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Abstract

Intelligent machines could help to facilitate language translation, maximize atten-
tive learning, and optimize medical care. However, hardware to train and deploy Al
systems are power-hungry and too slow for many applications. Neuromorphic ar-
rays could potentially offer better efficiency compared to conventional hardware by
storing high-precision analog weights between digital processors. However, neuro-
morphic arrays have not experimentally demonstrated learning accuracy comparable
to conventional hardware due to irreproducibility associated with existing artificial
synapses. Large variation arises in conventional devices due to the stochastic nature
of metal movement through an amorphous synapse. Hence, passive arrays have only
been demonstrated as small-scale systems.

In this thesis, I developed single-crystalline Silicon-Germanium (SiGe) artificial
synapses that have suitable properties for large-scale neuromorphic arrays. In con-
trast to amorphous films, epitaxially-grown SiGe can confine metal filaments within
widened threading dislocations for uniform conductance update thresholds. Metal
confinement reduces temporal variation to as low as 1%, which is the lowest variation
reported to date, to the extent of the author’s knowledge. Dislocations are selectively
etched to allow for high ON/OFF ratio, good retention, many cycles of endurance,
and linear conductance change. Simulations accounting for non-ideal device proper-
ties suggest that SiGe synapses in passive crossbar arrays could perform supervised
learning for handwriting digit recognition with up to 95.1% accuracy. Hence, SiGe
synapses demonstrate great promise for large-scale neuromorphic arrays.

Thesis Supervisor: Jeehwan Kim
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation

Recent success of modern artificial intelligence (AI) can largely be attributed to the
advancement of deep learning|25, 24, 53, 36]. Today, artificial neural networks are
already used in many applications, including speech recognition[31, 98, 36], object
recognition[53, 85, 92|, robotics[67], and decision-making[32, 79, 88, 7, 84]. How-
ever, next-generation Al-enabled technologies such as real-time data analytics, natu-
ral language translation, automated transportation, and multimodal IoT (Internet of
Things) sensor processing systems require advancements of Al algorithm and hard-
ware to reduce large power requirements.

Today, Al is almost synonymous with multi-layer artificial neural networks, popu-
larly known as deep learning|56, 81]. Training these artificial neural networks involves
adjustment of connection strengths (synaptic weights) between layers of neurons to
reduce dimensionality or minimize error functions. Out of the many existing learning
algorithms|77, 34, 6, 35, 37|, stochastic gradient decent is by-far the most widely used
method for supervised learning [78, 61, 55, 54].

The main computation executed in deep learning is the weighted summation.
Graphics Processing Units (GPUs) have become the most popular hardware platform
for accelerating deep learning since they can handle many operations in parallel[2].

GPUs process data in single-instruction multiple threads (SIMT) that use central-
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ized control of many parallel arithmetic logic units (ALUs) that fetch data from the
memory hierarchy[91]. However, excessive power is lost in data movement between
memory and ALUs. Application-specific integrated circuit (ASIC) accelerators are
being developed to minimize power consumption[33, 75, 16, 18, 19, 17, 48|. Also,
field-programmable gate array (FPGA) accelerators are used to optimize computing
engines and minimize memory bandwidth usage(60, 21, 109, 11].

In addition to these approaches, crossbar arrays composed of two-terminal resis-
tive switching devices have great potential to minimize power requirements and speed
up operation since the same hardware can be used for both memory and process-
ing. Artificial synapses learn optimal synaptic weight values as conductance|89, 58|.
Crossbar arrays of artificial synapses physically implement weight storage between
two fully-connected neuron layers. Hence, these arrays have been coined "neuromor-
phic," meaning they are inspired by neuronal networks. Neuromorphic arrays in deep
learning hardware can potentially achieve up to 4 orders of magnitude lower power
consumption[63, 64, 30, 28|. Fig. 1-1 illustrates the general crossbar structure for

neuromorphic arrays.

1.2 Neuromorphic Arrays

Neuromorphic arrays are capable of two important functions: 1) vector-matrix mul-
tiplication and 2) analog weight update. For a fully-connected array with n input
neurons and m output neurons, each artificial synapse weight value is represented
by the electrical conductance between two neurons, mathematically represented by a
matrix with m rows and n columns, G,,x,. Input voltage pulses, V,,, enter top cross-
bar rows. According to Kirchoff’s law, the total current at bottom crossbar columns,
I, are weighted summations according to the synapse conductance values and the
input voltage pulses. The vector-matrix (inputs-weights) multiplication is expressed

in Eqn. 1.1:

-[m = Gmann (11)
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Figure 1-1: Deep learning on Neuromorphic Arrays. Input data is classified by a
trained network. In this example, a handwritten digit is input as voltage pulses
and processed by the neuromorphic arrays. The maximum current output is from
the column representing the correct number. Synaptic weights at each crosspoint
(conductance values) are adjusted during training. Peripheral circuitry (not depicted)
compute error and apply activation functions between each layer.

The integrated current output is converted to a digital signal to be processed in
peripheral circuitry. An activation function, y = f(1,,), is used in deep learning to
introduce non-linearity. A common activation function is the logistic sigmoid, which

is expressed as

1

= 1.2
1 + 63_1?11 ( )

Y= f([m)

The result of this activation function is converted to voltage pulse inputs for
the next (hidden) layer of synaptic weights, G;. The output y is the result of the

activation function f; acting on the vector-matrix product of Gy, and the outputs of
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the first array, expressed as

y = fr(GLf(Im)) (1.3)

A deep neural network is composed of multiple hidden layers with activation
functions between each layer. Known as a multi-layer perceptrion (MLP), this neural

network can be mathematically expressed as[56]

y = fo(Va) = fre1(GrarfL(Gr...f(In)...) (1.4)

Using deep learning, neuromorphic arrays can approximate any function y =
fo(Vi). To perform classification, artificial synapses (weights) are trained to minimize
the error when the approximate output function is compared to values of a label.

