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Abstract

The presence of superimposed bedforms, where smaller bedforms exist on larger bedforims,
is ubiquitous to energetic tidal environments. Due to their wide range in scale, it is difficult
to simultaneously observe these features over tidal timescales. This thesis examines the
morphological response of superimposed bedforms to a tidally reversing flow using novel
instrumentation and platform systems. A method is outlined in chapter 2 to expand the
functionality of low-mounted sidescan sonars by utilizing sonar shadows to estimate bedform
height and asymmetry. Empirical models are generated to account for realistic variability
in the seabed and the method is validated with bathymetric observations of wave-orbital
ripples and tidally reversing megaripples. Given the high temporal and spatial resolution of
seafloor frame mounted rotary sidescan sonars, the dynamics and evolution of the bedforms
over an approximately 40 m x 40 m area can be resolved. In chapter 3 the method is applied
to data of superimposed bedforms at Wasque Shoals, an ebb delta off the southeast corner of
Martha's Vineyard, MA. These data reveal the small, superimposed bedforms reversing their
asymmetry with the flow while the larger bedforms on which they reside remain oriented in
the direction of the dominant flow. Similar bedform dynamics are observed at Nauset Inlet,
a dynamic inlet system, on Cape Cod, MA using an autonomous jet-powered kayak, the
Jetyak, equipped with a bathymetric swath sonar. The time needed for bedform asymmetry
to reverse in the presence of a tidal flow was estimated with a geometric bedform model
that incorporates an empirical sediment transport rate. The morphological lag time from
the observations agree well with the geometric model with larger bedforms and slower flows
resulting in a longer lag time. Finally, the migration of these superimposed bedforms is
considered in chapter 4. Data from the rotary sidescan sonar at Wasque Shoals capture
the interaction of smaller bedforms, or megaripples, with a dune. The net convergence of
megaripples on the tidally dominate lee face of the dune suggests that the smaller bedforms
serve as an intermediate step between grain-scale transport processes and larger scale dune
migration.

Thesis Supervisor: Peter Traykovski
Title: Associate Scientist in Applied Ocean Physics and Engineering
Woods Hole Oceanographic Institution
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Chapter 1

Introduction

Sub-aqueous bedforms are the accumulation of sediment in ridges and troughs that are

formed by the interaction of waves and currents with an erodible seabed (Fredsoe and

Deigaard, 1992; Nielsen, 1992). They range in scale from small ripples with wavelengths on

the order of centimeters to ridges and dunes which can have wavelengths extending from

meters to kilometers (Ashley, 1990; Soulsby, 1997; Dalrymple and Rhodes, 1995). The abil-

ity of bedforms to steer flow, influence seabed friction, and effect the transport of sediment

makes observing bedforms crucial to understanding coastal systems (Ashley, 1990; Nielsen,

1992; Johnson, 1916).

The interaction of bedforms with their surroundings is inherently a multi-scale process

and has been studied at a range of scales, from individual sediment grains to fields of

bedforms (Siau, 1841; la Beche, 1851; Johnson, 1916). At the grain-scale, sediment is trans-

ported when the shear stress imparted by the flow on the seabed exceeds the stabilizing

forces (Engelund and Fredsoe, 1982; Shields, 1936). The seabed is rarely flat and through

the transport of sediment, bedforms are initiated by either a defect in the seabed, common

in slower flows, or by the instantaneous formation of a bedform pattern which is prevalent in

stronger flows (Venditti and Church, 2005). Once established, bedforms grow exponentially

until reaching an equilibrium height and length (Venditti and Church, 2005; Engelund and

Fredsoe, 1982). In unidirectional flows, grain-scale processes can result in bedforms migrat-

ing downstream as sediment moves up the downstream face of a bedform before reaching

the crest, avalanching, and depositing into the trough (Simons et al., 1965).

Past studies have also been conducted at the scale of individual bedforms when consid-
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a) b)

Ripples ... Dunes.. .....

c) d)

Megaripples . . . Superimposed Bedforms

Figure 1-1: Schematic of different bedform types. a) Ripples are small bed features compared

to the water depth and tend to scale with grain size. b) Dunes are large sand features that

scale with water depth and influence the free surface. c) Megaripples are larger than typical

ripples but smaller than dunes and do not scale with water depth. d) Superimposed bedforms

are bedforms with smaller ripples or megaripples on top of larger dunes.

ering their effect on the surrounding flow. Bedforms cause an increase in the friction, or

roughness, the flow experiences by increasing the form drag through flow separation (Fred-

see and Deigaard, 1992). The increase in seabed roughness can dampen wave energy, slow

currents, and influence near-bed turbulence, all of which also controls sediment transport

(Hume et al., 2000; Fredsoe and Deigaard, 1992). When bedforms become large relative to

the water depth they can redirect currents, refract and shoal waves, and accelerate flow over

the crests. Understanding the geometry and dynamics of bedforms is therefore important

for maintaining navigable channels and understanding sediment supply to coastlines, the

stability of pipelines, and the surrounding topographic evolution such as the formation of

shore-face connected sand ridges (Falques et al., 1998).

Bedforms are classified based on their size, shape, and the flow condition in which they

are found (Dalrymple and Rhodes, 1995; Ashley, 1990). Historically, bedforms have been

characterized as either ripples, dunes, or antidunes (Kennedy, 1969; Fredsoe and Deigaard,

1992), but various other names have been used as well due to the complex shape and size

of bedforms found in nature (Ashley, 1990; Venditti et al., 2005). Specifically, in tidally

energetic environments the interaction of the unsteady, reversing currents, changes in wa-
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ter depth, and waves produce bedforms of multiple superimposed scales. For consistency

throughout this thesis, the term "dune" will be used to refer to the large, 10 m to 100 m

wavelength features whose size is primarily dependent on water depth (Engelund and Fred-

soe, 1982). The term "megaripple" will be used to describe the approximately 1 m to 5 m

wavelength bedforms that are superimposed on the dunes. Megaripples represent an inter-

mediate scale of bedforms as they are larger than typical ripples but do not scale with water

depth like dunes (Fig. 1-1) (Nielsen, 1992; Soulsby, 1997; Amos and King, 1984; Boothroyd

and Hubbard, 1975; Berne et al., 1993).

Since as early as the 1950s, the superposition of bedforms has been observed from serial

echo soundings (Pretious and Blench, 1951). Since then, these bedforms have been mapped

through ship-based echo soundings, sidescan sonars, and, more recently, multibeam sonars

(Allen and Collinson, 1974; Bokuniewicz et al., 1976; Langhorne, 1973; Knaapen et al., 2005).

These observations have shown that the larger dunes remain oriented towards and slowly

migrate in the direction of the dominant tidal flow, whereas surveys taken during maximum

ebb and flood reveal smaller bedforms reverse asymmetry with the tides (Bokuniewicz et al.,

1976; Winter et al., 2008; Kwoll et al., 2014). Although these studies provide accurate maps

of the bedforms and information of their asymmetry and long timescale migration, they lack

detail on bedform dynamics throughout the tidal cycle.

The advancement of battery and data storage have enabled instruments to be mounted

underwater on a sea-floor frame, providing high temporal resolution over both long and

short timescales, and improving our ability to observe bedform dynamics (Irish et al., 1998).

Using a ripple profiler mounted on a frame, Hoekstra et al. (2004) observed ripples reversing

their asymmetry with the flow. Given the short 3.5 m length and 1D profile from the ripple

profiler, this study was not able to capture bedforms larger than approximately 3 m and

errors exist when the bedforms were not oriented perpendicular to the profile (Hoekstra

et al., 2004). Rotary sidescan sonars have provided 2D images of the backscatter intensity

of the seabed, but past studies have been limited to only a 4 m radius image of the seabed

which has restricted observations to only small scale features (Irish et al., 1998; Rubin et al.,

1983). Additionally, sidescan sonars provide an image of the seabed based on backscatter

intensity but do not have any bathymetry or depth information associated with the image.

Therefore, while frame mounted instruments can resolve tidal processes, they are limited in

spatial extent for both ripple profilers and rotary sidescan sonars with sidescan sonars also
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lacking depth information.

With new observational techniques, we have been able to capture both the dynamics

of multiple scales of bedforms and the surrounding flow on tidal timescales. Using a frame

mounted rotary sidescan sonar that can image the seabed over a 20 m radius, an area that

is larger than has previously been possible, we have been able to simultaneously observe the

interaction of different scales of bedforms. The utility of a rotary sidescan sonar is broadened

in chapter 2 where a method to estimate bedform height and asymmetry from the shadow

pattern on both sides of the sonar is developed. This method accounts for the periodic

structure of bedform fields and the projection of the shadows on adjacent bedforms. We

validate the method with bathymetric observations of wave-orbital ripples, with wavelengths

ranging from 0.3 m to 0.8 m, and tidally reversing megaripples, with wavelengths from 5 m

to 8 m. In both cases, bathymetric measuring sonars were deployed in addition to a rotary

sidescan sonar to provide a ground truth.

Chapter 3 applies the method outlined in chapter 2 to a dataset at Wasque Shoals, a

tidally energetic environment with superimposed bedforms off of the southeast corner of

Martha's Vineyard, MA. The time needed for bedform asymmetry to equilibrate with the

reversing tidal flow is examined and compared to a geometric model. In addition to the

sea-floor frame, the use of autonomous vehicles as survey platforms have paved the way for

novel datasets of multiple scales of bedforms, including autonomous surface vehicles (ASV)

and small unmanned aerial vehicles (sUAV). The lag time of superimposed bedforms is also

observed with data collected with an ASV and sUAV at Nauset Inlet, located on Outer Cape

Cod, MA. Finally, in chapter 4, megaripple and dune migration at Wasque Shoals is analyzed

where the differential migration of the megaripples along the dune give rise to a theory of

the interaction of superimposed bedforms. Overall, the principle contribution of this thesis

is increased understanding of the morphological response of superimposed bedforms to a

tidally reversing flow using advances in observational techniques.
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Chapter 2

A method to quantify bedform height

and asymmetry from a low-mounted

sidescan sonar

This chapter was previously published as Jones and Traykovski (2018) and is governed by

the below copyright policy.

@Copyright 2018 American Meteorological Society (AMS). Permission to use figures, ta-

bles, and brief excerpts from this work in scientific and educational works is hereby granted

provided that the source is acknowledged. Any use of material in this work that is de-

termined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the

conditions specified in Section 108 of the U.S. Copyright Act (17 USC 108) does not require

the AMS's permission. Republication, systematic reproduction, posting in electronic form,

such as on a website or in a searchable database, or other uses of this material, except as

exempted by the above statement, requires written permission or a license from the AMS.

All AMS journals and monograph publications are registered with the Copyright Clearance

Center (http://www.copyright.com). Questions about permission to use materials for which

AMS holds the copyright can also be directed to the AMS Permissions Officer at permis-

sionsdametsoc.org. Additional details are provided in the AMS Copyright Policy statement,

available on the AMS website (http://www.ametsoc.org/CopyrightInformation).
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2.1 Introduction

Bedforms have been observed from a variety of platforms (ship-based and underwater frames)

and instruments (optical and acoustical). In order to document bedform dynamics and evolu-

tion, both high temporal and spatial resolution data are required. Ship-based measurements

with modern multibeam sonars can provide spatial resolution of approximately 10 cm when

taken in shallow waters (-10 m). This is sufficient to measure bedforms on the order of 1 m

or larger, however, it is difficult to capture smaller bedforms. Ship-based measurements are

also limited temporally as repeated surveys are difficult and expensive especially on short,

tidal timescales or during storm events. To address these limitations, sidescan sonars have

been mounted on underwater frames and rotated 360 degrees to obtain a circular image of

the backscattered intensity of the seafloor (such instruments are referred to as rotary sides-

can sonars (Irish et al., 1998; Hay and Wilson, 1994; Rubin et al., 1983)). Unlike the 10 cm

resolution of multibeam sonars, rotary sidescan sonars can have 2 cm resolution over a 40 m

x 40 m area and at very high temporal (minutes to hourly) resolution. Due to their ability

to consistently survey the same area over long periods of time, studies with rotary sidescan

sonars are able to resolve temporal bedform dynamics.

Although sidescan sonars provide an image of the seafloor, they are unable to obtain

direct measurements of seafloor elevation. Recent developments in image processing have

enabled backscatter intensity to be inverted to obtain seabed elevation maps using an image

model based on surface roughness scattering strength (Coiras et al., 2007; Tang et al., 2009;

Nishimura, 1997). In near-shore environments where the water is shallow and bedforms are

ubiquitous due to ample sediment supply, waves, and currents, sensors are often mounted

close to the bed. Given these shallow depths and low grazing angles, shadows form away

from the sonar as bedforms block the acoustic waves from reaching the seafloor behind them

(Blondel, 2009; Reed et al., 2003). Except for a very limited area below the sonar that does

not contain shadows, the backscatter intensity inversion methods become ineffective as it is

based on an assumption of full insonification of the seabed. This is especially problematic

with larger bedforms (A > 1 m) as only one or two bedforms may be present in the non-

shadowed area leading to poor statistical estimates.
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Previous efforts have revealed methods to estimate object heights, such as mines, from

sidescan sonar shadows, however, these methods typically assume a flat seabed with uninter-

rupted shadows (Reed et al., 2003; Doherty et al., 1989; Chew et al., 2007). This flat seabed

assumption is not applicable to estimating bedform height as bedforms typically occur in

sets where the shadow cast from one bedform is truncated by the subsequent bedform. This

shortening of the shadow length reduces the apparent bedform height. Previous work has

been conducted on estimating bedform heights from sidescan shadows, however, most of

this work provides limited details and assumptions on how these estimates were obtained

(Bouma et al., 1980; Green, 1986). In Lonsdale et al. (1972) a cross-profile of the bedforms

suggest a triangular geometry was used in estimating dune height from shadows where the

lee slope was additionally estimated from the maximum slope of the shadowed ray. Depend-

ing on the horizontal location of the bedform relative to the sonar, the lee slope may be

underestimated when using the maximum shadowed ray slope as the lee slope.

