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Abstract

This thesis investigates three topics in financial economics. The first chapter de-
velops a Bayesian procedure to select between various option pricing models based
on historical data on the time series of the underlying asset as well as the options
data. The exact form of the procedure is first developed. To better understand how
this procedure chooses a model, I develop an approximation to the key quantities
at issne and interpret the model selection procedure based on these approximations.
The Bayesian methodology is demonstrated on foreign exchange options traded on
the PHLX and used to compare the Black—Scholes model, Merton’s jump-diffusion
model and Cox’s CEV model. When the complete data set of both the time series
and options data is use, the jump-diffusion model is found to be the most probable
model.

The second chapter uses option prices to examine whether crash fears in currencies
explain the empirical failure of uncovered interest parity (UIP). In particular, we
investigate the claim made by many traders that the high yield cuirency is subject
to crashes. This has been given as a possible explanation of the failure of UIP and
has come to be known as the peso problem explanation. By using observed option
prices, we invert for jump expectation in the DM-Dollar and Yen-Dollar exchange
rates from 1984 to 1993. We find that in the case of the DM, that indeed the high
yield currency is generally expected crash while for the Yen, we find no relationship
between the jump expectation and yield differential. We also find that option implied
jump expectations weakly predict large movements. We find that exchange rates are
expected to jump in the direction of purchasing power parity while the trade balance
has no explanatory power in the formation of jump expectations.

The third chapter investigates how financing decisions can affect an entreprencur’s
investment decision when the private information held by the entrepreneur is evolving
over time. We find that when “standard securities”—securities whose value depend
positively on the value of the firm—are issued, the entrepreneur will not wait for
sufficient information and end up investing too early. For a stylized example, we
show that with a risky project and limited liability, the entrepreneur can only issue
such securities and consequently will always end up investing too early. A social



planner faced with the same informational constraints as the financial market will
want to impose a tax on issuing securities which will induce the entrepreneur to wait
for sufficient information. If there are multiple firms with the same underlying private
information, the firms withk less cash on hand will “piggyback” on firms with more
cash and issue their securities right after the cash rich firms do.
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Chapter 1

A Bayesian Comparison of Option
Pricing Models

1.1 Introduction—The Need For a Bayesian
Framework

There has been a proliferation of option pricing models after the introduction of the
original Black-Scholes model in 1973. Among them, several popular ones include
Merton’s jump-diffusion model and Cox’s constant elasticity of volatility model. At
the same time, the volume of trade in options and other derivative securities over che
last 20 years has increased at a break-neck pace. Financial practitioners have found
theoretical models essential to carry out even the most mundane transactions in the
derivatives markets. But while the importance and number of option pricing models
grows, there remains a gap between the theory and practice. How does one choose
the model? Sophisticated statistical tests have been developed for testing option
pricing models while numerous studies have compared various option pricing models
in a wide range of markets. There has been relatively little emphasis, however, on
the topic of optimal model selectior.. Because most studies have relied on the use of
classical statistical methods, the conclusions reached are generally to accept or reject
a model. If several models are accepted, there is generally no prescription by which
to select among those models. An even worse scenario, which is actually the more
common, is for all models to be rejected.

In this paper, we propose to tackle this problem by use of Bayesian methods. The
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Bayesian approach will allow us to not only rank all models, but also will allow us, on
the basis of the data, to impute implied probabilities to each model. This will in turn
allow one to use decision theoretic methods by which to select among the models.
Or if one prefers, it is even possible to take advantage of all models to price a new
option. The Bayesian framework does not force one to choose just one model.

In our approach, we also take advantage of both the time series and option pricing
implications of the respective model. In a typical option pricing model, dynamics are
specified for the underlying asset. Together with preference restrictions it is shown
that these dynamics imply an equilibrium price for an option on that stock. While
some studies have focused on how well the stock price time series data fits the specified
dynamic process, others have focused on how well the option pricing formulas fit the
actual option prices. Few have examined both questions together. Qur approach will
simultaneously encompass both these issues.

To gain a better understanding of the Bayesian method of model comparison,
Section 1.2 spends some time laying out and interpreting the basic methodology of
comparing among models. Particular attention is paid to how the Bayesian method
chooses between a parsimonious model and a more complicated one that may fit the
current data set better, but generalize poorly. This analysis will clarify some issues
that separate classical and Bayesian methods. We will see how Lindley’s paradox
can be interpreted in this light. Section 1.3 develops the basic setup and notation.
Section 1.4 examines how one computes the implied probability of an option pricing
model given the data. Section 1.5 derives the basic quantity which must be computed
numerically to assign probabilities to models. Section 1.6 interprets this quantity by
first deriving an approximation. This approximation reveals some of the key issues
for comparing option pricing models. Section 1.7 summarizes three option models
that we will compare empirically. Section 1.8 describes the PHLX forcign currency
- data source, while Section 1.9 specifies a set of priors that is applicable to the data
and models considered. Section 1.10 gives the empirical results while Section 3.7

concludes.
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1.2 Bayesian Model Comparison

Given several option pricing models, our objective will be to quantitatively rank the
models on the basis of the data. The Bayesian framework provides a natural setting
in which to analyze this problem. A key distinction of the Bayesian approach is
that it can assign probabilities to different models on the basis of a given data set. A
ranking based on these relative probabilities will automatically be a consistent method
by which to evaluate the various models. The classical approach of ranking models, in
comparison, suffers from the possibility that several models can be accepted without
providing a ranking of those accepted models. An even worse scenario, especially
relevant in the context of comparing option pricing models with large data sets,
is that all models in consideration may be rejected.! This result will be troubling
especially for financial practitioners who must select some option pricing model on
which to base their pricing and hedging strategies.

In contrast, not only does the Bayesian approach assign consistent ordinal rankings
to the various models, but it also does not force the practitioner to simply choose
one model with which to work (since it also provides a cardinal ranking). If the
practitioner desires, it is possible to utilize all the models and estimates to price an
option. The following is just one such example. One can first determine the option
price implied by each model. Next one can form a weighted average of these option
prices using the probabilities of each model given the previous data. This yields an
estimated option price that is the “expected option price”. In this way, the Bayesian
approach allows one to take maximum advantage of the models and data.

In this section, we will briefly examine the Bayesian approach to model selection
paying particular attention to how the Bayesian procedure strikes a balance between
selecting a model that fits the data well and selecting a parsimonious model that does

not “over- fit” the data.

1Cox’s [2] procedure, which is classical in nature, does not overcome this problem since it too
must assume a null hypothesis. See Gaver and Geisel [5] for the case of regressor selection.
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1.2.1 The Two Levels of Inference

Two levels of inference are generally involved in evaluating the consistency of a model
with a given data set. First one must fit the model to the data. Because there are
typically some free parameters in a model, one must first estimate these parameters
from the given data by assuming the given model is correct. This first step is referred
to as parameter estimation. The second level of inference is to rank the various
models in consideration. In the case of a regression model, at the first stage, one
must estimate the parameters of the regression model assuming that the model is
correctly specified. At the second level one must express a preference over the various
regression models.

Unfortunately, however, one cannot simply rank the models by how well they fit
the data. It is a general fact that a more complex model will fit the data better. A
linear regression function with two regressors will always fit the data better relative to
another with only a subset of the regressors. A polynomial regression function with
N +1 terms will always fit the data better than a polynomial regression function with
only N terms. Selecting a model on the basis of its goodness of fit will thus consistently
lead to accepting models that are overly parameterized and which generalize poorly.
It is clear that there is a need for some formalization of the principle that a complex
model should not automatically be preferred to a simpler model even if the simpler
model does not fit the current data set as well. This has long been recognized as
the basic buildipg block of the non-parametric regression literature. What is not
well known is that the Bayesian procedure for model comparison automatically and
quantitatively capti)res this principle. And it does so without appealing to ad hoc

penalties for model complexity.

1.2.2 The Bayesian Occam’s Razor

At the first level of inference, namely parameter estimation, the Bayesian procedure
yields a posterior distribution for the estimated parameter. If the data set is large

enough and the prior distribution on the parameter does not have a strong peak,
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this posterior distribution will be approximately Gaussian. What is more, the mean
of this Gaussian will be close to the maximum likelihood estimate (MLE) of the
parameter. The variance of the Gaussian will be roughly equal to the MLE sampling
theory variance.

In other words, the Bayesian procedure yields an estimate of the parameter in
question similar to the classical approach. All that really seems to have changed
in going from the classical to Bayesian procedure is the interpretation of the final
distribution of the parameter. This fact, unfortunately, seems to have left some
believing that the whole Bayesian approach only differs from the classical approach
by the inclusion of subjective priors.

At the second level of inference where models are compared, however, the Bayesian
procedure for model comparison turns out to be quite distinct from and perhaps more
self-consistent when compared to the classical procedure of hypothesis testing. What
is more, the Bayesian procedure naturally captures the principle of parsimony dis-
cussed earlier. This principle is often referred to as the Bayesian Occam’s Razor
(MacKay [14], Kashyap [9]). To see how it works, in what follows for the remain-
der of this subsection 1.2.2, we present a shortened version of the development in
MacKay [14].

Consider again the two levels of inference. To set our bearing, we define some
variables. Each model M; has a vector of free parameters 6. A model is defined by
its (1) parametric form (for example, the regression function and the distribution of
the error term in a regression model), (2) the prior distribution of the free parameter
4, P(8|M;), and (3) the likelihood of the data D when § is fixed P(D|M;, 6).

At the first level of inference, the model M; is assumed to be correct and we

estimate the probable value of the parameter given the data. By Bayes’ rule:

D|s, M;) P(6| M)
P(D|M;) (1)

P@|D, M) = £ (

To find the most probable value of 4, one maximizes P(8|M;, D). If the prior P(4|M;)

is relatively flat, the most probable value of 4, dpp will coincide with the MLE
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estimate of §. It can also be shown that P(§|M;, D) is approximately Gaussian
centered at dprp when the sample D is large.
At the second level of inference, we would like to compare various models and

assign probabilities to them on the basis of the data. Again, by Bayes rule:

_ P(D|M;)P(M;)  P(D|M;)P(M)
P(M;|D) = P(D) "~ ¥, P(D|M;)P(M;) (1.2)

If we like, we can assume flat priors over the various models, P(M;) = P(M;) and

simply evaluate:
_P(D|M;)  P(D|M;)
P(M\D) = P(D) — X, P(D|M;) (1.3)

Such a procedure would be analogous to maximum likelihood parameter estimation.

So to assign probabilities to the various models, all we need to do is evaluate the
quantity P(D|M;). (It should be pointed out that this is not simply the classical
likelihood function since the model does not specify the value of the free parameter

4.) The quantity P(D|M;) can be written as:
P(D|M;) = / P(D|M, §)P(5|M)ds (1.4)

Noting that the integrand P(D|M, §)P(6|M) is proportional to P(6|M, D), it is clear
that the integrand will have a strong peak at p g if the prior is not dogmatic.

Suppose the peak of the integrand, loosely speaking, has a width of A§. Then

The first term is the maximized likelihood function. The second and third piece
constitute the Occam factor which is a factor less than one and penalizes the model
M for having a free parameter. The larger A, the greater the posterior uncertainty
in 4. It measures the “posterior accessible volume” of §. On the other hand =——1——

P(6pmLEIM)
is a rough measures of the “prior accessible volume” of §. To see this, we note that

if P(6|M) is a relatively flat prior over a range of width A8, then Agé = W. So
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the Occam factor is equal to:

Ad
Occam Factor = W (1.6)

This measures the ratio of the posterior accessible volume to the prior accessible
volume of . A complex model with many parameters that are free to vary over
a large range will be penalized with a large Agd. The Occam factor also penalizes
models that have to be finely tuned to fit the data. In other words, the fact that Ad
is small, reflects the fact that only a few values of § could have fit the data that well.
Conversely, if any value of § would have done as good a job in fitting the data, the
model is probably a fairly good model. So even if the prior on § is not very precise,
if numerous values of § would have fit the data Just as well, the model will not be
punished very much. The Occam factor thus measure the complexity of the model

conditional on the data.2

1.2.3 Some Examples of Occam’s Razor in the Literature

Probably the most famous example of Occam’s factor coming into play is in Lindley’s
(10] paradox. There, a very simple model, a point null: § = 0, is compared to a very
complex model where § can take any value other than 0. As the sample becomes large,
with the ¢-statistic kept constant for the point null, the simple model is preferred more
and more by the Bayesian approach. This is because P(D|Mj;-) is kept fixed (the ¢-
statistic is a measure of P(D|Mj-4)) while the Occam factor for the complex model is
shrinking with the sample size. The Occam factor is shrinking because the posterior
accessible volume for 4 given the complex model and the data is shrinking—note that
there is no Occam factor for the simple model since it does not have a free parameter.
The Occam factor for the complex model thus falls and causes P(D|M ompiez) to drop.
Thus the relative probability of the simple model rises. This shows that the Bayesian
and classical approaches can be quite divergent even for relatively simple problems

and that the Occam factor plays a key role in that distinction.

*Further details can be found in MacKay [14].
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The Bayesian Occam factor also proved useful in analyzing the problem of regres-
sor selection. Zellner [21] shows how the Akaike information criterion can be viewed
as a first order approximation of the Bayesian prescription for regressor selection.
Gull [6], [7], Skilling [20] and MacKay [14] applied the Bayesian approach to analyze
the problem of non-parametric regression and the selection of bandwidth and basis
functions. MacKay also applied this approach in [15] to the selection of network

architectures in the context of back propagation neural networks.

1.3 The Setup for Comparing Option Pricing
Models

In this section, we layout the basic setup of an option pricing model and develop
the relevant notation.

We start with a complete filtered probability space (Q, F, {F;}, P). There is an
underlying asset s that follows an adapted process to be specified. An option y whose
underlying security is s will typically promise its holder a payment of g(sr) at time T

A model of option pricing, denoted as M, will consist of the following components:

(1) The model M specifies the dynamics for s. Typically the process for s is charac-

terized by a stochastic integral equation of the following form:
T T T
s(T) = s(To)+ | an(s,tibo)dt-+ / bua(s, t; 80)dW (8) + /| _cu(s, i 80)dNa, (1) (L7)

where under P, W(t) is a standard Wiener process and Ny, (t) is a standard Poisson
jump process with jump intensity §,. We define § = {dy,d;} Note that & is a free

parameter whose value is left unspecified.

(2) The model M specifies an option pricing formula. In a perfectly competitive,
complete information and frictionless environment, the model M specifies the price
of an option y to satisfy y(t) = f(s(t), z(t); &) where 2(t) is an F, measurable vector

variable. In the case of the Black-Scholes model, the vector z(t) would include such
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elements as the time to maturity, the risk-free interest rate and the strike price.
However, in the presence of market imperfections, such as transaction costs, bid-ask
spreads and misinformed market participants, the price of the option y(t) will deviate

from f(s(t), z(t); 6) by an error term ¢,. Thus:

y(t) = f(s(2), 2(t); ) + e (1.8)

As for the distribution of ¢, we will always restrict ¢, to have mean zero conditional
on s(t) and z(t). In our initial analysis, we will also take ¢, to be iid Gaussian with

variance o2.

(3) The model M specifies priors over the free parameters § and . This is a non-
standard element for an option pricing model. It will be necessary and informative,

however, to specify the following priors:
P(8|M) = The prior distribution of § given the Model M (1.9)

P(o|M) = The prior distribution of o given the Model M (1.10)

Our initial analysis will leave the prior over § unrestricted, but for tractability will
examine the case where the prior over o2 is an inverted Gamma distribution. If one
believes that the error term ¢, will generally be small, this can be captured in the prior
distribution for 0. This should satisfy those who believe that market imperfections

are small. This completes the model.

The data will be characterized as follows. The time series data on the underlying
security, which we will call the stock for simplicity, consists of K pairs {si, 74}, where
k=1,...,K. The price of the stock at time 7} is s;. The option price data consists of
N pairs, {yn,0,}, where n =1,..., N. The n-th pair, {y,,6,} consists of the option
price y, at time 6,. We will assume that {6,})_, is a subset of {7 }£ , so that we
know the price of the underlying security for each observation of an option price.

We define the following variables which will facilitate our discussion in the follow-
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ing sections:

= {ya})_, Option Price Data
Z = {z,}}_, Non-Price Arguments Entering the Option Formula

S = {s,Te}{.; Stock Price Time Series Data (1.11)

1.4 The Probability of a Model Given the Data

We would like to evaluate the probability of a model M; given the data Z, S, Y. Bayes’

rule can be used to yield:

P(YIMH S’ Z)P(M,IS, Z)
P(Y[S, Z)

P(M;|Z,5,Y) = (1.12)

We can rewrite this equation using the fact that the model makes no prediction on
the values of Z, which is equivalent to P(M;|S, Z) = P(M;|S). So we obtain:

P(Y|M;, S, Z)P(S|M;) P(M;)
P(Y|S,Z)P(S)

P(M1|Z1 Sv Y) = (1'13)

When we are evaluating models using the same set of data the relative likelihood
of the models will depend on the three quantities in the numerator. In order, these
quantities reflect: (1) the probability of the option prices given the model and the
quantities entering the pricing formula, (2) the likelihood of the time series data
given the model, and (3) the prior probability of the model. We will concentrate on
the first two quantities in this paper. One can take flat priors over the models, ie.
P(M;) = P(M;), if one does not have a good feeling of which model is more likely.
Once one has evaluated these three quantities for each probable model, assigning a
probability to the model is straightforward. One does not have to directly evaluate

the denominator in (1.13), but can instead evaluate the following:

P(M;|Z,8,Y) = ;i P(Y|M;, S, Z)P(S|M;)P(M;)

(1.14)
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With flat priors over the models:

P(Mi|Z,8,Y) = (1.15)

Now all we need to do is evaluate the two quantities P(Y|M;, S, Z) and P(S|M;).

This is what we do now.

1.5 Evaluating P(Y|M, S, Z)P(S|M)

Before proceeding, we will find in it convenient to define 8 = 0~%; 3 may be referred
to as the precision of the options data. The probability of Y given M, S, and Z can

be calculated as: (we leave off the subscript ¢ from M for now)

P(Y|M, S, 2)
- / / P(Y, 8,8|M, S, Z)dpds
= [ [P(Y18,6,M,5,2)P(8)6, M;, S, Z)P(8|M, S, Z)dpds  (1.16)

We now examine each quantity entering the above integral. First, note that
P(6|M,S,Z) = P(6|M,S). This is a result of the fact that Z is independent of
M, S, and 4. As a consequence:

P(S)6, M)P(5|M)
P(S|M)

P(6|M, S, Z) = P(6|M, S) = (1.17)

We next examine P (B3|, M, Z, S). We assume that é, Z, and S tell us nothing about
B. Consequently: P(S|6, M,S,Z) = P(B|M). We take our prior distribution over 3

to be a gamma distribution with parameters v and 7:

(v/2)0/3 g0/2-1) exp(—vf3/2)
T'(n/2)

P(B16, M, S, Z) = P(B|M;) = (1.18)

The remaining element of the integrand to be examined is P(Y|3,4, M, S, Z). We

assume that the error term e is a conditionally mean zero iid Gaussian. So we can
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write the following (likelihood function):

N
P(Y19,6,M,5,2) = (2n/9) P exp(~f5 3 (o — Flom 28 (119

Now define:
N

EM(Ja V) = % (Z[yn - f(Sm Zn,(S)]2 + l/) (120)

n=1

Given the above, we can write equation (1.16) as

(n/2)
PYIMS,2) = L [ [ B expl- 5B 6, 0)|P (LM, S)das

v/2)n/2) Nen_,
g | (]85 exol-ABu (5 vid8) P, 5)at
(v/2)/?)

N+ n -
= GBI 2 ) [ Bu(s,0)" ' PEIM,$)ds  (1.21)

Using (1.17), we obtain:

(v/2)/r(2)

P(Y|M,S,Z)P(S|M) = (2m) (V2T (/2)

/ En(6,v)~ " P(S|6, M) P(6|M)ds
(1.22)
The quantity P(S|é, M) is the likelihood function of the time series data S. Lo
[12] provides a general method to calculate this likelihood function which we briefly
discuss here. Following Lo, we have assumed that the model M specifies dynamics for
s(t) such that s(t) satisfies the following stochastic integral equation (this is repeated

here for clarity):
S(T) = s(To)+ / a(s,t;bo)de+ | bM(s t80)dW (0)+ [ cM(s t;60)dNs, () (1.23)

where W (t) is a standard Wiener process and Nj, (t) is a standard Poisson jump
process with jump intensity ;. Also recall we defined § = {q,d,}. The process s(t)

is a Markov process and:

K
P(S|6, M) = P(sy,71|8, M) [] P(sk, Tk|k~1, k1,6, M) (1.24)
k=2
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We will take P(sy,71|0, M) = 1 as a convenient normalization. This will not affect our
model comparisons as long as we are dealing with the same set of data across all mod-
els. Lo shows that under certain sufficient conditions py = P(sk, 7k|Sk-1, Tk—1, 6, M)

satisfies the following 1olmogorov forward equation:

0 0 1 92 |10,
E[p"] = g[aMPk] + 5@[”»//01:] — 81p + 61k E[CMI]‘ (1.25)

subject to:

pi(8,Teo1) = A(s — s¢-1) (1.26)

and any other relevant boundary conditions, where ¢p(s,t,d) = s + cum(s,¢,8) and
pr = pi(Epr.t) and A(s — sx_;) is the Dirac-delta distribution centered at s;_;. By
solving (1.25), one can subsequently evaluate P(S|§, M) via (1.24).

