exchange data, complete

interlock control tasks.

H2M: Machines are able to send significant

information to human in important situation,

for instance, turbines can inform engineers for

overhaul through sending message to the

mobile operating device; Human can obtain

all of information they need to control

production process.

H2H: Based on all of information they get

from machines, Human are able to interact

with each other and better improve their work

efficiency.

With the rapid development of M2M technology, the convergence of H2H, H2M, and M2M

becomes reality. I use a Model-based System Engineering (MBSE) tool - Object-Process

Methodology (OPM) to illustrate this convergence. Through the industrial internet, devices,

plant, technologies (IT & OT), and people are closely connected, and the convergence of H2H,

H2M, and M2M is realized. Please see the figure 13 below for the OPM chart.
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Figure 13. Convergence of H2H, H2M, and M2M

2.2.4 Internet of Things (IoT)

The Internet of Things (JoT) is the network ofphysical devices, vehicles, home appliances and

other items embedded with electronics, software, sensors, actuators, and connectivity which

enables these objects to connect and exchange data. Each thing is uniquely identifiable through

its embedded computing system but is able to inter-operate within the existing Internet

infrastructure.

--Wikipedia [211

M2M provides IoT with the connectivity that enables capabilities, while IoT has a horizontal

approach that polls vertical applications together; M2M focuses on direct point-to-point

connectivity across mobile or fixed networks, while IoT enables communications with IP
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networks and cloud platforms; M2M focuses the communication only, while IoT has broader

processes and applications; In sum, M2M applications are subset of IoT infrastructure. IoT

provides context for data and events across applications, groups and organizations. IoT goes

beyond M2M and provide and utilize its extensive resources [221. The difference between M2M

and IoT is simply shown in the figure 14 below.

Machine-to-Machine (M2M) VS Internet of Things (loT) wor0

~T~]
L~!]

[~T~1
[~!J

M2M

0
lOT

Figure 14. Difference between M2M and IoT (Source: [22])

In a broad sense, industrial IoT equals to the initiative - industrial internet, while in a narrow

sense, it refers to IoT hardware and software application in industrial sector. We discussed the

broad sense in the 2.1.2 sector. Here we discuss it in the narrow context.

Based on a report by Grand View Research, Inc., the global industrial IoT market is expected to

reach USD 933.62 billion by 2025 [2'].

Narrow-Band (NB) IoT, LoRa (from long range), LTE CAT-M are adopted in the digital

industry. Comparison of various IoT network is shown in the table 3 below.
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Table 3. Comparison of Various IoT Network (Source: [24])

bosvonkoom-
The Internet of Things networking technology cheat sheet 1.0

Sigfox LoRa NB-loT (CtNsi) LTE-M (Cat MI) LTE Cat 0 LTE Cat I

Network: LoRa L L l

Type: PLWAN PLWAN DSSS modulation LTE (cellular) LTE (cellular) LTE (cellular)

Low Power: +++++ ++++ ++++ ++ ++ ++

Throughput Kbit/s: 0,1 50 100 375 1000 10.000
Bandwidth: Ultra-narrowband Narrowband Narrowband Low High High

Latency: 1-30s Based on profile 1.6-10s 10 - 15ms Unknown 50 -looms
Standard: Proprietary Proprietary 3GPP Rel. 13 3GPP Rel. 13 3GPP Rel. 12 3GPP Rel. 8

Availability world-wide: ++ +++ ++ ++ +++++ ++++

Spectrum: Unlicensed ISM Unlicensed ISM Licensed LTE Licensed LTE Licensed LTE Licensed LTE

Complexity: Very low Low Very low Low / medium High High

Coverage I range: Medium / high Medium / high High High High High

Battery life: Very high Very high / high High Medium / high Low Low

Gateway needed: Yes Yes No, but optional Optional Optional Optional

Signal penetration: High Medium / high Medium / high Medium I high Low Low

Security: +++ ++ ++ .. +++++ ++++ ++

Future proof: ++ +++ +++++ +++++ +++ +++

See the accompanying blog series on basvankaam.com for more details on some of the abovementioned features/characteristics

Saturday, July 15, 2017 - Twitter @BasvanKaam

A series of Industrial IoT technology drives operational efficiency in many cases in the digital

industry. For example, using Narrow Band IoT or LoRa technology to bring environment

monitoring sensor data into control system or cloud platform, and evaluate the impact of

production on the environment; monitoring real-time data from crew well-being, and identifying

dangerous situations for personnel safety management.

2.2.5 Network and Standard

Classic automation pyramid is built with layers of network (Machine, Control, Manufacturing,

Enterprise) with corresponding communication protocols and standards (Fieldbus, Industrial

Ethernet, Ethernet, Internet). Through levels of monitoring, control, and management,

information flows upwards from field devices to enterprise. The communication is not as smooth
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as we expected, and issues regarding compatibility between layers frequently come around

because of not only diversity, customization, localization of industrial products but also various

industrial communication protocols and standards.

Most of industrial automation (OT) players developed and promoted their own protocols and

standards, such as Siemens's Profmet, Rockwell's ControlNet, DeviceNet, Ethernet/IP,

Schneider's Modbus and TCP/IP, etc. We expect a standard that bridges the gap among various

OT and IT products. Recently, a growing number of OT companies have adopted Ethernet as a

standardized protocol in their OT products. Industrial Ethernet has been widely accepted in

industries, it is more likely to enable the industrial Internet.

Please see the figure 15 below for the timescales for industrial communication standards.

Industrial Ethernet like Profinet is concerned with sub-second timeframes. Stepping back from

the sub-second timeframe to a longer time frame, industrial Ethernet becomes industrial Internet.

This transformation happens as the granular sub-second data turns into information when

analyzed over a longer time frame [.

Security
nformation

Figure 15. Timescale of Industrial Communication Standards (Source: [25])
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Based on a report on Innovation Post, in 2017, for the first time, the market share of Industrial

Ethernet exceeded Fieldbus. Please see the figure 16 below.

Industrial Ethernet: 52% (46)
Anw lta growth 22% f22)

Fieldbus: 42% (48)
Annual growth: 6% (4)

Oter Wireless

Wireless 6% (6) 1%
Annual growth: 32% (32)

POWVERINK1
4%

19%

if
Hms

IIf

Figure 16. Industrial Communication Protocols and Standards (Source: [26])

As is known to all, Ethernet technology works in asynchronous model and solve issues regarding

data link and network infrastructure share. However, any device can send data at any time in the

network, and data transmission time is uncertain and inaccurate. Therefore, a real-time, certain,

and reliable data transmission vehicle is expected. Now TSN and OPC UA catches our eyes.

2.2.5.1 Time-Sensitive Networking (TSN)

TSN is a set of standards under development by the Time-Sensitive Networking task group of the

IEEE 802.1 working group. The standards define mechanisms for the time-sensitive transmission

of data over Ethernet networks.

