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Abstract

This thesis demonstrates the use of exact equations to predict time-optimal mission
plans for a marine vehicle that visits a number of locations in a given dynamic ocean
current field. The missions demonstrated begin and end in the same location and visit
a finite number of locations or waypoints in the minimal time; this problem bears
close resemblance to that of the classic “traveling salesman,” albeit with the added
complexity of a continuously changing flow field. The paths, or “legs,” between all
goal waypoints are generated by numerically solving exact time-optimal path planning
level-set differential equations. The equations grow a reachability front from the
starting location in all directions. Whenever the front reaches a waypoint, a new
reachability front is immediately started from that location. This process continues
until one set of reachability fronts has reached all goal waypoints and has returned to
the original location. The time-optimal path for the entire mission is then obtained
by trajectory backtracking, going through the optimal set of reachability fields in
reverse order. Due to the spatial and temporal dynamics, a varying start time results
in different paths and durations for each leg and requires all permutations of travel
to be calculated. Even though the method is very efficient and the optimal path
can be computed serially in real-time for common naval operations, for additional
computational speed, a high-performance computing cluster was used to solve the
level set calculations in parallel. This method is first applied to several hypothetical
missions. The method and distributed computational solver are then validated for
naval applications using an operational multi-resolution ocean modeling system of
real-world current fields for the complex Philippines Archipelago region. Because the
method calculates the global optimum, it serves two purposes. It can be used in its
present form to plan multi-waypoint missions offline in conjunction with a predictive
ocean current modeling system, or it can be used as a litmus test for approximate
future solutions to the traveling salesman problem in dynamic flow fields.
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Chapter 1

Introduction

1.1 Motivation

Autonomous underwater vehicles (AUVs) are currently fielded world-wide by commer-

cial companies, militaries, and research institutions, and their use will only increase

in the coming years. Publicly, the United States Navy has released its Unmanned

Underwater Vehicle (UUV) Master Plan and it’s Autonomous Undersea Vehicle Re-

quirements for 2025 [US Navy, 2004; US Navy Undersea Warfare Directorate, 2016].

These documents lay out the acquisition strategy for the family of underwater vehi-

cles the future Navy needs. Figure 1-1 is a visual representation of the Navy’s UUV

acquisition plan as of April 2018. The Navy is committed to acquiring and deploy-

ing these vehicles as quickly as possible, while improving their on-board autonomy

through research and development.

There have also been recent organizational shifts which emphasize unmanned sys-

tems within the Navy. On Sept. 26, 2017, the US Navy stood up Unmanned Undersea

Vehicle Squadron 1, or UUVRON1, which is the first squadron dedicated to UUVs

[Ziezulewicz, 2017]. On Mar. 22, 2018 the Navy renamed Program Executive Of-

fice Littoral Combat Ship (PEO LCS) to PEO Unmanned and Small Combatants,

better reflecting the full breadth of that office’s oversight of unmanned surface and

subsurface systems

In short, the “unmanned” are coming - the hardware and vehicles are on the way.

The motivating question is, “How can we deploy these present and future vehicles

more intelligently through mission planning to better achieve mission success?” While

mission planning is important for both surface and sub-surface vehicles, this thesis

will focus on the undersea environment where communication is limited and a vehicle

can receive mission updates on a much slower time-scale.

In 2009, the US Navy sponsored a RAND corporation survey of UUV missions
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Figure 1-1: The US Navy has aligned all UUV acquisition efforts so that many inde-
pendant program offices are not duplicating efforts, and that investments in research
and technology are shared across platforms.

[Button et al., 2009]. Below are the seven mission areas recommended in the report:

1. Mine countermeasures (MCM)

2. Leave-behind surveillance sensors or sensor arrays

3. Near-land and harbor-monitoring

4. Oceanography

5. Monitoring undersea infrastructure

6. Anti-submarine warfare (ASW) tracking

7. Inspection/identification

Considering only gross navigational requirements, mission areas 2, 3, and 5 involve

a vehicle traveling to specific locations in the ocean, or “multi-waypoint missions.”

Mission areas 1 and 6 can be characterized as “reactionary missions,” requiring a

UUV to adapt to the situation based on sensor inputs, while areas 4 and 7 could be

a considered a hybrid of the two extremes.

The focus of this thesis will be to support those multi-waypoint missions by en-

suring UUVs take the optimal path in a realistic current environment. Path planning
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in ocean currents is especially important for UUVs due to their operating speeds rela-

tive to current speeds. Ocean currents of 1-2 knots are common, and currents can be

higher in littoral areas [Lermusiaux et al., 2011]. Propelled UUVs typically operate

between 2-5 knots and the majority of their power supply is dedicated to propulsion.

Slower vehicles, such as buoyancy gliders and wave gliders, have longer durations,

but may not be able to overcome even small currents. [Liao et al., 2016; Chien-Chou

et al., 2014]. Complicating mission planning further, ocean currents are dynamic,

changing speed and direction within the time frame of typical UUV missions. There-

fore, a UUV mission planner optimizing for time or energy must take these currents

into account.

Recent work has developed partial differential equations (PDEs), efficient numer-

ical schemes and computational systems to compute exact time-optimal paths in

certain ocean currents [Lolla et al., 2012, 2014a,b; Lermusiaux et al., 2016]. These

methods have been used to demonstrate path planning in realistic ocean re-analysis,

and in real-time with real UUVs [Subramani et al., 2017b; Lermusiaux et al., 2017a,b].

This method can improve a vehicle’s point-to-point travel time, but no method has

been demonstrated which applies this time-optimal path planning to overall mission

planning for multi-waypoint missions.

1.2 Overview

Chapter two describes an introductory background to UUV autonomy and mission

planning. Chapter three describes how this specific problem has been framed. It also

details the intended use case for this thesis. Chapter four describes the method used

to integrate past work in Time-Optimal Path Planning with a Traveling Salesman

Problem framework. Chapter five demonstrates the experimental results of several

test cases as well as several missions planned using a model of real-world current data

representing the Philippines Archipelago region. Chapters six concludes this thesis

and proposes several areas in which this work could be expanded in the future.
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Chapter 2

Background

2.1 Autonomy

Marine vehicle autonomy has been a field of rapid research and growth in recent

years. While there are numerous areas of autonomy, the dominant component of

marine autonomy is navigation. Navigation autonomy can range from simple compass

heading control to complex autonomy balancing desires of collision avoidance, mission

requirements, fault-tolerance, sensor fusion and efficiency [Gerlack, 2015; Woerner,

2017; Leavitt, 2017]. There is a great deal of research in all of these areas. However,

no amount of on-board intelligence will guarantee an optimal mission plan for a marine

vehicle without considering the surrounding ocean environment.

