
Inertia Compensation of a Planar Robot for Human
Upper Limb Interaction

by

Jessie Thorup

B.S., Tufts University (2012)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Mechanical Engineering

May 18, 2018

Certified by. .
Neville Hogan

Sun Jae Professor of Mechanical Engineering
Thesis Supervisor

Accepted by .
Rohan Abeyaratne

Professor of Mechanical Engineering Graduate Officer

2

Inertia Compensation of a Planar Robot for Human Upper

Limb Interaction

by

Jessie Thorup

Submitted to the Department of Mechanical Engineering
on May 18, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

This thesis documents the development of software and a control system for the
InMotion2 planar robot. Software was developed to provide sensor input processing
from the robot encoders and force/torque transducer, and output processing for the
robot motors. A controller scheme was developed to compensate for the natural robot
configuration-based inertia as well as friction and un-modeled dynamics. The inertia
compensator was designed using an inertial admittance model and a nonlinear robust
adaptive tracking controller based on sliding mode control. A hybrid control mode
was developed in which impedance control was used to enforce a virtual constraint
and inertia compensation acted along the constraint. The controller proved to be
stable throughout testing and provide the desired inertia. The accuracy of the inertia
compensation was within human perception limits for modest inertia references.

Thesis Supervisor: Neville Hogan
Title: Sun Jae Professor of Mechanical Engineering

3

4

Acknowledgments

I would like to thank Neville Hogan for accepting me into the Newman Lab and

helping me find a project that aligns with my interests. Neville has been an inspiring

teacher and a patient advisor. In the Newman Lab I have been able to expand my

understanding about control systems beyond aircraft engines and gained new per-

spective. Joe Davidson and Meghan Huber have both provided invaluable assistance

with the inertia compensator project and getting the InMotion2 robot up and running.

I would like to thank Paul LoPiccolo, Tom Martyn, and Paul Patoulidis for giv-

ing me the opportunity to attend MIT and allowing me travel to school during work

hours each week. In doing so I have gotten hands-on experience with controls hard-

ware and system design that I will be able to use for the rest of my career.

I would also like to thank Chris for going through this experience with me, and

Mikey for being there every step of the way – I couldn’t have done it without you.

5

6

Contents

List of Figures 11

List of Tables 13

1 Introduction 17

1.1 Background . 18

1.1.1 History of the InMotion2 . 18

1.1.2 The Need for Inertia Compensation 19

1.2 Robot Control Strategies . 22

1.2.1 Interaction Control Stability 22

1.2.2 Survey of Inertia Compensation Strategies 23

1.3 Overview of Thesis . 28

2 The InMotion2 Upper Limb Robot 29

2.1 Hardware . 29

2.1.1 Motor Servo Drivers . 30

2.1.2 Encoders . 32

2.1.3 Force/Torque Transducer . 32

2.2 Dynamic Model of InMotion2 . 33

2.2.1 Inertial Dynamics . 33

2.2.2 Motor Torque and Applied Force 37

7

2.2.3 Friction and Model Uncertainty 40

3 The InMotion2 Software 43

3.1 Real Time Software . 44

3.2 User Interface . 44

3.2.1 Virtual constraint controller 45

3.2.2 Data logging . 48

3.3 FPGA Firmware . 49

3.3.1 Encoder Measurement . 50

3.3.2 Force/Torque Measurement 52

3.3.3 Output processing . 54

4 Inertia Compensation 57

4.1 Admittance Model . 58

4.1.1 Applied Force . 59

4.1.2 Unconstrained Reference . 61

4.1.3 Constrained Reference . 62

4.1.4 Differential Inverse Kinematics 67

4.2 Adaptive Tracking Controller . 68

4.2.1 Sliding Surface . 68

4.2.2 System Dynamics . 69

4.2.3 Stability . 71

4.2.4 Parameter Tuning . 75

5 Implementation and Testing 79

5.1 Initial Condition Response . 79

5.1.1 Unconstrained Compensation 79

5.1.2 Constrained Compensation . 82

5.2 Human Interaction . 84

8

6 Conclusions and Future Work 91

6.1 Conclusions . 91

6.2 Future Work . 92

6.2.1 Controller Bandwidth . 92

6.2.2 Force Measurement . 93

6.2.3 Adaptation . 93

6.2.4 Human Testing . 95

A Operating the InMotion2 97

A.1 Running the robot . 97

A.2 Running the inertia compensator . 99

A.3 Modifying LabVIEW code . 100

A.4 Fixing a corrupted cRIO . 101

B Software Description 103

B.1 Parameter Lists . 103

B.2 RT processor code . 107

B.3 FPGA code . 111

References 139

9

10

List of Figures

1-1 InMotion2 Robotic Arm . 19

1-2 Inertial Ellipsoids of MIT-MANUS beta prototype 20

1-3 Gil et al. System Model [12] . 24

1-4 Gil et al. System Model with Virtual Contact [12] 24

1-5 Colonnese et al. Virtual Mass Impedance Controller [14] 26

1-6 Aguirre-Ollinger et al. Admittance Controller [13] 27

1-7 Aguirre-Ollinger et al. Emulated Inertia [13] 27

2-1 National Instruments compactRIO 30

2-2 System Architecture . 31

2-3 Inertial model . 34

2-4 Clamped Robot Configuration . 39

2-5 Static Torque Test . 39

2-6 Dynamic Torque Test . 41

3-1 LabVIEW User Interface . 45

3-2 Virtual Constraint Parameters . 47

3-3 Virtual Constraint Stability . 49

3-4 Velocity Filter . 51

3-5 InMotion2 well-conditioned region . 55

4-1 Inertia Compensator Block Diagram 58

11

4-2 Measured Forces when Freely Moving About Circular Constraint . . . 60

4-3 Force deadband . 61

4-4 State Space Representation . 69

4-5 Static Torque Test: Zoomed In . 76

5-1 Uncompensated Speed and Direction 80

5-2 Compensated Speed and Direction 81

5-3 Compensator Accuracy . 81

5-4 Circular Virtual Constraint Without Inertia Compensation 83

5-5 Tangential Speed With Inertia Compensation 83

5-6 Human Interaction Test Trajectory 84

5-7 Uncompensated Inertia . 85

5-8 Compensated Inertia, mass=1kg . 87

5-9 Compensated Inertia, mass=2kg . 87

5-10 Compensated Inertia, mass=3kg . 87

5-11 Compensated Inertia, mass=4kg . 88

5-12 Compensated Inertia, mass=5kg . 88

5-13 Compensated Inertia, mass=6kg . 88

5-14 Compensator Error . 89

5-15 Inertia Differential Perception and 2-𝜎 Controller Accuracy 90

6-1 Sliding Variable 𝑠 . 94

6-2 Adaptive Parameters . 95

12

List of Tables

2.1 Motor Control Pin Diagram . 31

2.2 Encoder Request Codes . 32

2.3 Decoder Pin Diagram . 32

2.4 Force/Torque Pin Diagram . 33

2.5 Robot Link Properties . 34

B.1 User Inputs . 104

B.2 Control Inputs . 104

B.3 Output Parameters . 104

B.4 Input Parameters . 105

B.5 Inertia Compensation Values . 106

B.6 run.vi Inputs . 107

B.7 run.vi Outputs . 107

B.8 fetchFTbias.vi Outputs . 108

B.9 buffer.vi Inputs . 108

B.10 limit.vi Inputs . 109

B.11 limit.vi Outputs . 109

B.12 circle.vi Inputs . 109

B.13 circle.vi Outputs . 109

B.14 bundle.vi Inputs . 110

13

B.15 bundle.vi Outputs . 110

B.16 logData.vi Inputs . 111

B.17 display.vi Inputs . 111

B.18 display.vi Outputs . 111

B.19 storeFTbias.vi Inputs . 111

B.20 runFPGA.vi Inputs . 112

B.21 runFPGA.vi Outputs . 112

B.22 inFPGA.vi Inputs . 113

B.23 inFPGA.vi Outputs . 114

B.24 decodeFPGA.vi Outputs . 114

B.25 radFPGA.vi Inputs . 115

B.26 radFPGA.vi Outputs . 115

B.27 predictFPGA.vi Inputs . 115

B.28 predictFPGA.vi Outputs . 116

B.29 deltaFPGA.vi Inputs . 116

B.30 deltaFPGA.vi Outputs . 116

B.31 addFPGA.vi Inputs . 116

B.32 addFPGA.vi Outputs . 116

B.33 normFPGA.vi Inputs . 117

B.34 normFPGA.vi Outputs . 117

B.35 meterFPGA.vi Inputs . 117

B.36 meterFPGA.vi Outputs . 117

B.37 velFPGA.vi Inputs . 118

B.38 velFPGA.vi Outputs . 118

B.39 derivativeFPGA.vi Inputs . 119

B.40 derivativeFPGA.vi Outputs . 119

B.41 ftFPGA.vi Inputs . 119

14

B.42 ftFPGA.vi Outputs . 120

B.43 readFPGA.vi Inputs . 120

B.44 readFPGA.vi Outputs . 121

B.45 ftFilterFPGA.vi Inputs . 121

B.46 filterFPGA Outputs . 121

B.47 ftBiasFPGA.vi Inputs . 122

B.48 ftBiasFPGA Outputs . 122

B.49 coordFPGA.vi Inputs . 122

B.50 coordFPGA Outputs . 123

B.51 faultsFPGA.vi Inputs . 123

B.52 faultsFPGA.vi Outputs . 123

B.53 timeFPGA.vi Outputs . 123

B.54 EMG.vi Inputs . 124

B.55 EMG.vi Outputs . 124

B.56 outFPGA.vi Inputs . 125

B.57 outFPGA.vi Outputs . 125

B.58 safetyFPGA.vi Inputs . 125

B.59 safetyFPGA.vi Outputs . 126

B.60 inertiaFPGA.vi Inputs . 126

B.61 inertiaFPGA.vi Outputs . 126

B.62 humanFPGA.vi Inputs . 127

B.63 humanFPGA.vi Outputs . 127

B.64 refXyFPGA.vi Inputs . 129

B.65 refXyFPGA.vi Outputs . 129

B.66 vProjFPGA.vi Inputs . 129

B.67 vProjFPGA.vi Outputs . 130

B.68 adOrthoFPGA.vi Inputs . 130

15

B.69 adOrthoFPGA.vi Outputs . 130

B.70 refAngleFPGA.vi Inputs . 131

B.71 refAngleFPGA.vi Outputs . 131

B.72 invertFPGA.vi Inputs . 132

B.73 invertFPGA.vi Outputs . 132

B.74 negJdotFPGA.vi Inputs . 132

B.75 negJdotFPGA.vi Outputs . 132

B.76 multFPGA.vi Inputs . 132

B.77 multFPGA.vi Outputs . 133

B.78 errorFPGA.vi Inputs . 133

B.79 errorFPGA.vi Outputs . 134

B.80 YaFPGA.vi Inputs . 134

B.81 YaFPGA.vi Outputs . 134

B.82 a-lawFPGA.vi Inputs . 135

B.83 a-lawFPGA.vi Outputs . 135

B.84 adaptFPGA.vi Inputs . 135

B.85 adaptFPGA.vi Outputs . 136

B.86 frictionFPGA.vi Inputs . 136

B.87 frictionFPGA.vi Outputs . 136

B.88 finalFPGA.vi Inputs . 136

B.89 finalFPGA.vi Outputs . 137

B.90 force2torqueFPGA.vi Inputs . 137

B.91 force2torqueFPGA.vi Outputs . 137

B.92 motorFPGA.vi Inputs . 137

B.93 scaleFPGA.vi Inputs . 138

B.94 scaleFPGA.vi Outputs . 138

16

Chapter 1

Introduction

Human beings can move with astounding agility, accuracy, and coordination when

considering the physical sensory and motor mechanisms with which we are equipped

[1]. The scientific community has a somewhat limited understanding of the control

mechanisms that the human neurological system employs, especially when considering

constrained motion or interaction. A better understanding of how humans perform

this sort of motion would facilitate the development of machines used in human-robot

interaction, robots used for contact or manipulation tasks, and strategies for neuro-

motor rehabilitation.

Insight into human motor control strategies can be gained from studies in which

humans perform very specific movement tasks while fixing as many extraneous vari-

ables as possible. An interactive robot is a useful tool for such studies, as its response

can be programmed to respond to the human in whatever manner is desirable. Con-

strained motion can be simulated by programming a virtual constraint whereby any

movement of the robot’s end-effector orthogonal to the constraint results in the robot

forcing itself back towards the constraint. This simple control scheme, while effective

at enforcing constrained motion, does not fix extraneous variables introduced by the

17

robot such as configuration-dependent friction or inertia. This thesis aims to elim-

inate these extraneous variables so that human neuro-motor control studies can be

performed effectively.

1.1 Background

1.1.1 History of the InMotion2

The MIT-MANUS was a robot developed between 1989 and 1991 in the MIT New-

man Laboratory for Biomechanics and Human Rehabilitation for the use of robotic

physical therapy. The design was documented by Jain Charnnarong [2]. It consisted

of two direct-drive brushless DC motors attached to a 5-bar linkage system with a

handle at the end-effector. The robot moved in the horizontal plane at a height that

was comfortably reached by a sitting person. The robot was designed for patients

with motor impairment to grasp the handle and perform reaching exercises with the

help of the robot actuation. The back-drivability of the direct-drive motors allowed

for the end-effector to easily move around the workspace without the assistance of

the motors [2]. The MIT-MANUS was tested in a clinical environment and proved to

be an effective tool for neuro-rehabilitation by Hermano Igo Krebs and Neville Hogan

[3, 4], so a lower cost beta-prototype was developed by Debo Adebiyi in 1998 which

included newer actuators and position sensors [5]. The beta-prototype was charac-

terized in 1999 by Craig Foster and an adaptive tracking controller was developed for

the robot which uses position control to move the robotic arm about the workspace [6].

The company Interactive Motion Technologies adapted the MIT-MANUS and de-

veloped the InMotion ARM [7]. Interactive Motion Technologies was acquired by

Bionik Laboratories in 2016. The company’s InMotion2 therapy robot is in currently

in use in the Newman Lab at MIT, shown in Figure 1-1. As with the original MIT-

18

Figure 1-1: InMotion2 Robotic Arm

MANUS design, the InMotion2 robot is powered by two direct-drive brushless DC

motors. The robot’s position is measured with an encoder mounted on each motor. A

force transducer mounted on the end-effector measures the externally applied force,

and a handle is mounted on the force transducer which is free to rotate about the

vertical axis. If a person were to sit facing the robot, they could comfortably grip

the handle and push the robot end-effector about the workspace in the 𝑥 (left-right)

and 𝑦 (front-back) directions, and the handle will freely rotate in order to allow the

person’s grip to take on the desired orientation.

1.1.2 The Need for Inertia Compensation

The InMotion2 and other similar robotic systems have been widely used for both

clinical rehabilitation and studies of human motor control. These robots are typically

highly back-drivable so that they can easily move about the workspace. However even

though the dynamic effects of the motors themselves are reduced, the joint-linkage

system provides differing dynamic characteristics in the Cartesian plane. For instance

a 10 cm movement in the x direction of the workspace might cause minimal movement

19

Figure 1-2: Inertial Ellipsoids of MIT-MANUS beta prototype

of the robot joints joints and the robot inertia would feel less heavy. An equivalent

10 cm movement in the y direction of the workspace could cause all of the joints

to move through a considerable angle and the robot would feel more heavy. Craig

Foster characterized this configuration-dependent inertia for the beta prototype of

the MIT-MANUS as ellipsoids in Cartesian space, shown in Figure 1-2 [6].

For many applications the inherent back-drivability of such a robot provides suffi-

cient characteristics for rehabilitation or human study purposes. However a need for

a more constant inertia profile exists. In the MIT Newman Lab, Joe Doeringer studied

variables that affect intermittency in constrained upper-limb movement for his PhD

thesis in 1999 [8]. He performed human crank-turning experiments and examined the

position and velocity data in an attempt to isolate the cause of intermittency in hu-

man constrained motion. Such an experiment required constant dynamics across the

workspace because transiently changing apparent inertia could cause the appearance

of intermittency whether or not it was produced by the human. For this reason the

experiments were performed on a physical crank which lacks the nonlinear dynamics

introduced by the robot. However in his thesis Doeringer points out that the physical

20

crank limited the flexibility of the experiments, as a robot would have the flexibility to

relax away the the constraint, change the constraint shape transiently, or to subtract

off the inertia of a subject’s limb [8]. However the nonlinear dynamics of the robot

rendered these types of experiments impossible, as inertia compensation controllers

did not exist at the time. In 2016, Brian Wilcox performed similar studies on the

InMotion2 robot using a simple virtual constraint impedance controller to simulate

constrained motion on the robot and compared the results to Joe Doeringer’s crank

turning study. Wilcox found that the velocity profiles from the robot studies, espe-

cially for the faster turning experiments, did not line up well with Joe Doeringer’s

crank turning results. He theorized that this could be due to the nonlinear inertia

profile introduced by the robot [9]. In 2017 Ryan Koeppen analyzed constrained mo-

tion studies on the InMotion2 robot but confined the experiment to extremely slow

movements to simulate quasi-static conditions [10]. Studies of faster constrained mo-

tion would have been infeasible in part due to the configuration-dependent dynamics

of the robot.

This issue has also been noted outside of the Newman Lab. In 2007 Mahvash and

Okamura noted that dynamic properties of a surgical teleoperator including robot

inertia and friction impaired the performance of surgical operation tasks by masking

haptic forces and reducing the ability of the operator to modulate position. They

designed a position-exchange controller that used a feedforward term that attempted

to cancel out system dynamics with 70% accuracy [11]. In 2009 Gil et al. devised a

linear controller that used force feedback to decrease the apparent inertia of a haptic

device and compensate for the dynamics of the operator’s arm [12]. In 2011 Aguirre-

Ollinger et al. designed a lower limb exoskeleton to aid in walking but noted that

the heaviness of the exoskeleton caused fatigue and reduced gait frequency. They

designed an inertia compensator that used a feedback loop on acceleration to coun-

21

teract the inertia of the exoskeleton [13]. In 2012 Colonnese and Okamura designed

an inertia compensator to characterize the effect that the cerebellum has on motor

control in human subjects with ataxia [14]. In 2017 Erwin et al. performed a study

analyzing the effect of exoskeleton robot dynamics on smoothness in wrist pointing

tasks. They found that the increased inertia of the flexion-extension degree of free-

dom facilitated the smoothness of the wrist movements compared with radial/ulnar

deviation. Erwin noted that inertia compensators are difficult to implement and can

become non-passive [15].

The implementation of a robot control system that compensates for the dynamics

of the robot to create the haptic illusion of a point mass at the end-effector would be

useful in all of the applications listed above, and be invaluable way to push forward

the study of human motor control.

1.2 Robot Control Strategies

1.2.1 Interaction Control Stability

The InMotion2 robot, when in operation, is a two-part system; the robot which should

exhibit predictable behavior within certain bounds of unpredictability, and the hu-

man, which for all intents and purposes can be considered an unpredictable part of

the environment. A system with mechanical admittance responds to imposed forces

with motion; a system with mechanical impedance responds to imposed motion with

forces. For two systems to interact with each other, one system must behave with

mechanical impedance and the other must behave with mechanical admittance [16].

In 1989 Ed Colgate and Neville Hogan explored criteria for coupled stability of linear

time-invariant systems. They determined that for a system to be stable when con-

nected to an arbitrary passive environment, it must have a positive real impedance

22

or admittance which can be represented by a passive physical equivalent system [17].

If force feedback control is used, programming the apparent mass to less than half

of the natural inertia of the system as seen by the end-effector will result in non-

passivity [18]. If the admittance of the controller is less than the natural admittance

of the end-effector, i.e. the programmed apparent mass of the end-effector is larger

than the mass of the end effector, the system can achieve passivity [19]. However

Buerger and Hogan argue that passivity is too strict a criteria for coupled stability

when the dynamics of the environment are not completely unknown. For robots that

are known to interact with humans, the control designer can make assumptions about

the bounds of human dynamics and thereby design a controller in which the whole

system experiences coupled stability [20].

1.2.2 Survey of Inertia Compensation Strategies

There are a number of different ways to control the apparent inertia seen at the end-

effector of a robot, and the controller type should depend on the goal of the inertia

compensation.

Feedforward Force Scaling

In 2009, Gil et al. [12] desired reduced inertia for their robotic systems but did not

require that their systems take on a specific inertia. Their robotic system (LHIfAM),

shown in Figure 1-3 was modeled as a linear plant 𝐺(𝑠). Their system measured the

force at the end-effector 𝐹ℎ and subtracted off the dynamics of the operator’s arm

𝑍ℎ(𝑠), then used scalar gain 𝐾𝑓 to provide a feed-forward force controller to reduce

the apparent inertia of the system.

This approach to controlling inertia with a scalar gain 𝐾𝑓 = 2 was successful at in-

23

Figure 1-3: Gil et al. System Model [12]

creasing the admittance of the robot by 9.5 dB. This controller was extended to the

simulation of a virtual contact in which was modeled by stiffness 𝐾, shown in Figure

1-4. The filters shown were implemented to limit the noise of the force measurement

signal. This strategy, which simply amplified the force applied to the robot, was effec-

Figure 1-4: Gil et al. System Model with Virtual Contact [12]

tive for reducing the apparent inertia of a linear system for which natural acceleration

is naturally proportional applied force. Actuating the system with a scalar multiple

of the sensed force transformed the natural response of the system from 𝐹 = 𝑚𝑎 to

𝐹 (1+𝐾𝑓) = 𝑚𝑎, scaling down the apparent inertia from 𝑚 to 𝑚
1+𝐾𝑓

. However a more

sophisticated approach must be taken with a nonlinear system such as the InMotion2

robot, which does not have a natural response of 𝐹 = 𝑚𝑎. Simply adding a force

scalar without regard to the dynamics of the system could decrease the apparent

inertia but would also increase the system’s nonlinearities.

24

Feedforward Inertia Canceling

In 2007, Mahvash and Okamura [11] created a controller (𝑓𝑐) that modeled the linear

friction (𝑓𝑓), gravity (𝑔), inertia (𝑚), and damping (𝑏), of their tele-robotic system

based on measured position (𝑥𝑚) at a certain configuration and directly canceled the

effect of these forces using a feedforward term. They then used proportional control

to achieve desired position (𝑥𝑑) of the controller with proportional gain 𝑘 [11].

𝑓𝑐 = 𝑓𝑓 + 𝑔 + 𝑚̂𝑥𝑚 + 𝑏̂ ˙𝑥𝑚 + 𝑘(𝑥𝑚 − 𝑥𝑑) (1.1)

This strategy eliminated the need for measuring force feedback but depended on an

accurate model and exact knowledge of the system parameters. Additionally, the

controller only compensated inertia while the system was moving, as static friction

cannot be estimated without a force measurement. It is effective for reducing operator

workload but such a strategy cannot completely compensate for the dynamics of the

system in the presence of modeling errors, nor does it force the robot to respond with

a specified inertia characteristic. Additionally, even though local stability could be

guaranteed for a linearized system, that gives no guarantee of global stability.

Virtual Mass through Impedance Control

In 2012 Colonnese et al. designed an inertia compensator rendering the desired mass

as an impedance rather than an admittance [14]. Their system model is shown in

Figure 1-5. The top half of the figure denotes how the the human operator was mod-

eled as an impedance controller that output a force 𝐹ℎ(𝑠) according to the difference

between a desired trajectory 𝑋ℎ(𝑠) and actual trajectory 𝑋(𝑠). The bottom half of

the figure denotes the robot controller. The system calculated the acceleration of the

end-effector by taking the 2nd derivative of measured position (𝑋(𝑠)) and filtering

for noise. The acceleration was multiplied by the desired virtual mass 𝑀 to calculate

25

desired force. They then used linear stability analysis and numerical simulation to

Figure 1-5: Colonnese et al. Virtual Mass Impedance Controller [14]

assess the bands of stability for the system [14]. Because this control strategy used

measured feedback to control the system it could have had the potential for more

accuracy than the feedforward strategies, but without a feedforward term the con-

troller had to wait for the system reaction, adding extra latency. This latency was

extended by the filtering of the acceleration signal which is necessary with a double

differentiated signal. This added latency reduced the stability and accuracy of the

controller compared with methods that don’t rely on pure acceleration feedback.