--Wikipedia [27]

TSN Add real-time functionality to IEEE 802 Ethernet. TSN is moving past the concept stage for

industrial automation use. As is shown in the figure 17 below, TSN mechanism works in layer 2
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in the Open System Interconnection (OSI) model. The characteristics of TSN is shown in the

figure 18 below.

Industrial
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0-t--l P

Layer 5-7 Payload Payla

Layer 4 TCP Header

Layer 3 IP Header IP Header

IP encapsulated IP encapsulated
Layer 2 IEEE 802.1 standardized TSN mechanisms

IEEE 802.3 standardized MACs

IEEE 802.3 standardized PHYs

Figure 17. Layer for TSN (Source: [28])
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Figure 18. TSN Characteristics
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TSN is enabling all data, including real-time information, to be transmitted through a single

network in effect simultaneously over a shared network. In the deterministic network, our

expectation is as follows [29] [301:

. All clocks on all nodes are synchronized to a uniform network time.

. Time-critical data can be assured to be transmitted within a guaranteed amount of time,

while other non-time-restricted data can be sent as normal.

2.2.5.2 OPC UA

Object Linking and Embedding for Process Control (OPC) specifies the industrial

communication of real-time factory data between control devices and systems from different

manufacturers.

OPC Unified Architecture (OPC UA) is a machine to M2Mprotocol for industrial automation

developed by the OPC Foundation. It focuses on communication with industrial devices and

systems for data collection and control.

--Wikipedia [311

2.2.5.3 TSN + OPC UA

With the exponentially growing amount of data from machines and sensors, more effective and

efficient network architectures are required. The conjunction of TSN and OPC UA catches our

eyes in the digital industry recently. This solution meets the requirements for real-time, vendor-

neutral Ethernet communication among machines, equipment, and systems in the digital

industry. TSN deals with data acquisition problem, while OPC UA handles semantic parse issue.

This new architecture flattens the automation pyramid. Please see the figure 19 below the new

structure. This provides a model where OPC UA 'clients' at management or enterprise levels can

request data directly from OPC UA 'servers' at the device layer. From a new perspective, the
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automation pyramid is transforming to automation pillar. Please see the figure 20 below for the

details in this transformation.

Milli

-- ReaTme
(TSN)R"liimel--i

Figure 19. New Architecture that Flattens the Automation Pyramid (Source: [32])

Inustrie 3.0 Transition Industrie 4.0

at

Fit

Automation Pyramid

Figure 20. Transition of Architectures for the Automation (Source: [33])

OPC UA bridges certain gaps between OT and IT. A Publish/Subscribe model for OPC UA and

TSN extension solve the problem of the proprietary and isolated networks used for real-time and

safety sub-systems. This facilitates the exchange of real-time data from one-to-many and many-

to-many over standard Ethernet.
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Implementation of OPC UA TSN in the digital industry will take time. Actually, many industrial

companies such as Honeywell and Rockwell joined OPC UA TSN initiative to facilitate the

accelerated development of OPC UA TSN.

In addition, with the development of OPC UA TSN, more players outside of industrial

automation, especially technology companies such as BAT in China, might enter the digital

industry market.

2.2.6 Cloud Computing and Platform

Cloud computing is an information technology (IT) paradigm that enables ubiquitous access to

shared pools of configurable system resources and higher-level services that can be rapidly

provisioned with minimal management effort, often over the Internet. Cloud computing relies on

sharing ofresources to achieve coherence and economies of scale, similar to a public utility.

-- Wikipedia [341

Cloud computing is the on-demand delivery of compute power, database storage, applications,

and other IT resources through a cloud services platform via the internet with pay-as-you-go

pricing.

--Amazon Web Service [35]

Cloud computing means a lot in the digital industry. Because of its optimized architecture and

super strong computing power, most industrial internet platforms are built on cloud in different

models such as IaaS, PaaS, SaaS, etc.

Predix, the first cloud-based industrial internet platform, was developed and launched by GE for

building and operating industrial applications. This Platform-as-a-Service (PaaS) platform

enables fast deployment and elastic scale of cloud applications. Predix facilitates embedded

software for standardized IoT connectivity, provides services and micro-services, manages huge

amount of industrial data, analyzes industrial assets and processes for enterprise decision-

37



making, and creates secured environments for applications' compliant management and

operation at industrial scale.

The architecture of various services in different levels are shown in the figure 21 below. As a

comprehensive platform, Predix works with components from edge to cloud in various use cases.

The architecture of Predix is shown in the figure 22 below.

Intel Edison Run
Predix Machine

JK MLn
3G/WI-Fl

OpenC

Stelematics
datatn

Vehicle generating
telematics data

UI/Mobil* Applications

MapView

Dashboard View

Predix Cloud

Figure 21. The Architecture of Various Services in Predix (Source: [36])
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Figure 22. Architecture of Predix Platform (Source: [37])
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To get hands-on experience with this cloud-based platform, I learned through practice on Predix.

To gain full access to Predix, I created a free trial account. To launch a Predix-

enabled development environment to streamline my development effort, I got familiar with the

different development tools needed for different applications. To build an operation environment

for Predix, I downloaded and used tools as follows:

. Cloud Foundry CLI

. Git

. Java SE Development Kit (JDK)

. Node.js

. NPM

. Maven

. Eclipse

" The Spring Tool Suite (STS) for Eclipse

To save time of installation, later, I used VirtualBox to run DevBox. DevBox is designed and

tested with default settings to run up to four separate instances on my machine concurrently,

depending on the capacity of the system. I have full root access, so I can extend and reconfigure

the system. Through practice, I found Predix was an open cloud platform. It was easy to

contribute to this ecosystem as an individual developer.

Industrial automation competitors have built their cloud-based platforms. However, not all

platforms are open system. The comparison among industrial platforms is shown in the table 4

below.
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Table 4. Primary Components of Predix

Predix PlantWeb FactoryTalk

Company GE Emerson Rockwell

Network Area Internet (Cloud) Intranet Intranet

Attribute of Function Ecosystem Platform Platform

Attribute of System Convergence of OT OT System OT System

and IT System (DCS/PLC/SCADA) (DCS/PLC/SCADA)

Development GE and Non-GE Emerson only Rockwell only

Openness Companies (Startups)

Provide security Yes No No

service for the public

(developer)

2.2.7 Edge Computing and Device

Edge computing is a method of optimizing cloud computing systems "by taking the control of

computing applications, data, and services away from some central nodes (the "core') to the

other logical extreme (the "edge') of the Internet" which makes contact with the physical world.

