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ABSTRACT

Digital technology is changing the industrial sector, yet how to make rational use of some
technologies and create considerable value in a variety of industrial scenarios is an issue. Many
digital industrial companies have stated that they have helped clients with their digital
transformation, create much value, but the real effects have not been shown in public. Venture
capitals firms have made huge investment in potential digital industrial startups. Numerous
industrial IoT platforms are emerging in the market, but a number of them fade soon after. Many
people have heard about industrial maintenance technology, but they have difficulty in
differentiate concepts such as reactive maintenance, planned maintenance, proactive
maintenance, and predictive maintenance. Many people know that big data and Al are essential
in industrial sector, but they do not know how to process, analyze, and extract value from
industrial data and how to use Al algorithms and tools to implement a research project.

This thesis analyzes the entire digital industrial ecosystem in various dimensions such as
initiatives, technologies in related domains, stakeholders, markets, and strategies. This work also
analyzes of the predictive maintenance solution in various dimensions such as background,
importance, suitable scenarios, market, business model, and technology. The author plans an
experiment for the predictive maintenance solution, including goal, data source and description,
methods and steps, and flow and tools. Then author uses a baseline approach and an optimal
approach to implement the experiment, including data preparation, selection and evaluation of
both regression and classification models, and deep learning practice through neural network
building and optimization. Finally, contributions and expectations, and limitations and future
research are discussed. This work uses a system approach, including system architecting, system
engineering, and project management, to complete the process of analysis, design, and
implementation.

Thesis Supervisor: Dr. Donna H Rhodes
Title: Principal Research Scientist, Sociotechnical System Research Center

W



Acknowledgements

First of all, I would like to express my gratitude to my thesis supervisor, Dr. Donna H. Rhodes,
who gently accepted to supervise my thesis. Her great support, suggestion, and encouragement
have been essential to my research. She even spent her personal time at weekend on reviewing
my work. Without her full support, my graduate work would not be possible. It is my honor to

have this wonderful opportunity to work with her and I hope to have more opportunities later.

Also, I would like to thank my advisors at SDM, Joan S. Rubin and William F. Foley for their
suggestion and help in my wonderful academic and curricular experience in the two years at
MIT. And I would like to thank all the SDM program faculty for the professional education on
system thinking, which helped me lay a solid foundation on system architecting, system
engineering, and project management. And I would like to thank all the SDM administration

stuff for their supports and help since I was a prospective student.

I would like to thank my classmates, I will never forget the time all we studied and played
together. I cannot remember how many nights we stayed up very late for our team work. Your
assistance and encouragement helped me to go through my student life in the United States. I am

proud of being one of the SDM’16 cohort.

I want to thank my family for their understandings and backup throughout this process. My
parents, my wife Juan, my daughter Spica, and my newborn Mia are the most precious asset in

my life. Without your assistance, I can do nothing.



Table of Contents

CHAPTER 1: INTRODUCTION.....uccmiieerererereeneteesesassesessssssssssssssssassssessssessessssssssssassassssses 10
LT PROBLEM STATEMENT .....oouiuiiiiiiiieiniiieaitcaist ettt et e e st et et esesenesesesesanssesnes 10
1.2 RESEARCH OBJIECTIVES.....ocuitiriitiitesetetesesesetetsssesssssessesesesesesesesesesesesesssnassssesesssesessenenas 12
1.3 RESEARCH APPROACH ......cocociiitimiiniiiietetesessetessasesetesessssesesestsesesessssesessesesensasesessasesennsnas 12

CHAPTER 2: ECOSYSTEM ANALYSIS ... oerteeveeeseenerensensesessessssesessesessesssssssessesssssssensseses 14
2.1 BACKGROUND ANALYSIS ....cctittirtrieirtteteieseniesesestsesssessesesessssesesessasssesessssessesesessssssssessssesranss 14

2L INAUSITY 4.0 ..o, 14
2.1.2 Industrial INFEFNer ................coccoooooiooeieeee e 16
2.1.3 Made in CRing 2025...........ccc.ccocooviiioiiieeeeeeoe e 19
2.1.4 The Industrial Value Chain Initiative (IVI) ...................ccoccooieieeeeeieeioeeeeeeeeeeeee 20
2.1.5 Alternatives INItIQLIVES ..............c....ccoovomeiieeieeeeeeeeee e, 21
2.2 TECHNOLOGY ANALYSIS....oiietiteteueitaremeintsiesetesesestssesessesesessasesesessssesesessesessssesessssesessesesesns 21
2. 2.1 IT/OT CONVEFZENCE. ..., 23
2.2.2 M2M and Machine ProtOCOLS .........................ccccoeeoiooeeeeeeeeeee e 25
2.2.3 Convergence of H2H, H2M, and M2M.....................c.occoiiiiiiiiiiee oo 27
2.2.4 Internet of TRings (I0T)..........ccccooooooiomiiieioeeeeeeeeeeeeee e, 29
2.2.5 Network and Standard ...........................ccoccooeoeiiieieeeeee e, 31
2.2.5.1 Time-Sensitive Networking (TSN ........coooooiiioieiieeeeeeeee e 33
2252 0PC UA ..ottt ettt ettt ettt ettt ee e 35
2253 TSN FOPC UA ..ottt et eeeaee s eteeaenea 35
2.2.6 Cloud Computing and PIQUfOFM......................ccocoiieoeeeeeeeeeeee e 37
2.2.7 Edge Computing and DeVICe ............................coooeoeioeieeeoeeeee e 40
2.2.8 Big Data and ANGIVLICS ..............ccccooooiiiiiiiiiiieoeeeeeeeeeee e 43
2.2.9 Artificial Intelligence (A1) and Machine Learning........................c..ccoccoeveveeiieenann.. 45
2.2.10 Other TeChNolOZIes................ccccccciiiiiiiiiiieiee e, 48
2.3 STAKEHOLDER ANALYSIS ...cuoutiuiiiiiiitiniiteiettrte et stete e seeseeseseeseese e esases s esessensesasse s esassesssssnes 48
24 MARKET ANALYSIS c.uttetiiteitetintenteistt ettt et sttt e st sten et as e se e s e s esseseessensseseeseeneeseenseseesseanas 50
241 Market Trend ................c..coooooiieeieeee e 50
2.4.2 Market Analysis by Vertical....................ccocooiiiiiiiiiiiiii e, 51



2.4.3 Market Analysis By Product/Service.....................cococooeooeooioooeeeeeeeeeeeeee . 52

2.4.4 Market Analysis by GeOZraphy...................ccooioeeoeeeeeeee e 54

2.5 STRATEGY ANALYSIS ....utuiiteiititeteietestetesteteetese s s st eee s seeesetese e s ee s eeessassesenensenesseseenanes 55
2.5.1 Product VS SEFVICE............c.c.oc.coooeeoeoeoeeeee e 55
2.5.2 Platform vs Application (Horizontal vs Vertical) .......................ococcoveeeeeeieeeeee . 56
CHAPTER 3: SOLUTION ANALYSIS ...coueieieintnrnrnrsenrerereseserssssessssssssssesesssssessssssssssssssssssssens 59
3.1 BACKGROUND OF MAINTENANCE .....cccouiuimiititiietesesissesesees et sesssesesessesess et eseas s s seseanasssans 59
3.2 INTRODUCTION OF PREDICTIVE MAINTENANCE ......ccvoviuiiieeeteieteeeeteseeneeseseeessesessseseeeenenes 61
3.3 MARKET ANALYSIS .ctteutiiieteuiietenctetesteseeseteseese e et esesseseesessesesesesseseneesseseseseesesessessnsesennnees 63
3.4 BUSINESS MODEL ANALYSIS -eevtieieiieiietesteteteeesesteseseesesseseevesseeeseesssesessessesesessesesensesesnnes 64
3.5 TECHNOLOGY REVIEW ..ottt ettt ettt sensesens 64
CHAPTER 4: EXPERIMENT DESIGN .......coveiniiirerrniereressesseresnesessessssessessessssesessessssessasssens 67
BT GOAL .ottt ettt ettt ettt ettt e ae et e n et eae e e 67
4.2 DATA SOURCE AND DESCRIPTION ......oviuitiiititieieteee ettt eaeeses s s ennens 67
4.3 METHODS, STEPS, AND TOOLS ....ccuiiiiiiiieiieticiecteetce ettt ettt nene e 70
CHAPTER 5: EXPERIMENT IMPLEMENTATION .....ccoeeininietenecrseressesessssesesessssenssesesenes 72
5.1. BASELINE APPROACH......cutteteiteieieteat et ete ettt ettt st ee e e e enes e 72
5. 1.1 Data PPePArQLION. ... 72
5.1.1.1 Data REAING.......couiviiiieriiiieiieieiieeee ettt ennenea 72
5.1.1.2 Data Labeling......c..ccceenieiiiiiiieeeee et 72
5.1.1.3 Data ViSu@lIZAtION......c.eoeeieieeiiiieeeicie et eneeaeen 73
5.1.1.4 Data NOImMaliZation ........cooeiiiiieriierieiicee ettt 76

5.1.2 Regression Model Selection and Evaluation .................................c..ccccoeeeeeceieenenn.. 76
5.1.3 Binary Classification Model Selection and Evaluation..............................c..c.ccoc....... 80

5.2 OPTIMAL APPROACH.....c.couiiiiiitiiteieeittrite sttt sttt ettt et e eae s s etae s e s aeseaeeeseessesseeseensessessensae 81
5.3 FUTURE RESEARCH ...c..titiiitiiiitecitet ettt ettt esa e v st e et eaeeeaseae b e esseneenseenene 82
CHAPTER 6: SUMMARY AND CONCLUSION......uuctiierercerserseeseereessessseseessessssssssssssassssses 83
0.1 SUMMARY ..ottt ettt ettt ettt et e et ese et e e e eneeet e e saseaeeseeneeeneneenees 83
6.2 CONTRIBUTIONS AND EXPECTATION ....coviitiiiiitieieeteeeeeee e, 84
6.3 LIMITATIONS AND FUTURE RESEARCH ......ooviitiiiiiiieieiieiieeeieceeeeee et 85



REFERENCES.......tieccicresinsssesesssas s ssssssssssssssssssssssssasssssssssssssasssssssessnssansasssssssssasssns 87

List of Figures

FIGURE 1. INDUSTRIAL IOT PROBLEM TAXONOMY (SOURCE: [1]) veveveviriieieriiieierereisieeeeeevevsenieans 11
FIGURE 2. ROADMAP OF INDUSTRIAL REVOLUTIONS (SOURCE: [4]) cvevveveeveieeieieeeieeeteeieceeneeeeeveeenes 15
FIGURE 3. DESIGN PRINCIPLES IN INDUSTRY 4.0 ....cuveiiteteuiieteeiiietiteteeete ettt es e e enenenas 16
FIGURE 4. FUNCTIONAL DOMAINS (SOURCE: [7]) eveveuieterirerietieteieseeseeee et esenesess e ees e 18

FIGURE 5. MAPPING BETWEEN A THREE-TIER ARCHITECTURE TO THE FUNCTIONAL DOMAINS

(SOURCE: [7])ueesteuteietrteitt ettt ettt sttt ettt e se et easetensansensesnnsanens 18
FIGURE 6. GOALS OF MADE IN CHINA 2025 (SOURCE: [9]) cveeevieeietieeteecee ettt 19
FIGURE 7. 10 KEY AREAS THAT PROMOTE BREAKTHROUGHS (SOURCE: [9])-.c.vvveveeeeeenecreereennne 19
FIGURE 8. LOOSE STANDARD IN THE REFERENCE MODEL IN IVI (SOURCE: [10]) cucvevvevenrieneinnne. 20
FIGURE 9. TECHNOLOGIES THAT TRANSFORM INDUSTRIAL PRODUCTION (SOURCE: [12]) ............. 22
FIGURE 10. DIGITAL COMPASS (SOURCE: [13]) cuvevtrueiereeeeeitee ettt et 23
FIGURE 11. CONVERGENCE OF IT/OT SYSTEMS (SOURCE: [17]).veveuteueirecreeeeeeeeeeeeeeee e 25
FIGURE 12. M2M PROTOCOLS IN OSI MODEL (SOURCE: [19]) +..vevevieeeeeeeeeeececeee e 26
FIGURE 13. CONVERGENCE OF H2H, H2M, AND M2M.... .ottt e eeeeaeeeaaenaans 29
FIGURE 14. DIFFERENCE BETWEEN M2M AND IOT (SOURCE: [22]) c.veuveveiieeeeereieeeceee e 30
FIGURE 15. TIMESCALE OF INDUSTRIAL COMMUNICATION STANDARDS (SOURCE: [25]) ..eveveuvanene. 32
FIGURE 16. INDUSTRIAL COMMUNICATION PROTOCOLS AND STANDARDS (SOURCE: [26])............ 33
FIGURE 17. LAYER FOR TSN (SOURCE: [28]) «eeeveeutetietietietieteete ettt 34
FIGURE 18. TSN CHARACTERISTICS ..uvevveetteeeteeecieeseeseeeeeeeeenesseesseseseeessesessseeeseessesseeeseenesanesenenses 34