Once we specify a prior P(6| M), we can evaluate the integral in (1.22) numerically.
The simplest method by which to do this is to simply draw random samples of é from
the prior distribution and to average E (9, u)‘y‘;""1 across these draws. Unfortunately,
an analytic solution to this integral will not generally be feasible. 1o obtain a better
understanding of what P(Y|M, S, Z) P(S|M) captures, we will now turn to an analytic
approximation. This approximation reveals some very interesting features of what the

Bayesian method looks for in an option pricing model.

1.6 Interpreting P(Y|M, S, Z)P(S
Approximation

M) via an

Because an analytic solution is not available, an approximation to P(Y|M, S, Z)
x P(S|M) will be crucial if we are to understand what the Bayesian procedure cap-
tures. For this reason, this section is perhaps the most important. We will approxi-
mate P(Y|M, S, Z) x P(S|M) analytically in terms of two well known estimates of 4.
One can estimate 4 by using the time series stock price data. This can be obtained

by maximizing P(S|6, M) over §. We define this maximum likelihood time series
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estimate as:

bs = argmax, P (S|4, S, M) (1.27)

where the subscript S notes the fact that ds is estimated using S. The standard error

of 35 can be estimated as:

(1.28)

. _ (P InP(S|4, S, M) -
b~ 8506’

§=bs

One can also estimate § by using the “option implied” value of 8. In the case of the
Black-Scholes model, for example, one could estimate the “option implied” volatility
parameter. One can thus obtain an estimate of 4y by performing the non-linear
optimization:

N
SY = argming Z[yn — f(8n, 2n, 6)]2 (1.29)

n=1
Since we assumed that y, = f(sy, zn,0) + €, and that €, are iid Gaussian, &y will also
be the MLE estimate of § given only the options data. We will later also be interested

in the sampling theory standard error estimate for §, which can be written as:

~ ) ~ -1
V2 = 6kws (Bi(év)) (1.30)
where:
.2 1 Y A
ONLS = N Z(yn — f(sn, ZmJY)) (1.31)
n=1

To summarize the two sampling theory estimates of 4:

35 = [Estimate of § based on the Stock Time Series Data

V;s = Standard Error of 35

by = Estimate of § implied by Option Prices
Vsy = Standard Error of dy (1.32)

These sampling theory estimates will help us interpret the approximation of

P(Y|M, S, Z)P(S|M) which we derive next. It turns out that for purposes of ap-
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picximation and interpretation, it is actually easier to analyze P(Y|M, S, Z) and
P(S|M) separately.?

We analyze P(Y|M, S, Z) first using (1.21). To evaluate the integral in the last
line of (1.21), we will take a large sample approximation of P(4|S, M) and also take a
second order Taylor expansion of Ehl(é)‘izﬂ. To evaluate P(6|S, M), we take advan-
tage of a standard Bayesian large sample approximation that says that the posterior
distribution of a parameter given a sufficiently large data set is approximately Gaus-
sian (cf. Zellner [22] p.31). This Gaussian will have mean equal to the maximum
likelihood estimate of 4 when it is estimated using the time series data S. The vari-
ance of the Gaussian will approximately equal the sampling theory variance estimate
ffjs. (Of course the interpretation of the mean and variance here are very different
from the sampling theory view.) This approximation relies primarily on the sample
size (the number of observations in S) being large—it does not necessarily assume
that the prior over § is flat.

For simplicity, we consider the case where § is one dimensional. In this case, by

the preceding discussion:

. o ) )
P(6|M,S) = (27rV£_) l/2bexp(—2—‘./—s2—(6 — 65)?) (1.33)
S

where dg is the maximum likelihood estimate of & given the time series data S, and

Vj"; is the sampling theory variance estimate for the MLE estimator 4.

We approximate E (4, 60)‘%1'1 by taking its second order Taylor expansion around

~

dy.

En(®)"F = h(8) =~ hby)+ (6 - K r) + 505 — v )?h"(By)

~

= h(v) + 56~ B VR (Gy) (1.34)

3The reason for this is that it is easier to analyze P(4|S, M) rather than P(S|6, M)P(8|M).
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where the second line follows because:

N
JY = argmin,, Z[yn - f(SIH znid)]'z
n=1

= argmingE) (4, v)

= argmaxzh(é) (1.35)

So that:

-, (v/2)WAr( A ( WLITTT : 2)
P(YIM,S,2) ~ / h(Bv) + 5h"(3v)(6 - 6v)?) P(6]S, M)ds
(1.36)
Using the large sample approximation of P(6|M, S) given in (1.33), the above quantity
can be shown to equal:

(v/2) A0 (251)

P(Y|M,S,Z) ~ (27)N/2T (7/2)

h(G) + h" ) [(Br 82+ 2] (137

From the definition of h(6) and dy, we know:

h(Sy) = EM(Sy)_vai'l
W) = = (T0) BuG) By ) (1.38)

The expression for h”(dy) can be simplified by noting:
- -1
N+n N ] (1 N -
(T) Ep(dy)™ = ( N J 2) g[yn — f(8ns 2, 0y))* + v
b

— = n— f(3n)2n,0
[N +7) (N,.z;l[y Flom 2n Y)])+N+n>
_- 52 + v -

NLS N'f'ﬂ

1s) (1.39)

Q
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where the last approximation holds when X is large. Thus:

-1

- ~ - -1
WGy) ~ ~Euly) " ((Bly) ™ 3us)

= —Bu()# () (1.40)

Using the previous approximations, we can write (1.37) as:

Y

N 8 R 2
P(Y|M, S, Z) ~ ¢(N,n,v) (EM(&,))“’“ (1 _ Gy Vi, ) (1.41)

2‘/52‘( 2V52Y
where: o/ Nt
_ (v/2)Ar (51
c¢(N,nv) = 2n) VBT (7/2) (1.42)
Ntn

This approximation of P(Y|M, S, Z) has a nice interpretation. The term (EM(sy)) o
measures how well the model could fit the options data if § were free to take any value.

This follows since:

_Nig

(Em(dy))” * = max, (En(8))" "
_ NN , ~ Nt
= max; (5) (g[yn—f(sn,zn,é)] +u)
B (%)_N_;n(mi“‘né[y"‘f(sn’zn,5)12+V)__;q (1.43)

The second piece in the last large parenthesis of (1.41) reflects the tension between
the 4 implied by the time series data and the § implied by the option prices. The
larger is the difference between these two estimates, normalized by ny, the smaller
is P(Y|M, S, Z).

The third piece in the last large parenthesis also captures an Occam factor which
penalizes the model based on its complexity. By not making precise predictions before
the data arrives, the model becomes less likely. However, if the model does not need

to be finely tuned, or in other words ny is large, the penalty is lessened. The ratio
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V2

-‘n,ff- is an approximate measure of the ratio of the prior accessible volume for § after

dy
the stock data arrived but before the options data arrive, and the posterior accessible

volume for §. A model is rewarded for starting with a small prior accessible volume.
If in contrast st is large, the combination of the model and time series data do not
make very precise predictions about the option price data. If, however, many values
of § would have done as good a job fitting the data, as measured by the flatness of
the likelihood at &y or equivalently the size of ny, the penalty is lessened. We should
note that this approximation should not be used in place of the actual numerical
evaluation of P(Y|M,S, Z)P(S|M). Namely, it is possible that this approximation
of a probability might be negative.

To approximate P(S|M) we will follow MacKay [14] and rely on the previous
approximation that P(§|M, S) is nearly Gaussian with mean §s and variance VJZS .

Now we recall that for all 4:

P(S|5, M)P(5|M)

P(6|M,S) = P(SIM) (1.44)
So that by rewriting:
_ P(S]6, M)P(5|M)
P(S|M) = PIM, ) (1.45)
for all 4, so that a fortiori:
P(SlM) — P(SIJS':‘M)P(JSIM) (1.46)
P(63|M1 S)
However, by using the Gaussian approximation of P(6|M, S) given in (1.33),
P(8s|M, S) ~ (2nV2 ) (1.47)
So that:
P(S|M) = P(S|5s, M)P(8s|M) (21 V2 ) (1.48)

The first term P(S|§s, M) is the maximized likelihood function and is a measure of

how well the model could fit the data if § were free to take any value. The last two
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terms represent the Occam factor. If P(§|M) is relatively flat, W is a measure of
the prior accessible volume for §. On the other hand, st is a measure of the posterior
accessible volume for 4. Thus:
(21rV2 )3
— (1.49)
P(ds|M)
is an approximate measure of the ratio of posterior to prior accessible volume for §. If
a model specified a prior that was not very precise, in other words P(55|M ) is small,
the model is penalized. If however, many values of & other than 45 could have fit the
data just as well, as measured by the flatness of the likelihood at ds or equivalently

the size of ‘7:;25, the smaller the penalty.

1.7 Three Option Pricing Models

In this section, I briefly layout the three option pricing models that we will compare
in the next section using the Bayesian methodology: (1)the Black-Scholes model,
(2)Merton’s jump-diffusion model and (3)Cox’s constant elasticity of volatility model.
In our formulation, an option pricing model must specify three components: stock
price dynamics, an option pricing formula and a prior distribution on the relevant free
parameters. I leave the specification of the prior distribution until after we describe

the data set we will be using.

1.7.1 The Black—Scholes Model

Stock Price Dynamics: The Black-Scholes model [1], (M = BS), specifies the follow-

ing stock price dynamics under the probability measure P:
T T
s(1) = o(To) + [ puss(t)dt + | onsyaw (@) (1.50)
0 1]

where as before W(t) is a standard Wiener process. The likelihood function for the

time series data can be written:

P(SI[J,,,,O’(,,,M = BS) =
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K
P(s1,T1|tbs, 0bs, M = BS) [] P (s, Tk|Sk-1, Tk=1, Hbs, Tbs, M = BS) (1.51)
k=2

where P(sk1 Tklsk—ly Tk—11 Hbs) Obs, M= BS) equals

1 ex (_ (Yk =Y - (”bs - oza/z)ATk)z)
Sk(2mod, ATy)1/? P 202, ATy

(1.52)

and Y, = In s;.

Option Pricing Formula: In the context of pricing options with relatively short matu-
rities, people have found it convenient to assume that the spot interest rate remains
roughly constant for the remaining life of the option. All models we examine here
make this assumption. Further, we deal exclusively with European put and call op-
tions in our analysis. To simplify our exposition, we define ¢ to equal 1 if the option
is a call and —1 if it is a put. This will allow us to write down one formula for both
calls and puts.

In the Black Scholes model, the time T; price of a European option is:
(Se~dT-T)@(¢d1) — (Ke "T-T) (¢ d2) (1.53)

where d is the (constant) flow dividend rate of the underlying asset, ®(.) is the
gaussian cumulative distribution function, and:
In(S/K) + (r —d+ o2, /2)(T — Tp)

O'b,(T bt T‘o)l/2
d2 = dl — op(T — Tp)"? (1.54)

dl =

1.7.2 The Merton Jump Diffusion Model

Stock Price Dynamics: The Merton jump-diffusion model [30], (M = JD), captures

the possibility that the stock price process takes discrete jumps between times when
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the the process is evolving continuously. The specified dynamics for s are:

T T T
s(T) = s(To) + /T (3= MR)s(t)dt + /T _ cjas(t)dW (1) + /T  res(t)dNa(t)  (1.55)

where N, is a poisson process with jump intensity A and unit increments. For each
poisson event, k is distributed as an independent log-normal random variable with
mean . Specifically:

In(1 + k) ~ N(a - £€2/2,€?) (1.56)

so that & = E[k] = e* — 1. This captures the possibility that stock prices take
discontinuous jumps with a random magnitude. The rate of return on the stock is y,,
since the process —\ks(t)dt+xs(t)dN,(t) and the natural filtration form a martingale.
The likelihood function P(S|u,0,M = JD) can be written (See Rosenfeld for a

derivation):

P(S|pja, 054, A, 5, M = D) =
P(s1, T1|1jd, 0ja, A, K, M = JD)

K
X H P(Sk, Tk'Sk-l, Tk—1, Hjdy Ojd, ’\’ K, M= JD) (157)
k=2

where P(Sk, Tk|Sk—1, Tk-1, Kjd, Ojd, A, K, M = JD) equals:

x 1
P(i
jgo (]IA’AT")(27T[0'?¢AT;¢+£2j])1/23k

o? 2, . 2
(e = Yoot = (wia = 235 = F)Am - (@ - §)

x exp(— ) (1.58)

where Y, = In s, and: _
e AT (/\ATk)J

P(JlAv ATk) = j'

(1.59)

Option Pricing Formula: In the Merton jump—diffusion model, the time 7T price of a
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European option {,' = 1 for call ¢ = —1 for put) maturing at time T is:

e~T(T=To) i P(n))\, T - Ty) (C.S'e”"('r"r“)d)(Cdln) - (Ktb((d?n))
n=0

where d is the flow dividend rate of the underlying asset and:

In(S/K) + ba(T — Ty) + (o*(T - Ty) + n€?)/2
(a"’(T _ To) + n£2)'/2
d2, = dl, - (0*(T ~ Tp) + ng?)/?

dl,

b, = r~d— A& +nlin(l + &)

1.7.3 The Cox CEV Model

(1.60)

(1.61)

Stock Price Dynamics: The Cox constant elasticity of volatility model (3], M =

CFEV, captures the possibility that volatility will decrease (increase) by a constant

percentage as the asset price increases by a percent. Cox’s uriginal model captures the

possibility of a negative relationship between asset prices and volatility while Emanuel

and MacBeth (4] considered the reverse situation. We incorporate both possibilities

below. The specified dynamics are:
T T /24
s(T) = s(Ty) + /T | Hoeus(t)dt + /T  Gueus(t)2dW (1)
The likelihood function P(S|thcevs Ocen, v, M = CEV) can be written:

P(S,/-Lccm Ocevy Y, M = CEV) =
P(s1,m [Kcev, Ocev, Y, M = CEV)

K
X I Pk, Telsk-1, T, ttees Ocen, 7, M = CEV)
k=2

where P(sy, 7|81, Tk—1; Hcevs Tcen, Y, M = CEV) equals:

|2 - 7|’C1/(2—7) (zwl"27) l/(4_27)e_z_w11/|2_.7| (2\/1%)
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where I,(.) is the modified Bessel function of the first kind of order ¢ and:

K = 2heey
02y (2 — 7)[epeer@=MAT — 1]
Tz = K(sk-l)z—ve"""(z_.’)AT"
w = K(si_,)*" (1.65)

Option Pricing Formula: In the Cox CEV model, the time Ty price of a European

option (¢ =1 for call { = —1 for put) maturing at time 7 is:

(Se~4T-To) (12;C + CQl) — (KeT(T-To) (l;_( - CQz) (1.66)

where d is the flow dividend rate of the asset, and for the case vy < 2:

Qi = Q(2y;2+2/(2-7),21)
Q: = Q(2z;2/(2-1),2y) (1.67)

where Q() is the complementary non-central chi-squared distribution function? where:
y=KK?*>™ (1.68)
For the case v > 2:

Ql = Q(2.’B, 2/(7 - 2): 2y)
Q2 Q(2y,2+2/(v - 2),22) (1.69)

For the case, v = 2, this model reduces to the Black Schol :s model.

4See Schroder [19] for a derivation and efficient computational algorithm of this distribution. He
also presents an approximation which is very accurate for the range where the exact technique is
slow to converge. The approximation is that developed by Sankaran [18]. This approximation is
also very useful and extremely accurate for computing the transition density when the time between
observations is small and when v is close to 2.
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1.8 Data Source

I demonstrate the Bayesian methodology of selecting option pricing models using
data on foreign exchahge options traded on the Philadelphia Stock Exchange. I
consider the three option pricing models laid out in the previous section; namely,
the Black-Scholes model, Cox’s constant elasticity of volatility model and Merton'’s
jump-diffusion model. I lay out the data source here in this section and then discuss
the formulation of priors in the next section. The section after the next one will
summarize the empirical results.

The options data that I use are on European style Deutschemark put and call
options that were traded between January and February of 1993. There are 1817
observations of option trades during this time: 1097 puts and 720 calls. The options
are traded 24 hours a day during weekdays, but are not traded over the weekend.
Listed with each option is the time of the trade (up to the minute), the Telerate
quote of the underlying currency (DM) at the time of the trade, the strike price of
the o‘btjion and the maturity of the option.3

Summary statistics of moneyness and term to maturity are reported in Table 1.1
on page 39 and Table 1.2 on page 39.‘ One sees that puts were more heavily traded
during this period and that most of the options traded were either at the money
or out of the money. This is typical since deep in the money options are relatively

expensive.

1.9 Priors Over Parameters

One must put priors over the various parameters specified in a model. In particular,
one must specify P(6|M;) and P((|M;) where we recall that § is the vector of param-
eters that specify the dynamics of the underlying process and f is the “precision” of

the options data. Of course one could simply specify any distribution for the priors

5The U.S. interest rate is determined by finding the T-Bill rate with the maturity closest to

~ that of the option while the U.S.-German interest rate differential is set to the differential in the

Eurocurrency market.
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Table 1.1: Moneyness of Puts and Calls

S/K | < 0.90 | 0.90-0.94 | 0.94-0.98 | 0.98-1.02 | 1.02-1.06 | 1.06-1.10 | > 1.10
puts 9 30 178 540 281 52 7
1007 | %) | (%) | (16%) | (49%) | (26%) | (%) | (%)
calls | 10 67 208 354 55 19 7
I] 720 | %) | (9%) | (28%) | (49%) | (8%) (3% | (1%)

The ratio S/ K is reported separately for puts and calls with the percentage of puts or calls belonging

to each range reported underneath.

Table 1.2: Term to Maturity of Puts and Calls

{| Months to Maturity | 0-1 1-2 | 23 [ 45 | 56 6+
puts 394 241 133 47 134 138
" 1097 (36%) | (22%) | (12%) | (4%) | (12%) | (13%)
calls 314 180 51 29 78 68
[l720 (44%) | (25%) | ("%) | (4%) | (11%) | (9%)

The term to maturity is reported separately for puts and calls with the percentage of puts or calls

in each range reported below.
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at this point and simply argue that these are their subjective beliefs. I will in this
section present priors that I believe are realistic for each model, but at the same time

try to specify priors for each model that are in some way comparable to each other.

1.9.1 Prior over the precision of the options data

We have already assumed in our earlier development that 8 has a gamma distribution
with parameters v and 7. The notion that the observed trade price deviates from
the “true” theoretical price comes from a belief that market imperfections cause the
trade to take place at prices deviating slightly from the true value. We assume that
the models do not differ in their assessment of the sizes of such market imperfections.
This will allow us to assume one set of ¥ and 7 for all models. As long as these
priors are not too dogmatic, the resulting probability of a model will not be strongly
influence by slight changes in the priors. To nail down a reasonable prior, note that
because the error term is additive, we must have some idea of the scale in which option
prices are quoted. A typical option is quoted in the range of 1 dollar. A deep in the
money option can trade as high as 10 dollars, and out of the moneys can trade as low
as a few cents. It seems reasonable to assume that a typical mispricing will be on the
order of magnitude of about 5 to 40 cents. As shown in Hamilton (p.355-357), if one
starts with a diffuse prior and observes one mispricing of 10 cents, then the posterior
would yield a 7 = 1 corresponding to the number of observations and a v = 0.01
(dollars squared) corresponding to the sum of squared residuals of the sample. We
display the plot of the distribution this implies for the regression standard error areg
in Figure 1-1 on page 41. If one thinks of this prior as coming from one cbservation,
one quickly sees that this distribution is not dogmatic at all-i.e. not based a large

previous sample.

