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Abstract

The maintenance of a warship requires an involved combination of scheduling, fund-
ing, and execution. For one finite maintenance period, known as an “availability,” a
small setback in one of these areas can have a significant deleterious effect on the
availability as a whole. Compounded and obscured by complexity, the root causes of
such setbacks may remain unresolved and recur within the same availability or in one
that follows, resulting in cumulative cost increases and schedule delays.

The United States Navy has a strong incentive to better understand availability
execution. In support of that objective, this thesis investigates man-hour cost data
from 57 submarine availabilities across all four public naval shipyards, spanning 315
ship systems, from December 2006 to December 2017.

The results of this thesis are best understood in two parts: the first is an observa-
tion of system population characteristics, and the second is a multiple linear regression
analysis. The first part identifies nine specific submarine systems for which work is
consistently over- or underestimated in a majority of availabilities, and also parti-
tions the data to gain insights about the performance of categorical subsets, such as
a particular shipyard, availability type, or period in time, compared to the aggregate.
These results include a “tier ranking” of the systems whose improvement would yield
the greatest benefit for cost. The second part yields two different multiple regres-
sion models of the data to create revised estimates for what is known as “New Work,”
which is unexpected work whose scope is notoriously difficult to predict. Both models
result in significantly higher error than that which exists without them, invalidating
multiple linear regression analysis as a path to gaining insights about availability
performance.

Thesis Supervisor: Themistoklis Sapsis
Title: Associate Professor
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Chapter 1

Introduction

This thesis quantitatively addresses platitudes that are readily acknowledged by the
longtooths of the U.S. Navy submarine maintenance community. To state that “Trim
and Drain are notoriously difficult systems to maintain,” is straightfoward, and will
likely garner little objection from experienced engineers—except perhaps when a dif-
ferent ship system caused a memory more acute and lasting than either Trim or Drain.
However, such statements can only be confirmed locally and on a case-by-case basis
with (for instance) Project Superintendents or Zone Managers. As is characteristic of
highly complex and geographically disparate systems, the knowledge for availability
planning and execution inheres in no single person, residing instead within Navy-
as-organism. Comprising both blind and guided exploration, this thesis attempts to
derive insights by aggregating large amounts of system-level data.

This thesis uses information which, if discussed too specifically, would be sensitive
to national security. As a result, systems which could be named are instead identified
with numerical codes known only within the Navy, and at times there may exist
omissions which permit the public release of this thesis. This thesis is unclassified.

1.1 Submarine Life Cycle Maintenance Planning

Submarine maintenance involves extensive planning, and each vessel is built with a
maintenance plan already established for its entire service life. Figure 1-1 illustrates
a generic life cycle maintenance plan for a submarine, where different maintenance
milestones are interspersed with deployment requirements.

Although the grey dots between availabilities represent discrete deployments, time
at sea is not limited to deployments alone; local operations, participation in exercises,
and underway training are other important “value added” operations for submarines.

13



Service Life: 33 Years
Post Shakedown Availability
Drydock Selected Restricted Availability
Depot Modernization Period
Engineering Overhaul
Inactivation
Deployment

Figure 1-1: Generic Life Cycle Maintenance Plan for a Submarine

1.2 Availability Schedule Delays

If maintenance availabilities take longer than expected, the additional days spent in
a drydock translate directly into fewer days at sea. Figure 1-2 demonstrates how
successive schedule delays (depicted in red) across multiple availabilities can add up
over the life of a submarine. In this example, the 12th availability is lost because of
compression in the life cycle plan.

Figure 1-2: Loss of an Availability Due to Maintenance Slip

The Navy closely tracks maintenance schedule slippage because of its impact on
the submarine fleet. Figure 1-3 shows the number of fleet-wide operational submarine
days lost over more than a decade as a result of maintenance delays [1]. Given a pro-
curement cost of $1.71 billion for each Los Angeles-class submarine1 and $2.77 billion
for each Virginia-class submarine,2 these lost operational days represent performance
which was paid for, but not realized [2][3].

Availability delays are not unique to the submarine community; the Vice Chief of
Naval Operations testified before Congress that delayed maintenance periods are a
fleet-wide issue with corrosive effects on warfighting readiness [4].

1The official cost is $900m in FY1990 dollars, which for the sake of comparison has been adjusted
to FY2018 dollars.

2Direct FY2018 dollars used.
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Figure 1-3: Submarine Operational Days Lost Due to Availability
Overrun, Fiscal Years 2004-2016

1.3 Causes of Schedule Delays

The issue of availability delays is best summarized by the statement of VADM Thomas
Moore, Commander, Naval Sea Systems Command (COMNAVSEA), to the Senate
Armed Services Committee:

“The high operational tempo in the post 9/11 era combined with re-
duced readiness funding and consistent uncertainty about when these re-
duced budgets will be approved have created a large maintenance mis-
match between the capacity in our public shipyards and the required
work... Today, despite hiring 16,500 new workers since 2012, Naval Ship-
yards are more than 2,000 people short of the capacity required to ex-
ecute the projected workload, stabilize the growth in the maintenance
backlog and eventually eliminate that backlog. This shortfall, coupled
with reduced workforce experience levels (about 50 percent of the work-
force has less than five years of experience) and shipyard productivity
issues have impacted Fleet readiness through the late delivery of ships
and submarines. The capacity limitations and the overall priority of work
toward our Ballistic Missile Submarines (SSBNs) and Aircraft Carriers
(CVN) have resulted in our Attack Submarines (SSNs) absorbing much of
the burden, causing several submarine availabilities that were originally
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scheduled to last between 22 and 25 months to require 45 months or more
to complete.”[5]

This thesis does not purport to address operational tempo, budgeting, or manning
issues; however, the need to improve availability planning and execution—by any
means—is apparent.

1.4 The NAVSEA 00 Planning Summit

A month before issuing the statement quoted in Section 1.3, COMNAVSEA convened
a planning summit in which stakeholders of the maintenance planning process could
work together to improve availability planning and execution [6]. This Summit re-
sulted in a set of 28 specific actions “to close the gaps and drive alignment between
the maintenance planning budget process and the maintenance execution budgets”
[7]. In particular, two of these action items serve as guideposts for the formulation of
this thesis:

2. Analyze feedback mechanisms to improve identification of Growth/New Work.3

24. Review availability data and recommend appropriate upward adjustment factors
to correct for known underestimation of shipyard man-day requirements caused
by continued degradation when availabilities are deferred beyond class lifecycle
maintenance plans.

These two items highlight the value of investigating existing shipyard data as a
means to better understanding the multidimensional schedule delay problem. Analy-
sis exists at the Ship Work Breakdown Structure (SWBS) level, which aggregates all
systems under common umbrellas like “auxilliaries” or “hull/structure,” but it does
not investigate at a finer granularity. The comparative lack of data analysis at the
system level—for specific systems such as Trim or Drain—set the course for this the-
sis.

3“New Work” is work that is added to an Availability Work Package (AWP) in excess of the
baseline work package.
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1.5 Thesis Statement

Having detailed the background and motivation for this investigation, the thesis itself
is as follows:

There are specific and actionable insights which can be derived from
analyzing large amounts of data at the system level across a broad cross-
section of shipyard availabilities. Furthermore, a multiple linear regression
model derived from that data could be used to improve the Navy’s esti-
mates for New Work in future availabilities.

17
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Chapter 2

Literature Review

U.S. Navy cost data from public shipyards is a specialized area of study; accessing
the data can be problematic for academic investigations starting outside of the De-
partment of Defense (DoD). Although there is a plentiful selection of defense-oriented
web articles and consultant-driven publication, academic research in this field is lim-
ited. This literature review found five academic works addressing shipyard cost data
in the past two decades; that prior body of research helps to provide additional con-
text for the problem this thesis addresses. Outside the realm of shipyard analysis,
there are also many examples of the efficacy of regression analysis, which inspires the
hypothesis that such methods could find value in applications with shipyard data.