2.2 UUV Mission Planning

The most basic UUV mission planning software takes location inputs from the user

and transforms those inputs into propulsion and heading control signals. Ignoring

currents, this will result in a planned distance and duration for the mission. Prior

to launch, the human planner or the planning software must estimate the vehicle’s

energy usage along that path and ensure there is an adequate margin of safety for

the vehicle to be recovered before power is exhausted.

In basic systems, energy usage can be estimated using the cube law characteristic

of velocity and speed. The “hotel” loads which power control systems, and sensors

can be assumed constant over the mission. In more advanced systems, a UUV can

have a complex internal model of its own propulsion system’s energy usage as well as

the hotel load variation through a mission profile [Carolis et al., 2014; Carolis, 2017].
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2.3 Optimal Mission Planning

There is no true “completely-optimal” path for a vehicle to take in a real-world dy-

namic environment because there are so many trade-offs for a mission planner. Many

of these trade-offs rely on a user’s opinion an not objective, measurable quantities.

There are trade-offs between speed, energy, safety, mission effectiveness, risk, cost,

etc. For example, would you want your vehicle to take a path which has a high

likelihood of success but low likelihood of recovery or a medium likelihood of success

with high likelihood of recovery? Should the vehicle take the fastest path or the path

most likely to avoid detection? Should the vehicle complete its mission as quickly as

possible or maximize its energy reserve so that its tasking can be updated throughout

the mission?

In order to build the tools which present these choices to a future operator or

autonomy software, some base capability must be created. This thesis intends to

support creation of that capability by showing the time-optimal path for a multi-

waypoint mission. For clarity with respect to this thesis - the words “path planning”

will be used to describe the travel between a starting point (A) and ending point (B).

“Mission planning” will be used to describe the travel between a number of paths from

the start of a mission (A), through many waypoints (B, C, D, etc.), to the completion

of a mission (back to A). Three ways to determine those paths between points could

be Time-Optimal Path Planning, Energy Optimal Path Planning, and Path Planning

with Uncertainty.

2.3.1 Time-Optimal Path Planning

Of the three methods discussed here, Single Speed Time-Optimal Path Planning

(TOPP) is the most straightforward and requires the lowest amount of computation

time per path. A demonstrated TOPP methodology is to use level set equations to

grow a “reachability front” from the starting location, expanding the front at each

time interval, until all desired goal locations have been reached. This reachability

front represents the furthest points a vehicle could reach at any given time, as shown

in Figure 2-1. Whenever the reachability front has reached a given target, that is

the earliest point in time possible for that target to be reached along any path. A

particle tracking equation is then solved backward from that time to produce the

required headings at all times along the time-optimal path. This process has been

shown to provide good results and is the foundation of the current work of this thesis

[Lolla et al., 2014a,b, 2015].

It is important to emphasize that this method can be useful even in the absence

6



Figure 2-1: The reachability front can be represented by a level set equation which
grows from the origin until it reaches all objectives [Lolla et al., 2014b].

of currents. Geographically complex areas with many areas a vehicle needs to avoid

can present an operator or autonomy software with the difficult task of navigating

through the many possible routes. Figure 2-2 shows an example of many gliders

navigating through a complex island chain [Lolla et al., 2014a,b].

2.3.2 Energy-Optimal Path Planning

While time is important, it is more likely that energy is the limiting factor for a given

UUV mission. If the operator were to allow a range of speeds throughout a path,

there are an infinite number of paths which could feasibly reach the target at a given

time. Energy-Optimal Path Planning (EOPP) extends the TOPP method above

to a stochastic PDE-based optimization to compute minimum energy paths among

time-optimum paths [Subramani and Lermusiaux, 2016; Subramani et al., 2017a].

2.3.3 Path Planning with Uncertainty

In reality, all current prediction models will have inherent uncertainty, and these

path planning methods have so far assumed the current model is correct. Therefore,

a chosen path may be better or worse than the real-world optimum. In order to in-

corporate this risk, a method has been demonstrated which grows a reachability front

represented by not just one level set equation, but rather represented by stochastic

level-set partial differential equations [Subramani et al., 2018]. This method outputs

a range of possible paths for a range of risk tolerance from high-risk/high-reward

paths to low-risk/low-reward paths and everything in between.
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Figure 2-2: Multiple paths through a complex island chain. These paths would still
be difficult to plan regardless of current [Lolla et al., 2014a].

2.4 Traveling Salesman Problem

The traveling salesman problem has been of interest to mathematicians and re-

searchers for decades. Solutions to growing problem sizes were published regularly

over the years from a 49-city problem in 1954 up to that of 24,978 cities in 2004.

There are numerous books, papers, and theses related to the problem [Lam, 2005;

Applegate, 2006]. For large numbers of cities it becomes computationally infeasible

to assess all permutations of travel through brute force methods.

The power supply of a realistic UUV is limited, and therefore a mission with

dozens, hundred, or thousands of waypoints would require those waypoints to be

close together. As the distance between points decreases, the time-optimal path in a

dynamic current tends toward a straight line path. Therefore for realistic vehicles and

currents, the standard TSP solutions would be appropriate when large numbers of

cities are used. Additionally, due to the computational growth discussed in Chapter

4, the focus of this study is not solving many-city TSP, but to constrain the problem

to lower numbers where all permutations of travel may be accessed in a brute force

but efficient and exact method.
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2.5 Local versus Global Optimum

Even within the framework of using reachability front calculations for each leg, there

are several assumptions and methods which could be employed to reduce the compu-

tational requirements of this problem while leading to local optimum solutions. For

example, a four-waypoint mission solution space would contain 24 possible tours as

seen in Table 2.1. Of those, 6 tours would travel from B to C (underlined), and 6

from C to B (bold). If you assume that the calculation can only be “shared” when

the starting time is the same, then 10 calculations are needed for all options of B-C

and C-D start times. If, however, you assume that the B-C travel time is constant

or that even the B-C and C-B travels times are equal, the computation time is low-

ered. This, however, does not guarantee a global optimum solution. It is the goal of

this thesis to determine global optimum solutions rather than improve computational

speed through assumptions. Future work may investigate the trade-offs between these

goals.

ABCDEA ACBDEA ADBCEA AEBCDA
ABCEDA ACBEDA ADBECA AEBDCA
ABDCEA ACDBEA ADCBEA AECBDA
ABDECA ACDEBA ADCEBA AECDBA
ABECDA ACEBDA ADEBCA AEDBCA
ABEDCA ACEDBA ADECBA AEDCBA

Table 2.1: All 24 permutations of a mission which starts at point A, travels to four
waypoints (B, C, D, & E), and returns to point A. Legs which travel from BC are
underlined and CB are in bold. If these leg durations were assumed to be constant,
the problem would simplify, but the solution would no longer be guaranteed to be the
global optimum.