The second critical function of artificial synapses in a neuromorphic array is analog
reconfigurability of conductance states. In order for the neural network to be trained,
artificial synapses must be able to access conductance levels representing different
synaptic weight values. During training, the conductance of an artificial synapse
relaxes towards a value that converges the error of the training set towards a global
minimum. In crossbar arrays, conductance level increase (potentiation) occurs when
voltage across the artificial synapse exceeds a SET threshold. On the other hand,
oppositely-polarized voltage with amplitude exceeding a RESET threshold lowers the
artificial synapse conductance (called depression). After partial derivatives of error
for each output are propagated backwards and calculated for each neuron, weights

can can be updated by the delta rule|[78]

Wijnew = Wijold + NTi0; (1.5)

where w;; is the synaptic weight value for the i** row and j** column, 7 is the
learning rate, z; is the activity at the neuron input, and J; is the partial derivative of
error computed for neuron j. This weight update scheme can be accomplished with
post-processing circuitry including comparators and integrators[10, 72, 107, 9, 59, 99,

82, 86, 15]. Weight update increments can be converted to voltage pulse trains to
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modify conductance values of artificial synapses|[29, 30].

1.3 Artificial Synapses

Various types of analog switching devices have been demonstrated as synapses for
neuromorphic computing[45, 8, 10, 95, 51, 57, 30]. Most rely on filamentary switch-
ing mechanisms, such as oxide-based resistive random access memory (oxide-based
RRAM) and conductive-bridging RAM (CBRAM). Oxide-based RRAM operation
is based on alignment of anion vacancies inherent in amorphous-phase binary ox-
ides to form conductive filaments[57, 83, 68, 108, 90]. While these devices exhibit
reasonably good retention and endurance, they suffer from small on/off ratio and
unavoidable temporal (cycle-to-cycle) and spatial (device-to-device) variation due
to uncontrollable filament dynamics in an amorphous solid[51, 57, 83, 68, 108, 90].
Resistive switching using single crystalline-based ternary oxide films have been at-
tempted, where dislocations become active filaments due to self-doping effect of crys-
talline defects in SrTiO3(/93]. However, analog weight update using these devices
has not been reported to the extent of the authors’ knowledge. CBRAM opera-
tion is based on metal conductive bridging through an amorphous solid electrolyte
|95, 50, 102, 46, 47, 96]. Because metal cations are more mobile than oxygen va-
cancies, the ON/OFF ratio for CBRAM are substantially higher than that of the
oxide-based RRAM[95, 101, 43, 100]. However, uncontrollable ion transport through
defects in amorphous films results in three-dimensional stochastic filament formation.
This results in large temporal switching threshold variations[50, 102, 101, 52]. These
variations make large-scale analog neural computing impractical without transistors
at each artificial synapse. Thus, securing a strategy to better control metal movement
in artificial synapses is an essential step towards achieving deep learning on passive

neuromorphic arrays [4].
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1.4 Overview of Thesis

This thesis focuses on epitaxial SiGe synapses for neuromorphic arrays. Analog con-
ductance change is achieved by utilizing enhanced ion transport and one-dimensional
conduction channel confinement in engineered dislocations. Threading dislocation
density is maximized in metastable SiGe films[87], which allows for scaling as small
as 25nm x 25nm for 60 nm-thick Siy¢Gegy grown on p+ Si substrates.

High on/off ratio, minimal spatial and temporal variations, long retention, and
good endurance suggests that epitaxial SiGe synapses could be suitable for transistor-
free neuromorphic computing arrays.

In addition, the epitaxy of p-i-p back-to-back diodes in epitaxial SiGe synapses
permits self-selection behavior that can suppress sneak path during large-scale array
operation. Precise doping modulation during epitaxy allows for modulation of set
voltage and read current by varying the Schottky barrier height at Ag/Si interface.
Simulations based on characteristics of epitaxial SiGe synapses shows 95.1% accu-
rate supervised learning with the MNIST handwritten recognition dataset, which is
comparable to software training baseline of 97%.

When nano-scale devices are imaged via cross-sectional transmission electron mi-
croscopy (TEM) after conduction channel formation, Ag conduction channels confined
in engineered dislocations can be visually observed.

The next chapter describes heteroepitaxy to grow metastable Silicon-Germanium
films. Chapter 3 covers fabrication and characterization of epitaxial SiGe synapses.

Finally, conclusions and future work are discussed in Chapter 4.

20



Chapter 2

Silicon-Germanium Epitaxy

Epitaxially-grown films with threading dislocations are suitable materials for the
switching layer in artificial synapses. This section will describe epitaxial growth of
Silicon-Germanium (SiGe) films on p+ Silicon (p+ Si) substrates. First, the growth
mechanics of heteroepitaxial SiGe will be discussed. Then, experimental results for

metastable SiGe films will be presented.

2.1 Background

2.1.1 Silicon Germanium

Silicon (Si) and Germanium (Ge) both crystallize in diamond cubic structures with
lattice constants of 5.431 A and 5.658 A, respectively. Because Ge is slightly larger
than Si, Silicon-Germanium (SiGe) alloys have a larger lattice constant than pure Si.

The lattice constant for SiGe, as;,_.ge,, can be approximated by Vengard’s law|94]

asiy_,Ge, = asi(l — ) + ager (2.1)

where ag;, and ag. are the lattice constants of Si and Ge, respectively, and z is the
atomic percentage of Ge. Since Ge is slightly larger, there is some lattice mismatch
between SiGe and Si. As a result thin SiGe films are compressively strained at the

onset of heteroepitaxial growth.
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2.1.2 Low-Pressure Chemical Vapor Deposition

Single-crystalline SiGe can be epitaxially grown on Si substrates by low-pressure
chemical vapor deposition (LPCVD). During LPCVD, Silane and Germane gas pre-
cursors, carried by Hydrogen carrier gas, enter a heated (~ 750 °C') low-pressure (~
100 Torr) close-coupled showerhead reactor. Low pressure allows for uniform film
growth. At high temperatures, Silane and Germane decompose into Si, Ge, and H,.
Si and Ge adatoms adsorb onto the surface, forming a SiGe film. Si and Ge adatoms
tend to align with the diamond cubic structure of the Si substrate and mimic the

single-crystalline structure of the underlying substrate.

kinetically-limited critical thickness
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100 —
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80 —
70
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|
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Figure 2-1: Critical Thickness Curves for SiGe epitaxy on Si. At 900°C', growth above
the equilibrium critical thickness permits strain relaxation. At 750°C', a metastable
region arises above the equilibrium critical thickness and below the thermodynamic
critical thickness. In this regime, misfits accompanied by threading dislocation half-
loops are generated, but dislocation glide for strain relaxation is kinetically limited.
Curves adapted from Houghton et al.[38]

As the SiGe film grows thicker, strain energy increases. When SiGe film thickness

reaches the thermodynamic equilibrium critical thickness, h., the outward force due
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to film stress overcomes the tension of a dislocation. The thermodynamic equilibrium
critical thickness, first reported by Matthews and Blakeslee, can be calculated by
[65, 66]

b(1 — v cos 6?)
An(1 4+ v)e

he

he ~ ln(?) (2.2)

where b is the Burger’s vector magnitude (bg;ge = 3.9 A), v is Poisson’s ratio (Vsige =
0.28[42]), 6 is the angle of a threading dislocation in the 111 glide plane (0g;g. = 60°),
and e is the strain mismatch (e = “—%ﬁc—e) Above h., coherency of pseudomorphic
films breaks down, leading to the nucleation of misfit dislocation cores.

