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A B S T A AC T

Automatic control systems have long been in practice

with considerable success based upon years of cut and try

experiences. The present type of automatic pilot used in

aircraft has followed the same track of development. Prob-

lems dealing with automatic control of aircraft are too com-

plicated for solution by ordinary mathematical methods be-

cause of the number of freedom involved. The equations of

motion, when reduced to one dependent variable, give a linear

differential equation of the sixth or higher order. However,

for longitudinal stability, the pitching response can be

represented by a fourth order differential equation if the

control is properly designed. The theory involved is pre-

sented in Part I and its justification is carried out in

Part V.

Many problems in the field of automatic control, both

in aircraft and other systems, lead to the differential equa-

tion of the fourth order. For this reason it is important

to develop a means for solving these quartic equations which

will be useful in engineering practice. In the present

thesis systematic and convenient methods for solving quartic

equations are developed and presented in the form of curves

and charts based on nondimensional variables. Simplified

methods of determining stability criteria are also discussed

I



The physical significance of the nondimensional resolvent

cubic derived from the nondimensionalized quartic equation

is demonstrated. It is shown that at least one of the three

roots of the resolvent cubic equation is the sum of the ratio

of the natural frequencies of the two components and its re-

ciprocal. A quartic chart is developed from the modified

resolvent cubic equation. This quartic chart makes possible

the practical solution of the quartic equation in terms of

nondimensional physical constants. The scheme used gives

results which are in error by less than *2%.

Possibilities for the improvement of stability with

controls of high frequency and different couplingcoefficients

are investigated and the results are presented in charts.

These results are expressed in terms of figures of merit which

are called advantages. A table of such advantages is gven

which is very very useful for finding the compounding effect

of controls with exciting forces proportional to different

order of time derivatives of error. The theory of compound-

ing effects is investigated and a generalized rule for the

expression of the control advantage is presented. Special

compounding controls are investigated with the purpose of im-

proving the damping ratio of the system to be controlled, and

the results are presented in a series of charts.

Particular relationships between the damping ratio and

natural frequency of the control and the damping ratio and

natural frequency of the member to be controlled should be



maintained so that the controlled results may have unique

frequency and unique damping ratio. The use of a properly

selected frequency and damping ratio for the control is

called tuning. The requirements for proper tuning are pre-

sented in the form of charts.

A knowledge of the stability of a system is not suffi-

cient to give the whole picture of the response to a forcing

function. A method suitable for a generalized transient

analysis of automatic control problems is given in detail as

a result of the application of the Heaviside Expansion Theorem.

For aircraft applications particular attention is paid to the

response of pitching and vertical motion of the airplane when

a vertical surging gust is encountered. Both controlled and

uncontrolled results are given in the form of plots. The

control system considered in the analysis is based upon an

assumed specification of keeping the frequency of the oscilla-

tions of the control and the aircraft unchanged. Any other

suitable specification can be used and the control and coup!

ling factor can be easily evaluated with the aid of the pre-

viously developed study of stability.

Four appendices are presented in this thesis.

Appendix A is the development of the cubic chart upon

the established nondimensional form used by Weiss. Its im-

provement for use in evaluation is that only one chart is

sufficient for the evaluation of physical constants (nondim-

ensional) of the cubic equation which is often met in con-

stant speed control systems.



Appendix B is a concise set of directions for using the

quartic chart.

Appendix C is the derivation of the response when a sys-

tem (with no repeating roots in its stability equation) is

encountered with a surging disturbance similar to that often

z,,et; in bumpy air.

Appendix D is a semi-graphical application of De Moivre's

Theorem to the problem of evaluating polynomial functions

involving complex numbers.

The material presented in this thesis should be useful

as a common tool for the automatic control designer when the

control system involves linear differential equations of the

fourth order. The longitudlinal control of an airplane is

used as a particular illustration of the methods developed

in this thesis.



I N T R C D U C T I C N

For the modern aircraft, whether commercial or military,

a dependable and efficient piloting system is of growing im-

portance. A dependable and efficient piloting system may

be defined as one which consists of a combination of groups

of dependable pilot mechanism& operated by a certain effi-

cient agency. The proper coordination must be determined

according to the condition of flight as well as the condi-

tion of the environment. However, during long range flight

the aircraft must be kept constantly in course whether the

course is straight, follows the path of a great circle, or

even follows a number of connected broken lines determined

by the convenience of available radio beacons. Keeping in

course is the only way for the airplane, which is already

available in service, to save the total fuel consumption,

to reduce wearing of the engines, to save time for the

passengers of the commercial aircraft or increase the swift-

ness of military operation. In rough weather, not only may

the course be subject to drift, but annoying oscillations

are always associated with it if the aircraft is not proper-

ly piloted or controlled. It is advisable to eliminate as

far as possible any annoying oscillations due to such dis-

turbances because it assures the comfort of passengers and

diminishes the fatigue of the crew. Briefly, we obtain

greater efficiency in our flying activity with a proper con-

trol system.

5



In the early stages of aviation, the pilot was the

sole factor carrying the responsibility of control. Due

to the lack of sensitivity to certain modes of motion and

the sluggishness of reaction of the human pilot, the air-

craft could never be expected to achieve its best perform-

ance. Moreover, the constant vigilance of the human pilot

led him to a state of extreme fatigue, and erroneous con-

trolling of the plane was frequently the result.

Since World War I the automatic pilot has been intro-

duced to aircraft for normal flight. The result has been

very promising. As one of its leading industries, the

Sperry Gyroscope Company1 has developed an automatic pilot

system to perfection entirely through a series of elaborate

experiments. The success of the present Sperry system de-

pends upon its logical procedure of development, but strict

mathematical investigation has never been bothered with until

recently when Weiss and Lin made a mathematical study of the
4

controlled motion of airplanes. Haus has tabulated every

possible means of detection of deviation from normal quanti-

ties which is available as control source. However, the

Sperry Company has so far only made an exhaustive development

of simple deviation control (simple displacement control,

using 9, the absolute inclination of the airplane as the con-

trol source). This is true also of the British Smith auto-

5
matic pilot system5. Incidentally, the fact that Sperry and

Smith have followed the same track might be due to a lack of

theoretical light for other possible or even better control



such as the compounding control used aboard the S. S. New
6

Mexico reported by Minorsky6. Of course, due to the wide

difference of mediums of support, and henceforth the differ-

ence in construction of steamships and aircraft, entirely

different types of control may be needed, respectively, to

produce successfully controlled motion. However, the prin-

ciple of continuity and the advantage of higher derivative

control has been explained very clearly by Minorsky in his

paper6 based upon the expansion theory of Taylor's series

for a continuous function. In a simple word, "the higher

time derivatives are capable of giving us the necessary warn-

ing as to what is going to happen a few instants ahead of the

present time". It is logical to predict that with proper

coordination of the compounding of derivative and displace-

ment controls, the controlled result may be better than that

obtainable from a simple control. It is the purpose of this

thesis to throw considerable light on the exploration of sim-

ple controls other than the displacement type, as well as-

compounding controls which are hitherto hidden from aeronaut-

ical engineers.

From the general law of motion of a system composed of

many degrees of freedom which are intercoupled by the nature

of its construction, as many simultaneous linear differential

equations can be written if the coefficients of each variable

and its time derivatives are constant; that is, if each of

the component forces varies linearly with its corresponding



variable or time derivative of the variable. Due to phys-

ical properties such strict linear variation could not exist

for certain variables, especially when their variations are

of large range. However, if we are dealing with small var-

iations, the assumption of linearity is acceptable especial-

ly when the motion is reduced to small magnitudes by well

designed controls. The solution of the general simultan-

eous linear differential equations can be written using the

principle of determinants and the principle of operational

8
calculus . However, the task is not a pleasant one when

the number of degree of freedom gets higher. Even a two-

degrees-of-freedom system, which usually involves a solution

of fourth order linear differential equation, becomes un-

manageable as far as the general characteristic of the sys-

tem is concerned.

Uncontrolled longitudinal motion9 , 1 0 , 1 1 of aircraft

already yields a linear differential equation of the fourth

order. The addition of nonideal control4,5 raises the

equation from fourth to sixth order in which it is unman-

ageable to investigate systematically the possibility of

better control than the conventionally successful simple

displacement type. Probably, being handicapped by the un-

manageability of the higher order differential equation,

both Weiss and Lin confined their investigation to the sim-

ple displacement control. With utmost effort, a better

displacement control may be discovered, but the improvement



shall be predictably limited as the manufacturers have def-

initely fought their way with long experience to the present

degree of success on their simple displacement control.

It is well known that the uncontrolled longitudinal

motion after disturbance consists of two oscillatory motions

of different frequency with different damping. The so-

called short oscillation is usually associated with consid-

erable damping which damps the motion very quickly. The

long oscillation contains only a little damping so that it

dies away in a few oscillations. Sometimes the damping is

slightly negative, so the long oscillation will accordingly

increase in magnitude after a disturbance. The application

of control aims to redistribute the original poor distribu-

tion of damping among the two oscillations. In fact, as we

shall see from the following parts of this thesis, a sole

change of coefficient or coefficients of the fourth order

differential equation, which represents the stability of the

uncontrolled longitudinal motion, will attain the end of re-

distribution of damping. The nature really leaves plenty

of flexibility for us to play these coefficients of the

fourth order differential equation. The raising of the

order of the differential equation by the addition of control

is inevitable. But could we manage the additional degree of

freedom in such a way that it remains its characteristic

(damping and frequency) no matter what the coupling may be,

and thus let it only affect the coefficient or coefficients

of the original uncontrolled fourth order differential equa-



tion? The answer to this question is "yes, we can." From

the analysis of the equation for controlled longitudinal mo-

tion which appears in Part I, Chapter 1'of this thesis, we

shall see the mathematical proof of this answer together

with a logical argument of good reasons for the introduction

of such kind of control for the airplane.

For lateral disturbed motion the lack of course stabil-

ity of an uncontrolled airplane can be overcome by the addi-

tion of control of rudder movement. The order of differ-

ential equation shall be raised from fifth to ninth if ail-

eron control is provided together. The solution for a best

control is far more difficult than in the case of longitudin-

al motion.

However, the thesis is carried on to insure full under-

standing of fourth order differential equations with which

the design of a most desired longitudinal control is made

possible. As the quartic equation has been a stumbling

block to the understanding of higher degree equations, its

full understanding shall improve the ladder for us to attack

the still higher degree equation as that which we shall face

on the lateral controls.

Maxwell12 has done a good deal of work on servos involv-

ing the two-degree-of-freedom equation, yet due to lack of

systematization his results are not readily applicable.

Besides the automatic control of airplanes, the growing

importance of other control problems encourages the writer



to systematize the mathematical presentation in a much wider

range than it should be if only applicable to aircraft control

engineers, in the hope that it will minimize the effo'rt forrvery

control engineer in his particular design work.
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GENERAL THEORY OF AUTOMATIC CONTROL ON

LONGITUDINAL MOTION OF AIRCRAFT



CHAPTER ONE

CONTROLLED LONGITUDINAL MOT ION OF AIRCRAFT

WITH CONVENTIONAL 9 CONTROL

1. Separability of Longitudinal and Lateral Motions of the

Airplane

A rigid body-moving in free space possesses six degrees

of freedom, three translational ones along three mutually

perpendicular axes and three rotational ones about the same

three axes. If the motion away from its steady state is

small in magnitude, or all the physical coefficients are of

"linearity", the unsteady components of motion of such a

body would comprise six simultaneous oscillations having dif-

ferent frequencies and different dampings (or their equival-

ent in subsidences) which can be solved from the six simul-

taneous equations of motion -- each for one degree of freedom

or their resultant represented by a linear differential equa-

tion of the twelfth order. The stability equation of such

motion is, therefore, of the twelfth order.

However, the forces and moments on the airplane are in-

different to displacements along each of its three axes, so

three roots of the resultant equation are zero. In addition

to this, the uncontrolled airplane lacks the sense in azimuth

(about vertical axis) so another root is also zero. The

stability equation is therefore reduced to the eighth degree.

13



Due to the plane-symmetrical construction of the air-

plane, the six degrees of freedom can be separated into two

groups of three each. One group involves only motion in

the plane of symmetry and the solution of this group of equa-

tions gives the longitudinal motion of the airplane. The

second group, if considered for small displacement alone,

involves only asymmetric or lateral motion of the airplane.

The separation of longitudinal motion from the lateral one

greatly simplifies the mathematical mess otherwise involved.

2. Uncontrolled Longitudinal Motion

For the static and dynamic stabilities of longitudinal

motion the aircraft engineer has designed a horizontal tail

for his airplane. The tail is again split into a stabilizer

and an elevator immediately behind the stabilizer for the

convenience of controlling the airplane when it is disturbed

by gusts of wind. However, when the elevator is locked, the

airplane is said to be uncontrolled and the longitudinal mo-

tion is then defined as uncontrolled longitudinal motion.

For convenience of study, equations of uncontrolled

longitudinal motion may be written, with reference to wind

14
axes, as follows:

X m((i + Wq)* (1.01)

*The notation a opted in this thesis will be the same as that
used by Metcalf' in his Resume on Airplane Longitudinal Stabil-
ity. A table of symbols and definitions is prepared in the
beginning of this part of the thesis.



Z =m( - Uq) (1.02)

M = B4t (1.03)

where the left sides of the above equations represent aero-

dynamic forces and moments while the right sides represent

the inertial forces and moments necessary for the balance of

the state of motion (small oscillation).

On expanding,

X _ u_ 4 I W q+ .. 9 (1.04)

Z - ut -w b q a 9 ---- (.5
z z U+ *b Z + q+".. (1.05)

M . u M w + + M --- (1.06)

Let Xu 1 bX (1.07)

m ~W
Zw n I (1.08)

Mq B aq (1.09)

Then Eqs. (1.01), (1.02) and (1.03) can be written in the

following form:

64 Wq a Xuu+ X~w+ Xqq } gcos 9 (1.10)

w - Uq = Zuu+ Zww 4 Zqq + gsin@ (1.11)

9 W MUU + Mww 4 Mqq (1.12)

Rearrange the terms and replace the time operator d by the

symbol D. The above equations take the following form on

neglecting terms with negligible coefficients:

(D - Xu)u - Xww - gcos® 9 0 (1.13)

- Zuu + (D - Zw)w - (DUo + g ) 9 a 0 (1.14)

- Muu - Mww +(D - q) 9 a 0 (1.15)



Equations (1.13), (1.14) and (1.15) represent the motion

when the airplane is disturbed, but the disturbing force has

already ceased. However, when the airplane encounters a

gust such as the vertical one wol* of magnitude wo beginning

from a state of equilibrium, equations (1.13), (1.14) and

(1.15) become:

(D - Xu)u - Xww . gcos®Q -Xwwol (1.16)

- Zuu + (D - Zw)w - (DUo + g® ) Q -Zwwol (1.17)

- Muu - Mww + (D1 - DMq) 9 a -Mwwol (1.18)

By the principle of determinants the solution can be ex-

pressed in operational form:

u -1 -- w0 1 (1.19)
L1 o

9 wol (1.20)

w * -. -. wol (1.21)

where L' o is the stability determinant of the system

D Xu mXw -gcos@

- Zu D-Zw -DUog( (1.22)

Mu -MW DeuDMq

and , ' and are the quality determinants of for-

ward velocity, inclination angle and vertical velocity.

-Xw *Xw -gcos H -Xw -gcos19%

-Zw D-Zw -DUO-g H - D (1.23)

-Mw -Mw D'-DMq -Mw D'-DMq

*The symbol 1 means unit step function; that is, when t < 0
the function is zero, when t . 0, the function is unity.
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D-Xu -Xw -Xw D-Xu -Xw

-Zu D-Zw -Zw D (1.24)

-Mu -Mw -Mw -Mu -Mw

D-Xu -Xw -gcos( D-Xu -gcos(

WZu -Zw -DU-g : '-D (1.25)

-Mu -Mw UDMq 0 -Mu D1 -DMq

Eq. (1.25) can also be written as

- ( + + ') (1.25)a

D - u *Xw -gos(3

where 1 1 1 (1.26)

- Mu -Mw D -DMq

The numerical solution of Equations (1.19), (1.20), and

(1.21) is deferred until 1l1 the determinants are nondimen-

sionalized and the control theory is well established.

When Eq. (1.22) is developed and equated to zero, an

equation of fourth degree in algebraic form is obtained. It

is this equation from which stability criteria of the dis-

turbed motion can be evaluated. The extensive study of

stability criteria of such equations is deferred to Part II

of this thesis.

From the previous work of other investigators, it is

understood that the longitudinal motion of the airplane after

being disturbed consists of two components:

(a) A heavily damped oscillation of short period

(of the order of a few seconds). This component

disappears almost at once and in most airplanes

is not noticeable.
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(b) A lightly damped slow oscillation, during

which the airplane produces noticeable changes

of forward speed, altitude, and attitude.

It is customary to neglect the quick oscillation be-

cause of its almost immediate disappearance and no report

is available from the pilots as they are never bothered by

such rapid oscillation. Some writers even imply denuncia-

tion of the actual presence of such rapid yet fast dying

15oscillation. However, Jones points out that although the

heavy damping of this mode of motion insures its rapid sub-

sidence in calm air, it imposes an effective restraint against

movements of the airplane relative to the air, which results

in violent movements of the airplane in gusts. This conclu-

sion has been paid attention by Weiss16 when he started his

theory of automatic control in an attempt to reduce the

sharp response of the airplane to the gusts by introducing

the automatic control.

3. The Conventional 9 Control and the Controlled

Longitudinal Motion

The most convenient way to control the disturbed longi-

tudinal motion is to operate the elevator manually or auto-

matically. The elevator, when operated by automatic control,

follows definite law in accordance with a certain disturbance

detector. Haus gives the following table of disturbance de-

tectors and the quantity to which each is sensitive:



T A B L E I

LONGITUDINAL DISTURBANCE DETECTORS AVAILABLE

FOR AUTOMATIC CONTROLS

Instrument

a. Airspeed Indicator

b. Wind Vane

c. Free Gyro suspended at
its center of gravity

d. Motor-driven Gyro with
Precessional Moment

e. Accelerometer along
X axis

f. Accelerometer along
Z axis

g. Lift Indicator

h. Rate of Climb Meter

I. Torsional About Y Axis

Recording Quantity

Relative Speed

Incidence

Absolute Inclination

Angular Velocity

Direction of Ap-
parent Gravity

Magnitude of Ap-
parent Gravity

Magnitude of Lift

Vertical Airspeed

Angular Acceler-
ation

di

d

d

Symbol

U

oc= -0-wU
9

q=

- gsinO
t

t4 geos9

wU

w or Using

.4

Lini7 gives the generalized equation of motion due to

several controls combined together, but no conclusions are

drawn. Both Weiss and Lin eventually resigned their work

within the scope of conventional 9 control (type c. accord-

ing to the above table) as manufactured by Sperry and Smith5.

In order to discuss briefly the advantages and disad-

vantages of this type'of control and henceforth lead to new

control theory, it is necessary to start with the equation of

motion of the system including the control.



The fundamental equation takes the following form:

X = m(O Wq) (1.27)

Z = m(w - Uq) (1.28)

+Mt + M = B4  (1.29)

-K 9 = mca- + F06- + Kc~r (1.30)

where M' = moment exerted by the elevator which is controlled
by the 9 control

a- = control movement with respect to position when
control is locked

me = equivalent mass of the control system

Fc = equivalent damping coefficient of the control sys-
tem

Kc = equivalent spring constant of the control system

K9 = equivalent exciting force coefficient for 9 control

If Eq. (1.30) is divided throughout by me, we have

- F99 =-+ 2tcwonc&-+ Wncr (1.31)

where -FO = - --O = equivalent exciting coefficient per unit
me

equivalent mass of the 9 control. (1.32)

*= -Fc = damping ratiol8)l 9 of the equivalent control
2j miKc

system (1.33)

undamped angular natural frequency182 1 9 of

the equivalent control system. (1.34)

The value of natural frequency and damping ratio of the

entire control system can be obtained from free vibration ex-

periment when the exciting force is kept zero. The detail

of such technique is referred to General Principles of Instru-

*The subscript c here is used to indicate the belonging of
control. It does not mean critical as those used in Draper's
paper.



ment Analysis by Draper and Schliestett.

If Eqs. (1.27) and (1.29) are divided throughout by m
for

and Eq. (1.29) divided by B and developed as we did Eqs. (1.01),

(1.02) and (1.03), the equations will appear in the following

form:

ii + Wq = Xuu + Xww I Xqq + goos ® 9 (1.35)

W - Uq = ZuU + Zww + Zqq + gain 9 (1.36)

9 = Muu + Mww + Mqq + M.Cr (1.37)

- - - F99 2tcwnc~ -(1necd (1-38)

where M =1 M (1.39)

Use D for -. , rearrange the terms and neglect the insignifi-
dt

cantly small terms, the above group of equations appear as

follows:

(D-Xu)u -Xww -gcos @ 9 +0 = 0 (1.40)

-Zuu +(D-Zw)w -(DUO+ gsin ) 0 a 0 (1.41)

-uu -Mww -+ (De - DMq)9 - Mo.= 0 (1.42)

0 + 0 F99 + (e-+ 2tcdncD4'c ) C- =0 (1.43)

When the controlled airplane encounters a vertical gust of wol

from equilibrium, the above equations are modified on their

right sides.

(D-Xu)u -Xww -gos 9 + 0 = -XwWol (1.44)

-Zuu (D-Zw)w -(DUO-t gmin®@ )9 0 -Zwwol (1.45)

-Iuu -Mww (D2-DMq) 9 - Ma -Mwwol (1.46)

0 1- 0 + F9 9 + (D+ 2 c ' ncD+wnc) or = 0 (1.47)

The solution of each of the variables u, w, 9, and o can be

expressed in the following form:



u= A'ucw1
A' 0c

w = w

c

9 Wol

A c

D-Xu -X -gcos @

-Zu D-Zw -DUO-gsin

-Mu

0

-MW DL - DMq

0 Fe

= (DL+2tcncD4  nc)' Fq
0

-xw

-zw

M

0

-Xw

D-Zw

0

-geos @®

0

0

-M0.

D 4 200ncD4 nc

Mo- JD-Xu x

-Zu D-Z

0

-DUogsin E 0

D -DMq

Fq D't 2 cD+ nc

= ( - F

ID-Xu -X -goos 0

zu -zw -DUO-gsin®@ 0

-Mu -M D -DMq

;Ma. DXw

-1

0 0 F9

(1.53)a

(1.54)

L+ 2c 0 ncD+'4'n c

or I (D ID-Xu -gcos (I= -D(D+ 2Sc )ncD+w'nc) I -m Fgl4CD(D-Xu)

D-Xu -Xw

-Zu D-ZW,

0

-Xw

-zw

0

0

-MW -M0..

0 D 2~~AcncDL nc

where

(1.48)

(1.49)

(1.50)

(1.51)

or

&

(1.52)

(1.52)a

(1.53)

or 42K

I A

(1.55)a

(1.55)

0



or Ac = (D + 2c w ncDWnc) de (1.55)a

D-Xu -Xw -gcos H -Xw

-Zu D-Zw -DUO-gsin H -Zw (1.56)

. -Mu -Mw D -DMq -MW

0 0 Fe 0

-FeD I - F9  (1.56)a
-Mlu -14 1

Equation (1.52) or (1.52)a gives sixth degree algebraic

equation when developed and equated to zero.

Or A0 = 0 will specify the stability of the disturbed mo-

tion.

Eqs. (1.49) to (1.51) can be solved, but the result will

be more advantageous if it is converted into nondimensional

form.9,11

In terms of its dimensions, 0c becomes

T- T LT' X

T T LT- X

Acm L'T L14 T T-2 L7 T-2  (1.57)

X X LfT T1

The procedure of nondimensionalization can be performed as

follows:

First step -- multiply the coefficients in the third column

by unit length L. (1-57)a

Second step -- multiply the coefficients in the first column

by unit time T.

Third step -- multiply the coefficient in the second column

by unit time T.



Fourth step -- multiply the coefficient in the third column

byj(= L 'T). (1-57)a

Fifth step -- multiply the coefficient in the last column by T1

= (L) (T) (T)(TfL )c(T) c

Ac = T & , (.58)

where Ac is defined as nondinensional stability determinant

of the controlled longitudinal motion.

Likewise,

Auc T6 Auc (1,59)

we = T A we (1.60)

Ae = LT3 A'c (1.61)

& =Tf c (1.62)

where Auc, Awc> Aec and are defined as nondimensional

quality determinants of forward speed, vertical speed, inclin-

ation and control movement of the controlled longitudinal mo-

tion.

Substitute Eqs. (1.5S) to (1.62) into equations (1.48) to

(1.51). The expressions of u, w, 9 and c- will be in terms of

nondimensional determinants:

u = wol (1.63)A c

W = &ewol (1.64)
AC

9 - g wol (1.65)

a- Ac T wol (1.66)A cL 0



or u = (1. 63)a

wo a

- lA~c(1-65)a
wo Ac

-- (= (TJw (1.66)a

wo A c

Eqs. (l.63)a, (l.64)a, Q-.65)a and (1.66)a are defined as

unit response of forward speed, vertical speed, inclination

and control movement of the airplane to vertical gusts of the

shape of the step function.

Unit Time T, Unit Length L and Compact Ratio .'

In order to change the dimensional coefficients such as

X,, Zu, etc., into nondimensional coefficients xw, zu, etc.,

expressible in terms of those established fundamental aero-

dynamic coefficients, the length of the tail moment arm (from

tail post to center of gravity of the airplane) is taken as

the unit length (or characteristic length as defined else-

where20 ). The unit time of the nondimensional system is

defined by the following equation:

T = -(1.67)
-fSU

On this basis, the unit velocity of the nondimensional

system should be

V =L= L or (1. 6)
cT m m

SU SL
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where -M receives the symbol .
TSL

or A S (1.69)
TSL

which is defined as compact ratio (or relative density ad de-

fined elsewhere 20

The general procedure to reduce the dimensional coeffi-

cients to nondimensional one is omitted here (as it can be

found elsewhere1 ) with the exception of those which have re-

lations with the control. However a complete table is given

on the next page for all the nondimensional coefficients.