2.6 Philippines Archipelago Current Model

All of the path planning methods described in 2.3.1 through 2.3.3 require an a priori

current model of the operating area. The most useful operating areas would be large

enough in scale to demonstrate future Large Diameter (LDUUV) and Extra Large

Diameter (XLUUV) Unmanned Underwater Vehicles. To highlight the benefits of

this mission planner, the area would contain interesting geography and currents. One

such current model was selected from earlier research modeling ocean dynamics in

the Philippine Archipelago region [Burton, 2009; Lermusiaux et al., 2011]. Figure 2-3

shows the boundary of the current model overlaid on the actual Philippines geography.
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The red points indicate locations of real world US Navy Shipwreck sites, as found in

open source websites. These locations will be used in Chapter 5 to demonstrate UUV

missions in realistic currents.

Figure 2-3: The current data set used in this work was derived from earlier research
modeling the Philippines Archipelago [Lermusiaux et al., 2011]. The data is bounded
by the outer box as well as the land “mask” shown in blue. The red points indicate
locations of real-world US Navy shipwreck locations.
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Chapter 3

Problem Statement

3.1 Mission Definition

It is important to clearly define what is meant by a mission when discussing how

to optimize mission performance. The following mission types were developed for

consideration. Ultimately, the first mission type shown below was chosen as the most

relevant for this topic.

3.1.1 Unlimited Missions

The following mission types could be explored with no limit in mind regarding time

or energy. It would be relatively straightforward to adjust the current method from

a standard TSP problem to investigating types 2 and 3.

1. The vehicle begins and ends at the same location.

2. The vehicle begins at a “drop off” location and ends at a “pickup” location.

3. The vehicle is not recovered. The mission begins in one location and ends when

all targets are visited.

3.1.2 Time and Energy Limited Missions

All of the above mission types could also be explored with the additional constraints

of maximum time and/or energy usage. This would require additional front growth

calculations after reaching every waypoint to ensure the vehicle can return to it’s

pickup location without exceeding its limit. The problem with implementing this

limit is not conceptual but computational. The number of front growth calculations

in this case, 𝐽𝑙𝑖𝑚,𝑛 = 𝐽𝑛+𝑛+𝑛*𝐽𝑙𝑖𝑚,𝑛−1, where 𝐽𝑙𝑖𝑚,𝑛=0 = 1. A comparison of mission
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Number of Number of Unlimited Mission Time-Limited Mission

Waypoints Tours Front Computations Front Computations

𝑛 𝑛! 𝐽𝑛 = 1 + 𝑛 * 𝐽𝑛−1 𝐽𝑙𝑖𝑚,𝑛 = 𝐽𝑛 + 𝑛+ (𝑛 * 𝐽𝑙𝑖𝑚,𝑛−1)
1 1 2 2
2 2 5 7
3 6 16 25
4 24 65 105
5 120 326 531
6 720 1957 3193
7 5040 13700 22359

Table 3.1: In order to incorporate a time limit for a give mission, the mission planner
would need to calculate if the vehicle can return to the starting point after each leg
of a tour. Thus a time-limited mission would increase the number of computations
required, but only by a factor of less than 2.

types can be seen in Table 3.1. This corresponds to work done on the Orienteering

Problem and could be an area of future study [Gunawan et al., 2016].

3.2 Related Missions

There are numerous other related missions to which the travelings salesman concept

could be applied in dynamic currents. For example, a swarm of vehicles could travel

together while maintaining a required formation [Lolla et al., 2015]. Instead of sta-

tionary targets, there could be moving targets for ship interception missions and/or

moving obstacles to avoid [Mirabito et al., 2017; Lolla et al., 2015]. Risk can be in-

corporated into the path planning to account for uncertainties in the current model

[Subramani and Lermusiaux, 2018]. Finally, data learned from the vehicle’s onboard

power supply can be used to improve mission performance [Edwards et al., 2017].

Advanced autonomy software of the future may rely on certain aspects of all of these

foundational mission types.

3.3 Deployment Construct

It is generally accepted that most UUVs can be launched from a surface vessel and

have a mission duration measured in hours to days. The Navy expects to deploy

a prototype of its ship and submarine-launched LDUUV in 2019 with an expected

duration of five days. The concept for the US Navy’s XLUUV will be a large, pier-
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launched vessel with mission durations measured in weeks, up to 30 days. Therefore

missions will be limited to 5 days when starting in open water and 30 days when

starting from land. A vehicle speed of 3 knots (1.54 m/s) will be assumed for all

missions.

3.4 Software Requirements

It is assumed that a predictive current model of the operating area has already been

developed prior to application of these methods. The predictive current model will

be most effective with up to date and accurate measurements of the current condi-

tion. Therefore, the model would be developed as close as possible to the vehicle’s

deployment time. At this point, the mission planning method outlined in this thesis

would be used to determine the time-optimum path the vehicle will travel. That path

would then be loaded into the vehicle’s navigation software prior to launch.

For this thesis, we employed the MSEAS software (http://mseas.mit.edu/software).

MSEAS [Haley and Lermusiaux, 2010; Haley et al., 2015] is used for fundamental re-

search and for realistic simulations and predictions in varied regions of the world’s

ocean [Leslie et al., 2008; Onken et al., 2003; Haley et al., 2009; Ramp et al., 2009;

Lermusiaux et al., 2011, 2017a,b]. Applications include monitoring [Lermusiaux et al.,

2007], real-time acoustic predictions and data assimilation [Xu et al., 2008; Lam et al.,

2009; Duda et al., 2011], and ecosystem predictions and environmental management

[Beşiktepe et al., 2003; Cossarini et al., 2009]. Examples of real-time sea experi-

ments include: AWACS and SW-06 [Haley and Lermusiaux, 2010; Colin et al., 2013];

AOSN-II and MB-06 [Lermusiaux et al., 2006; Gangopadhyay et al., 2011; Ramp

et al., 2011]; QPE-08 and -09 [Lermusiaux et al., 2010; Gawarkiewicz et al., 2011;

Lermusiaux et al., 2018]; PhilEx-08 and -09 [Agarwal and Lermusiaux, 2011; Lermu-

siaux et al., 2011](e.g. Agarwal and Lermusiaux, 2011; Lermusiaux et al., 2011); and

NASCar and FLEAT [Lermusiaux et al., 2017a; Pan and Lermusiaux, 2018].