This method contributes to this body of knowledge by utilizing sidescan acoustic shadows

to explicitly and directly estimate bedform height and asymmetry, validating this method

against independently measured bedform parameters, and providing sensitivity analyses on

the assumptions made. First, we describe the geometric model used to derive the method

assuming triangular bedforms on a flat seabed and known horizontal range. We then discuss

the effects of realistic variability, including crest sharpness, a sloping seabed due to scour,

and approximating the horizontal range given the assumption that the sonar is mounted

significantly higher than the seabed perturbations. Theoretical bedform fields are generated

that incorporate this variability and the error computed when assuming the simplified ideal-

ized bedform configuration. Empirical models are fit to the error and used to correct for the

variability. Sensitivity analyses are also performed on the assumption of uniform parame-

ters. The method is then validated with field data in which both sidescan sonar images and

bathymetry are obtained. This validation took place in locations with wave-orbital ripples

and tidally reversing bedforms, features that do not scale with water depth like dunes, but

are larger than typical ripples, to demonstrate the performance of the method on different

types of bedforms.
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Table 2.1: Table of symbols

B length of bright return
c horizontal distance from crest to trough of a bedform

d50  median grain diameter
h bedform height
Hi sonar height

I reference to geometry to the left of the sonar
L distance from sonar to start of shadow
m ray slope
r reference to geometry to the right of the sonar

R slant distance from sonar
S length of shadow

Xcrit critical distance from sonar for sinusoidal bedforms

Xsonar maximum range of the sonar
X horizontal distance from sonar

XL non-dimensional critical distance for sinusoidal bedforms

y height shadow intercepts subsequent bedform
z seabed elevation
a bedform asymmetry

#3 coefficients for empirical models of error
~y coefficient for recommended sonar height from seabed
A bedform wavelength
0 angle of seabed for scour pit

2.2 Geometric model

2.2.1 System geometry

Rotary sidescan sonars transmit a fan of acoustic waves and record the intensity of the

reflected, or backscattered, returns (Klein, 2002). The location of this intensity is recorded

in units of "range" distance, based on the time it takes an echo to leave the transducer, hit

a target, and return to the sonar. The distance from the transducer to the target is the

"slant" range, R (Fig. 2-1). Therefore, objects at the same range but different elevations will

be recorded at the same location. If the seabed bathymetry, z(x), is known, the horizontal

range, X, can be computed from the slant range given the height of the sonar from the

seabed, Hi:

X =/ 2 - (Hi - z(x)) 2 (2.1)
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However, because rotary sidescan sonars are imaging sonars which only provide backscat-

ter intensity not depth, the seabed elevation, z(x) is usually unknown. By assuming the sonar

is mounted significantly higher than the elevation of seabed perturbations (Hi >> z(x)), or

that the range is much larger than the sonar height (R >> Hi), Eq. 2.1 can be simplified

to the following:

X = VR2 _ H2 (2.2)

in which the horizontal range, X, is no longer a function of z(x), and will therefore

be referred to as the "depth independent range". This approximation is valid for most

instrument deployments, and will be used to compute the horizontal range needed in the

method described below. The sensitivity of the method to this assumption is discussed in

Section 2.3.3.

2.2.2 Single triangular bedform

As demonstrated in existing literature, Reed et al. (2003); Doherty et al. (1989); Chew et al.

(2007), the height of a single object on a flat seabed can be explicitly determined from the

geometry of the system. Although the height can be computed when there is one bedform

present on a flat seabed, the bedform asymmetry cannot be determined. Given the height

of the sonar, Hi, the distance of the object from the sonar, L, and the length of the shadow,

S, the height can be explicitly determined (Fig. 2-1):

H2  h
= - h (2.3)L +S S

This holds true for both the horizontal range measurements (LH and SH), and the slant

range measurements (LS and Ss) as depicted in Fig. 2-1.

2.2.3 Multiple triangular bedforms

It is unlikely for a single bedform to exist on a flat seabed given feedbacks between bot-

tom perturbations, the movable seabed, and the overlying flow. Due to its influence on

the flow, a single bedform will decrease the bed shear stress downstream of the bedform,

resulting in the downstream deposition of sediment, and the generation of a secondary bed-

form (Bagnold, 1946; Dalrymple and Rhodes, 1995). As this process repeats itself, a field
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Figure 2-1: System geometry and backscattered intensity of a flat seabed with a single
bedform present. The difference between horizontal and slant range is depicted in the
system geometry as well as the echo-return strength. The horizontal range, or horizontal
distance from the sonar to an arbitrary location, is denoted as X while the slant range to
this same location is represented by R and is a function of X, the height of the sonar, Hi,
and the height of the seabed at the location of interest, z(x). The difference in backscatter
intensity of slant and horizontal range is depicted in the plots of range versus returned echo
strength. In these plots, S is the length of the shadow caused from the bedform intercepting
the acoustic wave and L is the distance from the sonar to the start of the shadow. The
subscripts indicate whether these distances were obtained using the horizontal (subscript
H) or slant (subscript S) range.

of bedforms form, and the lengths of bedform shadows become intercepted and shortened

by subsequent bedforms (Fig. 2-2) invalidating Eq. 2.3. By assuming a field of uniform,

triangular bedforms on a flat seabed, individual bedform heights as well as asymmetries can

be determined. Similar to the single bedform case, the geometry of the system is used to

obtain a relationship between bedform shape and the shadow pattern:

H - y h - y
L+ y h y(2.4)L + S S

where y = h(c - B) - c- 1 is the height at which the shadow intercepts the subsequent

bedform, B A - S is the length of brightness or strong return, and c is the horizontal

distance from the bedform crest to the trough, closest to the sonar (Fig. 2-2). Because A and

c are defined based on horizontal distances, the quantities L, S, and B are computed using
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Figure 2-2: Geometry to determine bedform height (h) and asymmetry (ae) when multiple
triangular bedforms are present. The same notation is used as in Fig. 2-1 with additional
parameters being defined as the wavelength (A), the distance between bedform trough and
crest facing the sonar (c), and the height on the adjacent ripple where the shadow intersects
(y). The length of c facing the sonar varies depending on the side of the sonar considered
where cr is the length of the base facing the sonar on the right side of the sonar and cl is
the length of the base facing the left side of the sonar.

the horizontal depth independent range in Eq. 2.2 as opposed to the slant range. Also, while

S and B are directly related to one another given a uniform wavelength, both measurements

are maintained in this method as the assumption of a uniform wavelength is not always true,

especially for field data. It is therefore recommended that users compute B directly from the

length of the bright return of the sonar. Simplifying Eq. 2.4 and substituting the expression

for y, we relate the shadow pattern directly to the bedform height and c, which is a measure

of bedform asymmetry:

h S
(Hi - h)c BL

When there are multiple bedforms, Eq. 2.5 becomes a system of equations with two

unknowns for each bedform: h and c. If at least two bedforms are present such that there

are two measurements of S, B, and L, the height and c can be directly computed given the

two equations and two unknowns, however, variability in field data results in poor estimates

with only two bedforms.

The estimates can be improved for asymmetric bedforms if the shadow pattern is ob-

tained on each side of the sonar as one face of the bedform is illuminated on one side of the

sonar while the other face of the bedform is illuminated on the other side of the sonar. This

results in a different shadow pattern on each side. On the right (r) side of the sonar Eq.

2.5 becomes h/((Hi - h)cr) = Sr/(BrL,), and on the left (1) side of the sonar it becomes

h/((Hi - h)cl) = S1/(BL). Defining the geometry based on each side of the sonar as op-
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posed to flow direction is necessary to quantify bedform reversal in tidal flows where the lee

and stoss side change as the definition of downstream changes.

By assuming that all bedforms have the same height and asymmetry, Eq. 2.5 for each

side can be combined into a single equation relating the lengths of the two bedform bases

to the shadow pattern:

Cr _ Br Lr Si (2.6)
c- Sr BILI

Because cr + c1 = A, Eq. 2.6 can be simplified further, and written in terms of an

asymmetry parameter, a = cr/A, that ranges from 0 to 1 with symmetric bedforms having

an a = 0.5. This parameter is similar to the asymmetry parameter defined by Clifton and

Dingler (1984),Lefebvre et al. (2016), and Haque and Mahmood (1985), however, instead of

defining the asymmetry as f/A (here 3 is the downstream distance from crest to trough), a

is defined based on a prescribed direction to permit the quantification of bedform orientation

reversals:

BrLr
a=Cr -A - c1 _ ___(2.7)A A - B Lr + BL(

Sr Si

The bedform shadow length, S, brightness length, B, and distance from sonar, L, are

obtained for each bedform from the rotary sidescan sonar imagery as discussed in Section

2.4.2. By assuming that all bedforms have the same height and shape, the ratio S/(BL)

is the same for the bedforms on each side of the sonar (Eq. 2.5). Therefore, for a field of

uniform triangular bedforms on a flat bed, bedform asymmetry can be estimated if at least

one bedform exists on each side of the sonar, this bedform casts a shadow, and the end of

that shadow is also captured by the sonar. If shadow information exists for more than one

bedform on each side, then there are multiple estimates for S/(BL). To get a single estimate

of the asymmetry, a, it is necessary to combine the estimates. We have chosen to use the

median as our measure of central tendency because it is robust to outliers.

After computing bedform asymmetry, the height of each bedform can be estimated by

solving Eq. 2.5 for h; however, separate equations are required for each side of the sonar

when the bedforms are asymmetric as each side has a different value for c (Eqs. 2.8 & 2.9):
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hr= __ H (2.8)

h, = Hi (2.9)
S1((1-)A)

2.3 Error correction and sensitivity analysis

In the idealized case of theoretical triangular bedforms on a flat seabed with a known

horizontal range, the estimated bedform height and asymmetry from Eqs. 2.7, 2.8, and

2.9 agree with the true prescribed values. However, a flat seabed of uniform triangular

bedforms is not realistic. An empirical error correction was obtained for three realistic

variations: crest sharpness, a scoured seabed, and approximating the horizontal range as

the depth independent range. For each variation, a theoretical bedform field based on

realistic parameters was generated, and the height and asymmetry computed. The error

was obtained given this estimated parameter and the true parameter. An empirical model

was then fit to the error to be applied after estimating the parameters as a correction to the

variability. Each variability component was considered individually with the interaction of

all variability configurations addressed in Section 2.3.4.

Additionally, a sensitivity analysis of the assumption of a uniform bedform field was

performed by theoretically prescribing a distribution of bedform parameters and computing

the error in estimated height and asymmetry. First, normal distributions of bedform height

and wavelength were applied to otherwise uniform triangular bedforms on a flat seabed to

test the sensitivity of the method to slight variations in individual bedforms. Second, a

bimodal distribution of bedform parameters was considered in which smaller bedforms were

superimposed on top of larger bedforms of the same aspect ratio.

For readers who seek to apply the method, proceed to Section 2.4. The below subsections

detail the incorporation of variability and generation of the empirical error models.

2.3.1 Crest sharpness

While bedforms are approximately triangular, they typically have some curvature associated

with a rounded trough and crest (Dalrymple and Rhodes, 1995; Lefebvre et al., 2016). A

number of laboratory and numerical studies assume a sinusoidal stoss side and a straight lee
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Table 2.2: Range of parameters used in theoretical system geometries to obtain empirical

models of the error in estimated height and asymmetry.

Parameter Range

a [0: 1]
A [0.5 m :6 m]
h [0.05A : 0.2A]
Hi [0.05A : 2.5A]

Xsonar [10 m : 20 m]

side to approximate current-generated bedforms (Lefebvre et al., 2016; Smith and McLean,

1977; Nelson et al., 1993). For the generality of tidally reversing and symmetrical bedforms,

we will account for this curvature by assuming both sides of the bedform are sinusoidal (Fig.

2-3).

A field of uniform sinusoidal bedforms results in the same relationship between bedform

shape, distance from the sonar, and shadow lengths as for the field of triangular bedforms

(Eq. 2.4). However, the height at which the shadow intercepts the following bedform, y, is

defined based on the sinusoidal shape:

h B~r h
y = - cos( ) + - (2.10)

2 c 2

Substituting this equation for y into Eq. 2.4 results in the following equation for the

bedform height and c with respect to the measured distance from sonar and shadow length.

H - h L Bir
- (1 - cos -- ) (2.11)h 2S C

Similar to the case for a field of triangular bedforms, Eq. 2.11 has two unknowns, h and

c, for each bedform. To overcome the poorly-constrained case of triangular bedforms, both

sides of the sonar are considered separately, as the ratio of BL/S is constant for all bedforms

on each side. In the case of sinusoidal bedforms (Eq. 2.11), it is not possible to partition the

unknowns (c and h) from the knowns (B, L, S), which is necessary when considering each

side of the sonar separately. Thus we assume triangular bedforms and quantify the error

due to reduced crest sharpness which is common in current-generated bedforms or high flow

wave-generated ripples (Nielsen, 1992).
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Figure 2-3: a) System geometry for the right side of the sonar, where bedforms are the
composite of two sine waves. In this example, the sonar is 1 m above the seabed, and
bedforms have a wavelength of 2 m, height of 0.2 m, and asymmetry of 0.6. Ray traces from
the sonar to the bedform crests are shown where the solid gray lines are rays where m > meit
and the dashed gray lines are rays where m < merit. The solid black ray is the critical ray,
where asymmetry and height are accurately estimated. The annotations underneath the
subplot are for reference when computing the recommended sonar height in Section 2.4.1.
b) Estimated asymmetry for the left and right sides as a function of distance from the
sonar. The asymmetry equals the true asymmetry of 0.6 at the critical length indicated by
the vertical dashed lines. c) Estimated height assuming triangular bedforms for each side of
the sonar. For distances shorter than the critical length the height is overestimated while
distances larger than the critical length the height is underestimated.
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A sinusoidal bedform will result in either a larger or smaller shadow depending on the

location at which the ray intercepts the subsequent bedform. At the inflection point of a

sinusoidal curve, the height and location of a sinusoidal bedform is the same as that of a

triangular bedform (Fig. 2-3a). The slope of the ray from the sonar to this point will be

referred to as the critical slope, and is defined as:

mcrit = A h/2 (2.12)
A - c/2

The shadows lengths are longer for sinusoidal bedforms than triangular bedforms when

the slope of a given ray, m = (Hi - h)/L, is larger than the critical slope (Eq. 2.12; and

indicated in Fig. 2-3a by the solid gray lines). Thus, c is underestimated by Eq. 2.5 on

both sides of the sonar, and the asymmetry, a, will be underestimated for the right side

(a = Cr/A) and over predicted for the left side (a = (A - ci)/A; Fig. 2-3b). However,

as the slope of the ray becomes smaller than the critical slope (indicated by the dashed

gray lines in Fig. 2-3a), the observed shadow lengths are shorter than if the bedform was

triangular, overestimating c on both sides as well as overestimating a on the right side and

underestimating a on the left side (Fig. 2-3b).

Sinusoidal bedforms also influence the estimated bedform height as a function of the

ray slope and critical slope. If the shadow lengths are increased in which the ray slope

is larger than the critical slope, then the ratio of BL/S is underestimated, producing an

overestimate of h. Likewise, if the shadow lengths are decreased which occurs when the ray

slope is smaller than the critical slope, then the ratio of BL/S is overestimated resulting in

an underestimate of bedform height, h (Fig. 2-3c).

Whether the overall estimated height and asymmetry are over- or under-predicted de-

pends on how many bedforms have a ray slope less than or greater than the critical slope.

Because a central tendency, such a mean or median, is computed for each side, the error

will depend on the ray slope relative to the critical slope. The error as a function of slope

can also be described in terms of length, where the length is defined as x = (Hi - h)/m.

Therefore, if the average ratio of BL/S is obtained from each side, the error in estimated

height and asymmetry will depend on the number of bedforms that occur at a distance

smaller than xcrit as well as the number of bedforms that occur at a distance larger than

Xcrit-
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The error in estimated height and asymmetry from applying Eqs. 2.7, 2.8, and 2.9

(assuming triangular bedforms) was quantified on theoretical sinusoidal bedforms. The

shape and size of the theoretical bedforms, along with the system geometry, were randomly

generated for 10 5 sets of realistic parameters of a, A, h, Hi, and the maximum range of the

sonar, Xsonar. The range of these parameters randomly selected for each configuration are

shown in Table 2.2. The difference in estimated asymmetry and true asymmetry (aest - a)

for each realization is shown in Fig. 2-4a and the error in height ((hest - h)/h) is shown in

Fig. 2-4b.