These coefficients correspond to those dimensional ones in

Eq. (1.52) for the convenience of application.
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T A B L E II

NONDIMENSIONAL COEFFICIENTS FOR LONGITUDINAL STABILITY

OF THE AIRPLANE

2CD

C Q dr
'-mw '1+ Q(r-1) u

S0.62CD1 XJ

dCx

d*dCL
dcJ-

1

b

1ldCm
7 do,

ZE) -A CLOO

mg e( )
4 S b

fg) 1ACL
owo

fCr an = aCW nno

CL

nne 3

2 Chnn 2c L 21cwnnc = 2 c1ACL

1

Ae(a0T ) ISL
J'c a -b

1

S) S b +Q(r-1) e

XU 2 CD

mu 0

xw dCx

d Ot

dOL

1dm

* Lower case L. Throughout this thesis lower case L will be
so designated by the addition of an asterisk (1*) to differ-
entiate from the figure one (1).

xo
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Control Coefficients Fg, Wnn, M, and Their Corresponding

Nondimensional Coefficients_1A, Wnn, and m-

a) Fe (1.70)(a) ~ M FF =m e Me

fE = X L TI = g X T2. (1.71)

where We is the weight equivalent of the control system.

Substitute Eq. (1.67) into Eq. (1.71) and assume level flight

so that

W CLJp U'S (1080)

then

C10/CL (1.81)

and 9Wc? K (1.82)

where OWc is the magnitude of disturbed inclination of the

airplane with which the force exerted on the control shall

equal the equivalent weight of the control system.

(b) g"nc g (1.83)

We (1.84)

where ojw is defined as the static deflection of the control

system due to its equivalent weight. Since

tonn = - n&T 2 = -- gT (1.85)

substitute Eq. (1.67) into Eq. (1.85) and assume the level

flight condition. We then have

n =1 CL = f - (1.86)

Likewise

2[ c "nnc U 2 4CL. . (1.87)
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M' CL f U L2 (1.89)

where M'= tail moment

CL'= tail lift coefficient

8'= tail area

U'=-air stream velocity at tail plane which equals
U if slip stream effect is neglected.

e = tail plane efficiency

M =ee- t (1.90)

where static lift coefficient slope

= elevator deflection from balanced position

= control movement

1j 2L (1.91)

where b distribution factor of longitudinal moment of in-
ertia.

Now, m, . LT21 (1.92)
B a-

Substitute equations (1.90) and (1.67) into equation (1.92)

and simplify the expression,

m. Cr e( )VN()( ) (1-93)

where depends upon the design of tail plane and

depends upon the design of coupling of the control

movement to the elevator deflection.



Stability Determinant in Nondimensional Form

Now Eq. (1.52) can be changed into nondimensional form:

d-xu -Kw -,AOL 0

-zu d-xw -dA -ACLO : (1.94)
-mu -mw d m d -M

0 0 df+df)--t f

where fa. may be written as O'n and fg as 2 1c nnc.

Likewise all the nondimensional quality determinants

shall retain the same form as the dimensional ones f(l.53)a,

(1.54)a, (1.55)a and (1-56)4 with the capital letters re-

placed by the small letters; also (On replaced by wnne-

Equation (1.94) can be partially developed into the fol-

lowing form:
2. d-xu -axw

c-.= (d +21 c"nncd+ Wnn)Aoo+ fem.X (1.94)a
Zu d-zw

It is very advantageous in one way to have the minor

d-xu -xw
, especially when the control approaches ideal

ZU d-Zw

condition, because it raises the coefficient of the first de-

gree operator of the developed stability equation with great

predominance.

However, it is disadvantageous in the other way to have

the same minor even when the control is ideal because it

limits our freedom to adjust the coefficients of the stabil-

ity equation in the most desirable way. (A detailed explan-

ation will be given in the next chapter.)



For a nonideal control, the stability equation becomes

a sixth degree equation from which three quadratic factors

can be abstracted. The disturbed motion therefore comprises

three oscillatory components (or the equivalent subsidence)

among which one is due to the additional degree of freedom

of the control, but it may be entirely different from the

isolated control response. There is no literature available

to draw conclusions as to the exact effect of the control

characteristic upon the controlled motion and the reaction

of the controlled motion to the control characteristic. The

result of introducing 9 control is considered successful as

to easing the motion in pitch, but not at all as regards the

vertical motion.. Motion of pitch is eased because the con-

trol seeks to equalize the damping of the slow and fast os-

cillations of the uncontrolled motion so that both of them

may disappear much sooner after being disturbed. For a de-

tailed discussion the reader is referred to Lin's work.17

Weiss carefully examines the vertical motion (due to

vertical gust) assuming a full restraint in pitch (possible

if the control is very fast and powerful). He points out

that the sharp response (quick following-up characteristic)

is almost entirely contributed by the coefficient zw which

is the slope of the lift coefficient curve and depends upon

the aspect ratio of the wing. For the aerodynamic effi-

ciency, larger aspect ratio is required, but such an air-

plane will give sharp response to vertical gust; i.e., the

airplane will experience a large vertical acceleration dur-



ing the gust-picking-up period. The vertical acceleration

is painful to unaccustomed occupants. Any means of reducing

the sharp response to vertical gust is therefore worth while

investigating. However, the airplane's efficiency must not

be violated.

Suggestions in the aim of reducing the sharpness of

vertical response will be given and discussed in Part V of

this thesis.



TEMORY OF DEPARASITIZATION

4. The Parasite Minor of the Conventional e Control

Going back to equation (1.94)a, let the control be very

fast as a'pproaching ideal condition; then:

CL i2 1 0ncI dK- .. (1.95)

where Adeis the non-dimensional stability determinant of the

controlled motion with an ideal control.

Develop A0 , the uncontrolled non-dimensional stability de-

terminant, into the quartic form as:

0 4 c +3 + ALNac+ E c +4 (1.96)

wrhere 4=

Le 3 - ( " .r

e ! ; ;jC +d c (1.97)

-n ( K - W I n WC

where C

C( x9 +

C 0 x -U. (1.98)
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It is seen that the coefficients bo, bi and b2 are affected

by cl, c2 and co respectively with definite relative magnitudes.

The common multiplier or coupling factor J-, cannot alter these

relative magnitudes at all. From the standp-oint of controlling,

we have surrendwed our liberty of adjusting the uncontrolled coef-

ficients b4 , b3 , b2 , b, and b0 by the application of control to

this determinant:

which is entirely fixed by the design of the airplane and by the

flying attitude. It is therefore justifiably defined as the para-

site determinant of the conventional e control, and shall bear the

notation A 1 A1

fo 1-06 A-3ff
.. T I= - w1(1.99)

If the control is non-ideal, the parasite determinant still

holds its characteristic as to affect the coefficients of the

stability equation with a definite relative magnitude.

5. Theory of Deparasitization

From the discussion of the previous chapter, it is seen that:

(a) The uncontrolled disturbed motion is comprised of a

heavily damped fast oscillation and a lightly damped

slow oscillation.

(b) The purpose of control (so far as e control is concerned)

is to equalize the damping of these two components and to

ease the pitching oscillation in magnitude.

With ideal control, it is possible to achieve the purpose to

3 f'' 4



a certain extent without introducing the complication of addi-

tional oscillatory component. But when the control is non-ideal,

the presence of additional component of motion in pitch is in-

evitable.

Equation (1.65)a can be developed completely into operational

form:

e I( + 1fa 'JBTCi JG5,.,L) CL (- J*%- +ww - %a & XW)
--- W J (1.100)

1C " ft' Ci Wne h + C I)A --e M 4+a -P

As the denominator is a sixth degree equation, three oscilla-

tory components of motion should be expected.

There is no special advantage to have this complication. In

fact, we have plenty to do with those two original components. By

proper adjustment of coefficient, optimum distribution of damping

between the two components is obtainable. The addition of third

component is really unnecessary.

Fortunately, the parasite determinant itself represents a one-

degree-of-freedom system. Its undamped natural requency lies in

between those of the slow and the fast oscillation and is nearer to

the slow one. The damping ratio of the parasite determinant is in

the vicinity of two for the average airplane. Now, if we allow the

following condition:

e =( 0+2 & C + 4) =b 2 2,On2+ (um F (1.101)

that is, let the equivalent control system be designed according to

the characteristic of parasite determinant, such non-ideal control

will not introduce third oscillatory component as others. In a



strict sense, the third component ( pitch) has a magnitude of

zero, as can be seen from the following equation:

or

(1.102)

L-r~j +lfc r o + e f"e-

Therefore, when the control is designed with the identical

dynamic characteristic of the parasite determinant, it is defined

as deparpsitized non-ideal control.

It is easy to get confused by equation (1.102) where the

coupling factorfobu..can only affect the constant term of A.- There

is no particular advantage gained by such control. However, equa-

tion (1.102) is only responsible to a e control; that is, the control

movement is only excited by force which is proportional e away from

the equilibrium value. If mechanical complication is allowed so

that the control system is simultaneously excited by forces which

are proportional to pitching velocity e, pitching acceleration ',

etc., the denominator of the second fraction of equation (1.102)

will have the following form:

de ("f. .. I.. 2f +j 40+e)e (1.103)

vrhere , f-. , t* and f. are entirely independent constants, the

choice of which is entirely up to the control designer.

In practice, one or two exciting forces are needed to obtain

desirable results, so the mechanical complication is not as bad as

one would imagine from expression (1.103).



It should be noted, although the magnitude of the third com-

ponent or the control component is zero in pitch, it is not so for

forward speed nor for vertical speed. Equation (1.64)a can be

fully developed as follows:

W_ gi 6 o* I,_

or

no = 5 5 s4J 3  +L +IdbA9.ipW,~e fe". (1,104)a

(We~a 0Ah.4 kb-rj,' (A 0+f. o h )

The above equation gives the evidence of the presence of the con-

trol component in vertical speed. It may be seen more clearly if

the reader is referred to Part V of this thesis.

Objection might be raised from the standpoint of fast control.

Control lag is indeed troublesome when slow control is used as the

deparasitized control, but it can be overcome by using higher de-

rivative force or moment to excite the control. The physical signi-

ficance of this overcoming property is evidently due to that higher

derivative excited control controls earlier than the deviation or

error; it controls the tendency of being disturbed.

The much overdamping characteristic of the deparasitized con-

trol is doubtful in its advantage. But due to the slow natural

frequency of the control, the absolute damping force is not as tre-

mendous as one might think it would be. However, even if it needs

more energy to operate this type of control, it pays to do so if the

controlled motion is in the most desired mode.



As far as pitching motion is concerned, the deparasitized

non-ideal control may be considered as an ideal control. For one-

degree-of-freedom system, the application of ideal controls 6, 12,

21 of the first class does not increase the degree of freedom. The

Ce) deparasitized non-ideal control holds the same principle as far

as the pitching motion is concerned. The e control is primarily

designed for pitching motion. It is for this reason that the writer

feels the promise of this type of control.

It should be noted that the theory of deparasitization can be

applied to controls other than the e- elevator coupled type.

6. The Stability Determinant of the e Deparasitized Non-Ideal Control

From equations (1.102) and (..104) and expression (1.103)

the stability determinant of the deparasitized control can be

factored into one quadratic factor, which is actually the parasite

minor, and one quartic factor. Leta represent the stability de-

terminant of the deparasitized controlled motion, then:

Acr*A * + [,0 + --- -f +if + f] (1.105)

Assume the highest derivative exciting force is , then we have:

Ace= ( '-,wz.. A O~ +d+A+b)~&i~~J 0,-,. (1.*105) a

The quadratic factor depends upon the design of the airplane and

flying attitude. In general, it gives two (real) negative roots

for d when equated to zero, which indicates the presence of one

subsiding pair in motion; in other words, an overdamped stable com-

ponent. The quartic factor will give additional criteria of the

stability of the motion.



In order to handle the distribution of damping of the slow

and fast oscillation in an optimum way, thorough knowledge about

the quartic equation is necessary. Part II of this thesis will

be devoted to this purpose.

It should be noted when the control is isolated or the eleva-

tor is locked, *,is zero, the quartic factor returns to the un-

controlled form. The presence of-'the quadratic factor might lead

to some misunderstanding. In fact, it should not be present.

With .close examination on equation (1.104) we may see that the ex-

pression can be reduced to the following uncontrolled form:

A C (1.106)

when %j. 0; thus the stability of the disturbed motion is only

determined by A , the uncontrolled stability determinant.



P A R T II

PROPERTIES OF THE QUARTIC EQUATION



CHAPTER THREE

THE IMPORTANCE OF THE QUARTIC EQUATION TO THE

GENERALIZED AUTOMATIC CONTROL PROBLEM

7. Self-excited Vibrations22

Den Hartog, in treating the "hunting of steam-engine

governors", points out that when the engine is rigidly

coupled to an electric generator feeding a large network,

the presence of "engine spring" causing the stability equa-

tion of the system goes up to a quartic one. Many other

problems such as "Axial Oscillation of Turbines Caused by

Steam Leakage*, *Airplane Wing Flutter", etc., involve

quartic equations.

To realize the importance of the quartic equation in

the so-called "self-excited" problem, the steam engine gov-

ernor system is quoted here with a few changes of notation

adapted to the text of this thesis.

Let I - moment of inertia of the rotor

= angular displacement of the rotor from the
equilibrium position

ce = coefficient of damping torque resulting from
the damper winding

ke = coefficient of restoring torque or the magnetic
spring constant in the air gap of the generator.

m = equivalent mass of the governor

x w displacement of the governor

og = damping coefficient of the governor system

41L



kg = spring constant of the governor system

Cl = coefficient of velocity exciting force on the governor

02 = coefficient of displacement controlling torque

Then the two simultaneous differential equations of the problem are:

(mD"+ CgD + kg)x = 0, D f (2.01)

(ID'+ CeD + ke) It= -CLx (2.02)

where D = d

With some algebraic manipulation, the stability equation is

established as follows:

D +9 D( *-t-)+- D (t 4 ce.cg
I m I m Im

.D(og ke ce kg C1C2  kekg 0 (2.04)+m I + Im +Im :0(.4

in which all coefficients are seen to be positive. The criterion

of stability of Eq. (2.04) by the application of the Routh't dibcrim-

inant2 3 becomes

. c+ gke k cec R + E ke CC2 )
I m I m Im m I I m Im

> (2 e+ ! 1 2 kek ce _gg+ (2.05)
mI I m Im Im I m

A generalized conclusion cannot be drawn from Eq. (2.05).

Den Hartog emphasizes its physical meaning only by assuming some

special cases. However, in general, quantitative, not quali-

tative, criteria will be more desirable..

5. Constant Azimuth or Displacement Follow-up Control System

Ships as well as airplanes usually do not possess sensiti-

vity of direction. Constant steering by means of a rudder is

necessary to keep them in course or in constant azimuth.

Minorsky6 treats automatically steered bodies (using a ship



as the primary subject) with ideal controls which are classi-

fied into three groups and considers the control lag due to

mass and inertia of the transmission mechanism by introducing

constant time lag.

In fact, control lag due to mass and damping cannot be

exactly replaced by a constant time lag, as Lin24 has veri-

fied the invalidity of this replacement when the coupling

factor becomes large.

Displacement follow-up control has been in practice for

some years. Hazen21 defines this type of control as servo-

mechanism, and treats them only with ideal controls. The

automatic direction finder, manufactured by different compan-

ies, used in airplanes and the acoustic detector used in anti-

aircraft artilleries belong to this type of control.

Now, let us take the automatic direction finder as an

example leading to the important quartic equation. In its

usual construction25 the enclosed antenna loop is geared to a

motor which supplies the following-up torque controlled by the

error and error derivative signals from the antenna through a

nonideal control system. The equation of motion for the

rotor can be written as:

Id + ceT'd+ kefd = -ca- (2.06)

and the equation of motion for the control can be written as

mc&r + cck+k- = C2 +01E CE (2.07)

where I = equivalent moment of inertia of the rotating part.

d = displacement of the rotor from zero position.

ce = equivalent damping coefficient of the rotating part.



ke = spring constant of the rotating part

me = equivalent mass of the control

ce = equivalent damping coefficient of the control

C = coefficient of displacement controlling torque

E = error between the driving and driven angular dis-
placement.

where E = ?d - fil (2.0)

il = the angle to be followed

Co = coefficient of displacement error exciting force

Cl = coefficient of first error derivative exciting force

02 = coefficient of second error derivative exciting force

Substitute D =- for the overhead dot; also, substitute equa-

tion (2.08) into (2.07); then,

(ID2+ CeD + ke) Pd = -c0. (2.09)

(mcD1 ccD + k) c-=(C2D'+CD + CO)d-(C2D+ClD +CO)fil(2.10)

By canceling a between equations (2.09) and (2.10), d can

be solved in terms of.Vil.

C(02D'+ CID + CO)
TdM

(ID'+ ceD+ke)(mcD 1+ ccD+kc)+C(C2D'+CD-+Co) (2.11)

The solution can be expressed in terms of E and 'il

where
(ID'*ceD+ke) (mcD'ccD+kc)

(ID2+ceD+ke)(mcD'+ccDtkc)+C(C2D2+C1D+C0 )

In practice Yi may be any function of time, but it is

fair enough to assume a step function for the automatic direc-

tion finder when the loop is suddenly called into operation.

Eq. (2.11) can also be written in the developed form:

BD.+ BD +B.

fd D -#- D +ABO D fii (2.13)
AtDI+ AD + A&D+ AD t Aa



Where A 1 = Im

A3 = Ice+ Pet,

A, = Ike+ mcke 4 cec + B

A, = kecc+ kcce+ B,

A 0 = kekc 4 B,

B, = CC,

B, = CC,

BO = CC, (2.13)a

It can be seen from Eqs. (2.13) and (2.13)a that the

steady state value of $ d cannot be equal to qPi unless either

ke or ke is zero or at least the product of keko is very very

small compared to B0 . In most follow-up systems, the driven

part usually possesses no stiffness; that is, with zero kc so

that the steady state reading is accurate or the following-up

characteristic is perfect as far as the steady state is con-

cerned.

For mathematical analysis, we may allow a very weak stiff-

ness in the member to be controlled, which will simplify the

analysis considerably.

Again the' denominator of Eq. (2.13) is defined as the

stability function of the controlled system, the numerator the

quality function of Pd. Divide both denominator and numera-

tor of Eq. (2.13) by Ime

B D + B'D + B'
1P d = 4 A (2.13)b

D AJD' + A',A D A A'

where A' =c ce
.3 mc I



A', =cke coc +e B'

Al mCc I e ic + I

mcI I mc

AID = ke ct B.
I M

B' 002
B1..

B? Ci
Ime

B', - I (2.13)c
Im0

where B', is defined as coupling factor of error-sensitive
coupling,

B', is defined as coupling factor or error-velocity
coupling,

B' is defined as coupling factor of error-acceleration
coupling.

It can be seen that the stability function of Eq. (2.13)b (with

the substitution of Eq. (2.13)c) takes the same form as Eq.

(2.04), the stability equation of heavily laden generator con-

trolled by ordinary flyball governor.

Now let -JCn = C26 = damping ratio of control

. _ = (aQ no = undamped angular natural
mc frequency of the control

2- = = damping ratio of the member
2ke I to be controlled

= W no = undamped angular natural
I frequency of the member to

be controlled

Then, A' = 2  W nc + 23 o no

A'2 = L2nc .no t 4oc' no 0 nc + B



2tc C no + to no no + B1

A , = hno nc1 B1

From the above examples,

tions has been established.

controlled result can only be

edge of the quartic equation.

the importance of quartic equa-

It is believed that the better

obtained with a thorough knowl-

(2.13)d



CHAPTER FOUR

STABILITY TRANSITION CURVE OF QUARTIC EQUATION WITH STANDARD-

IZED NONDIMENSIONAL COEFFICIENTS

9. Nondimensionalization of Stability Function

The stability function of nonideally controlled motion

has been shown to be in quartic form in many cases. The

general form of such function is

S(D) = D4 + AJD + A;D'+ AID + A = 0 (2.14)

where Aj , Al , A and AL are physical constants with dim-

ensions of T T-, T and T~4. (For longitudinal stability

function of the airplane, these coefficients are nondimension-

al as in Eq. (1.105).

The first requirement for stability is that all coeffi-

cients must have the same sign.

Eq. (2.14) can be nondimensionalized by introducing a

nondimensional operatorA which is equal to

or D = Al (2.15)

Substitute Eq. (2.15) into Eq. (2.14)

S(D) = A' I + *J + 'W+ c + 1 W a (2.16)

1'27 I

where A Y A Ay

or A xAX2 3 + a, X

(2.17)

(2.1)

By the process of nondimensionalization the stability of

the equation is not affected, which will be proven a little

48



later. The sole effect is that every root of the old equa-

tion is equivalent to A. times the corresponding one of the

new equation which is nondimensional.

10. Factorization of the Nondimensional Quartic Equation

Physically, a differential equation of fourth order

with- constant coefficients represents a motion or its equi-

valent, such as current, which consists of two vibratory com-

ponents. The components may be really vibratory, divergent

or convergent, or subsiding, but they are in general of dif-

ferent natural frequency and of different damping.

When the operator is used for the differential, the

root of the equation indicates the frequencies and dampings.

The same is true for nondimensionalized equations.

The factorization of the fourth degree equation or the

root-finding process of the same is not an easy task, es-

pecially when it should give two pair of complex roots.

Several outstanding methods have been found by different in-

vestigators.

Graeffe2S uses the root-squaring process to insure the

wide separation of roots. Lyon29 considers the complex

root as a two-dimensional vector and solves its magnitude

and direction from which the roots are finally computed.

Woodruff30 extends Lyon's principle to sixth and higher

order equations in which the calculating machine must be

used. Ku 3 0 first gives the evidence of two quadratic fac-

tors for a quartic equation and finds the coefficient of the



quadratics analytically from the general resolvant cubic

equation32 with the coefficients of the original quartic and

solves the roots thereon from the quadratics. Recently Lin3 3

discovered a method of successive approximation to factor

quartic and higher degree equations. The method is simpler

than any mentioned above, but analytic proof is still being

sought.

None of the methods mentioned above is started from the

physical significance of the fourth degree linear differential

equation. The present method is based on the physical sig-

nificance of the two components. Let us take the nondimen-

sional quartic equation as our starting point and factor it

into the following form:

4~ +OC 3  +( c&, + I -* + )(Wr' 4t~l.9)

where Wr,= dimensionless undamped natural angular frequency
of component 1,

CAy= dimensionless undamped natural angular frequency
of component 2,

damping ratio of component 1,

damping ratio of component 2.

As the components are of different frequencies and different

dampings, it is convenient to take one component as reference

component, and express other quantities in ratios with the

reference quantity. Suppose that component 1 is of lower

frequency (from now on we shall call it the low frequency com-

ponent and call component 2 the high frequency component) and

is taken as the reference component. This is purely arbi-

trary.



Now let W W , (arbitrarily) , dimensionless undamped angu-
frequency of reference component,

(arbitrarily), damping ratio of reference
component,

(W WV1- ratio of undamped natural frequency

where W,, = undamped natural angular frequency of com-
ponent 1

Wnt= undamped natural angular frequency of com-
ponent 2

y ,1 ratio of damping ratio

Eq. (2.19) becomes

+'A AfS , ,+ I= a rOr 9 (2.20)

On developing, + P( t, P A + W" 

0( 2 V, +2 L r Pk (2.21)

2. r r kk P (2.22)

t,,= 2R; crs pw+ I O (2.23)

i = 0 wi (2.24)

Eq. (2.24) gives us a real advantage, that since

1

so oJ (2.2 4 )a

Lis (2.24)b

and 1 (2.24)c

Substitute Eqs. (2.24)a, (2.24)b and (2.24)c into Eqs. (2.21),

(2.22) and (2.23). The following equations are established.

,A3= 2 t, (-- -tP (2.25)

da= fe + + * f(2.26)

The above three simultaneous equations will give solutions to

the three important physical unknown quantities.



(1) , the ratio of undamped natural frequencies with re-
spect to reference component,

(2) I, the damping ratio of the reference component,

(3) / , the ratio of damping ratios referring to the refer-
ence component.

In addition to the above three quantities, the fourth one,

can be solved from Eq. (2.24) or

W= 1 0dA (2.28)

The actual process of solving these equations is deferred

to the next chapter in which the Quartic Chart is designed to

render the practical convenience.

11. Stability Transition Curve (Fig. 1)

It is understood that when the damping ratio of either

component is zero, the system must be at a state of unending

oscillation. If either damping is slightly negative, the

oscillation is unstable. The loci of such transition

plotted in terms of the nondimensional coefficients will be

defined as stability transition curve.

Obtain the ratio from Eqs. (2.25) and (2.27)

c_ / _W (2.29)

when 0 and the other component does possess some damp-

ing, /O must be infinity, so at that condition

(2.30)

when 0, or / 0, Eq. (2.26) is reduced to

_ (2.31)
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It is evident when t= 0 that the stability transition

curve may be represented by the following equation

. s+ - . (2.32)

Moreover, if 0, but / 0, Eq. (2.29) is reduced to

(2.32)a

So the stability transition curve can still be represented

by Eq. (2.32) for the case.

We shall proceed to find stability criterion from the

transition curve.

Take the unrestricted value of dk, cGA and d3 from Eqs.

(2.25) , (2.26) and (2.27) and find the value of 0r -

It can be shown

ckj ( (+ 2 ) ((2+3,3+)
7A r

When both t and /lo are positive, the system is stable and

the right side of Eq. (2.33) is positive or greater than zero.

That means

a1  (2.34)

is necessary for stability. The inequality (2.34) is there-

fore defined as the stability criterion of the standardized

nondimensional equation (2.18).