FIGURE 19. NEW ARCHITECTURE THAT FLATTENS THE AUTOMATION PYRAMID (SOURCE: [32]) ..36

FIGURE 20. TRANSITION OF ARCHITECTURES FOR THE AUTOMATION (SOURCE: [33]) ..cveeveevenenee. 36
FIGURE 21. THE ARCHITECTURE OF VARIOUS SERVICES IN PREDIX (SOURCE: [36])...ceevveerrenenee. 38
FIGURE 22. ARCHITECTURE OF PREDIX PLATFORM (SOURCE: [37]).ecveevievieeeceieeeieeee e 38
FIGURE 23. ARCHITECTURE OF COMPUTING FROM EDGE TO CLOUD (SOURCE: [39])...cevveeueenrenenne. 41
FIGURE 24. CHARACTERISTICS OF EDGE COMPUTING USE CASE (SOURCE: [40]) «vvevveueeeeeveeinee. 42



FIGURE 25. COOPERATION BETWEEN EDGE AND CLOUD (SOURCE: [40]).uvevievevivieirreeie e, 43
FIGURE 26. FOUR V’S OF BIG DATA (SOURCE: [41]) c.uvvutviremiieiieiieicinii e 44
FIGURE 27. Al TECHNOLOGIES CLASSIFICATION (SOURCE: [42]) curvueueireeeririeeeerereeeeeseiee e, 45
FIGURE 28. INDUSTRIAL Al WITH REQUIREMENTS AND CHALLENGES (SOURCE: [43]) c.eevevveuvnen 46
FIGURE 29. WORD CLOUD OF INDUSTRIAL AI ALGORITHMS (SOURCE: [45]) ceevveevreerereereerienenen 47
FIGURE 30. STAKEHOLDER CLASSIFICATION BASED ON TECHNOLOGY (SOURCE: [46]) ...c.ecvene..... 49
FIGURE 31. IIOT REVENUE TREND (SOURCE: [47]) c-eeutrutreeiesieiettresieeieiee e ess e snenene 50
FIGURE 32. [IOT MARKET SIZE AND IMPACT TREND (SOURCE: [48]) cveveveieeeeicieeceeieeree e 51
FIGURE 33. MAIN INDUSTRIES IN [IOT MARKET (SOURCE: [50]) ..evevviureirreeeeeereeeecee et 52
FIGURE 34. MAJOR COMPANIES FOCUSED SECTORS ....veveuieuieteereeuseseeseeseesesessessesseeseessenssessesnesens 53
FIGURE 35. STARTUP FOCUSED ITOT STACKS (SOURCE: [51]) ceveeieiieeierieee et evns 53
FIGURE 36. INDUSTRIAL IOT MARKET BY REGION, 2022 (SOURCE: [52]).cuveveieierereereeeeereevenns 54
FIGURE 37. MAJOR IIOT PLAYERS BY GEOGRAPHY ....c.vveutiuieniiereeeeetieteeteeeeeseeseeseessesseeseeneseaesanenens 54
FIGURE 38. MAJOR IIOT PLATFORM PROVIDER BY VERTICALS .....cveeveverierieniereeneeeeeeseeseeseeeseeseenes 56
FIGURE 39. MAGIC QUADRANT FOR INDUSTRIAL IOT PLATFORMS (SOURCE: [54]) ceveeveervenverennene. 57
FIGURE 40. MAGIC QUADRANT FOR INDUSTRIAL [OT PLATFORMS (SOURCE: [54]) c.eeveereenrenrennee. 58
FIGURE 41. MAINTENANCE STRATEGY CONTINUUM (SOURCE: [57])veeueeueeeeeeeeeeeeeeeeeeaeeeeeeenee. 60
FIGURE 42. COMPARISON IN OPERATION AMONG MAINTENANCE STRATEGIES (SOURCE: [58]).....61
FIGURE 43. THE IMPORTANCE OF PDM (SOURCE: [59]) +uttetieeteeeteeeeeeee et 62
FIGURE 44. PDM MARKET DEVELOPMENT (SOURCE: [58]) .euvecveeieieiecieiieie ettt 63
FIGURE 45. DRIVING FORCES OF PDM MARKET DEVELOPMENT ......coveiieuieteetieeeeeeeeeseeeeeneeaneneas 63
FIGURE 46. PDM COMPANY RANKING (SOURCE: [58])..eeuvietiieiieiieetietieeeeeeteereeee et e e 64
FIGURE 47. TRL CRITERIA (SOURCE: [62]) oo vvveeetiieiniieeeieeeerteeeeeeeeetee et eeetee e e e naeenneas 65
FIGURE 48. SIMPLIFIED DIAGRAM OF ENGINE SIMULATED (SOURCE: [71]) ceeeeeeiereeeieereereeeee 68
FIGURE 49. MODULES AND CONNECTIONS LAYOUT (SOURCE: [68]) .e.veoveeuieiieeeieieeeeeceee e 68
FIGURE 50. ONE GROUP OF TRAINING DATA ...coiiiiiiieiiiceeeeeeeeee et eaen 74
FIGURE 51. TEN GROUP OF TRAINING DATA ..eotiiiieiecie ettt 75
FIGURE 52. TEN GROUPS OF TRAINING DATA OVER RUL .....oocciiiiiiiiiiiceec e, 76
FIGURE 53. FEATURE IMPORTANCE ANALYSIS ...iieitiiiiiiiaeeiiieeeeteeeeeteeeeaeeeeseaseeseareeseneeeseneeseeen s 78



FIGURE 55. COST TRADEOFFS IN PREDICTION AND DETECTION (SOURCE: [1]) c.evoveveeeeevieerceennee. 86
List of Tables

TABLE 1. PROTOCOLS FOR M2M (SOURCE: [20]) wrvveeeeteieeeee et e e e e e e e eeeeneseeeeen e 27
TABLE 2. FORM AND FUNCTION OF H2H, H2M, AND M2Vl ..ot ee et ee e e eeeaneeens 28
TABLE 3. COMPARISON OF VARIOUS |OT NETWORK (SOURCE: [24]) «eeeveeeeeeeeeeeeeeteee e 31
TABLE 4. PRIMARY COMPONENTS OF PREDIX ....uvvereveeeeeeeeeeeteeeeeeestsesteseeeeeeseeseeeeeeeeeeeeeeseneesnessesseees 40
TABLE 5. CLASSIFICATION OF EDGE ...euviieuiiiiieitee sttt et ee et e etee et e e e e seaaeeeeaeesses e e essneseeneenneennees 41
TABLE 6. PREDICATION OF NUMBER OF DEVICE THAT WILL BE CONNECTED .vvveieeeeeeetieeeeeeeeneeseeeeeeeeeeneanas 43
TABLE 7. RELATIONS AMONG FLOWS AND DOMAINS «...veeeeerereenreeeeseeeesesessesssssseseeeesesseessseeeeseneeeenneeeanesanas 49
TABLE 8. PRODUCT VS SERVICE (SOURCE: [53]) cuuuvieeetiietieeeieeee ettt e e e eeeeaeeeee e eeneesaeseeeas 55
TABLE 9. COMPARISON IN CONCEPT AMONG MAINTENANCE STRATEGIES ....evveeeeeeeeeeee et eeeeeeeeeeseeeseeeesseeene 60
TABLE 10. SUITABLE AND UNSUITABLE SCENARIOS FOR PDM (SOURCE: [60])...ceieveeieieeeieiieeeeeeeeeeeeeeeeeeeens 62
TABLE 11. STATISTICAL DATA (SOURCE: [B3]) 1eveuereeeeteeeeteeeeectee ettt et seaeeeeenea 68
TABLE 12. SENSORS” PHYSICAL MEANING (SOURCE: [B8]) ...uvveeiveieieeeeeeeie ettt et eeeeeeee s 69
TABLE 13. NAME OF EACH COLUMN IN THE RAW DATA (SOURCE: [63]) ... cuvieeerieieeieeeeee e eeee e 70
TABLE 14. STEPS IN THE BASELINE APPROACH ...vvveeeeeeeteeeceieee et et eeteeeeeeeeeeaeeeeeeeeeeeseeseeeanesnaeesneeenean 71
TABLE 15. LABELED TRAINING DATA .ecieuieeuieteiteareeceneeeesseesseeesseesseseseesssssssesseeeenseseseseeseeseneeeneeseesneses 73
TABLE 16. COMPARISON OF REGRESSION MODEL BASED ON PERFORMANCE METRICS ....vveeeeereeeeenereenereeseeenns 77
TABLE 17. RELATIONSHIP OF PERFORMANCE IMIETRICS ....vveveeeiveeesee e et eieeesete e eaeeeeeaeeeeneeeeeeseeeenenenenas 80
TABLE 18. COMPARISON OF BINARY CLASSIFICATION MODEL BASED ON PERFORMANCE METRICS «.vveeeeeereenne. 81
TABLE 19. ARCHITECTURE OF THE NEURAL NETWORK FOR REGRESSION .e.eeeeeeeeeieerieeeeeneeeeeeeeereeeseeeeeanne 81
TaBLE 20. COMPARISON OF REGRESSION PERFORMANCE BETWEEN BASELINE AND OPTIMAL APPROACH ............ 82



Chapter 1: Introduction

The digital age is here. We have seen and heard about cutting edge digital technologies such as
Artificial Intelligence (Al), Big Data and Analytics, cloud computing, edge computing, Internet
of Things (IoT), etc. Digital technology has powered a revolution of social network and
consumer markets in the past two decades. Currently, digital technology is transforming the
industrial sector. Imagine that aircraft engines will remind technicians of their overhaul, and
steam turbines will communicate with each other to produce electricity more efficiently. These
scenarios that happened in science fictions and movies will come to pass in the future. Digital

technology makes it happen.

1.1 Problem Statement

Digital industry is here, yet how to make rational use of certain technologies and create

considerable value in various industrial scenarios is a problem.

It is better to break down this complicated problem into a few questions:
e What is the most urgent industrial issue to be addressed?
e What is the most valuable and feasible solution to this problem?
e What is the most suitable technology for this solution?
¢ How to design a validation experiment?

¢ How to make rational use of certain techniques and tools to implement an experiment?

It has been at least six years since the beginning of Industry 4.0 or Industry Internet. There has
been too much advertisement and boasting. Many digital industrial companies have claimed that
they have helped customers create much value, but the real effects have not been shown in
public. As a digital industrial leader, GE has spent billions of dollars on the development of
digital technologies. However, GE sold its industrial solution division in September 2017
because of its unexpected outcomes. Venture capitals firms have made significant investment in

the potential digital industrial startups. Numerous industrial [oT platforms are emerging in the
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market, but a number of them fade soon after because of a lack of data, domain expertise, and

practical experience. Some people doubt about the future of the digital industry.

Many people have heard about industrial maintenance technology, but they have been confused
about concepts such as reactive maintenance, planned maintenance, proactive maintenance, and
predictive maintenance. What are problems in other industrial scenarios such as operations or
quality control besides maintenance? Please see the figure 0 below for the Industrial IoT problem

taxonomy raised by Hitachi.

lloT Problem Taxonomy

Operations

Operations Monitoring
Characterize Process
Operator Behavior
Operation Failure Root
Cause Analysis

Analytics

Quality Monitoring
Testing Process
Monitoring & Evaluation
Detect Quality Loss
Defect Root Cause
Analysis

Early Defect Detection
Yield Quality Predict.