An empirical model was fit to the error using multiple linear regression with both interac-

tion and non-linear transformation predictors. The empirical model for error in asymmetry

can be represented by Eq. 2.13 and has an R2 of 0.77. All coefficients were significant with

a p-value less than 0.001 and are given in Table 2.3. In the model, XL = Xcritavg/xsonar

where Xcritavg is the average critical length for the right and left side. The critical length,

xcrit, varies for each side for asymmetric bedforms (Fig. 2-3), however, their average pro-

vides a good indication of over-and-under estimation of asymmetry and height, and can be

simplified such that XL = 1.5(HiAh- 1 - A)x-J1ar-

aest - a = /Oa + 010 2 + /32 a3 + 13aXL + 04a2XL+
(2.13)

5Z35XL + 06aXL2 + 37a XL2 + /38a3XL2

A similar empirical model was also fit for the error in height given the non-dimensional

critical length, XL (Eq. 2.14). The model has an R 2 of 0.90 and all coefficients (shown in

Table 2.4) are significant with a p-value less than 0.001.

hest h = 0 + /1XL + 02XL2 (2.14)
h

The empirical equations for error in height and asymmetry can be used to correct for the

assumption of triangular bedforms by solving Eqs. 2.13 and 2.14 for a and h, respectively,

and substituting XL and the estimated parameters. XL is a function of the unknown h in

Eq. 2.13. Therefore, the height can first be corrected by solving for h in Eq. 2.14 and this

empirically corrected height used in the non-dimensional critical length, XL, to then correct

for the asymmetry using Eq. 2.13
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Table 2.3: Empirical model coefficients for quantifying the error in asymmetry given sinu-

soidal bedforms.

Coefficients

N3o
01
/2

/33
/4

05

/6,

07

08

Table 2.4: Coefficients of
yet assumed triangular.

Estimate

-0.135
0.405

-0.269
-0.046
0.139
-0.095
0.076
-0.229
0.154

Standard Error

0.001
0.003
0.002
0.002
0.007
0.005
0.001
0.004
0.003

error function in estimated height for bedforms that are sinusoidal

Coefficients

0
01
02

Estimate

-0.2439
0.3914

-0.1088

Standard Error

0.0004
0.0009
0.0004

2.3.2 Scoured seabed

Rotary sidescan sonars are usually mounted on an underwater frame in order to observe

bedform dynamics. The interaction of the frame with the flow and movable seabed can result

in a scour pit around the frame (Bolaios et al., 2011). If substantial scouring has occurred,

the angle of the seabed relative to the sonar will be decreased, affecting the estimated

asymmetry and height of the bedform. To determine these effects, the system geometry

parameters (a, A, h, Hi, and Xsonar) were randomly generated for 105 configurations, in

which the seabed slope (0) was varied from 0 to 30 degrees to approximate the effects of a

scour pit at the location of the sonar. Bedform asymmetry and height were estimated using

Eqs. 2.7, 2.8, and 2.9 assuming the seabed was flat. The resulting error in asymmetry as

a function of 0 and a is shown in Fig. 2-4c with the error in height as a function of 9 and

aspect ratio, h/A, shown in Fig. 2-4d.

An empirical model was fit to the error in asymmetry using linear regression. The model
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Table 2.5: Coefficients corresponding to the empirical model of error in estimated asymmetry
where scour at the location of the sonar causes a sloped seabed.

Estimate

5.13e-03
-3.05e-03
-1.02e-02
6.09e-03

Standard Error

1.98e-04
1.15e-05
3.50e-04
2.02e-05

Table 2.6: Empirical model coefficients for error
is considered.

Coefficients Estimate

in estimated height when a scoured seabed

Standard Error

/3 -0.068 0.003
i 0.055 0.000

is described in Eq. 2.15 with an R 2 of 0.89 and coefficients (given in Table 2.5) are significant

with a p-value less than 0.001.

-est - O = 0 + /310 + 0201 + 3301 (2.15)

A model was fit to the error in bedform height as a function of 0 with an R 2 of 0.88

(Eq. 2.16). Coefficients are given in Table 2.6 and are all significant with a p-value less than

0.001.

hest - h = h h

h A A (2.16)

Equations 2.15 and 2.16 can be solved for oz and h respectively to correct for the error.

2.3.3 Estimation of horizontal range

When the distance from the sonar and sonar-facing slope are such that all points on the

slope are roughly at the same range, the horizontal range cannot be approximated as the

depth independent range, and the elevation of the seabed relative to the sonar must be

considered (Fig. 2-1). This can occur when the sonar is mounted at a height similar to that

of the bedforms, or when a bedform has slope perpendicular to the ray slope. In these cases,
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the length of the high return may be very small relative to the actual horizontal length.

This underestimation of brightness (B) and overestimation of shadow length (S) results in

a smaller estimated value of c on both sides of the sonar, producing an underestimation

(overestimation) of a on the right (left) side (Eq. 2.7). The value of h is also overestimated

on both sides when considering the under-and-over estimation of c, S, and B (Eqs. 2.8 and

2.9). This should be considered when there are large bedforms present or bedforms on a

sloped seabed such that the horizontal range cannot be approximated from the slant range

and height of the sonar.

Given a theoretical field of triangular bedforms, and using the depth independent range

as an approximation for the horizontal range, the errors are shown in Fig. 2-4e,f as a func-

tion of bedform aspect ratio (h/A) for 10 5 configurations. The height estimate is strongly

influenced by very asymmetric bedforms such that the height estimates can become negative

or extremely large. Therefore, the asymmetry is varied from 0.05 to 0.95 to generate an em-

pirical model of the true error. Linear theory for current-generated bedforms in equilibrium

predict an asymmetry of 0.67 (or equivalently 0.33), therefore excluding the asymmetries

greater than 0.95 and smaller than 0.05 does not undermine the method or error model

(Haque and Mahmood, 1985).

An empirical model described by Eq. 2.17 was fit to the error in asymmetry. The model

has an R 2 of 0.78 and all coefficients are significant with a p-value less than 0.001. The

coefficients are shown in Table 2.7.

h h
aest - a = 00 + 01 + /2a + 03 a (2.17)

When estimating the height, the error can be represented by the empirical equation Eq.

2.18 with an R2 of 0.83. All coefficients are significant with a p-value less than 0.001 and

are shown in Table 2.8.

hesth h +1( h) 2 + 2( ) 2 h H 2(h)2  (2.18)

Similar to the other variations, the asymmetry and height estimates can be corrected

by solving Eqs. 2.17 and 2.18 for a and h, respectively. The aspect ratio (h/A) can be

approximated as the empirically corrected bedform height over the estimated wavelength

when correcting for the asymmetry.
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Figure 2-4: Scatter plots of error from theoretical bedforms. Contours are the empirically
fitted models. The top row is the error in asymmetry while the bottom row is the error
in height. a-b) Error introduced from assuming sinusoidal bedforms are triangular. c-d)
Error from having a constant-sloped, scoured seabed. e-f) Error from approximating the
horizontal range as the depth independent range.
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Table 2.7: Coefficients for error in estimated asymmetry by approximating the horizontal

range as depth independent.

Coefficients Estimate Standard Error

'30 0.0079 0.0001
01 -0.1314 0.0008
02 -0.0160 0.0002
03 0.2646 0.0015

Table 2.8: Empirical coefficients of the error in estimated height assuming seafloor purtuba-

tions are significantly smaller than the height of the sonar when estimating the horizontal

range.

Coefficients Estimate Standard Error

0 -0.031 0.005
01 5.538 0.038
/2 -14.196 0.116
/3 9.352 0.132

2.3.4 All seabed configurations considered

It is possible to have a bedform configuration that contains a combination of rounded crests

and troughs and a sloped seabed with unknown horizontal range. To account for this, the

empirical corrections in the above equations were applied to randomly generated seabed

configurations that consist of sinusoidal bedforms on a scoured seabed where the horizontal

range is approximated as depth independent. The error in computed asymmetry and height

versus the true parameter is shown in Fig. 2-5 for both the original estimated values and

the empirically corrected values.

The error of the original asymmetry estimate has a mean of 0.00 + 0.77 (standard devia-

tion) with 95% of the data contained in the interval [-0.06, 0.061. The corrected asymmetry

by applying the empirical model has a mean of 0.00 0.20 with a 95% confidence interval

[-0.03, 0.03]. Similarly the error in the original estimation of aspect ratio, h/A, has a mean

of 0.01 0.23 with a 95% confidence interval of [-0.05, 0.071. The error for the empirically

corrected aspect ratio is -0.01 0.22 with 95% of the data constrained by the interval [-0.04,

0.02].
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Overall, applying the empirical corrections in estimated height and asymmetry improves

the estimates and better accounts for the actual bedform configuration and system geometry.

2.3.5 Bedform parameter distributions

The sensitivity of the method to the assumption of uniform bedforms was addressed by

theoretically prescribing distributions of bedform parameters.

Sensitivity of the method to small discrepancies between individual bedforms was first

considered by imposing a distribution of bedform heights and wavelengths to a theoretical

bedform field. The parameters and their variation were chosen based on those observed in

bathymetric data of wave-orbital ripples taken at the Martha's Vineyard Coastal Observa-

tory (MVCO). In this data, there is a strong linear correlation, p = 0.8, between ripple height

and wavelength with ripple height increasing as the wavelength increases. Therefore, an as-

pect ratio of 0.11, the average aspect ratio at MVCO, was chosen to remain constant for each

bedform. In the field data, the ripple heights and wavelengths were normally distributed.

Therefore, for the theoretical data, the wavelength was prescribed a normal distribution

given the mean, 0.44 m, and standard deviation, 0.13 m, of the wavelengths at MVCO. The

ripple height was then computed given the aspect ratio of 0.11, which agrees well with the

mean and standard deviation of the ripple height observed at MVCO. A sonar height was

prescribed to be 1.15 m based on the ideal sonar height in Eq. 2.19. The extent of the

sonar range was set to be 20 m, which is the sonar extent at MVCO and 100 transects were

considered. Finally, the asymmetry was set to 0.5 as wave-orbital ripples are symmetric.

Given these prescribed normal distributions of bedform height and wavelength in individ-

ual ripples, the resulting distribution of wavelength was also normal while the distribution

of bedform height was positively skewed. The percent error in the median height was only

2.8%, the percent error in median wavelength was 1.4%, and the percent error in asymmetry

was 0.15%. Therefore, with a sufficient number of bedforms, the error from discrepancies

in individual bedforms was such that the central tendency of asymmetry, height, and wave-

length, agrees with the prescribed asymmetry, height, and wavelength.

The case of two scales of bedforms in which the smaller, secondary bedforms are superim-

posed on the larger, primary bedforms was also considered numerically. This situation can

occur in nature both with tidal megaripples and wave-orbital ripples. On tidal megaripples,

at the reversal of flow, incipient current ripples (A ~ 1000d5 0 , or -20 cm) form on top of
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Figure 2-5: a) Estimated asymmetry versus true asymmetry for theoretical bedforms when

sinusoidal bedforms on a slanted seabed with depth independent estimated horizontal range

are considered together. The blue data are from assuming triangular bedforms on a flat

seabed with horizontal range while the red data are empirically corrected. The black line

demonstrates a perfect fit. b) Probability of the error in asymmetry for both estimated and

empirically corrected asymmetry. c) Estimated h/A versus true h/A when all variations are

considered. d) Probability of the error in height.
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larger megaripples (Yalin, 1964; Venditti et al., 2005; Traykovski, 2012). On wave-orbital

ripples, smaller (~20 cm) ripples can form in the troughs of meter-scale relict ripples left

from previous wave events (Traykovski, 2007). When there are superimposed bedforms, the

secondary bedforms cast small shadows in which otherwise would have been a bright return

from the larger bedforms. If the method is directly applied with these shadow patterns, the

error becomes large. It is therefore advised that the user applies a moving average filter, at

least the wavelength of the smaller bedforms, to average over these smaller shadow patterns.

This would result in a lower intensity in a region that otherwise should have been fully il-

luminated. Therefore, the threshold should be set so the filtered areas with small shadows

are classified as bright.

The error of applying the method to superimposed bedforms was considered for bedforms

with wavelength ratios ranging from 6 smaller bedforms superimposed on a larger bedform

to 40 smaller bedforms superimposed on a larger bedform, with both bedforms having an

aspect ratio of 0.1. In all cases the height of the larger bedforms was set to 0.4 m with a

wavelength of 4 m. Additionally, the height of the sonar was 1.2 m, asymmetry of 0.6, and

sonar extent of 20 m. Although the error was not linear with respect to large bedform to

small bedform wavelength ratio, the height estimates were underestimated by 10 to 15%,

with errors as large as 25%. The wavelength estimates were all over-predicted with a percent

error ranging from 2 to 2.5%. Finally, the percent error in asymmetry was underestimated

for all cases with an error of approximately 3%. Therefore, when superimposed bedforms

are present, it is recommended to filter out the shadows from the smaller bedforms to obtain

estimates of the larger bedforms. Estimating the smaller bedform height and asymmetry is

more difficult as they are generally superimposed on steep lee and stoss sides of the primary

bedforms.

As the superimposed bedform size becomes a significant fraction of the primary bed-

form size (eg. 3 to 4 small bedforms per large bedform) filtering out the shadows becomes

impractical and the technique produces large errors. However, as the secondary bedforms

become too large to successfully filter their shadows, the bedform field becomes similar to

the case of variation in bedform parameters on a flat bed. For secondary bedforms that are

a factor of two smaller than the primary bedforms, which is close to the worst case scenario,

the error in height is 37% and an error in asymmetry of 10%.
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Table 2.9: Analytical coefficients for recommended sonar height from the seabed.

Criteria "

80% of bedforms contain shadows <0.51

30% of bedform wavelength is illuminated at the midpoint of the shadowed region >0.55

Xcrit occurs at the midpoint of the shadowed region 0.4

2.4 Method

2.4.1 Instrument configuration

This method relies on data collected from a low-mounted sonar such that shadows exist.

To provide better statistical estimates of height and asymmetry, it is recommended that

the sonar is mounted such that there is a sufficient number of bedforms with shadows and

that the lengths of the shadows are not significantly large compared to the bright return.

There is a tradeoff between these two criteria as a very low mounted sonar will produce a

large number of bedforms with shadows; however, most of the domain will be shadows with

the bright regions very small leading to errors in estimating S/(BL). We recommend that

at least 80% of the bedforms in the domain cast shadows and that at the midpoint of this

shadowed region the brightness length is 30% of the bedform wavelength (Fig.- 2-3a shown

by the 0.2xsonar and 0.3A annotations). Additionally, if the bedforms are sinusoidal, the

critical length, xcrit described in Section 2.3.1 would ideally be located at the midpoint of

the shadowed bedforms (Fig. 2-3a).

The ideal sonar height from the seabed, Hi, is analytically determined for the three

criteria above given the system geometry and assuming symmetric triangular bedforms.

Hi = y Xsonar + h A (2.19)

where -y varies for each criterion and is shown in Table 2.9. Given these values of -Y, it

is recommended that users set -y = 0.6 as the frame on which the sonar is mounted will

typically settle a few centimeters resulting in a final 7 = 0.5. Additionally, while h/A may

be unknown prior to deploying the instrument, typical values are usually 0.1 to 0.15 for

wave orbital ripples and 0.05 to 0.1 for current-generated megaripples which can be used as

an initial approximation in Eq. 2.19 (Ashley, 1990; Nielsen, 1992).
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2.4.2 Data analysis steps

1. Transform the rotary sidescan sonar imagery into xy coordinates using the approxi-

mation for horizontal range given in Eq. 2.2.

2. Determine the orientation of the bedforms using either a 2D fast Fourier transform or

variability analysis (Van Dijk and Lindenbergh, 2017; Pluymaekers et al., 2007).

3. Take transects of the backscatter intensity perpendicular to the bedform crest.

4. Remove the background attenuated echo return strength due to beam spreading and

attenuation.

5. If secondary bedforms exist on primary bedforms, filter out the secondary bedform

shadows.

6. Empirically identify a threshold intensity to distinguish between shadows and bright

regions.

