
A Comparison of Software Project Architectures:

Agile, Waterfall, Spiral, and Set-Based

by

Christian J West

B.Sc. Computer Science
Utah State University, 2007

SUBMITTED TO THE SYSTEM DESIGN AND MANAGEMENT PROGRAM IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE IN ENGINEERING AND MANAGEMENT

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2018

2018 Christian J West. All rights reserved.

The author hereby grants MIT permission to reproduce

and distribute publicly paper and electronic
copies of this thesis document in whole or in part

in any medium now known or hereafter created.

Signature redacted
Signature of the A uthor:................

Graduate~e~llow, System Design and Management Program

Signature redacted May 11, 2018
C ertifie d b y :.......................................

Bryan R Moser
Academic Director and Senior Lecturer, System Design & Management Program

Signatu re redacted Thesis Supervisor

A ccep ted b y :...

MASSACHUSETTS INSTITUTE Joan Rubin

OF TECHNOLOGY Executive Director, System Design & Management Program

JUN 2 0 2018

LIBRARIES
1

ARCHIVES

This page is intentionally left blank

2

A Comparison of Software Project Architectures:

Agile, Waterfall, Spiral, and Set-Based

by

Christian J West

Submitted to the System Design and Management Program

on May 2018 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in

Engineering and Management

ABSTRACT

Engineers and managers of software projects have the daunting task of successfully delivering

the right product at the right time for the right price. The path to achieving these lofty goals is

commonly not a straightforward endeavor. Due to the dynamic nature of software

development, varying organizational circumstances, and situational idiosyncrasies of each

project this can be a very difficult and sensitive process. Ideally, software development

methodologies bring order to the chaos of software development. An ill-fitting development

strategy, however, can create unnecessary friction and further complicate the prospect of a

successful product delivery. Researchers and private organizations alike spend substantial

resources to understand the strengths and weaknesses of commonly used development

practices - the validation of which is highly problematic due to conflicting variables. This

research ventures to bring clarity to the question: "Which development methodology is right for

a particular situation?" Treating the software development project life-cycle as a socio-technical

system, it can be decomposed to the most fundamental elements. Using these elements as the

architectural building blocks of a project, Agile, Waterfall, Set-Based, and Spiral are each

compared at the molecular level. This thesis evaluates these comparisons and how subsequent

research applies to today's software projects.

Thesis Supervisor: Bryan R Moser

Academic Director and Senior Lecturer, System Design & Management Program

3

This page is intentionally left blank

4

Acknowledgements

My time at MIT has been special for me and my family. It's pushed each of us beyond our own

perceived limits in every sense of the word. With four children, this has been a family affair for

my wife and I from day one. The thesis process has been a culmination of our MIT experience.

Researching and writing the thesis has contained many of the university's hallmarks: high

expectations, intense pressure, and late nights. But more importantly: questions, curiosity, and

discovery. Many contributed to making this a reality for me. I'm grateful for a chance to

recognize them.

First, my classmates who encouraged me to think beyond SDM: Adrien Moreau, Jos6 Garza,

Ben Linville-Engler, Justin Burke, and Tim Chiang. Travis Rapp, for the discussions on Set-

Based design. Paula Ingabire, who understands the difficulties of writing a thesis at a distance

while working full-time and inspired me to keep writing. Max Reele, for the early morning

debate sessions, steady encouragement, and thoughtful insight. I'd like to thank Professor

Warren Seering for his interest and willingness to share his knowledge. The SDM staff who

work tirelessly to support their students and have made this experience so special: Joan Rubin,

Bill Foley, Amanda Rosas, Naomi Gutierrez, Jon Pratt, and so many others. To my parents,

Richard and Sharon West, and my wife's parents, Steve and Dona Reeder, who in so many ways

have made this journey possible.

I'd like to thank Professor Bryan Moser for his genuine concern for me and his passion for

research. His counsel and direction have been invaluable to me and have made not only this

thesis successful, but also my entire MIT experience. To my four wonderful children: CJ, Soren,

Jane, and Nellie. Who have come to think of thesis as a naughty word and who never cease to

provide ample distractions. And to my wife, Sadie. She has sacrificed everything to allow me to

take this journey. She has struggled alongside me from the beginning to the very end. In regard

to this thesis, she prioritized employing her superhuman editing skills for my benefit. I love you

and am so grateful to be in the trenches of life with you.

5

This page is intentionally left blank

6

Table of Contents

1. Introduction ... 15

1.1. Motivation 15

1.2. Purpose 17

1.3. Problem Statement 17

1.4. Hypothesis 18

2. Literature R eview .. 20

2.1. Evaluating Development Methodologies 20

2.2. Comparisons of Development Methodologies 22

3. Current M ethods.. 29

3.1. Software Development Methodologies 29

3.2. Waterfall 29

3.3. Agile 32

3.4. Spiral 34

3.5. Set-Based 35

3.6. Project Fit 38

4. Research A pproach.. 39

4.1. Understanding Project Purpose 39

4.2. Building the Model 40

5. Project A rchitecture.. 43

5.1. Project Decomposition: Two-Down-One-Up 43

5.2. Product Decomposition 44

5.3. Process Decomposition 57

7

5.4. Organization Decomposition 57

5.5. Architectural Decisions 57

5.6. Describing Canonical Methods using Architectural Decisions 62

6. Project Ilities... 69

6.1. Software Product Ilities 69

6.2. Software Project Ilities 71

7. Tradespaces .. 74

7.1. Mapping Architectural Decisions to Ilities 74

7.2. Tradespace Comparisons: Risk and Customer Satisfaction 72

7.3. Tradespace Comparisons: Feasibility vs Progress Trackability 78

7.4. Tradespace Comparisons: Responsiveness to Change and Scalability 74

8. Project Situation .. 81

8.1. Project Inputs 81

8.2. Project Fit to Canonical Architecture: Project A 83

8.3. Project Fit to Canonical Architecture: Project B 86

8.4. Project Fit to Canonical Architecture: Project C 89

9. C onclusion .. 92

9.1. Learnings 92

9.2. Shortcomings of the Model 94

9.3. Future Work 93

10. R eferences .. 98

8

Appendix A: Justifications for Architectural Decision to Ility Scores 101

Appendix B: Python Scripts for Tradespace Generation 110

9

List of Figures

Figure 2.1: A Basis for Analyzing Software Methodologies - Reproduced from Davis, 1988 [51 22

Figure 2.2: A Basis for Comparing Software Methodologies - Reproduced from Davis, 1988 [5] 23

Figure 2.3: Comparison of Waterfall, Incremental, Spiral - Reproduced from Sorensen, 1995 [61 24

Figure 2.4: Evaluation of KAs based on SWEBOK for Spiral - Reproduced from Simdo, 2011 [81...........26

Figure 2.5: Comparison of Software Development Methodologies - Reproduced from Shaydulin, 2017

[1 0] .. 2 7

Figure 3.1: W aterfall W orkfloo Execution ... 30

Figure 3.2: Waterfall Concept of Operations - Reproduced from Royce, 1970 [71].................................31

Figure 3.3: A gile W orkflozo Execution .. 33

Figure 3.4: Spiral Methodology - Reproduced from Boehm, 1988 [141 .. 34

Figure 3.5: Single Design Approach vs Multiple Design Approach - Adaptations made for this thesis,

original published in Scaled Agile Framework, 2018 [17] ... 36

Figure 3.6: Set-Based Design Principles - Reproduced from Sobek, 1999 [15] 37

Figure 4.1: Functional Decomposition of Project ... 39

F ig ure 4.1: R esearch F low ... 41

Figure 5.1: Software Project Decomposition (Level 1)...44

Figure 5.2: Software Product Decomposition (Level 2) ... 44

Figure 5.3: Software Project D ecom position ... 48

Figure 5.4: Iron Triangle - Triple Constraint ... 52

Figure 5.5: Software Process Decomposition (Level 2) ... 54

Figure 5.6: Software Organization Decomposition (Level 2)...54

Figure 5.7: A rchitectural D ecisions .. 56

Figure 5.8: A rchitectural Decision Relationships .. 58

Figure 7.1: Mapping of Architectural Decisions to Life-Cycle Properties .. 74

Figure 7.2: Ease of Customer Collaboration and Ability to Identify Project Risk 75

Figure 7.3: Ability to Meet Deadlines and Ability to Track Scope Progress..79

Figure 7.4: Responsiveness to Change and Scope Scalability Trades pace .. 81

Figure 8.1: Project A Inputs over Ility Trades paces .. 85

10

Figure 8.2: Project B Inputs over Ility Tradespaces ... 88

Figure 8.3: Project C Inputs over Ility Trades paces .. 91

11

List of Tables

Table 5.1: Sorted Architectural Decisions by Nodal Degree...59

Table 5.2: Condensed Morphological Matrix of Architectural Decisions.. 63

Table 5.3: Morphological Matrix Highlighting an Agile-like Architecture ... 65

Table 5.4: Morphological Matrix Highlighting a Waterfall-like Architecture 66

Table 5.5: Morphological Matrix Highlighting a Spiral Architecture .. 67

Table 5.6: Morphological Matrix Highlighting a Set-Based Architecture .. 67

Table 7.1: Optimal Architectures for Stakeholder Collaboration and Ability to Manage Risk 77

Table 7.2: Architectural Combination to Optimize Stakeholder Collaboration and Ability to Manage Risk

... 7 8

Table 7.3: Architectural Combinations to Optimize Stakeholder Collaboration and Ability to Manage

R isk ... 7 8

Table 7.4: Definitive Decisions to Optimize Ability to Meet Deadlines and Ability to Track Scope

P rog ress ... 79

Table 7.5: Combinations of Decisions for Optimizing Ability to Meet Deadlines and Track Scope

P rog ress ... 8 0

Table 8.1: Sam ple P roject Inputs .. 82

Table 8.2: Project A: Architectural Decisions Made Based on Project In puts 84

Table 8.3: Project B: Architectural Decisions Made Based on Project In puts....................................... 87

Table 8.4: Project C: Architectural Decisions Made Based on Project Inputs 89

12

mm"ON114" IN11 111,111

List of Abbreviations

XP .. Extrem e Program m ing

RA D ... Rapid A pplication D evelopm ent

FD D .. Feature D riven D evelopm ent

TD D .. Test D riven D evelopm ent

SW EBO K .. Softw are Engineering Body of Know ledge

KA .. Know ledge A ttributes (from SW EBO K)

SBCE ... Set-Based Concurrent Engineering

D oD .. D epartm ent of D efense

13

This page is intentionally left blank

14

1. Introduction

1.1. Motivation

I started out my career as a software engineer and technical co-founder of the software

company, Meosphere. For 18 months, our small team of three to six engineers had only one

product under management. Our user experience designer was the same person as our interface

designer, and the president of the company sat two desks away from him. Our entire team

occupied a few cubicles in the small co-working business complex where we rented our space.

With such a small team and, relatively speaking, simple product, process was not a major

concern. There weren't enough moving parts for us to benefit from a communication strategy,

risk mitigation plans, or intricate review processes. Everything happening in the company was

known by one or two key individuals. The simplicity of our situation allowed us to predict the

impact of the decisions we made.

Three years later and in my second company, Lightning Kite, 25 engineers worked across five

teams and 15-20 projects at varying stages in their life-cycle. We were building software systems

for companies like Intel, Merck, the US Department of Health, and Blizzard. As opposed to my

experience at Meosphere, where two or three engineers could understand all facets of the

system in its entirety, we now needed processes in place in order to keep the dynamic projects

from spinning out of control.

It was in these circumstances that we made the move from a waterfall software development

strategy to a version of Agile called Scrum. I noticed good things resulting from the move. I felt

the teams were more responsive to change, for example. However, there were also a number of

areas where I thought we had regressed. But, I was never sure. I had no way to quantify the

impact of the processes we used. Were we actually more productive, more efficient and

ultimately more effective under Agile than Waterfall? I just didn't know.

I've since worked and interacted with teams and organizations of varying size and discussed

my frustrations with other engineers, managers, and software business owners. These

15

discussions have convinced me that others share my concerns. As organizations and systems

grow in size and number of components, they grow in complexity. An increase in complexity

has direct impact on promises, delivery schedules and eventual market success of a product [1].

But with the right software management strategy, many of the negative effects of complexity

can be mitigated. Alternatively, the application of ill-fitting strategies adds unnecessary friction

for developing software and can lead to delayed, over-budget, and irrelevant products.

Professor Olivier de Weck, speaking at MIT in 2016, argued that as the complexity of a system

increases, the time the project takes to complete and the error rates experienced also increase.

This is due to the fact that the effort to complete a project grows at a super-linear rate compared

to the increase in complexity of the project [1].

Managing projects at higher scale (i.e. higher complexity) presents larger risks to organizations,

including missing target deadlines and overrun budgets. This drives us to find ways to develop

methodologies for approaching projects that help manage increases in complexity and improve

consistent delivery of value.

Since the early 2000's, development communities have been making a big shift and giving up

methodologies such as Waterfall in favor of more agile and lean approaches. The result is much

greater flexibility for software teams. However, as with most, if not all, software decisions, there

are tradeoffs. In exchange for better adaptability to changing requirements or fuzzy direction,

teams may be giving up accountability and vision. Is this tradeoff worth it? Is it successful at

reducing project complexity? In some cases the answer is yes. However, in most cases the

answer is a nuanced, we think so, or an even more genuine, we really don't know.

All these questions bring me to the motivation for this thesis, which is to help the companies

building software products understand the impact of the methodologies they select.

16

1.2. Purpose

My purpose in this research was twofold: first, to identify which methodologies, or combination

of methodologies, are the best fit for certain software project circumstances and their situational

characteristics; and second, to identify emerging methodologies that are not now widely

known.

While projects may be similar to one another in purpose or design, each one is unique in certain

details. Considering these idiosyncrasies is crucial in the process of matching a design

methodology to the project's structure and purpose, and even the setting of the project. Project

variables may include strength of leadership, capabilities of the team, personnel turnover,

changing project requirements, etc. Even from project to project within the same organization,

the same team could obtain different outputs. The interactions between input and output

variables are many and varied, and can be difficult to measure. Thus, it is very difficult for

companies, managers, and engineers to say, "We've improved because we moved to X

framework or methodology."

Notwithstanding those challenges, I set a course to provide evidence to those claims that a

given approach will be more successful in a given application, so that a project manager may

say with confidence, "We performed better [or worse] using Y methodology, and I can see that

here."

For my second purpose, I was interested in conducting more detailed research on various

methodologies. Perhaps there is an answer to the question: "Which methodology is best for this

project?" Very likely, however, the answer could lie somewhere in between the canonical

methodologies accepted today. Must the answer really be Agile or Waterfall or Scrum or Kanban

or Spiral? Through my research, I would like to look at combinations of architectural decisions

that make sound sense for teams to use - given their impact on project ilities.

1.3. Problem Statement

I've used the following problem statements as guides for developing the research. These hinge

on the two components of the purpose of my research.

17

To understand how different project management methodologies impact execution of

software projects

By comparing combinations of architectural decisions based on canonical methodologies

Using a model to map outcomes across tradespaces of project ilities

To discover new methodologies that have not yet been recorded

By comparing combinations of architectural decisions outside of the canonical methods

Using a model to map outcomes across tradespaces of project ilities

1.4. Hypothesis

I believe that quite often project managers and organizational leaders don't know if what

they're doing is effective or not. There has been a substantial migration from Waterfall to Agile,

which may be driven more by buzz in the industry rather than better project performance. By

using an architectural decomposition, I hypothesized that project dynamics could be explained

more completely and that methodologies could be more effectively matched and evaluated.

As I conducted this research, I expected to see some of the methodologies align with the traits

they're known for (i.e. Agile for adaptability, Waterfall for looking ahead), but I also expected

there to be some surprises. I expected to identify cases where people in the industry accepted a

methodology for its specific benefits, but when the model simulations were completed, the

results would indicate otherwise.

I expected to see Agile as particularly effective in projects with lower complexities, whereas

Waterfall would be more effective in projects of greater size. In addition to Agile and Waterfall, I

included Set-Based design and Spiral methodologies for comparison. I chose Spiral because it

seems to be more rigid than Agile and more iterative than Waterfall, which makes it similar to

two of the most popular methodologies but different enough to be worth considering. A set-

based design, however, is like neither, but has qualities that make it interesting, such as

developing multiple designs in parallel in order to arrive at an optimal solution. I was curious

to see how it would compare to the others in practice.

18

And finally, I expected to see at least one new methodology emerge that could to be worth

investigating further.

In this thesis, I first discuss the ways other researchers have ventured to evaluate software

development methodologies and how effective they've been. I'll also look at mechanisms used

to compare development strategies, followed by a brief overview of the main four

methodologies considered in this thesis: Agile, Waterfall, Spiral, and Set-Based. I then discuss

my research strategy of unpacking the architecture of software projects and use this to build a

model to describe, categorize, and evaluate each methodology. I'll conclude by sharing the

insights and learnings I've found through the research.

19

2. Literature Review

2.1. Evaluating Development Methodologies

Many approaches have been taken to evaluate the quality and effectiveness of software

development methodologies. Some of these look at the software product output; some look at

the byproducts of software development, such as lines of code or pull requests.

In [2], Barbara Kitchenham et al. cleverly stated in their review of software engineering methods

and tools:

Software engineers split into two rather separate communities: those that build and maintain

software systems and those who devise methods and tools that they would like the former group to

use to build their software systems. To the disappointment of the tool and method developers,

adoption of new methods and tool by builders of software is slow. To the disappointment of the

builders, new methods and tools continue to proliferate without supporting evidence as to their

benefits over existing approaches.

New tools and methodologies seem to pop up each day. Wikipedia lists over 50 different

methodologies, paradigms, processes and strategies [28]. Options include: Lean methodology,

Kanban, Domain-driven design, Behavior-driven development, Rapid application development,

and Test-driven development, to name only a few. With so many options to choose from, an

evaluation strategy is an important way to determine if a certain methodology is right for a

situation. In their paper on evaluating methodologies and proposing the DESMET method of

evaluation, the authors of [2] suggest a list of nine possible approaches for evaluating software

development strategies:

1) Quantitative experiment

2) Quantitative case study

3) Quantitative survey

4) Qualitative screening

5) Qualitative experiment

20

al ~ ~ ~ ~ ~ ~ ~ ~ ~ I I-' '1 111li 1pil PM| i l M p iM I~si I'V II ,1 1 '1' 1'1 111 11,|!lfl ilfl "' 1' 1 1 1~ " 1 1i~ llill i l IH I INW1 10llil lilllI|IM llMMID INMIlllllii'IN il ll' ii' lfD IN11 | inii'lMNii il l1W1lR i! l ilillll l P ' N |015 17lII lH || Hill' ' "1Hll'IlH l1 lO' "lli ll ilIf| I1F!| lHRI 'I I II ' 1 1 11 1 1 ' I ' ' , ' ' I 1 -0 1 0

6) Qualitative case study

7) Qualitative survey

8) Hybrid method 1: Qualitative effects analysis

9) Hybrid method 2: Benchmarking

In addition to these methods, [2] also provides the conditions that favor each evaluation

approach. For the purposes of the research for this thesis, the approach that most fit the

conditions available is the Qualitative case study, or qualitative feature analysis. While the

DESMET method no longer appears to be in use, the classifications the researchers created for

evaluating methodologies proved useful for this research as they described the conditions

required for each evaluation approach. This simplified the selection process of which approach

to use for conducting this research.

When evaluating a methodology, it's very important to also consider the situational inputs

where the project could be used. For example, the research by Inada in 2010 [3] describes the

unique characteristics of software engineers and types of software built by Japanese software

companies. The engineers found in this region are both educationally and culturally

accustomed to following rules or working under strict discipline. When contrasting this set of

situational inputs from that of a San Francisco-based mobile app company, it's clear there must

not be a one-size-fits-all way to evaluate development methodologies. Or, if there is, it must be

flexible enough to account for changing project inputs. At the conclusion of the research in [2],

the most significant realization was that, "there was no one method of evaluation that was

always best."

An alternative model for evaluating methodologies is demonstrated by Mitsuyuki, 2017 [4].

