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Architectural design is highly dependent on the architect's understanding of space. However,
in the era of digital revolution, when efficiency and economy are the major concerns in most
industrial fields, whether a computer can gain human-like understanding to read and
operate space and assist with its design and analysis remains a question.

This thesis focuses on the geometrical aspects of spatial awareness. Machine systems that
have similar behaviors to humans' perceptions of space in geometric aspects will be
developed employing techniques such as isovist and machine learning, and trained with
open-sourced datasets, self-generated datasets or crowdsourced datasets. The proposed
systems simulate behaviors including space composition classification, space scene
classification, 3D reconstruction of space, space rating and algebraic operations of space.
These aspects cover topics ranging from pure geometrical understandings to semantic
reasoning and emotional feelings of space.

The proposed systems are examined in two ways. Firstly, they are applied to a real-time
space evaluation modeling interface, which gives a user instant insights about the scene
being constructed; Secondly, they are also undertaken in the spatial analysis of existing
architectural designs, namely small designs by Mies van der Rohe and Aldo van Eyck. The
case studies conducted validate that this methodology works well in understanding local
spatial conditions, and that it can be helpful either as a design aid tool or in spatial analysis.
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1 INTRODUCTION

Architectural design is human-centric. A key component is the understanding and

experiencing of space, which is usually brought into play by humans. For example, walking

on Broadway in New York City, one can feel stressed due to the height of the high-rise

buildings and narrow streets. In designing an architectural masterpiece, each wall and

column is placed deliberately to form a harmonious spatial experience. When a nice piece

of furniture is placed carefully in the corner of a room, it creates a unique spatial influence

that would not exist otherwise.

Unlike a machine that is designed only by following specifications, architectural space is

harmonious, easy to use and provides creative opportunities thanks to the engagement of a

human's subjective perception. Architecture is not only a design-by-program process by

arranging individual elements (such as walls and columns), it is also a design-by-experience

craft. An architect will have to "orient" himself/herself in this architectural space to acquire

experience, either in their imagination or in a model, and redesign the whole space and thus

the experience according to their subjective judgment of it.

However, since architectural design is human-centric, and concept - Form -- Result

almost every design step involving subjective perception is

human-based, its efficiency and economy can hardly be ,. .
space

improved, even in the era of digital revolution. Compared to

the design tools dating back to medieval times', the current

computer-aided design (CAD) tools in the industry are still Experience

within the concept of "pens and paper," but with a digital
interface. Although computers have a good grasp of the experience design of an
geometrical properties of architectural elements, they tend to architectural design

have difficulty defining space, which is ambiguous. With the

use of computers, it is possible to obtain statistical reports and cost estimates for a

construction project, including the details of where and how many nails are used in a

building. Even with a generative design system, a building fulfilling certain numerical

objectives can be "computed." Nevertheless, it is hard to numerically describe a building's

spatial experience, such as private vs. public, dynamic vs. static, conforming vs. inconsistent,

interesting vs. dull. This limitation results in two dead-ends: human-friendly architecture

takes a "traditional" low-efficiency process to design, yet "computer generated" buildings

are hardly human-friendly.

1 "The History of Blueprints - PlanGrid Construction Productivity Blog." 12 Apr. 2016,
https://blog.plangrid.com/2016/04/the-history-of-blueprints/. Accessed 20 May. 2018.
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Is it possible to find a mid-ground, a solution where designs with a satisfactory spatial

experience can be produced more efficiently with the aid of computers? I believe the key
lies in developing machines' perception of architectural space. Rooted in a human's

perception of space, a computer system can be designed and attempt to achieve some
human-like perception tasks. If a computer is capable of reading, computing, and operating
space to some extent, CAD tools can help designers with an extra dimension: the perception
of space. With a computer that has space awareness, a designer can easily and more
efficiently evaluate the spatial quality of a design, can iteratively get feedback in every
adjustment of the design process, can reconstruct the semantic model of a scene, and can
even uncover unprecedented design opportunities, as the nuance of experience can be
evaluated more efficiently once it can be computed.

Human perception gains an understanding of a scene through vision and awareness.
According to David Marr's hypothesis about human vision (Section 2.2), from a computation
point of view, "when a human interprets a visual scene, the brain first creates a '2.5-D
sketch' of the objects it contained - a representation of just those surfaces of the objects
facing the viewer. Then, from the 2.5-D sketch - not the raw visual information about the
scene - the brain infers the full, three-dimensional shapes of the objects." The subjective
feeling and personal experience of space, which eventually helps to shape design, is then
inferred from this geometrical awareness.

In that sense, there are two key processes the human brain undergoes in understanding the
spatiality of space: (1) Automatically filter out visual noises and construct the "2.5-D sketch"
of space that represents the surfaces of the objects facing the viewer. (2) From the "2.5-D
sketch," infer the subjective experience and feeling of space or, in other words, high-level
features of space. From my point of view, they are also the critical processes in building
machines' perception of space systems - systems that have similar behaviors to a human's
perception of space.

Isovist (Section 2.3), or an observation point along with the region can be seen from the
observation point in space, is a computation method mainly used in sight line analysis.
Benedikt concluded that some computation methods with the low-level features of Isovist,
such as area, perimeter, and complexity, can be applied. However, isovists can also be
applied in acquiring the panoramic depth of space, which is the geometric measurement of
a "2.5-D Sketch", without involving the human eye and brain. By measuring the distances
from the viewpoint to every point on the boundary of its isovist, a panoramic depth sample

9



can be acquired. Some isovist backgrounds are introduced in Section 2.3, and the
panoramic depth sampling method is illustrated in Section 3.1.

The recent breakthroughs in machine learning and deep learning (or artificial deep neural
network) in the field of computer science and artificial intelligence brought new possibilities
to other fields (Section 2.4). Deep learning has proven useful in areas involving language
processing 2 and computer vision3 as it has excellent performance in high-level feature
extraction. Artificial deep convolutional neural networks (DCNN) have been proven to have a
performance similar to human vision in certain contexts 4. High-level features can be
extracted from input vision data by running through a deep multi-layer network and
eventually forming a latent vector or feature vector that embeds abstract concepts related
to the system's training targets. This ability allows for exploration of high-level or
awareness-related feature extraction of a visual input, such as the panoramic depth image
of a space.

It is very likely that simulating actual human perception of space will not be possible in the
near future, but it is possible to simulate its behavior by considering it as a prediction
problem in machine learning. By sampling the depth of space carefully using the specially
developed methodology based on isovists and applying machine learning algorithms on
sampled datasets, systems can be trained to make preliminary recognition, prediction and
rating of a space from its geometric aspects.

In Section 3, based on the experiments conducted, systems that gain human-like
perceptions of space so that they can be applied to help with spatial design and analysis are
proposed. The proposed systems simulate behaviors including space composition
classification, space scene classification, space 3d reconstruction, space rating and algebraic
operations of space. These aspects cover topics ranging from pure geometrical
understandings to semantic reasoning and emotional feelings of space.

In Section 4, using case studies, the proposed systems are examined in two ways. Firstly,
they are applied to a real-time space evaluation modeling interface, which gives a user
instant insights and modeling suggestions about the scene being constructed. Secondly,

2 Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. "Speech recognition with deep
recurrent neural networks." Acoustics, speech and signal processing (icassp), 2013 ieee international
conference on. IEEE, 2013.
3 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." Advances in neural information processing systems. 2012.
4 Kheradpisheh, Saeed Reza, et al. "Deep networks can resemble human feed-forward vision in
invariant object recognition." Scientific reports 6 (2016): 32672.
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they are utilized in the spatial analysis of existing architectural designs, namely small
designs by Mies van der Rohe and Aldo van Eyck. The case studies validate that this
methodology works well in understanding local spatial conditions, and it can be helpful
either as a design aid tool or in spatial analysis.
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2 BACKGROUND

2.1 SPace and Archilectural Design

"Space" started to become a major concern in the field of architecture since the forming of

modern architecture when the development of structural engineering gives architects more

freedom in creating spatial experiences in comparison to older times when space had to

follow the forms of its physical structure more strictly. "Space," following other terms such

as "Design" and "Form," became one of the fundamental concepts of modern architecture.

In 1893, August Schmarsowl first suggested the word "raum" ("space" in German) as the

key of architecture design and proposed the concept of "spatial construct," and it is a major

landmark in the study of architectural space. However, the emergence of "space" is more

than a coincidence, but a consequence of multiple factors. Different concepts and theories

related to "Space" and "Design" had been proposed and discussed over the last two

centuries.

From Adrian Forty's discussion in the book "Words and Building: A Vocabulary of Modern

Architecture,"6 there were primarily three types of theories about space at the time:

(1) Consider space as a form of "enclosure." It was first proposed by Gottfried Semper

in 1852. This theory also emphasized the element of enclosure - walls. This concept

was widely accepted by practice architects and was rooted more in the "physicality"

of space.
(2) Consider space as a form of "continuum," and see interior and exterior space

connected and extendable. Instead of the "physicality" shown by "enclosure," the

"continuum" space show more of "spatiality."

(3) Consider space as an "extension of the body." It is originated from Schmarsow's

theory and suggests that one feels its space by the imaginary extension of the body

in a volume. This concept was later developed by Siegfried Ebeling that see space as

a "membrane" between a human and the exterior world, or a "field" that affects the

experience following the physiological feeling.

For a typical architecture space research, the concern lies in the compromise of the two

concepts about space: One is the "physicality" of space rooted on practice and physical

5 Schmarsow, August. "The essence of architectural creation." Empathy, Form and Space-Problems
in German Aesthetics 1893 (1873): 125-148.
6 Forty, Adrian, and Adrian Forty. Words and buildings: A vocabulary of modern architecture. Vol. 268.
London: Thames & Hudson, 2000.
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elements, meaning space is a specific object in real world which has its scale and dimension,

so that it can be operated by architects; The other is the abstract experience about space or
the "spatiality" of space which is evolved from the philosophical and conceptual awareness,

suggesting that space is a feature of human awareness, a mean of human perception. In

that sense, space is a coin that has two sides. However, from another point of view,
"physicality" and "spatiality" are two closely integrated parts that cannot be separated, they

are both concrete features of space. The "spatiality" of space is derived from "physicality"
through the participant of human perception.

The two meanings of space are very similar to the two strategies of architecture design.

One is a form oriented, design by program approach that design is preceded by configuring

the patterns, functions, proportions, layouts, and rules of physical elements; The other is an

experience-oriented design approach that design is undergone by crafting the human-

centric space and spatial experience, which has much in common with the "spatiality" space
theory. The latter considers that architecture is not standing by itself but interacts with its

users, while the former forms design by only following rules about physical elements.

A good example of the design by program strategy can be seen in "The four books of
architecture" by Palladio7 :

Of the loggia's, entries, halls, rooms, and of their form. The loggia's, for the most

par, are made in the fore and back front of the house, and are placed in the middle,
when only one is made, and on each side when there are two... The rooms ought to

be distributed on each side of the entry and hall; and it is to be observed, that those
on right correspond with those on the left...

In Palladio's description, an architecture is designed through the definition of specific
element rules, how everything fits together and functions together. That makes this process

more concrete and shares significant similarities with the "physicality" concept of space,
where space can be manipulated like an object.

Design by experience is another primary design strategy in practice. In this process, the

interaction between space and humans is a significant part of the design. Space is not only

integrated and connected as a whole, but it is also like an extension of the human body.

How a human feels a space -- by vision, by smell, by touch -- and every possible sensory of

7 Palladio, Andrea. The four books of architecture. Vol. 1. Courier Corporation, 1965.
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him/her becomes a contributing part of the design. That is where architecture becomes
harmonious, easy to use and full of creativity. Tadao Ando described his design like this 8:

When I design buildings, I think of the overall composition, much as the parts of a
body would fit together. On top of that, I think about how people will approach the
building and experience that space.

Architecture design is not only a process of forming an overall composition, but it is also a
human-centric craft shaped by experience. An architect will have to "orient" himself/herself
in space to acquire subjective experience, either in imagination, with a sketch, or in a model,
and redesign the whole space and thus the experience according to the subjective
perception of the environment.

In reality, an architectural design process is more like the combination of the two strategies,
is both about form and space. In his book Architecture: "Form, Space, and Order" 9, Francis
D.K. Ching stated the relationship between form and space:

Space constantly encompasses our being. Through the volume of space, we move,
see forms, hear sounds, feel breezes, smell the fragrances of a flower garden in
bloom. It is a material substance like wood or stone. Yet it is an inherently formless
vapor. Its visual form, its dimensions and scale, the quallty of its light-all of these
qualities depend on our perception of the spatial boundaries defined by elements of
form. As space begins to be captured, enclosed, molded, and organized by the
elements of mass, architecture comes into being."

According to Stiny's shape grammar theory'0 , forms are identified through human vision,
and different forms can be "embedded" to a single pattern. In that sense, considering its
"physicality" feature, space can be considered as a special type of form. This form
represents the volume enclosed by the other forms, and can be "embedded" or "fused" to
other forms through human perception (vision).

The process of "embedding" and "fusing" space from other enclosing elements by itself is
objective and deterministic, as it is purely a rule-determined geometrical operation -

8 "Spotlight: Tadao Ando I ArchDaily." 13 Sep. 2017, https://www.archdaily.com/427695/happy-
birthday-tadao-ando. Accessed 20 May. 2018.
9 Ching, Francis DK. Architecture: Form, space, and order. John Wiley & Sons, 2014.
10 Stiny, George. "Introduction to shape and shape grammars." Environment and planning B: planning
and design 7.3 (1980): 343-351.
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capturing the spatial boundaries used to enclose the volume. However, the experience and

perception of space is human-centric and is non-deterministic. It is very likely that the same

space volume will create a different spatial experience to different observers, even to the

same observer but in a different time. However, there might be some statistics or rules that

can suggest how experience is related to the volume of space.

As illustrated above, architectural design is the combination of form operation and

experience design. Based on an architect's subjective perception, he or she can "embed"

and "fuse" space from and to form, switching between the form-oriented design by program

approach, and the space-oriented design by experience approach, crafting a human-centric

space by manipulating physical elements. This process is undoubtedly closely connected to

one's subjective understanding of the spatial design.
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2.2 Slaves of Human Vision

The book by David Marr "Vision: A computational investigation into the human

representation and processing of visual information"" had a key role in the beginning and

rapid growth of computational neuroscience field dates back to 1979. Marr described vision

as a proceeding from a two-dimensional visual array (on the retina) as input to a three-

dimensional description of the scene as output.

Input , Primal 2.5-D 3D
Vision Sketch Sketch Representation

Figure 2.2-1: Stages of Human Vision, David Marr, "Vision," 1982.

According to Marr's stages of vision theory, when a human interprets a visual scene, he first

sees a primal sketch of it. The primal sketch is a mental representation corresponding to

local features of the stimulus. Light enters the retina and generates a patchwork of oriented

edges, bars, ends, and blobs. Computationally, it can be useful to think of the primal sketch

as a pixel array. That pixel array has not yet been unified with each other to generate a

coherent representation of the entire scene so that it will not encode the stereoscopic depth

information.