The reverse condition for instability needs no further

proof, but to show the rigorousness of Eq. (2.33), it is ad-

visable to do so. Eq. (2.33) can be changed into the fol-

lowing form

_____ _____ ____(2.33) a



If the reference component possesses positive damping, the

other component just possesses an infinitesimal negative

damping; then is negative, but is of infinitesimal magni-

tude. That is, the system is just off the transition con-

dition and shows instability.

Let = - 6 (2.3

where E is an infinitesimal quantity. Substitute the above

equation into Eq. (2.33)a

.- + ) -- -L(p ) -f-+)4 7 6 (2.3

5)

6)

Eq. (2.36) shows that as soon as the motion departs from the

transition condition, a$_- + )becomes negative, or

do (2.37)

If the reference component possesses an infinitesimal

negative damping while the other component possesses certain

positive damping 2 so that #O . which approaches infin-

ity and has a negative sign

6- (2.35)a

Then Eq. (2.33)a becomes

Oil - .(2.36)a

The right side of Eq. (2.3 6 ) a is negative no matter how

small 6 is. Therefore the inequality (2.37) holds true for

instability in any case.



'Jo

12. The Damping Distributing Parameter '

Since the low frequency component has arbitrarily as-

signed as reference component, ,Ow has to be greater than one.

Let (2.38)

where j' is any positive number.

Substitute this value of /0. into Eq. (2.29). The expression

of becomes:

-~- (2. 39)

For a stable system (the condition is

and are positive. Remember 10 is the ratio of damping

ratios referred to the low frequency component. If/*O is

greater than one, it means the high frequency component has a

greater damping ratio. If /* is less than one, it means

that the high frequency component has a smaller damping ratio.

Now examine Eq. (2.39). If

(2.40)

-_;r,-: I t? where /@is a positive number

or (2.40) a

If (2.41)

hp where /0*1 is a positive number
and less than one

or (2.41) a

The above condition can be extended even if is nega-

tive; that is, the system is dynamically unstable.



It can therefore be safely concluded that:

(a) When I , >1 ; that is, the high frequency com-

ponent possesses the greater damping ratio.

(b) When d s , ; that is, the high frequency com-

ponent possesses the smaller damping ratio.

Apparently we have forgotten the condition when =

By reexamining Eq. (2.29)

two parallel conclusions can be made immediately:

(c-l) When =kl;, = =1 at any value of A4 (2.42)

That means that the two components possess the same dynamic

behavior except that they are of different undamped natural

frequencies. Or

(c-2) When - , =I=I at any value of 4 (2.42)a

That means that the two components are only of the same fre-

quency, but their dynamic behaviors are different.

(c-3) There is also a possible case that both ,, and 4 are

unity. Mathematically it means repetition of the quadratic

factor. Physically it means the system is critically damped*

quadratically.

IAS
The case of /i= a for ,,-8 is merely a special case

which is common to both (c-1) and (c-2). It is the coeffi-

cient , which will decide the fate of - -- 1. Further de-

tailed discussion is deferred until the development of the

Quartic Chart and again when the theory of tuning is presented

*Critical damping in simple degree of freedom means repetition
of the binomial factor mathematically, so for two degrees of
freedom the repetition of the quadratic factor is also a kind
of critical damping physically.
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THE DEVLOPM(NT OF QUARTIC CHART AND STABILITY CRITERIA

13. The Dimensional Resolvent Cubic Equation

The resolvent cubic equation may be defined as one derived

from an ordinary quartic equation and serves the latter as a

tool to evaluate its roots (roots of the quartic). The mathe-

matical approach of the resolvent cubic equation varies as

various mathematical attacks. With purely algebraic manipulation

Ferrari32 reaches the form:

5- Cy 4e) - e +0 4C6 - = 0 (2.43)

from the quartic equation:

K4 + x cxc 2. c -t e= (2.44)

Lyon29 starting with vector conception reaches the same form only

in different notations. Ku31 with biquadratic manipulation also

obtains the same equation as Lyon does. The physical meaning of

such resolvent cubic equation is so far hidden from the engineers'

retina. The only mathematical interpretation is the relation

between the roots of the quartic and of its resolvent. Such re-

lation is expressed by the following equations:

it = X 1 X 3 x 4  34

2. = XKS + X,./ 4

3 =X, X4 +Xs X (2.45)

However, equation (2.45) does not furnish any light for engineers'

understanding.
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14. The Non-dimensional Resolvent Cubic Equation and Its

Physical Significance

In paragraph 10 of the last chapter we have established

equations (2.25), (2.26) and (2.27), which we shall rewrite here

for the starting point of the non-dimensional resolvent cubic

equation:

2 (2.25)
r2

~ +C + 4I e(2.26)

Of )(2.27)

From equations (2.25) and (2.26) we have the product:

or

Sz +s + (2.46)

The ratio of o to ,has been obtained as equation (2.29).

CG -+ e. e.
or, e -,, +-,

or solve for ey:

et (7 (2,*47)

With purely algebraic manipulation on the sum of equation (2.47)

and its reciprocal expression, we get:

(2.48)

Now, define: ( +--
(2.49)

wherefvis called mutual frequency ratio.



Substitute the notation e into equations (2.26), (2.46) and

(2.48); and substitute equation (2.48) into equation (2.46),

and finally substitute the expression thus obtained for 4fr e
into equation (2.26), and we will get the following expression:

0( OK3 Oc9
e f A (2*50)a

Clear up the fraction of the above equation and the non-dimensional

resolvent cubic equation is obtained:

Qe jor~ +(z a (2.50)
6.- Of. .. + (or c, - 4+ ) ,,, - datf9-4 vf . -0O(25

One can immediately observe the similarity between the dimensional

and non-dimensional resolvent cubic equation. The equivalent e term

in the non-dimensional equation is unity, so the non-dimensional

resolvent cubic equation is much simplified. Yet the physical

significance is evident in the non-dimensional resolvent cubic

equation whose root (or roots) is the mutual frequency ratio, or:

Three roots are obtainable from the non-dimensional resolvent

cubic equation. At least one of them is real and grbater than t.

r two to furnish real value of e; the other two may be real
or complex. What do these. mean? We shall discuss them when the

quartic chart is constructed.

15. The Modified Won-dimensional Resolvent Cubic and Stability

Criteria
(7

Let CLrand substitute into equation (2.50); the non-



6k

dimensional resolvent is modified to the following form:

ec ____,_- ( + +(r, 5) -4
- ~,' +L Or s (2.51)

whereo dis the middle coefficient of the original non-dimensional

quartic equation and ( is defined as modified mutual frequency

ratio, or:

( x or'.. 4(2,52)

Equation (2.51) will look much simpler if we define the lumped

coefficients:

of. 1: (2.53)
Ora.

and 3___4_____ f (2.54)

or1,

So equation (2.51) assumes the following form:

e(26f e. +1Cq 14=0 (2.55)

It is seen from equation (2.55) that 1 and If are the con-

stants which will give solution to e and then the process can

be traced back until all the non-dimensional constants with

physical significance are determined. It is therefore believed

that certain special combination of M and.T{ will mark:

(a) the boundary line between stably and unstably os-

cillatory regions

(b) the boundary line between stably oscillatory and

stabl:,r non-oscillatory regions

Therefore, 1R andy are defined as stability criteria of the non-

dimensional quartic equation.



(a) The Boundary Line Between Stably and Unstably Oscillatory

Reg ion

Substitute the equation of stability transition curve:

01 is oIof %= + +--r.-

into equations (2.53) and (2.54):

{ (I 4,-- 4) cc. - o d,
r, or, 2) -4o -Of,+ -P 4 d. (2.56)

or whenl=If, the system is in the state of unending oscillation.

When Ir or efo, or-,d, are positive, it is possible 13: t

positive value or negative value depending upon their relative

magnitude. But when f = ; therefore, it is

only possible that I=If=neative value; it can never be positive.

.'. 1{N positive One component is at unending

oscillation, and the ratio (5

will tell whether this com-

ponent is a high frequency one

or low frequency one.

negative One or both components are at

unending oscillation.

When of,=- ,=o, and orz.A. (or e =1), thenh=?= -1. This is a

special condition; when the equation has two identical quadratic

factors, both of them miss their damping term.
o 3  cc,

The inequality ~ must be maintained if both

cormPonents are to be stable, or:

CK 2. or$ C .4 > ,I (2.57)

When this is substituted into equation (2.56), it becomes the



following inequality:

>1 (2.58)

or {>{ is required to have stable operation.

If the inequality cA d + is substituted for the

unstable region, equation (2.56) becomes the following inequality:

JT 1(2.59)31f
or >}}is the region of unstable operation.

,Therefore, whenif is plotted as ordinate against}4 as ab-

scissa, this boundary condition l=7fis a straight line passing

through origin. The region above this line is unstable and the

region below it stable.

(b) The Boundary Line Between Stably Oscillatory and Stably

Non-oscillatory Regions, Or the Locus of Critical Damping

When the two components are both critically damped,

Tr e.,

that makes: (2.60)

and CfL.+
en (2.61)

This condition will mark the oscillatory and non-oscillatory

region, because if both 1, and 11rr are greater than unity, both

components are overdamped, and four distinct real roots shall be

observed from the quartic equation.

Substitute equations (2.60) and (2.61) into the general ex-

pressions of't and1kf (equations (2.53) and (2.54) ); }tandlf can

be evaluated as:

hi Iw



kA4

(2.63)

The useful range of &can be extended fromn-oO to -2. 'Vihen ,X

-2 C (e.3<2, e, becomes a complex number. tnthematically it is

correct, but it is hard to be interpreted physically. (The con-

fusion will be cleared up when the Quartic Chart is completed.)

Another f orm of expression of .M and 14 for this oscillatory

and non-oscillatory boundary can be obtained by considering start-

ing with both components critically damped so that their factorized

expression of the quartic equation can be written as:

A4  o O +s- aor, A+1 (A+ )(A+-g- +( -tfe)
(2.64)

- [(Ai-L )A +e.)

(2.64)a

The physical meaning of equation (2.64)a is that the two

vibratory components are of the same frequency and same damping

ratio; in fact, the system is critically damped quadratically.

In symbol, they are:

w e , (2.65)

That makes:

o, 3 (2*66)

and or (2.67)
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4.4'

7hien equations (2.66) and (2.67) are substituted into the :en-

eral form ofM and Jn , they apear as:

"~' -,(2.68)

and I.

Here the usable range of extends from+-cto 0.

Figures IIA, B and C show the plot of equations (2.68),

(2.69) and (2.58). Figure IIA covers a wide range ofj-t and 31.

Stability can be verified with practically every possible combina-

tion ofR and i . The non-oscillatory region is bounded by the

curve BA, AC and BC, and is shaded. Figure IIB is an enlargement

of the non-oscillatory region where four unequal real roots are

present. Figure IIC is plotted in logarithmic scales to render

better the visualization of very small quantities ofToand

forming part of the boundary between the oscillatory and non-

oscillatory regions. Figure I can be referred to as an indication

of relative damping between the two components. Such indication

is not available in Figure II.

The shaded area, being the non-oscillatory region, is not

so evident; the pure mathematical proof which is tedious is ex-

cluded here. However, a simple logic proof will be given when the

Quartic Chart is completed.

Equations (2.62) and (2.68), and equations (2.63) and (2.69)

are mutually transferable with the following relation:

+ 4, +(2,70)



Then =Ifor equations (2.68) and (2.69), it means that the

two quadratic factors are identically the sanie, and both are

critically damped, and

.'. . , .-(2.71)

is the point of cusp where four equal real roots are possibly

obtainable from the quartic equation.

16. The Develo-ment of the Quartic Chart for the .11on-dimensional

Quartic E uation A*+-+or o-

When the stability criteria Rand3 is obtained from the

coefficients f,,or-and dr,, the modified resolvent cubic equation

is fixed;

, -24 = e> (2.55)

It looks like ? simple matter to solveefron the above equation,

but solving a cubic equation analytically is usually tedious.

Had the equation been transferred to Weiss' 35*form, much effort

could be saved. However, to preserve a simpler form of stability

criteron and to simplify the further direct graphical solution,

the writer decided to take the form as obtained above. i4everthe-

less, Weiss' chart does not extend to regions of three unequal

real roots, while at the present study of quartic equations, the

region of four unequal real roots cannot be logically proven with-

out the help of the region of three unequal real roots of its

resolvent cubic equation.

* The writer has revised Weiss' cubic charts to a single chart
for the cubic equation in Weiss' form. It is presented in
Appendix A for the interest of readers.
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Graphical solution of equation (2.55) is constructed as

Chart I of the Quartic Chart. The curves are plotted for constant

values of Ewithli as ordinate andg..as abscissa. For the con-

venience of further application of the graphical result, the scale

of liis linear, and that of'e logarithmic, and they are both rotated

45 degrees from ordinary horizontal and vertical axes. It is

noticed, whenlf=o, equation (2.55) becomes:

e, (e - e + i) = > (2.72)

one of the root becomes zero, and the other roots are:

i + I-4M (2.73)

When fis negative, one of the roots is negative, which is of no

interest in our problem; therefore it is excluded. The root zero

implies pure imaginary, which is also of no interest. Therefore,

only the root e I-I-br-4k is shown on the chart. (That is, the

only intersection of constantl{(:.)and constant R appears on the

chart.)

When1M is greater than zero, f~has two values until =

where the curve lf=Oreaches its maximum point. Beyondk=4, there

will be no intersection offi=Owith any }J; that is, there is no

real value for e .
For }{CO, the curves have simpler shape with one maximum, be-

cause negative roots are excluded. WhenI >{>0the curves give

one maximum at greater eand a minimum at smaller e,(. Again, when

If exceeds , neither maximum nor minimum can be seen for positive

values of' .



It is very interesting to notice the relation between the

locus of maxima and minima of the constant 7curves of the

Quartic Chart with the boundary line that separates the oscilla-

tory and non-oscillatory regions on the stability criteria plot

(Figure II).

Write equation (2.55) in the following form:

(2.74)

Let at =0, Jf=-a-e. *+et' for J, or -in (2.75)a

Rmin or 4 max e I -t 3 ea (2.75)

Assume the locus of [ and }4 represents the repetition
Max m in

of quadratic factor; that is, at e,=% C and -- =1. Then,

e w e.(2 76)

Substitute equation (2.76) into equations (2.75)a and (2.75) and

simplify the expressions; we have:

minor max (2.77)
S+a.TrL

t for { or A} (2.78)
6 +Ay r- in ra-ax

Equations (2.77) and (2.78) are exactly the same as

equations (2.68) and (2.69) which are derived directly from

the condition of repetition of quadratic factor. Therefore,

the assumption just made is correct.

This locus x and k .n (or )e. o.) is olotted on Chart Imax min



as the dotted curve. The part of the dotted curve to the left

of its vertex (or passing throughfl nM ) corresponds to the

boundary line BA of Figure II. (Both of them start from ]qff=O.,

and end at MX =i,,2)

The part of the dotted curve to the right of its vertex

(or passing through~fax) corresponds to the boundary line ACD.

(Both start fromnfNt,,' and end atKfc-3,-I).

The scale of (mis marked along the lineo=Owhenever the

intersection is fixed by a particular pair of H andf ; its pro-

jection onto the linelI=Owill give the value of ea . (Precaution:

Take the rightmost intersection if more than one intersection

are observed for a particular pair ofm and.T to avoid the trouble

in getting complex quantity in ratio of undamped natural frequencies.)

The Scale ofOa., The Concealed Scale of &,,* and Scale of &i ,

Ratio of Undamped 'Jatural Frequencies

Lines (which are perpendicular toNr constant) of 135 degrees

to horizontal lines represent constant (er . The vertical scale on

the left is provided for the middle constant orin logarithmic

scale. The intersection of the horizontal line of constant a.

and the 145 degree line of constant e. gives the product ator .

when it is projected vertically down to the horizontal base of

which the scale should be provided for ., but it is concealed.

In other words, the vertical line represents constant e..

The Curve P

The curve P is the plotted result of Ww+$=Ce. Then constant

* The detailed explanation of charting is omitted. If the reader
is interested in it, please read "Graphical and Mechanical Compu-
tation", Chapter II, -by T. Lipka, John Wiley and Sons, Inc., 1918



e'4line (vertical) falls on P curve and deflects horizontally to

the right until it reaches the scale on the right ordinate of

Chart I, the reading thus obtained is

There are two curves of P, one appearing at the center part

of the curve, another in the crowded zone. The former should be

matched with the left scale ofol,(range 10 - 1000); the latter

with the right scale of0l. (range 1 - 10). (The matching of

scales is exactly the same for q curves).

The Scale of ,, the Dimensionless Angular Natural Frequency

Of Reference Component

The relation between ewand (, (Ur= e, equation (2.28) )

offers a simple nomogramic solution. Prolong the horizontal

line just obtained from the deflection on P curve until it meets

the left ordinate scale on Chart II. This intersection gives the

value of (0,-

The Curve Q and Chart II

With much juggling for further practical convenience of

charting, a new variable is introduced with the following

relation:

(2.79)

or (2.79)a

Equation (2.79) is plotted on Chart I as the Q curve with right

ordinate scale of Chart I as Q's ordinate, and the horizontal

concealed scale for e.



As the left ordinate scale of Chart II bears a nomogramic

relation (ur (eup ) to the right ordinate scale of Chart I,

therefore when vertical eis deflected on 6 horizontally toviard

the right and continued until it hits the left ordinate scale of -

Chart II, the reading on this scale will be

-fa. I
or (2.80)

We have solvedef from equations (2.25) and (2.27) that:

(2.47)

are plotted on Chart II with ea as abscissa and q

ac ordinate (left). So when certain deflected horizontal line

fromQ _curve on Chart I cuts the constanto. curve, the inter-

section proJected onto the bottom scale of Chart II crives e,

the ratio of damping raticswith respect to the reference frequency.
63

It is seen from Chart TI that - actually does the function

of damping distribution as has been discussed in paragraph 12,

Chapter Four.

or

The Effective Damping Parameter 1/2 (-t Oe.)

The addition of equations (2.25) and (2.27) gives:

(Is + I = =rI -f
Tr (2.81)a

i, (2.81)

The definition of effective darming parameter is evident from

equation (2.981)a, because it is proportional to the sum of damping

ratios of the two components of the system.



The Scales of qe1, and ir. and The Constant + Lines,

The vertical scale of q (= is drawn logarithmically

upward on the left side of Chart II. It is exactly the same as

that for cdbut the denomination of the scale is omitted.

The scale of e is drawn on the bottom of Chart II with values
ofwe 1 logarithmically rightward, but the scale is numbered ac-

cording to values of e itself.

With the above arrangement of scales of q and , each line

45 degrees inclined to horizontal one represents a constant value
I+ ewr

of J4

Transfer equation (2.81) into the following form:

cK. +O3+ (2.82)

which offers a simple way to obtainT from the chart by scaling

1/2 (-f+1, ) horizontally rightward and i-vertically upward, both

logarithmically identical with those for H-e and q. To avoid con-

fusion, the scale of 1/2 (01-t, ) is laid on top of Chart II and

scale of T along the right ordinate.

Fog any horizontal line deflected from Q curve on Chart I

which meets a certain . curve, the projection of the intersection

onto the bottom of Chart II gives e . Start from the same inter-

section on the particular ; draw a 45 degree line until it

hits _a particular 1/2 (a3-.+, ) vertical line. The intersection

on such vertical line will give the value of Yr on the rightmost

ordinate scale.



17. Cyclic Shifting of Logarithmic Scales

In case no intersection on the particular 135 degree in-

clined line (for constant e.) and the horizontal line of particular
value of 2 can be found within Chart I, we may shift the proper

135 degree inclined line one logarithmic cycle left (or right),

but the scale 'ofo( should never be changed. By this process the

matched P and Q. carves are automatically shifted one logarithmic

cycle left (or right) with the shifted 135 degree inclined line.

So the local P and Q curves are available.

Shifting of the 45 degree lines on Chart II one logarithmic

cycle up (or down) is also permissible. However, the decimal

points of the ordinates scale for- must be shifted one figure

left (or right). -Iioreover, the scales of 1/2 (a a,) and of

can be multiplied by a common factor, for instance, 10 simul-

taneously. In the latter case the constancy of the 45 degree

lines are not affected.

18. Option in Reference Component

Sometimes the horizontal line from Q curve does not inter-

sect the particular - - curve within the rang e of the chart

(Chart II). In that case the ratio- may be used instead of

(or considering that all the nurbers marked on curve are now

for ). The rest of the nrocedure is exactly the same as be-

fore, but the data obtained is referred to high frequency as

reference component; that is, is the damnping ratio of high fre-

quency component, ande the ratio of dairing ratio of low frequency



component to that of the high frequency component.

lathematical proof can be given for such transformation.
I

Let:
It.= I I rr I,

e ~ Y. e
,-~ -~'

Starting from equation .. 47):

(2.47)

take the reciprocal expression of the above equation and multiply

both numerator and denominator by -' . -'Je have:

Of

( 2.83-)~-

Lquation (2.83) is of the same form as equation (2.47), so the

transformation of to is to change e to .
Lext, take equation (2.82) and substitutee There

I ~Y eye
we have: _C (daa +# ) -+--

(2.84)

That is , ?

Therefore,

or

As

Ir

(2.84)a

which is of the sane forn as equation (2.82); therefore, the

gra-hical procedure is entirely the same if --- is used instead
413

of
0(K

W3



19. Factorization of Quartic Equation by Means of the Quartic Chart

With the understanding of the development of the Quartic

Chart, one should be able to find* the four non-dimensional physical

constants o, &r and . As soon as they are obtained, the

factorized quartic equation can be written in the form of equa-

tion (2.19) or (2.20).

Returning to the dimensional quartic equation, with

o)ror (2.85)a

(undamped angular
A w natural frequency (2.85)b

of component 1)

and (d = A' # s (undamped angular
. r. natural frequency (2.85)c

of component 2)

Substitution of equations (2.85)a, b and c into equation (2.14)

will give:
4 1 3 3L+-l O )#

20. Graphical and Analytic Solutions

is a principal datum to the four dimensionless physical

quantities e W., e 5 and l . Chart I serves the most practical

and convenient way to find the value of t, which could be obtained

analytically only after elaborate formulation and substitution.

However, when o is obtained from Chart I, the following formulae

can be used for the evaluation of e, , e and

* Complete directions for the Quartic Chart are presented as
Appendix X, which has been issued to the Class of Servo-mechanism
at the Institute, and which proved to be practical. A limited
number of mimeographed prints is available at the Institute In-
strumentation Laboratory.
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CHAPTER SIX

DETAILED ANALYSIS OF STABILITY CRITERIA M AND N

21. The Rigorous Proof of The Nonoscillatory Region

Bounded By BACB

As we. have proven the correspondence of the boundary line

ABC to the dotted curve on the quartic chart, the bottom line

CB on Fig. 2 is N = 0, so it corresponds to the curve N = 0

on the quartic chart. Therefore, the shaded area BCAB on

Fig. 2 may be considered as the area bounded by the curves

= 0, and N = 0 on the quartic chart.

It is easily seen that any curve for 04. N4- enters the

area (bounded by = 0 and N = 0) at M = max, and leaves

the same at M = min. A particular M (which must be greater

than zero, but less than 1/3) which intersects one particular

N curve inside this area gives two additional intersections

outside the area -- one to its left and another to its right.

That is, for the particular M and N which do intersect inside

the shaded area BACB, three intersections are obtainable to

give three distinct 4 . That means that this particular

pair, M and N, will give three values of //, because cl. is con-

stant for the particular problem. This in turn gives three

values of /0, .

By common sense, if a quartic equation can be factored

into four real and distinct binomial factors as

(Ah-N (A-N2 )(A -A 3 ) (\ -A =o (2.91)

8410



there are three ways to combine them into two distinct quad-

ratics which are both critically damped from physical point of

view, and accordingly three real distinct /9,'s can be ob-

served.

It can also be observed that:

(a) The constant M line which is minimum to a particular N curve

has another intersection with the same constant M to the right

of the dotted curve. This corresponds to X,= N, and A 3a \ 

so that two different ways can be at our liberty to combine

the four factors into two distinct quadratics. Thus we have

two real distinct 0,' . The intersection at the minimum point

evidently will give /,= 41 and g, >1 , while the right

intersection will give / y.ri and ,9 1Y .*

Hold the particular N curve. The slightest increase of

M immediatel4-gives three intersections with this N curve.

However, increasing M from its minimum value actually corres-

ponds to the rightward increment of M from the boundary line

BA of Fig. 2. This means entering the shaded area on Fig. 2

which corresponds to giving A distinct real roots for the quart-

ic equation.

With the slightest decrease of M only one intersection with

the same N is observed which means that two of the roots are a

conjugate pair. The natural way to factor such a quartic into

two simple quadratics (with real coefficients) is restricted to

one. Physically it means to the left of the boundary line BA

(Fig. 2) the system is oscillatory.

This conclusion is only valid for - = 1. Further discussion

for 1 appears in section 22.
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(b) The constant M line which is maximum to a particular N

curve has another intersection with the same N curve to the

left of the dotted curve. Along - 0 and M = max. the
dPk

quartic equation has been shown to have two identical quad-

ratic factors with less than one (at the vertex of = 0,

or at the cusp of M vs. N curve, t= 1). Mathematically,

For t<I (X'tX+J I +(gr+iJ - )]'+(t,-i ) (2.92)

From the right side of Eq. (2.90) it is easily seen that

- or /, = (2.93)

Rationalizing equation (2.93) we get

". - 1 +'2 i "/- (2.94)a

and + =2(1 2. (2.94)

which is the same thing as /4 + =-.(-2y -+I) (2.70)

That makes the expressions of M and also of N mutually trans-

ferable either in terms of , or

From the above mathematical analysis we can understand that

the left intersection of M and N (the same M is tangent to the

same N at the right) is mathematically correct giving real 4
thence real 4, , but complex O which is not interested phys-

ically.

