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Abstract

Solids with deformation-diffusion coupling are ubiquitous in engineering applications. Under-
standing and modeling the fracture of such solids is vitally important. This thesis addresses
the theoretical formulation, numerical implementation, and application of fully-coupled
deformation-diffusion-damage theories for two different classes of materials: (i) polymeric
gels and (ii) hydrogen embrittlement in steels, as elaborated below.

(i) Fracture of polymeric gels: We first introduce a field called "stretch of Kuhn segments
and/or crosslinks", which is necessary for understanding and modeling of the fracture
in polymeric materials. Together with this newly introduced field, we formulate a
thermodynamically consistent phase-field type theory for fracture of gels. A central
feature of our theory is the recognition that the free energy of polymeric materials is not
entirely entropic in nature, there is also an energetic contribution from the deformation
of the backbone bonds in a chain and/or the crosslinks. It is this energetic part of the
free energy that drives the progressive damage and fracture of polymeric materials.
We have implemented our theory in a finite element code, and used this simulation
capability to study some interesting phenomena in failure of elastomers and gels.

(ii) Fracture of steels due to hydrogen embrittlement: We have formulated a thermody-
namically consistent theory for the diffusion of hydrogen coupled with the large elastic-
plastic deformations, and a phase-field type theory to model ductile fracture of metals.
The theory accounts for the macroscopic effects due to the generation and agglom-
eration of microscopic hydrogen-vacancy complexes. We have implemented our fully
coupled theory in a finite element program, and calibrated the material parameters
in the theory by using experimental data available in the literature. Finally we have
utilized our simulation capability to study the process of fracture due to hydrogen
embrittlement in some technically relevant notched-components made from steel.

Thesis Supervisor: Lallit Anand
Title: Rohsenow Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Background

The materials used in revolutionary engineering innovations have a common salient feature:
operated in the situations that coupled with multiple physical fields. Examples include
polymeric gels used in biological applications, and metallic materials for energy storage.
The drug-releasing polymeric materials usually interact with pH and concentration fields.
They undergo gradual polymer chain degradation on the microscopic-mesoscopic scale and
final matrices rupture on the macroscopic scale. The steel pipes used for oil transportation
communicate with chemical and pressure fields. In this situation, microscopic-mesoscopic
defects development and final macroscopic failures, are all inevitable. For these two cases,
the multi-physics nature of the materials not only complicates the understanding of the
fundamental failure mechanisms, but also makes it challenging to build useful theoretical
and numerical tools for failure analysis of materials.

Generally, fracture mechanics, or the failure analysis of materials, attempts to answer
the following questions for a specific material:

1. When does a pre-existing crack start to grow?

2. What is the direction of crack propagation?

The field of fracture mechanics has its foundations in a classical paper by Griffith (1921).
Classical theories based on asymptotic solutions with one-parameter fracture criteria, like the
critical energy release rate G, (or equilvently K) (Griffith, 1921; Lawn, 1993), the generalized
critical energy release rate J, (Rice, 1968), the strain energy density and related energy
density factor (Sih, 2012), the crack tip open distance (Tracey, 1976) and the critical distance
(Taylor, 2010), try to answer the first question. The classical Kn, = 0 criteria in mixed mode
loadings and atomistic simulations (Buehler et al., 2003; Karma et al., 2001) try to answer
the second problem for brittle solids. During the past century, these theories have been
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applied to understand the fracture of brittle solids (Griffith, 1921; Lawn, 1993), viscoelastic
media (Schapery, 1984; Slepyan, 2012), elasto-plastic solids (Rice, 1968; Hutchinson, 1968;
Rice and Rosengren, 1968; McMeeking, 1977; McMeeking and Parks, 1979), and the interface
between solids (Hutchinson and Suo, 1991). These myriad applications based on the classical
fracture mechanics highlights its great success.

However, this existing fracture mechanics and analysis is barely useful for materials
coupling with multiple physical fields. The major reasons are

" These coupling fields will make the fracture properties of materials inhomogeneous.
For example, an inhomogeneous deformation field induces an inhomogeneous chemical
potential field, which leads to an inhomogeneous concentration of the fluid because
of diffusion within the body; such an inhomogeneous fluid concentration leads to an
inhomogeneous propensity to fracture within the body.

" A lot of coupling fields are time-dependent, such as diffusion of solvents. These time-
dependent fields usually influence the deformation field in a nonlinear way. Thus
typically the impact of these fields on the fracture of a sample needs to be examined
by a fully coupling theory.

* The coupled multi-physical fields help the evolution of microscopic defects and the
accumulation of damage in materials. These developed microscopic defects and ac-
cumulated damage have important impacts on the macroscopic fracture behaviors of
materials. Thus a fully coupling theory accounting for specific and microscopic features
is generally needed for the failure analysis of such materials.

Instead of traditional fracture mechanics and analysis, the recently proposed variational
and phase-field approaches to modeling fracture (Francfort and Marigo, 1998; Bourdin et al.,
2008; Karma et al., 2001) are very promising, and may provide a unified framework to
understand and model fracture of a variety of materials coupled with multi-physical fields.
For examples, the above-mentioned two essential questions in fracture mechanics can be
answered naturally in these phase-field approaches, by introducing a single scale damage
field d and its gradient Vd. This advantage dramatically simplifies fracture analysis of
material samples in complex geometry and environment. Because of this, the phase-field
approaches to model fracture become extremely popular in mechanics society during the
past 15 years.

However, since the fracture process in materials that couple with multiple fields depends
highly on microstructure of materials, a more systematic way to embed the phase field
type idea in modeling the fracture of materials coupled multiple fields is needed (Sih and
Provan, 2013; Kienzler and Herrmann, 2012; Wang and Li, 2010). In this thesis, we focus on
studying the coupled deformation-diffusion-damage behaviors of materials. We study two
different classes of materials: (i) polymeric gels and (ii) hydrogen embrittlement in steels.
The details of these two classes of materials are discussed in the following subsections.
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1.1.1 Polymeric gels

The development of elastomeric materials for engineering applications has ushered a re-
cent revolution in materials. Applications often depend on the great extensibility of elas-
tomeric materials, as well as many other useful properties that gels can possess, including
bio-compatibility, self-healing, and novel actuation mechanisms and functions. Elastomeric
materials are traditionally found in several diverse applications, such as structural bearings,
tires, seals, adhesives, and vibration isolators. In addition to the traditional engineering
uses of elastomeric materials, transformative applications are being developed daily, such
as soft robotics, scaffolds for drug delivery, adhesives for wound dressing, and stretchable
electronics. Many of these applications require the underlying elastomeric materials to be
stretchable and yet fracture resistant. This places new importance on understanding the
physics of deformation and fracture in these elastomeric materials.

One of the distinguishing features of elastomeric materials, which consist of a network of
flexible polymeric chains, is that the deformation response is dominated by changes
in entropy. Since the deformation process of elastomeric materials is essentially dominated
by changes in entropy, they can be easily deformed to a very large strain, either by external
fields, such as applied forces and voltages (Treloar, 1975; Mark and Erman, 2007), or swelling
in suitable solvents (Yamakawa, 1971). For example, a loosely crosslinked hydrogel can easily
deformed to 5 times of its initial length (see Fig. 1-1 (a)), and PDMS can swell to 2.7 times
of its initial size in pentane (see Fig. 1-1(b)). Accordingly, most classical theories of rubber-
like elasticity (see Treloar (1975); Arruda and Boyce (1993) and the references therein),
deformation-diffusion coupling theory of gels (Hong et al., 2008; Duda et al., 2010; Chester
and Anand, 2010, 2011) consider only the configurational entropy and neglect any changes
in internal energy within polymer chains.

(a) (b)

Figure 1-1: (a) Loosely crosslinked polyacrylamide hydrogel can easily be deformed to 5 times of
its initial length. (b) PDMS swells to 2.7 times its initial size after being immersed in pentane for
8 hours; from Watson (2015).

Large stretches caused by external fields eventually culminate in fracture. Research on the
fracture of polymeric soft materials started more than 70 years ago by Rivlin and Thomas
(Rivlin and Thomas, 1997). The high value of the fracture toughness of an elastomer is
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explained in the classic model by Lake and Thomas (1967). With reference to Fig. 1-2,
the essential point that Lake and Thomas provided in their model is that, if one bond
in a polymer chain breaks, the energy stored in the whole chain is dissipated. With ps
the number of chains crossing unit area in the reference configuration of the body, n the
number of monomer units in a chain, and U, the energy required to break a covalent bond
in the chain, Lake and Thomas estimate the critical energy release rate to have a value
of G, - penUc. Thus, according to Lake-Thomas model, the fracture process in an
elastomer is dominated by energy released due to chain-scission.

crosslink n monomer units

L- plane of crack
propagation

crosslink

Figure 1-2: Schematic of a polymer chain lying across the plane of crack propagation. Adopted

from Lake and Thomas (1967).

There are several problems that we need to address to obtain better understandings
on fracture of elastomeric gels. First of all, the inconsistency of deformation and fracture
responses of elastomeric gels not only impedes our understandings on these systems, but also
prevent us to develop efficient and predictive models for mechanical responses of elastomeric
materials. So fundamentally and conceptually we need to resolve this inconsistency first.

Furthermore, we need to consider the migration of solvent as the sample deforms. Since
the interaction between the solvent diffusion within the gels, and other rates imposed on the
soft materials by surrounding environment, such as stretch rate and evaporation rate, can
cause a lot of interesting phenomena, such as delayed fracture, in these materials. These
behaviors cannot be fully understood or modeled by classical fracture mechanics. As we
said before, phase-field type theory is very promising for modeling the fracture in materials
coupled with multiple physical fields. However, to build a predictive phase-field type theory,
we need to include the microscopic features of the system. In elastomeric gels, the most
important microscopic feature is the polymer chain, the polymer network, and the diffusive
species. How to properly include such microscopic features in continuum-level model is a
difficult task.
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1.1.2 Hydrogen embrittlement in steels

Atomic hydrogen readily dissolves in and permeates through most materials. The deleterious
effects of hydrogen on the mechanical response of iron and steel are well-known (Hirth, 1980).
Several mechanisms for hydrogen embrittlement have been proposed (Dadfarnia et al., 2009,
2010):

1. Hydrogen-enhanced decohesion (HEDE): This mechanism posits that the accu-
mulation of hydrogen reduces the cohesive strength of a solid along crystallographic
planes, grain boundaries, or particle/matrix interfaces, giving rise to a reduced fracture
toughness (Troiano, 1960; Oriani, 1972).

2. Hydrogen-enhanced localized plasticity (HELP) (references (Beachem, 1972;
Birnbaum and Sofronis, 1994)): This mechanism posits that hydrogen redistribution
occurs around dislocations, reduces the elastic interaction energy between dislocations
and thereby decreases the lattice Peierls stress - material softening then ensues. See
Song and Curtin (2014) for a recent perceptive discussion of this mechanism. However,
note that this mechanism by itself does not say how final fracture occurs.

3. Hydrogen-enhanced strain-induced vacancy stabilization (HESIV): Nagumo
et al. (Nagumo et al., 2003; Nagumo, 2004) have suggested that vacancies play a cru-
cial role in hydrogen embrittlement. The presence of vacancies was demonstrated by
positron annihilation and thermal desorption spectroscopic techniques. By plastically
deforming and subsequently heating, with and without hydrogen, these authors de-
termined that vacancy-based hydrogen traps were created during plastic deformation,
and that their creation was significantly accelerated by the presence of hydrogen. How-
ever, these defects could be apparently removed by annealing. They interpreted these
trap sites as vacancies created by dislocation interactions, which were stabilized by the
presence of hydrogen. They proposed that hydrogen accelerated the formation of these
vacancies by lowering the formation energy and by accelerating dislocation interaction
processes. They suggested that clustering of atomic vacancies could act as a potential
source of fracture initiation by destabilizing the process zone ahead of a crack tip by
"amorphization."

In spite of the long history of study into the embrittlement of metals by hydrogen, there is
little consensus as to the mechanism by which hydrogen degrades their mechanical response.
The microscopic mechanisms by which hydrogen embrittles steels are still not very well
understood or modeled.