2.1 Cost Analysis of Naval Availabilities

It is satisfying to the engineering mind to be able to identify the root cause of a prob-
lem, to fix it, and to subsequently observe improved results—this is the quintessence
of the scientific method. Because availability cost and schedule overruns are often the
result of interrelated root causes, this template for a problem/solution pairing seldom
obtains. Instead, high-level analysis helps to get a sense of where further attention
should be directed. For instance, there are meaningful correlations between avail-
ability timeliness and ship class, cost performance ratio, and work stoppages prior to
work start, but little to no relationship between availability timeliness and number of
concurrent availabilities, concurrence of submarine and carrier availabilities, or quan-
tity or length of work stoppages [8]. Given that the implementation new shipyard
performance metrics results in improved performance along those metrics over time
[9], there is certainly an impetus to identify correlations of interest and then ensure
that established metrics track them. Put metaphorically, we seek to find the horse’s
mouth, and put the bit there.
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Another approach to improving an availability’s performance is to correctly antic-
ipate its duration. This is because major availabilities occur in drydocks, which are a
limited resource whose allocation problem is itself worthy of study [10]. To this end,
the Navy issues Technical Foundation Papers (TFPs) which prescribe the notional
duration (and cost) for the various availability types. Recent work demonstrates how
difficult it is for TFPs to accurately predict the true amount of work required; even
when back-fed historical data, the equations used in TFPs may yield predictions far
from actual results [11]. The challenge of generating accurate TFPs is also addressed
in the action items from the 2017 planning summit discussed in Section 1.4, which
call for the standardization and increased frequency of TFPs [7].

This thesis follows the lines of questioning of past research in that it both attempts
to derive insights about the cause-and-effect relationships that steer availability per-
formance, as well as to develop a more accurate predictive model for availability
planning.

2.2 Applications of Multiple Regression Analysis

Although there is no historical precedent for multivariate regression analysis of ship-
yard data, there is one instance of an analysis (both univariate and multivariate)
for submarine operation and sustainment costs. The results of that study show that
regression analysis does not provide suitable estimate cost models for predictors such
as crew size, length overall, and submerged displacement [12].

Although literature referencing multiple linear regression for shipyard data is rare,
there exist innumerable regression-based investigations of real-world phenomena. For
example, regression analysis is extremely valuable in the field of analytical epidemi-
ology [13], where regression analysis has improved understanding of the risk factors
for diseases of the heart, lungs, and brain [14] [15] [16]. Other applications of mul-
tiple regression analysis have led to public health insights about causal factors of
bacteria blooms in lakes [17], and to economic insights about optimal gasoline taxes
[18]. These examples only graze the surface of a vast body of academic investigation
using regression analysis, but they are sufficient to substantiate the interest in seeing
whether the same techniques could unlock benefits for availability planning also.
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Chapter 3

Methodology

A chapter devoted to thesis methodology is important to both explain the metrics
being used as well as their limitations. These limitations help inform the ways in
which the thesis is best pursued and provide the caveats necessary to prevent data
misinterpretation.

3.1 Data Source

The data used in this thesis is furnished by the Naval Sea Systems Command 04X
(SEA04X) directorate. SEA04X supports the Deputy Commander for Logistics,
Maintenance, and Industrial Operations and provides oversight, operation, and ad-
vocacy for the Naval Shipyards. Appendix B-1 contains a figure of the organiza-
tional heirarchy for the public shipyards, SEA04X, and COMNAVSEA, substantiat-
ing SEA04X as the appropriate source for data in this study. Data originates from the
Performance, Measurement, and Control (PMC) database, with the exception of the
SSN 701 PIRA of 2009 whose data comes from the Advanced Industrial Management
(AIM) database.1 In all cases, the data is queried by means of the Navy’s business
objects platform.

3.2 Basis for Data Time Interval

The selection of the timeline from December 2006 to December 2017 is premised on
the publication of this thesis in June 2018 and the 2006 issuance of the “Implemen-
tation of Lean Release 1.0” and “Implementation of Lean Release 2.0” memorandums

1The PMC data for this availability departs severely from all other data of its type; however, its
AIM data is consistent with other completed availabilities.
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from Commander, Naval Sea Systems Command. These documents issued a “...set
of Corporate Improvement Initiatives and Standardization Initiatives, for standard
implementation across all Naval Shipyards” [19][20]. That standardization was not
immediate, and an additional Lean 3.0 memorandum further expanded Lean practices
less than a year later [21]. Acknowledging that 2006 marks the beginning of a change
period in availability execution (where change implies data variability that is uncor-
rected), the notion of a “static” period better suited for analysis is fallacious: process
improvement is an ever-continuing part of shipyard availabilities. At a minimum, all
availabilities studied by this thesis are subject to the same standard of execution.

One critique of this interval selection is that the Operational Interval (OPIN-
TERVAL) for Los Angeles-class submarines and the Operating Cycle (OPCYCLE)
for Virginia-class submarines were both increased from 48 months to 72 months in
September of 2009 [22]. This significant change to the amount of time between major
availabilities implies an unmeasured bias in cost results caused by availability plan-
ners adjusting to the “new normal.” To uncover any bias that may exist in availability
performance due to the Lean 1.0/2.0 initiatives or to the OPINTERVAL/OPCYCLE
changes, Section 5.1.2 includes a partitioned analysis of availabilities in the first half
versus the second half of December 2006 to December 2017.

A final important observation is that for the time period under consideration, all
four public shipyards were operating under “Mission Funding” status as opposed to
the former “Navy Capital Working Fund” vehicle. The last two shipyards (Portsmouth
and Norfolk) switched funding mechanisms on October 1, 2006 [23].

3.3 Availabilities Chosen for Analysis

Only availabilities which started and finished inside the specified time interval are
analyzed in this thesis. The 57 availabilities examined here fall into one of five avail-
ability types:

1. Depot Modernization Period (DMP)

2. Drydock Selected Restricted Availability (DSRA)

3. Extended Drydock Selected Restricted Availability (EDSRA)

4. Engineered Overhaul (EOH)2

5. Pre-Inactivation Restricted Availability (PIRA)
2The SSN 755 EOH is exempted due to the fire and untimely decommissioning of that vessel,

which created an unrepresentative data set.
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These availabilities can represent different durations and levels of effort; the ex-
tent to which these differences might contribute to performance are investigated in
Section 5.1.2. It is important to note that even between like availabilities, work on
any given system can vary widely in duration and level of effort.

3.4 Metrics

There are three major cost determinants in a shipyard availability:

1. Man-Hours: This measures how long it takes to complete a job.

2. Labor Rate: This is a cost-per-hour rate which is multiplied by man-hours to
obtain the cost of labor.

3. Material Cost: This is the cost of the raw goods used to build or repair system
items.

This thesis only addresses the man-hours needed to complete work on a system.
This metric is useful for comparison of like jobs between different shipyards because
labor rates and material costs may vary according to differences in (for instance) costs
of living, labor pools, day of the week, raw good shipping rate, and dollar inflation.
The man-hour metric stands independent of such variables and is persistently relevant
in spite of differing locations and times.

3.4.1 Leveraging Earned Value Management

The Federal Acquisition Regulation (FAR) sets requirements for government procure-
ment in the United States. The DoD (to include the Navy) must implement a system
known as Earned Value Management (EVM) to track budgets and costs for efforts
such as shipyard availabilities [24]. Figure 3-1 is a classic EVM conceptual model,
with minor modifications made to suit the needs of this thesis: traditional EVM
metrics refer to “cost” as opposed to “quantity” (using ACWP instead of AQWP, for
instance), and some labels have been changed or removed in order to emphasize the
two metrics considered in this thesis, which are Quantity at Completion (QAC) and
Actual Quantity of Work Performed (AQWP).