Admittance Control with Emulated Inertia

In 2011, Aguirre-Ollinger et al. designed an inertia compensator for a lower limb

exoskeleton. The baseline compensator is shown in Figure 1-6. The control system

sensed the torque 𝜏𝑠 which was a combination of the human applied torque 𝜏ℎ and the

reaction forces from the movement of the leg 𝐼ℎ and exoskeleton 𝐼𝑎𝑟𝑚. This sensed

torque signal was then passed through an admittance controller 𝑌𝑒
𝑑 which used a

simple desired inertia 𝐼𝑒
𝑑 to command an acceleration which was then integrated to

form a desired velocity Ω𝑟𝑒𝑓 . A simple proportional controller with gain 𝑘𝑝 was imple-

mented to modulate motor torque 𝜏𝑚 to achieve the desired velocity at the motor 𝑤𝑚

26

[13]. This is a reasonable technique for achieving a desired inertia; however they found

Figure 1-6: Aguirre-Ollinger et al. Admittance Controller [13]

that linear stability analysis limited the desired inertia 𝐼𝑒
𝑑 to be at least the value of

the actual motor inertia 𝐼𝑚. This was undesirable as the goal of the compensation

was to give the exoskeleton negative inertia, which would reduce the overall inertia

felt by the human’s leg. Therefore an additional control component was added to the

system in the form of an emulated inertia, shown in the lower path of Figure 1-7. The

Figure 1-7: Aguirre-Ollinger et al. Emulated Inertia [13]

sensed velocity of the exoskeleton was differentiated and filtered for noise to produce

a low-bandwidth acceleration signal. They found that the filtered acceleration mea-

surement could be multiplied by a negative emulated inertia 𝐼𝑐 to augment the sensed

torque in a positive feedback scheme which amplified the admittance of the system.

This created a system which was non-passive, but as Buerger and Hogan pointed out

in [20], passivity can be too strict a criteria for coupled stability for human interac-

tion. Experimental testing proved that the system was stable when coupled with a

human leg even though it was non-passive, and the controller achieved the desired

result of increasing leg swing frequency [13]. However it should be noted that the

27

goal of this inertia compensator was not to provide constant apparent inertia but to

decrease the workload of the human. The acceleration signal needed to be heavily

filtered after differentiation which reduced the accuracy of transient compensation.

1.3 Overview of Thesis

The objective of this study is to adapt the previous work on inertia compensation

presented in Section 1.2.2 using nonlinear control techniques to create an inertia com-

pensation scheme for the InMotion2 Robot. The objective of this controller is stricter

than those in Section 1.2.2, which is not just to reduce the apparent inertia of a

robot but to make it constant across the workspace in order that the inertia of the

apparatus need not be a variable in human studies.

Chapter 2 of this thesis provides an overall description of the InMotion2 Robot in-

cluding the updates that were made to the sensor and actuator hardware, as well as

the derivation of a dynamic model of the InMotion2. Chapter 3 describes the new

software developed for the InMotion2 including input and output processing and the

simple virtual constraint impedance controller. Chapter 4 derives a robust adaptive

tracking inertia compensator and provides proof of nonlinear stability for both the

free movement case and the virtual constraint case. Chapter 5 provides an overview of

testing and controller validation, and Chapter 6 concludes the thesis with a summary

and an exploration of topics that need future work.

28

Chapter 2

The InMotion2 Upper Limb Robot

The InMotion2 Upper Limb rehabilitation robot was developed by Interactive Mo-

tion Technologies (now Bionik Laboratories) for rehabilitation of patients recovering

from brain injury that results in loss of motor control [7]. The original prototype was

designed in the MIT Newman Laboratory as the MIT-MANUS and was adapted by

Interactive Motion Technologies for commercial use. The robot used for this study,

shown in Figure 1-1, is the InMotion2 with hardware manufactured by Interactive

Motion Technologies, but the electrical interface to the robot and controller soft-

ware have been completely replaced as part of the effort to modernize the control

scheme and provide inertia compensation. This chapter will provide an overview of

the hardware portion of the new electrical interface as well as a dynamic model de-

rived specifically for the InMotion2 robot. The software portion of the new electrical

interface and control system will be described in Chapter 3. A set of step-by-step

instructions for using the InMotion2 robot is in Appendix A.

2.1 Hardware

The InMotion2 robot assembly consists of four rigid links assembled to move in two

degrees of freedom in a horizontal plane. Each of the two degrees of freedom is

29

Figure 2-1: National Instruments compactRIO

controlled by a large direct drive motor. The state of the robot is measured by

an encoder on each motor as well as a force/torque transducer at the robot end-

effector. Each of these sensors and actuators feeds to an input/output module on the

National Instruments compactRIO 9034 electronic controller [21], shown in Figure

2-1. The low-level functions are performed on the compactRIO FPGA and the high-

level control is performed on the compactRIO real-time processor. The compactRIO

optionally connects to a Windows PC for real-time data viewing to provide live input

to the controller. A diagram of the system architecture is displayed in Figure 2-2.

2.1.1 Motor Servo Drivers

The two motors provide output torque proportional to the current used to drive the

motor.

𝜏 = 𝐾𝑡 * 𝑖 (2.1)

The motors are controlled using Kollmorgen Servostar CD servo drives which contain

high bandwidth closed loop current control [22]. The reference for the control is fed

30

Figure 2-2: System Architecture

into each servo drive as a voltage input, where the voltage is directly proportional

to the current provided to each motor. The voltage is controlled using the NI 9263

analog output module on the compactRIO [23], and this voltage is set by the FPGA

firmware as directly proportional to the desired motor torque. The motor output pin

diagram is shown in Table 2.1.

Table 2.1: Motor Control Pin Diagram

Signal Conversion Signal (+) Return (-)
cRIO
Wire
Color

cRIO
Pin

Panel
Wire
Color

cRIO
Wire
Color

cRIO
Pin

Panel
Wire
Color

Shoulder 5V=28.8 Nm White 2 (AO1) Blue Black 3
(COM)

Light
Blue

Elbow 5V=-28.8 Nm Red 0 (AO0) Orange Brown 1
(COM)

Pink

31

2.1.2 Encoders

The position of the robot is sensed by a Gurley Precision Virtual Absolute VB en-

coder mounted to each motor. Each encoder has a resolution of 16 bits over 360∘

of revolution. The encoder signal feeds directly to a Gurley Precision Inerpolating

Decoder which decodes the analog encoder signal into a digital number [24]. The NI

9403 digital I/O module [25] is used to query the decoder and retrieve the position

data. The digital position can be queried using a series of digital signals over two

lines, A0 and A1, and returns data over 8 lines, B0-7. Each decoder splits the 16-bit

encoder position into three segments: the low bit, the 8 middle bits, and the 7 high

bits. The decoder will return a segment of data over B0-7 depending on the status of

A0 and A1, detailed in Table 2.2. The decoder pin diagram is detailed in Table 2.3.

Table 2.2: Encoder Request Codes

Request A0=0 A0=1
A1=0 Return Nothing Return Low bit on B7
A1=1 Return Middle Bits on B0-7 Return High bits on B0-6

Table 2.3: Decoder Pin Diagram

Signal Pin Type GND Request Bits Return Bits
Hold A0 A1 B7 B6 B5 B4 B3 B2 B1 B0

Shoulder

J4 33 14 16 18 25 23 21 19 17 15 13 11
Ribbon DGND DOUT8 DOUT9 DOUT10 DIN15 DIN14 DIN13 DIN12 DIN11 DIN10 DIN9 DIN8
NI 9403 28 35 34 37 32 31 30 18 15 16 17 36
pin COM DIO29 DIO28 DIO31 DIO26 DIO25 DIO24 DIO15 DIO12 DIO13 DIO14 DIO30

Elbow

J2 33 14 16 18 25 23 21 19 17 15 13 11
Ribbon DGND DOUT0 DOUT1 DOUT2 DIN7 DIN6 DIN5 DIN4 DIN3 DIN2 DIN1 DIN0
NI 9403 9 26 1 2 24 23 22 21 20 7 8 27
pin COM DIO22 DIO0 DIO1 DIO20 DIO19 DIO18 DIO17 DIO16 DIO6 DIO7 DIO23

2.1.3 Force/Torque Transducer

The force and torque applied at the robot end-effector is measured by an ATI Gamma

type Force/Torque transducer. This transducer takes six measurements: forces in the

32

x, y, and z directions, and torques in the roll, pitch, and yaw directions. These

signals are processed in the ATI F/T controller which includes a calibration matrix

[26]. The F/T controller sends each of the six measurements as a differential voltage

to the NI 9205 analog input module of the compactRIO [27]. The F/T controller

additionally sends a health bit to the NI 9403 digital I/O module of the compactRIO

[25] which indicates whether the signals can be trusted. The force/torque transducer

pin diagram is detailed in Table 2.4.

Table 2.4: Force/Torque Pin Diagram

Signal Conversion Signal (+) Return (-)
Color ATI

pin
cRIO pin Color ATI

pin
cRIO pin

Fx 10V=30lbf Brown A-9 9205-1 (AI0) Black A-18 9205-19 (AI8)
Fy 10V=30lbf Red A-8 9205-2 (AI1) Black A-17 9205-20 (AI9)
Fz 10V=30lbf Orange A-7 9205-3 (AI2) Black A-16 9205-21 (AI10)
Tx 10V=100lbf-in Yellow A-6 9205-4 (AI3) Black A-15 9205-22 (AI11)
Ty 10V=100lbf-in Green A-5 9205-5 (AI4) Black A-14 9205-23 (AI12)
Tz 10V=100lbf-in Blue A-4 9205-6 (AI5) Black A-13 9205-24 (AI13)

Health Read AI0: Sea green D-12 9403-4 (DIO3) Pink/black D-25 9403-3 (DIO2)
Closed = ON =
healthy

5kΩ resis-
tor

9403-3
(DI02)

9403-29 (COM)

2.2 Dynamic Model of InMotion2

2.2.1 Inertial Dynamics

The InMotion2 robot has four links, shown in Figure 2-3. The motors are located

at the labeled motor axes and provide torque to links 1 and 4. The angle of the

"shoulder" joint measured by the encoder in motor 1 is the angle between link 1

and the motor axis. Link 2 is parallel to link 4 so the angle of the "elbow" joint

measured by the encoder in motor 2 is the angle between link 4 and the motor axis.

The lengths (𝑙) and masses (𝑚) of each component are detailed in Table 2.5. The

variable 𝑟 is the distance between the center of mass of the link and the joint closest

33

Figure 2-3: Inertial model

Table 2.5: Robot Link Properties

Property link 1 link 2 link 3 link 4
link handle total

length (𝑚) 0.4064 0.5144 0.5016 N/A 0.4064 0.1555
mass (𝑘𝑔) 0.756 0.892 1.072 1.964 0.756 0.378
𝑟 (𝑚) 0.2032 0.2572 0.5016 0.3906 0.2032 0.0775
𝐼𝑐 (𝑘𝑔 * 𝑚2) 0.0104 0.0197 0 0.0488 0.0104 0.0007
𝐼 (𝑘𝑔 * 𝑚2) 0.0416 0.0787 0.2697 0.3484 0.0416 0.0030

to the motor axis. The moments of inertia about the center of mass (𝐼𝑐) and the

moments of inertia about the joint closest to the motor axis (𝐼) for each component

are calculated assuming that the links are uniform rods and the handle is a point mass.

If the four links were uncoupled from each other, each of the links would be free

to move its in-plane position in the 𝑥, 𝑦, and 𝜃 directions, totaling 12 degrees of free-

dom for the uncoupled system. However the constraint of each robot joint reduces

the system to two generalized degrees of freedom 𝜃1, 𝜃2 which are the spatial joint an-

gles. Any kinematics affecting the uncoupled coordinates can be transformed into the

generalized coordinates using transformation matrices. Taking the time derivative of

34

the transformation yields the full system Jacobian [28].

𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑐1

𝑦𝑐1

𝜃1

𝑥𝑐2

𝑦𝑐2

𝜃2

𝑥𝑐3

𝑦𝑐3

𝜃3

𝑥𝑐4

𝑦𝑐4

𝜃4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟1 cos(𝜃1)

𝑟1 sin(𝜃1)

𝜃1

𝑙1 cos(𝜃1) + 𝑟2 cos(𝜃2)

𝑙1 sin(𝜃1) + 𝑟2 sin(𝜃2)

𝜃2

𝑙4 cos(𝜃2) + 𝑟3 cos(𝜃1)

𝑙4 sin(𝜃2) + 𝑟3 sin(𝜃1)

𝜃1

𝑟4 cos(𝜃2)

𝑟4 sin(𝜃2)

𝜃2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑥̇ = 𝐽(𝜃)𝜃̇ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑟1 sin(𝜃1) 0

𝑟1 cos(𝜃1) 0

1 0

−𝑙1 sin(𝜃1) −𝑟2 sin(𝜃2)

𝑙1 cos(𝜃1) 𝑟2 cos(𝜃2)

0 1

−𝑟3 sin(𝜃1) −𝑙4 sin(𝜃2)

𝑟3 cos(𝜃1) 𝑙4 cos(𝜃2)

1 0

0 −𝑟4 sin(𝜃2)

0 𝑟4 cos(𝜃2)

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜃̇ (2.2)

The uncoupled inertia matrix is as follows:

𝑀 = diag(𝑚1,𝑚1, 𝐼𝑐1,𝑚2,𝑚2, 𝐼𝑐2,𝑚3,𝑚3, 𝐼𝑐3,𝑚4,𝑚4, 𝐼𝑐4) (2.3)

The inertia matrix is defined as the following [28].

𝐼(𝜃) = 𝐽𝑇 (𝜃) *𝑀 * 𝐽(𝜃) (2.4)

Multiplying the system out and simplifying using trigonometric properties yields the

following generalized inertia matrix.

𝐼(𝜃) =

⎡⎢⎣ 𝐼1 + 𝑚2𝑙
2
1 + 𝐼3 (𝑚2𝑙1𝑟2 + 𝑚3𝑙4𝑟3) cos(𝜃1 − 𝜃2)

(𝑚2𝑙1𝑟2 + 𝑚3𝑙4𝑟3) cos(𝜃1 − 𝜃2) 𝐼2 + 𝑚3𝑙
2
4 + 𝐼4

⎤⎥⎦ (2.5)

35

The Lagrangian is defined as the kinetic co-energy of the system [29].

𝐿(𝜃, 𝜃̇) =
1

2
𝜃̇
𝑇
𝐼(𝜃)𝜃̇ (2.6)

For this system, the Lagrangian is defined as follows.

𝐿(𝜃, 𝜃̇) =
1

2
(𝐼1+𝑚2𝑙

2
1+𝐼3)𝜃1

2
+(𝑚2𝑙1𝑟2+𝑚3𝑙4𝑟3) cos(𝜃1−𝜃2)𝜃1𝜃2+(𝐼2+𝑚3𝑙

2
4+𝐼4)𝜃2

2
(2.7)

A kinematic model of the generalized system is derived using Lagrange’s Equation

[29].

𝜏 =
𝑑

𝑑𝑡

(︃
𝛿𝐿(𝜃, 𝜃̇)

𝛿𝜃̇

)︃
− 𝛿𝐿(𝜃, 𝜃̇)

𝛿𝜃
(2.8)

The derivative of the Lagrangian with respect to velocity is as follows.

𝛿𝐿(𝜃, 𝜃̇)

𝛿𝜃̇
=

⎡⎢⎣ (𝐼1 +𝑚2𝑙
2
1 + 𝐼3) (𝑚2𝑙1𝑟2 +𝑚3𝑙4𝑟3) cos(𝜃1 − 𝜃2)

(𝑚2𝑙1𝑟2 +𝑚3𝑙4𝑟3) cos(𝜃1 − 𝜃2) (𝐼2 +𝑚3𝑙
2
4 + 𝐼4)

⎤⎥⎦
⎡⎢⎣𝜃1
𝜃2

⎤⎥⎦ (2.9)

The derivative of the Lagrangian with respect to position is as follows.

𝛿𝐿(𝜃, 𝜃̇)

𝛿𝜃
=

⎡⎢⎣−(𝑚2𝑙1𝑟2 + 𝑚3𝑙4𝑟3) sin(𝜃1 − 𝜃2)𝜃1𝜃2

(𝑚2𝑙1𝑟2 + 𝑚3𝑙4𝑟3) sin(𝜃1 − 𝜃2)𝜃1𝜃2

⎤⎥⎦ (2.10)

Using Lagrange’s formula from Equation 2.8 to combine the time derivative of Equa-

tion 2.10 with Equation 2.11 yields the following kinematic model.

𝜏 =

⎡⎢⎣(𝐼1 +𝑚2𝑙
2
1 + 𝐼3)𝜃1 + (𝑚2𝑙1𝑟2 +𝑚3𝑙4𝑟3)(cos(𝜃1 − 𝜃2)𝜃2 + sin(𝜃1 − 𝜃2)𝜃2

2
)

(𝐼2 +𝑚3𝑙
2
4 + 𝐼4)𝜃2 + (𝑚2𝑙1𝑟2 +𝑚3𝑙4𝑟3)(cos(𝜃1 − 𝜃2)𝜃1 − sin(𝜃1 − 𝜃2)𝜃1

2
)

⎤⎥⎦ (2.11)

If the inertial and centrifugal matrices are represented as 𝐼 and 𝐶, respectively, La-

grange’s formula can take the following form, where external torque 𝜏 is defined. 𝜏𝑖𝑛

represents the applied motor torque, 𝜏ℎ represents the force applied to the handle by

36

the human converted to joint coordinates, 𝜏𝑓 represents the frictional forces on the

joints, and 𝑑 represents time-varying model uncertainty.

𝜏 = 𝐼(𝜃)𝜃 + 𝐶(𝜃, 𝜃̇)𝜃̇ = 𝜏𝑖𝑛 + 𝜏ℎ − 𝜏𝑓 + 𝑑 (2.12)

The generalized inertia matrix 𝐼(𝜃) is defined in Equation 2.5 and the centrifugal

matrix 𝐶(𝜃, 𝜃̇) is defined below.

𝐶(𝜃, 𝜃̇) =

⎡⎢⎣ 0 (𝑚2𝑙1𝑟2 +𝑚3𝑙4𝑟3) sin(𝜃1 − 𝜃2)𝜃2

−(𝑚2𝑙1𝑟2 +𝑚3𝑙4𝑟3) sin(𝜃1 − 𝜃2)𝜃1 0

⎤⎥⎦ (2.13)

2.2.2 Motor Torque and Applied Force

The applied torque for each motor 𝜏𝑖𝑛 can be set directly by the controller and is

considered the control input for this design. The force applied to the handle 𝐹ℎ is

measured directly by a force-torque transducer at the handle. The handle rotates

freely about its axis so it cannot apply torque to the end-effector; only forces 𝑓𝑥 and

𝑓𝑦 are considered. A new Jacobian 𝐽𝑒𝑓 is created to relate the end-effector dynamics

to joint dynamics using the same principle as Equation 2.2. First a forward kinematics

model is created to specify the position of the end-effector.

𝑥𝑒𝑓 =

⎡⎢⎣𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃2)

𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃2)

⎤⎥⎦ (2.14)

And the time derivative of this model reveals the Jacobian 𝐽𝑒𝑓 .

˙𝑥𝑒𝑓 = 𝐽𝑒𝑓 (𝜃)𝜃̇ =

⎡⎢⎣−𝑙1 sin(𝜃1) −𝑙2 sin(𝜃2)

𝑙1 cos(𝜃1) 𝑙2 cos(𝜃2)

⎤⎥⎦ 𝜃̇ (2.15)

37

The joint torques due to applied handle force can be expressed as the following [28].

𝜏ℎ = 𝐽𝑒𝑓 (𝜃)𝑇𝐹ℎ (2.16)

When this model is used to implement a controller on the physical system, imper-

fections in the servo actuation will cause some difference between the controller com-

manded torque and actual motor torque 𝜏𝑖𝑛. Likewise, imperfections in the handle

force sensor will cause some difference between 𝐹ℎ and measured force. It is impor-

tant to know how inaccurate these values are in order to be able to bound model

uncertainty 𝑑 from Equation 2.12.

The accuracy of the combination of both 𝜏𝑖𝑛 and 𝜏ℎ can be measured using one

simple test. This can be done by clamping the robot handle into a stationary posi-

tion as in Figure 2-4. In this configuration torque can be commanded to each motor

and the handle force can be measured and converted to joint torques. The magni-

tude of the differences between commanded joint torques and measured joint torques

quantify the accuracy of the 𝜏𝑖𝑛, 𝜏ℎ, and static friction, isolated from the effects of

the dynamic model or kinetic friction.

The results of this test are shown in Figure 2-5. Examining the difference between

commanded and measured joint torque during the static torque test, the torque un-

certainty for each joint is bounded by the values in Equation 2.17.

⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣𝑑𝑠1
𝑑𝑠2

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒ <

⎡⎢⎣0.6

0.3

⎤⎥⎦𝑁𝑚,

⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣𝑑𝑠1/𝜏𝑖𝑛1
𝑑𝑠2/𝜏𝑖𝑛2

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒ <

⎡⎢⎣0.04

0.03

⎤⎥⎦ (2.17)

38

Figure 2-4: The clamp is applied to the end-effector above the force/torque
transducer such that all forces generated by the robot motors are read by the

force/torque transducer.

(a) Shoulder Torque (b) Elbow Torque

Figure 2-5: Torques are commanded by the motors (blue) in a stairstep fashion.
The force/torque transducer measures the forces and converts them to equivalent

motor torques (red).

39

2.2.3 Friction and Model Uncertainty

Although the robot has relatively smooth bearings and is extremely back-driveable,

the joints of the robot are not perfect and do experience some friction. Friction is

very difficult to characterize accurately, so a simple estimation is made as a contin-

uous function combining Coulomb friction and viscous friction [30]. This model was

created by examining the dynamic response of the robot using a simple test which

quantified both friction and dynamic model accuracy, isolated from the effects of mo-

tor torque and applied forces.

When zero commanded torque is applied to the motors, the robot is free to move

throughout the workspace. After applying an impulse force to the robot handle to

generate an initial velocity, the only external torques on the robot joints are friction

and any un-modeled dynamics such as gravity. The net sum of these external torques

is known to be the sum of the inertial and centrifugal terms of Equation 2.12. The

following friction model for each of the two degrees of freedom is created by examining

the net sum of external torques 𝐼(𝜃)𝜃 + 𝐶(𝜃, 𝜃̇)𝜃̇ shown in Figure 2-6.

𝜏𝑓1[𝑁𝑚] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0.2, 𝜃1 ≥ 0.3 𝑟𝑎𝑑

𝑠

−0.2, 𝜃1 ≤ −0.3 𝑟𝑎𝑑
𝑠

2
3
* 𝜃1, |𝜃1| < 0.3 𝑟𝑎𝑑

𝑠

+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0.2, 𝜃1 − 𝜃2 ≥ 0.3 𝑟𝑎𝑑

𝑠

−0.2, 𝜃1 − 𝜃2 ≤ −0.3 𝑟𝑎𝑑
𝑠

2
3
* (𝜃1 − 𝜃2), |𝜃1 − 𝜃2| < 0.3 𝑟𝑎𝑑

𝑠

𝜏𝑓2[𝑁𝑚] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0.4, 𝜃2 ≥ 0.3 𝑟𝑎𝑑

𝑠

−0.4, 𝜃2 ≤ −0.3 𝑟𝑎𝑑
𝑠

4
3
* 𝜃2, |𝜃2| < 0.3 𝑟𝑎𝑑

𝑠

(2.18)

The uncertainty in this friction model as well as the model dynamics can be quantified

by examining the difference between the estimated external torques and the friction

40

(a) Shoulder Torque (b) Elbow Torque

Figure 2-6: Impulse forces are applied to the end-effector in the blacked-out regions.
In the remaining regions the net sum of joint torques (blue) are attributed to

Coulomb friction (red) and un-modeled dynamics.

model.