Recently, Neeraj et al. (2012) and Srinivasan and Neeraj (2014) have reported on their
experiments at ExxonMobil which have identified evidence for nano-void coalescence as a
failure pathway for steels in the presence of hydrogen; cf. Fig. 1-3 for a schematic from their
paper. In addition, atomistic simulations conducted by researchers have helped provide
support for the following observations/hypotheses:
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Sta e I Stage 11 Stage III Stage IV

Pia . Elslocations
Crack-ti zone

H diffusion i mm
HELP W Vacancies Nano-Voids

- Initial plasticity Localized plasticity - Excess Vacancy - Vacancy induced
" H diffusion to crack tip - Hydrogen accumulation Accumulation Nano-Void nucleation

- HELP Zone - Hydrogen-Vacancy and growth
Complexes

Figure 1-3: Schematic of stages associated with the nano-void coalescence mechanism.

" That hydrogen stabilizes vacancies in Fe by both lowering the vacancy formation en-

ergies and by reducing the mobility of vacancies.

" Plastic deformation leads to transient injection of (beyond-thermal-equilibrium) vacan-

cies, which are usually swept away quickly by moving dislocations, but in the presence

of hydrogen are stabilized as hydrogen-vacancy complexes that cannot be swept away

by moving dislocations.

" Hydrogen vacancy complexes can grow to nucleate nanovoids which might eventually

lead to fracture.

However, there are gaps in understanding how these atomic-level defects lead to failure at

the macroscopic scale. A coupled deformation-diffusion continuum-level model has been pro-

posed (Di Leo and Anand, 2013; Anand, 2011), however, extension of this model to capture

the fracture/failure of materials incorporating the underlying atomic-level principles and un-

derstandings has not yet been done. As discussed in previous sections, phase field methods

are promising for modeling fracture phenomena. However, the hydrogen-embrittlement of

steels also highly depends on micro-defects, so a more systematic way to embed the phase

field type idea in modeling fracture of hydrogen embrittled steels is needed.

1.2 Contributions of thesis and related publications

This thesis is comprised of two major parts:

(i) Modeling of fracture of polymeric gels;

(ii) Modeling of hydrogen embrittlement in steels.

Each part is discussed in more details in the following sections, and publications in peer-

reviewed journals related to each part are listed.
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1.2.1 Modeling of fracture in polymeric gels

A polymeric gel is a cross-linked polymer network swollen with a solvent. If the concentration
of the solvent or the deformation is increased to substantial levels, especially in the presence
of flaws, then the gel may rupture. Although various theoretical aspects of coupling of fluid
permeation with large deformation of polymeric gels are reasonably well-understood and
modeled in the literature, the understanding and modeling of the effects of fluid diffusion on
the damage and fracture of polymeric gels is still in its infancy.

The first contribution of this part is introducing a new field related with stretch of Kuhn
segments, to bridge the deformation of polymers and the fracture of polymers consistently.
We provide a rational yet simple model for deformation and fracture of cross-linked polymers,
based on two ingredients: (i) a non-Gaussian statistical mechanics model of polymer chains
that accounts for the increase in energy due to the deformation of molecular bonds; (ii) a
chain scission criterion based on the bond deformation energy attaining a critical value. Using
this model, we can estimate the rupture stretch of elastomeric materials from fundamental
quantities describing the polymer network. We use this model to relate the flaw sensitivity
of elastomers to an intrinsic material length scale related to the network structure.

- Mao, Y., Talamini, B. , Anand L., 2017. Rupture of polymers by chain scission.
Extreme Mechanics Letters. 13, 17-24.

The second contribution of this part is building a thermodynamically-consistent theory
for fracture of polymeric gels. - a theory which accounts for the coupled effects of fluid
diffusion, large deformations, damage, and also the gradient effects of damage. The particular
constitutive equations for fracture of a gel proposed in our paper, contain two essential new
ingredients: (i) Our constitutive equation for the change in free energy of a polymer network
accounts for not only changes in the entropy, but also changes in the internal energy due the
stretching of the Kuhn segments of the polymer chains in the network. (ii) The damage and
failure of the polymer network is taken to occur by chain-scission, a process which is driven
by the changes in the internal energy of the stretched polymer chains in the network, and
not directly by changes in the configurational entropy of the polymer chains. The theory
developed in this paper is numerically implemented in an open-source finite element code
MOOSE, by writing our own application. Using this simulation capability we

* study the fracture of elastomers by crosslink failure and chain scission, and

" report on our study of the fracture of a polymeric gel, and some interesting phenomena
which show the importance of the diffusion of the fluid on fracture response of the gel
are highlighted.

- Talamini, B., Mao, Y. , Anand L., 2018. Progressive damage and rupture in polymers.
Journal of the Mechanics and Physics of Solids. 111, 434-457.

- Mao, Y. and Anand L., 2018. Fracture of elastomeric materials by crosslink failure.
Journal of Applied Mechanics. in press.
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- Mao, Y. and Anand L., 2018. A theory for fracture of polymeric gels. Journal of the
Mechanics and Physics of Solids. 115, 30-53.

1.2.2 Modeling of fracture in steels due to hydrogen embrittle-
ment

Based on these recent experimental obervations, and guided by the hydrogen embrittle-
ment mechanism proposed by Li et al. (2015), we have formulated a continuum theory for
the diffusion of hydrogen coupled with the elastic-viscoplastic response of metals, together
with an accounting for microscopic effects due to trapping of hydrogen in hydrogen-vacancy
complexes, culminating in eventual fracture. We postulate that when the hydrogen which
is trapped in hydrogen-vacancy complexes reach a critical concentration, then there is a
change in mechanism of inelastic deformation from standard plastic flow by dislocation glide
to plastic flow by a quasi-cleavage type mechanism - a change in mechanism which is
reminiscent of a transition between "shear-yielding" and "crazing" in amorphous polymers.
We have formulated a criterion for this change in mechanism together with an attendant
dilatant craze-plasticity flow rule, and a corresponding damage theory to model hydrogen
embrittlement of ferritic line-pipe steels.

We have numerically implemented our coupled diffusion-deformation-failure theory in a
finite element program Abaqus by writing a user element subroutines (UEL), and we present
representative numerical examples which show the ability of the simulation to qualitatively
replicate the failure due to hydrogen embrittlement in some technically relevant geometries.

- Anand L., Mao, Y., and Talamini, B., 2018. On modeling fracture of ferritic steels due
to hydrogen embrittlement. Journal of the Mechanics and Physics of Solids. Submit-
ted.



Part I

Fracture of polymeric gels
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Chapter 2

Introduction

There are numerous polymeric materials which have a crosslinked network and which can
absorb large quantities of suitable fluids without the essential skeletal network structure of
the polymer being disrupted by the absorbed fluid. Such a polymeric network, together with
the fluid molecules, forms a swollen aggregate called a polymeric gel. When the fluid is water,
the gel is known as a hydrogel. Gels may be designed to swell by several hundred percent,
and - depending on the precise constitution of a gel - the amount of swelling may be
controlled by varying external stimuli. Stimuli-responsive polymeric gels have the ability to
swell and deswell in response to changes in the environmental conditions such as mechanical
forces, temperature, solvent-type, pH, electric field, and also light. Because of their unique
characteristics, polymer gels are found in several diverse applications, such as carriers for
drug delivery, scaffolds for tissue engineering, soft actuators, smart optical systems, as well
as packers for sealing in oil-wells. Living organisms are largely made of polymer gels; this
facilitates the transport of ions and molecules within the organism while keeping its solidity
(shape). Hydrogels are commonly considered as proxies for soft biological tissues and are
thus the subject of intense theoretical and experimental investigations.

There have been several (essentially-similar) recent publications regarding modeling of
the coupled diffusion-deformation response of polymeric gels (Hong et al., 2008; Doi, 2009;
Duda et al., 2010; Chester and Anand, 2010). Several papers related to the numerical
implementation of these theories for solving coupled diffusion-deformation boundary value
problems for gels have also been recently published (Chester and Anand, 2011; Lucantonio
et al., 2013; Chester et al., 2015; Broger et al., 2017a).

In order to develop a robust simulation capability for the use of polymer gels in appli-
cations, one also needs to be able to model the damage and fracture of these materials. A
difficulty in modeling the fracture of gels comes from the influence of the amount of fluid on
the propensity to fracture of a gel. Generally, an inhomogeneous deformation field induces
an inhomogeneous chemical potential field, which leads to an inhomgeneous concentration
of the fluid because of diffusion within the body; such an inhomogeneous fluid concentration
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leads to an inhomogeneous propensity to fracture within the body. According to the classical
arguments of Lake and Thomas (1967), regions of higher fluid concentration (and therefore
lower polymer volume fraction) have an increased propensity to damage and failure because
of the lower number of highly stretched polymer chains. Further, because of the diffusion,
the damage process zone in the vicinity of a crack - when compared to the overall geometry
of a body - is not always small, and classical notions of "small-scale process zone" often do
not hold. The heterogenous propensity to fracture and large damage process zones makes
classical fracture mechanics criteria - like the energy release rate reaching a critical value -
inapplicable. Also, since diffusion of the fluid relative to the polymer network is a dissipative
process, classical fracture mechanics models which are based entirely on Lake-Thomas-type
energetic arguments, and which do not account for the dissipation due to diffusion, will
underestimate the fracture resistance of polymeric gels.

Thus a theory and a numerical simulation capability which couples diffusion of the fluid
with the large deformation, damage and fracture of polymeric gels is needed. Most of the
existing studies on the fracture of gels have limited their attention to conditions under
which the characteristic time-scale for deformation is much smaller than the time-scale for
diffusion, so that the diffusion of the fluid may be neglected (Brown, 2007; Tanaka, 2007;
Zhang et al., 2015). However, there are many important operating conditions under which
the fluid diffusion cannot be ignored. One such set of conditions occurs when a notched-
specimen is stretched to a sub-critical level and thereafter the stretch is held constant; after
a sufficient incubation time damage initiates, accumulates, and eventually fracture occurs

a phenomenon known as "delayed-fracture"; this phenomenon cannot be explained by
ignoring the diffusion of the fluid (Bonn et al., 1998; Wang and Hong, 2012; Tang et al.,
2017).

There are very few papers in the literature which address the complete coupled diffusion-
deformation-fracture problems in gels; the only paper that we are aware of is the very recent
paper of Broger et al. (2017b). 1 In their paper these authors propose a diffusion-deformation-
fracture theory with a diffuse-crack approximation based on a phase-field/damage variable d.2

They present a variational framework for their phase-field fracture theory of gels together
with a numerical implementation of their variational theory in a finite element program,
and show some interesting simulations of crack intiation and propagation during drying of
hydrogels.

The purpose of this part is also to address the coupled diffusion-deformation-fracture
problem for an "ideal" single-network polymeric gel. If the cross-linking chemical bonds
in such a network are strong then fracture is expected to occur by scission of the chains
between the crosslinks, as envisioned in the classical model of Lake and Thomas (1967),

'For other previous papers on fracture of polymer gels - papers which are based generalizations of
classical fracture mechanics theories and not on phase-field or gradient-damage theories - see, e.g., Wang
and Hong (2012), Hui et al. (2013), Bouklas et al. (2015), and Noselli et al. (2016).

2 The origins of the regularization of a sharp crack discontinuity in their diffuse-crack theory may be
traced back to the energy minimization concepts of brittle fracture mechanics proposed in Francfort and
Marigo (1998) and Bourdin et al. (2000).
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while if the chemical crosslinks are weak then fracture is expected to occur because of the
scission of the cross-linking bonds themselves. In this paper we focus our attention networks
with strong cross-linking bonds which fail by chain-scission.3 Further, as in the theory
of Broger et al. (2017b), to model the fracture of a gel we introduce a damage variable
d(X, t) E [0, 1]. If d = 0 at a point then that point is intact, while if d = 1 at some point,
then that point is fractured. Values of d between zero and one correspond to partially-
fractured material. We assume that d grows montonically so that d(X, t) > 0, which is
a constraint that represents the usual assumption that microstructural changes leading to
fracture are irreversible. As in Broger et al. (2017b) our theory also accounts for the gradient
of the damage variable, Vd. However, in contrast to the particular "incremental variational"
approach taken by these authors in formulating their theory, we formulate our gradient-
damage theory by using Gurtin's pioneering virtual-power approach (Gurtin, 1996, 2002).
This approach leads to macroforce and microforce balances for the forces associated with
the rate-like kinematical descriptors in the theory. These macro- and microforce balances,
together with a free-energy imbalance law under isothermal conditions, when supplemented
with a set of thermodynamically-consistent constitutive equations, provide the governing
equations for our theory. The particular constitutive equations for fracture of a gel in our
paper are based on extensions of a physical model of fracture of dry elastomers presented in
our recent papers (Mao et al., 2017b; Talamini et al., 2018) which contain two essential new
physical ingredients:

" Our constitutive equation for the change in free energy of a polymer network accounts
for not only changes in the entropy, but also changes in the internal energy due to the
stretching of the Kuhn segments of the polymer chains in the network. To do so, we
introduce a dimensionless positive-valued internal variable, Ab E [1, oc), to represent
(at the continuum scale) a measure of the stretch of the Kuhn segments. We call Ab
the effective bond stretch.