Misfit generation must be accompanied by threading dislocations (TDs) that ter-
minate at a free surface. Solely based on intrinsic material properties, homogeneous
nucleation of dislocation TD half-loops is not possible for low-mismatch systems
[23, 20, 44]. However, it is known that surface roughening occurs during heteroepitax-
ial growth, which nucleates dislocation half-loops by material rearrangement (without
any gliding)[69, 26]. This heterogeneous nucleation in Si;_,Ge, on Si (x < 0.5) is ef-
fectively barrier-less [44].

Under low temperature growth conditions, kinetic limitations to TD glide are
imposed. This results in a kinetic critical thickness above the thermodynamic critical
thickness [39], which must be exceeded for TDs to glide and relax strain. Epitaxial
SiGe grown below the kinetic critical thickness and above the thermodynamic critical
thickness is metastable since TDs nucleate, but do not glide outward. As a result,

metastable films are expected to contain more TDs than pseudomorphic films or

relaxed films[39, 87].

2.2 Threading Dislocations in Epitaxial SiGe

2.2.1 Metastable SiGe

In our experiments, we found 60-nm-thick metastable SiggGeg; has high TD density

2

on the order of 10'cm™2, as shown in Fig. 2-3. Defect-selective etching was used to
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decorate TDs so that they are visible using scanning electron microscopy (SEM).

2.2.2 Relaxed SiGe

Increasing the atomic percentage of Germanium increases strain due to lattice mis-
match. Because threading dislocations gliding in opposite directions along the same
atomic plane can annihilate, Sig;Geg 3 has a lower dislocation density compared to
Sip.9Geg 1, as shown in Fig. 2-4 a and b, respectively. In Sig;Geq 3, the strain field from
TDs can be observed as diagonal extensions through the epitaxial layer, as shown in
Fig. 2-4 c. Increasing the thickness of the heteroepitaxial layer also increases strain.

Hence, increasing thickness also lowers dislocation density, as observed in Fig. 2-4 d.
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Figure 2-2: SiGe epitaxy at kinetically-limiting temperatures (750 °C). a) Before
epitaxy, Silane and Germane decompose and adsorb onto the substrate. b) Pseudo-
morphic growth occurs as SiGe is compressively strained, which cause surface rough-
ening. c¢) Metastable SiGe films are grown above the equilibrium critical thickness
and contain many TDs. d) Relaxed SiGe films are thicker than the kinetically-limited
critical thickness and have fewer TDs since threading dislocation glide is no longer
suppressed.
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Figure 2-3: Dislocation density analysis of heteroepitaxial SiGe on Si. The dislocation
density is in the range of 10! e =2, This suggests that the epitaxial SiGe synapses can
be scaled down to tens of nanometers. a) SEM image of decorated TDs in 1pm x 1um
area. b) Magnified SEM with dislocation pinholes highlighted by red circles. In the
200nm x 200nm area, 75 dislocations can be observed ¢) Color map highlighting the
distribution of TDs across the entire 1gum x lgm area. d) Histogram showing the
dislocation counts in 5 gm x 5um area.
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Figure 2-4: Threading Dislocations in SiGe with different film thickness and Ge con-
centrations. a) SEM of etched TDs in 60-nm SipgGeg;. b) SEM of etched TDs in
60-nm Sip 7Geg 3 appears to have less dislocations than 60-nm Sig 9Geg ;. ¢) Transmis-
sion electron microscopy (TEM) of Sip;Geg 3 reveals strain fields from TDs. d) SEM
of etched threading dislocations in 300-nm Sip¢Geg ; appears to have fewer TDs than
60-nm SigoGeg ;.
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Chapter 3
Epitaxial Artificial Synapsesl

Resistive switching devices are promising candidates for artificial synapses in neuro-
morphic hardware. This chapter describes fabrication and performance of artificial
synapses using heteroepitaxial Silicon-Germanium (SiGe) as the switching layer. The
confinement of the conducting filament into widened dislocations in SiGe offers supe-
rior spatial and temporal uniformity, long retention, excellent endurance, high on/off
ratio, and linear weight update. In addition, bandgap engineering of layers during
epitaxial growth could be used to customize device characteristics. According to
simulations, epitaxial SiGe-based neuromorphic arrays can achieve 95.1% learning
accuracy. The development of epitaxial SiGe artificial synapses is a step towards

realizing fully-functioning passive large-scale neuromorphic arrays.

3.1 Background

3.1.1 Device Architecture

Metastable 60-nm SiGe is epitaxially grown on p+ Si substrates, as described in Ch.
2. On the backside of substrates, 100-nm of Al is evaporated and annealed at 450
°C' to form ohmic contact. To isolate devices, 100-nm SiO, is deposited on top of
SiGe by plasma-enhanced chemical vapor deposition (PECVD) and etched back by
buffered oxide etch (BOE 5:1) solution after photolithography patterning. To create
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nano-scale devices, patterning is done by electron-beam lithography and reactive-
ion etching (RIE) is used to etch back SiOs. 100-nm of Ag and 20-nm of Pd are
evaporated as top electrodes. 5-nm of Ti and 100-nm of Au are evaporated as contact
pads. Cross-sectional SEM of the completed device and plan-view optical microscopy

images are shown in Fig. 3-1.

a)
Au (100 nm)
Ti(5 nm)
~ Pd(20nm) Au (100 nm)
Ti (5 nm)

$i0, (100 nm)

SiGe (60 nm)

Ag/Pd

i-5iGe

P+ Si substrate

p-Si
substrate

Al (100 nm)

Figure 3-1: Device architecture of Epitaxial SiGe synapses. a) Illustration of the
device cross-section. b) Plan-view optical microscopy image of a device. Scale bar:
40 pm. ¢) Cross-section SEM of an epitaxial SiGe synapse. Scale bar: 100 nm.

