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J. P. Lees,1 V. Poireau,1 V. Tisserand,1 E. Grauges,2 A. Palano,3 G. Eigen,4 D. N. Brown,5 Yu. G. Kolomensky,5 M. Fritsch,6

H. Koch,6 T. Schroeder,6 C. Hearty,7a,7b T. S. Mattison,7b J. A. McKenna,7b R. Y. So,7b V. E. Blinov,8a,8b,8c A. R. Buzykaev,8a

V. P. Druzhinin,8a,8b V. B. Golubev,8a,8b E. A. Kozyrev,8a,8b E. A. Kravchenko,8a,8b A. P. Onuchin,8a,8b,8c

S. I. Serednyakov,8a,8b Yu. I. Skovpen,8a,8b E. P. Solodov,8a,8b K. Yu. Todyshev,8a,8b A. J. Lankford,9 J. W. Gary,10 O. Long,10

A. M. Eisner,11 W. S. Lockman,11 W. Panduro Vazquez,11 D. S. Chao,12 C. H. Cheng,12 B. Echenard,12 K. T. Flood,12

D. G. Hitlin,12 J. Kim,12 Y. Li,12 T. S. Miyashita,12 P. Ongmongkolkul,12 F. C. Porter,12 M. Röhrken,12 Z. Huard,13

B. T. Meadows,13 B. G. Pushpawela,13 M. D. Sokoloff,13 L. Sun,13,* J. G. Smith,14 S. R. Wagner,14 D. Bernard,15

M. Verderi,15 D. Bettoni,16a C. Bozzi,16a R. Calabrese,16a,16b G. Cibinetto,16a,16b E. Fioravanti,16a,16b I. Garzia,16a,16b

E. Luppi,16a,16b V. Santoro,16a A. Calcaterra,17 R. de Sangro,17 G. Finocchiaro,17 S. Martellotti,17 P. Patteri,17 I. M. Peruzzi,17

M. Piccolo,17 M. Rotondo,17 A. Zallo,17 S. Passaggio,18 C. Patrignani,18,† H.M. Lacker,19 B. Bhuyan,20 U. Mallik,21

C. Chen,22 J. Cochran,22 S. Prell,22 A. V. Gritsan,23 N. Arnaud,24 M. Davier,24 F. Le Diberder,24 A. M. Lutz,24 G. Wormser,24

D. J. Lange,25 D. M. Wright,25 J. P. Coleman,26 E. Gabathuler,26,‡ D. E. Hutchcroft,26 D. J. Payne,26 C. Touramanis,26

A. J. Bevan,27 F. Di Lodovico,27 R. Sacco,27 G. Cowan,28 Sw. Banerjee,29 D. N. Brown,29 C. L. Davis,29 A. G. Denig,30

W. Gradl,30 K. Griessinger,30 A. Hafner,30 K. R. Schubert,30 R. J. Barlow,31,§ G. D. Lafferty,31 R. Cenci,32 A. Jawahery,32

D. A. Roberts,32 R. Cowan,33 S. H. Robertson,34a,34b R. M. Seddon,34b B. Dey,35a N. Neri,35a F. Palombo,35a,35b R. Cheaib,36

L. Cremaldi,36 R. Godang,36,¶ D. J. Summers,36 P. Taras,37 G. De Nardo,38 C. Sciacca,38 G. Raven,39 C. P. Jessop,40

J. M. LoSecco,40 K. Honscheid,41 R. Kass,41 A. Gaz,42a M. Margoni,42a,42b M. Posocco,42a G. Simi,42a,42b F. Simonetto,42a,42b

R. Stroili,42a,42b S. Akar,43 E. Ben-Haim,43 M. Bomben,43 G. R. Bonneaud,43 G. Calderini,43 J. Chauveau,43 G. Marchiori,43

J. Ocariz,43 M. Biasini,44a,44b E. Manoni,44a A. Rossi,44a G. Batignani,45a,45b S. Bettarini,45a,45b M. Carpinelli,45a,45b,**

G. Casarosa,45a,45b M. Chrzaszcz,45a F. Forti,45a,45b M. A. Giorgi,45a,45b A. Lusiani,45a,45c B. Oberhof,45a,45b E. Paoloni,45a,45b

M. Rama,45a G. Rizzo,45a,45b J. J. Walsh,45a L. Zani,45a,45b A. J. S. Smith,46 F. Anulli,47a R. Faccini,47a,47b F. Ferrarotto,47a