QAC

Notionally, QAC represents an estimate made prior to starting work. It is a specific
value that the entire work effort is expected to equal, once the task is complete. The
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Figure 3-1: Earned Value Management Conceptual Graph

“S” shaped curve in Figure 3-1 reflects how work typically tapers at the beginning
and end of a task, with maximum productivity near the midpoint, but QAC only
concerns the final amount of work. It is a best-guess at the work required, and the
Navy has a feedback mechanism in place whereby QAC for specific tasks gets revised
based on historical data. However, estimating how many man-hours a job will require
can be extremely difficult. Two jobs with the same numerical identifier can may differ
in regard to the condition of the materials (for an item requiring maintenance) or to
the experience of the worker.

One important characteristic of QAC is that for a completed availability (the only
type considered in this thesis), the final QAC reported for a task may not be the
same as the QAC which was originally estimated. This is because individual jobs can
be “rebaselined,” which means that the a new, larger QAC value replaces the original
value. Rebaselining has the effect of artificially improving the cost performance EVM
data in an availability; however, sometimes it is necessary to rebaseline expectations
for work in situations where a job’s scope was dramatically underreported. This thesis
makes no effort to assess the number of rebaselines that occur for a task, and only
uses the final value that existed at the time that the job was completed.
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AQWP

AQWP is the other principle EVM metric considered in this thesis. It represents
the final amount of work that is needed to complete a given task, after the task is
complete. In Figure 3-1, AQWP is depicted as surpassing QAC, meaning that the
man-hours actually required are greater than the estimate. Ideally, AQWP equals
QAC at the end of a task.

As with QAC, there are some limitations to AQWP which merit discussion.
AQWP is recorded after the receipt of a verbal report of job completion (or job
progress) at the end of a work shift. Furthermore, one worker may report the com-
pletion of several tasks over the course of a shift, leaving it to the work supervisor to
determine the allocation of an eight-hour shift over the completed tasks. Database
entry of AQWP is manual. The data entry does not resemble the timestamp-driven
process of a shipping company; it does not generate the “pristine” data that one might
desire in an analytics-driven enterprise.

3.4.2 Treatment of Anomalous Data

In the course of researching this thesis, it became apparent that bookkeeping processes
exist which allow accurate reporting of man-hours at the availability level, but which
can cause curious anomalies in data at the system level. For example:

1. The SSN 767 DSRA of 2009 has an AQWP transfer charge of +48,745.7 man-
hours to Ship System Index (SSI) 581, and -48,745.7 man-hours to SSI 591.

2. The SSN 753 EOH of 2014 has an AQWP of -16,073 man-hours for SSI 043.

3. The SSN 762 DSRA of 2010, SSN 771 DSRA of 2012, SSN 776 EDSRA of 2015,
and SSN 767 DSRA of 2009 have small but negative AQWP values for SSIs
577, 000, 177, and 800, respectively.

In other cases, an numerical entry may exist for AQWP but not for QAC, or vice
versa. Sometimes an SSI may have a charge of 0.0 hours for both QAC and AQWP.
This thesis is not an assessment of QAC and AQWP data quality and it does not
investigate or judge the causes of anomalies that exist in the data. The treatment for
all cases of anomalous data is to delete them from the data set.

3.5 Tracking Work by Job Order Number

Every job in an availability is tracked with a Job Order Number, which is a 13-
digit identifier used for planning and budgeting purposes. The generic format of the
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alphanumeric identifier is:

12 ABC 345 67 D 89

The “345” portion of this number is known as the “Ship System Index” (SSI) and
identifies the system in which work will occur for this a job. The 315 systems analyzed
in this thesis are listed by SSI in Appendix A.3; only these three digits are used to
uniquely identify man-hour data throughout this thesis. This means that no inferences
can be made about subcomponents of systems; instead, all subcomponent data is
aggregated by SSI into two sum totals (QAC and AQWP) per system. One availability
may have work in anwhere from 80-200 systems, depending on the duration and
scope of the availability. Furthermore, one unique system may get maintained in
two different availabilities, yet have dramatically different man-hour expenditures
based on the unique states of that system. Because of this inherent variability, it
is difficult to make quantitative statements about maintenance at the system level
using some fixed performance metric. Instead, this thesis reframes the problem as an
investigation into the Navy’s ability to estimate man-hours for a task. While cross-
availability performance measurement is stymied by the high degree of variability at
the system level, the broader question of estimate validity adjusts with the scope of
work. Thus the first objective in the thesis statement, which is intentionally vague
to allow for exploration based on the constraints of available data, gains focus as a
targeted investigation of estimate accuracy.

3.6 Population Observations: Eliminating Outliers

The data structure created in this thesis is a 315x57 matrix, given the 315 systems
maintained across 57 availabilities. In a 315x57 matrix, there are 17,955 cells, but only
7,016 cells have cost data in them; all of the remaining cells of this matrix are not-
a-number or “NaN” values. Given the QAC and AQWP anomalies addressed above,
the question arises as to whether all 7,016 data entries are “believable” or otherwise
grounded in reality. One way to populate the 315x57 matrix is by placing the quotient
of AQWP/QAC in applicable cells and then observing trends. Section 4.1 details use
of the ratio AQWP/QAC as a method for data analysis, but here we will briefly
consider the methodological validity of this tool.

Of the 7,016 maintained systems, 477 entries of AQWP/QAC are larger than two,
implying that the actual work required was at least double the amount predicted in
the estimate. For those 477 entries, the mean is 42.7 and the standard deviation is
274.8.
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For the remaining 6,539 system values (all of which fall between zero and two),
the mean is 1.07 and the standard deviation is .35.

The data characteristics of the latter group are of great interest because they so
closely approximate a normal, or Gaussian, distribution. The vast majority of the
data is compact and consistent, while a small subset is extreme and variable. The
assumption made in this thesis is that the values in that small and variable subset of
data—477 out of 7,016 entries—can be rejected because either:

1. They are caused by data anomalies, or

2. They are caused by very small QAC values that divide into large AQWPs,
demonstrating more about small number division than about the Navy’s ability
to generate reasonable estimates.

When the maximum quotient in the entire set is 3,142.7, there is a clear impetus
to delete that value because it so clearly breaks the meaning inherent to the quotient
comparison. And if this value is to be deleted, then perhaps too the next maximum,
which is 2,860.7. And the next maximum of 2,656... Rather than wrestle with where
to draw the cutoff line for aberrant data values, we instead prefer to select a value
for its conceptual merits; in this case, “anything larger than two” is a good choice for
exemption from the data set based on mean and standard deviation characteristics.
This is not to say that there is nothing to be learned from those specific individual
outliers; to the contrary, many shipyard representatives have the uncanny forensic
ability to recreate the chain of events that resulted in a specific value. However, this
thesis seeks broad inferences that apply to all availabilities rather than insights from
case studies of outliers.

3.7 Regression Data

The second portion of this thesis explores the potential use of multiple linear regression
to improve QAC estimates. This implies that the error inherent to QAC is eliminable
and that large amounts of data can yield a predictive model which reduces that error.
Whether or not this is true, an ill-conceived regression model will yield a useless
result.

To build a good regression model, we must first recognize the relationships which
exist within the data. QAC is intended to predict AQWP—this implies that the
independent variable matrix must be comprised of QAC values and the dependent
“solution” matrix contains AQWP values. However, there are also important rela-
tional qualities within QAC data that inform the model. All SSIs in the 000- and
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900-series, as well as two specific 800-series, are contingent on the the work expected
for systems 100-800. Therefore, a one-way dependency relationship exists within the
data; additional 100 series work can result in a corresponding increase in 000 and 900,
but not the other way around. Therefore the regression model omits 000, 900, and two
of 800 series SSIs, instead investigating the QAC-to-AQWP relationship expressed by
the remainder of the SSIs.