Examining data from the dynamic torque test dictates that this friction error and

dynamic model uncertainty for each joint is bounded by the values in Equation 2.19,

expressed in units of 𝑁𝑚 and as a percentage of the maximum torque seen by the

unforced system of 0.4𝑁𝑚.

⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣𝑑𝑓1
𝑑𝑓2

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒ <

⎡⎢⎣0.3

0.4

⎤⎥⎦𝑁𝑚 =

⎡⎢⎣ 75

100

⎤⎥⎦% (2.19)

Summing the uncertainty quantified by the dynamic torque test with the uncertainty

quantified by the static torque test creates a bound 𝐷 for overall model uncertainty.

|𝑑| <

⎡⎢⎣0.9

0.7

⎤⎥⎦𝑁𝑚 < 𝐷 = 1𝑁𝑚 (2.20)

41

42

Chapter 3

The InMotion2 Software

The National Instruments compactRIO contains both a real-time (RT) processor and

a Field Programmable Gate Array (FPGA), both of which are used to control the

robot. The RT processor has a maximum sampling rate of 1kHz, which slows down

with added hardware interfacing and computation. The FPGA can run much faster,

approaching 1MHz, but the update rate is limited to 2kHz because of the extensive

hardware interface. The FPGA has direct access to the input and output modules and

is programmed with firmware using special LabVIEW functions that are optimized

for speed. Such optimization is possible because FPGAs use fixed-point notation in

which each piece of data has an assigned range and resolution which must be specified

during development. Compiling the FPGA code can be complex and time-consuming,

especially when compared with the RT processor which requires no compilation. For

this reason, the FPGA is used only for low-level functions that should not change

often. The RT processor is able to execute traditional LabVIEW and is able to run

a wide variety of functions using floating point notation. It is possible to use add-ins

such as MathScript to enhance code development on the RT processor, and therefore

it is used for high-level functions that may change depending on the task.

43

The LabVIEW software as well as the Matlab code to process data and robot doc-

umentation are managed on GitHub to aid in collaborative development [31]. A

detailed description of each software function is included in Appendix B.

3.1 Real Time Software

The top-level program that runs on the cRIO real-time processor is contained in

run.vi. This program initiates the FPGA low-level code which executes asynchronously

at 2kHz, but only executes a timed loop at 1kHz. In this timed loop, the RT pro-

cessor reads inputs from the FPGA, implements a controller based on those inputs,

and sends the outputs of the controller back to the FPGA. While doing so it also

continuously writes the data to a file and updates displays on the screen.

3.2 User Interface

The LabVIEW user interface to operate the InMotion2 robot is shown in Figure

3-1. The user can start the program by clicking the LabVIEW start arrow which

will initiate the loops for both the FPGA and the RT processor. The user can also

specify a name for the .tdms file that is automatically created with every run. The

large STOP button will exit the program gracefully. The top half of the user input

panel specifies parameters for the virtual constraint function described in Section

3.2.1 including a button to turn the virtual constraint on and off. The bottom half

of the user input panel specifies parameters for the inertia compensation which will

be described in more detail in Chapter 4. Additionally there are boolean indicators

to report faults detected in the three sensors (the "shoulder" position encoder, the

"elbow" position encoder, and the force/torque transducer). There is a toggle switch

to zero out the force/torque sensor, and displays of the force/torque readings and the

motor output values. On the right of the screen is a display which indicates where

44

the end-effector is located in relation to the circular constraint. All of these controls

and indicators update live while the robot is running.

Figure 3-1: LabVIEW User Interface

3.2.1 Virtual constraint controller

The controller that runs on the real-time processor can easily be changed using tradi-

tional LabVIEW and can be programmed to perform all sorts of tasks. The primary

controller creates a circular virtual constraint in order to perform constrained mo-

tion studies on humans. This controller forces the robot end-effector onto a circular

virtual path by controlling the robot’s apparent impedance. The FPGA processed

sensor data contains the position and velocity in cartesian x,y coordinates. The vir-

tual constraint controller uses this Cartesian data to determine the radial distance

from the end-effector to the edge of the circle 𝑟 as well as the radial velocity 𝑣𝑟. The

goal of the virtual constraint is for the end-effector to have the following impedance

45

characteristic, where 𝑓ℎ,𝑟 is the radial component of the force on the end-effector [32].

𝑚𝑎𝑟 = −𝑘𝑣𝑐𝑟 − 𝑏𝑣𝑐𝑣𝑟 + 𝑓ℎ,𝑟 (3.1)

Without Inertia Compensation

The natural behavior of the robot is to exhibit the following response, where 𝑚 is

the natural apparent inertia of the robot in its specific configuration in the radial

direction, and 𝑓𝑖𝑛 is the equivalent force produced by the robot motors in the radial

direction.

𝑚𝑎𝑟 = 𝑓ℎ,𝑟 + 𝑓𝑖𝑛 (3.2)

By allowing the apparent inertia 𝑚 in the impedance controller follow the natural

inertia of the robot, Equation 3.1 and Equation 3.2 can be combined. This eliminates

the need to use end-effector force 𝑓ℎ,𝑟 or acceleration 𝑎𝑟.

𝑓𝑖𝑛 = −𝑘𝑣𝑐𝑟 − 𝑏𝑣𝑐𝑣𝑟 (3.3)

This controller is completely passive for the ideal case with no system delays or

filtering lags, and remains passive for a wide range of impedances. The force 𝑓𝑖𝑛

is calculated in the RT processor and sent to the FPGA to be converted to motor

torques if the constraint is active and inertia compensation is inactive.

With Inertia Compensation

If it is desirable to set the apparent inertia 𝑚 to a constant value, as is the case with

inertia compensation, the controller for the virtual constraint is executed along with

the inertia compensation in the FPGA. The implementation of the inertia compensa-

tion is detailed in Chapter 4. In order to keep the shape and direction of the virtual

constraint as well as desired impedance as flexible as possible, these parameters are

46

specified in the RT processor. All that the low-level inertia compensator needs to

know about the virtual constraint are the desired impedance parameters, the instan-

taneous direction of the constraint 𝛾 in radians, and the orthogonal distance between

the end-effector and the constraint 𝑟 in meters, shown in Figure 3-2. The orthogonal

Figure 3-2: Virtual Constraint Parameters

force, velocity, and acceleration used in Equation 3.1 can be determined from the

FPGA sensors along with the constraint direction 𝛾 and orthogonal distance 𝑟 which

are defined in Equation 3.4 for the circular constraint centered about the origin.

𝛾 = atan2(𝑦, 𝑥) +
𝜋

2
𝑟 =

√︀
𝑥2 + 𝑦2 − 𝑟𝑎𝑑𝑖𝑢𝑠 (3.4)

Note that the relationship between 𝛾 and 𝑟 must stay consistent. The positive di-

rection of 𝑟 must point in the negative 𝑦 direction when 𝛾 = 0 and the positive 𝑦

direction when 𝛾 = 𝜋. For the circular constraint with 𝛾 defined in Equation 3.4, the

positive direction of 𝑟 will always be radially outwards from the origin.

Virtual Constraint Stability

The simple impedance control method defined in Equation 3.3 when controlling a

system with perfect torque sources and velocity measurement is inherently passive

regardless of the system it is controlling, as it dissipates energy as it moves towards

the reference. However, time delays and lags in the system can limit the stability

47

for certain values of the impedance parameters. The update rate of the impedance

controller (without inertia compensation) is 1kHz which is appreciably faster than the

most significant natural frequencies of the system. The limiting factor for stability is

actually the 30 Hz bandwidth of the velocity calculation, which will be described in

greater detail in Section 3.3.1. Many different values of stiffness and damping were

tested on the robot hardware to determine the limits of stability. For each of three

points (x=0 m, y=-0.1 m, 0m, 0.1m), an impedance controller was implemented with

varying levels of damping, then stiffness was increased until the system showed evi-

dence of instability. For the lower damping values, the instability took the form of low

frequency oscillations. For the higher damping values, the instability took the form

of high frequency motor output which creates a buzzing noise in the motors. Figure

3-3 plots the stiffness limits against damping for the three cases. Within the plotted

line the system remains stable in response to perturbation, and any oscillations are

damped out within 2-3 seconds. Outside the line the system is unstable and oscillates

or buzzes continuously. A software limit (purple) was implemented to ensure that the

stiffness and damping remain within the stable region. To optimize virtual constraint

performance while still guaranteeing stability, a stiffness of around 5000 N/m and

damping of around 40 N/m/s are recommended for use with this controller.

3.2.2 Data logging

The real time processor has a handful of other small tasks in addition to the high-

level control. Within the 1kHz loop the RT processor collects the low-level FPGA

data as well as the high level RT processor data, converts them to floating point

representation, and writes them to a FIFO data buffer on the compactRIO. Parallel to

this process, data from the FIFO buffer is written to a TDMS file on the compactRIO.

48

Figure 3-3: Virtual Constraint Stability

Separate Matlab code has been implemented to move the data from the compactRIO

to a connected PC and read the TDMS file into Matlab for post-processing. The RT

processor also has a special data logging procedure. When the user stops the run.vi

program, it also takes the current force bias values described in Section 3.3.2 and

writes this value to a file on the compactRIO in storeFTbias.vi. When the program

is started back up again, the real-time processor will read this file and set the force

bias to these values.

3.3 FPGA Firmware

The top-level program that runs the cRIO FPGA code is contained in runFPGA.vi.

This program is initiated by the real-time program run.vi, and contains a timed loop

at 2kHz. The FPGA code reads and processes the inputs values from the encoders

and force/torque transducer, processes the control output commanded by the real-

time software and provides an output signal to the robot motors. The FPGA code

also includes optional inertia compensation with or without a constraint.

49

3.3.1 Encoder Measurement

Each motor has an encoder mounted on it to measure the position of the motor, which

in turn indicates the location and orientation of the robot. The compactRIO uses

digital lines to communicate with the Gurley Precision interpolating decoder [24] as

described in Section 2.1.2. The FPGA program manipulates the hold, A0, and A1

bits and reads in the low, middle, and high bits of each encoder reading over lines

B0-7. After all the readings are in, FPGA code concatenates these bits and converts

them to fixed-point integers that represent the position of each motor as a number

between 0 and 65535.

Position

To begin the position signal processing, a simple fault check is performed on each

encoder to ensure that the signal received from the decoder is valid. The Euler

method is used to predict the current position based on past measurements shown in

Equation 3.5. The variable 𝜃𝑖−1 denotes the position at the previous time step and

𝜃𝑖−2 is the position two time steps previous. This prediction 𝜃𝑖 is then compared to

the measured position 𝜃𝑖. If the error between the measurement and the prediction

has a magnitude that exceeds a threshold of 50 bits (out of 65536), an error flag is

raised and the predicted value is used instead of the measured value.

𝜃𝑖 = 2𝜃𝑖−1 − 𝜃𝑖−2 (3.5)

Next each selected decoder value is converted to radians in the coordinate frame

described by Figure 2-3 by applying a scalar and adder. The forward kinematics

model from Equation 2.14 is used to calculate the end-effector position in cartesian

coordinates 𝑥 and 𝑦. This section of code also computes the Jacobian 𝐽𝑒𝑓 based on

Equation 2.15.

50

Velocity

The velocities of the robot are calculated using the backward Euler method.

𝜃𝑖 =
𝜃𝑖 − 𝜃𝑖−1

∆𝑡
(3.6)

Because the FPGA code is executed at a rate of 2kHz and each encoder has a reso-

lution of 65536 over one revolution, there are often multiple iterations of FPGA that

read the same encoder position even if the robot is moving. An Euler derivative of this

discrete signal is quite choppy and unusable. There are many different methods for

handling this type of signal such as applying a system observer to predict the robot

velocity and using the measurement data to adjust the prediction. These potential

methods are discussed in Chapter 6. A 2nd-order Butterworth low-pass filter was

used to adjust current data based on past information in order to create a smooth

velocity signal. The goal when designing the velocity filter was to remove the choppi-

ness due to the discretized position signal, while still capturing the dynamics of the

robot. Figure 3-4 shows velocity data from the robot oscillating at 10 Hz. The raw

Figure 3-4: Velocity Filter

Euler difference equation yields an unusable velocity signal that jumps between 0 a

51

very high magnitude number, but accurately depicts the phase of oscillation. There is

a direct tradeoff between filter smoothness and phase lag. Responding quickly to the

raw signal makes the signal choppy; waiting to respond makes the signal smoother

but at the expense of adding phase lag. Filtering the signal at a bandwidth of 30 Hz

yields a much smoother signal but at the cost of some phase lag, shown here around

45∘ or 12.5 ms. Figure 3-4 shows the phase lag as the difference between the phase of

the filter input (blue) and the filter output (green). This phase lag affects stability of

controllers that use the velocity signal, and must be taken into account when design-

ing controllers for the system. After filtering the radial velocity signals, the Jacobian

𝐽𝑒𝑓 from Equation 2.15 is used to convert the radial velocity to end-effector velocity

in cartesian coordinates.

Acceleration

When using position measurements to calculate acceleration, the signal can get quite

noisy, especially since the encoders on this robot have limited resolution. It is not

advisable to use an acceleration signal in a feedback controller, but it is used to

limited effect in the inertia compensation logic. A backwards Euler derivative scheme

is used to calculate acceleration of the end-effector in Cartesian coordinates from the

calculated velocity. This signal is passed through a 4th-order Butterworth low-pass

filter at 50 Hz, which has a sharper high-frequency rolloff than the velocity filter.

This is to ensure that the signal is smoothed while adding minimal phase lag to the

acceleration signal.

3.3.2 Force/Torque Measurement

The force/torque sensor processing in the FPGA is fairly simple, as the F/T con-

troller [26] described in Section 2.1.3 provides most of the processing. Each of the 6

forces and torques are read in via differential analog voltage signals and multiplied

52

by a scalar to convert the forces to Newtons and the torques to Newton-meters using

the conversion factors from Table 2.4. The signals in engineering units are passed

through 2nd-order Butterworth low-pass filters in order to mitigate any signal noise.

The bandwidth for this filter was chosen to match that of the velocity filter, at 30

Hz.

The force/torque transducer is mounted to the end-effector with tightly fastened

screws. These screws along with the gravity of the handle above it provide static

loading to the force/torque transducer. In order to get the most accurate force/torque

reading as possible, a force/torque bias is applied to the initial reading to zero out the

sensor when no external loads are applied. The user is able to re-calibrate the bias at

the push of the "Zero out F/T" button on the user interface depicted in Figure 3-1,

and this bias is saved to a file in the compactRIO so that the bias calibration can be

stored in between runs.

The force/torque sensor measures force and torque along the x, y, z axes of the

force/torque transducer itself. As the end-effector is moved about the workspace,

the orientation of the transducer changes. The following equations translate the

force/torque measurements into the global coordinate system, where 𝛼 is the angle

between the force/torque transducer axis which depends on 𝜃2 and the global coor-

dinate axis defined in Figure 2-3.

⎡⎢⎣𝑓𝑥,𝑔𝑙𝑜𝑏𝑎𝑙
𝑓𝑦,𝑔𝑙𝑜𝑏𝑎𝑙

⎤⎥⎦ =

⎡⎢⎣𝑓𝑥,𝑟𝑒𝑙 cos(𝛼) + 𝑓𝑦,𝑟𝑒𝑙 sin(𝛼)

𝑓𝑦,𝑟𝑒𝑙 cos(𝛼) − 𝑓𝑥,𝑟𝑒𝑙 sin(𝛼)

⎤⎥⎦ (3.7)

53

3.3.3 Output processing

The real-time processor contains a high-level controller that sends outputs to the

FPGA described in Section 3.1. These outputs can either be motor torques or equiv-

alent end-effector forces along with an optional constraint direction. If the high-level

controller has specified end-effector forces and inertia compensation has been turned

off, the FPGA converts those forces to joint torques using the following relationship.

𝜏𝑖𝑛 = 𝐽𝑒𝑓 (𝜃)𝑇𝐹𝑖𝑛 (3.8)

If inertia compensation is turned on, the FPGA will ignore the force/torque com-

mands from the high level controller and perform compensation internally. The de-

tails of the inertia compensation are provided in Chapter 4.

The ability of the robot’s motors to control the end-effector in Cartesian coordi-

nates is dependent on the robot’s configuration. If the arm is fully extended with 𝜃1

nearly equal to 𝜃2, the "elbow" joint can only push the robot in the same direction as

the "shoulder" joint, and the robot cannot be controlled in the orthogonal direction.

This is also true if the arm is retracted towards the motors such that 𝜃1 is nearly equal

to −𝜃2. A good measure of the controllability of a robot is the condition number of

the Jacobian matrix transpose 𝐽𝑇
𝑒𝑓 [33]. All combinations of joint angles 𝜃1 and 𝜃2

are tested for condition number, and the configurations with a condition number less

than 2 are deemed to be well-conditioned. Figure 3-5 shows a top-down view of the

workspace with the well-conditioned end-effector locations are plotted in green. This

region can be bounded by two circles about the robot motors of radii 0.45 meters and

0.8 meters, shown in black.

The bounds of the table beneath the robot are shown in red in Figure 3-5. If the

54

Figure 3-5: InMotion2 well-conditioned region

robot end-effector were to go beyond the bounds of the table, it could potentially be

harmful to people or lab equipment. For conservatism, this region is bounded by the

black vertical lines at ±0.4 meters. If the robot end-effector goes outside the linear or

circular bounds defined here, no matter what the controller is dictating, the FPGA

will implement a damping control to slow the robot down in an attempt to keep the

end-effector out of this region.

If the commanded torque for either motor exceeds the capability of the motor, both

torque commands are scaled down proportionally to preserve the relative direction

of the command. These torque commands are then converted to voltage commands

according to the conversion factors listed in Table 2.1 and the voltages are sent to the

servo amplifiers which send current to the motors.

55

56

Chapter 4

Inertia Compensation

The purpose of the inertia compensation is to force the robot to respond to forces on

the end-effector with acceleration proportional to the handle force, just as point mass

would.

𝑓 = 𝑚𝑎 (4.1)

When no controller input is applied, the relationship between force and acceleration

of the end-effector is not a scalar relationship and varies across the workspace. The

arrangement of the links of the robot cause the inertia to be greater in some directions

than in others, nonlinearly depending on configuration. The behavior of a point mass

is best represented as an admittance [28] so an admittance controller is designed to

match the acceleration 𝑥̈ of the robot end-effector to a reference that is proportional

to the applied force.

There are many different ways to achieve this end, a few of which are detailed in

Section 1.2.2. The controller design for this application takes on the form of Fig-

ure 4-1. This controller structure has some similarities to the strategies presented

in Section 1.2.2. First the measured force exerted by the human (𝐹ℎ) goes through

an admittance model. This model differs depending on whether a virtual constraint

57

Figure 4-1: Inertia Compensator Block Diagram

is desired or if only inertia compensation is active. The measured acceleration (𝑎)

is used to subtract off the reaction forces caused by the inertia of the handle above

the force-transducer, which resembles the inertial load logic used by [12] and [13]. If

a virtual constraint is active, the admittance model includes stiffness and damping

similar to the virtual contact in [12] which relies on measured velocity (𝑣) in addition

to the inputs from the high-level controller. The acceleration and velocity references

(𝑎𝑑, 𝑣𝑑) in Cartesian coordinates go through differential inverse kinematics to convert

to joint coordinates (𝜃𝑑, 𝜃𝑑, 𝜃𝑑), and an adaptive tracking controller is used to gener-

ate joint torques (𝜏𝑖𝑛) that force the robot on the specified trajectory. The adaptive

tracking controller contains a feedforward component to cancel modeled forces similar

to [11] but also contains a feedback component based on measured joint position and

velocity (𝜃, 𝜃̇) to ensure the robot is staying on track similar to [13].

4.1 Admittance Model

The admittance model shown in Figure 4-1 uses the measured force 𝐹ℎ to generate

acceleration and velocity references 𝑎𝑑 and 𝑣𝑑. First some processing of the input force

is required, then either a pure inertial admittance is applied if the virtual constraint is

not active or a combined inertial, damping, and stiffness admittance model is applied

if the virtual constraint is active.

58

4.1.1 Applied Force

The force/torque transducer is located at the end-effector, with a handle mounted

on top of it for a human to grip. If the end-effector is accelerating whether or not

a human is applying force to the handle, the handle itself exerts inertial forces that

are read by the transducer opposite the direction of acceleration. An example of

this is demonstrated in Figure 4-2. Here the end-effector is freely rotating around a

circular virtual constraint at constant speed without being touched by the human,

and the acceleration of the circular motion causes a sinusoidal force profile (blue line,

obscured). This measured value does not represent the actual force applied by the

human, and can be compensated out by adding the inertial force of the handle (red

line) to the measured force. Note that the mass of the handle 𝑚ℎ just represents the

part of the handle above the force transducer and not the mass of the entire handle

assembly described in Table 2.5. The mass of the handle 𝑚ℎ has been estimated

based on acceleration data to be 0.44 kg.

⎡⎢⎣𝑓𝑥
𝑓𝑦

⎤⎥⎦ =

⎡⎢⎣𝑓𝑥,𝑔𝑙𝑜𝑏𝑎𝑙
𝑓𝑦,𝑔𝑙𝑜𝑏𝑎𝑙

⎤⎥⎦+ 𝑚ℎ

⎡⎢⎣𝑥̈
𝑦

⎤⎥⎦ (4.2)

This equation does rely on measured acceleration, which noted before can be either

exceptionally noisy or lagged by low-pass filtering. However, this usage gives very

limited authority to the acceleration measurement, as the inertial forces of the handle

are relatively low compared to the potential forces provided by the human. The force

signal has a minor phase lag from the 2nd order Butterworth low-pass filter with a

cutoff frequency of 30Hz in ftFilterFPGA.vi. The magnitude of this applied force

𝑓𝑚𝑎𝑔 is calculated, as is the direction of the applied force 𝛽.

𝛽 = arctan

(︂
𝑓𝑦
𝑓𝑥

)︂
(4.3)

59

Figure 4-2: Measured Forces when Freely Moving About Circular Constraint

The sum of the measured force and the inertial force of the handle is shown as the

yellow line in Figure 4-2. This value is reduced to a very low number but the forces are

not completely canceled due to timing differences between the force and acceleration

signals. For this reason, a small dead zone of 0.3 N was applied to the force magnitude

as shown in Figure 4-3. This conservatively accounted for force and acceleration

measurement inaccuracy. The deadband allowed for the measured force to be slightly

non-zero, as in Figure 4-2, and not react to it. When actual force is applied to the

handle the magnitude is biased downwards, in the conservative direction. The dead

zone is implemented as follows:

𝑓ℎ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑓𝑚𝑎𝑔 − 0.3 𝑓𝑚𝑎𝑔 > 0.3

𝑓𝑚𝑎𝑔 + 0.3 𝑓𝑚𝑎𝑔 < −0.3

0 |𝑓𝑚𝑎𝑔| ≤ 0.3

(4.4)

60

Figure 4-3: Force deadband

4.1.2 Unconstrained Reference

If there is no virtual constraint active, the inertia compensator needs to work in

both dimensions of the xy-plane. According to Equation 3.2, the acceleration of the

end effector should be proportional to the force applied in Cartesian coordinates. By

extension, the magnitude of the acceleration should be proportional to the magnitude

of the force applied. The mass 𝑚 is specified as a user input.

𝑎𝑑 =
1

𝑚
𝑓ℎ (4.5)

The desired acceleration in x and y coordinates can be calculated using acceleration

magnitude 𝑎𝑑 and the direction of the applied force 𝛽.