At the next stage of the process, the brain creates a "2.5-D Sketch" of the objects it

contained - a representation of just those surfaces of the objects facing the viewer. The

2.5D sketch represents that in reality we do not see all of our surroundings but construct

the viewer-centered three-dimensional view of our environment. This representation unifies

the pixels into a coherent representation of the scene's boundaries. It represents the

textures of the surfaces, separates figures from the ground, and uses shading and

stereoscopic information to infer the information about the depth of spatial boundaries.

Unlike the primal sketch, it does represent the bounded contours of objects, but it

represents those objects from a specific vantage point. So in this sense, every time a human

encounters the same object from a different vantage point, he or she ends up with a

different 2.5-D sketch.

In the last stage of the process, the vision system needs to determine that the

representations from different viewpoints are images of the same object. For that, Marr

supposes that the vision system generates structural descriptions. The brain uses

information in the 2.5-D sketch to infer what three-dimensional forms comprise the object

1 Marr, David. "Vision: A computational investigation into the human representation and processing
of visual information. MIT Press." Cambridge, Massachusetts (1982).
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that is currently being perceived. The resulting representation is a 3D model, and this

representation captures the entire three-dimensional structure of the scene, rather than

merely capturing depth information from a single viewpoint. The brain then stores the 3D

models in memory and matches these stored models against the models generated by what

we see at any future moment.

Input , Primal 2.5-D 3D
Vision Sketch Sketch Representation

'--- ......-- ,- Visual
Consciousness

Figure 2.2-2: Arise of visual consciousness

With Marr's theory in mind, Ray Jackendoff also discussed possible outcome of

consciousness in visual processing 2 . According to his theory, we do not have a visual

experience corresponding to the primal sketch, but only edges, blobs and other flat

disunified jumble. Nor do we have a visual experience corresponding to the 3D model stage.

Since 3D models are invariant across viewpoints, they abstract away local features that are

only presented from the specific points of view. Of Marr's three levels, only the 2.5-D sketch

corresponds to consciousness. From the 2.5-D sketch, we consciously experience a world of

surfaces and shapes oriented in different ways at various distances from us. From

Jackendoff's point of view, visual consciousness arises at a level of processing that is neither

too specific, nor too abstract. It arises at an intermediate level, a level that is between

discrete pixels and abstract models.

12Jackendoff, Ray. Consciousness and the computational mind. The MIT Press, 1987.
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2.3 Isovist

An isovist 3 is a computation method mainly used in studying space compositions and

sightlines. Benedikt first formally described the concept of isovist in 1979. An isovist is a set

of all points visible from a given vantage point in space and with respect to an environment.

The shape and size of an isovist are liable to change with position. A 2D isovist captures the

essential boundary of a 2D plan. Similarly, a 3D isovist, acquired by projecting rays

spherically, captures the spatial boundary of a three-dimensional space composition from an

observer's perspective. The figure below shows the isovists of two different spatial

compositions, in plan and section. The isovist, in gray shades, represents the differences of

spatial boundaries defined by different elements.

Mel
-Ui I

L-SHAPED WALL'S ISOVIST IN PLAN AND SECTION PARALLEL WALL'S ISOVIST IN PLAN AND SECTiON

Figure 2.3-1: Isovists of two different spatial compositions, in plan and section

The concept of isovist was widely utilized long before Benedikt's documentation about it in

1979. Dates back to as early as 1791, when Jeremy Bentham proposed the Panopticon

project, he used the concept of isovist to conduct sightline analysis on the prisoners in cells

and preachers outside'. Moreover, in most practices long after that, isovist was used in

sightline analysis.

13 Benedikt, Michael L. "To take hold of space: isovists and isovist fields." Environment and Planning
B: Planning and design 6.1 (1979): 47-65.
14 Steadman, Philip. "The contradictions of Jeremy Bentham's Panopticon penitentiary." Journal of
Bentham Studies 9 (2007): 1-31.
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Figure 2.3-2: Isovist applied in Jeremy Bentham's Panopticon penitentiary. (Source: Steadman, P.,
2007.)

Aside from the definition of "Isovist", Benedikt also proposed some applications of isovist in

spatial analysis. The major application is the concept that he calls isovist field. Different

visual representations of a given space can be generated using different measurements of

the isovist samples. The measurements he proposed include: (a) The area of the isovist. (b)

The real-surface perimeter of the isovist. (c) The occlusivity of the isovist. (d) The variance

of the radials. (e) The skewness of the radials. (f) The circularity of the isovist.

(a) (b)

Figure 2.3-3: The drawing of the isovist field measured by "Area" for Barcelona Pavilion designed by
Mies, and for a room off a hallway. (Source: Benedict, 1979).

These isovist fields are easy to get, as it is required to merely sample through every

observation point in a model, compute the measurement values, and plot them back to the

model. They can be helpful as they allow people to see additional layers of the geometric

20



space, they represent space in a better way compared to the raw isovist samples or the
model being sampled, and bring in regional visual representation about a specific
measurement of the space.

However, these traditional isovist fields can be of limited help to design, which is concerned
with experience over statistics. The isovist fields are plots of measurements based on low-
level handcrafted features of isovist samples. These measurements may be related to
experience to some extent, but it is certain that the relationship cannot be linear. For
example, the publicness of a space might have some relationship to the openness of it,
which is computed with the area of the isovist. But human's feeling of publicness hardly only
relies on how large the volume is, but the affordance of it. A corner space and a corridor
space may have the same openness measurement, but a corridor space is usually
considered more public.

Isovist is a deterministic representation of spatial boundaries since Isovist is purely
geometry oriented. One thing to notice is that an Isovist only captures the depth
information of the surrounding space compositions from the viewpoint. Other features of
the context such as material, texture, and lighting condition are ignored by an Isovist. It is
the form of representation that only keeps the spatial boundaries facing the viewpoint.

21



2.4 Machine learning

Machine learning is a data-driven approach capable of solving prediction problems through

learning from past observations or historical measurement datasets. A typical prediction

problem can be the prediction of the weather tomorrow, what people might purchase,

would someone like a specific movie, and so on.

Machine learning can be utilized in solving multiple types of prediction problems. Generally,

there are two main categories of them: supervised and unsupervised. Supervised machine

learning problems are problems where predictions are made based on a set of existing

categorized examples. Unsupervised machine learning problems are problems where there

is not a defined set of categories, but instead, the solver is expected

such as clustering.

Within supervised machine learning, the problems can be further

categorized into classification problem, and regression problem, as

listed below:
(1) Classification problem: A classification problem is a problem

where a model is trained to predict which category

something falls into, the data can include biological samples,

images, texts, and so on. Usually, for a classification

problem, there are already a set of predefined labels, and

the system outputs a predicted probability distribution for all

of the labels.

(2) Regression problem: Regression problems, on the other

hand, are problems where numerical predictions are made

on a continuous scale. Examples could be predicting the

stock price of a company or predicting the temperature

tomorrow based on historical data.

to re-organize the data,

classification

'++4
S+

Regression

0 e

0*@

00

Figure 2.4-1:
Concept of
classification and
regression in
machine learning
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2.4.1 Training of a supervised machine learning system

Training Data Trainin Model

Test Data Send to Classification/ Result
System Regression

Figure 2.4.1-1: Training and testing of a machine learning algorithm

Most of the data today are in an unstructured format, such as news articles, books, and

albums. It is not even possible to organize all the data by hand. Automated tools are

required to filter and organize the data according to our needs or preferences. It can be a

tough task to do it by writing down "if-then" rules, since it is time-consuming, cumbersome,

and would not perform well. Instead, it can be easier if just a small number of documents

are annotated first, and a machine learning algorithm can be trained to learn the "rules"

from the labels automatically, instead of writing the rules by hand. The set of an annotated

dataset which is then used for training the algorithm is known as the training set. With the

training set in hand, the machine learning algorithm tries to find an optimized classifier from

a set of predefined classifiers that can be used to do similar tasks most precisely on new

data to give. This process of optimizing classifier is the training of a machine learning model.

Unlike a typical programming task, a supervised machine learning system is developed

through training the model with a large training dataset. This dataset is a collection of

correctly annotated labels and is one of the most critical aspects of the success of the

machine learning system. Other than a proper training dataset, the quality of the classifier

set (such as the network architecture) and the algorithm used to optimize the classifier are

also crucial factors for a successful machine learning system.

The input to a machine learning system to be classified can be a sample, an image, or a

document. If it is shaped as an array, it can be denoted as vector x = [x 1, xd]T E Rd.

Possible labels of the system can be maybe dogs, cats, fish, and many other species. If

there are in total k labels, one label can be denoted as a vector of k dimensions, and the
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value of each position of the vector represents the status of a label. The values are binary,
representing the status are either positive or negative. So dog can be denoted as t =

[1, 0,..., 0] E RK, similarly cat can be t = [0,1,..., 0] E Rk.

The system that tries to classify an input is also called a classifier, denoted h. So the task of
the machine learning system is given an input x, it computes an output h(x), and that

output is also the result of the prediction. Any classifier, therefore, divides the space Rd into

regions that each represents a possible predicted label.

If the set of hypotheses about the rules that govern how labels are related to inputs,
or a set of classifiers can be denoted as H, then the goal of a learning algorithm is to

select one h E H based on the training set Sn, so that it would have the best chance of
correctly predicting for new inputs that were not a part of the training set.

The selection of h from H is done through the minimization of Loss. A Loss is a function to

compute how close the prediction and ground truth is on training sets. A Loss output is
larger than 0, and the smaller the value is, the closer the prediction is to its ground truth
labels. For label targets in the format similar to t = [0,1. 0] E Rk, a function called
Cross entropy loss 15 is utilized to computing Loss. Other label formats may end up using
other Loss computing functions. The formula for computing a Cross entropy loss can be
written as:

V~f(x) - t) = -t ln(f(x)) - (1- t) ln(1 - f(x))

2.4.2 Feature Vectors

A feature vector is meant to represent the input data to be predicted in a way that the
information pertaining to the prediction is more easily accessible.

A feature vector can either be the input vector itself, a hand-crafted vector dedicated for
prediction, or a latent vector computed through a neural network. Directly utilize the input
vector as the feature vector may not result in a good performance, as the input itself are
usually formed in human-friendly formats. Because of that, usually, a new feature vector is
computed for each input that has much better performance than using the input vector
directly.

15 De Boer, Pieter-Tjerk, et al. "A tutorial on the cross-entropy method." Annals of operations research
134.1 (2005): 19-67.
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Figure 2.4.2-1: Different methods of
computing a feature vector

A poor feature vector may lose or hide the

relevant information that is important for the

classifiers to learn. The more specific the critical

pieces of information are in these vectors, the

simpler the task is for the learning algorithm to

solve. Besides that, both the data in the training

set as well as the new samples to be classified

should be mapped to feature vectors by the same

procedure. This procedure makes sure that all

cases share the same feature extraction functions.

For an image input, a typical input format representing that image is to concatenate all the

pixel values (RGB value or grayscale intensity) into a lengthy feature vector or persist the

image as a 2D matrix. However, this form of representation may not work well if directly

utilized as a feature vector. The reason is the input by itself encodes almost nothing about

the critical "features" of an image. For instance, if the task is to predict the gender of a

person, hair, skin color, eyes, the shape of the face and many other features are critical for

such a prediction, but none of those are already present in the raw input vector.

In a traditional computer vision approach, systems developed for image predictions often

map images to feature vectors with the help of detectors of edges, color patches, different

texture detectors and so on. The result of these detectors can then be concatenated to the

original feature vector and use the resulting feature vector for prediction.

Modern computer vision algorithms learn the features from the images along with solving

the classification task with artificial neural networks, other than the traditional way of

computing handcrafted features. A neural network is trained end to end with the classifier

so that the feature detectors can be acquired directly through training. Recent works proved

that using a deep network, or multi-layer network, has been an effective approach in

feature extraction 1617 for objects and scenes. Compared to traditional computer vision

16 Oquab, Maxime, et al. "Learning and transferring mid-level image representations using
convolutional neural networks." Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on. IEEE, 2014.
17 Donahue, Jeff, et al. "Decaf: A deep convolutional activation feature for generic visual recognition."
International conference on machine learning. 2014.
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techniques, a neural network approach has a significant advantage at learning features,
which has proven more feasible and efficient than hand-crafted features.

2.4.3 Artificial Neural Network

An artificial neural network, or neural network, is a computation system motivated by how

human visual system processes the signal coming to the eyes in massively parallel stages.

A neural network consists of a large number of simple computational units, such as linear

classifiers. These units are also called neurons. They together form a network that

computes how the input vector is processed towards the final prediction decision. In a
regular Neural Network, the units are arranged in layers, where each layer defines how the

input signal is transformed in stages.

W jk

Output layer

Input layer Hidden layer

xi yj Zk Ok Target

Figure 2.4.3-1: Structure of a common artificial neural network

These layers can be categorized by position:
(1) An input layer is where the units store the coordinates of the input vector. Usually,

one unit is assigned to each coordinate. The input layer is special as it does not

involve any computation yet, and the activation of each unit corresponds to the

input coordinates.
(2) A hidden layer represents the computation networks of the input signal from one

layer to the next towards the final classifier. These units determine their activation

by aggregating the input from the preceding layer output, and pass the output as

the inputs of the next layer.
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(3) An Output layer can be a single unit or multiple units depending on the use case of

the network. It takes the output from the preceding hidden layer and computes the
activation of the unit as the result of the whole network.

By function and specialized structure of a layer, it can also be named as Convolutional Layer,
Pooling Layer, normalization layer and so forth.

2.4.4 Convolutional Neural Network

S-CAR

-TRUCK
__ -VAN

X. B] 5 ICYCLE

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX
I_ _ _ _ _ _ _ _ _ CONNECTED

Y _y
FEATURE LEARNING CLASSIFICATION

Figure 2.4.4-1: Convolutional neural network. (Source:
https://www.mathworks.com/discovery/convolutional-neural-network.html)

For vision data or image data, a type of particularly designed networks, convolutional neural

networks (CNN), have been proved to have excellent performance in feature extraction.

CNNs are first proposed by Lecun in 198918. A CNN consists of interspersed layers of

convolution and pooling operations.

A convolution layer applies simple local image "filters" across an input image, producing new

images - known as feature maps - where the "pixels" in the feature map represent how

much the simple features were present in the corresponding location. This process in

concept breaks the original image into overlapping little image patches, and apply a

classifier to each little patch. The size of the patches, and how much they overlap, can vary.

For example, a convolution operation on a 1-dimensional input g, with a filter applied to the

input h, linear convolution, denoted 0, of h and g is:

18 LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." Neural
computation 1.4 (1989): 541-551.
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N-1

f[n] =hog = h[n-k]g[k]
k=O

In two dimensions, the process is similar. The filter can also be in 2D in this case, which is a

sliding window. The filter window is flipped vertically and horizontally, then slid over the

image to record the inner product with image window over the input image. Formally, this

process can be written as:

f[m,n] = hog = h[m - k,n -l]g[k,l]
k,J

A pooling layer, on the other hand, abstracts away from the location where the features are,

only storing the maximum or average activation within each local area. Through pooling, the

network captures "what" is there rather than "where" it is. There are many different types

of pooling operations, but the simplest one is called "max-pooling," which stores the

activation by the maximum value in a patch. A max-pooling also computes by applying a

filter across the image. So the result of the patch is just replaced by the maximum value.