In this architecture, data comes in from the physical world via various sensors, and actions are

taken to change physical state via various forms of output and actuators; by performing

analytics and knowledge generation at the edge, communications bandwidth between systems

under control and the central data center is reduced Edge Computing takes advantage of

proximity to the physical items of interest also exploiting relationships those items may have to

each other. Many principles of Physics exhibit locality whereby an effect is greatest nearby and

diminishes with distance. Edge Computing is the only form of Cloud computing that can offer

"Proximity as a Service

--Wikipedia [38]
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Although cloud computing dominants the digital industry, edge computing is catching our eyes

as in the digital transformation. Based on the location for data analytics, edge is divided into

three classes, as is shown in the table 5 below.

Table 5. Classification of Edge

Class Location for Data Analytics

Extreme edge Sensor

Very edge Machine/Equipment

Fog Infrastructure

In the digital industry, edge locations are more likely refers to sensors, machines, equipment,

ICSs, i.e. extreme edge and very edge that away from the cloud. Edge computing is suitable for

devices with time-sensitive data and low latency requirement. Edge computing is likely to

execute in small footprint devices such as a sensor hub or a gateway. Data analytics and machine

learning algorithms are executed at edge. Please see the figure 23 below for the architecture of

computing from edge to cloud.
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CLOUD LAYER
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Figure 23. Architecture of Computing from Edge to Cloud (Source: [39])
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Actually, to some extent, edge computing is similar to decentralized or distributed computing,

which is not new to us. Digital industrial use cases give this technology new meanings.

Analyzing huge amounts of machine-based data near the place where data come from in a

scenario with a need of low latency is edge computing's advantage in the digital industry

scenario.

Edge computing has potential value in use cases with low and intermittent connectivity. The use

case characteristics are shown in the figure 24 below.

U
U
U
U

U

Figure 24. Characteristics of Edge Computing Use Case (Source: [40])

Some argue that edge computing will replace cloud computing in the future. However, to better

create value of the huge amounts of data from machines and devices, edge computing and cloud

computing should work together. Please see the figure 25 below for the cooperation between

edge and cloud.

Edge computing is likely to take a more dominant position in scenarios with a need for low

latency or with constraints in bandwidth, while cloud computing will create more value when

using significant computing power or managing data volumes from across factories.
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Figure 25. Cooperation between Edge and Cloud (Source: [40])

2.2.8 Big Data and Analytics

Many industrial companies and consulting companies predicated the number of device that will

be connected in the future. Please see the table 6 below for the predication results.

Table 6. Predication of number of device that will be connected
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IDC 80
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Cisco 50

IBM 1000

Intel 31

Morgan Stanley 75



Simply put, huge amount of data will be analyzed in the not-too-distant future. Industrial data are

included. A large-scale factory produces over billion amounts of data. However, many raw data

have no meaning, and lead to high latency and bandwidth.

Based on IBM's research, big data stand out in four dimensions: volume, variety, velocity and

veracity (Four V's), as is shown in the figure 26 below.

Voelt Vaecty
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Compared with internet data, industrial data are mostly made by machines with finer granularity

and more complicate architecture. We value industrial data more on their comprehensiveness,

mixture, relevancy, accuracy, low error-tolerant rate, and more importantly, the physical

significance of features. For industrial data, clarifying requirements and logics and transforming

them to mathematic models is essential. Therefore, data processing is more important than data

analytics in the digital industry.

Besides relational database (RDB) and distributed database (DDB), time-series database

(TSDB), which is also referred as to real-time database (RTDB), is more suitable for industrial

data because most industrial data are structural time-series data, and these data can be searched

according to time, date, and region. In addition, TSDB is more powerful because of its
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advantages in real-time read, write, and storage capability for huge amount of data and data

collection capability with integrated industrial interfaces and protocols.

2.2.9 Artificial Intelligence (Al) and Machine Learning

Al is the new electricity.

--Andrew Ng, one of the most influential AI scientist in the world, founder of Google Brain

Various AI technologies such as computer vision, nature language processing (NLP), reasoning

and optimization are changing our world over time, which is illustrated in the figure 27 below.
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Figure 27. AI Technologies Classification (Source: [42])

We have seen Al applications in automation and optimization of complicate and dynamic

industrial systems such as manufacturing, energy, robotics, etc. Please see the figure 28 below

for the use cases with requirements and challenges.
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Figure 28. Industrial AI with Requirements and Challenges (Source: [43])

Without fundamental technologies for protocol interpretation, data collection, standardization,

processing, or analysis from edge to cloud, Al can do nothing. Without verticals knowhow,

industrial scenario understanding, or ability to translate production requirement, Al can do

nothing. Without basic industrial automation hardware or software, autonomous (AI) can hardly

bring its potential into full play.

What industrial customers need are end-to-end solutions rather than single products. Solutions

are for equipment level or factory level. Al application in equipment level is the basis of that in

factory level. It is essential to find out appropriate solutions for appropriate use cases, especially

in equipment level at the beginning of the industrial Al age.

Also claimed by Andrew Ng, Al is changing the industry through adaptive manufacturing,

automated quality control, and predictive maintenance. I introduce some use cases.

Quality control through computer visual inspection in manufacturing is a basic use case of Al

and machine learning. With deep learning algorithms, Al-enhanced computers are able to detect

every single tiny dot defect on circuit boards or chips and differentiate them from small particles
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and scratches on camera lens, which is beyond the limits of human eye. In addition, Al is able to

inspect objects with high speed and accuracy and keep doing the job without taking a break.

Predictive maintenance is a more valuable use case. With machine learning methods, computers

are able to analyze equipment's sensor data, including temperature and pressure, and predict the

remaining useful life of each piece of equipment in order to reasonably schedule planned

maintenance, reduce unexpected breakdowns and cost, and raise productivity [44]. I take a deep

dive into predictive maintenance in the chapters below.

Various machine learning algorithms are applied in the digital industry, to name a few, Logistic

Regression, Random Frost, Support Vector Machine, Decision Tree, K-Neighbors, Gaussian

Naive Bayes, etc. Please see the figure 29 below for the word cloud. With the rapid development

of deep learning, multi-layer neural network optimizes models and achieves better results.

loT Analytics
Applied ML and Specialized
Time-series Algorithms

Analtidcs models
PrepjC60 Logistic regression

Syaukk ,A--r ia-Au i.mmbu
Support Vedor Ma ne anom Foret

BAYESIAN NETWORK CTri1UR 1AnayjiS
Decision Tree Um rores
Grabb's test kernel Density Estimation

Figure 29. Word Cloud of Industrial Al Algorithms (Source: [45])
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2.2.10 Other Technologies

Various digital technologies are emerging these years. Many of them such as AR/VR, Digital

Twin, Cyber security, Block Chain, have potential value in the digital industry. Since these

technologies are less associated with the predictive maintenance solution, I am not introducing

them here.

2.3 Stakeholder Analysis

Based on the IIC reference architecture discussed above in the 2.1.2, stakeholders are divided

into three classes: edge tier, cloud platform tier, and enterprise tier. I cite the figure 5 again

below for convenience. Stakeholders can also be categorized into five domains: control domain,

information domain, operation domain, application domain, and business domain. Flows are as

shown in the table 7 below.