𝑎𝑑 = 𝑎𝑑

⎡⎢⎣cos(𝛽)

sin(𝛽)

⎤⎥⎦ (4.6)

Forward Euler integration is used to calculate a velocity reference in x and y coordi-

nates as shown below. 𝑇𝑠 represents the time step of the FPGA program, which is

61

0.0005s.

𝑣𝑑,𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑣𝑑,𝑖−1 + 𝑎𝑑𝑇𝑠 if compensation is active

𝑥̇ if compensation is not active
(4.7)

4.1.3 Constrained Reference

If there is a virtual constraint active, the compensator needs to operate as an inertia

compensator in one direction and a virtual constraint in the orthogonal direction.

One strategy for achieving this end is a hybrid approach wherein position control

compensates the inertia in the direction of the constraint and force control (as de-

scribed in the high-level controller in Equation 3.3) enforces the constraint in the

orthogonal direction, and the two controllers are superimposed [34]. However, this

technique only works if each controller is strictly one-dimensional in Cartesian space.

The virtual constraint controller presented in Equation 3.3 is indeed one-dimensional

and does not output forces in orthogonal direction. The inertia compensator calcu-

lates the tracking error and compensates for the robot dynamics in two-dimensional

joint space. The compensator relies contains a full two-dimensional system model

and relies on the assumption that it is the only controller active. The compensator

cannot be superimposed with any other controller for this reason.

Because the two orthogonal objectives cannot be superimposed at controller output,

the virtual constraint and inertia compensation are combined into a single trajectory

reference using superimposed admittance models to be followed by the single con-

troller. To this end, the high-level controller specifies a constraint direction 𝛾 as well

as an orthogonal distance from the constraint 𝑟, both defined in Section 3.2.1.

62

Constraint Direction

The force 𝑓ℎ can be projected in the direction of the constraint. The component of

the force in the direction of 𝛾 is defined as 𝑓𝛾, where 𝛽 is defined in Equation 4.3 and

𝛾 is defined in Equation 3.4.

𝑓𝛾 = 𝑓ℎ cos(𝛾 − 𝛽) (4.8)

The magnitude of desired acceleration is this force value divided by the desired mass

𝑚.

𝑎𝑑,𝛾 =
1

𝑚
𝑓𝛾 (4.9)

The acceleration characteristic for this component in 𝑥 and 𝑦 coordinates is defined

below.

𝑎𝑑,𝛾 = 𝑎𝑑,𝛾

⎡⎢⎣cos(𝛾)

sin(𝛾)

⎤⎥⎦ (4.10)

The desired acceleration is integrated to find the desired velocity in Cartesian coor-

dinates. Because the constraint is not necessarily linear, the magnitude of desired

acceleration should be integrated, ignoring the directional component. For example

if a circular constraint is active and no external forces are being applied to the han-

dle, the magnitude of the velocity should stay constant but the direction should move

around the circle. Therefore when a constraint is active, the magnitude of acceleration

is integrated to yield the magnitude of velocity.

𝑣𝑑,𝛾,𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑣𝑑,𝛾,𝑖−1 + 𝑎𝑑,𝛾𝑇𝑠 if compensation is active

𝑣𝛾 if compensation is not active
(4.11)

Note that a standard Euler form of integration is used, in which the change in velocity

is added to the previous desired velocity. This is because inertia compensation relies

on the most correct velocity reference possible. After an impulse force is applied to

63

the robot, the end-effector should maintain constant velocity that does not degrade

over time. This velocity magnitude is then mapped back into x and y coordinates in

the direction of the constraint.

𝑣𝑑,𝛾 = 𝑣𝑑,𝛾

⎡⎢⎣cos(𝛾)

sin(𝛾)

⎤⎥⎦ (4.12)

Orthogonal Direction

The direction orthogonal to the constraint can be used to create a reference trajectory

using a scheme similar to position-based impedance control (PB-IC) [35]. Using this

control scheme, a reference acceleration is derived from the input force and desired

impedance characteristics, and then integrated to determine the desired velocity and

position. First, the component of the applied force in this direction is defined below.

𝑓𝛾+𝜋/2 = 𝑓ℎ sin(𝛾 − 𝛽) (4.13)

The virtual constraint is applied using impedance control, where a specified mass (𝑚),

stiffness (𝑘𝑣𝑐), and damping (𝑏𝑣𝑐) are simulated between the robot end-effector and

the desired constraint. The following represents the desired characteristic orthogonal

to 𝛾, similar to the relationship described in Equation 3.1.

𝑎𝑑,𝛾+𝜋/2 =
1

𝑚
(−𝑘𝑣𝑐𝑟 − 𝑏𝑣𝑐𝑣𝑑,𝛾+𝜋/2 + 𝑓𝛾+𝜋/2) (4.14)

The velocity used in this equation is the desired velocity, or the integral of desired

acceleration. The measured velocity lags behind the desired velocity due to both

tracking error in the controller and the phase loss in the velocity calculation. Using

desired velocity minimizes the overall phase loss in the impedance controller. The

distance to the constraint 𝑟 is defined by the high-level controller and represents the

64

difference between measured position and the constraint. If desired position had been

used, it might "wander" with the integral of desired velocity. It is important that the

position of the constraint stays fixed in space, thus the measured position is used.

The acceleration characteristic can be separated into 𝑥 and 𝑦 coordinates.

𝑎𝑑,𝛾+𝜋/2 = 𝑎𝑑,𝛾+𝜋/2

⎡⎢⎣ sin(𝛾)

− cos(𝛾)

⎤⎥⎦ (4.15)

The acceleration is integrated to find velocity in Equation 4.16. Note that this time

the change in velocity is added to the measured velocity rather than the previous de-

sired velocity. This is done in order to emulate instantaneous model-based impedance

control [35]. Because a feedback controller is used to reduce the error between mea-

sured and desired velocity, the gain in the feedback controller can act as a multiplier

on virtual damping. Integrating the desired acceleration based on measured velocity

removes this gain multiplier and allows the system to achieve the desired impedance

characteristic [35]. This allows the feedback controller to have a high gain without

increasing the impedance of the virtual constraint.

𝑣𝑑,𝛾+𝜋/2,𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑣𝛾+𝜋/2 + 𝑎𝑑,𝛾+𝜋/2𝑇𝑠 if compensation is active

𝑣𝛾+𝜋/2 if compensation is not active
(4.16)

This velocity magnitude is then mapped back into x and y coordinates in the direction

of the constraint.

𝑣𝑑,𝛾+𝜋/2 = 𝑣𝑑,𝛾+𝜋/2

⎡⎢⎣ sin(𝛾)

− cos(𝛾)

⎤⎥⎦ (4.17)

65

Superposition

The superimposed desired acceleration is the sum of the desired acceleration in the

constraint direction from Equation 4.10 and orthogonal direction from Equation 4.15.

𝑎𝑑 = 𝑎𝑑,𝛾 + 𝑎𝑑,𝛾+𝜋/2 (4.18)

Likewise, the superimposed desired velocity is the sum of the desired velocity in the

constraint direction from Equation 4.12 and the orthogonal direction from Equation

4.17.

𝑣𝑑 = 𝑣𝑑,𝛾 + 𝑣𝑑,𝛾+𝜋/2 (4.19)

Fading Away the Constraint

If the values of stiffness and damping from Equation 4.14 are reduced to zero, the

superimposed acceleration reference from Equation 4.18 is equivalent to the uncon-

strained acceleration reference of Equation 4.6, acting to compensate inertia in both

dimensions of the xy-plane. However the superimposed velocity reference from Equa-

tion 4.19 will not necessarily be equal to the unconstrained velocity reference of Equa-

tion 4.7. This is because the constrained inertia compensation acts to preserve mo-

mentum in the direction of the constraint 𝛾. Even with no forces acting on the robot

(and therefore zero desired acceleration), if the end-effector is moving parallel to the

defined constraint direction 𝛾 and the direction of 𝛾 rotates, the inertia compensator

will rotate the direction of movement with 𝛾.

In order to successfully fade away the constraint, the high-level controller could ramp

down the values of stiffness and damping nearly to zero, at which point it could switch

over to the unconstrained inertia compensator, which will maintain linear momentum

regardless of constraint direction.

66

4.1.4 Differential Inverse Kinematics

The desired velocity in Cartesian coordinates can be mapped to joint coordinates

given the current state of the robot using Equation 2.15. Note that the system

Jacobian relies on the measured position, and can be calculated without knowing the

desired position.

𝜃𝑑 = 𝐽−1
𝑒𝑓 (𝜃)𝑣𝑑 (4.20)

The time derivative of Equation 2.15 yields the acceleration conversion.

𝑎𝑑 = ˙𝐽𝑒𝑓 (𝜃)𝜃𝑑 + 𝐽𝑒𝑓 (𝜃)𝜃𝑑 (4.21)

The desired joint acceleration can be found by isolating 𝜃𝑑.

𝜃𝑑 = 𝐽−1
𝑒𝑓 (𝜃)

(︁
𝑎𝑑 − ˙𝐽𝑒𝑓 (𝜃)𝜃𝑑

)︁
(4.22)

Finally, the desired joint position can be found by integrating 𝜃𝑑.

𝜃𝑑,𝑖 = 𝜃𝑖−1 + 𝜃𝑑𝑇𝑠 (4.23)

Note once again that the integration is based on measured position, this time for all the

objectives. This is important for the virtual constraint so that the position controller

does not amplify the virtual stiffness [35]. It is important for the inertia compensator

as well. If desired position was obtained through a standard integration, the position

error of the controller could potentially become very large in the event that the

controller could not track the position reference, such as through un-sensed forces

on the robot linkage. This could cause the inertia compensator to drive very large

torques to get back to the intended virtual trajectory, which is counter-productive for

creating the objective of constant inertia.

67

4.2 Adaptive Tracking Controller

The dynamics of the robot derived in Equation 2.12 are very nonlinear, and therefore

linear techniques cannot reliably be used to control the system or to analyze system

stability. One effective nonlinear technique is based on sliding mode control [36].

4.2.1 Sliding Surface

The position demand error 𝜃 and velocity demand error ˙̃
𝜃 are defined as the difference

between the measured value and the desired value.

𝜃 = 𝜃 − 𝜃𝑑
˙̃
𝜃 = 𝜃̇ − 𝜃𝑑 (4.24)

A sliding surface 𝑠 can be defined within the state-space of the position and velocity

errors, using the parameter 𝜆 to represent control bandwidth.

𝑠 = ˙̃
𝜃 + 𝜆𝜃 (4.25)

The sliding surface 𝑠 = 0 is represented as a line in the state space diagram of Figure

4-4. Sliding mode control reduces the nonlinear dynamics of the robot into the linear

system described by Equation 4.25. Such a controller would attract the system from

its initial condition towards the 𝑠 = 0 line, within the 𝑠Δ = 0 region, and keep it

within this region. Because this line has a negative slope, the properties of the system

itself force the system to move towards the origin of the state space diagram where

the error terms ˙̃
𝜃 = 0 and 𝜃 = 0 [36].

A reference parameter is used to aid in the creation of a sliding mode controller

[37].

𝜃𝑟 = 𝜃𝑑 − 𝜆𝜃 𝜃𝑟 = 𝜃𝑑 − 𝜆
˙̃
𝜃 (4.26)

68

Figure 4-4: State Space Representation

The sliding variable 𝑠 can be defined in terms of this reference parameter.

𝑠 = 𝜃̇ − 𝜃𝑟 𝑠̇ = 𝜃 − 𝜃𝑟 (4.27)

The sliding controller will only be as effective as the model used to create it. Because

there is some known bounded model uncertainty 𝑑 described in Equation 2.20, the

system can only be guaranteed to converge to some region 𝑠Δ around 𝑠 = 0, defined

by a dead zone of size 𝜑 [36]. The term 𝑠Δ for each degree of freedom is defined below

[38].

𝑠Δ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑠− 𝜑 𝑠 > 𝜑

𝑠 + 𝜑 𝑠 < −𝜑

0 |𝑠| ≤ 𝜑

(4.28)

4.2.2 System Dynamics

The system dynamics from Equation 2.12 can be re-defined in terms of the new sliding

variable 𝑠 using the definition of 𝑠̇ from Equation 4.27.

𝐼(𝜃)𝑠̇ = 𝐼(𝜃)𝜃 − 𝐼(𝜃)𝜃𝑟 = 𝜏𝑖𝑛 − 𝐼(𝜃)𝜃𝑟 − 𝐶(𝜃, 𝜃̇)𝜃̇ + 𝜏ℎ − 𝜏𝑓 + 𝑑 (4.29)

69

It is useful to define a new matrix of measured time-varying quantities 𝑌 and vector

of unknown fixed quantities 𝑎 such that when multiplied together they yield the

following [37].

𝑌 𝑎 = 𝐼(𝜃)𝜃𝑟 + 𝐶(𝜃, 𝜃̇)𝜃𝑟 (4.30)

The unknown fixed constants used in the 𝐼 and 𝐶 matrices can be reduced to just

three parameters in the 𝑎 vector.

𝑎 =

⎡⎢⎢⎢⎢⎣
𝐼1 + 𝑚2𝑙

2
1 + 𝐼3

𝐼2 + 𝑚3𝑙
2
4 + 𝐼4

𝑚2𝑙1𝑟2 + 𝑚3𝑙4𝑟3

⎤⎥⎥⎥⎥⎦ (4.31)

The matrix 𝑌 that fulfills the requirements of Equation 4.30 with the vector 𝑎 from

Equation 4.31 is defined below.

𝑌 (𝜃, 𝜃̇,𝜃𝑟,𝜃𝑟) =

⎡⎢⎣𝜃𝑟1 0 cos(𝜃1 − 𝜃2)𝜃𝑟2 + sin(𝜃1 − 𝜃2)𝜃2 ˙𝜃𝑟2

0 𝜃𝑟2 cos(𝜃1 − 𝜃2)𝜃𝑟1 − sin(𝜃1 − 𝜃2)𝜃1 ˙𝜃𝑟1

⎤⎥⎦ (4.32)

Integrating Equation 4.30 into Equation 4.29 yields the following. The term 𝐶(𝜃, 𝜃̇)𝜃̇−

𝐶(𝜃, 𝜃̇)𝜃𝑟 is replaced with 𝐶(𝜃, 𝜃̇)𝑠.

𝐼(𝜃)𝑠̇ = 𝜏𝑖𝑛 − 𝑌 (𝜃, 𝜃̇,𝜃𝑟,𝜃𝑟)𝑎− 𝐶(𝜃, 𝜃̇)𝑠 + 𝜏ℎ − 𝜏𝑓 + 𝑑 (4.33)

The following is a reasonable controller for the system, with 𝑎̂ being an approximation

for the matrix of unknown parameters 𝑎.

𝜏𝑖𝑛 = 𝑌 (𝜃, 𝜃̇,𝜃𝑟,𝜃𝑟)𝑎̂− 𝜏ℎ + 𝜏𝑓 − 𝑘𝑠 (4.34)

70

Replacing 𝜏𝑖𝑛 from Equation 4.33 with Equation 4.34 yields the following equation

for the term 𝐼(𝜃)𝑠̇, where 𝑎̃ = 𝑎̂− 𝑎.

𝐼(𝜃)𝑠̇ = 𝑌 (𝜃, 𝜃̇,𝜃𝑟,𝜃𝑟)𝑎̃− 𝑘𝑠− 𝐶(𝜃, 𝜃̇)𝑠 + 𝑑 (4.35)

4.2.3 Stability

Barbalat’s Lemma is used to assess the stability of the system using Lyapunov func-

tion 𝑉 (𝑥, 𝑡). Barablat’s Lemma says that the system is stable when the following

conditions are met [36]:

1. 𝑉 (𝑥, 𝑡) is lower bounded

2. 𝑉̇ (𝑥, 𝑡) is negative semi-definite

3. 𝑉̇ (𝑥, 𝑡) is uniformly continuous in time

The Lyapunov function used for this system is defined below, where P is a symmetric

positive definite constant matrix.

𝑉 =
1

2
𝑠Δ

𝑇 𝐼(𝜃)𝑠Δ +
1

2
𝑎̃𝑇𝑃−1𝑎̃ (4.36)

Stability Condition 1: 𝑉 (𝑥, 𝑡) is lower bounded

The first stability condition of Barbalat’s Lemma is that the Lyapunov function must

be lower bounded. Because each term in Equation 4.36 is quadratic and positive,

𝑉 is positive semi-definite, meaning that it has a lower bound at 𝑉 = 0. Therefore

Barbalat’s first condition is satisfied.

Stability Condition 2: 𝑉̇ (𝑥, 𝑡) is negative semi-definite

The second stability condition of Barbalat’s Lemma is that the time derivative of the

Lyapunov function must be negative semi-definite. The time derivative of Equation

71

4.36 is the following.

𝑉̇ = 𝑠Δ
𝑇 𝐼(𝜃) ˙𝑠Δ +

1

2
𝑠Δ

𝑇 𝐼(𝜃)𝑠Δ + ˙̃𝑎
𝑇
𝑃−1𝑎̃ (4.37)

The term 𝐼(𝜃) ˙𝑠Δ can be replaced with Equation 4.35. Because 𝑎 is a vector of

constant dimensions and inertias, ˙̃𝑎 = ˙̂𝑎.

𝑉̇ = 𝑠Δ
𝑇
(︁
𝑌 𝑎̃− 𝑘𝑠− 𝐶(𝜃, 𝜃̇)𝑠Δ + 𝑑

)︁
+

1

2
𝑠Δ

𝑇 𝐼(𝜃)𝑠Δ + ˙̂𝑎
𝑇
𝑃−1𝑎̃ (4.38)

This equation can be rearranged to consolidate the system into three terms.

𝑉̇ =
1

2
𝑠Δ

𝑇
(︁
𝐼(𝜃) − 2𝐶(𝜃, 𝜃̇)

)︁
𝑠Δ +

(︁
𝑠Δ

𝑇𝑌 + ˙̂𝑎
𝑇
𝑃−1

)︁
𝑎̃ + 𝑠Δ

𝑇 (𝑑− 𝑘𝑠) (4.39)

At this point the system can be broken down term by term. Part of the first term is

defined below.

𝐼(𝜃) − 2𝐶(𝜃, 𝜃̇) =

⎡⎢⎣ 0 −𝑎3 sin(𝜃1 − 𝜃2)(𝜃1 + 𝜃2)

𝑎3 sin(𝜃1 − 𝜃2)(𝜃1 + 𝜃2) 0

⎤⎥⎦ (4.40)

It should be noted that the transpose of this matrix is just the negative of itself,

meaning that this matrix is skew-symmetric [37]. Skew symmetric matrices have the

unique property that when multiplied by the same vector twice, as this matrix is

multiplied by 𝑠Δ in the first term of Equation 4.39, the product is zero. Hence the

first term of Equation 4.39 can be removed.

The second term in Equation 4.39 can zero out as well, as long as the following

adaptation law is applied. Note that this will freeze adaptation when the magnitudes

of the values within the 𝑠 vector are within the dead zone 𝜑 so that the time-varying

72

model uncertainty does not impact adaptation [38].

˙̂𝑎 = −𝑃𝑌 𝑇𝑠Δ (4.41)

The initial values for 𝑎̂ are calculated from Equation 4.31 using the approximate

measurements in Table 2.5.

𝑎̂0 =

⎡⎢⎢⎢⎢⎣
0.4076

0.3696

0.3356

⎤⎥⎥⎥⎥⎦ (4.42)

It can be assumed that these values are accurate within ±0.05, and upper and lower

bounds can be applied to them without invalidating the stability analysis. For exam-

ple, if one of the value estimates drifts upwards to 𝑎̂1 = 0.45, it can be concluded that

𝑎̂1 > 𝑎1, meaning that 𝑎̃1 > 0. If at this point the ˙̂𝑎1 term of the adaptation law in

Equation 4.41 is positive, a post-adaptation upper limit of ˙̂𝑎1 = 0 makes the second

term of Equation 4.39 more negative than it would have been with the un-limited ˙̂𝑎1,

and therefore more stable. The same is true for the reverse case where 𝑎̃1 < 0, and

for all the adaptable terms 𝑎̂1, 𝑎̂2, and 𝑎̂3. For this reason, upper and lower bounds

can be applied to the adaptation law for all three parameters.

The purpose of the adaptation law is to allow the unknown inertias to adapt based on

observation of the dynamics of the system. The lengths of the robot links affect the

system Jacobian which does not adapt based on observed dynamics. This is because

the link lengths can be measured more accurately than the robot inertias and are

assumed to be accurate within the certainty of the model.

Finally, the only term left in 𝑉̇ is the third term in Equation 4.39 which can be

re-written as the following.

𝑉̇ = 𝑠Δ
𝑇 (𝑑− 𝑘𝑠) (4.43)

73

If 𝑠Δ is zero, then 𝑉̇ is zero. If 𝑠Δ is non-zero, the equation can be re-written.

𝑉̇ = 𝑠Δ
𝑇 (𝑑− 𝑘𝜑 * sign(𝑠Δ)) − 𝑠Δ

𝑇𝑘𝑠Δ (4.44)

Because the time-varying uncertainty 𝑑 is bounded, we know that the term inside

the parentheses of the first term has the opposite sign to 𝑠Δ and the product will

be negative or zero as long as the following product is greater than or equal to the

bounds of the time-varying uncertainty 𝐷 [38].

𝑘𝜑 ≥ 𝐷 (4.45)

The second term in Equation 4.44 will always be negative if 𝑠Δ is non-zero, making

𝑉̇ always negative semi-definite and conforms to the second stability condition of

Barbalat’s Lemma.

Stability Condition 3: 𝑉̇ (𝑥, 𝑡) is uniformly continuous in time

The Lyapunov derivative 𝑉̇ , defined in Equation 4.43, combines the terms 𝑠, 𝑠Δ,

and 𝑑 through multiplication and subtraction. As long as those three terms are all

continuous in time, so is the Lyapunov derivative. All of the terms of the derivative

of 𝑠 in Equation 4.35 are finite, meaning that 𝑠 is continuous in time. Additionally

the formula for 𝑠Δ in Equation 4.28 indicates that 𝑠Δ is continuous in time if 𝑠

is continuous in time. Finally, the time-varying uncertainty 𝑑 is a combination of

steady-state error and transient error which is assumed to be continuous. Thus, the

system conforms to the third stability condition of Barbalat’s Lemma.

The adaptive tracking controller presented meets all three conditions of Barbalat’s

Lemma. The controller consists of the control law in Equation 4.34, the adaptation

law defined in Equation 4.41, and the gain to boundary layer relationship defined in

74

Equation 4.45.

4.2.4 Parameter Tuning

One advantage of this adaptive tracking controller is that it requires minimal tuning.

The four constant parameters that need to be specified are control bandwidth 𝜆,

dead-zone 𝜑, gain 𝑘, and adaptation matrix 𝑃 .

Control Bandwidth 𝜆

The controller bandwidth can be set directly using the parameter 𝜆, whose units are

𝑟𝑎𝑑
𝑠

. This value must be chosen carefully so as to not excite any instabilities in the

system. To choose this value requires consideration of everything in the system that

could cause a resonance [36].

1. Structural resonant modes: The InMotion2 hardware is very rigid and its res-

onant modes have high frequencies. The frequency of one of the links can be

determined using the following formula, where link length 𝐿 = 0.51𝑚, Young’s

modulus 𝐸 = 68.9 * 109𝑃𝑎, 4th polar moment of inertia 𝐼 = 5.2 * 10−8, mass

per length 𝜇 = 2𝑘𝑔/𝑚.

𝑓 =
1

2𝜋

(︁𝜋
𝐿

)︁2√︃𝐸 * 𝐼
𝜇

= 256𝐻𝑧 (4.46)

This frequency is higher than the other resonances in the system and therefore

will not be the limiting factor for consideration of controller bandwidth.