3.1.2 Current-Voltage Analysis

To characterize device performance, Quasi-static DC Current-Voltage (I-V) measure-
ments are executed with a B1500A Semiconductor Device Parameter Analyzer with
a B1517A High Resolution Source/Measure Unit (HRSMU). Devices are tested with
bidirectional I-V sweep measurements with current compliance of 500 pA, unless oth-
erwise stated. From I-V measurements, set voltage is defined as the voltage where
the current first exceeds 300 pA. The low-resistance state (LRS) and high-resistance
state (HRS) are defined as the current levels at 0.8 V before the device is set on the

upward sweep and after the device is set on the downward sweep, respectively.
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3.1.3 Pulse Measurements

Voltage pulses are used to measure endurance, retention, and analog conductance
states. Data is collected by a custom data acquisition system and a DL 1211 current
pre-amplifer from DL industries. Retention measurements are performed in vacuum
at elevated temperatures with a LakeShore Model TTP4-1.5K Probe Station. For
analog measurements, a stabilization stage before measurements consisted of repeat-

ing 30 sets of 200/400/1000 P-D pulses to partially stabilize Ag filaments.

3.2 Filament Dynamics in Epitaxial Synapses

Threading dislocations are preferential diffusion paths in crystalline solids [70]. When
positive electrical bias is applied to the top electrode, Ag at the Ag/SiGe interface

are oxidized to Ag" cations and electrons[103]

Ag — AgT +e” (3.1)

After oxidation, Ag™ ions drift into the SiGe film. Threading dislocations contain
the majority of Ag* ions, which are reduced to form Ag clusters extending along the

defects that act as quasi-one-dimensional pathways through SiGe [103]

Agt +e — Ag (3.2)

Aligned Ag clusters through SiGe form electron conduction channels, also called
conductive filaments. Low miscibility between Ag and SiGe and the absence of stable
compounds|76, 74] localizes filament formation to threading dislocations rather than
other interstitial or substitutional lattice sites. As shown in Fig. 3-2 a, conduction
channel formation is suggested by hysteresis observed in -V measurements.

In contrast, defect-free intrinsic Si epitaxially grown on p-+ Si shows typical diode-
like behavior without any hysteresis. Because there is no strain from lattice mismatch,
threading dislocations are unlikely to form by half-loop nucleation through intrinsic

Si. The absence of threading dislocations likely prevents formation of rupturable
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metal conduction channels through the film.

Before conduction channels form, SiGe artificial synapses have low conductiv-
ity. Under high enough voltage, Ag oxidizes into ions, Ag™ drifts into SiGe along
dislocations, and ions are reduced within SiGe. This metal movement results in a
net increase of the effective device conductivity. Formation of a conductive filament
rapidly increases current through the device until the current compliance is reached.
The current compliance limits current so that permanent shorting through the de-
vice (electrical breakdown) does not occur. As voltage is lowered, the higher current
level indicates the conductivity of the device has increased due to the newly-formed
conduction channel. Non-linear I-V characteristics after filament formation suggests
that the conductance is governed by the effective barrier at the interface of the Ag

filament and the p+ Si bottom electrode.

Oppositely-polarized voltage can retract the conductive filament and lower the
device conductance, as shown in Fig. 3-2 b. As electrical current flows through
the conduction channel, Joule heating occurs. More resistance occurs at narrowest
filament regions, therefore these locations are likely to be where oxidation of Ag
first occurs to initiate conduction channel rupture. Ag" ions diffuse away from the
heated region and drift in the direction of the electric field. As a result, the current
through the conductive filament is reduced. If Ag® ions are reduced again in the
same location they are oxidized, the conductance state of the artificial synapse will
remain the same. On the other hand, if reduction occurs in a different location,
the conductance state will be different. When negative bias is applied to the Ag
electrode, Ag+ ion drift will move towards the Ag electrode away from the p+ Si
electrode. This reduces the effective Schottky barrier between SiGe and p+ Si. It is
worth noting that conductance is believed to be exponentially-dependent on tunneling
gap distance. Hence, further investigation of atomic configuration changes occurring

during linear conductance change is of great interest.

The current through the device in the high resistance state (HRS) and low resis-
tance state (LRS), as defined at 0.8 V, maintains temporal (cycle-to-cycle) unifor-

mity, as shown in Fig. 3-2 ¢. This demonstrates that conductive filament formation
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through SiGe is well-confined by threading dislocations. As displayed in Fig. 3-2 d,
SiGe with threading dislocations (TDs) shows uniform resistive switching with only
1.7 % temporal set voltage variation (¢/u) during 100 I-V cycles.

As shown in Fig. 3-2 e-f, other top electrode metals that form compounds with Si
do not reset with up to 500 pA of reverse bias current. According to Cu-Si, Cu-Ge,
Ni-Si, and Ni-Ge phase diagrams(3, 1], stable compounds with SiGe are energeti-
cally favorable. These conductive compounds are likely constituents of irreversible
conductive pathways through the epitaxial film.

As a comparison, 60-nm-thick amorphous Si (a-Si) is grown by PECVD on p+
Si. I-V measurements for a-Si are shown in Fig. 3-3 a. As shown in Fig. 3-3 b, a-Si
switching devices have large temporal set voltage variation (28%), which contrasts the
uniform set voltage observed for single-crystalline SiGe in Fig. 3-2 d. Also, retention
within a-Si is poor, as shown in Fig. 3-3 ¢. Retention for epitaxial SiGe synapses is

discussed in Sec. 3.8.

3.3 Widening Threading Dislocations

Although epitaxial SiGe synapses are uniform, these devices have limited conductance
range (on/off ratio). As observed in Fig. 3-2 b, the conductance change during reset is
relatively small. This suggests that during reset, Ag™ ions are prevented from diffusing
away from the conduction channel to rupture the filament. Small range of conductance
values limits the number of synaptic weights for training large-scale neuromorphic
arrays [107]. Since this is suspected to be due to tight spatial accommodation [41, 97|,
widening TDs with defect-selective enchant[80] is predicted to allow for higher on/off
ratio while maintaining confinement effects from the crystalline-SiGe lattice.

After epitaxial growth, defect selective etching with a mixture of 44 % 32 M
Chromium trioxide (CrOj) solution and 64 % hydrofluoric acid (HF) can be performed
to widen threading dislocations. As shown in the SEM images in Fig. 3-4, threading
dislocations (TDs) are widened since they are preferential reaction sites for oxidation

in the presence of CrOj3 and subsequent oxide removal with HF. Consequences of
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the etching process on I-V characteristics include 1) more effective reset at negative
voltage bias, 2) higher on/off ratio by 3 orders of magnitude at positive voltage bias,
and 3) lower set voltage by ~ 0.7V. Average set voltage and variation are plotted vs.
etching time in Fig. 3-5 a.