Plafform Tier Enterpise Tier

Kr Aafks tM EMR
a ntkw p sis" tt*on3 3 *

_______ app fW kA
a~~~~~f mUwmu r ws.vprsau

0r pp

Sevice Network

Figure 5. Mapping between a Three-tier Architecture to the Functional Domains (Source: [7])
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Table 7. Relations among flows and domains

Flows/Domains Control Information Operation Application Business

Asset mgmt flows X X X

Data flows X X X

Orchestration Flows X X

Information flows X X X X

App flows X X

Stakeholders can also be categorized into five domains based on technologies they offer. Please

see the figure 30 below.

Many Technologies Play a Role in the
loT Ecosystem

SOON _ - arh

U

MaW Ap WDi Miear

Comm/, -09p C"r E.'bsebd$W *
Nwa

C InMn

cowons.t

Figure 30. Stakeholder Classification based on Technology (Source: [46])
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There are also stakeholders in regulatory side. Industrial companies must comply with the

various applicable federal and state regulations. It is better to take into account the current and

potential regulatory impacts. These agencies will demand compliance, environmental protection

and safe operations.

2.4 Market Analysis

2.4.1 Market Trend

Based on data from MarketsandMarkets, the Industrial IoT market was valued at USD 113.71
Billion in 2015 and is estimated to reach USD 195.47 Billion by 2022. Based on a research by
IndustryARC, the HoT market will reach 123.89 billion USD by 2021. The revenue estimation is

shown in the figure 31 below. Based on data from i-scoop, the HoT market size and impact

estimation is shown in the figure 32 below.

Industrial Internet of Things Market
Revenue, 2015-2021 ($Million)

2015 2016 2017 2018 2019 2020 2021

Source- IndustryARC Analysis and Expert Insights

Figure 31. HoT revenue trend (Source: [47])
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Figure 32. IIoT Market Size and Impact Trend (Source: [48])

2.4.2 Market Analysis by Vertical

Based on a search by MarketsandMarkets, the industry 4.0 market is divided into verticals below

[49].

. Automotive

. Aerospace

. Industrial Equipment

. Electrical & Electronics Equipment

. Chemicals & Materials

" Food & Agriculture

. Oil & Gas

. Energy & Power

. Healthcare

* Others (Pharmaceutical; Metal & Mining; Paper, Pulp, & Packaging; Water & Waste

Water; Foundry & Forging; Textile & Cloth; Precision & Optics)

51



Based on a survey by i-scoop, manufacturing, including industrial equipment, electrical &

electronics equipment, is the # 1 industry for HoT in 2016, and seems to keep growing fast in the

not-too-distant future. Please see the figure 33 below for the details.

Figure 33. Main Industries in HoT Market (Source: [50])

2.4.3 Market Analysis by Product/Service

Based on product or service, the digital industry market is divided into many sectors, such as

sensors, edge devices, platforms, networks, analytics application, intelligence application,

security application, digital twin, etc. Most major industrial companies have made investment on

platform, application and digital twin. Please see the figure 34 below. Many startups work on

stacks in specific verticals to survive in the competition with major companies. Please see the

figure 35 below.
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Figure 35. Startup Focused HoT Stacks (Source: [51])
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2.4.4 Market Analysis by Geography

Based on data from MarketsandMarkets, the commercialization of the IoT applications is

expected to be in the introductory stages in the developing countries in the APAC region.

Countries such as China, Japan, South Korea, and India are taking initiatives to motivate the IloT

implementation. The dense population and the growing per capita income of the APAC region as

well as large-scale industrialization and urbanization are dramatically driving the growth of the

HoT market. Please see the figure 36 below for the IoT market by region. Major HoT players

are shown by geography in the figure 37 below.

I

0
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Figure 36. Industrial IoT Market by Region, 2022 (Source: [52])

North
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Figure 37. Major HoT Players by Geography
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2.5 Strategy Analysis

2.5.1 Product vs Service

Product or service, that is a question having been discussed for a long time. For hardware

vendors, physical products are the most essential and valuable offerings, on the contrary,

software providers value more on service. Software product and service analysis in various

dimensions is shown in the table 8 below.

Table 8. Product vs Service (Source: [53])

Product Vs Service
soSaftweProqiuct SoftwreServIce

Cost of mang Design & Doveotpment the biggest (~80%) Salary, and mi*nal traking costs.
of #ecost kptWoducts- Resouceis bledon tin spent in a pro*ct.
Hiap!dm pmduciarhae raw materials, Can be i one po.ct at a fine.
_ picessngand asseiby costs too.

Lebor Few but talentsdpeople squiad. Lasge nunberof people for enore ert.
Cost is ", retuws are esfchhiier. Not everyone needto be highy sIled.

KeepIng cost low is agoal
_ _ _ _ _ _ _ _ _bn____l rated b an ar

Pevenue Sel packaged sotv*rewith ioense to use; Revwnue is &eawV proportional to number of
RepIe ito as many packages as people bed.
required andkeep selibg. Reownueis To increase rvenue - InreasebiMag rate; or add
independet of the cost of maIdig the more people - nwentworki
poduct.

Fome A softwe product can be sold to milons Canl deploy a resource in nAoie projects
nuwlpier by doonIng keeping te per-user cost mintlaneoisty We don' have donest

__________affosfably smelt.

Costveduatlon Nota cornem. Roicaoncost is aegRble H*e cheaper talent, reduce tintelles, reduce
10r customer anyways. quey of deWerWabe.. It hurts!

knovelon Innovaton is the essanceof product Not ahays re*uied.
developent.

I00VMG1 (C) Matemf Va

In the digital industry, there is a growing trend in Software-as-a-service. As an industrial

equipment provider, GE announced to change itself to be a software company, and made

significant investment on the digital transformation. Competitors such as Siemens, Honeywell,
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Schneider are becoming digital-driven. Therefore, a product-service hybrid offering is widely

accepted in the digital industry.

2.5.2 Platform vs Application (Horizontal vs Vertical)

GE promoted Predix as Platform-as-a-service (PaaS) model in order to occupy the IoT market in

a horizontal way with the first mover advantage. Also, competitors mentioned above gradually

took similar actions.

To illustrate it, GE (Digital) and Siemens (Digital Factory) built their cloud-based IloT platform,

and provided applications for their wind turbines, aircraft engines, and medical equipment in

vertical industries; Many industrial automation companies, such Emerson, Honeywell, Schneider

built their IIoT platform with support from cloud provider especially Microsoft. IBM (Watson)

and ABB (Ability) not only built platforms but also teamed up for Industrial AI; Through

acquisition and building itself, Cisco owns three IoT platforms: Jasper, Kinetic, and a hardware

platform. Please see the figure 38 below for the major IoT platform providers by verticals.