Section 3.6 explicitly addresses the treatment of anomalous data; the regression-
based portion of this thesis also resolves the problem of anomalous data, albeit im-
plicitly. First, the regression models use direct man-hour data (no division or other
adulteration), eliminating the possibility of dividing by very small numbers to create
inflated values in the data. Second, the regression models exempt any SSI with fewer
than 14 observations, and in many cases exempted even more SSIs depending on the
need to generate a meaningful set of coefficients.3 Due to the fact that regression
models are more meaningful when derived from many observations (rather than very
few), this thesis employed a “pruning” process to arrive at the largest set of nonzero
regression coefficients. This method is discussed in Section 4.2.1, and the result of
this method is that it removes underrepresented SSIs from the model until there is
enough fidelity in the data to generate a set of nonzero coefficients and their asso-
ciated regression statistics. This ensures that anomalies are either eliminated from
consideration, or they are aggregated with other data of the exact same SSI which
results in a smoother data profile.

3SSIs with very little representation amongst the data drive the family of regression coefficients
to zero, resulting in a model with no predictive power.
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Chapter 4

Methods

There are two primary methods, or tools, used to test this thesis: the first is a high-
level observation of the total population of availabilities; the second is the creation
of two multiple regression models based on the same set of data. This chapter de-
tails the steps taken to create these tools, with the intent that this research can be
independently reproduced and verified.

4.1 Population Observations

To make meaningful observations about the characteristics of submarine availability
data, it first helps to consider what we expect to see in a process that produces a
random result. Given the metrics QAC and AQWP discussed in Section 3.4.1, we
expect that if a work estimate perfectly anticipates the work required, then 𝑄𝐴𝐶 =

𝐴𝑄𝑊𝑃 , and subsequently:

𝐴𝑄𝑊𝑃

𝑄𝐴𝐶
= 1

Using this baseline, we want to build an intuition about the extent to which a
process creates quotients which are less than one (overestimates) or greater than one
(underestimates). Given that this thesis studies 57 availabilities whose work estimate
quotients fall predominantly near one, the plots in Figure 4-1 show 57 points randomly
distributed between zero and two, as a baseline for our intuition.

Note that the dashed line illustrates the mean for each data set. As this is an
intuition-building exercise, the specific values of this data aren’t as important as the
general impressions that the visual plots create. Plots 1,2, and 3 in Figure 4-1 show
randomly distributed points in the range [0,2], but we don’t necessarily expect that
work estimates will be random. To the contrary, Section 3.6 demonstrates that they
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Figure 4-1: Hypothetical Process Data
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are very nearly Gaussian. Plots 4, 5, and 6 of Figure 4-1 show data generated with a
Gaussian mean (𝜇) of 1 and standard deviation (𝜎) of 1/3, which is very similar to our
data and is centered on the range [0,2] to maintain consistency. The visual differences
between plots 1-3 and 4-6 are immediately apparent, with Gaussian distributions
being "clustered" around one and becoming less prevalent at the extremes of the
range. Note that this is entirely by design; the Gaussian Process charts could be
made to resemble the random process charts or even to display nothing (on the range
[0,2]) by selecting different values of 𝜇 and 𝜎. However, such graphs would do nothing
to build our intuition as they wouldn’t resemble man-hour estimate data.

Next we consider the case of actual systems which exhibit the kind of charac-
teristics we expect from a Gaussian distribution. Figure 4-2 shows three different
submarine systems—170, 426, and 513—which exhibit the kind of quotient distribu-
tion that we now expect. Note in particular that a nontrivial number of quotients
fall below and above 1; this confirms the Gaussian tendency to generate comparable
numbers of over- and underestimates.
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Figure 4-2: Actual Data for Three Submarine Systems

Now that a standard of normalcy is established, we ask what would constitute
abberant or “interesting” data. To answer this, we must revisit the premise of this
conceptual framework; namely, that the quotient of one represents an estimate that
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exactly matched the actual work that was later required. Given that we can look
at the estimates for systems over many availabilities, we are primarily interested in
whether we consistently overestimate or underestimate work for a given system, in
spite of a range of differences such as shipyard, availability type, etc. In other words,
we want to know if a disproportionate number of quotients is greater (or less) than
one. Figure 4-3 shows a scatterplot of the 315 systems, where each system is plotted
according to two pieces of information:

1. Percentage of Availabilities Working the System: This counts the number of
times the system was worked and divides it by the total number of availabilities
considered (57). This helps us to rule out systems which do not have sufficient
representation in our data set to merit strong conclusions.

2. Clustering Factor (CF): Consider the number of availabilities where a system’s
quotient is less than one, and divide by the number of availabilities (57). Due
to symmetry, one minus this number equals the the percentage of systems with
quotients greater than one; the CF counts only the largest of these two values
such that the range is [0.5,1]. This value represents the extent to which system
estimates are “lopsided;” if there is an equal number of over- and underestimates,
the CF will equal 0.5, and if they are either all below one or all above one, the
CF will equal 1.

Points existing in the top right of this plot have both a high degree of representa-
tion across all availabilities, as well as very densely clustered quotients either above
or below one. Using an 80% representation rate and a CF of .85, we see that nine
systems meet these criteria and constitute an excellent starting point for investigating
submarine availability performance. In this thesis, systems meeting the above spec-
ified critera for representation and clustering are referred to as consistently poorly
estimated systems. All such systems are addressed in Chapter 5.
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Figure 4-3: Selecting the Most “Interesting” Systems

4.2 Regression Analysis

The second method to test this thesis is a multiple regression analysis to predict
New Work. A multiple regression model attempts to characterize the relationship
between independent variables (systems worked) and one dependent variable (avail-
ability cost). In the context of this thesis, a successful regression model would more
accurately predict AQWP for New Work than QAC. As addressed at length in Sec-
tion 3.7, the model would notionally “back out” the error inherent to QAC to provide
a more accurate estimate of how much work a new job will require. Therefore the
hypothesis being tested is that each independent variable (expressed as QAC) has a
predictive relationship with the resulting AQWP.

To test a model’s ability to predict New Work, it is necessary to have documen-
tation of the New Work that occurred in an availability, expressed both in QAC and
AQWP. Only 29 availabilities between PHNS and PSNS meet this requirement; these
availabilities are explicitly identified in Appendix A.2. Whereas the population ob-
servations in Section 4.1 concern a quotient, the regression models use the man-hour
values of QAC and AQWP, with one minor modification: all the New Work QAC and
AQWP is subtracted from the data. The intent of this is that it preserves the maxi-
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mum number of availabilities to create the best-quality regression possible, while still
providing fresh data that can be used to assess the model’s efficacy. Furthermore, the
ability to accurately estimate the impact of New Work on an availability is of great
interest to the Navy.

Each availability constitutes an “observation” of work; more specifically, each one
constitutes a family of observations on estimate/actual cost pairs for specific systems.
No single availability maintains all 315 systems, and very few systems are represented
in every availability. Attempting to generate a regression model for 315 independent
variables with only 57 observations is not possible. Formulated mathematically, there
are more variables than equations to solve for them; the system is indeterminate.
However, there are two straightforward ways of reducing the number of variables: the
first is to segment the availability data by SSIs; the second, to segment it by SWBS
groups. In each case, the goal is to produce a set of regression coefficients which each
multiply with an associated independent variable (QAC) and then sum to estimate
revised AQWP. A generic model for such a relationship is:

𝐴𝑄𝑊𝑃𝑟𝑒𝑣 = 𝑓(𝑄𝐴𝐶)

More specifically, for each i𝑡ℎ QAC value, the model will propose a corresponding
coefficient 𝜆𝑖; the sum of the products of these pairings is the revised estimate for
AQWP:1

𝐴𝑄𝑊𝑃𝑟𝑒𝑣 =
∑︁

𝜆𝑖 *𝑄𝐴𝐶𝑖

4.2.1 Regression by SSI

The original aproach for this thesis was conceived as a summation of all QAC data
and all AQWP data in order to obtain a regression model, but because the system has
too many variables, that approach is not valid. However, the availability cost data is
granular enough that it can be segmented into subcategories to reduce the number
of variables while maintaining the number of observations at 57. Instead of one
massive 57x315 multiple regression model, eight smaller models can be constructed by
selecting estimates for smaller batches of systems (informed by SWBS group) and by
using the AQWP obtained only for those systems across all 57 availabilities. Figure 4-
4 shows a miniaturized version of the 57x315 matrix developed for this research, with

1Note that the i values correspond to three digit numbers that do not increase linearly and
therefore do not lend themselves to a convenient summation notation starting with i = 1 and
proceeding to n.
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all of the SWBS 200 SSIs highlighted.2 This highlighted section, along with the
corresponding AQWPs, results in a 57x41 matrix which is solvable. Repeating this
method for the remaining seven SWBS groups breaks the data into smaller pieces
that can be solved piecemeal.