F. Ferroni,47a,47b A. Pilloni,47a,47b G. Piredda,47a,‡ C. Bünger,48 S. Dittrich,48 O. Grünberg,48 M. Heß,48 T. Leddig,48 C. Voß,48

R. Waldi,48 T. Adye,49 F. F. Wilson,49 S. Emery,50 G. Vasseur,50 D. Aston,51 C. Cartaro,51 M. R. Convery,51 J. Dorfan,51

W. Dunwoodie,51 M. Ebert,51 R. C. Field,51 B. G. Fulsom,51 M. T. Graham,51 C. Hast,51 W. R. Innes,51,‡ P. Kim,51

D.W. G. S. Leith,51 S. Luitz,51 D. B. MacFarlane,51 D. R. Muller,51 H. Neal,51 B. N. Ratcliff,51 A. Roodman,51

M. K. Sullivan,51 J. Va’vra,51 W. J. Wisniewski,51 M. V. Purohit,52 J. R. Wilson,52 A. Randle-Conde,53 S. J. Sekula,53

H. Ahmed,54 M. Bellis,55 P. R. Burchat,55 E. M. T. Puccio,55 M. S. Alam,56 J. A. Ernst,56 R. Gorodeisky,57 N. Guttman,57

D. R. Peimer,57 A. Soffer,57 S. M. Spanier,58 J. L. Ritchie,59 R. F. Schwitters,59 J. M. Izen,60 X. C. Lou,60 F. Bianchi,61a,61b

F. De Mori,61a,61b A. Filippi,61a D. Gamba,61a,61b L. Lanceri,62 L. Vitale,62 F. Martinez-Vidal,63 A. Oyanguren,63 J. Albert,64b

A. Beaulieu,64b F. U. Bernlochner,64b G. J. King,64b R. Kowalewski,64b T. Lueck,64b I. M. Nugent,64b J. M. Roney,64b

R. J. Sobie,64a,64b N. Tasneem,64b T. J. Gershon,65 P. F. Harrison,65 T. E. Latham,65 R. Prepost,66 and S. L. Wu66

(BABAR Collaboration)

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3,
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The decay τ− → K−KSντ has been studied using 430 × 106 eþe− → τþτ− events produced at a center-
of-mass energy around 10.6 GeV at the PEP-II collider and studied with the BABAR detector. The mass
spectrum of the K−KS system has been measured and the spectral function has been obtained. The
measured branching fraction Bðτ− → K−KSντÞ ¼ ð0.739� 0.011ðstatÞ � 0.020ðsystÞÞ × 10−3 is found to
be in agreement with earlier measurements.

DOI: 10.1103/PhysRevD.98.032010

I. INTRODUCTION

The τ lepton provides a remarkable laboratory for
studying many open questions in particle physics. With
a large statistics of about 109 τ’s produced in eþe−
annihilation at the BABAR experiment, various aspects
can be studied, e.g., improving the precision of spectral
functions describing the mass distribution of the hadronic
decays of the τ. In this work, we analyze the τ− → K−KSντ
decay1 and measure the spectral function of this channel
defined as [1]

VðqÞ ¼ m8
τ

12πCðqÞjVudj2
Bðτ− → K−KSντÞ
Bðτ− → e−ν̄eντÞ

1

N
dN
dq

; ð1Þ

wheremτ is the τ mass [2], q≡mK−KS
is the invariant mass

of the K−KS system, Vud is an element of the Cabibbo-
Kobayashi-Maskawa matrix [2], ðdN=dqÞ=N is the nor-
malized K−KS mass spectrum, and CðqÞ is the phase space
correction factor given by the following formula:

CðqÞ ¼ qðm2
τ − q2Þ2ðm2

τ þ 2q2Þ: ð2Þ

According to the conserved-vector-current hypothesis
[1], the τ− → K−KSντ spectral function is related to the
isovector part (I ¼ 1) of the eþe− → KK̄ cross section:

σI¼1
eþe−→KK̄ðqÞ ¼

4π2α2

q2
VðqÞ; ð3Þ

where α is the fine structure constant. The cross sections
eþe− → KþK− and eþe− → KSKL have been recently
measured by the BABAR [3,4] and SND experiments [5].
Combining data from the τ− → K−KSντ with eþe− → KK̄
measurements, the moduli of the isovector and isoscalar
form factors and the relative phase between them can
obtained in a model-independent way.
The branching fraction for the τ− → K−KSντ decay has

been measured with relatively high (3%) precision by the
Belle experiment [6]. The K−KS mass spectrum was
measured by the CLEO experiment [7]. In the CLEO
analysis, a data set of 2.7 × 106 produced τ pairs was used,
and about 100 events in the decay channel τ− → K−KSντ
were selected. In this work, using about ∼109 τ leptons, we
significantly improve upon the measurement of the spectral
function for the τ− → K−KSντ decay.

