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Abstract

A transducer array processing technique known as beamforming is often used to dis-
tinguish waves propagating in different directions. Applications include sonar, radar,
teleconferencing, imaging, and mobile communications. Many of these applications
involve broadband signals (such as speech, acoustic impulses, and spread-spectrum
signals) and require beamformers with frequency-independent behavior. In particular,
lobes (directions of high sensitivity) and nulls (directions of low sensitivity) should
be invariant with frequency. An existing class of solutions achieves some frequency-
independent behavior for a single lobe, but not for other lobes or nulls.

This work designs and builds a highly frequency-independent beamformer using
a technique called filter-and-sum beamforming. In particular, frequency-independent
nulls and sidelobes are demonstrated. The hardware implementation employs a log-
periodic transducer geometry which is hardware efficient.
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Chapter 1

Introduction

In media such as air, water, free space, etc., propagating waves are often distinguish-
able by their directions of propagation. This fact is significant in applications which
detect, resolve, or receive propagating waves in the presence of interfering waves.
Acoustic applications include teleconferencing systems, speakerphones, hearing aids,
sonar, seismic equipment, and acoustic imaging systems. Analogous electromagnetic
uses include radar, mobile communications, and radio astronomy.

Transducer arrays are thus useful for their ability to: 1) focus beams' in the di-
rections of desired sources, and 2) aim nulls in the directions of interfering sources.
Often, these sources emit broadband signals, such as speech, music, or spread spec-
trum radio transmissions and thus require array designs having frequency-invariant
behavior. Unfortunately, simple beamformers often exhibit beamshapes and null di-
rections which are highly frequency-dependent.

Several schemes exist for constructing beamformers having constant mainlobe
widths [5, 8, 11, 12, 23, 26]. These designs, which are outlined in Appendix B,
do not generally achieve frequency-independent null directions.

The shortcomings of these so-called constant-beamwidth designs motivate the

following goals of this thesis:

e Design a highly frequency-independent beamformer using the flexibility offered

'In this chapter, italicized words are standard beamforming terms which are reviewed in Ap-
pendix A.
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by a technique known as filter-and-sum beamforming.
e Explore the performance limitations of the filter-and-sum approach.

e Implement the design in a hardware-efficient manner.
These goals are pursued in the following stages of this work:

e Theory - filter-and-sum beamformer design is shown to be related to two-

dimensional filter design.

e Filter design - a simple two-dimensional filter design algorithm is developed
and carried out. The performance limitations of the filter-design algorithm are

examined.
o Simulation - the beamformer’s theoretical plane-wave response is computed.

e Implementation - a real-time digital beamformer is constructed. Plane-wave

responses are measured and compared with simulations.

The remainder of this introduction specifies the basic problems encountered in

broadband beamforming, and outlines the proposed solution.

1.1 Broadband beamforming challenges

Broadband beamformer design involves several issues not encountered in narrowband
beamformer design. Some of these issues are now illustrated with respect to a specific
design example.

Consider a microphone array with 11 identical omnidirectional elements and 4 cmn
inter-element spacing.? Suppose further that the array output is formed by directly
summing the elements’ outputs. Figure 1-1 shows this array’s array pattern at selected
frequencies, while Figure 1-2 shows its frequency response at several selected angles.

This simple beamformer exhibits the following shortcomings:

2Not coincidentaily, this is the configuration of one of the subarrays used in the real-time imple-
mentation, to be described in Figure 3-2.
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Figure 1-1: Far-field response of simple linear microphone array at 2 kHz (solid line)
and 4 kHz (dotted line). In this polar and subsequent polar plots, broadside beams
point up and down, while endfire beams point left and right.
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Wideband behavior of a narrowband beamformer
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o

8

-25

Figure 1-2: Distortion in frequency response of simple array. The frequency response
curves are labeled with the incidence angle relative to broadside
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1. Undesirable sensitivity to steering errors:

Signals which impinge on the array at broadside are received with a flat fre-
quency response. However, as signals move away from broadside, a low-pass
characteristic emerges since the mainlobe width decreases as frequency increases.
Not only is this spectral distortion generally undesirable, it is difficult to correct
by highpass filtering since the required correction depends on incidence angle,

which is often unknown a priori.

Figure 1-2 clearly shows the rejection of high frequencies, as well as the trend

towards greater rejection as incidence angle increases.

2. Inability to cancel broadband interferers:

In this example, there is no incidence angle at which a broadband source will not
be received at some (indeed, most) frequencies. For example, a source located
23 degrees from broadside is canceled completely at 2, 4, 6, and 8 kHz, but. is

substantially received at intermediate frequencies (see Figure 1-2).

3. High element count:

The number of transducers is determined by the need to meet spatial samnpling
requirements at high frequencies, and the need for large apertures at low fre-
quencies. In a uniformly spaced array, as exemplified here, the element count is
thus proportional to the ratio of highest to lowest frequencies of operation. Cov-
ering the audible frequency range (typically two to three orders of magnitude)

would be costly with this type of array.

1.2 Description of solution

We address these three problems with a design that combines the concepts of har-
monic nesting with filter-and-sum beamforming. Harmonic nesting decomposes the
broadband problem into a set of octave problems, leading to a log-periodic structure
that reduces element count. The filter-and-sumn approach then addresses frequency

variations within each octave.
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1.2.1 Harmonic nesting

A harmonically nested array is a set of superimposed subarrays, each designed for a
particular frequency band. The subarray outputs are summed via bandpass filters
such that each subarray only contributes to the total output in the frequency band
for which it was designed. This nesting procedure has two features: it allows nar-
rowband beamformer designs to be extended to broader frequency bands with little
modification, and it allows array element counts to be logarithmically related to the
ratio of highest to lowest operating frequencies.

Figure 1-3 displays frequency responses of such an array composed of four nested
subarrays covering one octave each. The element configuration is obtained by super-
imposing four scaled versions of the array already described, as shown in Figure 3-2.
Thus, the performance between 2 kHz and 4 kHz is as before, and the frequency
responses in the other three octaves (500 Hz - 1 kHz, 1 kHz - 2 kHz, 4 kHz - 8 kHz)
exactly replicate that of the 2 kHz - 4 kHz band. For simplicity, the computed re-
sponses assume that the octave bandpass filters associated with each subarray have

ideally flat passbands and sharp cutoffs.

1.2.2 Filter-and-sum beamforming

The filter-and-sum approach is applied within each of the subarrays described above.
Each transducer output is passed through an elemental filter whose outputs are in
turn summed to produce the total subarray output. These filters are used to make
the array’s effective aperture (i.e. the actively contributing elements) frequency de-
pendent. Typically. the effective aperture width should be inversely proportional to
frequency, making the effective array length a constant multiple of the wavelength.
This would lead to elemental filters which are lowpass for the endmost elements, and
highpass for the central elements.

Unfortunately, a discrete set of transducers cannot exactly implement a continuous
range of aperture sizes. Thus, designing the elemental filters is a challenging problem

addressed in Chapter 4 of this thesis.
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Beamformer with 4 harmonically nested subarrays
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Figure 1-3: Frequency response of four-octave harmonically nested array. The broad-
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band problem has been reduced to a set of octave problems.
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1.3 Organization of thesis

Chapter 2 establishes the equivalence between filter-and-sum beamformer design and
FIR filter design.

Chapter 3 describes a real-time filter-and-sum beamformer hardware and software
platform. Arbitrary beamforming tasks may be performed by downloading a table of
elemental filter coefficients into this platform.

Chapter 4 develops and carries out a method for designing the elementa! filters.

Chapter 5 presents computer simulations of the beamformer design.

Chapter 6 presents experimental data for the same design.

Chapter 7 summarizes major accomplishments and identifies future research di-
rections.

Appendix A reviews basic beamforming concepts for the novice reader.

Appendix B reviews existing constant-width solutions.

Appendix C describes the frequency sampling method of FIR filter design, which
is an essential part of the procedure outlined in Chapter 4.

Appendix D repezts the steps described in Chapters 4, 5, and 6 using different
performance goals. This process leads to a beamformer with minimax sidelobes at

any particular frequency.

22



Chapter 2

Sampled aperture and

beamforming theory

This chapter establishes the mathematical equivalence between filter-and-sum beam-
former design and two-dimensional filter design. Since the theory assumes ideal sys-
tem components, a brief discussion is also provided on the application of the theory

to actual systems composed of non-ideal components (particularly transducers).