At the core of MSEAS are three solvers of governing fluid and ocean dynamics

equations. The first solver is part of an extensive modeling system for hydrostatic

primitive-equation dynamics with a nonlinear free surface, based on second-order

structured finite volumes [Haley and Lermusiaux, 2010]. It is used to study and quan-

tify tidal-to-mesoscale processes over regional domains with complex geometries and

varied interactions. The MSEAS capabilities include: fast-marching coastal objective

analysis [Agarwal and Lermusiaux, 2011]; estimation of spatial and temporal scales

from data [Agarwal, 2009]; initializations of fields and ensembles [Lermusiaux et al.,

2000; Lermusiaux, 2002; Haley et al., 2015]; nested data-assimilative tidal prediction
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and inversion [Logutov and Lermusiaux, 2008]; implicit two-way nesting and tiling

[Haley and Lermusiaux, 2010]; stochastic subgrid-scale forcing [Lermusiaux, 2006];

adaptive data assimilation, sampling and learning [Lermusiaux, 2007; Schofield et al.,

2010]; biogeochemical modeling [Beşiktepe et al., 2003]; Lagrangian coherent struc-

tures and their uncertainties [Lermusiaux et al., 2006]; many-task computing [Evan-

gelinos et al., 2011]; and systems for the control of such legacy codes [Evangelinos

et al., 2006]. Integral to our uncertainty prediction is our Error Subspace Statistical

Estimation for ensemble forecasting and data assimilation [Lermusiaux, 2006, 2007].

We also compare predictions to data: examples include physical-biogeochemical fore-

casts for the Philippines Archipelago [Lermusiaux et al., 2011]; uncertainty forecasts

for the Taiwan region during the Quantifying, Predicting and Exploiting (QPE) un-

certainty DRI [Gawarkiewicz et al., 2011; Lermusiaux et al., 2010, 2018]; and stochas-

tic reachability, path planning and adaptive sampling forecasts for gliders and floats

during NASCar [Lermusiaux et al., 2017a]. Recently, we also implemented the DO

primitive-equations for stochastic ocean predictions [Subramani, 2018; Subramani and

Lermusiaux, 2018].

The other two MSEAS solvers are non-hydrostatic fluid and ocean dynamics mod-

els. One is a simple 2D model using conservative finite-volumes implemented in Mat-

lab [Ueckermann and Lermusiaux, 2012](Ueckermann and Lermusiaux, 2012). This

simple 2D model has been very useful for diverse ocean-dynamics process studies and

for the incubation of advanced schemes and methodologies. The other model is a non-

hydrostatic 3D Navier-Stokes and Boussinesq code using the finite-element method.

Specifically, novel Hybridizable Discontinuous Galerkin finite-element schemes were

combined with projection methods for Navier-Stokes and Boussinesq non-hydrostatic

primitive-equations [Ueckermann, 2014; Ueckermann and Lermusiaux, 2016; Ueck-

ermann et al., 2018]. These models can be employed for targeted non-hydrostatic

biogeochemical process-studies, focusing on the variability of sub-mesoscale pathways

and mixed-layer processes.
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Chapter 4

Theory and Schemes

The major effort of this thesis was the integration of a Time-Optimal Path Planning

(TOPP) methodology with a Traveling Salesman Problem (TSP) framework. Once

that integration was complete and results were obtained, the focus shifted to improv-

ing efficiency by computing reachability front calculations in parallel on a cluster.

4.1 TOPP Integration with TSP

The TOPP method used was originally created to determine the time-optimal path

between two points, given a known starting time and current model. It has not, how-

ever, been applied to a traveling salesman problem until this point. In this traveling

salesman construct, if 𝑛 is the number of waypoints to visit, the number of possible

tours grows as 𝑛! and the number of legs within each tour is equal to 𝑛+1. Therefore

the goal of the mission planner is to fill an 𝑛! by (𝑛+1) matrix with the individual leg

times, and determine the minimum total time of all possible tours. Due to that fact

that a single reachability front calculation can start from one origin and determine

the time-optimal path to 𝑛 waypoints, there are less than 𝑛!*(𝑛+1) front calculations

required. The number of front calculations or “jobs”, 𝐽𝑛 = 1+𝑛 *𝐽𝑛−1, where 𝐽0 = 1,

as seen in Table 4.1.

For a given mission, a list is created showing all permutations possible through

all waypoints. Once all permutations are known, the mission planner works from

beginning to end along all tours, calculating the duration of each leg of the tour as

required. As discussed in 2.5, each reachability front job can be calculated once it’s

starting time is determined by the previous job.

15



Way- Reachability Series ∞-Core 100-Core

points Tours Front Computation Computation Computation
Calculations, Time [hrs], Time [hrs], Time [hrs],

𝐽𝑛 = 𝑇𝑠𝑒𝑟𝑖𝑒𝑠 = 𝑇∞ = 𝑇100 =

𝑛 𝑛! 1 + 𝑛 * 𝐽𝑛−1 𝑇𝑎𝑣𝑒 * 𝐽𝑛 𝑇𝑎𝑣𝑒 * (𝑛+ 1) 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑
1 1 2 1 1 1
2 2 5 2.5 1.5 1.5
3 6 16 8 2 2
4 24 65 32.5 2.5 2.5
5 120 326 163 3 4
6 720 1957 978.5 3.5 12.5
7 5040 13700 6850 4 71.5

Table 4.1: The standard computational explosion of the Traveling Salesman Problem
is further accelerated by the requirement to compute a reachability front for deter-
mining all leg durations. The total computation times shown assume an individual
computation time, 𝑇𝑎𝑣𝑒 = .5 hours

4.2 Parallel Computing of Reachability Fronts

A single laptop can process an entire mission in series, but the vast majority of

computations can be done in parallel. The only requirement to start a job is that

its immediately preceding job is complete. Therefore, the maximum number of jobs

which can be ran in parallel is equal to the number of tours, 𝑛!. The benefits of

parallel processing increase with the current model’s grid size as well as the number

of waypoints. Figure 4-1 shows that 16 jobs are required for a 3-waypoint mission.

All horizontal rows of jobs can be accomplished in parallel, and the vertical paths

from beginning to end show all possible tours for the mission.

While the number of parallel jobs can be equal to the number of tours, there is

also a practical limit of how many jobs a given computing cluster may process in

parallel. Beyond a hard-coded limit assigned to a user by the cluster’s administrator,

there are practical limits due to the fact that the solver is constantly referencing data

saved to file locations on a hard drive. The ”needle“ can only move so fast and the

I/O throughput becomes the true bottleneck to the computation. As will be shown

in Chapter 5, good results were obtained for up to six-waypoint missions processing

720 tours in parallel without manually controlling the amount of jobs submitted.