1.9.2 Prior over the drift

In stating priors over the parameters relating to the underlying price dynamics P(6|M;),

we will state our priors so that the mean and variance of the process are at least com-
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Prior for Regression Standard Error

Figure 1-1: Prior for Regression Standard Error

parable. In fact, we will take the distribution of x to be the same across all models

and independent of the other parameters. The distribution for x for all models is:

p ~ Tx(pt, o, pin) (1.70)

where Tr(l,m, h) denotes a distribution that has a triangular density function such
that the support of the distribution is [/, k] and the peak of the density is at m. See
Figure 1-2 on page 42. This density will be very useful because it has a finite support,
is easy to picture mentally and easy to simulate draws from. We take pu,, to equal the
interest differential between the two countries at the beginning of the sample period,
rdS — r§ER which in our sample is -0.0561. This is motivated by the theoretical
notion of uncovered interest parity. At the same time, the empirical evidence on
uncovered interest parity does not support the theory very well so we let the support
of the distribution to be fairly wide. For our benchmark, we take y; = p,, —0.07 and

th = pm + 0.07.

41



Figure 1-2: Triangular Density

1.9.3 Prior over the Black—Scholes parameter

The only parameter in the Black-Scholes model for which we have not yet specified

a prior is the diffusion volatility parameter o,,. As a benchmark, we take:
ovs|(M = BS) ~ Tr(0.08,0.14, 0.20) (1.71)

This volatility is representative of the volatility estimates found in historical data by
Jorion [19] and also in Baily and Kropywiansky. Baily and Kropywiansky found that
volatility in any given month from 1984 to 1992 always fell in this range and that

extremely high or low volatility in this range was fairly rare.

1.9.4 Prior over the Jump-Diffusion parameters

Defining:
Vhump = Al(In(1 + ) - £2/2)? + €2, (1.72)

the variance of In(S;,+1/S;), given that the underlying dynamics are given by a jump-

diffusion process can be written as:

v’T = {0 + "jzump}T (1.73)
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So the instantaneous standard deviation of the returns process is given by v. To make
the prior for the jump-diffusion model comparable to the Black-Scholes prior, we will
impose the same prior on v in the jump-diffusion model as we imposed on ¢ in the

Black—Scholes model. Thus we take:

v|(M = JD) ~ Tx(0.08,0.14, 0.20) (1.74)

Now that we have imposed the above prior on v, the full distribution I will use can be
most easily stated by giving the following algorithm for drawing a sample set of pa-
rameters from this prior distribution. We will first draw v from the above specification

and then draw A, ¥ and £ from three independent triangular distributions.

A ~ Tr(0.1,1,5)
K ~ Tr(-0.05,0,0.05)
~ Tr(0,0.01,0.025) (1.75)

v

If the following condition

Vump/?” < 04 (1.76)

is satisfied, we will keep the observation. If, however, the condition is not satisfied we
will draw another set in the same way and keep repeating this procedure until a set of
parameters satisfies this criteria. This will ensure that the variance due to the jump
component is less than 40% of the total variance of the process. This is imposed so
that we do not end up with a process that is almost a pure jump process with very

little diffusion component. Once an acceptable set is found, 0j4 1s set so that:

v = ”jzump + 0%y (1.77)

This prior ensures that the final distribution for v is the same as for o in the Black—
Scholes model while also allowing for a fairly straightforward interpretation of the

prior over the other parameters. In this prior, there will be a negative correlation
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between each of A, &, £, and o0;4. For example, when the probability of a jump X is

high, it is less likely for the jump to be big: % and £ will be small.

1.9.5 Prior over the CEV parameters

The pure diffusion part of the CEV process can be written:
OcewS72AW = VO Lcey(S,)S:dW (1.78)

where VOL,.,(S;) is the instantaneous volatility of the returns process when the stock

price equals s and can be written:
VOLceo(St) = 0cenS7/*! (1.79)

To match the prior for the CEV model with that for the Black-Scholes model, I take
the prior over VOL,,(Sp) to be the same as the prior over o, in the Black-Scholes
model.

To complete the prior, I will specify priors over 4. This in combination with the
above will generate a joint prior over § and . The elasticity of the returns volatility

is equal to:
OV OLey(St) St _
85,  VOL.(5) 127! (181

So that v = 0 corresponds to an elasticity of —1 while v = 4 corresponds to an
elasticity of 1. I will take as a benchmark a triangular prior density over the elasticity
with support from —1 to 1 and a peak at 0. This is equivalent to the following

triangular prior density over «:

v ~ Tr(0,2, 4) (1.82)
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1.10 Empirical Results

Cnce we have specified our priors for the various parameters in the different models,
we are ready to impute probabilities to each of the models based on a given data set.
Before proceeding, however, it is worthwhile to step back and examine the general

set up we have given for comparing option pricing models.

1.10.1 A helpful perspective to interpret the results

An option pricing model essentially is composed of tv’o components. First it specifies
the dynamics for the underlying asset. Second, it specifies an option pricing formula.
Although we have stated that cne should consider both these specifications in ana-
lyzing an option pricing model, it is informative to consider what would happen if an
option pricing model only specified one or the other. For each model, we can spec-
ify a “time series only” version or an “option pricing only” version. We will denote
the version of the model that specifies only the dynamics of the underlying asset by
superscripting the model with ‘TS’. For example, the version of the Black-Scholes
model that specifies only the underlying asset dynamics will be referred to as BST®
while a generic time series model will be referred to as MT5. The version that speci-
fies only the option pricing will be superscripted with ‘OP’-i.e. BS°F or MPF. The
full model that specifies both time series dynamics for the underlying as well as the
option pricing function will be referred to without any subscript-i.e. BS or M;. We
will assume that the “time series only” model and the “option pricing only” model
agree with the complete model on the specification of priors for the parameters in the
models.

We assume that of the ‘time series only’ models, one of our specified models BSTS,
JDTS or CEVTS is the correct model. Similarly, of the ‘option pricing only’ models
we assume that one of the ones we specified BSOF, JDOP or CEVOP is the correct
model. As before, we also assume that of the complete models we specify BS, JD
or CEV is the correct model. Although we could easily allow for different prior

probabilities of the models being correct, we will for simplicity assume that within
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each class of models, each one is equally likely. Thus the probability of any model
being true a priori is 1/3.

Given the above assumption and by using Bayes rule, one can show that:

P(S|MT5)
P(MF5)8,Y,2) = : 1.83
(MISY. 2) = 52 p(simT™) (159
d that:
e P(Y|MPP, 8, Z)
P(MPF|8,Y,Z) = e (1.84)

S P(YIMPP, S, Z)
As show in Section 1.4, one can calculate the probability of a complete model being
the correct one using:

P(Y|M;, S, Z)P(S|M;)

P Mi Z,S,Y =
(MiIZ,S,Y) = S5 By im;, 5, 2) P(SIMy)

(1.85)

It should be noted that although P(S|MTS) = P(S|M;), in general it will be the case
that P(Y|MPF, S, Z) # P(Y|M;, S, Z). This is because:

P(Y|MPP,8,2) = / P(Y|MPP, S, Z,6)P(6|M°", S, Z)ds
- / P(Y|MPP, S, Z,5)P(6|MPF)dé
= / P(Y|M;, S, Z,8)P(6| My)ds (1.86)

due to the fact M2F makes no predictions on the value of S. On the other hand,
P(Y|M;, S, Z) = / P(Y|M;, S, Z,6)P(6|M;, S)d§ (1.87)

Where P(6|M;, S) is the posterior distribution of § given the time series data. In
words, P(Y|MPP, S, Z) averages the likelihood function over the prior density for 4
while P(Y|M;, S, Z) averages the likelihood over the posterior for § given the time
series data. So while P(Y|MPP, S, Z) compares how well the options data fits with the
prior beliefs, P(Y|M;, S, Z) compares how well the options data agrees with the time

series data on the underlying process. This was shown through the approximations
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developed in Section 1.6.

So in summary, for each model we have four interesting quantities to exam-
ine. P(S|MTS) examines how well the time series data fits with the model while
P(Y|MPPF, S, Z) measures how well the options data fits with the model. P(Y|M;, S, Z)
measures how well the time series data agrees with the options data in the context
of the given model while P(Y|M;, S, Z) x P(S|M;) measures how well both the time

series and options data taken together fit with the given model.

1.10.2 Results

The method to calculate the relevant quantities above is given in Section 1.5. Table 1.3
on page 51 reports the results of the Bayesian model comparison procedure on the
January to February 1993 DM options data set discussed in Section 1.8 using the
benchmark set of priors that I specified. I report the results of comparing models
based on the time series data, options data and then both. I also report P(Y|M;, S, Z)
for each model. This quantity cannot really be used to compare option pricing models,
but as pointed out above, is an informative number since it tells us the degree of

agreement between the options and time series data. This quantity is very easy to

'

compute since it is simply the quotient of P(Y|M;, S, Z) xP(S|M;) and P(S|M;),
and since P(S|M;) = P(S|MTS) one has all the relevant quantities already. Because
P(Y|MP*F,S, Z), P(S\MFS), P(Y|M;,S,Z) and P(Y|M;, S, Z) x P(S|M;) can all be
very large, I report the logs of these quantities in the table. The basic result is
that based on the time series data alone, the jump—diffusion model is the most likely
model, while based on the options data alone the CEV model is the most likely. If
one however considers both the time series and options data together, the conclusion
is that the jump-diffusion model is the most likely model. It is informative to see
that when we use the complete model specification, the jump diffusion model does
not simply win out because it fit the time series data better. Based on P(Y|M;, S, Z),
which as pointed out before reflects the degree of agreement between the time series
and options data in the context of model M;, we see that the option price data agrees

better with the time series data in the context of the jump-diffusion model. Thus,
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the jump—diffusion model wins on both counts. It yields a higher P(S|M;) as well as
a higher P(Y|M,, S, Z).

If one were simply interested in finding a model that gave the right price for the
option, the CEV model may be sufficient. However, for the purposes of hedging it is
important to not only have the correct pricing function, but also the correct dynamics.
For this purpose, we find that the jump-diffusion model is perhaps the best model.

To see the effect of alternative priors, I report the results of the Bayesian model
comparison procedure for different sets of priors. We will see that the above results
are very robust to changes in the prior distributions. First, I examine the effect of
specifying an alternative prior over the drift. Although our prior over the drift is
identical across models, as pointed out by Lo and Wang [13], the specification of
the drift can significantly affect the estimate of the diffusion (and jump) component.5
Since the specification of the stochastic component is different across our models, this
is a potentially important consideration. We take a prior over the drift which is more
diffuse than the original. Specifically, we specify our alternative prior over u to be
uniform on p,, — 0.14 and u,, + 0.14 where as before p,, is the U.S-German interest
differential at the beginning of the sample -0.0561. This is in contrast to our previous
prior for u which was a triangular distribution centered at y,, with support from pu,,
-0.07 to pu +0.07. The results are given in Table 1.4 on page 51. The results as to
which model is the most likely, are unchanged.

Since the volatility is perhaps the most important aspect of the process for option
pricing, it is interesting to see the effect of starting with a prior that is less informative
on its value. I specify an alternative prior on volatility that is uniform on 0.04 to 0.24.
This is in contrast to the benchmark prior which was triangular with support 0.08 to
0.20 and a peak at 0.14. It is straightforward to specify te priors this implies for the
Black-Scholes model. I use the same method as before in specifying the parameter
values for the CEV and Jump-Diffusion based on this prior for volatility. The results

are reported in Table 1.5 on page 52. Again, one sees that the results as to which

%Lo and Wang’s key consideration is the issue of predictability which is not addressed in our
setup.
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model is the most likely, are unchanged.

It is also informative to examine the effect of specifying different priors for the
parameters of the CEV and jump diffusion process. First we examine what happens
when we allow a greater fraction of the jump-diffusion volatility to come from the
jump component in the Merton model. Previously, we had allowed a maximum of
40% of the volatility to come the jump component. We increase this number to 60%.
We also examine the effect of making the prior over the elasticity parameter in the
CEV model more diffuse. Specifically, we take a prior over + that is uniform, instead
of triangular, on the domain 0 to 4. This is the same support as before, but we now
express less certainty in the notion that this distribution of v is concentrated near 2-
an elasticity of 0. I report these two models along with the benchmark Black-Scholes
model in Table 1.6 on page 52. The ranking of these models are not changed. Even
if one were to compare each of the models with the modified prior against the two

other models with their benchmark prior, the results would not change.

1.11 Conclusion

This paper developed a Bayesian framework for comparing option pricing models
based on historical data on the time series of the underlying asset as well as the the
options data. The general method of the procedure was first developed. Next, to
obtain an intuitive feel for the factors at play, I developed an approximation to the
relevant quantities and interpreted the Bayesian method using those approximations.
As an application, I applied the Bayesian procedure to PHLX traded foreign exchange
options to compare the Black-Scholes model, Merton’s jump-diffusion model, and
Cox’s CEV model. I found that the jump-diffusion model was the most probable
model based on the time series data while the based solely on the options data, the
CEV model was the most probable. When one uses both the time series and option
pricing implication of the models, the jump-diffusion model is the most likely model
based on the data. We also showed that the success of the jump-diffusion model lay

not only in how well it fit the time series data, but also in how well the time series
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data agreed with the options data in the jump—diffusion context.
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Table 1.3: Benchmark: Probability of Model based on (a) time series only, (b)
options only (c) both time series and options.

BS JD CEV

Time Series Only | Probability 0.00 1.00 0.00
log P(S|M; ") 2093.84 | 2120.93 | 2093.74

Options Only Probability 0.00 0.00 1.00
log P(Y|MP¥,S,2) 959.08 | 958.77 | 964.25

(i [log P(Y|M;, S, Z) | 715.35 | 823.72 | 720.91 |
Complete Model | Probability 0.00 1.00 0.00
log P(Y|M;, S, Z)P(S|M;) | 2809.19 | 2944.65 | 2814.65

The probability of a model given the 1993 DM options data collected from the PHLX. The log of

the averaged likelihood is given underneath.

Table 1.4: Flatter Prior over Drift: Probability of Model based on (a) time series

only,(b) options only (c) both time series and options.

BS JD CEV

Time Series Only | Probability 0.00 1.00 0.00
log P(S|MT®) 2093.83 | 2120.92 | 2003.72

Options Only Probability 0.00 0.00 1.00
log P(Y|MP", S, Z) 959.08 | 958.77 | 964.25

I lOg P(YlMH S: Z)

[ 715.33 | 823.74 | 720.91 |

Complete Model

Probability

0.00

1.00

0.00

2809.16

2944.66

2814.63

Given a flatter prior over u, the probability of a model given the 1993 DM options data collected
from the PHLX. The log of the averaged likelihood is given underneath.
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Table 1.5: Flatter Prior over the Volatility: Probability of Model based on (a)
time series only,(b) options only (c) both time series and options.

BS JD CEV
Time Series Only | Probability 0.00 1.00 0.00
log P(S|M/ ") 2094.35 | 2121.15 | 2094.33
Options Only Probability 0.00 0.00 1.00
log P(Y[MP7, 3, Z) 958.05 | 957.72 | 963.18
Il [ log P(Y|M;, S, Z) | 713.78 | 821.66 | 719.54 ||
Complete Model | Probability 0.00 1.00 0.00
| log P(Y|M;, S, Z)P(S|M;) | 2808.13 | 2942.81 | 2813.87

Given a flatter prior over the instantaneous volatility, the probability of a model given the 1993 DM
options data collected from the PHLX. The log of the averaged likelihood is given underneath.

Table 1.6: Model Specific Changes:Probability of Model based on (a) time series
only,(b) options only (c) both time series and options.

BS JD CEV

Time Series Only | Probability 0.00 1.00 0.00
log P(S|M/") 2093.84 | 2121.22 | 2093.79

Options Only Probability 0.00 0.00 1.00
log P(Y|MP", S, Z) 959.08 | 958.65 | 964.32

( [ log P(Y|M;, S, 2) | 715.35 | 823.89 | 721.18 |

Complete Model | Probability 0.00 1.00 0.00

log P(Y|M;, S, Z)P(S|M;) | 2809.19 | 2945.11 | 2814.97

I specify a flatter prior over the CEV elasticity of volatility parameter and allow the JD model
to have a greater proportion of the volatility come from jumps while keeping the BS model at its
benchmark prior. The above is the probability of a model given the 1993 DM options data collected
from the PHLX. The log of the averaged likelihood is given underneath.
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Chapter 2

Determinants of Foreign Exchange
Jump Expectations:

Evidence From Option Prices
(with L. Kropywiansky)

2.1 Introduction

Traders have claimed that the strategy of borrowing money from a low interest rate
country’s bank account and putting that money into a bank account of a high interest
rate country will yield a modest profit during most periods, but that once in a while
the high yield currency will crash and wipe out years worth of profits from this
otherwise seemingly profitable strategy. They point out that many exchange traders
in the past have actually followed this simple strategy and have been profitable in
the short run, bnt that eventually many were stung by a collapse in the high yield
currency to the point that they were forced to close out their position. Many traders
have come to believe that the high yield currency is susceptible to sudden major
devaluations. Some have characterized the higher interest rate in a country as simply
a currency crash premium demanded by investors. Traders say that whether or not

this strategy is profitable in the long run is still an open question.!

1These views were related to Walter Baily during extensive discussions with numerous traders
and researchers at the New York and Tokyo offices of Goldman Sachs, Merrill Lyncli and Salomon
Brothers as well as the Salomon Brothers Hong Kong office.
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Researchers starting with Krasker [21], Mussa [31] and Rogoff [33] have formally
argued that this type of exchange rate dynamic makes it very difficult to test whether
or not such a strategy makes money on average. Their arguments have been couched
in terms of what is called the uncovered interest parity hypothesis, but i essentially
equivalent to the question of whether the above strategy makes money on average.
Uncovered interest parity simply states that if investors are risk neutral and have
rational expectations, a foreign currency must on average depreciate (appreciate) by
the amount that the foreign interest rate exceeds (is less than) the domestic interest
rate. To see this, note that if a U.S. investor bought a dollar worth of Deutschemarks
and invested it into a German bank account for a month, converting the total amount
back into dollars at the end of the month, the return on the strategy would simply
be the return on the Deutschemark over the month plus the interest accrued on the
German bank account. Under risk neutrality, the expected return on this strategy
must be equal to the U.S. interest rate. Or put differently, the expected return on
the Deutschemark must simply be equal to the U.S. interest rate minus the German
interest rate.

But if, as traders claim, it is the case that the majority of the expected depreciation
in the high yield currency happens only in the form of rare but large crashes, over
short horizons it is very likely that the currency will appear to not satisfy uncovered
interest parity. If the bulk of the exchange rate movement is expected to come in
the form of jumps, the tests become extremely sensitive to whether or not a jump
occurred in the sample. The interest differential could appear over short horizons
not to explain the expected return of the exchange rate. Even more deceptive is the
fact that because any test conducted where no jumps occurred in the sample would
underestimate the volatility of the process, the tests of uncovered interest parity could
mistakenly reject the hypothesis even when it is true.

This type of problem is commonly referred to as the peso problem and is quite
general in theory. It could arise in empirical tests of stock pricing or the interest rate

term structure.? However, because exchange rates seem to be particularly susceptible

ZReitz [32] suggests that rare but catastrophic falls in aggregate consumption could explain the
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to occasional large jumps, peso problems are most likely to arise in the context of
international asset pricing models. The term “peso problem” has its roots in a puzzle
that lasted for over 20 years from April 1954 to August 1976 when the Mexican
interest rate was higher than the U.S. rate despite a fixed exchange rate of 0.080
dollars per peso over the entire period. One could seemingly make a pure arbitrage
profit by borrowing money in the U.S. and lending to banks in Mexico. The puzzle
can be resolved by noting that speculators may have been expecting the possibility
of a collapse of the peso which finally occurred on August 31, 1976 when the Mexican
government formally let the peso float. In other words, the higher interest rate in
Mexico could simply have been a crash premium to compensate holders of Mexican
bonds. The peso initially fell from 0.080 to 0.050 dollars per peso before finally
settling down to a small range around 0.044 dollars per peso by March 1977.3

Peso problems may be just as likely to occur under floating exchange rate regimes
as they are under fixed rates. It has long been speculated that floating exchange rates,
like other assets, may be subject to “bubbles” which persist for some time before
eventually bursting. It is also true that the post-1970’s regime of floating is best
characterized as a “dirty float,” in which exchange markets are subject to occasional
large interventions by national governments. Thus, it is a priori plausible that either
bubbles or expected interventions could give rise to expectations of exchange rate
jumps.* During 1980-85, the dollar appreciated an average of 33% against each of
the major currencies despite higher interest rates in the U.S. The dollar’s rise was
reversed in the fall of 1985 when the G-7 countries staged a coordinated open market
operation. It is plausible that the higher interest rate in the U.S. prior to 1985 reflected
the market’s expectation that the dollar’s rise would eventually be reversed, either of

its own accord or through intervention.> More recently, there has been speculation of

equity premium in stock returns. Lewis [23] gives a discussion of peso problems and the term
structure while [25] gives a general discussion of peso problems in a variety of markets.

3Lizondo [27] gives a detailed account of the behavior of the forward discount before the Mexican
devaluation.

4Note that bubbles and interventions need not be mutually exclusive events. The so-called “dollar
problem” of the 1980’s could be interpreted as a bubble which was eliminated by intervention.