'They opted to refine the scope of their evaluation to look only at a hybrid between Waterfall and

Agile. In doing so, they were able to remove a number of variables, allowing a more focused

evaluation of the methodologies. As such, the approaches taken appropriately fall into the

categories of Quantitative experiment as well as Quantitative case study- given the focus on hard

metrics such as undetected errors, requirement changes, and number of bugs occurred. They

also chose to fix their project inputs to allow for a more controlled experiments and simulations.

21

Another body of research looked at the project again from a Quantitative case study, or even

possibly an experiment. In Figure 2.1, a strategy for understanding the strength of a development

methodology is described by Davis, 1988 [5]. The diagram shows user needs as growing linearly

and continuously in order to simplify the model. While this is certainly not the case in reality,

visualizing the growth of user needs as a constant helps to better understand the other concepts

dependent on that curve. This method introduces a concept of life-cycle properties for a project,

such as lateness, shortfall, and longevity. Lateness, as described by the model, is the measure of

time between when a user need has arisen and when the software product is able to satisfy that

need. Shortfall is the difference in functionality between what is delivered and what is required

to meet user needs. The amount of time a system remains a viable option for satisfying user

needs is the longevity. This approach also introduces two dependent properties, adaptability and

inappropriateness. Based on this strategy, the adaptability of a methodology is really how effective,

or ineffective, it is at reducing lateness and minimizing shortfall.

FUNCTIONALITY

THE ACTUAL SYSTEM
CAPABILITIES

SHORTFALL SHADED AREJ
SHOWS

INAPPROPRIATEN

ADAPTABILITY IS
SLOPE OF LINE

LONGEVITY

TIME

Figure 2.1: A Basis for Analyzing Software Methodologies - Reproduced from Davis, 1988 [5]

This could be a useful exercise in understanding how different methodologies stack up against

each other. For example, Figure 2.2 shows a comparison of an Incremental Development Approach

vs a Conventional Approach. Conventional, in this situation, is referring to a waterfall approach.

22

ESS

By lining the methodologies side-by-side in this way, a comparison can be made as to how they

perform based on each of the project life-cycle properties defined by the model. One could

assume, based on this chart, that an Incremental Development Approach is better at addressing

user needs than a waterfall approach, because it reduces the level of inappropriateness of the

system.

INCREMENTAL
DEVELOPMENT

APPROACH

CONVENTIONAL
APPROACH

USER NEEDS C
FUNCTIONALITY

A B

to II t2 t3

TIME

Figure 2.2: A Basis for Comparing Software Methodologies - Reproduced from Davis, 1988 [51

In this approach, both methodologies appear to have almost identical adaptability values since

the slope of the time versus functionality curve is the same. So, in that regard these two

methodologies would be equivalent. The difference between these is that the Incremental

Development Approach delivers on user needs earlier than the conventional approach. Does this

imply that in order for the conventional approach to be as effective at solving user needs, the

initial delivery needs to be adjusted? What else sets these two methodologies apart? What other

factors should be considered when comparing development methodologies?

23

Boehmn
Waterfall Incremental Spiral

STRENGTHS

Allows for work force specialization X X X

Orderliness appeals to management X X X

Can be reported about X X X

Facilitates allocation of resources X X X

Early functionality X X

Does not require a complete set of requirements
at the onset X* X

Resources can be held constant X

Control costs and risk through prototyping X

WEAKNESSES

Requires a complete set of requirements at the
onset X

Enforcement of non-implementation attitude
hampers analyst / designer communications X

Beginning with less defined general objectives
may be uncomfortable for management X X

Requires clean interfaces between modules X

Incompatibility with a formal review and audit
procedure X X

Tendency for difficult problems to be pushed to
the future so that the initial promise of the first
increment is not met by subsequent products X X

* The incremental model may be used with a complete set of requirements or with less
defined general objectives.

Figure 2.3: Comparison of Waterfall, Incremental, Spiral - Reproduced from Sorensen, 1995 [6)

As an evaluation method, this strategy leaves many questions unanswered. The justification for

why a certain methodology is plotted with a specific curve is unclear. What happens if a

particular project has different inputs than another? Does an Incremental Development Approach

perform as effectively when deployed to a team of 100 engineers as it does to a team of 10? How

about when the project requirements are well defined but continually changing? This strategy

serves as a nice analogy for development teams seeking to select the right development

24

methodology. It's unclear whether a team is better using methodology A versus methodology B

because the impact of many different variables is unclear. Until the various underlying variables

are better understood, this approach may not be effective at answering those questions.

In a qualitative experiment, Simso (2011) [8] uses research, documentation, and experts to score

Waterfall, Spiral, RAD, Scrum, and XP on Knowledge Areas (KA) within the Software

Engineering Body of Knowledge (SWEBOK). The third version of SWEBOK defines 15 KAs [9]

(those in bold are KAs included in the study discussed in [8]):

- Software requirements

- Software design

- Software construction

- Software testing

- Software maintenance

- Software configuration management

* Software engineering management

* Software engineering process

* Software engineering models and methods

* Software quality

* Software engineering professional practice

* Software engineering economics

* Computing foundations

* Mathematical foundations

* Engineering foundations

Within each Knowledge Area, the researchers score the methodologies on a series of sub-

categories. The resulting output for Spiral is shown in Figure 2.4. Similar charts were generated

for the other methodologies evaluated:

This approach has a logical decomposition using SWEBOK. An interesting next step would be

to take the methodologies and look at them side-by-side. This would be useful for managers to

understand which methodology could be most appropriate for their particular situation. This

25

approach gives good insight into how teams might perform under these methodologies.

However, in seeking to understand what makes a methodology better for managing software

requirements, for example, this approach does not expose that information as readily.

Furthermore, this approach also does not easily give insight into how a methodology might be

improved (e.g. adjusted to better allow for management of software requirements).

100,00%

90,00%

80.00%

70,00%

60,00%

50.00%

40.00%

30,00%

20,00%

10.00%

0,00%2 4 7

1Software Requirements 100,00% 2 a Software Design 100.00%

3 m Software Construction 50,00% 4 m Software Testing 100,00%

5 a Software Maintenance 25,00% 6 a Software Configuration Management 83,33%

7 a Software Engineering Management 66,67% 8 Q Software Engineering Process 83,33%

9 t Software Quality 75,00%

Figure 2.4: Evaluation of KAs based on SWEBOK for Spiral - Reproduced from Simdo, 2011 [81

2.2. Comparisons of Development Methodologies

Many bodies of research have been created covering the comparisons of different software

development methodologies. Frequently, Waterfall and Agile are two candidates in the race.

From that perspective, this thesis is no different. Waterfall and Agile are too important to

exclude.

26

A very common approach to comparing methodologies, is a breakdown of attributes, such as

with positives and negatives then population of a matrix as shown in Figures 2.2 and 2.5.

27

Mlethodology
Waterfall AUP Scrumn TDD RAD JAD FDD

Requirements flexibility N Yes Yes Yes Yes Yes No
Requirements fulfilnent guarante Yes Yes Yes No Yes No yes

Cost estimation Yes Yes Yes No Yes No Yes
Cost estimates refinement No Yes Yes No Yes No Yes

Validation Y Nes Yes Yes Yes Yes Yes Yes

Aw pQuick validation No Yes Yes Yes Yes Yes Yes
Focus on custome No Yes I Yes N o Yes Yes No

Understandability guarantee Yes No No No No Yes No
Technical debt control Yes No No Ye N No No

Prioritizes added value No IYes 'Ye's Yes Yes(Yes YOs
Allows partial requiremet No Yes yes Yes Ys Yes Yes

Focuses on smnall teamns No 1Yes " e Yes Yes Ye s Yes
Develops minimal viable architecture No Yes Yes Yes Yes Yes Yes

Produces minimal documentation No Yes Yes Yes Yes No Yes
Relies heavily on customer feedback No Yes Yes No Yes Yes No

Susceptible to unforeseen risks No Yes Yes Yes No Yes Yes

Figure 2.5: Comparison of Software Development Methodologies - Reproduced from Shaydulin, 2017 [10]

This approach can be a helpful way to organize observed characteristics of individual software

methodologies and see them at a glance [6], [10], [11]. There are three primary ways where this

type of comparison fails to deliver adequate evaluation of side-by-side comparisons.

First, in each of the matrix comparisons observed, only binary values were used to determine

whether or not a given methodology exhibits a certain desired, or undesired, characteristic. It's

much more likely that each of the methodologies exhibit characteristics on some continuous

scale. Can one really claim that a waterfall methodology has no focus on customer while every

agile-like methodology automatically does? Likely, the authors of this research considered this

shortcoming. However, to say whether Scrum or Feature Driven Development enables more

effective abilities to focus on customers would require a deeper understanding of the driving

elements that enable this ability. Without that fundamental perspective, this claim cannot be

made.

Second, looking at the comparisons of the methodologies in this way gives a snapshot view of

what the teams may or may not be able to do well working under a given methodology. But this

visualization does little to communicate, or help to understand, what makes a methodology

28

enable or disable a certain characteristic. This mode of thinking also hinders the ability to see

how the methodology might be adjusted to be improved in a certain area. In [6], it is shown that

the Boehm's Spiral methodology has the ability to control cost and risk through prototyping,

while agile and waterfall methodologies do not have this capability. Is there some fundamental

reason why Agile and Waterfall are incapable of employing strategies similar to the Spiral

method? This way of viewing does not allow a next step thought process. As such, evaluators of

methodologies, in this situation, are left to choose between the evaluated methodologies and

there is no invitation to adapt and modify to fit the needs of their own project and

organizational situations.

Third, the high-level criteria selected for the matrices are complex. There are situational,

organizational, product, and other drivers that impact and, in a sense, muddy the waters for

making any kind of evaluation of the methodology. Characteristics like Orderliness appeals to

management or Technical debt control are as much characteristics of the teams, managers,

customers, and the products themselves. It seems a more accurate assessment would treat the

methodologies as a coefficient for each of the reviewed characteristics. But they don't

automatically imbue projects with magical properties. A project does not automatically become

a technical-debt superpower by adopting a Test Driven Development methodology. What are

the fundamental and architectural attributes of a the methodologies that drive the coefficients of

success or failure?

These are the questions this comparison strategy raises. How well or how poorly do the

underlying properties of a methodology enable or restrict the behaviors that drive effective

project execution? Why do the properties enable or restrict the behaviors that drive effective

project execution? And what are the distilled properties that drive effective project execution?

These are the persisting questions after a review of the existing literature on this subject.

29

3. Current Methods

3.1. Software Development Methodologies

There are many software development methodologies and strategies which can be categorized

in myriad different ways: ideologies, strategies, philosophies, processes, development life-

cycles, frameworks, and the list goes on. They are simply referred to in this text primarily as

methodologies. Reviewing and evaluating each and every methodology is outside the scope of

this research. The specific focus has been limited to reviewing four families of methods: Agile,

Waterfall, Spiral, and Set-Based. Agile and Waterfall are commonly considered foundational

strategies in software engineering. Spiral exhibits some of the structure of Waterfall but on a

more compact scale while also sharing some of the iterative qualities of Agile. Set-Based is new

to the software paradigm but is characterized by maintaining and pursuing a set of designs in

order to eventually down-select to the ideal choice.

3.2. Waterfall

Dr. Winston Royce first introduced Waterfall in a paper published in the early 1970's [7]. In his

paper, Dr. Royce states, "The first rule of managing software development is ruthless

enforcement of documentation requirements." This statement sums up the strictness and

rigidity of the waterfall method surprisingly well. It is highly dependent on thorough

documentation and following a plan. This rigidity is, perhaps, one of the reasons it is still used

today in many larger organizations. That same rigidity is also what encourages others to keep

their distance-especially those in dynamic and changing environments. Dr. Royce further adds

in his paper:

At this point it is appropriate to raise the issue of - "how much documentation?" My own view

is "quite a lot;" certainly more than most programmers, analysts, or program designers are

willing to do if left to their own devices.

Figure 3.1 shows an adaptation of the waterfall methodology to the development of a mobile

application. Each box represents one of the phases of development of the system. The arrows

between the phases represent feedback loops that occur at the handoff points from one phase to

30

",'l lIl'lliM UUI I II I 11S i~ l il iillll~ li" l~ l i@ iiM~ l ilU M il i i'" B lliil' lllin lMl~ lln" Imm m i ,,1ll""%ll lII ll~ lr 1',lll" 1lllil !' I" ''Il ' , , | 1 1" 'If

the next. Within the waterfall workflow, these feedback loops are the primary point where

changes are made. Once the handoff takes place and the project moves along to the next phase,

modifications to the work done during prior phases becomes much more costly, in both time

and budget. As projects move further along toward completion, the risk of change may be

reduced due to fewer unknowns. However, the project becomes can still be somewhat exposed

because the risks that remain can have great impact on project objectives if they aren't

appropriately mitigated.

Figure 3.1: Waterfall Workflow Execution

Dr Royce showed foresight when he identified the inherent risks with the sequential nature of

the waterfall model [7]:

The testing phase hich occurs at the end of the development cycle is the first event for which

timing, storage, input/output transfers, etc., are experienced as distinguished from analyzed.

These phenomena are not precisely analyzable. They are not the solutions to the standard partial

differential equations of mathematical physics for instance. Yet if these phenomena fail to satisfy

the various external constraints, then invariably a major redesign is required. A simple octal

patch or redo of some isolated code will not fix these kinds of difficulties. The required design

changes are likely to be so disruptive that the software requirements upon which the design is

based and which provides the rationale for everything are violated. Either the requirements must

be modified, or a substantial change in the design is required. In effect the development process

has returned to the origin and one can expect up to a 100-percent overrun in schedule and/or

costs.

[...].en

31

However, I believe the illustrated approach to be fundamentally sound.

In his paper, Dr Royce proposes five additional features that could be added to the basic flow

previously mentioned to protect against the need for substantial redesign and rework, shown in

Figure 3.2.

Eli"T" *-" D 0' E
ANAL Yti0 2 DTA T 0N MIT BE CkJNTN

PROG AM3. "00 T7EJB1%CE IF POSSOBLE

EJND

wINLVI THE CUSTOMER

ESTING 16 - --.. -- -

PRELIMIRY

PR O R A % *4 1P O G

DESIGEENT
-MG -N -

R ACE CiflCALALYSIS

FRIME LtFMARE

SOFTWAREE
REVIEE

COONIG

ICUMMENSEMNGSAUCESTIN

Figure 3.2: Waterfall Concept of Operations - Reproduced from Royce, 1970 [71J

The complex network of processes depicted in Figure 3.2 could be enough to scare just about

anyone away from deploying Waterfall in their project. In many ways, it was frustration with

Waterfall's rigidity and complexity that was the catalyst for the creation of other methods, such

as Agile. Or rather, the complexity of developing software is not adequately addressed in all

situations by deploying the waterfall methodology.

Further clarifications followed on Royce's work over the years. Organizations such as the US

Department of Defense created their own Waterfall standards that have been adopted or

adapted by software organizations all over the world [12].

Waterfall, in some form or another, is still commonly used today, principally in large

engineering organizations. Waterfall is categorized by its sequential order for executing work, a

32

top-down management style and way of assigning work, and reliance on documentation for

maintaining accountability and managing the software development processes.

3.3. Agile

No review of the family of agile methodologies could be complete without a reference to the

Agile Manifesto. Created in 2001, the manifesto was a statement made by a small gathering of

software engineers frustrated with the state of development at the time [13]. The values

addressed in the manifesto are as follows:

[... We have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

In this document, the agile methodology includes other frameworks that are commonly, but not

always, considered part of Agile, such as Scrum and Kanban. Agile frameworks are intended to

embrace changing requirements, even late in development (first principle of the 12 agile

principles). In an agile system, team members and key stakeholders (customers) collaborate.

The measure for progress is how the system actually functions and there is less reliance on

percentage of completion or other similar heuristics. Individuals meet together at regular

intervals (often referred to as sprints) to review project progress, reprioritize objectives, and

plan for upcoming iterations.

Agile methodologies afford a large amount of flexibility to team members and expect team

members to be highly self-motivated and productive. Where Waterfall keeps team members in

check through processes, Agile expects team members to self manage. This can result in greater

fulfillment for members of a team. But it can also result in greater uncertainty for those

responsible for delivering on project goals and objectives. Team members granted authority to

make certain decisions they would not be allowed to make in other paradigms. There is also a

focus on simplicity and on avoiding unnecessary complexity. It is the art of maximizing the

33

amount of work not done. And team members are given the ability to identify which elements

should be kept out of a system, based on the understanding of the first-hand wishes of a

customer.

Fystem Verification
and Validation

Requirements and Integration, Testing,

iCus e m r d Architecture Verification team on at l

AcorinCotepricpetf gl otar 1]emsaesl-rgnznfn reom monlyn

Operations w esMaintenance

assgnd hroghdicu sigahr nhvng aSnet aebaaer.

DesignDevelopment

Client
Development

Figure 3.3: Agile Workflo s Erxecution

The workflow of an actively executed agile project inis ualized in Figure 3.3. The project

intervals are shown, where elements of work, such as design and development, are carried out

in a focused manner during each iteration of the loop. This focuses the team on what will be

completed in the near future.

According to the principles of agile software [13], teams are self-organizing and are commonly

cross- functi onalI as well. For example, developers, designers, and test engineers could all

compose a single team. Among agile teams, members are more likely to volunteer or to be

assigned through discussion, rather than having assignments made by a manager.

Coordination, clarification, and issues are resolved via face-to-face communication rather than

with an appeal to volumes of documentation. Documentation is used when necessary, but is not

typically the primary method for maintaining order, communicating ideas, and holding team

members accountable for their work.

34

3.4. Spiral

The spiral development methodology incorporates many characteristics of both waterfall and

agile development methodologies. It takes an iterative approach to chipping away at large

problems, allowing teams to become increasingly invested as the project moves along. It also

has a continual focus on the project goals and technical risks.

CUMULATIVE
COST

PROGRESS
THROUGH
STEPS

EVALUATE ALTERNATIVES;
DETERMINE IDENTIFY, RESOLVE RISKS
OBJECTIVES,
ALTERNATIVES.
CONSTRAINTS RISK ANALYSIS

RISK ANALYSIS

RISK ... --

AN.----- OPERATIONAL

R I -- PROTOTYPE, ROTOTYPE
AC TY PROTOTYPE,

REVIEW
PARTITION ROT. PLAN - .SIMULATIONS. MODELS. BENCHMARKS

PLA OERTIDN SOFTWARE ..ROTS

DETAILED
DEVELOP-VEOU REMENTS SOTARE DESIGN

INTGRNI
CESIE

PLANG

AND TEST

IMLEMEN. ACEPTANCE
TS

PLAN DEVELOP, VERIFY
NEXT PHASES NEXT-LEVEL PRODUCT

Figure 3.4: Spiral Methodology - Reproduced from Boehm, 1988 [141

In theory, a project starts at the center of the spiral, where the roughest plans and concept of

operations are define and prepared. The tenets of the spiral methodology are centered around

35

managing the risks of the project. At each iteration of the spiral, risks are identified, assessed

and mitigation plans defined for the duration of that loop of the spiral. The spiral continues

until they're no longer needed.

A typical cycle of a spiral begins by identifying [14]:

" The goals of that segment of the project (functionality, interface design, performance, etc)

* The various options for accomplishing the goals (acquiring, reusing, design option A or B, etc)

" The constraints inherent to each of the options (cost, schedule, complexity, etc)

Each cycle in the spiral model ends with a review by the key stakeholders involved with the

development of the product. The scope of the review includes the previous cycle, plans for the

next cycle, and any required resources. The purpose is to ensure that all stakeholders are

equally committed to completing the next phase of the project [14]. This approach can allow

organizations to assume and manage risk in smaller, more digestible chunks. It also allows for

software teams to embrace change over time while maintaining a local rigidity within a cycle.

3.5. Set-Based Design

Set-Based Design comes primarily from the hardware design and manufacturing world,

particularly from the Naval Ship-Building industry. But it is also used by a number of

automotive companies, under a slightly different name, Set-Based Concurrent Engineering

(SBCE). Most notably, Toyota, has used this method of engineering quite heavily as reviewed by

Sobek, 1999 [15].