For a max-polling filter sized k with stride 1, it can be written as:

fi= max x k_fi=j Efi k} i+]- 1 -1

Fori =

A typical CNN system consists of convolution layers and pooling layers of variant sizes and

strides, which ensures that the system is trained to activate for patterns of different sizes

and orientations.

There is a new research trend on using deep convolutional neural network (DCNN) models

to recognize places 19. Compared with traditional computer vision techniques, a deep-

learning approach has a significant advantage at learning features, which has proven more

feasible and efficient than hand-crafted features. The importance of DCNNs has been well

recognized due to their impressive performance on visual recognition tasks.

2.4.5 Auto-encoder

19 Zhou, Bolei, et al. "Learning deep features for scene recognition using places database." Advances
in neural information processing systems. 2014.
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Within the concept of Auto-encoder20, through
Networkthe training process of a Neural Network, a (Encoder) Classification

latent vector vi can be computed for each Input Vector- .Latent Vector RegressionNetwork Rgeso
input, and that is known as the encoded (Decoder)

representation of the input, mostly used as the
feature vector for prediction. This process of
computing latent vector is called encoding, and
this network can also be called an encoder. One of the essential features of the latent
vector vi is that the distance between different vi represents the similarity of their original
inputs in the concept of the prediction task that the system is trained for. This allows for the
computation of abstract contents through the computation of latent vectors".

In the training process of an encoder, a backward network can also be trained in parallel
which generates back the original input from the latent vector. This backward network is
called a decoder. If the encoder and decoder are trained together with the prediction task,
the network can compute not only the designated prediction task but the conversion from
an input data to and from its corresponding latent vector. This "translation" function can be
handy as it allows the computation of inputs with their latent vectors.

The Auto-encoder method can also be used to correlate different abstract contents. The
network to be structured like a dual-end auto-encoder, so that each end of the network
takes a specific format of content, such as image or text description, assuming the text is
the caption of the image. In its training process, the network matches both inputs to a same
latent vector. Once the training is done, in concept the network can generate captions (text)
from images and can generate an image according to a text description.

Similar projects include projects working on correlations like text with image22, image with
image23, image with 3D model 24, and audio with image25 .

20 Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural
networks." science 313.5786 (2006): 504-507.
21 Mikolov, Tomas, et al. "Distributed representations of words and phrases and their
compositionality." Advances in neural information processing systems. 2013.
22 Antol, Stanislaw, et al. "Vqa: Visual question answering." Proceedings of the IEEE International
Conference on Computer Vision. 2015.
23 Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs." IEEE transactions on pattern analysis and machine
intelligence 40.4 (2018): 834-848.
24 Chang, Angel X., et al. "Shapenet: An information-rich 3d model repository." arXivpreprint
arXiv:1512.03012 (2015).
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Figure 2.4.5-2: Audio-Image content correlation (Source: Harwath, David, et al., 2016)

2.4.6 High-Dimensional Dataset Visualization

A critical problem in machine learning is that most datasets have a high number of

dimensions. Visually exploring the data can then become challenging and most of the time

even practically impossible to do manually. However, such visual exploration is incredibly

helpful for any data-related problem. Therefore, it is vital to visualize high-dimensional

datasets. To visualize a high-dimensional vector, techniques known as dimensionality

reduction are widely used.

Dimensionality reduction techniques reduce the number of dimensions drastically while

trying to retain as much of the "variation" in the information as possible. t-Distributed

Stochastic Neighbor Embedding (t-SNE) is a widely used technique for dimensionality

reduction and is particularly well suited for the visualization of high-dimensional datasets.

According to its original paper 26:

t-Distributed stochastic neighbor embedding (t-SNE) minimizes the divergence

between two distributions: a distribution that measures pairwise similarities of the

input objects and a distribution that measures pairwise similarities of the

corresponding tow-dimensional points in the embedding.

Once high dimension vectors can be "squeezed" to 2 dimensions, they then can be plotted

in a 2-D space. In the 2-D plot, the closer two points are, the more similar their original high

25 Harwath, David, Antonio Torralba, and James Glass. "Unsupervised learning of spoken language
with visual context." Advances in Neural Information Processing Systems. 2016.
26 Maaten, Laurens van der, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal of machine
learning research 9.Nov (2008): 2579-2605.
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dimensional data points are. Therefore, the 2-D plot can represent the original data points

and their relationships.
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3 METHODOLOGY

3.1 Machines' perception of space through machine learning

Although the architectural design is human-centric, its efficiency and economy can be hardly

improved even in the era of digital revolution, and almost every design step involving

subjective perception is human based. Computational or generative design, the design

approaches that are considered more efficient, ignores human-friendly qualities of space in

favor of performance metrics; Yet in a regular design process, although CAD tools and other

simulation software are employed, the design of space can still be time-consuming, as the

design of space is purely hand-crafted. This limitation results in two dead-ends: human-

friendly architecture takes a "traditional" low-efficiency process to design, yet "computer

generated" buildings are hardly human-friendly.

Is it possible to find a mid-ground, a solution where designs with satisfactory spatial

experience can be designed more efficiently with the aid of computers? It is believed that

the key lies in machines' perception of architectural space, machine systems that can

simulate human's perception of space.

According to Marr's stages of vision theory, the process of human vision can be considered

as a process with three stages where before interpreting a 3D structure from the "primal

sketch," the brain infers a "2.5-D sketch" of the scene. Ray Jackendoff suggests that visual

consciousness arises at this intermediate level where it is neither too specific nor too

abstract. For an architect, what matters is not only the 3D structure, or the physicality of a

scene, but also the consciousness or perception, the spatiality of the scene.

It is very likely that simulating actual human perception of space will not be possible in the

near future, but it is possible to simulate the behavior of human perception. If a part of

perception is considered as recognition, prediction, or rating problems, they can be solved

using machine learning algorithms. Unlike a typical programming task, a machine learning

system is developed through training the model with an extensive historical dataset and

used to solve classification or regression problems for any new input data.

Unlike a human where a "2.5-D sketch" is acquired through eye and brain, a machine will

have to use sensors such a camera or depth detector to acquire the "2.5-D sketch" of a real

scene. However, it can be more straightforward if only to acquire a "2.5-D sketch" for a

digital model. In this thesis, only the perception of geometric features of space is studied,
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and by sampling space using Isovist (will be explained in section 3.2), a panoramic depth

image of a scene can be easily acquired. The panoramic depth image is a kind of "2.5-D
sketch" for the scene that captures no more than the geometric features of a space. The

panoramic depth image has each of its pixel representing depth in the scene targeting one

direction. This panoramic depth image can be considered as the input of a machine learning

system and used to generate prediction results.

Human
Perception
ofspace

Machines'
Perception
ofspace

Environment ------ 3D Elements ------- 3D Elements

- -- - - - - - ------- N/A

- - - Brain --------- Isovist

2.5-D
Sketch

Brain - - - -

Perception

Figure 3.1-1: Framework of machines'
in comoarison with human DerceDtion

Artificial
Neural Network

perception of space

How to utilize the captured panoramic depth image in machine learning algorithms can be a

challenge. Since it is a panoramic capture spherically conducted from the viewpoint, an

equirectangular projection can be applied to the spherical sample to format it as a 2-D

matrix. Since the 2-D matrix dataset is derived from vision, it can be treated as a regular 1-

channel image dataset, which has the grayscale pixel values representing the original

depths.

Human has certain understandings of each scene, which can be formatted as labels or

values of specific properties. The labels and values are chosen in certain ways that

represent the behaviors of space perception in different aspects. If these labels or values

are treated as ground truth target U, and the panoramic depth image of each scene is then

the input vector . and some of the perceptions of space problems can be formulated as
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discriminative classification tasks, or regression tasks in machine learning, for acquiring the

labels and values respectively (as Section 2.4).

Training I Pre-Defined Sampling Sampled Data Training Convolutional I
Phase Geometry with label Neural Network I

Samplin SmpegDt Send to SpacePrdce
Testing Testing Geometry Sampled Data cLabel for
Phase ytesting Data

Figure 3.1-2: Workflow of Training a Machine learning Model for space data prediction

Compared to developing a regular machine learning system seen in Section 2.4.1, the

process of developing a space perception system is similar: both processes require the

training of a system using existing data and testing new data with the pre-trained system.

The difference is that before training, each space will first be sampled to get a panoramic

depth image and use the sampled data for training or testing. The labels and values of the

sampled data are identical to the original space. This process is illustrated in Figure 3.1-2.

Training data acquisition is an important part to consider in constructing a machine learning

system. In the experiments introduced in this thesis, three dataset sources are mainly

utilized: customized dataset generated by computers (Section 3.3.1), existing depth dataset

found on the internet (Section 3.3.2), and crowdsourced dataset (Section 3.3.3) which is

acquired through crowdsourcing.

Further, several experiments are conducted that solve machines' perception of space

problem as different tasks. Firstly, a machine learning system is trained with customized

training dataset that achieves the recognition of local spatial compositions through

classification (Section 3.4). Secondly, utilizing existing scene depth datasets, a system is

developed that classifies space by scene categories (Section 3.5). Thirdly, a system is

developed that achieved 3-D reconstruction of space through element segmentation, or

multi-target classification (Section 3.6). Fourthly, through the supervised training of an

auto-encoder, a space calculation methodology is proposed that computes space in latent

vector space (Section 3.7). Lastly, trained with a crowdsourced dataset with space rating
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values acquired from human intelligence, a space rating system is developed through
regression (Section 3.8).
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3.2 Space Sampling

To analyze space from a specific viewpoint, space should be captured with both essentiality

and conciseness. Essentiality means the representation should contain the basic

configuration of the space from the selected observation point, capturing the corresponding

spatial boundaries. Conciseness makes sure that the data captured should also be simplified

and can extract certain characters of the original space composition that makes the later

analysis feasible. The features of essentiality and conciseness meet perfectly with the

concept of 2.5-D sketch proposed by David Marr.

For simplicity, this thesis explores the behavior of human space perception in the aspect of

geometric boundaries. Only depth information is kept in this space sampling process and in

the experiments to be introduced in the following sections. A panoramic depth sampling

method based on the concept of 3D isovist is proposed. By projecting the space depth

information onto a sphere centered on the observation point, the spherical depth values are

projected to a 2D equirectangular "image" with a resolution of 60 x 30. In the experiments

introduced in this thesis, only the values of the distances from the surface of the objects to

the observation point, or depth, is kept as the criteria of each pixel, which makes up a one

channel image. If values other than distance (like the brightness of the environment/the

RGB value of the surrounding space, and so forth) are included, they can be added as

additional channels to this "image" to be utilized in the matrix calculation. The maximum

sampling distance is 10 meters, which is also the radius of the sampling sphere. This

sampling distance threshold ignores geometry information that is too far from the viewpoint.

After the sampling process, the original spatial composition (from the observation point) can

be represented as this one-channel image that contains its necessary spatial boundary

(distance). This sampling process is illustrated in the figure below.

Figure 3.2-1: 3D Isovist Sampling of a given space from observation point P, resulting in a
panoramic depth image.

The projected representation is a distorted image from the original view. Since it is using

equirectangular projection, the region close to the top and bottom of the sphere is stretched
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horizontally. The orientation of the equirectangular representation might also need some

attention since different sampling orientations create horizontally shifted representations.

However, the systems developed (introduced in the next sections) can learn the distortion

and orientation of the invariant features. Also, in the experiments that orientation is not a

critical factor, the image samples are shifted horizontally by centralizing the average darkest

column, making sure that the closest boundary is centralized so that the most prominent

features to the observation point are captured.

Figure 3.2-3: Panoramic depth sampling of the model of Barcelona
Pavilion
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3.3 Training Data Acquisition

Preparing training dataset is one of the most critical steps in the training of a supervised
machine learning system. It is also one of the most expensive and time-consuming parts of
building a machine learning model. A training dataset is a set of example data used to fit a
machine learning model using a supervised learning method. A training dataset often
consists of pairs of an input vector (can be in either one dimensional, or multidimensional)
and a corresponding label vector or value scalar. This label or value is also known as a
target or ground truth. Within the training process, the model is run with the training
dataset and produce a result in the format of the target. By comparing the result and the
ground truth target, a loss is being computed; that is then used by the learning algorithm to
adjust the model.

The quality of the training dataset can be crucial in training a machine learning system.
Features of a suitable training dataset include:

(1) The right quantity: If the training set has a limited amount of data, the system may
be trained un-converged or overfitted. However, a dataset too large may take more
time to collect yet slows down the training process.

(2) A good variety: Training dataset with a good variety can help to prevent overfitting
problem, allowing better performance on more input scenarios.

(3) A high quality of each sample: The machine learning algorithm will learn for
whatever data fed in. Typically, the samples fed in need to possess two essential
qualities - independence and identical distribution.

(4) A good relevance of data and label: If the sample and the label have irrelevant
distributions, the system will not perform well in learning, as there is no feature to
be learned.

Sometimes there is already a significant amount of historical data and a precise ground
truth knowledge about each data sample, in which case the training dataset is already , and
all that is retained to do is clean, normalize, sub-sample, analyze, and train and iterate a
model until it achieves a good prediction rate. However, more often, there is only a large
amount of raw unlabeled data, and the process of manually building a consistent ground
truth might be the most painful phase of the entire workflow.
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The quality and amount of training dataset can influence the accuracy and generalization of
a machine learning system dramatically. ImageNet", for instance, is a popular image
dataset utilized broadly in the field of image classification. It consists of over 14 million

images that are hand-annotated by users on crowdsourcing platform Amazon Mechanical
Turk. The publish of the ImageNet dataset, and a corresponding ImageNet image
classification challenge has been widely considered to be the beginning of the deep learning
revolution of the 2010s. The dramatic influence of the ImageNet dataset can be a sound

proof of how vital a training dataset is in developing a machine learning system.

With the 3D Isovist sampling method in hand, it is easy to sample any given space and

construct a training set using the sampled panoramic depth image. However, depending on

the specific needs and purposes of the machine learning systems, different training sets

should be utilized. In the experiments of machines' perception of space, three dataset

sources are mainly employed, including generated dataset, public open source dataset, and
crowdsourced dataset. The acquisition of each is explained below in Section 3.3.1, Section

3.3.2, and Section 3.3.3.

3.3.1 Generated Dalaset

Using a computer to generate a large dataset is the easiest way to acquire training datasets.

It is effortless to sample multiple compositions of space from various observation points
with digital models. In every iteration of a generating process, the computer program first

generates a random model along with a random viewpoint in that space. Based on this
randomly generated combination, the panoramic depth sampling method is applied and
collect a panoramic depth image of the surroundings from the specified viewpoint. This
panoramic depth image is then stored with the ground truth labels formatted from the
current model.