5See Froot and Thaler [17]
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a peso problem in the Deutschemark. Some believe that the Bundesbank’s current
high interest rate policy is not sustainable and it will eventually lower interest rates
to stimulate the German economy and thereby send the Deutschemark tumbling.®
Traders have also been eyeing the Thai baht for a few years now as a high yield
currency play that could have disastrous consequences.’

The anecdotal evidence on the existence of occasional large jumps in foreign ex-
change markets is confirmed by the formal empirical analyses of Jorion [19], Akgiray
and Booth [1], and Tucker and Pond [34]. These studies find that a jump-diffusion
model dominates various forms of the pure diffusion model in explaining the behavior
of the major trading currencies during the post-1974 floating rate period.® There is
also an empirical option pricing literature which provides further evidence that jumps
are important in currency markets. For example, Bodurtha and Courtadon [10] find
that the simple Black-Scholes option pricing formula makes systematic errors when
used to price out-of-the-money foreign exchange options, and that those errors are
consistent with the market expectations of large jumps. In a series of papers, Bates[4],
(5],(6] and [7] shows that options prices can be used to uncover market expectations
of jumps and that such expectations are significant for the dollar-DM exchange rate
in his sample of 1984-1987.°

In this paper we use option prices to uncover the Dollar-Deutschemark and Dollar-
Yen jump expectations of market participants for the sample period of 1984 to 1993
and examine whether the high yield currency was in fact susceptible to crashes as

claimed by traders. Although it has long been claimed that jump fears are present

8See for example Dornbusch(12).

TA view held by a trader at Salomon Brothers’ Hong Kong office.

8Jorion’s result holds even when he allows for conditional heteroskedasticity in the diffusion
process. Akgiray and Booth and Tucker and Pond compare the jump-diffusion model to mixture-
of-normals and stable Paretian models.

®In (4], (5], Bates shows that there was significant downward skewness in the dollar-DM exchange
rate during the “dollar problem” prior to 1986, and that this skewness is consistent with the presence
of jump expectations. In a later paper [7], he estimates the parameters of a jump-diffusion process
with stochastic volatility under the assumption that the parameters stay fixed over his entire 1984-
1991 sample. In a recently received working paper[8], he examines a longer time series for the DM
and yen. In [6], he examines the behavior of options on S&P 500 futures during the time leading up
to the '87 crash and concludes that the crash was expected.
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in the high yield currency, there has been very little evidence to back up this claim.
We follow Bates and take advantage of the fact that since option prices reflect the
market’s belief of the underlying asset’s distribution, one can use observed options
prices to recover the market’s expectation of a crash in foreign exchange markets. We
use a modified version of Merton’s jump-diffusion option pricing formula as a filter
to elicit the market’s expectation of the size, direction, and probability of a jump in
a currency. This is much like using Black-Scholes implied volatility as a filter of the
market’s belief of the underlying volatility.

We confirm in the case of the Dollar-Deutschemark rate the claim made by traders
and the story forwarded by many proponents of the peso problem that the high
yield currency is susceptible to craskes. In the case of the Deutschemark versus the
dollar, a one percent decrease in the U.S.-German interest differential increases the
expected depreciation in the Deutschemark due to jumps by rough'y 0.18 percent.
We, however, do not find support for the hypothesis in the case of the Dollar-Yen rate.
We find that there were substantial fears of jump depreciation of the dollar versus the
Deutschemark and the yen in the 1984-1989 period. In the 1989-1993 period, there
are many more months where substantial dollar jump appreciations were expected
against the Deutschemark than jump depreciations. The dollar exhibits expected
jump appreciation against the yen from 1989 to early 1991 while during mid 1991 to
mid 1992 there are dollar jump depreciations expected against the yen.!® We also
examine whether option implied jump expectations can predict actual jumps. We
find that jump expectations do seem to predict jumps if only weakly. We further
investigated whether jump expectations can be explained by fundamental economic
forces such as purchasing power parity and the trade balance. We find evidence that
when the currency is trading far away from purchasing power parity (PPP), there
is a tendency for traders to think that there will be a jump of the currency in the
direction toward PPP levels. We find that the trade balance has very little power in

explaining jump beliefs.

10After mid-1992, trading in yen options decreased dramatically and leaves many months with
insufficient observations.

99



The paper is organized as follows. Section 2.2 discusses the data, the option
pricing methodology and the statistical method used to invert for the jump-diffusion
parameters. Although the inversion process is straightforward in theory, there are
many computational problems that had to be tackled. These are discussed in Section
2.3. Section 2.4 presents the estimated jump-diffusion parameters and conducts some
robustness checks. Section 2.5 checks whether option implied jump expectations
can predict actual jumps. Section 2.6 examines the relationship between the jump

expectations, purchasing power parity and the trade balance. Section 2.7 concludes.

2.2 Data, Pricing and Statistical Issues

The options data used are from the Philadelphia Stock Exchange (PHLX) and
consist of transactions data on foreign currency options traded between January 1984
and December 1993. PHLX currency options are written on the underlying cash
market on the respective foreign currency—not the futures market as is the case in
the Chicago markets. Each observation consists of the price paid for the option, the
Telerate spot exchange rate at the time of the transaction, and the term to maturity
and strike price of the option. The options data for June through November of 1985
cannot be used due to severe errors in reporting during that period.

To invert for jump-diffusion parameters, we will need to specify an option pricing
formula that is used by the market to price options in the presence of jumps. For
this purpose, we take a behavioral view of the way that options are priced in the
market. Ultimately, we will use the option pricing formula as a filter to back out
market expectations. To obtain such an option pricing formula, we will first need
to specify the dynamics of the underlying process that the derivative traders believe
the exchange rate follows in a continuous time setting. We assume options traders in

pricing options take the exchange rate to follow the process given below between now
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and the time the option expires:

% — (= Aldt + odz(t) + rdg(t) (21)

where 2(t) is a Wiener process and g(t) is a poisson process with jump intensity A
and where k is a non-stochastic jump size. We assume traders input their current
belief of A, k, and o when pricing opticns. The instantaneous expected rate of return
of this process will be p. Conditional on no jumps occurring however, the expected
rate of return will be p — Ax. To price the option, we follow Merton[30] and assume
that the jump risk is not priced—-i.e. that it can be diversified away.

Because the majority of currency option transactions on the PHLX are of Amer-
ican style options (96% of the Deutschemark option transactions are American—
almost all transactions were American prior to 1991), we chose to work with the
American options in order that we do not run out of observations in many of the
years prior to 1991. A drawback of using American options is that there exists no
analytic closed form formula for the price of an American option. One must either
use a finite difference backward marching scheme or rely on an analytic approxima-
tion of the American option price. Because the non-linear least squares regression
we use to invert the options prices is an iterative method, relying on finite difference
methods would make the whole procedure prohibitively time consuming. Instead, we
rely on an analytic approximation proposed by Bates [6] which extends the work of
Barone-Adesi and Whaley [3] and MacMillan [29] to the case where the underlying
price process follows a jump-diffusion process.

As pointed out by Bates [7], theoretical pricing of PHLX options must also take
account of delivery lags. According to PHLX contractual agreements, an American
option is settled in 5 days after expiration and 7 days (5 business days) after early

exercise. Given these contractual specifications and the process described above, one
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can arrive at the following approximation to the American put or call price:

Ve(pe) + (£)" [pe- (™8 — e™K) — Ug(po)] if S < 5°

(2.2)
pc- (e"'“S‘ - e‘"zK) if S > 8

Ya(pc) = {
where pc takes the value 1 if the option is a call and —1 if it is a put, S is the value of
the underlying exchange rate, K is the strike price, 7, is the delivery lag after early
exercise, and S* is the level of the exchange rate at which it is optimal to exercise

early and hence satisfies the following equation:!!
S* = argmax EAY [ C - (e""T’S" - e'"’I\’) - Ug( c)] (2.3)
- gmaxg. S,. D E\D .

while the parameter of curvature g satisfies:

1
%a2q2 +(r—r"— 502 — Ak)q —

T
1—e7

+AM1+K)7T-2=0 (2.4)
and ¥g(pc) is the corresponding European option price:

Ve (pc) = e~"(r+™) Y P(n)-pc- [Se""')’”""TN(pc -dyn) — KN(pc - dg,.)] (2.5)

n=0

where:

P(n) = e_ng%)n (2.6)

and 7, is the delivery lag after expiration, N(.) denotes the cumulative normal distri-
bution and:

bp =7 —1" — A +nlog(l+k)/7 (2.7)

log(S/K) + (r — r*)11 + (bp + 02/2)7T
oVT

log(S/K) + (r — r*)11 + (ba — 02/2)T
ovT

dln =

d2n =

(2.8)

'"The first order condition of this maximization is equivalent to the smooth pasting condition
derived in Bates.
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A set of observed option prices {y,-}i"il will in all likelihood not fit the parametric

specification. A set of three options along with the price of the underlying asset and
the other observable inputs to the option pricing function will uniquely determine
)\, & and 6. Any other set of three options will probably produce another set of ), &
and 6. This is a problem common to all option pricing models. The likely reasons for
this is that (i) the assumed model is misspecified, (ii) some options are thinly traded
and trades do not take place at “true values”, (iii) trades take place at bid and ask
prices instead of at the “true value,” (iv) investors make errors in evaluating the “true
value” of the options. All four reasons are likely play a role. We will assume that our
specification is approximately correct and that the majority of the errors come from
factors (ii), (iii) and (iv). We further assume that the deviations of the observed prices
from the “true values” can be expressed in terms of a mean zero random variable that
is independent of the arguments entering the option pricing formula.

By taking a set of options traded during a given day, we can “invert” these op-
tions to find the implicit parameters used by option traders during that day. A
consistent estimate of A, k and o is obtained by the following non-linear least squares

regression:'?

M
{;\1 K, &} = argmin),n,a E (yl' - ‘I’i(pc))2 (29)

i=1
Due to the over-abundance of data in many months, we construct a sub-sample of
the data as follows. Our objective was to pick one trading day in a given month and
take options trading in that day that had the same expiration date. We also wanted
at least 50 options. We start with the first trading day of a given month and find the
expiration date that was less than 120 days away with the most options. If that set
contained at least 50 options we used that set. Otherwise we proceeded to the next

trading day.

12Consistency is achieved as the number of options M — 0.
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2.3 Computational Considerations

In theory, the inversion process is straightforward given the setup above. The actual
implementation of this procedure however presents many computational challenges
and consumed most of our time. We spend some time here on the problems that
came up and the method we used to tackle them. Some of the techniques we present
should be useful even to options researchers who are not planning on inverting for
jump diffusion parameters.

First, one must come to terms with the problem of calculating the European jump
diffusion option price ¥ E() which is expressed in closed form only as an infinite series.
This European formula is an integral part of the analytic approximations used for the
American formula. The standard approach used to calculate this formula is to simply
determine a cut off level for the number of terms in the sum based on the parameters.
We found that such a method would require a very large number of terms and would
make the inversion process extremely time consuming. We noticed, however, that
the number of terms required for accuracy was much less for the puts compared to
the calls when k was positive. The reverse was true when s was negative. One can
take advantage of this to reduce the computation time for all options using put-call
parity. We will return to this shortly. The reason why fewer terms are needed for the
puts relative to the calls when x > 0 can be understood by taking the simplified case

of a pure jump process. The put price in this case (ignoring delivery lags) would be:

e " i P(n) (K — e M So(1 + fc)")+ (2.10)

n=0
Each term of the sum inside the (.)* reflects the final payoff conditional on n jumps
occurring. If x is positive 1 + £ is greater than one so that (1 + )" is increasing
in n—or in other words, each jump is pushing the option out of the money. So for
sufficiently large M, (K — e M5 (1 + K,)")+ will be equal to 0 for all n > M. It is
also clear that deeper in the money puts require more terms since more jumps are

needed until the put goes out of the money. On the other hand, the call price is equal
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to:

e i P(n) (e"""So(l + k)" — K)+ (2.11)

n=0
Thus when k£ > 0, each jump pushes the option deeper into the money. This means
that the payoff is increasing in n. The infinite sum will still converge since the
probabilities are dying out at the rate of 1/n!, but many more terms will be required

before the product is insignificant. With the put and the call, the price can be written:

f: huin (2.12)

n=0

where hj, is the product of the probability and e~"" and i, is the payoff at expiration.
When & is positive, h, and i, are both decreasing for the call while for the put
although h, is decreasing, i, is increasing. So clearly, calculating the put in this case
requires much fewer terms. A similar logic can be applied to show that the call is
faster to converge when « is negative. A similar argument holds for the case when
there is diffusion on top of the jump process.

So to calculate a call price when £ > 0, one can first calculate the corresponding
put price and use put—call parity to find the call price. When k < 0 one can do the
reverse. The put-—call parity relation with proportional dividends r* and delivery lag

71 can be written:
C(S,K) +e "MK = P(S,K) + e 7"t g (2.13)

We then selected the number of terms to equal the minimum of 8 and 6 * A 7 plus 8
times the moneyness in excess of 0.05. This procedure gave us values for the option
price that were accurate to within 1 x 107! for all parameter values that we tried
and typically required only 8 to 10 terms. We found that this technique had its great-
est positive impact when we used the same basic technique to calculate the partial

derivatives of the pricing formulas with respect to the jump diffusion parameters-a

3In other words, we added more terms if the option was more than five percent in the money.
We did not take away terms if it was less than five percent in the money.
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necessary step when actually doing the non-linear least squares minimization.

Second, to calculate the analytic approximation to the American price one must
solve for S* using equation 2.3. Again in theory this procedure is straightforward,
but in practice requires great care. The second derivative of the objective function
of S*, (2.3), can be very erratic and necessitates the use of a bisection algorithm in
combination with Newton-Raphson algorithm in solving for S*. The first derivative
is not even monotonic. In other words, the objective function (2.3) is not well approx-
imated by a quadratic function. If one started with the standard Newton Raphson
procedure without the bisection algorithm the procedure would not converge in many
cases. The problem is especially acute for shorter term options.

Third, to do the actual parameter inversion, we use the Levenberg-Marquardt
procedure that takes advantage of the approximate local quadratic property of the
objective function around the maxima in a non-linear least squares regression.!* This
procedure however, requires that we be able to calculate the derivative of the function
W 4(.) with respect to the parameters. Whether one takes this derivative analytically
or calculates it numerically, one can save considerable time by noting the following.
The partial derivative of ¥4 with respect to the parameters is the sum of the derivative
of ¥ with respect to the parameter and the partial derivative of the American
premium, the second piece in the formula for ¥4, with respect to the parameters.
The derivative of the American premium, call it AP, with respect to the generic

parameter [ is:
0AP 0AP O0AP 0S*

- = +
ap 9 Keeping s- fixed 95+ 9p

(2.14)

All the terms involved are straightforward to calculate except the very last one, %‘%.

However, one finds that this term need not be calculated because %“T’,’ is equal to zero

14To stem any possible confusion, note that here we are referring to the approximate quadratic
property of the sum of squared residual objective function and not the objective function for S*
which we were referring to in the above paragraph.
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since S* is the maximizer of AP. Thus:

0AP  0AP
B ap Keeping s- fixed

(2.15)

This is a consequence of the envelope theorem. This fact greatly simplifies the calcu-
lations of the derivative.

Fourth, one can drastically reduce the required computing time by noting as did
Bates[6] that S* for a fixed 7,r and r* is homogeneous in K. In other words, given
the same 7,r and r*, if S} is the solution to the objective function (2.3) with K equal
to K, then S for K equal to K; is equal to Sl‘%. Since we are using only one day’s
worth of data and one maturity for each given month, 7,7, and r* will all be the same.
So we only need to calculate one S* for the puts and one S* for the calls for each set
of parameters that we try.

Fifth, we use the innovation of Bates [6] and minimize the least squares objective

function by searching over the transformed variables:

{61, B, B3} = {log(v),N7*(f), log(1 + x)} (2.16)

where:

v = Mlog(1l+k))?+o?
f = Mlog(1+k))*/v

These last two parameters v and f are the total variance of the process and the
proportion of the variance coming from jumps respectively. This effectively reduces
the dimension of the search because the estimate of v takes on roughly the same value
regardless of the other two parameters. Because the objective function has multiple
minima, six starting guesses were used in each monthly regression to ensure that the
global minimum was found.

Lastly, all the programming was coded in Fortran to make the procedures as

fast as possible. We initially coded the whole procedure in the matrix programming
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language Matlab, but found that one set of regressions for one country would take a

month to run.

2.4 Jump—Expectation Estimates

The results of the monthly non-linear least squares regressions along with the asymp-
totic approximations to the standard errors are reported in Tables 2.2 through 2.8
starting on page 85 while the monthly time series for the jump expectation of the
dollar-DM exchange rate \;x; is shown in Figure 2-1 on page 69. The jump expec-
tation is quoted in annualized terms. Hence, 0.05, or 5 per cent, corresponds to a
expected depreciation of 0.42 per cent over a single month () is measured in a scale of
probability per unit of time while x has no time dimension). Although the estimates
for Ak are of a fairly reasonable order of magnitude, the estimates of the individual
components A and x are somewhat less believable. This is a result of the fact that
in the space of A and « (for a fixed value of total variance!®) there is an apprexi-
mate hyperbolic ridge in the least squares objective function—the objective function
is peaked for one value of A x .16 The individual estimate of A and &, however, is not
well estimated because the peak of this ridge is not very well identified—the objective
function takes on similar value for all points on this ridge.!”

The estimated jump expectations are of an economically reasonable magnitude
and, moreover, the time series of Ak seems to agree with the qualitative stories told
about the doiiar in the 1980’s and 1990’s. During the mid-1980’s when the dollar was
thought to be overvalued it was indeed the case that participants in the options market
were expecting dollar depreciations due to jumps. These results are in general accord

with those of Bates [5],[4] who also found substantial expected jump depreciations for

5The objective function is maximized for one value of total variance, v, almost regardless of the
other parameters.

'8The estimates for x can sometimes be quite large especially when X is small. This is not
surprising since when X is very small, x does not much influence the pricing function. This is the
reason why the standard errors can be very large for x when X is small.

1"There were also two months out of the total 114 for which the non-linear least squares procedure
did not converge. For the yen there was one month that did not converge.
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Figure 2-1: Jump Expectations Ak for the DM

his sample of 1954-87 using CME options on Deutschemark futures.!® Interestingly,
occasional fears of dollar depreciation due to jumps persisted until the late 1980’s
while the dollar was on a steady downward path during this entire period. January
1990 marks the start of a new period during which there are many months when
the market was calm, with essentially no expected depreciation due to jumps. These
calm months are interspersed with months when there are fairly dramatic expected
appreciations.!® It is also interesting to note that this later period coincides with
the time that the economic problems associated with the reunification of Germany
became apparent. People claimed that the tight monetary policy implemented by the
German government could not be sustained given the severe recession in the former
East Germany. The Bundesbank it was believed would eventually have to lower its

rate and would consequently send the Deutschemark tumbling.?°.

18]t is unfortunate that the PHLX options price data are completely contaminated and hence
unusable for the months June-November 1985 which includes the post-Plaza Accord crash of the
dollar. The expected depreciation for April 1985 is large, perhaps indicating anticipation of the
eventual decision of the G-5 to bring the dollar down.

19Bates [7] estimates option-implied exchange rate parameters under an assumption of time-
invariance of the parameters over the entire period 1984-1991 and concludes that there is no statis-
tically significant jump component in the dollar-DM exchange rate. There are at least two ways to
reconcile this result with ours and with Bates’ results. First, because Bates assumes time-invariance
of the parameters in [7], the fact that the jump expectations shown in Figure 2-1 are large and
time-varying may be masked. Second, Bates allows for stochastic volatility of the continuous com-
ponent of exchange rates while we do not, so that we may be imputing skewness of the exchange
rate process to the jump component, when it is in fact due to stochastic volatility of the continuous
component.

20See Dornbusch [12]
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It is interesting to note that the two months with the most dramatic jump expecta-
tions are October 1987, when a crash occurred in the U.S. stock market, and October
1992, the period of the ERM crisis. In October 1987 there was a 6.7% expected
dollar depreciation while in October 1992 there was a 16.7% expected Deutschemark
depreciation. In both cases, the currency of the country in crisis was expected to

jump down.

- Jump Expectation - Interest ODifferential
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Figure 2-2: Ak for the DM & U.S.-German Interest Differential

The broad picture presented by the option-implied jump expectations is one of
expected depreciation due to jumps during 1984-1989 and expected appreciation
thereafter. As Figure 2-2 shows, this pattern of expected jump depreciation closely
tracks the behavior of the U.S.-German one month interest differential. During the
earlier period of expected depreciations, the interest differential is positive (i.e., a
dollar forward discount), while in the latter period of expected appreciations the
differential is negative. The correlation between the interest differential and the
Jump expectation is 0.30. A linear regression of the jump expectation on the interest
differential yields a slope coefficient of 0.18 with an OLS standard error of 0.06. Even
throwing out October 1992 and October 1987, the regression coefficient is 0.11 with
an OLS standard error of 0.04.