2.1 Sampled apertures

An aperture is a region over which energy is received. Apertures can either be contin-
uous, as in parabolic dishes, or discrete (also called sampled) as in transducer arrays.
Although sampled aperture systems generally must perform more signal processing,
they offer several advantages over continuous aperture systems. Sampled apertures
can be steered by purely electronic means, unlike continuous apertures which are
often steered mechanically, if at all. Sampled apertures also offer unique capabili-
ties such as multiple simultaneous beams, adaptive processing and superdirectivity
[7]- Finally, sampled apertures can generate or compensate for frequency-dependent

behavior, using a technigue called filter-and-sum beamforming.
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2.2 Delay-and-sum beamforming

Before exploring filter-and-sum beamforming, an old and simple technique called
delay-and-sum beamforming is examined. This technique is used in narrowband op-
eration to focus arrays onto a particular point or direction.!

The delay-and-sum beamformer output is a weighted sum of time-delayed element

outputs:

r(t) = i an f(Zy,t — ), (2.1)

where 7., a,, and 7, are the element position, element weight, and time-delay as-
sociated with the ith sensor. The delays are chosen to compensate for differences
in the relative propagation delays from the point of interest to the individual ele-
ments. Thus, signals originating from the desired location are summed in phase,
while other signals undergo some destructive cancellation. By electrically manipulat-
ing the weights and time delays, the lobes and nulls of this array can be steered in

desired directions.

2.3 Uniformly-spaced linear arrays

While array geometries are in principle arbitrary, certain configurations are especially
useful and amenable to mathematical description. For example, consider an array of
uniformly spaced collinear elements. Assume an odd number of elements, numbered
from -N to N, and positioned on the z-axis such that element n has coordinate
nd, d being the inter-element spacing. Thus, endfire directions lie on the z-axis,
while broadside directions lie in the y-z plane. Much as linear time-domain systems
are analyzed by their response to complex exponential time functions, this space-time
system will be considered in terms of its response to complex exponential plane waves.

Consider a delay-and-sum beamformer steered towards a direction making an

'A direction is merely a special case of a point which is located at infinite distance.
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angle 8, measured clockwise from the y-axis. The time delays 7; would be:
ﬂ,==nzSh1&h (22)

where 6, is termed the look or steering direction, and represents the direction from
which waves are received with maximum response.
Now, consider the plane-wave arriving from a direction 6, (not necessarily equal

to 6p). This wave is represented by the expression:

f(Z,1) = ef—F2), (2.3)
where the wavevector k is:
sin @
- w
k= —-C— cosf | . (2.4)
0

Since the far-field pattern is rotationally symmetric about the array axis, it was
assumed without loss of generality that the wavevector lies in the z — y plane.
Substituting the wavefield and time delay expressions into the beamformer output

expression (Equation 2.1) yields, after adjusting the indices of summation:
N
T(t) =ejwt Z anejfnd(sinO—sinoo). (2_5)
n=-N

Removing the time-varying e’“* term yields an expression which we term the array

TeSponse:

N
R(o’w)= Z anej‘fnd(sinO—sinoo). (2.6)
n=—-N

The substitutions u = sin @ and uy = sin gy are often made:

N
R(v,w)= ), aped < ndlu—uo), (2.7)
n=-N

In the common special case when the weights are symmetric (a, = a_,), the response
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becomes an entirely real expression:

R(u,w) = wp + 2 ﬁl: ay, cos(%nd(u — up)). (2.8)

n=1

2.4 Array response structure

The array response as expressed in Equation 2.7 is a function in a two dimensional
u — w space. There is a definite structure to this function, in that the following

identity holds for any real constant K:

R((% + up), Kw) = R(u + up, w). (2.9)

This expression means the spatial response of the array contracts towards the steering
direction as frequency increases. Thus, the nature of the array’s frequency-dependence
cannot be specified independently of its spatial dependence. The delay-and-sum
beamformer does not have sufficient flexibility to design a frequency-independent
system (except for the trivial case of an omnidirectional “beamformer”).

Another important aspect of the array function is that it is periodic in u for any

given w:

R(u,w) = R(u + iij,w). (2.10)

Thus, the mainlobe has an infinite set of identical copies which are called grating lobes.
Aliasing occurs when two or more lobes both appear in the visible region defined by
|z} < 1. This can be avoided at all steering angles if adjacent lobes are separated by

a distance greater than 2 in u-space:

2mce
2 < — 2.11
< wd‘l ( )

or

e C A
d< — = — == 2.12
< w 2nf 2 (2.12)

where ) is the wavelength. This is a spatial sampling requirement which is analogous
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to the Nyquist sampling rate for time-domain signals.

2.5 Analogy with FIR filter design

The discussion thus far expresses the beamformer behavior in terms of the array
weights. The opposite process, finding the weights for a given desired behavior, is
also extremely important. This process is now shown to be related to finite impulse
response (FIR) filter design:

Consider the Fourier transform [17] of the array weights:

N
X(e?) = S anemin, (2.13)

n=-N
Comparing this with Equation 2.7 yields the identity:

R(ug + :TZ’ wo) = X (), (2.14)

for any wyq.
Thus, finding the optimal weights a, for a given R(u,wy) is equivalent to an FIR

filter design problem for a given desired frequency response X (e’*t), where w, =

(u—ug)wod

4

2.6 Filter-and-sum beamforming

The analysis of the delay-and-sum beamformer is now extended to a filter-and-sum
beamformer operating in discrete-time. Thus, the elemental filters are assumed to be

FIR filters of length M. The beamformer output sequence, for integer &, is:

N M-l
T[K] = Z z f(-ﬁ (K' - m)T) hn[m]v (2'15)

n=—N m=0

where « is the time sample, h,[m] is the impulse response of the filter associated with

the nth element (i.e., the nth elemental filter), T is the sampling period, and f(7,t)
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is the incident wavefield. As before, we consider the complex exponential plane wave:
f(Z, KT) = eiwonT—ko2), (2.16)

for some frequency wy and wavenumber ko. The beamformer output due to this wave
is:

N M
rl] = o5 T 3§ hy[m]ed(-womT+ luond), (2.17)

n=—Nm=0
where uy = sinf as before.

Once again, we remove the time-dependent portion to give the array response:

N M-1
Ru,w)= > > hy[m)e~(mT-Sund), (2.18)

n=—N n=0

2.7 Two-dimensional filter design

Just as delay-and-sum beamformer design is related to FIR filter design, we now show
that filter-and-sum beamformer design is related to two-dimensional (2-D) FIR filter
design.

Constder the following function, which is an N x M set of 2-D dirac delta functions,

weighted according to the elemental filter coefficients:

N M
flz,y) = Z Y 8(z — n,y — m)ha[m] (2.19)
n=1m=1
Now, the discrete 2-D Fourier transform of this function is:

X(wr,we) = z Z hy[m]e~iintwem) (2.20)
n=—N m=0
Note that this function is periodic with period 27 in both w; and w; dimensions.

Combining this with Equation 2.18 yields:

wlcT wo

R( Usz ,T

28



This relation is quite important. It implies that the filter-and-sum beamformer can
be conceptualized as a 2-D filter whose Fourier transform is closely related to the

desired array response. This idea is expanded into a design algorithm in Chapter 4.

2.8 w; —wy space

Note that X (w,,w) is exactly the familiar wavenumber-frequency response [10], after
converting the wavenumber and frequency variables k., w to the quantities w; = k.d,
wy = wT', which have units of pure radians. This representation is used in this chapter
and Chapter 4 instead of the conventional wavenumber-frequency representation since
it allows the filter design process to be specified independently of the spatial and

temporal sampling rates d and T'.

2.9 U-space

Throughout most of this chapter, the incidence angle was represented by the variable
v = sinf rather than by the angle itself. This convention has several advantages
beyond mere compactness. First, a change of steering direction amounts to a single
linear translation in u-space. Thus, beamwidth measured in the u domain does not
change with phase steering, while beams measured in 6 space tend to broaden near
endfire. Second, one can consider the response in the so-called invisible region cor-
responding to |u| > 1. These features are important to conceptualize and consider
because they affect the array’s noise sensitivity and also the beamshape when these
features are brought into the visible region by phase steering. Finally, an array per-
formance characteristic called the directivity indez has a simpler expression in terms

of u than 6.
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2.10 Modeling assumptions

The above formulations contain some implicit assumptions about the physical and
computational processes they represent. For example, they assume zero noise, zero
quantization error, and omnidirectional transducers with flat frequency responses.
The assumptions regarding the transducers are clearly not true of the microphones
used in this thesis. But, if the assumption is made that all the transducers, while not
ideal, are at least identical, then the ecquations will still apply to real systems after
some simple corrections.