2. Neglected time delays: The system time delays can be determined by examining

the results from static force test described in Section 2.2.2. A zoomed-in version

of Figure 2-5, shown in Figure 4-5, shows that the overall time delay is 0.018

seconds. Note that this includes a 30Hz filter on the force measurement, which

is the same bandwidth as the velocity filter. Slotine and Li determined that

75

Figure 4-5: Static Torque Test: Zoomed In

the control bandwidth should adhere to the following equation, where 𝑇𝐴 is the

largest unmodeled time delay [36].

𝜆 ≤ 1

3𝑇𝐴

= 18.5
𝑟𝑎𝑑

𝑠
(4.47)

3. Sampling rate: The sampling rate of the inertia compensator is 2000 Hz. The

condition presented by Slotine and Li is [36]:

𝜆 ≤ 1

5
𝜈𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 400

𝑟𝑎𝑑

𝑠
(4.48)

To optimize controller performance, the bandwidth was set as high as possible while

still staying within the limitations.

𝜆 = 18
𝑟𝑎𝑑

𝑠
(4.49)

76

Gain 𝑘

The ideal feedback gain 𝑘 was determined during testing, detailed in Chapter 5. The

ideal gain for the system was determined below.

𝑘 = 20
𝑁𝑚𝑠

𝑟𝑎𝑑
(4.50)

Dead-Zone 𝜑

The dead-zone 𝜑 is chosen such that the product of the dead-zone and the gain follow

Equation 4.45, using the definition of 𝐷 from Equation 2.20.

𝜑 =
𝐷

𝑘
=

1𝑁𝑚 * 𝑟𝑎𝑑
20𝑁𝑚𝑠

= 0.05
𝑟𝑎𝑑

𝑠
(4.51)

Adaptation Matrix 𝑃

The requirements for 𝑃 are that it must be a symmetric positive definite constant

matrix. For simplicity, 𝑃 is defined as the identity matrix.

𝑃 =

⎡⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎦ (4.52)

Desired inertia 𝑚

The desired inertia is meant to be a flexible parameter dependent on the objectives

of the task at hand. Experimental testing proved that the controller is stable with

a desired inertia of 𝑚 = 1𝑘𝑔 but is unstable with a desired inertia of 𝑚 = 0.5𝑘𝑔.

This coincides with Colgate’s theory that force feedback cannot maintain passivity

when attempting to program the apparent inertia to less than half of the natural

inertia of the system [18]. The natural inertia of the InMotion2 varies between 1kg

77

and 2.5kg according to 5-7. The desired inertia should be limited to a minimum of

𝑚 = 1𝑘𝑔. Analysis in Chapter 5 demonstrates that the desired mass should remain

below a threshold in order for the accuracy of the inertia compensation to be within

a human’s perception ability.

1𝑘𝑔 ≤ 𝑚 ≤ 4𝑘𝑔 (4.53)

78

Chapter 5

Implementation and Testing

The controller described in Chapter 4 along with the software described in Chapter

3 was implemented on the InMotion2 robot. The controller has the flexibility to

simulate different levels of inertia 𝑚, so each test was run with desired masses of

1kg, 2kg, 3kg, 4kg, 5kg, and 6kg. Each of these tests was run with different levels of

feedback gain 𝑘 in order to optimally tune the controller for performance and stability.

5.1 Initial Condition Response

The first test that was performed was an initial condition response test. The end-

effector of the robot was lightly tossed from one end of the workspace to the other,

and was untouched as it traveled across the workspace. A robot with perfect inertia

would behave like a hockey puck on an ice rink, traveling with constant speed and

direction when no external forces are applied.

5.1.1 Unconstrained Compensation

The following tests were performed using the unconstrained inertia compensation,

where the robot was free to move anywhere within the workspace, and inertia com-

79

pensation was active to ensure that the acceleration of the robot was proportional to

the applied force in both magnitude and direction. Figure 5-1 shows the speed (left)

(a) Speed (b) Direction

Figure 5-1: Uncompensated Speed and Direction: A system with constant inertia
would travel with constant speed and direction in response to an initial condition.

However the natural response of the robot is highly nonlinear, and is best
approximated by 2nd, 3rd, and 4th order equations.

and direction (right) of the uncompensated robot end-effector after initial conditions

were applied. Joint friction causes the speed to decrease as the robot moves across

the workspace, and the variable natural inertia of the robot causes the trajectory

to gradually change direction during the movement. These combined effects cause

a trajectory that is best fit by 2nd, 3rd, and 4th order equations. Not only is the

apparent inertia not constant, it is very nonlinear.

When the same test was run with inertia compensation turned on, the end-effector

velocity stayed much more constant over the transient. Figure 5-2 shows the speed

(left) and direction (right) for 𝑚 = 2𝑘𝑔 for varying levels of feedback gain 𝑘. Because

no external forces were applied during this test, the desired acceleration was zero

regardless of the desired mass. Even with no feedback compensation with 𝑘 = 0𝑁𝑚𝑠
𝑟𝑎𝑑

,

the feedforward portion of the inertia compensation does an excellent job of main-

taining the desired trajectory and keeping the speed and direction of travel constant.

80

(a) Speed (b) Direction

Figure 5-2: Compensated Speed and Direction, mass = 2kg: When inertia
compensation is active the initial condition response moves much closer to constant

speed and direction compared with the responses of Figure 5-1.

(a) Speed Error (b) Direction Error

Figure 5-3: Compensator Accuracy, mass=2kg: The coefficient of variation of speed
decreases with increasing controller gain 𝑘, as does the standard deviation of

direction of travel.

81

As the feedback gain 𝑘 is increased, the response just gets better, shown in Figure

5-3. The coefficient of variation of the speed throughout the response decreases with

increasing 𝑘 (left), and the standard deviation of trajectory direction is minimized

with diminishing returns above 𝑘 > 5𝑁𝑚𝑠/𝑟𝑎𝑑. Above a gain of 𝑘 = 20𝑁𝑚𝑠
𝑟𝑎𝑑

the

commanded motor torque began switching fast enough for the motors to respond,

which created buzzing noises that are undesirable.

The results for this test show marked improvement over the uncompensated robot

dynamics and proves that the adaptive tracking controller is quite effective at main-

taining a desired trajectory. However this test does not demonstrate the robot’s

response in the presence of nonzero desired acceleration.

5.1.2 Constrained Compensation

The same impulse tests that were conducted for the unconstrained inertia compen-

sator have also been performed for the constrained inertia compensator. The high-

level controller was programmed to simulate the circular virtual constraint described

in Section 3.2.1. The recommended stiffness of 5000 N/m was used for the virtual

constraint, with the recommended damping of 40 Ns/m.

With the virtual constraint active, the robot end-effector was provided with an initial

speed and the resulting tangential velocity was recorded as the end-effector moved

around the constraint. Figure 5-4 shows the trajectory of the robot end-effector as it

moved around the uncompensated virtual constraint (left) and the tangential speed of

the end-effector (right). The virtual constraint acted to force the end-effector orthog-

onal to the constraint but did not act tangentially to the constraint. Joint friction

dissipated energy as the robot traveled which caused a decrease in overall velocity.

The configuration-dependent apparent inertia decreased and increased throughout

82

the transient, causing fluctuations in tangential speed that cannot be explained by

friction alone. Because the virtual constraint was active, we are only interested in the

one dimension of inertia compensation.

(a) Trajectory (b) Tangential Speed

Figure 5-4: Circular Virtual Constraint Without Inertia Compensation: When
compensation was not active joint friction caused the end-effector to slow down and

varying inertia caused the end-effector to accelerate and decelerate nonlinearly.

(a) Tangential Speed (b) Speed Error

Figure 5-5: Tangential Speed With Inertia Compensation: When compensation was
active, tangential speed was maintained (left). The coefficient of variation (right)

decreased with increasing feedback gain.

When inertia compensation was active, the virtual constraint tangential speed re-

mained constant and did not degrade, as seen in Figure 5-5. As the controller feedback

83

gain is increased the oscillations decrease.

5.2 Human Interaction

The next test that was performed was the human interaction test. The human tester

gripped the robot handle and moved it around the workspace with varying forces

and directions to observe how the inertia compensator performed in the presence of

changing forces. To maintain consistency, each test involved the robot end-effector

being moved in a general circular motion such as the one shown in Figure 5-6, in free

space with no virtual constraints.

Figure 5-6: Human Interaction Test Trajectory

In this test, the robot end-effector accelerated as it was forced about the workspace.

Ideally when a force vector with both magnitude and direction is applied to the robot

handle, the end-effector should accelerate with a magnitude proportional to the ap-

plied force magnitude, and in the same direction. The apparent inertia magnitude is

therefore defined as the ratio of applied force magnitude to acceleration magnitude,

84

in which the goal is to achieve an apparent inertia magnitude equal to the desired

inertia. The apparent inertia direction is defined as the angle between the applied

force and the resulting acceleration, in which the goal is for this angle to be zero. The

inertia magnitude and direction were measured with the following equations, where

𝑓ℎ is the corrected force magnitude derived in Equation 4.4, and 𝑎𝑥 and 𝑎𝑦 represent

the measured acceleration in x and y directions, respectively.

𝑚𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =
𝑓ℎ√︀

𝑎2𝑥 + 𝑎2𝑦
𝑚𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = atan2(𝑓𝑦, 𝑓𝑥) − atan2(𝑎𝑦, 𝑎𝑥) (5.1)

(a) Magnitude (b) Direction

Figure 5-7: Uncompensated Inertia

Without compensation, the inertia magnitude and direction change based on con-

figuration and direction. The inertia for the circular trajectory from Figure 5-6 is

displayed in Figure 5-7. As the end-effector moved around the circle the apparent

inertia changed between ∼ 1𝑘𝑔 and ∼ 2.5𝑘𝑔.

When compensation was active, the apparent inertia was close to constant. Figures

5-8 through 5-13 show the same test performed in Figure 5-7 but with compensation

85

turned on at desired mass of 1kg through 6kg, for varying levels of feedback gain 𝑘.

The direction of apparent inertia (right) matched the desired direction with minimal

deviation. Figure 5-14b shows the standard deviation of direction in units of radi-

ans for each value of compensator gain 𝑘. The magnitude of apparent inertia (left)

matched the desired inertia with some deviation from the mean for each case. The

coefficient of variation of inertia magnitude error for each gain value of each mass is

plotted in Figure 5-14a.

In general the standard deviation of inertia error decreases with increasing gain.

However the compensation reaches diminishing returns at 𝑘 = 20, as 𝑘 = 25 begins

to excite noise in the system. Therefore the ideal gain for the inertia compensation

is 𝑘 = 20𝑁𝑚𝑠
𝑟𝑎𝑑

.

When a compensator feedback gain of 𝑘 = 20 is selected, Figure 5-14b shows that

the error in inertia direction (angle between force and acceleration) is not strongly

tied to the desired mass. The magnitude of inertia error is strongly correlated with

desired mass, as shown in Figure 5-14a. In order to determine which desired masses

are acceptable for human interaction applications, it is important to know what dif-

ferential values of inertia are detectable by a human. In 2005 Tanaka et al. conducted

a small study to estimate a human’s ability to perceive changes in haptic inertia [39].

They found that human’s inertia perception followed Weber’s law, in which a human’s

perception sensitivity to an incremental increase in a stimulus is proportional to the

magnitude of the stimulus [40]. In 1960 Rees and Copeland determined the Weber

fraction (delta stimulus divided by magnitude of stimulus) for mass perception [41]

which is slightly more conservative than the estimate by Tanaka et al.

The average human perception of differential inertia is plotted in blue in Figure

86

(a) Magnitude (b) Direction

Figure 5-8: Compensated Inertia, mass=1kg

(a) Magnitude (b) Direction

Figure 5-9: Compensated Inertia, mass=2kg

(a) Magnitude (b) Direction

Figure 5-10: Compensated Inertia, mass=3kg

87

(a) Magnitude (b) Direction

Figure 5-11: Compensated Inertia, mass=4kg

(a) Magnitude (b) Direction

Figure 5-12: Compensated Inertia, mass=5kg

(a) Magnitude (b) Direction

Figure 5-13: Compensated Inertia, mass=6kg

88

(a) Magnitude Coefficient of Variation (b) Direction Standard Deviation

Figure 5-14: Compensator Error: The inertia magnitude coefficient of variation
(left) and the inertia direction standard deviation (right) are reduced with

increasing controller gain 𝑘.

5-15. Plotted in red is the 2𝜎 inertia compensator error, which represents 95% of

the deviation from the given desired inertia. Below a desired inertia of 4kg, the 2𝜎

inertia compensation error is less than is detectable by a human. Above 4kg, the 2𝜎

inertia compensation could be detectable by a human. Thus it is recommended that

the inertia compensation be used to emulate inertias below 4kg.

The adaptable parameters 𝑎1, 𝑎2, and 𝑎3 are only allowed to change when controller

error 𝑠 exceeds the value of the dead zone 𝜑. Because the dynamic model uncertainty

which drives the value of 𝜑 was conservatively chosen, the value of 𝑠 never exceeded

𝜑 during these trials and the adaptable parameters remained constant.

89

Figure 5-15: Inertia Differential Perception and 2-𝜎 Controller Accuracy: The
inertia compensator can maintain inertia to the defined (red) error with 95%

certainty. The Weber fractions determined by Tanaka et al. (blue) [39] and Rees et
al. (green) [41] define the limit for human perception of inertia differences.

90

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis documented the design and implementation of a unique inertia compensa-

tion control scheme implemented on the InMotion2 planar robot. The need for inertia

compensation arose from the desire to test the dynamics of human-robot interaction

in a manner that isolates the dynamics of the human from the dynamics of the robot.

A new suite of LabVIEW-based software was developed to control the robot from a

National Instruments compactRIO in a flexible and modern way.

The strategy used for inertia compensation was to model inertia as an admittance,

reacting to external forces with a proportional acceleration trajectory. To this end,

a position-based controller was designed to force the robot to take on the desired ac-

celeration trajectory. A separate admittance model was created to enforce a virtual

constraint in any direction, and this admittance model could be superimposed on the

inertia compensation admittance model to create a single desired trajectory for the

robot. Sliding mode control was used to design a robust adaptive position tracking

controller that achieved the desired admittance.

91

This controller was successfully implemented on the InMotion2 robot and multiple

tests were performed to validate the performance of the inertia compensation as well

as tune the feedback gain of the adaptive tracking controller. The inertia compen-

sation allows the robot to move with constant velocity when subjected to an initial

condition, both in 2-dimensional space and with the virtual constraint active. Hu-

man interaction testing validated the performance of the inertia compensation and

the standard deviation of inertia error was found to be below the limit of human

perception for modest values of desired inertia.

6.2 Future Work

6.2.1 Controller Bandwidth

The bandwidth of the inertia compensation is limited by 30Hz 2nd order low-pass

filters that are applied to both the measured force and the velocity calculation. The

force measurement filter does not require such a low bandwidth; it was set to be

consistent with the filters on the velocity and acceleration calculations, described in

Section 3.3.1. These filters have such a low bandwidth because of the low resolution

on the encoders. There are many methods to deal with calculating velocity from low

resolution encoders, many of which are documented in [42]. The 2kHz update time

of the controller is fast enough to utilize period measurement rather than frequency

measurement, in which the period of time in between increments on the encoder is

used to calculate velocity, rather than a fixed time step. This could potentially create

a less discretized initial signal which would require less filtering. Other techniques

could also be employed to improve the signal such as prediction/estimation. Either

a linearized Kalman filter or a nonlinear Luenberger observer could be employed to

inform the velocity calculation as well [42]. If any of these techniques are able to

92

increase the bandwidth of the velocity calculation, the bandwidth of both the inertia

compensator and the virtual constraint could be increased to improve accuracy while

maintaining system stability.

6.2.2 Force Measurement

When processing the measured force at the end-effector for the admittance model,

a small dead zone of 0.3 N is applied to the force magnitude, described in Section

4.1.1. The purpose of this dead zone is to ensure that when no actual external force is

applied to the end-effector, it commands no acceleration. If there were no dead zone,

any slight bias or noise in the force sensor could introduce a nonzero acceleration

reference. The inertia compensator also compensates for system friction, so even a

minuscule nonzero acceleration reference would cause the robot to slowly move when

there are no external forces acting on it. It also adds nonlinear effects to the apparent

inertia when forces are low, which may be undesirable. The size of this dead zone was

chosen such that the dead zone would zero out the calculated force when accelerating

about a virtual constraint, and could potentially be decreased much lower so as to

only compensate for forces when the robot is at rest. This would improve the inertia

characteristic around zero forces, but would cause nonzero force measurement when

accelerating about a virtual constraint.

6.2.3 Adaptation

The model uncertainty derived in Section 2.2 sets the size of the adaptation dead-zone

𝜑. It was derived using a combination of steady modeling error from the clamped

torque test, and the transient modeling error using the impulse test. The steady error

determined in the clamped torque test could be improved by calibration of both the

force transducer and the output torque. The transient error determined by comparing

the dynamic model with fixed system physical parameters to the dynamic response

93

of the system. The transient errors are due to some combination of un-modeled

dynamics such as gravity and inaccurate friction modeling and physical parameter

errors. Because the physical parameter errors are included in the dynamic model

uncertainty, it makes the estimation of model uncertainty very conservative. This

drives the adaptation dead-zone 𝜑 to be very conservative at a value of 0.05. It was

observed in implementation that the magnitude of the sliding error parameter 𝑠 was

always below 𝜑 and therefore the model never was allowed to adapt, shown in Figure

6-1.

Figure 6-1: Sliding Variable 𝑠

If the estimation of dynamic modeling error D could be reduced, that would allow

the parameter 𝜑 to reduce with it. If the model were to be allowed to adapt to the

state of the system it would improve controller accuracy. As it is currently imple-

mented, the adaptation law is not active and therefore the adaptation matrix 𝑃 has

not been tuned. However, to demonstrate that the adaptation law does indeed work,

the estimation of model uncertainty was reduced to 𝐷 = 0.1𝑁𝑚 and adaptation was

turned on with a controller gain of 𝑘 = 10. This reduced the adaptation dead-zone

94

to 𝜑 = 0.01𝑟𝑎𝑑/𝑠 which the sliding error sometimes exceeded. The results of this ex-

periment are shown in Figure 6-2. The adaptive parameters moved from their initial

values until they hit their respective minimum and maximum limits. This adaptation

law is quite aggressive; the adaptation gain matrix 𝑃 and dead-zone 𝜑 would need to

be properly tuned in order for the adaptation to improve error tracking.

Figure 6-2: Adaptive Parameters

6.2.4 Human Testing

Finally, the inertia compensation can be integrated into human-robot interaction

testing. Different constraints can be simulated using the flexible 𝛾 and 𝑟 parameters

described in Section 3.2.1 to change the constraint based on time or position, or even

to relax the constraint away. This enables new types of human testing which have

never before been possible, and can aid in the quest to gain new insight into human

motor control.

95

96

Appendix A

Operating the InMotion2

A.1 Running the robot

1. Turn on the ATI Force/Torque Controller by flipping the ON/OFF switch in

the back. This step is necessary if you wish to record the end-effector forces or

use the inertia compensator.

2. Turn on the compactRIO by pressing the ON/OFF button. The 1st LED will

turn green when the cRIO is powered. The 2nd LED will turn yellow while

initializing, then turn off when initialization is complete. If this LED blinks

2 or 3 times every few seconds, the cRIO is in safe mode. If this LED is

blinking continuously, the software is corrupted and can be fixed by following

the instructions in Section A.4.

3. Connect the cRIO to your PC with the USB cable. Look for mitPlanarRobot

in NI Measurement & Automation Explorer to verify connection.

4. Switch the red control panel switch from OFF to ON. This powers up the motor

servos and encoders and supporting electronics. The "RESET" light should

light up red meaning that the motors are shorted out with the break on.

97

5. Move the robot arm slightly so that both the elbow and shoulder joints move

by a few degrees. This initializes the encoders. Before the robot arm is moved,

the decoders do not return an accurate position.

6. If changes have been made to the software, run the software with the rotor

break on. Take a look at the data to make sure the output torque is acting with

the correct magnitude and direction.

7. Press the "RESEST" button so that the red light turns off, indicating that the

motors are no longer shorted out without the brake on.

8. Press the "START" button to activate the servos. The green start light should

go on. By default the cRIO should command 0 volts when it is on. Do not

press "START" while the cRIO is off.

9. Keep the "EMERGENCY STOP" buttons handy. When one of these buttons

is pressed, the motor brake is turned on and the servos do not output current

to the motors.

10. Open up run.vi in LabVIEW and enter your desired output file name in the

"filename" box.

11. Press the run button (white arrow) at the top left of the LabVIEW window.

Interact with the robot.

12. Press the STOP button on the LabVIEW front panel to stop the program. This

writes the data to a file in the data buffer and sets the motor voltages back to

zero.

13. Make sure the cRIO is mapped to the X: drive on the pc. The drive is at

http://172.22.11.2/files/ username: admin, password: imt2.

98

http://172.22.11.2/files/

14. Execute the Matlab file importData.vi to automatically copy the data from the

cRIO onto the local computer.

15. Select a file to import into the Matlab workspace when prompted.

16. The data is saved into the Matlabdata folder.

A.2 Running the inertia compensator

The inertia compensator works by reading the forces applied to the robot end-effector

via the force/torque transducers, using an admittance model to convert these forces

into a desired trajectory, and implementing an adaptive tracking controller to output

motor torques to achieve the desired trajectory.

1. Make sure that the force/torque controller switch is turned on.

2. Start run.vi with the inertia compensation switch turned off.

3. Make sure that the F/T fault (third in sensor fault array) is FALSE. The fault

will read TRUE when the force/torque controller is off.

4. Make sure that 0 output torque is being sent to the motors (constraint turned

off, compensation turned off).

5. Let the robot sit still for a few seconds with no external forces acting on it.

6. If the ftBias_bool button is on, press the button to turn it off, removing the

zero bias on the force/torque signals.

7. Press the ftBias_bool button to turn it on. At the instant this button goes

from FALSE to TRUE the zero bias is set to the current force/torque readings.

8. Make sure that the forces in the x and y direction read near zero.

99

9. Make sure that the inertia compensator gain is reasonable (usually k=10) and

mass is reasonable (m between 1kg and 6kg).

10. Grip the robot handle and turn on the inertia compensation by pressing the com-

pensate_bool button. This will turn on unconstrained inertia compensation. If

the virtual constraint is desired, make sure the correct impedance parameters

are entered and turn on the constraint by pressing the constrain_bool button.

This will turn on constrained inertia compensation.

11. If adaptation is desired, press the adapt_bool button.

12. When testing is done, press the "STOP" button on the LabVIEW front panel.

This will exit the program gracefully, removing the torque sent to the motors

and writing the force zero bias to a file on the cRIO.

A.3 Modifying LabVIEW code

RT processor code

The RT processor is programmed with traditional LabVIEW. The InMotion2 code is

separated into a number of functions called subVI’s which will be described in detail

in Appendix B. SubVI’s are useful to isolate functions from each other but can be

difficult to change after they are created. The inputs and outputs of a subVI are

defined when the subVI is created (highlight code -> Edit -> Create SubVI) and

cannot be modified after. If you wish to add or change the inputs or outputs of

a subVI you must remake the subVI. Most of the data in the high level code are

bundled into clusters of parameters. If anything is added to or removed from one of

these clusters, that change has to propagate throughout all the subVI’s that use that

cluster.

100

FPGA code

The FPGA code is programmed with special LabVIEW functions that get compiled

into firmware. These functions use fixed-point representation, in which each number

has its data type defined by the following.

1. Signed (+/-) / Unsigned (+): Anything that can go negative should be denoted

as Signed.

2. Word length: This is the number of bits used to represent the data. A longer

data length enables a higher resolution of data.

3. Integer Word Length: This is the number of bits before the radix point of the

data, and defines how the data is scaled. A longer integer word length enables

larger numbers to be represented.