" The damage and failure of a polymer network with strong cross-linking chemical bonds
is taken to occur by chain-scission, a process which is driven by the changes in the
internal energy of the stretched polymer chains in the network, and not (directly) by
changes in the configurational entropy of the polymer chains.

The paper by Broger et al. (2017b) does not consider changes in the internal energy of a
polymer newtwork by stretching of the Kuhn segments. Their model for fracture of a gel is
based entirely on changes of free energy due to configurational entropy changes, which we
believe is not what occurs physically in a polymer network with strong chemical crosslinks.

The plan of this part is follows.

1. We begin in Chapter 3 by discussing more details of the newly-introduced bond stretch
field Ab and its physics consequence. As we state in previous chapter, one of the dis-
tinguishing features of elastomeric materials, which consist of a network of flexible

3We leave a consideration of interpenetrating-multiple-network gels, as well as materials which exhibit
additional non-trivial dissipation mechanisms such as viscoelasticity and Mullins-effect, to future efforts.
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polymeric chains, is that the deformation response is dominated by changes in en-
tropy. Accordingly, most classical theories of rubber-like elasticity consider only the
entropy and neglect any changes in internal energy. On the other hand, the fracture of
strongly cross-linked elastomers is essentially energy dominated, as argued in the well-
known Lake-Thomas model for the toughness of elastomers. The newly-introduced
bond stretch field Ab is the exactly the missing piece to resolve the inconsistency of
deformation and fracture responses of elastomeric soft materials. We also show that
both classical Arruda-Boyce model and the Lake-Thomas arguments can be recovered
from our theory with the newly introduced Kuhn segment stretch field Ab.

2. We then move to Chapter 4 to derive and summarize the continuum-mechanical frame-
work of our theory for fracture of gel, with deformation, diffusion, Kuhn segment
stretch, and damage fields. The governing partial differential equations, boundary
conditions, and constitutive equations are displayed. We close this chapter by special-
izing the constitutive equations of our theory and the specialized constitutive equations.
The theory developed in this paper is numerically implemented in an open-source finite
element code MOOSE (Gaston et al., 2009) by writting our own application.

3. Using this simulation capability, in Chapter 5 we present results for our simulations of
fracture of elastomers by suppressing the diffusion within the body. Moreover, we also
discuss the case when the elastomers failed by crosslink failure instead of Kuhn seg-
ments scission. A central feature of our theory is the recognition that the free energy
of elastomers is not entirely entropic in nature, there is also an energetic contribution
from the deformation of the backbone bonds in a chain and/or the crosslinks. For
polymers with weak crosslinks this energetic contribution is mainly from the deforma-
tion of the crosslinks. It is this energetic part of the free energy which is the driving
force for progressive damage and fracture of elastomeric materials. Moreover, we show
that for elastomeric materials in which fracture occurs by crosslink stretching and scis-
sion the Lake-Thomas Lake and Thomas (1967) scaling - that the toughness G, of
an elastomeric material is proportional to 1//Go, with Go = NkbZ9 the ground-state
shear modulus of the material - does not hold. A new scaling is proposed, and some
important consequences of this scaling are remarked upon.

4. Using this simulation capability, in Chapter 6 we present results of fracture of gels
from our simulations. We first focus on the Mode-I fracture in single-edge-notch
and asymmetric-double-edge-notch geometries under plane-stress conditions. Then the
single-edge notch geometry is used to explore the consequences of the competition be-
tween the characteristic time-scale for deformation and the characteristic time-scale for
diffusion by fixing the time scale for deformation, and varying the value of the diffusivity
of the fluid. While there are many operating conditions under which the characteristic
time-scale for deformation is much smaller than the time-scale for diffusion, so that the
diffusion of the fluid may be neglected, there are also operating conditions under which
the fluid diffusion cannot be ignored - such as conditions leading to "delayed-fracture"
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discussed earlier. We numerically study the phenomenon of "delayed-fracture" in fol-
lowing sessions, and clarify the important role of fluid diffusion in these phenomena.
Finally we report on our study of fracture of an asymmetric-double-notched sheet spec-
imen of a gel under Mode-I plane-stress loading. This example shows the capability
of our gradient damage theory and its numerical implementation to model merging of
two cracks.

5. Finally we close in Chapter 7 with some final remarks.
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Chapter 3

The physics of fracture in elastomeric
materials

3.1 Introduction

The classical statistical mechanical model of Kuhn and Grn (Kuhn and Grimn, 1942) for
the deformation response of a single polymer chain is based on the assumption that the
change in free energy upon stretching of a long-chain molecule is dominated by the change
in configurational entropy, and that any change in internal energy is negligible. A key feature
of this model is that it accounts for the finite extensibility of the chain and reproduces the
experimentally observed stiffening of the chain as it is highly stretched. This theory is the
basis of a number of notable models for the deformation response of polymeric networks (see
Treloar (1975); Arruda and Boyce (1993) and the references therein). On the other hand, the
fracture behavior of polymers is widely accepted to be adequately described by the model
of Lake and Thomas Lake and Thomas (1967), which connects the macroscopic work of
fracture (the critical energy release rate G,) to the energy required to strain and ultimately
rupture bonds between monomer units. According to the arguments of Lake and Thomas,
the entropic contribution to the free energy is negligible at the point of rupture, and the
internal energy due to the bond deformation dominates. How can these models-both well
accepted-be reconciled? The goal of this chapter is to address this question.

The plan of this chapter is as follows. In Section 3.2, we modify the single chain model
of Kuhn and Grn to include an internal energy contribution which we associate with the
mechanism of stretching of molecular bonds. In light of the success of the classic freely jointed
chain model, any new model should behave similarly at stretch levels below rupture. On the
other hand, to be consistent with the arguments of Lake and Thomas, a model should also
be able to predict the increase of the internal energy during deformation and describe how
it ultimately comes to dominate the free energy at large stretches. Our model satisfies these
objectives while introducing only a single adjustable parameter, which has a clear physical
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interpretation. Following the introduction of this model, we propose a simple criterion
for chain scission based on the attainment of a critical value of bond stretching energy.
In Section 3.3 we extend our considerations to deformation and fracture of a macroscopic
elastomeric body composed of a network of chains. We use this model to study fracture
in continuum bodies composed of elastomeric materials and to connect the flaw sensitivity
to an intrinsic material length scale related to the network structure. We show that the
proposed model recovers the Lake-Thomas scaling law for the critical energy release rate in
the case of macroscopic sized cracks. We close in Section 3.4 with some final remarks.

3.2 Single chain model

The basic postulates of the original freely jointed chain (FJC) theory are as follows: (i) the
macromolecule behaves like a chain of freely jointed segments (i.e., Kuhn segments); (ii)
every segment in the polymer chain has the same length; (iii) the segments are rigid. Based
upon these assumptions, the classic theory states that the free energy 7P of a single chain
with n freely jointed segments of length Lb is given by

r (310= b(r) = k~dn n # 3 +In .in with =L-' , (3.

where r is the current end-to-end length of the chain, d9 is the absolute temperature, kB is
Boltzmann's constant, and L is the inverse of the Langevin function L(x) = coth x - x-'.
This model captures the pronounced stiffening of polymeric materials at large extensions
seen in experiments (see, e.g., Treloar (1975)). As r -+ nLb, the chain approaches a fully
straightened configuration. Since the links are presumed rigid, the chain can accommodate
no further displacement and the free energy diverges. The FJC model is intended for de-
formations below this level, where the approximation of the free energy as purely entropic
is quite good. However, this is an obstacle for investigating chain scission, which usually
occurs at large stretches.

We extend this model by relaxing the assumption of segment rigidity, and instead consider
Lb to be the rest segment length, which may be altered by stretching of the segments in the
chain. This idea has been explored in the form of the extended freely joint model (EFJM)
of Smith et al. Smith et al. (1996). The EFJM was proposed to improve agreement between
the observed mechanical behavior of DNA molecules and predictions from the freely jointed
chain model. However, the EJFM is written directly in terms of chain force and displacement,
rather than energy, and it is not simple to separate the entropic contribution to the free
energy from the internal energy that governs bond rupture. Moreover, the Kuhn length and
the number of Kuhn segments are constants in this model, while the effective contour length
is allowed to change, which we argue introduces a conceptual inconsistency. In what follows,
we consider an alternative model.

We consider the current segment length lb to relate to the rest length Lb through lb = LbAb,

where A, is a dimensionless stretch (i.e., the Kuhn segment stretch). We use the subsrcipt
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"b" here and in the following to suggest "bond", since the extensibility of the Kuhn segments
is presumed to come from deformation of the constituent atomic bonds. Then, with ?b(Ab)

denoting the change in internal energy associated with the stretching of the segments, we
take the free energy to be

0'4(r, Ab )= nb(Ab )+ kB'On ~ l n .in (3.2)

It is convenient to rewrite the free energy (3.2) in terms of the overall chain stretch
A = r/ro, where ro = xjiLb is the unstretched chain length determined from random walk
statistics. As in the classical FJC model, we write AL := V to represent the chain "locking
stretch" in the absence of any bond stretch. Substituting these definitions into (3.2) yields

4' = 4(A, Ab) = A 2 b(Ab) + kBVA~ (AAb/ + In (*31)
L (A ) L AL~b snh (.3

with / = L- ) (3.3)

Comparing with the classical FJC model, we see that AAb-1 may be interpreted as the chain
stretch due solely to Kuhn segment rearrangement.

At any fixed stretch A, increasing Ab increases the internal energy contribution to the
free energy while decreasing the entropic part. This competition induces an optimal value of
Ab which will minimize the free energy and will be the actual state adopted by the system.
Thus, setting 80/o9Ab= 0 provides an implicit equation for Ab, which reads

db(A = kB A (3.4)
dAb ALAb

As is standard, the force is given by

F a7P(A, Ab) I 1 V &(A, Ab)
ar y Lb OA

kB7d (3.5)
Lb Ab

with Ab determined by (3.4). 1

'The intuitive derivation of the equations (3.2)-(3.5) displayed here is actually can be rigorously derived
from statistical field theory. The full derivation of the model from statistical field theory is displayed in
Appendix A. Essentially, (3.2) is the free energy expression of the mean-field theory by omitting the terms
from saddle point approximations. This free energy expression is exact if we pick the quadrature form for
internal energy. Equation (3.4) is the result of the saddle point approximation. Finally equation (3.5) is a
nature result of thermodynamics.
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We can visualize the behavior of this model by selecting a particular form for e,(A,). By
analogy with finite deformation continuum models of internal energy storage in materials,
we choose an energy quadratic in the logarithmic strain, viz.

eb(Ab) = Eb (In Ab)2 , (3.6)
2

where Eb, with dimensions of energy, represents the stiffness of the bonds.2 With this choice,
(3.4) becomes

Ebln Ab= kB'd A 3 (3.7)
ALAb

Using these expressions, we compare the response of the proposed model with the classical
inverse Langevin FJC model in Figure 3-1. In Figure 3-1(a) the force-stretch curves of the
proposed model (with Eb = 1200kBP) and the inverse Langevin FJC model are plotted. We
plot Ab versus the imposed stretch in Figure 3-1b. Since the proposed model degenerates to
the classical inverse Langevin FJC model if Ab is fixed at unity, the deviation of Ab from 1

serves as a metric of the difference between the two models.

- - Inverse lagevin

102 -proposed model 1.4 -

1.3 -

10

1.1

10-2 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4

A/AL AAL

(a) (b)

Figure 3-1: (a) Normalized force FL/(kB?) versus normalized stretch A/AL. Note that we have

used a logarithmic scale for the force axis to emphasize the difference between the two responses.

(b) The bond stretch Ab versus normalized stretch A/AL-

The behavior of the present model is virtually indistinguishable from the classic FJC

model at stretches A < 0. 8 AL, showing the same progression from Gaussian-like (neo-

Hookean) behavior at low stretches, followed by pronounced stiffening at larger stretches

2Mathematically !Eb (In Ab) 2 is not a convex function. This non-convexity of the expression will lead to

a softening response of the model. This softening effect will potentially induce an instability in the system

for a large Ab.
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as the chains become nearly aligned. However, as A -4 A, the bond stretching becomes
significant and the nonphysical singularity of the classic model is avoided.