It is clear that the right intersection gives larger

than the left one for the same pair of M and N. In other words,

right /,,, > left /,., (if 0(, is kept constant, and it is so be-

cause we are dealing with one and the same quartic equation).



And because

-L or /I OW (2.95)

Therefore, when /0m = 2, ,Ow = 1

-2 < /Om 42, /Ow :complex

,1 for YO = 1 is larger than Pm for f= complex. There is

no further confusion to take the tangential point instead of

the left intersection whose physical significance is hard to

interpret, although it is mathematically correct.

Hold the particular N curve. The slightest decrease of

M immediately gives three intersections with this N curve.

However, decreasing in M from its maximum value actually cor-

responds to leftward increment of M from the boundary line AC

of Fig. 2. This means that the entering of the shaded area

on Fig. 2, which corresponds to giving four distinct real

roots for the quartic equation. With the slightest increase

in M, only one intersection with the same N is observed which

means that two of the roots are a conjugate pair. The natural

way to factor such a quartic equation into two simple quad-

ratics with real coefficients is restricted to one. Physically

it means that to the right of the boundary line AC (Fig. 2)

the system is oscillatory.

(c) The boundary curve N = 0 shows that when N is less than

zero, there is no chance to have three intersections with any

M. But slightly above the boundary of N>0 (but less than-n)

three intersections are obtainable with suitable M's. This

boundary curve N = 0 corresponds to the base line N = 0 of the

shaded area BACB on Fig. 2. It is therefore safe to say that
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the shaded area of Fig. 2 bounded by M =

N = &Y and N = 0 is the nonoscillatory region

where four distinct real roots are present.

It is possible to show that for N = 0 the two components

fall on either one of the following conditions:

1. 4> 1, b= .707 (2.96)

2. /l, 2=-/T- (2.97)

22. The Most Lenient Behavior Affixing to

The Boundary Lines That SeDarate The Oscillatory and

Nonoscillatory Region

All the above conditions for the boundary lines between

the oscillatory and nonoscillatory are apparently derived

from the least condition that 1* which forms the follow-

ing possible combinations:

(a) ja= 1 Q 1 Boundary lines BA and CB

(b) 4=1 / >l Boundary lines BA and CB

(c) 4, 1 = 1 Boundary lines BA and AC

However, with simple and logical reasoning, if one com-

ponent is being critically damped, but another is being over-

damped, the factored form of the quartic equation can be ar-

ranged in two and only two combinations. '

( h + 2 ) )( A +_, AM ) (( h + Aj )(N 4 )= 0 (2.98)

or * P I I\,)( + \ 3 )] (( N + ',N ( N + \ )at 0 (2.98)a

In this case two and only two different real frequency ratios

are obtainable. On the quartic chart two and only two I,

should be present. Therefore, one of the two M - N inter-

*See Section 12, Chapter II of this thesis



sections must be at--- = 0. With this example, it is evi-

dent that /\ 3 may not be equal to ?\,f , yet their stability

criteria M and N fall on the boundary line between oscilla-

tory and nonoscillatory regions as A, = A,, does.

Apparently the lenient condition is tr= 1, /w>1 and

If #1 ( / may be < 1, the condition = 1 has been

treated). From that condition

Qk = ' ( Lr-- / (2.99)

+ /0'0 + (2.100)

+ (2.101)

The first evidence of the above condition is

Ok1 /+ (2.102)

With the above condition substitute Eqs. (2.99) to (2.101)

into Eqs. (2.53) and (2.54) and simplify with , = +

M . -4 /4Ow (2.103)
( /O,, + 4f

and N = (2.104)
( /A,+ 4 )P

Eqs. (2.103) and (2.104) cannot be directly identified as any-

thing along the boundary line, but if both denominator and

numerator of Eq. (2.103) are divided by ' and those of

Eq. (2.104) by , and let ,,' - for both equations.

Then M = 4/O>n 1 (2.103)
(; + 4)

and

a

(2.lo4)aN "
(,g t 4)*

OILI



~0

Eqs. (2.103)a and (2.104)a take the same form as Eqs.

(2.62) and (2.63), only with /, changed to / . It is

true that with one critically damped component (or two equal

roots), the stability criteria M and N fall also on the bound-

ary line that separates the oscillatory and nonoscillatory

regions. However, the point is shifted from M,N(P.,,) to M,N

Such shifting sometimes means shifting from branch BA to

branch ACD. An example will show this statement clearly.

Suppose that the original conditions are:

/,= 5.0, 4g = 5.2

Then ,,= 5.2 or M,N( ,,) = 0.293, 0.0266 (On BA)

but o'r= 52 = 1.0 or M,N( / ) = 0.32, 0.032 (On AC)

For the bottom line, or N = 0, the lenient condition will re-

duce to M = 0; that is, one component is at unending oscilla-

tion. Apparently this is only one point of N = 0 (at M = 0)

so it is not applicable to the whole range of N = 0. In other

words, such lenient condition is not applicable to the bound-

ary line N = 0.

23. The Lenient Behavior Affixing To The Cusp A

of The Shaded Area

Logically speaking, at the cusp A (Fig. 2) or the corres-

ponding vertex of = 0, only one way of factoring the quartic

equation is possible to give real . The condition of four

equal real roots is too strict. However, only three equal real

roots are sufficient to reach the cusp of the shaded area.



This can be proved mathematically by the following considera-

tions. Let the quartic equation be factored as::

+4 +A + + =N +, (A + X)(\+ N,) ( + k)J (2.105)

where A*1 (2.105)a

A = 3)\, + (2.1o5)b

(2.105)0

and 24 (2.105)d

from which = ( Thi is. air essential indi-
(3+47)h cation)

0( 1 - 4  1 N +( -4A. 1M = % --- , N = i-
35 ' 27

Therefore the logical prediction is correct.

24. Double and Single Oscillatory Regions

(A) Double Oscillatory Regions

From the quartic chart (Chart I) it is seen that all

curves of N < 0 give two intersections with a constant M line

which is less than Mmax for that N curve. By logical reason-

ing for such condition of M and N, two ways of factoring may

yield two different /Om's. We know that when N -< 0, the sys-

tem is oscillatory. At least one of the two components is os-

cillatory; the other component may or may not be oscillatory.

However, the two-intersection behavior will help us to clear

up any such uncertainty.

Assume both components to be oscillatory --

.5+f +V - +d\ 1- IA ( 10M%+if I,,J(AL+,lL4JA + O nm) (2.106)



W ( = 1

1,< I , 12 1

The right hand side of Eq.

From expression

1(. * I"

(2.106) can also be written as

(2.107) we have three ways

(2. 106)a

(2.106)b

(2.107)

to express (:

-
(2.107)a

I

From the above expressions of , expressions of

(2.107)b

(2.107)c

can be

deduced:

fMI= innI +z
'(a)

I"',a

4,, = 2 (r, _- _ -

f4, =

It is necessary to prove -7

real,

real,

real,

or

~d
=0

<2
> 0

(2.108)a

(2. 10)b

(2. 108) c

Let us assume

I 12 ;('~ .')1'-ro)
to both sides of the inequality and square both sides

Canclingandranei h t w1-12 ha
Canceling and transferring the terms we have

where

L4W3

[(,+ ~_I

add '1-12

< I (2.109)

A -- 12,) (A-4 ,11 12,AOn -'7 1 4 ( 1 (\ 4(12 -A:1 IZ)@ W.

+

"12 
( f, ) (

2 ( 1. 1 a, -,- r(, -r) (



0 (< (r. ~(92 (2.109)a

Equation (2.199)a is a true fact except , which has been

excluded.

/ is always positive because 3, and S, are both less

than unity. 1P, 2 may be positive, negative, or zero. The

condition for the transition of / ,, from negative to positive

can be found in the following treatment:

>0

(2.110)t2 <7

With the help of Chart I and the above analysis,. it can

be seen that

(a) if [, 4 .2 > , <C and 2> -

only two intersections at positive p can be obtained from the

stability criteria M and N of such a system. All the curves

for N < 0 satisfy this condition, therefore the region below

N = 0 is a double oscillatory region restricted to the condi-

tion 2

(b) If and < /1 -72

three intersections at positive f, should be observed from the

stability criteria M and N of such a system. The shaded region

of Pig. 2, which so far has been claimed to be nonoscillatory,

satisfies this condition. Therefore this shaded region serves



twofold to indicate (1) nonoscillatory, and (2) double oscilla-

tory, restricted to the condition < -The decision

between the two states of motion merely depends upon the magni-

tude of the middle constant o(x of the quartic equation.

From the above analysis it is understood that if two or

three intersections are observed for certain pairs of M and N

of a quartic equation, the rightmost intersection will always

give results according to physical ways of decomponentization

(that is, give real 4 and real t.- etc.). The other inter-

section or intersections may or may not lead to complex e,.,

etc. according to whether this system is doubly oscillatory or

nonoscillatory.

(B) Single Oscillatory Region

Going back to Eq. (2.146) and letting one of the a's be

greater than one, the other less than one, (for convenience

let L> 1, <1), the four factors of equation (2.106) be-

come:

11)(14 4A +) [2 t ( -- J W~. ( 4 4 (j3 (2.1

For expression (2.111) we also have three ways in which to ex-

press /.:

/0 ___. (2.1
, 0 & ,,'

11) a

S' 1 2

(t2) [ ~ 'i)( F V2)J

PLJ3 : 12)r2 i
(2.111)b

(2.111)c



From the above expressions for f, , expressions for , can be

deduced:
Wflfl2  Wnn

(2.112)a

2 , 2 (2.112)b

2 L ' * ('-i) (2.112)c

The presence of in the expression of /, can be interpreted as

meaning that no more real intersections can be observed for the

M-N pair obtained from a single oscillatory system other than

the one which possesses physical significance; that is, giving

solution to real , , real fr etc. Accordingly the region

above N = 0 and outside the nonoscillatory (or double oscilla-

tory) region satisfies the above condition. Therefore, the

region above N - 0 and outside the nonoscillatory region is de-

fined as the single oscillatory region.

25. Summary of Stability Analysis

The following table (Table III) may serve as a good

summary of stability analysis for the quartic equation.



T A B L E III

STABILITY BEHAVIOR OF THE QTTRTIC EQUATION IN NONDIMENSIONAL FORM

N > M Unstable

N = M Unending oscillation N > 0 One component only

N < 0 One or both components

N=M=-l Unending oscillation of both components

N < M Outside At least one component N>O One component oscillatory
region BABC is oscillatory N-O Nonphysical existence

N<0 Both components oscillatory

Stable Along boundary Two equal Along 4j,= O Two pair of equal roots
BABC quadratic AB Two equally overdamped

factors or > quadratics
S~- I one critically

N = ,damped quadratic Two equal roots. Another
factor accompanying component may be over-
another of any damped.

-- - damping
M = ratio Along 4j=4, Two equal conjugate-paired

(0 +2r) AC roots

Also 4,/t, Two equal roots. Another
CD component overdamoed.

J<1

At %j=:, Four eoual roots
may be any Vertex
real number A , Three equal roots

N=
27

Along = = .707 at 144 )> 1
CB

or 1 =

Inside region Four distinct real roots or both components oscillatory
ABC

limited by < < /

3> %, High frequency component has greater damping ratio.

a3 <'c, High frequency component has lesser damping ratio

a = 0. Two components of same frequency, but with different damping

Two components of different frequency, but with same damping

or two components of same frequency and same damping



P A R T III

STABILITY IMPROVEMENT WITH DIFFERENT CONTROLS



CHAPTER SEVEN

STABILITY TRANSITION CURVE WITH DIFFERENT

COUPLING COEFFICIENTS

26. Coupling Factor and Coupling Coefficient

In reviewing Section 8, Chapter Three, the coupling fac-

tors of a control system are recollected. The coefficients

of the quartic equation of the controlled motion can be

broken into two parts; one is due to the idly dynamic combin-

ation of the control and controlled member, and the other due

to the coupling effect.

The idly dynamic combination may be defined as one in

which the coupling factors of the system are all zero (phys-

ically the control is locked) and the coefficients of the

quartic behave in such a way that the quartic equation may

be resolved into two factors, one identified as the identical

characteristic of the member to be controlled and the other

the identical characteristic of the control.

In symbols, Eq. (2.13)c -- or (2.13)d -- can be written

as follows:

A' -At

At2 A' + BI

A'= A' -+ BI

A'= A',,+ B (3.01)

94



where A' = Se + 2 Ycn +2 1,130 Me

A' =c + ke Cc Ce =L) W I 2a
20 m0 MC MeI0---4t , ,,w

cc ke ce kc=m I I mc = kC2

and A' = ke kg = , n, (3.01)a
*O I m

are defined as idle coefficients.

Eq. (3.01) can be written in'the following form:

A's A'
3 30

A' = A'ao (1

A' = A'1 0 (1+?',)

A' = A',, (i + ) (3.02)

where r , defined as second derivative coupling coefficient
A'

B' , defined as first derivative coupling coefficientA;.to

A defined as error sensitive coupling coefficientA'

The stability function S(D) in the form of Eq. (2.14) can be

expressed in the following way:
Is (3.03)S(D) = D 4 -+ A D + At (1+* )D24 A"' (1+ y )D 4A (1 (3)

By introducing

D ' A /4D = A'0  \ (3.04)

We may write the stability function in nondimensional form:

5(D) + '
YN=- A++ (0 N+ za ( a + o+) + q,(144) (3.05)A'

A'
where c( A = ( , 4 (3.06)

00 fe. to

A, + (3-07)
1/ W 4



0

A 10 (3.08)

A 00(. -, (3.09)

with =n= Undamped natural frequency of control (3.10)
*"no Undamped natural frequency of member to be

controlled

c Damping ratio of the control (3.11)
l. lo Damping ratio of the member to be controlled

and o(, e ,4, , and o(,, are defined as nondimensional idle

coefficients.

27. Effect of Coupling Coefficients on Stability

Transition Curve

It is understood that a mechanical system of one degree

of freedom cannot be unstable. When such member is controlled

by a mechanical non-deal control at idle condition, the re-

sultant quartic equation must show the stable behavior.

Graphically, the point (, vs. '30 must lie above the stabil-

ity transition curve.

0(20 = .0(0
20 - + Oc (3.12)

However, in a two-degree-of-freedom system such as the uncon-

trolled longitudinal stability of an airplane, it may be stable

or unstable; that is of,, vs. ! of such a system may lie
010

above or below the transition curve

When the control is put into action, the same point

of vs. * will change its relative position with the new



transition curve which is affected by the coupling coefficient.

The effect of different coupling coefficients can be analyzed

separately and their resultant effect can be easily inter-

preted.

(A) Effect of Error Sensitive Coupling Coefficient

With only error sensitive coupling coefficient,

appears in the following form:

A+ ,ha O(aoAA $ o(,4A + (014 V) 0

which can be transformed into:

4 + , C<+3 oA 2 3 -A' 2+ - = 0

where (1 300
+ Y.)V4 , a (1{ (*,)'/a'

at and A

The new stability transition curve evidently is

Eq. (3.05)

(3.13)

(3.14)

(3 .14)a

0(2 , as 01 0( 3
or ce= :: (4,). e)20 Oc , X3

or in symmetric form

O__ _ 0__ (1- 4 ) 0o<1
(0 M ,'s 4 

o, r(4 .'/ (3.15)a

Eq. (3.15) is plotted as Fig. 3 with 0(2 ,as ordinate against

0(30 as abscissa with Yo as varying parameter.
Otio

In the high performance control (which will be discussed

later in Chapter Eight) the control frequency is usually high-

er than that of the controlled member, and the damping ratio

of control is usually higher than that of the controlled member.

Symbolically the high performance controlled system possesses

or (3.15)
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the two conditions 0, >> I and > . With control

at idle condition, the point o(2, vs. 043 is slightly above

the transition curve of = at some value, of >I (be-
0(50

cause >0 ). It is therefore seen that with a posi-

tive coupling coefficient, the system will soon reach unend-

ing oscillation when the transition curve, raised by the

coupling coefficient, passes through the point co( Vs- 2 *
0(1o

This sets a limit to 4 Y, beyond which the system will be un-

stable. However, if negative coupling coefficient is used,

there is no such limit, and the system is always stable until

d=-. when the quartic equation is reduced to cubic one

with one root equal to zero. At Y.=-I the transition curve

becomes a straight line* ( -tM -- ) in a log-log plot and

there the meaning of high frequency or low frequency becomes

obscure.

It is also interesting to notice the shifting of the

vertices of the stability transition curves along a straight

line [0(= 2 l!. in the log-log plot. It is therefore
K30I

possible to make the high frequency component possess the

smaller damping ratio by introducing negative 4 (to make

the specified point o(20 vs. LO appear above the left branch
b(IO

of the transition curve). For a good follow-up control, the

least requirement is to have steady state reading equal to

quantity which is to be followed. Going back to Eq. (2.13)b

the above requirement cannot be fulfilled unless B' A .

*Compare this with the stability criteria chart of the cubic
equation in Appendix A.
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kekc1

But from Eq. (2.13)c it is seen that A' =ke + B1, so A

cannot be equal to B' unless ke (or k.) is zero. Approximate
0

truth can be reached if ke is very small, so that is

negligible to B1. In such type control it is necessary to

use large positive )o to satisfy the requirement of true steady

state reading. However, as positive Y easily leads the sys-

tem into an unstable condition, (such as is shown in Fig. 3),

means of improving damping is therefore of equal importance

after the introduction of overcontrolled positive -y0.

If the system is not aimed at the following-up character-

istic like the controlled longitudinal motion of the airplane,

only moderate positive Y may be needed.

(B) Effect of First Derivative Coupling Coefficient

With only error velocity coupling, Eq. (3.05) appears in

the following form:

A4 A+ o 3,+ o( A+ CO ( + .) Y\ + (3.16)

of which the stability transition curve becomes

20_ =o( 00i+Y (3.17)

Eq. (3.17) is plotted as Fig.4 with @y., as ordinate

against Oio as abscissa with as varying parameter.
( o

Positive Y shifts the curve to the right of the original one

while negative , moves it to the left.

With particular control and controlled member the point

o4' vs. <.30 may be located slightly above the right

branch of "Y = 0. Too big a positive Y will lead the system

to instability of which the high frequency component will first



undergo unending oscillation. A slight negative 'Y, will also

lead the system to instability of which the low frequency com-

ponent will first pass through a stable oscillation to an un-

stable one.

Introducing positive 'Y, decreases the ratio Oe3
00+ (14y,)

which adjusts the distribution of damping ratio between the

fast and the low components. In fact, the damping ratio of

the controlled member (low frequency component) is noticeably

improved with a slight positive y while the damping ratio of

the control (high frequency component)is only slightly de-

creased. It is possible to adjust the coupling coefficient

so that C(* = I In most cases of high performance
010 +T, 0

control, such a condition gives two components of motion with

the same frequency, but with different damping ratio. When

3 exceeds such a limit, the high frequency component will

have less damping ratio than the low frequency component.

Physically, the change in damping ratio of either component

should be a continuous variation. However, Maxwell 6 finds

that theftabrupt change of damping distribution when coupling

coefficient (defined in a different way with the symbols used

in this thesis) reaches'a certain value. The abrupt change

is only due to the exchange of title of the high and the low

frequency components. Detailed application on the condition

C3O will be developed into another chapter.*
a (4 1  T)&- .

*Chapter r;Tnn 'tos
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(C) Effect of Second Derivative Coupling

With only error-acceleration coupling, Eq. (3.05) appears

in the following form:

A44 0 A 3+ o(2,( N-+j-Yat 4 / 0(10 =0 (3.18)

of which the stability transition curve becomes

C C<10

20+ t2- 1 x3 (3.19)

Eq. (3.19) is plotted as Fig. 5 with c4,o as ordinate

against as abscissa with -y. as varying parameter.

The transition curve is shifted upward with negative coupling

coefficient; that means that if overcontrolled with negative

coupling, the system might be led into instability. However,

no such instability would occur if positive coupling is used.

(D) Effect of Higher Derivative Coupling

As detective instruments are limited to error sensitive,

velocity sensitive, and.acceleration sensitive types, higher

derivative instruments are not yet available. Therefore, no

complication is needed to explore their effect upon the trans-

ition curve. Moreover, the combination of 'Y0  , and

is widely open to yield desirable'results. Therefore the

analysis of transition of stability is confined to the three

types of coupling.



CHAPTER EIGHT

CONTROLS WITH HIGH NATURAL FREQUENCY

28. High Performance Controls and Definition of Advantages

It is desirable to have least control lag in a follow-

up control. Controls with high natural frequency can

achieve this object with ideal control.

merit37 can be derived.

With nonideal control, it is impossible to use a single

A simple figure of

expression to sum up all the relative merits. However, to

simplify the effort of design the following definitions and

notations are introduced in a tabular form.

(See Table IV next page)
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TABLE IV

Results
Results with
with control Ratio
Control in and
idle action Notation Definition

We WI datg fudme aua

/we frqec
Advantage of undamped naturalW. 7W xlke frequency

u.,, Advantage of undamped natural
WC. ~ frequency (control component)

Advantage of ratio of undamped
POO WO W natural frequencies

Advantage of damping ratio

Advantage of damping ratio

I: (control component)

Advantage of ratio of damping
1 2 _ratios

Advantage of 
damping

Wx wSj , Advantage of damping (control
component)

4

* All w's in this table and henceforth in Chapters 8, 9,

and 10 are referred to undamped natural angular frequency.
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It should be noted here that although every ratio referred

to control at idle condition is defined as advantage, it is

merely a mathematical symbol because a control cannot be expect-

ed to influence every quantity in the advantageous sense. Some

of the *advantages* may actually work on the disadvantageous.

side. The designer has to use his own judgment to make a sat-

isfactory compromise.

29. Error Sensitive Control with High Natural Frequency

Going back to equation (3.14) and (3.14)a and with sub-

stitution of Eqs. (2.25) to (2.27) and (3.06) to (3.08) we

have

(J+ r, ak(,+/) (3.20)

(/ + r.)Ye

+ + 'A"'. 0 (3.21)

+ (3.23)

If approximation can be safely made to obtain

those advantages as defined in Table IV in terms of control

specification and coupling coefficient explicitly.

From Eq. (3.21) it is seen that --- and -L- are defin-

itely neglegible when >% ;p, Since and in

general to is small, (may be in the order of .1),Iis in the

order of 1.0, so 4 1: a is also negligible to . It



will be seen soon that the product or , is of the

same magnitude as 1, . So 4 is also negligible to

g . Therefore Eq. (3.21) is simplified to

I. : (3.24)
S( I +-t) VX

From Eq. (3.23) expression of q w can be obtained as

JP I) ( 1 + ) = ( ++.) (3.25)

In Eq. (3.20) it is safe to neglect against A and

againste because p and also ?> in

general. Therefore we get

t___ Y_ ) _ =IO (3.26)a
/0 /7

Substituting Eq. (3.24) into Eq. (3.26)a we get

t lore(3.26)b

or (3.26)

which means the dam ng ratio of the control component is not

(essentially) changed.

Equation (3.26)b can also be written in the following

form

(3.26)c

Substitute the value of into Eq. (3.22) and leave every

term in because is not negligible to and is

not negligible to . We have

(3.27)a
7.A &



Multiply both the numerator and denominator by - and sub-

stitute ,Eq. (3.27)a appears in the following

form:

/% (3.27)b

From Eq. (3.27)b can be solved thus

+ Ivt - (3.27)

Eq. (3.27) is rather an interesting result in which the advan-

tage of damping ratio is a function of coupling coefficient 'r.

and the control specification "'p which relates the ratio

of natural frequencies with the ratio of damping ratios between

the controlled member and the control in a form of simple ratio.

Multiply Eq. (3.27) by Eq. (3.25). )7; t is obtained.

/ - (3.28)

From the expressions for and wit is seen that when

7.= (positive).,. Both~l and n become zero which

means that at that value of T. the system becomes unendingly

oscillatory and the unendingly oscillatory component is the

low frequency component. But when ir. is negative, but less

than 1.0, the system can never be unstable. When '4 slightly

exceeds -1.0, 1Ybecomes negative whilell; w is still positive..

This contradiction should be considered as a result of negli-

gence of certain terms during the course of derivation un-

justifiable at the region where (S exceeds -1.0. Fortunately

too great a coupling coefficient is not used in practice.

By definition, the following advantages can be found:
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= low,- t (-.)' (3.29)

), (.25 .4(3.30)

Fi.6 Vth3  
, (g, 4 ,a od)/esaai2

Al -te quanti-ie -- _ _ , - wic ae

I 
+N

Eqs. (3.2), (3.25), (3.27), (340) and (3.2) are plotted as

Fig. 6 with g X ,he Y , Wp PI as ordinates against
P le'I0

the coupling coefficient Y as abscissa with the control speci-

fication as varying parameter.

All other quantities n ,ype which are ap-

proximately equal to unity are not plotted.

With Fig. 6 the stability improvement of a controlled sys-

tem by a particular control with particular coupling coeffi-

cient can be picked up without any effort. When the member

to be controlled possesses excess damping ratio, a control with

high frequency of the error sensitive type will be. satisfactory

with positive coupling coefficient so long as the damping is

concerned.

In case the member to be controlled possesses sufficient

stiffness, but not sufficient damping, the error sensitive con-

trol will be satisfactory with slightly negative coupling co-

efficient.

However, the error sensitive control is primatily designed

to supply the azimuthal or following-up characteristic (posi-

tively coupled). The real advantage is to increase the nat-

ural frequency of the controlled member. However, the damping

in inherently spoiled. Therefore, damping improving coupling
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is of great necessity to compensate the spoiled damping.

30. Error-Acceleration Control with High Natural Frequency

Because of simplicity in analysis of this type of control,

it is taken up ahead of the error-velocity type.

In reviewing Eqs. (3.18), (3.06) to (3.08) and (2.25) to

(2.27), the following relations are obtained for the error-

acceleration control.