Prmcuss

Emerson

Honeywell

Yokogawa

ABB E
A+IT:

IBM

Google

Amazon S
Microsoft

Figure 38. Major IoT Platform Provider by Verticals

Additionally, many other players built platforms to secure their markets in their industries, such

as IT, Internet, Telecom, etc. Platforms are emerging in various models, such as Infrastructure
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Cloud Platform (ICP), Connection Management Platform (CMP), Device Management Platform

(DMP), Application Enable Platform (AEP), Business Analytics Platform (BAP), etc.

There are many opportunities for startups that provide platform, application and service in HoT.

C3 IoT and Uptake are providing predicative platform and bespoke consulting service to

industrial customers. Foghorn system focuses on edge intelligent platform and applications.

Collaborating with Tencent, SANY's subsidiary - Irootech is developing the cloud platform in

China. Many more startups are looking for specific verticals and regional markets and pilot

project opportunities. Being acquired by major companies might be a good approach for many

startups.

This year, Gartner defined the market for Industrial Internet platforms as a set of integrated

software capabilities and provided evaluation: Magic Quadrant for Industrial IoT Platforms.

Please see the figure 39 below. The evaluation criteria are shown in the figure 40 below.

COMPLETENESS OF VISION As of February 2018

Figure 39. Magic Quadrant for Industrial IoT Platforms (Source: [54])
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'Product/Service

*Overall Viability
(Business Unit, Financial,
Strategy, Organization)

*Sales Execution/Pricing
*Market Responsiveness
and Track Record

*Marketing Execution
*Customer Experience
*Operations

*Market Understanding
'Marketing Strategy
*Sales Strategy
eOffering (Product)
Strategy

'Business Model
'Vertical/Industry
Strategy

*Innovation

'Geographic Strategy

'Leaders
*Challengers

'Visionaries
eNiche Players

Figure 40. Magic Quadrant for Industrial IoT Platforms (Source: [54])

However, significant investment on platform might not be a reasonable trend. Many platforms

are up in the air. A lack of essential domain knowledge is a big challenge for these platforms.

What's worse, due to a lack of organized data, practical vertical experience, and appropriate

policy, many pilot projects have not created sufficient value as expected, many companies have

encountered difficulties in the adoption and implementation of digital technology. GE sold its

industrial solution business unit to ABB. Predix is facing similar challenge. Therefore, horizontal

strategy is not suitable for most companies in this scenario at this time.

Through reflection, more stakeholders realized the importance of domain expertise and

applications in specific verticals. Predictive maintenance applied to verticals is more valued. This

is also a reason why I want to take a dive deep into this technology in the following chapters.
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Chapter 3: Solution Analysis

Maintainability is defined as the probability that a system or system element can be repaired in a

defined environment within a specified period of time. Increased maintainability implies shorter

repair times.

--- American Society for Quality (ASQ) 2011

3.1 Background of Maintenance

In industry, most companies have to weigh lost production time against the risks of breakdowns.

Based on a study by Emerson, unplanned downtime costs industrial manufacturers an estimated

$50 billion annually [151. A single pump failure can cost $100,000 to $300,000 a day in lost

production. According to a survey by PTC, poor maintenance methods cost a factory's

productive capacity between 5 and 20 percent [56].

There are four industrial maintenance methods: reactive maintenance, planned maintenance,

proactive maintenance, and predictive maintenance. Comparison in concept among maintenance

strategies is shown in the table 9 below. Their development and evolution over time are shown in

figure 41 below. Obviously, predictive maintenance is the most efficient and promising solution.

Based on data acquired from connected smart machines, time points and locations of failures

might occur can be accurately and efficiently predicted, unnecessary downtime can be

substantially minimized. Please see the figure 42 below for the comparison in operation among

maintenance strategies.
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Table 9. Comparison in Concept among Maintenance Strategies

Strategy Model Description

Reactive Run-to-failure Only performing maintenance when problems occur

Maintenance

Preventive Regularly scheduled Using either time intervals or usage as a trigger

Maintenance

Proactive Root cause analysis Measures are taken to prevent equipment failure

Maintenance altogether

Figure 1. Maintenance strategy continuum

4-- <50% OEE* - + -- 50%-75% OEE -> 4- 75%-90% OEE -+ -- >90% OEE -- +

' Level!

* Original equipment effectiveness

Source: Deloitte analysis.

Level It Level III Level IV

Deloitte University Press I dupress.deloitte.com

Figure 41. Maintenance Strategy Continuum (Source: [57])
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Figure 42. Comparison in Operation among Maintenance Strategies (Source: [58])

3.2 Introduction of Predictive Maintenance

Predictive Maintenance (PdM) is a practical technology that helps evaluate the equipment

condition to predict time when the equipment fail to make preparation for maintenance.

Predictive maintenance helps evaluate in-service equipment's condition to predict time when the

equipment fail and make preparation for maintenance, avoiding unplanned breakdown and

downtime. To reduce uncertainty and manage risk, this technology could be used in many

scenarios in industries.

The importance of PdM and related analytics is rapidly growing in these years. Based on a report

from JoT Analytics, PdM becomes the most important application in industrial analytics in the

next 1-3 years. Please see the figure 43 below for the survey result of importance.
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p T Predictive maintenance and Customer ics as most
important applications

Question: How important are the following industrial Data Analytics applications for
your company in the next 1-3 years?

Predictive/Prescriptive Maintenance of machines

Customer/Marketing -related analytics

Analysis of product usage in the field

Visual analytics

Analytics supporting remote service/product updates

R&D -related analytics

Data -driven quality control of manufactured products

Analysis of connected stationary equipment/assets

Decision -support systems

Analytics that support process automation

Cybersecurity analytics

Smart grid

Analysis of connected moving equipment / assets

*Extemely important ' Very important Moderately important

10% O3

in % 16%

4ON 10% 10%

0 4 19% 3

47% 23%

VIM 4ffa- 16% 13%

30% 15% 4'X

397% 4% 15%

-N W '1 21% 17% 3

32% 14% 114%

32% 29% 14% 4

17,%W 26% 13%

B'M 28% 16%

Slightly important Not at atimportant

Figure 43. The Importance of PdM (Source: [59])

Suitable and unsuitable scenarios for PdM are shown in the table 10 below.

Table 10. Suitable and Unsuitable Scenarios for PdM (Source: [60])

Suitable scenarios Unsuitable scenarios

Have a critical operational function Do not serve a critical function

Have failure modes that can be cost- Do not have a failure mode that can be cost-

effectively predicted with regular monitoring effectively predicted
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3.3 Market Analysis

IoT Analytics Research Team published Predictive Maintenance - Market Report 2017-2022,

systematically reviewed a change from Condition-based Maintenance to IoT-& Analytics-

Enabled Predictive Maintenance.