II. DATA USED IN THE ANALYSIS

We analyze a data sample corresponding to an integrated
luminosity of 468 fb−1 recorded with the BABAR detector
[8,9] at the SLAC PEP-II asymmetric-energy eþe− collider.
For simulation of eþe− → τþτ− events the KK2f

Monte Carlo generator [10] is used, which includes
higher-order radiative corrections to the Born-level process.
Decays of τ leptons are simulated using the Tauola package
[11]. Two separate samples of simulated eþe− → τþτ−
events are used: a generic sample with τ decaying to all
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significant final states, and the signal channel where
τþ → lþνlν̄τ, l ¼ e or μ and τ− → K−KSντ. To estimate
backgrounds, we use a sample of simulated generic
eþe− → τþτ− events after excluding the signal decay
channel (τþτ− background) and a sample containing all
events arising from eþe− → qq̄, q ¼ u, d, s, c and eþe− →
BB̄ processes (qq̄ background). The qq̄ background events
with q ¼ u, d, s, c are generated using the JETSET
generator [12], while BB̄ events are simulated with
EVTGEN [13]. The detector response is simulated with
GEANT4 [14]. The equivalent luminosity of the simulated
sample is 2-3 times higher than the integrated luminosity
in data.

III. EVENT SELECTION

We select eþe− → τþτ− events with the τþ decaying
leptonically (τþ → lþνlν̄τ, l ¼ e or μ) and the τ− decaying
to K−KSντ. Such events referred to as signal events below.
The KS candidate is detected in the KS → πþπ− decay
mode. The topology of events to be selected is shown in
Fig. 1. Unless otherwise stated, all quantities are measured
in the laboratory frame. The selected events must satisfy the
following requirements:

(i) The total number of charged tracks, Ntrk, must be
four and the total charge of the event must be zero.

(ii) Among the four charged tracks there must be an
identified lepton (electron or muon) and an identified
kaon of opposite charge. The track origin point
requirements are jd0j < 1.5 cm and jz0j < 2.5 cm,
where jd0j and jz0j are the distances between the track
and the interaction region center in transverse and
longitudinal directions with respect to the beams.

(iii) To reject μ pairs and Bhabha events, the
lepton candidate must have a momentum above
1.2 GeV=c, the momentum in the center-of-mass

frame (c.m. momentum) must be smaller than
4.5 GeV=c, and the cosine of the lepton polar angle
j cos θlj must be below 0.9.

(iv) To suppress background from charged pions, the
charged kaon candidate must have a momentum,
pK , above 0.4 GeV=c and below 5 GeV=c, and the
cosine of its polar angle must lie between −0.7374
and 0.9005.

(v) The two remaining tracks, assumed to be pions,
form the KS candidate. The πþπ− invariant mass
must lie within 25 MeV=c2 of the nominal KS mass,
497.6 MeV=c2. The KS flight length rKS

, measured
as the distance between the πþπ− vertex and the
collision point, must be larger than 1 cm. The rKS

distributions for data events and simulated signal
events are shown in Fig. 2.

(vi) The total energy in neutral clusters, ΣEγ , must be
less than 2 GeV (Fig. 3). Here, a neutral cluster is
defined as a local energy deposit in the calorimeter
with energy above 20 MeV and no associated
charged track.

(vii) The magnitude of the thrust [15,16] for the event,
calculated using charged tracks only, must be greater
than 0.875.

(viii) The angle defined by the momentum of the lepton
and that of the K−KS system in the c.m. frame must
be larger than 110 degrees.

As a result of applying these selection criteria the τ
background is suppressed by 3.5 orders of magnitude,
and the qq̄ background by 5.5 orders.