0(3 ~30

0(1 , C0

or2~(7+r,~=2,~-(5o (3.141)

t. + fr+ 4 j ( 4 7..)( M- y2 ) (3.42)

2 , (I--r) 2g ALO,, (3.43)

Eq. (3.42) can be simplified, if f, >7 , with neglect of ,

4 2 1- and 4 so that

ra=1+ 72 (3.44)
4~Ii. r.f o tha

.r._ I (3.45)

By neglecting ~- against ( ( and against

can be put into therrOEq. (3.41) following form:



r7:ium :U. A (3.47)a

I-L . (3. 47)
or 

4- 7
Nothing can be allowed to be neglected in equation (3.43).

It can be written as

r = '' (3.48)

With the substitution of = P. - and Eqs. (3.47)

and (3.44), Eq. (3.49) gives the following solution

I =- 2) .04 (1 (3.49)a

or ( )(3.49)

1*Henc 1 
59 (3.50)

_4 I.
9 e( T _ (3.51)

7-t (3.52)

9 lit F, (3.53)

9 ' 1' ,,, (=+qI) '/ (3.54)

Eqs. (3.49) and (3.50) are separately plotted as Fig. 7A

and Fig. 7B with q and as ordinates against the coupling

coefficient as abscissa with !* as varying parameter. With
ri-
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positive coupling the system is always stable as 7 and 9 ap-

proach a certain asymptotic value no matter what is used.

But with negative coupling, unending oscillation occurs when

it exceeds a certain amount (because at that time, 'z and

become zero).

For a constant value of there is one coupling co-
0

efficient that will give maximum 9 and another 'Y that will

give maximum 7 Such loci are plotted as dotted curves in

Figs. 7A and 7B.

In terms of this control specification , , maximum

and their corresponding 72 can be expressed:

2(14 +-g) 0 o.384( +1 )4 o
max. 2 = J = (3-55)

2 -
for max. , -= (3.55)a

4 4I)
Proo

max. = x. (3.56)
2-

for max. (3.56)a

The limiting value of Y at which the system becomes unendingly

oscillatory can also be expressed in terms of

for zero 7,2 (3.57)

Flo



Ii~,

The above results -- Eqs. (3.55) to (3.57) -- are plotted

as Fig. 70 with X. Is and 7 Is as ordinates against as ab-

scissae. It can be seen that for the same , max. ob-

tainable is greater than max. obtainable when ' /z, and

the condition is reversed when <7. To obtain max

?x cannot be greater than 2. To obtain max. , j cannot be

greater than 1.0.

Fig. 7D are plotted for , ' , and 7i vs. ?.

Fig. 7D supplies the information that the damping of the con-

trol (high frequency) component is not essentially changed

1) because the reduction of damping ratio ( '< 1 for

)z > 1) is compensated by increase in its natural frequency

( > 1 for r. > 1). The compensation in the region for t,( 1

is in-the opposite way.

For the principal (or low frequency) component, natural

frequency is decreased with positive coupling and increased

with negative coupling. Because of the complication of

which is not only a function of -r but also a function of

the effect of the control upon the principal natural frequency

therefore cannot compensate the effect upon - . Real advan-

tage is then taken from negatively coupled control of the

error-acceleration type with proper magnitude of the coupling

coefficient so that both n and are greater than 1.0 (2o >2)

which greatly improves the stability of the principal compon-

ent, and yet does not substantially affect the stability of .the

control component as far as damping ( ) is concerned. Such

advantage is available only at the sacrifice of decreasing the



inertia relating to the principal component. When the sys-

tem encounters a prolonged disturbance, the diminished inertia

due to negative 12 coupling will throw the system immediately

into the disturbance. However, if such negative coupling is

only called into action when the disturbance has ceased, it

will definitely "quench* the disturbed motion.

Error-acceleration type control can be considered as in-

ertia improving control. Therefore the improvement in damping,

if there is any, is only a secondary effect. Hence, a system

which only possesses a negligible damping cannot be improved

to a satisfactory degree by the error-acceleration type control.

31. Error-Velocity Control with High Natural Frequency

In reviewing equations (3.17), (3.06) to (3.08) and

(2.25) to (2.27) the following relations are obtained for the

error-velocity control.

or 2  1 ~q) - [ /.. (3.58)

S+ 4(3.59)

2 , ) = )

Write q+. (3-58) as

Wri~*t * _ _ (3.61)



Since such error-velocity control is usually called for

improving damping, I , and ,> . With high natural

frequency control, (, and > ; therefore

Eq. (3.61) may be simplified as

1t. (3.62)

where caj, - because 2uf p... 4

To allow frequency change, Eq. (3-59) can be simplified

to the following form by neglecting -!- and a terms only.

/-+ 4'e =/.>- .+ 2 (3.63)

Substitute Eq. (3.62) into the above one the following

relation can be obtained:

or = ( (3.64)a

or = 414.r (3.64)

Write Eq. (3.60) as:

and equate to Eq. (3.62). The following relation is obtained:

M= t- ( -4-(3.65)

Eq. (3.64) is plotted as Fig. 8A with I as ordinate against

as abscissa with 7. as varying parameter. It is seen,

although the variation of <w is small, that it is very sensi-

tive to . If ' is allowed to be unity, 7 would be unity
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at any 'Y, which is apparently not true. When 7, reaches

1.75, 1 becomes maximum, so the curves retreat as 7. further

increases. However, with ordinary high frequency control,

such optimum operation cannot be attained unless the natural

frequency of the control is only moderately high (say /, around

10) and the damping ratio of control is well above 1.0.

To use Fig. 9A, the designer is supposed to know how many

times the damping ratio of the controlled member is to be

raised; that is, he must know what he wants. He has also

to know what frequency variation to allow for; that is, .

Then the abscissa value or / is fixed from which
fc 

f.

can be easily found because , is known from the problem.

1L is somewhere between 1 and 2 for conservative design.

Eq. (3.65) is plotted as Fig. 9B with 1 as ordinate

against as abscissa with (or i ) as principal
re ?14 'f

varying parameter and 9/ as the secondary one.

When -is obtained from Fig. 8A, can be figured

out. Therefore, ( can be found with the known values

and O .

Any attempt to apply the Figs. (8A and 8B) in reverse

order is easily confusing because the conditions are not well

defined when 'r; is chosen as starting datum.

For academic interest or rather, prospective design, op-

timum operation curves are plotted as Fig. 80, with as or-

dinate against 140 as abscissa, with /0as varying parameter.rc r.
The curves show a flat top at maximum . With values of

q lying between 1.6 and 1.8 the purpose of maximum may be
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satisfactorily attained. However, the lower the value of

is, the less the coupling coefficient will be required.

When 7,is slightly less than one, I is less than one

and negative coupling coefficient is required. Eqs. (3 .64)

and (3.65) are plotted side by side as Fig. 9 for y. 1.

The left part of Fig. 9 should be applied first, leaving the

coupling coefficient IT to be found last from the right part

of the figure.

When .> 1, ought to be only slightly away from

1.0. Eq. (3.65) can be simplified further as

r +% +(3.66)

This simplified equation serves as a quick estimate of the

coupling coefficient when f.>-P and required ? is known.



COMPOUNDING CONTROLS

3L.einl upling and Compound Coupling

In Chapter Eight three types of control have been dis-

cussed. They are only excited by a single force derived from

'the error or error derivative. Such controls may be defined

as single coupling control.When a control is excited by two

or more forces simultaneously, it is defined as compound con-

trol. From the analysis in Chapter Eight it is understood

that neither one of the three types of single coupling will

give a result which may be considered as "all round". There-

fore proper "compounding" should be studied.

When a control is excited by two or more forces, the re-

sult obtained is neither the sum nor the product of the separ-

ately excited controlled system. Mechanically the system ad-

justs itself to give a compounding result without complication.

Bot in analysis, step-by-step consideration has to be followed.

A control started with specification 4 will not keep

on as such when the system is improved by the application of a

certain coupling. Therefore the control specification rhas

to be modified in order to consider the improvement of stabil-

ity of the system with the other coupling (which actually acts

simultaneously with the first one).

It is advisable to have the results obtained in the last

chapter in the tabulated form in order to minimize the effort

128



TABLE V
APPROXIMATE STABILITY IMPROVEMENT DUE To VARIOUS CONTROLS OF HIGH NATURAL FREQUENCY AT CERTAIN **Pt.

COUPLING
OEFF 'o 7Y437

ADVANTAG EOSE __._ __

+ ((+Tc)'/a I

oi-l'a + -l + -j -y

1 -0 P+C 0+aI - I + [ ) I +y y '

1C w P'o 
3

I (I+ I a Lo +1.)'/

1 + a I + ( + y)'a

+Y)1 |+ y -{+ a(+ .)+ + + -5 I

* -yo +y+ +7 I 0+ y, +7~~ + AI I (do IIl + 7 o I * - +Pr... I +l It -00

pot_ ___ .___ Pwm. , P*, 0

_ _ _ _ [. ( i J-. _ _ __ _ _ ___ (I J _ _ __40

PC + Yo Pco PC PC 0 I+ys P p,

* EXPRESSION IS TRUE FOR VERY SMALL to AND VERY HIGH Pwo WITH CONSERVATIVE to (AROUND ONE). FOR MORE

ACCURATE RESULTS,. CONSULT Fie.VN AB. IF MUCH OVERDAMPING IS ALLOWED IN THE CONTROL, N CAN BE DE-

RIVED BY BAIRSTOW'S APPROXIMATION AS:
r _ _

ok
1 -A P400 +4 1+ I

0 r. - I



1-29A

in an attempt to consider the compounding effect of two and

more couplings. Table V not only serves as a summary of the

results in the last chapter, but also extends to higher der-

ivative coupling. (The derivations are omitted as they can be

done by carefully neglecting terms which are negligib16). The

inclusion of the higher terms would be found useful should

the time lag of the detecting instrument be considered.

33. Theory of Compounding for Controls with High

Natural Frequency

It is seen from Table V that some expressions of q only

contain the coupling coefficient itself. The specification

of control has no influence upon it. For such a y simple

multiplication of the individual expression is sufficient to

give the resultant // . For instance,

90 12=IOW "2; (I+ Y )/ (3.67)
where the subscripts after the 7's and T 's are referred to

degrees of derivative. When they appear together, it means

that the system is being compoundly coupled.

But some I's are functions of - as well as In

such a case the expression can be, in general, expressed by

Zq( )* [1 + h() j (3.68)

* For convenience in typing, fq('q), hq('lq) and k (T ) shall be

abbreviated as fq, hq and kg respectively throughout this sec-

tion, and - abbreviated as s. signifying specification of

control.



where the subscript q is referred to the orde3f %fdefrivative and

f and h represent two different functions. The control speci-

fication should be multiplied by the factor

= kq(-Y) j + h (Y (3.69)

When the compounding is made between the qth and sth deriva-

tive, the expression can be written

qs= fq(l + ) {f5* j1 +skql, .)j

h hr

- f ( + ) -f1 1, ( - k i ) J
1 1

So

=fq(l+ )fs(1 + LI) -fqf h~ (1 + )/"c

Sh q - h q c )/sc (3.70)

It can be shown that

(1/hq)(1-1/kq) = 1

or 1 - 1/kq = hq (3.71)

For instance, take q 2

k2 = k 2  2 ) = 12

1 __ -

and - 172 172 =h2(% ) = h2

or take q = 0

1 - l/ko()' ) (1 - (1+70) -Y= h0( 7) x ho

*Where hs, f., etc. stand for h,('Y,), f,( '), etc.

-A-Cio
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Therefore

qa = Iq Is - fqfshqhs(14 l1/sc)/sc (3.72)

On developing, and canceling the terms containing 1/sc Eq. (3.72)

becomes

rlqs = fqfs 1 + (hq+ hs - hqhs)/sc]

= fq,s(l + hqg/sc) (3.73)

where

fqs = fqs('ql Ys) fq(lq)fs (s) = fqfs (3-73)a

hqs = hqs(Yq, -) s hq -4 hs - hqhg (3.73)b

It should be noted that the order of substitution is indifferent

to the result. In the bracket of Eq. (3.70) it would look like

(1/hs - 1/hsks + 1/sc) if subscript s is substituted for sub-

script q, but the simplified form takes the same expression

1 + 1/sc'

By the same reasoning and by following the same procedure

as that given above, it can be shown that

qa = k,(1 + hq,s/sc) (3-74)

again, kq,s a kqk5  (3.74)a

and hq,s = hq + h - hhs (3.73)b

It can also be proven that

1 - 1/kq,s = hq,s by the same method in proving Eq. (3.71).

Therefore

I qsp = qqs 1p - fq,sfphq,shp(l + 1/sc)/sc (3-76)

On developing

7 qsp = fq,s,p (1 + hqsp/sc) (3.77)



iAZ

where
fqsp = fqfsfp = fq(Yq)fs(Ys)fp( p) (3-77)a

and hq,s,p hq + hs 4 hp + hqhshp - hqhs - hshp - hphq (3.77)b

From the above analysis several general rules can be deduced.

(1) When the advantage of a singly coupled control is a

function of coupling coefficient as well as control specifica-

tion, it can be expressed by the product of two factors, of

which one is a simple function of the coupling coefficient;

that is, fq(Tq), and the other is the sum of unity and the quo-

tient of another simple function of the coupling coefficient;

that is, hq(1 q), divided by the control specification.

(2) When the control is compoundly coupled, such "advan-

tage" takes the same form although the two functions are modi-

fied according to the following rules:

(A) The function that has nothing to do with the con-
trol specification becomes the product of the in-
dividual function, or in symbol,

fq*s --- p nfqfgs---.fp (3.79)a

(B) The function that divided by the control specifi-
cation takes the form

hqs,.....p = hq + he ..... +hp

-hqhs - hshr - ....-hqhp

+hqhshS ..... +hqhshp (3.78)b

-hqhshsi hP -...

where hq stands for hq(7q), etc.

It is beneficial to master the compoundly coupled control,

as the "advantages" can be actually attained to a better degree



by compromising the coupling coefficients. The practical ex-

ample will be left to the practical designers.

34. Special Compounding Controls

In some cases where only the damping ratio is required to

be improved, the natural frequency of the member to be con-

trolled is satisfactory and required to be kept the same no

matter how much improvement has been made on the damping ratio.

The problem may therefore be specified as follows:

(a) What 1, is convenient to design for a specific o ?

(b) What is the initial damping present in the member t
to be controlled and how big is the advantage of the
damping ratio. expected to be obtained from the con-
trol?

(c) What is the relative damping ratio 9 between the
control component and the principal component?

(d) Based upon the validity of the detecting instrument,
what dompounding-couplings are to be used?

From the above specification, the following data can be deter-

mined:

(e) The relative damping ratio ro between the control
and the member to be controlled. This datum vir-
tually fixes the damping ratio of the control.

(f) The coupling coefficients.

35. Constant Go,, Velocity-Acceleration Compounding Controls

For such a controlled system the nondimensional coeffi-

cients of the standardized quartic equation are

93 = (3O0

r1<2= oC(2 (+2) (3-79)

*XIC< 10e(I~,
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With known specification, 0 , , and , can be

found from Fig. 10, (Eq. 3.90), 2 from Fig. 11 (Eq. 3.81),

and t from Figs. 12A to 12E.

From these figures, it is seen that the positive accel-

eration coupling is required together with a positive velo-

city coupling. With high frequency control, analysis has

been made for singly coupled control and the results are

plotted in Fig. 7A-D. Slight positive acceleration-coupling

means slight reduction of undamped natural frequency of the

controlled member and slight variation of the damping ratio.

If the system is not strictly restricted to constant W, ,

neglect of X ,determined by Fig. 12, in most cases would act

in favor of improving damping. Of course, if 'X is neglected,

and 7 determined by Fig. 11 is applied along, the quadratic

factors of the quartic equation are to be determined accord-

ing to the method described in Part II, in order to get the

true improvement of damping ratio, frequency ratio, etc.

36. Constant (,, First-and-Third Derivative Coupling

Compound Controls

It is well known that 2- affects the distribution of

damping ratio between the high and low frequency components.

If 3' , when the control is idle, deviates from unity, the
oto I

first derivative and third derivative couplings may be applied

compoundly in such a way that tends to make_ - more or less0C/

equal to unity. The effect of third derivative coupling

should be much more prominent than that due to acceleration
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coupling so far as improvement of the distribution of the

damping ratio distribution is concerned. The coefficients of

the standard quartic equation of such compound controls are

C'(3 = 0(3 0 ( / + 7'

(2 =(3.83)

0, =o ( I 4)

in which low - 4/ = a(2 0 / 4 244 -

2 ~(3-84)

or )~..,(3.85)

and 2

or (3.86)

Eqs. (3.84), (3-85) and (3.86) are plotted as Fig. 13, Fig. 14,

and Fig. 15, respectively. The leading parameter ,r is taken

below unity, otherwise the damping ratio in the control would

be too large. It is interesting to note that normally )

needs negative sign, while 7 needs a positive one. But when

is too small, positive - is required for controls with3

moderate frequency.

Even at normal ,negative y is required for controls

with 9, < 10. It is hard to accept this result from the

ordinary point of view that a negative velocity coupling could

improve damping, but if the idle damping ratio of the control
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is considered, which should be high for such compound control,

it can be understood that the improvement of damping of the

controlled member is at the expense of decreasing the damping

ratio of the control component.



CHAPTER TEN

TUNING CONTROLS

37. Tuned System and Tuning Control

A system, when controlled by a nonideal control, singly

or aompoundly coupled, gives two identical quadratic factors

to the quartic equation of the stability function of the sys-

tem which is then defined as a tuned system. Such control

is defined as the tuning control of the system. The damping

ratio of the quadratic factor shall be called tuning ratio, C .

If t is equal to one, the system is said to be critically

tuned. If > 1, it is overtuned, and if ; 1, it is

undertuned.

38. Tuning Control with Single Coupling and

Theory of Tunin,

It is more practical to design a singly coupled control

than a compound one. If that control can be made a tuning

one at desirable tuning ratio, it would receive more applica-

tion than any other type of control. The following analysis

verifies the possibility of such a tuning control.

It is believed that error-velocity coupling gives best

results in improving the damping of the system. It is our

purpose, therefore, to develop the theory for such a type of

control in different degrees of tuning.

L48
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Let us assume:

3 = damping ratio of the member to be controlled.

c =damping ratio of the control.

e = ratio of damping ratios between the control and the
member to be controlled.

n ratio of undamped natural frequencies

between the control and the controlled member.

error-velocity coupling coefficient.

dimensionless error-velocity coupling factor

(T o0 -Y, eJ-? B'_0, B03

Also assume:

(1) The two quadratic factors are only of the same frequency

so that /0= 1.0.

(2) The damping ratios of the two components are f and,

which may or may not be equal to each other.

(3) If , their designation is , and sufficient con-

ditions will be developed thereon.

It is understood that:

oe, = 2( + )=2 1 )
t2 =1 0 +; 4+ +4(3.97)a

f= 2(, + , ) ;. 0( -2 ()( .87)bc

By equating o( = , and o= o(2 , we have ( 0

(3.88 )a

2+4 2 (3-88)b



By solving Eqs. (3.88)a and (3.8)b for (, and g2 , we have

To 2 0  4)0 -(.89)

When Ve fu) - ,> (it 0-') the radical is real. With pro-

per adjustment of , the controlled results would be two com-

ponents of motion of the same frequency, but with different

damping ratios. When )'%. - < J(4-/) the radical is

imaginary, with proper adjustment of #X, the controlled results

would be two components of the same frequency, but with com-

plex damping ratio conjugate to one another. The statement

is mathematically correct, but what is the physical meaning of

such a pair of components of motion?

With some algebraic juggling the above statement can be

changed to: the controlled results would be two components of

different frequency, but with the same damping ratio. Let

S(A) = 'A2 + 2(a 4' +1 [/A'+ 2 ((-A )A +/ (3.90)

A -(a + ib) a2. - b2 + 2iab -1 = -(a -- ib) * (c +id) (3. 91)a

\3 4  -(a - ib) ;/a2 - b-- 21ab - 1 -(a - ib) *(c - id) (3.91)b

where a, b, c, d, are real positive quantities and

(c -+ id) 2 = az-t b2 -1 4 21ab

or (c - id)2 = a2t b2 -1 - 21ab

or c 2 -d 2 = a2+ b -1, and cd =ab (3.92)

On developing,

A, - a + c - i(b - d)

A, = -(a + c) -i(b -+ d)

-/a 4 c )+ (b - d)

A=- (a -+ c) + 1(b 4 d)
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Rearrange the sequence so that

S(h) =( (-A,) ( A-hM) (( A-A,) ( A- 4

11\+2(c-a)/\ A (c-a) 2 -+ (b-d) zX

r+ 2 (a+ c)h+ (a -c)?+ (b + d) (3.93)

(a+ c2+(b+d)4)
(c - a)-+ (b -d)"

It is necessary to prove

c-a a c (5

(_c- a)2+ (b-d)2 /(- c) 2 ( d (3.95)

or the same thing

= b- - 1(3.95)ac-a c+a2

Finally, the above equation can be reduced to Cd ab which

is fundamentally true as indicated by Eq. (3.92). Therefore

both Eqs. (3.94) and (3.95) are true, so physically the con-

trolled results would consist of two components of different

frequency, but with the same damping ratio.

When L_ r0 - - - (3.96)

the radical is zero, therefore, at that condition, , = ,= t

if the coupling coefficient 7,is properly adjusted, and

L i. I - f. 1 -L- r-(3.97)

39. Tuning Control With Positive Error Velocity Coupling

Take the positive sign of Eq. (3.96) and solve for c

(3.98)
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Squaring both sides of Eq. (3.97), we have

49t = -* - rc fv*+ 2?' Ic (3-99)
?40

Substitute ;c of Eq. (3.98) into Eq. (3.99) and we have
22

Pe:- 2(1 + 2St - 2 .).+ (1 - 2 r) = 0

. / 1 -+ t - 2r., 2t l+ - t (3.100)

It is seen from Eq. (3.100) that the condition

- 2. >0 (3.101)

must be fulfilled in order to get a real value of /,. The

negative sign before the radical of Eq. (3.100) has been dis-

carded, which not only gives negative value to /, in most

cases, but also yeilds negative value to Ic which is impossible

to get from ordinary mechanical nonideal controls.

In Section 12, Chapter IV, it has been mentioned that when

1, it is possible that:

(Cl) 1 at any value of /,

(02) = 1 at any value of

or (03) =1

Apparently the first case is only possible when

and the second case is only possible when

It is the third case that is held true by the condition

f- , =(,-/) (for the time being + sign is used)

Therefore,

must be unity, or
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or 10 c O -C ,o (3.102)

Therefore 2(3.102)

Substitute the value of o(jand 0o of Eqs. (3.S7)a and (3.-7)b

into equation (3.102) and simplify the result by substituting

1 - L for IC - The result will be

S=2 
(3.103)

where ,.is the value obtained from Eq. (3.100). This value

of r, , when multiplied by 4J0 , gives the value of B,' defined

as error-velocity coupling factor in Eq. (2.13)c.

Eq. (3.100) is plotted as Fig. 16 with f0,as ordinate

against f, as abscissa with I as varying parameter (range

plotted Tt = .4 -- 1.1). It is clearly seen that a constant

itcurve turns back when it reaches its furthermost point to

the right. Beyond that furthermost . , it is impossible to

get a ratio of tuning below that particular It. If the nega-

tive sign before the radical of Eq. (3.100) is retained, the

curve will have its turned back position as shown by the two

dotted branches. The locus of these horizontal vertices can

be represented by a straight line with Eq. , 2f. 1 as

shown by the dotted one.

From the relation

A'0  = 2 4 =Al for the constant term of the
quartic equation
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because 1.0

As all fo's are seen to be greater than 1.0, so -W>1,

which means that such a tuned system possesses a favorable 1/w

in improving damping. The conclusion may also be reached

that if the member to be tuned is originally overdamped (that

is, r, >1.0) it is impossible to tune this system back to

1 1.0 by using a control having /,o. > 1.0.

A mechanical member of 1 degree of freedom cannot possess

negative damping. However, the exploration of Eq. (3.100) has

been extended to negative 1o. The adequacy of such an ex-

tension will find its utility in a system of two-degree-of-free-

dom which is unstable without being controlled. Therefore,

even an airplane which shows longitudinal instability on free

flight can be tuned to have t if originally the frequency

ratio between the two uncontrolled components is favorable for

doing so.

Eq. (3.98) is plotted as Fig. 17 with tc as ordinate

against lo as abscissa with St as varying parameter. From

Fig. 17 it is interesting to notice when 10. reaches its hori-

zontal vertex on Fig. 16 where Sc becomes tangential to the

vertical line on Fig. 17. In approaching this region the

damping ratio of the control is too sensitive to the damping

ratio of the controlled member so that the calculated 1c may

not be at tuned condition if the determination of 0 i

slightly in error. When 1, 1, it corresponds to f= r,
in Fig. 17 shown by the dotted 450 line. To the left of this

line it corresponds to /9> 1; to the right, /0 1. It is
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therefore seen that when lo.*> 1, 1. is very stable with respect

to I which means that with small error in determination of

the calculated value of S0 for the tuned condition does

not vary considerably.

In general, within the operating range the damping ratio

of the control necessary for the tuned condition never exceeds

1.0; yet in some cases the tuned result is amazing in that the

tuning ratio It is greater than either le or Jo. In common

language, such an amazing case may be stated thus: that an os-

cillatory member can be tuned to give less or nonoscillatory

motion by an oscillatory control.

Eq. (3.103) is plotted as Fig. 18 with r9as ordinate

against So as abscissa. When r4= 0 naturally fl.for tun-

ing must be 1.0 and tc = 10; and the cusps of the solid curves

form the locus 17 = 0. If 1 is plotted instead of , there

are no cusps, but continuous curves with minima at the cusps as

shown by the dotted curves for part of It m 0.4 -and It - 0.5.

The dot-dash straight line on Fig. 18 is equivalent locus

through the vertices of t = constant on Fig. 16. Such a

dot-dash line can be represented by Eq. F'= 2 - 2'So (or

f =(1 - to) if r is plotted instead of P').