Equipment Monitoring
Performance Analytics
Maintenance Analytics
Equipment Failure Root
Cause Analysis

Descriptive

Predict Failures
Estimate RUL
Predict Failure Impact

Predict Activity Time
Predict Production KPI(s)
Demand Forecasting
Supply Chain Disruption

Predictive

Prescriptive

Reduce Failure Cost
Reduce Failure Rate
Repair Recommendation
Optimize Maintenance

Failure Rate Reduction
Fuel/Energy Reduction
Equipment Scheduling
and Dynamic Dispatch
Operations
Recommendation

Process Parameter
Recommendation for
Quality Improvement
Improve Testing

Figure 1. Industrial IoT Problem Taxonomy (Source: [1])

Many people know that big data is essential in industrial sector, but they do not know what

characteristics industrial data have, or how to process, analyze, and extract value from industrial

data. Many people value Al and have high expectations for of Al's performance in industry,

however, they do not know in what kind of industrial scenarios Al plays a valuable role, or what

kind of Al methods are suitable for certain industrial problem, or how to use Al algorithms and

tools to implement a research project.
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1.2 Research Objectives

The primary objective of this research is to figure out the most valuable and urgent industrial
scenario and issue as well as the most suitable technology that is able to solve the problem in this
scenario. To investigate these industrial scenarios and issues, I overview and analyze the entire
ecosystem of the digital industry. I then formulate a valuable and feasible solution to the problem
in the scenario. After analysis of this solution, I design an experiment, implement it, and evaluate
the result in order to make sure this solution is indeed able to optimize results and create value.
Finally, [ summarize not only the experiment but also the entire approach and find out where

there is room for improvement in the future research.

The second objective is to demonstrate how to use Al technologies such as machine learning and
deep learning to solve industrial problems step by step through hands-on practice in an

experiment that particularly designed for this solution.

This research is a good opportunity for me to not only review knowledge and skills I learned in
the core course of the System Design and Management program but also apply it in practice by

using system thinking to analyze and solve a problem from industry.
In sum, all of the efforts would not only help people to better understand the ecosystem of digital

industry and related valuable solutions but also benefit my future endeavors in the digital

industry.
1.3 Research Approach
This investigation uses a system approach, including system architecting, system engineering,

and project management, to complete the process of analysis, design, and implementation. This

thesis describes the approach of this research as follows:

12



Introduction: The motivations and objectives of this research on how to figure out the
industrial scenario, issue, and technology, and how to implement a solution to solve the

problem.

Ecosystem Analysis: The analysis of the entire digital industrial ecosystem in various
dimensions such as initiatives, technologies in related domains, stakeholders, markets,

and strategies.

Solution Analysis: The analysis of the predictive maintenance solution in various
dimensions such as background, importance, suitable scenarios, market, business model,

and technology.

Experiment Design: The plan for the predictive maintenance solution, including goal,

data source and description, methods, steps, and tools.

Experiment Implementation: The baseline approach and optimal approach to
implement the experiment, including data preparation, selection and evaluation of both
regression and classification models, deep learning practice through neural network

building and optimization.

Conclusion: Summary, contributions and expectation, and limitations and future research

13



Chapter 2: Ecosystem Analysis

2.1 Background Analysis

“In the future, all the manufacturers make the machines, the machines can not only produce the
products, the machines must have talked the machine, must have think, and the machine is not
going to be supported by oil by electricity, the machine is going to be supported by data. In the
Juture world, business will not focus on the size, business will not focus on standardization and
the power, they will focus on the flexibility, nimbleness, customization, and user friendliness.”
-- said by Jack Ma (founder and executive chairman of Alibaba Group) on the Hannover Messe

2015

These words represent future manufacturing in both German and US philosophies. The Germans
call it smart manufacturing to meet requirement of customization, socialization, and flexibility,

while Americans call it intelligent manufacturing to highlight the intelligence of physical system
[2]

2.1.1 Industry 4.0

Industry 4.0 is a name for the current trend of automation and data exchange in manufacturing
technologies. The term "Industrie 4.0" originates from a project in the high-tech strategy of the
German government, which promotes the computerization of manufacturing. The term "Industrie
4.0" was revived in 2011 at the Hannover Fair *). The roadmap of industrial revolutions is shown

in the figure 2 below.
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From Industrie 1.0 to Industrie 4.0: S
Towards the 4th Industrial Revolution IR

A
4. Industrial Revolution
. based on Cyber-Physical
010001101 Production Systems
S00309040 .
210010101 Industrie 4.0
3. Industrial Revolution B
through Introduction of =
electronics and IT fora _2
further automization
N——— of production Industrie 3.0| E
Fiest 2. Industrial Revolution o
Lo through introduction of mass S
Mechanical el producuonnbased on thr; division 4
Loom INAN of labour powerde by g
1784 /aVaYaN electrical energy Industrie 2.0| &
1. lndustnal leutlm -
¥ v Industrie 1.0
Start of Start of today t
20th 70ies
Century ©W. Wahister m

Figure 2. Roadmap of Industrial Revolutions (Source: [4])

Industry 4.0 focuses on cyber-physical production systems for mass customization. With the
cyber-physical system, Industry 4.0 promotes digitalization and smartness of information of
supply, manufacturing, and sales, achieves fast, effective, and customized supply of products for
a reasonable price based on semantic technologies and service matchmaking, and enables Plug &
Produce and Multi adaptive Smart Factories. In Industry 4.0 scenario, plant workers are assisted

by collaborative robots, intelligent industrial systems, augmented reality devices, etc M,

Industry 4.0 is a success story of a strategic public-private partnership and secures Germany's
economic power as a leader in manufacturing. Typical industry giants in Germany are Siemens,

SAP, Bosch, etc. Industry 4.0 is the foundation of digital economy.

Four design principles in Industry 4.0 are shown in the figure 3 below.
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Figure 3. Design Principles in Industry 4.0

2.1.2 Industrial Internet

As an industry giant in US, GE promoted digital industry and woke up as a software and
analytics company. GE proposed the Industrial Internet concept in late 2012 through the
whitepaper — Industrial Internet: Pushing the Boundaries of Minds and Machines by Peter C.
Evans and Marco Annunziata. Industrial Internet was referred to as Industrial IoT or IIoT later.
Based on GE’s estimation, the Industrial Internet could be a $225 billion market by 2020. GE
Digital was built to explore digital transformation, and lay a solid digital foundation in GE. With
significant investments and resources in the Industrial Internet, GE is driving its own digital
industrial transformation. With its experience and expertise accumulated during its own
transformation, GE is helping customers achieve their digital transformation 51, Other typical

industry companies in US are Honeywell, Emerson, Rockwell, etc.
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As a “network of networks”, the “regular” Internet networks people with information, while the
Industrial Internet connects machines, devices, systems, plants, industries and people to collect,
process, analyze industrial customers’ data, and create value through data-driven digital

technologies *).

Through a convergence of Operation Technology (OT) and Information Technology (IT), the
Industrial Internet is weaving together OT systems with IT systems, and achieving end-to-end
automation solution for complex processes: production monitoring, repair and maintenance, and

asset management and optimization.

As one of the members, GE co-founded the Industrial Internet Consortium (IIC) to accelerate the
development, adoption, and widespread use of Industrial Internet, and create value from

connected and intelligent machines, devices, systems, and people at work.

To achieve consistency of Industrial Internet systems, the Industrial Internet Consortium (IIC)
proposed the Industrial Internet Architecture Framework and Industrial Internet Reference
Architecture. Based on the architecture, Industrial Internet system has become a distinct domain,
similar to control, operations, information, application, and business [71, Please see the figure 4
below for the overview of functional domains and the figure 5 below for the mapping between a

three-tier architecture to the functional domains.
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2.1.3 Made in China 2025

In 2015, the Chinese government established the “Made in China 2025 initiative to upgrade
China from a manufacturer of quantity to that of quality.

“Made in China 2025 proposed that persist in the basic principle of “innovation-driven, quality
ﬁrst; green development, structural optimization, and talent-based”, and persist in the basic
principle of “market-oriented, government guided, current status-based, long-term targeted,
comprehensive progressive, and breakthrough at key points, independent development, and open
and collaborative”. Through "three steps" to achieve the strategic goal of being a strong

manufacturing country 8],

"Made in China 2025" clearly dgfmed 9 strategic tasks, prioritized them, and proposed 8
strategic supports and guarantees. This timeline of this goal is shown in the figure 6 below, and
10 key areas that promote breakthroughs are shown in the figure 7 below. Typical industry
companies in China are Huawei, SANY, Foxconn, etc. In addition, BAT (Baidu, Alibaba,

Tencent) are seizing this great opportunity to enter this market.

CHINA'S GOALS

World's largest Become a Become a middie-level Become a leading
manufactur manofacturing th
@ of goods 2 Powerhouse mggun:mles l;g:[ﬂmﬂ

Figure 6. Goals of Made in China 2025 (Source: [9])
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Figure 7. 10 Key Areas that Promote Breakthroughs (Source: [9])
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2.1.4 The Industrial Value Chain Initiative (IVI)

Founded in Japan, IVI is a forum to design a new society through combining manufacturing and
information technologies, and for all enterprises to collaboratively take an initiative. Typical

industry companies in Japan are Hitachi, Mitsubishi, Yokogawa, etc.

Traditionally, Japanese industrial companies make everything they need by themselves. This is
not sustainable in the globalized world today. IVI aims at creating a mutually connected system
architecture for a cooperation among companies, in particularly, small and mid-sized enterprises
(SME’s). IVI offers opportunities for correlated companies to leverage their own strengths and
advantages to interact and work with each other in order to scale up their business size and

explore emerging market in the digital industry.
Connected Manufacturing and Loose Standards are two principles of IVI.

e Connected Manufacturing: prevent from overburden, waste, and unevenness through
connecting plants and enterprises; create smart value chains based on industrial
automation and human ability simultaneously.

e Loose Standards: use an adaptable model instead of a rigid system. A strict standard faces
challenges in complex manufacturing settings with old and new elements, while a loose
standard in the reference model enables interconnection case-by-case ['%). Please see the

figure 8 below for the loose standard in the reference model.

Loose Standard — Reference Model
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Specification is adjusted \! ; H H
ST tessmnmsend
Business/ I"'“ 7 | Business/
factory L h | l factory
operations e operations
insite A I-~r—J Connection insite B

specification

Figure 8. Loose Standard in the Reference Model in IVI (Source: [10])
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2.1.5 Alternatives Initiatives

Many European countries joined the German industry 4.0 initiative, to name a few: Sweden,
Austria, Ireland, France, etc. The representative industrial companies are ABB, Schneider, and
the like. Through the Horizon 2020 program, the European Commission is promoting the
development and adoption of digital technologies in European countries to reshape their
industries. Enormous progress is witnessed in 3D printing, additive manufacturing, IoT, and

robotics in Europe in these years.

In Asia-Pacific region, besides China and Japan, many other Asian countries such as India, South
Korea, Singapore are taking initiatives to motivate implementation of the digital industry.
Besides major company like Samsung, some potential startups such as Flutura and Altizon are

coming into our sight.

I use the term “digital industry” to represent all alternatives of Industry 4.0 in the following
paragraphs.

2.2 Technology Analysis

The digital industry is driven by technology. Key technologies contribute to the digital industry
[61011],

include but no limited to
* Sensors and actuators
* Robotics
* M2M and machine protocols
* Network and IoT
» Control systems, SCADAs, DCSs, PLCs
» Data management and data analytics
* Al and machine learning
* Network and connectivity

* Cloud computing
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* Edge computing

* Mobile and Wearables

*  HMI, UI/UX

* Augmented Reality (AR) & Virtual Reality (VR)
* Digital Twins

* Cybersecurity

* Block Chain

Like sensor and industrial control system (ICS), traditional industrial technologies lay a solid
foundation for the digital industry. Digital technology is a new power that transforms the
industrial sector throughout the world. Based on BCG’s research, nine technology trends form
the building blocks of Industry 4.0, showing in the figure 9 below. In addition, a digital compass
in a McKinsey report illustrated digital technologies and their value propositions. Please see the
figure 10 below for the digital compass. I would like to introduce key technologies that exert
significant impact in the digital industry.