The top-level FPGA code "runFPGA.vi" needs to be compiled before running. The

recommended method is doing it locally using Xilinx compilation tool. The local

compilation takes up a lot of memory (around 2GB) and could take more than an hour.

When the compilation is finished it creates a compiled file in the LabVIEW/FPGA

Bitfiles folder of the repository. This file can be renamed to whatever is appropriate.

To have this FPGA code run from the top-level run.vi, double click the "Configure

Open FPGA VI Reference" block on the left of run.vi. Then modify the path of the

bitfile and press OK.

A.4 Fixing a corrupted cRIO

If the status (2nd) LED on the cRIO is blinking continuously, that means that the

cRIO software has been corrupted and needs to be reloaded. The instructions to do

this are as follows:

1. Name a flash drive NIRECOVERY and format it as FAT32

101

2. Copy the files from the github NIRECOVERY folder to the flash drive

3. Plug a monitor into the cRIO mini DisplayPort

4. With the cRIO on, plug the flash drive into the cRIO USB slot

5. Press and hold the ON/OFF button to turn the cRIO OFF

6. Push and hold the reset button, keep holding while you press and release the

power button, for 5 seconds until the status LED turns on

7. Watch the monitor until it says the installation was successful - if there’s an

error just start the process over

8. Remove the flash drive and press the reset button. It should go into safe mode

in which software can be loaded via the pc.

9. When the cRIO is in safe mode, the status LED should be blinking 2 or 3 times

every few seconds.

10. Plug USB cable into your PC and load up NI Measurement & Automation

Explorer

11. Install the software using instructions at https://www.ni.com/getting-started/

set-up-hardware/compactrio/controller-software

12. cRIO username: admin password: imt2

13. Make sure to select "System State Publisher" in addition to the default software.

102

https://www.ni.com/getting-started/set-up-hardware/compactrio/controller-software
https://www.ni.com/getting-started/set-up-hardware/compactrio/controller-software

Appendix B

Software Description

In order to run the robot, the user only needs to interact with one file, run.vi. This file

runs on the real time (RT) processor and executes all other functions. This appendix

contains a list of all logged parameters, as well as a comprehensive description of each

function for both the RT processor and FPGA code.

B.1 Parameter Lists

The data that gets logged is organized into 5 clusters. Within the code, the names

of parameters within an array values are separated by brackets. For instance the

array "pos[S,E,Q]_raw" translates into three parameters for the data log: posS_raw,

posE_raw, and posQ_raw. Table B.1 displays the variables in the "userInput" clus-

ter, set in run.vi. Table B.2 displays the variables in the "control" cluster, set in the

high-level control function bundle.vi. Table B.3 displays the variables in the "outputs"

cluster, set in outFPGA.vi. Table B.4 displays the variables in the "inputs" cluster,

set in inFPGA.vi. Table B.5 displays the variables in the "inertiaVals" cluster, set in

outFPGA.vi.

103

Table B.1: User Inputs

Parameter Description Destination
mDesired_kg Desired mass, kg refXyFPGA.vi
k_Nmsprad Inertia compensator feedback gain,

Nms/rad
finalFPGA.vi,
errorFPGA.vi

p_kgmms Adaptation law gain, 𝑘𝑔𝑚2𝑠 a-lawFPGA.vi
compensate_bool Inertia compensation on/off button outFPGA.vi

refXyFPGA.vi
adapt_bool Adaptation on/off button adaptFPGA.vi
damping_Nspm Virtual constraint damping, Ns/m adOrthoFPGA.vi
stiffness_Npm Virtual constraint stiffness, N/m adOrthoFPGA.vi
radius_m Virtual constraint circle radius, meters circle.vi
constraint_bool Virtual constraint on/off button refXyFPGA.vi

Table B.2: Control Inputs

Parameter Description Destination
forces_bool True if forces are specified outFPGA.vi

False if torques are specified
controllerOutput1 X force if forces_bool=ON, N outFPGA.vi

Torque 1 if forces_bool=OFF, Nm
controllerOutput2 Y force if forces_bool=ON, N outFPGA.vi

Torque 2 if forces_bool=OFF, Nm
gamma_rad Virtual constraint angle, rad vProjFPGA.vi
r_meters Orthogonal distance to constraint, m adOrthoFPGA.vi

Table B.3: Output Parameters

Parameter Description Source
trqOutS_Nm commanded torque 𝜏𝑖𝑛,1, Nm outFPGA.vi
trqOutE_Nm commanded torque 𝜏𝑖𝑛,2, Nm outFPGA.vi
voltsS_V shoulder output voltage, V motorFPGA.vi
voltsE_V elbow output voltage, V motorFPGA.vi

104

Table B.4: Input Parameters

Parameter Description Source
rateFPGA_Hz FPGA update rate, Hz timeFPGA.vi
posS_raw joint position 𝜃1, raw bits decodeFPGA.vi
posE_raw joint position 𝜃2, raw bits decodeFPGA.vi
posQ_raw decoder sequence number, binary decodeFPGA.vi
posS_rad measured position of 𝜃1, radians radFPGA.vi
posE_rad measured position of 𝜃2, radians radFPGA.vi
posX_m end-effector X position, meters meterFPGA.vi
posY_m end-effector Y position, meters meterFPGA.vi
jacobianl1sinS_m Jacobian matrix term: 𝑙1 sin 𝜃1, meters meterFPGA.vi
jacobianl1cosS_m Jacobian matrix term: 𝑙1 cos 𝜃1, meters meterFPGA.vi
jacobianl2sinE_m Jacobian matrix term: 𝑙2 sin 𝜃2, meters meterFPGA.vi
jacobianl2cosE_m Jacobian matrix term: 𝑙2 cos 𝜃2, meters meterFPGA.vi
velX_mps end-effector X velocity, m/s velFPGA.vi
velY_mps end-effector Y velocity, m/s velFPGA.vi
velS_rps joint velocity 𝜃1, rad/s velFPGA.vi
velE_rps joint velocity 𝜃2, rad/s velFPGA.vi
accX_mpss end-effector X acceleration, 𝑚/𝑠2 velFPGA.vi
accY_mpss end-effector Y acceleration, 𝑚/𝑠2 velFPGA.vi
faultS_bool Encoder fault on 𝜃1, binary faultsFPGA.vi
faultE_bool Encoder fault on 𝜃2, binary faultsFPGA.vi
faultF_bool Force/Torque reading fault, binary faultsFPGA.vi
ftRawX_N Raw force in X direction, N ftBiasFPGA.vi
ftRawY_N Raw force in Y direction, N ftBiasFPGA.vi
ftRawZ_N Raw force in Z direction, N ftBiasFPGA.vi
ftRawX_Nm Raw torque about X axis, Nm ftBiasFPGA.vi
ftRawY_Nm Raw torque about X axis, Nm ftBiasFPGA.vi
ftRawZ_Nm Raw torque about X axis, Nm ftBiasFPGA.vi
ftX_N Force in absolute X direction, N ftFPGA.vi
ftY_N Force in absolute Y direction, N ftFPGA.vi
ftZ_N Force in absolute Z direction, N ftFPGA.vi
ftX_Nm Torque about absolute X axis, Nm ftFPGA.vi
ftY_Nm Torque about absolute X axis, Nm ftFPGA.vi
ftZ_Nm Torque about absolute X axis, Nm ftFPGA.vi
ftBiasX_N Force bias in X direction, N ftBiasFPGA.vi
ftBiasY_N Force bias in Y direction, N ftBiasFPGA.vi
ftBiasZ_N Force bias in Z direction, N ftBiasFPGA.vi
ftBiasX_Nm Torque bias about X axis, Nm ftBiasFPGA.vi
ftBiasY_Nm Torque bias about X axis, Nm ftBiasFPGA.vi
ftBiasZ_Nm Torque bias about X axis, Nm ftBiasFPGA.vi

105

Table B.5: Inertia Compensation Values

Parameter Description Source
inertiaTorqueS_Nm inertia compensator torque 𝜏𝑖𝑛,1, Nm finalFPGA.vi
inertiaTorqueE_Nm inertia compensator torque 𝜏𝑖𝑛,2, Nm finalFPGA.vi
sS_rps Sliding error 𝑠1, rad/s errorFPGA.vi
sE_rps Sliding error 𝑠2, rad/s errorFPGA.vi
thetaDesiredDDotS_rpss Desired joint acceleration ¨𝜃𝑑,1, 𝑟𝑎𝑑/𝑠2 refAngleFPGA.vi
thetaDesiredDDotE_rpss Desired joint acceleration ¨𝜃𝑑,2, 𝑟𝑎𝑑/𝑠2 refAngleFPGA.vi
thetaDesiredDotS_rps Desired joint velocity ¨𝜃𝑑,1, 𝑟𝑎𝑑/𝑠 refAngleFPGA.vi
thetaDesiredDotE_rps Desired joint velocity ¨𝜃𝑑,2, 𝑟𝑎𝑑/𝑠 refAngleFPGA.vi
thetaDesiredS_rad Desired joint position ¨𝜃𝑑,1, rad refAngleFPGA.vi
thetaDesiredE_rad Desired joint position ¨𝜃𝑑,2, rad refAngleFPGA.vi
thetaRDDotS_rpss Reference joint acceleration ¨𝜃𝑟,1, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
thetaRDDotE_rpss Reference joint acceleration ¨𝜃𝑟,2, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
thetaRDotS_rps Reference joint velocity ˙𝜃𝑟,1, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
thetaRDotE_rps Reference joint velocity ˙𝜃𝑟,2, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
YaS_Nm Shoulder Y*a, Nm YaFPGA.vi
YaE_Nm Elbow Y*a, Nm YaFPGA.vi
a1_kgmm Adaptive parameter 𝑎1, 𝑘𝑔𝑚2 adaptFPGA.vi
a2_kgmm Adaptive parameter 𝑎2, 𝑘𝑔𝑚2 adaptFPGA.vi
a3_kgmm Adaptive parameter 𝑎3, 𝑘𝑔𝑚2 adaptFPGA.vi
humanTrqS_Nm Human force in joint torques 𝜏ℎ,1, Nm humanFPGA.vi
humanTrqE_Nm Human force in joint torques 𝜏ℎ,2, Nm humanFPGA.vi
xyDesiredDDotX_mpss Desired acceleration ¨𝜃𝑑,1, 𝑚/𝑠2 refXyFPGA.vi
xyDesiredDDotY_mpss Desired acceleration ¨𝜃𝑑,2, 𝑚/𝑠2 refXyFPGA.vi
xyDesiredDotX_mps Desired velocity ˙𝜃𝑑,1, 𝑚/𝑠 refXyFPGA.vi
xyDesiredDotY_mps Desired velocity ˙𝜃𝑑,2, 𝑚/𝑠 refXyFPGA.vi
humanForceX_N Human force 𝑓𝑥, N humanFPGA.vi
humanForceY_N Human force 𝑓𝑦, N humanFPGA.vi
frictionS_Nm Estimated joint friction 𝐹𝑓,1, Nm frictionFPGA.vi
frictionE_Nm Estimated joint friction 𝐹𝑓,2, Nm frictionFPGA.vi
fh_N Magnitude of human force, N humanFPGA.vi
beta_pirad Angle of human force, 𝜋 rad humanFPGA.vi
adGamma_mpss Desired acc. along constraint, 𝑚/𝑠2 refXyFPGA.vi
adOrtho_mpss Desired acc. ortho. to constraint, 𝑚/𝑠2 adOrthoFPGA.vi
vdGamma_mps Desired vel. along constraint, m/s refXyFPGA.vi
vdOrtho_mps Desired vel. ortho. to constraint, m/s refXyFPGA.vi

106

B.2 RT processor code

run.vi

The function run.vi contains a flat sequence structure consisting of 3 stages to be

run in order. The first stage opens the compiled FPGA code, uses fetchFTbias.vi

to read the FT bias from a cRIO file, initializes the FT bias in the FPGA code,

and runs the FPGA code. It also draws a circle on the front panel indicator and

executes buffer.vi which forms the parameters for the data buffer. The second stage

implements a timed loop at 1kHz until the user presses the STOP button. This timed

loop reads the inputs from the FPGA, runs limit.vi on the user inputs, runs circle.vi,

and sets the high-level control parameters in the FPGA. All 5 data clusters are sent

to logData.vi to be written to a FIFO data buffer. In parallel to the timed loop, a

while loop executes display.vi which puts the location of the end-effector on the front

panel. In parallel to this, another while loop writes the parameters from the FIFO

data buffer into a TDMS file on the cRIO. The third stage closes the FPGA program,

runs storeFTbias.vi to save the FT bias to a file on the cRIO, and closes the TDMS

file.

Table B.6: run.vi Inputs

Parameter Description Source
filename Name of output file, without extension Front Panel
STOP Gracefully exits the control Front Panel
ftBias_bool Apply F/T bias, taken at rising edge Front Panel
userInput Described in Table B.1 Front Panel

Table B.7: run.vi Outputs

Parameter Description Destination
faultS_bool Encoder 1 reading fault Front Panel
faultE_bool Encoder 2 reading fault Front Panel
faultF_bool Force/torque reading fault Front Panel

107

fetchFTbias.vi

The function fetchFTbias.vi reads the file on the cRIO at "/c/bias/bias.txt" and

parses the 6 values to be used as a zero bias for the force/torque transducer reading.

Table B.8: fetchFTbias.vi Outputs

Parameter Description Destination
initBias F/T zero bias from file on cRIO ftBiasFPGA.vi

buffer.vi

The function buffer.vi instantiates the size of the data logging buffer as well as the

parameter names that are logged by looping through each element of each data cluster

and reading the data labels. Note that the input clusters do not need to be hooked

up, as the function only depends on the data type, and not the actual data. If any

of the data clusters change, this function must be changed.

Table B.9: buffer.vi Inputs

Parameter Description Source
inputs Described in Table B.4 N/A
outputs Described in Table B.3 N/A
control Described in Table B.2 N/A
userInput Described in Table B.1 N/A
inertiaVals Described in Table B.5 N/A
EMG 16 differential EMG voltages N/A

limit.vi

The function limit.vi will limit the values of stiffness and damping to be within the

stability region. It also will slowly ramp the stiffness from 0 to the full value when

the virtual constraint is turned on. This keeps allows the robot end-effector to slowly

move towards the virtual constraint rather than initializing with a very large error.

108

Table B.10: limit.vi Inputs

Parameter Description Source
userInput Described in Table B.1 Front Panel

Table B.11: limit.vi Outputs

Parameter Description Destination
limitedInput userInput with limited values circle.vi

adOrthoFPGA.vi

circle.vi

When inertia compensation is off, the output processor uses the output force and/or

torque commands from the "control" cluster that are set in this function. Based off

the stiffness, damping, and radius defined in the "userInput" cluster, this function

calculates the required forces in the x and y direction to simulate a circular virtual

constraint, as defined in Equation 3.3. When inertia compensation is turned on,

the output processor uses the angle of the virtual constraint 𝛾 and the orthogonal

distance to the constraint 𝑟 defined in Section 3.2.1. This function calculates 𝛾 and

𝑟 based on Equation 3.4 for the circular constraint. The function contains divide by

zero protection and finally feeds the high-level control variables 𝐹𝑥, 𝐹𝑦, 𝛾, and 𝑟 into

bundle.vi to be converted to a cluster of fixed-point variables.

Table B.12: circle.vi Inputs

Parameter Description Source
userInput Described in Table B.1 Front Panel
inputs Described in Table B.4 inFPGA.vi

Table B.13: circle.vi Outputs

Parameter Description Destination
control Described in Table B.2 outFPGA.vi

109

bundle.vi

The function bundle.vi takes the outputs from the high-level controller, converts them

to fixed-point representation for the FPGA, and bundles them into the control bundle.

Table B.14: bundle.vi Inputs

Parameter Description Source
forces_bool True if forces are specified circle.vi

False if torques are specified
controllerOutput1 X force if forces_bool=ON, N circle.vi

Torque 1 if forces_bool=OFF, Nm
controllerOutput2 Y force if forces_bool=ON, N circle.vi

Torque 2 if forces_bool=OFF, Nm
gamma_rad Virtual constraint angle, rad circle.vi
r_meters Orthogonal distance to constraint, m circle.vi

Table B.15: bundle.vi Outputs

Parameter Description Destination
control Described in Table B.2 outFPGA.vi

logData.vi

The function logData.vi parses the data clusters listed in Table B.16, converts the

data to floating point doubles, assembles them into a large array, and writes them to

a FIFO data buffer. If any of these clusters change, this function as well as buffer.vi

must be updated with the new data types.

display.vi

The function display.vi reads in a picture pic_in, and draws a circle on that picture

that corresponds to the location of the end-effector in x and y coordinates.

110

Table B.16: logData.vi Inputs

Parameter Description Source
inputs Described in Table B.4 inFPGA.vi
outputs Described in Table B.3 outFPGA.vi
control Described in Table B.2 bundle.vi
userInput Described in Table B.1 run.vi
inertiaVals Described in Table B.5 outFPGA.vi
EMG 16 differential EMG voltages EMG.vi

Table B.17: display.vi Inputs

Parameter Description Source
inputs Described in Table B.4 inFPGA.vi
pic_in Picture on which to draw point run.vi

Table B.18: display.vi Outputs

Parameter Description Destination
pic_out Picture with point drawn on it run.vi

storeFTbias.vi

The function storeFTbias.vi reads the bias required zero out the force transducer

reading in all 6 coordinates (linear x, y, z, angular x, y, z) and writes them to a file

on the cRIO at "/c/bias/bias.txt".

Table B.19: storeFTbias.vi Inputs

Parameter Description Source
inputs Described in Table B.4 inFPGA.vi

B.3 FPGA code

The following functions must be compiled when any changes are made. Compiling

runFPGA.vi will create an FPGA bitfile which can be called by run.vi.

111

runFPGA.vi

The function runFPGA.vi contains a flat sequence structure consisting of 3 stages to

be run in order. The first stage runs initFPGA.vi to excite the force/torque health

reading. The second stage contains a while loop that runs on a 500𝜇𝑠 timer which

reads in the inputs from run.vi as well as a local controller dictating which force/torque

signals to read and executes both the input processing program and then the output

processing program. Parallel to this process, timeFPGA.vi is timing the execution

of the while loop and a stop button controlled from run.vi can terminate the loop.

The third stage sends a signal of 0 volts to the motors in motorFPGA.vi, so that the

motors stop exerting torque when the controller is stopped.

Table B.20: runFPGA.vi Inputs

Parameter Description Source
userInput Described in Table B.1 run.vi
control Described in Table B.2 bundle.vi
ftBias_bool Apply F/T bias, taken at rising edge run.vi
whichForcesFX_bool Whether to read the FX sensor Front Panel
whichForcesFY_bool Whether to read the FY sensor Front Panel
whichForcesFZ_bool Whether to read the FZ sensor Front Panel
whichForcesTX_bool Whether to read the TX sensor Front Panel
whichForcesTY_bool Whether to read the TY sensor Front Panel
whichForcesTZ_bool Whether to read the TZ sensor Front Panel
initBias F/T zero bias from file on cRIO fetchFTbias.vi

Table B.21: runFPGA.vi Outputs

Parameter Description Destination
inputs Described in Table B.4 logData.vi

circle.vi
display.vi
storeFTbias.vi

outputs Described in Table B.3 logData
inertiaVals Described in Table B.5 logData

112

initFPGA.vi

The function initFPGA.vi contains any outputs that need to be initialized before

the start of the FPGA loop. The only function that needs to be initialized is

the force/torque transducer health bit. The F/T controller processes the measured

force/torque sensor values by converting them to digital representation, multiplying

them by a calibration matrix, and converting back to analog. If there is an error in

this conversion the F/T controller detects this and opens the health circuit [26]. The

health circuit also opens when the F/T controller is off. In order to detect whether

this circuit is open or closed, the cRIO continuously energizes the high side of the

ATI switch (D-12) via the discrete output 9403-4 (DIO3) in this function. The cRIO

reads the open/closed status via the voltage across a resistor in faultsFPGA.vi.

inFGPA.vi

The function inFPGA.vi reads the sensor inputs and performs all necessary processing

before bundling the results into the input cluster. To process the encoder measure-

ment, it runs decodeFPGA.vi, radFPGA.vi, meterFPGA.vi, and velFPGA.vi. To

process the force/torque measurement it runs ftFPGA.vi. To process the encoder

and force/torque faults it runs faultsFPGA.vi, and to measure the time step it runs

timeFPGA.vi.

Table B.22: inFPGA.vi Inputs

Parameter Description Source
whichForcesFX_bool TRUE = measure X force runFGPA.vi
whichForcesFY_bool TRUE = measure Y force runFGPA.vi
whichForcesFZ_bool TRUE = measure Z force runFGPA.vi
whichForcesTX_bool TRUE = measure X torque runFGPA.vi
whichForcesTY_bool TRUE = measure Y torque runFGPA.vi
whichForcesTZ_bool TRUE = measure Z torque runFGPA.vi
ftBias_bool Apply F/T bias, taken at rising edge run.vi
initBias F/T zero bias from file on cRIO fetchFTbias.vi

113

Table B.23: inFPGA.vi Outputs

Parameter Description Destination
inputs Described in Table B.4 logData.vi

decodeFGPA.vi

The function decodeFPGA.vi reads the encoder position by communicating with the

Gurley Precision interpolating decoder via discrete queries as described in Sections

2.1.2 and 3.3.1. The sequence of queries alternates each time step in order to minimize

the number of operations each time step. The location of encoder 1 (the shoulder mo-

tor) is queried by hold bit (DOUT0), and query bits A0 (DOUT1) and A1 (DOUT2).

The location of encoder 2 (the elbow motor) is queried by hold bit (DOUT8), and

query bits A0 (DOUT9) and A1 (DOUT10). The 16-bit encoder position is com-

municated through three separate readings of the low, middle, and high bits over

8 discrete lines. When the hold bit is activated at the beginning of the query, the

decoder holds the encoder reading. For the first of the alternating sequences, the low

bits are read first, then the high bits, then the middle. For the other set of alternating

sequences, the middle bits are read first, then the high bits, then the low. After the

sequence is over, the low, middle, and high bits are concatenated into the 16-bit word

and converted to numeric positions.

Table B.24: decodeFPGA.vi Outputs

Parameter Description Destination
posS_raw Position of encoder 1 (shoulder motor) radFPGA.vi
posE_raw Position of encoder 2 (elbow motor) radFPGA.vi
posQ_raw Sequence number (0 or 1) radFPGA.vi

radFPGA.vi

The function radFPGA.vi takes in the encoder positions and runs a prediction scheme

in predictFPGA.vi to detect faults in the encoder readings. When the system is turned

114

on the encoders each read 0 until the robot is moved and the encoders initialize. The

linkages on the robot prevent the angles 𝜃1 and 𝜃2 from equaling each other, so

encoder faults are also flagged if the measured values equal. Then scalars and adders

are applied to the raw decoder values to convert them to radians, and normFPGA.vi

normalizes the encoder position and convert to pi radians, which is a special unit used

by LabVIEW FPGA code.

Table B.25: radFPGA.vi Inputs

Parameter Description Source
posS_raw Position of encoder 1 (shoulder motor), raw radFPGA.vi
posE_raw Position of encoder 2 (elbow motor), raw radFPGA.vi
posQ_raw Sequence number (0 or 1) radFPGA.vi

Table B.26: radFPGA.vi Outputs

Parameter Description Destination
faultS_bool Fault detected on encoder 1 faultsFPGA.vi
faultE_bool Fault detected on encoder 2 faultsFPGA.vi
posS_rad Position of encoder 1 (shoulder motor), rad velFPGA.vi
posE_rad Position of encoder 2 (elbow motor), rad velFPGA.vi
posS_pirad Position of encoder 1 (shoulder motor), pi rad velFPGA.vi
posE_pirad Position of encoder 2 (elbow motor), pi rad velFPGA.vi

predictFPGA.vi

The function predictFPGA.vi takes in the raw encoder measurement and predicts

the current position by adding the previous encoder position to the delta between

the previous two encoder positions, as described in Equation 3.5. If this predicted

position differs from the measured position by more than 50 bits, it sets the encoder

fault and uses the projected position rather than the measured position.