FIG. 1. Schematic view of the τ decay chains in eþe− → τþτ−

events selected for this analysis. Lepton lþ can be electron
or muon.
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FIG. 2. The KS candidates decay length distribution for data
(points with errors), τþτ− simulation events (solid histogram),
and τ background simulation (dashed histogram). The vertical
line indicates the boundary of the selection condition.
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IV. DETECTION EFFICIENCY

The detection efficiency obtained after applying the
selection criteria is calculated using signal Monte Carlo
simulation as a function of the true mK�KS

mass and is
shown in Fig. 4. The efficiency is weakly dependent on
mK−KS

. The average efficiency over the mass spectrum is
about 13%. It should be noted that the K−KS mass

resolution is about 2–3 MeV=c2, significantly smaller than
the size of the mass bin (40 MeV=c2) used in Fig. 4.
Therefore, in the following we neglect the effects of the
finite K−KS mass resolution.
To correct for the imperfect simulation of the kaon

identification requirement, the particle identification (PID)
efficiences have been compared for data and simulation on
high purity control samples of kaons from D⋆ → πþD0,
D0 → K−πþ decays [17]. We correct the simulated effi-
ciency using the measured ratios of the efficiencies mea-
sured in data and Monte Carlo, in bins of the kaon
candidate momentum and polar angle. The resulting
correction factor as a function of mK−KS

is shown in
Fig. 5.

V. SUBTRACTION OF NON-KS BACKGROUND

The πþπ− mass spectra for KS candidates in data and
simulated signal events are shown in Fig. 6. The data
spectrum consists of a peak at the KS mass and a flat
background. To subtract the non-KS background, the
following procedure is used. The signal region is set to
πþπ− masses within 0.0125 GeV=c2 of the KS mass
(indicated by arrows in Fig. 6), and the sidebands are
set to between 0.0125 and 0.0250 GeV=c2 away from the
nominal KS mass. Let β be the fraction of events with a true
KS that fall in the sidebands, and let α be the fraction of
non-KS events that fall in the sidebands. The total number
of events in the signal region plus the sidebands, N, and the
number of events in the sidebands, Nsb, depend on the
number of true KS, NKS

, and the number of non-KS

background events, Nb according to the following relation:
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of
 e
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FIG. 3. Distributions of the total energy of photons in the event
for data (points with errors), τþτ− and qq̄ simulation events (solid
histogram), τ background simulation (empty triangles with
errors) and qq̄ background simulation (dashed histogram). The
vertical line indicates the boundary of the selection condition.
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FIG. 4. Selection efficiency as a function of the K−KS invariant
mass, according to simulation.
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FIG. 5. Efficiency correction factor for adjusting the simulation
PID efficiency to match the efficiency measured on data, as a
function of the K−KS mass for signal events.
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N ¼ NKS
þ Nb; ð4aÞ

Nsb ¼ α · Nb þ β · NKS
ð4bÞ

Therefore:

NKS
¼ ðαN − NsbÞ=ðα − βÞ: ð5Þ

The value of β is determined using τ signal simulation. It is
found to be nearly independent of the mK−KS

mass and is
equal to 0.0315� 0.0015. The value of α is expected
to be 0.5 for a uniformly distributed background. This is
consistent with the value 0.499� 0.005 obtained on
simulated τþτ− background events. The non-KS back-
ground is subtracted in each mK−KS

bin. Its fraction is
found to be about 10% of the selected events with mK−KS

near and below 1.3 GeV=c2 and increases up to 50% above
1.6 GeV=c2.

VI. SUBTRACTION OF τ-BACKGROUND
WITH A π0

Although the studied process τ− → K−KSντ is not
supposed to contain a π0 in the final state, some events
from background processes with a π0 pass the selection
criteria. In the following, we describe how the π0 back-
ground contribution is subtracted.
The K−KS mass spectra for selected data and τþτ−

simulated events after subtraction of the non-KS background
are shown in Fig. 7. According to the simulation, the number

of signal and τ-background events are of the same order of
magnitude. The τþτ− background consists of events with the
decay τ− → K−KSπ

0ντ (79%), events with a misidentified
kaon from decays τ− → π−KSντ (10%) and τ− → π−KSπ

0ντ
(3%), and events with a misidentified leptonmainly from the
decays τþ → πþν̄τ and τþ → πþπ0ν̄τ (7%). Thus, more than
80%of the background events contain a π0 in the final state. It
should be noted that events with a misidentified lepton have
the same mK−KS

distribution as signal events.
The branching fractions for the background modes

without a π0, τ− → π−KSντ and τþ → πþν̄τ, have been
measured with high precision (1.7% and 0.5%) [2]. The
hadronic mass spectrum for τ− → π−KSντ is also well
known [18] and this decay proceeds mainly via the
K�ð892Þ intermediate state. Therefore all τþτ− background
without a π0 is subtracted using Monte Carlo simulation.
The amount of qq̄ background, not shown in Fig. 7, is
about 2% of selected data events. The part of this back-
ground without a π0 is also subtracted using Monte Carlo
simulation.
The branching fractions for the background modes