Another view of the deformation process is depicted in Figure 3-2, where we plot the
relative contribution of the new internal energy term (neb) to the total free energy ', as a
function of the imposed stretch. It can be clearly seen that at stretches below AL, entropic
chain alignment is the preferred deformation mechanism. However, at larger stretches, seg-
ment stretching becomes energetically favorable and prevents the degenerate, fully locked
state from being reached. Thus, the model predicts a smooth transition from the entropy
dominated regime consistent with the assumption of the classic inverse Langevin FJC model
to an internal energy-dominated regime consistent with the assumptions of the Lake-Thomas
model. Furthermore, the physical interpretation of the newly introduced parameter Eb is
evident in Figure 3-2: for larger values of Eb, free energy increase through the entropic
contribution is increasingly favored, and the effect of bond stretching is delayed until larger
stretches.
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3.2.1 Scission of a single chain

With separate accounting of the configurational entropy and the segment stretching energy,
we can make a connection between the deformation process and the scission process in
polymers.

We postulate that scission of a chain occurs when the internal energy reaches a critical
value, which for strongly cross-linked polymers is expected to be the binding energy between
backbone units. We will use the symbol Ef for the critical value of the energy for a single
segment. Note that through the model above, this critical energy can also be translated into a
critical value of stretch or a critical value of the free energy. The stiffness of the Kuhn segment
Eb and the binding energy of a Kuhn segment E[ are both related to the respective values
of the underlying atomic bonds. If we consider only the contributions of bond stretching

(neglecting contributions from bond angle rotation, van der Waals interactions, etc.), then
the stiffness and binding energy of the Kuhn segment are the same as those of the bonds
between the monomers.

To get a sense of the range of the model parameters E, and Eb, consider the behavior of
a single chain whose repeat unit is C-C:

" A typical value for the bond dissociation energy is E& 3.6 eV, which translates to
Ef/ kbo ~140 at 300 K.3

" We estimate a value of Eb = 60 eV at equilibrium bond length 1.56A (EbkbO' ~ 2300
at 300 K) through ab initio calculations in the Vienna Ab initio Simulation Package
(VASP) using a plane wave basis (Kresse and Furthmiuller, 1996a,b).4

Using these values in the constitutive relation (3.6) for the internal energy, our calcula-
tions indicate that the polymer chain will undergo scission when Af = 1.4. Since the stretch
of each bond is assumed to be the same with that of the Kuhn segment, then Af = 1.4
is also the failure stretch of the Kuhn segment (i.e., a nominal strain of 40%). This is in
reasonable agreement with other estimates of the amount of stretch sustainable by atomic
bonds. For crystalline materials and hard amorphous materials, a commonly used estimate
of the ideal cohesive strength is E/5, or a nominal failure strain of ~ 20%. Graphene, which
has a similar type of bond as the C-C, still can sustain significant force at strains of ~ 40%,
see Liu et al. (2007).

Using the proposed relation for the free energy, this indicates that the polymer chain will
break at A ~ 1. 4 1AL at room temperature, which exceeds the locking stretch of the classical
model considerably.5 Furthermore, the internal energy of bond stretching constitutes 95%

3 Bond dissociation energies are widely available in the literature (see, e.g., deB. Darwent (1970); Huheey
et al. (1993)).

4We were unable to locate published characterizations of the C-C bond stiffness. The ab initio calculations
simultaneously yield a prediction of the equilibrium bond length, which is in agreement with the references
above, providing a measure of confidence in the stiffness calculation.

5This also provide a fact that on the failure point, the normalized stretch of the polymer chain A is
actually very close to 1. In current case, A 0.99.
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of the total free energy at the point of scission, which agrees with the assumption of Lake
and Thomas (Lake and Thomas, 1967).

3.3 Deformation and fracture of a macroscopic elas-
tomeric body

In this section, we extend our considerations of a single chain to treat fracture in a continuum
body composed of a network of chains. First, we extend the single chain deformation model to
a continuum theory by using the eight-chain network model of Arruda and Boyce (Arruda
and Boyce, 1993) in Section 3.3.1. Next, in Section 3.3.2, we generalize the single chain
scission criterion proposed above to the continuum.

As recently emphasized by Chen et al. (Chen et al., 2016), the rupture of elastomeric
materials is insensitive to "small" cracks or cuts, but beyond a certain size, the stretch to
rupture decreases markedly with increasing crack length. In Section 3.3.3, we show that
this behavior can be reproduced by our network deformation model and rupture criterion,
and thus this model may offer some physical insight into the flaw sensitivity of elastomeric
bodies.

As in the single chain scission criterion, the network rupture criterion is based directly
on the energetics of bond deformation, and not on the classical critical energy release rate
approach. However, we show in Section 3.3.4 that it agrees with the critical energy release
rate approach in the limit of macroscopic-scale flaws. Finally, in Section 3.3.5 we demonstrate
that in the large flaw size limit, the critical energy release rate predicted by our model obeys
the well-known and experimentally supported scaling law predicted by Lake and Thomas
(Lake and Thomas, 1967).

3.3.1 Extension of single chain model to the network

A simple way to extend the single chain model to the continuum level is to use the eight-
chain network model of Arruda and Boyce (Arruda and Boyce, 1993). Mathematically, this
boils down to replacing the single chain stretch A with an effective distortional stretch A,
defined by Anand as (Anand, 1996)

- df trC' (3.8)

where tr (.) represents the trace of a second order tensor, C = PTP is the distortional right
Cauchy-Green tensor, and F = (det F)- 1/ 3F is the distortional part of the deformation
gradient.
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Using the logarithmic strain form of the internal energy of bond stretching, the distor-
tional free energy density per unit reference volume is

2 NEb (In Ab)2 + NkB9A n .2 A +I1 (3-9)
2 LALAb smh/

with N the number of chains per unit reference volume and -= -1 (A/(ALAb)). We denote
by

ER = eR(Ab) = Nnb(Ab) = -A2NEb (In Ab)2, (3.10)
2 L

the internal energy due to bond stretching. In this case the implicit equation for Ab becomes

Ebln Ab= kBd A . (3.11)
ALAb

It is convenient to define the bulk material parameters p = NkBP and E = NEb, and to
rewrite (3.9) as

A= 4R(, b) = -AlE (In Ab)2 + pA2 [ A + In . ). (3.12)V)R V RA b 2 L b LAL Ab smnh

Similarly, equation (3.11) becomes

ElInAb= A it . (3.13)
ALAb

In the limit I/E --+ 0 the original eight chain model is recovered.

Since E/p = Eb/(kBt), by estimating Eb and it at a specific temperature, we can esti-
mate E. For a specific material, At can be determined as usual from standard macroscopic
experiments. The bond stiffness Eb can be estimated from ab initio calculations, or possibly
estimated from AFM measurements of single chains as attempted in Smith et al. (1996); Li
et al. (1999); Ghatak et al. (2000).

In order to take the slight compressibility of elastomers into account, following Anand
(Anand, 1996), we append a volumetric internal energy term to the free energy, giving

1 2 )2 2 [ 1)2OR R ,(A Ab J ALE (ln Ab) 2 + A2 [ 0+ I -n +-K(ln2, (3.14)
2 AL Ab smnh # 2

where J = det F and K is the bulk modulus. Thus

ER,tot - eRtot(Ab, J) = A2E (ln Ab)2 + K( nj)2  (3.15)
2 L 2

represents the total internal energy per unit volume.
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Remark. The idea developed in this paper can also be extended to other rubber elasticity
models, such as the model of Gent (Gent, 1996). Since the Gent model is phenomenological,
we cannot derive it from statistical mechanics. However, Ab can be introduced to serve the
same purpose as in the current modified eight-chain model, inducing a competition between
the internal energy and entropy that will determine a preferred Kuhn segment stretch at
each level of deformation. For example, one can write

1 Ib 2 -3
R =)R1, Ab J) =R,tot(Ab, J)- 1 l.lnI -, (3.16)

where gR,tot (b, J) is the chosen constitutive relation for the internal energy of Kuhn segment
stretching and volumetric deformation, and 1 = tr C and 1m are material parameters of the
Gent model.

3.3.2 Criterion for extension of a crack in an elastomeric body

Next, we scale up the criterion for scission of a single chain to a criterion for crack propagation
in an elastomeric body at the continuum level. Our objective is to create a fracture criterion
that is rooted in the micro-mechanics of polymer networks, and yet is consistent with fracture
mechanics in the limit of macroscopic sized flaws. Fracture is a size-dependent phenomenon,
so we expect a length scale to play a role in the generalization from the single chain picture.

From the macroscopic perspective, a natural length scale is associated with the critical
energy release rate approach to fracture of elastomers Rivlin and Thomas (1952); Thomas
(1955). Presume that the critical energy release rate G, is a fixed material property, and
that the free energy density in the vicinity of the crack tip reaches a critical value '0J at the
point of crack propagation. Then as noted by Thomas Thomas (1955), a length scale

_~ Gc/0 (3.17)

emerges. (Such a relation clearly proceeds from purely dimensional arguments).6
Consider now a body with an existing crack-like flaw. Consistent with the length scale

observation above, we postulate that

e crack propagation will occur when the internal energy due to segment stretching eR

R(Ab) reaches a critical value E at a material point P located at a distance f ahead
of the crack in the reference configuration (see Figure 5-2).

Expressed mathematically, this is
- R' (3.18)ERIX=P =R) (.8

where
Ef = Nmnf (3.19)

6 Here and in the following, we define the relation a ~ b to mean ( ).
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is the critical bond energy per unit volume.

aw

2H

Figure 3-3: Schematic of geometry used in finite element calculations. The bond stretch failure
criterion is applied at the point P, located at a distance t ahead of the crack root.

From the microscopic perspective, the only intrinsic length scale comes from the mi-
crostructure of the material, which for the ideal elastomers under consideration, is the rest
distance between cross-links ro = xnLb. Thus, for materials with no other dissipation mech-
anisms besides chain scission (i.e., true elastomers), one expects ~ ro. This distance is in
the nanometer range for typical polymeric networks. According to this point of view, the
region within a distance f of the crack root is the fracture process zone, within which the
continuum hypothesis breaks down and the details of the physics are inaccessible to a con-
tinuum model. As usual in fracture mechanics, we posit that at a sufficient distance ahead of
a flaw, the continuum picture still uniquely characterizes the response of the cracked body.

For polymeric materials besides pure elastomers, f can be much larger than ro, as shown
by the experiments of Chen et. al. (Chen et al., 2016). This is due to the presence of
additional dissipation mechanisms, such as viscoelasticity, the Mullins effect, and embedded
sacrificial networks (Slepyan, 2012; Zhao, 2014; Zhang et al., 2015).

3.3.3 Role of flaw size on fracture of an ideal elastomer

With the network model and rupture initiation criterion in hand, we are in a position to
study the role of flaw size on fracture in elastomers. To this end, we implemented our model
in the commercial finite element simulation tool Abaqus Dassault Systemes (v. 6.14), and
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applied it to the problem of plane stress, mode I loading of a body with an edge crack.The
problem configuration is shown in Figure 5-2. The specimen is defined by the width W,
height 2H, with a single edge crack of length a and root radius p. The crack length is
taken to vary over the range 1 < a/ro < 105. For each crack size, we scale the overall sample
dimensions so that W/a = 10 and H/a = 20. We take /ro = 1. We focus attention on sharp
crackes and take p/ro = 1 (it is clear from consideration of the microstructure that in the
sharpest limit p ~ ro). The material parameters are given in Table 3.1. For each specimen,
we find quasi-static solutions under increasing far-field stretching until the bond rupture
criterion (3.18) is met. Additional details of the simulation are located in the Appendix.

Table 3.1: Material parameters for fracture simulations.

Elp = Eb/kbO AL = fn K/y ef/A2yi = E kB

2.5 x 103 5 2.5 x 10 5 100

The results are summarized in Figure 3-4, where we plot the failure stretch Af against the
normalized crack size a/ro. The failure stretch is normalized by a factor of (V/AL), which
is an approximation of the limiting stretch in uniaxial tension of the classic 8-chain model.7

This figure clearly shows that the stretchability is relatively insensitive to small cracks
(a/ro $ 500). It is noteworthy that with small cracks, the maximum attainable stretch can
exceed the limiting value of the classic entropic elasticity model \F/AL. With decreasing crack
size, the stretchability increases until it approaches a plateau at the ideal rupture stretch
(shown as a dotted line).8 In contrast, for large cracks, (a/ro ; 500), the stretchability
reduces markedly as the crack size gets larger. These results are supported by the recently
published experimental results of Chen et al. (Chen et al., 2016); cf. their Figures 3.