Commonly in engineering projects, there is a pressure placed on finding solutions quickly as

possible in order to reduce uncertainty. Teams then work on refining those solutions through the

duration of the project. Set-Based design works completely in reverse. Set-Based design

principles suggest that design decisions should be delayed as long as possible. Rather than

seeking to arrive at a solution, the focus is on identifying the weakest options and eliminating

them. This allows for concurrent sets of options to be explored asynchronously, since they are

independent of each other. This can be done at a micro and /or a macro level of a project.

36

-1011W 11WIR191111"111111WOMW -11. -0 0 011111 1111.1 , I M, - 1 11 I

SBCD is built on three principle phases discussed by Ammar, 2017 [16]:

* Mapping the design space: Create initial requirements that are ranges representing sets of

possibilities, rather than single point values.

* Integrating by intersection: Look for intersections of feasible sets while imposing minimum

constraints.

* Establishing feasibility before commitment: Narrow sets gradually while increasing detail

(staying within sets once committed).

Single Design

Design Change
Based on

New Insight

New Insig
Gained

Design Change
Based on

New Insight

Unable to Change
To Meet

New Insight

ht New Insight New Insight
Gained Gained

Time

Multiple Designs

Designs Eliminated More Designs
Based on Eliminated Based

New Insight on New Insight

Selection Made
Based on

New Insight

Figure 3.5: Single Design Approach vs Multiple Design Approach - Adaptations made for this thesis, original
published in Scaled Agile Framezork, 2018 [17]

In Figure 3.5 the concept of Set-Based design is illustrated by contrasting a Single Design

approach and from a set-based Multiple Design approach. The most commonly used approach in

software is the serial approach, where a single solution is used and revised as new information

is gained. However, as any software engineer or manager knows, inevitably some new

37

P_

P_

information becomes available too late in development to adjust the plan to take advantage of

it. A tradeoff has to be accepted. Either the current solution needs to be reworked to account for

new insight or teams must essentially ignore the new information, as the cost to make course

corrections at this point is too great. In some cases the latter is not an option and the project

must be reworked or abandoned. The multiple design approach shown in Figure 3.5 works to

remedy this concern. By maintaining a set of concurrent designs, each working under the same

specifications, a wider range of possibilities can be explored.

Design Engineering Manufacturing Engineering

Set of Product Set of
"We've come up with several Design Manufacturable "Our manufacturing capabilities
designs that would meet our Possiblilities Product are best suited for designs with
functional requirements. They Designs these characteristics.I
look roughly I ike this."

"Great. We will work within these "OK. We can handle any solution
limits and keep you posted on in that set. This is enough
developments." information to order tool steel

and start process planning."

"We've narrowed the possibilities "Looks good. Your set is still with-
to this set and also fleshed out in our capabilities. We have some
some more of the detail." minor design changes to request,

then we'll order castings."

"This is very close to our "This design looks good. Thanks
final design. Please do your for including us early on. We'll
final manufacturability review." start fab'ing the tools and get into

pilot as soon as possible!"

Figure 3.6: Set-Based Design Principles - Reproduced from Sobek, 1999 [151

While well-tested and utilized in the automotive and naval ship-building industries, Set-Based

design has yet to be commonly used in the software industry. For reasons currently unknown. It

could be because software systems are easier to change than costly hardware systems and

therefore incurring the up-front costs of developing multiple solutions in parallel may be

impractical. Especially if a possible rework of a single solution could achieve the desired result.

Another possible reason could simply be that no clearly defined frameworks exist. Many

companies are more focused on building out software systems and are not interested in testing

and developing radical and emerging software development methodologies. Regardless of why

Set-Based design has yet to see its day for software development methodologies, it represents a

distinctly unique alternative architecture to many of the canonical methods currently in

38

practice. Furthermore, the evaluation of it in comparison to the currently used methods could

shed valuable insight into the strengths and weaknesses of all.

3.6 Project Fit

Comparing methodologies is often difficult due to the differences in scope and project

objectives. Some methodologies are more prescriptive than others. Other times the methodology

may be more applicable at a zoomed-in micro level while others make sense at a zoomed-out,

more macro level. In certain cases, the intent of the methodology may be to serve different

purposes. As such, identifying how they apply to projects can be problematic. It's no wonder

that companies, managers, and engineers have a difficult time identifying which methodology

fits their project best. To remedy this, it's important to reduce the methodologies down to their

most basic and fundamental building blocks and identify how they match up with projects.

39

4. Research Approach

4.1. Understanding Project Purpose

Seeking to understand the purpose of a project and how its stakeholders derive value helps to

understand the importance of the various aspects of the project. Figure 4.1 shows the primary

function of a software project, which is to meet a stakeholder need through delivery of a

14Stakhle

Solving

System Boundary

Need

Figure 4.1: FunctionrateomoiionfPrjc

Requirements

Execution Plan

Team Members
(ManW Prodwwe.

Generating

Making

Solved Need

Figure 4.1: Functional Decomiposition of Project

40

functioning software product. This is illustrated through a progression of processes executed by

team members. This is intended to show the low level actions that work in concert to execute a

project. This exercise clarifies the functions and processes at each stage. Beyond this primary

delivery of value described in Figure 5.1, a number of other supporting sub-processes must be

executed. These may include, but are not limited to:

" Identifying and mitigating risks

* Identifying and fixing anomalies in code

* Managing changes

" Managing costs

" Managing schedule

" Testing deliverables

* Sourcing 3rd party software modules

" Sourcing 3rd party services

* Securing application code

* Tuning application performance

This list is not exhaustive, but it helps to better understand what the primary and secondary

functions of a software project are and how these functions are translated into value. With this

understanding, it is much easier to identify the impact of various project elements. To

understand the impact of the deployment of a specific development strategy, it is important to

consider not only the primary path for delivery value, but each of the most important sub-

processes as well. Another exercise also decouples the value as it's given to a stakeholder from

the currently understood mechanisms of the day for delivering that value.

4.2. Building the Model

In order to arrive at a project architecture model that can be used to understand the best fit for a

given project's situation, each of the possible architectural decisions must first be identified.

These architectural decisions are design decisions of the project with substantial impact on the

look of the project. They have a tendency to lock-in other decisions and have particular ripple-

down impact on the direction of the project design [18]. These architectural decisions are then

mapped to a series of Life-Cycle properties, commonly referred to as Ilities [19]. To achieve the

41

mapping, the results of these combinations are plotted onto a trade space where a Pareto

Frontier can be identified. Figure 4.1 gives a representation of the flow of this process.

Project
Architecture

Fit

Fi-eure 4.1: Research Flow

With a project architecture model, situational inputs can then be gathered from a potential

project. These situational inputs are the properties of the project. For the purposes of this

research, a series of toy projects are used. These toy projects show a range of possible projects,

with the purpose of covering a wide range of inputs to tease out the strengths and weaknesses

of each of the methodologies. If the model is effective, different project architectures should

highlight positive and negative fit combinations of situational project inputs across the various

life-cycle properties. For example, it could be expected that a relatively small project with a

42

limited number of variables but a high degree of uncertainty might perform better against an

agile-like project architecture than it would against a waterfall-like architecture when mapped

against the ability to adapt to a changing requirements life-cycle property. If this is indeed the

case, this could indicate a several things:

. That the claims that agile-like project architectures perform better in small projects with high

uncertainty than waterfall-like project architectures

2. That the project architecture model, at least in this instance, did achieve what was expected

and provided an accurate classification of the project architecture against the life-cycle

properties and project inputs

Inversely, if this is not found to be the case, it could indicate another set of things:

1. That the claims regarding agile-like project architectures could be incorrect

2. That the project architecture model, in this instance, did not achieve what was expected and

there may be a crucial flaw in the approach taken

Additional tests will then be performed with other combinations of architectural decisions, life-

cycle properties, and situational inputs.

43

5. Project Architecture

5.1. Project Decomposition: Two-Down-One-Up

A project decomposition is an effective way to visualize and understand a system. A

decomposition requires reducing the system down to its basic building blocks. The blocks can

then be organized into a hierarchical structure. In the SDM program at MIT, this is commonly

referred to as Formal Decomposition. The zeroth level is the containing system, or in this case,

the Project. When performing a Two-Down-One-Up Formal Decomposition, the first level of the

hierarchy is initially ignored, and the decomposition is performed at the second level. The

purpose of this is to allow the first level categorizations or groupings to occur naturally based

on the elements that arise from the reduction process. This prevents a premature classification in

the first level. In order to maintain a manageable level of complexity at each level, a convention

of 7 2 elements at each level is commonly used-though this is not a hard-and-fast rule. The

process of decomposing a system is a useful exercise in reverse-engineering an existing system

and allows for better understanding of its architectural makeup. It's partially through this

decomposition process that insight into properties of architectural elements emerge.

As is done in by Moser, 2015 [20], the project itself can be treated as a socio-technical system, or

a system combining both human and technical elements in dynamic interaction. As a complex

system, decomposition identifies the project's value. This process provides better insight into

the elements that make up a project, which is a prerequisite to understanding their emergent

properties. Figure 5.1 shows the top two levels of a software project formal decomposition. The

process of fixing a system boundary around the system helps to clarify which elements will be

considered directly as part of the system, and which elements impact the system only externally.

The specific justification for which elements are contained within the system boundary and

which elements are not, can change from decomposition to decomposition. The rule of thumb

used in Figure 5.1 is to contain those elements that have direct impact on the project and for

which the team managing the project has control. There may be a number of projects,

individuals, or processes that could affect a project architecture, but are not considered direct

contributors and are left outside the boundary.

44

System Boundary

Software Project Oth

1st

Figure 5.1: Software Project Decomposition (Level 1)

5.2. Product Decomposition

Figure 5.2 shows the decomposition of the product branch-or the deliverable. The elements

that make up this branch center on those facets of the project that directly impact the product.

This includes how requirements are created and how work is segmented, scheduled, and

estimated. Each element in the decomposition represents an architectural decision to be made.

Some of the decisions are more architectural than others, implying they have a greater impact

on the emergent architectural properties of the system.

Figure 5.2: Software Product Decomposition (Level 2)

A sample product illustrates how architectural decisions might look: A healthcare software

system developed for a physician's clinic. Stakeholders may include patients, doctors, nurses,

insurance companies, patient families, and so on. Many of these stakeholders may never use the

45

system, or even know it exists, but they certainly are impacted by decisions made concerning

the system development. However, since the team tasked with developing this software does

not have direct control over these external stakeholders, they will be kept outside the system

boundary. There will also be a number of processes and other software systems inside a

healthcare environment needing to coexist with the software system being developed. Each of

these external components can be considered in a software architecture and interfaces with

them must be considered. However, the management team for the system in question does not

have direct impact over them and therefore these systems would commonly be excluded from

the system boundary. The decisions at this level determine much around how the Product itself

is managed. It is what is decided at this level that drives the architecture of the software project.

5.2.1. Requirements Set

Describes the way the requirements for the project are defined and maintained.

Decision Option 1 Option 2 Option 3

eqirements Set Fluid Fixed Ranges with increasingRequremets St Flid Fxedspecificity

In this decomposition, the Requirements Set describes how requirements are managed and

maintained. Are they fluid, fixed, or somewhere in between?

In order to build the module of a simple patient record management system, there must be

cleanly defined requirements. In the sample project, the system that manages patient records is

being replaced. The new system needs to record patient appointments as well as record the

results of a visit. The system will primarily be used by the office staff, but individual patients

can log on to see their results or export and update their medical and insurance information.

High-level requirements could look as follows (For consistency across methodologies, the shall/

should format is used).

" An office staff member shall be able to manage the appointments for the office.

" A doctor shall be able to enter the summary of an office visit.

" A patient shall be able to access office visit summaries.

46

As an architectural decision, the Requirements Set can take various different forms. For example,

requirements can be guiding principles to shape the direction the work takes. They remain fluid

to account for incoming feedback from user testing and customers. In other situations, once

agreed upon, the requirements remain fixed to allow the plan to be built around them.

Requirements may also be viewed as a range with the intention of higher specificity as

development progresses.

Ranges with increasing specificity

" A doctor should be able to enter office visit summaries using a method that fits well

within their current workflow.

" A patient should'be able to access office visit summaries using a method that fits a

mobile lifestyle.

These requirements capture the essence of what the user needs but are not entirely explicit.

They represent a range of possibilities and give room for exploration. Within these ranges a

number of different concepts could be generated. After time is given for exploration, more

refined requirements could be established:

Ranges with increased specificity

" A doctor should be able to enter office visit summaries using a stylus on a tablet device.

* A doctor's summary written using a stylus should automatically be transcribed to text.

* A patient should be able to access office visit summaries by having them read aloud via

a mobile device.

These requirements fit within the ranges of the original requirements, but they now represent

tighter specificity based on some effort of exploration.

5.2.2. Design Set

The number of potential designs considered, initially, or throughout the project.

47

I y s ---------------------- --- --------------------- ----- ----------- ------- --- --------------- ------ -------------- ---- --- ----System Boundary

Software Project
Management

0

Timeline (HowWork Estimation
managed)

Figure 5.3: Software Project Decomposition

Decision Option 1 Option 2

Design Set Single Design Multiple Designs

A common practice among many methodologies is to reach consensus on a single design

solution and work to develop and refine the design throughout the course of the project.

However, another possible project architecture could use multiple designs as a way to explore

multiple solutions simultaneously. Imagine a situation where a major software company has a

need for a particular piece of software to be ready by a certain date. The company has access to

substantial resources and missing the particular deadline could cost the company greatly.

Multiple development teams could be deployed to work on different designs for the same

component in parallel. Developing multiple designs concurrently in this scenario could increase

the possibility of finding a solution that will be ready in time.

Another possible use case for a multiple-design architecture could be in a situation where an

organization is in search of the optimal solution for a given application. Multiple designs could

be explored simultaneously. Evaluations of the resulting designs could then be compared,

allowing the organization to identify the best solution to solve the need.

Returning to the sample case of the software application for the physician's clinic, multiple

designs could look as follows in practice. The requirement set decision of Ranges with increasing

specificity could be used here.

Multiple Designs

* Design Option A

* A doctor should be able to enter office visit summaries using a stylus on a tablet

device.

* A doctor's summary written using a stylus should automatically be transcribed to

text.

" Design Option B

* A doctor should be able to enter office visit summaries using voice to text on a

mobile handset.

49

* Design Option C

* A doctor should be able to enter office visit summaries using image recognition of

a slip of paper with the summary notes handwritten.

Each of these designs satisfy the requirements provided and offer a unique way to solve the

need.

5.2.3. Unit of Work

The basic unit of work to be executed.

Decision Option 1 1Option 2

Unit of Work - - IUser-focused story Task

Units of work are most commonly broken out into user stories or tasks. User stories are focused

on the end-to-end resulting functionality for a user. A tasks is commonly written from an

engineering perspective. Both come with their strengths and weaknesses. With either case, they

should be specific and verifiable. In the case of the patient record management system the same

components may be broken out in the following ways:

User-focused story

" As an office staff member, I can add new appointments for patients.

" As an office staff member, I can see upcoming appointments to identify doctor's

openings.

* As a doctor, I can record visit results so patients can view them.

" As a patient, I can view my visit results.

Each of the stories is written in an end-to-end verifiable, user-focused way. Instead of focusing

on the system, the team members developing the system have to focus on the user and what

their needs are. This can protect against losing sight of the why when developing features. The

same user stories could be written as tasks as well.

50

Tasks

" Set up a database system.

" Create connectors between application layer and database system.

" Create interface mockups for office staff appointment views.

" Create interface mockups for doctor visit results.

* Create interface mockups for patient visit information view.

" Implement logic to allow staff member to view upcoming appointments.

" Implement logic to allow staff member to create appointments.

" Implement logic to allow doctor to record visit results.

" Implement logic to allow patient to view visit results.

With tasks, there's a greater focus on exactly what is being done in each task. With user stories,

there's a greater focus on why the team member is doing what they're doing.

5.2.4. Work Segmentation

How the units of work are organized.

Work Semntatio End-to-end Phased

Closely related to the individual work units is the work segmentation. Whether features are

worked on from an end-to-end perspective or whether the work execution is phased. If an

organization is creating user stories instead of tasks, they're almost certainly going to be also

using an end-to-end approach for executing the work and this is also commonly paired with a

cross-functional team. A task-based method is commonly paired with a phased approach but

this isn't always the case. As mentioned, this is closely aligned to the way teams are formed as

well, whether as cross-functional teams or teams are grouped by role.

In end-to-end, user experience designers, interface designers, software engineers, test engineers,

all work on the same features at about the same time or within the same cycle. The designs for

the feature are provided to the engineers to implement, and the features are tested in very short

iterations. In a phased approach, a more zoomed-out perspective is taken. A whole set of

51

features (or in some cases, the entire product) start with the user experience and/or user

interface teams. Designs are then provided to engineering to implement after which the product

is sent to a testing team for testing and validation. When working on a feature end-to-end, if an

issue is found by one team member, they can engage the person who just created it. With the

phased approach, by the time testing gets their hands on the product, the interface team is

already moved on to working on other projects.

This could look like the following in the patient management system:

End-to-End

" A user experience designer creates low-fidelity mockups of the process of a staff

member adding an appointment and tests them out with someone else on the team.

" A user interface designer takes the low-fidelity mockups of the feature and creates a

high fidelity mockup of the feature.

" An engineer or multiple engineers implement the logic for the feature to function and

implement the designs.

- A test engineer tests that as a staff member they can actually add appointments and

communicates any inconsistencies back to the team members who created the feature.

* Next, they all move on to the next feature.

Phased

* The interface team creates the mockups for all of the features in the set. Once those have

been created and signed off on, they are sent to the engineering team.

* The engineering team then implements the staff user functionality, the doctor

functionality, and the patient functionality.

* The test engineers then test and validate that the staff member, doctor, and patient

functionality all work as intended. If any of the functions does not pass validation, it's

sent back to the team that owns the issue for rework so it can then be resubmitted for

testing.

52

It's worth noting that if multiple design sets are being created, these processes could be

happening with multiple teams in parallel for segments of a project. It is also not necessary that

multiple designs be carried out from beginning to end of a project. Rather, it explores feasibility

of multiple concepts at once to determine the best fit.

5.2.5. Release Organization

How work is assigned to releases.

Decision Optioni Option 2 Option 3 Option4 Option 5

Release Time/Feature Time/Feature/
rganization Time Bound Feature Bound Cost Bound TB /aud CesturdOraizto iIIBound Cost Bound

There are different ways to segment out work. In some cases, a team may choose to break out

work units into individual time-bound segments, commonly referred to as sprints. Sprints

aren't the only way teams organize their releases by time. For example, Canonical Ltd, the

developer of the popular Linux distribution, Ubuntu, commonly releases twice per year

(typically in April and October) [21]. The releases are set for those times and whatever is ready

to ship by that time is included in the release. In other situations, a decision could be made to

Schedule

Cost Scope

Figure 5.4: Iron Triangle - Triple Constraint

focus on milestones, or groups of features and ship when those features are ready. Blizzard, the

popular game developer, has historically subscribed to this method. They notably ship their

software when it's ready and don't make promises about when that might be. In one of their

53

Figure 5.5: Software Process Decomposition (Level 2)

core values, they state, "At the end of the day, most players won't remember whether the game

was late -- only whether it was great [22]."

Time Bound

* The project will be released once a month. Whatever features are finished and tested by

this time will be available to users to user.

Feature Bound

54

Figure 5.6: Software Organization Decomposition (Level 2)

* An initial release must include all functionality for staff members and doctors. All of

these features must be included with Milestone 1.

* Patient facing features will be slotted for Milestone 2.

Budget Bound

* A specified budget is set for the project within which the teams need to deliver the

patient management system. Whatever the feature set ends up being, it must be

delivered within the budgeted amount.