Based on this report, PdM use case ranks #1 in connected industry settings. PdM market revenue

will reach $10.96 Billion by 2022. A compound annual growth rate is 39% in the rapid growing

market. Maintenance efficiency achieve a 20%-25% increase in real project reports [58. Please

see the figure 44 below. The main driving forces of PdM market development are shown in the

figure 45 below:

Global Market Development (PdM)

Global Market Size' in $M

11,000- 
10,962

10,000-

9000 8,146
SA,.- CAGR 39%
7,000- 

5,983
6,000-

5,000- 4,305

4,000- 3,070
3,00W~ 2,14
2,000- 1.498
1,000

02
2016 2017 2018 2019 2020 2021 2022

Figure 44. PdM Market Development (Source: [58])

Figure 45. Driving Forces of PdM Market Development
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3.4 Business Model Analysis

PdM helps manufactures reduces downtime and enables optimized maintenance events from

operators and service providers. With more accurate and reasonable maintenance scheduling,

PdM is able to maximize utilization of maintenance resources and optimize maintenance

management regarding inventory and supply chains. PdM is able to minimize time the equipment

is being maintained, the production hours lost to maintenance, and cost of spare parts, supplies,

and human resource especially experienced personnel. IoT-enabled PdM is able to achieve over

20 percent of addressable costs as well as production and operational benefits. In addition, with

PdM product and service, equipment providers strengthen their competitiveness in the digital

industrial market [sj

3.5 Technology Review

Actually, PdM technology itself was originated from NASA. Later, PdM has been developed and

promoted by industrial companies such as GE, Siemens, SAP, IT companies such as IBM,

Microsoft, and companies in specific verticals. Please see the figure 46 below for the ranking of

companies in PdM area.
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Figure 46. PdM Company Ranking (Source: [58])
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To achieve PdM, technologies are required in six stacks: device, connectivity, storage, platform,

analytics, application. Most of these technologies were introduced in the chapter 2. Hardware

companies in PdM provide products and services with first three technologies, while software

companies' offerings focus on last three technologies. In addition, Al companies' key

technologies are in analytics and application sector. These PdM related technologies in the six

stacks are considered at the Technology Readiness Levels (TRL) 8 or 9. Please see the definition

of TRL by NASA and figure 47 below for the criteria of TRL.

Technology Readiness Levels (TRL) are a type of measurement system used to assess the

maturity level of a particular technology. Each technology project is evaluated against the

parameters for each technology level and is then assigned a TRL rating based on the projects

progress. There are nine technology readiness levels. TRL 1 is the lowest and TRL 9 is the

highest.

--NASA [61]

#. NASA/DOD Technology Readiness Level

&4'06eration h TRI. 9

-~ .- TRL 8

TRL 7Dyeon sra L R8

s TechnologyR~seech to Prove

Sec Techniology
Rmatoch

Actual system "flight proven" through successful
mission operations
Actual system completed and "flight qualified"
through test and demonstration (Ground or Flight)
System prototype demonstration in a space
environment
System/subsystem model or prototype demonstration
In a relevant environment (Ground or Space)
Component and/or breadboard validation in relevant
environment
Component and/or breadboard validation In laboratory
envIronment
Analytical and experimental critical function and/or
characteristic proof-of-concept
Technology concept and/or application formulated

Basic principles observed and reported

Figure 47. TRL Criteria (Source: [62])
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Therefore, these technologies mature enough for application in industry. To better understand the

predictive maintenance solution and obtain convincing results, I designed and implemented an

experiment and obtained hands-on experience on machine learning.
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Chapter 4: Experiment Design

4.1 Goal

I design an experiment to implement predictive maintenance with machine learning approach to

evaluate the performance of failure prediction and ensure that this solution indeed optimize

results and create value. Based on given data of sensors and completed cycles, I seek optimal

model for engine degradation prediction: predict the number of remaining operational cycles,

which is also referred as to Remaining Useful Life (RUL), prior to failure; and predict failure

possibility of specific engine in next n-steps. Also, I would like to get hands-on experience of

machine learning methodologies and tools through this experiment.

4.2 Data Source and Description

Getting industrial data is difficult because of their confidentiality. These datasets are published

on the website of NASA's Prognostics Center of Excellence (PCoE) E63]. The data were

originated from the Commercial Modular Aero-Propulsion System Simulations (C-MAPPS)

system. The approach, solution, and datasets were used in the IEEE 2008 Prognostics and Health

Management (PHM08) conference challenge problem [641 - [70]

The data are from a fleet of engines, each with its fault points, resulting in its degradation. These

are multivariate time series data. Training and test subsets are included in each data set. All

engines are of the same type. Each time series data is from each engine. Each engine has its

initial wear and manufacturing variation that is not a fault condition. Three operational settings

have impact on engine performance. Sensor noise is also existed in the datasets. Engines fail at

certain time points during the series. Faults grow in magnitude until the system fails in the

training set, while the time series ending happens before the system fails in the test set. Train

trajectories, test trajectories, conditions, and fault modes in these datasets are as shown in the

table 11 below. To further understand the data and the system, please see figure 48 for the

simplified diagram of engine simulated and figure 49 for a layout of modules and connections
[63]
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Table 11. Statistical Data (Source: [63])

FDOO1 FDO02 FDO03 FDO04

Train trajectories 100 260 100 248

Test trajectories 100 259 100 249

Conditions 1 6 1 6

Fault modes 1 1 2 2

Fan

Low-pre
compre

High-pressure
compressor

h-pressure

Low-pressure
sueshaftssure Combustionssor chamber

Hi h-pressure
turbine

Core

Low-pressure
turbine Nozzle

Figure 48. Simplified Diagram of Engine Simulated (Source: [71])

Figure 49. Modules and Connections Layout (Source: [68])
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The data show initial wear and manufacturing variability of a set of engines. Each engine fails at

some time point. The data also show operational settings of the turbofan in each cycle and a

measurement of each of 21 sensors in that cycle. 26 columns of numbers are included in this

data. Each row of data is taken during an operational cycle, while each column of data is a

variable. Please see the table 12 below for sensors' physical meaning and the table 13 below for

the name of each column in the raw data[63]

Table 12. Sensors' physical meaning (Source: [68])

Symbol Description Units
Parameters available to participants as sensor data
T2 Total temperature at fan mlet OR
T24 Total temperature at LPC outlet -R
130 Total temperature at HPC outlet -R
T50 Total temperature at LPT outlet -R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Fngine pressure ratio (P50/P2) -
Ps3O Static pressure at HPC outlet psia
phi Ratio of fuel fow to Ps3O pps/psi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass Ratio
farB Burner fuel-air ratio -
htBleed Bleed Enfta-py

Nf d d Demanded fan speed M
PCNfR dmd Demanded corrected fan speed rpm
W31 HPT coolant bleed Ibmis
W32 LPT coolant bleed Ibmis

Parymebwrs~ cal*,ldWe e a"s Wei
T48 (EGT) Total temperature at HPT outlet -R
SmFan Fan stall marg-n
SmLPC LPC stail margin -
SmHPC HPC stall margin -
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column in the raw data (Source: [63])

4.3 Methods, Steps, and Tools

First, achieve the baseline approach, and make an evaluation of models based on performance

metrics. The Steps in the baseline approach are shown in the table 14 below. Then, implement an

advanced approach with deep learning methods. Finally, compare with results between baseline

approach and optimal approach. Code would be written with Python on the Jupyter Notebook

environment. Libraries and tools such as numpy, pandas, scikit learn, keras and tensorflow

would be used.
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1 Unit number

2 Time in cycles

3 Operational setting 1

4 Operational setting 2

5 Operational setting 3

6 Sensor measurement 1

7 Sensor measurement 2

8 ......