However the cluster’s scheduling software, Sun Grid Engine, maintains the number

of jobs actually executing below the number of open cores available. Improvements

to this aspect of the parallel processing software were not addressed in this research.
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Figure 4-1: To improve total mission computation speeds, reachability front calcula-
tions are broken down into as many parallel jobs as possible. Any job can start as
soon as the results of its preceding job have been saved. This figure demonstrates the
job flow for a three-waypoint mission.

4.3 Foundational Code

To simulate real-world UUV missions, a current model was used which represents

the currents and geography of the the Philippines Archipelago. This current model

consists of a grid 1518 km x 1671 km with velocities captured every 3 km and ev-

ery 3 hours. This data was generated from a higher fidelity, multi-resolution model

developed in previous research [Burton, 2009; Lermusiaux et al., 2011].

The “current model” exists as a folder of .mat files containing u and v velocities

for each point in a grid. The goal of the main solver function is to grow a level set

equation from the starting point until all goal locations are reached. The level set

represents the reachability front for the vehicle so that at any point in time the vehicle

can reach any location within the level set. In order to grow the level set equation,

the vehicle’s speed is combined with the current speed at each location along the level

set. To resolve a solution with finer temporal resolution than the original .mat files

represent, the current velocities are interpolated between the previous and next u and

v values for every point in the grid. To solve at a finer spatial resolution, the current

velocities are advected using a C++ advection code.

In order to create a mission planner, the original TOPP code was modified to

more flexibly accept varying start locations, start times, and goal destinations, as

well as to save the solver outputs into specified filenames for use later. This allowed
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a unique “job,” or reachability front calculation, to be created with whatever starting

conditions the mission planner requires. A job is submitted to the compute cluster’s

scheduler, Sun Grid Engine (SGE), whenever its predecessor job’s results have been

saved. Each SGE job is very simple, and consists only of the following four commands:

1. Open Matlab

2. Set ℎ𝑖𝑠𝑡𝑜𝑟𝑦 = 𝑋𝑌 𝑍,

where “𝑋𝑌 𝑍” is replaced by the job’s history within the mission

3. Run a Matlab script, “job_template.m”

4. Exit Matlab

The actual reachability front calculation is performed within this job_template.m

Matlab script and the results are saved in the appropriate format in order for the

cluster oversight script to know when to commence the following jobs. The general

process of job_template.m consists of the following:

1. Initialize variables and run setup scripts

2. Load pre-generated tour permutation list

3. Use “history” input to determine where job lies with the overall mission

4. Set locations for the start of front growth and goal waypoint(s)

5. Load mission start time from results file of a previous front growth

6. Run TOPP algorithm

7. Save results for times, paths, currents, headings in appropriate filenames

(i.e. resultABC, flowsABC, etc.)

4.4 Gathering Results

Once all result files have been generated, the n! by (n+1) matrix of leg times is

complete. The minimum total time for a given tour is selected as the optimum tour.

The corresponding optimal path can then be saved, plotted, or used as waypoint

inputs to a UUV navigation software. For viewing results, all heading, flow, and

path data has been saved for all jobs, and thus, all possible paths can be recreated.

Chapter 5 shows several examples of these outputs.
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Mission Inputs

- Starting Location/Time
- Goal Locations
- Current Model Location

Cluster Oversight

- Develop all Tour Permutations
- Create jobs as Required
- Assign jobs to SGE

Current Model

- Masked Regions
- 𝑋𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑥, 𝑦, 𝑡)
- 𝑌𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑥, 𝑦, 𝑡)
- X/Y <-> Lat/Lon Conversion

Gather Results

- Find Minimum Total Time
- Plot Optimum Paths

Figure 4-2: The calculations for an entire mission are started by one script which takes
user input for a mission’s starting configuration. The user inputs are used to begin
a cluster oversight script which generates individual reachability front calculations to
be completed by the computing cluster in parallel. All jobs reference the same data
within the current model to complete their calculations.
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Chapter 5

Applications

Three hypothetical test cases are presented below to help illustrate the method. These

are followed by several example missions with realistic conditions located in the Philip-

pines Archipelago operating area.

5.1 Test Cases

The three test cases below highlight different aspects of the method. Test Case 1

shows how various constant currents will affect mission outcomes of a very basic

two-waypoint mission. Test Case 2 shows how time-varying currents play a role in a

three-waypoint mission. Test Case 3 gives a visualization of how the parallel growth

of reachability fronts are occurring. These test cases are all non-dimensional and are

used to build intuition and gain insights.

5.1.1 Test Case 1: River Crossing Example

The following three examples show how currents play a role in a hypothetical river

crossing mission. The vehicle must cross the river, reach two waypoints, and return

back. Initially, the river has no current, and it makes no difference which order the

waypoints are visited, as shown in Figure 5-1. Next, a constant East current is applied

with magnitude, 𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = .5*𝑉 , where 𝑉 is the vehicle velocity. 𝑉 is assigned in the

Mission Setup script and is assigned a non-dimensional value of 1. In this case, there

is a slight benefit to traveling in the clockwise path. Finally, a "river-like" current is

applied with magnitudes along the center, 𝑈𝑐𝑒𝑛𝑡𝑒𝑟 = .75*𝑉 and edge, 𝑈𝑒𝑑𝑔𝑒 = .25*𝑉 .
In this case, the vehicle improves the total time by 20% by choosing the ACBA route.

The current distorts the reachability fronts as they grow. Therefore the time-optimal

paths follow the lowest velocity along the Northern shore and are not straight paths.
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Figure 5-1: Three Examples of a River Crossing Scenario
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5.1.2 Test Case 2: Time-Varying Current Example

While the previous example demonstrated how a current’s spatial dynamics affect

mission outcomes, the next example will demonstrate how temporal dynamics affect

the outcomes. In this example, the vehicle starts from a central location and visits

three surrounding waypoints. The vehicle starts at (0, 0), and the goal waypoints are

spaced at (.25, .25) intervals on a dimensionless grid from 0 to 1. The current has

a non-dimensional magnitude of approximately 𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = .5 * 𝑉 , where the vehicle

velocity is again, 𝑉 = 1. The current direction varies sinusoidally between Southwest

and Northwest, as shown in Figure 5-2. The resulting times and optimal paths are

shown in Figure 5-3. Initially, when no current exists, the paths of ABCDA and

ADCBA are equivalent. When a current is introduced with a time period, 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 1

(approximately the total mission time), these paths differ, and ABCDA takes 19%

longer to complete than the optimum, ADCBA. Of note, this new optimum takes less

time to complete than any of the original paths with no current. Finally, the frequency

of the current is increased by 50% of the original frequency. In this environment, the

optimum path becomes ADBCA which goes against intuition and the previous results.