Compared to datasets collected manually, since this generating process is purely automated,
the construction of a generated dataset is much more efficient, makes no mistake if

properly programmed, and can be easier organized and formatted.

On the other hand, a generated dataset may also have its drawbacks and thus can be

utilized in limited situations. To begin with, the variance of a generated space composition is

highly dependent on the programmed rules of the generative system (completely randomize

27 Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009.
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the result will result in a lousy performance in regular tasks), and that can limit the flexibility
of results and may lead to overfitting28 in the later training process. Additionally, the labels
and values of the dataset must be insufficient and low level, as they have to be directly
computed from the digital models. For instance, high-level sentiment labels such as
emotional ratings of space can hardly be generated, as these values by themselves cannot
be computed. Because of that, generated datasets can only be used mostly in specific form
related prediction tasks. In other words, it can be only trained on prediction tasks when the
correlated labels can be directly recorded.

According to the experiments conducted, generated datasets can be helpful in 3D
reconstruction and space composition classification tasks. Since the computer already
registered the complete 3D structure of a scene, the sampled panoramic depth images can
be directly attached to its labels derived from the 3D structure.

3.3.2 Public Depth Dataset

Using public datasets can also be a proper way to start with. These datasets are well
organized, mostly free of charge, have a good variety of contents, and even provide their
own data management tools.

The most famous public datasets that include image depth information so that can be used
in developing machines' perception of space systems is the NYU Depth Dataset (VI and
V2) 2131. The dataset includes frames comprised of a video sequence from various indoor
scenes (over 40 different scene labels) that recorded both the RGB and Depth values using
Microsoft Kinect. Recently there is also a 2D-3D-S dataset3' released, and it includes more
labels and information such as mesh, semantics in 2D and 3D, and surface normals.

28 Hawkins, Douglas M. "The problem of overfitting." Journal of chemical information and computer
sciences 44.1 (2004): 1-12.
29 Silberman, Nathan, et al. "Indoor segmentation and support inference from rgbd images."
European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2012.
3 Silberman, Nathan, and Rob Fergus. "Indoor scene segmentation using a structured light sensor."
Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on. IEEE, 2011.
31 Armeni, Iro, et al. "Joint 2D-3D-Semantic Data for Indoor Scene Understanding." arXivpreprint
arXiv:1702.01105 (2017).
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"Classroom"

RGB Depth Segmentation

Figure 3.3.2-1: NYU Depth Dataset. (Source:
https://cs.nyu.edu/~silberman/datasets/nyu-depth-v2.html)

However, public datasets are constructed in specific ways that they are dedicated to

particular training purposes. Take the NYU dataset as an example; it is mostly designed to
train machine learning models for an image to depth estimation task. It does have the
scene labels, which also allows the training of scene classification from single depth images.

However, in the experiments introduced in this thesis, the input is panoramic depth images.

Additional work and several compromises should be made to take advantage of the NYU
Depth dataset in training networks aimed for panoramic depth image inputs. Details about
the approaches will be explained in section 3.5. Further, since the data from NYU datasets
are real depth images taken by depth cameras, they may include many small details ranging

from texture bumps to furniture pieces. The system trained with these datasets may not

end up with an optimized performance on space sampled from digital models, as the models

lack the details as exists in real world.

3.3.3 Crowdsourced Datases

Training dataset can also be constructed through crowdsourcing. Unlike tasks that can be

trained using generated datasets, building datasets for recognition tasks requiring higher

level labels or values, such as rate the interestingness of a space, or tell the type of a scene,

can be more challenging tasks. In that case, only human intelligence can be reliable in

solving such high-level labeling and evaluation tasks, but usually with very low efficiency.

With a vast amount of unlabelled data, building a consistent ground truth manually might

be the most painful phase of the entire workflow.

However, online crowdsourcing makes the task much faster and feasible. With the internet

and a modern browser in almost every people's pockets, running a survey is becoming more
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accessible and cheaper. By hiring a large number of human intelligence from the internet,
space datasets can be labeled with better efficiency and comparatively good quality.

Mechanical Turk is an online crowdsourcing platform dedicated to human intelligence
service. It is a platform where requesters can easily post surveys and get results from the
internet with comparatively little payment. Papers show that the Mechanical Turk
participants are diverse, efficient, inexpensive, and the survey quality is no less reliable than
those obtained via traditional methods32. By designing customized survey tools for specific
tasks, data for almost any task can be collected through the Mechanical Turk platform.

32 Buhrmester, Michael, Tracy Kwang, and Samuel D. Gosling. "Amazon's Mechanical Turk: A new
source of inexpensive, yet high-quality, data?." Perspectives on psychological science 6.1 (2011): 3-5.
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3.4 Space Composition Classification

3.4.1 Problem Description

Architecture generally consists of elements such as columns, walls, shades, and windows.
Although these elements are simple and common components, they can be combined to
create complex and specific compositions of space. Different spatial compositions define
different spatial boundaries, and therefore produce different feelings to the observers inside
the space. Against a single wall, enclosed by an L-shaped wall, surrounded by columns, and
with or without a shade; all these situations create unique local spatial experiences for the

observers. Architects usually consider these local spatial experiences, and their sequence
critical to architectural design.

While multiple representation methods are practiced in the field of architecture, there is a
lack of compelling ways to capture and identify local spatial experience. Therefore, it can be
challenging for architects to describe spatial experience quantitatively and efficiently.

The proposed method formulates this recognition problem as a discriminative classification
task: with several predefined local spatial compositions, or what is called Seed-Spaces, a
classifier is trained to predict the type of a given space in the form of a panoramic depth
sample. The methodology can be applied to different settings of predefined compositions.

3.4.2 Workflow

The framework of the spatial composition classification system is identical to the space
machine learning system introduced in section 3.0. It consists of two phases, training, and
service. In each phase, the system first performs spatial sampling, and then runs the result
through the network, to either train the network or use the pre-trained network to acquire a
prediction result.

In the training phase, data sampled from pre-defined Seed-Spaces are utilized to train the
network. The labels of these sampled datasets correspond to the originated Seed-Spaces. In
the service phase, the network presumes the most similar SeedSpace for any input data

sampled from a given space using the same methodology.
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3A.3 Collection of Local Spatial Compositions

As stated earlier by Ching33, space can be composed of elements. Limited elements can

create unlimited possibilities of space. Horizontal planes (including base plane, elevated

base plane, depressed base plane, and overhead plane), vertical linear elements (like

columns), and vertical planes (walls) are considered as the primary architectural space-

defining elements.

In this research, fifteen basic types of element compositions are selected to describe the

local spatial conditions of one-story buildings. This collection of Seed-Spaces can be

customized when dealing with different spatial conditions. These Seed-Spaces are

considered to be the primary space types taken as elements to compose other spaces to be

analyzed. Therefore, the selected Seed-Spaces are made up of columns, walls, and

overhead planes in various ways, and they are listed in Figure 3.4.3-1, which depicts them

using isometric drawings.

to ti t3 t5 7 9 t11 t13

2 54 M6 t8 t10 t12 t14

W - BY ONE COLUMN
tI -SUACUNOED BY COUMNS Ma L-Sa4APEWALL WITH SHAING t9 -U-SHAPE WALL WITHSHAING t12 - BY SINGLE WALL WITH SHADING

t SUROUNDED BY COLUMNS WITH SHADING IS PAMRALLELWALLS t9-4SHAVEDWALL U13 -BY CIE-SIDED COLUMNS
U - L-SI4AP WALL t6 - MARALLELWALLSWITH SHADING tO- 4DHADWWLLVWITH SHADING 014 -BY OWE-S CCLUwINSVM lSHADING
1t - LSKQAFENNLL WIM SHADMN V7- U-SHAPE WALL ti I - BY SINGLE WALL

Figure 3.4.3-1: The 15 different space types, or Seed-Spaces, labeled as tO, t1, ... , t14.

Figure 3.4.3-2 shows a part of the samples of the 15 Seed-Spaces. Only the area enclosed

by the space elements are sampled, as It is believed that those are the areas that best

represent the local spatial condition defined by the surrounding elements. Samples of the

Seed-Spaces are labeled accordingly to be constructed as the training set of the network in

the training phase of the system. Meanwhile, in the service phase, the same sampling

method is applied to incoming spaces, and the sampled image is used to obtain predictions

from the pre-trained network.

33 Ching, Francis DK. Architecture: Form, space, and order. John Wiley & Sons, 2014.
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Figure 3.4.3-2: A part of the space samples of the 15 different Seed-Spaces, in equirectangular
format. The labels tO, t1, ... , t14 represent each individual Seed-Space.

3.4.4 Network

Learning data representation is the fundamental part of pattern recognition and

classification tasks. In this case, learning features for a local space-type classification task is

more challenging due to the inherent complexity of space and human perceptions of it. To

address this issue, a CNN is employed. This method is expected to simulate humans'

perceptions to particular spatial compositions in this study.
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Figure 3.4.4-1: CNN architecture for space composition classification

Considering the situation of this task, the CNN architecture is designed based on the

configuration of the input-the equirectangular dataset-as Figure 3.4.4-1 shows. The input

panoramic depth image can be considered as a 60 x 30 x 1 matrix. After conducting two

convolutional layers and two max poolings, a fully connected layer is extracted as the

feature vector, and this vector is then used to classify the input image with a fifteen-label

softmax classifier with dense connections. The network is set up with TensorFlow (Abadi et

al. 2016) in the first experiment, and in developing API for the web-platform, Pytorch34 is
utilized.

This neural network is designed so that it takes a sampled image as input, and outputs a

presumption, or class distribution, among the fifteen predefined Seed-Spaces. Once the

CNN is properly trained, utilizing the training set built upon space samplings of the Seed-

Spaces, it can be used to make a judgment upon a given space sample, i.e., classify the

given space. The network is trained with a training set of over 5000 images for the fifteen

predefined Seed Spaces. It achieved higher than 99% "Top-i" prediction accuracy on

validation sets.

3 Team, Pytorch Core. "Pytorch: Tensors and dynamic neural networks in python with strong gpu
acceleration." (2017).
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This space composition classification system has been employed and tested in the

interactive modeling interface introduced in section 4.1, and the building analysis in section
4.2.
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3.5 Scene Classificasn

3.5.1 Problem Description

Different scenes may possess different spatial boundaries. As a human, he or she can

presume the type of a scene by feeling the atmosphere created by the geometric

components in the scene. A bedroom, a lobby, a corridor, every type of scene has its way of

organizing its geometric components, resulting in different spatial boundaries for an

observer inside of the scene.

This task is to

given a space

types that this

classify the type of a scene by its panoramic depth sample. In other words,

sample, the machine learning system predicts a scene type or several scene

space may belong to.

3.5.2 Workflow

Similar to the method introduced in Section 3.4.2, the scene classification system is also

developed with a training phase and a testing phase. What makes a difference is that the

training dataset utilized in this task are labeled with scene categories.

A training dataset with scene labels is hard to construct since there is a lack of well-

organized open-source architecture datasets. However, public depth datasets can be an

alternative to tackling this issue. Here, the NYU Depth Dataset V2, introduced in section

3.2.2, is utilized in training a scene classification system. It has collections of depth images

that are labeled by scenes. The scene labels of the NYU dataset are listed below in Table

3.5.2-1.

Table 3.5.2-1: Scene labels of the NYU Depth V2 Dataset

office bathroom bedroom kitchen hotelroom

dining_room living_room officekitchen corridor coffeeroom

rest-space homeoffice discussionarea laundromat stairs

home lab printerroom studyspace dancing-room

classroom study basement bookstore library

lobby playroom receptionroom cafeteria reception
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storage-room indoorbalcony computerroom conference-room exhibition

dinette gym furniturestore recreationroom musicroom

office-dining lecturetheatre diningarea mailroom idk

However, since the depth images in the NYU Depth Dataset are non-panoramic depth

images, they can only be used in training scene classification systems with non-panoramic

depth image inputs. The space samples are panoramic so that it is required to resize and

subsample the space samples to get multiple non-panoramic depth images and fuse the

result for each subsample to get the prediction for the whole panoramic image input.

3.5.3 Network

In order to train a system that can predict scenes based on panoramic image inputs, first, a

regular depth image based scene classification system is trained with the NYU Depth V2

Dataset. This network takes an input of a regular image and outputs a label distribution

over the 45 categories.

The network used here is a variant of Resnet35 which has 34 residual modules. The input

has a size of 112x112x1, representing the x, y location of the pixel in the image, and the

grayscale value of each pixel represents the depth in the scene. The original width-height-

ratio of the images in the NYU Depth Dataset is 3:4 since they are all collected using the

Microsoft Kinect. Before going through this network, they are first resized to the size of

112x112 to fit the network. After the 34 residual layers, the network outputs a distribution

with a 45 sized fully connected layer. So the resulting 45-dimensional array can be

computed using softmax 36 to get a probability presumption over the 45 labels.

3.5.4 Subsample and Fuse

As described in section 3.5.2, the trained network only takes regular depth images for scene

classification. That is why the system requires additional subsample and fuse process to

work with panoramic inputs.

35 He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016.
36 "Softmax function - Wikipedia." https://en.wikipedia.org/wiki/Softmax function. Accessed 21 May.
2018.
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In this experiment, each panoramic image is sampled between a pitch angle range of -60*

to 600 with a window width-height ratio of 4:3. In width, the sampling window covers an 800
region, while in height, the window covers 600. The sampling windows cover the full input

panoramic image with a stride less than the size of the window in height and width,

allowing some overlap in between. As a result, the sampling process produces 4 (in height)

by 9 (in width) subsamples.

The subsamples are ran through the pre-trained scene classification

network, and each produces a prediction array, then fused together to

compute the final probability distribution for the labels. If the number

of subsamples is denoted as n, and the number of labels denoted as m,

then each subsample Si creates a result [xi, ,... , Xi,m] . If the final

probability distribution is written as [P1,..., Pm] , then the final

probability distribution can be computed by computing each item P:

e L=1 Xj1

A=1 x

/600

--

'-60

Figure 3.5.2-1:
Range of Sub-
sampling in a
panoramic image.

The illustration below shows the idea of how the system subsamples

the input panoramic depth image, process individually by the neural network, and fuse the

result.
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Figure 3.5.4-1: Illustration of the "subsample and fuse" process.

The system introduced in this section is further tested with the interactive modeling

software introduced in section 4.1.
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3.6 3D Reconstruction of Space through Element Segmentation

3.6.1 Problem Description

It is fundamental for a human to understand the 3D structure of a scene with vision. No

matter where the viewpoint is, a semantic 3D model can be inferred in a human brain. The

brain not only understands the 3D structure of the scene surrounding the viewpoint, but

also the type of each element composing the 3D structure.

V
/

6

Figure 3.6.1-1: Sampling and 3D reconstruction of a space.

In this task, a system is proposed so that it reconstruct a scene in 3D from its panoramic

depth input. In solving this reconstruction problem, for simplicity, it is formalized as a multi-

target classification task. In other words, each possible location surrounding the viewpoint

in space is considered as a target to be predicted by the system, and the labels to be

classified for the targets include all possible element types. In this case, the element labels

are arbitrarily defined, and may not apply to most space structures. The reconstructed

structure is only an approximation of space structure with the designated elements. The

resolution of the targets surrounding the viewpoint can be customized and fits different use

scenarios.