It is evident that keeping the condition 5 - r,= /
qOaltive

for the tuningvcoupling (factor, dimensional or nondimensional)
that

is required within the working rangev pfois greater than one

and the control must be underdamped.



40. Tuning Controls with Negative Error-Velocity Coupling

By doing the same algebraic work as has been done in

Section 39, only with

eto OW a, -(f 1 ( 3.104)

instead of

$*$* * *~0(3.98)

the following results are obtained

-+ P. (3.105)

1~wo '"tt'~"[o2 fc ~ft#2!(3.106)

Oe = -/ +2 P 2 -2

Apparently the + sign before the radical in Eq. (3.106)

has been discarded. It is because otherwise the damping ratio

of the control needs to be negative which is impossible from

ordinary mechanical nonideal controls.

Eq. (3.106) is plotted as Fig. 19 with A. 0 as ordinate

against S. as abscissa. To tune a member with S, = -0.5 a

control with no stiffness should be used; that is, 10,, = 0.

Beyond To= -0.5 ( 1. < - 0.5) negative , is needed which

has no physical significance. From Fig. 19 it is evident

that no matter how much (+ ) damping is possessed by the con-

trolled member, it is always possible to be tuned back to rti

of any -- magnitude. The dot-dash locus represents the bound-
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ary of te = 0 beyond which negative c is required which is

impossible from ordinary mechanical control, but possible with

a vacuum tube circuit as the control element. The dotted

curves indicate negative damping controls are required for tun-

ing.

Eq. (3.105) is plotted as Fig. 20 with d as ordinate

against t. as abscissa with It as varying parameter. When

1. > 1.0, tuning back to It < 1.0 needs a control of 1 .>.0

and I c- 1.0. Such requirement is quite normal. To the

left of ?.= 1, P,is less than 1.0; high damping ratio in

control is therefore needed for tuned results. However, the

damping coefficient is not excessive because of the small val-

ue of it. . When 1,,is small or negative, Sc is too sensi-

tive to be tuned with r.or the tuned condition is not very

stable in such a region. The abrupt inflection along constant

is caused by the scale of . If rc is plotted as

ordinate instead of , such inflection is missed and the

curve is continuous at 6 0 as shown by the dotted curve for

o n.4. Below f - 0, only electric tuning control may

possibly be practical.

Eq. (3.107) is plotted as Fig. 21 with P, as ordinate

against So as abscissa with It as varying parameter. r is

plotted instead of 17 when - , >1.0 and /Z, > 1.0. It

is seen that no matter how large the value of the /Pw used, a

negative coupling factor (nondimensional or dimensional) is

needed for the error-velocity coupled control in tuned condi-

tion. The dot-dash locus separates the mechanical nonideal



control below and electric nonideal control above (shown by

dotted curves.)

41. Comparison Between +rand -1iTuning Controls

It is much simpler to make a table (as follows) for the

comparison of the + 2 and -1 tuning controls.

TABLE VI

Comparison Between + #7 and -T, Tuning Controls

Characteristics 7U, Tuning Control Tuning Control

1.What makes the - .-', rci =Y+1-'. 4. ; -aO(5 Oe
consistency of rc . *"'n P-.. 1. .. 0 'wh 2. 1.0

the sign At idle condition, high At idle condition, low
freq. comp. has higher freq. comp. has higher

damping ratio damping ratio

2.Best working
range

3.Tuning result
not very stable

4.Range of phys- 0t. 2 1t - .0 d<.5
ical nonexistence -'

It is understood that control of higher frequency is pre-

ferable to control of lower frequency simply because at tuned

condition the frequency of the controlled member is increased

by ,a . However, if high frequency control is not available

by some physical restriction, the tuning condition is obtain-

able by controls with dw. < 1.0 only at the expense of (1)

less assurance in tuned condition, and (2) the undamped natur-

al frequency of the controlled member is lowered, which means

that such control spoils the rapidity of response of the con-

trolled member.
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ANALYSIS OF TRANSIENT



Stability Function, Quality Function, Disturbance Function

and Response Function

42. Stability and Transient Analysis of Controlled System

Sufficient knowledge of stability analysis of

automatic controlled problem may assure (a) stable operation

in general, and (b) better distribution of damping between

the components by providing a well compromised control.

However, such assurances do not inform us how the controlled

system responds to a disturbance of any characteristic.

Analysis of transient response is therefore important in

order to obtain better performance when the system is sub-

jected to sudden disturbance or to one which does not repeat

periodically.

43. Stability Function, quality Function, Disturbance Funo-

tion and Response Function

From the analysis in Section 5, Chapter II, and

in Section 8, Chapter III, Eqs. (1.102), (1.104) and (2.136)

are noticed in the general form.

Qh(D)
Rh =(D) I(t)1 * (4.01)a

or Rh(tV) -~~)I 1(.1
Qh(d)or R S~) I~) 1(4.01)

*Such a form of equation is originated by Heaviside in treating
network responses. For the convenience of this thesis, the
symbols are entirely different from the original form. The
reader is referred to Chapter VII in Bush's "Operational
Circuit Analysis".

I66



D
where D = = time differential operator

d d = diTiensionless time differential operatordz

k=n k
S(D) = E 1 D and is defined as stability function

k=O of the controlled system (dimensional).

1:=n k
S(d) = : ak d also defined as stability function of

k=O the controlled system (non-dimensional).

k-n k
Qh(D) = B D and is defined as quality function of

k=O h-wise motion with m = n.

Qh(d) = k bkdk also defined as quality function of
k=O h-wise motion (non-dimensional) with

m = n.

I(t) = function of (t), defined as disturbance function
or input function applied to the controlled
system.

The symbol 1 is defined as unit function which specifies a

discontinuous function of time which is gero

until t equals zero and unity thereafter. Any

function, such as I(t), followed by the symbol I

indicatesits discontinuity at t = 0; and that

the function is zero until t equals zero and

equal to I(t) thereafter.

Rh(t) is function of (t) for h-wise response to the dis-

turbance function I(t)1. It is defined as:

response function of the h-wise motion.

I(t) and Rh(r) are defined in the same way but they are

referred to non-dimensional quantitIes.



Eq. (4.01) has the same form as Eq. (4.01)a.

Therefore full development of either equation will enable

one to handle the other. Eq. (4.01) shall be fully developed

into a form which is more familiar to engineers.

44. Expanded Form of Response Function when Unit Step Dis-

turbance is Applied

When I(T)l = 1, the response function is defined

as unit response.

Qh(d)
RQh(d) 1 (4.02)a

The subscript h is omitted hereafter temporarily for the

simplicity in appearance.

R() = 1 (4.02)

On expanding,

q(o) k=n Q(dk) d(k40
R(T) =S(0) + k -d k (4.03)

k =l k Sdk)

k=n dk
where is the steady state response and k e is

the transient response. d 's are the roots of S(d) = 0.

st(dk) is the first derivative of the stability

function, in purely algebraic form,

SI(dk) = ao(dk-dl)(dk-d2)...(dk-d -1)(dk-dk+l) ...(dk-dn) (4.04)

which should be substituted in Eq.(4.03).

When all d k s are real, solution (4.03) is really

handy. But when some of theri are complex quantities, Eq. (4.03)
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is too tedious to be rationalized. The following procedure

will reduce the effort in doing so.

Physically, when one of the roots of S(d) is complex

there must be another complex root which is conjugate to the

first. Let the root be df and its conjugate be df, where

d d = (-i ij /1F *T) n if (4.05)

where (n = non-dimensional natural frequency of component f.

t = damping ratio of component f.

Now.
fn

k=n Q(d) Q(d d 'Z

k= dkS'(dk f =1 d f E1df E

f-n
I-S

S'(f iff= l - 3: l(d,) S (.~)f
f= d fS(g)'Q

n
('') ~ d~T

=1 7S (~T)

-~I ~~')+~~ ~ ~~ r(~ 'd6 (.7

Inside the bracket of (4.06), Q(df )7S'(!) and Q(Q)dfS'(df)

are conjugate functions, so let

(R j I = Q(df)dfSt(-d), Q(Q)dfS'(df)

where 1 = real part of Qdf)USI(f)

.(If) imaginary part of Q(df)fSI(d).

(4.08)

Subsitute (4.08) and (4,05) into (4.07). The result will be

(4. 06)



f
(I =

fl d S

1(

2 s ( Rf( .1)) C

+ (R -iI)E f f nnf I

c ~ f ~nnft

d a aS I (d )S (U)
R cos - t

f nnf r - I sin J1-f2f ~ f

(4.10)

or

Q(dk)

dS (d)kS k

d I 2

f =1

f C~ f nnf

d T-Sf(d )S'(df)

where A =f R + I a-2- = 2Q(df)Q(f)d TS (d s'(-df)

= tan =
-f

- tan
-s I f

+ tan _ _

(4.ll)b

with R = real part of Q(d )

Iqf = imaginary part of Q(d f)

sif = real part of S?(df)

Sf = imaginary part of S'(df).

Substitute

appear as

(4.ll)a in (4.11) and the transient response will

k=n
Q(dk) (- -

in,

=1

I (4.09)

k=n

k:=l
Cos ( 11jirsz 4) '.nn2

+ f )

(4.11)

(4.1l)a

tan iq

-2qf



n

2 Q(d)Q() - +(.nnf
f=1 d S 0(ds() cos - T + f (4.12)

Eq. (4.12) indicates the physical conception of

the transient response when all components are oscillatory

so that each under-oes a damped sinusoidal motion with its

own damping rate, -t ( with a certain natural frequency4~ nnf'P

and a certain phase shift. The phase shift apparently

consists of three parts: (1) due to the quality function

Qf., (2) due to the stability derivative function S's, and

(3) due to the darrpin ratio

ince ( + j n

2 - j2(l4 2 T JWy

- (4.13)a

Therefore expression (4.12) can be simplified as

n 1

n Q(d )Qf) E nnf
-2 F f (cos(I- L2 C r + Og) (4.13)

f =1 7-(f)'() '&nnf I nm.

It should be noted that wvhen the component f is non-oscillatory,

that is, it Is overdanped or I > 1,

(1) both d and d' become real and their magnitude

ratios are

Q(df) Q(dlf)
St(df) and S1 dI )



.-~ i ,i~

(2) F/i7 T = f -

and becomes J where =

Therefore expression (4.13) becomes

Transient response of component f

MdC)Q(d') 2 fnnf-
-2 cosh( Wm + .1 4)

with i > 1.

The above derivation is valid only for non-repeating

roots. If some real root or complex root occurs more than

once in S(d) = 0, the evaluation is much more complicated.

It will be analyzed in the next chapter.

*because

j tanlh tan 1 i

and all the imarinary quantities for < 1 become real

Vzhen > 1 and vice versa; therefore (4.l)b i1ay be used

to find .



Characteristic Decomposition

45. Characteristic Decomposition or Quadratically Partial

Fraction

For engineers' better understanding of transient

response of controlled system it is better to fractionalize

the expression before the unit function or any disturb-

ance function is attached to it. The partial fractions will

be done according to physical significance, so that each one

of them will represent a mode of vibration when disturbance

is applied.

For the purpose of this thesis, the highest power

of d in S(d) will be limited to six. The highest power of

d in Q(d) is limited either to six or less. In case the

highest powersof d in Q(d) and in S(d) are the same, their

coefficient is usually the same (and equalto unity) as shown

in Eq. (1.104), and the fraction may be changed to the
QS~d)

form 1 + S(d) in which the highest power of d in Q(d) is at

least one less than that in S(d). It is this Qsd)which

will be partial fractionalized.

Assume Q(d) d+ (d) + (d) (4.15)3(d) sd S2(d) s,(d)

where s(d) =d2 + 2 i ~nnl d + ( 2 nnl, etc. (4.15)a

(CLnnl represents the non-dimensional natural frequency of

component 1.)

173



V G0 nnl k11 d +

(First subscri -t of Ic re.fers to componant numfber;

subscript of K indicates the associated exponential power

of d.)

On summing up the right sidesof (4.15), the

following form is obtained.

+ q 2 (d)sl(d)sz(d) + q.(d)s 1(d)s2 (d)

S (d)

Let dl, dl = roots of S(d) = 0, where d, and d, are conjugate

p air, because
.4

s1(d) = 0.

Substitute d, into (4.16). It appears that

Q(dl) = ql(dl)s2 (dl)sz(dl)

Q(dl)
q(d1 ) = F(S417))s(d)

From Eq. (4.15)a, we obtain

d = (-fi + j (4.18)nnl

Substitute

to

(4.18) into (4.15)b,

12 
+

nii Ol011

and then

k 11 rl

S r1 2

Therefore

U L-L

01 nni, (4.15)b

sco 0lid

Q(d)
5(d) ~

or

or

(4.17).

= F,-

01 + i k
1

0n

F, (4.19)

-F, (4.20)

ql(d) etc.

ql(d)s2(d) s3(d)

(4.17)

-j2

- _2



k = 1 IR +y2
k D1 a2 -F 1 + fr1 'ii (4.21)

nnl

or kr0  = L + La(.31)a

nnl

where T and F represent imaginary and real parts off P

respectively.

Now we have to break F 1 into its real and

imaginary parts.

F1  Q(dl) Q(d 1)s2(T)sa(7) (4.22)
s2(dl)sa(dl) ~s2(d,)s2(3_)s3(dj)sz("j ) (.

where the denominator is rationalized and equal to

ss( T( )s(d1 )ss(T) = (oi- - i) -

x (I*-11%)+ 1-1 F+ 2-fag

x (3- 1)+1-1 1- fA )21 4.3

and the denominator can be expanded by the binomial theorem:

For convenience 1-1 typin3 , , 4',, 4Jd are used for WJ
3 pnnl'

and 4 respectively.



j (A), fi ) *

Q(_ r L. _ W 2(#_rr -, Q) -~~

+ifLOI(I~~ z Q( a, V
Q (~tw,)

3 ~1 i2Q(~tIo~Jj-~

s2(Ti) = s21( - ) 1F 1 )

ss(.)= (-tin -jW l-12)

With the. help of Eq

= 2( f3 ' 2 fin )(-1(A j- 

= 2( ri I- z%) ( 1+j ()

s. (4.23) to (4.26), the real

and imaginary parts of (4.22) can be evaluated. It looks

very messy but when numerical values are substituted in,

work is much simplified.

Likewise, we c an evaluate RIC 1 , Ro , ",a and K.

1 - F
t2 ~-F2

+ 22U- +t

-" W '4 (.'-V
'I

(4.24)

(4.25)

(4.26)

the

12 -
2 w2

nn2

(r =
n2

'nn2

(4.27)

)

*Practical evaluation of polynomial function of complex
variables is much simplifLied by applying DeMoivre's theorem
graphically. IDe .pendiz p.

Q(dl) = (-f +

= 2 ( r2'02- T1'-J ) ( - 11 '01- j W



K1 .= 2 w2  I! %

K ( +
2n3 -tQnd2

Q(d2)
where F= sj(d 2 )sz(d2 )

Q(d3 )

sl(d3 )s2 (dz)

Q(dp)sl(E )s3 (2 )

s(da 3) s()s (d s(d-)
s(d) s ( 2( dz) s (z)

(4.29)

(4.30)

(4.31)

(4.32)

The expansion of F, and F3 can be made with the

same procedure as has been used for Fl.

hen the numerical evaluation of all the constants

Ki, K1 1 , k 0 2 , K koa and 4is is completed, Eq. (4.15) can

be written in the followin2 form,.

SI W A- d+ KO 1 &)2
nnl I+ nnl +

d2+2 lnnl nnl

nnj2 id+ "'CO2 2

d2 +2 f2 4) d+ 2
nn2 Onn2

+

nnl 1d+ C1o 1

d +2 rc d+Onn?nnl n nl

r 4n 3(iad+ Ao nn3

da2 a nn3d nn3

+ fa OgKI d+ 0o _

de +2 J;, w ~d+ 0mnn2 nn2

+
n13 /cT13d+ 13 a'n3

d+2 f., &jnd+snn3

Each of the three terms on the right si

1 (4.34)

de of

Eq. (4.34) represents one of the three components of vibratory

motion (steady and transient response). Each one has its

Hen c e

C ( d)
S(d 1

(4.33)

QMd
S( d



own steady state response and the respective transient res-

ponse 'transient response is referred to this component

steady state response. in symbols,

( .qI(O) q2(0) qz(O)
Steady state = = - + - +

S() sl(O) S2(0) sa(0)

or O 01 + 02 + OZ (4.35)

Such fractionalization (as into several quadratic

fractions) which is made before operating on the disturbance

function is defined as characteristic decomposition of the

controlled syst'ez.

After being characteristically decomposed, each

component then Sperates on the unit function and the following

formula is commin to all:

K n d + 'oJfn r~_ nn_ .nn nn 1= - sin( t +

+ 21 d +w' nnnnl nn

nn
+ [i sin(Ii-nZ)* (4.3)

S k-nnWd + x-w

or nn rn

=- 1) + 1 cos (Vi-r4w/m + W2) **(4.37)

w-,here # = tan (4. 36) a

*Derivation based upon basic operational formula.

**Same result can be obtained by carefully manipulating Eqs.
(4.13) and (4.ll)b and counting the steady state response in
them.



and $'= tan - 1) (4.37) a

When the forcing function is of sinusoidal shape

continuous with respect to time: that is,

I(r) = sin(R Fn C (4.38)

where the magnitude of the forcing sinusoidal function is

assumed to be unity, fFn means the angular frequency of the

forcing function in non-dimensional units matched to non-

dimensiorial time unit (T).

The steady state response from each characteristic

component to such sinusoidal forcing function will be

R(r) = "IN sin( fFnt+$) (4.39)

/o 1 + (4 p )2

where PF = -- is defined as sinusoidal (4.40)
+ magnification factor.

= tan- - tan-1 2fid is defined as (4.41)
F 0o 2~

sinusoidal phase shift.

-ATn AF
_1= = --- is defined as forcing frequency ratio.

"nn "n
(4.42)

Both ?F and are referred to steady state response

of the particular characteristic component.

When all the (three) components are evaluated,

they can be put together with proper attention to magnitude

and phase shift and the response curve, whether steady state

or transient, can be plotted.
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46. Characteristic Decomposition with One or More Components

Overdamped

Oftentimes some of the components are overdamped. The

process of decomposing is somewhat simplified. Now assum-

ing component 1 of Eq. (4.15) being an overdamped one,

qo(d) qar (d) qbt (d)
' =+ (

8,(d) Sat(d) Sb1(d)

where

Sai (d) ad(y 4- ) Wnnt, da

Sb (d) = d+ (1 --. ) anng, qbt= -(i 1 -'jg7 )

4.42)

4.43)a

4.43)b

qa (d) = 'to ( + )'anni (4.43)c

qb (d) = (I4,.- -, )innI (.43)d

Rewrite Eq. (4.16) in the following form

Q(d) qaj(d) SbPd)8 3 (d)S 2 (d) + qb(d)Sa4,(d)S 2 (d)S 3 (d) + q 2 (d)S,(d)S,(d) +

I(d) S(d)
q3 (d)S,(d)S(d) Eq(4.45)

Substitutin

q(dai)

or gai(da

and likewis

g da into (4.45) we have

= qa1 (dal )Sbt (dat )S2(dai )S,(da,)

: Q(da,) (4
Sbe(da )S2 (da0)8s(da0

) nni-
-2= , - Sj(_ nni

Q(dai)

2 11das iS2 (dr 2a n (4

e
Q(dbi)

-2/~2I dbgSz(db#)S3(db,)Wnnt (4,

.46)

.47)

g



When this is done, the fraction Q(d) can be reduced to a

simpler one with two degrees reduced in d in the denominator.

Let us represent this reduced fraction by

Q(d)* Q(d) qa (d) qbi (d)
-rn-- -*4-

S(d) - S(d) ISa,(d) Sbi (d)J (4.49)

The reduced fraction contains one less degree of freedom than

the original one. It can be decomposed with much less effort

through the same procedure, but in a simpler way, should be

followed as described in Section 45.

Evaluation of qa (d)1  and qb (d) is very simple:
Sa (d) Sb (d

qa (d)
Sa (d) d + )Inni

Likewis-e,

8ai (d) r [1
qbad 

(4.50)a

47. Characteristic Decomposition when S(d)

Has Repeating Quadratic Factors

Let us again limit our scope to in which the highest
8(d)

power in S(d) is six and that in Q(d) five or less. And assume

.(d) = S (d)Sand 8, (d) Is oscillatory.

Q(d) q,(d) q,(d) q2r(d) (4.51)

S(d) S (d) S (d) S 2 (d)

*The reduction of Q(d into d is also applicable to the
S(d) S(d)

case where all components are oscillatory. In such a case,

$(d) Q(d) q,(d)
f(d) S(d) S,(d)



where 8 (d) = S, (d) = (d + 2 f2 nn d . nn2) (4.51)a

q2 1(d) = rw2inc 2r -d -+o;2r nn (4-51)b

with subscript r indicating the belonging of repeating factor

. Q(d) = q (d) 5(d) -+ q 2(d)S(d)SO(d)+q 2 r(d)S,(d) (4.52)

Substitute d2 in equation (4.52) so that SA() = 0

Q(d2 )
q2 l,(d,) =8(d2) F2 (4.53)

1 2

By the same prodedure used in Section 45 we obtain

/,,r F. r (4.54)

C-0'77 2, x (

W {7,. "r,j (4.55)

Now the reduced fraction can be obtained as

Q(d) Q(d) q (d)0'=--- - 2 (4.55)a
S(d) 5(d) 8 (d)

From this reduced fraction the constants N, ., , and Ko2

can be evaluated with less effort.

49. Transient Response with Repeating Binomial

Factors in 5(d) a 0

Let the highest power of the binomial factor be r, then
'Cr Wnnt

Ca+CIO )r1 will be the response for the yth component of

the repeating factor.

kr Wnn tin n r7, (4.56)
(d -+d JWn,,)' 'r dr dow n t** 2 1<-



49. Transient Response with Repeating

Quadratic Factors in S(d) = 0

Suppose takes the following form:
S (d)

4

+ , ,, ,

where da n . -

or da =-

when

when

-

(~I-6 ~ 2 (d4'

I S.I

+.

.- -

*4X'43 4 d-.) 3 / 4' a'

+ (da - ..d'&Jt-

43,,.7 1

dc d

+ .)2( *&)..)2

=1

(d~~4b)~

_3 ,C 4E 4--

&d6 ,. - "~j

=~ ---- ( - E/

(d4 -, 3

I

r '4-3"6 ak,,.-

I,, -(.4, k

(da-4) A,4K

-' 34 - )k jEa ]

(4.60-)

(4' 57)

(4.57)a

(4.57)b

W* 7

at#W, a

I

4.59)

Hence 3 c/ 4

(4-.59)

= Ik4 , fI

?I
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Eqs. (4.59), (4.59) and (4.60) are convenient for appli-

cation when > 1.

When j < 1, substitute the complex values of da and db

into Eq. (4.59). After long manipulation, we get

I,,|
2-se 

+ , + ? t s , g - % t 4 ')

where fr" tan - 2(1 - )
f (3 -2 2 )

- tan'-
op ii- T

Eq. (4.59) can be transformed into the following form for f< l

,,, Cos -.-. Q, ( 4.62 )

(4-t 21w,, to. , ) 2(1-*/ia

Careful manipulation of Eq. (4.60) gives the following

result for f . 1

7 
r O-r

where a

a- -+~(~Cr32'] (z-ta)2( 2]

A = (2-J-)(~r--) )
C,. 2 _t) ( -2 ) 2

.~r 2 /7--

4- 7'*
__=S. 2. (4.63) d
K e r ,

(4.61)

(4. 61)a

(4.63)

(4. 63)a

(4.63)b

(4.63)0

(d' 2r<,,4 Cj' 0



From the above analysis, the response of an automatio-

ally controlled system on unit function can be calculated

first by decomposing the function Q(d) into elementary char-

acteristic component of one degree of freedom and then each

of the components will respond to the step function simultan-

eously. For one-degree-of-freedom component, the unit re-

sponse can be easily found by the nondimensional operational

formulae developed in this chapter. Nondimensional opera-

tion formulae of unit response with repeating roots in

8(d) = 0 are also developed for both [ 1 and = 1



SURGING ERROR AND SURGING DISTURBANCE

50. Surging Error or Surge

When a system is disturbed, its motion goes off from

equilibrium state and gradually comes back to the original state

of equilibrium, or continues on until it reaches another equilib-

rium state. During this course of change, the deviation from

the equilibrium state (original or the new one) may reach a

largest magnitude which shall never be exceeded until another

disturbance comes to affect it. Such maximum deviation is de-

fined as surge error, or often it is namdd the first surging

error. Mathematically it can be ex'-ressed as:

cQ(o) Q dk) -44
.5() ,dk s /(dk)

where t, satisfies R'(t) = 0 for the first occurrence.

However, when there are a number of components, it is dcif-

ficult to solve t, from the condition R'(t) 0 analytically.

When the response R(t) is plotted, the surging error can be

measured then. Actually, only the predominant component, usually

the low frequency one, plays an important role on this surging

error. Differentiation may therefore be applied to that com-

ponent only and solve tf from rf (t) = 0 and find rf(t, ) in-

stead of R(t1 ). Such approximate value usually gives a good

check to that measured from the response curve.

18S6



51. Surging Disturbance and Unit Surging Disturbance Function

Step function disturbance is justifiable in many cases.

Sudden application of D.C. voltage to a network falls in this

type of disturbance. When an automatic direction finder is

called to action by suddenly switching in, this also belongs to

this type of function. However, "rough air" does not possess

step-function characteristics unless the airplane is flown into

a storm where air current rises steadily. A gust, whether hori-

zontal, vertical or rotary, does not keep its magnitude. In

fact, it rises to a certain magnitude and then dies away. Later

on a second gust follows. Physically, the rise of a gust from

zero to a certain manitude takes time no ratter ho? fast it is.