Figure 2-3 on page 71 displays the jump expectations in the dollar-yen rate while
Tables 2.9 through 2.15 starting on page 92 give the individual estimated jump dif-

fusion parameters. There are some similarities here to the dollar-DM case. In the
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period from 1984 to 1985 there are fears of dollar depreciations from jumps. Again
it is possible that market participants feared the coordinated attempt by the G7 to
bring down the dollar that ultimately took place in late 1985. After this period, from
1986 to late 1988 there remained fears of a dollar depreciation although much smaller
than what was expected earlier. From 1989 to late 1990 there are months with dollar
expected depreciations interspersed with months of large expected dollar apprecia-
tions. After 1990, any similarity to the DM—-dollar jump expectations end. From 1991
to mid 1992, there are consistent fears of dollar depreciation. Starting in mid-1992
the options trading on the yen became so thin on the PHLX that for many months
there was not a single day where more than 50 options with the same maturity were
traded. From July 1992 to December 1993, 10 of the 18 months did not have enough
options. It is not surprising in this case that for the months for which we did have
enough data that the estimates were so erratic. Perhaps the trading was so thin in

the markets that options traded far from their “true” value.

Jump Expectation
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Figure 2-3: Jump Expectations Ak for the Yen

Figure 2-4 displays the time series of the yen jump expectation together with the
U.S.-Japan one month interest differential. The dollar-yen rate presents a stark con-
trast to the case of the dollar-Deutschemark rate. The jump differential is not at all
correlated with the interest differential. The correlation between the interest differ-
ential and the jump expectation is -0.03 while a regression of the jump expectation

on the interest differential yields a slope coefficient of -0.06 and an OLS standard
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error of 0.24. Even using only the data prior to mid-1992 the correlation is -0.0012
and the regression coefficient is -0.0013 with an OLS standard error of 0.12. Thus
the statement that crashes are feared in the high yield currency seems to not hold
universally although it may hold for some currencies such as the Deutschemark. We
will see later that jump expectations in the yen are very difficult to explain, especially

if one includes the data after mid-1992.
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Figure 2-4: Ak for the Yen & U.S.-Japan Interest Differential

To complete the picture of the option implied parameters Figure 2-5 gives the
monthly time series of o;. The volatility figure, which is annualized, varies from a
high of about 18 per cent during the summer of 1985 to lows which are below 10
per cent during many months in the sample. The option implied estimates for the
yen'’s continuous volatility are plotted in Figure 2-6. The continuous volatility in the
yen falls to a low of 0.023 in September 1984. Because A and « are large during this
month the total volatility including the jump component works out to a more realistic

number of 0.092.

2.4.1 Robustness Checks

In this section, we test the sensitivity of our results to the given specifications. First
we test to see whether the relative number of puts to calls could be significantly
affecting our results. We do this by estimating the parameters from a data set that

takes an equal number of puts and calls each month. Secondly, we also test whether
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Figure 2-6: Diffusion Volatility for the Yen
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our results are driven by slight errors in the analytic approximation that we use to
price our American options. We do this by estimating the jump-diffusion parameters
using only the out-of-the-money options.

Because the relative number of puts and calls in our data set varies from month
to month, it may be of concern to make sure that this fact by itself is not affecting
our results. If for example it is the case that all the options traded in a given month
are puts, some may be worried that we would pick up a negative jump expectation
even in the absence of a market belief that there would be a negative jump. First,
we point out that there are months in which puts are more heavily traded and we
find positive jump expectations. However, to allay any lingering fears, we invert our
parameters using a balanced sample of puts and calls each month. We require that
each day that we use have at least 50 total observations Figure 2-7 displays the jump
expectations along with the interest differential for the DM. The regression coefficient
of the jump expectation on the interest differential is 0.24 with an OLS standard error
of 0.11. even throwing out the October 1992 negative jump expectation (ERM crisis)
which has a Ak=-0.39, the regression coefficient is 0.078 with an OLS standard error
of 0.048. The plot of the yen jump expectations using a balanced sample of puts and
calls is given in Figure 2-8. The regression coefficient of the jump expectation on the

interest differential is 0.069 with an OLS standard error of 0.191.
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Figure 2-7: Ax and the interest differential for the DM using a balanced sample of
puts and calls

74



- Jump Expectation - Interest Differential

T- T T T T T
84 a5 86 arz aa as 90 a1 92 93

Figure 2-8: Ak and the interest differential for the Yen using a balanced sample of
puts and calls

One might also be concerned that the analytic approximation that we used for
the American option price might create a bias in our jump-diffusion estimates. We
can partially address this concern by estimating our jump—diffusion parameters using
only out-of-the-money options. Since the American premium, which is the part that
we approximate, is essentially worthless for out of the money options, we should be
able to obtain estimates that are immune to this potential problem by using only out-
of-the-money options. The estimates of the jump expectations for the Deutschemark
using only out-of-the-money options is given in Figure 2-9. The plot is very similar to
what we obtained using both in and out of the money options. The major difference is
the presence of a major negative jump expectation in the DM that was previously not,
there. Regressing the jump expectations on the interest differential now, we obtain
a coefficient of 0.091 with an OLS standard error of 0.083. If we drop the the new
massive negative jump expectation, we get a slope coefficient of 0.10 with an OLS
standard error of 0.045. For the yen, the estimates are plotted in Figure 2-10. Here
the plots actually look significantly different. The regression of the jump expectations

on the interest differential is now -0.37 with an OLS standard error of 0.30.
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Figure 2-9: Ak for the DM with out-of-the-money options
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Figure 2-10: Ax for the Yen with out-of-the-money-options
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2.5 Can Option Implied Jump Expectations
Predict Jumps?

Given the option implied jump expectations we estimated in the previous section,
it is a point of immediate interest to see whether these jump expectations can predict
jumps. This is of interest for several reasons. First, if jumps can be predicted using
option prices, this would clearly help traders in formulating their strategies. Second,
the peso problem explanation of the empirical failure of uncovered interest parity
says that jump expectations held by market participants, although rational, are gen-
erally not realized in small samples due to the underlying hypothesis that jumps are
very rare. This would imply that we should not be able to predict jumps using the
estimated jump expectations.

The question of whether option implied jump expectations predict jumps is com-
plicated by the problem of identifying what are jumps. One possible way to do this
is to estimate the jump diffusion parameters over a period following the trade date
of the options that we used and then determine what was a jump and what wasn't
based on these parameters. This approach will typically claim that a jump occurred
over every sample and that the largest one day movement over that sample was a
jump. See Kropywiansky [22] for details. We instead approach this problem in the
following less structural manner. First we take the trading day of the options that
were used to invert for the jump expectations in a given month. Next, we estimate
the volatility 6 and drift i of the process over the next thirty days after that date
using the time series data and given an assumption that the process is following a

georueiric brownian motion.?! Next we call a one day move a “large movement” if:

|Alog S, — (s — %&2)At| > M x 6vAE (2.17)

This is akin to a classical hypothesis test of whether a particular one day move came

from a pure diffusion process. All it is asking is if a detrended one day movement

21The estimates are maximum likelihood estimates.
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was more than M standard deviations away from zero. Next we sum the movements
Alog S, — (i — %&2)At that were determined to be “large movements.” We will refer
to this quantity as the total large movements over the thirty day period. We try chree
quantities for M, 2.0, 2.5 and 3.0. We plot the total “large movement” for the each
month with M=2.5 for the DM in Figure 2-11 and for the yen in Figure 2-12. One
can see the similarity of the time series plot of the total jump movement series for
the DM to the time series plot for A\k. There are generally positive jumps early on
and negative jumps later on. The yen series is not as obvious although one sees that

there have been more positive jump moves than negative ones.
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Figure 2-11: The sum of the DM “jump” movements in the 30 days following the day
on which the option was traded

We now regress the sum of the “large movements” over the next 30 days on \i.
The results are reported in Table 2.1 on page 79. Because of the possible concern
that the post-June 1992 data is unrepresentative for the yen due to the thin trading
in that period, we also report the numbers for the pre-June 1992 yen sample. The
general result is that the although the sign is always correct, the coefficient is fairly
small and the standard error large. We checked to see if these results were driven by
outliers, we fdund that if anything there were outliers that worked against a positive
slope coefficient. It is hard to conclude from this regression that the option implied
jump expectations predict the large movements, but at the same time our positive

coefficients are consistent with the hypothesis that they do.
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Table 2.1: Regression of the sum of total jump movements on A&

Slope | Intercept | % months with | avg num. jumps
>0 jumps when >0 jumps
DM
M=2.0 0.074 0.0006 83 % 1.26
(0.079) | (0.0018)
M=25 0.093 0.0016 34 % 1.00
(0.049) | (0.0011)
M=3.0 0.021 0.0001 8 % 1.00
(0.029) | (0.0006)
[ Yen
M=20 0.033 0.9027 72 % 1.29
(0.032) | (0.0014)
M=25 0.036 0.0022 33 % 1.00
(0.023) | (0.0010)
M=3.0 0.004 0.0016 10 % 1.00
" . (0.012) | (0.0005)
| Yen pre-6/92
M=20 0.053 0.0029 71 % 1.27
ll (0.056) | (0.0015)
M=25 0.045 0.0022 33 % 1.00
ﬂ (0.041) | (0.0011)
M=3.0 0.025 0.0015 11 % 1.00
" (0.023) | (0.0006)

The total “large movement” for the 30 days following the option trading day used to invert for the
jump expectation is regressed on the option implied jump expectations. We also report here the
percentage of months that have at least one “jump” movement and the average number of jumps
given that at least one occurred.
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Figure 2-12: The sum of the yen “jump” movements in the 30 days following the day
on which the option was traded

2.6 Jump Expectations, Purchasing Power
Parity and the Trade Balance

We have seen that jump expectations are positively correlated with the interest
differential in the case of the Deutschemark. It is interesting to see whether jump
expectations are related to other variables such as the trade balance and the deviation
of the curreicy from purchasing power parity for at least three reasons. First such
an investigation is interesting in its own right since little is know about how jump
expectations are formed. Second, one may be interested to determine what actually
drives the yen jump expectations since we saw that the interest differential does not
provide much guidance there. Third if the jump expectations are correlated with
these variables in the way one would expect given a tendency to jump back to long
run equilibrium, this will provide some independent reason to believe that our jump
expectation estimates reflect market beliefs.

It is well known that currencies often trade at levels far away from their purchasing
power parity levels.[ This is immediately made clear if one considers that the rate of
change of the purchasing power parity implied exchange rate is equal to the difference
in the inflation rates of the two countries in question. If the instantaneous inflation

rate at time ¢ in Germany is i?M and S in the U.S., the purchasing power parity
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implied dollars per DM exchange rate S;°F” satisfies:

log SEAF — log SFPP = iV5 — iPM (2.18)

But since the inflation rate in the countries we are considering have been fairly low
and similar in the past ten year, the PPP rate cannot be moving very much. The
actual dollar-DM and dollar-yen rate, however, has fluctuated quite drastically over
the past 20 years. To construct the PPP implied exchange rate levels, we start with
the 1988 estimate of the purchasing power parity level of the DM and yen estimated by
Heston and Summers (18] and set that to the January 1988 PPP level. We construct
estimates of the purchasing power parity exchange rate levels for the other months by
updating with the consumer price index levels in the respective countries. The plot of
the PPP rate for the DM along with the actual exchange rate is given in Figure 2-13

while the corresponding plot for the Yen is given in Figure 2-14.

- PPP Dollar/OM rate - Dollar/0OM rate
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Figure 2-13: PPP Dollar/DM Exchange Rate and the actual Dollar/DM rate

As the graphs indicate, the dollar was trading close to PPP levels against the
DM and yen in the beginning of 1984 and 1986. Relative to the dollar, the DM was
undervalued relative to PPP levels between these two dates, but after 1986 steadily
climbed. By late 1993, the DM was trading at roughly 150% of PPP levels. The case
is even more dramatic for the yen. Between 1984 and 1986, the yen traded at roughly

PPP levels, but has climbed dramatically since and by late 1993 was at roughly 210%
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Figure 2-14: PPP Dollar/Yen Exchange Rate and the actual Dollar/Yen rate

PPP levels.??

It is of interest to see if traders expect the currency to jump in the direction
of purchasing power parity. We regressed the jump expectations on the percentage
overvaluation (the ratio of the actual exchange rate to the PPP implied exchange rate
minus 1) of the respective currency. If one thought that jumps should be expected to
return the currency toward PPP, the coefficient of this quantity should be negative—
the greater the percentage markup over PPP, the more likely the currency is to
jump down. For the DM, we found that the slope coefficient was -0.033 with an
OLS standard error of 0.011. For the yen, the slope coefficient is -0.012 with an OLS
standard error of 0.023. However, noting again the paucity of options data for the yen
after June 1992 and the highly erratic behavior of the jump expectations thereafter,
it is worth checking the result if we only use data prior to that date. In that case,
the slope coefficient is -0.049 with an OLS standard error of 0.018. With both the
yen and the DM, traders appear to think that a currency is more likely jump down
if it is trading far above PPP levels. We can interpret our results as saying that if
the DM is 50% overvalued relative to PPP, traders expect an annualized 1.65% jump
depreciation of the DM.

Purchasing power parity is a long run equilibrium notion about the determination

*2The yen has furthér appreciated since then and by mid-April 1995, was trading at 280% PPP
levels.
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of exchange rates based on the idea that the price of goods in two countries should
be the same. Along the same lines, some have argued that in the long run, currencies
will align themselves so that two countries will import as much as they export from
a given trading partner. Whether one believes such an argument, there is no doubt
that political pressures in the U.S. have leaned toward weakening the dollar against
trading partners with whom the U.S. has trade deficits. This has been niost apparent
in the U.S. government’s attempt to drive down the dollar against the yen over the
past 10 years when record trade deficits were recorded with Japan. It is interesting
to see how traders react to a higher trade deficit number. One would think that
the more negative the trade balance, the more likely is the dollar-Yen rate to jump
up. The bilateral trade deficit numbers are shown in Figure 2-15 for Germany and

Figure 2-16 for Japan.
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Figure 2-15: U.S.-German Monthly Trade Balance in Billions of 1990 Dollars

The pattern presented is roughly the same for Germany and Japan except that
the trade deficit with Japan has been much larger. The U.S. trade deficit was growing
for both countries until late 1987 after which the gap started to shrink. Although
the deficit with Germany decreased steadily thereafter, the deficit with Japan started
to worsen again in 1990. We regress the jump expectations on the trade deficits
measured in Billions of 1990 U.S. dollars. For the DM we find a slope coefficient of
-0.0075 with an OLS standard error of 0.005. For the yen using the whole sample we
find a slope coefficient of 0.002 with an OLS standard error of 0.005. Using only the
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Figure 2-16: U.S.-Japan Monthly Trade Balance in Billions of 1990 Dollars

pre June 1992 data we get a slope coefficient of 0.0030 with an OLS standard error of
0.0027. In other words, the trade deficit does not seem to significantly impact jump

expectations.
2.7 Conclusions

By using option prices, we confirmed the claim made by traders and proponents of
the peso problem that the high yield currency is subject to negative jump fears in
the case of the dollar—-DM rate. We did not find any evidence to this effect for the
dollar-yen rate. We further investigated whether the jump expectations inverted from
option prices could predict jumps and found that it could do so if only weakly. We
also found that when a currency trades far away from purchasing power parity levels,
the currency is expected to jump in the direction of PPP. We however found that the

trade balance did not affect jump expectations.
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Table 2.2: Deutschemark Option Implied Parameters: 1/1984 - 6/1985

AR A & & Obs.
1984: 1 01484 .08719 .17016 .08613 90
( .00669) | ( .07636) ( .07920) ( .00234)
1984: 2 | Did Not | Did Not Did Not Did Not | 186
Converge | Converge | Converge | Converge

1084: 3 | 01498 | .00476 3.14405 10575 | 232
(.00193) | (.01064) | (6.68264) | (.00082)

1084: 4 | -.00960 | .04837 -.19847 10107 | 98
(.00315) | (.02140) | (.02693) | (.00144)

1984: 5 | -.02795 | .21475 -13017 10552 | 74

( .00804) | ( .11855) (.03535) ( .00183)
1984: 6 | Did Not | Did Not Did Not Did Not | 50
Converge | Converge | Converge | Converge

1084: 7 | .03088 | .20895 14778 10959 | 66
(.00855) | (.10361) | (.03362) | (.00270)

1084: 8 | .00617 | .00863 71437 12175 | 92
(.00206) | (.02291) | (1.55910) | ( .00120)

1984: 9 | 01465 | .05411 27080 13588 | 200

(.00464) | (.03883) | (.10986) | (.00163)
1084:10 | 01362 | .00027 | 51.30559 16473 | 180
(.00179) | (.00029) | (61.07282) | (.00092)

1984:11 | .04755 | .46536 10219 12575 | 106
(.02218) | (.40677) | (.04227) | (.00408)

1984:12 | 03054 | .17536 17418 12805 | 70
(.00863) | (.08457) | (.03569) | (.00292)

1985: 1 | .01180 | .03493 33777 12397 | 178

(.00265) | (.02530) | (.17165) | (.00103)
1985: 2 | .00613 | .00059 10.46990 14278 | 161
(.00146) | ( .00107) | (17.15566) | ( .00097)
1085: 3 | .00025 | .00023 | 39.69226 16270 | 108
(.00264) | (.00119) | ( 194.66454) | ( .00148)

1985: 4 | 03016 | .14128 21344 17445 | 208
(.01801) | (.18842) | (.15230) | (.00392)

1985: 5 | -.00040 | .00042 -.93878 18639 | 159
(.00249) | (.00058) | (6.23759) | (.00112)

1085: 6 | NA NA NA NA NA

.

Non-linear least squares regression results. The PHLX options data from June to November 1985 is
completely contaminated and unusable.
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Table 2.3: Deutschemark Option Implied Parameters: 7/1985 - 12/1986

A& A P & Obs.

1985: 7 NA NA NA NA NA

1985: 8 NA NA NA NA NA

1985: 9 NA NA NA NA NA

1985:10 NA NA NA NA NA

1985:11 NA NA NA NA NA

1985:12 | .00000 .00000 -.56572 11402 52
(.00163) | ( .00299) | (>999.0) | ( .00129)

1986: 1 | -.00043 | .00135 -.31532 12024 53
(.00380) | (.01353) | ( .34790) | ( .00200)

1986: 2 | .00000 .00000 -.79293 .11568 72

(.00278) | ( .00350) | ( 39.26578) | ( .00162)
1986: 3 | .02060 | .00781 2.64860 | .15837 | 80
(.01839) | (.23834) | ( 78.56580) | ( .00297)

1986: 4 | -.00403 | .01936 | -.20814 16844 | 54
(.00774) | (.05842) | (.24846) | ( .00244)

1986: 5 | -.03729 | 20730 | -.12540 16162 | 186
(.01867) | (.29031) | (.06140) | ( .00293)

1986: 6 | .00451 | .00598 75401 15083 | 66
(.01234) | (.10801) | ( 11.57873) | ( .00318)

1986: 7 | -.00642 | 02706 | -.23729 14274 | 142
(.00282) | (.02083) | (.08263) | ( .00109)

1986: 8 | .00953 | .02432 39158 11554 | 104
(.02321) | (.48734) | (6.91109) | ( .00375)

1086: 9 | -.00023 | .00027 | -.84269 14148 | 74
(.00323) | (.00479) | ( 3.07188) | ( .00116)

1986:10 | .00531 | .00134 | 3.95616 | .11797 | 135

(.00137) | (.00324) | (9.00849) | ( .00066)

1986:11 | -.00024 | .00032 | -.76092 11013 | 120
(.00149) | ( .00068) | ( 4.30859) | ( .00086)
1986:12 | .00849 | .01332 63757 09958 | 54

(.00722) | (.08385) | ( 3.48390) | ( .00221)

Non-linear least squares regression results.
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Table 2.4: Deutschemark Option Implied Parameters: 1/1987 - 6/1988

Ak A & & Obs.