Another way of visualizing the size dependent behavior is shown in Figure 3-5. Contours
of 8R/R, the ratio of the internal energy density to the total free energy density, are plotted
for a small crack (a/ro = 5.25) and a larger crack (a/ro = 300). The contours are shown at
the point of incipient fracture and are drawn on the reference configuration. For the short
crack, most of the specimen is well into the internal energy-dominated regime at the point
of incipient fracture, and the crack itself has little effect on the overall response. On the
other hand, for the longer crack, only a small region near the crack has any appreciable bond
stretching, while the rest of the specimen is still in the entropic elasticity-dominated regime.

7 For an incompressible material under uniaxial stretch A, A = /(A 2 +2/A)/3 ~ A/v/5 when A > 1.
Setting A = AL yields the above estimate.

8 The ideal rupture stretch value was computed by a uniaxial tension computation of a specimen with no
flaw.
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Figure 3-4: Computed normalized failure stretch, Af/ 3AL, at the point of bond failure as a

function of a/ro. For small cracks (a/ro < 500), the stretchability is relatively insensitive to flaw

size, but it decreases markedly for larger flaws. The ideal rupture stretch (in the absence of a flaw)

is shown as a dashed line.
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Figure 3-5: Contours of ER1R, the ratio of internal energy density to the total free energy density.

at the point of incipient rupture. The magnitude of bond stretching is strongly affected by crack

size. (a) Small crack, a/rO = 5.25. The crack does not strongly concentrate energy, and the entire

specimen undergoes significant bond stretch by the point of rupture. (b) Larger crack, a/r0 = 300.

The zone of significant bond stretching is confined to the vicinity of the crack.
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3.3.4 Comparison of the bond stretch criterion with the critical
energy release rate approach

Using the same simulations as above, we compute the energy release rate via the J-integral
Rice (1968) at the point of incipient bond failure, which we will denote by Gf.9 The results of
this numerical experiment are shown in Figure 3-6, which plots the normalized energy release
rate at the point of bond rupture Gf/rop versus the normalized crack size a/ro. From this
plot, it is evident that the predictions by the bond stretching criterion (3.18) indeed approach
a fixed critical energy release rate G, in the limit of large flaws, consistent with (3.17). The
approximate value of this limit is shown with a dashed line in Figure 3-6. For smaller flaws
approaching the microstructural scale, the energy release rate at the point of rupture is less
than G,. This is expected, since in the small flaw limit the process zone occupies a region
comparable in scale to the crack, and the thus the scale separation argument used to justify
the critical energy release rate criterion no longer applies. This behavior is observed across
all of fracture mechanics. A well-known example is furnished by metals, where the small
scale yielding condition limits the applicability of linear elastic fracture mechanics.

0
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Figure 3-6: Computed normalized energy release rates at the point of bond failure. At large crack
lengths approaching macroscopic size a/ro > 500, the energy release rate Gf tends to a constant
value Gc, consistent with the classical energy release rate criterion.

9 The J-integral is computed using the built-in implementation of Parks's virtual crack extension method
Parks (1977) in Abaqus.
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3.3.5 Comparison of G, predictions with scaling law of Lake and
Thomas

We now compare our approach with the well-known scaling law for the critical energy release
rate of elastomers by Lake and Thomas Lake and Thomas (1967). The scaling law is obtained
from a simple and elegant argument: the energy per unit area required to advance a crack a
distance f is the product of the chains per unit area ahead of the crack (which goes as Nf)
and the total energy stored in a chain when it breaks (approximately nEf). Then, noting
that f ~ ro, the scaling law is

GC ~ NrOnE -

It can be expressed in dimensionless form as

b0 u ($ (AL ) 2 , (3.20)ropt kb79

where we have used the identities AL = Vn_ and 1 = NkB7.
To compare our approach with the Lake-Thomas idea, we use numerical simulations with

the same setup as in the previous subsection. We use the specimen with a/ro = 104 so that
we are considering a system which is well into the large flaw regime where the critical energy
release criterion applies. All other parameters are as before.

In the first case, we vary AL and plot the results in Figure 3-7a. The quadratic dependence
predicted by the Lake-Thomas model is clearly observed (in other words, a linear dependence
between Gf and the number of segments per chain n is observed). This agreement is not
surprising, since in formulating our model we have assumed that each of the bonds in the
chain stores the same amount of energy, which is consistent with the argument that Lake
and Thomas make to arrive at (3.20). Next we examine the relation between Gf and E4/kb9.
In Figure 3-7b, we plot the normalized energy release rate Gf/rop vs. the bond rupture
energy Ef/kOb. The linear scaling predicted by Lake and Thomas is approached for large
values of the bond rupture energy, while for smaller values sub-linear scaling is observed.
The deviation from the Lake-Thomas scaling can be understood by noting that for small
values of the bond rupture energy, rupture occurs at small stretches where the entropic
contribution to the free energy density is still significant. The Lake-Thomas assumption of
internal energy dominance does not hold in this case. As one moves to the right of Fig. 3-7b,
the assumptions of the Lake-Thomas model are better met, and the observed scaling more
closely matches the prediction. Continuing the calculation to larger values of bond rupture
energy becomes difficult due to

1. the non-convexity of the internal energy expression

Eb(Ab) = -E(In Ab) 2  (3.21)
2

that we choice in this work, and
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2. high levels of mesh distortion in the vicinity of the notch root.

As we said before, the non-convexity of the internal energy expression will induce an
instability in simulation, and such numerical issue as Ab increases will impede the simulation
to converge. To suppress this artificial effect, we can chose a simple quadrature and convex
form

1
Eb(Ab) = -E(Ab - 1)2. (3.22)

2
This form will give better fit with the Lake-Thomas model prediction. Moreover, additional
tools, such as mesh adaptivity, could ameliorate this issue, but such complications were not
pursued here.

105 10"

AL e /kB

(a) (b)

Figure 3-7: Comparison of the bond stretch failure criterion with the Lake-Thomas scaling law

for the critical energy release rate. Plotted are the energy release rate at the point of incipient
bond failure vs (a) the locking stretch parameter; and (b) the normalized bond rupture energy.
The linear relationship assumed by Lake and Thomas holds in the limit of large stretches when the
internal energy is much larger than the entropic contribution to the free energy.

3.4 Concluding remarks

We have presented a model which bridges the elastic deformation and the fracture of elas-
tomers. Specifically, we have extended the freely jointed inverse Langevin model (and the
corresponding 8-chain Arruda-Boyce model) to account for changes in internal energy due to
stretching of the chain segments. Chain scission is postulated to occur upon the attainment
of a critical value of this segment stretching internal energy.

We have shown in this chapter that, under appropriate conditions, our model is con-
sistent with two classical models for elastomers: the Arruda-Boyce model for deformation,
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and the Lake-Thomas model for fracture. We have used this model to relate the flaw sen-
sitivity of elastomers to an intrinsic material length scale related to the network structure.
This approach may be useful for considering small devices made by highly stretchable soft
materials.

Substantial effort is needed to extend our current model to describe materials with other
dissipation mechanisms, as well as cross-link failure and cavitation mechanisms.
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Chapter 4

A theory for fracture of polymeric gels

4.1 Basic kinematics

Consider a fluid-containing (wet) macroscopically-homogeneous body made from an elas-
tomeric gel. In what follows, the spatially-continuous fields that define our continuum theory
represent averages meant to apply at length scales which are large compared to the length
scales associated with the molecular network and its microscopic-scale free-volume. We iden-
tify such a macroscopically-homogeneous body B with the region of space it occupies in a
fixed reference configuration, and denote by X an arbitrary material point of B.1 A motion
of B is a smooth one-to-one mapping x = X(X, t) with deformation gradient, velocity, and
velocity gradient given by

F = VX, vy , L = gradv = NF-1. (4.1)

We base the theory on a multiplicative decomposition of the deformation gradient

F = FF, (4.2)

where,

e FS represents the local distortion of the material neighborhood of X due to the inser-
tion/extraction of the fluid molecules due to the diffusion of the fluid; and

1 Notation: We use standard notation of modern continuum mechanics (Gurtin et al., 2010). Specifi-
cally: V and Div denote the gradient and divergence with respect to the material point X in the reference
configuration, and A = Div V denotes the referential Laplace operator; grad, div, and div grad denote these
operators with respect to the point x = X(X, t) in the deformed body; a superposed dot denotes the material
time-derivative. Throughout, we write Fe-1 = (Fe)- 1, Fe-T = (Fe)-T, etc. We write tr A, sym A, skw A,
Ao, and sym0 A respectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of
a tensor A. Also, the inner product of tensors A and B is denoted by A: B, and the magnitude of A by
IAI = v/A: A.
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* F' represents the subsequent stretching and rotation of this coherent fluid-distorted
material neighborhood, and thereby represents a corresponding mechanical distortion.

We refer to F' and F' as the swelling and mechanical distortions, respectively. We write

J = detF > 0, (4.3)

and hence we have

j = Je J, and we assume that Je = det Fe > 0, and J det F > 0,

so that Fe and FS are invertible.

The total and elastic right Cauchy-Green deformation tensors are given by

C = FTF and Ce = FeTFe,

respectively. Next, by the definition (4.1)3, we have

L = Le + FeLsFe-l, with L e - PeFe-1 and L' - #"FS-

where L' represents a distortion rate due to insertion/extraction of the fluid molecules. As
is standard, we define the elastic and swelling stretching and spin tensors through

DS = sym LS, WS = skw L', (4.7)

so that Le = De + We, and LI = Ds + Ws.

We assume that the swelling distortion F is isotropic and given by,

(4.8)

we call As the swell-stretch. Further, from the definitions of D' and W in (4.7), the definition
of L' in (4.6), and the specific expression for FS in (4.8), we have,

and W' = 0; (4.9)

and since J = JtrD8 , we have

Finally, throughout we denote by P an arbitrary part of the reference body B with n, the
outward unit normal on the boundary DP of P. Also, we denote by Pt = X(P, t) the image
of P in the deformed body Bt = X(B, t), with n the outward unit normal on the boundary
8Pt of Pt.

(4.4)

(4.5)

De = sym Le,

(4.6)

We = skw Le,

FS = A'1, As = (Js)1/ 3 > 0;

Ds - (Ass-1)1,

1.
Ds - I(JsJs-1)1.

3
(4.10)
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4.2 Effective bond stretch

Following Mao et al. (2017b) and the previous chapter we introduce a dimensionless positive-
valued internal variable,

Ab E [1, oo),

to represent (at the continuum scale) a measure of the stretch of the Kuhn segments of the
polymer chains of the elastomeric gel. We call Ab the effective bond stretch.

4.3 Damage variable

To describe damage and fracture of the gel we introduce an damage variable or phase-field,

d(X, t) E [0, 1]. (4.11)

If d = 0 at a point then that point is intact, while if d = 1 at some point, then that point is
fractured. Values of d between zero and one correspond to partially-fractured material. We
assume that d grows monotonically so that

d(X, t) > 0, (4.12)

which is a constraint that represents the usual assumption that microstructural changes
leading to fracture are irreversible.

4.4 Fluid content. Balance law for the fluid content

Let

CR(X, t) (4.13)

denote the number of moles of fluid molecules absorbed by the elastomer, reckoned per unit
volume of the dry elastomer. We call CR the fluid content. The initial value of cR in the wet
elastomeric gel is denoted by CRO-

Define a fluid flux JR, measured per unit area, per unit time, so that - fapiR . fRdaR
represents the number of moles of fluid entering P across aP, per unit time. In this case the
balance law for fluid content takes the form

j(cR - CRO) dvR = - jR - nRdaR, (4.14)

for every part P. Bringing the time derivative in (4.14) inside the integral and using the
divergence theorem on the integral over OP, and localization the result leads to the following
(local) balance law for the fluid content,

CR = -DivjR (4.15)
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4.5 Kinematical constitutive relation between J and
CR

Now, (Js - 1) represents the change in volume per unit reference volume due to swelling.
We assume that this change arises entirely due to the change in the fluid content, so that
with Q denoting the volume of a mole of fluid molecules (presumed to be constant) we have
the important swelling constraint

S= 1 + VCR (4.16)

Note that on account of (4.8), the constraint (4.16) may also be stated as

A = (1 + VcR) (4.17)

Finally, using (4.1) and (4.16) we may write (4.6)1, for future use, as

1
(VF)F-1 = F e-1 + -(CR, CRO)cR 83

where

(CR, ROJS-Q
1 + Q(CR - CRO) -

4.6 Principle of virtual power. Balance of forces

We follow Gurtin et al. (2010) and Anand (2012) to derive macroscopic and microscopic force
balances via the principle of virtual power. In developing our theory we take the "rate-like"
kinematical descriptors to be j, F, dR, b, and d, and also the gradient Vd. In exploiting
the principle of virtual power we note that the rates (i, Fe, dR) are not independent- they
are constrained by eq. (4.18).