7. Compute the distance to the start of each shadow (L), the length of the shadow (S),

the wavelength (A), and the length of the bright region (B, from the wavelength and

shadow length).

8. Calculate S/(BL) for each bedform, and on each side of the sonar.

9. Plot a histogram of S/(BL) for each side, and determine what central tendency best

represents the distribution.

10. Use Eq. 2.7 to calculate the asymmetry, a, assuming triangular bedforms and using

the central tendency of S/(BL) for each side as obtained in Step 9.

11. Estimate the height for each bedform using Eqs. 2.8 and 2.9 for each side where a is

obtained in Step 10 and the values of S, B, L, and A exist for each bedform.

12. Plot a histogram of h, and hl and determine what central tendency best represents

the distribution.

13. Apply corrections for crest sharpness, scoured seabed and horizontal range using Eqs.

2.13 - 2.18, if needed.

47



Table 2.10: Operating parameters of sonars used in field validation of the. method

881A 2-Axis DT100
Instrument 881L Rotary Sidescan Pencil Beam Multibeam

Sonar Profiling Sonar

Columbia
Location MVCO River MVCO Columbia

Mouth

Elevation (in) 1.67 1.10 1.00 2.80

Frequency (kHz) 675 1100 675
Range (in) 20 4 20

Range Resolution (in) 0.04 0.008 0.04

Pulse Length (ps) 20 10 52

Step Size (deg) 0.3 1.2 0:162, 3 deg b/w
beams

Azimuth Step Size (deg) N/A 1.6 3

Beam Width (deg) 1.8 x 20 1.3 120 x 3

Averaging 4 sequential scans none 8 pings in each
azimuth step

2.5 Validation from field data

The method is validated against wave-orbital ripples and tidally-reversing megaripples in

which both a rotary sidescan sonar and bathymetric measuring instruments were deployed.

The operating parameters of the different sonars are listed in Table 2.10. The bathymetric

data is obtained directly below the quadpod, and the rotary sidescan sonar images up to

20 m away from the quadpod. While some variations in bedform geometry may occur

directly under the quadpod given the interaction of the frame with the flow and an erodible

seabed, the bedforms are considered to be similar, permitting the bathymetric instruments

to provide ground truth for the method.

2.5.1 Wave-orbital ripples

Bedform height and asymmetry were estimated on wave-orbital ripples located in 8 m water

depth approximately 1.3 km shore-ward from the Martha's Vineyard Coastal Observatory

(MVCO) offshore node, an observatory roughly 1.5 km offshore of the southern coast of

Martha's Vineyard. The location is dominated by waves with little-to-no influence of tidal

currents. The data was collected in 2007 using a quadpod equipped with both a rotary
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Figure 2-6: a) Rotary sidescan sonar (grayscale) and pencil beam sonar (overlaid color)

data of wave-orbital ripples taken on October 5, 2007 at 17:00:00 off the southern coast of

Martha's Vineyard. The red line is an arbitrary transect taken perpendicular to the ripple

crests. b) Backscatter intensity of sidescan sonar data taken along the transect. The dashed

line indicates the threshold used to distinguish shadow and bright regions in the method.

c) Bed elevation from a transect along the pencil beam sonar data. The bed elevation is

relative to the lowest elevation in the survey area.

sidescan sonar and a two axis pencil beam sonar similar to a data set collected in 2005 and

documented in Traykovski (2007) which was also located at MVCO in 12 m water depth.

The sidescan sonar, deployed 1.67 m from the seabed, captured the backscatter intensity

over a radius of 20 m around the quadpod, and the pencil beam sonar obtained bathymetric

data over a 2 m x 2 m region directly beneath the quadpod (Fig. 2-6a).

Ripple height and asymmetry were estimated over a 24-day period from the rotary

sidescan sonar, and compared to the same parameters obtained from the pencil beam sonar

(Fig. 2-7). The height, asymmetry, and wavelength for each bedform were estimated using

the method described above for the rotary sidescan sonar. These parameters were computed

using a zero-crossing method on the pencil beam data, in which the wavelength was defined

as the distance between two troughs, the height was the averaged distance from peak to

each trough, and the asymmetry was the horizontal distance from the location of the peak

to the trough divided by the wavelength (Fig. 2-6c).

For each time step, the median bedform height, wavelength, aspect ratio (h/A), and

asymmetry were computed from the bedforms on multiple parallel transects (Fig. 2-7).

The median was used as the measure of central tendency because it is more robust than

the mean to skewed distributions and outliers. A 95% confidence interval for the median
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was computed for bedform height, wavelength, and aspect ratio assuming the median is

binomially distributed around the estimated value (Rice, 2002). The 95% confidence interval

for the bedform asymmetry was computed using a 1000-sample bootstrap method, given the

interaction of terms in computing the asymmetry parameter. These 95% confidence intervals

are represented by the shaded regions in Fig. 2-7.

Estimates of bedform parameters from the sidescan sonar show good agreement with the

computed parameters from the pencil beam sonar (Fig. 2-7). The mean absolute difference

in asymmetry between the two instruments is 0.019 0.021 (standard deviation) with the

mean absolute difference in height of 0.017 m 0.016 m which corresponds to a mean

percent error of 34.0% 27.2%.

The asymmetry (a) is approximately 0.5 throughout the entire time-series, which is

consistent with literature for wave-orbital ripples (Bagnold, 1946; Traykovski et al., 1999).

While the estimated asymmetry agrees well with the bathymetric data, the sidescan sonar

data tends to overestimate ripple height and wavelength compared to the pencil beam sonar.

This discrepancy could be due to the effect of the frame on the seabed and the flow, as the

pencil beam sonar measures approximately three bedforms directly below the sonar, and

the rotary sidescan sonar (with the shadow method) relies on bedforms 4 m to 20 m from

the quadpod. The estimated wavelength and bedform height were plotted with respect to

distance from the sonar to determine how these parameters vary with distance from the

sonar. These plots revealed that the wavelengths linearly increased with distance from the

sonar. Although the bedform height increased with distance from the sonar during some

time periods, it decreased during others. To better compare the estimated parameters with

that from the pencil beam sonar taken directly below the sonar, a linear regression was

fit to the data to predict the bedform parameters under the frame as a function of the

distance from the sonar. The estimates from the rotary sidescan sonar were then linearly

extrapolated to provide an estimate of their values directly under the frame (Fig. 2-7). This

extrapolated value accounts for some of the overestimation in bedform wavelength and is

also able to capture the sudden decrease in wavelength around October 6th. Studies on the

effect of frames on the seabed and flow have shown that in the presence of waves, there is

increased turbulence near the frame (Bolafios et al., 2011; Williams et al., 2003). While the

results of Bolafios et al. (2011) and Williams et al. (2003) indicate that the frame does not

have as large of an effect on the flow and seabed in wave conditions as opposed to strong
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currents, it is hypothesized that this increased turbulence can result in the bedforms under

the frame adjusting to a new equilibrium configuration faster than the bedforms away from

the frame.

While height and bedform aspect ratio (h/A) estimates agree well during the waning

stages of the wave events, there is noise and disagreement in the estimates at the onset

and peak stages. A large part of this disagreement is due to the noise in the data from

both sonars. During high wave events, suspended sediment obscures the seabed, resulting in

noise in the estimates, and little confidence in their estimates. Overall, the method is able

to capture the changes in bedform parameters that span multiple large wave events with

some of the error being attributed to the assumption of coincident observation areas as well

as noise during periods of high suspended sediment.

2.5.2 Tidally-reversing megaripples

The method was further tested on tidally-reversing megaripples located at the mouth of the

Columbia River which discharges into the Pacific Ocean between Washington and Oregon.

This location has large tidally-reversing megaripples that change asymmetry and migration

direction with the tides. Traykovski (2015) deployed a quadpod equipped with a rotary

sidescan sonar as well as a side-looking multibeam rotary sonar (Fig. 2-8a, b). The rotary

sidescan sonar, located 1.1 m from the seabed, obtained an image of the seabed up to a

range of 20 m while the multibeam rotary sonar observed the bathymetry of the seabed

within a 12 m radius.

Bedform asymmetry and height were estimated from the multibeam sonar by detecting

bedform peaks and troughs in transects perpendicular to the bedform orientation (Fig. 2-

8c). Asymmetry was estimated by dividing c by the wavelength, and bedform height was

estimated by subtracting the height of the crest from the average height of the trough on each

side of the crest. Again, the median was used as the measure of central tendency, and 95%

confidence intervals were obtained from a binomial distribution for the height, wavelength,

and aspect ratio with a 1000-sample bootstrap being used to compute the confidence interval

for the asymmetry (Rice, 2002).

The asymmetry of the bedforms from the multibeam sonar was then compared to the

estimated asymmetry from the rotary sidescan sonar (Fig. 2-9). There is less confidence

in the estimates for the Columbia River than for MVCO as there are significantly fewer
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Figure 2-7: Computed wave-orbital ripple parameters from the pencil beam sonar (red) and

rotary sidescan sonar (blue) over a 24 day period for bedforms located at MVCO. The shaded

regions represent the 95% confidence intervals of the parameters. The green is the estimation

of the bedform parameters directly below the sonar obtained from extrapolating the data

from the rotary sidescan sonar. a) Representative wave orbital velocity from an Acoustic

Doppler Velocimeter (ADV) located on a nearby quadpod. b) Computed Shields parameter.

The dashed line at 0.05 indicates the critical Shields parameter. c) Estimated bedform

asymmetry. d) Bedform aspect ratio (h/A) has good agreement between the estimates

from the rotary sidescan sonar and pencil beam sonar. e) Bedform height which show an

increase in height during large wave events. f) Bedform wavelength. The overestimation of

wavelength from the rotary sidescan sonar could be due to the influence of the quadpod on

the surrounding flows and seabed.
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Figure 2-8: a) Rotary sidescan sonar data of megaripples taken on May 10, 2013 at 17:43:18

at the mouth of the Columbia River. The red line is an arbitrary transect taken perpendicu-

lar to the bedform crests. The white dashed lines indicate the start of a shadow region closest

to the sonar. b) Multibeam data taken at the same time as the rotary sidescan sonar. The

white dashed lines are superimposed at the same location on the multibeam data to show

agreement in bedform detection from both instruments. c) Backscatter intensity of sidescan

sonar data taken along the transect. The horizontal dashed line indicates the threshold

used to distinguish shadow and bright regions in the method while the vertical dashed lines

indicate the location of the crests in the multibeam data. d) Bed elevation from a transect

along the multibeam sonar data. The bed elevation is relative to the lowest elevation in the

survey area.
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bedforms in the domain and the bedforms are not as uniform given their two-dimensionality

in planview. This two-dimensionality is in part due to the megaripples bifurcating which

add to the noise in the data. The method captures the tidal reversal of the bedforms

given the asymmetry, and accurately measures the bedform height; however, there are large

discrepancies in wavelength and therefore aspect ratio. The almost factor of two difference in

wavelength is due to the fact that the multibeam is surveying the bedforms directly under the

quadpod, where the wavelengths are larger, while the method considers bedforms far from

the frame where shadows are produced and the wavelengths are smaller. The wavelength of

the rotary sidescan sonar was computed beneath the frame for the time period considered

which shows good agreement in wavelength and aspect ratio with the multibeam sonar (Fig.

2-9d, f). The difference in bedform wavelength in the presence of the frame is hypothesized

to be attributed to current-frame interactions. Bolanios et al. (2011) found that underwater

frames increase the horizontal velocity under the frame, resulting in a scour pit. Because

the megaripple wavelengths are on the same order of size as the frame, it is believed this

scour pit alters the bedform morphodynamics such that the wavelengths of bedforms under

the frame are larger than those away from the frame.

While the height is accurately estimated most of the time, there is disagreement a few

hours before May 11, 2013. During this time, many of the bedforms bifurcated, split and

later merged back together. This results in significant changes in the estimates from both

the rotary sidescan sonar and the multibeam given the area each instrument surveyed. The

lack of periodicity and three-dimensionality of the bedforms at the Columbia River add

noise and uncertainty to the method. Overall, the mean absolute difference in asymmetry

between the two instruments is 0.11 0.10 (standard deviation) with an absolute difference

in height of 0.08 m 0.07 m which corresponds to an absolute percent error of 16.6%

14.7%.

2.6 Conclusion

A method is outlined to estimate the height and asymmetry of bedforms from a low mounted

sidescan sonar that results in the formation of shadows in the backscattered intensity data.

The estimated heights and asymmetry agree moderately well with bathymetry data when

applied to both wave-orbital ripples and tidally-reversing megaripples given that bathymetric
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Figure 2-9: Computed megaripple parameters from the multibeam sonar (red) and rotary

sidescan sonar (blue) over a 2.5 day period for bedforms located at the mouth of the

Columbia River. The green is the estimation of the bedform parameters directly below

the quadpod. The shaded regions represent the 95% confidence intervals of the parame-

ters. a) The depth averaged flow obtained from the same quadpod as the rotary sidescan

sonar. b) Computed Shields parameter with the critical Shields parameter indicated by the

dashed black line. c) Estimated bedform asymmetry. d) Bedform aspect ratio (h/A) which

is overestimated for the rotary sidescan sonar given the underestimation of wavelength, how-

ever, when only bedform wavelength directly below the quadpod is considered there is good

agreement. e) Bedform height which is in good agreement between the two instruments. f)

Bedform wavelength in which the bedforms closest to the sonar have a larger wavelength

than those farther from the sonar.
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measurements were taken with much smaller and sometimes different sampling areas than

the sidescan sonar measurements.

While this method of estimating bedform parameters was developed based on a uniform

bedform distribution, it is reasonably tolerant of small variations in bedform height and

wavelength. When there are small bedforms superimposed on larger bedforms, it is rec-

ommended that the shadows formed from the smaller bedforms are filtered out in order to

estimate the larger bedform parameters. This procedure was tested with idealized numerical

data and shows errors of around 10 to 15% in height and 3% in asymmetry.

Although idealized cases provide unbiased estimates of asymmetry and height, some

bias may exist in field data. Because the ground-truth bedforms from the field are not the

same bedforms that are in the field of view of the rotary sidescan sonar, we do not have a

way to test this bias in field data. We recommend studying this as future work where we

can deploy a rotary sidescan sonar on a quadpod and take collocated surveys with a ship-

mounted multibeam sonar, or other larger sampling area techniques with high precision, to

have the actual height distribution for all bedforms in consideration.

While this method is described for the deployment of a rotary sidescan sonar, it can be

applied to other sidescan sonar systems, such as fixed on a frame or ship-mounted, if the

geometry from the sonar to the seabed and orientation of the bedforms is known. In the

case of a fixed sidescan transducer mounted on a frame, the transducer should be mounted

perpendicular to the bedform crests to obtain a single transect of the shadow pattern. Users

can then begin the data analysis steps as described in Section 2.4.2 at Step 4. Future work

could be taken to modify the method for to ship-mounted sidescan sonars.

The addition of height and asymmetry information to the well documented planform

geometry data provided by sidescan sonars has potential to increase the usefulness of such

systems in studying the dynamics and properties of bedforms. The high temporal and spatial

resolution of an imaging rotary sidescan sonar along with its relatively low costs make

rotary sidescan sonars ideal instruments for imaging the seabed in shallow and energetic

environments. Utilizing the shadows to provide estimates of bedform height and asymmetry

will expand the capabilities of rotary sidescan sonars.