Five seconds of etching results in sufficiently widened TDs for effective filament
rupturing, as shown in Fig. 3-5 b. Fig. 3-5 ¢ and d show I-V characteristics for
etched and unetched SiGe in linear and semi-logerithmic scale, respectively. The
current in the HRS state of a device with widened TDs is much lower than that
of an unetched device. Widening TDs also increases LRS current and decreases set
voltage, which both indicate etching helps to facilitate conduction channel formation.
The negative bias I-V characteristics before forming a conduction channel and after
rupturing a conduction channel are similar, as shown in Fig. 3-5, which further
confirms effective Ag retraction. In addition to higher on/off ratio observed in I-V
measurements (~ 10%), Widened TDs also exhibit a larger analog conductance range
when subject to voltage pulses, as shown in Fig. 3-5 f. Analog performance with

widened TDs is discussed further in Sec. 3.7.

3.4 Variations

Filament confinement in dislocations results in exceptionally low temporal variation
while the uniform distribution of dislocations throughout the SiGe film allows for
low spatial variation (measured for 500 devices). These low variations are essential
for accurate pattern learning and recognition when implemented into neuromorphic
hardware [10, 73, 105]. After an initial forming stage where Ag is first injected to
SiGe (shown in Fig. 3-6 a), IV cycling of SiGe is highly repeatable. As shown in Fig.
3-6 b, temporal set voltage variation (o/u) for over 700 switching cycles is as low as 1
%. This cycle-to-cycle uniformity makes a clear contrast to that of many amorphous-
based device architectures even after modification to improve temporal/spatial uni-
formity by metal doping, field localization by nanoparticles, or confinement of cation

transport by nanopore graphene[105, 62, 12, 104, 40].
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In addition to temporal uniformity, epitaxial SiGe average set voltage is also spa-
tially uniform since dislocations are well-distributed across the wafer (see Fig. 2-3).
The average set voltage out of a hundred cycles was mapped for a hundred devices
from two batches (Fig. 3-6 ¢). All measured devices show comparable average set
voltage with spatial variation of only 4.9 % and uniform batch-to-batch performance

(see Fig. 3-6 d).

3.5 Bandgap Engineering

Layer-by-layer controllability of films during epitaxial growth can be utilized for tun-
ing device properties. For example, the Schottky barrier height between Ag and Si
can be precisely controlled by specifying the doping concentration of the Si epilayer
before SiGe epitaxy. As shown in Fig. 3-7 a-b, set voltage and read current can be
modulated by varying the Schottky barrier height at Ag/Si interface. The ability to
tune epitaxially-grown devices with Schottky barrier heights could allow optimiza-
tion of recognition accuracy, power consumption, and prevention of sneak paths. For
example, linear I-V is more robust to noise, while a non-linearity allows for much
lower current at lower voltages, which minimizes sneak currents in crossbar arrays.
In addition, the layer-by-layer growths of p-i-p back-to-back diodes in SiGe switch-
ing medium permits self-selection behavior as shown Fig. 3-7 c-d. This could be an

effective route to further reduce sneak currents in neuromorphic arrays.

3.6 Nano-Scale Synapses

Scaling is an important consideration for portable electronics. Nano-scale epitaxial
SiGe devices with active areas of 25nm x 25nm, 50nm x 50nm, 75nm x 75nm, 100nm x
100nm, and 125nm x 125nm demonstrate similar I-V characteristics to bum x 5um
devices, as shown in Fig. 3-8. This suggests conduction channel formation and
rupture predominately occur at localized areas, where a limited number of dislocations

are likely responsible for the majority of ionic movement among multiple TDs.
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Nano-scale devices are able to operate with 100% yield due to the high threading
dislocation density in epitaxial SiGe films (~ 10em™2). As shown in Fig. 3-9 a,
25nm x 25nm devices show good temporal uniformity. Spatial uniformity is also
maintained, as shown in the histogram of set voltages for 100 devices plotted in Fig.
3-9 b. Slightly larger variation for nano-sized devices compared to micro-sized devices

could be due to defects induced during RIE when defining the active region.

3.7 Analog Measurements

Analog artificial synapses must be capable of stabilizing at many different conductance
states. During the training stage of supervised learning, weights are updated to
minimize the error at the output. If there are too few accessible conductance levels,
conductance values will not be able to precisely represent optimal weight values, which
degrades the network accuracy. Analog on/off ratio is desired to be sufficiently high
so that at least 64 distinct conductance states are accessible (6 bits)[107, 13].

Various conductance states can be digitally programmed by varying the current
compliance under constant voltage bias. As shown in Fig. 3-10 a, the current com-
pliance can be used to set the conductive state to different levels as plotted in Fig.
3-10 b. Without a transistor at each artificial synapse, passive arrays rely on pro-
gramming by voltage pulses. The analog set threshold for an artificial synapses can
be determined as the minimum voltage amplitude necessary to change the current
level. When the pulsing scheme shown in Fig. 3-10 c is applied to an epitaxial SiGe
synapse, this analog set threshold (Vsgr) can be observed as the voltage that begins
to change the readout current, as in Fig. 3-10 d. For reset, the pulsing scheme shown
in Fig. 3-10 e can be applied to find the analog reset threshold (Vggspr), as shown
in Fig. 3-10 f.

Analog artificial synapses can be characterized by measuring read currents in pulse
trains consisting of repeated set-read and reset-read pulses. As shown in Fig. 3-11
a-b, the current during read pulses with amplitude below Vggp increases in response

to set pulses (potentiation), and decreases in response to reset pulses (depression).
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Potentation-depression (P-D) of SiGe artificial synapses exhibit analog switching
with and without widening TDs, as shown in Fig. 3-12 a. Widening TDs allows
for switching to occur with lower analog set and reset voltages. Also, the analog
on/off ratio, measured as the current after potentiation divided by the current after
depression, is larger for widened TDs since stronger filaments can be formed, and
more complete filament rupture is possible.

Applying more P-D pulses to SiGe with widened TDs results in higher current
levels and more condutance states. As shown in Fig. 3-12 b, applying 100, 200, and
500 P-D pulses results in analog on/off ratios of 100, 180, and 240, respectively.

As shown in the P-D plot in Fig. 3-12 b, remarkably high analog on/off ratio
of 240 is measured for 1000 P-D pulses (500 potentiation/500 depression); the ratio
decreases as the number of P-D pulses is reduced (180 for 400 P-D pulses and 100 for
200 P-D pulses).