This solution is not without problems—some systems have little representation
across the 57 availabilities (this characteristic is evidenced by the horizontal white
bands of empty cells in Figure 4-4). Creating a regression model with so much missing
data most often results in coefficient matrices comprised entirely of zeroes. Given that
a model built from many data points is more valuable than one built with few, the
first step is to delete those SSIs with relatively low representation. This “pruning”
process begins by deleting all systems with 14 or fewer observations. Even after doing
this for each SWBS category, the derived regression coefficients have many zeroes.
This poses a twofold problem:

1. The regression model produces too many zero-value coefficients, which serve
no purpose in a predictive model because they eliminate (rather than scale)
a baseline estimate. Therefore, systems must be removed from the model to
improve its predictive power.

2. When it is time to validate this model using New Work data, deleted systems
will find no expression in the model. If there is a New Work item for which
there is no corresponding coefficient, this constitutes a missed opportunity to
provide an improved estimate.

The solution pursued in this thesis is to iteratively observe which systems have a
zero coefficient, find the one with the fewest number of observations, delete it, and
re-run the regression model for the remaining systems until there are no zero-value
coefficients. Chapter 5 discusses the results obtained by using the MATLAB “fitlm”
function to generate the regression models.

4.2.2 Regression by SWBS

Creating a multiple regression model using SWBS groups is straightforward compared
to the SSI method. As before, all New Work values are first subtracted from AQWP
and QAC. This secures a testable set of New Work data which can be used to evaluate
the regression model. Then, all QAC values are summed according to their first digit;

2The matrix displayed is actually 315x57, with SSIs as rows and availabilities as columns, but
all data was transposed prior to regression. This figure is not scalable and is only intended to help
readers understand the method.
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Figure 4-4: Master Matrix with Only Series-200 SSIs Selected

36



for instance, the estimates for systems 111, 112, 117, ... 191 are all summed into the
“100” group. Once this is complete for each of the 57 availabilities, and for SWBS
100-800, we have an 8x57 matrix of QAC values aggregated by SWBS group, and a
corresponding 8x1 matrix of AQWP values. Using the “fitlm” function in MATLAB,
we can generate eight regression coefficients which correspond to each SWBS group.
Finally, we multiply each New Work item (from one the 29 applicable availabilities) by
the corresponding coefficient to produce a revised estimate. Summing these revised
estimates permits direct comparison to the actual hours attained (AQWP); Chapter 5
discusses these results.
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Chapter 5

Results

5.1 Population Observations

There are nine systems across 57 availabilities for which there is consistent inaccuracy
in estimating the scope of work. These consistently poorly estimated systems are:

040 300 501
505 508 530
562 567 501

Plotting these systems about the target mean of 1 on the range [0,2] is particularly
interesting, given the time we spent building our intuition in Section 4.1. Figure 5-
1 shows these results. Note the extreme amount of clustering, whereby quotients
fall predominantly above 1 (with the exception of system 040, whose quotients are
predominantly below 1), indicating a consistent underestimation of work for these
systems.

5.1.1 Prioritizing Error Severity by System

In order to prioritize where future attention should be placed, is important to iden-
tify the precedence ranking of these estimates. First, a precedence ranking must
incorporate the severity of the over- or underestimate. To do this, we find the mean
estimate error for a system. This is graphically represented by the distance between
one and the dashed lines in Figure 5-1. Second, a precedence ranking must include
QAC, which captures the magnitude of work which can be directly compared to other
systems’ QAC values. By normalizing the multiple of mean estimate error and QAC,
we can examine a tier ranking of problematic systems. Table 5.1 traceably shows how
to derive the priority ranking for the nine systems of interest.1

1Decimal values in Table 5.1 are truncated for legibility.
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Figure 5-1: Observation Results for Nine Worst-Estimated Systems
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Note that system 901 dominates the other systems due to its relatively large
QAC. This is consistent across all projects and is caused because system 901 tracks
project management overhead for every availability; it is always present and is always
significant. We might consider excluding system 901 (and other similar SSIs) because
it is not true “wrench turning” work on a system, but it nevertheless meets the criteria
of consistently poor estimation, and constitutes an interesting insight.

SSI Population Average QAC (QAC)*(AvgDelta) Normalized Ordering
901 1.17 13412308 2317880.97 1.000
501 1.29 295269 85410.38 0.037
562 1.39 197434 76260.98 0.033
508 1.40 188736 75813.74 0.033
300 1.28 192106 53917.85 0.023
505 1.18 137653 25024.16 0.011
530 1.25 93134 23344.69 0.010
040 0.60 49501 19689.87 0.008
567 1.22 42439 9501.56 0.004

Table 5.1: Ranking Method for Systems with Poor Estimates

5.1.2 Using Subsets of the Data to Gain Insight

Another interesting question is how subsections of the data (availability type, ship
class, shipyard, and time period) compare to the aggregate. Having identified the nine
systems in Table 5.1, we ask how the family of consistently poorly estimated systems
changes depending on the “slice” of the data we observe. Note that the criteria for
consistently poor estimation remains the same: a system must have been worked in at
least 80% of the availabilities considered, and the system’s CF must be greater than
or equal to 0.85. Because these thresholds assess an integer divisor and dividend, the
number of poorly estimated systems that meet or exceed the thresholds is subject to
“inflation.”

This scenario is best interpreted as a classic “coin flip” question, where the like-
lihood of attaining an AQWP/QAC quotient greater than one is 50%, and the al-
ternative (a quotient less than one) is also 50%.2 Consider an example evaluating
the CF threshold of 85%. Using Depot Modernization Periods, which represent only
four availaibilities, all four must fall either above or below one, because 3/4 is 75%

2This is not exactly accurate, since AQWP/QAC can also equal one, but there exist only 100
quotients equal to one out of the 7,016 systems worked, so this analogy is sufficient for the qualitative
conclusions derived.
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which fails to meet the CF threshold. In a random process, the chance of getting 4/4
“heads” flips is equal to 0.0625. If we consider the aggregate data set, we need 49/57
(or more) “heads” flips—quotients above one—to satisfy the CF threshold. This has
a far lower probability of 1.3584e−8. This simple example illustrates the bias that
small sample sizes have towards false positives; furthermore, this effect becomes more
pronounced as the observed pool of availabilities shrinks. For the analysis below, data
subsets of 10 or fewer are dismissed as too small to be meaningful.

1. Availability Type

DMP: The data contains only four Depot Modernization Periods, which is
too small for a meaningful comparison to the aggregate.

DSRA: The data contains 24 Drydock Selected Restricted Availabilities
yielding seven systems of interest, which is comparable to the aggregate.

EDSRA: The data contains only four examples of Extended Drydock Se-
lected Restricted Availabilities, which is too small for a meaningful comparison
to the aggregate.

EOH: There were 14 Engineered Overhauls, and these feature 44 flagged
systems. This is a surprisingly high number, even accounting for inflation. This
suggests that a disproportionately high number of poor estimates exist in EOHs.

PIRA: There were 11 Pre-Inactivation Restricted Availabilities in the data
with 12 flagged systems. This is comparable to the aggregate.