55

I

Product (Deliverable)
Requirements Set (Scope)

Design Set
Unit of Work
Work Segmentation
Release Organization
Work Organization
Work Estimating
Concept Selection
Process

Prioritization (What is prioritized)
Progress Tracking

X Exploration
Project Feasibility (When determined)
Feature Feasibility (When determined)

Q- Scope (How managed)
Timeline (How managed)

. Primary Communication Channel
E ti EU71 Ir Work Assignment

(O I Budget (How managed)
C C Quality Recovery (How managed)

issue Discovery (When)
M u.

Workflow Execution
> Integration

Organization Fements

Prioritization (Who sets)
Project Feasibility (Who determines)
Feature Feasibility (Who determines)

Scope (Who manages)
Timeline (Who manages)
Visionary

.6 Team Formation
E 4 Et* or Team Organization

Budget (Who manages)

o C Quality Recovery (Who discovers)
= Quality Recovery (Who determines)

ft Responsible for discovering issues
> Responsible Individual

Describes the way requirements for the project are defined and maintained. Fluid Fixd Ranges, wfinc spec city
How many potential designs are considered at least initially or throughout the project. Single Design Multiple Designs
The basic unit of work to be executed. User-focused story Task
How the units of work are organized. End to End Phased
How work is assigned to releases time Bound Feature Bound Cost Bound Time/Feature Bound Time/Feature/Cost Bound
How product elements to be developed are categorized. Modular System Monolithic System Hybrid System
Method for measuring how long a work unit will take to complete. Difficulty to Velocity Hours of Effort
The method used for down-selecting to the specific product architecture. Solution Seeking Non-Solution Seeking

What constraint takes top priority. Deadline Scope Stakeholder Requests
Method for measuring how close to completion the project is. Units of W completed Features delivered Budget consumed
Built-in mechanisms for handling exploration. Phased Continuous Initial Not Executed
Which point in the process the project is deemed technically feasible. Inception Post-prototype Not Done
Which point in the process feature requests are deemed technically feasible Reqs Definition Time Implementation Time Not Done
The method for keeping track of the elements that make up scope. Requirements List Project Backlog
How the deadline is controlled and downstream changes are captured. Date Bound Scope Bound Date & Scope Bound Cost Bound
Mechanism used for communicating ideas. Documentation Driven Meeting Driven Model Driven
How work gets assigned to team members. Member volunteers Member assigned
How is the funding disbersed and applied to the project. Full Project Funding Incremental Funding Performance-based Funding
Recovery process when product does not meet what has been committed. Continual prioritization Post production Phased
At what point issues are identified (cases where software doesn't work as expected) Continuous M.stone/Gate Reviews Testing Phase
They general cycle for how work progresses toward completion. Iterative Sequential Top-to-bot bot-to-top Concurrent
Which point independent modules/features integrated with the rest of the platform Continuous Penodic Phased

The person(s) tasked with setting the priority for work being executed Project Manager Team Members Customer Leadership Panel
The person who determines whether the project is technically feasible Subject Matter Expert Team Members Project Manager Leadership Panel
The person who determines whether a specific feature request is technically feasible Subject Matter Expert Team Members Project Manager Leadership Panel
The person who determines whether a specific request is a part of scope. Project Manager Leadership Panel Customer
The person who sets the deadlines for project work. Project Manager Leadership Panel Team Members
Who holds the vision for what the product needs to be. Product Owner Project Manager Customer
How the teams are formed Self-Organizing Top-Down
The skill-set makeup of teams Cross-Functional Functional
The person or entity who controls allocation of funding and resources. Project Manager Leadership Panel
Who determines if software product achieves project goals. Developers Systems Engineers QA Team Users Project Manager Leadership Team Customer
Who determines if work completed deviates from commitments. Developers ,Systems Engineers QA Team Project Manager Leadership Team Customer
Who discovers software anomolies (i.e. bugs, not mis-directed project objectives). OA Team Project Manager Users -External Inspector Team member

Who is responsible for the overall success of the project. Product Owner Project Manager

Figure 5.7: Architectural Decisions

Time and Feature Bound

" There's an important Healthcare Conference in June. This system needs to be tested and

ready for launch by this time. All staff member, doctor, and patient facing features must

be ready by the conference. This may take additional resources to ensure this deadline is

able to be met.

Time, Feature, and Budget Bound

" The staff member and doctor facing features are required to be delivered by a specified

date and is agreed upon for a certain cost.

5.2.6. Concept Selection

The method used for down-selecting to the specific product architecture.

IDeci-sion_ _ Optio 1 ption 2

Concept Selectio Solution Seeking Non-Solution Seeking

This decision is closely linked to the Design Set decision to select a single design or multiple

designs. If option 1 is selected, then clearly only a single design makes sense. However, if the

project architecture uses multiple designs, then Concept Selection could be solution seeking or

non-solution seeking. This could also be thought of as an Opt-Out vs Opt-In scenario. With

solution seeking, the objective is to find the possible solutions to develop. With non-solution

seeking as a selection strategy, project decisions are delayed as much as possible in order to

ensure the greatest possibility of having all necessary facts before making a locking decision, at

which point, dominated solutions are eliminated leaving only the most promising solutions.

5.2.7. Others Product Architectural Decisions

How product elements to be developed are categorized.

Decision Option 1 Option 2 Option 3

Work Organization Modular System Monolithic System Hybrid System

Method for measuring how long a work unit will take to complete.

57

System Boundary
Software Project

Management

Product (What) Proces s(How)

Product Management

00

Organization (Who)

Tem&Isuc g t Qat~ rfcto~ |dto rdc aae etTa eoreM m ulyeiiain adto
Depends On

Concept Selection H Scoe
It T (How managed)

00
Requires - - Relates To

Timeline
Design Set (How managed)

Impacts
It

Requirements Set Exploration
(Scope)

Relates To - Depends On

Unit of Work Feature Feasibility
Ui (When determined)

Relates To 0 Depends On

Wr SProject FeasibilityoWork Segmentation ___ (When determined)

Impacts

Release Progress Tracking
Organization

0

Depends On

Figure 5.8: Architectural Decision Relationships

Primary QaiyRcvr
Communication Quality Recovery Prioritization Team Formation (WhoiRecovery

Channel (How managed) (Who sets) TWho discovers)

Relates To
Depends On

issue Discovery Feature Feasibility 0 Quality RecoveryWork Assignment Whn Wodtrie)-- -o Team Organization +4 Relates To - (h eemns(When) (Who determines) (Who determines)

Relates To

Budget Workflow Execution Project Feasibility Budget Responsible for
(How managed) _n(Who determines) (Who manages) discovering issues

-04

- Relates To - -

pIntegration (W o R Responsible
Min-r manages) Individual

Relates To

Depends On 0 7

Depends On Timeline Issue Discovery

__ ____ (Who manages) (Who identifies)

Relates To

Visionary

Relates To-

pends On
Depends On

L

DecisionOpin1Oto2

Work Estimating Difficulty to Velocity Hours of Effort

5.3. Process Decomposition

The next layer of decomposition is at the process level. What are the processes that enable the

execution of the project? Figure 5.5 shows these broken out into three individual areas: Product

Management, Team and Resource Management, and Quality, Verification, and Validation. The

architectural decisions within the process decomposition are not as readily apparent in the

software product, and as such, examples of how they apply to the sample physician's software

application are not included. However the individual architectural decisions and their options

are shown in Figure 5.7.

5.4. Organization Decomposition

The third and final layer of decomposition is at the organization level. This refers to the

organizational structure that enables the project architecture. Figure 5.6 shows the

organizational structure broken out. Similarly to the process decomposition, the organization

decomposition elements are not readily apparent in the software product. As a result, the

specific product results from the sample physician's application are not included here.

Individual architectural decisions and their options are shown in Figure 5.7.

5.5. Architectural Decisions

Architectural decisions are the subset of design decisions with the farthest reaching emergent

consequences for the project [18]. These are the decisions most likely to set one architecture

apart from another. As such, these are the decisions most difficult to change down the road.

Selecting the right combination of these decisions allows for optimization to the desired

scenario. Rather than a binary designation of being an Architectural Decision or not, this

designation is more of a spectrum. Some decisions are more architectural than others. The

decisions most architectural in nature should be made earlier in the project, reserving decisions

that are more design decisions, those with less impact to be made down the road when is most

appropriate. Because architectural decisions have such an impact on the success of an

59

architecture, it's crucial to make these decisions with the right amount of information (i.e. and

not make these decisions too soon either). This is much of the motivation of this research-to be

able to define the decisions with the most substantial impact on different ilities and situational

project inputs, to be able to allow individuals to recognize which decisions they're making and

what the downstream effects are of those decisions. To know when a decision they've made will

have a locking-in effect on other decisions down the road.

Architectural decisions can be prioritized through a number of means. By looking at how

connected their components are to other elements in the system. Decisions involving highly-

connected components often have far-reaching emergent consequences, but not always. If a

change is made at a highly-connected node, there is a greater potential for ripple down

consequences. Much more so than a node with no other connections. Figure 5.8 shows the

Project Architecture decomposition networked to each other. This representation shows how

each of the individual decisions interact with one another. In Table 5.1, the architectural

decisions are then sorted in order by their nodal degree with the most connected decisions at

the top.

Other considerations are given for decisions that set one architecture apart from another. If a

decision has little to no impact on the overall system, then it is said to be less of an architectural

decision and more of a design decision only.

Table 5.1: Sorted Architectural Decisions by Nodal Degree

,Degree (In + Out)

Release Organization 8

Team Organization 8

Work Segmentation 7

Requirements Set (Scope) 6

Visionary 6

Quality Recovery (How managed) 5

Concept Selection 5

60

Design Set 4

Project Feasibility (When determ-ined) 4

Budget (How managed) 4

Unit of Work3

Exploration 3

Feature Feasibility (When determined) 3

Scope (How managed) 3

Timeline (How managed) 3

Integration 3

Progress Tracking 2

Primary Communication Channel 2

Work Assignment 2

Issue Discovery (When) 2

Project Feasibility (Who determines) 2

Feature Feasibility (Who determines) 2

Scope (Who manages) 2

Timeline (Who manages) 2

Team Formation 2

Budget (Who manages) 2

Quality Recovery (Who discovers) 2

Quality Recovery (Who determines) 2

Workflow Execution 1

Prioritization (Who sets) 1

Responsible for discovering issues 1

Responsible Individual 1

Issue Discovery (Who identifies) 1

61

Nodal degree is not the only factor to consider when determining the architectural impact of a

decision.

Certain decisions create hard dependencies with the other decisions. These decisions are tightly

coupled with others. With these decisions, it makes less sense to include two decisions that have

options that only associate with each other. If A is selected in the first decision, then A must be

selected in the second decision. If B is selected in the first, then B must be selected in the second.

By combining multiple decisions with this type of behavior, then the results we get from the

various combinations will be less insightful. Other decisions have important ripple effects to the

rest of the project. In other cases, certain combinations are possible, but should be avoided as

they create additional risks. For example, a fixed scope together with a fixed budget and a fixed

timeline forms what is commonly referred to as the Iron Triangle (see Figure 5.4). It is very risky

for a development team to take on a project under these terms as projects rarely go according to

plan.

An architectural decision should have meaningful emergent properties. The font used in a

mobile app, for example, has very little impact on the the development of the app. And, even

though it may have a high nodal degree based on the components with which it interfaces, and

depending on the architecture, it's relatively simple to change and therefore represents more of

a design decision than an architectural decision. Along the same lines, the architectural decision

around who is the "Visionary" has a high nodal degree. It's not to say that a design decision

doesn't have a substantial impact on the outcome of a product or project. It's just to say that it

may not need to be decided as early in the process (i.e. at the architectural level). Selecting the

position held by the person who holds the vision for a project, while it touches a large number

of other elements within the project, is not a very architectural decision because it's easy to

change out and doesn't impact the other decisions in a meaningful way. However, determining

whether a budget is to be released based upon hitting a series of milestones versus monthly can

have great impact on the other decisions and would therefore be a very architectural decision.

This single decision could determine which methodology or type of methodology should be

selected.

62

Given the desire to compare several of the canonical development methodologies, it's also

important that given the designation of a specific set of architectural decisions it's possible to

describe and differentiate each methodology using this vocabulary.

Figure 5.6 shows a morphological matrix of architectural decisions for project design, with a

description of the intent of each decision. The different options for each decision are also shown.

The objective of this matrix is to be able to use this as a vocabulary for describing and defining

the different canonical software project management methodologies and then to be able to

compare them to one another.

5.6. Describing Canonical Methods using Architectural Decisions

One of the main difficulties of comparing one methodology to another, is that each approach

uses a different nomenclature or jargon to define their processes and elements. What one

methodology calls a user story another methodology calls a task. To complicate the situation,

the terms mean something slightly different in each methodology.

This complication can be remedied by defining common denominators or building blocks for

strategies that truly represent what is actually taking place in the method. A common

understanding can be achieved allowing for cleaner comparisons to be made. The following

decisions can be used to describe the different canonical methods. By creating combinations of

these options, one architecture can be differentiated from another. These architectural decisions

can also be used to articulate other architectures outside of the canonical norms accepted today.

This allows for optimization based on the actual needs of the project, rather than a requirement

to fit the organization, processes, or product to the specific methodology.

Architectural Decisions

1) Release Organization: How work is assigned to releases.

2) Team Organization: The skill-set makeup of teams.

3) Work Segmentation: How the units of work are organized.

4) Requirements Set (Scope): Describes the way requirements for the project are defined and

maintained.

63

5) Quality Recovery (How managed): Approach for managing how quality is recovered when

what is being produced does not meet the standards/ specifications for what has been

committed.

6) Concept Selection: The method used for down-selecting to the specific product architecture.

7) Design Set: How many potential designs are considered at least initially or throughout the

project.

8) Project Feasibility (When determined): Which point in the process the project is deemed

technically feasible.

9) Budget (How managed): How is the funding dispersed and applied to the project.

These decisions are translate to the morphological matrix show in Table 5.2. This table shows

the architectural decisions with their associated options. For each decision, there associating

options contribute, in some form or another, to the differentiation of the project architecture and

have some sort of emergent or down-stream impact on the design of the project.

Table 5.2: Condensed Morphological Matrix of Architectural Decisions

Decision ption 1 Option 2 Option 3 Option 4 1 Option 5

Release Time Bound/ Time, Feature,
Organization Time Bound Feature Bound Cost Bound Feature Bound and Budget

Bound
Team
Org anation Cross-Functional Functional

Work o End to End PhasedSegmentation

Requirements Set Ranges, with
Fluid Fixed increasing(Scope)

specificity
Quality Recovery Continual
(How managed) prioritization Post production Phased

!Design Set Single Design Multiple Designs

Project
Feasibility (When Inception Post-prototype Not Done Continuous
determined) I I _

Budget (How Full Project Incremental Performance-
managed) Funding Funding based Funding

Unit of Work User-focused Task
story

Exploration' Phased Continuous Initial Not Executed

Concept . Non-Solution
Selection[Sekng Solution Seeking ee

64

This morphological matrix can be used to define and describe different methodologies. Table

5.3 is showing an agile-like architecture by highlighting the options within each decision that

make the project more agile. These values were derived using documentation on various agile

frameworks, the Agile Manifesto [13], and the 12 principles of Agile, and personal experience of

how teams are commonly formed within Agile. A few notes on some of the properties selected

here:

" Due to the time bound cycles or intervals, commonly referred to as sprints, agile releases are

usually time bound. There are situations where a larger release may be reserved until a set of

features have been completed. But typically, especially with a continuous integration scenario,

the features ready at the end of the cycle are what end up getting deployed and those that are

not yet ready get pushed to the next cycle.

" Work segmentation in an agile-like environment has a focus on the end-to-end experience.

The work for a feature is executed with members of the team from various disciplines to be

able to satisfy accomplish the objective. The team members divvy up the work and segment it

in ways that make sense with each other. This contrasts with a scenario where a group of

features are all transferred together from phase to phase (design, development, testing, etc) in

an assembly line-type fashion.

" A fluid set of requirements hits at the core of much of the motivation for the agile

methodology. Other methodologies were born out of the manufacturing use-case, where

products move from station to station and at the end are reviewed for quality and then

shipped. This is now how most software is built.

Table 5.3: Morphological Matrix Highlighting an Agile-like Architecture

Decision Option 1 Option 2 Option 3 Option 4 Option 5

"OTi;enBoun Feature Bound Cost Bound Fn Budgue etr

65

Decision Option 1 Option 2

Team .C.oss.Functional
toa

Organization

. n to .nd PhasedSegmentation

Requirements Set
(Scope)

Quality Recovery . Post production
(How managed) a .* .o.

Design Set ;i-gl- D ;g Multiple Designs

ProjectI
Feasibility (When Inception Post-prototype
determined)
Budget (How Full Project Ir n
managed) Funding

Unit of Work Task

Exploration Phased C

Concept
Selection Solution Seeking

Non-Solution
Seeking

The matrix shown in Table 5.4 describes a

selected based on information collected from

Royce [7] as well as the standard defined by

justification for the decisions is as follows:

Option 3 Option 4 Option 5

Ranges, with
increasing
specificity____________________

Phased

Not Done Ctu

Performance-
based Funding

Initial Not Executed

waterfall-like architecture. Options have been

the definitions of the standard by Dr Winston

the US Department of Defense 2167A [12]. The

* Waterfall milestones are generally feature bound (or task bound). When the set of tasks, or

requirements, have been delivered, the milestone is considered complete. They are not based

upon arriving at a certain date or by hitting a point in the budget.

* Because of the way the work is segmented, the teams are organized by function. Projects

proceed from analysis to design and from design to coding, from coding to testing, and so on.

This form of progression doesn't translate well to a cross-functional team.

* The processing of moving the software product from phase to phase does not lend itself well

to fluid or changing requirements either. When a change is encountered, the module, or in

some cases the entire code base, has to return to an earlier stage in the process to be reworked.

Table 5.4: Morphological Matrix Highlighting a Waterfall-like Architecture

66

Decision

Release
Organization

Option 1

Time Bound

Team
Teaizai Cross-Functional
OQrganization 4
Work

.End to EndSegmentation E

Requirements Set Fluid
(Scope)

Quality Recovery Continual
(How managed) prioritization

Design Set SigeDsg

Proj ect
Feasibility (Wher nceto
determined)

Budget (How FlPrjc
managed)

User-focused
Unit of Work

story

Exploration

Concept
Selection

Phased

Multiple Designs

Post-prototype Not Done Continuous

Incremental
Funding

Continuous

Performance-
based Funding

Not Executed

Non-Solution
Solution Seeking Seeking

The matrix shown in Table 5.5 describes the

based on information collected from Boehm's

The justification for the decisions is as follows:

spiral architecture. Options have been selected

paper introducing the spiral methodology [14].

" Spiral releases are generally feature bound. With each iteration of the cycle, there is a very

clear set of objectives that should be achieved. These gates are cleared not when a date is hit or

the budget reaches a certain amount, but when the items in the scope of the cycle are

achieved.

" The spiral methodology does not prescribe whether or not teams should be cross-functional or

functional.

" Requirements within Spiral start out as ranges but then increase in specificity with each

progressive cycle.

" Quality is recovered with each cycle in the spiral.

" Spiral methodology doesn't prescribe a unit of work or a budget management strategy.

67

Option3 Option4 Option 5

T Time, Feature,
Cost Bound Time Bound land Budget

Feature Bound Bound

Ranges, with

increasing
specificity

Phased

I Continuous

Table 5.5: Morphological Matrix Highlighting a Spiral Architecture

Decision Option 1 Option 2 Option 3 Option 4 Option 5

Release Time Bound / Time, Feature,
Time Bound FCost Bound and BudgetOrganization Feature Bound

Bound
Team

Orgaizaion Cross-Functional Functional

Work
En to En Phased

Requirements Set Fluid Fixed .nceain(Scope)

(How managed) Post production Phased

MDe Multiple Designs

Project
Feasibility (When Inception Post-prototype Not Done
determined)

Budget (How Full Project Incremental Performance-
managed) Fundin Funding based Funding

1User-focused
Unit of Work so s Task

story

Exploration Phased CnuInitial Not Executed

Concept .Non-Solution
Selection SutnSekgSeeking

The matrix shown in Table 5.6 describes the set-based architecture. Options have been selected

based on information collected from [23-24], [31-32]. The justification for the decisions is as

follows:

e Set-based development methodologies emphasize requirement sets with ranges, multiple

designs within a design set, and non-solution seeking concept selection.