In particular, a non-flat microphone frequency response can be effectively cor-
rected with a single inverse filter placed at the output of the beamformer. Non-
omnidirectional directivity patterns cannot generally be compensated for, but one
can mathematically model their behavior using the principle of pattern multiplica-
tion. This principle states that the total far-field response can be obtained from the
far-field response of an equivalent array constructed using omnidirectional elements,
and the far-field response of any of the individual microphones. Thus, the total array
response is:

R(u,w) = Ry(u,w) X Re(u,w), (2.22)

where R, (u,w) is the far-field response of a single microphone, and R,(u,w) is the

far-field response of the equivalent array composed of omnidirectional elements.

30



Chapter 3

Firmware

This chapter describes the hardware and software which embody the mathematical

descriptions of filter-and-sum beamforming described in Chapter 2.

3.1 Hardware

The beamformer hardware consists of analog and digital circuitry, much of which
was custom built at Bell Laboratories’ Acoustics Research Department [14]. A block
diagram of the hardware is shown in Figure 3-1. Its major components are now

summarized:

3.1.1 Transducer array

The transducer array contains four subarrays of eleven elements each, (see Figure 3-
2). The microphones [18] are first-order gradient elements having a dipole response
proportional to cosf. These elements are mounted in circular holes in a flat metal
bar and aligned such that the peaks of the dipole patterns lie in a direction normal
to the bar.

The interelement spacings for the four subarrays are, from largest to smallest, 16,
8, 4, and 2 cm. For the intended frequencies of operation (as labeled in Figure 3-2),

the interelement spacing never exceeds 0.47 wavelengths, thus slightly oversatisfying
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Figure 3-1: Block diagram of hardware platform
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Figure 3-2: Microphone configuration in four-octave harmonically nested array
(shown to 1/10 scale). Dashed vertical lines signify that elements in the compos-
ite array may belong to several subarrays.

the half-wavelength spatial sampling requirement.

3.1.2 Preamplifier and compensation

This unit compensates for the high-pass frequency response characteristics of the
gradient microphones. The signal level is also increased to achieve an output of one

volt for a 10C dB sound pressure level at the microphone diaphragm [14].

3.1.3 Sampling and Anti-Aliasing SEKSI Serial Interface

This unit, abbreviated SASSI, interfaces the analog and digital environments. The
preamplifier’s analog outputs are anti-alias filtered and then converted to 16-bit signed
integers at a 16 kHz sampling rate. A full set of 29 microphone samples are obtained
and digitized each sample period, and then converted into a serial bitstream which is
fed to one of the DSP boards. Within the same time period, a single 16-bit integer

is read from another DSP board and converted to an analog output.
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3.1.4 DSP boards

The signal processing workload is handled by Ariel Corporation’s MP3210 boards de-
signed around AT&T DSP3210 digital signal processors. Support for multiple-board
systems is provided by the so-called NABus, which provides a direct link between
board address spaces, avoiding the bus of the host PC [2].

The choice of DSP platform was based on availability, a substantial amount of ex-
isting code, and a belief that a previously encountered hardware bug was being fixed.
This bug manifested itself in code which performed simultaneous NABus accesses
from different boards. Under such circumstances, a processor would occasionally
halt, split open, and release noxious odors.

The hardware bug still exists, although we have learned how to program around

it using a technique discussed in Section 3.2.1.

3.2 Software (DSP3210)

The software component consists of a real-time DSP3210 implementation of the filter
structure shown in Figure 3-3. This figure shows the four sets of FIR filters, the IIR
bandpass filters, and some preprocessing sections. The banks of elemental FIR filters
implement a frequency-dependent array shading in a manner which was analyzed in
Chapter 2. The functions of the other blocks in the diagram are now summarized:

The section labeled “redirection” sorts the microphone outputs by subarray. This
section has more outputs than inputs because some microphones belong to multiple
subarrays.

The section labeled “optional folding”, when used, sums the outputs of elements
which are symmetric with respect to the center element. This is useful in the common
case of symmetric shading, since it reduces the number of required filters by almost
two without affecting performance.

The section labeled “phase steering” is enclosed in dotted lines since phase steering
is not investigated in this thesis. Note that phase steering is not incompatible with

folding, provided that phase steering is implemented before folding, as indicated in
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35



the block diagram.

Finally, the bandpass filters are used to suppress inter-band interference. These
filters could be implemented as FIR filters as well. However, the overall system phase
response was not considered crucial in this app!icauon. Thus, the baidpass filters
were implemented as infinite length impulse response (IIR) filters, which generally
require fewer coefficients than FIR filters to meet a given magnitude response re-

quirement.

3.2.1 Timing of run-time code

In addition to the actual filter implementations, the run-time software contains mech-
anisms to synchronize activity among the processors. This avoids NABus conflicts
and therefore avoids the hardware bug described in Subsection 3.1.4.

The DSP code is synchronized by a token, which can only belong to one DSP chip
at any particular time, and which grants its owner the right to access the NABus.
During each 1/16000 second sampling period, the token makes a complete circuit
around the six processors. The token is implemented with a set of registers, one in
the address space of each processor, and with a protocol in which a value of “one” is
written into a register to indicate that the corresponding DSP owns the token.

The processing responsibilities are distributed among the six DSPs as described

below, which are listed in the same sequence as visited by the token:

1. Board 0, Processor 0: Handles direct memory access (DMA) acquisition of
microphone outputs. (DMA allows data transfers to occur without explicit

processor intervention.)

This processor also implements the folding and redirection sections shown in
Figure 3-3. The redirected results are written via the NABus to one of the

following four processors.
2. Board 0, Processor 1: Implements FIR filters for 500 Hz - 1 kHz subarray.

3. Board 1, Processor 0: Implements FIR filters for the 1 - 2 kHz subarray.
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4. Board 1, Processor 1: Implements FIR filters for the 2 - 4 kHz subarray.
5. Board 2, Processor 1: Implements FIR filters for the 4 - 8 kHz subarray.

6. Board 2, Processor 0: Implements IIR bandpass filters for all subarrays. Since
this processor never accesses the NABus, it uses the token not for the NABus
privileges it confers, but for synchronization purposes. The single value obtained
by summing the IIR filter outputs is sent to the SASSI box, also using the DMA
subsystem of the DSP3210.

3.3 Platform capabilities

3.3.1 Hardware capabilities

This platform can achieve a beamwidth of 18 degrees (measured between half-power
directions) over the 500 Hz - 7.2 kHz frequency range. The lower limit is set not by
the analog/digital circuitry, which can process lower frequencies, but by the array
geometry, which yields increasing beamwidths as frequency drops below 500 Hz. The
upper limit of 7.2 kHz is set by the upper cutoff frequency of the bandpass filter
associated with the highest frequency subarray. The net effect of these bandpass filters
is shown in Figure 3-4. In addition to setting frequency limits, these filters introduce
a small amount of ripple (generally less than 2 dB) into the overall system transfer

function. This level of ripple is probably insignificant in typical audio applications.

3.3.2 Digital processing limitations

An important statistic is the maximum length FIR filters which can be implemented.
The lengths act as constraints on the FIR filter design process and limit the precision
to which desired array responses can be realized. The following discussion estimates
the maximum allowable filter lengths based on empirical measurements.

Each DSP3210 has a 55 MHz clock, and can execute a single multiply-accumulate

operation (or any other instruction) in four clock cycles. Given the 16 kHz sampling
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transitions (at 1, 2, and 4 kHz).
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rate, this leaves:
5.5 x 107

Tx16x10f 859.4 (3.1)
instructions per sample period. From this limit, the maximum filter length will be cal-
culated, using assumptions drawn from runtime examination of the MP3210 board’s
profiling counter registers. It has been observed that only about 700 to 750 of these
cycles are actually available for executing the loop which implements the FIR filters

for each microphone element. In our code, one DSP chip handles all the FIR filters

for each subarray. Executing these filters requires, as a function of FIR filter length,
11 x (FIRfilterlength) + X (3.2)

cycles, where X is an overhead factor that should be constant across processors, since
they all run identical code (with only the table of filter coefficients and some constants
changed). However, empirical evidence shows that the overhead varies from about
72 to about 118 for reasons not fully understood. In the worst case, this means a

maximum filter length of about:

700 — 118

[~ =52 (3.3)

where the brackets indicate values should be rounded downward. For symmetric
arrays, there are only six filters, since opposite sensor outputs are added together.
The folding occurs on a processor not running FIR filter code, and thus does not affect
the filter computations. Here, the overhead factor X was not actually measured.