Augmented Industry 4.0 Horizontal and vertical
5‘3 ity System integration
/’hewrc rrrrr ial
'rnu!uu.',m ng

Nine Technologies Are
Transforming Industnal Production

Internet of Thi Ings

The cloud Cybersecurity

Figure 9. Technologies that Transform Industrial Production (Source: [12])
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2.2.1 IT/OT Convergence

As is known to all, Information Technology (IT) needs not any words here. I would like to

introduce OT here.

Operational Technology (OT) — the hardware and software dedicated to detecting or causing
changes in physical processes through direct monitoring and/or control of physical devices such
as valves, pumps, etc. Simply put, OT is the use of computers to monitor or alter the physical
state of a system, such as the control system for a power station or the control network for a rail
system. The term has become established to demonstrate the technological and functional

differences between traditional IT systems and Industrial Control Systems environment.
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-- Wikipedia (¥

Here is an analogy. The Internet is a central nervous system, the cloud acts as a brain, while OT
components make up the body, giving the Internet eyes and ears, arms and fingers to gather
information and act upon that information. OT components have capabilities for local

automation and execution.

Good examples of OT are Industrial Control Systems (ICSs) such as Distributed Control
Systems (DCS), Programmable Logic Controllers (PLC), Supervisory Control and Data
Acquisition (SCADA) Systems, and Remote Terminal Unit (RTU). ICSs are used to monitor and

control the processes and interactions among sensors and actuators.

ICSs process operational data from electronic devices, telecommunications, computer systems,
and monitor various process values, such as temperature, pressure, flow, level, etc. ICSs also
control engines, conveyors, pumps, valves, fans and other machines and equipment to regulate
corresponding process values to prevent them from dangerous conditions. ICSs process real time

or near-real time data with high requirements of availability and reliability.

OT-standard industrial communications protocols are Modbus, Profibus, etc. Gradually, IT-
standard network protocols such as TCP/IP are being adopted in OT components in order to
reduce complexity and increase compatibility, but the tradeoff is the reduction in security for OT

systems.

ICSs have existed for as long as industrial processes. ICSs take on new meaning with digital
technologies, in particularly, IT/OT convergence. Based on Gartner’s prediction, by 2020, 50
percent of OT service providers will create key partnerships with IT-centric providers for [oT
offerings.” I"”)

IT/OT convergence is reshaping long-standing processes in almost every industry to enable
complex systems to monitor, maintain, control and optimize themselves, and remove the
necessity for human involvement in many industrial scenarios. Through this convergence, best
practices in IT such as software development, deployment and operations are being adopted in

software-defined OT systems. In addition, IT systems such as Enterprise Resource Planning
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(ERP) and Asset Management System are being seamlessly interfaced with OT systems (please

see the figure 11 below), facilitating end-to-end automation solution and application such as

[16

predictive maintenance ', T will take a deep dive into it in the following chapters.
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Figure 11. Convergence of IT/OT Systems (Source: [17])

2.2.2 M2M and Machine Protocols

Machine-to-machine refers to direct communication between devices using any communications
channel, including wired and wireless. Machine to machine communication can include
industrial instrumentation, enabling a sensor or meter to communicate the data it records (such
as temperature, inventory level, etc.) to application software that can use it (for example,
adjusting an industrial process based on temperature or placing orders to replenish inventory).
Such communication was originally accomplished by having a remote network of machines relay
information back to a central hub for analysis, which would then be rerouted into a system like a

]JGI'.S'()HCI! C()Fﬂpl!f(:’f'.



--Wikipedia !"®

Machine-to-machine (M2M) communication represents technological solutions and deployments
enabling machines, devices and objects to communicate with each other without human

interactions.

M2M technology is a basis of the digital industry. It enables the actual connection and
interaction among machines, either directly point-to-point or over the Internet, serial, Ethernet, or

other local LANs under specific protocols.

Compared with Web communication, OT communications are more complicate because they
interact with system-external environments and they need high speed data transmission. Please
see the table 1 below for protocols currently being used in M2M and figure 12 below for

protocols in OSI model. No one protocol seems to become a standard any time soon.

Figure 12. M2M Protocols in OSI Model (Source: [19])
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Table 1. Protocols for M2M (Source: [20])

PROTOCOL DESCRIPTION

A publish-subscribe protocol used over TCP/IP.

MQTT
Lightweight, low code footprint, minimal bandwidth.
Constrained Application Protocol
CoAP
Application layer protocol used for constrained (low-power, low-memory, etc.) nodes and networks.
Advanced Message Queuing Protocol
AMQP
Application layer, wire-level protocol that supports a variety of messaging patterns.
Updated version of Hypertext Transfer Protocol
HTTP/2
Built with HTTP 1.1 compatibility and performance enhancement in mind.
Internet Protocol Version 6
IPv6 Updated version of the Internet Protocol Version

4, necessary for assigning unique addresses to the rapidly growing number of machines connected to the Internet (due
partially to the increase of Things and M2M connections).

IPv6 over Low power Wireless Personal Area Networks

BLOWEAN The 6LoWPAN group has defined encapsulation and header compression mechanisms that allow IPv6 packets to be
sent and received over IEEE 802.15.4 based networks.

2.2.3 Convergence of H2H, H2M, and M2M

Besides convergence of IT and OT, we also value the convergence of Human-to-Human (H2H),

Human-to-Machine (H2M), and Machine-to-Machine (M2M) communication.

In the past, H2H and H2M technology was widely used. Without machine, human (operators,
engineers, managers) have to communicate with each other and play their own roles in
production process. With the development of ICSs, basic semi-automatic production was
realized through operation on the Human-machine interface (HMI). Please see the table 2 below

for the form and function of H2H, H2M, and M2M.
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Table 2. Form and Function of H2H, H2M, and M2M

Form

Function

Convergence of H2H, H2M, and M2M:
Different kinds of machines, such as on-site
instruments and devices, operation systems,
and information systems, have been
connected to each other through network.
Human such as operators, engineers and

managers, are also involved in the network.

M2M: Machines are able to communicate
with each other to exchange data, complete

interlock control tasks.

H2M: Machines are able to send significant
information to human in important situation,
for instance, turbines can inform engineers for
overhaul through sending message to the
mobile operating device; Human can obtain
all of information they need to control

production process.

H2H: Based on all of information they get
from machines, Human are able to interact
with each other and better improve their work

efficiency.

With the rapid development of M2M technology, the convergence of H2H, H2M, and M2M
becomes reality. I use a Model-based System Engineering (MBSE) tool - Object-Process

Methodology (OPM) to illustrate this convergence. Through the industrial internet, devices,

plant, technologies (IT & OT), and people are closely connected, and the convergence of H2H,
H2M, and M2M is realized. Please see the figure 13 below for the OPM chart.
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Figure 13. Convergence of H2H, H2M, and M2M

2.2.4 Internet of Things (IoT)

The Internet of Things (IoT) is the network of physical devices, vehicles, home appliances and
other items embedded with electronics, software, sensors, actuators, and connectivity which
enables these objects to connect and exchange data. Each thing is uniquely identifiable through
its embedded computing system but is able to inter-operate within the existing Internet

infrastructure.
--Wikipedia 1*"

M2M provides IoT with the connectivity that enables capabilities, while IoT has a horizontal
approach that polls vertical applications together; M2M focuses on direct point-to-point

connectivity across mobile or fixed networks, while IoT enables communications with IP

29



networks and cloud platforms; M2M focuses the communication only, while [oT has broader
processes and applications; In sum, M2M applications are subset of IoT infrastructure. IoT
provides context for data and events across applications, groups and organizations. [oT goes
beyond M2M and provide and utilize its extensive resources **\. The difference between M2M

and IoT is simply shown in the figure 14 below.

Machine-to-Machine (M2M) VS Internet of Things (loT) m&x\s

M2M 10T

Figure 14. Difference between M2M and IoT (Source: [22])

In a broad sense, industrial [oT equals to the initiative - industrial internet, while in a narrow

sense, it refers to IoT hardware and software application in industrial sector. We discussed the

broad sense in the 2.1.2 sector. Here we discuss it in the narrow context.

Based on a report by Grand View Research, Inc., the global industrial IoT market is expected to
reach USD 933.62 billion by 2025 1*1,

Narrow-Band (NB) IoT, LoRa (from long range), LTE CAT-M are adopted in the digital

industry. Comparison of various [oT network is shown in the table 3 below.
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Table 3. Comparison of Various [oT Network (Source: [24])

The Internet of Things networking technology cheat sheet 1.0

bosvon_koom com

Sigfox LoRa NB-loT (catne1) LTE-M (catm) LTE Cat0 LTE Cat 1
Network: * L%*“R a @ ~ N N
~ g ite ite Ite
Type: PLWAN PLWAN DSSS modulation LTE (cellular) LTE (cellular) LTE (cellular)
Low Power: +++++ e+ ++++ +++ ++ ++
Throughput Kbit/s: 0.1 50 100 375 1000 10.000
Bandwidth: Ultra-narrowband Narrowband Narrowband Low High High
Latency: 1-30s Based on profile 1.6 -10s 10 - 15ms Unknown 50 - 100ms
Standard: Proprietary Proprietary 3GPP Rel. 13 3GPP Rel. 13 3GPP Rel. 12 3GPP Rel. 8
Availability world-wide: ++ +++ ++ ++ 4+ ++++
Spectrum: Unlicensed ISM Unlicensed ISM Licensed LTE Licensed LTE Licensed LTE Licensed LTE
Complexity: Very low Low Very low Low / medium 7High High
Coverage / range: Medium / high Medium / high High High High High
Battery life: Very high Very high / high High Medium / high Low Low
Gateway needed: Yes Yes No, but optional Optional Optional Optional
Signal penetration: High Medium / high Medium / high Medium / high Low Low
Security: ++ +++ 4+ ot e +Hd
Future proof: +++ +++ +++++ 4+t +++ +++

See the accompanying blog series on basvankaam.com for more details on some of the abovementioned features/characteristics

Saturday, July 15, 2017 - Twitter @BasvanKaam

2.2.5 Network and Standard

dangerous situations for personnel safety management.
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A series of Industrial IoT technology drives operational efficiency in many cases in the digital
industry. For example, using Narrow Band [oT or LoRa technology to bring environment
monitoring sensor data into control system or cloud platform, and evaluate the impact of

production on the environment; monitoring real-time data from crew well-being, and identifying

Classic automation pyramid is built with layers of network (Machine, Control, Manufacturing,
Enterprise) with corresponding communication protocols and standards (Fieldbus, Industrial
Ethernet, Ethernet, Internet). Through levels of monitoring, control, and management,

information flows upwards from field devices to enterprise. The communication is not as smooth




as we expected, and issues regarding compatibility between layers frequently come around
because of not only diversity, customization, localization of industrial products but also various

industrial communication protocols and standards.

Most of industrial automation (OT) players developed and promoted their own protocols and
standards, such as Siemens’s Profinet, Rockwell’s ControlNet, DeviceNet, Ethernet/IP,
Schneider’s Modbus and TCP/IP, etc. We expect a standard that bridges the gap among various
OT and IT products. Recently, a growing number of OT companies have adopted Ethernet as a
standardized protocol in their OT products. Industrial Ethernet has been widely accepted in

industries, it is more likely to enable the industrial Internet.

Please see the figure 15 below for the timescales for industrial communication standards.
Industrial Ethernet like Profinet is concerned with sub-second timeframes. Stepping back from
the sub-second timeframe to a longer time frame, industrial Ethernet becomes industrial Internet.
This transformation happens as the granular sub-second data turns into information when

analyzed over a longer time frame %),

b

~\Information

Timescale

Figure 15. Timescale of Industrial Communication Standards (Source: [25])

34



Based on a report on Innovation Post, in 2017, for the first time, the market share of Industrial

Ethernet exceeded Fieldbus. Please see the figure 16 below.

Industrial Ethernet: 52% (46)

Annual growth: 22% {22}

PROFINET
12%

Fieldbus: 42% (48)
Annual growth: 6% (4)

Other Wireless
1%
Wireless 6% (6) Slustooh ”
Annual growth: 32% (32) HgIS

Figure 16. Industrial Communication Protocols and Standards (Source: [26])

As is known to all, Ethernet technology works in asynchronous model and solve issues regarding
data link and network infrastructure share. However, any device can send data at any time in the
network, and data transmission time is uncerfain and inaccurate. Therefore, a real-time, certain,

and reliable data transmission vehicle is expected. Now TSN and OPC UA catches our eyes.