τ− → K−KSπ
0ντ, τ− → π−KSπ

0ντ, and τþ → πþπ0ν̄τ are
measured with a precision of 4.7%, 3.4%, and 0.4%,
respectively. The hadronic mass spectrum is well known
only for the last decay [19]. For the two other decays, only
low-statistics measurements [7] are available. Therefore,
we use the data to subtract the τ-background with π0 from
theK−KS mass spectrum. To do this, the selected events are
divided into two classes, without and with a π0 candidate,
which is defined as a pair of photons with an invariant mass
in the range 100–160 MeV=c2.
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FIG. 6. The πþπ− mass spectrum for KS candidates in data
(points with errors) and signal simulation (histogram). Between
the two vertical lines there is a signal region used in the procedure
of non-KS background subtraction.
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On the resulting sample, the numbers of signal (Ns) and
background τþτ− events containing a π0 candidate (Nb) are
obtained in each mK−KS

bin:

N0π0 ¼ ð1 − ϵsÞNs þ ð1 − ϵbÞNb; ð6aÞ

N1π0 ¼ ϵsNs þ ϵbNb; ð6bÞ

where N0π0 and N1π0 are the numbers of selected data
events with zero and at least one π0 candidate, and ϵs (ϵb) is
the probability for signal (background) τþτ− events to be
found in events with at least one π0 candidate calculated
using Monte Carlo simulation. The values ϵs and ϵb for
each bin in mK−KS

are measured in Monte Carlo by
counting how many signal and background event candi-
dates contain a π0 candidate. Figure 8 shows the ϵs and ϵb
measured in Monte Carlo as a function of mK−KS

. The
efficiency ϵb is corrected to take into account the different
π0 efficiency between data and Monte Carlo as measured
on data and simulated control samples in the ISR eþe− →
ωð783Þγ → πþπ−π0γ process [20]. The average correction
is δ ¼ 0.976� 0.008. The non-zero value of ϵs is due to
random combinations of two spurious photons originating
from beam background or nuclear interactions of charged
kaons or pions. The beam-generated background is simu-
lated by using special background events recorded during
normal data-taking conditions but with a randomly gen-
erated trigger. These events are superimposed on simulated
events. The following procedure is used to measure ϵs on
data events. We compare the solution of Eqs. (6a) and (6b)
described above with the solution of the same system, in
which the number of events with π0 is determined from the

fit to the two-photon invariant mass spectrum of π0

candidates. Since the mass dependence of ϵs and ϵb is
mild (Fig. 8), this comparison is performed using the full
sample of selected events without splitting the sample into
K−KS mass bins. The two-photon mass spectrum of π0

candidates in data is shown in Fig. 9.
The spectrum in Fig. 9 is fitted by a sum of a Gaussian

and a flat component. The numbers N1π0 and N0π0 on the
left side of Eqs. (6a) and (6b) are substituted by N⋆

1π0
¼

N1π0 − Nlin
1π0

and N⋆
0π0

¼ N0π0 þ Nlin
1π0

, where Nlin
1π0

is the
number of events under the flat component, obtained after
fitting the γγ spectrum in Fig. 9. The value ϵb is substituted
by ϵ⋆b ¼ wϵb, where w ¼ 0.682� 0.010 is the fraction of
events with a reconstructed π0 for simulated τþτ− back-
ground (Fig. 9). The term “reconstructed π0” corresponds
to π0 s in the Gaussian part in Fig. 9. The modified system
of equations is