2. Submarine Class

Los Angeles (688): The vast majority (54) of submarines examined in this
thesis were Los Angeles-class submarines. Of interest is the fact that remov-
ing Virginia-class submarines added one additional system of concern to the
aggregate nine, for a total of 10 flagged systems.

Virginia (774): Only three Virginia-class submarines existed in this study
(comprising three of the four EDSRAs). No meaningful insights can be derived
from this subset.

3. Shipyard

NNSY: Norfolk Naval Shipyard had six availabilities, which is too small for
a meaningful comparison to the nine systems from the aggregate.

PHNS: Pearl Harbor Naval Shipyard conducted 26 availabilites, which is
more than any of the other shipyards. The number of systems which meet the
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criteria for consistently poor estimation is 18, which is double the amount for
the aggregated data. This suggests that a disproportionately high number of
poor estimates exist at PHNS.

PNSY: Portsmouth Naval Shipyard followed a close second to PHNS with
22 availabilities, yet the number of systems which flag is only 13. This amount
is reasonably close to the aggregate 9, taking quotient inflation into account.

PSNS: Puget Sound Naval Shipyard had three availabilities, which is too
small for a meaningful comparison to the aggregate.

4. Time Period

2006-2011: The first half of the analyzed timeline has 34 availabilities with
eight flagged systems, which is comparable to the aggregate.

2012-2017: The remaining 23 availabilities are captured in the second half
of the timeline, with 12 flagged systems. This is comparable to the aggregate.

Figure 5-2 condenses the above information into a comparative visual. For the
aggregated data, it depicts the nine consistently poorly estimated systems in black;
it also depicts those same systems in black wherever they appear in smaller data
partitions. Beneath the identifier for each column is a number in parenthesis which
corresponds to the number of availabilities contained in that partition. All systems
are ranked from highest- to lowest-priority for future investigation, consistent with
the example in Section 5.1.1. This visual gives a sense of the work estimation problem
considered from many different perspectives. One interesting observation of the raw
data used to compile this thesis is that PHNS conducted 3/14 of the EOHs, while
PNSY conducted 9/14 EOHs; this suggests that PHNS estimates are not being domi-
nated by a disproportionate assignment of EOHs. Another worthwhile observation is
that the Lean 1.0/2.0 initiatives and the OPINTERVAL/OPCYCLE changes do not
result in significant differences in the number of erroneous estimates, as compared to
the aggregate, over time.
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530 178 034 025 530 042 231 530 567
040 111 211 505 501 714 040 300
567 132 567 567 508 211 505

054 028 040 562 540 553
547 237 204 530 237
552 308 515 040 040
508 567 567
606 558
562 505
708 246
300 607
426 040
204
501
502
534
231
530
307
236
714
540
567
558
505
553
533
564
529
211
303
846
832
435
040
440

Figure 5-2: Tier Rankings for Relevant Data Subsegments, Including Aggregate
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5.2 Regression Analysis

5.2.1 Regression by SSI

The method described in Section 4.2.1 yields the set of regression statistics found in
Appendices A.4 through A.11, which includes the regression coefficients. Those 88
coefficients comprise the following regression model by SSI:

𝐴𝑄𝑊𝑃 |𝑆𝑆𝐼 =
∑︁

𝜆𝑖 *𝑄𝐴𝐶𝑖

Expanding the model slightly for the benefit of the reader, the model is as follows:

𝐴𝑄𝑊𝑃 |𝑆𝑆𝐼 = 𝜆111 *𝑄𝐴𝐶111 + 𝜆131 *𝑄𝐴𝐶131 + ...𝜆847 *𝑄𝐴𝐶847

This model is applied to New Work QAC, where applicable, to create a revised
estimate for the impact of New Work on an availability. For New Work which has
no associated regression coefficient, the QAC value is left as-is to be summed with
the revised AQWP numbers (the premise is that this model will be agnostic to QAC
values which have no representation in the predictive model). The regression statistics
themselves merit a brief discussion, if for no other reason than to address the fact
that so many p-values are “large,” or at least larger than 0.05. Typically when a
p-value passes that threshold, it implies that the associated regression coefficient is
not statistically relevant, and that a random data set may have produced a similar
coefficient. This implies that for a coefficient with a high p-value, the hypothesis in
Section 4.2—that QAC has a predictive relationship with the resulting AQWP—is
false. Very small p-values are indeed desireable, and it is possible that eliminating
more SSIs from each “family” of models would improve the regression model. However,
as addressed in Section 4.2.1, there is tension between models that have nice statistical
properties and those that have enough fidelity to be of useful predictive value. In
other words, removing SSIs may improve the model’s statistics but neuter its ability
to predict anything. As for the R2 values, they are generally high or very high, which
is desireable for predictive models, but is not a standalone metric for model suitability.

The percent error inherent to the original estimate and to the revised (regression-
based) estimate can be directly compared to evaluate which estimate is better. Fig-
ure 5-3 shows the relative percent errors between the two types of estimates.

The results show that a regression model derived from SSIs does not anticipate
actual work better than QAC in any of the 29 availabilities. Furthermore, in most
cases the estimate is much worse than unadulterated QAC.
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Figure 5-3: New Work Estimates Derived from a SSI Regression Model

5.2.2 Regression by SWBS

The method described in Section 4.2.2 yielded a different set of regression coefficients
(and associated statistics) for the eight SWBS groups. Because this set of informa-
tion is much shorter than that produced by the SSI-based model, the information is
included here for convenience:

SWBS Group Coefficient 𝜆𝑖 Std Error t-Stat p-Value R2

(Intercept) -97613 25675 -3.8018 0.00042959 0.97
100 2.5554 0.22641 11.287 1.0264e-14
200 0.97487 0.8411 1.159 0.25256
300 7.8171 1.9598 3.9888 0.00024157
400 1.3346 0.43607 3.0606 0.0037173
500 2.0305 0.46506 4.3661 7.3306e-05
600 -3.5105 0.97948 -3.5841 0.0008277
700 -0.86144 1.5999 -0.53843 0.59293
800 1.6503 0.25295 6.5241 5.1912e-08

Applying these coefficients to the cumulative QACs by SWBS yields a revised
work estimate as expressed by the following regression model:
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𝐴𝑄𝑊𝑃 |𝑆𝑊𝐵𝑆 =
∑︁

𝜆𝑖 *𝑄𝐴𝐶𝑖

A slightly expanded model (to aid in comprehension) is as follows:

𝐴𝑄𝑊𝑃 |𝑆𝑊𝐵𝑆 = 𝜆100 *𝑄𝐴𝐶100 + 𝜆200 *𝑄𝐴𝐶200 + ...𝜆800 *𝑄𝐴𝐶800

Both the original QAC and the revised, regression-based estimate can be directly
compared to AQWP to derive respective error factors. Before looking at the plotted
results, we note that the p-values of SWBS coefficients 200 and 700 are much higher
than 0.05, indicating that randomly generated data may just as easily have produced
the associated coefficients; however, the remaining coefficients all have very small
p-values which suggests that they are highly statistically significant. Notionally, all
of the p-values would express statistical significance, but at a minimum, this model
appears to be better than anything produced under the SSI approach. Finally, the
R2 of 0.97 could mean that the model has good fit and that it has has high predictive
power. Figure 5-4 shows the relative errors between the two types of estimates.
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Figure 5-4: New Work Estimates Derived from a SWBS Regression Model

The results show that a regression model derived from SWBS groups anticipates
actual work better than QAC in only one out of 29 availabilities. The margin of
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improvement for that one availability is small; in all remaining instances, the margin
by which the model is worse than QAC is substantial.

5.2.3 Understanding the Regression Results

Regression by SSI and by SWBS clearly fail to produce better estimates. During
the course of this research, there arose several considerations that complicate the use
of multiple linear regression for shipyard man-hour data. The following constraints
explain why the regression models perform so poorly.