While SiGe artificial synapses exhibit extremely high analog on/off ratio after 500
P-D pulses, conductance response upon P-D is non-linear. This is a typical charac-
teristic of filamentary-type switching devices. Such non-linearity is more prominent
when conductance saturates at its maximal value upon maximized potentiation pulses
and abruptly decays upon depression. At maximum potentiation, filament conduc-
tivity can no longer increase in response to additional voltage pulses, which could be,
in part, due to spatial limitations within widened TD channels.

Linearity can be quantified by a non-linearity magnitude assigned by the best-fit
curve to the measured P-D read currents, as shown in Fig. 3-12 ¢. As shown in Fig. 3-
12 d, increasing the number of pulses increases the magnitude of non-linearity. Linear
conductance response with analog on/off conductance ratio 100 can be achieved using
100 P-D pulses, which is sufficient for training synaptic weights to accurately perform
MNIST pattern recognition [13, 40]. The trade-off between linearity and the number
of P-D pulses implies that widened TDs have limited spatial capacity to accommodate
Ag. Linear conductance change can be obtained by avoiding saturated conductance
limits.

In conventional CBRAM, the filament metal can diffuse into switching medium
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and remain stuck in irreversible atomic configurations during repeated operation,
which can limited endurance. However, epitaxial SiGe artificial synapses are capable
of conductance update in response to more than 10° P-D pulses with stable current
levels, as shown in Fig. 3-12 e. The immiscibility of Ag into SiGe likely contributes

to allowing many repeated cycles.

3.8 Retention

In conventional CBRAM devices, metal filaments can pressurize an amorphous switch-
ing medium[5] and easily diffuse into amorphous phase, resulting in poor retention.
Single-crystalline SiGe confines metal to predominantly occupy widened threading
dislocations. However, without widening dislocations, a strongly-set filament eventu-
ally degrades and ruptures after removing electrical bias. As shown in Fig. 3-13 a,
the current level at read voltage begins to decrease after about 1000 seconds. This
is possibly caused by compressive stress on Ag filaments from the SiGe lattice, in
addition to the tenancy for Ag to form stable clusters larger than TDs may spatially
permit [101, 95].

Retention of epitaxial SiGe synapses is greatly improved by widening TDs with
the optimal etching time. A strongly set Ag filament remained stable for over 48 hours
at an elevated temperature of 85 °C', as shown in Fig. 3-13 b. However, over-etching
TDs has a negative consequence on retention, as shown in Fig. 3-13 ¢. This could be
due to motion if Ag in over-etched SiGe, which eventually results in filament rupture.

Assuming that diffusion is the main mechanism causing conduction channel rup-
ture, the activation energy for Ag diffusion can be extracted from the Arrhenius plot
of retention times at different elevated temperatures. Using the plot shown in Fig.
3-13 d for SiGe with widened dislocations, the activation energy of Ag is estimated to
be 1.04 eV, which is similar to the value reported for Ag diffusion in single-crystalline
Si with dislocations [22]. Extrapolating this plot to room temperature indicates that
strongly-set conductive filaments can retain high conductivity for around 1.87 years

at room temperature.
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3.9 Artificial Neural Network Simulations

To demonstrate the suitability of SiGe artificial synapses for Al, an artificial neural
network is simulated while taking into account measured device properties. The
simulation is conducted on the basis of the platform "+NeuroSim." The source code
is written with C++ programming language and is able to run on LINUX operation
systems. A three-layer MLP neural network (784 x 300 x 10) is used with 28 x 28
MNIST images.

Training is iterated for one million patterns, randomly selected from the 60,000-
image training set. Inference is performed using a 10,000-image testing set with
non-ideal factors including finite on/off ratio, spatial /temporal variation, read noise,
and wire resistance, and quantization of read currents.

The original patterns from the MNIST database are converted to black-and-white
patterns with a threshold of 128 for pixel values ranging from 0 to 255. A logistic
function, as described by Eqn. 1.2, is used as the activation function. The optimized
learning rate for the first and second layer of the synapse is 0.4 and 0.2, respectively.
The read voltage is 2 V and the read-out current is quantified to 8 bits by the analog-
to-digital conversion circuit.

A behavioral model described by the following equations is used to capture non-

linear conductance change [106]

Grrp = B(]. — 6%) -+ Gmm (33)

Grrp = —B(1 — e ) + Gonas (3.4)

B = ?Lﬁmm (3.5)
(1—eF)

where P is the number of pulses, G;rp and Gprp are conductance states during LTP
and LTD, respectively. Gmaz, Gmin, and Py,., represent the maximum conductance,

minimum conductance, and the maximum pulse number required to switch the device
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between the minimum and maximum conductance states, respectively. These values
are extracted from the experimental data. A is determined by the nonlinearity of
weight update and can be positive or negative. Aprp = 0.5032, A,rp = —0.3868
(normalized by P,,.) is used to fit data shown in Fig. 3-11. B is a parameter
determined by A within the range of Guz, Gmin, and Praz.

The cycle-to-cycle variation describes the variation of the outcome conductance
after applying each pulse. Assuming the conductance at each level obeys a normal
distribution, the cycle-to-cycle variation is defined as the standard deviation divided
by the maximum conductance[13, 27].

The device-to-device variation describes the variation of the parameter A. We
assume that the fitting parameter A obeys a normal distribution. Device-to-device
variation is defined as the standard deviation divided by the average value of A.

The precision is defined as the number of available conductance states during LTP
and LTD.

Wire resistance between each crosspoint is 52 based on standard 14-nm CMOS
technology. Read noise is chosen as 5%. The read-out current is quantified, normal-
ized, and transferred to subsequent controlling logic circuits to calculate the delta
weight.

The recognition accuracy is calculated every 8,000 images during each training
process. Each data point for recognition accuracy is the average value of the last ten
accuracy calculations.

The detail of 3-layer multi-layer perceptron (MLP) schematic is shown in Fig. 3-
14 a. The inner product (summation) of input neuron signal vector and the first layer
of synapse matrix is transferred after activation and binarization for input vectors
of the next layer. Schematic in Fig. 3-14 b shows the circuit block diagram for a

neuromorphic array composed of epitaxial SiGe synapses with the peripheral circuit.

3.9.1 Weight Update

The conductance update is implemented with half-voltage operation and the entire

array is written line-by-line. The peripheral circuit and most of the neuron circuit
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are verified by HSPICE simulations, and the delta weight calculation is performed by
software.