Table B.27: predictFPGA.vi Inputs

Parameter Description Source
decoder Measured position from encoder, bits decodeFPGA.vi

115

Table B.28: predictFPGA.vi Outputs

Parameter Description Destination
fault Fault detected on encoder faultsFPGA.vi
position Corrected position from encoder, bits velFPGA.vi

deltaFPGA.vi

The function deltaFPGA.vi takes the difference between two encoder measurements,

taking into account the rollover of encoder measurements between bits 65535 and 0.

Table B.29: deltaFPGA.vi Inputs

Parameter Description Source
current Position from encoder, bits predictFPGA.vi
past Position from encoder, bits predictFPGA.vi

Table B.30: deltaFPGA.vi Outputs

Parameter Description Destination
delta Difference between encoder measurements, bits predictFPGA.vi

addFPGA.vi

The function addFPGA.vi adds two encoder measurements together, rolling over after

bit 65535.

Table B.31: addFPGA.vi Inputs

Parameter Description Source
decoderVal1 Position from encoder, bits predictFPGA.vi
decoderVal2 Position from encoder, bits predictFPGA.vi

Table B.32: addFPGA.vi Outputs

Parameter Description Destination
x+y Sum of encoder measurements, bits predictFPGA.vi

116

normFPGA.vi

The function normFPGA.vi makes sure that the encoder measurement is between 0

and 65535. It also converts to pi radians, which are radians divided by pi for use in

the LabVIEW FPGA trigonometric functions.

Table B.33: normFPGA.vi Inputs

Parameter Description Source
radians Encoder position, radians radFPGA.vi

Table B.34: normFPGA.vi Outputs

Parameter Description Destination
normalized radians Encoder position, radians radFPGA.vi
pi radians Encoder position, pi radians radFPGA.vi

meterFPGA.vi

The function meterFPGA.vi takes in the encoder positions in radians and uses the

link lengths 𝑙1 and 𝑙2 to calculate the end-effector position in Cartesian coordinates

as well as the end-effector Jacobian according to Equation 2.15.

Table B.35: meterFPGA.vi Inputs

Parameter Description Source
posS_pirad Encoder 1 position, pi radians radFPGA.vi
posE_pirad Encoder 2 position, pi radians radFPGA.vi

Table B.36: meterFPGA.vi Outputs

Parameter Description Destination
posX_m End-effector X position, meters logFPGA.vi
posY_m End-effector Y position, meters logFPGA.vi
jacobianl1sinS_m Jacobian term 𝑙1 sin(𝜃1), m outFPGA.vi
jacobianl1cosS_m Jacobian term 𝑙1 cos(𝜃1), m outFPGA.vi
jacobianl2sinE_m Jacobian term 𝑙2 sin(𝜃2), m outFPGA.vi
jacobianl2cosE_m Jacobian term 𝑙2 cos(𝜃2), m outFPGA.vi

117

velFPGA.vi

The function velFPGA.vi takes the Euler derivative of the measured encoder positions

in radians using derivFPGA.vi, then filters the result with a 2nd order Butterworth

filter at a bandwidth of 30Hz to calculate radial velocity. Using the radial velocity and

the end-effector Jacobian, the velocity of the end-effector is calculated in Cartesian

coordinates using Equation 2.15. Finally, the Euler derivative of the end-effector

velocity is calculated and filtered with a 4th order Butterworth low-pass filter at a

bandwidth of 50Hz to calculate end-effector acceleration.

Table B.37: velFPGA.vi Inputs

Parameter Description Source
posS_rad Encoder 1 position, radians radFPGA.vi
posE_rad Encoder 2 position, radians radFPGA.vi
jacobianl1sinS_m Jacobian term 𝑙1 sin(𝜃1), m meterFPGA.vi
jacobianl1cosS_m Jacobian term 𝑙1 cos(𝜃1), m meterFPGA.vi
jacobianl2sinE_m Jacobian term 𝑙2 sin(𝜃2), m meterFPGA.vi
jacobianl2cosE_m Jacobian term 𝑙2 cos(𝜃2), m meterFPGA.vi
rateFPGA_Hz FPGA time step, Hz timeFPGA.vi

Table B.38: velFPGA.vi Outputs

Parameter Description Destination
velS_rps Encoder 1 velocity, rad/s inertiaFPGA.vi
velE_rps Encoder 2 velocity, rad/s inertiaFPGA.vi
velX_mps End effector X velocity, m/s refXyFPGA.vi
velY_mps End effector Y velocity, m/s refXyFPGA.vi
accX_mpss End effector X acceleration, 𝑚/𝑠2 humanFPGA.vi
accY_mpss End effector Y acceleration, 𝑚/𝑠2 humanFPGA.vi

derivativeFPGA.vi

The function derivativeFPGA.vi calculates the difference between two position mea-

surements for use in a derivative calculation. Because the joint positions are expressed

as a radial angle between 0 and 2𝜋 there is the potential for a joint to move from 0.99𝜋

118

to 0. A simple subtraction would yield −0.99𝜋 where this function takes the overflow

into account by changing the direction of subtraction depending on the quadrants of

each parameter.

Table B.39: derivativeFPGA.vi Inputs

Parameter Description Source
current First encoder position, rad velFPGA.vi
prev Previous encoder position, rad velFPGA.vi

Table B.40: derivativeFPGA.vi Outputs

Parameter Description Destination
deriv Difference, rad velFPGA.vi

ftFPGA.vi

The function ftFPGA.vi reads and processes the inputs from the force/torque trans-

ducer. The function readFPGA.vi reads the appropriate force/torque inputs, ftFil-

terFPGA.vi filters the signals, ftBiasFPGA.vi applies a bias to the signals to zero

them out when no forces are applied, and coordFPGA.vi converts the forces and

torques relative to the axis of the transducer to the global coordinate system.

Table B.41: ftFPGA.vi Inputs

Parameter Description Source
whichForcesFX_bool Whether to read the FX sensor runFPGA.vi
whichForcesFY_bool Whether to read the FY sensor runFPGA.vi
whichForcesFZ_bool Whether to read the FZ sensor runFPGA.vi
whichForcesTX_bool Whether to read the TX sensor runFPGA.vi
whichForcesTY_bool Whether to read the TY sensor runFPGA.vi
whichForcesTZ_bool Whether to read the TZ sensor runFPGA.vi
ftBias_bool Apply F/T bias, taken at rising edge run.vi
initBias F/T zero bias from file on cRIO fetchFTbias.vi
posS_rad Encoder 1 position, radians radFPGA.vi
posE_rad Encoder 2 position, radians radFPGA.vi

119

Table B.42: ftFPGA.vi Outputs

Parameter Description Destination
ftRawX_N Raw force transducer X force, N filterFGPA.vi
ftRawY_N Raw force transducer Y force, N filterFGPA.vi
ftRawZ_N Raw force transducer Z force, N filterFGPA.vi
ftRawX_Nm Raw force transducer X torque, Nm filterFGPA.vi
ftRawY_Nm Raw force transducer Y torque, Nm filterFGPA.vi
ftRawZ_Nm Raw force transducer Z torque, Nm filterFGPA.vi
ftBiasX_N Force bias in X direction, N logData.vi
ftBiasY_N Force bias in Y direction, N logData.vi
ftBiasZ_N Force bias in Z direction, N logData.vi
ftBiasX_Nm Torque bias about X axis, Nm logData.vi
ftBiasY_Nm Torque bias about X axis, Nm logData.vi
ftBiasZ_Nm Torque bias about X axis, Nm logData.vi
ftX_N Force in absolute X direction, N humanFPGA.vi
ftY_N Force in absolute Y direction, N humanFPGA.vi
ftZ_N Force in absolute Z direction, N humanFPGA.vi
ftX_Nm Torque about absolute X axis, Nm humanFPGA.vi
ftY_Nm Torque about absolute X axis, Nm humanFPGA.vi
ftZ_Nm Torque about absolute X axis, Nm humanFPGA.vi

readFPGA.vi

The function readFPGA.vi reads the force/torque transducer signal inputs according

to which bits in the whichForces array are active. Then the forces and torques are

multiplied by a simple scalar to convert the signals to Newtons and Newton-meters,

respectively according to the conversion factor in Table 2.4. The forces and torques

are then multiplied by scalars to convert to SI units.

Table B.43: readFPGA.vi Inputs

Parameter Description Source
whichForcesFX_bool Whether to read the FX sensor runFPGA.vi
whichForcesFY_bool Whether to read the FY sensor runFPGA.vi
whichForcesFZ_bool Whether to read the FZ sensor runFPGA.vi
whichForcesTX_bool Whether to read the TX sensor runFPGA.vi
whichForcesTY_bool Whether to read the TY sensor runFPGA.vi
whichForcesTZ_bool Whether to read the TZ sensor runFPGA.vi

120

Table B.44: readFPGA.vi Outputs

Parameter Description Destination
ftRawX_N Raw force transducer X force, N filterFGPA.vi
ftRawY_N Raw force transducer Y force, N filterFGPA.vi
ftRawZ_N Raw force transducer Z force, N filterFGPA.vi
ftRawX_Nm Raw force transducer X torque, Nm filterFGPA.vi
ftRawY_Nm Raw force transducer Y torque, Nm filterFGPA.vi
ftRawZ_Nm Raw force transducer Z torque, Nm filterFGPA.vi

filterFGPA.vi

The function ftFilterFPGA.vi applies a 2nd order Butterworth low-pass filter to the

raw force signals with a cutoff frequency of 30Hz.

Table B.45: ftFilterFPGA.vi Inputs

Parameter Description Source
ftRawX_N Raw force transducer X force, N readFPGA.vi
ftRawY_N Raw force transducer Y force, N readFPGA.vi
ftRawZ_N Raw force transducer Z force, N readFPGA.vi
ftRawX_Nm Raw force transducer X torque, Nm readFPGA.vi
ftRawY_Nm Raw force transducer Y torque, Nm readFPGA.vi
ftRawZ_Nm Raw force transducer Z torque, Nm readFPGA.vi

Table B.46: filterFPGA Outputs

Parameter Description Destination
forceFiltered Filtered force transducer array, N(m) ftBiasFGPA.vi

ftBiasFPGA.vi

The function ftBiasFPGA.vi applies a bias to the force/torque reading to zero it out

when there are no external forces or torques applied. If the ftBias boolean is false, no

bias is applied to the signals. When the ftBias boolean is true, the ftBias values are

subtracted from the filtered force reading. When the ftBias boolean is turned from

off to on, the ftBias values are set to the measured force/torques measured at that

121

instant. The ftBias values are initialized to the values stored in the cRIO file via the

initBias parameter.

Table B.47: ftBiasFPGA.vi Inputs

Parameter Description Source
forceFiltered Filtered force transducer array, N, Nm filterFGPA.vi
initBias F/T zero bias from file on cRIO fetchFTbias.vi
ftBias_bool Apply F/T bias, taken at rising edge run.vi

Table B.48: ftBiasFPGA Outputs

Parameter Description Destination
forceRel_N(m) Zeroed force relative to F/T trans-

ducer, N(m)
coordFPGA.vi

coordFPGA.vi

The function coordFPGA.vi converts the forces and torques from coordinates relative

to the force/torque transducer to global coordinates. The force/torque transducer is

mounted at the end of link 2, which is at an angle 𝜃2 relative to the global coordinate

frame. Therefore the angle between the relative and global coordinate systems is the

angle 𝜃2 plus a constant offset. This angle is used to project the forces and torques

from relative coordinate system to the global coordinate system using Equation 2.16.

Table B.49: coordFPGA.vi Inputs

Parameter Description Source
posS_rad Encoder 1 (shoulder motor) position, rad radFGPA.vi
posE_rad Encoder 2 (elbow motor) position, rad radFGPA.vi
forceRel_N(m) Zeroed force relative to F/T transducer, N(m) ftBiasFPGA.vi

faultsFPGA.vi

The function faultsFPGA.vi combines the encoder fault information from predictF-

PGA.vi with the force/torque controller health information derived from reading

122

Table B.50: coordFPGA Outputs

Parameter Description Destination
ftX_N Force in absolute X direction, N humanFPGA.vi
ftY_N Force in absolute Y direction, N humanFPGA.vi
ftZ_N Force in absolute Z direction, N humanFPGA.vi
ftX_Nm Torque about absolute X axis, Nm humanFPGA.vi
ftY_Nm Torque about absolute X axis, Nm humanFPGA.vi
ftZ_Nm Torque about absolute X axis, Nm humanFPGA.vi

DIO2. This signal monitors the open/closed status of the force/torque controller

health bit by reading the voltage across a 5𝑘Ω resistor. The process to energize this

circuit is described in the initFPGA.vi section.

Table B.51: faultsFPGA.vi Inputs

Parameter Description Source
faultsS_bool Encoder 1 (shoulder motor) fault, bool predictFGPA.vi
faultsE_bool Encoder 2 (elbow motor) fault, bool predictFGPA.vi

Table B.52: faultsFPGA.vi Outputs

Parameter Description Destination
faultsS_bool Encoder 1 (shoulder motor) fault, bool outFGPA.vi
faultsE_bool Encoder 2 (elbow motor) fault, bool outFGPA.vi
faultsF_bool Force/torque controller fault, bool outFGPA.vi

timeFPGA.vi

The function timeFPGA.vi records the time elapsed once during each FPGA frame

and converts the measured update rate to Hz to be used in integrals and differentials.

Table B.53: timeFPGA.vi Outputs

Parameter Description Destination
rateFPGA_Hz FPGA time step, seconds outFGPA.vi

123

EMG.vi

The function EMG.vi reads the selected differential EMG signals in from module 2

of the compactRIO. No processing is performed on this data.

Table B.54: EMG.vi Inputs

Parameter Description Source
whichEMG(0-
15)

Array of booleans to indicate which voltages to
sample

run.vi

Table B.55: EMG.vi Outputs

Parameter Description Destination
EMG Array of EMG voltages logData.vi

outFPGA.vi

The function outFPGA.vi performs the output processing for both the shoulder and

elbow motors. First the function runs safetyFPGA.vi to determine whether the po-

sition and velocity of the end-effector are within the safe range. The safety bit is

combined with the sensor fault bits before being sent to inertiaFPGA.vi which per-

forms optional inertia compensation. After this runs, a set of nested case structures

is used to determine the correct output torques to be commanded by motorFPGA.vi.

The first case structure depends on the encoder detected faults. If faults have been

detected on either encoder, an output of 0 Nm is sent to the motors. If the en-

coders are fault-free, the second nested case structure uses the safety check run in

safetyFPGA.vi. If the robot has an unsafe position or velocity, a damping control

is implemented on the robot based on end-effector velocity and using the function

force2torqueFPGA.vi to convert output forces to torques. If the robot is safe, the

third nested case structure is executed. If the user has turned on inertia compensa-

tion, the fourth nested case structure checks to see if there is a force/torque transducer

fault. If there is, a torque of 0 Nm is sent to the motors. If there is no fault, the torque

124

commanded by the inertia compensation is sent to the motors. If inertia compensa-

tion is turned off, the output specified by the high-level controller is commanded. If

the output in in the form of end-effector forces, the function force2torqueFPGA.vi is

used to convert the forces to torques. Otherwise the torques are sent directly to the

motors.

Table B.56: outFPGA.vi Inputs

Parameter Description Source
userInput Described in Table B.1 run.vi
inputs Described in Table B.4 inFPGA.vi
control Described in Table B.2 bundle.vi

Table B.57: outFPGA.vi Outputs

Parameter Description Destination
inertiaVals Described in Table B.5 logData.vi
outputs Described in Table B.3 logData.vi

safetyFPGA.vi

The function safetyFPGA.vi determines whether the position and velocity are within

a safe range. The range of safe position is determined by the controllability of the

robot. It is determined that end-effector kinematic Jacobian has a condition number

less than 2 when the end-effector is inside a band of two concentric circles of radius

0.45 m and 0.8 m around the motor axis, shown in Figure 3-5. If the end-effector is

outside this range or is moving at a velocity faster than 0.4 m/s, it is deemed unsafe

and a damping controller is used to keep the robot outside of this zone.

Table B.58: safetyFPGA.vi Inputs

Parameter Description Source
inputs Described in Table B.4 inFPGA.vi

125

Table B.59: safetyFPGA.vi Outputs

Parameter Description Destination
unsafe_bool The end-effector is at an unsafe position or velocity outFPGA.vi

inertiaFPGA.vi

The function inertiaFPGA.vi provides inertia compensation consisting of an admit-

tance model to calculate desired acceleration based on input force and an adaptive

tracking controller that outputs a torque that forces the robot to achieve the de-

sired trajectory. The input force is processed by humanFPGA.vi and the admittance

model which calculates the desired trajectory in Cartesian coordinates is contained

in refXyFPGA.vi. The desired trajectory is converted to joint coordinates in refAn-

gleFPGA.vi. The controller error is calculated in errorFPGA.vi, and the feedforward

term is calculated in YaFPGA.vi. An adaptation law in a-lawFPGA.vi calculates the

desired rate of change of the adaptable parameters, and the parameters are adapted

in adaptFPGA.vi. An estimate of kinetic friction is contained in frictionFPGA.vi,

and all the elements of the controller are put together in finalFPGA.vi.

Table B.60: inertiaFPGA.vi Inputs

Parameter Description Source
userInput Described in Table B.1 run.vi
inputs Described in Table B.4 inFPGA.vi
control Described in Table B.2 bundle.vi

Table B.61: inertiaFPGA.vi Outputs

Parameter Description Destination
inertiaVals Described in Table B.5 logData.vi

humanFPGA.vi

The function humanFPGA.vi processes the measured forces for use in the admittance

model and the trajectory controller as described in Section 4.1.1. When the robot

126

end-effector accelerates across the workspace, even when no external forces are applied

to the outside of the handle, the force transducer measures the inertial forces from

the handle. The goal of the inertia compensation is to react to the forces applied

to the outside of the handle and not to the transducer, so the inertia of the robot

handle above the transducer (about 0.44 kg) multiplied by the handle acceleration is

subtracted off from the measured force as explained in Equation 4.2. This "human

force" is converted to joint torques by the system Jacobian for use in the trajectory

controller. It is also converted into a magnitude and direction (Equation 4.3) for use

in the admittance model. The magnitude of force is applied a dead-band to reduce the

effects of noise and mismatched phase between force and acceleration as in Equation

4.4.

Table B.62: humanFPGA.vi Inputs

Parameter Description Source
inputs Described in Table B.4 inFPGA.vi

Table B.63: humanFPGA.vi Outputs

Parameter Description Destination
humanForceX_N Force applied to the handle, X, N logData.vi
humanForceY_N Force applied to the handle, X, N logData.vi
humanTrqS_Nm Shoulder joint torques from handle force, Nm finalFPGA.vi
humanTrqE_Nm Elbow joint torques from handle force, Nm finalFPGA.vi
beta_pirad The direction of applied force, pi rad refXyFPGA.vi
fh_N The magnitude of applied force, N refXyFPGA.vi

refXyFPGA.vi

The function refXyFPGA contains the admittance model in Cartesian coordinates.

First the function vProjFPGA.vi projects the measured velocity into the direction of

the desired constraint and the orthogonal direction. The large case structure contains

separate admittance models for the constrained motion and unconstrained motion. If

127

the constraint is turned off, the magnitude of desired acceleration (ad) is set to the

magnitude of force divided by the desired mass as described in Section 4.1.2 Equation

4.5. This acceleration is broken into x and y component using the direction of force

𝛽 to form the desired acceleration (Equation 4.6). If inertia compensation is turned

on and is active (the robot has no faults and is not applying safety damping) forward

Euler integration is applied on the acceleration reference to determine a desired ve-

locity reference. If inertia compensation is not active, the desired velocity reference

is set to the measured velocity, as described in Equation 4.7.

If the constraint is turned on, the admittance model becomes slightly more com-

plicated as described in Section 4.1.3. The magnitude of desired acceleration in the

direction (ad, gamma) of the constraint is determined by projecting the applied force

into the direction of the constraint (Equation 4.8) and dividing by the desired mass

(Equation 4.9). The magnitude of desired acceleration orthogonal to the direction of

the constraint (ad, ortho) is determined in adOrthoFPGA.vi. These desired acceler-

ations are broken down into their x and y components and then summed together as

the combined desired acceleration as in Equation 4.18. If the compensation is active,

the desired acceleration in the direction of the constraint (ad, gamma) is integrated

based on the velocity reference in the direction of the constraint (vd, gamma) as in

Equation 4.11. The desired acceleration orthogonal to the constraint (ad, ortho) is

integrated based on the measured velocity orthogonal to the constraint as in Equa-

tion 4.16. This method is employed to keep error from winding up and preventing the

controller gain from affecting the desired impedance parameters. If the compensation

is not active, the desired velocities in the constraint and orthogonal direction are

reset to the measured velocities in the constraint and orthogonal directions, respec-

tively. The desired velocities in the constraint direction and the orthogonal direction

are projected into their x and y components and summed together as the combined

128

desired velocity as in Equation 4.19.

Table B.64: refXyFPGA.vi Inputs

Parameter Description Source
userInput Described in Table B.1 run.vi
inputs Described in Table B.4 inFPGA.vi
control Described in Table B.2 bundle.vi
beta_pirad The direction of applied force, pi rad humanFPGA.vi
fh_N The magnitude of applied force, N humanFPGA.vi
unsafe_bool The end-effector is at an unsafe position or velocity safetyFPGA.vi

Table B.65: refXyFPGA.vi Outputs

Parameter Description Destination
vdGamma_mps Desired velocity along constraint, m/s logData.vi
vdOrtho_mps Desired velocity orthogonal, m/s logData.vi
xyDesiredDDotX_mpss Desired acceleration X, 𝑚/𝑠2 refAngleFPGA.vi
xyDesiredDDotY_mpss Desired acceleration Y, 𝑚/𝑠2 refAngleFPGA.vi
xyDesiredDotX_mps Desired velocity X, 𝑚/𝑠 refAngleFPGA.vi
xyDesiredDotY_mps Desired velocity Y, 𝑚/𝑠 refAngleFPGA.vi

vProjFPGA.vi

The function vProjFPGA.vi projects the measured velocity into the direction of the

desired constraint and the orthogonal direction. First the measured velocity is con-

verted to higher resolution fixed-point number for use in the rest of refXyFPGA.vi.

The constraint angle 𝛾 is converted to pi radians using normFGPA.vi and that angle

is used to project the measured velocity in the direction of the constraint and the

orthogonal direction.

Table B.66: vProjFPGA.vi Inputs

Parameter Description Source
velX_mps Measured velocity X, m/s velFPGA.vi
velY_mps Measured velocity Y, m/s velFPGA.vi
gamma_rad Constraint direction, rad bundle.vi

129

Table B.67: vProjFPGA.vi Outputs

Parameter Description Destination
gamma_pirad Constraint direction, pi rad refXyFPGA.vi
cosG cosine of gamma refXyFPGA.vi
sinG sine of gamma refXyFPGA.vi
vGamma_mps Velocity in constraint direction, 𝑚/𝑠 refXyFPGA.vi
vOrtho_mps Orthogonal velocity, 𝑚/𝑠 refXyFPGA.vi
velX_mps Measured velocity X, m/s refXyFPGA.vi
velY_mps Measured velocity Y, m/s refXyFPGA.vi

adOrthoFPGA.vi

The function adOrthoFGPA.vi uses the constraint impedance parameters to calculate

an acceleration reference in the direction orthogonal to the constraint, when the

constraint is turned on. The desired orthogonal velocity is multiplied by the desired

damping and the measured orthogonal distance to the constraint is multiplied by the

desired stiffness. The sum of these values is divided by the desired mass and summed

with the measured orthogonal force divided by desired mass. This yields the desired

orthogonal acceleration adOrtho as described in Equation 4.14.