9 Sensor measurement 21

Table 13. N1ame of each



Table 14. Steps in the Baseline Approach

Order Step Description

1 Data preparation Use labeling, normalization and visualization to

process and review data

2 RUL prediction Use regression methods to predict RUL;

Select and run appropriate models such as Linear,

Decision Tree, Random Forest regression models;

Evaluate models based on performance metrics such

as Root Mean Square (RMSE).

3 Failure possibility Use classification method to predict failure

prediction possibility in next n-steps;

Select appropriate models such as Decision Tree,

Random Forest models;

Evaluate models based on performance metrics such

as Accuracy, Precision.
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Chapter 5: Experiment Implementation

5.1. Baseline Approach

The baseline approach is fundamental to the entire experiment. The optimal approach is built on

the baseline approach.

5.1.1 Data Preparation

Data preparation is the initial step before any data analysis. It includes data reading, data

labeling, data visualization, and data normalization. The result could be used in both baseline

approach and optimal approach.

5.1.1.1 Data Reading

Training data, test data, and ground truth data are loaded, columns with NaN data are dropped,

and column names such as setting 1, sensor 1, sensor2 are added.

5.1.1.2 Data Labeling

The training data does not include RUL as a target variable. The only provided RUL is for the

last cycle of each engine. The cycle numbers could be used to label training data with the

equation below.

RUL=Max Cycle - Current Cycle

Columns of labels are added such as rul, wl. Given that, wl steps in 30 remaining time series.

See below for the Table 15 of labeled training data.

72



Table 15. labeled training data

o 1 1 -0.0007 -0.0004 100.0 518.67 641.82 1589.70 1400.60 14.62 21.61 554.36 2388.06 9046.19 1.3 47.47

1 1 2 0.0019 -0.0003 100.0 518.67 642.15 1591.82 1403.14 14.62 21.61 553.75 2388.04 9044.07 1.3 47.49

2 1 3 -0.0043 0.0003 100.0 518,67 642.35 1587.99 1404.20 14.62 21.61 554.26 2388.08 9052.94 1.3 47.27

3 1 4 0.0007 0.0000 100.0 518.67 642.35 1582.79 1401.87 14.62 21.61 554.45 2388.11 9049.48 1.3 47.13

4 1 5 -0.0019 -0.0002 100.0 518.67 642.37 1582.85 1406.22 14.62 21.61 554.00 2388.06 9055.15 1.3 47.28

The RUL of test data depends on both the given max cycle in test data and real max cycle in

ground truth data. The equation is shown below.

RUL=Given Max Cycle + Real Max Cycle - Current Cycle

The labeling process regarding wl in test data is similar to that in training data.

5.1.1.3 Data Visualization

Please see the figure 50 below for one group of training sensor data over cycle time.
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Figure 50. One Group of Training Data

Please see the figure 51 below for 10 groups of sensor data over training cycle.
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Figure 51. Ten Group of Training Data

10 groups of sensor data over RUL cycle is also observed. Sensor data fluctuates towards end of

engine life. See the figure 52 below.
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5.1.1.4 Data Normalization

Features are transforms by scaling each feature to a given range, such as between zero and one.

MinMax normalization is used to linearly transform x to y= (x-min)/(max-min), where min and

max are the minimum and maximum values in X, and X is the set of observed values of x [72]

5.1.2 Regression Model Selection and Evaluation

Regression models are as follows. Linear regression is a baseline model to predict RUL (target)

from sensors measurements (predictors).
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. Linear regression

. LASSO

* Ridge regression

. Decision tree regression

* Random forest regression

Regression performance metrics are as follows:

. Explained variance

* Root mean squared error

. Mean absolute error

. R2 score

One of the most important metrics for loss evaluation is the Root Mean Squared Error (RMSE),

please see the equation below.

n 2

RMSE = ->(yi - yiA) yi = predicted value,
n
ji=1

yiA = actual value

Please see the table 16 below for the comparison of regression models based on performance

metrics.

Table 16. Comparison of Regression Model based on Performance metrics

LinearRegr Lasso Ridge DecisionTr RandomFore

explained variance 0.337138 0.337516 0.337424 0.339755 0.351758

mean absolute error 37.163542 37.151975 37.154635 36.353867 36.766395

r2 score 0.327030 0.327385 0.327301 0.335055 0.330541

root mean squared error 48.382349 48.369585 48.372582 48.093018 48.255980

Please see the figure 53 below for the feature importance analysis. Based on feature importance

scores, some sensors' data might be dropped to lower the loss.
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Figure 53. Feature Importance Analysis
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Please see the figure 54 below for the feature coefficients weights. In the feature correlation

heatmap, feature 9 and 14 are strongly correlated (0.95), and feature 9 only has strong correlation

with 14, not with the rest.
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Figure 54. Feature Coefficients Weights
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5.1.3 Binary Classification Model Selection and Evaluation

Whether a machine will fail within the next N cycles is predicted through classification. Binary

classification models are as follows:

. Logistic regression

. Decision tree

. Random forest

. Support vector machine

. K nearest neighbor

Binary Classification performance metrics are as follow:

" Accuracy

. Precision

. Recall

. Fl score

Assuming that positive (P) means a failure, while normal (N) means no failure. The relationship

is illustrated in Table 17 below.

Table 17. Relationship of Performance Metrics

Predicted

P N

Actual P

N

The equations for metrics is shown as follows [78]:

Accuracy=TP+TN/(TP+TN+FP+FN)

Recall=TP/(TP+FN)

Precision=TP/TP+FP

F1 Score=2*Precision*Recall/(Precision+Recall)
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Please see the table 18 beloiv for th' cmpri of Binary Classification models based on

performance metrics.