One thing to note is, the 3D structure associated with a panoramic depth image is closely

related to the orientation of that panoramic image. Horizontally shifted space depth

sampling undoubtedly results in rotated 3d Structure. In concern of that, the panoramic

53



depth images utilized in this task are not centralized by its darkest column as in the other

tasks (introduced in section 3.1).

3.6.2 Workflow

The types of the 22 grids around the viewpoint are

considered as the targets of this multi-target

classification task. They are 9 shadings, numbered

from 1 to 9, 9 floors, numbered from 10 to 18, and

4 vertical elements surrounding the viewpoint,

numbered from 19 to 22. The viewpoint locates

under shading 5, and on top of floor 14.

Three element states are defined, namely "none,"

"solid," and "frames". In this case, shadings and

floors can only have two possible states namely

"none" or "solid," while the vertical elements may

have one of all three states.

0

HI

C7

2

'-p

Figure 3.6.2-1: The three target states
(left) and the 22 targets surrounding a
viewpoint (right).

VP

Label 0 0 0 1 1 0 0 0 0 0 0

Label 0 0 0 0 0 1 0 0 1 2 0

Figure 3.6.2-2: An example of a 3D structure represented by a 22-dimensional vector

The table above lists the states of all the 22 targets, and

"none," "solid," and "frames" respectively. In that sense,

structure shown on the right: position 4, 5, 17, and 20 are

"frames," and all the other positions have no element.

number 0, 1, 2 denotes state

the table represents the 3D

walls or shades, position 21 is
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With this task formatted like above as a 22 target three label classification problem, a

training dataset dedicated to this problem can be generated. In one iteration of the training
data generation process, the program randomizes elements on the 22 designated locations

and samples the 3D structure from the center with a random minor shift to get a panoramic

depth image, while the program records the types of the 22 elements as the labels.

3.6.3 Network

The figure below illustrates the architecture of the network. The network takes the

panoramic depth image as its input, and pass the input through several convolutional

residual modules to extract its features. Eventually, it outputs a result label distribution

matrix for the 22 labels. The output matrix is of the size 22 by 3, representing the

probability of 3 labels for each of the 22 targets.

The output is considered as a 22 by one 2D image output so that in the optimization

process, a 2D CrossEntropyLoss function is utilized to compute the loss of the network, and

the loss function computes its point-wise segmentation loss. The CrossEntropyLoss values of

all 22 targets are calculated, so all targets are trained in a single process.
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Figure 3.6.3-1: Network Architecture for 3D Reconstruction
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31 Space Calculation Based on Autoencoder

According to the paper "Efficient Estimation of Word Representations in Vector Space,"

vector representation of words can be acquired by training a network with a large dataset.

The vector representations, known as latent vectors, also provide state-of-the-art

performance for measuring syntactic and semantic word similarities, and the computation of

these representational vectors reflects the calculation of the meaning of the original words.

The resulting vectors can be used to answer subtle semantic relationships between words,

such as a city and the country it belongs to, or a word and its parent category, e.g., France

is to Paris as Germany is to Berlin. If this can be written as a vector calculation or algebraic

operation, it is like:

Vector("Paris") - Vector("France") = Vector("Berlin") - Vector ("Germany")

This calculation allows for the computation of semantic meanings through the computation

of their representative vectors. Additionally, the similarity of the semantic meanings is

represented quantitatively by the distance of the vector representations. With such a vector

representation system, a constant relationship vector can be computed that represents the

relationship between the meanings of two words, just like a "capital-country" relationship

can be represented by:

Vector(Paris) - Vector("France")

With this relationship vector, any country name can be computed from its capital name and

vice versa. And it is certain that for this to work, acquiring the vector representation of

semantic meaning is critical.

This vector representation oriented operation can also be useful for space. Similarity of two

spaces can be represented by their distance in feature vector space; The relationship of two

spaces also can be computed in advance as a constant, and utilized as a style-transition

vector for computation in the future (such as the transition from columns to walls); Ideally,

certain style-transition can be applied to a base space through calculation in feature vector

space (such as convert the base space from a domino37 style space to a Mies 38 style space);

This is hard for a regular computer aided design system, even rule based generative design

37 Von Moos, Stanislaus. Le Corbusier: elements of a synthesis. 010 Publishers, 2009.
38 "Ludwig Mies van der Rohe I American architect I Britannica.com." 25 Apr. 2018,
https://www.britannica.com/biography/Ludwiq-Mies-van-der-Rohe. Accessed 21 May. 2018.
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systems. Since such high-level features can hardly be described, and too nuanced to be
simulated with hand-crafted rules.

For the methods described in section 3.4, 3.5, and 3.6, space panoramic depth images are

converted to feature vectors (as introduced in section 2.4.2) for classification tasks. The

feature vectors are indeed the vector representations of the space sampling inputs. The

vector representations for space samplings, however, can be influenced when generated

with different network architectures, or the same network architecture yet different training

sets, as the feature extraction process is closely related to the network, and the training

procedural of the network influences the generated feature vectors. For example, the

system trained for space composition classification in section 3.4 (denoted as network 3.4),

is dedicated for the 15 space composition types or Seed-Spaces; Yet the network trained for

3D reconstruction in section 3.6 (denoted as network 3.6), is less specialized in the previous

15 compositions. In dealing with cases involving only simple space compositions included in

the 15 types, network 3.4 is more reliable in generating a feature vector representing its

input. However, in dealing with more general cases, network 3.6 will generalize better

compared to network 3.4.
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Figure 3.7-1: t-SNE plot (in 2 dimensions) of the vector representations.
Each space type (tO,tl, ... ,t14) is marked with a corresponding color shown
in the legend on the right.
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By sampling the "Seed-Spaces" and ran them through "network 3.4", vector representations

for each "Seed-Space" can be acquired. That makes it possible to find the similarities of the

"Seed-Spaces" by comparing the corresponding vectors.

As described above, the similarity of different spaces can be considered as the distance

between these feature vectors. By applying the t-SNE algorithm (Section 2.4.6) to reduce

the dimension of feature vectors from 50 (in the case of network 3.3) to 2, it allows for the

plotting of these vector representations in a 2-dimensional space. The visualization of the

similarities between the 15 "Seed-Spaces" is shown in Figure 3.7-1. Each dot represents a

projected vector, and the dots are color-coded and suggests which "Seed-Spaces" they

belong to.

The visualization gives a good sense of the differences between walls, columns, spaces with

shading, and space without shading. The closer two "Seed-Space" are, the more similar

they are. Since the vector representations are computed utilizing features extracted by the

network, they have an even distribution in the feature vector space, as the network learned

the differences between different labels, and balances the distance between clusters of

labels.

With a network adequately trained, it becomes possible to generate vector representations

for any inputs, which is a conversion from content to vector. However, to calculate the

specific content, this "forward approach" from content to vector is not enough. A "backward

approach" to convert vector back to content is also required to close the loop.

In computing the previous example,

'77rance " - 'Paris" + '1ermany" =?

As discussed in section 3.7, it can be computed in their vector space, meaning:

Vector( "France^) - Vector("Paris ) + Vector('Iermany') = Vector(?)

With a "forward approach" network, the vectors of the inputs "France," "Paris," and

"Germany" all can be generated by the network, so that Vector(?) can be calculated.

However, since the final target is not a vector, but the word which the vector represents, a

critical process is to convert Vector(?) back to "?", and is indeed through the "Backward

approach."
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In order to develop a system that has both "Forward" and "Backward", the method of

autoencoder (Section 2.4.5) is introduced. The idea of an autoencoder is to train a "forward"

network along with a "backward" network. The original purpose of an autoencoder is

dimension reduction, meant to represent an input vector with another vector which has

fewer dimensions. It is by default an unsupervised method trained with no labels, and the

feature vectors learned from the unsupervised learning process are very little biased to

specific tasks. In the meantime, an autoencoder can also be trained concerning labels as a

supervised training task.

Network Network
(Encoder) (Encoder) Classification

Input Vector- Latent Vector Input Vector- Latent Vector
Network Network Regression
(Decoder) (Decoder)

Figure 3.7-2: Unsupervised training Figure 3.7-3: Supervised training of
of an autoencoder an autoencoder

Figure 3.7.2 illustrates a regular autoencoder network, unsupervised trained so that it

results in an encoder and a decoder, meant to be applied to the "forward" and "backward"

process respectively. The encoder and decoder are trained as a whole, and the loss of

training is computed by the input vector and the output vector of the Decoder. If the input

vector is denoted as x = [x1,..., x,], the output vector of the decoder is denoted as X =

[X1,...,X], the loss function can be written as:

n

Loss =(xi - Xi)'
i=1

On the other hand, Figure 3.7-3 shows a supervised training process of an Autoencoder.

Unlike the unsupervised training process, this process also computes the loss of the

prediction. The loss function can be written as:

Loss = LOSSAutoencoder + -LOSSPrediction

This network is trained with regard to both the autoencoder and a prediction task. The

parameter a adjusts the weight of the training, as it is biased towards minimizing either the

autoencoder loss, or the prediction loss. In real practice, the network was trained as a two-

step process: it was first trained with regard to only the prediction task, as the Loss is

59



computed by LOSSPrediction. With the network pre-trained, it then gets fine-tuned on the

overall Loss, which had the auto-encoder part trained as well. In the second training

process, the weights for the encoder network can be locked, and only update the decoder

weights. This two-step training process helps the network better trained for the two

objectives.
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3.8 Space Rating System

3.8.1 Problem Description

i.v-.-.

0 PAKTL ,

How interesting is this space?
How spacious is this space?
How public is this space?

Figure 3.8.1-1: acquire the rating of a space through a
panoramic depth image

The volume of space is deterministic, yet the experience about space is not. People tend to
have subjective experience, and subtle differences can influence the nuance of experience.
How interesting, how public, how spacious ... tiny spatial adjustments can influence all these
different adjectives about space. Also, the same space can create a different experience for
different subjects, and the same adjective about an experience is likely to mean something
different for different subjects as well. Architects may see the experience of space more
logically, while novices may react to space more intuitively, people with different age and
gender may treat space slightly different, yet, the experience of all subject groups is equally
essential for design.

If a computer can quantify human's feeling of space, a computer-aided system can be much
more powerful and helpful to designers. However, the nuance of spatial experience makes it
a challenge to quantify spatial experience. With the expertise of vector representation
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(Section 3.7), if a network is trained so that experience-related features of space can be

extracted, it is likely that the feeling of a space can be computed using its feature vector.

In this task, trained on a crowdsourced dataset and employing the idea of vector

representation, a system is developed so that it rates a space panoramic depth sampling in

three aspects through value interpolation in its feature vector space: interestingness,

publicness, and spaciousness. Besides, the system can simulate the rating of space for

different subject groups, such as architects and novices, young and old, male and female.

3.8.2 Data Crowdsourcing

The biggest challenge of developing a space rating system is data acquisition. The amount

and quality of data are crucial for any machine learning system. However, space rating data

is sentimental and high level, which ensures that it cannot be easily generated from scratch.

The only source of space rating ground truth is human intelligence.

A customized survey is developed to collect sentimental space data from human

intelligence. This survey is posted on crowdsourcing platform Mechanical Turk, which is

briefly introduced in Section 3.3.3.

The screenshot below shows the interface of the survey. Although the space model samples

utilized in building a training set can be of any random structures, existing architectural

designs are mostly utilized in this survey. This selection tries to bias the system towards

regular building-like space over entirely randomized space, and the dataset is believed to

train systems in a certain way so that they have better performance on regular building-like

space inputs. The selected models for sampling include Barcelona Pavilion and Exhibition

House Berlin designed by Mies, Paviljoen van Aldo van Eyck and the 15 primary spatial

compositions utilized in Section 3.4.

Since the rating of a space may be subjected to time, place, participant and many other

factors, other than asking the participants to rate space directly, it can be more credible to

acquire the comparison of a pair of spaces, which can then be converted to ranked scores39.

With that in mind, the survey is designed in the way that it initially collects comparisons

between pairs of scenes from surveyees.

3 Naik, Nikhil, et al. "Streetscore-predicting the perceived safety of one million
streetscapes."Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 2014.
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Survey Form

- Created by pwz@mit.edu

Rotate around the two scenes using your
mouse and fill in the survey. ("ESC" to
escape the scenes)

if you are using a mobile device, please
use horizontal screen.

v Gender

V Age

V Architecture Background

Compare Your Feeling of the two Space

A Which scene interest you more?

Which scene looks more public (less
privacy)?

. Which scene looks more spacious?

Scene 1Sen

On Page 1 of 6

Figure 3.8.2-1: Interface of the survey

When the survey is loaded in a browser, the page shows up two random scenes in the

canvas on the left in parallel; the two scenes are denoted as "scene 1" and "scene 2". Since

the survey requires the participants to compare the two scenes in panoramic views while

the scenes are shown in a regular format, they will need to control the view using their

mouse or touchscreen to see the scene around. On the right side of the page, there is a

survey form that collects the gender, age, and architecture background of the participant,

along with the comparison results of the two scenes by the surveyee. The comparisons

include "which scene interest you more," "which scene looks more public," and "which
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scene looks more spacious." The table shows the options for

each option saved in the database.

Table 3.8.2-1:

database.

each field and the value of

The options for the survey fields and the value of each option saved in the

Value saved in 0 1 2 3 4

DB

Gender Male Female

Background Architect Novice

Age 0-12 12-18 18-30 30-50 50+

Interesting Scene 1 Scene 2

Public Scene 1 Scene 2

Spacious Scene 1 Scene 2

The survey collecting system tracks the status of the survey as it is being taken. It records

the completion status of each field and ensures that all submissions have all fields filled. To

ensure that the surveyees have compared the scenes thoroughly before completing the

survey, the system will also monitor the activation status of the scenes, which is tracked

when the user rotates around the scenes. If the scenes are not even activated, a reminder

will pop up on the interface saying "It is required to compare the two scenes by looking

around them thoroughly.", and reject the current submission.

Besides, since there are two scenes to be controlled and compared by a user, it can be

tricky and complicated regarding the control interface if the user controls each scene

individually, and that also deepen the learning curve by adding another scene switching

procedure. Because of this, the survey proposed in this experiment allows participants to

control both scenes when moving the mouse or touching the screen, providing a parallel

comparing experience.

Once a surveyee takes the survey and submit a result, the three comparisons

"Interestingness", "Publicness", and "Spaciousness" will be saved together with the

information of the two scenes being compared, along with the participant's gender,

architecture background, and age.
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The survey was posted on the Mechanical Turk system as well as other social media such as

Facebook and Wechat. In total, it collected over 10,000 scene comparisons in about two

weeks. Here are some of the statistics about the surveyees:

Gender Age Architecture Background

a Male 0 Female 0 to 12 8 12 to 18 18 to 30 30toS0 050+ a Architect a Novice

Femaie
5400 Is~50 1to 3

6S7 303  6460

Figure 3.8.2-2: Surveyee Stats

It can be seen that there is a similar amount of male and female participants. Regarding

age, most participants are of age 18 to 30, followed by age 30 to 50. Furthur, there are

about one third architect participants. The ratio of architect participants is slightly over the

expectation, but since the survey is posted on the author's social media which might have a

much higher architect-ratio, this result is considered credible.