1987: 1 | .00000 100000 -.94836 15024 | 114
(.00135) | (.00143) | (>999.0) | (.00100)

1987: 2 | -.00001 | .00001 -.83040 13676 | 68
(.00371) | (.00547) | ( 79.36450) | (.00158)

1987: 3 | .01001 00317 3.1545% 09536 | 64
(.01198) | (.26659) | ( 261.41756) | ( .00232)

1987: 4 | .03031 26422 11470 10875 | 74
(.02227) | ( .42957) | (.10268) | (.00415)

1987: 5 | -.00180 | .00514 -.35018 10106 | 64
(.00221) | (.00778) | (.10603) | ( .00094)

1987: 6 | -.00349 | .01275 -.27387 10354 | 106
(.00473) | (.02132) | (.09612) | (.00138)

1987: 7 | -.00092 | .00372 24731 08463 | 96
( .01066) | ( .04996) | ( .46636) | ( .00340)

1987: 8 | .00772 100183 4.22075 08862 | 59
( .01006) | ( .24168) | ( 552.29952) | ( .00196)

1987: 9 | .00000 .00000 -.43907 10107 | 85
(.00227) | ( .00541) | ( 177.24395) | ( .00081)

1987:10 | .06731 96552 106972 09548 | 207
(.03825) | (.90560) | (.02595) | ( .00660)

1987:11 | .01234 102030 60778 12996 | 160
(.01199) | (.19690) | ( 5.31675) | (.00248)

1987:12 | .00000 ,00000 -.87268 13706 | 56
(.00349) | ( .00407) | ( 550.46510) | ( .00177)

1988: 1 | .00830 100359 2.30816 15023 | 75
(.01296) | ( .16189) | ( 100.44408) | ( .00305)

1988: 2 [ -.00222 | .00707 -.31387 11247 | 124
(.00584) | (.02299) | (.20471) | (.00157)

1988: 3 | -.00750 | .03821 -.19636 11763 | 54
(.00351) | (.02674) | (.04943) | (.00097)

1988: 4 | .00451 00225 1.38643 00590 | 68
(.00991) | (.16842) | ( 68.78617) | ( .00253)

1988: 5 | -.00795 | .12253 -.06487 08375 | 64
(.01452) | (.37374) | (.08213) | ( .00242)

1988: 6 | .00141 .00151 .93783 07634 | 156
(.01726) | ( .43298) | ( 258.00673) | ( .00349)

Non-linear least squares regression results,
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Table 2.5: Deutschemark Option Implied Parameters: 7/1988 - 12/1989

Ak A P G Obs.

1988: 7 | -.00573 | .02338 -.24522 11556 | 114
(.00249) | (.01414) | (.04644) | ( .00105)

1988: 8 | .00000 ,00000 -.82776 13646 | 80
(.00271) | ( .00335) | ( 150.01432) | ( .00101)

1988: 9 | -.00240 | .03317 -.07240 09998 | 60
(.02759) | ( .58711) | ( .45082) | ( .00487)

1988:10 | .01577 00641 2.46070 10255 | 112
(.01625) | ( .37136) | ( 140.05107) | ( .00269)

1938:11 | -.00065 | .00271 -.23887 11758 | 81
(.00357) | (.01715) | (.19786) | ( .00117)

1988:12 | -.00276 | .00816 -.33858 .10791 80
(.00389) | (.01395) [ (.10774) | (.00114)

1989: 1 | -.00002 | .00003 -.57049 12280 | 63
(.00571) | (.01053) | ( 10.05064) | ( .00142)

1989: 2 | -.00113 | .00412 -.27480 10615 | 102
(.00486) | (.02036) | (.18302) | (.00124)

1989: 3 | -.01204 | .09562 -.12589 08693 | 120
(.00548) | (.06818) | (.03608) | ( .00163)

1989: 4 | -.00004 | .00004 -.98091 08637 | 84
(.00103) | (.00104) | (.33548) | ( .00052)

1989: 5 | -.00345 | .01170 -.29524 10332 | 118
(.00274) | (.01142) | (.06005) | ( .00084)

1989: 6 | -.01138 | .02998 -.37967 14726 | 106
(.00446) | (.01884) | (.09755) | (.00120)

1989: 7 | -.01358 | .12088 -11238 .13891 56
(.01911) | (.32964) | (.15023) | ( .00280)

1989: 8 | -.00694 | .01366 -.50775 13919 | 104
(.00375) | (.01040) | (.12397) | (.00110)

1989: 9 | .00766 01693 45231 14053 | 160
(.01267) | (.18861) | (4.29296) | ( .00222)

1989:10 | .01990 105569 35743 15820 | 208
(.01263) | (.17253) | (.88607) | ( .00195)

1989:11 | .00514 01170 143905 11777 | 111
(.00326) | (.03926) | (1.21001) | ( .00078)

1989:12 | -.00956 | .00984 -.97222 10422 | 62
(.00926) | (.01054) | (.11016) | (.00319)

Non-linear least squares regression results.
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Table 2.6: Deutschemark Option Implied Parameters: 1/1990 - 6/1991

Ak A & P Obs.

1990: 1 | -.00338 .00756 -44744 12941 | 171
(.00289) | (.00897) | (.16802) | ( .00080)

1990: 2 | -.01102 11507 -.09578 16894 | 57
(.02397) | (.51201) | (.21991) | ( .00430)

1990: 3 | .14049 1.62874 .08626 07188 | 104
(.04097) | ( 1.23116) | ( .04114) | ( .00827)

1990: 4 | -.00205 ,00260 -.78637 00786 | 50
(.00191) | (.00132) | (.90770) | ( .00060)

1990: 5 | -.00536 .01969 -.27206 00711 90
(.00344) | (.02479) | (.18080) | ( .00108)

1990: 6 | -.02970 31751 -.09353 08474 | 124
I (.01229) | (.25365) | (.03609) | ( .00281)

[l 1990: 7 | -.00939 01104 -.85019 09320 | 63
(.00258) | (.00454) | (.13549) | ( .00091)

1990: 8 | -.01010 06434 -.15697 10858 | 79
ﬂ (.00575) | (.09625) | (.15066) | ( .00120)

| 1990: 9 | .01908 .16465 11587 12206 | 132
(.02156) | (.42718) | (.17017) | ( .00346)

1990:10 | .00195 .01902 .10265 12339 | 57
(.02960) | ( .52756) | ( 1.29871) | ( .00469)

1990:11 | .00613 00667 91910 10769 | 87
(.00268) | (.00820) | (.81890) | ( .00075)

1990:12 | -.01488 07115 -.20918 .09591 56
| (.02426) | (.65924) | ( 1.60055) | ( .00358)

1991: 1 | -.02524 .12348 -.20445 15027 | 118
(.01286) | (.18296) | (.20026) | ( .00248)

1991: 2 | -.04675 | 1.20746 -.03872 09900 | 165
(.07526) | ( 3.05838) | (.03600) | ( .00749)

1991: 3 | .00254 .00296 85849 13413 | 304
(.00241) | (.00386) | (.34841) | ( .00103)

1991: 4 | .00099 .00100 99304 13096 | 149
(.00336) | (.00425) | (.88923) | ( .00115)

1991: 5 | -.00687 02617 -.26240 12813 | 184
(.00949) | (.16277) | ( 1.27403) | ( .00186)

1991: 6 | -.01243 .07889 -.15756 12677 | 73
.(.00865) | (.13996) | (.17925) | (.00178)

Non-linear least squares regression results.
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Table 2.7: Deutschemark Option Implied Parameters: 7/1991 - 12/1992

AR A P G Obs.

1991: 7 | .03408 58149 105860 12208 | 101
(.06329) | (1.76487) | (.06938) | ( .00693)

1991: 8 | .00000 -00000 3.59082 16069 | 233
(.00198) | (.00062) | ( 756.39840) | ( .00083)

1991: 9 | .00516 .02604 19819 13138 | o1
(.00497) | (.03771) | (.10481) [ (.00114)

1991:10 | .00002 '00001 1.96951 12261 | 152
(.00398) | (.00229) | (47.61608) | ( .00127)

1991:11 | -.00556 01114 -.49923 12680 | 206
(.00775) | (.11378) | (4.43558) | (.00190)

1991:12 | .00002 .00001 3.92008 12889 | 87
(.01118) | (.00330) | ( 350.78826) | ( .00296)

1092: 1 | .00003 .00003 94545 15158 | 126
(.00256) | (.00304) | (10.21535) | ( .00101)

1992;: 2 | .00000 .00000 2.36471 16069 | 286
(.00272) | (.00126) | (>999.0) | ( .00096)

1992: 3 | .00000 .00000 1.06865 13121 | 151
(.00198) | (.00199) | (:>999.0) | (.00069)

1992: 4 | -.05395 74915 -.07202 10004 | 122
(.06067) | ( 1.47157) | (.06089) | ( .00918)

1992: 5 .00000 .00000 71729 .11186 127
(.00501) | (.00758) | ( 656.56762) | ( .00142)

1992: 6 | -.01702 -34640 -.04913 10228 | 62
(.05288) | (1.71758) | (.09185) | ( .00650)

1992: 7 | -.00791 04123 -.19183 13790 | 151
(.01211) | (.18133) | (.55535) | (.00251)

1992: 8 | .00397 01467 27059 11351 68
(.00363) | (.01797) | (.08844) | (.00109)

1992: 9 | .00000 .00000 2.49346 17208 | 482
(.00319) | (.00140) | (>999.0) | (.00157)

1992:10 | -.16642 | 2.52705 -.06585 17717 | 83
(.25648) | ( 6.07613) | ( .05708) | ( .02382)

1992:11 | .00000 .00000 1.27870 14722 | 121
( .00300) | (.00258) | ( 333.24275) | ( .00132)

1992:12 | -.00691 01103 -.62631 14696 | 74
(.01379) | (.21915) | ( 11.20695) | ( .00248)

Non-linear least squares regression results.
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Table 2.8: Deutschemark Option Implied Parameters: 1/1993 - 12/1993

AR A P G Obs.

1993: 1 | .00000 .00000 1.87472 12674 | 89
(.00329) | (.00194) | (>999.0) | ( .00154)

1993: 2 .00021 .00010 2.19512 .12529 138
(.00554) | (.00296) | (9.96525) | (.00215)

1993: 3 | .00374 101450 25814 .11871 75
(..00320) | (.01610) | (.07016) | (.00101)

1993: 4 | | .00000 .00000 2.18133 12791 77
(.00365) | (.00182) | (>999.0) [ (.00122)

1993: 5 | .C1398 10291 13582 11908 | 71
(.00732) | (.09498) | (.05920) | (.00171)

1993: 6 .00000 .00000 1.85153 11491 69
H (.00255) | (.00149) | (>999.0) | (.00112)

I] 1993: 7 | .00000 ,00000 1.59380 11363 | 95
(.00292) | (.00198) | (>999.0) | ( .00094)

1993: 8 | -.05959 2.05367 -.02902 10670 | 116
I[ (.34878) | (18.75430) | (.09534) | (.02281)

" 1993: 9 | -.02495 19716 -.12654 12706 | 75
(.02896) | (.48754) | (.17134) | ( .00612)

ﬂ 1993:10 | .00003 .00001 1.78686 11858 | 82
(.00382) [ (.00243) | (34.71422) | ( .00132)

H 1993:11 | .00000 100000 2.35403 10579 | 53
(.00289) | (.00133) | (>999.0) | ( .00246)

ﬂ 1993:12 | .00000 200000 1.16309 10678 | 74
(.00273) | (.00252) | (>999.0) | (.00105)

Non-linear least squares regression results.
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Table 2.9: Yen Option Implied Parameters: 1/1984 - 6/1985

Ak A P & Obs.
1984: 1 .08212 3.15364 .02604 .05810 56
(.13291) (7.79196) (1 .02223) (.01428)
1984: 2 -.00742 .04428 -.16765 .06398 56
(.00262) | (.02426) ( .05233) ( .00148)
1984: 3 .01694 .00312 5.42420 .09149 144
( .00593) (.01137) (18.81884) ( .00355)
1984: 4 .03663 .74849 .04894 .07520 72
( .03501) (1.17786) ( .03048) ( .00534)
1984: 5 .02739 .39900 .06864 06815 68
( .01553) ( .42303) (.03512) ( .00334)
1984: 6 .01047 11341 .09232 .08142 72
(.01165) | (.22428) | (.08069) | (.00265)
1984: 7 .00370 .00081 4.56073 .09071 52
(.00472) (.05402) | (298.09819) | ( .00177)
1984: 8 .01572 .03255 48312 .09501 56
( .01365) (.24142) ( 3.17482) ( .00330)
1984: 9 .12838 1.97365 06505 .02369 58
(.00364) | (.12750) | (.00241) | (.00599)
1984:10 .05890 .87614 .06722 .10204 57
(.07608) | (1.84122) | (.05477) | (.01177)
1984:11 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1984:12 .00266 00078 3.41530 .09489 66
(.00254) ( .00597) ( 23.13685) ( .00101)
1985: 1 .01407 .20630 .06819 .09069 54
( .02233) ( .53834) ( .07006) ( .00383)
1985: 2 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1985: 3 | Did Not Did Not Did Not Did Not 56
Converge | Converge Converge Converge
1985:; 4 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1985: 5 | Insufficient | ..sufficient | Insufficient | Insufficient | 0
" Data Data Data Data
u 1985: 6 NA NA NA NA NA

Non-linear least squares regression results. The PHLX options data from June to November 1985 is

completely contaminated and unusable.
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Table 2.10: Yen Option Implied Parameters: 7/1985 - 12/1986

AR A P G Obs.

1985: 7 NA NA NA NA NA

1985: 8 NA NA NA NA NA

1985: 9 NA NA NA NA NA

1985:10 NA NA NA NA NA

1985:11 NA NA NA NA NA

1985:12 | .00520 .00088 5.94526 07909 | 73
(.00224) | (.00242) | (14.62967) | ( .00111)

1986: 1 | .00690 00179 3.85742 06842 | 67
(.00269) | (.00892) | (18.27340) | ( .00130)

1986: 2 | .02962 108305 .35639 10324 | 183
(.02348) | ( .54621) | (2.06332) | (.00367)

1986: 3 | .02500 .00990 2.52690 13005 | 86
(.00693) | ( .05928) | ( 14.77603) | ( .00205)

1986: 4 | .01261 01837 68611 11860 | 61
(.01688) | ( .30525) | (10.49026) | ( .00295)

1986: 5 | .01135 .00425 2.66946 18439 | 118
(.00834) | ( .06009) | ( 35.90711) | ( .00192)

1986: 6 | .01659 .06838 .24255 13759 | 70
(.01960) | (.32138) | ( .85664) | ( .00336)

1986: 7 | .01798° | .00943 1.90733 13295 | 84
(.01115) | ( .13700) | ( 26.56515) | ( .00239)

1986: 8 | .00000 .00000 -.67848 12405 | 94
( .00055) | (.00084) | ( 640.98433) | ( .00051)

1986: 9 | .00786 .00838 93775 13427 | 59
(.01193) | (.15237) | ( 15.66880) | ( .00186)

1986:10 | -.00255 | .01015 | . -.25093 07521 50
(.00337) | (.01746) [ (.12168) | ( .00115)

1986:11 | -.00198 | .00289 -.68369 08195 | 81
(.00363) | (.00860) | (.84117) | (.00125)

1986:12 | .03041 .34378 08845 07022 | 66
(.02630) | (.52862) | (.06020) | (.00674)

Non-linear least squares regression results.
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Table 2.11: Yen Option Implied Parameters: 1/1987 - 6/1988

f Ak A ik & Obs.
1987: 1 | .01696 | .00298 5.69500 12558 | 67
(.00434) | ( .02693) | ( 50.13680) | ( .00138)
1987:2 | 00000 | .00001 -.49415 08749 | 51
(.00641) | (.01365) | ( 56.30940) | (.00321)
1987: 3 | .01201 | .07528 .15953 08354 | 63
(.00950) | (.13427) | (.15891) | (.00309)
1987: 4 | .00000 | .00000 -.77584 13402 | 71
(.00237) | (.00312) [ (>999.0) | (.00128)
1987: 5 | .00000 | .00001 -.75808 11185 | 57
(.00540) | (.00734) | ( 29.84215) [ (.00171)
1987: 6 | -.01554 | .08151 -.19066 09712 | 95
(.00773) | (.06710) | (.07090) | ( .00214)
1987: 7 | .00384 | .00232 1.65217 09550 | 87
( .00802) | (.12980) | (88.93422) | ( .00199)
1087: 8 | -.01149 | .06805 -.16882 10124 | 114
(.00454) | (.04984) | (.06261) [ ( .00135)
1987: 9 | .00954 | .03510 27164 .10827 | 61
(.00927) | (.10919) | (.58256) | (.00296)
1987:10 | .02150 | .00953 2.25621 13709 | 97
(.03350) | (.59411) | ( 137.15446) | ( .00531)
1987:11 | -.00629 | .01649 -.38148 12804 | 71
(.00385) | (.01440) | (.11520) { ( .00146)
1987:12 | .00000 | .00000 -.69553 12601 | 87
(.00217) | (.00321) [ ( 201.59369) | ( .00123)
1988: 1 | .00786 | .00219 3.59400 14967 | 116
(.01487) [ ( .20083) | ( 323.39196) | ( .00317)
1988: 2 | -.00839 | .07202 -.11656 11009 | 61
(.00725) | (.10621) | (.07669) | ( .00159)
1988: 3 [ .00784 | .00614 1.27671 11809 | 58
(.01467) | ( .24201) | ( 47.95901) | ( .00230)
1988: 4 | .00954 | .05477 17431 07569 | 70
(.01054) | (.2539v) | (.61913) [ ( .00256)
1988: 5 | -.00521 | .03709 -.14055 08210 | 97
(.00303) | (.03411) | (.05042) | (.00071)
1988: 6 | -.00588 | .06010 -.09777 07180 | 59
(.00365) | (.06369) | (.04470) | ( .00094)

Non-linear least squares regression results.
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Table 2.12: Yen Optiori Implied Parameters:

7/1988 - 12/1989

AR A i G Obs

1088: 7 | .00173 .00054 3.22901 11724 | 52
(.00729) | (.07713) | ( 450.48254) | ( .00192)

1988: 8 | .00473 00877 53974 11456 | 123
(.01371) | (.25469) | ( 14.13426) | ( .00256)

1088: 9 | .06478 03314 1.95459 12064 | 96
(.08370) | ( 3.88565) | ( 226.64914) | ( .00599)

1988:10 [ .00773 00394 1.96253 09211 86
(.03057) | (.82853) | (405.14342) | ( .00491)

1988:11 | .00658 .00933 .70476 10909 | 95 |

(.00722) | (.12720) | (8.84578) | (.00149)

1988:12 | -.01910 .24786 -.07705 09135 | 88
(.01099) | (.25040) | (.03447) | ( .00175)

1989: 1 | -.01900 25313 -.07506 10074 | 68
(.01699) | (.39895) | (.05172) | (.00238)

1989: 2 | .00000 ,00000 -.44272 08915 | 117
( .00059) | ( .00139) (>999.0) | ( .00040)

1989: 3 | -.02360 29758 -.07931 08171 94
(.01414) | (.31677) | (.03721) | (.00294)

" 1989: 4 | .00598 01189 .50306 07580 | 64
(.00629) | (.18072) | (7.12420) [ (.00115)

1989: 5 | -.00374 02721 -13745 08998 | 63
(.00333) | (.03179) (.04029) | ( .00099)

’I 1989: 6 | .00534 00125 4.28192 13639 | 85
(.03231) | (.53078) (>999.0) | ( .00596)

" 1989: 7 | -.06112 | 1.24579 -.04906 11725 | 111
(.09608) [ ( 2.91522) | (.03774) | (.01090)

1989: 8 | -.04394 75621 -.05811 12563 | 58
(.06987) | (1.93430) | (.05651) [ (.00748)

1989: 9 | -.00001 ,00001 -.67954 13282 | 87
(.00490) | (.00750) | (15.19774) | ( .00125)

1989:10 | .01087 01270 85611 14775 | 78
(.02830) | (.42155) | ( 26.21976) | ( .00415)

1989:11 | .01156 07254 .15942 09635 | 67
(.00225) | (.03561) | (.04911) | (.00075)

1989:12 | .00997 .08570 .11638 .08039 | 57
| (.01308) | (.20233) | (.12369) | (.00469)

Non-linear least squares regression results.
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Table 2.13: Yen Option Implied Parameters: 1/1990 - 6/1991

AR A & P Obs.