N⋆
0π0

¼ Ns þ ð1 − ϵ⋆bÞNb; ð7aÞ

N⋆
1π0

¼ ϵ⋆bNb: ð7bÞ

In Eqs. (7a) and (7b) the top line contains all events without
a reconstructed π0, while the lower line contains events
with at least one reconstructed π0. After subtracting the
spurious π0s corresponding to the flat background in Fig. 9,
Eqs. (7a) and (7b) no longer contains ϵs nor a contribution
from the π0 background.
The average value of ϵb from Fig. 8 is 0.720� 0.003,

giving ϵ⋆b ¼ 0.491� 0.008 on the average. This value is
then corrected by the reconstructed π0 efficiency correction
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FIG. 8. The probabilities ϵs and ϵb used in Eqs. (6a) and (6b) as
functions of the K−KS mass, measured on simulated events.
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factor δ, as discussed above. The number of signal events,
Ns, obtained by solving Eqs. (7a) and (7b) and using the
corrected value of ϵ⋆b is about 1% higher than the previous
one, derived from Eqs. (6a) and (6b). This 1% shift in Ns is
explained by the difference between data and Monte Carlo
simulation in ϵs.
To obtain the final K−KS mass spectrum we return to

Eqs. (6a) and (6b). Based on the above study of the π0

systematics we must correct the efficiencies ϵs and ϵb.
First, we correct the value of ϵb by the π0 efficiency
correction 1−wð1−δÞ ≃ 0.984�0.006, where w and δ are
defined above. Then we adjust the value of ϵs by a factor
1.05� 0.05 to take into account the above-mentioned 1%

correction in flat background simulation. Then the number
of simulated τþτ− background events without a π0 is
multiplied by a factor of p ¼ 0.92� 0.02 to take into
account the difference between experimental τ branching
fractions and branching fractions used in the Tauola
Monte Carlo generator. With these corrected values for
ϵs and ϵb we solve Eqs. (6a) and (6b) for each K−KS mass
bin and obtain mass spectra for signal (Ns) and back-
ground (Nb).
The efficiency corrected signal mass spectrum, using the

signal efficiency from Fig. 4, is shown in Fig. 10 (top), in
comparison with the simulation. The τ-pair mK−KS

back-
ground spectrum [Fig. 10 (bottom)] is compared with
simulation without efficiency correction. Spectra are nor-
malized to the same number of events. We find a substantial
difference between data and simulation for the signal
spectrum, and better agreement for the background
spectrum.

VII. SYSTEMATIC UNCERTAINTIES

This section lists all the uncertainties in the parameters
used in this analysis, and estimates the overall systematic
uncertainty on the τ− → K−KSντ branching fraction and
the K−KS mass spectrum.
The subtraction of non-KS background is described in

Sec. V. To check the procedure of the non-KS background
subtraction, we varied the coefficients of α and β within
their uncertainties, which leads to a systematic uncertainty
of 0.4% in the τ− → K−KSντ branching fraction. This
uncertainty is independent of the K−KS mass.
The PID corrections were discussed in Sec. IV. The

systematic uncertainty due to data-Monte Carlo simulation
difference in particle identification is taken to be 0.5%,
independent of the K−KS mass. The uncertainty on how
well the Monte Carlo simulates the tracking efficiency is
estimated to be 1%.
Figure 11 shows the mK−KS

spectra for selected data
events with and without a π0 candidate near the endpoint
mK−KS

¼ mτ compared to simulated qq̄ events. It appears
that the number of data and simulated qq̄ events are in
reasonable agreement atmK−KS

> mτ, where all data events
are expected to be from the qq̄ background. We take the
observed difference between data and Monte Carlo near
the end point MK−KS

¼ mτ in Fig. 11 as an uncertainty
on the qq̄ background. This leads to an uncertainty on
Bðτ− → K−KSντÞ of 0.5%.
The uncertainty associated with the subtraction of the

τþτ− background with π0’s is estimated by varying the
efficiencies ϵs and ϵb used in Eqs. (6a) and (6b) within their
systematic uncertainties: 5% in ϵs (uncertainty in the
number of spurious π0s) and 6% in ϵb (uncertainty in
numbers of both spurious and reconstructed π0s). The
corresponding contribution to the systematic uncertainty on
Bðτ− → K−KSντÞ is 2.3%. For the mK−KS

spectrum this
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uncertainty varies from 9% at mK−KS
< 1.1 GeV=c2 to 1%

at 1.7 GeV=c2.
The 2% uncertainty in the correction factor p (Sec. VI),

associated with τ branching fractions without a π0, leads to
the 0.3% uncertainty in the branching ratio. The mass-
dependent uncertainty is 2% at K−KS mass below 1.1 GeV
and 0.1% for 1.7 GeV=c2.
The systematic uncertainties from different sources,

shown in Table I, are combined in quadrature. The
total systematic uncertainty for the branching fraction
Bðτ− → K−KSντÞ is 2.7%. The systematic uncertainties
for the mass spectrum are listed in Table II. They gradually
decrease from ≃9% at mK−KS

¼ 1 GeV=c2 to 1.5% at

mK−KS
¼ mτ. Near the maximum of the mass spectrum

(1.3 GeV=c2) the uncertainty is about 2.5%.