3.8.3 Comparison to Rating

Since the data acquired is based on comparisons, it is required to convert the comparison

data to absolute normalized values, or ranked scores to train a machine learning regression

system. To do that, the "TrueSkill" algorithm 40 is employed that converts the result to

absolute normalized scores.

TrueSkill algorithm is a skill-based ranking system developed by Microsoft. Each participant's

skill can be represented as a normal distribution, with a mean value of P and a variance of a.

Every time a participant wins, y gets increased, and decreases when loss. Computed based

on a bayesian graphical model, how much each skill score gets updated is determined by

how surprising the comparison result is. In an unbalanced comparison, for example, the

algorithm will update the values very little when the favorite wins, or will result in huge

updates when the favorite loses.

40 Herbrich, Ralf, Tom Minka, and Thore Graepel. "TrueSkillTM: a Bayesian skill rating
system." Advances in neural information processing systems. 2007.

65



In this case, each comparison of two spaces is considered a two-player contest. All spaces

are first set to default values y = 25, a = 25/3, and the values get updated by the

algorithm according to the comparison results collected from the survey. The final P scores

compose a ranking list of all scenes. By normalizing the it values to the range of 0 to 1, a

rating for each scene is then acquired. A rating, let's say interestingness of the scene, close

to 1 means that this scene is more interesting than almost all the other scenes, and vice

versa.

In a two-player contest, Trueskill algorithm converges after taking about 12 to 36 contests.

In this case, to get a fully converged result, by calculation at least 20,000 comparisons are

required. Besides, when calculating categorized ratings, fewer data samples can be taken

from each category. For that, specific data augmentation processes should be conducted. In

this case, an extra step was conducted to increase the number of comparisons between the

selected scenes. Each panoramic depth image of a sampled scene is run through (or

encoded by, the methodology of Auto-encoder is introduced in Section 3.7) a pre-trained

neural network introduced in section 3.4, and resulted in a 50-dimensional latent vector.

Since the network is trained through supervised learning, the resulting latent vectors encode

the features of the panoramic depth image. In another word, the closer the distance

between two latent vectors is, the more similar the two corresponding scenes are.

Additional comparisons are generated for pairs when one of the two is very similar to

another scene by comparing the distance in feature vector space.
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interest 0.31
Public 0.75
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Figure 3.8.3-1: A part of space rating results of the survey after converted comparisons to
ranking scores.
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3.8.4 Rating System

A rating regression system can be developed on the basis of the collected rating data. The
general idea is that the system has rating scores for a collection of scenes, and given a new

scene input, the system calculates a new rating score concerning the scores of existing

surveyed scenes. This score can be calculated by interpolating the value in feature vector

space (as introduced in section 3.7.2) or can be computed through another regression

network.

Using the 3D Isovist sampling methodology introduced in section 3.2, each scene that has
run through the surveys is converted to a panoramic depth image. This process is also

applied to new input scenes to be rated by the system. On the basis of all the panoramic

depth image samplings, a pre-trained network is utilized to convert the samplings to their

vector representations.

This pre-trained network can be network trained for different purposes or with different

training datasets, but different network results in different feature extraction process when

an input sample is being run through. In this experiment, the network introduced in section
3.4 is utilized, and it can be seen that the system will have better performance when dealing
with regular walls and column composed space, similar to the 15 space composition types

featured in section 3.4.

Once all the space samplings have been "encoded" to their vector representations, the
rating of the input scene can then be computed in this feature vector space. In this case,
vector interpolation method is utilized for computing the rating.

The formula for interpolation of the rating can be written as:

n Rating,

Rating i=IDis(v vi)
yn 1

,= ID is (v, vi)

In the formula, vector v denotes the encoded vector representation of a new input scene,

and vi is one of the n vectors for the n surveyed scenes.

This whole computation system is illustrated below:
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Figure 3.8.4-1: illustration of the computation of the rating system

As can be seen in the formula, when computing the value of a new input, the system

iterates through all the existing samples and interpolate the final result. This will work well

with limited existing samples, but if the amount of existing samples is too significant, a

regression neural network can be a better option, since it is lighter in computation.

The system introduced in this section is further tested with the interactive modeling

software introduced in section 4.1 and 4.2, and additional results are shown in the appendix

section.

3.8.5 Rating by Subject Groups

The data collected in the survey can be categorized by the backgrounds of the participants.

The categories are made by gender (male or female), architecture background (architect or

novice), and age (young-aged 0 to 30 or old-aged 30 or more). For data collected from

different categories of participants, the ratings of the surveyed scenes may differ. So the

data can also be grouped by category, and each generates a rating collection for the
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surveyed scenes. The Rating distributions of the different groups are plotted below with box

plot in Figure 3.8.5-1. They show the interestingness, publicness and spaciousness rating

distributions respectively for different categories.

- 4 
L

08

04

02

M*msvl Oich nom male b ale YN"g dd

10 0

018

06

OA

02

spalc usnes nne dse trnute Ying dd
label

10 *: *

06

L04 M

0?

00 4 4

08OCOS Wcou ftooince mae %owge ymn~ ~d

Figure 3.8.5-1: From top to bottom:
Interestingness, publicness and
spaciousness rating distribution box
plot for different groups. Young means

age smaller than 30 here, and old

represents age larger than 30.

Based on these rating distribution plots,

comparisons can be made about different

categories of participants. Although the data

amount is limited so it may be biased by
different factors, it still shows opportunities in

studying spatial awareness and its correlation

to subject backgrounds.

For instance, female participants' rating about

spatial interestingness and publicness tends to

be a bit more extreme than male participants,

as the ratings from female participants have a

more substantial variance. A similar

comparison can also be made in the

spaciousness figure for architects and novices,

or in the publicness figure for young and old.

One fun fact to notice is that architects and

novices have more diverged opinions about

the interestingness and spaciousness of space

compared to publicness.

Further, with the data categorized, instead of

computing the rating by referencing all the

survey results, the system can first filter out

the participants and their survey data by

subject groups and compute ratings only using

the filtered results. In another word, the

system can simulate a rating of space as a

human of different categories. This process

can be illustrated as the figure below:
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Survey Results
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Figure 3.8.5-2: Compute rating by subject groups through filtering comparison results by category
and compute results separately.
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4 APPLICATIONS

To demonstrate the systems introduced in the previous section, several use cases are

conducted. Those mainly include two parts: Firstly, they are applied to a real-time space

evaluation modeling interface, which gives a user prompt insights about the scene being

constructed; Secondly, they are also utilized in the spatial analysis of existing architectural

designs, namely small designs by Mies van der Rohe and Aldo van Eyck. The case studies

conducted validate that this methodology works well in understanding local spatial

conditions, and it can be helpful either as a design aid tool or in spatial analysis.

These two parts are described in the sections below.

4.1 Interactive Modeling Based on Space Awareness

4.1.1 Introduction

User CAD Software Model

User CAD Software Model

- Spatial Anslysis $pace
- Modeling Suggestions A ware ness[

System

Figure 4.1.1-1: Comparison of a regular CAD operating workflow and a
space awareness modeling system

Current Computer Aided Design (CAD) tools are similar to pens and paper; they follow users'

commands. As a result, a design process involving CAD tools is more of a one-way process -

- human to computer. The system stores what the user's input as it is and follows orders.

What's more, the geometric elements are discrete and cannot make sense as a whole.
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With space awareness systems implemented, CAD software can be more helpful and
intelligent for designers to use. The systems can record not only how each element is

placed, but attempt to understand what the user is trying to do, and yield spatial insights to

user operations on the fly. Possible operations can also be suggested to the user based on

the insights and thus better engaged in the design workflow (as illustrated in figure X).

In this demonstration, a real-time space evaluation modeling interface is developed. In
using the modeling interface, a user can quickly create a scene by resizing a base cube and

place it anywhere in the interface as he or she desires. After each operation, the system

makes sense of the geometrical elements in the scene through the space awareness

systems introduced in section 3, and provide insights of the designed space. Those insights

include the space's panoramic depth image, composition classification result, scene

classification result, 3D reconstruction result, and ratings of interestingness, publicness, and

spaciousness.

Once the system can generate spatial insights for a given viewpoint in the scene, thanks to

the efficiency and economy of computers, the system can sample and analyze the whole

scene from every possible viewpoint easily. The insights allow the user to have a better

understanding of the designed space from much greater perspectives.

Additionally, this interactive modeling tool also works as a testing toolkit for the space

awareness systems developed in section 3. With the ability to quickly model a scene and run

it through the systems, it also serves as a perfect trial and error platform for the

development of the space awareness systems.

4.1.2 Software Structure
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Figure 4.1.2: Software structure

The interactive modeling tool is a web-based application. It consists of a front-end for

client-side user interaction, and a back-end dedicated to insights computation and data

storage. On the front-end, a user can operate the geometris in the scene using the CAD

toolkit, as a regular modeling software; The model, in real time, gets sampled and

generates a .json format panoramic depth image, which is sent to API for back-end

computation; In the meantime, the model also gets stored in the database, and that

ensures that each step of the modeling process is kept track of; Once the back-end

computation is done, the result will be sent back to the front-end to the user, and also

saved to the database along with its geometry data.

The front-end is developed in Javascript4 , with THREE.js42 and D3.js 41 as major toolkits for

3D visualization, UI design or 2D visualization in the browser, and CSG.js44 library for 3D

model Boolean operations. Additionally, TreeModel.js 4 5 is used for model's tree graph

management. The back-end mainly has two purposes, data storage, and computation. The

database is developed with Firebase 46 and keeps track of the overall space prediction results,

and the dimension, position, and time of each element. The computation function is

developed as a PHP API: the API accepts data from the front-end (.json format) with a

41 "JavaScript." https://www.javascript.com/. Accessed 22 May. 2018.
42 Cabello, Ricardo. "Three. js." URL: https://github. com/mrdoob/three. js (2010).
43 Bostock, Michael. "D3. js." Data Driven Documents492 (2012): 701.
44 "csg.js." http://evanw.github.io/csg.js/docs/. Accessed 22 May. 2018.
45 "TreeModel." http://jnuno.com/tree-model-js/. Accessed 22 May. 2018.
46 "Firebase." https://firebase.google.com/. Accessed 22 May. 2018.
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POST request, and run space data through a pre-defined python program running neural

network systems (Introduced in section 3) developed in Pytorch. The printed result of the

python program is then returned to front-end as the queried result of the POST request.

4.1.3 Interface

lN'

Gdnie tries
Isovist Points

Figure 4.1.3-1: the interface screenshot.

The interface is designed similar to regular modeling software. It has a canvas on the left

for 3D geometry previewing and editing, and a panel on the right with four tabs, namely

"editor,""insights,""suggestions" and "computation," dedicated to different usage scenarios.

4.1.3.1 Canvas

The canvas is mainly used for 3D geometry previewing and editing. It will sow a horizontal

reference plane as an operation desk for the user, and geometries are to be added on top

of the reference plane. In the scene, there is also a red cube which locates initially in the

middle above the reference plane. This red cube is an indication of viewpoint, and the
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software will sample space in real time from this viewpoint and generate corresponding

panoramic depth images (Section 3.2).

Figure 4.1.3.1-1: different display preview options in the canvas. From left to right are: geometry
on, isovist points on; geometry off, isovist points on; geometry on, isovist points off; geometry off,
isovist points off.

On the bottom left of the canvas,

"Isovist Points." By clicking these

geometries and the sampled isovist

the figure below.

there are two layer marks, namely "Geometries" and

layer marks, a user can toggle the display of the

points from the viewpoint. An example can be seen in

4.1.3.2 Editor

The software is meant to be a user-friendly

modeling tool. The editing operation procedurals

are designed simple enough so that a user can

model a scene easily by intuition. Users can

construct a scene easily by placing cubes into the

scene.

The "editor" tab is where the majority of the

modeling tools are. On the bottom of this section,

there is a box resize tool, where users can drag

the faces of the cube by the mouse to resize it.

(Figure 4.1.3.2-1) Once a box size is set, in the

modeling canvas, the cube can be placed attaching

to where the mouse targets, which will be acquired

by intersecting the geometries in the scene, and

offset the cube so that it is ideally attached to the

pointed object. (Figure 4.1.3.2-2)

Boolean Type
Tmnifogon
Trndr

Graph Visuallation

Box Resize Tool

Figure 4.1.3.2-1: Interface of the
"Editor" panel.
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A user can also manipulate a geometry in the
scene by clicking one of the options in section

"transform". Once one transform mode is selected,
geometries in the scene can be selected by mouse,
and a control gumball will show up in the scene
when a geometry is selected. "Drag", "Rotate",
and "Scale" will show different gumballs that
allows users to move around the object, rotate

the object, and scale the object respectively in the
scene. (Figure 4.1.3.2-3)

2

In section "graph visualization," (Figure 4.1.3.2-1)
the software shows each cube as a node which is
affiliated to another. By default, when adding a
new cube, the new cube will be added as the child
of the previous cube. Alternatively, by selecting a
node in the "graph visualization" panel, parent of Figure 4.1.3.2-2: Geometry
the new cubes can also be specified manually. placement. The mouse intersects with a

This parent-child relationship will make no geometry (including the reference

difference for "addition" mode, as all volumes are plane) in the scene and computes a

accumulated regardless of the relationship. placement position so that the object
accuulaed egarles ofthewill be attached to the pointed object

However, it does matters when some cubes are

added as a "subtraction" or "intersection." By position.

default, the software will use "addition" mode for
the current edit, and show the resulting model directly by adding. Alternatively, users can
also select "subtraction" or "intersection" in the "Boolean Type" section. Instead, such
operation will be applied to the parent of the current cube, not the whole geometry. Also,

7
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Figure 4.1.3.2-3: Gumballs. From left to right: "dragging", "rotation", and "scaling"
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the operation type will be color coded in

"graph visualization" panel, namely green for

addition, red for subtraction, and blue for

intersection. The final result will be computed

using the Constructive solid geometry (CSG)

algorithm, and previewed when the user

clicks the "preview" button, otherwise, the

viewer shows all elements as they initially are.

4.1.3.3 Insights

The "insights" panel is a visualization panel for

the sampled panoramic depth image and its

machines' perception results returned from the

API. Every time the user makes a new

operation in the scene, a further sampling will

be made and sent to the API for computation.

On the top of the "insights" panel, the

software shows the panoramic depth image

sampled from the specified viewpoint in the

scene. It is already an unwrapped grayscale

image with a resolution of 60 by 30. Below the

panoramic depth image, there is a section with

control buttons. Users can change the location

of the sampling viewpoint with these buttons.