That is, -- ) o as aoat ster function is. 3uch rise and
dt f=0

fall of a gust is evident, ho7ever, due to lack of ex-perimental

data of such rise and fall; true representation of a gust train

is impossible.

However, a single gust probably can be represented by Kte-bt

for such function has its surging phenomenon; that is, it rises

to maximum at t - and then dies away gradually to zero. When b

is larger, it reaches its maximum sooner and then dies away faster

and vice versa.

It is more convenient to study the effect of such surging

disturbance by keeping its maximum magnitude at unity.

Let I 5 (t)l . ebte-btl be such function. (4.64)

Then I '(t)l - eb fe-bt(1-bt)j for t > 0.

Put Is (t)l . 0; ;re hiave t m .



Substitute t into equation (4.64), and we have:

I'(t)1, = 1 (4.65)

where subscript s refers to "surging", and the function

in(t)l = ebte-bt. is defined as unit surging disturbance func-

tion or unit surging inpUt function. The larger the constant b

is, the faster the surging phenomenon is. When b approaches oo ,

the surging phenomenon approaches a quick surging impulse with

peak value equal to unity.

The unit surging disturbance can be put in non-dimensional

form:

Let t (4.66)

where T , equation (1.67), for the longitudinal motion
.SU

of the airplane. Then bt = bTT where bT is non-dimensional

damping.

Let bT = ,, ,n,, . (4.67)

where t damping ratio of the surging disturbance by assuming

its natural frequency to be the same as that of the characteris-

tic component 1, etc.

is(t)1 . e ffwref""f (4.68)

For simplicity, just drop the subscript f:

is(')1 = c-I'I I (4.68)a

A plot showing Is I e('C) (4.68)b

is shown in Figure XXI with j as varying parameter to show its

effect upon the rapidity of surging.
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As the rapidity of surging is determined by 9 when the

disturbance is applied to the characteristic component, and

because w.= constant for a certain disturbance, therefore

it will be a fast suraing disturbance when the dealt component

is a slow oscillatory one, and a slow surging disturbance when

the dealt component is a fast one.

Differentiate equation (4.68)b:

, ()1 = e { (- )for T 0 (4.69)

When r approaches zero from the positive side, we have:

" (v)' = C 9 (4.69)a
r-# 0

Equation (4.69)a indicates the fact that the apparent (apparent

to the characteristic component we are dealing) initial surging

speed is nroportional to . Therefore, is defined as

apparent surging factor and 6 is defined as apparent initial

surging speed.

52. Response Due to Surging Disturbance

Repeat equation (4.01) with addition of subscripts; it will

be the operational form of unit surging response:

R Q=(d) I()I (4.970)

3 (d)

To evaluate equation (4.70), several directions of approach

can be equally applied. But for the interest of engineers, we

shall first follow the method of characteristic decomposition to

have:

(( (4.71)
-5(d) Z I(d), d



When the above procedure has been done, the effect of surging

disturbance can be studied component after component.

Now assuming one of the components may be represented by

the expression:
g(d) k. 2

3(d) d I~w.2JL. a, -+

Then applying the surginr disturbance function, we have:

(4.71)a

'0= I? 2 (4.72)

By application of transformation formulae of operational calculus

we may derive the expression rs ('r) according to the following

steps:
* 2

[cl)= (d - In,,
, ad,; (, 4( -=n

where d, , d =2

rs~t)={ fE+(,- , 3 4 -),
I

4LAd,1

1) rd-4 (, -1)WM,7

(-)= I a ,- F1-Ia4I1 (#M.y W

(4.72)a

(4.72)c

(4.72)d

(4.73i)

* by formula 293, p. 134, B1ush's "Operational Circuit Analysis"

** by formula 205, p. 117, Bush's "Operational Circuit Analysis"
*** obtained by characteristic decomposition

G~r= <of (,- ?)(6is-1)d



where 
2'(11).+ e-r (4.'73)a

2 (f -1)2

((-). .23(~ -)(4.73)b

~ (4.73)c

p= +qc __

2( - ) (4.73)

It is interesting to notice that:

(1) The oscillatory component keeps its essential character-

istic; that is, its damping, and angular velocity.

(2) The surging disturbance is magnified by a factor equal to

(3) An additional subsiding component takes place of the steady

state (when unit step disturbance is applied).

(4) However, the guiding magnitude factor* of the oscillatory

component is multiplied by a factor equal to & f'Pg , and the

phase shift is modified too.

(5) When I is very large or it is an apparent fast surging dis-

turbance, all these factors #1 , J/.and I become small

and approach -', - and -- as limits. Physically it means that

* Compare to equation (4.36)



this component is so inert to the surging disturbance which

is very fast apparent to the system (or rather to this com-

ponent we are dealing). On the other hand, when f is small,

their magnitudes are small too because of this small factor .

Physically it means a very sluggish surging disturbance would

be so gentle that it can only affect or disturb the system

unnoticeably.

It is therefore believed that the system will be disturbed

most violently by a surging disturbance of certain particular

apparent surging factor.

At first glance, one would suggest determining such maximum

disturbance by maximizing g/fk , g pr and & . Unf ortunately,

this cannot be done for simultaneous occurrence. Besides,

when a system is comprised of several degrees of freedom, an-

alytical maximization is impossible. The conclusion can be

safely obtained after the response is plotted.

(6) If the numerator of the right side of equation (4.71) con-

tains a d term such as , w,,,,d , the complete solution of such

component when disturbed by surging disturbance shall be:

G~t) ., ry'r)
/Co

where g(r) is the equation of (4.73) and 4'(t= rj(?)

(7) The simultaneous effect of the same surging disturbance

upon all the characteristic components will yield as many

surging components and as many subsiding components as the

number of characteristic components. Each of them has the



same factor , but the factors kjo and Ao 0 Af are

all different. The total surging and subsiding components can

be written as:

Additional terms that contain (K)f should be included.

53. Substitution of Operational Expression for the Unit Surging

Disturbance

It is quite tedious to follow the analysis given in Para-

graph 52. An alternative method is briefly formulated here.

The unit surging disturbance Gion T c can be sub-

stituted by its operational form:

S(10 1 = C 6 ' =,(4,74)
(d + W17-))2

It should be noted that }%,is a constant for a particular

unit surging disturbance.

Equation (4.74) is then substituted into equation (4.70) and

we have:

QA (d) (4.75)
. (d) (C/ 4

The procedure of characteristic decomposition can be applied with

two additional terms, as:

4(d)(tLr,,d 's" $% As gsf(d/)~' !sr dJ 4.6
-ea ++(4.76)

Equation (4.76) gives the separation of the characteristic

components, each of which can be solved upon the unit step function.



P A R T V

PERFORMANCE OF TYPICAL AIRPLANE WITH NONIDEAL

CONTROL AND SOME REFINEMENT CONSIDERATIONS



I N T R 0 D U C T I 0 N

In the foregoing chapters, the general procedure in

ahalyzing an automatically controlled problem has been well

established. Stability improvement is usually analyzed be-

fore the transient response. In fact, with the aid of the

foregoing chapters, we may specify the stability improvement

for the problem in which we are interested, and determine the

control constant as well as the coupling coefficients thereof.

With such control and coupling soefficients, the transient

response can be analyzed. If the transient is considered

satisfactory, the problem is solved; otherwise the specifica-

tion of stability improvement should be revised until a satis-

factory transient is also obtained. Therefore, actual de-

signing of control is a matter of compromise.

In order to gain the freedom to control the uncontrolled

quartic stability function of the longitudinal motion of an

airplane, the control specification is fixed by the parasite*

minor of the stability determinant of the uncontrolled longi-

tudinal motion. The compromise between the stability improve-

ment and the transient improvement will be left entirely to

the variation of coupling coefficients.

A numerical example becomes necessary to show the validity

and facility of the theory and analysis which have been estab-

lished in the foregoing chapters. We shall take the Fair-

*See Chapter Two, Part I.
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child 22 as a studying subject of which the aerodynamic char-

acteristics have been thoroughly investigated and are believed

in the average region of a good many modern airplanes so far

as nondimensional derivatives are concerned.

We shall assume the disturbance to be a surging veritcal

gust of unit magnitude.



CHAPT&L FOURTEEN

AIRPLANE CONTROLLED BY PITCHING VELOCITY-

ELEVATOR CONTROL COUPLING

Ii. Dimensional Data, Nondimensional Aerodynamic Derivatives,

and Flight Conditions of the Fairchild 22 39

(a) Dimensional Data:

Wing area (S) (high wing, monoplane)

Span (b)

Stabilizer area

Elevator area

Tail length (L)

Weight (W)

Radius of gyration in pitch

Wing setting

171 sq. ft .

32.83 f t .

15.8 sq. ft.

10.4 sq. ft.

14.69 ft.

1600 pounds

4.41 ft.

1 degree

(b) Horizontal Flight Condition'

Power-off, horizontal flight

Airspeed (Uo) 133 f.p.s.

Altitude (H) (above sea level) 3000 ft.

Air density at 3000 ft. above sea level 0.00218 slu

CL -0.45

(c) Fundamental Units in Nondimensional System

Unit of mass (W) 50 slugs

Unit of time (T) 2 seconds

Unit of length (L) 15 feet

Compact parameter tk 20

198



(d) The Nondimensional Aerodynamic Derivatives*

xu
xw

zu
zw

-0.15**

0.4o

-1.00

-3.00

mq -6.oo

900 O' q and mu are all assumed negligible compated

with the other terms in the stability equations.

52. Uncontrolled Pitching Motion with Vertical Surging Gust

We shall examine the response in pitching and in vertical

motion when a vertical surging gust of unit magnitude acts on

the incontrolled airplane.

d-xu ~2w

WO L40

1 d(-dmw + Xumw - muXw)

-1T01

Snnd

-5 nnd

(d + 3 'nn)2

3d (d 4.15)
d4 +lo.65d +89.0d 15.5d427.0

Here, Q(d) = 3d(d +.15) - 3d2 +.45d

S(d) = d 4 + 10.65d3 + 89.0d2 +15.5d4 27.0

X O "nndX ( d.. an n)
(d+ -, 1 nn)

(5.01)a

(5.01) b

(5-01)

* See Table II, Chapter Two, Part I.
**Figures are transformed from the measured results (Klemin's

T.N. 666) and rounded off to the nearest significant figures.
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Convert S(d) into S(A)

S A 4 + 4.67A 3 1,7.9A + .-31A-+ 1 (5.02)

Here c4..= 4.67, a2 = l. b9, o( = 1.31

Immediately we know that the high frequency component has a

larger damping ratio, (because 0G ->" ) and the system is

stable (because "3 ' _ )

Then obtain M = a = 0.007

N = - = - .009

Because M is positive and N is negative the system is doubly

oscillatory; that is, both high and low components are oscilla-

tory.

Follow the direction of the quartic chart and we shall get

16.72

00.244, ( nn Ir27* = 0.556, &)nn2- 16.72 W"nni= 9.31

4.52 (5.03)

0.1245

. , 0.561

Therefore, the characteristic roots in d are:

d, (-0.1245 1 i.992)

- (-0.1245 - i.992)
(5.03)a

d= (-0.561 -1.27)

, =(-0.561 - 1.827)

Since there is no repeating root in the uncontrolled quartic

stability equation, it can be shown* that

*See Appendix C



qw nnd --g 1
(d -f V nn)2

k

W WnnAk E-

+ (Bk -+ Bf)

dk 'n nk

n

f
S Enn2 e

E ~nn

1f nnf
Cos (4)nnf ii- 4)

) 6fCvnnT-g WnnZ

Q(dk Wnnk)

S' (dk Wnnk) (k -+ dk) w nnk

Q(df "0 nnf)

8' (df ' nnf) (If 4 df) wnnf

Q(df L"nnf)
&' GL'). I F + (A.) ) 1M.L

k
Bk = - Ak

Bf = - (Af + 1f)

Q(dk Wnnk)
Uk

I' (df "'nnf) (df Wnnf)

tanO~f

4
If + df

Q(dfrinnf)

S' (_Jf 'nnf ) MEf 0-nf )

- tan f - tan'- 2( f-tf)/577 -
R f'f (-.) -(1-f )

(f +If)

(5. o4)a

where k goes with nonoscillatory components and f oscillatory

one.

* Practical evaluation of polynomial function of complex vari-
able is greatly simplified by applying the De Moivre theorem
graphically. See Appendix D.

Q(d)

S (d)

A.~Ji

Q(o)Cf (o)
S(O)

where Ak =

S'(dk'nnk) (dk'nnk) C k 4 dk)

Q(dftOnnf) , Ij

-

I nn.L I



In case the stability function only shows oscillatory

characteristic, k = 0, and Ak = Bk = Ck - 0.

Assuming the surging disturbance has an apparent surging

factor equal to unity with respect to the predominant compon-

ent or component 1 (low frequency component), it follows that

1 nni = 'nni, or [= 1; therefore

Swnn2 M Wnn or nni1= -1 = .0592 (5-05)
2 fz W. nnz I'>

that is, with the same surging disturbance, it appears to be

surging slowly with respect to the high frequency component.

Substitute the values of d,, al dz, , ,and of Eq.

(5.05) into Eq. (5.04)a, and we have

2IK 1  0.0366 - 300 Ak = Bk = Ck - 0

2v i~X 0.00532, 02= 28.50

8 0) (5.06)
Bf =-0.05 cf 0.0145 0 (.)

When these values are substituted into Eq. (5.04) and multi-

plied by - X 57.3, we have

F,)T
in- - 0.0693C 0.421 E cos(0.533t -3.0") In degrees per unit

WO = . 421c co(O.533T -3.01) In degrees per unit
To surging disturbance

40.0612E cos(7.7 T 4 28.50 ) (max. 1 ft./sec.
- 0with apparent surg- (5.07)

-o.466 c ing factor equal to
one with respect to

+0.167z E low frequency com-
ponent.)

The second component, (quick oscillation) owing to its

small initial magnitude and fast damping characteristic, dies

away in less than one (or two seconds for our particular

airplane at the assumed flight condition.) However it is an

important component to adjust the initial condition of the

response.
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All four components are plotted in Fig. 23 with the same

scale separately in dotted curves to show their relative mag-

nitudes and phases and their resultant is plotted in a light

solid curve. It is interesting to notice, due to the surging

characteristic of disturbance, the resultant curve shows a

slightly apparent divergence at the first two peak values.

But after the second peak the resultant is essentially the same

as the component of slow oscillation with slow convergence in-

-0.0693T
dicated by guiding curve of damping e

53. Uncontrolled Vertical Motion with Vertical

Surging Disturbance

The uncontrolled vertical motion when an airplane is en-

countered with a vertical surging gust can be expressed by

d-xu 2 - dLm
W o - d I-mu d2- -dmg Wnnd 1(.8

d d + Wnn)z 1 (5-0)

With substitution of the particular constants of the airplane

and the assumed flight condition and surging disturbance, Eq.

(5.O) can be written in the following form

W _ ,4.5d + S.ld 1 +15.5d +27 x .556d 1 (5.O)a
WO d4 + lO.65d + 89d-+15.5d+27 (d *.556)

which gives the following solution:

WO- O.0l293 e-r 0"' cos O.533z - 9. 00)

,0.192 E~S2 2  cos(7.7 1+ 56.40 )

-0.1055 E .SS6 (5.09)

+ 1. 546 Te 0



It is very interesting to notice that the slowly oscilla-

tory component is of negligible importance in the vertical mo-

tion because of its minute magnitude. The response is highly

predominated by the last surging term of the same shape with

the disturbance. The second and third terms of (5.09) play

as important a role in adjusting the initial condition of the

response with a slight lagging in the rising part of the gust.

This solution verifies the good following-up characteristic

of the airplane in longitudinal disturbance which is contrib-

uted by the component of quick oscillation. As the apparent

surging of the disturbance with respect to quick oscillation

is very slow, such slow disturbance should be easily followed.

It is more important to know the vertical acceleration

when the airplane is subjected to vertical surging gust. By

differentiating Eq. (5-09) and dividing the result by T we

have:

- ~[-o~l2~3 - .o693rc-
-0 -o .6123 IC Unn isin(O.533f - 90 -90-t )

WO =T -. 023r

0.192E -622 nn2sin(7.7Z1+5 6 . 4 O+ e,' )

+(1.546 4.1055 x .556) E

- 1.546 x .556 T ' J unit surging disturbance

where tan-1 I' and 2' tan

WO - .003581&~**'3 sin(0.-533z - 83.60)

- .902 6 ~.sin(7.7,r90.70) (5.10)

+ .15 6

-0.43te -56 V



207

Again, the slow oscillation is negligible, while the quick

oscillatory term is very important in adjusting the zero time

condition, although after T= 3 its effect is negligible.

Both the vertical speed and vertical acceleration are

plotted as Fig. 24. The oscillation of the vertical motion is

unnoticeable. The acceleration shows a peak value of .65 ft.

per second per second with unit surging gust of 1 ft. per sec-

ond of unit apparent surging factor with respect to the slow

component. During the decaying part of the gust, the verti'

cal acceleration of the aircraft is negative and then gradually

dies away with the gust.

With a vertical surging gust of apparent surging factor

equal to unity with respect to the quick oscillation, the slow

oscillation in pitch becomes unnoticeable while the quick os-

cillation gives maximum peak of .2 degree per unit surging

disturbance, but it dies away before TC= 1 (2 seconds) as

shown in Fig. 25.

54. Disturbed Pitching Motion of the Airplane with Nonideal

Control of Deparasitized Type When Encountered By Vertical

Surging Gust

By the theory developed in Chapter Two we shall adopt

the deparasitized control to allow better controlability.

Such control should have the nondimensional undamped natural

frequency Wnnp and damping ratio p according to the follow-

ing equation.
2 d - xu Xw

d2 ~ nnp nnp= Zu d-zw



With the substitution of particular values of xu, Xw, Zu and

zw, it is found:

Wnnp = 1.035

tq = 2.25

With such control, we can apply different 9 derivative

exciting forces and couple the control movement to the elevator.

Now let the two components of uncontrolled motion be designated

by the subscripts 0 and c instead of 1 and 2. The subscript

zero is for the low frequency component, while c is for the

high frequency component which is acting as a control compon-

ent especially to the pitching motion, because the component

introduced. by the parasitized control is of zero magnitude.

Through the action of control, the component 0 becomes compon-

1 and the component c becomes component 2 as usual. For the

vertical motion there shall be an additional component which

will be designated by subscript p.

The purpose of applying control is to regulate the dis-

tribution of damping ratio between the two components. For

the uncontrolled motion 4.52. It is reasonable

to specify the controlled less than unity because in such a

case the decreased damping ratio in high frequency component

is not serious for there is a time factor to affect the rate

of decay. Now let us assume) the coupling shall not affect

the frequency (natural undamped) of either component (so that

PO is kept at 16.72) while / is expected to be 0.75. From

Fig. 10 it is found that the damping advantage '7 arising from

such specification is 5.7, so that 0 0.707 and S2= 0.531.
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Because the frequencies are not to be changed, it is

necessary not to use the error in 9 itself as a quantity to

excite the control; error derivative coupling is therefore

needed. From Fig. 11 with f = .75, - 5.7, 4= 16.72

it is found that Y, , the first derivative coupling coeffi-

cient, must be 3.6 and from Fig. 12D 'T, the second deriva-

time coupling coefficient, must be 0.084.

Therefore the stability equation of the controlled longi-

tudinal stability becomes

4 Id 4
40 (d +2( nnpd 2 np d + 10. 65d + 89 (l -o84) d2 +15.5 (1 - 3. 6)d+c =n 1

/27.0 Eq.(5-11)

=(d-t2 p( nnpd 4wnp) (d +lo.65d +96.5dz-+71-3d +27.0)

= (d34 2 p w nnpd + Wnp)Sc (d)

with fgm. = 15.5 X 3.6 = 55.9 (5.12)

and fgm0- = 89 X .084 =7.5 (5-13)

From Eqs. (5.12) and (5.13) the coefficient of exciting forces

fe and fe (nondimensional) can be evaluated because m- is fixed

by the design of the elevator.

For the pitching motion, the response to a vertical surg-

ing disturbance can be expressed as

1 (d z +21 d | d-xu ~xX fn
3., 1 (d +2Ip O nd nn )d 1d-mu -mw X nnd 1

0 (dzt 2rp Lnnpd +nnp)Sc(d) (d wnn

d-xu -XW
1 d I M_ -mWI X - --nd (5.1)

[(L S0 (d) (d + 2 5n14



It is noticed that the numerator of the operational expression

does not change; the only difference is the denominator, which

changes from S(d) to Sc(d).

Here -the characteristic of Sc(d) has been known from the

specification of the problem, so it is not necessary to use

the quartic chart to find those physical nondimensional quan-

tities.

The solution to (5.14) can be written as

1.242 E-0. 3 9 3 rTcos(0. 3 93 T+ 28. 3 0)

+0.057 e cos(7.38T + 34.10)

-135-556r 
(515)

+0.52 T -0.556r in degrees
unit surging disturbance with - 1

Compare Eq. (5.15) with Eq. (5.07). It may be concluded that

(a) the quick oscillation is essentially unchanged,

(b) the surging component is increased because the approaching

of , with t (refer to Eq.(4.73)c).

(c) the slow oscillation is also magnified due to the same rea-

son and with approximately the same ratio (should be the same

as (4.73)a and (4 .73)c indicate). However, the magnification

does not do any harm because it converges rapidly for having

a large damping ratio,

(d) the simple exponential term is also magnified to suit the

zero condition.

Eq. (5.15) is plotted superimposed on Fig. 23 as a heavy

solid curve. It is interesting to notice that the beginning

part of the curve coincides with the uncontrolled disturbed

pitching motion. This is no doubt due to the unavoidable

control lag that the control cannot produce noticeable effect
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when the disturbance just begins. But after two seconds or

one IV the control turns down the motion very rapidly; at the

end of one cycle the disturbed pitching motion almost disap-

pears along with the disappearance of the disturbance itself.

55. Disturbed Vertical Motion of an Airplane with Nonideal

Control of Deparasitized Type when Encountered with Vertical

Surging Gust

The qualitative function of the disturbed motion can be

written as

AW = 4 9 ( dw+ fgmad2+fgm.d)

- d(d - xu)(fm6- datfpa d) (5.16)

Substitute the value of fgm,- and fgm. into Eq. (5.16) and

expand the equation numerically so that we have

Aw = 4.5d4*116.5d'+467.0d 223.3d+29 - 7.5d- 57.Od - 9.4d

(5.16)a

The negative terms are derived from -d(d-xu)(fEmc. d2 + mcd)

the presence of which causes the addition of overdamped compon-

ent. However, by the examination on relative magnitude of the

numerical coefficients, it can be roughly stated that the ad-

ditional control component is of small magnitude. With the

neglect of these negative terms, the response of vertical motion

can be simplified as

M - APe ( 4wo+ fem-d2+fema-d) '_ _nn

WQ 4= Adc (d + nn)2 1

AwO + fm 0 d2+ f~ma-d ILnn
X 2 1 (5.17)

. 4 f mc-d + f mo- d (d + I nn)



The solution to Eq. (5.17) should be a few per cent off the

true value (greater than the true value). When it is plotted

superimposedly on Fig. 23 with the allowance of being over-

estimated, the difference between the controlled and uncontrolled

motion is almost undistinguishable. And the variation in the

vertical acceleration is approximately the same in both cases.

It is therefore believed that with such (9) deparasitized

control the pitching motion is greatly eased on surging dis-

turbance while the vertical motion cannot be appreciably im-

proved.



CHAPTER FIFTEEN

SOME REFINEMENT CONSIDERATIONS IN THE 9 DEPARASITIZED

NONIDEAL LONGITUDINAL CONTROL

56. Possibility of Reducing Vertical Acceleration

by Introducing Flap Control

The 9 deparasitized control is effective in reducing the

pitching oscillation discussed in the last chapter. Due to

the high value of zw, the vertical acceleration cannot be ap-

preciably reduced. Weiss has pointed out that even with a

fully restrained pitching motion by a powerful fast 9 control,

the vertical motion cannot be eased unless zw has been reduced.

But due to the reouirement of airplane efficiency, zw has to

be high by using large aspect ratio. When the airplane is

disturbed, or is operating under disturbing air conditions,

the only way to reduce zw is to use flap control with the flap

up when the airplane is struck by an upward gust. The moment

variation of wing due to the flap movement is somewhat neutral-

ized by the variation of the downward angle which affects the

tail moment. There is some variation in xw due to the same

flap movement. Such flap control should be excited by the

relative vertical velocity between the airplane and the verti-

cal gust; in other words, the detecting instrument must be an

airspeed meter with pitot tube heading along the vertical axis.

The detailed analysis can be done by the aid of mathematics

213



developed in this thesis, but due to lack of time the conclu-

sion is not yet reached.

57. Effect of Time Lag on the Detecting Instrument

In the 9 deparasitized longitudinal control, the control

lag is entirely offset by the parasite minor so far as the

pitching motion is concerned; however, the detecting instru-

ment itself usually possesses certain lagging effects. If

such lagging is counted in the operational form of the response,

it would become more complicated. However, if such time lag

is very short compared to the natural frequencies of the sys-

tem to be controlled, approximation can be made from the ex-

panded form of Taylor's theorem.

2!

where ', and T, are respectively time lag of error and error

derivative of the detecting instrument. In operational form,

they appear as

29( T-' Z, (1 - 4 d')+ d

9= (d - ld + d )9( v)

Therefore, with an error-sensitive control and coupling factor

fem- , a slight negative damping coupling factor - *femd- and

a slight positive accelerating coupling of coupling factor

fEmcr are naturally involved due to the time lag of the de-
2!

tecting instrument. It therefore acts like a compound con-

trol and the advantages of the lag-compounding can be eval-



uated by the theory of compounding developed in Chapter Nine.