2.2.5.1 Time-Sensitive Networking (TSN)

TSN is a set of standards under development by the Time-Sensitive Networking task group of the
IEEE 802.1 working group. The standards define mechanisms for the time-sensitive transmission

of data over Ethernet networks.
--Wikipedia 1"

TSN Add real-time functionality to IEEE 802 Ethernet. TSN is moving past the concept stage for

industrial automation use. As is shown in the figure 17 below, TSN mechanism works in layer 2
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in the Open System Interconnection (OSI) model. The characteristics of TSN is shown in the

figure 18 below.
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Figure 17. Layer for TSN (Source: [28])
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Figure 18. TSN Characteristics
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TSN is enabling all data, including real-time information, to be transmitted through a single
network in effect simultaneously over a shared network. In the deterministic network, our

expectation is as follows 1?1 1%;

e All clocks on all nodes are synchronized to a uniform network time.
» Time-critical data can be assured to be transmitted within a guaranteed amount of time,

while other non-time-restricted data can be sent as normal.

2.2.5.2 OPCUA

Object Linking and Embedding for Process Control (OPC) specifies the industrial
communication of real-time factory data between control devices and systems from different

manufacturers.

OPC Unified Architecture (OPC UA) is a machine to M2M protocol for industrial automation
developed by the OPC Foundation. It focuses on communication with industrial devices and

systems for data collection and control.

--Wikipedia B!

2.2.53 TSN + OPC UA

With the exponentially growing amount of data from machines and sensors, more effective and
efficient network architectures are required. The conjunction of TSN and OPC UA catches our

eyes in the digital industry recently. This solution meets the requirements for real-time, vendor-
neutral Ethernet communication among machines, equipment, and systems in the digital

industry. TSN deals with data acquisition problem, while OPC UA handles semantic parse issue.

This new architecture flattens the automation pyramid. Please see the figure 19 below the new
structure. This provides a model where OPC UA ‘clients’ at management or enterprise levels can

request data directly from OPC UA ‘servers’ at the device layer. From a new perspective, the
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automation pyramid is transforming to automation pillar. Please see the figure 20 below for the

details in this transformation.

Figure 19. New Architecture that Flattens the Automation Pyramid (Source: [32])

Industrie 3.0

Wirtuaf PLCS
Dis triduied Control

VAST increase in device numbers

Automation Pyramid

Figure 20. Transition of Architectures for the Automation (Source: [33])

OPC UA bridges certain gaps between OT and IT. A Publish/Subscribe model for OPC UA and
TSN extension solve the problem of the proprietary and isolated networks used for real-time and

safety sub-systems. This facilitates the exchange of real-time data from one-to-many and many-

to-many over standard Ethernet.
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Implementation of OPC UA TSN in the digital industry will take time. Actually, many industrial
companies such as Honeywell and Rockwell joined OPC UA TSN initiative to facilitate the
accelerated development of OPC UA TSN.

In addition, with the development of OPC UA TSN, more players outside of industrial
automation, especially technology companies such as BAT in China, might enter the digital

industry market.

2.2.6 Cloud Computing and Platform

Cloud computing is an information technology (IT) paradigm that enables ubiquitous access to
shared pools of configurable system resources and higher-level services that can be rapidly
provisioned with minimal management effort, often over the Internet. Cloud computing relies on
sharing of resources to achieve coherence and economies of scale, similar to a public utility.

-- Wikipedia B4

Cloud computing is the on-demand delivery of compute power, database storage, applications,
and other IT resources through a cloud services platform via the internet with pay-as-you-go
pricing.

--Amazon Web Service I*°

Cloud computing means a lot in the digital industry. Because of its optimized architecture and
super strong computing power, most industrial internet platforms are built on cloud in different

models such as IaaS, PaaS, SaaS, etc.

Predix, the first cloud-based industrial internet platform, was developed and launched by GE for
building and operating industrial applications. This Platform-as-a-Service (PaaS) platform
enables fast deployment and elastic scale of cloud applications. Predix facilitates embedded
software for standardized IoT connectivity, provides services and micro-services, manages huge

amount of industrial data, analyzes industrial assets and processes for enterprise decision-
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making, and creates secured environments for applications’ compliant management and

operation at industrial scale.

The architecture of various services in different levels are shown in the figure 21 below. As a
comprehensive platform, Predix works with components from edge to cloud in various use cases.

The architecture of Predix is shown in the figure 22 below.
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Figure 21. The Architecture of Various Services in Predix (Source: [36])
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Figure 22. Architecture of Predix Platform (Source: [37])
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To get hands-on experience with this cloud-based platform, I learned through practice on Predix.
To gain full access to Predix, I created a free trial account. To launch a Predix-

enabled development environment to streamline my development effort, I got familiar with the
different development tools needed for different applications. To build an operation environment

for Predix, I downloaded and used tools as follows:

e Cloud Foundry CLI
e Git
¢ Java SE Development Kit (JDK)

e Node,js
e NPM

e Maven

o Eclipse

o The Spring Tool Suite (STS) for Eclipse

To save time of installation, later, I used VirtualBox to run DevBox. DevBox is designed and
tested with default settings to run up to four separate instances on my machine concurrently,
depending on the capacity of the system. I have full root access, so I can extend and reconfigure
the system. Through practice, I found Predix was an open cloud platform. It was easy to

contribute to this ecosystem as an individual developer.

Industrial automation competitors have built their cloud-based platforms. However, not all
platforms are open system. The comparison among industrial platforms is shown in the table 4

below.



Table 4. Primary Components of Predix

service for the public

(developer)

Predix PlantWeb FactoryTalk
Company GE Emerson Rockwell
Network Area Internet (Cloud) Intranet Intranet
Attribute of Function | Ecosystem Platform Platform
Attribute of System Convergence of OT | OT System OT System

and IT System (DCS/PLC/SCADA) | (DCS/PLC/SCADA)
Development GE and Non-GE Emerson only Rockwell only
Openness Companies (Startups)
Provide security Yes No No

2.2.7 Edge Computing and Device

Edge computing is a method of optimizing cloud computing systems "by taking the control of

computing applications, data, and services away from some central nodes (the "core") to the

other logical extreme (the "edge") of the Internet” which makes contact with the physical world.

In this architecture, data comes in from the physical world via various sensors, and actions are

taken to change physical state via various forms of output and actuators; by performing

analytics and knowledge generation at the edge, communications bandwidth between systems

under control and the central data center is reduced. Edge Computing takes advantage of

proximity to the physical items of interest also exploiting relationships those items may have to

each other. Many principles of Physics exhibit locality whereby an effect is greatest nearby and

diminishes with distance. Edge Computing is the only form of Cloud computing that can offer

"Proximity as a Service"

--Wikipedia %
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Although cloud computing dominants the digital industry, edge computing is catching our eyes
as in the digital transformation. Based on the location for data analytics, edge is divided into

three classes, as is shown in the table 5 below.

Table 5. Classification of Edge

Class Location for Data Analytics

Extreme edge | Sensor

Very edge Machine/Equipment
Fog Infrastructure

In the digital industry, edge locations are more likely refers to sensors, machines, equipment,
ICSs, i.e. extreme edge and very edge that away from the cloud. Edge computing is suitable for
devices with time-sensitive data and low latency requirement. Edge computing is likely to
execute in small footprint devices such as a sensor hub or a gateway. Data analytics and machine
learning algorithms are executed at edge. Please see the figure 23 below for the architecture of

computing from edge to cloud.

INDUSTRIAL loT DATA PROCESSING LAYER STACK

CLOUD LAYER

Business Logic
Dot Warehousing

samorg T

Business Analytics/Intelligence

FOG LAYER
Local Network

own) esuodsey / peedg Buissedoug

EDGE LAYER

Large Yolume Realtime Data Processing
At Source,/On Premises Data Visualization
Industrial P(s

Embedded Systems

Goteways

Micro Dota Storage

Sensors & Contrallers (data origination)

S ooy

Figure 23. Architecture of Computing from Edge to Cloud (Source: [39])
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Actually, to some extent, edge computing is similar to decentralized or distributed computing,
which is not new to us. Digital industrial use cases give this technology new meanings.
Analyzing huge amounts of machine-based data near the place where data come from in a
scenario with a need of low latency is edge computing’s advantage in the digital industry

scenario.

Edge computing has potential value in use cases with low and intermittent connectivity. The use

case characteristics are shown in the figure 24 below.

@
S
o

3
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or ¢

Figure 24. Characteristics of Edge Computing Use Case (Source: [40])

Some argue that edge computing will replace cloud computing in the future. However, to better
create value of the huge amounts of data from machines and devices, edge computing and cloud
computing should work together. Please see the figure 25 below for the cooperation between

edge and cloud.

Edge computing is likely to take a more dominant position in scenarios with a need for low
latency or with constraints in bandwidth, while cloud computing will create more value when

using significant computing power or managing data volumes from across factories.
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Figure 25. Cooperation between Edge and Cloud (Source: [40])

2.2.8 Big Data and Analytics

Many industrial companies and consulting companies predicated the number of device that will

be connected in the future. Please see the table 6 below for the predication results.

Table 6. Predication of number of device that will be connected

Billion devices by Billion devices by Billion devices by
2015 2020 2025

Gartner 4.9 20.8

IDC 80

ABI 41

Cisco 50

IBM 1000

Intel 31

Morgan Stanley 75
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Simply put, huge amount of data will be analyzed in the not-too-distant future. Industrial data are
included. A large-scale factory produces over billion amounts of data. However, many raw data

have no meaning, and lead to high latency and bandwidth.

Based on IBM’s research, big data stand out in four dimensions: volume, variety, velocity and

veracity (Four V’s), as is shown in the figure 26 below.

Figure 26. Four V’s of Big Data (Source: [41])

Compared with internet data, industrial data are mostly made by machines with finer granularity
and more complicate architecture. We value industrial data more on their comprehensiveness,
mixture, relevancy, accuracy, low error-tolerant rate, and more importantly, the physical
significance of features. For industrial data, clarifying requirements and logics and transforming
them to mathematic models is essential. Therefore, data processing is more important than data

analytics in the digital industry.

Besides relational database (RDB) and distributed database (DDB), time-series database
(TSDB), which is also referred as to real-time database (RTDB), is more suitable for industrial
data because most industrial data are structural time-series data, and these data can be searched

according to time, date, and region. In addition, TSDB is more powerful because of its
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advantages in real-time read, write, and storage capability for huge amount of data and data

collection capability with integrated industrial interfaces and protocols.

2.2.9 Artificial Intelligence (AI) and Machine Learning

Al is the new electricity.

--Andrew Ng, one of the most influential Al scientist in the world, founder of Google Brain

Various Al technologies such as computer vision, nature language processing (NLP), reasoning

and optimization are changing our world over time, which is illustrated in the figure 27 below.

Level of human involvement

Machine learning

Rule-basad Suparvised | Unsupervised
nference learning | narrow learming
i

processng

% Computer
Vishon

Pattarn
recognition

Sousmew: Company webisttes; AT. Keamey; AT, Keamey/Woid Economic Fonum workahop, November 2016; spert Blarviews

Figure 27. Al Technologies Classification (Source: [42])

We have seen Al applications in automation and optimization of complicate and dynamic
‘industrial systems such as manufacturing, energy, robotics, etc. Please see the figure 28 below

for the use cases with requirements and challenges.
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UNIQUE REQUIREMENTS & CHALLENGES
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Figure 28. Industrial Al with Requirements and Challenges (Source: [43])

Without fundamental technologies for protocol interpretation, data collection, standardization,
processing, or analysis from edge to cloud, Al can do nothing. Without verticals knowhow,
industrial scenario understanding, or ability to translate production requirement, Al can do
nothing. Without basic industrial automation hardware or software, autonomous (Al) can hardly

bring its potential into full play.

What industrial customers need are end-to-end solutions rather than single products. Solutions
are for equipment level or factory level. Al application in equipment level is the basis of that in
factory level. It is essential to find out appropriate solutions for appropriate use cases, especially

in equipment level at the beginning of the industrial Al age.