The composition classification section,
positioned below, shows the top-1 prediction

label for the current input, it is using the

system introduced in section 3.4. The 3D

reconstruction section, to the right of the

Figure 4.1.3.4: CSG operation by CSG
tree. In this figure, the nodes are labeled
"A" for intersection, "U" for addition

(union), and "-" for subtraction. (Source:

https://en.wikipedia.org/wiki/Constructive
_solid-geometry)

Panoramic
Depth
Image

Move of
Sampling

Point

Composition
Classification

3D Reconstruction

Scene Prediction

lnterestlngness

Publicness

Spaciousness

Figure 4.1.3.3-1: the "insights" section,
which shows the space awareness results
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classification section, shows a reconstructed 3D structure computed with the system

introduced in section 3.6. It is a model in 3D which users can pan, zoom, or scale. Below

this section, the scene prediction section shows the result for similar scenes predicted by

the system in section 3.5. The results are shown with a donut chart, and the area of each

region represents the probability of the correlated scene type. On the bottom of the whole

panel, there is a histogram showing the ratings for measurements including interestingness,

publicness, and spaciousness. The result also includes ratings by different categories of

people, as introduced in section 3.8.5, which are filled in white, whereas the overall ratings

are highlighted with red fillings.

4.1.3.4 Suggestions

The "suggestion" panel is a section where
system recommended predefined shapes are
listed, and a user can easily apply by
selecting. The recommendations are made

by the scene classification (Section 3.5)
results of the current model, and a

probability of a scene larger than 5% will

activate the suggestion for that specific

scene type. The system lists the most

popular shapes for the predicted scenes. For

example, if the scene is predicted as a

bedroom (probability > 5%), the suggested

shapes will include a cube of the size of a

bed.

For the current time being, the suggestion

system is only built on the scene

classification results, and the suggestions are

limited to affecting the modeling cube's

dimension. It can be anticipated that it can

be more powerful as more spatial insights

are contributing and a more vast geometry

database is built for the suggestive system.

Figure 4.1.3.4-1: "suggestion panel", show

system recommended shapes to apply.

Recommendation is made by scene

classification results.



4.1.3.5 Computation

The last panel of this system is "computation," and it provides functions for space

computation using the autoencoder system introduced in section 3.7. It has four scene

placeholders, namely "A," "B," "C," and "A + (B - C)." A user can model a scene using the

editing tools, and set the current space to either "A," "B," or "C" in this panel. Once a

placeholder is set, it shows the panoramic depth image of the specified scene; the network

encoded vector representation visualization and the 3D reconstruction of the current scene.

The vector representation, which has 50 dimensions, is the feature vector encoded by the

auto-encoder system. The vector visualization shows the value in each dimension as one

vertical segment.

'J , ..

A

'4'-)
A.

~ A

B

'4 )
A

A..

'1

C

A- (B - C)

Figure 4.1.3.5-1: Scene A, Scene B, Scene C, and the computation panel

computing "A + (B - C)".

which shows the result of

Once all three of the scenes "A", "B", and "C" are specified, by clicking the button "calculate

A + (B - C)", the system sends the data of scenes "A", "B", and "C" to the back-end and run

through the auto-encoder system. The system first computes the vector representation of

each scene, and conduct algebraic operations of "A + (B - C)" in vector space. This new
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vector is seen as the vector representation of the resulting space; With the new vector in
hand, the system uses the vector as feature vector and run it through the segmentation
network introduced in section 3.6 to get the 3D reconstruction result of the resulting space;
Additionally, by decoding the new vector, the autoencoder system gets a panoramic depth
image of the resulting space. The new vector, 3D reconstruction result, and decoded
panoramic depth image are then visualized in the last placeholder "A + (B - C)."

4.1.4 Use cases

For every scene, a panoramic depth image is sampled from the viewpoint represented by
the red cube. It was then sent to the backend of the software for computation, and the
system yields the results for composition classification, 3D-Reconstruction, Similar Scenes,
and ratings by different subject groups. The table below shows some results of the
interactive modeling interface running on some very basic geometries. On these
fundamental scenes, the system works decently, and every function is working as expected.

Table 4.1.4-1: results running on simple geometries

Geometry

Point Cloud

Panoramic
Depth Image-

Composition
Classification

t13t 
t7 t9

3D-
Reconstruction 0

Similar Scenes

- Corridor - Corridor - Corridor -Corridor - Bedroom - Bedroom
- Classroom - Classroom - Classroom -Classroom - Corridor - Bathroom
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Further, the system is tested in a specific use case when a user tries to model a bedroom. A

record of the process is listed below in Table 4.1.4-2. Initially the scene is blank. The user

starts by placing walls in the scene, like in step 1 below. When two parallel walls are added

to the scene, it was seen as more of a corridor like space, followed by classroom and

bedroom. The system also suggested some predefined sizes to choose from for these

scenes. The system suggested some columns and walls at this stage, as these are elements

selected more according to statistics in a corridor-like scene. As it is more like a corridor, for

now, the user continues to place elements to enclose the space and get step 2. It is a room

with one side made of frames, and the other three sides are walls when one of it has a

door-like gap. At this stage, space is seen more like a room. The top 2 predictions have

been updated to bedroom, and classroom, while the difference between the two is very

limited. The user may be happy with the current enclosing, but if not since it is too similar

to a classroom, he can easily modify the frames side of the room and make it more private

into step 3. In step 3, a wall with only a smaller window replaced the previous frames, and

the prediction become bedroom and bathroom when bedroom now has a probability boost

from below 13% to 24.49%. The user can continue the modeling process by adding interior

elements, let's say a bed. The user can directly choose the bed from the suggested shapes,

and add it to the room. Once the bed is added, as shown in step 4, it can be seen that the

bed prediction probability continues to increase and reached 27.40%.
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Table 4.1.4-2: A modeling record of a bedroom.

Step 1 2 3 4

Scene

Scene I Jw &: 7M
Prediction

Corridor; Bedroom; Bedroom; Bedroom;
Classroom; BdomBedroom Classroom; Bathroom; Classroom;

Bedroom Bathroom; Classroom Bathroom
Corridor

Suggeste - -.-.. -.-* - - - - ~

d Shapes

4.1.5 Discussion

Although the interactive modeling software is limited in function and can only accommodate

the modeling of simple forms, the employment of the space awareness system suggests
new possibilities in computer-aided design and shows great potential for making a modeling
process more efficient. The results generated by the space awareness system are as

expected, and the system shows excellent efficiency that it yields results promptly in real

time. The efficiency allows for tight integration of human-machine interaction.

In this early phase of the application, only scene classification results are taken to generate

modeling suggestions, and limited predefined geometries are recorded. But even now, the
system already demonstrates the idea of how the machine reads a scene constructed by
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human and provides feedback. It can be seen that as a more massive database is

constructed with a greater variety of elements, and are labeled with more spatial features,

the system can be much more powerful and useful. The features attached to geometric

elements can include not only scene types, but interestingness, publicness, spaciousness,

and a lot more. Other than the features of a static geometric state, if the system can predict

how the features are influenced by a specific element before adding it, the trial and error

process of a modeling procedural can be reduced and thus the design process can be more

efficient.
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4.2 Analysis Of existing buildings

4.2.1 Introduction

Simple and common architectural elements can be combined to create complex spaces.

Different spatial compositions of elements define different spatial boundaries, and each

produces a unique local spatial experience to observers inside the space. Therefore, an

architectural style brings about a distinct spatial experience.

However, it turns out that the spatial experience of architecture can hardly be quantitatively

studied, as it requires the personal engagement of the space. As Tadao Ando stated that in

designing, architects would have to think about how people will approach the building and

experience that space. That fact ensures that traditionally if one wants to study the style

and spatial quality of an architecture statistically, it demands a significant amount of efforts

from the professionals.

If the space perception systems can be applied to a quantitative study of architectural

designs, researchers and designers can understand the local spatial conditions of

architecture from a new perspective, acquire the pattern and frequency of their appearance

in designs, and study the peculiar spatial experiences embedded in an architectural style.

In this case study, several existing architecture projects are sampled using their digital

models and ran through the systems. With their samplings and the networks trained ahead

of time, spatial analysis of the sampled models can be acquired. In this analysis, the

systems introduced in Section 3.4 and 3.8 are utilized to get space composition classification

results and space rating results for each space sample. Further, the concept of vector

representation introduced in section 3.7.2 is employed in the spatial analysis of the selected

buildings and allows for the computation of results such as vector representation distribution,

centroid representation vector, and representation vector variance. The analysis of these

selected buildings leads to style related insights. The results are shown in section 4.2.2,

section 4.2.3, and section 4.2.4.

Same as the samples acquired for training, utilizing the panoramic depth sampling method

introduced in section 3.2, the three models are sampled with a resolution of 1 x 1 m from

the height of 1.6 m from the floor, and only in areas close enough to the buildings (either

inside of the building or within a distance of 4 m) and human accessible (pools are not

included). Glass and windows and are removed from the models, as only visual geometric

boundaries are considered in this experiment.
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4.2.2 Selected Buildings

Several architectural design projects are sampled and ran through the systems using their

digital models. These projects are selected considering mainly two reasons: (1) The selected

projects are famous for their spatial design. (2) The selected projects are one-story

buildings, and their space compositions are similar to the training datasets utilized in

training the space perception systems. The selected projects are shown in the list below,

and they include two Mies projects and one Aldo van Eyck project:

(1) Barcelona Pavilion, Mies van der Rohe

Figure 4.2.2-1: Plan of the Barcelona Pavilion.

(Source: http://a2d-architecture.com/post/25012108227/to-

german-pavilion-barcelona-spain-by-mies-van)

The Barcelona Pavilion was designed by Mies van der Rohe. It was originally

designed as the German National Pavilion for the Barcelona International Exhibition,

but it soon became an important building in the history of modern architecture,

known for its form and use of materials.

(2) Exhibition House, Berlin, 1931, Mies van der Rohe
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Figure 4.2.2-2: The Exhibition House, Berlin, 1931.

(Source: https://www.pinterest.com/pin/373376625332801494/?Ip=true)

The Exhibition House, Berlin is another spatial experiment conducted by Mies in

1931, after the Barcelona Pavilion.

(3) Paviljoen van Aldo van Eyck

Figure 4.2.2-3: Paviljoen van Aldo van Eyck.

(Source:http://data.collectienederland.nl/page/aggregation/kroller-muller/73454)

Paviljoen van Aldo van Eyck was designed in 1965-1966 for the 5th International

Sculpture Exhibition and it heavily featured circles and curves as key elements of

Van Eyck's "humane architecture."
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4.2.3 Space Composition Classification

4.2.3.1 Results

The three selected buildings are sampled and ran
classification system. The statistical result of each space
Table 4.2.3.1-1 for Barcelona Pavilion, in Table 4.2.3.1-2
Table 4.2.3.1-3 for Paviljoen van Aldo van Eyck; The
designs are illustrated in Figure 4.2.3.1-1.

through the space composition
type from the system is shown in
for Exhibition House Berlin, and in
sampling locations for the three

Table 4.2.3.1-1: Barcelona Pavilion Stats (1071 samples in total)

to ti t2 t3 t4 t5 t6 t7 t8 t9 tlo til t12 t13 t14

Sample Number 6 5 20 115 44 0 41 46 12 0 10 445 42 115 170

Sample 0.6% 0.5% 1.9% 10.7 4.1% 0 3.8% 4.3% 1.1% 0 0.9% 41.5 3.9% 10.7 15.9
Percentage % % % % % %

Table 4.2.3.1-2: Exhibition House, Berlin Stats (1140 samples in total)

to ti t2 t3 t4 t5 t6 t7 t8 t9 tio til t12 t13 t14

Sample Number 29 23 4 153 83 5 108 36 5 0 73 322 97 29 173

Sample 2.5% 2.0% 0.4% 13.4 7.3% 0.4% 9.5% 3.2% 0.4% 0 6.4% 28.2 8.5% 2.5% 15.2
Percentage % % % %

Table 4.2.3.1-3: Paviljoen van Aldo van Eyck Stats (436 samples in total)

to ti t2 t3 t4 t5 t6 t7 t8 t9 tlo til t12 t13 14

Sample Number 16 0 0 40 3 17 31 107 3 1 0 115 0 102 1

Sample 3.7% 0 0 9.2% 0.7% 3.9% 7.1% 24.5 0.7% 0.2% 0 26.4 0 23.4 0.2%
Percentage % % % % % % %
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Figure 4.2.3.1-1: The result of applying
the system to the sampled locations in the
three design's models. The black dots in
each figure stand for negative samplings for
the space composition indicated by the
legend below, based on the top 1
presumption result. The red dots stand for
the positive ones.
Top-left: Barcelona Pavilion;
Top-right: Exhibition House, Berlin;
Bottom-right: Paviljoen van Aldo van Eyck
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4.2.3.2 Result Analysis

These results show that the system can provide reasonable space-type presumptions for
new sampled spaces. Though the results are not perfect, in most cases, the generated
presumptions were close to human perception of the spaces. In addition, statistic reports for
the whole buildings can be acquired by running through samplings of them. The results can
be utilized to distinguish the building or its style. Figure 4.2.3.2-1 and Table 4.2.3.2-1 show
the accumulated results acquired from the tests of the three buildings.
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Exhibition House, Berlin, Mies Van Der Rohe

Barcelona Pavilion, Mies Van Der Rohe

Paviljoen van Aldo van Eyck

to ti t2 t3

Figure 4.2.3.2-1: Plot

t4 t5 t6 t7 t8

of Seed-Space distribution in all
t9 tlo til

three buildings.

t12 t13 14

Table 4.2.3.2-1: Categorized sampling result for all three buildings.

Wall Column Shaded Not Shaded Shaded Not Shaded

Elements Elements Walls (t4, Walls(t3, Columns Columns

(t3, t4, t5, (tO, tI, t2, t6, t8, tl0, t5, t7, t9, (t2, t14) (tO, ti, t13)

t6, t7, t8, t9, t13, t14) t12) ti l)

tIo, t1i,

t12)

Barcelona 70.4% 29.6% 13.8% 56.6% 17.8% 11.8%

Pavilion

The 77.3% 22.6% 32.1% 45.2% 15.6% 7%

Exhibition

House,

Berlin

Paviljoen 72.7% 27.3% 8.5% 64.2% 0.2% 27.1%

van Aldo

van Eyck

For the case of the Paviljoen van Aldo van Eyck (PVAVE), it is interesting to notice that

although the only compositional elements of the building are walls, it's still presumed to

have 25.9% column like space. By checking the distribution mapping of space in Figure 10,

it can be seen that the one-sided columns (t13) are primarily situated against the ends of

walls, where the local experience is more similar to columns. Similarly, in the PVAVE case,

pocket-walls (t7) is shown in many of the samplings, where the observer is surrounded by

curved walls on one side. The fact that one type of space can be composed using other

types of elements is reasonable, though it may not be obvious when only considering the

type of the original elements. Spatial experience is too obscure to be described merely using

go

50%'

25%
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drawings or models, but the proposed methodology suggests a possible solution.

Additionally, the system can be improved by adding these new space types, "against walls"

or "enclosed by curved walls," to the Seed-Spaces. The system will be able to identify these

new spatial compositions with an adjusted network so that the result will describe the

PVAVE's design more precisely.