Observational Data is Asymmetric and Sparse

This study included 57 total availabilities, and no availability includes work for every
one of the 315 systems considered in this thesis. Therefore, at the system level, the
true number of observations was less than 57 most of the time. The typical range
of observations for system data is between 35 and 57. The nonstandard number
of observations at the system level is an unavoidable real-world constraint which
has an adverse effect on the quality of regression analysis. This contrasts with the
epidemiological studies cited as inspiration for this study; for instance, in determining
factors that contribute to an algae bloom, one has access to pH, temperature, salinity,
etc., with every single measurement. It cannot be overstated that the “holes” existing
in shipyard cost data represent a different kind of data set than that which is produced
from the sampling of lake water.

New Work is Asymmetric

One would expect that the regression coefficient for each SSI would be somewhat near
one, perhaps a bit higher or a bit lower, such that work estimates are compressed or
expanded slightly to arrive at a better estimate—this would be consistent with the
goal of “backing out” any error inherent to a QAC estimate. Inspection of the regres-
sion coefficients in Appendices A.4 through A.11 rebuts this expectation thoroughly,
as many coefficients are negative, and there exist many with magnitudes exceeding 5,
10 or even 20. For a population of New Work that includes every regressed variable,
each variable’s coefficient maps to a line of best fit derived from all variables. How-
ever, real-world availabilities typically do not have New Work in all possible SSIs. To
the contrary, New Work is unevenly distributed depending on the material condition
of the submarine. Consider the hypothetical case of a New Work estimate for system
178, with no other New Work for 100-series SSIs (the family of SSIs whose coeffi-
cients are derived with, and innately tied to, system 178’s coefficient). The estimate
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would be multiplied by -5.6878, and it would be severely imbalanced because of the
lack of other series 100 SSIs. This process would then be repeated for the sundry of
New Work items across SSIs in SWBS 200, 300, etc. The resulting estimate becomes
a Frankenstein of unmatched, standalone regression coefficients which do not enjoy
the “best fit” contributions of the other related coefficients in each respective SWBS
family. This same kind of imbalance occurs in SWBS-derived regression estimates
(which have only eight coefficients rather than 88), and is reflected in Figures 5-3 and
5-4, where regression-derived estimates are grossly more erroneous than unadulter-
ated QAC. This issue would persist even if the regression models had used fewer SSIs
to obtain “statistically pleasing” p-values (a critique acknowledged in Section 5.2.1).

Models Are Too Generic

This thesis did not investigate specialized regression models developed according to
the subsets explored in Section 5.1.2. It is possible that coefficients of better fit
could be attained by constraining the data set by availability type, shipyard, etc.
The drawback to this method is that some of the subsets are too small to generate
nonzero regression coefficients.

Models Are Overfit

The high R2 values represented in the regression statistics could conceivably imply
that the regression model is a good fit and has high predictive power; however, Fig-
ures 5-3 and 5-4 clearly show that the models have poor predictive power. As a
result, the high R2 indicates an overfit model which has too many predictor vari-
ables. Differently formulated regression problems would remove variables to improve
the predictive power of the model, but doing that would not be meaningful in the
context of this problem statement. For instance, a predictive model which is agnostic
to inputs from SWBS 700 is of little value when New Work must occur in this group.
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Chapter 6

Conclusions and Future Work

There are specific and actionable insights which can be derived from
analyzing large amounts of data at the system level across a broad cross-
section of shipyard availabilities...

This objective was highly successful. Section 5.1 defines and ranks specific systems
with consistently poor estimates. Furthermore, it also partitions the data in order
to gain insights about what drives these estimates to be consistently poor. Although
the SSI identification codes are never mapped to their respective systems in this
thesis, discussions with individuals who have worked in this field extensively have
confirmed that these systems correspond with the ship maintenance community’s
“tribal knowledge” of which systems are notoriously difficult. This thesis provides a
quantitative substantiation of that tribal knowledge, and enhances it with a priority
ranking that directs future work. An excellent path for follow-on research would be
to repeat this type of analysis at the subsystem level for the nine systems identified
in Section 5.1. This could determine whether individual components are driving the
consistently poor estimates for the entire system.

...Furthermore, a multiple linear regression model derived from that
data could be used to improve the Navy’s estimates for New Work in future
availabilities.

Unfortunately, this objective was unsuccessful. It would have been a fantastic
breakthrough to be able to provide the Navy with a process for improving New Work
estimates, but insights gained while attempting to do this affirm the unsuitability
of linear regression as a predictive tool for availability cost. The high degree of
variability inherent to a specific availability implies the need for a flexible tool, and it
may simply be that multipler linear regression is not the right tool for “solving” the
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complexity of availability planning and execution. Future work in this area includes
multiple linear regression of smaller, more coherent subsections of the data (such as
a regression model for only one availability type), nonlinear regression models, or
perhaps an investigation into the suitability of more advanced modeling techniques
such as neural networks.

In addition to the value of a better estimation model for availabilities, a ma-
jor concern that emerged during the course of this research is that of data quality.
Compared to major public companies in the United States, the U.S. Navy does not
produce the high-quality data that it needs in order to properly generate a digital
model that is realistic and which can be used to optimize and anticipate future work.
A documentation of the Navy’s data-generation pipeline would do much to define this
largely ignored institutional problem.
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Appendix A

Tables

NNSY PHNS PNSY PSNS
750 EOH 2012 698 DSRA 2009 691 PIRA 2007 711 EDSRA 2006
753 EOH 2014 698 DSRA 2014 700 PIRA 2009 758 DSRA 2007
756 DSRA 2007 699 DSRA 2011 700 PIRA 2014 759 DSRA 2008
764 DSRA 2009 701 PIRA 2009 706 DSRA 2007
765 DSRA 2010 705 PIRA 2011 706 PIRA 2013
770 DMP 2007 713 DSRA 2008 711 PIRA 2011

713 PIRA 2012 719 DSRA 2013
715 DSRA 2009 719 PIRA 2016
715 PIRA 2013 720 PIRA 2012
717 DSRA 2015 723 EOH 2008
721 EOH 2009 723 DSRA 2016
722 DSRA 2008 724 EOH 2007
722 EOH 2010 725 EOH 2009
724 DSRA 2012 751 EOH 2010
758 EOH 2014 752 EOH 2011
762 DSRA 2010 754 EOH 2013
763 DSRA 2012 756 EOH 2014
766 DSRA 2011 757 EOH 2013
770 DSRA 2014 760 DSRA 2008
771 DMP 2007 760 EOH 2015
771 DSRA 2012 767 DSRA 2009
772 DSRA 2014 772 DMP 2008
773 DMP 2008 774 EDSRA 2010
773 DSRA 2013
775 EDSRA 2012
776 EDSRA 2015

Table A.1: Availabilities Studied in this Thesis, by Shipyard
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PHNS PSNS
698 DSRA 2009 711 EDSRA 2006
698 DSRA 2014 758 DSRA 2007
699 DSRA 2011 759 DSRA 2008
701 PIRA 2009
705 PIRA 2011
713 DSRA 2008
713 PIRA 2012
715 DSRA 2009
715 PIRA 2013
717 DSRA 2015
721 EOH 2009
722 DSRA 2008
722 EOH 2010
724 DSRA 2012
758 EOH 2014
762 DSRA 2010
763 DSRA 2012
766 DSRA 2011
770 DSRA 2014
771 DMP 2007
771 DSRA 2012
772 DSRA 2014
773 DMP 2008
773 DSRA 2013
775 EDSRA 2012
776 EDSRA 2015