56



Chapter 3

Timescales for morphological

response of multi-scale bedforms to a

tidally reversing flow

3.1 Introduction

The morphodynamics, or adjustment, of the seafloor in response to hydrodynamic processes

has implications for coastal communities, ship navigation, and infrastructure stability. In

the presence of waves and currents, an erodible seabed will not remain flat but will develop

bedforms (Fredsoe and Deigaard, 1992; Venditti and Church, 2005). Unlike wave-orbital

ripples which are symmetric features, the bedforms in tidal environments can be asymmetric

with the steeper side of the bedform downstream of the tidal current, or for larger bedforms,

downstream of the dominant flow direction. The morphological response of bedforms to an

unsteady, tidally reversing flow is analyzed in this chapter with focus on the readjustment

of bedform asymmetry.

Despite the societal and environmental importance, the movement of sediment is difficult

to quantify given the complex feedback between the flow and a movable seabed (Dalrymple

and Rhodes, 1995). Sand represented on the seabed can be transported either as bedload

or suspended load (Fredsoe and Deigaard, 1992). Bedload is the movement of sand grains

by rolling and sliding along the bed due to friction while suspended load is when the grains

are lifted from the bed and carried by the currents (Soulsby, 1997).
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The motion of sediment occurs due to the frictional force exerted by the flow on the

seabed, and is commonly expressed as a bed shear stress, To. The bed shear stress is this

frictional force per unit area and is comprised of three components: skin friction (Tos), form

drag (rof), and sediment-transport (Tot) (Eq. 3.1) (Soulsby, 1997). The skin friction, ros,

is produced by the roughness of individual grains. The form drag, rof, is the drag created

from the pressure field over bedforms. And Tot is the momentum transfer to mobilized

grains (Soulsby, 1997). While all three components contribute to the shear stress, only the

skin friction acts directly on sand grains and contribute to their motion.

To = TOs + 7Of + Tot (3.1)

While shear stress is a force per unit area, the bed shear stress is commonly written in

terms of a velocity as shown in Eq. 3.2 where u, is the friction or shear velocity and p is the

density of the fluid. Similar to the bed shear stress, the shear velocity can be broken down

into a skin friction, form drag, and sediment transport component.

ro = pu (3.2)

The total shear velocity can be estimated given the vertical profile of the flow velocity.

The velocity of the flow at the seabed must be zero if the seabed is immobile due to the

viscosity, or internal friction, of the fluid. Because of this "no slip" boundary condition, a

turbulent boundary layer is formed between the seabed and the free stream velocity. Given a

turbulence boundary layer, the velocity profile is well established by theory and experiment

to be logarithmic and is commonly stated as the "law of the wall" (Eq. 3.3) (Nielsen, 1992;

Nikuradse, 1933; Williams, 1995).

U(z) = t*ln(z ) (3.3)
K ZO

This vertical profile in velocity is dependent on the bed stress, To, through u* and the

texture of the seabed which is characterized by a roughness, zo. In this velocity profile, , =

0.4 is the von Karman's constant and z is the depth where the velocity, U, is considered. The

bed roughness length, zo, is approximately the height above the bed where the flow is zero

and can be estimated as zo = k,/30 for rough turbulent flow which occurs when the grain
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Reynolds number, u~d50/v, is greater than 70. The variable v is the kinematic viscosity and

k, is the Nikuradse roughness length. For a flat seabed the Nikuradse roughness length is

commonly taken as k, = 2.5d 50 where d50 is the median grain size diameter.

The amount sediment that can be transported is a function of the force needed to

move a grain and the weight of the grain that is resisting this motion (Shields, 1936). The

Shields parameter is a non-dimensional number shown in Eq. 3.4 that is used to estimate

the initiation of sediment transport and is the ratio of the bed shear stress, TO, and the

weight of the sediment grain where ps is the grain density, and p is the water density, and

g is gravitational acceleration (Shields, 1936). When the Shields parameter, 9, is greater

than the critical Shields parameter of approximately 0.05, the transport of sediment will be

initiated.

= TO (3.4)
g(ps - p)d50

The amount of sediment that is transported as bed load, by rolling or sliding along the

bed, is represented as a bed load sediment transport rate, qb. The bedload transport rate

can be estimated using the Meyer-Peter and Mueller empirical formula where s is the specific

gravity of the sediment, 9 is the non-dimensional Shields parameter, and 0, is the critical

Shields parameter for threshold of motion (Eq. 3.5) (Meyer-Peter and Muller, 1948).

8 50 \(s - 1)gd 5o(9 - 9C)2 (3.5)

Substituting the bed shear stress, Eq. 3.2, velocity profile, Eq. 3.3, and Shields pa-

rameter, Eq. 3.4, into the Meyer-Peter and Mueller formula results in a bedload transport

equation that is proportional to U 3 for energetic conditions where 9 > 0,. Given this depen-

dence on U3 , the direction that sediment is transported in tidally energetic environments

will reverse directions as the flow switches direction. Depending how much sediment can

be transported in a half-tidal cycle, bedforms may reverse their asymmetry and migration

direction with the reversing flow. Given the time needed for bedforms to reverse asymmetry

and for the Shields parameter to exceed the critical Shields parameter, changes in bedform

shape and migration lag changes in flow (Dalrymple and Rhodes, 1995; Allen and Collinson,

1974; Allen, 1976b,a).

Previous studies have observed small bedforms reverse their asymmetry with the flow,
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however, limitations in spatial extent and temporal resolution throughout the tidal cycle,

make these studies incomplete (Hoekstra et al., 2004). It has additionally been observed

that large bedforms will remain oriented in the direction of the dominant flow, being unable

to reverse their asymmetry with the tides (Bokuniewicz et al., 1976; Dalrymple and Rhodes,

1995; Lefebvre et al., 2016). This chapter analyzes the morphodynamic changes of multiple

scale, superimposed bedforms using novel observational techniques with the required spatial

and temporal resolution to simultaneously observe smaller bedforms superimposed on larger

bedforms throughout the tidal cycle.

3.2 Methods

3.2.1 Instrumentation and platforms

Given the current state of observational techniques, it is difficult to concurrently observe

the dynamics of multiple scales of bedforms on tidal timescales. Recent advances in both

platforms and instrumentation are detailed below that are capable of achieving the neces-

sary spatial and temporal resolution to observe the morphological response of superimposed

bedforms to a tidally reversing flow.

Autonomous jet-powered kayak

An autonomous jet-powered kayak, referred to as a Jetyak, is a platform capable of collecting

high resolution data of the seabed and flow (Fig. 3-1). The following information on the

Jetyak specifications is from Kimball et al. (2014) with some aspects of the Jetyak being

updated from the specifications outlined in Kimball et al. (2014). The Jetyak is jet driven

with a draft of 20 cm and an air-breathing gasoline engine. Given these features, the Jetyak

can travel up to 5.5 m/s with 6 to 8 hours of endurance on a single gas tank allowing it

to operate in strong currents and shallow environments which makes it an ideal platform

for tidally energetic settings where superimposed bedforms are common. The servo that

steers the Jetyak is controlled by a pixhawk 2.1 autopilot, allowing the Jetyak to be pre-

programmed with Mission Planner software to operate autonomously and accurately follow

track-lines in strong cross currents.

The Jetyak is equipped with instruments to measure bathymetry and flow. The data

analyzed in this thesis came from two versions of the Jetyak. The first version had a
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Figure 3-1: Autonomous jet-powered kayak, Jetyak equipped with a bathymetric sides-
can sonar, dual PPK GNSS antennas, and a Nortek Signature 1000 ADCP. The Jetyak is

jet-driven and powered by an air-breathing gas engine. In addition to the autonomous ca-

pabilities of the Jetyak, a remote controller can be used to drive the Jetyak, communicating
via radio control.

Humminbird sidescan and single-beam echosounder. With the single-beam echosounder,

the Jetyak was able to obtain bathymetry along the trackline of the Jetyak. The single

beam echosound was replaced by a wide swath bathymetric sonar, Ping DSP 3DSS (3D

Sidescan Sonar) on thprecied sightychange Ping DSP 3DSS is capable of measuring

bathymetry in shallow environments with a greater than 10 cm horizontal resolution over

a swath that is 10 times the water depth. The sonar operates at 450 kHz and uses patent

pending computed angle of arrival transient imaging (CAATI) interferometry to compute

the angle of the returned sonar wave from the target. The CAATI interferometry technique

is able to distinguish between targets on the seafloor and in the water column that are

at the same range. Due to the wide swath of the bathymetric sonar, the Jetyak heading

must be accurate and precise a a slight change in heading on the Jetyak would result in

substantial changes in the horizontal location of the return pings from the bathymetric sonar.

A dual antenna Post Processing Kinetic (PPK) global navigation satellite system (GNSS)

and NovaTel ADIS IMU was integrated on the Jetyak to improve position resolution to 2

to 4 cm and heading to 0.1 degrees. With the bathymetric Ping DSP 3DSS and dual PPK

GNSS antennas, the Jetyak is capable of simultaneously surveying bedforms that range

in wavelength from 1 mn to 1000 m. In addition to the bathymetric sonars, both Jetyak

versions were equipped with a downward facing Acoustic Doppler Current Profiler (ADCP)
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to measure the velocity throughout the water column. A Nortek Signature 1000 ADCP with

1 MHz frequency and broadband processing was configured to obtain measurements at a

sampling rate of 4 Hz at 0.5 m bins in the vertical direction over a range of 10 m. The

ADCP also collected bottom tracking data to remove the motion of the Jetyak from the

flow velocity measurements.

Small unmanned aircraft system (sUAV)

While the Jetyak equipped with the bathymetric sidescan sonar is capable of measuring the

bathymetry in shallow water, the swath width becomes small when the water depth is very

shallow. This small swath width requires tight tracklines in order to survey the area which

results in a long survey time. High resolution topography of intertidal environments, where

areas are covered by water during high tide but above the water at low tide, can be obtained

using a small unmanned aircraft system (sUAV).

This study uses a DJI Phantom 4 Professional quadcopter equipped with a 12 mega-pixel

camera to take orthonormal overlapping pictures of the terrain along a preprogrammed flight

path. The overlap of these photos allow for the same point to be captured from different

views. Given these different views, structure-from-motion (SFM) algorithms can be used to

obtain a digital elevation map. In addition to the overlapping images from the quadcopter,

a number of ground control points must be deployed throughout the survey domain with

their vertical and horizontal location surveyed with a high resolution GPS. Due to the lens

distortion of the camera and inaccurate position information of the quadcopter, these ground

control points are combined with the topographic map from the quadcopter images. For this

study, the SFM computations are performed in the AGI Photoscan commercially available

software. Given the flight elevation and camera quality, the elevation map has a horizontal

accuracy on the order of 20 cm. For intertidal environments the Jetyak collects bathymetry

data during high tide and the quadcopter obtains topography data during low tide. These

two datasets are then combined to create a high resolution digital elevation map.

Seafloor frame

Seafloor frames equipped with acoustic instruments allow for high temporal resolution data

of the seafloor and flow at a given location. These underwater frames are commonly equipped

with an Imagenex 881L rotary sidescan sonar which produce 40 m diameter images of the
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Figure 3-2: Seafloor frame, or quadpod, placed on the seabed off of the southeast corner of

Martha's Vineyard. The quadpod is equipped with multiple acoustic and pressure sensors

to measure the seabed and local hydrodynamics. The top of the quadpod is approximately

1.25 m from the seabed.

backscattered intensity of the seabed at 4 cm resolution every 20 minutes (Fig 3-2). The

high temporal and spatial resolution of a rotary sidescan sonar allow for multiple scales of

bedforms to simultaneously be observed. In addition to rotary sidescan sonars, Acoustic

Backscatter Sensors (ABS) are used to measure the backscatter intensity throughout the

water column at a given location. An ABS can therefore be used to obtain the local seabed

elevation directly below the seafloor frame. In addition to these acoustic instruments that

measure backscatter intensity, the flow velocity is commonly measured using acoustic in-

struments that utilize the Doppler effect. On the frames in this study, an Aquadopp current

profiler measured the vertical velocity at 0.2 m bins over a range of 2 m. Finally, acoustic

doppler velocimeters (ADVs) are used to measure the velocity and wave properties at a

single point. A number of other acoustic, optical, and pressure instruments can be mounted

on a seafloor frame based on the data needs of a given study.

3.2.2 Study sites

Multiple scale superimposed bedforms were observed using the platforms and instruments

outlined above at two locations in Massachusetts: Wasque Shoals and Nauset Inlet. Both

locations are tidally energetic and have a sufficient quantity of sediment to form bedforms.
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Figure 3-3: a) Digital elevation map of the east coast of Massachusetts obtained from NOAA
Coastal Relief. b) Wasque Shoals is located off the southeast corner of Martha's Vineyard,
indicated by the red triangle. During flood, water is funneled into the inlet between Martha's

Vineyard and Nantucket. During ebb, the water leaves Nantucket Sound as a jet. This

creates a flood dominated flow at Wasque Shoals. c) GoogleEarth image of Nauset Inlet.

The approximate tidal flow is indicated with the arrows where the flow enters the inlet

during flood, weaving its way south around the sandbars. During ebb, the flow is directed

north and is weaker in velocity magnitude compared to flood.

Wasque Shoals: Martha's Vineyard, MA

Wasque Shoals is an ebb delta off the southeast corner of Martha's Vineyard, MA (Fig 3-3).

The flow in this region is tidally dominated and is funneled into the inlet between Martha's

Vineyard and Nantucket during flood and shot out like a jet during ebb. This large scale flow

pattern is in agreement with idealized theory for horizontal tidal exchange through an inlet

(Fig. 3-3b) (Stommel and Farmer, 1952). The study site is indicated by the red triangle in

Fig. 3-3b where the water depth is approximately 7 m. Given the horizontal tidal exchange

pattern, the flow is asymmetric and flood dominated at the study site as the flow during ebb

is separated from the 90' coastline on the southeast corner of Martha's Vineyard (Hopkins

et al., 2017).

Nauset Inlet: Cape Cod, MA

Nauset Inlet is a waterway connecting the Atlantic Ocean to Nauset Harbor and is located on

the Outer Cape Cod, MA (Fig. 3-3c). Nauset Inlet is a dynamic barrier beach system with

very shallow, complex sand features. Inlets form in the system due to historic breaches, and

once formed, migrate north given the dynamics of the system (Leatherman and Zaremba,

64

I



1986). Inside Nauset Harbor the flow is tidally energetic and asymmetric with a stronger

velocity flood tide but longer and weaker velocity ebb tide. There are large sand sheets

throughout the system and the water depth is approximately 3.5 m deep.

3.3 Observations

3.3.1 Wasque Shoals

The bathymetry from a survey with the Jetyak is shown in Fig. 3-4 where the color is depth

referenced to the North American Vertical Datum of 1988 (NAVD 88) which is within 10 cm

of mean tidal level. A transect indicated by the red line depicts large, approximately 80 m

wavelength, dunes that are oriented towards the north-northeast, which is in the direction of

the dominant flood flow. The dunes have an asymmetry of approximately 0.8, where bedform

asymmetry is defined as the horizontal distance from bedform crest to trough on the ebb side

of the bedform divided by the wavelength, a = c/A (Jones and Traykovski, 2018). Bedform

asymmetry will therefore range from 0 to 1 with symmetric bedforms having a = 0.5. The

dunes maintain an asymmetry of 0.8 throughout the tidal cycle, as was observed from three

surveys in 2013 and 2014 with the single-beam echosounder on the first version Jetyak.