VIII. THE RESULTS

The branching ratio of the τ− → K−KSντ decay is
obtained using the following expression:

Bðτ−→K−KSντÞ¼
Nexp

2LBlepσττ

¼ð0.739�0.011�0.020Þ×10−3; ð8Þ

where Nexp ¼ 223741� 3461 (error is statistical) is the
total number of signal events in the spectrum in Fig. 12,
L ¼ 468.0� 2.5 fb−1 is the BABAR integrated luminosity
[21], σττ ¼ 0.919� 0.003 nb is the eþe− → τþτ− cross
section at 10.58 GeV [10] and Blep ¼ 0.3521� 0.0006 is
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FIG. 11. K−KS mass spectra near the end point MK−KS
¼ mτ

for selected data and qq̄ simulated events without (top) and with
(bottom) a π0 candidate. The vertical line indicates the τ mass.

TABLE I. The systematic uncertainties on Bðτ− → K−KSντÞ
from different sources.

Sources Uncertainty (%)

Luminosity 0.5
Tracking efficiency 1.0
PID 0.5
Non-KS background subtraction 0.4
τþτ− background without π0 0.3
τþτ− background with π0 2.3
qq̄ background 0.5

Total 2.7

TABLE II. Measured spectral function (V) of the τ−→K−KSντ
decay, in bins of mK−KS

. The columns report: the range of the
bins, the normalized number of events, the value of the spectral
function. The first error is statistical, the second systematic.

mK−KS
(GeV=c2) Ns=Ntot × 103 V × 103

0.98–1.02 5.6� 1.4 0.071� 0.018� 0.006
1.02–1.06 26.0� 2.7 0.331� 0.034� 0.026
1.06–1.10 46.0� 3.2 0.593� 0.042� 0.042
1.10–1.14 70.8� 3.5 0.934� 0.046� 0.056
1.14–1.18 84.4� 3.4 1.148� 0.047� 0.057
1.18–1.22 92.3� 3.3 1.309� 0.046� 0.052
1.22–1.26 98.2� 3.2 1.468� 0.048� 0.044
1.26–1.30 98.4� 3.2 1.569� 0.050� 0.042
1.30–1.34 96.3� 3.0 1.663� 0.052� 0.042
1.34–1.38 90.2� 2.9 1.715� 0.052� 0.039
1.38–1.42 87.8� 3.1 1.873� 0.066� 0.039
1.42–1.46 65.1� 2.6 1.597� 0.064� 0.032
1.46–1.50 57.3� 2.5 1.666� 0.073� 0.032
1.50–1.54 38.1� 2.5 1.361� 0.090� 0.023
1.54–1.66 36.9� 2.4 0.785� 0.049� 0.013
1.66–1.78 6.6� 10.2 0.986� 1.520� 0.014
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the world average sum of electronic and muonic branching
fractions of the τ lepton [2]. The first uncertainty in (8) is
the statistical, the second is systematic. Our result agrees

well with the Particle Data Group (PDG) value
ð0.740� 0.025Þ × 10−3 [2], which is determined mainly
by the recent Belle measurement ð0.740�0.007�0.027Þ×
10−3 [6].
Themeasuredmass spectrummK−KS

for the τ−→K−KSντ
decay is shown in Fig. 12 and listed in Table II. Our mK−KS

spectrum is compared with the CLEO measurement [7].
The BABAR and CLEO spectra are in good agreement. The
spectral function VðqÞ calculated using Eq. (1) is shown in
Fig. 13 and listed in Table II. Due to the large error in the
mass interval 1.66–1.78 GeV=c2, which exceeds the scale
of Fig. 13, the value of VðqÞ in this interval is not shown
in Fig. 13.

IX. CONCLUSIONS

The K−KS mass spectrum and vector spectral function in
the τ− → K−KSντ decay have been measured by the
BABAR experiment. The measured K−KS mass spectrum
is far more precise than CLEO measurement [7] and
the branching fraction ð0.739� 0.011� 0.020Þ × 10−3 is
comparable to Belle’s measurement [6].
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Institut National de Physique Nucléaire et de Physique
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