Table A.2: Availabilities with New Work Supporting Regression Analysis
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000 001 004 006 007 013 014 015 022 025 028 032 033 034 035 036 037 040 041 042
043 044 045 051 052 054 055 061 066 071 072 073 075 076 080 082 083 084 087 089
091 100 107 111 112 117 122 123 125 126 127 128 131 132 139 140 147 150 152 156
157 165 167 170 176 177 178 180 182 183 184 185 186 187 191 201 203 204 206 207
208 209 211 212 215 216 217 218 219 223 227 229 230 231 232 233 236 237 238 239
241 242 243 244 245 246 247 248 252 253 254 255 256 258 262 264 277 300 302 303
304 307 308 309 310 311 312 314 321 323 324 325 331 332 337 342 400 404 406 407
408 409 415 416 417 418 421 422 424 425 426 427 428 429 430 432 433 435 436 437
438 439 440 441 442 443 444 446 451 452 455 457 461 462 465 469 479 481 482 487
491 493 497 501 502 503 505 507 508 509 512 513 514 515 517 518 520 521 524 527
528 529 530 531 532 533 534 538 539 540 541 542 543 546 547 551 552 553 554 555
556 558 561 562 563 564 566 567 568 569 581 582 585 592 593 594 595 597 603 605
606 607 608 609 611 612 621 623 631 633 634 635 636 638 641 650 651 655 660 665
671 691 708 709 714 715 716 717 721 751 752 754 777 778 815 821 822 823 826 827
828 829 830 831 832 835 836 837 839 840 841 843 844 846 847 848 849 853 854 860
861 901 902 903 904 905 908 920 936 938 958 959 990 998 999

Table A.3: Ship System Indices Analyzed in this Thesis

SSI Coefficient 𝜆𝑖 Std Error t-Stat p-Value R2

(Intercept) -19769 8816.4 -2.2423 0.031191 .971
111 -1.7706 1.104 -1.6038 0.11749
131 2.1652 0.62152 3.4837 0.0013177
132 1.7152 0.16494 10.399 2.1629e-12
156 5.4956 2.7269 2.0153 0.051386
170 -0.72837 2.0603 -0.35352 0.72576
176 2.3567 0.22938 10.275 2.998e-12
177 -1.6454 2.147 -0.76639 0.44844
178 -5.6878 3.1268 -1.819 0.077232

Table A.4: Ship System Index Regression Statistics Within SWBS 100
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SSI Coefficient 𝜆𝑖 Std Error t-Stat p-Value R2

(Intercept) 1.0208e+05 2.5664e+05 0.39777 0.75899 .945
201 23.313 43.49 0.53605 0.68674
203 12.881 31.218 0.41262 0.75086
204 -20.159 46.038 -0.43787 0.73726
207 -44.664 78.038 -0.57233 0.66907
208 -2.3396 61.01 -0.038348 0.9756
209 3.9408 4.4156 0.89246 0.53614
211 -6.8019 29.05 -0.23415 0.85358
229 -47.301 195.61 -0.24182 0.84895
230 -5.5822 46.3 -0.12057 0.92361
231 -8.5768 59.76 -0.14352 0.90925
233 20.311 74.283 0.27342 0.83009
236 -33.762 59.965 -0.56303 0.67355
237 -6.379 31.777 -0.20075 0.87388
246 -35.911 87.621 -0.40984 0.75238
248 -2.6382 4.3443 -0.60728 0.65256

Table A.5: Ship System Index Regression Statistics Within SWBS 200

SSI Coefficient 𝜆𝑖 Std Error t-Stat p-Value R2

(Intercept) 15577 5895 2.6425 0.077493 .96
300 2.9716 0.50284 5.9097 0.0096769
302 -2.723 3.4052 -0.79966 0.48237
303 -2.778 2.7213 -1.0208 0.38247
304 -0.97392 6.1871 -0.15741 0.88492
307 0.17672 0.83116 0.21262 0.84525
308 -0.43196 1.6877 -0.25595 0.81454
309 -6.9416 3.9012 -1.7793 0.17323
310 10.818 4.2617 2.5384 0.084802

Table A.6: Ship System Index Regression Statistics Within SWBS 300
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SSI Coefficient 𝜆𝑖 Std Error t-Stat p-Value R2

(Intercept) -33759 17117 -1.9722 0.096058 .973
404 -1.7766 2.1413 -0.82966 0.43849
407 1.1379 0.29777 3.8214 0.0087469
415 3.6321 2.214 1.6405 0.152
426 1.6031 2.0563 0.77963 0.46524
429 -3.1374 2.6318 -1.1921 0.27823
430 4.4806 1.5241 2.9398 0.025954
435 1.8117 4.7604 0.38057 0.71663
437 -3.1639 7.1803 -0.44064 0.67491
438 -3.7605 4.1708 -0.90162 0.402
440 10.646 10.121 1.0519 0.33335

Table A.7: Ship System Index Regression Statistics Within SWBS 400

SSI Coefficient 𝜆𝑖 Std Error t-Stat p-Value R2

(Intercept) -70546 46872 -1.5051 0.37334 .996
501 0.60668 20.275 0.029923 0.98096
502 -0.71165 4.216 -0.1688 0.89354
503 12.55 19.953 0.62901 0.64255
505 1.6594 18.412 0.090124 0.94278
508 1.6805 8.4537 0.19879 0.87507
513 -40.303 42.05 -0.95846 0.5135
515 31.149 54.903 0.56734 0.67147
518 0.54171 3.9272 0.13794 0.91274
520 8.8227 14.075 0.62683 0.64355
529 26.418 67.651 0.39051 0.76299
530 -9.3367 15.747 -0.59292 0.65928
533 -0.37154 5.6619 -0.065621 0.95828
534 -28.09 79.736 -0.35229 0.78437
539 -13.549 14.176 -0.95573 0.51441
540 -16.009 22.366 -0.71578 0.60451
542 -19.522 52.208 -0.37393 0.77219
552 1.7395 0.76436 2.2758 0.26357
553 36.534 42.35 0.86266 0.54685
558 7.0646 14.495 0.48738 0.71129
561 -3.2609 14.434 -0.22592 0.85855
562 9.8975 8.1936 1.208 0.44022
564 29.857 30.822 0.9687 0.51012
567 20.59 32.182 0.6398 0.63765
568 19.079 13.144 1.4516 0.38402

Table A.8: Ship System Index Regression Statistics Within SWBS 500
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SSI Coefficient 𝜆𝑖 Std Error t-Stat p-Value R2

(Intercept) 16006 9961.9 1.6067 0.13213 .929
603 -23.029 51.118 -0.4505 0.65977
605 -1.386 0.56664 -2.446 0.029433
606 12.779 2.5936 4.9269 0.00027653
607 1.8674 1.3148 1.4203 0.17905
608 2.006 1.3446 1.4919 0.1596
609 -12.062 8.7714 -1.3752 0.19232
611 -1.7464 6.2783 -0.27817 0.78526
612 -9.4367 7.7923 -1.211 0.24744

Table A.9: Ship System Index Regression Statistics Within SWBS 600

SSI Coefficient 𝜆𝑖 Std Error t-Stat p-Value R2

(Intercept) -1484.4 3697.2 -0.40148 0.69111 .838
708 1.3207 0.58336 2.2639 0.031518
709 1.4138 1.5446 0.91536 0.36782
714 -0.088991 1.4999 -0.05933 0.95311
715 1.1214 0.25476 4.4019 0.00014191
717 2.1465 0.57603 3.7263 0.00087103

Table A.10: Ship System Index Regression Statistics Within SWBS 700

SSI Coefficient 𝜆𝑖 Std Error t-Stat p-Value R2

(Intercept) 21472 20792 1.0327 0.41026 .995
827 1.4382 0.70806 2.0312 0.17932
828 1.0981 0.10164 10.804 0.0084588
830 -0.8357 3.6625 -0.22818 0.84071
831 0.8476 0.28484 2.9757 0.096809
839 -0.91661 1.7572 -0.52162 0.65395
840 0.51593 1.5526 0.3323 0.77126
841 8.5328 13.558 0.62934 0.59343
844 0.60502 3.5103 0.17236 0.87902
846 2.5559 6.8794 0.37153 0.74591
847 -0.92986 3.8442 -0.24188 0.83141

Table A.11: Ship System Index Regression Statistics Within SWBS 800
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