Table 5.6: Morphological Matrix Highlighting a Set-Based Architecture

Decision Option 1 Option 2 IOption 3 Option 4 Option 5

Release Time Bound / Time, Feature,
Time Bound Feature Bound Cost Bound Fte oun and BudgetOrganization Feature Bound

Bound
TeamI

a ross-Functional Functional
Organization ________ ________________

Work
Segmentation End to End Phased

68

Requirements Set Fixed
(Scope)

Decision

Quality Recovery

(How managed)

Design Set

Option2 TOption 3

Post production Phased

Single Design

Project
Feasibility (When Inception
determined)
Budget (How Full Project
managed) Funding

Option 4 IOption 5

Post-prototype Not Done

Incremental
Funding

User-focused
Unit of Work Task

story

Exploration i'Phased

Concept
Selection

Solution Seeking

Performance-
based Funding

Initial Not Executed

69

6. Project Ilities

6.1. Software Product Ilities

Commonly, the concept of ilities is used to describe or characterize a system. Many times these

are closely aligned to the non-functional requirements of the system. However, the scope of these

properties goes well beyond the simple binary test of whether the system works or does not

work [19]. It's crucial to understand how the system behaves over the course of its life-cycle.

There is ordinality to these characteristics and they describe the system performance over time.

Included is a list of ilities commonly used in software products.

Intermediate metrics or heuristics can be used to quantify performance over time, such as in the

case of reliability, efficiency, and usability. Non-functional requirements are commonly defined

based on these properties and system requirements may specify the system functions within a

certain failure rate threshold, for example. Core components of the software system are

commonly tracked and the metrics can be used as part of the Service Level Agreement (SLA) of

the system.

Quality

o How well does a product consistently deliver its primary value?

Maintainability

" What level of effort is required to maintain the software code?

* What level of effort is required to maintain the system?

Reliability

* What is the confidence level that the system is able to perform its intended function(s)?

Usability

* How easy to use is the system? (Often determined through qualitative user studies, but can be

measured using certain metrics as well).

Efficiency

* How long does it take to complete certain key tasks using Fitt's, the Steering Law, or many

others not addressed here [25]?

70

Adaptability

* How well does the system adapt to changing needs of the key stakeholders or users?

Availability

" What is the Mean Time Between Failures (MTBF) for key components [26]?

" What is the system uptime?

Security

* How successfully have key components of the system been locked down and protected from

attacks?

Portability

* What is the level of effort required to port the system (or its components) to other possible

environments or use-cases?

Scalability

* How well does the system scale to account for additional usage?

Safety

" How likely could any loss occur that is deemed unacceptable to key stakeholders [26]?

" What mitigations have been put in place to reduce the possibility of experiencing failures that

put mission objectives at risk [26]?

Fault tolerance

* How effectively does the system degrade when it enters a failure mode?

Testability

* How effectively is the system tested, especially when making changes to code or how

resources function?

Clearly, not every ility is as crucial to the success of a system as another. And from situation to

situation, the relative usefulness or impact of an ility may change, given inputs of project needs.

More will be discussed further regarding how project inputs effects the focus on different ilities.

In Engineering Systems, de Weck speaks on the importance of these Life-Cycle Properties and

why they've become vital to complex systems [191. When automobiles were first invented they

were little more than horse-drawn carriages with a motor. However, as their usefulness

increased and the scope of their application expanded, the systems were expected to perform

71

additional sub-functions that were not initially part of the requirements. Initially, it was enough

that the automobile was able to transport a user from one point to another powered by a motor.

It became increasingly important, however, that the automobile could perform this function

with reliability and in a predictable amount of time. That an automobile could achieve this

without causing bodily harm to parties involved was also key [19].

For software products, the idea that focusing on ilities improves overall system effectiveness is

not a new concept. But there are many different elements that contribute to the adequate

performance in these categories. It's important to recognize the quality of the engineering team,

the budget available to the project, the state of the particular industry for which the system is

being built, and many other considerations. The architecture of the project design and project

management methodology selected is only one of these contributors, and any correlations to

performance against these ilities can, in many cases, be one or more steps removed. As such, it

is important to separate out the the impact a particular project architecture could have against

software system life-cycle properties. There needs to be a more direct correlation.

6.2. Software Project Ilities

In order to achieve a similar goal as the life-cycle properties commonly used to evaluate

performance of software systems, life-cycle properties can also be used to evaluate the

performance of the design of a software project architecture. These properties follow the same

constraints and principles as their software-product counterparts. They still have ordinality and

could have non-functional requirements and specifications that use them as a foundation.

However, they are used to describe the performance of the architecture and design of the

project, not the system the project yields. Some properties apply in both analogies. However,

some don't translate as cleanly.

Responsiveness to change

" How easily can the project accept new requirements and not disrupt execution?

" How manageable is the project plan for the manager when requirements change?

" How well can a manager see the downstream or ripple effects of a change in requirements?

* Does the architecture allow for change?

72

Team Size Scalability

* How well does the methodology adapt for larger and smaller team sizes?

Scope Size Scalability

* How well does the methodology adapt for larger and smaller scope sizes?

Complexity Scalability

9 How well does the methodology perform over a various number of scales?

Scalability

" How easily can the architecture adapt to additional team members?

" How easily can the architecture adapt to additional teams?

* How well does the architecture handle large numbers of requirements?

" How well can the architecture keep track of large number of components?

" How well does the architecture facilitate the visibility of how elements (components,

requirements, delays) impact each other?

Primary stakeholder collaboration (customer)

* How well does the architecture allow for input from primary stakeholders?

" Are there opportunities throughout for the primary stakeholders to get a good view of what is

happening and provide feedback?

* Is there a mechanism for the feedback/input provided to be worked into the system?

* Are there opportunities for the primary stakeholder to see the impact of decisions?

Ability to identify project risks

* How well the methodology helps to identify upcoming risks.

Ability to mitigate project risks

* How well the methodology helps to be able to create and deploy mitigation plans.

Ability to identify technical risks

* How well the methodology helps to identify technical risks.

Ability to mitigate technical risks

e How discoverable are risks within the architecture?

" How well does the architecture account for risks to project goals?

" How well does the architecture allow for adaptations to account for mitigations to discovered

risks?

Feasibility determination

73

o How well does the architecture allow for the appropriate determination of feasibility?

Ability to trace requirements

o How well the architecture allows for tracking the satisfactory delivery of requirements

Organizational Complexity

- What is the complexity of the organization under the prescribed architecture?

Progress trackability

o How the information flows through the teams / organization based on the project architecture?

o What is the reliability of the flow of information?

Budget visibility

o How much visibility is there into how the budget is being spent throughout the project?

Budget accuracy

o How accurate are budget estimates given the specific project architecture?

Using these ilities, different methodologies and architectures can be compared and contrasted.

74

7. Tradespaces

7.1. Mapping Architectural Decisions to Ilities

Figure 7.1 maps the previously defined architectural decisions to a list of six different life cycle

properties. The groupings of Product, Process, and Organization are retained from the previous

diagram. Architectural decisions from each of these areas are included, though the Product area

is more heavily represented. This is due to the fact that these decisions are the most impactful

on the outcome of the software product.

Each option for the architectural decision is scored against each life-cycle property, or project

ility. The reduction of the complex project as a system to its basic elements provides a way to

apply a score between a life-cycle property and a corresponding architectural property.

Representing the elements in their simplest form aims to reduce bias and avoid situational

misinterpretations, though neither of these are completely eliminated. The justifications for each

of the scores shown is provided in Appendix A of this thesis.

Process Org
Product

QNV T&S Prod Mgt T&S
Desig

Work Set Project Quality
Requirem Unit Segm + Feasibility Budget Recovery
ents Set of entati Release Conc. (When (How (How Team

Scale: 1, 2, 3, 5 8 (Scope) Work on Organization Sel Exploration determined) managed) managed) Org.

P s c_
o0 cc

CC C20 0 C CO VLL

Eas o Cuto erColabraton8 8 TO8 2 5 80 0 1 .1 9 .2) 2:31 'a 5 5 2

S2 2 3 1 5 5 L

Ab io n 2 T 'E 2 3 1 1 0 3 3 o

Software Project llities FL LLL- w o LL M i : U) i, a- o). Z 0- o Z 0 LL .E d- u Go 0- 0
Responsiveness to change ,8 1 5 52 5 1 8 8 32 1 5 35 83 1 2 3 18 1 8 5 81 2 32

Scope Scalability 1 18 33 52 5 332 25 52 32 5 85 58 15 3 225 3 28

Ease of Customer Collaboration 812 5 8 2 8 2 3 5 3 1 1 38 5 83 1 2 3 1 8 1 3 5 5 2 3 5 2
Ability to Identify Project Risk 1 5 88 55 2 23 25 82 8 3 52 12 3 15 2355 1 35 2
Ability to Meet Deadline 1 5 8 3 5 1 1 3 2 1 8 2 2 8 3 5 2 1 2 3 1 5 3 2 5 3 3 2 1 1

Abilityto Track Scope Progress 18 5 5 1 5 1 3 3 5 2 2 1 3 5 3 3 5 1 5 3 2 1 2 3 1 1

Figure 7.1: Mapping of Architectural Decisions to Life-Cycle Properties

One important note: This approach has one obvious shortfall of accounting for the relationships

between architectural decisions and how the combination of these decisions might positively or

negatively impact the project. That said, there is still value in looking at these results because

there is much to gain from the combinations of architectural decisions and their impact on

75

project ilities. The purpose here is not to create a definitive guide on which architecture reigns

supreme. Rather, this exercise offers hints and ideas on combinations not yet tried-or how these

combinations compare to others that have already been employed many times over. The

purpose is, given a project bent on a certain direction, to determine if another combination of

choices might yield a better result when a specific outcome is desired.

With the mappings and scoring generated (as shown in Figure 7.1) tradespaces are generated to

show the intersection between two project life-cycle properties. The methodologies can be

plotted to understand how architectural decisions impact the performance of the architectures

on their corresponding software projects where they are deployed.

7.2. Tradespace Comparisons: Ability to Identify Risk and Ease of Customer Collaboration

Figure 7.2 shows two important ilities: Ease of Customer Collaboration and Ability to Identify

Project Risk. In this situation, project risk refers to risk that impedes achievement of project

goals. Customer collaboration refers to the ability to receive, respond to, and incorporate

customer feedback along the way. Each point along the tradespace represents one or more

combinations of architectural decisions.

Set-Based

088 0

Waterfall 08

20 30

Spiral

0 00

80 00 0100
0 166 0

8 000 110H-l'

40 50

0

08

0 0 0
0 00 0

8 o 8r1 0o

Agile

60

Ease of Customer Collaboration

Figure 7.2: Ease of Customer Collaboration and Ability to Identify Project Risk

76

Mi

C
a)

0

65

60

55

50

45

40

35

30

25

20

70

The combination of these two ilities paints a picture of a methodology that is able to identify

risks and adapt to them. A methodology with the ability to identify risks but has no ability to

adapt to risk mitigations would not be very effective. Furthermore, this visualization attempts

to show how methodologies might perform in a situation where collaboration with a key

stakeholder is important. The x and y values are derived by summing the scores of decisions

made using the matrix in Figure 7.1, which are the scores of each selection mapped back to an

ility. In Figure 7.2, it is interesting to note where on the plot each of the methodologies lie on the

plot. Both Agile and Waterfall are highly prescriptive methodologies. As such, their

architectures are well defined and do not represent a wide number of sub-architectures (or

variations of architectural decisions) across the tradespace. Alternatively, Set-Based and Spiral

are much less-defined (or much less prescriptive) and represent a wider array of architectures,

as illustrated by their wider footprint on the chart.

As expected, Waterfall ranks relatively low in the area of Ease of Customer Collaboration. It is no

secret that many find Waterfall not responsive to change-and this representation supports that

notion. Based on the rigidity of this method, this is not a substantial surprise. In contrast, what

may be surprising is where Waterfall ranks with regard to Identifying Project Risk. Perhaps it is

not as well-known that Waterfall, as a methodology, does not perform well at identifying risks

to project goals. The fact that architectures within the spiral method rank relatively high on

Ability to Identify Project Risk is also noteworthy. Risk management is a primary focus within the

spiral methodology [14]. Its spot on the tradespace confirms these strengths. Finally, as noted

earlier in this thesis, the agile methodology puts a high emphasis on the ability to adapt to

customer feedback. This model to validates this claim.

To benefit fully from this research, it's important to follow the path backward through to

understand why a methodology scored a certain way. And, as this is an experimental model, it

is also important to ask if the results match reality. It may be reasonable to think that Waterfall

should score higher in identifying risk, for example. Perhaps the scoring of Ability to Identify

Project Risk is weighted too heavily toward those selections that allow for changes throughout

the life of the project and not enough weight on selections that allow team members to model

77

and predict pitfalls before they occur. Reviewing justifications in Appendix A offers better

understanding.

The Pareto Frontier in Figure 7.2 shows a solid black line connecting solid black dots. These are

the optimal architectures for the specific life-cycle properties plotted. This gives insight into the

ideal combinations of architectural decisions. Table 7.1 shows the selections the most optimized

architectures have in common (the architectures along the Pareto Frontier). The decisions for

Release Organization and Requirements Set (Scope) are the main differentiators of the architectures

along the Frontier and are therefore left open in Table 7.1. Following this model, the selections

made in Table 7.1 are the decisions one would make first, combined with either the selections

from Table 7.2 or Table 7.3, in order to achieve an architecture along the Pareto Frontier and

optimize for these ilities.

Table 7.1: Optimal Architectures for Ease of Customer Collaboration and Ability to Identify Project Risk

Decision Option 1 Option 2 Option 3 Option 4 Option 5

Release Time Bound
Organization

Team
Orgazation Cross-Functiona

Work

Segmentation

Requirements Set IFluid
(Scope)

Quality Recovery
(How managed) s a a

Design Set + Single Design +
Concept Select. Solution Seeking

Project
Feasibility (When Inception
determined)

Feature Bound Cost Bound Time Bound /
Feature Bound

Time, Feature,
and Budget
Bound

Functional

Phased

Ranges, with
Fixed increasing

specificity
Post production

Post-prototype

Incremental
Funding

I Task

Phased

Not Done

PtaNtrmeue

Initial Not Executed

A union of the selections from Table 7.1 and the selections from Table 7.2 form a single project

architecture. Alternatively, given differing situational inputs from a project, selections could be

78

Full Project
Fiincnc

Budget (How
managed)

Unit of Work

Exploration 'Phased

made from Table 7.3 instead. For example, an architecture selected from Table 7.2 would

include a Feature Bound Release Organization and a Fluid Requirements Set. If the selection is

coming from Table 7.3 then the Requirements Set would include requirements that are Ranges,

with increasing specificity as the project progresses and any one of three Release Organizations:

Time Bound, Feature Bound, or Cost Bound.

Table 7.2: Combinations to Optimize Ease of Stakeholder Collaboration and Ab

Decision Optio- io pion 3____

ReleaseT Time Bound e otBound
Organization iF

Requirements Se Rnewt
() Fixed increasing

M W___s ecificit

ility to Manage Project Risk

)ption 4 1Option 5

Time, Feature,
ime Bound / and Budget
eature Bound Bound

Table 7.3: Combinations to Optimize Ease of Stakeholder

Decision Option 1 Option 2

Release Time Bound Feat B
Organization

Collaboration and Ability to Manage Project Risk

Opio 3Opion 4 ption5

Time Bound/
Cost Bound

Feature Bound

Requirements Set
(Scope)

Fluid

This model suggests that the decisions from Table 7.1 will be the most performant with regards

to the ilities in question. This methodology would look like a cross between an agile

methodology and set-based.

7.3. Tradespace Comparisons: Ability to Track Scope Progress and Ability to Meet Deadline

Another set of ilities to consider are the Ability to Track Scope Progress and the Ability to Meet

Deadlines. Both of these ilities are crucial in the success of a software project. They indicate how

well a project architecture lends itself to being able to track its progress, specifically with regard

to scope. For example, agile methodologies typically favor being able to respond to change over

following a plan [13]. How does this philosophy impact a manager's ability to report on project

progress using an agile methodology? How does this philosophy impact a manager's ability to

79

meet a deadline? Figure 7.3 shows how agile-like architectures compare to other architectures

with specificity to these two properties.

45

40

0
35

0

0
0

30 0

0

0
0
0
0
0

0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

25

20

15

Waterfall

0 0 0 0 0 Spiral0 0 0 00 0 0 0

0 0 0 00 00 00 0 000 0 0 0 0 0 -o-* 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0 00 00 Set-Based

0 00 0 000 00 00 0 00 00 0
00 00 00 00 00 00 0 00 0 00 0
00 0 000 00 00 00 0 00 00 00 0

00 00 00 00 00 0 00 010 0 000000 0 0 0 0 0 0 0 0 0 0 0 0 o0 0 0 0
0 000 00 00 00 0 0 0r 0- 0 0 0E010 00 000 1

0 0 0 0 0 0 0 0 0 0 0 0 0:010 0>0 0 010 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 ot010 0 0 0 0 0 0 0 0 0
0 0 0 0 a 0 0 0 0 0 0 0 0,010 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 010 00 0Q 0 0 0 0 0 00 00 0 0 0 a 0 0 0 0 0 0 0_ 00~0_0 0~0_0000 0 ~~~~~0 0~0

0 00 00 00 00 00 00 0 000 0 00 00 00

00 00 00 00 00 00 00 00 0 00 0
0 00 00 00 00 00 0 00 0

0 0 0-a-00 000 0 0

0 Q

20 25 30 35 40 45 50

Ability to Meet Deadline

Figure 7.3: Ability to Meet Deadline and Ability to Track Scope Progress

Figure 7.3 indicates that Agile does not score particularly well in either category. Based on this

model, if hitting a specific deadline is a project priority, a set-based-like architecture may be a

better choice.

Table 7.3: Definitive Decisions to Optimize Ability to Meet Deadlines and Ability to Track Scope Progress

Decision

Release
Organization

Unit of Work

Budget (How
managed)

Option 1 Option 2 Option 3 Option 4

Time Bound Feature Bound Cost Bound

User-focused

Incremental
Funding

Option 5

Time, Feature,
and Budget
Bound

Performance-
based Funding

An analysis of the architectures along the Pareto Frontier yields results for the three decisions

shown in Table 7.3. These decisions are overwhelmingly present in the architectures that are

most optimized for meeting deadlines and tracking progress. It is these specific decisions that

80

Cn

C
0.

this model would recommend locking-in on first. Beyond these, further consideration of other

ilities should take place in order to decide which other decisions are important.

Table 7.4: Combinations of Decisions for Optimizing Ability to Meet Deadlines and Track Scope Progress

Decision Option 1 2 Option 3 Option 4 Option 5

Requirements Set
(Scope)

Qult Revr Continual
(How managed) rioritization
P[1roject
Feasibility (When InceptionPotpotye NtDn'Ctius
determined)

Organization
Work
Segmentatio

,Design Set Snl ein Mlil ein

Exploration Phased Inutial

In Table 7.4, other options that are optimal in architectures needing to deliver on a deadline and

tracking progress are highlighted.

Of the canonical methodologies, Waterfall and Set-Based may be the best choices for optimizing

for these two software project life-cycle properties.

7.4. Tradespace Comparisons: Responsiveness to Change and Scope Scalability

Using the same method as before but using a new set of life-cycle properties, the effectiveness of

the architectures can be calculated on the tradespace between Responsiveness to Change and Scope

Scalability, as shown in Figure 7.4. Unlike the previous tradespace comparison, several of the

canonical methodologies find themselves right at, or very near, the Pareto Frontier. This is

significant for several possible reasons. Fist, it could be that these two ilities are particularly

important properties to teams building software products. As such, designers of methodologies

have possibly optimized well for the ability to manage large-scale scopes for projects and the

ability to adapt to change. It's quite possible that these methodologies have grown in popularity

because they perform well on these very crucial life-cycle properties.