Assuming that it does not increase, an upper bound on the FIR filter length is:

[@%18] — o7 (3.4)

On-chip SRAM is also a precious resource, since it operates with no wait states, unlike
off-chip memory. There are 8 kilobytes of on-chip SRAM, most of it available for

storing coefficients that each occupy four bytes. However, for fast execution, between
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0.5 and 1.0 kilobytes of the DSP code are copied into this RAM. Also required in the
on-chip SRAM is a set of state variables which is almost the size of the coefficient
table itself (although one element shorter for each microphone). Thus, the on-chip

memory can accommodate filter lengths of up to about:

7000
xiixd =7 (3.5)
for non-svmmetric arrays and about:
7000
—| =14 3.6
[2 x 6 x 4] > (36)

for symmetrically weighted arrays.
Clearly, processor time is the more precious computational resource, as it limits

filter sizes to about 52 elements (97 if folding is used).
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Chapter 4

Elemental filter design

This chapter discusses a process for designing the elemental filters required by the
filter-and-sum technique. The filter coefficients can be downloaded onto the real-time
beamforming platform described in Chapter 3, or used to simulate system behavior,
as in Chapter 5.

The design process is first outlined in abstract form, and then carried out using

the 1 - 2 kHz subarray as a concrete example.

4.1 Process outline

Section 2.7 showed that a filter-and-sum beamformer can be viewed as a 2-dimensional
filter whose frequency response is exactly the wavenumber-frequency response ex-
pressed in normalized frequency units. Thus, the elemental filters can be designed
using 2-D filter design techniques. However, the desired beamformer response must

first be converted to a desired 2-D filter response, as follows:

1. Determine the desired beampattern, R(u). This determination should be based
on the intended beamformer application, as well as on knowledge of what desired
beampatterns can actually be realized. This selection is discussed further in the

design example in Section 4.2.
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2. The desired 2-D filter response X (w;,w,) is constructed by mapping R(u):

- R(#<T) for in-band temporal frequencies
X(wl;w2) = ( wad ) P d ) (41)
0 for out-of-band temporal frequencies

where w, = k.d = |E| dsin @, and wy; = wT are the radian spatial and temporal

frequencies discussed in Section 2.8.

The beamforming problem is thus amenable to existing 2-D filter design tech-
niques. However, it was found that many of these techniques were unnecessarily
complex. Excellent results were achieved using a simple 2-D design by decomposition
into two sets of 1-D design problems. Such a design algorithm is carried out by the

following steps:

1. A finite rectangular grid in w; — w; space is defined.

This so-called sampling grid is important in that this algorithm exactly achieves
the desired response at these points. Also, the number of grid points exactly
determines the 2-D filter size, and the grid point density is strongly correlated

with the accuracy to which the desired response is approached.

The grid points are defined by a set of samples in the w, domain, and another

in the w, domain.

The w; domain is sampled at the following 2N + 1 values:

2mn
2N +1

,—N<n<N. (4.2)

Thus, there are exactly as many samples as transducers, and the samples are
uniformly spaced in the range [—m,n], which is significant since the function

X (wy,wq) has periodicity 2.

Frequency samples can be chosen with more flexibility, and this selection is an
important step in the overall filter design. The distribution of samples affects

filter performance in that interpolation errors are generally reduced by placing
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frequency samples closer together. Thus, a rule of thumb is that frequency
sample density should be higher in frequency bands where greater accuracy is

required.

A typical selection scheme might be to select six uniformly spaced samples
within the octave of interest, and to select out-of-band samples at half the
. density of the in-band samples, since the out-of-band interpolation errors are

strongly suppressed by the IIR bandpass filters.

. The single-frequency beamforming problem associated with each constant-frequency

grid line is solved.

Each line of constant w, value in the grids just defined contains 2N + 1 sample
points. The inverse discrete Fourier transform of the desired function values at
these points yields transducer weights which achieve the desired beampattern

at the sample points.

Single-frequency beamforming is a very well-understood problem, and many
variations on this algorithm can be constructed by varying the manner in which
this stage of the design is carried out. One variation using the Dolph-Chebyshev

approach is discussed in Appendix D.

. Elemental filters are designed.

Each element’s frequency response has now been determined at the chosen set
of frequencies. For each element an FIR filter is then designed that has the com-
puted response at the correspon;iing frequency samples. Appendix C discusses
an FIR filter design technique suitable for addressing this type of problem. This
filter design technique reduces to an inverse Fourier transform if the frequency

samples are uniformly spaced.

. Interpolation errors are examined.

Since the filter response is only explicitly constrained at a finite set of points,
interpolation errors may occur in between these points. If such errors cause

design criteria to be violated, the filter design steps must be repeated after
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increasing the w, sample density in the offending frequency regions. Likewise,
economy may be achieved by lowering the sample density in regions where design

criteria are oversatisfied.

It should be noted that since the w; sample density is determined by the array
hardware, interpolation errors in that dimension tend to predominate in the

designs discussed in this thesis.

4.1.1 Discussion

A significant special case of the filter-design procedure occurs when the sampling grid
points are uniformly spaced in both dimensions. The procedure then reduces simply
to a 2-D Fourier transform.

The hardware used in this thesis has ample computational power for our purposes,
and thus it was not essential that filter length be minimized. This may not be the
case in lower-cost systems. In these cases, some of the more powerful 2-D filter design
tools may achieve the same performance with a lower filter order than possible with
the procedure outlinred above. A basic review of 2-D filtering is given by Dudgeon
and Mersereau [4]. Minimax approaches are discussed by Charlambous [1] and by
Harris and Mersereau [6]. An [,-norm optimization approach is described by Lodge
and Fahmy [13]. Unfortunately, many optimal 2-D design approaches suffer from one
or more of the following defects: high computational complexity, susceptibility to

numerical instability, and restriction to square filters.

4.2 Design example

The design steps are now applied to the 1 - 2 kHz subarray depicted in Figure 3-2.
This subarray contains 11 elements, and has an inter-element spacing of 8 cm (about

a quarter of a wavelength at 1 kHz).
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4.2.1 Selection of desired beampattern

Selection of the desired beampattern is crucial and nontrivial. In general, a beam-

pattern R(u) cannot be exactly realized at all frequencies of interest. Thus, a pattern

must be found which can be approximated with good accuracy at these frequencies.
Two desired patterns are suggested. The first is a sinc function:

-, sin(lx)

R(u) = (4.3)

llmu i
4

where u = sinf, 6 being the incidence angle. This function is exactly the far-field
pattern of a uniformly shaded continuous aperture having length equal to 11/4 = 2.75
wavelengths. Since this function cannot be precisely achieved at any frequency with
a discrete array, the following “periodic sinc” function is proposed:

- sin(3mu)

R(u) (4.4)

~ sin(imu)’
This function has the form of the Fourier transform of five uniformly spaced im-
pulses. This beampattern can be exactly realized at 2 kHz (by turning on only the
elements numbered 0,+1,+2) and at 1 kHz (by turning on only the elements num-
bered 0, £2, £4). At intermediate frequencies, all 11 elements may be active, and the
beampattern is only approximately achieved.

The two possible beampatterns (Equations 4.3 and 4.4) are shown in Figure 4-1.
The patterns are generally similar within the visible region (Ju| < 1). Grating lobes
exist for the periodic sinc, but they are confined to the invisible region (|u| > 1).

The above design steps are carried out for each of the two patterns. As will be
shown in Section 4.3, the periodic sinc leads to a more highly frequency-independent
beamformer. This is achieved at the expense of a 10% wider mainlobe, somewhat
higher sidelobes, and a greater sensitivity to uncorrelated noise because of the grating

lobes in the invisible region.
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Figure 4-1: Possible desired array patterns. Dotted line is pattern #1, the sinc
function; solid line is pattern #2, the “periodic sinc”.