If an operator chose an intuitive, shortest distance path, the mission would take over

11% longer to complete, even when taking time-optimal paths for each leg.
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(d) Snapshot 4
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Figure 5-2: These snapshots show a current which varies sinusoidally through time be-
tween Southwest and Northwest. For this test case, the frequency which the currents
shifts was varied, but the magnitudes were not changed.
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(a) Zero Current
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(b) Lower Frequency Current, 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 1
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(c) Higher Frequency Current, 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = .5

Path
Total 
Time 

*

% of 
Optimum 

**

Total 
Time 

*

% of 
Optimum 

**

Total 
Time 

*

% of 
Optimum 

**
ADCBA 1.29 100% 1.15 100% 1.35 111%
ADBCA 1.45 113% 1.49 130% 1.22 100%
ACDBA 1.45 113% 1.29 112% 1.45 119%
ACBDA 1.44 112% 1.51 131% 1.28 105%
ABDCA 1.44 112% 1.56 136% 1.49 122%
ABCDA 1.29 100% 1.37 119% 1.37 112%

Higher    
Frequency   

Current
Zero Current

Lower    
Frequency 

Current

* All times are unitless.
** Obtained by dividing tour duration by minimum duration for 
given scenario.

(d) Resulting Times

Figure 5-3: Test Case 2 demonstrates how varying a current temporally can produce
dramatically different optimal paths for a given mission. Subfigure (c) shows a very
non-intuitive optimal path which only results from an increase in current frequency.
It is important to realize this non-intuitive mission path is actually faster than the
original triangular path with no current.
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5.1.3 Test Case 3: Parallel Front Visualization

Test Cases 1 and 2 have built intuition to show how this method works for a known,

non-dimensional mission configuration. Test Case 3 makes the jump to real-world

currents and locations with the goal to demonstrate how the reachability fronts are

actually growing in parallel with each other. A vehicle begins at point A and is tasked

to visit points B and C before returning to A. Points B and C are approximately 60

nautical miles and 40 nautical miles, respectively, from the starting point. The mission

area is away from land to avoid complicating the plots, and local currents are between

0 and 1 knots of varying direction. The vehicle is traveling at 3 knots.

Figure 5-4 shows six snapshots in time during this two-waypoint mission. Subfig-

ures 1 and 2 show how the initial reachability front grew from point A to points B

and C. The front reaches point C first, as shown in the first subfigure. At this point

in time, it is possible to plot the time-optimal path between points A and C. The

time-optimal path from A to C is plotted in blue with the current along the path

represented by the arrows. The color of the path itself corresponds to the vehicle’s

effective velocity while the color of the arrows corresponds to local current velocity.

Subfigure 2 shows the original black front continuing to grow while the new green

front begins growing from point C. This plot captures the moment the original front

reaches point B. The subfigures continue through time with the path ACBA shown in

green and ABCA shown in red. Each plot captures a moment in time where one of the

waypoints is reached and a time-optimal path can be shown. Subfigure 5 shows the

earliest point in time that the mission can complete along the ACBA path. Subfigure

6 shows the final time that path ABCA completes.
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Figure 5-4: These six subfigures show how the five reachability front calculations
progress through time. The reachability front from A to B & C is shown in black. The
remaining calculations are shown in green for tour ACBA and red for tour ABCA. The
time-optimal path is shown between points as the colored line where color describes
the effective velocity. The current which influenced the path is shown by the arrows
projecting from the path along the way.
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5.2 Conceptual UUV Missions

The Philippines Archipelago region is an interesting operating area due to its complex

geometry and strong dynamic currents. There are large-scale open ocean dynamics

as well as small scale dynamics around islands, through narrow straits, and over steep

shelfbreaks [Lermusiaux et al., 2011]. This area will be used to demonstrate several

conceptual UUV missions. The first two missions will show two large three-waypoint

missions of durations assumed within the range of the XLUUV (less than 30 days).

Those will be followed by smaller five and six-waypoint missions within the LDUUV

capability (less than 5 days).

5.2.1 Mission 1: Three-waypoint Shipwreck Inspection

Mission 1 demonstrates a vehicle leaving a central position and visiting the shipwreck

sites of USS PC-1129 near Manila Bay, USS Barbel on the Southern tip of Palawan,

and USS Cooper near the Port of Ormoc. By substituting “shipwrecks” with “subsea

infrastructure”, this could represent mission-type 5 of the RAND survey of UUV

Mission, Monitoring Undersea Infrastructure (Section 1.2) [Button et al., 2009].

As the crow flies (a straight-line path ignoring currents and land), the targets are

166, 340, and 196 nautical miles from the starting location. Assuming a constant, 3

knots, the time-optimal tour, ABDCA, completes the mission in 18.83 days and the

slowest tour, ADCBA, would take 24.6 hours or 5.4% longer.

The 5% improvement itself is not impressive, but there are several important

points to consider about these results. A key takeaway is that the shortest-distance

path is not necessarily the fastest. If the optimum order path is run in reverse

(ACDBA), the mission would take 22.2 hours (4.9%) longer and is the second slowest

time.

Figure 5-5 shows it is also important to consider that the overall geography may

weigh into path selection. The second slowest path, ACBDA, takes a drastically

different route, geographically, avoiding the narrow, complex route between D and C.

It may be worth the additional 3.6 hours to avoid this area completely. Additionally,

if there is a desire to avoid the long Northern (B-C) or North-Western (B-D) paths

for operational reasons, this method would reveal the trade-offs in time associated

with avoiding those areas.

It should also be pointed out that this mission plan assumes that the underlying

current model is accurate. Realistically, lower confidence should be given to the model

at times past its predictability limit, and missions this long are most likely beyond

what a real-world current model can predict with high accuracy. A vehicle will most
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likely need to receive updates throughout a mission this long in order to keep on a true

optimal path. Finally, a 5% difference between best and worse-case paths means that

other factors should be weighed more heavily than just waypoint-order when planning

this mission. However, once the waypoint order is decided, there is no reason that

these time-optimal paths should not be used.