Comparing the Barcelona Pavilion case and the Exhibition House Berlin case, the Mies

designs both have walls and columns in the models. Mies van der Rohe is famous for

designing free-flowing spaces, and it can be seen that the less open space types, such as t7,

t8, t9, and tlO, rarely appear in these two buildings. The difference between the two also

can be identified from the sampling results. The BP has more outdoor space compared to

the EH, yet the EH has a greater proportion of walls.

The main distribution of Seed-Spaces displays similar trends for the EH and the BP. The

PVAVE case shows different proportions of Seed-Spaces compared with the previous two,

although all three designs are one-story buildings composed of mainly walls (t11). The

PVAVE case returns more pocket walls (t7) and one-sided columns (t13), but no shaded

one-sided columns (t14).

Last but not the least, it's also important to point out that for each sampling, the network

produces a probability distribution of the Seed-Spaces. In this perspective, each spatial

composition can be considered as a "Hybrid Space" of the SeedSpaces. For example, if the

result indicates that the input has a 60% probability to be space t1 and a 40% probability to

be space t2, this input space T' is 60% similar to t1 and 40% similar to t2. It can be

considered as a hybrid space (0.6t1 + 0.4t2) of the two. This soft assignment allows the

system to be applied to analyze space in more flexible scenarios, allowing for the description

of transitional space types.

4.2.4 Vector Representations

As seen in section 3.6.2, the similarity of different spaces can be considered as the distance

between the vector representations of these spaces. After a thorough sampling of the

selected architectural designs, the samplings are then encoded by network 3.4, resulting in

vector representations, which are 50-dimensional feature vectors. By applying the t-SNE

algorithm (Section 2.4.6) to reduce the dimension of the feature vectors from 50 to 2, it

allows for plotting of these vector representations in a 2-dimensional space. The vector

dimension reduction process (t-SNE) of the "Seed-Spaces" and the three buildings are run in
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a single e-SNE process so that they share the same reprojection procedure, and that
ensures the 2-D vectors can be compared with each other across the source.

4.2.4.1 Results

The vector representations plots of the three designs is shown below. Each dot represents a
vector which has been projected to 2-D, and the vectors from the three buildings are color-
coded by which building a specific vector belongs to. Also, the plot of the 15 "Seed-Spaces"
is shown again for comparison. Besides the plot, data about the vector representations of
the three buildings are listed in Table 4.2.3.1-1.

tSNE imMUwwn cvWbred by Digit

4

9

to : 0 ;0 4 0

ME dimn CO.rd by Digit

10

t*s.
ID

z-tsae

Figure 4.2.3.1-1: 2-D vector representation plots for samplings in the three buildings
and the 15 "Seed Spaces." Left: plot for the three designs, with red for Barcelona
Pavilion, blue for Paviljoen van Aldo van Eyck, and green for The Exhibition House,
Berlin. Right: Plot for the 15 "Seed Spaces."

Table 4.2.3.1-1: The distribution values for the three designs

Count X Range Y Range X Y X Y Variance
Centroid Centroid Variance Variance

Barcelona 1071 [ -37.78, [-55.03, -2.11 -5.10 278.70 1000.62 1279.32
Pavilion 52.81 ] 58.90 ]

The 1140 [ -43.43, [-55.19, -7.70 5.73 433.16 1283.73 1716.90
Exhibition 60.09] 60.14]
House,
Berlin

Paviljoen 460 [ -43.45, [-45.60, 11.64 -11.85 1044.86 325.29 1370.14
van Aldo 60.70] 52.08]
van Eyck
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In order to have a better comparison of the vector representations between the three
designs, distribution heatmaps are created for them. The heatmaps are shown below in
Figure 4.2.3.1-2.
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Figure 4.2.3.1-2: Vector Representation Distribution Heat Map of Barcelona Pavilion (left), The
Exhibition House, Berlin (middle) and Paviljoen van Aldo van Eyck (right)

4.2.4.2 Result Analysis

From the results shown in the previous section, we have a better idea of the similarities
between each design project, and how they are similar. For example, by overlapping the
plots in Figure 4.2.3.1-1, it can be seen that the most prominent difference of Paviljoen van
Aldo van Eyck against the two Mies designs is it has a lot more t5 and t7 space. The
locations of t5 and t7 vector dots in Figure 4.2.3.1-1 overlaps mostly with the dots
representing Paviljoen van Aldo van Eyck. Also from Table Figure 4.2.3.1-1, the values of
variance suggest that The Exhibition House Berlin seems to have more variety of space than
the other two. Besides, the centroid values show a general impression that by average,
Barcelona Pavilion is in the middle of t13, t14, t12 and t1l, suggesting it is about the mix of
columns and walls with shade. In comparison, Exhibition House Berlin is similar to Barcelona
Pavilion, just that its centroid has a more significant y value, and that is due to the
accumulation of samplings belonging to quadrant 1 and 2, which are mainly for walls (t6, t7,
t12).

Also, from the vector representation distribution heat map (Figure 4.2.3.1-2), it can be seen
that the two Mies projects have a comparatively similar distribution, yet Paviljoen van Aldo
van Eyck is more unique. Almost all vectors of Paviljoen van Aldo van Eyck locate in
quadrant 3 and 4, and its X-Variance is much larger than Y-Variance. It is likely that this
vector representation data is style related.
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4.2.5 Ratings

4.2.5.1 Results

The space rating system (Section 3.8) has been applied to the samples of the three selected

models. Since the survey collected data concerning the interestingness, publicness, and

spaciousness comparison of scenes, these are also the three feasible measurements of the

space rating system. Ratings computed with all data are shown in this section below, and

rating results by individual categories are attached in the appendix section.

The figures below show rating fields of the three buildings. Each dot represents its sampling

location in the model, and the size of a dot represents the intensity of that measurement.

Barcelona Pavilion

a:.

:3?jq Me ~~... ........
ONl~u ....

...... .. ..... ..

a1 M.11l

lnterestingness Publicness Spaciousness Floor Plan

Figure 4.2.5.1-1: Rating results for Barcelona Pavilion.

Left: Interestingness, middle, publicness, right: spaciousness.

The Exhibition Houie, Berlin
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Pavlljoen van Aldo van Eyck
gum........

................. U...U.....................

.... ......... gum.......

.~..........in......a...

.. uUm... a................................. Lu........................

.... u ....... ........ mu.....

.... ~ ~...-i..........(..U...*.......... S....UU~ 4A

... g....................... in ...........*..m.:.:::gU:.::rnin::............. 5........a
a....aina~ 101
Sas 1101
S.

.u:u.......I ii Imu..................a
mu............mm.....

S..

Interestlngoess Publicness Spaciousness foloor Plan

Figure 4.2.5.1-3: Rating results for the Exhibition House Berlin.
Left: Interestingness, middle, publicness, right: spaciousness.

Besides the rating fields, a violin graph is
shown on the right (Figure 4.2.5.1-4), which
shows the rating value distributions of each
measurement, in each building. In parallel to
the horizontal axis, it consists of 9 plots,
representing the three measurements for the
three designs respectively; The horizontal
location of a plot stands for the rating value
ranging from 0 to 1, and the height of the
plots on different rating values means the
count of the specific rating value. Also, the
white dot on each plot stands for the mean of
that rating, and the range of the horizontal
black thick line suggests the value of the first
and third quartile.

9P Pb

Figure 4.2.5.1-4: violin graph showing the
rating value distributions of each measurement,
from top to bottom: Interestingness, publicness,
spaciousness of Barcelona Pavilion,
Interestingness, publicness, spaciousness of
Paviljoen van Aldo van Eyck, Interestingness,
publicness, spaciousness of Exhibition House
Berlin.

4.2.5.2 Result Analysis

From the rating fields, we can see that the rating system is producing some convincing
results for the three designs. People tend to have more interest in space where there are
more variety of elements, such as the interior parts and the stairs of Barcelona Pavilion. In
the Paviljoen van Aldo van Eyck interestingness field, a clear boundary can be seen between
the inside and outside of the building, when people see more of a complex mix of elements
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versus only one-sided walls are seen in the scene. The publicness results and spaciousness

results are undoubtedly more complex. Comparing the publicness and spaciousness of the

same project, the overall trend is close, but there are subtle differences, mostly in regions

such as corners, parallel walls, and other interior space. It seems although the two

adjectives both have a similar meaning as they are all more or less related to the "openness"

of space, there are also some nuances. A human understands space not only by form but

also by the affordance of space. Publicness suggests that space leads to some traffic activity,

whereas spacious suggests more of a space where different activities can be done inside.

Traffic-related space such as stairs and corridors comparatively have higher publicness

rating, as it can be seen as a major node or pass way for traffic. Spacious space is more

closely related to the concept of "openness," as can be seen that the exterior regions mostly

have higher spaciousness ratings. But in some areas where space is enclosed well, they also

have high spaciousness scores since the spaces are integral and suggest that they have a

right capacity for activities. Such cases can be seen in big interior spaces of both the three

designs.

The violin graph, on the other hand, suggests a parallel comparison for the three designs. It

can be seen that in the eye of the participants, Paviljoen van Aldo van Eyck is a little more

interesting than the other two, as the mean and the third quartile values are higher. The

spaciousness rating, on the opposite, is the lowest for Paviljoen van Aldo van Eyck. One

interesting thing to notice is, the variances of Paviljoen van Aldo van Eyck ratings are much

smaller than the two Mies designs, whereas the two Mies designs have very similar rating

distribution, in both the mean values and the variances.
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5 DISCUSSION

As initially discussed in Section 2.1, the "physicality" and "spatiality" of space are two closely

integrated parts that cannot be separated and are both concrete features of space. The two

parts of space are bridged harmoniously by human perception. With the attempt to develop

machine systems, "spatiality" may also be connected to "physicality" through artificial neural

networks.

Although the systems are mostly trained with small and artificial datasets (except for scene

classification) and applied to limited topics, we can see the potential of this methodology in

architectural design studies. The results of both the tests on the modeling software and the

analysis of existing buildings show that the systems extract features from space samplings

and produce results that are similar to human perception. The following paragraphs discuss

the pros and cons of this method I observed as they were developed, followed by possible

future improvements, developments, and the contribution of this thesis.

As proposed in Section 1, training machine learning systems to get "perceptions" of space is

no more than a simulation of the behaviors of human perception. Current artificial

intelligence systems still work on well-defined tasks, which makes little difference compared

to traditional computation methods. The actual concepts of perception are far beyond what

can be covered by several prediction problems. Human perception is non-deterministic.

From perception, emerging understandings and predictions, even imaginations can be

inferred by human brains. In that sense, a machine's perception system is not true

perception, but simulations of perception in several aspects.

In addition, the experiments and methodologies proposed in this thesis were conducted

using simplified settings. Unlike a real architectural space, which involves aspects such as

lighting and material, only the geometric aspects of space were captured. Currently, many

of the systems proposed work as proofs of concept within laboratory settings and have not

yet been utilized in practice. However, such space perception simulation systems show great

potential in assisting with spatial design and its analysis. The methods may not cover all

aspects of a human's perception of space, but once a system is built so that a specific

aspect can be simulated, thanks to the efficiency of computers, results can be acquired

promptly and in great detail considering historical datasets once adequately collected and

organized.

As seen in the application of the interactive modeling software, the system yields insights in
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real time as a designer operates in the modeling interface. Furthermore, insights such as

ratings by different subject groups are beyond what a regular designer can imagine by
himself or herself. These insights also can be a part of the design pipeline. The interface can

suggest, as seen in the interactive modeling software, predefined shapes to the users that

can be directly applied to the current model, and the suggestions are made based on the

scene classification results. In addition, counting on the efficiency of the perception

simulation systems not only results from a single sampling location, insights of samplings

covering every corner of a model can be computed in no time. Thus, a designer can get an

overall quality report of the entire design down to every part of the operation "on the fly."
This application can be seen in the analysis reports of the three selected buildings. Such

reports can be generated in real time and consider every subtle change of a design process.

The system's involvement in design can then go beyond the current shape suggestion once

a larger dataset is constructed and more perception aspects are introduced.

As for the system itself, the network may not be deep enough, meaning there might still be

potential to acquire better feature extraction performance with better-crafted networks. A
larger training set with greater variety can also help in the generalization of the networks

and would also help to avoid overfitting. Considering the experiments on existing designs,

evenly distributed samplings are utilized in the models, acquiring a distribution of "seed-

spaces." In reality, architects may design a building based on the sequences of spatial

experience. It could also be interesting to run sampling on a designated walk-through in the

space, along with analyzing the transformations of space in vector representation space.

This kind of analysis can not only yield a space-type distribution, but the variation of

different spaces along the sequence. This could lead to interesting research topics in

circulation design.

Due to the difficulty and comparatively higher cost of real building sampling, the systems

are trained with artificial data generated from digital models. In this way, huge datasets can

be acquired easily; however, compared to real space, artificial data encapsulates limited

features and simplified shapes, which may lead to overfitting and other issues. With the aid

of 3D-scanning techniques and photogrammetric sampled models, potentially training data

based on real space data can be constructed, resulting in more convincing and better-

generalized prediction models.

Additionally, for the space rating system, a limited amount of survey data was collected,

which more or less prevented the system from converging. This issue is acceptable when
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computing general ratings; however, it can be less applicable when computing ratings by

individual subject groups. In the extreme case, category "architect" only has about one-third

of the overall data. In cases where overlapping categorical restrictions are applied, such as

"male architects who are under 30 years old," the data shortage can be critical. For that, the

construction of an extensive dataset can be the only solution.

Another problem with the current space rating survey is that participants are viewing the

scenes in their browsers or on mobile devices by either dragging the mouse or touching the

screen. This subjective engagement of space may bias the perceptions as the actual space

engagement is more of an objective experience: situated inside of a space and immersed in

the space as it is. A VR survey may be a better alternative to resolve this issue, although

such a survey may have some demands in aspects such as equipment and accessibility.

Comparing a machine's perception and a human's perception would also be interesting and

would provide feedback for improving the systems. One approach would be to use VR

equipment to test a human subject with an identical space and compare the result of the

human subject with the presumed result of the system. A VR experiment would provide an

immersive experience for a subject, yielding a more convincing spatial feeling.

The contribution of this thesis is fourfold. First, it introduces a sampling method based on

3D isovists that generates a panoramic depth image that can be used to represent a 3D

space from a specific observation point. Second, it employs machine learning and artificial

neural networks to extract features from the space samples, which is then utilized for

prediction. Third, it proposes a survey method that can collect space sentiment data. Fourth,
it demonstrates a few applications where this space prediction method is applied and how it

helps with design and its analysis.
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6 APPENDIX
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Figure 6-1: Space rating of Barcelona Pavilion by different subject groups. Calculation based on
system introduced in Section 3.8.
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Figure 6-2: Space rating of Exhibition House, Berlin by different subject groups. Calculation based
on system introduced in Section 3.8.
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Figure 6-3: Space rating of Paviljoen van Aldo van Eyck by different subject groups. Calculation
based on system introduced in Section 3.8.
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