4.2.2 Mapping into desired filter response

Figure 4-2 shows the desired 2-D filter response function X (w1, ws) obtained from
Equation 4.3. (The higher frequencies, which have zero response, are removed from
the plot to emphasize the structure within the 1 kHz - 2 kHz band.) To help engage the
reader’s physical intuitions, this and subsequent filter response functions are labeled
in the familiar units of wavenumber and frequency (in units of radians/meter and
kilohertz), not the pure radian quantities w; and ws.

The structure of the resulting wavenumber-frequency respense is such that, within
the 1-2 kHz range, the function has constant value along all straight lines passing

through the origin.

4.2.3 2-D Filter design

The sampling grids for all four subarrays of our beamformer are shown in Figure 4-3.

Note that each sampling grid exhibits six in-band frequency samples, and an out-of-
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wavenumber (rads/meter)

Figure 4-2: Desired wavenumber-frequency (planewave) response. Negative frequen-
cies are shown to emphasize the quarter-plane symmetry. Frequencies above 3 kHz
are not shown, in order to magnify in-band details.
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Figure 4-3: Plots of lines whose intersections define the sampling grid points. The
desired wavenumber-frequency response is exactly achieved at each grid point.

band sample spacing which is 1.7 times larger than the in-band spacing. Performauce
was not found to be very sensitive to changes in either of these values, suggesting that
the number of grid points could probably be substantially reduced without adversely
affecting performance.

The axes are labeled in units of radians/meter and kilohertz, and correspond to
values of w; in the range [—m, 7] and values of w; in the range [0, 7]. Thus, negative
temporal frequencies are not shown, thus omitting about one half ¢f a symmetric set
of points.

The numerical computations were carried out as prescribed, yielding the coeffi-
cients shown in Figures 4-4 through 4-7. Coefficients are only shown for the design

based on the regular (as opposed to periodic) sinc function.
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Figure 4-4: Impulse responses for 0.5 kHz - 1 kHz subarray. Filters are of length 97.
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Figure 4-5: Impulse responses for 1 kHz - 2 kHz subarray. Filters are of length 51.
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Figure 4-6: Impuise responses for 2 kHz - 4 kHz subarray. Filters are of length 27.
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Figure 4-7: Impulse responses for 4 kHz - 8 kHz subarray. Filters are of length 15.
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4.3 Performance limits

In general, a desired array response is asymptotically approached as the sampling
grid density approaches infinity in both dimensions. However, the wavenumber sam-
ple density is proportional to the number of transducers, which may be an expen-
sive number to increase. Even if the frequency sample density approaches infinity,
interpolation errors in the wavenumber dimension generally remain, establishing a
fundamental performance limit.

These limits were estimated by designing beamformers having a high number of
frequency samples (26 in-band, 99 out-of-band). Figures 4-8 and 4-9 show the differ-
ence between actual and desired behavior, X (w;,ws) — X (wy,w,) across all incidence
angles and in-band frequencies.

The two error surfaces are similar except at the endfire directions (where |u| =
1). There, the periodic sinc design has a peak error half as large as that of the
ordinary sinc design. Thus, the periodic sinc pattern is used in the simulations of
Chapter 5. However, the experimental measurements shown in Chapter 6 are based

on the ordinary sinc since the periodic sinc idea was conceived too late for inclusion

in anechoic chamber tests.
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Chapter 5

Performance simulations

Differences between design objectives and actual performance are due mainly to:
1) approximations made by FIR and IIR filter design processes, and 2) non-ideal
behavior of physical system components. The first type of error is examined in this
chapter. The second type is examined in Chapter 6.

The effects of the filter design processes are assessed by numerically simulating
the beamformer behavior, assuming ideal system components. Simulations were per-
formed on individually operating subarrays, as well as the complete four-octave sys-
tem. The individual subarray simulations were used to evaluate our 2-D FIR filter
design process, while the four-octave simulations also assess IIR filter performance

and interference between subarrays.

5.1 Individual subarray simulations

Simulations for the 1 - 2 kHz subarray show highly frequency-independent behavior
according to several measures of array performance. Results for the other three
subarrays are very similar.

Simulated data were obtained by using Equations 2.20 and 2.21 to compute the
planewave response for a large number of wavenumber-frequency values. For frequen-
cies within 1 - 2 kHz, Figure 5-1 shows the difference between these computed values

and the desired response. Note that this difference plot is almost indistinguishable
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from Figure 4-9, i.e., the performance is almost the best achievable using this design
method in conjunction with the specified array geometry and desired beampattern.

Out-of-band deviations from desired responses (i.e. deviations from zero) also
exist. Since a subarray’s out-of-band response is suppressed at least 30 dB by the
associated bandpass filter, the out-of-band deviations are not as serious and their
discussion is delayed to Section 5.3.

The in-band data are further interpreted in terms of the following measures of
array performance: 1) frequency response, 2) array pattern, and 3) beamwidth varia-
tions. These representations are displayed in Figure 5-2. The upper left subplot shows
frequency responses at selected incidence angles; the upper right subplot shows an-
gular responses at selected frequencies; the lower left subplot is a mesh plot showing
all available in-band data; finally, the lower right subplot shows the beamwidths at
various thresholds of beamwidth.

The subplots all show behavior which is extremely frequency-independent. The
frequency response variations around the mainlobe are well under 1 dB, and probably
inaudible. The array patterns are nearly coincident. The mesh plot shows few fre-
quency variations, except for a slight ripple (under 2 dB) in the height of the endfire
sidelobe, as well as some larger ripples (about 5 dB) in the frequency responses at
angles near the nulls. These latter ripples are to be expected, since the decibel scale
tends to magnify absolute deviations of numbers close to zero. Finally, the fourth
subplot shows that two-sided beamwidths vary by less than a degree over the octave.

Finally, Figure 5-3 shows that the nulls are extremely constant with frequency,

varying by less than a degree over the frequency band of interest.

5.2 Four-octave simulations

Figures 5-4 and 5-5 show the behavior of the entire system of filters (which was
shown in block form in Figure 3-3). The first figure shows the magnitude responses
at broadside (0 degrees), the half-power direction (9.8 degrees), the direction of the

first null (21 degrees), and at an intermediate angle of 15 degrees. The behavior is
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Figure 5-2: Simulated single-octave performance measurements.

57



1

:

ook - ;

Frequency [Hz]
8 3

-
T

1100F . P P . . -

1m A 1 1 — L .. 1 4
0 10 20 30 40 50 60 70 80 80

Incidence angle [dagrees]

Figure 5-3: Simulated null locations of the single-octave beamformer.

close to ideal with two notable exceptions: the ripples introduced by the combined
effect of four bandpass filters (essentially the result of multiplication by the curve
shown in Figure 3-4, which is the sum of the four bandpass filter responses), and the
tendency toward omnidirectionality below 500 Hz. The former effect, as discussed in
Section 3.3.1 is not severe, and the latter effect for this design approach is a limitation
imposed by the array length.

In contrast to the single-octave performance, the four-octave performance exhibits
a null having somewhat greater variations with frequency (see Figure 5-5), as well
as some erratic locations of zero-response above 7.2 kHz. However, the null location
still only varies by about 3 degrees. Also, the apparent irregularities above 7.2 kHz
can be ignored since they occur at frequencies where all four subarray responses are

greatly attenuated (see Figure 5-6).
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Figure 5-6: Responses of IIR bandpass filters

5.3 Elemental filter magnitude responses

The elemental filter magnitude responses are displayed and discussed in this section.
Examining these responses is important since the out-of-band frequencies were not
tightly controlled by the design process and may exhibit unexpected behavior.

The data for all 44 elemental filters are shown in Figures 5-7 through 5-10. The
elements are numbered from -5 to 5, in accordance with the convention adopted in
Chapter 2.

The filter magnitude responses are given in two representations; on a per element
basis as a set of frequency responses (top six subplots of each of Figures 5-7 through
5-10), and on a per frequency basis as a set of array shading patterns (bottom six
subgraphs of each of the figures).

The first representation illustrates the desired and achieved magnitude responses.
The desired responses are the constraints located by the circles on the graphs. The

in-band desired response constraints are marked additionally by x’s. The achieved
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response functions are then superimposed, and pass through all the constraints.