1990: 1 | -.00950 07633 -.12446 07486 | 100
(.00343) | (.05173) | (.04025) | ( .00094)

1990: 2 | .00000 .00000 87911 07794 | 69
(.00027) | (.00031) | (>999.0) | ( .00039)

1990: 3 | .00346 00634 54601 09514 | 65
(.00068) | (.00400) | (.27202) | ( .00050)

1990: 4 | -.01859 19674 -.09451 11107 | 56
(.05183) | (1.25051) | (.33883) | (.00598)

1990: 5 | .01043 03152 33088 .08906 | 86
(.01193) | (.26171) | ( 2.37447) | ( .00229)

1990: 6 | .01308 07740 .16893 08321 | 56
(.00928) | (.23832) | (.40099) | ( .00190)

1990: 7 | .01283 104299 120853 00446 | 50
(.01682) | (.40429) | ( 2.41862) | ( .00230)

1990: 8 | -.00010 00013 -.78554 10660 | 108
(.00301) | (.00304) | (4.82423) | ( .00099)

1990: 9 | -.01497 15679 -.09550 12318 | 66
(.02092) | (.40698) | (.11601) | ( .00372)

1990:10 | .00012 .00008 1.64992 | .13129 | 57
(.00243) | (.00176) | ( 6.38384) | ( .00108)

1990:11 | .00798 01273 62663 12692 | 59
(.00501) | (.02515) | ( .88381) | (.00118)

1990:12 | -.06525 | 1.18222 | -.05519 10876 | 52
(.05253) | (1.48748) | (.02558) | ( .00699)

1991: 1 | -.00701 03341 -.20997 14991 | 98
(.00399) | (.03971) | (.13074) | ( .00111)

1991: 2 | .00976 10095 109663 11124 | 67
(.02630) | (.56309) | (.28090) | ( .00365)

1991: 3 | .00020 .00007 2.81099 | .12399 | 82
(.00263) | (.00116) | ( 8.97184) | ( .00107)

1991; 4 | .04602 84656 105436 11721 | 85
(.09270) | (2.78979) | (.06987) | ( .00980)

1991: 5 | .03627 47701 07605 09150 | 59
(.02345) | (.71177) | (.06458) | ( .00320)

1991: 6 | .00619 01847 33513 09635 | 62
(.00412) | (.02294) | (.20759) | ( .00107)

Non-linear least squares regression results.
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Table 2.14: Yen Option Implied Parameters: 7/1991 - 12/1992

AR A i 6 Obs.
1991: 7 -.00370 .01282 -.28863 .09232 50
( -00638) (.11647) (2.13481) ( .00150)
1991: 8 -.02388 .29460 -.08106 .08697 62
( .01700) ( .36249) ( .04289) ( .00350)
1991: 9 .01572 .00899 1.74951 11575 106
( .01910) ( .04433) ( 6.83855) ( -00297)
1991:10 .01264 .10296 12274 .08400 50
( .00891) (.17847) ( .13266) ( .00175)
1991:11 .00001 .00002 .62737 .09461 110
(.00441) (.00774) | (27.37423) | ( .00136)
1991:12 .01637 .02120 77220 .07605 77
( .00350) ( .01537) ( .41439) ( .00090)
1992: 1 .02642 .07248 .36449 11287 67
( .00557) (.04426) (.16151) ( .00135)
1992: 2 01677 .08418 .19923 .08618 53
(.01418) (.23841) (.41017) ( .00249)
1992: 3 .06118 1.46273 .04182 .08236 60
( .04152) ( 1.60499) ( .01767) ( .00536)
1992: 4 -.00999 .08510 -.11742 .08291 63
( .01806) ( .54355) (.53892) ( .00297)
1992: 5 .05827 1.07681 .05411 .09023 78
( .08929) ( 3.22003) ( .07956) ( .01050)
1992: 6 -.23637 11.46564 -.02062 .06379 79
(.60844) | ( 44.50849) | ( .02708) (.05437)
1992: 7 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1992: 8 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1992: 9 .00147 .00020 7.36968 10741 91
‘ ( .01320) (.00344) | ( 60.87501) [ ( .00513)
1992:10 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1992:11 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1992:12 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data

Non-linear least squares regression results.
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Table 2.15: Yen Option Implied Parameters:

1/1993 - 12/1993

AR A i & Obs.
1993: 1 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1993: 2 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1993: 3 .28880 9.98507 .02892 11136 50
(.18452) | ( 11.88631) ( .01639) (.01132)
1993: 4 .18450 3.49497 .05279 13775 73
(.08072) ( 3.53775) (.03157) ( .00567)
1993: 5 .11460 .09908 1.15672 .14630 51
(.35797) | (21.53421) | ( 247.81432) | ( .01511)
1993: 6 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data.
1993: 7 -.06242 23227 -.26875 .16269 51
(.11364) ( 2.84634) ( 2.81383) (.01232)
1993: 8 .02087 .06251 .33388 .19786 52
(.09179) (1.76734) ( 7.98880) ( .00852)
1993: 9 .01038 .00430 2.41485 .16930 56
(.01497) (.13419) ( 72.12596) ( .00188)
1993:10 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1993:11 -.02878 .03301 -.87190 .10029 64
(.01131) (.04712) (.94528) ( .00157)
1993:12 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data

Non-linear least squares regression results.
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Chapter 3

Financing Real Investments With
Evolving Private Information

3.1 Introduction

Much of the recent response to Modigliani and Miller’s proposition that financial
structure does not affect a firm’s value has made use of the assumption that the
firm has information that the capital market does not. Whether it be the true value
of the firm’s assets in place or the profitability of a project in consideration, the
implicit understanding behind these recent papers is that there is some aspect of the
- firm’s operations that only managers can know. This leads to numerous interesting
situations where managers may forgo profitable investments or undertake inefficient
ones because the capital market cannot asses the true value of the securities issued
by the firm that are needed to finance new projects. The asymmetry of information
often makes it impossible for the manager and the suppliers of capital to come to an
efficient solution which will induce the managers to invest optimally. A point that is
mostly ignored, however, is the fact that the private information held by the manager
is often changing, sometimes even very rapidly, over time. A firm’s prospective project
may appear to the managers as a dud one year, but become an attractive venture
the next. A proposed area of expansion for the firm may all of a sudden appear less
attractive to managers after further marketing research. The expected final payout
from ongoing R&D projects may fluctuate wildly with each test and experiment. And

generally any piece of private information held by the managers of a firm is likely to
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change significantly over time. Flipped on its head, the fact that this information
changes so rapidly may be the best reason to suppose that the capital market cannot
keep up with its development. In other words, the fact that a piece of information
evolves rapidly makes it very costly for the capital market to keep itself informed of
its evolution.

The nature of evolving private information, however, gives the investment decision
an interesting twist, for no longer is the decision a static invest or not question,
but rather a decision of when to invest in terms of the private information that’s
available to the firm. Suppose that the private information arrives in bundles of
either good or bad news each period so that the accumulation of this information
represents the total private information available to the firm. On the basis of the
total information received, a firm will decide each period whether to invest today
or wait for more information. In comparison, the information structure of standard
adverse selection models can be thought of as follows. Initially, the capital market
and firm are symmetrically informed, but the firm subsequently receives one bundle of
information which is either good or bad. The firm then has to decide whether or not to
invest. We will see that the evolving nature of the private information actually makes
the problem one of moral hazard rather than adverse selection since the problem
really lies in how much information a firm collects before investing. Depending on
the type of securities that are issued, a firm will end up collecting too much or too
little information.  We will find that for most “standard” securities that are used,
however, the firm will actually end up collecting too little information and end up
investing too early.

Our basic prediction is that firms that require significant external financing will
make hasty decisions and not take advantage of the information that will be revealed
to them over time. For example, firms may not wait for a full analysis of market
demand to be completed before investing. Even if this research is itself costless, as
long as it takes time to complete, firms will be reluctant to wait. Or firms may go
ahead with a project before they know that the technology needed is actually feasible.

Absent the FDA, pharmaceutical firms may mass market a drug before they are sure
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Jf its side effects even knowing that subsequent legal suits may be costly. As long as
acquiring information takes time, firms that need significant external financing will
not have the right incentives to wait for it.

A social planner faced with the same informational constraint as the capital market
can solve this problem by deliberately forcing the underpricing of the firm’s securities.
This shows, how from a social welfare perspective, a competitive capital market can
be a mixed blessing. The interesting question raised by this, however, is not that
government intervention is needed, but rather how we might already have “solutions”
to take care of this problem in our ecoﬁomy. One example, is an oligopolistic credit
market. In fact, firms may actually choose to enter into a relationship with a bank
that underprices its securities if the bank in return offers services at a discount.
An example that immediately comes to mind is that of the Japanese firm-banking
relationships.

A third prediction is that if several firms have the same underlying private in-
formation with regard to their projects, a cash strapped firm may have an incentive
to mimic the financing activities of a firm that is cash rich to signal to the market,
that it too has collected its information. Cash strapped firms will thus issue their
securities right after a cash rich firm.

The body of research most closely related to the current question at hand is
that of the literature on investment under uncertainty that abstracts from corporate
financing issues. Papers by Bernanke [2], McDonald and Siegel [9], Pindyck [11] and
Dixit [5] have emphasized that when the per period profitability of an investment
project evolves with ongoing uncertainty and the project requires an up front sunk
cost to initiate, a firm will not invest as soon as the expected net present value of
future profits exceeds the cost of the project.! The firm will instead want to wait for
more information to see if the project is really a worthwhile investment. It will only
invest when the foregone profits today are larger than the value of the information

that will be revealed tomorrow. In this paper, we extend this basic intuition and

!See Dixit and Pindyck [6] for a comprehensive treatment of this topic. They have collected
many of the techniques and results of the literature in this book.
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apply it in analyzing how much information a firm will collect when its supplier of
capital cannot observe the underlying source of uncertainty.

The analysis in this paper will mainly be focused on a small start-up firm man-
aged by a risk-neutral owner. This will allow us to abstract from any principal agent
problems and will also simplify interpreting what is meant by the objectives of the
company. Namely, we will assume that the owner manager maximizes the net ex-
pected profits that accrue to him or her. If we wanted to extend our analysis to
include diffuszly held public corporations, we would have to assume that the current
managers act selflessly on behalf of the current shareholders. This assumption has
been questioned by Hart [8] among others.

The paper is organized as follows. In Section 3.2, I present a simplified approach
to analyzing the standard investment decision which abstracts from financing issues.
Section 3.3 develops a general model of investment with evolving private information.
Section 3.4 provides a stylized example and shows how the presence of limited liability
can cause the entrepreneur to invest too early. Section 3.5 discusses the solutions a
social planner may implement to overcome the basic inefficiencies. This question is
probably of most interest, not from a policy standpoint, but from how such “solutions”
may already exist in our current economy. Section 3.6 asks what happens when there
are several firms with the same underlying source of uncertainty. In this case, the
firms with insufficient funds to finance their project may try to invest at the same
time as a firm with sufficient funds and thus try to signal to the capital market that

they are investing at the optimal time. Section 3.7 concludes.

3.2 The Discount Factor Approach

Starting with papers by Brennan and Schwartz [3], McDonald and Siegel [9],
Pindyck [11] and Dixit [5], the literature on investment under uncertainty has relied
on the use of stochastic dynamic programming. Although it is perhaps the most
general framework in which to attack this set of problems, it invariably makes use of
an optimality condition known as the “smooth pasting” or “high contact” condition

which can be difficult to interpret economically. Consequently, departures from a first
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best world become difficult to analyze since they implicitly involve violations of some
optimality condition. If the smooth pasting condition is difficult to interpret, any
violation of it will surely be even more troublesome to deal with. To overcome this
drawback of dynamic programming, I present an alternative approach to solve for the
investment rule which can subsequently be analyzed graphically by use of marginal
benefit and marginal cost curves. While the recursive nature of dynamic programming
tends to obscure the relevant optimality conditions, our approach is “constructive” by
design and will allow a simple economic interpretation of the optimality conditions at
hand. In this section, I lay out the analytics of this approach and present a graphical
interpretation.

We will initially consider the case where the entrepreneur has enough cash to fi-
nance the project without external financing. The general strategy will be to find
the value of a future investment opportunity when we fix the investment rule, and
then to maximize this value over the set of feasible rules. I consider a discrete project
whose size is fixed so that the only decision ever made by the firm is when to invest.
The firm must pay a sunk cost K to start the project. The value of the activated
project, V(X), will depend on a stochastically evolving state variable X which is
always observable to the entrepreneur. One can for example take X to be an exoge-
nous level of demand or the per period profit implied by that level of demand. We
assume that V'(.) is monotonically increasing and differentiable in X. In addition,
we assume for simplicity, a risk neutral economy. We take X to follow a continuous,

time homogeneous Ito process of the form:

dX (t) = u(X)dt + o(X)dB(2) (3.1)

where B(t) is a standard Brownian motion. Now, fix the level of X at which the firm
will invest in the project at X;. So at the point of investment, the firm will pay a
cost K and receive a project worth V' (X;) for a net gain of V/(X;) — K. The firm will
not want to set X, arbitrarily high since this would delay the time until it received

the project. With a positive discount rate, the firm will want to balance the benefits
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of receiving a high value project against the time value of waiting for it. This is the
fundamental trade-off of the modern theory of investments in real assets. Thus, all
we need to do is find the relevant discount rate so that we can evaluate the present
discounted value of V(X;) — K. Clearly, this discount rate will be a function of X
and the current level of X.

Put differently, we want to calculate the value of an asset, q(X, X;), which pays
out one dollar when the process starting at X hits a level X;. Thus this discount
factor can also be considered as a contingent claim on the underlying factor X which
can be priced in a risk neutral economy using the fact that the drift rate on the asset
must equal r¢(X, X;). By Ito’s lemma, this can be written:

&%q

2o (X) 2L 1 () 2L = g (52)

where ¢(X, X;) must also satisfy the boundary conditions:

Q(XI,XI) =1
im = 0 (3.3)
|X-X1]—00

Also note that for Y € [X,Z], ¢(X, Z) = q(X,Y)q(Y, Z) so that:
72(X, Z) = q(X,Y)q(Y, 2) (3.4)

where the subscript 2 denotes the partial derivative with respect to the second argu-

ment. In the special case where Y = Z:
We can now value the investment option for a fixed investment rule X;. It is simply:

a(X, X1) (V(Xr1) - K) (3.6)
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The objective is now to simply maximize the above with respect to X;. This yields

the first order condition:
— aa(X, X;) (V(X)) - K) = ¢(X, X))V'(X)) (3.7)
Applying equation (3.5), we can rewrite this as:
— (X, X1)g2( X1, X1) (V(X1) — K) = q(X, X1)V'(X)) (3.8)

Interpreting q(X, X;) as the discounting factor, the right hand side of equation (3.8)
can be interpreted as the present discounted value of the marginal benefit of choosing
a higher X, while the left hand side is the present discounted value of the marginal

cost. This ic seen more clearly by dividing equation (3.8) through by ¢(X, X;):

- qz(XI,XI) (V(X[) - K) = V’(X]) (3.9)

The right hand side is the marginal benefit of waiting for a higher X that results due
to the project being more valuable at the point of exercise while the left hand side is
the marginal cost, the firm incurs due to the fact that it must wait longer to start the
project and to receive V(X)) — K.

Figure 3-1 on page 110 lays out the marginal cost and benefit of waiting as a
function of X;. The intersection of the two determines the optimal investment rule
X;. If the vaiue of the firm doesn’t depend on the underlying volatility of the process,
increasing the volatility decreases the marginal cost of waiting while it does not aifect
the marginal benefit.2 In other words, the option value of waiting is now greater
due to the higher volatility of the underlying process so that investment is delayed.
Figure 3-2 on page 111 shows how this increase in volatility will delay the investment.
This comparative static result is arguably the most significant contribution of the
recent literature on irreversible investment. The NPV rule simply states that the

firm should invest when V(X;) — K = 0 or equivalently when the marginal cost of

2This generally implies that the firm has no option values—say to exit for example.
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Figure 3-1: Optimal Investment Under Uncertainty

waiting, given by the left hand side of equation (3.9), is zero. Thus the NPV rule can
be found in Figure 3-1 by locating the intercept of the marginal cost curve with the x-
axis. Clearly, the NPV rule would dictate investing at a lower level of X than is truly
optimal. One can also interpret the NPV rule as a rule that takes the marginal benefit
of waiting to be zero. The NPV rule does not consider the value of the information

that will be revealed in the future.

3.3 A Model of Evolving Private Information

3.3.1 Assumptions of the model

We examine the case where an entrepreneur does not have enough money to
finance a project and must go to an uninformed financial market for funds. The key
assumption we make is that:

ASSUMPTION 1: A state variable X which can be seen by the entrepreneur cannot be
observed by the financial market and also cannot be inferred from observable variables
when the entrepreneur issues securities.

It is best to think of X as a summary statistic of that portion of the firm’s in-

formation that the capital market cannot observe or infer. We could also include
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Figure 3-2: Increased Volatility Delays Investment

information that is observable to everybody, along with the evolving private infor-
mation, but this would unnecessarily complicate the analysis. In papers that do not
consider the possibility of private information, authors have assumed that the under-
lying source of uncertainty is the evolution of cash flow and that current cash flow is a
sufficient statistic for deriving the conditional distribution of future cash flows. In our
model, we can assume that cash flow is observable, but that there is some unobserved
variable affecting its evolution. For example, X could include the possibility of future
product development, the possibility of a law suit against a faulty product, or the
likelihood of developing a technology that reduces costs. The main point is that X
does not have to simply be current cash flow. So one might instead think of X as a
variable that affects future cash flows rather than current. In this section, I lay out
a general model of this form and give an example in the next section.

The entrepreneur has nuv cash on hand and must raise external funds of K to
start the project. The entrepreneur can issue securities that are worth O(X, A)
where A represents the contractual agreements of the security. Although the market
cannot observe X or its future values, the true value of the security will in most
cases still depend on X. The amount the security market is willing to pay for the

asset will be fixed, however, and so cannot depend directly on X. The amount the
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market will pay for the asset also cannot depend on time due to the stationarity of
the problem. The only variable that the market’s valuation will depend on is A,
the contractual agreements of the asset. The value of the security given only the
contractual agreements will be denoted by S(A). There are two potential types of
financial contracts that one can imagine. First, we can consider the case where the
entrepreneur issues a security with the agreement that he/she will invest immediately.
Second, one can also consider an entrepreneur who issues a security today with the
agreement that he/she will invest at a future date with possible monetary transfers
that will occur depending on when the entrepreneur finally invests relative to the date
of the security issue. If the optimal configuration of the plant, such as input choices,
depends on other observable variables that are changing over time (but which we will
not model), the feasibility of this second contract depends critically on its ability to
specify exactly what type of project will be undertaken at the future date as a function
of the observable state variables. Most likely, writing and then enforcing a complete
contingent contract will be very expensive. At the same time, if the entrepreneur can
choose certain configurations of the business which are less profitable but which yield
private benefits to the entrepreneur, this will result in a large deadweight loss in the
potential value of the firm. This view of incomplete financial contracting is developed
by Aghion and Bolton [1]. The main point is that if some decisions must be made at
a future date and a contract cannot specify the action that should be taken for every
realization of the world, the entrepreneur might not make that decision to maximize
the value of the firm.

Although Aghion and Bolton’s incomplete contracts approach utilizes the concept
of moral hazard, a similar story can also be told from the perspective of adverse
selection. One can imagine that there are other types of projects in the economy
some of which are simply pet projects, which have negative NPV but yield some
private benefits to the manager. It may be very difficult to write a contract to rule
out such projects in advance if they are similar enough to the specified profitable
projects. Then many “dishonest” entrepreneurs will approach the market pretending

to have a project as characterized in equation (3.6). If instead the entrepreneur issues
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the security and simultaneously invests as the first type of contract would require,
the capital market can observe the details of the plant and equipment that are being
constructed and can determine whether the project is legitimate or simply a pet
project. With enough “dishonest” entrepreneurs in the economy and limited liability,
the second type of contract becomes impossible to implement. So the question then
is whether it is so difficult to write a contract detailing what kind of project will
be undertaken in the future so that a dishonest entrepreneur would refuse to sign
on. Since the capital market must mostly rely on the entrepreneur for the details of
the project to begin with, without actually observing the setup of the plant, it will
be difficult indeed for the capital market to specify in writing (and enforce) what
constitutes an undesirable project. This type of contract realistically does not appear
to be feasible for the kind of small start-up companies we are considering. For these
reasons we will focus on the contract that requires financing and investing to occur
simultaneously:

ASSUMPTION 2: The entrepreneur issues securities and invests simultaneously.

Whether it be for the theoretical reasons cited above, this assumption at least
seems to hold true empirically for small start-up firms who are trying to find their
initial financing. It should also be noted that relaxing this assumption will in general
not bring us back to the first best world. The problem will then lie in constructing
an incentive compatible contract where the entrepreneur issues the securities at a
given level of X. This will generally not be possible without imposing some ex-post
inefficiencies. No matter what type of contract we allow, the problem will always lie
in generating incentive compatibility.

On the technical side, to make the problem tractable, I assume that the private
information X follows a stationary process (such as an Ornstein-Uhlenbeck process)
with no inaccessible region on the real line* and that the market has steady state
beliefs about the value of the process. This makes the beliefs of the market con-
stant through time and consequently makes the entrepreneur’s problem stationary.

Although, I have assumed that X follows an Ito process, the subsequent calculations

3An arithmetic Ornstein-Uhlenbeck process for example
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will mainly rely on the continuity of the sample paths.