Also claimed by Andrew Ng, Al is changing the industry through adaptive manufacturing,

automated quality control, and predictive maintenance. I introduce some use cases.
Quality control through computer visual inspection in manufacturing is a basic use case of Al

and machine learning. With deep learning algorithms, Al-enhanced computers are able to detect

every single tiny dot defect on circuit boards or chips and differentiate them from small particles
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and scratches on camera lens, which is beyond the limits of human eye. In addition, Al is able to

inspect objects with high speed and accuracy and keep doing the job without taking a break.

Predictive maintenance is a more valuable use case. With machine learning methods, computers
are able to analyze equipment’s sensor data, including temperature and pressure, and predict the
remaining useful life of each piece of equipment in order to reasonably schedule planned
maintenance, reduce unexpected breakdowns and cost, and raise productivity **!. I take a deep

dive into predictive maintenance in the chapters below.

Various machine learning algorithms are applied in the digital industry, to name a few, Logistic
Regression, Random Frost, Support Vector Machine, Decision Tree, K-Neighbors, Gaussian
Naive Bayes, etc. Please see the figure 29 below for the word cloud. With the rapid development

of deep learning, multi-layer neural network optimizes models and achieves better results.

loT Analytics
Applied ML and Specialized
Time-series Algorithms

—

T et

‘-.,

Analytics models
Predictions Logistic regression
Symboelic Aggregate approXimation
Support Vedor Machine Random Forest
BAYESIAN NETWORK @grrelation Analysis
Decision Tree piear regression

Grubb’s test Kernel Density Estimation

Figure 29. Word Cloud of Industrial Al Algorithms (Source: [45])
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2.2.10 Other Technologies

Various digital technologies are emerging these years. Many of them such as AR/VR, Digital
Twin, Cyber security, Block Chain, have potential value in the digital industry. Since these
technologies are less associated with the predictive maintenance solution, I am not introducing

them here.

2.3 Stakeholder Analysis

Based on the IIC reference architecture discussed above in the 2.1.2, stakeholders are divided
into three classes: edge tier, cloud platform tier, and enterprise tier. I cite the figure 5 again
below for convenience. Stakeholders can also be categorized into five domains: control domain,
information domain, operation domain, application domain, and business domain. Flows are as

shown in the table 7 below.

Edge Tier Platform Tier Enterprise Tier
* § Monetization
other information domains
mtala-w:www Gei P s et
*’_3 o
j '_'.__' I.. ................. - Py E _;
data ﬂmln t i

[ & formatien Svem\mq & batch i
i & than [ o information flows 1 - . -
i I TBiz Analytics CRM  EMR
|
i

i
[ Pm&anbm Persistance & distribution | ‘ - . .
| - N e . oss BSS . I
o R I i e i
|
| [
| flows |
ﬂﬂi i Logic & rules ;‘
-
, P = B |
mm i I P :
i x
T T O DR T s o
| | A 4
| Provisioning & Deployment Prognostics 8 Optimization | B
- EY | ot e
5 B Asset 8 weta cata aP1 8 portal [l AE o
% i1 ] % ops app flows OF users
i Management Manitar & Diagnostics !
Proximity Access :
Network Network S N work

Figure 5. Mapping between a Three-tier Architecture to the Functional Domains (Source: [7])
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Table 7. Relations among flows and domains

App flows

Flows/Domains Control Information | Operation | Application | Business

Asset mgmt flows X X X

Data flows X X X

Orchestration Flows X X

Information flows X X X X
X X

Stakeholders can also be categorized into five domains based on technologies they offer. Please

see the figure 30 below.

Many Technologies Play a Role in the

loT Ecosystem

Figure 30. Stakeholder Classification based on Technology (Source: [46])

49




There are also stakeholders in regulatory side. Industrial companies must comply with the
various applicable federal and state regulations. It is better to take into account the current and
potential regulatory impacts. These agencies will demand compliance, environmental protection

and safe operations.

2.4 Market Analysis

2.4.1 Market Trend

Based on data from MarketsandMarkets, the Industrial IoT market was valued at USD 113.71
Billion in 2015 and is estimated to reach USD 195.47 Billion by 2022. Based on a research by
IndustryARC, the IIoT market will reach 123.89 billion USD by 2021. The revenue estimation is
shown in the figure 31 below. Based on data from i-scoop, the IloT market size and impact

estimation is shown in the figure 32 below.

Industrial Internet of Things Market
Revenue, 2015-2021 ($Million)

2015 2016 2017 2018 2019 2020 2021

Source- IndustryARC Analysis and Expert Insights

Figure 31. IloT revenue trend (Source: [47])
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Services and : Morgan Stanley (2015): IndustryARC ({2016)
ecosystems : 1 $50 bilion to $110 bilion by $123 89 Billion by 2021

2020.

Impact on global economy by 2030 CAGR until 2020

Infrastructure

Accenture estimates the lioT Global 10T Market report:
could add $14 .2 trilfion to the global lioT market to grow at
global economy by 2030 a CAGR of 7.3% until 2020

Figure 32. [loT Market Size and Impact Trend (Source: [48])

2.4.2 Market Analysis by Vertical

Based on a search by MarketsandMarkets, the industry 4.0 market is divided into verticals below
[49].

» Automotive

» Aerospace

« Industrial Equipment

o Electrical & Electronics Equipment

e Chemicals & Materials

« Food & Agriculture

+ Oil & Gas

o Energy & Power

» Healthcare

e Others (Pharmaceutical; Metal & Mining; Paper, Pulp, & Packaging; Water & Waste
Water; Foundry & Forging; Textile & Cloth; Precision & Optics)

51



Based on a survey by i-scoop, manufacturing, including industrial equipment, electrical &
electronics equipment, is the # 1 industry for IIoT in 2016, and seems to keep growing fast in the

not-too-distant future. Please see the figure 33 below for the details.

loT - major industries and use casés 2 -

Main industries loT spend 2016 globally

with ntil 2

Manufacturing
{5178 billion}

Transportation
{578 biflion) {$55.9 billion)

0Z0Z i T Ieqoid
sujewied Bupnpenuen

O Main use case: smart grid for
Utilities electricity/gas

$69 billion)
{569 billion) {557.8 biliion}

Fast growing industries loT spend 2020

with wain use cases)

: %. 5 #
® 2,
% % R %
% S ©

Smarthome  Remote health Digital signage  Telematics Connected vehicle

Source: IDCloT i rcast January 2017
http://ow.ly/DDS| 864Tv
http://www.idc.com/getdoc.jsp?containerld=IDC_P29475

Figure 33. Main Industries in IToT Market (Source: [50])

2.4.3 Market Analysis by Product/Service

Based on product or service, the digital industry market is divided into many sectors, such as
sensors, edge devices, platforms, networks, analytics application, intelligence application,
security application, digital twin, etc. Most major industrial companies have made investment on
platform, application and digital twin. Please see the figure 34 below. Many startups work on
stacks in specific verticals to survive in the competition with major companies. Please see the

figure 35 below.
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Figure 34. Major companies focused sectors
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Figure 35. Startup Focused IloT Stacks (Source: [51])
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2.4.4 Market Analysis by Geography

Based on data from MarketsandMarkets, the commercialization of the IIoT applications is
expected to be in the introductory stages in the developing countries in the APAC region.
Countries such as China, Japan, South Korea, and India are taking initiatives to motivate the IloT
implementation. The dense population and the growing per capita income of the APAC region as
well as large-scale industrialization and urbanization are dramatically driving the growth of the
IToT market. Please see the figure 36 below for the IloT market by region. Major IloT players
are shown by geography in the figure 37 below.

CAGR (2016-2022)

1
| @

P gy T R S P S

Figure 36. Industrial [oT Market by Region, 2022 (Source: [52])

Figure 37. Major IIoT Players by Geography
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2.5 Strategy Analysis

2.5.1 Product vs Service

Product or service, that is a question having been discussed for a long time. For hardware

vendors, physical products are the most essential and valuable offerings, on the contrary,

software providers value more on service. Software product and service analysis in various

dimensions is shown in the table 8 below.

Table 8. Product vs Service (Source: [53])

Product Vs

Service

Software Product Software Service
Costof making | Design & Development the biggest (~80%) | Salary, and minimal training costs.
of the cost for sof tware products. Resource is billed on time spent in a project.
Hardware products have raw materials, Can be in one project al a time.
processing and assembly costs 100.
Labor Few but talented people required. Large number of people for more effort.
Cost is high, retums are much higher. Not everyone need to be highly skilled.
Keeping cost low is a goal!
Managing “bench” is raised  an art!
Revenue Sel packaged software with license 1o use; | Revenue is linearly proportional to number of
Repiicate into as many packages as people billed.
required and keep selling. Revenue is To increase revenue - Increase billing rate; or add
independent of the cost of making the more people - inventwork "
product.
Force A software product can be sold to millions Can't deploy a resource in muiltiple projects
multiplier by doning, keeping the per-user cost simultanecusly. We don't have clones!
aftordably small.
Cost reduction | Nota concem. Replication cost is negligble | Hire cheaper talent, reduce timelines, reduce
for customer anyways. quality of deliverables. It hurts!
Innovation Innovation is the essence of product Not always required.
development.
CopynaHl (€) Rajesh Varma, 2073

In the digital industry, there is a growing trend in Software-as-a-service. As an industrial

equipment provider, GE announced to change itself to be a software company, and made

significant investment on the digital transformation. Competitors such as Siemens, Honeywell,
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Schneider are becoming digital-driven. Therefore, a product-service hybrid offering is widely

accepted in the digital industry.

2.5.2 Platform vs Application (Horizontal vs Vertical)

GE promoted Predix as Platform-as-a-service (PaaS) model in order to occupy the IToT market in
a horizontal way with the first mover advantage. Also, competitors mentioned above gradually

took similar actions.

To illustrate it, GE (Digital) and Siemens (Digital Factory) built their cloud-based IloT platform,
and provided applications for their wind turbines, aircraft engines, and medical equipment in
vertical industries; Many industrial automation companies, such Emerson, Honeywell, Schneider
built their IloT platform with support from cloud provider especially Microsoft. IBM (Watson)
and ABB (Ability) not only built platforms but also teamed up for Industrial Al; Through
acquisition and building itself, Cisco owns three IIoT platforms: Jasper, Kinetic, and a hardware

platform. Please see the figure 38 below for the major IIoT platform providers by verticals.

Figure 38. Major IloT Platform Provider by Verticals

Additionally, many other players built platforms to secure their markets in their industries, such

as IT, Internet, Telecom, etc. Platforms are emerging in various models, such as Infrastructure
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Cloud Platform (ICP), Connection Management Platform (CMP), Device Management Platform
(DMP), Application Enable Platform (AEP), Business Analytics Platform (BAP), etc.

There are many opportunities for startups that provide platform, application and service in IloT.
C3 IoT and Uptake are providing predicative platform and bespoke consulting service to
industrial customers. Foghorn system focuses on edge intelligent platform and applications.
Collaborating with Tencent, SANY’s subsidiary — Irootech is developing the cloud platform in
China. Many more startups are looking for specific verticals and regional markets and pilot
project opportunities. Being acquired by major companies might be a good approach for many

startups.

This year, Gartner defined the market for Industrial Internet platforms as a set of integrated
software capabilities and provided evaluation: Magic Quadrant for Industrial IoT Platforms.

Please see the figure 39 below. The evaluation criteria are shown in the figure 40 below.
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Figure 39. Magic Quadrant for Industrial IoT Platforms (Source: [54])
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Figure 40. Magic Quadrant for Industrial IoT Platforms (Source: [54])

However, significant investment on platform might not be a reasonable trend. Many platforms
are up in the air. A lack of essential domain knowledge is a big challenge for these platforms.
What’s worse, due to a lack of organized data, practical vertical experience, and appropriate
policy, many pilot projects have not created sufficient value as expected, many companies have
encountered difficulties in the adoption and implementation of digital technology. GE sold its
industrial solution business unit to ABB. Predix is facing similar challenge. Therefore, horizontal

strategy is not suitable for most companies in this scenario at this time.

Through reflection, more stakeholders realized the importance of domain expertise and
applications in specific verticals. Predictive maintenance applied to verticals is more valued. This

1s also a reason why I want to take a dive deep into this technology in the following chapters.
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Chapter 3: Solution Analysis

Maintainability is defined as the probability that a system or system element can be repaired in a
defined environment within a specified period of time. Increased maintainability implies shorter

repair times.