81

65

60

55 000

508 8: 8 8 1 0Spiral

45 8
40
0)0 U)g

4o 000

C/) 350

30

25 Set-Based I0
8 9 * 8 8o

20 00 0 0 0

20 30 40 50 60

Responsiveness to Change

Figure 7.4: Responsiveness to Change and Scope Scalability Tradespace

Through and in-depth analysis of the various methodologies and their expected performance in

the areas of different life-cycle properties, it is clear that each comes with their strengths and

weaknesses. In the outdoor sports industry, downhill skis have properties that make them ideal

for certain skiing and snow conditions. Light skis are typically better for touring. A ski with a

nice side-cut is better for carving on groomed runs. A nice wide ski is commonly used to float

on the top of powder. Each type of ski has their ideal application. Perhaps software project

methodologies are not too unlike skis. In consideration of all these different types, there is one

category that's an all-mountain ski. These skis are generally not too wide and not too skinny,

not too sharp on the cut and not too long. They perform moderately well in all conditions.

Based on the tradespace analyses performed here, perhaps the methodology that most closely

represents the all-mountain ski would be Set-Based. It tends to perform close to the Pareto

Frontier on just about every combination of life-cycle properties. This is most definitely related

to its large area on the plot. But further analysis should be done to understand if the

architectures up along the Pareto Frontier in one tradespace are the same architectures that

appear along the frontier in other tradespaces. This would be an important step to stating

definitively that Set-Based design is the all-mountain ski of software development

methodologies.

82

8. Project Situation

8.1. Project Inputs

Showing how tradespace analyses apply to real-world project examples anchors the knowledge

gained to something concrete and actionable. To do this, Table 8.1 defines three individual

project examples. Data for projects A and B comes from Lightning Kite aggregated date, 2015

[27], and data for project C comes from Clark, 2015 [29]. This data presents three actual projects

(or aggregations of groups of projects) in the private sector and US Department of Defense

(DoD). They span a range of budgets, team sizes, project length, and customer requirements.

Table 8.1: Sample Project Inputs

Project Input

Number of Team Members

Project Cost

Budget Ceiling

Length of Project

Funding Type

Deadline Importance

Possibility of Changing Requirements

Desire for Customer Input

Need for Customer Progress Reporting

Project A Project B

4 25:

$90K $720K

Soft Firm

4 Months 24 Months

Incremental Incremental

High High

High Moderate

High Modeerate

Moderate High

Project C

50

$3.8M

Firm

38 Months

Full Project

High

Low

Low

High

Other cases may require additional project inputs. In this particular example, the project inputs

were selected because of their obvious links to the project ilities which were highlighted in

previous chapters. These inputs represent situational attributes for software projects and

identify project needs and priorities. If, in the future, a project requires a different set of ilities

mapped to architectural decisions and plotted on tradespaces, a different set of project inputs

would likely be desired. As follow-on work, perhaps a more comprehensive list of project

inputs could also be selected along with a wider range of ilities.

83

With the stage of the project architecture models and project inputs now set, rankings are

applied to development methodologies based on their fit to individual projects.

8.2. Project Fit to Canonical Architecture: Project A

Project A is a small, mobile application for a new startup venture targeting a single mobile

operating system. There is also service work which will allow the mobile application to read

and write information via an API. The team is made up of three software engineers and one

interface designer. Team members will be performing their own quality testing, validation

testing, and interface mockups. Two engineers will be focusing on the mobile application

development while the other engineer will be doing the server application code and API

development. Because the development project is for a startup company, the requirements are

highly volatile and almost certain to change. Also, as part of a startup company, the customer is

highly involved and has a strong vision for the problems they want to solve for their eventual

customers, and it is not absolutely certain what the final product will look like. The budget has

been clearly agreed upon at $90,000 based on the estimates provided by the team and the funds

will be dispersed monthly. However, the client is willing to spend more if certain parts of the

system become increasingly complex, so the budget is not entirely fixed. The most important

aspect of the application development is that it meets the needs of the end customer, and

therefore a focus on the feature set is crucial. In addition, time is of the essence. Both parties

discuss a 16 week timeline, but no firm due date has been agreed upon.

Which project architecture is best for this particular project situation? Which of the canonical

methods is the best fit?

The first place to begin is to identify any of the architectural decisions that have been decided

based on the project inputs as they are provided. For the purposes of this research, the inputs

are considered non-negotiable. However, in a real-world scenario, there are many situations

where inputs could be negotiated when justification calls for it. This particular requirement-set

will be fluid and, based on the size, the team will be cross-functional. Funds will be available on

an incremental basis. The release organization is considered to be time-bound since there is a

firm deadline.

84

65

60 ~~
Project A inputs

Waterfall
0

88 08 1

8 S
08~

Se-Bse

20 30 40

00

50

Responsiveness to Change

Spiral

E..0 0 0
- - - - - -- - - - --------------- 8-

~a~d

Waefl 0 8 8
20

Ic ~ Ii8II~00

30 40

Project A inputs
50

Ease of Customer Collaboration

45

Project

40

0

35
0

0
0

30 0

25

Waterfall

nputs 0 000 Spiral
N n 0 0 000 00 00

pt]0 0 0 00 00000 0 00

0 0 0 000 00 Set-Based0 0 0 0000U0 000000 0 00

0 0 000 0 0 00 00 0000 0000

0 000 000 00 0 00 0 00 0 0 0 000- I

0 00 0000000 0 #0 0 0 0 0- 0 0 0 0 0 0 0
0 0 00000000 0 0i0 0 0 0 010 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 Or0 0
00 0 0 0 0 0 0 0 o

0 0 0 0 0 0 0 0 0 0 0 0 0 0:0:0 0 0 0 010 0 0 0 0 0 0 10
o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0!0 0 0 0 0 0 0 1

000000000 0 000 000000 0 0

o o o00 o o o o o o o 5 (-6 -0 -0 o o o o o o o o o

0 o o o o00 o o o o0 o o o o o
S

0 0 0000000 0 0
00 0 0 0000 00 00 00 000 00

00000 0 0 0 00 0 0 0
0 0 0 -0- 0 0 0 0 0 0

20 25 30 [gile 35 40 45

Ability to Meet Deadline

Figure 8.1: Project A Inputs over Iliity Tradespaces

85

!$1 08 1 0-[lk J- y
U-0

0

0

00

55 8

45

40

35

CO

C-)

CL,
0
0

U)-

30

25

20

65

60

55

50

45

40

35

30

25

20

CD

_0
0

Z~

0

60 70

CLC

0
0
U)

ca
0

20

15 50

0 0

60

~- ~~~~~~~~~~

Table 8.2: Project A: Architectural Decisions Made Based on Project Inputs

Decision

Release
Organization

Team
Organization
Work
Segmentation

Requirements Set
(Scope)

Quality Recovery
(How managed)

End to End

Continual
prioritization

Option 2 -Option 3 [Option 4 lOption 5

Time, Feature,
Feature Bound Cost Bound Time Bound / and Budget

Feature Bound Bound

Functional

Phased

Ranges, with
Fixed increasing

specificity

Post production Phased

Multiple DesignsDesign Set + Single Design + +uNil sign
Concept Select. Solution Seeking Seekn

Project
Feasibility (When Inception Post-prototype Not Done Continuous
determined) I
Budget (How Full Project - - Performance-
managed) Funding Fu -,gbased Funding

Unit of Work UsrfI ue Task
story

Exploration Phased Continuous Initial Not Executed

Figure 8.1 shows the inputs for Project A overlaid on the tradespaces for the six ilities reviewed

in this thesis. Project architectures in the bounding box are the architectures that fit the needs

outlined by this specific project's inputs. Since, in all three tradespaces, Waterfall falls outside

the bounding box, this would not be a great fit for this particular project. Alternatively, Agile is

within all three of the bounding boxes, as are Set-Based and Spiral. However, this visualization

only shows part of the picture. The visualizations are based on the architectural decisions

defined in Table 8.2. But not all of this project's inputs map directly to an architectural decision.

For example, what do the project inputs say about the importance of each ility? Perhaps an

architecture that satisfies the needs of these prioritized ilities would be best.

Given the inputs from Project A, ease for collaboration with customer is clearly a high priority.

Additionally, the project architecture's capacity to adapt to change and meet a deadline are also

important based on the expectation of changing needs and a firm deadline. The ability to track

scope progress and identify project risks are of moderate importance. These are not crucial

86

because the scope is expected to fluctuate. Also, the complexity is low so that risks can be

managed by the team without needing an architecture with this particular focus. And finally,

since the size of the scope is not particularly large, scope scalability is less important.

On the first of the three charts shown in Figure 8.1, project architectures with higher values for

Responsiveness to Change are better choices for Project A. On the second of the three charts,

architectures that maximize values for Ease of Customer Collaboration are ideal. And on the final

of the three charts, architectures that optimize values of Ability to Meet Deadline represent

architectures with the best fit.

To summarize, there appear to be architectures that would be good choices within Agile, Set-

Based, and Spiral for Project A. However, Waterfall does not represent a good architecture fit. A

deeper analysis of additional project inputs and a narrowing of the specific architectures within

Set-Based and Spiral could further narrow the selections and arrive at an optimal architecture

for executing Project A.

Additionally, there are other architectures with good project fit exist that are not within the

canonical methodologies. In fact, it's quite likely that the optimal architecture for Project A is not

one of the four canonical methodologies reviewed in this research.

8.3. Project Fit to Canonical Architecture: Project B

The needs for Project B are different than they were for Project A. Project B is more complex, has a

larger scope, and a greater number of team members. The customer is a global technology

corporation. The scope of Project B involves building a multi-platform software application with

mobile applications and a web client. Project B also requires the development of a system to

replace an existing, aging system that has become difficult to maintain and is built on outdated

technologies. This is the first time mobile applications have been used in this system and

context. While the majority of the functions will remain the same, there will be a number of new

experimental technologies to be developed. The team allocation in Project B is segmented as

follows: Android Development Team, iOS Development Team, Web Client Development Team,

User Experience and Interface Design Team, Services Development Team, Quality Assurance

87

40

Responsiveness to Change

0

88o
08o

0 06 0

0 8
Waterfall 0

20

gC I

n^Rt-Based 00:o 8

0I 108 828
* 80

8~ o Agile

0 o Spiral

30 40 50 60

Ease of Customer Collaboration

0
0

0
0
0
0
0
0
0
0
0

0.O

00 0-0 0 l 0 0 0

0 0 00 0
0 0 0

0 0
0

Project B inputs

20

0
0
0
0
0

25

0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0

Spira

o o o 0 o -o--O-
0 010 0 0 0 0

0 0 10 0 0 0 0
0 001 00 0

30 3

0
-0
0
0
0
0

Set-Based

0

0
0

0

1

0
0

0
0

1
0 0 0 0 0 0 01
0 0 0 0 0 0 010
0 0 0 0 0 0 010 0o0 0 000 0 o 0

-00 0000000 -- -
.0 00 Z)0-0(OT0 0 0

0 0 00 0
0 0 00 0
0 0 0

0 0

40 45

Ability to Meet Deadline

Figure 8.2: Project B Inputs over Ility Tradespaces

88

65

60 0

8
55 8

0

50

45

40

35

0
CO)
I)CL
0
U

U)i

0

0 8

888
8 8 00

08

Oi-Bsl

30

25

20

20 30

B inputs

-- ----------

10

0I

0 0 1 IT

6050

_0

~0

65

60

55

50

45

40

35

30

25

20

45

40

70

01

0

a
0

10

0

0
0
0
0
0

0
0
0

0
0
0
0
0
0
0
0
0
0

0
35

0

0
0

30 0

25

20

0 0 0 0 0j--0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0 09

0 0 00 0 00 0 0 00 00 00 00 00 0 0 000 00 00
00 0 000

00 00 0000
00

00 00

00 0 00 00 00 00 0 00 0 0 00

000000000010 00 0 00

0 0 0 0 0 0 0 0 0 o o o o 00
0 0 0 0 0 0 0 0 0 0 0 0:.010 0 0 0; 0
0 00 00 00 00 000

0 0 0 0 0
0

0 00 0 0 0 0 0 o 0 0 o 0 0 o y6-o--

15 50

Spra

0

3 11 P roject B inputs!

Engineers, and Operations Engineers. Many of the team members may not be dedicated to this

project full time but will contribute to the project as needed and as availability and priority

allow.

B: Architectural Decisions Made Based on Project Inputs

Option 1 Option 2 Option 3

Time Bound Feature Bound Cost Bound

Team
Organization Cross-Functional

Work
Segmentation End to End

Requirements Set Fluid
(Scope)

Quality Recovery Continual
(How managed) prioritization

Phased

Post production

Ranges, with
increasing

specificity

Phased

Option 4io

Time Bound
Feature Bound -

-t ______________________________________ ______________________________________

Design Set + Single Design + Multiple Designs

Concept Select. Solution Seeking + Non Solution

Preejeng

Feasibility (When Inception Post-prototype Not Done Continuous
determined)
Budget (How Ful - Incremental Performance-
managed) Fing Funding based Funding

Unit of Work User-focused Task
story

lExploration Phased Continuous Initial Not Executed

Table 8.3 shows architectural decisions based on situational project inputs from Project B. The

project goes against the iron triangle shown in Figure 5.4 of chapter 5. While many in industry

recommend against this approach, it is a reality for many projects working on fixed budgets,

within a fixed time frame, and with a fixed scope. The results of the architectural decisions from

Table 8.3 are again overlaid on the ility tradespaces (as illustrated in Figure 8.2).

For Project B, Agile does not make a good fit. Spiral and Set-Based both appear to have the

greatest number of architectures that align with Project B's needs. Waterfall's architecture also

does not appear to present a great fit for Project B's situation. To increase confidence, the set of

architectures can be reduced for Set-Based and Spiral through continued follow-on work. But at

this point, they are the only two canonical methods that appear to be viable options.

89

Table 8.3: Project

Decision

Release

Organization

8.4. Project Fit to Canonical Architecture: Project C

Project C is an engineering software system for a US Department of Defense development

contract. The project is being kicked off after a prototype was created to explore options and

determine feasibility. Their requirements are set and unlikely to change substantially. However,

they may need to be reworked as new information comes throughout development. There is a

firm budget based on an analysis from a research team before the project began, but after the

prototype was developed. The organization is extremely risk averse and needs a project

architecture that can adequately identify project risks. Table 8.4 shows the architectural

decisions derived from project inputs. The teams have historically been organized functionally,

but they're willing to reorganize teams if it will help guarantee the success of the project.

Table 8.4: Project C: Architectural Decisions Made Based on Project Inputs

Decision Option 1 Option 2 Option 3 Option 4

ReleaseTime Bound Feature Bound Cost Bound Tm on
Organization I Feature Bound

Team
Organization Cross-Functional Functional

Work End to End Phased

Requirements Set Fluid easinw
(Scope) ific

Quality Recovery Continual
(How managed) prioritization

Design Set + Single Design + Multiple Designs

Concept Select. Solution Seeking + No Solution

Project
Feasibility (When j Inception . . . s - Not Done Continuous
determined)
Budget (How F P Incremental Performance-
managed) Funding based Funding

Unit of Work Userfocused Task
S1story________ __ _ _ _ _ _ _

Exploration Phased Continuous Initial Not Executed

Using the architectural decisions from Table 8.4, the overlay is created with the project ilities

and displayed in Figure 8.3. Again, these overlays only represent an initial set of possible

architectures based on earlier decisions, due to the project inputs. Further refinement takes place

within the boundaries of the decision scope. Inputs from Project C should be used to create the

90

I

65

60

20 30

F1771Waterfall

00,
0

0009

888
88

0

S- e

Se-ae

Responsiveness to Change

088

Waterfall 0

20

0 00------ -0 " 8-84.
00 8 8 00 0 8~10 08 0

8 Ti,I o o 0o o 0 o 00 r S

08: O 8ojjj~l8 :0 Agile
Spiral

0 8 Project C inputs

30 40 50 60

Ease of Customer Collaboration

Wataerfall
000

Project C inputs 0 0

400
40 0 0

0 00 0 0
0 0 0 00

35 0 0 0 0 0 0 0

0 0 0 0 0 0 0
o o 0 0 0 0 0

30 0 0 0 0 0 0 0 0

25 0 0 0 0 0

0

0
0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0
0

0

20

15 20

0
0
0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0
0
0

0

25

0 0
o 0 00 0 0 0 0 0 0 Set-Based

0 r 0 00 0 0 0 0 0 0 01
0 0 00 0 0 0 0 0 000000000

0 0 0 0 0 0 0 0 0 0 0 0 0 o
0 000000000 0 0

0 00 0 0 0 0

rd - - - - -0-610 o o o o I

:o 0 1o o o o 0

0 000 0 0 0

0 40 45

Ability to Meet Deadline

Figure 8.3: Project C Inputs over Ility Tradespaces

91

0 Project C inputs

0 1 0 f pia

8 go

88

000

00 8 o J

40 50 60 Agil

55

50

45

40

35

CO,
0
ci)

0
0

30

25

20

.(D

0

65

60

55

50

45

40

35

30

25

20

45

70

CYi

CL)
0)
0

ci)

0
CO)

0

0 0 _0- 0 0 0
0 0 101 0 0 0
0 0 000 0
0 00 00 0
0 00 0 00
0 0 000 0
0 00 00 0
0 00 00 0
0 00 00 0

50

0

further refinement which could allow for selection of a specific methodology, but these are only

sample projects. In a real-world example, specific project inputs would further define the needs

of the project, ultimately identifying the ideal architecture.

Based on the current set of decisions, it is apparent that Agile is ill-fitted to Project C. Neither

Spiral nor Waterfall are great choices either. The only methodology suited to serve the needs of

Project C across all the ilities is Set-Based. While this is promising, additional work is necessary

to identify which project architectures within Set-Based should be considered and if they are the

same project architectures from tradespace to tradespace. This is a crucial piece of the puzzle for

identifying the ideal project architecture.

One substantial take away, aside from all three projects (aside from simply recognizing how the

canonical methodologies fit with each project) is that many other possible architectures exist

and should investigated. Project managers and other leaders often limit their scope to only the

documented methodologies. However, using a systematic approach, other project architectures

can be discovered and employed to help increase the probability of successful outcomes for

software projects.

92

9. Conclusion

9.1. Learnings

In summary, there are a number of key takeaways from this research: insights resulting from

treating a project as a socio-technical system and reducing it to its basic elements; a new

vocabulary to describe and detect methodologies; the concept of life-cycle properties for project

architectures; observations from comparing commonly used methodologies and their impact on

project ilities; evaluation of architectural decisions and their impact on performance of project

architectures in different life-cycle properties; and the possibility of new combinations of

architectural decisions forming additional methodologies.

First, when the concept of a software project is thought of as a socio-technical system, it can be

decomposed to its basic elements intuitively. Within this research, these basic elements are

manifested as the design and architectural decisions that occur when designing a project. This

research provides a decomposition of what those decisions are. Too often, managers and other

team members make decisions in projects without recognizing they are doing so. As such, a

decision made early on may inadvertently result in lock-in on other decisions that follow. This is

avoidable, however. Recognizing, for example, that a relationship exists between determining

feature feasibility and whether a team is organized as cross-functional or functional gives

insight to leaders and aids in understanding the trickle-down effects of their decisions. This

empowers project leaders to make decisions deliberately and avoid situations where a manager

finds out, too late in the project, that they have limited options because of a seemingly

inconsequential decision made at the outset. With the decomposition created here, those

involved with software projects can have better understanding as to what decisions exist and

what their impact is on project performance.

Using the elements of the decomposed project architecture, a vocabulary is established to

describe and differentiate one software methodology from another. Agile methodologies can be

described using the combination of architectural decisions that make them agile. Waterfall

methodology can be described using the combination of decisions that make it waterfall. And

93

new methodologies can be described using the combination of decisions that give them a

unique architecture. Why is this important? One of the difficulties with comparing

methodologies is that they each have a different way of accomplishing similar objectives. Agile

uses user stories while Waterfall uses tasks. One is highly prescriptive while another leaves

more interpretation to the managers. Comparisons often feel a bit contrived because the

methodologies aren't actually comparable. However, by describing them using a common

vocabulary of architectural decisions, it's a bit like converting them all to the same currency; it's

finding a common denominator. By doing this, the door opens to be able to compare them in the

same terms.