With each evolution of the body we associate macroscopic and microscopic force systems.
The macroscopic system is defined by: (a) A traction tR(nR) that expends power over the
velocity x. (b) A body force bR that also expends power over y. Regarding the body force,
since time scales associated with the fluid diffusion are usually considerably longer than
those associated with wave propagation, we neglect all inertial effects. (c) A stress Se that
expends power over the elastic distortion rate F.

The microscopic force system, which is non-standard, is defined by: (a) A scalar micro-
scopic stress 7r that expend power over the rate 6R. (b) A scalar microscopic force f that
expends power over the rate Ab. (c) A scalar microscopic stress Z that expends power over
the rate d. (d) A vector microscopic stress that expends power over the gradient Vd. (e)
And a scalar microscopic traction (nR) that expends power over d.

We characterize the force system through the manner in which these forces expend power.
That is, given any part P, through the specification of Wx.t(P), the power expended on
P by material external to P, and Wa(P), a concomitant expenditure of power within P.
Specifically,
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tR(fR) - jdaR + f
PiP

bR -dvR + j(nR) ddaR,

(4.20)

(Se: FN + IFR -f Ab + wO + -Vd dv,
where Se, r, f, -o, are defined over the body for all time.

Assume that, at some arbitrarily chosen but fixed time, the fields x, F, F', cR, Ab , and d
are known, and consider the fields i, F', R, Ab, and d are virtual velocities to be specified
independently in a manner consistent with the constraint (4.18), i.e., denoting the virtual
fields by , Fe, 6R, Ab and d to differentiate them from fields asccociated with the actual
evolution of the body, we require that

(4.21)(Vj)F 1 = eFe-1 + -E(cR, CRO)CR1.
3

Further, we define a generalized virtual velocity to be a list

V=4,P) i b4 (4.22)

consistent with (4.21). Also, we refer to a macroscopic virtual field V as rigid if it satisfies

(Vj) = P = QF together with CR 0, Ab=01 d=0, (4.23)

with Q a spatially constant skew tensor.

Writing

j tR(fR) - jdaR +
'P

bR - kdvR + f (nR) daR,

WVit (P) = j (Se: e + R + fAb + Ld+ (- Vi) dvR,

respectively, for the external and internal expenditures of virtual power, the principle of
virtual power consists of two basic requirements:

(VI) Given any part P,

Wx.t(P, V) = Wint (P, V) for all generalized virtual velocities V. (4.25)

(V2) Given any part P and a rigid virtual velocity V,

WVint(P, V) = 0 whenever V is a rigid macroscopic virtual velocity.

Wext(P) =

Wint (P) =

WV'et(P) =
(4.24)

(4.26)
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4.6.1 Consequences of the principle of virtual power

The virtual-power principle has the following consequences:

(a) The stress

TR de SeF~T, (4.27)

is consistent with a macroscopic force balance and a macroscopic traction condition,

Div TR + bR = 0 and tR(nR) = TRnR, (4.28)

and TRFT is symmetric,
TRFT = FTTR. (4.29)

In view of (4.28) and (4.29) the stress TR represents the classical Piola stress, with

(4.28) and (4.29) representing the local macroscopic force and moment balances in the

reference body.

As is standard, the Piola stress TR is related to the symmetric Cauchy stress T in the

deformed body by
TR = JTFT , (4.30)

so that

T = J-TRFT . (4.31)

It is convenient to introduce two new stress measures:

- The elastic second Piola stress,

Te = JeFe-rTF e- T  (4.32)

which is symmetric on account of the symmetry of the Cauchy stress T.

- The Mandel stress,

CeT = JeFeT TFe-T  (4.33)

which in general is not symmetric.

Using (4.27), (4.30), and (9.2) we find that

se = JTFe T . (4.34)

Thus, using the definitions (9.44) and (9.45) we find that

Fe-lSe = JsTe, and F T Se = JJMe. (4.35)

(b) The microscopic force balance

11
7r - E(c, cRO) Jstr Me = Q tr Me, (4.36)

3 (
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where in writing the last of (4.36) we have used (4.19).

(c) The microstresses and L are consistent with the microforce balance and microtraction
condition,

Div ( - = 0, and (nR) = - (4.37)

(d) The microscopic force f which is conjugate to Ab satisfies,

f = 0. (4.38)

The requirement that f = 0 implies that a variation of Ab expends no internal power.
At first blush it appears that the "microforce balance" (4.38) is devoid of physical
content. However, it does have physical content, which is revealed later when we
consider our thermodynamically consistent constitutive theory. As we shall see (4.38)
will imply an internal constraint equation between Ab and the right Cauchy-Green
tensor C and other constitutive variables of the form f(Ce, C, Ab , d, Vd) = 0, which
will serve as an implicit equation for determining Ab in terms of the other constitutive
variables.

Finally, using the traction conditions (4.28)2 and (9.59)2, the actual external expenditure
of power is

Wext (P) = (TRnR) jdaR+ JbR XdVR + J(' R)ddaR.- (4.39)

op P aP

Also, using (9.47), and (4.5)2 the stress power S': may be alternatively written as

1
Se: e = (JSTe): (FeT e) -(JsTe): Ce. (4.40)

2

Thus the corresponding internal expenditure of power may be written as

Wint (P) = j ( (JsTe): 1+ ' f + +-i v) dvR. (4.41)

4.7 Free energy imbalance

Our discussion of thermodynamics involves the following fields: (i) ER, the internal energy
density per unit reference volume; (ii) q, the entropy density per unit reference volume; (iii)
qR, the heat flux per unit reference area; (iv) qR, the external heat supply per unit reference
volume; (v) V, the absolute temperature (V > 0); (vi) /UR, the chemical potential, and follows
the discussion of Gurtin (1996) and Gurtin et al. (2010, 64).
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Consider a material region P. Then, consistent with our omission of inertial effects, we
neglect kinetic energy, and take the balance law for energy as,

j&RdR qRnR daR + j qRdR + et(P)t (P j - Rf R , nRdaR, (4.42)

where the last term in (4.42) represents the flux of energy carried into P by the flux jR of
the diffusing fluid. Also, the second law takes the form of an entropy imbalance

R dR nR R qR R (4.43)

Assume now that isothermal conditions prevail, so that V = constant, and introduce the
Helmholtz free energy per unit reference volume defined by /R = ER 7R. Then, upon
multiplying the entropy imbalance (9.78) by V and subtracting the result from the energy
balance (4.42) yields the free energy imbalance

J oRdVR Wext(P) - j /ILjB nRdaR (4.44)

We henceforth restrict attention to isothermal processes and for that reason base the theory

on the free energy imbalance (4.44).

Thus, since Wext(P) = Wint(P), upon recalling (9.61) and applying the divergence theo-
rem to the term in (4.44) involving an integral over the boundary OP of P, use of the balance

law (4.15), and localizing the expression gives the following local form of the free energy

imbalance,

R JsTe) net R b -< 0-, (4.45)

where we have written
net def (.6

PR" =R + 7r (4.46)

for a net chemical potential.

For later use we define the dissipation density D > 0 per unit volume per unit time by

1
D = -(JsT e):a + ,"net R + f,+Cd+ V _jR .VR - R > 0' (4.47)

2

Remark. For brevity we have not discussed the transformation properties under a change in

frame of the various fields appearing in our theory. Here, we simply note that all quantities

in the free energy imbalance (4.45) are invariant under a change in frame (Gurtin et al.,
2010). l
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4.8 Constitutive theory

Let A represent the list
A ={C, CR, )'b , d, Vd}. (4.48)

Guided by(4.45), we beginning by assuming constitutive equations for the free energy bR,
the stress T', and the net chemical potential p"R are given by the constitutive equations

Te= Te(A), net = net(A
A

1
R tR kJ (4.49)

(R a0R(A) &e+R ce
aOR(A) CR +

OC
a R (A)

Ab
DAb

+ abR(A)
ad

+ -( Vd.
aVd

Using (4.50) and substituting the constitutive equations (4.49) into the free-energy
(4.45), we find that it may then be written as

JsT e(
2

-f(A)

A)VI e +

imbalance

abR(A) - Aet (A) CR

Fb+a4'R(A) +
b +[ a +d L aR(A)

av7d -- Vd+jR VAR<;0. (4.51)

We assume, constitutively, that the free-energy delivers the stress TI and the net chemical
potential through the state relations

Te = 2J-1 R(A)

ace
net- a4R(A)and PR = a .

aCR
(4.52)

Further, we introduce an energetic microforce fen, and energetic microstresses ze, and e

through
def a<R(A)

aAb
Zen

def aR(A)

ad
def a4R(A)

S"en = Vd

respectively, and guided by (4.51) also introduce a dissipative microforce fdi,, and dissipative
microstresses Lai, and Cdis through

fLis def - fen,
def

L
T

dis = 7- en (4.54)dis def - en.

Using (4.52), (4.53) and (4.54), leads to the following reduced dissipation inequality

'D = fdis b + Odis d + Cis Vd - jR VLR > 0.

Then,

[a4R(A)
aCe

(4.50)

+
a90R(A

aAb

fen (4.53)

(4.55)

OR = R(A
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Next, we assume that the vector microstress is purely energetic so that

dis = 0. (4.56)

Further, in order to satisfy (9.213) we assume that each of the terms separately satisfy
dissipation inequalities of the form,

fhis 'b > 0

dis d > 0

-JR - VJR > 0

for Ab > 0,

for d > 0,

for VpR 0.

Next, we assume that Ldiss is given by

Zdiss = a + ( d, with a = &(A) > 0 and ( =dam(A) > 0,

so that the dissipation inequality (4.57), is satisfied, in the sense that

+ (d) ci> 0 whenever d > 0.

Further, we assume that fdi, is given by

fhis = Kb Ab, with Kb = kb(A) > 0, (4.60)

so that the dissipation inequality (4.57)2 is satisfied, in the sense that

( b Ab) A > 0 whenever Ab > 0. (4.61)

Thus summarizing, from the equations above we have the following thermodynamically-
consistent constitutive equations for the microforce f and the microstresses r and :

?bR(A)
f = +bkb(A)Ab,

Dhnb

ftR(A)
w= m +(A)+ (A) c,

Finally, we assume that the the fluid flux jR obeys a Fick-type relation in the sense that
the fluid flux jR depends linearly on the gradient of the chemical potential,

jR =-M(A)VAR, (4.63)

where M is a mobility tensor. Note that on account of (4.57)2, the mobility tensor is positive
definite.

(4.57)

(a

(4.58)

(4.59)

aOR(A)
aVd

(4.62)
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4.9 Chemical potential

The microforce balance (4.36), when combined with the thermodynamically consistent con-
stitutive equation (4.52)2, together with the definition (4.46) of pnet , gives the following
important expression for the chemical potential in the theory,

R(A)
PR C -- (3

(4.64)

4.10 Evolution equation for the bond stretch

The microforce balance (4.38), viz.
f = 0, (4.65)

together with the constitutive equation (4.62)1 gives the important thermodynamically-
consistent Ginzburg-Landau-type equation,

Ikb(A) Atb,
a R(A)

DAb
(4.66)

which serves as an evolution equation for Ab.

4.11 Evolution equation for the damage variable

The microforce balance (9.59), viz.

Div - r = 0, (4.67)

together with the constitutive equations (4.62)2,3 gives the evolution equation for the damage
variable d as

((A)d = F(A)

def
where F(A) =-

for d > 0,

DR(A)

ad

Since ( is positive-valued, F must be positive for d to be positive, and the damage to increase.

4.12 Boundary and initial conditions

We also need boundary and initial conditions to complete the theory.

(4.68)
+ Div -(A 6(A).

( 01d
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1. Boundary conditions for the partial differential equation (pde) governing
the evolution of the motion x:

Let S, and StR be complementary subsurfaces of the boundary
Then for a time interval t E [0, T] we consider a pair of boundary
the motion is specified on S, and the surface traction on StR:

x = X onSxx[0,T], and TRnR = tR On StR x [0, T],

where ' and tR are prescribed functions of X and t.