Since the in-band errors have already been closely analyzed, the elemental filter
responses are now examined in terms of out-of-band errors. Most of the elemental
filters have out-of-band responses with the same or lower magnitude than the peak
in-band response. These deviations are probably adequately suppressed by the 30 dB3
stopband rejection of the bandpass filters. The notable exception is the 4 - 8 kHz
subarray, in which the DC responses of several elemental filters are between 10 dB and
20 dB above the peak in-band response. Since there were no performance guarantees
below 500 Hz, the low frequency behavior is not a serious issue. However, the elevated
out-of-band responses extend up to 1 kHz for two of the filters (corresponding to
elements 3 and 5), and might be expected to interfere with the lowest subarray.
However, no unexpected disturbances are apparent in Figure 5-5. Thus, the out-of-
band errors apparently do not degrade system performance.

Finally, the magnitude responses are also represented in the form of the array
shading at selected frequencies within the 1 - 2 kHz octave. These pictures provide
intuitive insight into the operations of the beamforming algorithm. The array shading
is seen to approximate a boxcar whose width shrinks and height grows in proportion
to frequency. Indeed, this simple “shrinking-aperture” model has been explicitly and

elegantly used in at least one other frequency-invariant beamforming scheme [25].
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Figure 5-8: Magnitude responses and array shadings for 1 kHz - 2 kHz subarray.
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Figure 5-9: Magnitude responses and array shadings for 2 kHz - 4 kHz subarray.
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Figure 5-10: Magnitude responses and array shadings for 4 kHz - 8 kHz subarray.
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Chapter 6

Performance measurements

The real-time beamformer far-field responses were physically measured, and then
compared with the simulations computed in Chapter 5. These measurements were
used to identify the effects of system components (particularly transducers) with
non-ideal behavior. As with the simulations, measurements were made on individual

octaves, as well as on the system as a whole.

6.1 Experimental setup

All measurements were made in the anechoic chamber at the Murray Hill location of
AT&T Bell Laboratories. A loudspeaker was placed in one corner of the chamber,
while the array was mounted horizontally on a rotating shaft suspended from the
ceiling at the other corner of the chamber. The array was positioned such that
the axes of symmetry of the dipolc microphones were all lying in a horizontal plane,
mimicking the intended real-world orientation. The array’s magnitude responses were
measured while rotating the array through a full circle in the presence of sinusoidal

signals emitted by the loudspeaker.
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6.2 Single-octave measurements

Figure 6-1 compares anechoic chamber measurements (solid lines) with computed
directivity patterns (dashed lines) at six frequencies selected within the octave of
interest (1 - 2 kHz). Each polar plot is scaled such that the peak is unity, thus
compensating for the frequency responses of the array and the measuring system
itself.

In general, there is good correspondence between the calculated and measured
values. In particular, none of the sidelobes are more than 3 dB higher than predicted.
Also, the nulls are all deeper than -20 dB. This level of performance represents
an improvement over previous results obtained with this hardware [14], and was
achieved by compensating the filter coeflicients for relative differences in microphone
sensitivities. Figure 6-2 shows the compensation factors, which are scale factors
obtained by taking reciprocals of the magnitude responses of the microphones at 1
kHz. Clearly, the assumption is made that inter-microphone differences can largely
be explained by a single scale factor. This assumption appears to be validated by the

measured results.

6.3 Four-octave measurements

Performance measurements are also made over the entire 8 kHz operating range.
Figure 6-3 shows the beamformer’s frequency response to signals arriving at broadside
(zero incidence angle). Figure 6-4 shows responses, relative to the broadside response,
for signals with incidence angles of 10 and 20 degrees. The latter figure shows that
the relative responses are quite frequency independent, with attenuations near 4 dB
(0 = 10 degrees), and 18 dB (8 = 20 degrees). Such frequency-independence was one
of the main design goals.

The broadside response is not as well behaved, showing a marked low-pass char-
acteristic, in addition to other irregularities. The low-pass effect is principally due

to the frequency response of the test equipment (particularly the loudspeaker used
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Figure 6-2: Correction factors for inter-microphone variations.

to generate test signals), as well as the microphones in the array. The broadside
response also drops significantly (nearly 20 dB in one case) at the transition frequen-
cies between adjacent octaves. These notches arise from phase differences between the
outputs of adjacent subarrays at these transition frequencies. The perceptual impact
of these notches is unclear; they can probably be removed using a technique called
phase centering [14], in which the bandpass filters for each subarray are designed to

have the same relative phases.
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Chapter 7

Conclusions and future directions

A highly frequency-independent beamformer was designed, simulated, implemented,
and experimentally evaluated.

This design operates over nearly a four-octave range, from 500 Hz to 7.2 kHz, and
features a harmonically nested array structure combined with a filter-and-sum signal
processing structure. The array structure allows a hardware-efficient implementa-
tion, while the filter-and-sum approach provides the flexibility needed to control the
beamformer’s frequency-variations.

Simulated results show very small differences from ideal frequency-independent
behavior (most plane-wave responses differ from ideal by under 1% of peak plane-wave
response). Differences for experimental responses are somewhat larger, but are still
under 5% of the peak plane-wave response. In particular, experimentally measured
nulls are all more than 20 dB deep, which is probably adequate for operation in typical
room environments. Finally, the null directions are extremely frequency-independent
in both simulated and measured data, thereby enabling broadband cancellation along
specific directions.

The following sections describe major directions for future work.
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7.1 Higher dimensional broadband arrays

Conceptually, our approach easily extends to two-dimensional (planar) arrays. In-
deed, the design problem then becomes analogous to three-dimensional filter design.
However, implementational problems are great due to the large array structures and
high signal processing demands. One active area of investigation involves a parallel
architecture called a systolic array, which can efficiently execute common beamform-
ing tasks using a network of processors in which only adjacent processors are actually

required to exchange information.

7.2 Computational efficiency via subband process-
ing
Our harmonically nested structure is amenable to subband processing, significantly
reducing the lengths of the elemental FIR filters. This technique relies on the fact
that the lower three of the four subarrays do not need to be sampled at 16 kHz, since
the upper limit of the signals they process is much less than 8 kHz. For example,
the 500 Hz - 1 kHz subarray signals could be downsampled by a factor of eight (after
suitable anti-alias filtering), likewise shortening the lengths of the associated FIR
filters. Treating all the subarrays in this manner reduces the total number of FIR
coefficients by a factor of almost four. The tradeoffs are the addition of a relatively

short IIR filter before each elemental filter, and the addition of a single interpolation

(upsampling) filter at each subarray output.

7.3 Adaptive frequency-independent beamform-
ing

Real-world situations are often dynamic. Signal sources may move (e.g. if they are
people), while receivers may alsc be mobile, as in cellular communications. Such

environments may require adaptive beamformers.
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A fully adaptive filter-and-sum beamformer could have a large number of adaptive
parameters, since each coefficient of each elemental filter is in principle adjustable.
Full adaptivity is computationally expensive, and probably unnecessary. We describe
a much more economical partially adaptive system:

Consider a basis set of beams having the property that the mainlobe of each beam
coincides with a null of each of the other beams (so-called Rayleigh-spaced beams).
Our algorithm can then be carried out for each of the beamshapes in this basis set,
yielding a set of pre-formed frequency-independent beams. An arbitrary beamshape
can be formed by an appropriate linear combination of the pre-formed beams. Thus,
broadband adaptive behavior is achieved with no more adaptive parameters than in

a typical narrowband adaptive beamformer.
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Appendix A

Review of basic beamforming

terminology and concepts

A beamformer is a transducer array that transmits or receives energy in a directionally
selective manner. The following discussion introduces basic beamforming jargon in
the context of a simple beamforming receiver. The concepts apply equally well to

beamforming transmitters.

A.1 Array pattern

We consider the following simple beamformer: 11 identical, uniformly spaced, collinear
microphones whose outputs are directly summed to form the beamformer output.
Assume further that this beamformer exists in a narrowband world in which all prop-
agating waves have a wavelength of twice the inter-element spacing.

A convenient way of characterizing this beamformer is by considering its response
to sinusoidal plane waves. Figure A-1 plots the response versus plane-wave propaga-
tion direction. This figure can be called the array pattern, beampattern, or far-field
response. This figure assumes that the elements lie on the z-axis, which is shown by
the line piercing the center of the structure.

This array is said to be steered to broadside, since it is most sensitive to plane

waves propagating in directions perpendicular to the array axis. Directions which are
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Figure A-1: Array pattern in three dimensions.

parallel to the array axis are also important, and are referred to as endfire.