Another area that benefits from a new classification system is in life-cycle properties. Life-cycle

properties, or ilities as they're commonly referred, have been used for many years to describe

software systems. The properties quantify performance and effectiveness of the system.

However, there's never been a great way to refer to the performance of project architectures-or

software methodologies. This research proposes a list of possible life-cycle properties that can be

applied to project architectures, or software development methodologies. Using these terms, a

classification and evaluation of project architectures takes place. Managers and team members

would be better able to select the methodology that best fits their specific situation and

priorities.

With decomposition to basic architectural decisions, life-cycle properties are mapped and scored

while minimizing the influence of biases. In addition, the number of questions insulates the

experiment from the influence any single decision has.

Calling back to the original hypothesis of this thesis, there are many different project

architectures to still be employed and tested. Instead of just a single possible methodology that

showed promise or value in being further understood, many new project architectures emerged.

In many cases, they exhibit only incremental differences from other methodologies, however,

others could combine architectural decisions in ways not yet tried.

94

For software engineers and project managers, the conversation regarding which specific

methodology to use on given project usually stays within agile and waterfall families. However,

Spiral and Set-Based both show great promise. Across ilities, architectures that fit the spiral or

set-based classification consistently showed on or near the Pareto Frontier. In addition, both

methodologies typically showed up in the middle of the Frontier. This indicates that there was a

good mix between the two ilities. This could change as the methodologies are refined since

currently both of these architectures are represented as ranges, rather than being highly specific

like Agile or Waterfall. Additional research in this area could answer these questions.

There is another unexpected concept discovered in the research. Traditionally, it is assumed that

there is a one-to-one relationship between a project and a project architecture. However,

different architectures could be applied to different segments, phases, or sections of a project. Or

different methodologies could be applied at different zoom-levels of a project. For example, Set-

Based design seems like a good candidate for being applied at a macro level. It provides ways to

protect against risks and it helps explore different ways to deliver needs to customers and meet

deadlines. However, it does not prescribe work execution in many of the product-related

architectural decisions. Conversely, agile-related methodologies could be applied very well at

the micro level. The two methodologies could complement each other if used on the same

project.

9.2 Shortcomings of the Model

While there is value in the approach taken here project architecture and ility mapping model, it

is also important to understand the shortcomings of the model. The life-cycle to ility mappings

are qualitative and could contain embedded biases and/or misinterpretations, the impact of

multiple decisions in concert is not expressly modeled and therefore not well understood, and

there is not currently a great way to track more than two ilities on the same graph. The results of

this research are also extremely difficult to validate.

With regards to possibility for embedded biases: This research ventures to be transparent with

respect to where decisions were made that may reflect the author's past experience. The section

of the research with the greatest risk of being influenced by external factors is in the

95

architectural decision to ility mapping. Experts in the field have been engaged for review, but

this only reduces, not eliminates, the possibility for bias. A list of justifications for each

architectural decision to ility score has been included in Appendix A of this thesis for

transparency into the reasoning behind each score.

Another limitation of this research approach as executed in the model is that it does not capture

how architectural decisions might work together (or against each other) when combined. The

approach does not venture to model these certain physical laws or otherwise that result from

the combination of multiple decisions. For example, it's not impossible to imagine that a

combination of decisions exists, perhaps using Work Segmentation, Team Organization, and

Quality Recovery, where together they have greater impact on the project than just by summing

their ility scores. It is also plausible that another combination of options of the same decisions

work to counteract each other in a way that's not represented by summing their scores. This

seems to be a real world example of the quote by Aristotle: "The whole is greater than the sum

of its parts [30]." This phenomenon is not captured by the model in this research.

The model uses tradespace analysis to show the expected top performing architectures across a

set of two life-cycle properties. This makes for quick interpretation, but in most situations,

project designers consider more than two life-cycle properties in their projects. Therefore, a

method that only considers an intersection of two properties does not paint a complete picture

and the onus is on the individual consuming the data to put together the pieces of the puzzle.

This could lead to missing important pieces of information or not finding optimal scenarios.

There needs to be some way to validate the findings of this research. One problem is that simply

looking at the successful results of projects where certain architectural decisions were made

could be misleading. In a certain set of cases, very effective leaders and team members could

still have favorable outcomes, even if the methodology selected for their software project is not

the best possible fit, given the impact of other variables. In other situations, less effective leaders

and team members could have unfavorable outcomes even if the methodology selected for their

project is the best fit, also due to variables outside the scope of the project architecture. In an

ideal scenario, an experiment could create a set of conditions where project inputs remain

96

constant across multiple projects, including personnel and project complexity and size, allowing

the testing of different project architectures. This would give more insight. However, most

projects, especially complex and those with large scale, take time to execute. Teams are also

unlikely to experiment on projects with a large budget given the possible risks.

9.3 Future Work

Through this research, other thoughts, ideas, concepts, and questions emerged. Some of these

would require future research and are contained here.

A number of the sources reviewed and considered in this research looked at other industries to

understand the approaches they might try in the software industry. Researchers looked at

medicine, education, and others [2]. This gave useful insight into the types of complexities other

industries face and how they overcome them (or not overcome them, in many cases). It is

possible that some of the approaches taken in this research could be applied to other industries.

As previously mentioned, one of the difficulties of the approach used in this thesis is the

possibility of bias in the architectural decision to life-cycle property scoring. How could the

research be insulated from this bias? One obvious way is to engage a wider range of experts to

provide additional insight into the scoring of these properties. By leveraging the wisdom of

these experts on a series of very specific options, the impact of bias could be minimized.

Another way to increase the integrity of the results would be to replace some of the ilities

tracked by qualitative metrics to use quantitative metrics, such as the Oli de Weck's work to

compute system complexity described in [19].

Other work could include:

" Tagging architectures in tradespace analyses of ilities that showed up on the Pareto Frontier

for a prior set of ilities. This would allow architecture performance to be shown across graphs

in a clear way.

" Updating the model to be n-dimensional with respect to mapping to ilities, potentially giving

insight into clusters of architectures that are optimized for groups of ilities. Project inputs

97

could then be used as input into this model and could yield recommendations regarding the

ideal architectures.

* Researching a way to model relationships between architectural decisions and the impact they

have on project life-cycle properties. This could give a more complete picture of the expected

results of different project architectures.

* Conducting more in depth analysis of the sensitivity of project architectures to specific

architectural decisions.

* Testing of newly discovered project architectures in real-world settings to see how the teams

perform and what additional insights can be gained from this process.

* Automating the tools and processes used in this research to highlight and cluster the most

impactful architectural decisions on the performance on certain ilities.

98

10. References

[1] 0. L. de Weck, "When is Complex Too Complex," at Conference on Systems Thinking for

Contemporary Challenges, MIT, Cambridge, MA, Nov. 7, 2016. Available: https: / /

www.youtube.com / watch?v=jvQkmR1XcyY

[2] B. Kitchenham et al., "DESMET: A method for evaluating software engineering methods

and tools," in Computing & Control Engineering Journal, vol. 8, no. 3, pp. 120-126, Jun. 1997.

[3] K. Inada, "Analysis of Japanese Software Business," M.S. thesis, System Design and

Management Program, MIT, Cambridge, MA, 2010.

[4] T. Mitsuyuki et al., "Evaluation of Project Architecture Mixing Waterfall and Agile by Using

Process Simulation in Software Systems Project," in Journal of Industrial Integration and

Management, vol. 2, no. 2, June 2017.

[5] A. M. Davis et al., "A Strategy for Comparing Alternative Software Development Life Cycle

Models," in IEEE Trans. Softw. Eng., vol. 14, no. 10, pp. 1453-1461, Oct. 1988.

[6] R. Sorenson, "A Comparison of Software Development Methodologies," for Softw.

Technology Support Center, United States Air Force, Hill AF Base, Ogden, Utah, 1995.

Available: http: / / www.stsc.hill.af.mil /crosstalk /1995/01 / Comparis.asp

[7] W. W. Royce, "Managing the Development of Large Software Systems," in Proc., IEEE

WESCON, Aug. 1970, pp. 1-9.

[8] E. M. Simso, "Comparison of Software Development Methodologies based on the

SWEBOK," Ph.D. dissertation, Dept. of Informatics, Universidade do Minho, Braga,

Portugal, 2011.

[9] "Guide to the Software Engineering Body of Knowledge," IEEE Computer Society, P.

Bourque and R. E. Fairley, Eds., 2014.

[10] R. Shaydulin and J. Sybrandt, "To Agile, or not to Agile: A Comparison of Software

Development Methodologies," Available: https: / /arxiv.org / abs /1704.07469, 2017.

[11] N. M. A. Munassar and A. Govardhan, "A Comparison Between Five Models Of Software

Engineering," in International Journal of Computer Science, vol. 7, no. 5, pp. 94-101, Sep. 2010.

[12] Military Standard: Defense System Software Development, 2167A, Feb. 1988.

99

[13] K. Beck et al. (2001). Manifestofor Agile Software Development [Online]. Available: http:/ /

agilemanifesto.org

[14] B. W. Boehm, "A Spiral Model of Software Development and Enhancement," in Computer,

vol. 21, no. 5, pp. 61-72, May 1988.

[15] D. K. Sobek II et al., "Toyota's Principles of Set-Based Concurrent Engineering," MIT Sloan

Manage. Reviezw, Winter 1999, Jan. 1999 [Online]. Available: https: / /sloanreview.mit.edu/

article / toyotas-principles-of-setbased-concurrent-engineering /

[16] R. Ammar et al., "Architectural design of complex systems using set-based concurrent

engineering," in 2017 IEEE International Symp. on Systems Engineering (ISSE), Vienna,

Austria, 2017, pp. 1-7.

[17] Set-Based Design (Apr. 11, 2018) [Online]. Available: https:/ /

www.scaledagileframework.com /set-based-design /

[18] E. Crawley et al., System Architecture: Strategy and Product Development for Complex Systems,

Hoboken, NJ: Pearson Higher Education, 2016, pp. 197-200.

[19] 0. L. de Weck et al., Engineering Systems, Cambridge, MA: MIT Press, 2011, pp. 65-96.

[20] B. R. Moser and R. T. Wood, "Complex Engineering Programs as Sociotechnical Systems,"

in Concurrent Engineering in the 21st Century: Foundations, Developments, and Challenges, J.

Stjepandic et al., Eds. Cham, Switzerland: Springer, 2015, pp. 51-65.

[21] "Ubuntu version history," in Wikipedia (May 9, 2019) [Online]. Available: https:/ /

en.wikipedia.org/wiki/Ubuntu-version-history

[22] "Mission statement," Blizzard Entertainment [Online]. Available: http: / /us.blizzard.com/

en-us / company / about / mission.html

[23] S. Hannapel and N. Vlahopoulos, "Implementation of set-based design in multidisciplinary

design optimization," in Structural and Multidisciplinary Optimization, vol. 50, no. 1, pp.

101-112, Feb. 2014.

[24] S. Hannapel et al., "Including Principles of Set-Based Design in Multidisciplinary Design

Optimization," in 12th AIAA Aviation Technology, Integration, and Operations (ATIO)

Conference, Indianapolis, IN, Sept. 2012, pp. 1-13.

[25] R. Miller et al., "Reading 10: More Efficiency," in MIT User Interface Design & Implementation

[Online]. Available: http: / / web.mit.edu /6.813 / www / sp18 / classes / 10-more-efficiency /

100

[26] J. Thomas, STAMP/STPA Lecture at MIT for System Design and Management Program,

Spring, 2017.

[27] Lightning Kite, aggregated data from sampling of projects, Jul. 2015.

[28] List of software development philosophies (Jan. 6, 2018) [Online]. Available: https: / /

en.wikipedia.org /wiki /Listof-softwaredevelopment-philosophies

[29] B. Clark et al., "DoD Software Factbook," CMU, Pittsburgh, PA, 2015.

[30] "Aristotle," in Wikipedia (April 21, 2018) [Online]. Available: https:/ /en.wikiquote.org/

wiki / Aristotle

[31] A. W. Gray, "Enhancement of Set-Based Design Practices Via Introduction of Uncertainty

Through the Use of Interval Type-2 Modeling and General Type-2 Fuzzy Logic Agent Based

Methods," Ph.D. dissertation, Naval Arch. and Marine Eng., Univ. of Michigan, Ann Arbor,

MI, 2011.

[32] D. Raudberget, "Pratical Applications of Set-Based Concurrent Engineering in Industry," in

Journal of Mechanical Engineering, vol. 56, no. 11, pp. 685-695, 2010.

[33] D. Raudberget, "The Decision Process in Set-Based Concurrent Engineering- An Industrial

Case Study," in International Design Conference - Design 2010, Dubrovnik, Croatia, 2010, pp.

937-946.

101

Appendix A: Justifications for Architectural Decision to Ility Scores

The following tables attempt to provide the justification for the scores for each architectural

decision to ility mapping. This is intended to give insight into why the scores show up the way

they do. Ideally, this can give insight into why a given project architecture could look different

than expected based on a certain ility.

Ility Justifications: Responsiveness to Change

Decisions Options Score Justification

Fluid 8 Fluid requirements allow teams to adjust respond to change.

Requirements
Set e Fixed 1 Fixed requirements make it very difficult to respond to change.

(Scope) Having ranges that define over time allow for responding to change, but
mcngecifici 5 may not be entirely open-ended, not allowing complete responsiveness to
m ic specificity Ihne 1change.

User story 5 Easier to see what needs to be changed based on what's being delivered.
Unit of Work

Task 2 More difficult to update sometimes non-obvious tasks that result from

upstream change.

End to End 5 Straightforward to change. Better encapsulation of functionality.
Work
Segmentation Phased Work spread across multiple phases makes change later in process more

difficult.

If a delivery needs to happen by a certain date and a change is made, then
Time Bound 8 whatever is not ready by the date simply doesn't ship. This makes for

adapting to change very straightforward.

Feature 8 If a project is feature bound, then when the feature set is ready the product
Bound can ship. If there are changes to scope, this is also straightforward.

If a budget is given and a team is directed to go as far as they can on the
Release budget provided, there is still a good amount of flexibility. However,
Organization Cost Bound 3 because cost is a direct result of the work being executed (and therefore

one level abstracted from the feature set) it can be less clear what the

.mpcts of change will be on cost.

Time! Feature
Bound 2 With two constraints to manage, a project is less able to adapt.

Time/Feat / Working with all three constraints of the iron triangle fixed is difficult to
Cost Bound manage on its own. Introducing change makes this even more difficult.

SD + Solution Working with only one solution makes this more adaptible in the event of

Design Set + Seeking !changes.

MD + Non-SS
When changes come in, each of the designs in the set have to absorb the

3 change. However, it is possible that one of the designs already accounts
for the change.

5 Exploration happens in each of the phases of the project: design, coding,
testing, etc. This provides more opportunities for exploration to take place.

102

Concept
Selection

Phased

Continuous

Initial

Not Executed

Inception

Post-
prototype

Not Done

Continuous

Full Project
Funding

Incremental
Funding

Perf-based
Funding

Continual
prioritization

Post
production

Phased

Cross-
Team Functional

Functional

Decisions Options

1 Applying rework at the end of production.

2 Responsive to change at set points in the process.

Cross-functional teams are better able to quickly identify impacts of
changes due to wide range of perspectives of team members.

2 Certain changes could be handled.

Ility Justifications: Scope Scalability

Decisions Options

Fluid

Requirements
Set
(Scope)

Fixed

Ranges, w /
inc specificity

User story

Unit of Work

Task

Score Justification

Fluid requirement sets make scaling up to large teams and large projects
difficult because there are more things to manage.

A fixed set of requirements reduces variability and therefore scales with
less effort.

While not entirely fixed, with set ranges the scope of what can change is
reduced and therefore is able to scale moderately well.

Distributed volunteering for tasks could be more scalable, but harder to
3

manage at large scale as well.

Could be better at scale because of centralized control, but harder for
5.single body to understand the entire system.

103

Exploration

Project
Feasibility
(When
determined)

Budget
(How
managed)

Quality
Recovery
(How
managed)

Organization

I
Score Justification

Exploration happening continually throughout a project, for example, in
8 each interval if used in an architecture that supports this.

3 Expoloration done only at the beginning of the project, perhaps a
prototype.

1 No specific exploration done.

2 Feasibility study conducted at the outset of the project.

3 Feasibility determined after first creating a prototype.

1 No feasibility study conducted.

Feasbility conducted throughout the project, perhaps at each interval if
81 project architecture supports this.

If project is fully funded with a fixed budget set at the beginning, it's much
harder to adapt each time a change comes in.

If funding is allocated periodically or at increments throughout the
project, adapting to change is not bound by a fixed budget.

5 Responsive to change based on performance. Ability to change funding to
meet progress.

8 Continually prioritizing rework allows for changes to be worked into
project work.

Decisions Options Score justification

Work
Segmentation

Release
Organization

Design Set +
Concept
Selection

Exploration

Project
Feasibility
(When
determined)

Budget
(How
managed)

End to End

Phased

Time Bound

Feature
Bound

Cost Bound

Time/ Feature
Bound

Does not scale extremely well due to intricate dependency webs of cross-
2 1 functional individuals working on the same parts of the system for the

end-to-end feature.

Phased approaches scale because teams can focus on a set of tasks for a
5 project and then send them off to the next phase! team when they're

completed, reducing the amount of context switching.

3 Only a single variable constraint to manage, reduces complexity.

3 Only a single variable constraint to manage, reduces complexity.

As a derived value, this can be difficult to track as it's commonly learned
2 after the development has taken place.

2 Trackable variables to manage, but two dimensions add complexity.

Time /Feat/ While this approach may pose risks in other areas, it does scale since it
Cost Bound attempts to limit variablitiy in all areas.

SD + Solution
Seeking 5 Maintining a single design is easier to scale than maintaining multiple.

MD + Non-SS 2 Given a large scope, maintaining multiple designs could be a lot more to
manage.

Phasing the exploration work introduces some opposition to a scope
Phased 3 under scale as it introduces work at various times throughout the

project.A

Executing continuous exploration work introduces opposition to a scope
Continuous 2 under scale as it introduces work continuously throughout the project.

Initial 5Executing only initial exploration work scales as it contains all of the
exploration work into a single segment.

Not executing any exploration work scales as it does not add to scope,
Not Executed 8 regardless of size.

Product feasibility determination executed at inception confines the
Inception 5 feasibility work to a specific segment of the project, not adding substantial

work to the scope and scales well.

s Product feasibility determination executed after a prototype confines the
Prot-5 feasibility work to a specific segment of the project, not adding substantial
prototype wrwork to the scope and scales well.

Not Done 8 No product feasibility determination executed at all does not add work to
the scope and scales well.

Continual product feasibility determination can add substantial work to
Continuous 1 the scope and could cause friction when applied at larger scales.

Where projects are fully funded, teams have less risk of starts and stops
Full Project 5 throughout the duration of the project, making this approach, when
Funding

possible, more scalable.

When funding is provided based on some interval, this can be scalable,
Incremental though consideration must be given to burn rates so the project budget
Funding spending does not outpace the allocation of funds. This can be more

difficult in a large scale environment.

104

When funding is based upon satisfaction of milestones or gates, this can
2 indicate uncertainty for teams or limited funding when approaching a

milestone. This can be complicated at large scale.

When quality recovery (or rework) is continually prioritized, this can
2 introduce substantial variability into the work execution, with many more

work units to manage at high scale.

When quality recovery is addressed at the end of the project, this can
5 delay the need to reprioritize mid-stream, allowing teams to avoid

redirecting their trajectory.

When quality recovery occurs within each phase, the amount of churn that
3 occurs due to rework can be minimized, reducing the potential for

variability.