With a second derivative coupling control, the lagging effect

may reach the fourth derivative of the stability function. It

is for this reason that Table V is made up to the fourth deri-

vative coupling coefficient '4



CONCLUSION

AND SUGGESTION TO FURTHER DEVELOPMENT

In the present thesis, attention has been centered on the

stability of a controlled system involving the fourth order

linear differential equation. Ordinary nonideal control for

the longitudinal motion of aircraft involves a sixth order lin-

ear differential equation, but when the control is properly de-

signed, the stability function in pitching remains as a fourth

order differential equation.

The damping ratios and the undamped natural frequencies

of the two components (between which there may be wide differ-

ence when in their original uncontrolled state) are free to be

adjusted. The stability function alone does not reveal the

whole story of the response. Transient response must also be

analyzed. In reviewing the present thesis, the writer feels

the following points are worth while developing or investigat-

ing further.

(1) Simple pitching velocity elevator control coupling of

the 9 deparasitized type should be investigated thoroughly to

compare with ordinary 9-elevator control.

(2) Experimental method of determining the resultant lag-

ging from the variable, which is needed to work on the control,

up to the valve movement which produces the exciting force on

the control. By knowing this lagging time the compounding

theory can be applied to determine the effect of lagging.



(3) To investigate the stability and transient response

of vertical velocity flap control. If possible, actual tests

should be conducted in order to know the effectiveness of re-

ducing vertical acceleration when the airplane encounters a

vertical surging gust.

(4) To develop an instrument for recording gusts in bumpy

air from which the spectrum of the apparent surging factor can

be determined thereby enabling the designer to attain a compro-

mise in selecting the most suitable coupling coefficient.

(5) To investigate a simple course fr following-up n

equation for disturbed lateral motion of aircraft parallel to

what has been done by Minorsky for steamship course stabilita-

tion by assuming full restraint in roll and pitch.

(6) For constant azimuth control investigate the relative

merits in using a control of high natural frequency and a posi-

tive first derivative tuning control including the transient

analysis of the response.

(7) Theoretically an overdamped slow control of first

derivative coupling is advantageous to distributing more evenly

the damping ratio between the lwo components. It is not easily

seen. For this reason, actual tests should be conducted in

seeking convincible evidence.

(S) To investigate, following the method of attack on the

quartic equation, the property of the sextic equation. If pos-

sible, summarize the stability criteria in the form of a plot

and develop a sextic chart for evaluating the nondimensional

physical constants of the system involving the sextic equation.
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A.PPEDIX A

Nondimensional Cubic Equation and the Cubic Chart

by

Y. J. Liu

In the analysis of the performance of nonideal constant

speed control, a cubic equation* representing the stability

function is often met. In terms .of natural frequency Cn, the

damping ratio Ic of the control and the control constant S,

the stability function can be written as

dU+ 2  d U W2 dU +S 3  A
dt (On dt + dt V n U 0 Al

d
Let = D, then

D 1 210 WnD2 +Wn D+ S Wn 0 A2

Eq. A2 can be nondimensionalized by introducing nondimensional

operator d for D giving the form

d3 + 2 cd' + d + Sy 0 A3

The roots of Eq. A3 are then evaluated.

Before the process of evaluating the roots of Eq. A3,

stability can be verified from the form

3 +O( 2 +0( 1 N+K== A4

where A - d = 2 (A5
11 )2 1/3 2/P
sv V

The condition necessary for stable performance is

C.O% - > C<
For nonoscillatory performance, the reader is referred to Fig.

Al. Assume that Eq. A3 can be factored into the following form.

d3+2cd 2+ d + Sv = (d2+2S Wr d+ Wr) (d + Wr) A6

where O,. is the reference angular frequency of the oscillatory

component of the controlled motion, y the damping ratio of this

*Constant Speed Control Theory, by H. K. Weiss, Journal of the
Aeronautical Sciences, Vol. VI, No. 4, February 1939.



cornponnt, and i the appar'cnt subsiding coefficient of the sub-

siding component. On developing,

2 c = (g + 2 ) W,. A7

1 = (2t. + 1) W2  A8

V = gWr, A9

From Eq. A8, r A81

Substitute Eq. A81 into A7 and A9. We then have

2_C.__2 A71

and _=_ A9'

(2 .+ 1)312

From Eq. A9' we may solve for

( = -- |A10

From Eq. A7' we may also solve for

2 - r 2- All

Eq. A10 is plotted with as ordinate against [ as abscissa and

( Sv) as varying parameter. Eq. All is plotted also with as

ordinate against t as abscissa, but with , as varying parameter.

These two sets of curves mutually intersect one another and form

the cubic-chart. Therefore, when a controlled system is known

by its damping ratio in control ( .c) and control constant ( Sv),

the nondimensional characteristic of the controlled system can be

found from the cubic chart by locating the intersection of tand

SV which determines the damping ratio of the oscillatory com-

ponent of the controlled result and the apparent subsiding coef-

ficient of the subsiding component, .

When is known,

r v V3 A12

- A2 -



The dimensional natural angular frequoncy is then

Wn WW = W A1

With , and Wr known, Eq. A6 can be written immediate-

ly and Eq. A2 can be factored as

(D + 21 Wnr D 4W2W 2(D WnWr) =0 A14

It can be soon from the cubic chart that in the region y > 1,

three intersections can be found from a pair of $cand SI

This is naturally true because the three binomial factors can be

arranged in three different ways to form the factorized Eq. A14.

-A3;".
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SUNNARY: In the ana
systems linear diffe
when a non-ideal con
the effects of inert
gible). Physically

APPENDIX B
DIRECTIONS FOR THE QUARTIC CHART

By Y. J. LIU

lysis of servo-mechanism or automatic follow-up
rential equations of fourth order are often met
troller is used (that is, a controller in which
ia damping and spring constants are not negli-
a linear differential equation of fourth order

d3 x

dt+

d 2 x
+ a2

dx
+ a 1--dt

+ aox = 0 ----- (1)

represents two vibratory (divergent, critically or over damped)
components of motion or other quantities provided at least the first
and the last coefficients are of the same sign, Equation (I) can be
transformed into an algebraic one by introducing p as the time
operator symbol for , giving the form:

p4 + a,p3 + a 2p2 + ap + a! = 0 ------------------------- (2)

Where, a!, = -
a4

a.

a4
a!, 1  ,

a 4

and a!0 =
a4

Again, equation (2) can
dimensional operation X

be non-d
for

imensionalized
giving the fo

by introducing
rm:

X4 + aoX3 + a2X2 + a\ + 1=0 ----------------

Where, a. = a./4; = a /ai

The roots of equation (3) are then

M, = a1/g. I

to be evaluated-,

directly
differen
dicating
ly. The

However, -instead of finding the ro
we may according to the physical s

tial equation factorize equation (3)
the dynamic characteristics of the
factorized equation can be written as:

ots of equation (3)
tate of the original
into two quadratics

two components respect

(x2 + 2tiwriX + Wr) (X2 + 2 2wr2X + Wr2) = a -------- (4)

Where, wrt = dimensionless natural frequency(1)of component 1 (angular)

Wr2 = dimensionless natural. frequency of component 2

r = damping ratio(1)of component 1
2 = damping ratio of component 2

(angular)

and, ri = wn, = undamped natural frequency of component 1 of equation (1).

Wr24 = W n2 = undamped natural frequency of component 2 of equation (1)

It is advisable to have one component as reference. Arbitrarily
component I is considered as the reference. Then the following sym-
bols are defined:

W r = Wri = dimensionless natural. frequency of reference component

Superscripts are referred to notes in appendices

d4x
a4 --

a non-

n-
i ve-

as

i



r = j = damping ratio of reference component

- Wn.

Wni
= ratio of undamped natural frequency between

components

P_ = = ratio of damping ratios between components

Hence equation (4) can be written as

(x2 + 2CrWrX + W2) [k2 + 2 (CrPC) (WrPw) X + (WrPw)2] = 0

Evidently it is of primary
physical or rather character
because the dynamic characte
if these four quantities are

i
r

interest
stic cons
istics of
known,

to know these four im-
tants, namelywrt rr' PW'
the system are we II

To facilitate the evaluation of
chart has been designed by the wr

zed equation (3). Three auxiliary
with the quartic chart for the ver
ginal system.

The quartic chart
is designe
imensionle
right par

of the ref
art, steps
and defini
introduce

the steps.

part (or Chart I.)
quencies and the d
component, and the
and the damping ratio
in applying the ch
orderly. Symbols
that have not been
appear along with
given as Table i.

these four quantities a
ter based on the non-dimen-
figures are presented to-
fication of stability of

itself is composed of two parts; the left
d for the ratio of undamped natural fre-
ss natural frequency of the reference
t (or Chart II) for the ratio of damping ratios
erence component. To minimize th& effort
are listed below and should be followed

tions of other interesting quantities
d in the summary will be given as they
A list of symbols and definitions is

1. Non-dimensionalization Of Equation
(Ia) Given eouation in the general form

d'x dex dex dx
adt4 + a + a + a + aox = 0
( dt4 3dt3  dt2  dt

(Ib) Introduce time operator p ford

------------------ (1)

then

p4 + a',p3 + a'2p2 + a',p + a! =0 ------------------------- (2)

Where, a =a, a= a2, a', = a 1 , and a! = ao
a4 a4 a 4 .4

(Ic) Introduce non-dimensional operator X,

with X = , then
a++-

/\4 + M3X3 + M2X2 + MIX + 1 = 0 ------------------------ (3)

Where,

2. Ve
(I

' ,

rifi
)] w
(2a)

a'
M2 = ,

a'

0s= )

cation of The Stability of The Original Equation [Equation
ith the non-dimensional coefficients oc, a, and aj.
Obtain stability criteria M (Greek capital Mu) and N
(Greek-capital Nu), and damping parameters

Wri

portant
and P-;
defind

-- (5)

quartic
sional i
gether
the ori



Ct: and i(c, + a,,);

where, M= a2 Y N= 3 3_

(2b) Verify the stability with the stability criteria curves

M vs. N (Fig. I IA, 118,

3,. Applicat
Frequenc
Frequenc

(3a)

ion Of Chart i To Find The Ratio Of Undamped N
ies Between The Two Components, PW, And The Di
y of The Reference Component, wr
Locate intersention (3a)(3) of the particular
and N on Chart I (see sketch on next page) .
line through (3a) and parallel to the 1350 inc
until it intersects at the 450 inclined scale.
intersection on this scale gives the value of

atural -
mensionless

pair of M
Draw a

lined lines
The

P..; where
P=1 1P+-L)

The value of Pa, however, is not required for further
application of the chart, but it serves as a principal
datum from which other data can be evaluated(4) thereon
by calculation in a more elaborate way.

(3b) Pick up
scale(5)
particul
(3b)

the particu
and draw a

ar 1350 inc

lar value of
hori7ontal
lined line.

X2 from the left hand
line until it meets the
Call this intersection

(3c) From the intersection (3b) draw a vertical line which
will intersect the curve P(5) at (3P) and curve Q at (30)

(3d) A horizontal line then drawn through the intersection
(3P) intersects on the immediate right scale of ordinates
at (3d) showing the value of Pw and on the next right
scale (that is, the left hand scale of ordinates of Chart
II) at (3d') showing the value of wr- Record the values
of Pw and Wr.

4. Application Of Chart II To Find The Ratio Of Damping Ratios Be-
tween Components, P , And The Damping Ratio of The Reference
Component, r

(4a). Starting from the intersection (30) on Chart i run a
horizontal line until it meets a curve of the particular
value of -e(6) [ which has been found in (2a)] on Chart
II. This intersection (4a) projected onto the abscissa
scale gives the value of P . Record this value of P .

(4b) Through the intersection (4a) run
those 450 inclined lines until it
of the corresponding particular v
[which has been found in (2a)l.
projected onto the extreme right
ii gives the value of r- Record

a line parallel to
meets a vertical line

alue of l/2(cc,+cc,)
This intersection (4b)(7)
hand ordinates of Chart
this value of Cr-

5. Factorization of Equation (3) By Utilization Of The Values Of
Pw, Wr9 Pt, And Crl

- B 3 -

I IC)(2)
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As pointed in the suvimmry equation (3) can
terms of the four characteristic constants
of equation (5)

(k2+2Cr rX+W)

e n
in

w ri tten
the form

[X2+2(CrPo)X+(or) )2] = 0 ------------ (5)

6. Factorization Of Equation

PW ,WrY P' Cr, And 4.
By writing:

(2) By Utilization Of The Values of

Wn 2 = Wn, P P

2= 1 P ,

equation (2) can be written as:

(p2+2s np+w2) (p2+2r2Wn2p n2) =.0 -------------- (6)

or one step further as:

[p+(t2-v'/T-1)Wn 2) = 0 --- (7)

The values
Fig. ixi. I
ty, Y 1 / -2
ch indicates

of /C21 can be
t is evident that
comes out natural I
the presence of o

i
y
s

obtained easily by means
n case is less than
with imaginary value

cii latory component.

-6 5 -
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SU9APPENDICES

(1) Natural frequency w. and damping ratio C are two very significant
quantities of the dynamic characteristi of vibratory system with
one degree of freedom. In symbol, w,= and t = e; where k is
the spring coefficient of the simple syslem, m the vibratory mass
of the system, c the actual damping present in the system and c.
is the amount of damping which would cause critical damping to
the system. As our problem is one which may be resolved into two
components of motion, so each has its own natural frequency and
damping ratio. Further reference may be found in various papers
published by C. S. Draper and his co-authors such as 'General
Principles of Instrument Analysis$ by C. S. Draper and G. V.
Schliestett and 'An Instrument for Measuring Low Frequency Accel-
erations in Flight' by C. S. Draper ahd W. Wrigley.

(2) Fig. IIA covers wide range of M and N. Stability can be verified
practically with every possible combination of M and N. Fig, 118
is an enlargement of the non-oscillatory region where four unequal.
real roots are present. Fig. IIC is plotted in- logarithmic
scales to render better the visualization of very small quantities
of M and N forming part of the boundary between the oscillatory
and the non-oscillatory regions. Fig. I can be referred to as an
indication of relative degree of damping between the two compon-
ents; such indication is not available in Fig. Ii. Table ii is a
summary of Figs.1., IIA, IIB, & Iuc. With the table and these
figures one can find out whether the system is oscillatory, stable
or not immediately after he gets the va;ues of M and N.

(3) It is prefera I
a given pair of
components are
plex frequency
ical point of v
components are
one pair of M a
one gives the I
further applica
int on Chart I
and ACD on Fig..
is equivalent t
to the part ACD
pears beloa and
of the boundary
in Table I.

3 to
M an

prese
ratio
iew,
prese
no N.
ar1es
tion
i

0

take the rieht-and-upp3rmost int.3rsection of
d N; because in case oscillatory component or
nt the left intersection vil I lead to a corn-
which, though reasonable from the mathemat-
is not usable. In case two non-oscillatory
nt thr:e intersections may Ue observe3 . ith

they are equally usatle, :ut the ri1htmost
t value of frequency ratio which makes the
of the Chart easier. The dotted curve appear-

s nothing but equivalant to the Lo
IIA. To the left of the vertex, t

the Ioundary line AB and to the r
Discard any intersection of M an

to the left of the clotted curve.
lines (ani so of the dotted curve)

undary lines AB
he dotted curve
iht, equivalent

d N which ap-
The significance
is summarized

(4) When P is obtained, the foIlowinn formulae can be used for the
evaluation of P 1, P , Wr, and Cr

PW = brsP + / (cxP)2-4]

_ 1
"Jr-

V P)

-(8)

--- - - - - -- - - - - - (9)



P P=- P () 1
Po - (4a)

r + O
(1+P) 1

2 +-Pa

1

---------------------- (10)

---------------------- (11a)

---------------------- (11b)

---------------------- (11)

--- - - - -- - - - -(lid)

(5) Curves P
zone) of
1-20).
(range:
inclined
be found
1350 inc
scale of
P and Q
left or
P and Q

and Q appearing to the right upper corner (in
Chart I are matched with the right scale of a,

The centered P and Q are matched with left scal
10-1000). In case no intersection on the parti
line and the horizontal line of particular val
within Chart I, onp is at liberty to shift the
lined line one logarithmic cycle left or right,
a, should never be changed. By this process th
curves are automatically shifted one logarithmi
right with the shifted 1350 inclined line. So
curves are avai lable.

the crowded
(range:

e of x2
cular 1350
ue ofx,, can
proper
but the

e matched
c cycle
the local

(6) As curve Q on Chart I has its top value
any linear differential equation of 4th
coefficients does not go beyond the limi
tal line run from Q can always intersect
In case i-- is greater than 4, I may be
the ratioI of damping ratios P read from
Chart II will be referred to the damping
the value of r on the rightmost ordinat
damping ratio of reference component, bu
of component 2. As PW is always given g
ponent I is always referred as the low f
ponent 2 as the high frequency one.

corresponding to Wr = 0.5,
order with positive real
t. Therefore any horizon-
with constant -.- curves.

used instead of '-i. Then
the abscissa scale of
ratio of component 2 and

e scale is still the
t it is the damping ratio
reater than unity, com-
requency one, and com-

Shifting of the 450 lines on Chart ii one logarithmic cycle up or
down on Chart II is permissible. However the decimal points of
the ordinates scale for Cr must be shifted one figure left when
the 450 line is shifted up one logarithmic cycle or one figure
right Ahen the latter shifted one cycle down. Moreovnr, the
scal es of 1 /2 (x, + o1 ) and of r can be multiplied by a common
factor, for 'instance, 10, simultaneously.

-6 7



TABLE I

List of Symbols And Their Definitions

t time, independent variable

x dependent variable

ak physical coefficient associated with d kth time derivative
of the dependent variable k

p time operator symbol, p =d-at-
p k pk =

dtic

aa' =- , time coefficient associated with pk

(a, = 1)

X dimensionless operator, X =

a'O

Oak (k = a' dimensionless coefficient associated with Xk
a(c =1, and o =1)

OC. damping parometer 1

J(as+a,) damping parometer 2

M (Greek Capital Mu) M = aa- 4a4a
2s a.

Stability criterion 1

0(2 + OC - 40(2 _a 2ao + a4ag -4a4a ao
N (Greek Capital Nu) N = 0. + . 1 a2

Stability criterion 2

Wri dimensionless angular frequency of component 1 (Low freq.)

Wrg dimensionless angular frequency of component 2 (High freq.)
Wr dimensionless angular frequency of reference coripofent

(component 1, arbitrarily)
Wj undamped natural angular frequency in general.

Wn- undamped natural angular frequency of component 1
Wn 2 undamped natural angular frequency of component 2

damping ratio in general

damping ratio of component 1

2 damping ratio of component 2
j, damping ratio of reference component (component 1, arbitrarily)

PW Pw = Wr2/Wri = Wn 2/Wn, ratio of undamped natural. frequency

p P = ratio of damping ratios

Pot Pot = (1/a,) (pW + 1/pW)

- 8 8 -



*TABILITY BEi:HA'IOR O TH A ' ' ' * 0 ' ' *

- + ez

>X Unstable

N - X Unendlng oscillation N > 0 One component only

-N < 0 One or both components

NaMS -1 Unending oscillation of both components

X < M Outside region At least one component N>0Oncopetosilor

BA is oscillatory

N < 0 Both components oscillato

Btable Along boundary Two equal Along cx,=a., Two pair of equal roots

BABC quadratic factors AB Two equally overdamped

o r a-ne > quadratics

S2critically dampedI
A. 2 -quadratic factor 4c-, Two equal roots. Another

(/ z )accompanying oomponent may be over-
another of any damped.

2 damping ratio

M =0Along 4 Two equal onjugate-palred

-2j) AC roots

Also 4'''Two equal roots. Another

CD component may be over-

damped.
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may be any Vertex
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27
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li 00ted by ,- 1,, 0
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W, = 4Two components of same frequency, but with different damping

Two components of different frequency, but with same damping
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APPE"DIX C

Response to Unit Surging Disturbance

Developed by Heaviside Expansion Theorem

by

Y. J. Liu

The unit surging disturbance is reprosented by

6 9(iCt Cl

of which the maximum is unity at t = gn where g0n is do-

fined as the surging factor of the surging disturbance which is

constant and equals W in referring to the kth compon-

ent of motion of a system. In this system Cnk is the undamped

natural frequency (angular) of the kth component and Ik is de-

fined as the apparent surging factor of the surging disturbance

with respect to tho kth component.

When the surging disturbance is applied to a system whose

response to the unit step function is 3(d)1, the response can be

written as

Qx(d) ~c4t
Is (t)E6 A nt C 1 02

where S(d) is the stability function of the system

Qx(d) is the quality function of the x-wise motion

IS(t) is the unit surging response

Eq. C2 can be changed into the following form

Qx (d) E 9Wd 1
Is~t) -(d-+ On)2

nd Qx(d)
(d+ t LOn S7 d)13

If both Qx(d) and S(d) are polynomials in d with constant coef-

ficients and with equal or less degree in d in the numerator
-Cl-



than that in the denominator, C3 can be expanded by the Heavi-

side Expansion Theorem as follows provided the S(d) = 0 has no

repeating roots

e gWc r Q,(o) k d (k 1is (t) = --
(d+gW,)2  S(o) (d+ 2 d n S(d%)

d d Qx(dk (0) c4
=C - 1-i+ 2

+ ) S(O) I(d+ ) dk on .'d0k
where dk Wnk= the kth root of 8(d) = 0 real or complex S'

is the first derivative of the stability function. The first

term in the bracket of C4 can be written as:

Qx(0) t g-nt 05
S(O)

and the second term, by applying the shifting formula** can be

written as:

k dk nlkt QX( dKS k ) 6+ d
F,~( d - Cd 4nk S'(dkgne) (d + 9kWk + d o i 0

On developing, 06 givos
k Qx (d 

t t

*x cakt]k07

)(o) kQ( k

E~q W'(a cl wk t

* V. Bush, ttOerationa~l Circuit Analysis", Chapter VII
**V. Bush, "Operational Circuit Analysis", Chapter VIII, p. 130.



when the fth- pair of roots is a conjugate pair,

be used to represe.nt the conjigLtte pair;
I -

Then Is(t) = EgwnAkG + 2 A-Wn2A f

+(Bk + Bf ) E U) E

+ Ck f + (0) tE- t t

where

Qx (dk Lnk)
S9'(dkL nk) ( 9k+ dk) Wnk

Qx(df Onf)
(= stdf(nf)(f
k

Bk = - ZAk

Bf =- (Af + f)

k

Ck

- Qx(u W nf)

S'I (df Lonf -If + af)2

Qx ( dk Wnk)

S' (dk Wnk) (d ) nk)

Qx(df Wnf)

S'I (df Wnf) (df Wnf)

(k

(9k+ dk)

If + df
Qx
S'

(af Onf)
(af wnf) (df Wn)

ta Qf - a- -IS' f 2, ( f- If ) V/- O r
tn -tan -. tan '

anf d_ ' f mnt iy of - quit c

and If means the imaginary pa.-t of the quality function

C10

and R means the real part, etc.

From the above solution, it is seen that

turbance does not affect the stability of the

the surging dis-

systom. However,

it produces a surging component with a magnitude factor

[Ck + Cf+ J comparable to the disturbance function and
another subsiding component which adjusts the zero condition of

the response.

-C3-

C9

: -d-
)2. UJ -9 f

df and d-p can

, 
-X? t +4 ')

f nf

Of

Qx (df &Jnf )

Sf +d



APPENDIX D

Semigraphical Application of Do Moivre's Theorem

in Evaluating Polynomial Functions with a Complex Number

by
Y. J. Liu

In evaluating the polynomial Q(d) or S'(d) with the substi-

tution of a complex number (-[ +L/-ji ) On, the work is tedious.

Howevor, much time may be saved by using De Moivro's Theorem

graphically. Assume:

8' (d)-amdm+ am-ldm-l a +a3d+ ad3+ a2d2+ aid-+ a0  Dl

and dku)nk = (- tk +iA - ) &)nk D2

Then S' (dk Wnk)=am u dki+ +a4 dk-+a2W nk+a nkdk+aO D3

. dk = k+i 1 -k

,*, d= c0s9k+ isin9k D4

where cosjk = k and sin~k 1 D5

Ok is in the second quadrant or

9k= --- + tan D6
2 k1-

where Gkp is defined as proper angle

By Do Moivre's Theorem

m
dk = cos m9k + i sin m9k

cos m(T + 9kp) + i sin m( -4 @kp)

,MIT=cos (--+ m~kp) -j-i1 sin(- +im~kP)

cos cos m9kP - sin U n m9kp2 2 snmk
4kos sin mkp

mi cor ~ k + ico r sin mirp
122(cos +~ -Tin r) (cos mGkp -+ i sin kp

2 ~i(cOs mEkp + i sin m~kp)

im(cos m9kp+ i sin m9kp) D7

From Eq. D7 a simple graphical method can be developed for find-

ing dj by a circle suporimposod on rectangular coordinate paper.

-Dl-



At the upper loft hand part of Fig. Dl is the scale of $

Pick up k and drop it down to the circle. The arc between

this point and zenith of the circle represents the value of Gkp-

The coordinates of this point are - Sk-'- i /- 7 . Use a pair

of dividers to pick up the chord length of the arc and divide

the circle with this chord length counterclockwisely until the

mth point or m times the 9kp is obtained, where

dj = im(cos mGkp + i sin mlkp)

= im Ym + ixm)

= im-1 (xm + iym) D8

where -xm and ym are coordinates of m9kp

For instance, lot Ek = -372 (So Fig. -L)

dk = - 0.372 4- 10.922

2
dk = i(-o.69 4- 10.72) =- .72 + io.69

dk = i2 (-o.9o8+io.42) = -+ .908- io.42

di = 13 (-1.0 + 10.03) = + 0.03 + il.0

d = 14 (-0.93 - 10.36) = -0.93 - 10.36

Such a graphical application to evaluate d- does not need a

known angle, but a dividers and circle diagram should be pro-

vided. The result is accurate enough for engineering purposes,

yet the method is so simple that not even a trigonometric table

is needed.

With all dk known, St(dkAnk) and Q(dkWnk) can be easily

evaluated in the form of Eq. D3.
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