Superimposed on these dunes are smaller megaripples with a wavelength on the order

of 1 m (Fig. 3-4c). While the Jetyak survey produces a high resolution bathymetric map

of the region that is capable of simultaneously observing bedforms that range from 1 m

to 1000 m, it does not capture the tidal dynamics of the system. To detect these shorter

time period changes, a seafloor frame, or quadpod, shown in Fig. 3-2, was placed on the

seabed at the location indicated by the red triangle in Fig. 3-4b from November 20, 2013 to

January 10, 2014. This quadpod had a number of acoustic instruments to measure the flow

and seabed including a rotary sidescan sonar which imaged the seabed over a 40 m diameter

area every 20 minutes and an Aquadopp current profiler that sampled the velocity every

0.2 m vertically at a time interval of 10 minutes. Rotary sidescan sonars provide backscatter

intensity of the seabed, however, they do not produce information on the depth. Bedform

asymmetry was estimated given the shadow pattern on both sides of the sonar using the

method in chapter 2 (Eq. 2.7). The depth averaged velocity and megaripple asymmetry

in terms of tidal hour is shown in Fig. 3-5 where the gray shaded region is the standard

deviation obtained from ensemble averaging over three tidal cycles.
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Figure 3-4: a) Greyscale image is a Landsat 8 satellite image of the corner of Martha's

Vineyard taken on August 23, 2016. The colored overlay is bathymetry obtained at Wasque

Shoals from the bathymetric sidescan sonar equipped on the Jetyak. b) Zoom-in of the Jetyak

bathymetric survey conducted in September, 2016 referenced to the NAVD88 vertical datum.

c) Transect across two dunes where the x-axis is horizontal distance along the transect and

the y-axis is depth. The transect shows flood-dominant asymmetric dunes with a wavelength

of approximately 80 m with smaller megaripples superimposed on the dunes.
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Figure 3-5: a) Depth averaged velocity from an Aquadopp mounted on the top of the

quadpod over a tidal cycle. A positive flow velocity is in the direction of flood, or to the

north-northeast. The black line is the ensemble averaged tidal velocity between November

28, 2013 and December 1, 2014 while the gray line is the standard deviation. b) Megaripple

asymmetry estimated from the shadow pattern of the rotary sidescan sonar. An asymmetry

of 0.5 represents a symmetric bedform. The vertical black dashed line is the zero-crossing

in velocity.

These data show that megaripple asymmetry is approximately 0.6 during flood and 0.35

during ebb, therefore resulting in slightly more asymmetric megaripples during ebb. Two

timescales to represent the lag time in bedform morphology with the flow will be considered

in this chapter: (1) the time between slack tide and when the bedforms are symmetric,

henceforth referred to as the "phase lag", and (2) the time it takes for the bedforms to

change their asymmetry from being oriented in one direction to being orientated in the

other direction, referred to as the "morphological lag".

During both flood and ebb the megaripple asymmetry lags the flow with an approximate

phase lag of 1.5 hours. Additionally, there is a morphological lag of roughly 2 hours for a

bedform to fully reverse asymmetry. While the dunes remain oriented in the direction of

flood, the dominant flow direction, the smaller, approximately 1 m wavelength, megaripples

superimposed on top of the dunes reverse their asymmetry with the tides.

3.3.2 Nauset Inlet

The lag time of superimposed bedform asymmetry has also been observed at Nauset Inlet

(Fig. 3-3c). Using a quadcopter and the Jetyak equipped with a wide-swath bathymetric
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Figure 3-6: a) Google-Earth image of Nauset Inlet with a digital elevation map taken from

the quadcopter and Jetyak on November 2, 2017 superimposed in color. The elevation is
with respect to the NAVD88 datum. b) Zoom-in of the channel where a tripod, indicated

by a red triangle, was located which was equipped with an ADV. The yellow line indicates
a transect considered near the tripod.

sonar. a high resolution bathymetric and topographic map of the inlet system was obtained

(Fig. 3-6). The quadcopter was flown during low-tide and took multiple overlapping or-

thonormal photos which were used in structure-from-motion algorithms to construct a digital

elevation model. The Jetyak obtained bathymetric information during high-tide. While it

takes roughly a day to collect the data needed to create the combined bathymetric and

topographic map, the Jetyak would transverse a given area approximately four to five times

throughout the bathymetric survey. Therefore, the tidal dynamics of the system can begin

to be resolved by considering the individual Jetyak transects. This study considers digital

elevation maps obtained from surveys conducted on October 17, 2017 when the flow transi-

tioned from flood to ebb, November 2, 2017 during ebb, and a week later on November 9,

2017, when the flow transitioned from ebb to flood.

In addition to the digital elevation maps a number of in-situ instruments were deployed

in the system including a tripod with Acoustic Doppler Velocimeters (ADVs) to measure

the flow velocity. This tripod was located in a 3.5 m deep channel as indicated by the red
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Figure 3-7: Bathymetry from the Jetyak of a transect near the tripod. The different colors
are the times the Jetyak was near the tripod with the red-colors taken from a survey on
October 17, 2017 where the flow went from flood to ebb, the yellow-colors taken on November
2, 2017 during ebb and the blue-colors taken on November 9, 2017 where the flow went from
ebb to flood. The depth is taken with respect to the NAVD88 datum.

triangle in Fig. 3-6b. The tripod was deployed from October 26, 2017 to November 26, 2017

and therefore provided flow information during the two November quadcopter and Jetyak

surveys. Tidal predictions outside of Nauset Harbor were used to estimate the time the

Jetyak was near the tripod during the October 17, 2017 survey given the tidal phase shift

from outside Nauset Harbor to the tripod.

A transect of the seabed near the tripod, indicated by the yellow line in Fig. 3-6b, is

shown in Fig. 3-7. The transect is taken with distance from the tripod and the different.

colors represent the different times the Jetyak was located near the tripod. The red-colors

are from the survey taken on October 17, 2017 where the flow went from flood to ebb, the

yellow-colors were taken from the November 2, 2017 survey during ebb, and the blue-colors

are from the survey taken on November 9, 2017 where the flow transitioned from ebb to

flood. The transect in Fig. 3-7 shows approximately 30 m wavelength dunes with a height

of roughly 0.8 m. These dunes migrate and remain oriented towards the south, or in the

direction of flood, throughout all surveys with an asymmetry of roughly 0.9.

A short transect along the top of a given dune reveals megaripples with a wavelength

on the order of 3 m and ripple height of approximately 0.1 m (Fig. 3-8b-d). During the

October 1 7 th survey, the megaripples begin to slightly reorient their asymmetry towards the

north, or to the left in the figure, in addition to migrating towards the north (Fig. 3-8b). As

the ebb flow begins to peak, the megaripples realign their asymmetry from being oriented

towards the south to towards the north during the November 2 nd survey (Fig. 3-8c). On
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Figure 3-8: a) Flow velocity at the tripod in Fig. 3-6b. Positive values are during flood
where the flow is going towards the south, and negative values are during ebb as the flow goes
to the north. The colored lines are the times the Jetyak was near the tripod. b) Bathymetry
obtained from the Jetyak relative to NAVD88 for October 17, 2017 survey where the flow
transitioned from flood to ebb. c) Bathymetry of megaripples from November 2, 2017 during
ebb. d) Bathymetry from November 9, 2017 survey as the flow went from ebb to flood.

November 9th, the opposite reversal is observed as the megaripples asymmetry realigns from

being oriented towards the north to towards the south as the flow reverses from ebb to flood

(Fig. 3-8d).

The megaripple asymmetry was directly computed from the bathymetry each time the

Jetyak was near the tripod by dividing the distance from the bedform crest to the northern

trough by the wavelength. This asymmetry along with the tidal flow obtained from an

ADV approximately 1 m from the seabed in terms of tidal hour is shown in Fig. 3-9.

The symbols in the megaripple asymmetry plot are the mean and the vertical lines are the

standard deviation where the bathymetry of approximately 40 megaripples were considered.

From this plot, it is apparent that the megaripple asymmetry reversal lags the flow reversal

with a phase lag of approximately 2.5 hours during ebb and 1 hour during flood. This

asymmetric lag is most likely due to the asymmetric flow at this location. Unlike the

megaripples at Wasque Shoals, the megaripples take a longer time to reverse asymmetry

with a morphological lag time of approximately 4 to 5 hours during ebb and approximately

3 to 4 hours during flood.
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Figure 3-9: a) Average flow velocity over 34 tidal cycles at the tripod taken between Novem-
ber 1, 2017 and November 18, 2017. Positive values are during flood where the flow is going
towards the south, and negative values are during ebb as the flow goes to the north. b)
Megaripple asymmetry given multiple transects of megaripples near the tripod. The sym-
bols represent the average asymmetry while the vertical lines are the standard deviation.
The vertical black dashed line represents slack tide between ebb and flood.

3.4 Morphological lag time theory

In a current driven flow, bedforms are asymmetrical in cross-section with a steeper slope on

the downstream, or lee, side of the bedform (Soulsby, 1997). When a current reverses direc-

tion, the bedform asymmetry may re-equilibrate with the flow depending on the amount of

sediment that can be transported in a half-tidal cycle and the size of the bedform. Boku-

niewicz et al. (1976) relates the time it takes for a bedform to reach a new equilibrium, or

the morphological lag time, with the volume of sediment that needs to be moved divided

by the bedload transport rate. Assuming a triangular bedform, this equation simplifies to

Eq. 3.6 where qb is the bedload sediment transport rate, which can be estimated by the

Meyer-Peter and Mueller empirical equation (Eq. 3.5), A is the bedform wavelength, h is

the bedform height, and 6 = a2 - al is the change in asymmetry (Fig. 3-10).

A Aoh
Tr =q= (3.6)

qb 2 qb(1 + 6 )

Substituting Eqs. 3.2 - 3.5 into Eq. 3.6 results in an equation for the morphological lag

time that is inversely proportional to U3 and proportional to A 2 when assuming a constant
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Figure 3-10: Geometric representation of sediment transport needed to change bedform

asymmetry which is used in computing the morphological lag time. A is the area of sediment

that must be moved, J is the change is asymmetry, h is the bedform height, and A is the

bedform wavelength.

bedform aspect ratio h/A. Therefore, large bedforms will not be greatly impacted by short-

period variations in the flow as the amount of sediment that can be transported in that

given time is substantially smaller than the scale of the bedform (Bokuniewicz et al., 1976).

In these cases, the larger bedforms will remain facing the direction of the dominant flow and

can therefore be used as an indication of the net circulation pattern (Bokuniewicz et al.,

1976; Dalrymple and Rhodes, 1995). Smaller bedforms, however, will equilibrate with the

flow and can reach a lee slope near the angle of repose of around 30 degrees (Dalrymple and

Rhodes, 1995).

The morphological lag time was estimated with respect to bedform wavelength using the

simple geometric model in Eq. 3.6 and the Meyer-Peter and Mueller empirical formula for

the bedload transport rate (Fig. 3-11). A flow velocity of 0.6 0.1 m/s was considered which

is approximately the flow observed at both Wasque Shoals and Nauset Inlet along with two

aspect ratios of h/A = 0.1 and 0.04. These aspect ratios are consistent with the bedform

parameters observed from the bathymetric sidescan sonar at Nauset Inlet (h/A = 0.04) and

from applying the method in chapter 2 to the rotary sidescan sonar data at Wasque Shoals

(h/A = 0.1). Finally, a change in asymmetry, 6 = 0.1 was considered.

The plot of morphological response time versus bedform wavelength depicts a longer

response time for slower flows (Fig. 3-11). Additionally, the smaller the aspect ratio, the

shorter the response time for a given wavelength. This is intuitive as less sediment would

need to be moved for short bedforms compared to tall bedforms.

The morphological response time for 6 = 0.1 was estimated from the observations at

both Wasque Shoals and Nauset Inlet during flood and ebb and compared with the geometric
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Figure 3-11: Morphological lag time versus bedform wavelength for a change in bedform
asymmetry of 6 = 0.1 from a = 0.45 to a = 0.55. The solid line with shading is the estimated
morphological lag time from a simple geometric model, Eq. 3.6, using the Meyer-Peter and
Mueller empirical formula for bedload transport rate. The shaded regions represents a
velocity range from 0.5 to 0.7 m/s with the solid line the morphological lag time given a flow
velocity of 0.6 m/s. The blue line is the estimated morphological lag time for a bedform
aspect ratio of 0.1, the aspect ratio observed at Wasque Shoals, while the red line is the
estimated lag time for a bedform aspect ratio of 0.04, the megaripple aspect ratio at Nauset
Inlet. The morphological lag time was directly computed from the asymmetry data for flood,
indicated by a triangle, and ebb, indicated by a square, at both Wasque Shoals and Nauset
Inlet for a change in asymmetry between 0.45 and 0.55.

model. These response times are plotted on Fig. 3-11, indicated by the squares and triangles,

given a bedform wavelength of approximately 0.7 m at Wasque and 3 m at Nauset. The

response time is very similar between flood and ebb at Wasque Shoals, whereas the ebb

response time is substantially larger than the flood response time at Nauset Inlet. This

difference is most likely due to the higher velocities during flood compared to ebb at Nauset

Inlet which is in agreement with the geometric model (Eq. 3.6).

3.5 Conclusion

With new observational techniques, the morphodynamics of multiple scale superimposed

bedforms were observed. These platforms and instruments, along with utilizing the method

described in chapter 2, were able to capture the response timescale of megaripple asymmetry
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and the dunes on which they are superimposed in the presence of a reversing flow. The

morphological lag time due to changes in bedform asymmetry is in agreement with a simple

theory for the lag time based on the volume of sediment that needs to be transported and

the bedload transport rate.

The observations show that in tidal flows on the order of 0.6 m/s, smaller megaripples

with a wavelength of 1 m will reverse their orientation while the larger dunes (30 m < A)

on which they are superimposed will remain oriented in the direction of the dominant flow.

The smaller megaripples at Wasque Shoals with A = 1 m reverse their asymmetry with a

morphological lag time of approximately 2 hours. This is faster than the megaripples, A =

3 m, at Nauset Inlet which have a morphological lag time of approximately 4 hours. This is

in agreement with morphological lag time theory as larger bedforms require more sediment

to be transported in a half tidal cycle in order to reverse their asymmetry (Eq. 3.6).

At Wasque Shoals the megaripple asymmetry lags the flow with a phase lag of ap-

proximately 1.5 hours while at Nauset Inlet the megaripple asymmetry lags the flow by

approximately 2.5 hours as the flow begins to ebb and 1 hour as the flow begins to flood.

This time from slack tide to when the megaripples are symmetric may therefore be more

dependent on tidal current velocity than the bedform geometry.

Overall, this novel dataset provides information on the response of bedform morphol-

ogy to a non-steady reversing flow. Larger bedforms maintain oriented in the direction

of the dominant flow and are therefore orientated against the flow for half the tidal cycle

and with the flow for the other half of the tidal cycle. The smaller megaripples superim-

posed on the dunes, however, reverse their orientation, slightly lagging the tidally reversing

flow. This response time of bedforms to a tidally reversing flow may have implications for

the seabed roughness felt by the flow as flow separation around bedforms increases seabed

roughness (Fredsoe and Deigaard, 1992; Lefebvre et al., 2013). Accurately estimating the

roughness of the seabed in the presence of bedforms is crucial to hydrodynamic numeri-

cal modeling efforts where bedforms may not be fully resolved but rather the roughness

due to the bedforms is parameterized (Williams, 1995). The roughness due to bedforms

is commonly parameterized using an empirical equation dependent on bedform height and

wavelength but not asymmetry (Grant and Madsen, 1982). Given that both megaripple and

dune asymmetry were fully observed throughout the tidal cycle, these novel observations

can be used in a numerical model to address the possible effect of bedform asymmetry on
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form drag.