In summary, Mission 1 shows some unique aspects of time-optimal mission plan-

ning but also gives perspective to some weaknesses inherent to the process. The latter

can be addressed by existing MSEAS schema for uncertain currents (Subramani and

Lermusiaux [2018]) and onboard routing (Lermusiaux et al. [2016]).
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Path

Tour 
Duration 

(Days)

Hours 
beyond 

optimum
% of 

Optimum*
ADCBA 19.85 24.60 105.4%
ADBCA 19.58 18.00 104.0%
ACDBA 19.75 22.20 104.9%
ACBDA 18.97 3.50 100.8%
ABDCA 18.83 0.00 100.0%
ABCDA 19.40 13.70 103.0%

* Value obtained by dividing tour 
duration by the minimum tour duration

Figure 5-5: Mission 1 Results: First, all paths of all tour are shown with color
corresponding to the list of tours and associated durations compared to the optimal.
The optimum route, ABDCA, is then plotted separately with the color along the path
(and color bar) corresponding to the vehicle’s effective velocity. The arrows along the
path show the magnitude and direction of the current along the way.
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5.2.2 Mission 2: Three-Waypoint Constrained-Route Shipwreck

Inspection

Mission 2 demonstrates a vehicle leaving the port of Ormoc and visiting the shipwreck

sites of USS Ommaney Bay lying West of Panay Island, USS Samuel B. Roberts lying

East of the Semirara Islands, and USS Princeton lying east of Lamon Bay. As the

crow flies (a straight-line path ignoring currents and land), the targets are 200, 110,

and 285 nautical miles from the starting location. Assuming a constant, 3 knots,

the time-optimal path, ABCDA, completes the mission in 15.80 days and the slowest

path, ACBDA, would take 2.35 days (15%) longer.

Figure 5-6 shows that the complex geography of the islands forced tight constraints

on the vehicle paths, but nowhere is the time-optimal path a straight line. This

demonstrates that the TOPP method is very useful, even in areas with little current.

A human plotting these courses manually through complex island chains would be

forced to string together hundreds of separate straight line segments into a vehicle

path. The area where current can be seen to play the biggest role is the divergence

of paths from C to D in the Western area. It is also interesting to notice that,

depending on the time which the vehicle would pass the small crescent island in the

South-Western area (Homonhon Island) the vehicle either went to the East or West

of the island.

Given that this mission is only three waypoints, it is feasible that a human could

have manually plotted courses for the all tour possibilities and narrowed down to

either ABCDA or ADCBA as the two best choices (shortest distance). The difference

of 12 hours can be considered negligible, given the uncertainties involved with 18-day

time scale of the current model. However, as the number of waypoints scales a manual

process becomes infeasible. To investigate this, missions with more waypoints will be

explored.
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Path
Tour 

Duration 
(Days)

Hours 
beyond 

optimum

% of 
Optimum*

ADCBA 16.31 12.10 103.2%
ADBCA 18.82 72.40 119.1%
ACDBA 16.80 23.80 106.3%
ACBDA 18.16 56.50 114.9%
ABDCA 17.16 32.50 108.6%
ABCDA 15.80 0.00 100.0%

* Value obtained by dividing tour 
duration by the minimum tour duration

Figure 5-6: Mission 2 Results: First, all paths of all tour are shown with color
corresponding to the list of tours and associated durations compared to the optimal.
The optimum route, ABCDA, is then plotted separately with the color along the path
(and color bar) corresponding to the vehicle’s effective velocity. The arrows along the
path show the magnitude and direction of the current along the way.
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5.2.3 Mission 3: Five-Waypoint Harbor Inspection Mission

with Varying Start Times

For higher waypoint missions, there were multiple reasons to focus on smaller scale,

LDUUV-type missions. As the number of waypoints increases, the number of reach-

ability front calculations increases quickly. Additionally, as the distance between

waypoints increases, the time per calculation increases. However, the most dramatic

improvement comes from the fact that if the distances are smaller, a smaller current

dataset can be used. For the TOPP solver implemented, the entire current grid is

updated at every time step for U and V current velocities, and thus the computation

time can be drastically improved by extracting a smaller data set. This does affect

our results, as there is not point in using current data where it is known the UUV

will not go (i.e. outside range of vehicle or inaccessible due to geography).

For the next example, an area around the Sulu Archipelago region was extracted as

shown in Figure 5-7. This scenario represents mission-type 3 of the RAND survey of

UUV missions, near-land and harbor monitoring (Section 1.2) [Button et al., 2009]. A

UUV is launched from a surface ship (marked with a circle) and inspects five locations

within a harbor (marked with stars). The inspection points were laid out in a perfect

square with one point in the center, so that there were multiple tours with an identical

straight-line distance. By varying the mission start times over the course of a few

days, the same mission requires varying optimal paths as shown in Figure 5-8.

A five-waypoint mission produces 120 tours, requiring 326 reachability front cal-

culations. The total computation time on the cluster for each mission plan was

approximately 11 minutes. This highlights that smaller missions can be planned in

real-time with the most recent current model available before launching a vehicle.

This is feasible, and MSEAS has demonstrated the ability to re-compute real-time

paths for real UUVs due to a change in operations [Subramani et al., 2017b].

32



Figure 5-7: Sulu Archipelago Five-Waypoint Mission Conditions: A smaller dataset,
shown in red, was extracted from the larger dataset, shown in blue. This improves
computational speed by removing areas the vehicle will never need to reach. The five
objective locations were placed in a perfect square with one point in the middle. The
mission was intended to simulate a UUV launched from a host ship and inspecting a
harbor.
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Figure 5-8: Mission 3: Harbor Inspection - The four paths shown are the optimal
paths for the same mission with no change in mission setup except varying the time
the vehicle was launched from the host ship. The color bar and color of the path
show the vehicle’s effective velocity, and the arrows show the speed and direction of
the current along the way.
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5.2.4 Mission 4: Six-waypoint Mine Clearance Mission

The traditional search for mines consists of driving “lawn-mower” patterns, scanning

the bottom with active sonar, which is uniquely well accomplished by UUVs as rec-

ommended by the RAND survey. There is little for time-optimal path planning to

contribute to this lawn-mower process since maintaining straight-line paths supports

data collection. However, after processing of the sonar data, and identifying a num-

ber of mine-like objects, a follow up mission is normally required for closer inspection

and/or neutralization at each location of interest. The next example illustrates a

UUV traveling to six randomly placed objects near the Balabac Straight. Figure 5-9

shows both the area of data extracted and the mission initial conditions. The UUV

starts its mission from a surface ship approximately 50 nm from the centroid of these

objects. All six waypoints were randomly placed within a 40nm by 40 nm square and

lie at a depth of approximately 100m of water.