In neuromorphic array hardware, conductance values, G, are only positive (0 to
1), while synaptic weights in artificial neural networks, W afe both positive and
negative (-1 to 1). Hence, using a single artificial synapse for per synaptic weight
requires a two-step read operation. First, vector-matrix multiplication, as described
by Eqn. 1.1, is performed by the neuromorphic array when read pulses according to
the input vector, \7, are applied. The outputs are doubled using a 1-bit left-shift, and

the input vector V is subtracted to construct the weighted summation WV:

WV =2GV — JV (3.6)

where J is a matrix of all ones with the same dimensionality as W and G. The
MSB (positive or negative sign bit) of the adder output is the 1-bit output of the
low-precision activation function. This output from the first neuromorphic array is
stored for calculating delta-weight and used as the input to the hidden layer. The
MSB output of the second array is the prediction, which is also is used for calculating
delta-weight. A schematic for this process is illustrated in Fig. 3-14 c.

Using backpropagation, the amount to change each synapse, or the delta-weight
Aw, is the product of the learning rate, n, the array inputs z, and the partial deriva-
tives of the error calculated at the outputs 6. The derivative of the logistic function

(Eqn. 1.3) can be expressed as

fl@) = f(z)- (1 - f(z)) (3.7)

Hence, the partial derivatives of the error for k& output neurons from the second array

can be determined as

6k‘ = (ytarget - Uk)yk(l - yk) (38)

where y;q,ge: are the target outputs and yx are the actual outputs. The delta-weight

for the second array between j input neurons and & output neurons is calculated as
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ijk = ?7.’1725k (39)

where z5 are the outputs of first array and inputs to the second array. Similarly, the
partial derivatives of the error for j output neurons of the first array are calculated

as

(Sj = (Z wjk . 6k)$2(1 - Ig) (310)
k

and the delta-weight for the first array between 7 input neurons and j output neurons

is calculated as

Awij = 7].171(5]' (311)

where x, are the inputs to the first array. Calculated delta-weights determine the
number of write or erase pulses to be applied for each synapse.

To change the conductance of artificial synapses in a neuromorphic array, poten-
tiation and depression require different voltage pulse schemes. As shown in Fig. 3-14
d, half-voltage bias is used to protect unselected devices. During potentiation, the
selected word line (WL) is held at the write voltage, V,,, while 0 V write pules are
applied to bit lines (BL) to increase the conductance of selected synapses. During
depression, the selected WL is held at the erase voltage, V., while 0 V erase pulses

are applied to BL to decrease conductance.

3.10 Handwriting Recognition

Based on measured characteristics of epitaxial SiGe synapses, an artificial neural
network is simulated to perform supervised learning with the MNIST handwritten
recognition dataset|[55]. A three-layer neural network with 28 x 28 pre-neurons, 300
hidden neurons, and 10 output neurons is utilized[15|. The multilayer perception
(MLP) algorithm with stochastic gradient descent weight update is used. Non-ideal

factors such as finite on-off ratio, finite number of conductance levels, device-to-device
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variation, cycle-to-cycle variation, wire resistance, and read noise are accounted for.
The 784 neurons of the input layer correspond to 28 x 28 MNIST image, and 10
neurons of the output layer correspond to 10 classes of digits (0-9)[49]. The impact of
various device parameters on recognition accuracy considered for our simulation and
specific values for epiRAM are displayed in Fig. 3-15 a-e.

After training with one million patterns randomly selected from 60,000 images
from training set, recognition accuracy is tested with a separated 10,000 images from
the testing set[15, 14]. Employing simple circuitry to compensate for the nonlinear
conductance change with pulse number[49], the simulation suggests that the neural
networks formed with epitaxial SiGe synapses can achieve 95.1% on average (96.5% as
maximum) recognition accuracy, which is comparable to the accuracy of 97% obtained
by the software baseline using binary input signal for the first two signal layers, as
shown in Fig. 3-15 g[49, 71| Using gray-scale instead of binary input, this accuracy

of this algorithm using software with similar network size is 98% [49, 55)
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Figure 3-2: Resistive switching in SiGe. a) I-V measurements of epitaxial SiGe
synapses (with unetched dislocations) and of Ag/crystalline i-Si/crystalline p-Si de-
vice, where no hysteresis is observed. The signature of filament rupture is highlighted
in b). ¢) HRS and LRS states measured at 0.8 V for 100 cycles. d) Set voltage mea-
sured over 100 quasi-static I-V sweeps. Inset: histogram for set voltage distribution.
e) Cu/SiGe/p+ Si and f) Ni/SiGe/p+ Si devices show very little hysteresis and high
current, likely due to formation of stable conductive compounds.
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Figure 3-4: Effect of etching on epitaxial SiGe synapses.

a,f.k,;p) Plan-view SEM

images reveal increasing etching time widens dislocations. Scale bar: 200 nm. b,g,l.q)
[-V measurements for different etch times. ¢,h,m,r) HRS and LRS temporal evolution
shows etching increases the on/off ratio, but over-etching increases variation of the
HRS state. d.,ijn,s) Set voltage temporal evolution shows increasing variation with
etch time. e,j,0,t) Histograms of set voltage for different etch times.
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Figure 3-5: Complete Ag filament rupture is enabled by defect-selective etching. a)
Set voltage and variation plotted vs. etching time shows that as etch time increases,
set voltage decreases and variation increases. b) Semi-logarithmic I-V characteristics
of the reset process without etching (0s) and after 5s of etching plotted with i-Si shows
larger decrease in current is enabled by widening TDs. ¢) Semi-logarithmic DC I-V
characteristics without etching (0s) and after 5s of etching. d) Linear-scale DC I-V
characteristics without etching (0s) and after 5s of etching. e) I-V characteristics of
SiGe in the virgin state and after Ag filament rupture, showing nearly-complete reset
to the HRS is allowed with widened TDs. f) Higher analog on/off ratio is observed
for SiGe with widened TDs.
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Figure 3-7: Bandgap engineering to tune characteristics of epitaxial SiGe synapses.
a) I-V measurements with different doping concentrations of p+ Si below SiGe. b)
Set voltage and read current (at 0.8 V) plotted as a function of doping concentration
suggests that higher doping concentration results in lower set voltage and higher read
current due to the lower Schottky barrier. ¢) Linear-scale and d) Logarithmic-scale

I-V curve of p-i-p SiGe back-to-back epitaxial SiGe synapse. LRS-state current is
rectified at negative bias.