Several features of the array pattern are noteworthy. The central bulge which is
bisected by the y-z plane is called the mainlobe, while the smaller conical ridges on
either side of it are called sidelobes. The regions of zero response between adjacent
lobes are called nulls.

Since this pattern, and indeed any pattern corresponding to an array of collinear
omnidirectional elements, is circularly symmetric about the array axis, the array
response can be viewed in cross section without any loss of information. This is
illustrated in Figure A-2 which is the intersection of the previous figure and the z-y

plane. All the features identified before still exist in the polar response.

A.2 Shading

By varying the weights of the elements before summing them, one can produce dif-

ferent array patterns. This process can be termed weighting, shading, or sometimes
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Figure A-2: Cross section of array pattern containing the array axis.

tapering. Appropriately chosen weights can lower the sidelobe level, usually at the
cost of broadening the mainlobe. A well-known technique for achieving optimally
low (in a minimax sense) sidelobes is described by Dolph [3]. Figure A-3 shows an

application of Dolph’s technique to produce a set of -25 dB sidelobes.

A.3 Steering

Steering is the adjustment of time or phase delays to electronically aim array lobes.
Figure A-4 shows the array pattern for our example array when the mainlobe is
steered to endfire. Note that the mainlobe has a larger angular extent at endfire than

it did at broadside. This is typical behavior.
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Figure A-3: Example array pattern due to dolph-chebyshev weighting.

A.4 Aliasing and spatial Sampling

In our initial example, the interelement spacing was carefully chosen to be one-half the
signal wavelength. If one attempts to economize using a larger interelement spacing,
a phenomenon called aliasing may occur.

For example, suppose the interelement spacing were exactly one wavelength, and
the wavefield consisted of a single plane-wave having an unknown direction of prop-
agation. To this array, waves arriving at broadside are indistinguishable from those
arriving at endfire, since the element outputs are precisely in phase in both cases.
The term aliasing refers to this ambiguity with respect to propagation direction.

It is well known that an array which meets spatial sampling requirements (i.e.
interelement spacing less than A/2) does not suffer from aliasing at any steering
angle. The spatial sampling requirement can be relaxed in some cases, i.e. when

arrival directions are known a priori.
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Figure A-4: Example array steered to endfire (180 degrees). Array pattern illustrates
grating lobe at opposite direction.
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A.5 Far-field vs. near-field

So far, the discussion has only considered the array’s response to plane waves. In real
environments, acoustic waves often emanate from a finite distance from the array, and
therefore appear to be spherical waves. Still, the plane-wave response is useful when
the distance from the array to the source is much greater than the span of the array.
In these cases, the spherical wave's curvature is low enough that the wave appears
planar in the vicinity of the array. Such sources are said to lie in the far-field of the
array. Conversely, the near-field consists of the locations for which the plane-wave

approximation is inaccurate.

A.6 Pattern multiplication

Another basic idea concerns the nature of the individual transducers in the arrays.
The previous discussion has assumed omnidirecticnal transducers. However, direc-
tional transducers are commonly used to augment the directional behavior of the
overall array. For a given direction, the response of an array of identical directional
transducers is the product of the transducer response at that direction with the re-
sponse of the array if it were made using omnidirectional elements.

For example, the hardware array used in this thesis contains microphones whose
elements have a dipole response. The array has a spatial response similar to that
shown in Figure A-5. This has the advantage of reducing the sensitivity to sounds
arriving from endfire directions (as well as from the floor or ceiling,. If these sounds
are a priori unlikely to be the desired signal, some improvement in signal to noise

ratio may be achieved.
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Appendix B

Prior solutions

Prior attempts to reduce the frequency-dependent behavior of transducer arrays gen-
erally aimed at the simpler problem of achieving a frequency-independent mainlobe
width. These techniques are called constant-beamwidth solutions. Other techniques
rely on transducers with novel geometric properties. A representative sample of such

techniques is given in this appendix.

B.1 SHA technique

An especially simple approach was independently proposed by Smith [23] and Hixson
and Au (8], hence the acronym. This technique has relatively low hardware require-

ments, and is applicable to a wide variety of array geometries.

B.1.1 Method

The underlying observation is that two beams of different widths can be averaged
to form a beam of intermediate width. A beamformer which operates over a desired
frequency range is thus constructed by building two beamformers: one has the desired
beamshape at the lowest frequency, and the other has the desired beamshape at the
highest frequency of interest. At intermediate frequencies, some linear combination

of the two subarrays can often produce a satisfactory beamshape. Thus, a pair of
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complementary filters is required, which controls the relative contributions of each

subarray.

B.1.2 Example

An example is considered, and analyzed. In this example, the array transducers are
as shown in Figure B-1. The complementary filters are generated by satisfying two
constraints: 1) the mainlobe peak response must be frequency invariant, and 2) the
half-power beamwidth must be frequency invariant. The example array is designed

for operation over 1 - 2 kHz.

B.1.3 Performance.

The example SHA beamformer hehaves well at directions between the half-power di-
rections. However, performance degrades as sources move farther from the mainlobe.
Figure B-2 shows variations of over 20 dB in the frequency response to sources located
17 degrees from broadside. Even further away from the mainlobe are the nulls, which

are highly frequency-dependent.

B.1.4 Anomalous sidelobe

This SHA example also exemplifies an artifact termed the anomalous sidelobe [26).
This extra lobe is caused by the fact that the longer of the two constituent subarrays
was designed for 1 kHz operation, and does not meet spatial sampling requirements
at other frequencies in the 1 - 2 kHz octave. Thus, at some steering angles, an extra
lobe appears which is essentially a grating lobe of thé l(;nger subarray, attenuated by
the filter associated with that subarray. This seemingly clear observation was first
noted in the literature by Webster [26] 20 years after the original papers by Smith,
Hixson and Au.

This anomalous lobe can be removed by decreasing the inter-element spacing
in the longer subarray. Interestingly, this subarray does not need to meet the half-

wavelength spatial sampling requirement throughout the entire octave. This is due to
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Figure B-1: Subarrays used to form the SHA array.

the fact that the longer subarray’s filter tends to have lowpass characteristics, thereby
attenuating its output at exactly the frequencies at which the aliasing problem should
be most acute. Thus, some hardware economization is possible since one can violate
the hali-wavelength requirement at some higher frequencies in the octave without

adverse effect.

B.2 SHA with hexagonal array

An interesting configuration reported by Lardies [11] consists of two concentric rings
each having six elements spaced uniformly along the circumference. The outer ring
has exactly twice the radius of the inner ring.

When properly weighted, this array has constant beamwidth, as in the linear
arrays described above, and remarkably constant null placement. This configuration
appears to deserve further examination, to determine, for example, if the frequency-

independent null property is retained for rings with more then six elements.

B.3 Multiple beamforming

An important advantage of discrete transducer arrays is their ability to formn multiple
simultaneous beams. This capability leads to another scheme for constant-beamwidth
heamforming.

Specifically, a number of beams is formed such that at some lower frequency
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Figure B-2: Performance of SHA array

limit the beams coincide. and that as frequency increases the beams are gradually
steered outward in such a way that the shoulder of the outermost pair of heamns
stavs in the same spot. Such a scheme was proposed in 1957 by Tucker (24]. An
analog implementation was described in 1961 by Morris {161, and a digital solution
by Goodwin [5; arrived much later. When analyzed, this is shown to require a filter
having affine phase, i.c. phase is a linear function of frequency, with a possible constam
offser 5. 24}

This approach is attractive partly because of an elegant analog delay line im-
plementation due to Smith {23]. However, when implemented digitally, this scheme
requires the construction of a set of arbitrary elemental filters, and thus has no obvious

computational advantage over the filter-and-sum beamformer.
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Frequency responses Amay pattem at 1, 1.5, 2 kHz
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Figure B-4: Constant width beams approximated by overlapping several narrower
beams

B.3.1 Performance

A five-beam, one-octave system is designed and simulated. The results are displayed
in Figure B-4.

This approach actually achieves some constancy in the location of the null pair
immediately flanking the mainlobe. The frequency responses are acceptably flat near
the mainlobe, but exhibit wide variations away from the mainlobe. However, other

nulls are not so well behaved.

B.4 Curved transducer surfaces

Several studies have involved transducers with special surface geometries that natu-
rally lead to frequency-independent beamwidths above a certain threshold frequency
which is determined by the transducer dimensions. These techniques are most use-

ful in ultrasonic applications where wavelengths are conveniently small. Transducers
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having spherical surfaces are described by a number of researchers [9, 15, 22]. Morris
[15] also describes a transducer having discrete elements placed on a hyperbolic-
paraboloid. These configurations do achieve fairly constant mainlobe widths, but do

not control null location.