 116oE  117oE  30'  30'  118oE  30' 

 30' 

   7oN 

 30' 

   8oN 

 30' 

   9oN 

Figure 5-9: Balabac Straight Six-Waypoint Mission Conditions: A smaller dataset,
shown in red, was extracted from the original dataset, shown in blue in order. This
improves computational speed by removing areas the vehicle will never need to reach.
The mission was intended to represent a mine clearance mission in which a vehicle is
launched from a host ship in the straights and visits six randomly placed objectives.

All permutations of a six-waypoint mission result in 720 unique tours. The total

durations of these tours are plotted in Figure 5-9. As is expected with many-city

traveling salesman problems, there are a few tours which are close to being optimum

and a wide range of tour which are nowhere near optimum. The fastest tour duration

is 2.26 days while the slowest is 33 hours (61%) longer. The fastest four tours are
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highlighted with red stars. The time-optimal paths of these four tours are shown in

Figure 5-11.
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Figure 5-10: A six waypoint mission produces 720 permutations and their resulting
tour durations. The four fastest tours are starred in red.

All four of these tours result in nominally the same duration, especially considering

the inherent uncertainty of the current model. Therefore, this would present an

operator with four tours to choose from. The best tour may be that which investigates

a more important area first; the first subplots shows that tour AFGDCBEA would

clear the northern shipping route first while the others would leave point G until

later in the mission. The best tour may also avoid an enemy sensor or ship; the

second subplot shows that tour AGEBCDFA would stay furthest from the island to

the South-East.

The actual computation of all 720 tour durations resulted from the parallel pro-

cessing of 1957 reachability front calculations, and the total processing time was 1

hour and 7 minutes. This computation time is much smaller than the actual mission

durations of 2-3 days. Referring to Chapter 4, an infinite cluster could have processed

up to 720 jobs in parallel. The MSEAS cluster has 440 nodes, and could have had

other processes using resources at the time. Therefore, it is unlikely that more than

440 jobs could have been actually processing in parallel. This highlights how efficient
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the process currently is and that there is room to improve processing speeds if needed

for larger real-world mission.

Figure 5-11: Mission 4: The four fastest tours of a mine clearance mission are shown.
The durations are nearly equal, so they would present an operator or an autonomy
software with four choices to complete a mission in a time-optimal fashion. The color
bar and color of the path show the vehicle’s effective velocity, and the arrows show
the speed and direction of the current along the way.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has demonstrated the use of exact equations to predict time-optimal mis-

sion plans for a marine vehicle that visits a number of locations in a given dynamic

ocean current field. By computing every permutation of this traveling salesman

problem in dynamic currents, all variations in spatial and temporal dynamics are

accounted for, ensuring the global optimum is known. Even though the method is

very efficient and the optimal path can be computed serially in real-time for common

naval operations, for additional computational speed, a high-performance computing

cluster was used to solve the level set calculations in parallel. How these jobs were

separated and executed in parallel was explained in detail with practical limitations

addressed. It has been shown that mission plans can be calculated much faster than

actual mission durations, and can therefore me used to update missions in real time.

Future autonomous vehicles could either receive updates from the shore or calculate

optimal tours and paths throughout a mission based on changing current forecasts or

mission objectives.

This methodology was first applied to several hypothetical test cases to demon-

strate different aspects of the theory. It was then validated for naval applications

using an operational multi-resolution ocean modeling system of real-world current

fields for the complex Philippines Archipelago region. Four conceptual UUV mis-

sions were shown which range in scale from small scale LDUUV missions lasting two

days, to large scale XLUUV missions over two weeks long. All of these missions were

computed efficiently and quickly enough to be used in real-time for actual missions.

Because the method calculates the global optimum, it serves two purposes. It

can be used in its present form to plan multi-waypoint missions in conjunction with

a predictive ocean current modeling system, or it can be used as a litmus test for
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approximate future solutions to the traveling salesman problem in dynamic flow fields.

6.2 Future Work

As discussed in Chapter 2, there are countless other ways to optimize a marine vehi-

cle’s mission besides time. Future work could extend this method in order to account

for other mission factors.

6.2.1 TSP Improvements

The goal of most TSP research has been to improve the computation speed by in-

telligently determining an optimal path without requiring all permutations to be

calculated. Many basic TSP improvements such as path pruning could be applied

to this thesis work to improve on the brute force method currently used. The size

of the dataset could also be optimally chosen based on a give mission, but these im-

provements were outside the scope of this thesis. If a high-waypoint mission is to be

planned on a large grid, especially with onboard electronics on a vehicle, then this

method could become inefficient fairly quickly. However, by guaranteeing the global

optimum is known, this method can be used as a litmus test for further research into

this computationally difficult problem.

6.2.2 3D TOPP Integration

Currently, the model used assumes a constant depth for the vehicle. By integrating

a 3D TOPP algorithm and 3D flow fields, there could be many interesting and useful

results. For example, the vehicle could take advantage of vertical velocities as well

as beneficial currents at various depths. In his Master’s Thesis, Chinmay Kulkarni,

developed a 3D TOPP and demonstrated its use in realistic currents with multiple

vehicle types from UUVs to buoyancy gliders [Kulkarni, 2017].

6.2.3 Energy Optimization

Energy is the most common limiting factor for marine vehicles which are typically

powered by an onboard battery. Extending this method to accounting for energy-

optimal mission plans given the same current information is the first step down this

path. However, by incorporating other data into the model, there could be further

improvements. For example, a cloud cover model could be combined so that a solar

powered surface vehicle is simultaneously expending power to move and taking in
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power from the sun. Additionally, a sea state model could be incorporated to provide

speed inputs for a wave glider [Kulkarni, 2017].

6.2.4 Orienteering Problem

In the classic orienteering problem, the goal is determine what subset of a large set

of waypoints can be visited and in what order, given a time limit. Weights could

be assigned to each waypoint, communicated its relative importance, and the goal

of the solver would be to maximize a mission’s score within its energy and/or time

requirements [Gunawan et al., 2016].

6.2.5 Moving Tasks and Masks

To further add complications and realism to the problem, the waypoints themselves

could be allowed to move. This could represent a mission which must observe moving

targets along with visiting stationary waypoints. Additionally, stay out zones around

moving objects could be represented by a moving mask within the current model

[Lolla et al., 2015; Mirabito et al., 2017].

6.2.6 Real World Testing

While a real-world test of the TOPP algorithm has been demonstrated between two

points, to fully demonstrate this capability in a real UUV mission, there are several

steps remaining. A predictive current model must be generated for the operating

area in the days or hours leading up to the vehicle launch. The results of this method

can then be used as inputs to the vehicle’s onboard navigation software. The vehicle

would need to “race” an identical vehicle at the same time in order to compare results.
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