--- American Society for Quality (ASQ) 2011

3.1 Background of Maintenance

In industry, most companies have to weigh lost production time against the risks of breakdowns.
Based on a study by Emerson, unplanned downtime costs industrial manufacturers an estimated
$50 billion annually . A single pump failure can cost $100,000 to $300,000 a day in lost
production. According to a survey by PTC, poor maintenance methods cost a factory’s

productive capacity between 5 and 20 percent ¢,

There are four industrial maintenance methods: reactive maintenance, planned maintenance,
proactive maintenance, and predictive maintenance. Comparison in concept among maintenance
strategies is shown in the table 9 below. Their development and evolution over time are shown in
figure 41 below. Obviously, predictive maintenance is the most efficient and promising solution.
Based on data acquired from connected smart machines, time points and locations of failures
might occur can be accurately and efficiently predicted, unnecessary downtime can be
substantially minimized. Please see the figure 42 below for the comparison in operation among

maintenance strategies.
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Table 9. Comparison in Concept among Maintenance Strategies

Strategy Model Description

Reactive Run-to-failure Only performing maintenance when problems occur
Maintenance

Preventive Regularly scheduled | Using either time intervals or usage as a trigger
Maintenance

Proactive Root cause analysis | Measures are taken to prevent equipment failure
Maintenance altogether

Figure 1. Maintenance strategy continuum
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REACTIVE
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Figure 41. Maintenance Strategy Continuum (Source: [57])
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Figure 42. Comparison in Operation among Maintenance Strategies (Source: [58])

3.2 Introduction of Predictive Maintenance

Predictive Maintenance (PdM) is a practical technology that helps evaluate the equipment
condition to predict time when the equipment fail to make preparation for maintenance.
Predictive maintenance helps evaluate in-service equipment’s condition to predict time when the
equipment fail and make preparation for maintenance, avoiding unplanned breakdown and
downtime. To reduce uncertainty and manage risk, this technology could be used in many

scenarios in industries.

The importance of PAM and related analytics is rapidly growing in these years. Based on a report
from IoT Analytics, PAM becomes the most important application in industrial analytics in the

next 1-3 years. Please see the figure 43 below for the survey result of importance.
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EXHIBIT 6: Predictive maintenance and Customer-related analytics as most
important applications

Question: How important are the following Industrial Data Analytics applications for
your company in the next 1-3 years?
Predictive/Prescriptive Maintenance of machines
Customer/Marketing -related analytics :
Analysis of product usagde in the field

Visual analytics

Analytics supporting remote service/product updates
R&D -related analytics '

Data -driven quality control of manufactured products
Analysis of connected stationary equipment/assets
Decision -support systems

Analytics that support process automation
Cybersecurity analytics

Smart grid '

Analysis of connected moving equipment / assets

B extremely important 3 Very important - Moderately important ~ Slightly important  EliNot at all important

Figure 43. The Importance of PAM (Source: [59])

Suitable and unsuitable scenarios for PdM are shown in the table 10 below.

Table 10. Suitable and Unsuitable Scenarios for PAM (Source: [60])

Suitable scenarios Unsuitable scenarios

Have a critical operational function Do not serve a critical function

Have failure modes that can be cost- Do not have a failure mode that can be cost-
effectively predicted with regular monitoring | effectively predicted
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3.3 Market Analysis

IoT Analytics Research Team published Predictive Maintenance — Market Report 2017-2022,
systematically reviewed a change from Condition-based Maintenance to lIoT-& Analytics-

Enabled Predictive Maintenance.

Based on this report, PAM use case ranks #1 in connected industry settings. PAM market revenue
will reach $10.96 Billion by 2022. A compound annual growth rate is 39% in the rapid growing
market. Maintenance efficiency achieve a 20%-25% increase in real project reports °*). Please
see the figure 44 below. The main driving forces of PAM market development are shown in the

figure 45 below:

Global Market Development (PdM)

Global Market Size* in $M

11,000+
10,000
9,000
8,000
7,000+
6,000
5,000+
4,000
3,000+
2,000
1,000
o

2016 2017 2018 2019 2020 2021 2022

Figure 44. PAM Market Development (Source: [58])
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Figure 45. Driving Forces of PdAM Market Development
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3.4 Business Model Analysis

PdM helps manufactures reduces downtime and enables optimized maintenance events from
operators and service providers. With more accurate and reasonable maintenance scheduling,
PdM is able to maximize utilization of maintenance resources and optimize maintenance
management regarding inventory and supply chains. PdM is able to minimize time the equipment
is being maintained, the production hours lost to maintenance, and cost of spare parts, supplies,
and human resource especially experienced personnel. [oT-enabled PdM is able to achieve over
20 percent of addressable costs as well as production and operational benefits. In addition, with
PdM product and service, equipment providers strengthen their competitiveness in the digital

industrial market **1,

3.5 Technology Review

Actually, PdM technology itself was originated from NASA. Later, PdM has been developed and
promoted by industrial companies such as GE, Siemens, SAP, IT companies such as IBM,
Microsoft, and companies in specific verticals. Please see the figure 46 below for the ranking of

companies in PdM area.

Predictive Maintenance Company Ranking
Company Overall Score? - ﬁ’

®

Figure 46. PAM Company Ranking (Source: [58])
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To achieve PdM, technologies are required in six stacks: device, connectivity, storage, platform,
analytics, application. Most of these technologies were introduced in the chapter 2. Hardware
companies in PAM provide products and services with first three technologies, while software
companies’ offerings focus on last three technologies. In addition, Al companies’ key
technologies are in analytics and application sector. These PdM related technologies in the six
stacks are considered at the Technology Readiness Levels (TRL) 8 or 9. Please see the definition
of TRL by NASA and figure 47 below for the criteria of TRL.

Technology Readiness Levels (TRL) are a type of measurement system used to assess the
maturity level of a particular technology. Each technology project is evaluated against the
parameters for each technology level and is then assigned a TRL rating based on the projects
progress. There are nine technology readiness levels. TRL 1 is the lowest and TRL 9 is the

highest.

--NASA [61]

@ NASA/DOD Technology Readiness Level

s @ Actual system “flight proven” through successtul

—_— - mission operations
9 ik TRLS Actual system completed and “ﬂlght qualified” -
Development i through test and demonstration (Ground or Flight)
System prototype demonstration in a space
environment

Tech

D.mo"::gon System/subsystem model or prototype demonstration
in a relevant environment (Ground or Space)
Component and/or breadboard validation in relevant

Thchnclopy environment
Component and/or breadboard validation in laboratory
environment

Research to Prove

Feasibility Analytical and experimental critical function and/or
characteristic proof-of-concept

Basic 'rl::hchnology Technology concept and/or application formulated
Basic principles observed and reported

Figure 47. TRL Criteria (Source: [62])
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Therefore, these technologies mature enough for application in industry. To better understand the
predictive maintenance solution and obtain convincing results, I designed and implemented an

experiment and obtained hands-on experience on machine learning.
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Chapter 4: Experiment Design

4.1 Goal

I design an experiment to implement predictive maintenance with machine learning approach to
evaluate the performance of failure prediction and ensure that this solution indeed optimize
results and create value. Based on given data of sensors and completed cycles, I seek optimal
model for engine degradation prediction: predict the number of remaining operational cycles,
which is also referred as to Remaining Useful Life (RUL), prior to failure; and predict failure
possibility of specific engine in next n-steps. Also, I would like to get hands-on experience of

machine learning methodologies and tools through this experiment.

4.2 Data Source and Description

Getting industrial data is difficult because of their confidentiality. These datasets are published
on the website of NASA’s Prognostics Center of Excellence (PCoE) ¥, The data were
originated from the Commercial Modular Aero-Propulsion System Simulations (C-MAPPS)
system. The approach, solution, and datasets were used in the IEEE 2008 Prognostics and Health
Management (PHMO8) conference challenge problem 4~ 1701,

The data are from a fleet of engines, each with its fault points, resulting in its degradation. These
are multivariate time series data. Training and test subsets are included in each data set. All
engines are of the same type. Each time series data is from each engine. Each engine has its
initial wear and manufacturing variation that is not a fault condition. Three operational settings
have impact on engine performance. Sensor noise is also existed in the datasets. Engines fail at
certain time points during the series. Faults grow in magnitude until the system fails in the
training set, while the time series ending happens before the system fails in the test set. Train
trajectories, test trajectories, conditions, and fault modes in these datasets are as shown in the
table 11 below. To further understand the data and the system, plcase see figure 48 for the

simplified diagram of engine simulated and figure 49 for a layout of modules and connections
{63]
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Table 11. Statistical Data (Source: [63])

FDOO1 | FD002 | FDO0O3 | FD004

Train trajectories | 100 260 100 248

Test trajectories 100 259 100 249

Conditions 1 6 1 6
Fault modes 1 1 2 2
High-pressure o wFw-iil;i_;vpre.r.sm'e
Fan compressor turbine

Core

High-pressure
shaft
z

tg;vépressure Low-pressure
o " turbine
lc.gvn\;g:ssssourre Combustion Nozzle
chamber

Figure 48. Simplified Diagram of Engine Simulated (Source: [71])

,§L N
g%_}-g—-; s -{Em

Figure 49. Modules and Connections Layout (Source: [68])
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The data show initial wear and manufacturing variability of a set of engines. Each engine fails at
some time point. The data also show operational settings of the turbofan in each cycle and a
measurement of each of 21 sensors in that cycle. 26 columns of numbers are included in this
data. Each row of data is taken during an operational cycle, while each column of data is a
variable. Please see the table 12 below for sensors’ physical meaning and the table 13 below for

the name of each column in the raw data [¢*!.

Table 12. Sensors’ physical meaning (Source: [68])

Symbol Description Units
Parameters available to participants as sensor data

T2 Total temperature at fan inlet R
T24 Total temperature at LPC outlet °R
T30 Total temperature at HPC outlet °R
T50 Total temperature at LPT outlet °R

P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed pPm
Nc Physical core speed pm
epr Engine pressure ratio (P50/P2)  —
Ps30 Static pressure at HPC outlet psia
phi Ratio of fuel flow to Ps30 pps/pst
NRf Corrected fan speed pm
NRc Corrected core speed IpPm
BPR Bypass Ratio =
farB Bumer fuel-air ratio -
htBleed Bleed Enthalpy -
Nf_dmd Demanded fan speed pm
PCNfR_dmd | Demanded corrected fan speed  rpm
W31 HPT coolant bleed Ton/s
W32 LPT coolant bleed Ibmy/s
Parameters for calculating the Health Index

T48 (EGT) Total temperature at HPT outlet °R
SmFan Fan stall margin -
SmLPC LPC stall margin -
SmHPC HPC stall margin -

69



Table 13. Name of each column in the raw data (Source: [63])

1 Unit number

2 | Time in cycles

3 | Operational setting 1

4 | Operational setting 2

5 | Operational setting 3

6 Sensor measurement 1
7 | Sensor measurement 2
8 |......

9 Sensor measurement 21

4.3 Methods, Steps, and Tools

First, achieve the baseline approach, and make an evaluation of models based on performance
metrics. The Steps in the baseline approach are shown in the table 14 below. Then, implement an
advanced approach with deep learning methods. Finally, compare with results between baseline
approach and optimal approach. Code would be written with Python on the Jupyter Notebook
environment. Libraries and tools such as numpy, pandas, scikit learn, keras and tensorflow

would be used.
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Order Step Description

1 Data preparation Use labeling, normalization and visualization to
process and review data

2 RUL prediction Use regression methods to predict RUL;
Select and run appropriate models such as Linear,
Decision Tree, Random Forest regression models;
Evaluate models based on performance metrics such
as Root Mean Square (RMSE).

3 Failure possibility Use classification method to predict failure

prediction possibility in next n-steps;

Select appropriate models such as Decision Tree,
Random Forest models;
Evaluate models based on performance metrics such

as Accuracy, Precision.
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Chapter 5: Experiment Implementation

5.1. Baseline Approach

The baseline approach is fundamental to the entire experiment. The optimal approach is built on

the baseline approach.

5.1.1 Data Preparation

Data preparation is the initial step before any data analysis. It includes data reading, data
labeling, data visualization, and data normalization. The result could be used in both baseline

approach and optimal approach.