Table B.68: adOrthoFPGA.vi Inputs

Parameter Description Source
userInput Described in Table B.1 run.vi
vdOrtho_mps Desired velocity in orthogonal direction, 𝑚/𝑠 refXyFPGA.vi
r_meters Orthogonal distance to constraint, m bundleFPGA.vi
sinGmB sine of gamma-beta refXyFPGA.vi
fhpm_mpss Force divided by mass, kg refXyFPGA.vi

Table B.69: adOrthoFPGA.vi Outputs

Parameter Description Destination
adOrtho_mpss Desired orthogonal acceleration, 𝑚/𝑠2 refXyFPGA.vi

130

refAngleFPGA.vi

The function refAngleFPGA.vi converts the desired acceleration and velocity into

joint coordinates and integrates to calculate desired position. The functions invertF-

PGA.vi, negJdotFPGA.vi, and multFPGA.vi are used to calculate the desired joint

accelerations from the desired Cartesian acceleration, as described in Equation 4.22.

The desired joint velocity is calculated from the desired Cartesian velocity accord-

ing to Equation 4.20. The desired joint positions are determined by integrating the

desired velocity based on measured position rather than the previous reference, as

described in Equation 4.23. Each joint position is normalized between 0 and 2𝜋.

Table B.70: refAngleFPGA.vi Inputs

Parameter Description Source
inputs Described in Table B.4 inFPGA.vi
xyDesiredDDotX_mpss Desired acceleration ¨𝜃𝑑,1, 𝑚/𝑠2 refXyFPGA.vi
xyDesiredDDotY_mpss Desired acceleration ¨𝜃𝑑,2, 𝑚/𝑠2 refXyFPGA.vi
xyDesiredDotX_mps Desired velocity ˙𝜃𝑑,1, 𝑚/𝑠 refXyFPGA.vi
xyDesiredDotY_mps Desired velocity ˙𝜃𝑑,2, 𝑚/𝑠 refXyFPGA.vi

Table B.71: refAngleFPGA.vi Outputs

Parameter Description Destination
thetaDesiredDDotS_rpss Desired joint acceleration ¨𝜃𝑑,1, 𝑟𝑎𝑑/𝑠2 refAngleFPGA.vi
thetaDesiredDDotE_rpss Desired joint acceleration ¨𝜃𝑑,2, 𝑟𝑎𝑑/𝑠2 refAngleFPGA.vi
thetaDesiredDotS_rps Desired joint velocity ¨𝜃𝑑,1, 𝑟𝑎𝑑/𝑠 refAngleFPGA.vi
thetaDesiredDotE_rps Desired joint velocity ¨𝜃𝑑,2, 𝑟𝑎𝑑/𝑠 refAngleFPGA.vi
thetaDesiredS_rad Desired joint position ¨𝜃𝑑,1, rad refAngleFPGA.vi
thetaDesiredE_rad Desired joint position ¨𝜃𝑑,2, rad refAngleFPGA.vi

invertFPGA.vi

The function invertFPGA.vi inverts the 2x2 Jacobian matrix.

131

Table B.72: invertFPGA.vi Inputs

Parameter Description Source
jacobian 2x2 Jacobian, m meterFPGA.vi

Table B.73: invertFPGA.vi Outputs

Parameter Description Destination
Jinv Inverse Jacobian, 1/𝑚 refAngleFPGA.vi

negJdotFPGA.vi

The function negJdotFPGA.vi calculates and negates the derivative of the end-

effector Jacobian described in Equation 2.15.

Table B.74: negJdotFPGA.vi Inputs

Parameter Description Source
jacobian 2x2 Jacobian, m meterFPGA.vi
velS_rps Shoulder velocity, 𝑟𝑎𝑑/𝑠 velFPGA.vi
velE_rps Elbow velocity, 𝑟𝑎𝑑/𝑠 velFPGA.vi

Table B.75: negJdotFPGA.vi Outputs

Parameter Description Destination
negJdot_mrps negative inverse Jacobian refAngleFPGA.vi

multFPGA.vi

The function multFPGA.vi multiplies a 2x2 matrix by a 2x1 vector.

Table B.76: multFPGA.vi Inputs

Parameter Description Source
matrix2x2 2x2 Matrix refAngleFPGA.vi
vector2x1 2x1 Vector refAngleFPGA.vi

132

Table B.77: multFPGA.vi Outputs

Parameter Description Destination
product Product of matrix and vector refAngleFPGA.vi

errorFPGA.vi

The function errorFPGA.vi calculates the sliding error term 𝑠 described in Equation

4.25 as well as the reference parameters 𝜃𝑟 and 𝜃𝑟, and robust error term 𝑠Δ. First the

position and velocity error terms are calculated using desired and measured positions

and velocities, respectively, as described in Equation 4.24. These are used to calculate

the reference parameters using Equation 4.26. The sliding variable 𝑠 is calculated

using the reference parameter and measured position according to Equation 4.27.

Finally the robust error term 𝑠Δ is calculated by applying a deadband to 𝑠 according

to Equation 4.28.

Table B.78: errorFPGA.vi Inputs

Parameter Description Source
inputs Described in Table B.4 inFPGA.vi
userInput Described in Table B.1 run.vi
thetaDesiredDDotS_rpss Desired joint acceleration ¨𝜃𝑑,1, 𝑟𝑎𝑑/𝑠2 refAngleFPGA.vi
thetaDesiredDDotE_rpss Desired joint acceleration ¨𝜃𝑑,2, 𝑟𝑎𝑑/𝑠2 refAngleFPGA.vi
thetaDesiredDotS_rps Desired joint velocity ¨𝜃𝑑,1, 𝑟𝑎𝑑/𝑠 refAngleFPGA.vi
thetaDesiredDotE_rps Desired joint velocity ¨𝜃𝑑,2, 𝑟𝑎𝑑/𝑠 refAngleFPGA.vi
thetaDesiredS_rad Desired joint position ¨𝜃𝑑,1, rad refAngleFPGA.vi
thetaDesiredE_rad Desired joint position ¨𝜃𝑑,2, rad refAngleFPGA.vi

YaFPGA.vi

The function YaFPGA.vi calculates the feedforward term of the adaptive tracking

controller 𝑌 𝑎̂ where the configuration dependent term 𝑌 is defined by Equation 4.32

and the adaptive terms are a vector of three terms described by Equation 4.31.

133

Table B.79: errorFPGA.vi Outputs

Parameter Description Destination
thetaRDDotS_rpss Reference joint acceleration ¨𝜃𝑟,1, 𝑟𝑎𝑑/𝑠2 YaFPGA.vi

a-lawFPGA.vi
thetaRDDotE_rpss Reference joint acceleration ¨𝜃𝑟,2, 𝑟𝑎𝑑/𝑠2 YaFPGA.vi

a-lawFPGA.vi
thetaRDotS_rps Reference joint velocity ˙𝜃𝑟,1, 𝑟𝑎𝑑/𝑠2 YaFPGA.vi

a-lawFPGA.vi
thetaRDotE_rps Reference joint velocity ˙𝜃𝑟,2, 𝑟𝑎𝑑/𝑠2 YaFPGA.vi

a-lawFPGA.vi
sS_rps Sliding error 𝑠1, rad/s finalFPGA.vi
sE_rps Sliding error 𝑠2, rad/s finalFPGA.vi
sDeltaS_rps Robust sliding error 𝑠Δ,1, rad/s a-lawFPGA.vi
sDeltaE_rps Robust sliding error 𝑠Δ,2, rad/s a-lawFPGA.vi

Table B.80: YaFPGA.vi Inputs

Parameter Description Source
inputs Described in Table B.4 inFPGA.vi
thetaRDDotS_rpss Reference joint acceleration ¨𝜃𝑟,1, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
thetaRDDotE_rpss Reference joint acceleration ¨𝜃𝑟,2, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
thetaRDotS_rps Reference joint velocity ˙𝜃𝑟,1, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
thetaRDotE_rps Reference joint velocity ˙𝜃𝑟,2, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
a1_kgmm Adaptive parameter 𝑎1, 𝑘𝑔𝑚2 adaptFPGA.vi
a2_kgmm Adaptive parameter 𝑎2, 𝑘𝑔𝑚2 adaptFPGA.vi
a3_kgmm Adaptive parameter 𝑎3, 𝑘𝑔𝑚2 adaptFPGA.vi

Table B.81: YaFPGA.vi Outputs

Parameter Description Destination
YaS_Nm Shoulder Y*a, Nm finalFPGA.vi
YaE_Nm Elbow Y*a, Nm finalFPGA.vi
Y31 Y matrix element [1,3] a-lawFPGA.vi
Y32 Y matrix element [2,3] a-lawFPGA.vi

a-lawFPGA.vi

The function a-lawFPGA.vi calculates the value of ˙̂𝑎 according to Equation 4.41.

134

Table B.82: a-lawFPGA.vi Inputs

Parameter Description Source
userInput Described in Table B.1 run.vi
thetaRDDotS_rpss Reference joint acceleration ¨𝜃𝑟,1, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
thetaRDDotE_rpss Reference joint acceleration ¨𝜃𝑟,2, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
thetaRDotS_rps Reference joint velocity ˙𝜃𝑟,1, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
thetaRDotE_rps Reference joint velocity ˙𝜃𝑟,2, 𝑟𝑎𝑑/𝑠2 errorFPGA.vi
sDeltaS_rps Robust sliding error 𝑠Δ,1, rad/s errorFPGA.vi
sDeltaE_rps Robust sliding error 𝑠Δ,2, rad/s errorFPGA.vi
Y31 Y matrix element [1,3] YaFPGA.vi
Y32 Y matrix element [2,3] YaFPGA.vi

Table B.83: a-lawFPGA.vi Outputs

Parameter Description Destination
adaptation1 Adaptive variable 1 adaptation rate adaptFPGA.vi
adaptation2 Adaptive variable 2 adaptation rate adaptFPGA.vi
adaptation3 Adaptive variable 3 adaptation rate adaptFPGA.vi

adaptFPGA.vi

The function adaptFPGA.vi integrates the adaptation law calculated in a-lawFPGA.vi

to calculate the adaptive parameters when adaptation is turned on. The initial values

for these parameters are defined in Equation 4.42. Integration is stopped if the adap-

tive values stray too far from their initial values. This can be done while maintaining

stability, as described in Section 4.2.3.

Table B.84: adaptFPGA.vi Inputs

Parameter Description Source
userInput Described in Table B.1 run.vi
adaptation1 Adaptive variable 1 adaptation rate a-lawFPGA.vi
adaptation2 Adaptive variable 2 adaptation rate a-lawFPGA.vi
adaptation3 Adaptive variable 3 adaptation rate a-lawFPGA.vi

135

Table B.85: adaptFPGA.vi Outputs

Parameter Description Destination
a1_kgmm Adaptive parameter 𝑎1, 𝑘𝑔𝑚2 YaFPGA.vi
a2_kgmm Adaptive parameter 𝑎2, 𝑘𝑔𝑚2 YaFPGA.vi
a3_kgmm Adaptive parameter 𝑎3, 𝑘𝑔𝑚2 YaFPGA.vi

frictionFPGA.vi

The function frictionFPGA.vi contains a basic model of kinetic friction described by

Equation 2.18 based on the joint velocities.

Table B.86: frictionFPGA.vi Inputs

Parameter Description Source
inputs Described in Table B.4 inFPGA.vi

Table B.87: frictionFPGA.vi Outputs

Parameter Description Destination
frictionS_Nm Estimated shoulder joint friction, Nm finalFPGA.vi
frictionE_Nm Estimated elbow joint friction, Nm finalFPGA.vi

finalPGA.vi

The function finalFPGA.vi combines all the terms of the control law in Equation 4.34.

Table B.88: finalFPGA.vi Inputs

Parameter Description Source
userInput Described in Table B.1 run.vi
sS_rps Sliding error 𝑠1, rad/s errorFPGA.vi
sE_rps Sliding error 𝑠2, rad/s errorFPGA.vi
humanTrqS_Nm Shoulder joint torques from handle force, Nm humanFPGA.vi
humanTrqE_Nm Elbow joint torques from handle force, Nm humanFPGA.vi
YaS_Nm Shoulder Y*a, Nm YaFPGA.vi
YaE_Nm Elbow Y*a, Nm YaFPGA.vi
frictionS_Nm Estimated shoulder joint friction, Nm frictionFPGA.vi
frictionE_Nm Estimated elbow joint friction, Nm frictionFPGA.vi

136

Table B.89: finalFPGA.vi Outputs

Parameter Description Destination
inertiaTorqueS_Nm Inertia compensation joint 1 torque, Nm outFPGA.vi
inertiaTorqueE_Nm Inertia compensation joint 2 torque, Nm outFPGA.vi

force2torqueFPGA.vi

The function force2torqueFPGA.vi uses the kinematic Jacobian to convert end-effector

commanded forces to joint torques according to Equation 2.16.

Table B.90: force2torqueFPGA.vi Inputs

Parameter Description Source
forceX_N Commanded X force, N outFPGA.vi
forceY_N Commanded Y force, N outFPGA.vi
jacobian End-effector Jacobian, m meterFPGA.vi

Table B.91: force2torqueFPGA.vi Outputs

Parameter Description Destination
trqOutS_Nm Transformed torque 1, Nm motorFPGA.vi
trqOutE_Nm Transformed torque 2, Nm motorFPGA.vi

motorFPGA.vi

The function motorFPGA.vi reads in the desired joint torques and compares them

to the motor limitations, scaling the torques down if necessary using scaleFPGA.vi.

The motor torques are then converted to voltages using the relationship described in

Table 2.1 and the output voltages are set accordingly.

Table B.92: motorFPGA.vi Inputs

Parameter Description Source
trqOutS_Nm Commanded torque 1, Nm outFPGA.vi
trqOutE_Nm Commanded torque 2, Nm outFPGA.vi

137

scaleFPGA.vi

The function scaleFPGA.vi examines the desired output torque of each motor. If

either desired torque exceeds the limit of 28.8 Nm, both torques are scaled back pro-

portionally such that the highest torque is equal to 28.8 Nm. This is a crude attempt

to preserve direction of the output which will not actually preserve the direction (the

Jacobian would be needed for that), but is better than nothing.

Table B.93: scaleFPGA.vi Inputs

Parameter Description Source
torqueS_Nm Desired output torque 1, Nm outFPGA.vi
torqueE_Nm Desired output torque 1, Nm outFPGA.vi

Table B.94: scaleFPGA.vi Outputs

Parameter Description Destination
torqueS_Nm Scaled down output torque 1, Nm motorFPGA.vi
torqueE_Nm Scaled down output torque 1, Nm motorFPGA.vi

138

References

[1] N. Hogan and D. Sternad, “Dynamic primitives of motor behavior,” Biological
Cybernetics, vol. 106, pp. 727–739, Dec. 2012.

[2] J. Charnnarong, “The design of an intelligent machine for upper-limb physical
therapy,” Master’s thesis, Massachusetts Institute of Technology, 1991.

[3] H. I. Krebs, N. Hogan, M. L. Aisen, and B. T. Volpe, “Robot-aided neuroreha-
bilitation,” IEEE Transactions on Rehabilitation Engineering, vol. 6, pp. 75–87,
Mar. 1998.

[4] N. Hogan and H. I. Krebs, “Interactive robots for neuro-rehabilitation,” Restora-
tive Neurology and Neuroscience, vol. 22, pp. 349–358, Oct. 2004.

[5] D. Adebiyi, “Fabrication and characterization of beta-prototype mit manus:
an intelligent machine for upper-limb physical therapy,” Master’s thesis, Mas-
sachusetts Institute of Technology, 1998.

[6] C. Foster, “A performance characterization of an interactive robot,” Master’s
thesis, Massachusetts Institute of Technology, 1999.

[7] B. Laboratories, “Inmotion arm interactive therapy system.” http://
bionikusa.com/inmotion-arm-the-new-standard-of-care/, 2018. [Online;
accessed 09-April-2018].

[8] J. A. Doeringer, An Investigation into the Discrete Nature of Human Arm Move-
ments. PhD thesis, Massachusetts Institute of Technology, 1999.

[9] B. Wilcox, “Study of human motor control and task performance with circular
constraints,” Bachelor’s thesis, Massachusetts Institute of Technology, 2016.

[10] R. Koeppen and M. E. Huber, “Controlling physical interactions: Humans do
not minimize muscle effort,” in ASME 2017 Dynamic Systems and Control Con-
ference, 2017.

[11] M. Mahvash and A. M. Okamura, “Enhancing transparency of a position-
exchange teleoperator,” in Second Joint EuroHaptics Conference and Symposium
on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2007.

139

http://bionikusa.com/inmotion-arm-the-new-standard-of-care/
http://bionikusa.com/inmotion-arm-the-new-standard-of-care/

[12] J. J. Gil, Á. Rubio, and J. Savall, “Decreasing the apparent inertia of an
impedance haptic device by using force feedforward,” IEEE Transactions on
Control Systems Technology, vol. 17, pp. 833–838, July 2009.

[13] G. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin, and A. Goswami, “Design of an
active one-degree-of-freedom lower-limb exoskeleton with inertia compensation,”
The International Journal of Robotics Research, vol. 30, pp. 486–499, July 2011.

[14] N. Colonnese and A. Okamura, “M-width: Stability and accuracy of haptic ren-
dering of virtual mass,” in Robotics: Science and Systems VIII (N. Roy, P. New-
man, and S. Srinivasa, eds.), pp. 41–48, Cambridge, Massachusetts: The MIT
Press, 2013.

[15] A. Erwin, E. Pezent, J. Bradley, and M. K. O’Malley, “The effect of robot dy-
namics on smoothness during wrist pointing,” in International Conference on
Rehabilitation Robotics, 2017.

[16] N. Hogan, “Impedance control: An approach to manipulation: Part 1 - theory,”
Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1–7, Mar.
1985.

[17] E. Colgate and N. Hogan, “The interaction of robots with passive environments:
Application to force feedback control,” Advanced Robotics, pp. 465–474, 1989.

[18] E. Colgate and N. Hogan, “An analysis of contact instability in terms of passive
physical equivalents,” in International Conference on Robotics and Automation,
1989.

[19] W. S. Newman, “Stability and performance limits of interaction controllers,”
Journal of Dynamic Systems, Measurement, and Control, vol. 114, pp. 563–570,
Dec. 1992.

[20] S. P. Buerger and N. Hogan, “Complementary stability and loop shaping for
improved human-robot interaction,” IEEE Transactions on Robotics, vol. 23,
pp. 232–244, Apr. 2007.

[21] National Instruments, NI cRIO-9034 Embedded CompactRIO Controller with
Real-Time Processor and Reconfigurable FPGA User Manual, 2015.

[22] Kollmorgen, a Danaher Corporation, SERVOSTAR R○ CD Setup and Reference
Guide, 2002.

[23] National Instruments, NI 9263 4-Channel, ±10𝑉 , 16-Bit Analog Voltage Output
Module Operating Instructions and Specifications, 2009.

[24] Gurley Precision Instruments, Model VB Virtual AbsoluteTM Interpolating De-
coder User’s Manual, 2000.

140

[25] National Instruments, NI 9403E 32-Channel, TTL Digital Input/Output Module
Operating Instructions and Specifications, 2008.

[26] ATI Industrial Automation, F/T Controller Six-Axis Force/Torque Sensor Sys-
tem Installation and Operation Manual, 2016.

[27] National Instruments, NI 9205 32-Channel, ±200𝑚𝑉 to ±10𝑉 , 16-Bit Analog
Input Module Operating Instructions and Specifications, 2008.

[28] N. Hogan, “Impedance control: An approach to manipulation: Part 2 - imple-
mentation,” Journal of Dynamic Systems, Measurement, and Control, vol. 107,
pp. 8–16, Mar. 1985.

[29] L. N. Hand and J. D. Finch, Analytical Mechanics. Cambridge, UK: Addison-
Wesley, 1998.

[30] S. Andersson, A. Söderberg, and S. Björklund, “Friction models for sliding
dry, boundary and mixed lubricated contacts,” Tribology International, vol. 40,
pp. 580–587, Apr. 2007.

[31] Github, “Newman laboratory inmotion2 software repository.” https://github.
mit.edu/newmanlab/InMotion2/, 2018. [Online; accessed 09-April-2018].

[32] N. Hogan, “Impedance control: An approach to manipulation: Part 3 - ap-
plications,” Journal of Dynamic Systems, Measurement, and Control, vol. 107,
pp. 17–24, Mar. 1985.

[33] J. K. Salisbury and J. J. Craig, “Articulated hands: Force control and kinematic
issues,” The International Journal of Robotics Research, vol. 1, pp. 4–17, Apr.
1982.

[34] M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipulators,”
Journal of Dynamic Systems, Measurement and Control, vol. 103, pp. 126–133,
June 1981.

[35] T. Valency and M. Zacksenhouse, “Accuracy/robustness dilemma in impedance
control,” Journal of Dynamic Systems, Measurement and Control, vol. 125,
pp. 310–319, Sept. 2003.

[36] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Upper Saddle River, New
Jersey: Prentice Hall International Inc., 1991.

[37] J.-J. E. Slotine and W. Li, “On the adaptive control of robot manipulators,”
International Journal of Robotics Research, vol. 6, pp. 49–60, Oct. 1987.

[38] J.-J. E. Slotine and J. A. Coetsee, “Adaptive sliding controller synthesis for non-
linear systems,” International Journal of Control, vol. 43, pp. 1631–1651, Sept.
1985.

141

https://github.mit.edu/newmanlab/InMotion2/
https://github.mit.edu/newmanlab/InMotion2/

[39] Y. Tanaka, T. Tsuji, and H. Miyaguchi, “Analysis of human perception ability
for robot impedance,” in 16th IFAC World Congress, 2005.

[40] G. Ekman, “Weber’s law and related functions,” Journal of Psychology, vol. 47,
pp. 343–352, Apr. 1959.

[41] H. E. Ross and E. E. Brodie, “Weber fractions for weight and mass as a function of
stimulus intensity,” The Quarterly Journal of Experimental Psychology, vol. 39,
pp. 77–88, Feb. 1987.

[42] R. Petrella, M. Tursini, L. Peretti, and M. Zigliotto, “Speed measurement algo-
rithms for low-resolution incremental encoder equipped drives: a comparative
analysis,” in 2007 International Aegean Conference on Electrical Machines and
Power Electronics Electrical Machines and Power Electronics, 2007.

142

	List of Figures
	List of Tables
	Introduction
	Background
	History of the InMotion2
	The Need for Inertia Compensation

	Robot Control Strategies
	Interaction Control Stability
	Survey of Inertia Compensation Strategies

	Overview of Thesis

	The InMotion2 Upper Limb Robot
	Hardware
	Motor Servo Drivers
	Encoders
	Force/Torque Transducer

	Dynamic Model of InMotion2
	Inertial Dynamics
	Motor Torque and Applied Force
	Friction and Model Uncertainty

	The InMotion2 Software
	Real Time Software
	User Interface
	Virtual constraint controller
	Data logging

	FPGA Firmware
	Encoder Measurement
	Force/Torque Measurement
	Output processing

	Inertia Compensation
	Admittance Model
	Applied Force
	Unconstrained Reference
	Constrained Reference
	Differential Inverse Kinematics

	Adaptive Tracking Controller
	Sliding Surface
	System Dynamics
	Stability
	Parameter Tuning

	Implementation and Testing
	Initial Condition Response
	Unconstrained Compensation
	Constrained Compensation

	Human Interaction

	Conclusions and Future Work
	Conclusions
	Future Work
	Controller Bandwidth
	Force Measurement
	Adaptation
	Human Testing

	Operating the InMotion2
	Running the robot
	Running the inertia compensator
	Modifying LabVIEW code
	Fixing a corrupted cRIO

	Software Description
	Parameter Lists
	RT processor code
	FPGA code

	References