The effect of bedform asymmetry on the seabed roughness can further be explored given

pressure measurements from seafloor frames and sea-surface elevation from the Jetyak. A

drag coefficient which quantifies bed roughness can be determined by balancing friction,

advection, and pressure in the momentum equation. These quantities have been obtained

from field campaigns at both Wasque Shoals and Nauset Inlet and can be used in combination

with the above numerical modeling to further address the effect of superimposed asymmetric

bedforms on the surrounding hydrodynamics.
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Chapter 4

Interaction of superimposed

megaripples and dunes in a tidally

energetic environment

4.1 Introduction

Superimposed bedforms, where smaller bedforms exist on top of larger bedforms, are ubiq-

uitous to nearshore, tidally energetic environments. Bedforms tend to scale with some

combination of water depth, grain size, and flow velocity (Dalrymple and Rhodes, 1995).

Therefore, the simultaneous existence of multiple scales of bedforms in a given location has

given rise to several different theories for the existence of superimposed bedforms in an effort

to understand this contradiction to the bedform scaling theories.

Two prior explanations exist for the simultaneous existence of multiple scales of bedforms;

equilibrium superposition and disequilibrium superposition. In disequilibrium superposition,

large bedforms are hypothesized to be formed from large flood events or strong flows while

smaller bedforms form during calmer periods. The different scaling hierarchies therefore act

independently, only existing together due to the large response time of the dunes (Dalrymple

and Rhodes, 1995). In Allen and Collinson (1974) it was concluded that only the smallest

scale bedform is expected to be active at a given time from field work in a river where

disequilibrium superposition was assumed to be the explanation for superimposed bedforms.

In equilibrium superposition, the boundary layer of the dunes cause the formation of the
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smaller bedforms (Dalrymple and Rhodes, 1995). A numerical study of dune generation

observed smaller bedforms forming on the stoss side of large dunes due to a slight deflection

on the dune stoss slope which is in agreement with equilibrium superposition (Dor6 et al.,

2016). In both equilibrium and disequilibrium superposition, however, the smaller bedforms

do not influence the larger scale features.

While these theories on the existence of superimposed bedforms suggest that the multiple

scales simply coexist, more recent studies have hypothesized that the different scales of

bedforms interact although this interaction is still poorly understood (Dor6 et al., 2016).

Off (1963) believed there should be a relation between sand waves and tidal current ridges,

however, due to a lack of accurate surveys, this relation could not be quantified. Further work

on tidal ridges similarly hypothesized that offshore tidal ridges are made from the accretion

of cross-beds formed by dunes (Lobo et al., 2010; Reynaud and Dalrymple, 2012). More

recently, Lefebvre et al. (2013) suggested that smaller bedforms may be influencing the dunes

on which they reside. Laboratory studies of superimposed bedforms in unidirectional flows

concluded that the sediment transport of the smaller features may influence the sediment

transport of the larger bedforms, however, this hypothesis was not validated (Venditti et al.,

2005). Finally, numerical modeling studies on nonlinear bed development in a unidirectional

flow show smaller bedforms migrating faster and eventually merging with the larger bedforms

in the domain (Dor6 et al., 2016). When there were superimposed bedforms on dunes, this

study found that the superimposed bedforms eventually promoted the decaying of the dune

crest (Dore et al., 2016). While these past studies hypothesize the interaction of the different

scales of bedforms that make up a superimposed bedforms, they lack the field data needed

to quantify and validate this hypothesis.

Using novel observational techniques, the migration rate of multiple scales of bedforms

can be simultaneously observed, providing insight into the interaction of different scales of

bedforms. The migration rate of bedforms in a uniform flow and energetic conditions where

the Shields parameter, 0, is greater than the critical Shields parameter is proportional to U 3

and inversely proportional to bedform height, h (Simons et al., 1965; Fredsoe and Deigaard,

1992). For a given flow velocity, U, larger bedforms will therefore migrate at a slower rate

than smaller bedforms. As a result of the differential migration rate from bedform migration

theory, the smaller megaripples superimposed on the dunes will consequently migrate faster

than the dunes on which they reside (Dalrymple and Rhodes, 1995; Dalrymple, 1984; Rubin,
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1987).

In tidally energetic environments where the flow reverses direction, there may be enough

sediment transport for the smaller bedforms to reverse their asymmetry and migration di-

rection; however, the larger bedforms may not be able to reverse their migration direc-

tion (Bokuniewicz et al., 1976). This results in a complex migration pattern where the

larger bedforms are slowly migrating in the direction of the dominant flow, while the smaller

bedforms superimposed on them are migrating back and forth with the tides.

In addition to the tidally reversing flow, the presence of the larger bedforms may also im-

pact the smaller bedform migration. In nearshore environments, the large height of bedforms

relative to the water depth may significantly influence the surrounding flow and subsequent

smaller bedform migration. The Bernoulli equation, which conserves energy, predicts flow

acceleration over bedform crests given the smaller water depth. These larger velocities over

the dune crests may influence the migration rate of the smaller bedforms as bedform mi-

gration is roughly proportional to U3 (Simons et al., 1965; Fredsoe and Deigaard, 1992).

Additionally, when bedforms have a steep lee face, the flow may separate forming a wake.

This wake may result in the net migration of smaller features in the opposite direction of

the free stream flow (Winter et al., 2008). Therefore, the presence of a larger bedform may

impact the migration rate of smaller superimposed bedforms.

Using the novel observational techniques outlined in section 3.2.1, the migration of mul-

tiple scales of superimposed bedforms were observed. Given the high spatial and temporal

resolution of these new techniques, a spatial variation in migration rate of the megaripples

as a function of distance along the dunes was observed. Based on size dependent bed-

form migration rate scaling, a new conceptual model on the interaction of multiple scales of

bedforms in a tidally energetic environment is presented. This conceptual model suggests

that smaller bedform migration serves as an intermediate step between grain-scale transport

processes and larger scale bedform migration.

4.2 Observations

Data was obtained from Wasque Shoals, located off the southeast corner of Martha's Vine-

yard, MA, using the field observational platforms and instruments outlined in chapter 3

(Section 3.2.1, Fig. 3-3b). The flow at Wasque Shoals is tidally energetic and flood domi-
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nant with the seabed consisting of approximately 80 m wavelength dunes with roughly 1 m

wavelength megaripples superimposed on them (Fig. 3-4).

4.2.1 Dunes

Three bathymetric surveys were obtained from a single-beam echosounder equipped on the

Jetyak taken over a nine month period on October 16, 2013, January 10, 2014, and January

10, 2014. The survey covered a 400 m x 800 m area with tracklines spaced roughly 30 m

apart. An interpolation scheme was utilized to obtain bathymetry information between the

tracklines that first computed intermediate tracklines and then applied an Over-determined

Laplacian Partial Differentiation Equation solver (ODETLAP) (Li et al., 2014). These

surveys reveal dunes migrating to the northeast, in the direction of flood, averaging 50

cm/day while also rotating counterclockwise (Fig. 4-1b). The "Y" shaped dune in Fig. 4-1b

ended up burying the quadpod on January 10, 2014, and is the dune that is referenced in

the data from the quadpod.

In all three surveys, the large dunes remain oriented towards the direction of flood with

the steep slope of the dune facing the northeast throughout the tidal cycle. Because the

flow reverses direction, the lee and stoss side of the dune also switch throughout the tidal

cycle. To distinguish between the two dune sides, the steep face will be defined as the

dominant lee face and the shallower dune slope as the dominant stoss face. The dunes have

approximately a 7.5' dominant lee slope and 2' dominant stoss slope. These dune slopes

are consistent with those observed with the high resolution bathymetric sonar Jetyak survey

taken in September, 2016 (Fig. 3-4).

In addition to the single-beam echosounder, the Jetyak was also equipped with an Acous-

tic Doppler Current Profiler (ADCP) to measure the flow velocity at 0.5 m bins throughout

the water column over a range of 10 m. The data from the ADCP show flow acceleration

over the dune crests along with a wake on the dominant lee face during flood but not during

ebb. Data depicting the wake during flood is shown in Fig. 4-1c from a survey taken with

the Jetyak on July 18, 2014.

4.2.2 Megaripples

An instrumented sea-floor frame was deployed on November 20, 2013 and collected data

until it was buried by a dune on January 10, 2014. The quadpod had a rotary sidescan
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Figure 4-1: a) The gray-scale image is a Pleiades satellite image taken on July 22, 2014 of

the corner of Martha's Vineyard and Wasque Shoals and obtained from Airbus Defence and

Space (www.intelligence-airbusds.com/pleiades/). The color is bathymetry from a Jetyak

survey with a single-beam echosounder taken on July 18, 2014. b) Bathymetry from three

Jetyak surveys over a nine month period. The bedform bathymetry was contoured to a

maximum depth of 5.5 m from the mean tidal elevation. The surface below 5.5 m, not

shown, is relatively flat with a maximum depth around 6.5 m. The dunes are primarily

migrating northeast at a rate of 50 cm/day and also rotating slightly in response to flood

tide dominated currents and waves from the southwest. The triangle depicts the location

of the quadpod that was buried by the 'Y' shaped dune on January 10, 2014. Up is north.

c) Transect of flow throughout the water column obtained from the ADCP on the Jetyak

during flood. The flow is going from left to right and a wake is present behind the dominant

lee face of the dune.
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Figure 4-2: a) Rotary sidescan sonar imagery during peak flood on December 3, 2013 at

10:01. b) Sonar imagery during peak ebb on December 5, 2013 at 05:41. c) Time-stack of

the intensity along a transect perpendicular to the megaripple crests and relative to distance

from the quadpod. The blue tracked megaripples depict the divergence of megaripples while

the green tracked megaripple converges into the dune front which is tracked in yellow.

sonar, ABS, and Aquadopp current profiler (Fig. 3-2). Imagery from the rotary sidescan

sonar depict 1 m wavelength megaripples superimposed on the "Y" shaped dune (Fig. 4-

2a,b). These megaripples migrate and change asymmetry with the tides as indicated by

the length and position of their shadows and explored in detail in chapters 2 and 3. The

megaripple wavelength and planview orientation were computed from edge detection and

spectral analysis techniques, resulting in wavelengths ranging from 0.5 to 3 m and oriented

approximately 200 clockwise from north.

To depict the migration of the megaripples, timeseries of backscatter intensity profiles

along transects perpendicular to the megaripple crests are shown in Fig. 4-2c. This time-

series depicts the tidal migration of the megaripples giving the sinusoidal signal of the

megaripple crests with a period of approximately 12.4 hours. In addition to the megaripples

migrating back and forth with the tides, there is also a net component of the megaripple

migration that is dependent on the location of the megaripples on the dune. This can be

visually seen by tracking individual megaripples in the timeseries of Fig. 4-2c. In this fig-
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ure, the dune front, or lower edge of the dominant lee face, is defined as the location where

the megaripple planview orientation changes and the backscatter intensity is large which

is indicative of a surface facing the sonar. In the trough of the dune, to the northeast of

the dune front, the megaripples move in the net direction of flood and diverge, which is

demonstrated by the two megaripples tracked in blue (Fig. 4-2c). Close to the dune front,

the megaripples migrate in the net direction of ebb, which is indicated by the green tracked

megaripple (Fig. 4-2c). These megaripples also converge with the dune front (yellow line)

which is slowly migrating in the direction of flood.

To quantify this spatial variation in megaripple migration and to average over several

megaripples, the following procedure was used. The migration rate of the megaripples was

computed from the backscatter intensity obtained from the rotary sidescan sonar over a

16 day period from November 27, 2013 to December 15, 2013 when there were no large wave

events. Seven transects approximately 2 m apart were taken perpendicular to the megaripple

crests and stacked in time, similar to Fig. 4-2c. Megaripple crests were then identified based

on the peak in backscatter intensity with the megaripple migration rate computed from the

change in megaripple crest location between timesteps. These megaripple migration rates

were binned at 1 m with respect to the dune front where the dune front was defined for each

tidal cycle by the location along the transect where the megaripples changed orientation

(Fig. 4-2a). The megaripple migration rate averaged over seven transects is shown in

Fig. 4-3b which depicts the tidal signal in the megaripple migration rate. Integrating the

megaripple migration rate (Fig. 4-3b) with respect to distance from the dune front results

in the megaripple convergence (Fig. 4-3c).

While the data of megaripple migration rate and convergence have a strong tidal signal

(Fig. 4-3b,c), the net megaripple excursion and convergence can be calculated by integrating

each horizontal bin in time. Fig. 4-4a depicts the net cumulative megaripple excursion at

four locations along the dune, -4 m, 0 m, 8 m, and 25 m, over the time period from November

27, 2013 to December 15, 2013. The megaripple excursion at -4 m and 25 m with respect to

the dune front have a positive excursion indicating a net migration in the direction of flood.

While the bins at the dune front and 8 m from the dune front have a net negative, or ebb,

migration. The net megaripple excursion for each bin along the dune is shown in Fig. 4-4b

which shows a positive net megaripple migration everywhere expect between the dune front

and approximately 12 m from the dune front. The net convergence was similarly temporally
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Figure 4-3: a) Depth averaged velocity from the Aquadopp mounted on the seafloor frame.

The black vertical dashed lines represent the upward zero crossing used to define a tidal

cycle. Positive numbers indicate flood where the flow is going towards the north-northeast.

b) Megaripple migration rate with respect to distance from the dune front averaged over

seven transects perpendicular to the bedform crests and binned at 1 m. Positive values

indicate megaripple migrating in the direction of flood. c) Megaripple convergence with

respect to distance from the dune front for a 16 day period.
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Figure 4-4: a) Megaripple cumulative excursion over a 16 day period at four locations, -4 m,
0 m, 8 m, and 25 m, from the dune front. Positive excursion indicates megaripple migra-
tion in the direction of flood, or towards the north-northeast, whereas negative excursion
indicates migration in the direction of ebb. b) Total megaripple excursion after 16 days. c)
Megaripple cumulative convergence for the same four locations as in (a). d) Total megaripple
convergence.

integrated with the cumulative convergence at -4 m, 0 m, 8 m, and 25 m from the dune front

shown in Fig. 4-4c and the total megaripple convergence between -5 m and 30 m from the

dune front shown in Fig. 4-4d. This convergence pattern results in megaripple convergence

along the dominant lee face of the dune (roughly 4 m from the dune front) and divergence

in between 4 m and 30 m from the dune front.

A tidally average megaripple migration rate and convergence can be computed by in-

tegrating the megaripple migration rate and convergence (Fig. 4-3b,c) for each horizontal

bin over a tidal cycle with a tidal cycle defined by the upward zero crossing in the depth

averaged velocity (Fig. 4-3a). This results in a similar pattern in migration and convergence

as shown in Fig. 4-4b,d with convergence of megaripples at the dune front and divergence

away from the dune front (Fig. 4-5a,b).

4.3 Principles of bedform migration

In the presence of a current, bedforms migrate in the direction of the flow as sediment moves

up the stoss side of the bedform, reaches the crest, and is then deposited on the downstream

face (Simons et al., 1965). The change in seabed elevation at a given location, r/(x), due

to the convergence of sediment flux from bedform migration can be determined from the
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conservation of sediment mass and is commonly referred to as the one-dimensional Exner

equation (Exner, 1920).

a-7  1 Oq- (4.1)
Dt (1 - n) ax

where n is the sediment porosity and is approximately equal to 0.3, qb is the bedload

sediment transport rate, x is distance in a parallel direction to the flow, and t is time. For

a given position on the bedform, ( (for example the location of the bedform crest), the

location, x, of that position at a later time can be determined by the transformation in Eq.