5.1.1.1 Data Reading

Training data, test data, and ground truth data are loaded, columns with NaN data are dropped,

and column names such as setting1, sensor1, sensor2 are added.

5.1.1.2 Data Labeling

The training data does not include RUL as a target variable. The only provided RUL is for the
last cycle of each engine. The cycle numbers could be used to label training data with the

equation below.
RUL=Max Cycle — Current Cycle

Columns of labels are added such as rul, wl. Given that, wl steps in 30 remaining time series.

See below for the Table 15 of labeled training data.
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Table 15. labeled training data

id | cycle | setting1 s_e-tt.il:lg2 setting3 | s1 a 52 ......... _53 s4 s5 s6 s7 st_i s9 s10(s11
o1 (1 -0.0007 (-0.0004 (100.0 |518.67|641.82|1589.70|1400.60|14.62|21.61|554.36 | 2388.06 | 9046.19 (1.3 | 47.47
11 )2 0.0019 (-0.0003 (100.0 |518.67|642.15|1591.82|1403.14|14.62|21.61|553.75|2388.04 | 9044.07 (1.3 | 47.49
2(1 |3 -0.0043 (0.0003 (100.0 |[518.67|642.35|1587.99|1404.20|14.62|21.61|554.26 | 2388.08 | 9052.94 (1.3 | 47.27
3|1 |4 0.0007 |(0.0000 (100.0 |[518.67|642.35|1582.79|1401.87|14.62|21.61|554.45|2388.11|9049.48 (1.3 |47.13
411 |5 -0.0019 |-0.0002 [100.0 |[518.67|642.37 | 1582.85|1406.22|14.62|21.61|554.00 | 2388.06 | 9055.15 (1.3 | 47.28

The RUL of test data depends on both the given max cycle in test data and real max cycle in

ground truth data. The equation is shown below.

RUL=Given Max Cycle + Real Max Cycle — Current Cycle

The labeling process regarding w1 in test data is similar to that in training data.

5.1.1.3 Data Visualization

Please see the figure 50 below for one group of training sensor data over cycle time.
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Please see the figure 51 below for 10 groups of sensor data over training cycle.
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cycle
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cycle
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Figure 50. One Group of Training Data
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Figure 51. Ten Group of Training Data

10 groups of sensor data over RUL cycle is also observed. Sensor data fluctuates towards end of

engine life. See the figure 52 below.
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Figure 52. Ten Groups of Training Data over RUL

5.1.1.4 Data Normalization
Features are transforms by scaling each feature to a given range, such as between zero and one.

MinMax normalization is used to linearly transform x to y= (x-min)/(max-min), where min and

max are the minimum and maximum values in X, and X is the set of observed values of x (721

5.1.2 Regression Model Selection and Evaluation

Regression models are as follows. Linear regression is a baseline model to predict RUL (target)

from sensors measurements (predictors).
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» Linear regression
« LASSO

» Ridge regression

» Decision tree regression

» Random forest regression

Regression performance metrics are as follows:

« Explained variance

* Root mean squared error

e Mean absolute error

e R2score

One of the most important metrics for loss evaluation is the Root Mean Squared Error (RMSE),

please see the equation below.

2

n
1
RMSE = ;Z(yi — yin)
i=1

Please see the table 16 below for the comparison of regression models based on performance

metrics.

yi = predicted value,

yi* = actual value

Table 16. Comparison of Regression Model based on Performance metrics

LinearRegr | Lasso Ridge DecisionTr | RandomFore
explained variance 0.337138 [0.337516 [0.337424 |0.339755 |[0.351758
mean absolute error 37.163542 |37.151975|37.154635 [ 36.353867 |36.766395
r2 score 0.327030 |0.327385 |0.327301 |0.335055 |0.330541
root mean squared error | 48.382349 (48.369585 | 48.372582 |148.093018 |48.255980

Please see the figure 53 below for the feature importance analysis. Based on feature importance

scores, some sensors’ data might be dropped to lower the loss.
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Figure 53. Feature Importance Analysis

78



Please see the figure 54 below for the feature coefficients weights. In the feature correlation
heatmap, feature 9 and 14 are strongly correlated (0.95), and feature 9 only has strong correlation

with 14, not with the rest.
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Figure 54. Feature Coefficients Weights
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5.1.3 Binary Classification Model Selection and Evaluation

Whether a machine will fail within the next N cycles is predicted through classification. Binary

classification models are as follows:

» Logistic regression

o Decision tree

» Random forest

e Support vector machine

« K nearest neighbor
Binary Classification performance metrics are as follow:

» Accuracy
e Precision
e Recall

e F1 score

Assuming that positive (P) means a failure, while normal (N) means no failure. The relationship

is illustrated in Table 17 below.

Table 17. Relationship of Performance Metrics

Predicted

P N

Actual P

The equations for metrics is shown as follows ["*];

Accuracy=TP+TN/(TP+TN+FP+FN)
Recall=TP/(TP+FN)
Precision=TP/TP+FP

F1 Score=2*Precision*Recall/(Precisiont+Recall)
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: : 1 3
Please see the table 18 below for the comparison of Binary Classification mo

performance metrics.

Table 18. Comparison of Binary Classification Model based on Performance metrics

LogisticRe | DecisionTr | RandomFaore | SVC KNeighbors

accuracy | 0.983201 |0.976405 |0.986714 0.983735|0.981139

Precision | 0.745614 (0.532764 |0.829167 0.753191| 0.657993

Recall 0.512048 [0.563253 |0.599398 0.533133|0.533133

f1 score |0.607143 |0.547584 |0.695804 0.624339| 0.589018

5.2 Optimal Approach

To achieve deep learning for regression, the neural network is built through Keras library. The
first layer is built as a Long Short Term Memory (LSTM) layer with 100 units followed by
another LSTM layer with 50 units "' ®% Dropout is applied after each LSTM layer to aviod
overfitting. Final layer is a Dense output layer with single unit and linear activation. Please see
the table 19 below for the architecture of the neural network. Similarly, this neural network
architecture works for the binary classification as well. The only difference is that the final layer
is a Dense output layer with single unit and sigmoid activation.

Table 19. Architecture of the Neural Network for Regression

Layer (type) Output Shape Param #
I;tm_39 (LSTM) (None, 50, 100) 47200
dropout_39 (Dropout) (None, 50, 100) 0
1stm_40 (LSTM) {None, 50) 30200
dropout_40 (Dropout) {None, 50) 0
dense 20 (Dense) (None, 1) 51
activation 20 (Activation) (None, 1) 0

Total params: 77,451
Trainable params: 77,451
Non-trainable params: 0
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After this optimal approach, the regression performance largely improved. Please see the table

20 below for the improvement.

Table 20. Comparison of Regression Performance between Baseline and Optimal Approach

Metrics Baseline Approach Optimal Approach Improvement
(Linear) Rate

Mean absolute error | 37.163542 13.877025 63%

R2 score 0.327030 0.805450 146%

5.3 Future Research

There remains room for improvement, and future research are as follows:

e Models could be used for Multi-Class Classification to predict failure possibility in next

30 and 15 steps, and set different level of alarms

e Noise removal could be optimized through auto encoder neural network

e Additional feature engineering could be done such as moving average and standard

deviation, change from initial value, etc

e Parameter optimization could be done through grid search
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Chapter 6: Summary and Conclusion
6.1 Summary

Chapter 1 introduced the background of digital age and expectations for digital technologies’
application in industrial sector. The main problem was stated and broke down into detailed

questions. The corresponding answers are as follows:

e The most urgent industrial issue to be addressed is reduce unplanned breakdowns and
cost, and raise productivity in production.

e The most valuable and feasible solution to this problem is industrial predictive
maintenance.

e The most suitable technologies for this solution are in six stacks: device, connectivity,
storage, platform, analytics, application; Al and machine learning is a key technology in
this solution.

e To design a validation experiment, a detailed plan is required including goal, data,
methods, steps, and tools.

e To implement this experiment, a baseline approach and an optimal approach are required,
including data preparation, selection and evaluation of both regression and classification

models with machine learning and deep learning approach.

Also, the primary and secondary research objectives were set. The research approach was

introduced in Chapter 1.

Through the comprehensive analysis of the digital industrial ecosystem in Chapter 2, most
dimensions of the digital industry were elaborated. Digital industry initiatives were explained
including Industry 4.0, Industrial Internet, Made in China 2025, The Industrial Value Chain
Initiative (IVI), and alternative initiatives. Through technology analysis, many significant
technologies were illustrated, such as IT/OT convergence, M2M, IoT, TSN, OPC UA, Cloud
Computing, Edge Computing, Big Data and Analytics, Al and Machine Learning, etc.
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Then, stakeholders in three tiers (edge tier, cloud platform tier, and enterprise tier), in five
domains (control domain, information domain, operation domain, application domain, and

business domain), and in many technology areas were discussed.

Chapter 2 also analyzed the digital industrial market status and trend in three dimensions
(vertical, product/service, and geography). Then strategies were discussed including product vs
service and platform vs application (horizontal vs vertical). Various platforms provided by major

companies and startups in specific verticals were analyzed and compared.

Chapter 3 illustrated the valuable and feasible solution - predictive maintenance. The work first
described background of industrial maintenance, then analyzed importance, suitable scenarios,

market trend, business model, and related technologies of predictive maintenance.

To implement the predictive maintenance solution, an experiment plan was designed in Chapter
4. The goal was set; the data was accessed; detailed methods and steps (baseline approach and

optimal approach) were planned; and tools were determined.

Chapter 5 elaborated the implementation process of the experiment with both baseline approach
and optimal approach. The work described the process of data preparation, selection and
evaluation of both regression and classification models, as well as deep learning procedure
through neural network building and optimization. The research turned out to be a good success.

In addition, areas for improvements were discussed.

6.2 Contributions and Expectation

Through the comprehensive analysis of the digital industrial ecosystem and the valuable and
feasible solution as well as design and implementation of the experiment, it is not difficult to
conclude that predictive maintenance is more likely to be the breakthrough point into digital

industry. With feasible solution and technology, specific domain knowledge, and accumulative
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benefit the virtuous circle of the digital industry.

I hope this thesis will help people to better understand what the digital industry ecosystem is,
why predictive maintenance is a key solution, and how to implement predictive maintenance

themselves with a step by step machine learning approach.

Also, I hope this research can help readers to clarify their thinking of digital industry from the
system perspectives. These analysis and illustrations are beneficial for people to find out root-
causes of problems and dilemmas in the digital industry. In this way, people are likely to have
confidence in the development, adoption, and advancement of Al in the digital industry. Despite
challenges, industrial Al in the digital age is growing faster and faster in the not-too-distant

future.

6.3 Limitations and Future Research

Due to the limited time, there are some places that would be worth a deep dive. Future research

is recommended as follows:

¢ The ecosystem could be decomposed into more levels to clarify the correlation among
different elements.

e The V model could be used to better illustrate the entire process through system
architecting, system engineering and project management.

e Extra work is needed to figure out additional reasons for selecting predictive maintenance
as the critical solution.

e Additional work on the iteration in the optimal approach is expected in order to find out a
more optimized algorithm that benefits predictive maintenance solution.

e Additional research on the data’s physical significance could be done because this would
help us better understand the data and make more reasonable actions such as feature

engineering.
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Preventative maintenance is used primarily to valuable and expensive industrial assets. Actually,
preventative maintenance is not always the most cost-effectively solution for failure prediction of
all assets. Cost tradeoffs should be taken into consideration, such as Accuracy-Gain tradeoff in
failure prediction and Accuracy-Latency tradeoff in performance degradation detection, as is
shown in the figure 55 below. When determining if predictive maintenance 1s an optimal solution
for the particular asset of interest, judgment is supposed to be exercised. There are some
systematic methods based on reliability-centered maintenance techniques might work for
deciding whether predictive maintenance is a cost-effectively option for a specific industrial
asset. Therefore, how to determine cost-effective zone of predictive maintenance and how to

reduce the cost of predictive maintenance need additional research as well "),

Cost Tradeoffs

Failure Prediction: Performance Degradation Detection:
Accuracy-Gain tradeoff Accuracy-Latency tradeoff
$300,000 -

e A

Figure 55. Cost Tradeoffs in Prediction and Detection (Source: [1])
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