Table 18. Comparison of Binary Classification Model based on Performance metrics

LogisticRe DecisionTr RandomFore SVC KNeighbors

accuracy 0.983201 0.976405 0.986714 0.983735 0.981139

Precision 0.745614 0.532764 0.829167 0.753191 0.657993

Recall 0.512048 0.563253 0.599398 0.533133 0.533133

fI score 0.607143 0.547584 0.695804 0.624339 0.589018

5.2 Optimal Approach

To achieve deep learning for regression, the neural network is built through Keras library. The

first layer is built as a Long Short Term Memory (LSTM) layer with 100 units followed by

another LSTM layer with 50 units [79] [80]. Dropout is applied after each LSTM layer to aviod

overfitting. Final layer is a Dense output layer with single unit and linear activation. Please see

the table 19 below for the architecture of the neural network. Similarly, this neural network

architecture works for the binary classification as well. The only difference is that the final layer

is a Dense output layer with single unit and sigmoid activation.

Table 19. Architecture of the Neural Network for Regression

Layer (type) Output Shape Param #

lstm_39 (LSTM) (None, 50, 100) 47200

dropout_39 (Dropout) (None, 50, 100) 0

lstm_40 (LSTM) (None, 50) 30200

dropout_40 (Dropout) (None, 50) 0

dense_20 (Dense) (None, 1) 51

activation_20 (Activation) (None, 1) 0

Total params: 77,451

Trainable params: 77,451

Non-trainable params: 0
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After this optimal approach, the regression performance largely improved. Please see the table

20 below for the improvement.

Table 20. Comparison of Regression Performance between Baseline and Optimal Approach

Metrics Baseline Approach Optimal Approach Improvement

(Linear) Rate

Mean absolute error 37.163542 13.877025 63%

R2 score 0.327030 0.805450 146%

5.3 Future Research

There remains room for improvement, and future research are as follows:

* Models could be used for Multi-Class Classification to predict failure possibility in next

30 and 15 steps, and set different level of alarms

" Noise removal could be optimized through auto encoder neural network

" Additional feature engineering could be done such as moving average and standard

deviation, change from initial value, etc

" Parameter optimization could be done through grid search
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Chapter 6: Summary and Conclusion

6.1 Summary

Chapter 1 introduced the background of digital age and expectations for digital technologies'

application in industrial sector. The main problem was stated and broke down into detailed

questions. The corresponding answers are as follows:

* The most urgent industrial issue to be addressed is reduce unplanned breakdowns and

cost, and raise productivity in production.

* The most valuable and feasible solution to this problem is industrial predictive

maintenance.

* The most suitable technologies for this solution are in six stacks: device, connectivity,

storage, platform, analytics, application; Al and machine learning is a key technology in

this solution.

" To design a validation experiment, a detailed plan is required including goal, data,

methods, steps, and tools.

* To implement this experiment, a baseline approach and an optimal approach are required,

including data preparation, selection and evaluation of both regression and classification

models with machine learning and deep learning approach.

Also, the primary and secondary research objectives were set. The research approach was

introduced in Chapter 1.

Through the comprehensive analysis of the digital industrial ecosystem in Chapter 2, most

dimensions of the digital industry were elaborated. Digital industry initiatives were explained

including Industry 4.0, Industrial Internet, Made in China 2025, The Industrial Value Chain

Initiative (IVI), and alternative initiatives. Through technology analysis, many significant

technologies were illustrated, such as IT/OT convergence, M2M, IoT, TSN, OPC UA, Cloud

Computing, Edge Computing, Big Data and Analytics, Al and Machine Learning, etc.
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Then, stakeholders in three tiers (edge tier, cloud platform tier, and enterprise tier), in five

domains (control domain, information domain, operation domain, application domain, and

business domain), and in many technology areas were discussed.

Chapter 2 also analyzed the digital industrial market status and trend in three dimensions

(vertical, product/service, and geography). Then strategies were discussed including product vs

service and platform vs application (horizontal vs vertical). Various platforms provided by major

companies and startups in specific verticals were analyzed and compared.

Chapter 3 illustrated the valuable and feasible solution - predictive maintenance. The work first

described background of industrial maintenance, then analyzed importance, suitable scenarios,

market trend, business model, and related technologies of predictive maintenance.

To implement the predictive maintenance solution, an experiment plan was designed in Chapter

4. The goal was set; the data was accessed; detailed methods and steps (baseline approach and

optimal approach) were planned; and tools were determined.

Chapter 5 elaborated the implementation process of the experiment with both baseline approach

and optimal approach. The work described the process of data preparation, selection and

evaluation of both regression and classification models, as well as deep learning procedure

through neural network building and optimization. The research turned out to be a good success.

In addition, areas for improvements were discussed.

6.2 Contributions and Expectation

Through the comprehensive analysis of the digital industrial ecosystem and the valuable and

feasible solution as well as design and implementation of the experiment, it is not difficult to

conclude that predictive maintenance is more likely to be the breakthrough point into digital

industry. With feasible solution and technology, specific domain knowledge, and accumulative
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experience, predictive maintenance is able to sufficient valuc in a varicty of verticals, and

benefit the virtuous circle of the digital industry.

I hope this thesis will help people to better understand what the digital industry ecosystem is,

why predictive maintenance is a key solution, and how to implement predictive maintenance

themselves with a step by step machine learning approach.

Also, I hope this research can help readers to clarify their thinking of digital industry from the

system perspectives. These analysis and illustrations are beneficial for people to find out root-

causes of problems and dilemmas in the digital industry. In this way, people are likely to have

confidence in the development, adoption, and advancement of Al in the digital industry. Despite

challenges, industrial Al in the digital age is growing faster and faster in the not-too-distant

future.

6.3 Limitations and Future Research

Due to the limited time, there are some places that would be worth a deep dive. Future research

is recommended as follows:

* The ecosystem could be decomposed into more levels to clarify the correlation among

different elements.

" The V model could be used to better illustrate the entire process through system

architecting, system engineering and project management.

" Extra work is needed to figure out additional reasons for selecting predictive maintenance

as the critical solution.

* Additional work on the iteration in the optimal approach is expected in order to find out a

more optimized algorithm that benefits predictive maintenance solution.

* Additional research on the data's physical significance could be done because this would

help us better understand the data and make more reasonable actions such as feature

engineering.
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Preventative maintenance is used primarily to valuable and expensive industrial assets. Actually,

preventative maintenance is not always the most cost-effectively solution for failure prediction of

all assets. Cost tradeoffs should be taken into consideration, such as Accuracy-Gain tradeoff in

failure prediction and Accuracy-Latency tradeoff in performance degradation detection, as is

shown in the figure 55 below. When determining if predictive maintenance is an optimal solution

for the particular asset of interest, judgment is supposed to be exercised. There are some

systematic methods based on reliability-centered maintenance techniques might work for

deciding whether predictive maintenance is a cost-effectively option for a specific industrial

asset. Therefore, how to determine cost-effective zone of predictive maintenance and how to

reduce the cost of predictive maintenance need additional research as well [73].

Figure 55. Cost Tradeoffs in Prediction and Detection (Source: [1])
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