4.2 given a constant bedform migration rate, a (Simons et al., 1965).

( = x - at (4.2)

Using the transformation in Eq. 4.2, the change in seabed elevation can be expressed in

terms of bedform migration and bedform slope.

a- - a - --- a (4.3)
at aCa t a(

Eq. 4.3 is also known as the kinetic equation and assumes the uniform migration of

bedforms, a, with no sediment bypassing (Engel and Lau, 1981; Berg, 1987; Ten Brinke

et al., 1999; Hoekstra et al., 2004).

While the bedload transport rate, qb, is commonly estimated from empirical equations

such as the Meyer-Peter and MUeller empirical formula (Eq. 3.5), the bedload transport

rate associated with bedform migration can also be estimated from the Exner equation, Eq.

4.1. The partial derivative of qb with respect to x in Eq. 4.1 can be replaced as follows given

the partial derivative of ( with respect to x in Eq. 4.2.

aqb _ aqb a( _ aqb- - - -- --- (4.4)
ax aCa x a(

Substituting Eq. 4.3 and Eq. 4.4 into Eq. 4.1 results in the following differential equation

with respect to distance along the bedform (.

aqb a?,-- = -a( -n) (4.5)
aC 09
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Integrating Eq. 4.5 across a bedform with respect to ( produces the average bedload

sediment transport rate over the whole bedform [qb] = -[T]a(1 - n) + c. Where the square

brackets, [y] = f yd(, indicate a spatial average of a given variable, y, over a bedform

and c is a constant of integration. For triangular bedforms, [rq] = 0.5h where h is the height

of a bedform. Additionally, at the threshold of motion, c = 0 as qb = 0. As long as the

seabed is covered by bedforms and there is no bypassing of sediment from one bedform to

the next, c will remain 0 and the equation for bedload transport averaged over a bedform

can be simplified as shown in Eq. 4.6 (Simons et al., 1965).

[qab h a(l - n) (4.6)

For energetic conditions where the Shields parameter, 0, defined in Eq. 3.4, is greater

than the critical Shields parameter, the bedload transport rate, qb is proportional to U3

where U is the free stream flow velocity. Therefore, the bedform migration rate, a, is pro-

portional to U 3 and inversely proportional to bedform height, h (Eq. 4.6). For a given

flow velocity, U, larger bedforms will therefore migrate at a slower rate than smaller bed-

forms. As a result of the differential migration rate from bedform migration theory, the

smaller megaripples superimposed on the dunes will consequently migrate on top of the

slower moving dunes (Dalrymple and Rhodes, 1995; Dalrymple, 1984; Rubin, 1987).

4.4 Megaripple and dune interaction conceptual model

The observations of the megaripple convergence with respect to the dune front motivated

the development of a conceptual model relating the interaction of the two features. From

conservation of mass assuming no sediment bypassing and the fact that megaripples consist

of sediment, the convergence of megaripples will result in an accumulation of sediment and

subsequent increase in seabed elevation while the divergence of megaripples will result in

a decrease in seabed elevation. Because the convergence zone extends slightly past the

dune front, the dune is expected to slowly migrate in the direction of flood as sediment

is accumulated in front of the dune, thereby creating a two-way interaction between the

bedform scales.

The megaripple convergence pattern can be attributed to the asymmetric, flood-dominated

tide and flood-oriented dune as depicted in Fig. 4-5c-e. The flood-dominated tide results
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Figure 4-5: a) Net tidally averaged megaripple velocity over a 16 day period in a coordinate

system relative to distance from the dune front. The gray shaded region is the standard error

of the number of bins included in the average from both different tidal periods and different

transects. b) Tidally averaged convergence obtained from differentiating the megaripple

migration rate. c-e) Schematic of the superposition of megaripples on the dune and their

migration and asymmetry during flood (c) and ebb (d) tides. The faded region on the left

was not directly observed due to the limited field of view of the rotary sonar system.
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in the majority of the megaripples having a net migration in the direction of flood. How-

ever, because the dune also remains flood oriented, it is in temporal disequilibrium with the

flow during ebb. This results in the presence of a wake during flood but no wake during

ebb (Kwoll et al., 2014). While measurements were only obtained on part of the dominant

lee-face due to the location of the frame relative to the dune, theory suggests that there

would be a strong convergence of megaripples on the dominant lee-side due to gravity acting

on the megaripples migrating down the steep dune face during flood. Downstream of the

dominant lee face, the megaripple migration slows due to the weaker near-bed velocity from

the presence of the wake. Outside of the wake where the flow reattaches, the megaripple

migration begins to accelerate. On ebb, the effect of gravity reduces the megaripple migra-

tion rate up the dominate dune lee-side. Combining the megaripple migration rate during

flood and ebb results in a net migration with a convergence pattern on the lee face of the

dune and divergence in the trough (Fig. 4-5e). This pattern results in the accumulation

of sediment on the lee face of the dune and erosion of sediment near the trough. These

locations of sediment erosion and deposition result in the net migration of the dune in the

dominate flow direction.

To quantitatively test this conceptual model that the megaripples are driving dune mi-

gration with observations, both the change in seabed elevation and the dune migration rate

were predicted from megaripple convergence and compared to direct measurements of these

quantities from other instruments.

4.4.1 Change in seabed elevation

The change in seabed elevation over time was directly observed from an Acoustic Backscatter

Sensor (ABS) located on a tripod (Fig. 3-2). The ABS measures backscatter intensity where

the depth of the seabed was determined from the high intensity that results from the large

reflection of the seabed. Fig. 4-6c depicts the depth of the seabed from the ABS from

November 27, 2013 until December 19, 2013. During most of this time period the seabed

elevation deceases slightly with time, however, there are two instances where there is a

rapid increase in seabed elevation. During these periods, there are large wave events along

with flood tidal flows. Therefore, while the sudden increases in seabed elevation can be

attributed to large wave events, the seabed elevation slowly decreases with time when the

waves are small. The change in seabed elevation estimated using linear regression is -0.66
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0.06 cm/day (95% confidence interval) over a 16 day period when there were no large

wave events (Fig. 4-6). This 16 day period was also chosen as it is the period used for the

megaripple migration rate (Fig. 4-3b). The decrease in seabed elevation at the quadpod

is expected as the quadpod is located on the dominant stoss side of a subsequent dune.

Therefore, as the trough of the "Y" shape dune migrates towards the quadpod, the quadpod

observes a decrease in seabed elevation.

In addition to the direct measurement of seabed elevation with time, the change in seabed

elevation can also be estimated given the conservation of mass through the one-dimensional

Exner equation (Eq. 4.1) and the average bedload transport rate over a megaripple (Eq.

4.6). Substituting Eq. 4.6 into Eq. 4.1 results in the following equation for change in

seabed elevation where h is the height of the megaripples and am is the migration rate of

the megaripples.

h 

= Oa-- 
(4.7)at 2 Ox

To consider the net effect of megaripple migration, Eq. 4.7 was tidally averaged as shown

in Eq. 4.8 where the overbar represents a temporal average over a tidal cycle.

T ] --- dt (4.8)
at 2 T 0 9x

T = 12.42 hr is the length of a tidal cycle and h is the megaripple height. A megaripple

height of 0.1 m was approximated given a megaripple aspect ratio, h/A, of 0.1 obtained from

applying the method outlined in chapter 2 to the rotary sidescan sonar data. The tidally

average megaripple convergence on the right hand side of Eq. 4.8, 1 T -2dt can beT 0 ax

estimated from megaripple migration rates as shown in Fig. 4-5b. Because the megaripple

convergence varies spatially with location on the dune, the convergence at the location of

the quadpod is considered as this is where the change in seabed elevation from the ABS is

estimated. During the 16 day time period where the change in seabed elevation was directly

estimated from the ABS and the megaripple convergence was computed, the dune front was

approximately 8 m from the quadpod (Fig. 4-6d). The net convergence of the megaripples

8 m from the dune front is -0.0059 t 0.002 1/hr (95% confidence interval) (Fig. 4-5b).

Multiplying this by h/2 based on a triangular bedform assumption results in a change in

seabed height estimated from Eq. 4.8 of -0.71 0.25 cm/day (95% confidence interval).
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Table 4.1: Estimate of the change in seabed elevation with time obtained from directly from

the ABS and indirectly from megaripple convergence.

Estimate Method 07/Dt (cm/day) 95% CI

Direct -0.66 0.06

Predicted -0.71 0.25

The estimated change in seabed elevation due to the convergence of megaripples (-0.71

+ 0.25 cm/day) has overlapping error bounds with the seabed elevation change computed

directly from the ABS (-0.66 0.06 cm/day) with a percent difference in the mean of

7.3% (Table 4.1). This suggests that megaripple convergence can directly force dune scale

elevation changes.

4.4.2 Dune migration

The theory that megaripples serve as an intermediate step in dune migration can be further

quantitatively examined from the dune migration rate. The migration of the dune over a

period with little wave energy can be directly estimated given the distance of the dune front

to the quadpod. A dune migration rate of 12 3.6 cm/day (95% confidence interval) is

estimated from a linear regression of the distance of the dune front from the quadpod (Fig.

4-6d).

The dune migration rate can also be estimated from the convergence of the megaripples

given the kinetic equation that assumes the dune moves at a constant velocity without

changing shape and there is no sediment bypassing (Eq. 4.3). Tidally averaging Eq. 4.3

results in the following equation for the tidally averaged dune migration rate, ad.

an hL _LT a dt(49
-d at 2 T T 0 ax (4.9)

Because the dune migrates a very small distance over a tidal cycle compared to the

bedform size, the tidally averaged dune slope, aq/&( can be assumed to be constant. The

dune front is defined based on the high backscatter intensity from the seabed, and the change

in megaripple orientation which is hypothesized to be due to the steep dominant lee face

of the dune. From the Jetyak survey with an echosounder taken on October 16, 2013, the
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Table 4.2: Estimate of the change in seabed elevation with time obtained from directly from
the ABS and indirectly from megaripple convergence.

Estimate Method a- (cm/day) 95% CI

Direct 12 3.6

Predicted 13.8 5.5

slope at the dune front is estimated to be Drj/O( = -0.13 with a maximum dominant lee

face slope of -0.18 and slope at the transition from a gradual slope to steep slope of -0.07.

The average change in bed elevation from megaripple convergence can be estimated from

the tidally averaged Exner equation, Eq. 4.8. In section 4.4.1, the change in bed elevation

due to megaripple convergence at the quadpod (8 m from the dune front) was approximately

-0.71 cm/day while the average change in bed elevation at the dune front is predicted to be

1.8 + 0.7 cm/day (95% confidence interval) based on a convergence of 0.015 t 0.006 1/hr.

This results in a dune migration rate of 13.8 5.5 cm/day (Eq. 4.9).

The average migration rate obtained from assuming megaripple convergence is within the

95% confidence interval of the dune migration rate obtained directly from the observations

with a percent different in the mean of 13.9% (Table 4.2). In addition to the analysis showing

dune scale elevation changes can be predicted from megaripple convergence, section 4.4.1,

this analysis suggests that megaripple convergence may be driving dune migration.

4.5 Conclusion

This study proposes a conceptual model that suggests megaripple convergence acts as an

intermediate step between grain-scale movement and dune migration. Past work on bedform

dynamics attributes the migration of bedforms to individual sediment grains moving up the

stoss side of a bedform, reaching the crest, and avalanching into the trough (Simons et al.,

1965; Engelund and Fredsoe, 1982; Nielsen, 1992). While this process is believed to still

drive the smaller megaripple migration, the conceptual model presented in this chapter

proposes that when multiple scale bedforms are superimposed, the migration of the larger

scale bedforms is dependent on the smaller superimposed bedforms.

Furthermore, this conceptual model challenges two prior explanations for the existence
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of superimposed bedforms; equilibrium superposition and disequilibrium superposition. Dis-

equilibrium superposition suggests that only one scale of bedform can be active at a given

time and the different scales are formed from different processes such as a large flood. In this

case, different scales of bedforms coexist but do not interact. In equilibrium superposition,

the smaller scales are formed from the boundary layer of the larger bedforms. In this case,

the larger bedforms influence the smaller features, however, the smaller bedforms do not

influence the larger features.

The conceptual model presented from this work is based on tidally dominated flows with

minimal wave energy. Large wave events, however, are substantial to dune dynamics as

the average dune migration rate over a nine month period obtained from Jetyak surveys is

approximately 50 cm/day, roughly five times as large as the dune migration rate estimated

from megaripple convergence. During storms, large amounts of sediment is suspended and

the dune migrates far as indicated by the large change in both seabed elevation from the

ABS and the distance of the dune front from the quadpod. We speculate that the direction

of the waves, the timing of large wave events relative to tidal phase, and the intensity of the

wave event can all contribute to the migration of the dunes and alteration of the seafloor

bathymetry. Understanding the large wave events and the subsequent suspended sediment

is crucial in the overall migration and morphodynamics of the larger dunes in environments

with episodic large waves such as Wasque Shoals. However, in environments with smaller

waves and tidally dominated bedform migration processes, this new conceptual model may

account for the migration of larger scale superimposed bedforms.
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Chapter 5

Concluding Remarks

Sub-aqueous bedforis have a large impact on coastal communities, ecosystems, and envi-

ronments through their effect on the surrounding flow and subsequent sediment transport.

This thesis utilizes novel observational platforms and instruments to understand the mor-

phological evolution of multiple scales of bedforms in the presence of a tidally reversing

flow

In chapter 2, a method is outlined to expand the capabilities of a common oceanographic

instrument, a sidescan sonar. This method estimates bedform height and asymmetry from

acoustic "shadows" accounting for the periodic structure of bedforms and natural variability

in bedform and seafloor configuration. The method is validated for wave orbital ripples and

tidally reversing megaripples where a low-mounted rotary sidescan was deployed along with

a bathymetric measuring instrument. The method was able to capture the changes in the

bedform field due to both large wave events and a tidally reversing flow.

The method presented in chapter 2 was applied to data of megaripples at Wasque Shoals,

a tidally energetic environment off of Martha's Vineyard where megaripples were superim-

posed on dunes. The time scale response of the bedforms to a tidally reversing flow were

explored in chapter 3 where the dataset at Wasque revealed that smaller megaripples, on

the order of 1 m wavelength, reverse their asymmetry and migration direction with the

flow while the larger dunes on which they reside, wavelength on the order of 80 m, remain

oriented in the direction of the net tidal flow. This time scale response of bedforms to a

tidally reversing flow were further explored with data collected at Nauset Inlet on the Outer

Cape Cod using a quadcopter and autonomous jet-powered kayak. At both study sites,
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the time scales for lag in megaripple asymmetry agrees with a simple geometric model for

morphological lag time given an empirical model for bedload transport.

Finally, in chapter 4 the interaction of superimposed bedforms in a tidally energetic

environment was analyzed. Data from Wasque Shoals was considered which revealed the

differential migration rate of megaripples as a function of their location on the dune. This

differential migration rate results in a convergence and divergence pattern that is proposed

to drive the larger dune migration. This interaction of the megaripples with the dunes

on which they are superimposed challenges explanations for the existence of superimposed

bedforms.

Overall, this thesis presents measurements of the dynamics of multiple scales of bedforms

throughout a tidal cycle. The findings suggest that smaller bedforms migrate and change

their asymmetry faster than larger bedforms. When there are smaller bedforms superim-

posed on larger dunes, this difference in migration rate and asymmetry lead to the interaction

of the two scales of features with the smaller bedforms driving larger dune migration.
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