Team
Organization

Cros
Func

Func

Cross-functional teams may not have a large number of individuals with
the same skillset on the same project. New team members need to come

tional up to speed both on the project as well as the skillset in order to adapt,
causing difficulty in a high scale situation.

A functional team, where team members all have very common skillsets,
tional 8 are able to adjust to scale and replace team members as needed, generally,

more quickly.

Ility Justifications: Ease of Customer Collaboration

Decisions Options Score Justification

Fluid

Requirements
Set
(Scope)

Unit of Work

Fixed

Ranges, w /
inc specificity

User story

Task

End to End

Work
Segmentation

Phased

Release
Organization

Time Bound

Feature
Bound

Cost Bound

8Wth a fluid requirement set, a project is able to respond quickly to
customer feedback.

2 With a fix requirement set, a project is not quickly adaptable to customer
feedback.

With a requirement set based on ranges that increase over time in specifity
5 customers are able to give feedback and influence the direction within the

scope of the ranges of the requirements.

With a user story, an end-to-end testable and understandable requirement,
8 a customer is able to visualize and set when the full feature is functional,

making providing feedback a more natural process.

Since tasks are more engineering-focused or focused on what needs to be
2 done than the experience to create, these are not as condusive to customer

interaction and feedback.

By segmenting the work as end-to-end, this creates a close link between
8 the work being done and the experience it enables, allowing for more

timely review and engagement from a customer.

With work being executed in phases, the actually, fully functional feature
2 is not generally usable and verifiable by a customer until later phases,

collection customer feedback late in the development process.

3 Gives customer ability to say when project ships.

5 Feature set says when customer is ready for the product to launch.

3 Gives customer opportunity to say when to pull plug or add funds.

105

Decisions Options Score Justification

Perf-based
Funding

Continual
prioritization

Post
production

Quality
Recovery
(How
managed)

Phased

M

Decisions Options

Time/Feature
Bound

Time/ Feat /
Cost Bound

SD + Solution

Design Set + Seeking
Concept
Selection MD + Non-SS

Phased

Continuous
Exploration

Initial

Not Executed

Inception

Project Post-
Feasibility prototype
(When
determined) Not Done

Continuous

Full Project
Funding

Budget BIncremental
(How

Funding
managed)

Perf-based
'Funding

Continual

Q prioritizationQuality
Recovery Post
(How production
managed)

Phased

Cross-
Team Functional
Organization

Functional

Score Justification

Hard to respond to customer feedback with mutliple variables binding
project.

Hard to respond to customer feedback with mutliple variables binding
V project.

3 Only one solution to choose from, but still opportunities to give feedback.

It's hard for customers to visualize something better than what they're
8 seeing. Given alternatives in a multiple design set, they help choose which

they like best.

5 Phased more difficult to adapt to customer feedback.

8 Continuous offers many opportunities to adapt to customer feedback.

3 Initial only allows for customer collaboration at beginnig.

1 Unable to adapt to customer feedback if no exploration done.

2 Only adaptable to customer feedback at the begnining.

3 Only allows adaptation through prototype.

1 Does not adapt to customer feedback.

8 Allows for customer colloboration throughout project.

1 Unable to adapt once project kicks off.

3 Moderately able to respond to customer feedback.

5 Better able to respond to customer feedback and collaboration.

5 Better able to consider customer feedback as rework is done throughout

2 Less able to respond to customer feedback as rework is at the end

Hard to respond to customer feedback when only the later phases are
3 demonstrable to customer.

5 Teams able to adapt to customer collaboration.

2 Less able to adapt to customer feedback as teams are disjointed and siloed

Ility Justifications: Ability to Identify Project Risk

Decisions Options

Fluid

Score Justification

1 Changing requirements indicate changing risks.

106

Decisions Options
Requirements
Set Fixed
(Scope)

Ranges, w/
inc specificity

User story

Unit of Work
Task

End to End
Work
Segmentation Phased

Time Bound

Feature
Bound

ReleaseC
Organization osoun

Time/ Feature
Bound

Time/Feat /
Cost Bound

SD + Solution
Design Set + Seeking
Concept
Selection iMD + Non-SS

Phased

Continuous
Exploration

Initial

Not Executed

Inception

Project Post-
Feasibility prototype
(When
determined) Not Done

Continuous

Full Project
Funding

Budget Incremental
(How Funding
managed)

Perf-based
Funding

Score Justification

5 Fixed set allow for more stable risks.

8 Allows for more risk exploration due to more options.

8 Easier to see if feature will achieve need when realized end to end.

Easier to identify risk because required beforehand dissection of problems
51 to be able to plan each individual task.

5 Easier to see if feature will achieve need when realized end to end

Phased has harder time seeing project risk because phases don't align to
2 the way risks are realized.

Does not require as much forward looking, only identify risks to the next
2 eErelease.

3 Requires identifying ahead where features will be headed.

Does not require as much forward looking, only identify risks to the next
2. release.

Requires looking ahead at least on two dimensions of where product will

go.

8 Requires looking ahead and identifying where the product will go.

Only allows identification of risks based on a single design. Could be
2 missing things.

8 Exploration of risks using multiple designs. Better able to identify
potential risks as more designs are explored.

While exploration not happening as frequently, does require more looking
3 ahead.

5 Continuously exploring, however, not forced to look ahead.

Looking ahead at risks at the beginning. But unable to do so during the2 tproject.

1 No looking ahead at risks.

2 Forces looking ahead at beginning but not throughout as new risks arise.

Forces looking ahead early on in the project, but not throughout as new
risks arise.

1 Does not for looking ahead at risks.

5 Continously testing, but does not fors look ahead.

Forces look ahead from the beginning, but does not force looking ahead
throughout.

3 Forces looking ahead at periods throughout the project.

Forces an assessment of risks upcoming each time new funding is decided
to be allocated.

107

Decisions Options Score Justification

Continual
. 5 Offers oppotunities to relook at risks throughout.

Quality prioritization
Recovery Post
(How production 1 Pushes assessment of risks to end.

managed)

Phased 3 Encourages looking at risks at points during the development.

Cross-
TCo 5 Risks can be identified from differing perspectives.Team Functional

O Functional 2 Risks identification siloed by team.

Ility Justifications: Ability to Meet Deadline

Decisions Options Score Justification

Fluid 1Doesn't force considering possibilities early on. Adaptive, but doesn't
adapt well to hitting a deadline.

Requirements ~~~~~.~.~~~.
Able to hit a deadline because everything is planned out, but if change

Se Fixedhappens, can derail whole project.

Ranges, w/ 8 Good because some rigidity and forcing to look ahead, but still leaves
inc specificity room for adaptation as project evolves.

Requires looking at project as collections of features to satisfy user needs.
1User story 3 No major impacts to hitting deadlines though.

Unit of Work --- 4
Requires looking at project from top-down perspective which gives single

Task 5group of individuals ability to set path to hitting deadline.

Work End to End 1 No particular direct impact on ability to hit deadline.

Segmentation
Phased 1 i No particular direct impact on ability to hit deadline.

Helps ensure something will be ready on a date, no guarantees how much
Time Bound 1 3

of the scope though.

Feature 2 Focuses on getting the right set of features out, no guarantees on date
Bound though.

Release No focus on getting the right set of features out on a date and limits
. Cost Bound 1Organization I adding funding.

Time / Feature
Bound 8 Focus on feature set and date, leaves opening for adding more funding

Time/Feat/
Cost Bound 2 Limits ability to add more resources as need in order to hit timeline.

SD + Solution
Design Set + 2 All eggs in one basket.

Concept Seeking gsi n aktConcept

Selection MD + Non-SS 8 Diversify options for hitting a deadline.

Phased 3 Helps identify unknowns in stages.

Continuous 5 Helps identify unknowns throughout project.

108

Decisions Options

Initial

Not Executed

Inception

Project Post-
Feasibility prototype
(When
determined) Not Done

Continuous

Full Project
Funding

Budget Incremental
(How Funding
managed)

Perf-based
'Funding

Continual

Quality prioritization

Recovery Post
(How production
managed)

Phased

Cross-
Team Functional
Organization

Functional

Score Justification

2 Helps identify unknowns early, but not throughout.

I Doesn't help identify unknowns, could hit major roadblocks.

Feasibility tests done early on increase chances of hitting deadline, but not
2 as things change throughout project.

Requires a prototype, helps to identify feasibility through working
product.

1 Doesn't help determine feasibility, making harder to hit deadline.

Feasibility tests conducted throughout the life of project helps avoid steps
5 that could not ultimately end up working and cause setbacks.

Does not place accountability on hitting the individual milestones. But
could also remove roadblocks for the right teams.

Could cause delays or unnecessary bottlenecks due to funding allocations
2 that don't match up with resources needed to hit deadlines.

Places motiviation on hitting individual milestones leading toward hitting
deadline.

Allows for reprioritization of tasks when rework is needed, but does not
protect against slippage.

3 Allows the progress to continue toward final delivery, but doesn't protect
against delivering the wrong product.

Allows for periodic rework, but can be costly if project has to return to
2 prior phase.

1 No specific impact on ability to meet deadline.

1 No specific impact on ability to meet deadline.

Ility Justifications: Progress Trackability

Decisions Options

Fluid

Requirements
Set
(Sco P)

Fixed

Ranges, w/
inc specificity

User story
Unit of Work

Task

End to End
Work
Segmentation Phased

Time Bound

Score justification

1 Hard to identify how much progress has been achieved.

8 Easier to track progress on fixed set of requirements.

5 Somewhat fixed gives ability to track progress but not entirely.

Allows tracking progress by feature or user needs satisfied, not just by
5t

tasks.

5 Allows tracking from a top-down perspective.

3 Allows tracking across features.

3 Allows tracking across phases.

1 Does not force any specific tracking on scope.

109

Decisions Options

Feature
Bound

Score Justification

5 Requires focus on scope and how far along it is.

Release
Organization

Design Set +
Concept
Selection

Exploration

Project
Feasibility
(When
determined)

Budget
(How
managed)

Quality
Recovery
(How
managed)

Team
Organization

Cost Bound

Time/Feature
Bound

Time/Feat/
Cost Bound

SDV + Slto

1 Does not force any specific tracking on scope.

3 Requires focus on scope and how far along it is.

3 Requires focus on scope and how far along it is.

Seeking 5 More straightforward way to track scope.
----- --

Difficult to track how far along the project is due to multiple concurrent
MD +Non-SS 2

designs.

a Impact to scope at various points in the project, making progress tracking
more volatile.

Can be disruptive to scope making more difficult to track progressContinuous 1trogu.throughout.- - -

Initial 3 Minimizes impact to scope due to exploration

No exploration executed doesn't cloud the scope (may have other side
effects though)

Limits impact to scope to early on, making scope more trackable
Inception 3 throughout.

Post-
prototype3 Minmizes impact to ccope since only done based on prototype created.

Minmizes impact to ccope since no feasibility testing is done and no
j changes need to be made.

CCan have impact on scope throughout project, causing changes and
making scope more volatile.

Full Project
Funding

Incremental
Funding

Perf-based
Funding

Continual
prioritization

5 WIth funding set, able to track scope progress throughout.

Minimal impact to changing scope, minimal impact to trackability of
scope.

2 Could be disruptive to scope throughout project development process.

1 Could be very disruptive to scope causing for diminshed ability to track.

Post Could be more trackable throughout project, but end could introduce
21production substantial changes to scope.

Phased Impact to scope at various points in the project, making progress tracking
more volatile.

Cross- Minimal impact to changing scope, minimal impact to trackability of
Functional scope.

Minimal impact to changing scope, minimal impact to trackability ofFunctional
scope.

110

Appendix A: Python Scripts for Tradespace Generation

The following python scripts were used to import the architectural decision to ility mapping,

which was maintained as a CSV file. The scripts were executed as notebooks in Jupyter, but

could also be executed as standalone python scripts. The tradespace-generatory.py script reads in

the mapping file, filters for the decisions that were enabled for a given execution, generates all

possible combinations of the decisions, generates the Pareto Frontier, and exports the results to

both CSV files and plotly for plotting on a scatter plot. The paretojinterpretor.py script uses the

Paretor Frontier information created in tradespace-generator.py and counts by architectural

decision. This provides information on dominated decisions along the Pareto Frontier. If a

certain option has overwhelming presence over other options, it can be inferred that this

decision has high impact on how the project architecture will perform with reference to the

ilities in question. This also allows an individual to see clusters toward one ility or another.

tradespacegenerator.py

I1. import itertools
2. import csv
3.

4. import plotly.plotly as py
5. import plotly.graphobjs as go
6. import numpy as np
7.

8.

9. """

10.

11. Config Parameters
12.

13. "

14. ILITY_1 = 0
15. ILITY_2 = 1
16. INPUT = 'input/ilitymappings.csv'
17.

18. # Methodology Definitions
19. METHODS = (
20. #Agile
21. {'1': 0, '2': 0, '3': 0, '4': 0, '6': 0, '7': 1,'10': 1,
22. '11': 3, '17': 1, '18': 0, '29': 0},
23. #Spiral
24. {'1': 2, '2': 0, '4': 0, '6': 1, '7': 0, '10': 1,

111

'11': 3, '18': 0},
#Waterfall
{'1': 1, '2': 0, '3':

'11': 0, '17': 0,
#Setbased
{'1': 2, '2': 1, '7':

L, '4': 1, '6': 1, '7': 0, '10': 2,
'18': 1, '29': 1},

1, '10': 1, '11': 2, '18': 0}

25.
26.
27.

28.
29.
30.
31.
32.
33.
34.

35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

45.
46.

47.

48.
49.

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

64.
65.
66.
67.
68.
69.
70.
71.

112

)

*** * *********
End Config Parameters

** *********

** ****** ** **
Helper Methods

def pareto frontier(Xs, Ys, Ls, maxX = True, maxY = True):
myList = sorted([[Xs[i], Ys[i], Ls[i]] for i in
range(len(Xs))], reverse=maxX)
p_front = [myList[0]]
for pair in myList[1:]:

if maxY:
if pair[1] >= p_front[-1] [1]:

pjfront. append(pair)
else:

if pair[l] <= p_front[-1][1]:
pjfront.append(pair)

p_frontX = [pair[0] for pair in p_front]
p_frontY = [pair[1] for pair in pfront]
p_frontL = [pair[2] for pair in p_front]
return pfrontX, pfrontY, pfrontL

def translabel(label, decops):
indiv = label.split('I')
ops = []
for i in indiv:

decid, opid = i.split(':')
ops.append('%s) %s' % (dec-id, decops[decid]

[int(op_id)]))
return '; '.join(ops)

Convert the decision and relative option index "28:1"
to the raw option index: 29

def op offset(decpair):
decid, opid = dec-pair.split(':')

return dec_id, int(op id)

End Helper Methods

72.

73.

74.

75.
76.

77.

78.

79.

80.
81.
82.
83.
84.
85.
86.
87.
88.
89.

90.
91.

92.
93.
94.
95.
96.
97.

98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.

113.
114.
115.
116.
117.
118.
119.

120.

= 6 #From 0
2 #From 0
#From 0
#From 0

mappings = []
dec-key = []
include = []
options = []
illname =
il2_name =
with open(INPUT) as csvfile:

reader = csv.reader(csvfile)
for i, row in enumerate(reader):

if i == DECSTARTROW+ILITY_1:
illname = row[0]

if i == DEC START ROW+ILITY_2:
il2_name = row[0]

if i == QDEFROW:
dec-key = row[QSTARTCOL:]

if i >= DECSTARTROW:
mappings.append(row[QSTARTCOL:])

if i == QINCROW:
include = row[Q STARTCOL:]

if i == DECSTARTROW-1:
options = row[QSTARTCOL:]

current = None
start = 0
decisions = {}
print(include)
for i, dec in enumerate(deckey):

if dec != '':
if current is not None and 'Yes'

decisions[current] = (start,
start = i
current = dec

if current is not None and 'Yes' in incl
decisions[current] = (start, len(dec

in include[start:i]:
i)

ude[start:i]:
_key))

method_minmax = [H
for m in METHODS:

113

DECSTARTROW
Q_STARTCOL =
Q_DEFROW = 3
Q_INCROW = 2

121. ii = [0,0]
122. i2 = [0,0]
123. for did, offs in decisions.items():
124. vals_1 = mappings[ILITY_1][offs[0]:offs[1]]
125. vals_2 = mappings[ILITY_2][offs[0]:offs[1]]
126. if d id in m:
127. il[0] += int(vals_1[m[did]])
128. il[1] += int(vals_1[m[d_id]])
129. i2[0] += int(vals_2[m[did]])
130. i2[1] += int(vals_2[m[did]])
131. else:
132. il[0] += int(min(vals_1))
133. il[1] += int(max(vals_1))
134. i2[0] += int(min(vals_2))
135. i2[1] += int(max(vals_2))
136. method_minmax.append([il, i2])
137.

138. print(decisions)
139. print('IL1: %s' % illname)
140. print('IL2: %s' % i12_name)
141. print(method_minmax)
142.

143. ilities =
144. decops = {}
145. for key, offs in decisions.items(:
146. ilities[0].append(mappings[ILITY_1] [offs[0]:offs[1]])
147. ilities[1].append(mappings[ILITY_2][offs[0]:offs[1]])
148. 1 = len(mappings[ILITY_1][offs[0]:offs[1]])
149. decops[key] = options[offs[0]:offs[1]]
150. ilities[2].append(['%s:%s' % (d, o) for d, o in zip([key]*t,

range(0,l))])
151.

152. il_1 = list(itertools.product(*ilities[0]))
153. il_2 = list(itertools.product(*ilities[1]))
154. il_3 = list(itertools.product(*ilities[2]))
155.

156. X = []
157. y = []
158. labels = []
159. for i, el in enumerate(il_1):
160. x.append(sum(map(int, il_1[i])))
161. y.append(sum(map(int, il_2[i])))
162. labels.append('I'.join(il_3[i]))
163.

164. x-np = np.asarray(x)
165. ynp = np.asarray(y)
166. lnp = np.asarray(labels)
167.

114

168. p_front = pareto_frontier(xnp, ynp, Lnp, maxX
True)

= True, maxY =

169.

170.
171.

172.

173.

174.
175.

176.

177.

178.

179.

180.
181.
182.
183.
184.
185.
186.

187.

188.
189.
190.
191.

192.

193.
194.

195.
196.
197.

py.iplot(data, filename='%s-vs-%s'
I I-),

% (illname.lower().replace('

il2_name.lower().replace('
I -I)))

with open('output/ilityoutput.csv', 'w+') as csvfile:
writer = csv.writer(csvfile)
for i, el in enumerate(il_1):

writer. writerow(P'I'.join(il_-3Mi), sum(map(int,
il_1[i])), sum(map(int, il_2[i]))])

with open('output/pareto output.csv', 'w+') as csvfile:
writer = csv.writer(csvfile)
for i, el in enumerate(pfront [0]):

writer.writerow([pfront [2] [i], p front [0] [i], p_front [1]
[i]]+translabel(pfront[2][i], decops).split('; '))

paretointerpreter.py

1. import pandas as pd
2.
3. dmap = {}
4. ops = []
5. cols = ['ill', 'il2']
6. for k, v in decisions.items):
7. dmap[k] = len(cols) + len(ops)
8. for i in range(*v):
9. ops.append('ds-%d' % (k, i))
10. cols += ops

115

trace = go.Scatter(
x = xnp,
y = ynp,
mode = 'markers',
text = labels

)

trace2 = go.Scatter(
x = pfront[0],
y = pfront[1],
mode = 'lines+markers',
text = p-front[2]

)

data = [trace, trace2]

11.
12. data = []
13. for i, v in enumerate(p_front[0]):
14. fresh = [0]*len(cols)
15. fresh[@] = pjfront[0][i]
16. fresh[1] = p-front[1][i]
17. for p in p-front[2][i].split('I'):
18. decid, offset = opoffset(p)
19. fresh[dmap[dec_id]+offset] = 1
20. data.append(fresh)
21.

22. df = pd.DataFrame(data, columns=cols)
23. df.groupby(['ill', 'il2']).sum().to_csv('output/

computeddecisions.csv')
24. df.groupby(['ill', 'il2']).sum()

116