3.3.2 Preliminary Intuition

When the entrepreneur has enough cash to finance a project, he/she balances the
tradeoff between forgoing profits that the entrepreneur could earn by entering imme-
diately against the benefits of waiting for more information. However, in the presence
of asymmetric information where the entrepreneur must raise external financing, the
costs and benefits of waiting are not distributed proportionately between the en-
trepreneur and the financiers. The burden of lost profits is completely borne by the
entrepreneur while the financiers reap part of benefit of the entrepreneur waiting for
more information. Thus while external financing is costly from the entrepreneur’s
perspective, it causes over-investment that results because the entrepreneur finds it
too costly to keep waiting up to the socially optimal level for investment. The en-
trepreneur will ex-ante choose the financial instrument that minimizes the transfer
of the benefits of waiting to the financiers. In this section, I use the tools developed
in Section 3.2 to present a simple analysis of the entrepreneur’s investment decision

under asymmetric information.

3.3.3 Equilibrium-its definition and calculation

We will define a pure strategy equilibrium for the contractual agreements of the
financial security A. To allow comparison to a world with complete information, we
take S(Z, A) to be the value of a security with contractual agreements A and where
the capital market has the information set Z. With complete information X4, the
level of X at which the entrepreneur invests, is includéd in the information set Z. We
define X7 to be the level of X at which the entrepreneur invests. We define N to be
the number of securities issued by the firm. The equilibrium is defined as follows:
Equilibrium

[E1] The entrepreneur mazimizes the following with respect to X 4:

Q(Xi XA) (V(XA) -K+N [S(Ia A) - O(XAv A)]) (310)
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[E2] Total funds must equal K :
N-S(I,A)=K (3.11)

[E3] Zero profit condition in the financial market:

S, 4) = O(Xa,A) ifXel 612)
’ O(X3,A) fX ¢TI '

Condition [E3] distinguishes between the case where the capital market can and
cannot observe X. If the capital market can observe X, then the security will be
priced correctly no matter what level of X, is chosen. If the capital market cannot
observe X, then the security will only be correctly priced in equilibrium, but not off
of the equilibrium path.

Solving for NV, the above conditions for the case of symmetric information is simply

for the entrepreneur to maximize:
(X, Xa) (V(Xa) - K) (3.13)

with respect to X4. This is the same maximization problem as faced by an en-
trepreneur with sufficient funds to finance the project without external financing.
Thus with symmetric information, the entrepreneur invests at the optimal time re-
gardless of the security issued. For the purpose of comparison to the case of asym-
metric information, we note that the first order condition to the above problem can

be written:

- (X3, X3) (V(X3) - K) = V(X7) (3.14)

For the case of asymmetric information, the equilibrium conditions can be combined

to yield the following maximization problem for the entrepreneur:

X, X2) [V (Xa) - K (gg—’;j—;%)] (3.15)
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(It is important to note that the denominator of the last piece has as its argument
X rather than Xy; if it indeed were simply X, instead, we would end up with the
equilibrium for the case of symmetric information.) The first order condition to this

maximization problem is thus:

~ a3, X0 (V) - 1) = Vi) -k (FEED) G
Thus we see that with external financing and incomplete information, an extra term
on the right hand side of equation (3.16) causes the equilibrium to diverge from the
case of complete information. This term represents the marginal increase in the value
of the security resulting from an increase in X-it is the marginal benefit of waiting
that is transferred from the entrepreneur to the security holders. This problem is the
most severe when the security is very sensitive to the level of X or equivalently to the
value of the firm. Because the entrepreneur is not compensated by the security market
for this transferred benefit, this drives a wedge between the total marginal benefits
of waiting and the marginal benefit faced by the entrepreneur. The marginal cost of
waiting, or simply the foregone profits from delayed entry, are completely absorbed by

the entrepreneur. Figure 3-3 on page 116 presents a diagrammatic summary of how

Murginal Cost
& Beneliy

Marginal Cost of
Waiting

Total Marginal Benefit of
Walling

Privatc Marginal Bencfit ol
Waitlng

NI’VRV Xl'c';m Optimal X*
by Entreprencur
Figure 3-3: Investment with Asymmetric Information
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the investment trigger is determined. If the value of the security depends positively
on the value of the firm (call such securities standard securities) and consequently
on X, waiting is a positive externality and will cause the entrepreneur to invest
too early. There is a wedge between the total marginal benefit of waiting and the
private marginal benefit of waiting. For standard securitics, the total marginal benefit
is higher than the private marginal benefit of waiting. The total marginal cost of
waiting, however, is completely borne by the entrepreneur. This problem is the most
severe for securities such as equity, but is still a problem for risky debt as well since
the default risk decreases when the firm enters at a higher lcvel of X.

Ultimately, one would like to issue a security that is unaffected by the value of the
firm (and consequently by X'), but this will not be possible in many cases. The general
conclusion is that as long as the set of securities that can be issued depend positively
on the value of the firm, the entrepreneur will invest too early. With evolving private

information the equilibrium payoff to the entrepreneur is:
a(X, X3) (V(X3) - K) (3.17)

where X} is given implicitly in (3.16). The entrepreneur will choose A to maximize the
above quantity subject to (3.16). This payoff will always be less than the payoff to an
entrepreneur with enough cash to finance the project as long as O'(X*, A) # 0 for all
feasible A, where X is the first best level of X at which to invest and is equivalently
the maximizer of (3.17). We will also see later that the zero profit condition in the
financial market plays a crucial role in the inability of society to reach an optimal
investment policy. This leaves open a role for the social planner to induce optimal
investment by buying the entrepreneurs’ securities at an “unfair” price or equivalently

by imposing a tax on the issuing of securities.
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3.4 An Example

In this section, we present a simple stylized example of the model developed above
for the case where although the realized profits of the firm are observable to every-
body, the entrepreneur observes the future expected growth rate of profits while the
capital market does not. The objectives of this section are two fold. The first is to
show an example of how limited liability causes all feasible securities to be “standard
seccurities”—securities whose value depend positively on the value of the firm. By the
preceeding section, this imnplies that the cash constrained entrepreneur invests too
early relative to an entrepreneur with sufficient funds to pay for the project. The
second objective of this section is to show an example of how it can be the case that
the underlying variable X is not directly discernible to outsiders at the time of in-
vestment. As pointed out before, if X is current cash flow it will clearly be directly
observable by outsiders. If however, the level of X affects future cash flow, but not
current, it will clearly not be observable. The example we develop builds upon the
latter structure.

The project we will consider earns a per period profit of Ry, when it is started.
This will continue for a time, say T periods, at which point profits will either rise to
“R{T > 0 or fall to RF > 0, where RF < R¥ and subsequently remain there forever.
At the time of investment, we assume that only the entrepreneur can observe the
probability of either state occurring which is changing continuously over time. To
put this into the context of the previously developed model, assume that the high
state will only occur if X1 > X~, where 0 is taken to be the time of investment, Xy
is the value of a stationary process X at the time T and X~ is a constant. Now,

define;

H RY
T ﬂ'l = L
mo= [ e Rodt r (3.18)
0 b = Ry
T

Then, the value of the project as a function of X at the time of investment is:

V(Xo) = mo+8 [Prob(Xr > X~|Xo)rf + [1 - Prob(Xr > X~ |Xo)] nf]
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= mo + & [Prob(Xr > X 7| Xo)(nf! — nf) + f] (3.19)

where § = e~"T. Note that V'(X) > 0 since 7 > nl and:

)
o Prob(Xr > X[ Xo) > 0 (3.20)

Thus this project demonstrates a case where the variable X cannot be observed
directly by outsiders at the time of investment. To show how it can be the case that
all securities issued by the entrepreneur end up depending positively on the value of
the firm, we make the following two key assumptions.

Assumption We assume that 7 + énff > K while mp + dnF < K so that the project
is a risky one, but potentially profitable in expectation.

Assumption There is limited liability. In other words, the entrepreneur’s utility cannot
be decreased beyond the point he/she has no money so that there is no imprisonment
or other non-pecuniary punishment.

The first assumption rules out the possibility that the entrepreneur can simply
issue riskless debt. If the project always at least paid for itself, there would be no
problem in simply borrowing money from a bank at the risk-free rate. The second
assumption, which is quite natural, is stated more for the purpose of emphasizing
the difficulty of aligning the interests of the security holders with the entrepreneurs.
We will show in what follows that the security issued by the entreprencur will always
depend postively on the value of the firm.

A financial contract can be summarized by what it agrees to pay out from the
time of investment t = 0 to t = T' and what it pays out in the low and high states
from time ¢ = T to t = oo. Take a contract A. Denote by do(t, A) the flow payment
at time t for t € [0,T] and by d;4(t, A) the flow payment at time ¢ for t € [T, 00]
when the high state is atiained and d, (¢, A) the flow payment at time ¢ for t € [T, oo

wheh the low state is attained. Define:

DH = [Tertd y4(t, A)dt

(3.21)
DE = [Fetdy.(t, A)dt

T
Do = /0 e~"tdo(t, A)dt
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Then by simplifying as in (3.19), the value of the contract A as a function of X is:
O(Xo, A) = Do + & [Prob(Xr > X~|Xo)(Dygr — Di1) + Dif] (3.22)

The financial contract also must be feasible, in that it cannot promise more than the
firm can pay out. Defining N to be the number of shares that are issued, it must be
that: N Dy < m, N D\y < mpyg and N Dy < 7y

For total funds to equal K, it must be that N O(X}, A) = K. We can now show
the following:
Proposition: O'(X, A) > 0 for all A where N O(z, A) = K for some z.
Proof: First note that:

N O(Xo,A) = N Dy+ 6N Dy, + JPTOb(XT > X_|X0) N (DIH - DIL)
< o+ 6my, + 8Prob(Xz > X~|Xo) N (Disr — Dyr)

< K+ 6Prob(XT > X_I_Xo) N (DlH - D1L) (323)

Since probabilities are always positive, N O(X, A) will never equal K unless D —

D{ > 0. But we also know that:

0'(Xo,A) =6 (aiXoProb(XT > X"IXO)) (Diy — D11) (3.24)

and we know that the first 2 terms are positive as well as the third, which we showed
by virtue of equation (3.23). Thus O'(X, A) > 0if N O(z, A) = K for some z. O
This proposition thus implies that the entrepreneur will always overinvest since
we have seen in the previous section that O'(X, A) > 0 implies that the entrepreneur
will invest at a level of X that is too low-i.e. we will end up with early investment.
Essentially, the point is that the entrepreneur must pay more in the high statte than
in the low state if te security holders are to break even. But if the security holders
receive more in the high state than in the low state, part of the benefit of waiting
transfered from the entrepreneur to the security holders. Thus waiting becomes a

positive externality, and consequently there will not be enough of it.
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3.5 The Social Planner’s Problem and the
Mispricing of Securities

As long as the securities that can be issued by the entrepreneur are sensitive to the
value of the firm, or more specifically O'(X*, A) # 0 for all feasible A, the entrepreneur
will not invest at the optimal level of X. An interesting question to ask at this juncture
is how a social planner, faced with the same informational constraints as the capital
market, could induce the entrepreneur to invest at the optimal level of X? If we ignore
distributional issues, there are two straightforward solutions. First, the social planner
could simply give the entrepreneur K so that the entrepreneur now has enough cash
to finance the project without raising external financing. Alternatively, the social
planner can act as the sole provider of external finance and deliberately under-price
all securities that the entrepreneur issues. To see this consider again equation (3.10),
except replace S(Z, A) with Sp(A), the price that the social planner will pay for
the securities A issued by the entrepreneur. Also simplify the equation using (3.5)
and consider the case where Sp(A) must be determined without observing X so that

8S/0X 4 = 0:

~n(X X3 (VOX3) - K + (25 ) 199(4) — O3, )
- VX3 - (g0 KR A (3.25)

This can be rewritten:

—q2(X3%, X3) (V(X3) - K)

= V) + (57 ) @O0 XRISH(A) - 01X, A)] - O (X3, 4) (3.2

So the social planner can induce the entrepreneur to invest at the optimal X as long
as the second piece on the right hand side is equal to zero. This can be achieved by
setting:

Sp(A) = O(X*, A) - (M)

~ (X, X) 3:2)
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subject to the constraint that Sp(A) > 0, or else the entrepreneur will not be
able to raise any money. The denominator on the right hand side is positive since
q2(X*, X*) < 0. Consequently, we see that for standard securities where O'(X, A) >
0, the social planner will want to underprice the security to induce optimal invest-
ment. Under this regime, the entrepreneur will invest at X*, the socially optimal
level at which to invest. By under-valuing the entrepreneur’s securities, the social
planner reduces the marginal cost of waiting and thus induces optimal waiting. For-
going an investment today is not as costly anymore simply because the investment is
less attractive. By combining (3.27) and (3.10), we find that the expected payoff to

the entrepreneur will be:

e+ (shg) (2850

= ¢(X,X") -V(X") ~K+K (qQ(X',X*) [Ml + 1) —1} (3.28)

O'(X", 4)

So that if the social planner allows the entrepreneur to choose which security he/she
will issue, since X is fixed, the entrepreneur will simply choose A to minimize %4'(%

Of course another way to implement this regime is to impose a tax on issuing se-
curities creating a gap between the true value of securities and what the entrepreneur
receives in return. If we re-define S(A) as the amount that the entrepreneur receives
for the securities net of taxes, then S(A4) = O(X}, A) — 7(A), where 7(A) is the tax
imposed on issuing securities of type A. By setting 7(A4) = —O0'(X*, A)/g(X*, X*),
the social planner can achieve the same social optimum.

The solution to the social planner’s problem is probably more interesting in the
context of how such “solutions” may already exist in the economy without government
intervention. For example, a monopolist in a local capital market, such as a rural
community bank, may underprice it’s clients securities. Other ways in which such
monopoly power can arise is discussed in Rajan [12]. This monopolistic provider of
capital may actually improve social welfare by discouraging hasty investments by the

entrepreneurs. Alternatively a firm may voluntarily choose to enter into a exclusive
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relationship with a bank that underprices it’s debt, but in return deliver a flow of
services at a discount. This relationship forces the entrepreneur to wait for more
information before investing and increases the total pie to be split among the bank
and the firm. Of course, the firm will have to be compensated for allowing the bank

to underprice its securities.

3.6 Multiple Firms and Piggyback Financing

Perhaps the most interesting prediction of the theory presented so far is that firms
that need to raise the most external financing will be the ones that will jump in early
into a market without waiting for much information, while firms that have sufficient
cash on hand find it worthwhile to wait and see how their project fairs over time
before committing to it. In empirically examining this idea, however, one may want
to look at the order of entrance into an industry based on how much cash a firm has
on hand (normalized in some manner). This implicitly assumes that each firin has a
similar underlying process X which represents its evolving private information. So a
firm with more cash on hand will invest after others have entered.

The above analysis, however, ignores the signaling role of the firm with sufficient
cash to invest without outside financing. If other entrepreneurs in the industry know
that a cash rich firm will enter later, they have an incentive to piggyback on this
firm and wait until this firm has issued securities before issuing their own. They will
wait for market sentiment on their industry to pick up. This sentiment will pick up
significantly when a cash rich firm enters the industry and in effect signals that X
is high. The other entrepreneurs will wait for this credible signal to be sent before
entering themselves. Our prediction in this case is that a cash rich firm will be the
first to issue and will be followed soon after by firms that must raise more external
financing. This section thus should be considered as a caveat to the main thesis of
the paper.

If some firins are not sure whether a cash rich firm will ever enter the industry,
however, the piggyback equilibrium may break down. The cash strapped firms are

not willing to wait for a cash rich firm if it may be in vain. The market sentiment
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on this industry’s securities will never pick up if this cash rich firm doesn’t arrive. In
this case, the cash strapped firms may give up waiting and invest at the level of X
otherwise optimal for them in the absence of a cash rich firm. It is in this equilibrium
that we expect the predictions of our paper to be carried out. The big firms, that tend
to have enough cash to invest, will wait longer before starting a project than small
start-up companies that are financed almost exclusively with new outside capital.
We will show an example of how this could occur. First we need a lemma:
Lemma: If at time 0 it is common knowledge that X = X*, where X* is the first
best level of X at which to invest, but that after time 0 the capital market cannot
observe the further evolution of X, then the entrepreneur will still invest at time 0
with X = X"
Proof: Detining 7* = 0 = {inf t|z(t) > X"}, we know that:

r* =0 = argmax, E [e7""[V(X()) - K|X(0) = X*| (3.29)

The cash strapped entrepreneur, however, wants to maximize the following with re-
spect to an optional time 7 (the key to using optional times is that it allows strategies

that are time dependent):

E le_" [V(X('r)) ~K+ ( S(f A)) (S(r, A) — O(X (1), A))] 1X(0) = x*] (3.30)

This can be broken into two pieces:

E [e""[V(X(r)) - K]|X(0) = X*|

+E [e—"'s”(f_A)(S(T' A) — O(X(r), A))|X(0) = X'] (3.31)

Because the capital market and the entrepreneur have symmetric information at time
0, the second piece, which is just the expected gain from financing activities, must be
equal to zero. No matter what optional time strategy is chosen by the entrepreneur,
in equilibrium, the net expected gain from financing activities will be zero as of time

zero when both parties have symmetric information. However, choosing a 7 such

124



that Frob(r = 0) < 1 yields a strictly lower expected payoff via the first piece than
choosing 7 = 0. O

Now, if an entrepreneur knows that another entrepreneur with the same underlying
X, but who has enough cash to finance the project exists with probability 1, then
the cash strapped entrepreneur will wait for the cash rich entreprencur to invest and
then follow suit immediately. When the cash rich entrepreneur enters, the capital
market knows that X = X*. The cash strapped firm then can issue his/her securitics
immediately for their fair value and invest at the optimal level of X —this assured by
the lemma above.

If the existence of a cash rich firm is uncertain, then the cash strapped firm may
invest as though the cash rich firm didn’t exist. We assume that as in the example
of Section 3.4, that all contracts are such that O'(X, 4) > 0. Define the probability
that there exists an entrepreneur with cash on hand greater than K to be P:
Proposition: There exists a P > 0 such that a firm with no cash will invest as
though the cash rich firm did not exist. This is supported by the out of equilibrium
belief that if a cash rich firm invests right before a cash strapped firm, that at that
point in time X = X*.

Proof: By not waiting for the cash rich entrepreneur to appear, the payoff to the

entrepreneur is:
a(X, X3) [V(X}) - K] (3.32)

where X} < X* since we assumed that O'(X,A) > 0 for all A and X. The en-
trepreneur can deviate from this strategy by waiting until X* to see if a cash rich
firm arrives. If it does not, the market believes that the entrepreneur did not deviate
from the no waiting strategy. If the cash rich firm does invest, however, the market

will believe that X = X* at that time. So the expected payoff from deviating is:

Pa(X, X")[V(X*) - K]
+(1 - P)g(X, X*) [V(X‘) “K+K [S (

A) - O(X‘,A)” (3.3

5(A)
where S(A) < O(X*, A) since the capital market thinks that X = X3 < X*. We can
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simplify the above to ohtain:

K

(X, X*) [V(X‘) - K+ [m] (S(A) -O(X*, A))] +A (3.34)

where:
_ K O(X*, A) — S(A) .
2= (sa) [ 50 (3:39)

where the second and third pieces of A are strictly positive. Since X'} is the maximizer
of:

£(2) = a(X, 2) [V(z) K+ [g{;—)[sm) _ o, A)]” (3.36)
it must be that:
F(X3) > F(X7) (3.37)

so that there exists an € > 0 such that f(X}) > f(X*)+e¢. The expression in (3.34) is
simply f(X*) +¢, so that to show there exists a P such that deviating is not optimal,
all we need to do is set P such that A < € so that f(X*) + A < f(X}). Because the
second and third terms of (3.35) are positive, we can thus choose P to be positive as
well. Since we need only choose A < ¢, we can also choose P < 1. O

So if the probability of a cash rich firm arriving is 1, then the equilibrium will
be for cash strapped firms to piggyback, while if the probability of a cash rich firm
arriving is small, then cash strapped firms will invest as though the cash rich firm did

not exist.

3.7 Conclusion

We have provided a first step in examining how the evolving nature of private infor-
mation can affect investment and corporate financing decisions. With most standard
financial instruments, a firm with no cash on hand will tend to make a hasty decision
and invest too early. This results from the fact that while the entrepreneur bears all
the cost of foregone profits today in waiting for more information, part of the benefit

of waiting accrues to the new securities holders. A social planner may try to solve
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this problem by either underpricing the securities issued by a firm or imposing a tax
on security issues. When there are multiple firms with the same underlying source
of uncertainty, we can end up in a situation where firms with less cash on hand will
invest at the same time as a cash rich firm. If on the other hand, the cash strapped
firm does not think that a cash rich firm is likely to enter this market, we may sce
instances ex-post where the cash strapped firm enters a market earlier than a cash

rich one.
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