2. Boundary conditions for the pde governing the evolution of pa:

Using (4.63) and (4.64) the balance equation (4.15) for C may be stated as a balance
equation for the chemical potential JaR. Let SAR and SR be complementary subsurfaces
of the boundary B of the body B. Then for a time interval t E [0, T] we consider a
pair of boundary conditions in which the chemical potential is specified on SR and
the fluid flux on SjR:

and jR n nR jR on SjR x [0, T] (4.70)

where pR and ]R are prescribed functions of X and t.

3. Boundary conditions for the pde governing the evolution of d:

The presence of microscopic stresses results in an expenditure of power

LB ( - nR)d daR

by the material in contact with the body, and this necessitates a consideration of
boundary conditions on &B involving the microscopic tractions - nR and the rate of
change of the damage variable d.

* We restrict attention to the simplest set of boundary conditions that
null expenditure of microscopic power in the sense that ( . nR)d = 0.

A set of boundary conditions which satisfies this requirement is,

result in a

d=O onSdx[0,T], and - nR = 0 on&B\Sdx [0,T], (4.71)

with the microforce given by (4.62)3.

The initial conditions for the motion, chemical potential, and damage are taken as,

X(X, 0) = X, PR(X, 0) = AR(X) and d(X, 0) = 0. in B.

(B of the
conditions

body B.
in which

(4.69)

AR = tR on SA X [0, T],

(4.72)
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4.13 Specialization of the constitutive equations

4.13.1 Specialized form for the free energy 0,R

Specialized form for the free energy with no bond stretch and no damage

We begin by recalling and extending a set of specialized equations proposed by Chester and
Anand for an elastomeric gel in which there are no energetic effects due to bond-stretch
and there is no damage (Chester and Anand, 2010, 2011). Limiting our considerations to
isotropic materials under isothermal conditions, we begin by assuming that the free energy

R may be written in a separable form as

OR (ICe, CR, R) = RR O m(CRO))+ /)ech e CR0 , ,(473)

where Ic are the principal invariants of Ce, poR is the chemical potential of the unmixed
pure solvent, /Rmix(CR, d) is the change in free energy due to mixing of the solvent with the
polymer network, Rech , I CR, 7

9 ) is the contribution to the change in the free energy due
to the deformation of the polymer network.

Polymer volume fraction

In the literature on swelling of elastomers, the quantity

d ef 1 -CR = (1 - cRO QCRO)J (474)

is called the polymer volume fraction, with 0 0  1 - QCRO the initial volume fraction of the
polymer. If the elastomer is dry, that is CRO = 0, then #o = 1.2

Estimate for 0'

Next, we adopt the following classical from of the theory for the contribution to the free
energy due to mixing (Flory, 1942; Huggins, 1942; Flory and Rehner, 1943),

0 mx =" [0 (1 -#) In(1 -- #) + X#(1 -#)), (4.75)

where R is the universal gas constant, and x is a dimensionless parameter (called the x-
parameter, or Flory-Huggins interaction parameter), which represents the dis-affinity be-
tween the polymer and the fluid:

e a low value of x favors swelling, while a high value of x favours de-swelling.
2Note that while C is positive, it has no upper bound. However, the polymer volume fraction is constrained

to lie in the range # e- [0, 1]; this is a useful feature of # in numerical computations.
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Estimate for Orech

In elastomeric materials, the major part of Vrmech arises from an entropic contribution. Let

def11
S ftrC = (tr Ce)(1 + OCR)2/3 (4.76)

define an effective total stretch. If we introduce an effective elastic stretch by

edef 1 tA = _ trCe, (4.77)

then recalling (4.17), the effective total stretch is given by the product of the swelling stretch
and the effective elastic stretch,

S= lA". (4.78)

The classical statistical-mechanical models of rubber elasticity which use non-Gaussian
statistics to account for the limited extensibility of the polymer chains, provide the following
estimates for the entropy change due to mechanical stretching (cf., e.g., Treloar, 1975; Arruda
and Boyce, 1993),

'r/Rc = kn + In .+ Nk # nJ (4.79)
Vn-smnh #_3

with kB Boltzmann's constant,

# L- and f3 d - (4.80)

where L- is the inverse of the Langevin function L(x) = coth(x) - (x)- 1 . This functional
form for the change in entropy involves two material parameters: (i) N, the number of
polymer chains per unit reference volume, and (ii) n the number of links in a freely-jointed
chain.

To account for the interaction between the polymer chains and to account for a slight
compressibility of the gel, Chester and Anand (2011) also introduced an energetic component,

6Rvol Rvol '(j) (4.81)

to the free energy.

Then, using (4.79), (4.79), and (4.81), we obtain the estimate

0"eche(I C, 
9 ) -(N kBd) n [ /3+ln .- (NkB') ( / o)n J

smh B) 3 (4.82)

+ 9Rv.1 (Je),
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with A defined in (4.76).
Thus, using (4.75) and (4.82) in (4.73), a particular form of the free energy function

which accounts for the combined effects of mixing, swelling, and elastic stretching proposed
by Chester and Anand (2010, 2011) is

R = RR +

- V-) (4.83)

+ (NkB79 n An). -n(NkBV Vn00 In! J+ Rvol (e
smh# 3

Specialized form for the free energy accounting for bond stretch

In a recent paper Mao et al. (2017b) proposed a model for both deformation and fracture of
elastomeric materials; their model is consistent with Arruda-Boyce model for deformation
of elastomers (Arruda and Boyce, 1993), and the Lake-Thomas proposal for fracture of
elastomers due to the scission of the Kuhn. segments of polymer chains (Lake and Thomas,
1967).

Consider a single polymer chain. The essential idea in the paper by Mao et al. (2017b)
is to assume that the Kuhn segments in a polymer chain are not rigid but is stretchable.
Thus, let

Ab denote the stretch of a Kuhn segment,

and for simplicity assume that each Kuhn segment in a chain stretches by the same amount.
Every stretchable Kuhn segment can store an internal energy, which we denote by

Eb = tb(Ab ).- (4.84)

Under this assumption the change in entropy 17 of a chain has the same form as given by the
classical inverse-Langevin formula, but instead of a constant Kuhn segment length L, the
Kuhn segment length is

l = Ab Lb,

and the expression for the change in entropy of a single chain according to the Langevin
statistics becomes,

7 = -n kB AI/ +n with -1= 1 (> , (4.85)

where n is the number of Kuhn segments in a chain, and where A is the overall stretch of
the polymer chain. Using (4.84) and (4.85), the free energy a single chain with stretchable
Kuhn segments is then given by

) = nIb(Ab )+ nkBO [(A l) + In ~sh,3) (4.86)
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Next we generalize this free energy expression for a single polymer chain to a network
of chains in an elastomeric gel. Assuming inextensible, strong, covalent crosslinking bonds
between the chains, straightforward considerations give the following modification of (4.83):

R 
R 

QR

+ (NkB) n (A>) +ln ( ) NkB]) - ( o) In J (4.87)
( Nn- )smh #3Ab

+ (Nnb(Ab) + sERv.(j))

with

) = --1 / and 00 =C-( b (4.88)

Note that in (4.87) and (4.88) it is the modified stretch-measure ( Ai-) which gives rise to
changes in the entropy of the network.

Let
ER = NnEb(Ab) (4.89)

denote the internal energy density of an elastomeric network due to bond stretching. Further,
let Af denote a critical value of bond stretch when a Kuhn segment fails, and denote the
corresponding value of the dissociation energy for a single Kuhn segment by

bl bi 9(Af) (4.90)

Then, as a simple criterion for failure of a "material point" of an elastomeric network due
to chain-scission, Mao et al. (2017b) proposed that failure occurs when E = ER, where

R b NnEf (4.91)

represents the energy of per unit volume when all Kuhn segments in a network at a "material
point" are broken.

Remark. This failure criterion of Mao et al. (2017b) essentially assumes that all Kuhn
segments are uniformly stretched and that they all fail simultaneously. This is a significant
assumption, because at the microscopic level the chains are subject to thermal fluctuations
and one expects that such fluctuations will lead to failure of a single bond rather than all
the bonds simultaneously. However, to construct a simple and tractable model of failure at
the macroscopic level, we neglect such complications arising from thermal fluctuations, and
adopt the failure criterion of Mao et al. (2017b); we argue for its plausibility on the grounds
that the binding energy of backbone units of typical polymers is large in comparison to the
average thermal energy at room temperature. D
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Specialized form for the free energy accounting for bond stretch and damage

We account for damage by using the field d C [0, 1] and modify the free-energy function
(4.87) to read as,

R RCR+

+ (NkB9)' n

q)ln(1 - q5) + Xq(I - ) )]

[( V/"-b \ sn h i

+ g(d) (Nn (Ab ) - sRvol (P ) +tR,nonloc(Vd).

=R(Ab, J)

As particular forms for the functions eb(Ab ) and sRvo(J) we choose the simple energies,

1
sb(Ab ) = - E(Ab - 1)2,2

RvoI(j) K je-1)2

8

where Eb > 0 denote the stiffness of a Kuhn segment, K > 0 a bulk modulus for intermolec-
ular interactions.

Remark. In our finite element simulations we encountered some convergence difficulties
with the simple quadratic form,

1
JRvOj (Je) =K(Je - 1)2,2

of the volumetric internal energy at late stages of the damage. Accordingly, in our compu-
tations we have used the alternate form (4.93)2 which reduces to a simple quadratic energy
as je - 1,

Rv(J) =K K
(8eo- -l

8 '8
- 1)2 (1 +

1)2

Je
--K(Je 1)2.

2

If for some numerical reason Je becomes large during the iteration process, then the particular
form (4.93)2 leads to a softer response (see Schrdder and Neff, 2003). The particular form of
the volumetric internal energy is not crucial for elastomeric gels in which the volume changes
due to elastic deformation are typically quite small relative to distortional deformations.

Thus, denoting the undamaged part of the internal energy in (4.92) by eoR(Ab, Je), we
have

lO(Ab, Je) = -EB(Ab - 12 _K (e _ e-122 8
(4.95)

- (NkBI)
3A( ol nJ (4.92)

(4.93)

(4.94)
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where we have introduced the notation,

E defEb= ANnEb, (4.96)

for a macroscopic measure of bond-stiffness..

The function g(d) describes the degradation of the internal energy storage capacity of
the material, with the properties

g(0) = 1, g(1) = 0, and g'(1) = 0. (4.97)

A widely-used degradation function is

(4.98)

we adopt it here.

The term R,nonloc(Vd) in the internal energy density is the nonlocal contribution

9R,nonloc(Vd) - E f2 2Vd12
2

(4.99)

with e the macroscopic bond failure energy defined in (5.32). Also the parameter f repre-
sents an intrinsic material length scale in our gradient damage theory for elastomeric gels.

With these specializations, and writing

Gdef NkBo, (4.100)

for a ground-state shear modulus, the expression for the free energy may be written as

+ Go n i 0 - In
-(Nn ) (

1- Abo 00)
3Ab ',n

+ (1- d) 2 ( o(Ab - 1)2 + i(Je _ je-1) 2 + R2 12

-- R(Ab,Je)

with

and i3o def 1 (L) .
N/-

An important physical consideration in our specialization above is that the
degradation function g(d) = (1 - d) 2 only degrades the internal energy ?R(Ab, J') of the gel
and not the entropic contributions. Thus, as d -+ 1, the internal energy part (1--d) 2EAOR Je)

g(d) = (1 - d)2;

)R PCR +JR [ $o

in J
(4.101)

Remark.

(4.102)

- 0) ln(I - 0) + XO(I - 0))]

de 'C-1
0n = '
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will become zero. Even though we do not directly degrade the entropic part of the free energy,
as d - 1, the entropic part also goes to zero since Ab -- 00.