91



92



Appendix C

FIR filter design using

non-uniform frequency sampling

This appendix describes a filter design technique which is well suited for use in the

2.D filter design algorithm of Chapter 4.

C.1 Review of uniform frequency sampling

Frequency sampling is a simple, noniterative method of FIR filter design which can
be applied to design problems requiring arbitrary frequency responses. Briefly, filter
design occurs by sampling the desired response at N equally spaced points in the
frequency range [— %, %], where T is the sampling period. The desired coefficients
are then obtained by an inverse discrete Fourier transform, yielding a filter having
exactly the desired response at the N chosen points (the frequency samples). Some
filter design problems may leave the desired response unspecified in certain regions
(e.g. between the passband and stopbands). Sample points which happen to fall
in unconstrained regions may be adjusted via optimization techniques such as lin-
ear programming to reduce the error between the N frequency samples. A detailed

discussion is given by Rabiner and Gold [21].

93



C.2 Non-uniform spacing

Linear programming is not the only method of trading off response accuracy in some
frequency bands versus others. A simpler method is that of non-uniform frequency
sampling, in which the frequency samples are concentrated more densely in the regions
where accurate response is desired.

The approach is now mathematically developed for linear-phase filters. Consider
a list of frequencies wy,w, ...wy, 0 < w; < 7, and a corresponding list of real desired

responses, one for each of the frequencies listed: Hy, H,,... Hy. Now, an FIR filter

with taps [a, ,an-y , -+ ,80, - ,an_1 ,ay,] has frequency response:
. A’
H(e™)=ag+2 ) a,cos(nw), (C.1)

n=|1

where w is a normalized frequency variable. Substituting all N + 1 constraints into

Equation C.1 yields a set of simultaneous equations which can be expressed in matrix

form: ) ] ) L )
H, 1 coswy -+ cos Nwy ag
Hl 1 COSwy -+ COS Nu.q 201
= (C.2)
] Hy ] | 1 coswy -+ cos Nwy 11 2an ]

All the elements in the vector on the left-hand-side and the matrix on the right-
hand-side of the equation are known. Thus, the coefficients a; can be computed by
premultiplying each side of the equation by the inverse of the matrix. Note that
when the frequency samples are equally spaced, this equation computes a Fourier

transform.

C.3 Example

The following example illustrates the application of this method, as well as the prac-
tical aspects involved when selecting frequency samples. This example uses a filter

which is representative of those encountered in the designed efforts of this thesis.
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Figure C-1: Magnitude response of a naively designed FIR filter. The circles represent
samples of the desired response of an actual filter encountered when computing the
coefficients that approximate the desired response depicted earlier in this chapter.

Figure C-1 shows a naive design attempt, in which six frequency samples are
selected within the octave of interest (0.5 - 1 kHz), and no out-of-band samples are
selected. While the filter order of six is admirably low and the response is indeed
correct at the six frequencies, the out-of-band response reaches almost 200 dB al;ovc
the in-band response. While it is mathematically possible to later suppress this out-
of-band response with a bandpass filter, considerable roundoff error would result in a
practical systein. For example, a typical DSP has 24-bit mantissas, corresponding to
a decibel value of 201log(2%) = 144.5.

A practical solution is to add extra constraints outside of the octave band, resulting
in a filter of somewhat higher order, but with much lower out-of-band responses.
If a certain increase in the out-of-band response, say 20 dB, is deemed tolerable,
then the out-of-band constraints can be chosen to have a wider spacing than the

in-band constraints. This is shown in Figure C-2, in which 37 additional out-of-band
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Figure C-2: Magnitude response of FIR filter designed to the same specifications as in
the previous figure, but with additional constraints outside of the region of interest.

constraints are chosen to smoothly continue the responses at the edges of the octave
region.

The exact number of additional out-of-band constraints depends on the desired
performance. If the out-of-band constraints had been chosen closer together, for
example with the same spacing as the in-band constraints, then the out-of-band
responses would be very well controlled. However, this would have required 75 extra

constraints, instead of 37.
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Appendix D

Broadband dolph chebyshev

beamformer

In Chapter 4, a sampling grid was defined, containing a set of horizontal lines which
defined a set of narrowband beamforming problems into which the broadband problem
was decomposed. Reexamination of the narrowband solutions leads to new variations
on our broadband beamforming design.

This appendix discusses a design variation in which the narrowband problems
are solved using the dolph-chebyshev approach, yielding sidelobes which are in some

sense optimally low for a given beamwidth.

D.1 Dolph-Chebyshev design

The Dolph-Chebyshev algorithm presented a moderate challenge in itself. The basic
problem was to design an array with a given number of elements and a specific 3
dB beamwidth. The mathematical software package MATLAB contains a function
which designs Dolph-Chebyshev arrays given the desired ripple level, not the desired
beamwidth. Since this did not suit our objectives, the problem had to be solved from

more basic principles. These principles were:

1. Uniform linear array design problems can be cast as equivalent FIR filter design

problems, as was shown in Section 2.5.
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2. Such an FIR filter design problem can be recast as an equivalent polynomzial ap-
prozimation problem, since any FIR filter magnitude response can be expressed
exactly as a polynomial in x = cosw, w being the frequency in radians per
sample period. This equivalence is a key step in the Parks-McClellan FIR filter

design algorithm [19, 20], and is discussed in many textbook treatments such

as that of Oppenheim and Schafer [17, pp. 466-7].

3. The Chebyshev polynomials are equiripple in the interval [—1 1]. A linear
transformation in the polynomial variable can stretch or compress the equiripple

region to occupy any desired interval.

The design constraints described at the beginning of this appendix can thus be
transformed into a set of constraints on an equivalent polynomial approximation

problem. The transformations are described as follows:

1. Constraining the half power points to occur at § = 6, implies that the equiv-
alent FIR lowpass filter has its 3 dB cutoff at w = 2wkdsin 6y, where k is the
planewave’s spatial frequency (radians/meter), and w is the frequency parame-
ter (radians/sample) of the FIR filter. Thus, the equivalent polynomial passes
through the point (zo,v/2/2), where o = cos wp.

2. The equiripple-sidelobe requirement. implies that the corresponding FIR filter
is lowpass with equiripple sidelobes. The equivalent polynomial then must be

equiripple in a region whose left edge is at cosw/2 = —1.

One more constraint is needed, and is provided by an arbitrary scale factor which
makes the broadside gain equal to unity. This implies that the equivalent polyno-
mial passes through the point (cos0,1). Now, if T,(z) is the nth degree Chebyshev

polynomial, then the required polynomial is of the form:

P(z) = a Ty(b(z + 1) — 1). (D.1)
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Since P(1) = 1, we can find a in terms of b:

1

“T T (2-1)

Combining the previous two equations with the half power constraint, P(z,) = V2

yields the following equation in the unknown b:

_ Tu(b(ze +1) - 1)
V2= Tn(02b— 1) (D-3)

where 1o = cosw as defined above. This is solved by expressing the previous equation
as a polynomial in b, and solving for the largest root, since smailer roots will satisfy
the 3 dB constraint using one of the “ripples” of the Chebyshev polynomial, rather
than the “tail” portion outside of the equi-amplitude ripples.

Knowing b determines a, and in turn P(z). Finally, the filter coefficients can be

determined from the polynomial coefficients using the equivalence already described.

D.2 Performance

As in the main body of this thesis, the FIR filter design process was evaluated both
by computer simulation and by measurements performed on a real-time implementa-
tion. The simulation results are shown in Figure D-1. The significant features of the
simulation are the extremely low sidelobes towards the upper end of the octave, and
the small change in mainlobe shape with frequency. The null performance is relatively
unimportant at the higher frequencies, since the sidelobe levels are low enough that
the entire region outside the mainlobe is effectively nulled.

The measured performance is shown in Figure D-2 for one of the four octaves.
(The other three are similar, except for a lower signal to noise ratio at the higher
frequencies.) The patterns above 1400 Hz do show extraneous sidelobes; however,

most of these lobes are over 30 dB below the response at the center of the mainlobe.
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Frequency responses Array pattem at 1, 1.5, 2 kHz
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Figure D-1: Simulated performance of minimax design.
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