48



107 . 10
1 25 nm x 25 nm 50 nm x 50 nm
1
2 107 z 107
=z i <
= i =
8 107 8 107
3 3
(&) O
10‘"’1 10"
1
1043% 104: .
4 2 0 2 a4 8 4 2 0 2 4 &
Voltage (V) Voltage (V)
d e
) 107 )10" :
1 100 nm = 100 nm 1 125 nm % 125 nm
4! 4]
< 107 T 1074
- 3 =
g 1074 g 107
3 1 =1
o o
10™ 10"
1
10"3!: S NI, e 10" — e
4 2 o 2 a4 8 4 20 2 a8
Voltage (V) Voltage (V)

75 nm x 75 nm

Current (A)
=)

4 2 0 2 4 8
Voltage (V)

5pm x5 pm

4 2 0 2 a4 8
Voltage (V)

Figure 3-8: I-V measurements of nano-scale epitaxial SiGe devices. a) 25nm x 25nm,
b) 50nm x 50nm, c) 75nm x T5nm, d) 100nm x 100nm, and e) 125nm x 125nm
devices have similar hysteresis to f) 5um x 5um devices.

a £ b
) Temporal Variation: 3 % )
S
% 3 200
= 150
g 2+ g 100
g 50

1L
03 4 5
Set Voitage (V)
O 1 1 I 1 L 1
0 100 200 300 400 500 600 700
Cycle #

Count

Spatial Variation : 5.7 %

36 4.0 44 4.8
Set Voltage (V)
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Figure 3-12: Analog characteristics of epitaxial SiGe synapses. a) Potentiation-
depression (P-D) with and without widenened TDs showing widened TDs promote
larger analog on/off ratio. Table: Analog set and reset voltages. b) P-D shows ana-
log on/off ratio increase with number of applied pulses. The pulse train consists of
100/200/500 consecutive set pulses (5 V, 5 us) followed by 100/200/500 consecutive
reset pulses (-3 V, 5 us), respectively. Current is measured by read pulses (2 V, 1
ms) after each set/reset pulse. c¢) The definition of non-linearity magnitude d) The
non-linear magnitude depending of number of P-D pulses. Inset: table showing non-
linearity magnitudes for 200, 400, and 1000 P-D pulses. e) Endurance measured for
10° set/reset pulses (10° cycles). The first and fifth of each order of magnitude is
shown. Each P-D cycle consists of 500 consecutive potentiation pulses and 500 con-
secutive depression pulses with read pulses between each update. After 10° cycles,
similar P-D can still be observed.
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Figure 3-13: Retention of SiGe artificial synapses. a) Untreated TDs show poor
retention. Inset: plan-view SEM of relatively flat SiGe. b) The two-day retention
test at 85°C at LRS for a SiGe artificial synapse etched for 5s. The device performance
remains unchanged after the test. Inset: plan-view SEM of 5s etched SiGe. ¢) Over-
etched TDs also show poor retention. Inset: plan-view SEM of 10s etched SiGe. a-c
are measured with 1.5 V read pulses with pulse width of 1 ms. d) Retention tests
for 5s etched SiGe at elevated temperatures. The extrapolation of the plot to room
temperature indicates 1.87 years of retention. Measurements are collected twice from
10 devices at each temperature between 398K to 443K.
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Figure 3-14: Schematic for the image recognition simulation. a) A three-layer MLP
neural network with a black-and-white input signal for each layer in the algorithm
level. The inner product (summation) of the input neuron signal vector and the
first synapse array vector is transferred after activation and binarization as the input
vector for the second synapse array. b) Circuit block diagram of a neuromorphic
crossbar array and the peripheral circuits. MUX, multiplexer; ADC, analog-to-digital
converter. c¢) Diagram illustrating the process for determining outputs for prediction
and delta-weight calculation. d) Schematic of potentiation (weight increase) and
depression (weight decrease) phases during training. The number of write or erase
pulses for each synapse is determined by the delta-weight calculation. Figures are
adapted from [15]
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MNIST digit recognition accuracy. Measured values for epitaxial SiGe synapses are
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Chapter 4

Conclusions

Several new computing system designs combine memory cells and transistors for effi-
cient synaptic weight training and storage compared to conventional hardware. Neu-
romorphic arrays with two-terminal conductive bridging devices are promising, yet
they typically rely on formation of filaments in an amorphous medium, which is
stochastic and unreliable. Spatial and temporal variation of conductance response
has therefore limited conventional devices to small-scale demonstrations.

For this thesis, I worked on epitaxial SiGe artificial synapses that display un-
precedented uniformity and demonstrated all characteristics that suggest suitability
for large-scale arrays. Metastable SiGe films containing many threading dislocations
are grown by low-pressure chemical vapor deposition, and threading dislocations are
widened using defect-selective etching. Widened threading dislocations in the single-
crystalline SiGe switching layer can confine Ag filaments in quasi-one-dimensional
channels. This confinement results in enhanced set voltage uniformity, long retention,
high endurance, and high analog on/off ratio. Simulations using the MNIST dataset
prove that epitaxial SiGe synapses could operate with online learning accuracy of up
to 95.1%.

Future research at devices-level, circuits-level, and systems-level could help to
realize large-scale passive neuromorphic arrays. At the devices-level, it remains a
significant challenge to consistently achieve linear conductance change in response

to identical voltage pulses. In-situ characterization during weight update could help

o7



to reveal underlying mechanisms of filament formation and rupture guided by de-
fect pipelines. Also, better retention is desired to maintain weight values at elevated
temperatures. There is also incentive to reduce voltage threshold amplitudes to min-
imize power consumption during training. At the circuits-level, bandgap engineering
can be used to optimize crosspoint architecture for large-scale operation in parallel.
For example, sneak currents could be further minimized by integrating selectors. At
the systems level, a significant challenge is to develop peripheral circuitry and tun-
ing algorithms for operation of many array rows and columns simultaneously. Real
demonstration of MNIST handwriting recognition using 784 x 300 and 300 x 10 neu-
romorphic arrays with performance advantages over conventional computing systems
has yet to be realized. Epitaxial SiGe synapses have demonstrated uniformity, high
on/off ratio, good endurance, stable retention, linear conductance update, and sup-
pression of sneak currents. Hence, the development of epitaxial SiGe synapses is a
step towards creating new computing hardware for Al to transcend language barriers,

teach contextualized information, and enhance quality of life for all people.
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