4.13.2 Specialized form for the Ginzburg-Landau evolution equa-
tion for the effective bond stretch Ab

Recall (4.66), viz.
a'VR(A)

kb(A) Ab= - &Ab (4.103)

with Kb = kb(A) > 0 a kinetic modulus.
As the damage variable d - 1, the bond stretch Ab also changes dramatically and eventu-

ally Ab -- 00. We use a specialized form of kb(A) to limit any dynamic effects of the breaking
of bonds of the polymer chains. Since Ab E [1, oc), Ab is not the suitable order parameter
to characterize the phase transition associated with the bond-scission process. The simplest
choice of an order parameter to describe this transition is the inverse of Ab which lies in the
bounded range Ab1 E [0, 1]. A simple Ginzburg-Landau equation for the order parameter
A-' is

(97R (A)
b- =(4.104)

with 4b > 0 a positive-valued kinetic modulus. Since A:- A- 2 ib and dA- 1 = b2dAb,
(4.104) may be written as

(O- 4 b =- )(A) (4.105)
&9Ab

which is of the general form (4.103), with

Kb = bA-. (4.106)

4.13.3 Specialized form for Vwdiss

Next we specialize the expression for the dissipative microforce V'diss that expends power
through d.3 The dissipative microforce is partitioned into a rate-independent part and a
rate-dependent part through

Ldiss &(A) + (A)d . (4.107)
rate-independent rate-dependent

3 Cf. eqs. (4.57) and (9.215)1.
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Based on physical model of Mao et al. (2017b), the rate-independent part of the dissipative
microforce a is the sum of the contributions from each chain given by (5.32), and is given by

a = Eg. (4.108)

The rate-dependent contribution to the dissipative microforce is here taken to be simply
described by a constant kinetic modulus ( > 0, with the rate-independent limit given by
( - 0.

4.13.4 Specialized form for the evolution equation for d

Using the specialized free energy (4.101) and the specialization for Wdiss above, eq. (9.221),
which gives the evolution of d, becomes

= 2(1 - d)eo (A,, Je) + fe f2 Ad - E. (4.109)

Remark. Consider the rate-independent limit (( = 0) in the absence of any gradient in
the damage field d. Then (5.39) reduces to

0 = 2(1 - d)eo(Ab s je) _ E (4.110)

Using the fact that d lies in the range d c [0,1], (5.41) gives that

0, if eo (Ab, Je) E/2,

d = j(/2 (4.111)
R 

- f s0(Ab, Je) > Efd1

eO (Ab, Je)R

The evolution equation (5.39) can be rewritten to enforce the constraint d E [0, 1] in a
simple way. Add and subtract the term Efd to (5.39) to get,

= 2(1 - d) (?0 (Ab, Je) - E/2) - E [d - f 2AdR

Since eo(Ab, J') is the major driving energy for the evolution of d, the constraint d E [0, 1]
is satisfied if the equation above is modified to read as,

= 2(1 - d) (R(Ab, Je) - Ef/2) - Ef [d - f 2 Ad (4.112)

where (e) are Macauley brackets, i.e.,

0, x < 0,
x x > 0.
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In this form, a threshold for the driving energy for damage is made explicit.
At this stage in the development of the model for the evolution of d, the irreversible nature

of scission is not yet reflected in the model. To this end, we replace the term (KO (Ab, Je) -
R /2) in (4.112) with the monotonically increasing history function (cf., Miehe et al., 2010),

N(t) max ((Ab(S), Je(S)) - 4/2) (4.113)
sE[O,t]

The Ginzburg-Landau evolution equation for d (9.221) may then be written in a form similar
to that found in the numerous papers by Miehe and co-workers on phase-field fracture (cf.,
e.g., Miehe et al., 2010; Miehe and Schinzel, 2014; Raina and Miehe, 2016),4

(d =2(1 - d)R - Ef [d - f Ad] . (4.114)

The free energy (4.101) gives the vector microstress as = f f Vd, so that the boundary
conditions conditions (5.14) for the partial differential equation (4.114) may be written as,

d=0 onSdx [0,T], and (Vd) - nR = 0 on DB \ Sd x [0, T]. (4.115)

The latter boundary condition thus means that the gradient of phase field Vd is taken to be
perpendicular to the normal nR to the surface aB \ Sd, so that any "diffuse crack" intersects
the boundary in a perpendicular fashion. Such a boundary condition is widely used in
gradient damage theories in the literature (cf., e.g., Miehe et al., 2010).

4.13.5 Specialization of the referential fluid mobility tensor M

We note that with
def ln de

C = J CR and j = J-'FjR, (4.116)

respectively, denoting the fluid content measured per unit volume of the deformed body, and
the fluid flux measured per unit area of the deformed body per unit time, the referential
balance law (4.15) may be expressed spatially as,

c = -divj. (4.117)

At present not much is known experimentally about the precise constitutive equation for
the flux j. Here we use a simple form to capture the essence of the diffusion of the fluid in
the gel. Specifically, we assume that the spatial flux depends linearly on the spatial gradient
of the chemical potential, with the mobility tensor spherical, so that

j = -m grad p, (4.118)

4 However, our derivation of (4.114) differs in substantial detail from that in the papers by Miehe et al.
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with
m = rn(c, d, 9) > 0 (4.119)

a positive-valued mobility coefficient. The assumption that the spatial mobility tensor is
spherical, ml, implies that the fluid diffusion always remains isotropic and is not influenced
by deformation or damage of the gel. We assume further that the spatial scalar mobility m
at a given temperature V is given by,

DcM = with D = b(d) > 0, (4.120)
Rod

where D represents a diffusion coefficient with units of m2/s. Finally, using the transforma-
tions (4.116)2 and grady = F-T VR, the spatial relation (4.118) may be converted to its
referential counterpart,

jR = RMVAR, (4.121)

with

M=J( Dc C-1 with D = 1(d) > 0, (4.122)
( R79 )

a positive-semidefinite referential mobility tensor. The precise dependence of the damage on
the diffusion coefficient is not known; we expect that as the damage d increases then so also
does the diffusion coefficient D, but in our numerical calculations - for simplicity - we
take D to be a constant.5

Actually, more precise expression for mobility can be obtained if we reconsider Equation
(4.118). Generally for the case without damage, we pick the isotropic mobility tensor in
spatial configuration, like

j = -mgrad p (4.123)

here m = m11 with m, here is the mobility for undamaged material. For this case, we can
use the following form(Duda et al., 2010; Chester and Anand, 2010)

mi = D -- (j1l (4.124)
RV RV

with D1 is the diffusivity of the solvent in the polymer network. As the material part be

degraded, the material is supposed change from the polymer network with solvent to be

another material, pretty much like air or solvent. For this fully damage part, the diffusivity

becomes isotropic again, and the spatial flux is still given by (4.123) but m = m2 1 with m 2
is the mobility of the solvent within the air. Typically m 2 > m, and can be simply described
by a constant

M2 = D2  (4.125)
R79

5This assumption is approximately valid in the numerical simulations that we report in the simulation
chapter 6, since in these simulations the rupture happens very quickly, and any dependency of the mobility
on damage may be neglected.
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with D 2 is the diffusivity of the solvent in this fully degraded material. Then at first order
of approximation, we can describe the dependency of mobility on damage as

m(d) = mi,(d)1 + m2 (1 - s(d))1 (4.126)

here K(d) E [0, 1] is the degrade function for mobility. As d =0 K(d) = 1, the material is
undamaged and m(d) = m 11; as d = 1 we have K(d) = 0, then the material is fully damaged
and m(d)= m 2 1.

However, in the partially damaged material, the mobility is anisotropic. The physical
observation is that the mobility along the spatial gradient of damage grad d is much smaller
than the mobility along the directions perpendicular to grad d. In order including this effect,
we modify (4.126) as following,

m = miK(d)1+ m 2 (1 - K(d))(1 - Sd 9 Sd) (4.127)

with sd = grad d/Igrad dl is the unit normal direction along the gradient of damage.

We can easily exam whether this mobility tensor satisfies the above mentioned physical
observation as following. For the direction perpendicular to the spatial gradient of damage,
the mobility is given by m1 = miK(d)+m 2 (1 - i(d)) while for the direction along the spatial
gradient of damage, the mobility is given by min = mji(d). Generally mi increases as d
changes from 0 to 1 and mil decreases as d changes from 0 to 1. For simplicity, we pick
k(d) - g(d) = (1 - d) 2 for now.

Finally, we need make j back to the referential flux j,. Recall the relation (4.116) we
have

jR = JF-1 j = JF-1 (-mgrad p)

JF-1 (-mF-T Vp) = -MV(

with

M = JF-'mF-T

[C-1 Vd] a [C-1 Vd] (4.129)
= J[mi(d) + n 2 (1 - K(d))]C 1 - Jm 2 (1 - i(d)) [- Vd 0 Vd]C-1 : [Vd 0 Vd]

Clearly this is semi-positive-definite.

This sophisticated mobility expression is very useful for the case that fracture propagation
is very slow. In our following simulation, the two mobility expressions (4.129) and (4.122)
provide similar results.
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4.14 Summary of the governing equations for the spe-
cialized theory

1. Balance of forces: Neglecting body forces, balance of forces requires

Div TR, = 0,

with TR given by

TR = F - GoF-T + (1 - d)2 K(Je2 _ je-2)F-T

where

Go = NkBI,
03= C1 )

and

- def G,
0 \=Go3 Ab

and L-1(.) is the inverse of the Langevin function L(x) = cothx - x-'.

The bond-stretch Ab is solved by integrating the evolution equation

b 3 Ab= -(1 -d)2 Eb (Ab-
Gon Gon

1)Ab+ o- b -- +
Vfri 3Vrni ( ) In J, (4.134)

in which

EB = NrnEb, and def 1
Vn b

2. Balance of fluid concentration:

cR = -Div jR, (4.135)

with jR =-MVIR, with the mobility given by (4.122) and the chemical potential by

AR = + R79[ln(1 - q) + # + x2] - (1 - d) 2 jS- 1 1 K(Je 2 _ je- 2)Q (4.136)
4

3. Evolution equation for the damage variable d:

(4.137)

(4.130)

de()G=f Go ,

(4.131)

(4.132)

(4.133)00 Le L-1 ,

(d = 2(1 - d)'W - Ef [d - f2 Ad] ,
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in which
E =Nn f (4.138)

is energy required to fail the Kuhn segments, f is a material length scale, and 'H is a
history functional defined by

W(t) = m[x Ks(Ab(s), Je(s)) /2) , (4.139)
SElo,t]

where at each s - [0, t],
1 1

sR(Ab (s), Je(s)) = NnEb (Ab (s) - 1)2 + -K(Je(s) - Je-l(S)) 2  (4.140)

The theory involves the following material parameters:

N, n, Eb, K, , pR, Q, x, D, E I, and ( (4.141)

Here, N is the number of chains per unit volume; n represents number of links in a chain;
Eb represents a modulus related to stretching of the bonds (Kuhn segments) of the polymer
molecules; K, represents the bulk modulus of the material; b is a kinetic modulus for the
evolution of the bond stretch; [to is the reference chemical potential of the solvent; Q is the
molar volume of the diffusing fluid; x is the Flory-Huggins interaction parameter between
the polymer and solvent; D is the diffusivity of the fluid molecules; E , a bond dissociation
energy per unit volume; f is a characteristic length scale of the gradient damage theory under
consideration; and ( is a kinetic modulus for the evolution of the damage.

In the numerical simulations to described in Section 4.15, instead of the parameter list
(5.46), we use the parameter list,

Network parameters: Go= NkB 79, n, EB = NnE, K,

, = NnE, , and (, (4.142)

Fluid diffusion parameters: pA, Q, x, and D,

where Go is the ground-state shear modulus for the polymer network, Eb is a bond-stiffness
parameter for the network, and E represents the energy per unit volume for the dissociation
of all the Kuhn segments in a network.

The boundary conditions for these partial differential equations have been discussed
previously in Section 5.3.1.

4.15 Numerical implementation

We have numerically implemented our theory in the open-source finite element code MOOSE
(Gaston et al., 2009) by writing our own application to solve 3D, plane-strain, plane-stress,
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axisymmetric problems. MOOSE uses a sophisticated nonlinear solver technology, and it
may be massively parallelized. The details of numerical implementation of our theory is
displayed in Appendix B. Using this new numerical capability, in next following chapters we
report on two aspects of our theory.

* In Chapter 5, we first focus on simulations of coupled deformation-fracture of elas-
tomeric materials. In this case, we suppress the diffusion in the system, and study the
capability of our theory to describe the fracture in rubber. Moreover, following the
same routine, we study the fracture of rubber by crosslink failure.

* In Chapter 6, we show some representative simulations of coupled diffusion-deformation-
fracture of a polymeric gel.

All simulations are done in a linux cluster with -100 cores, and the visualization of the
results was performed by using the open-source code ParaView (Ayachit, 2015).



Chapter 5

Progressive damage and rupture of
elastomers

5.1 Introduction

In this chapter we focus on physics and numerical modelings of fracture in elastomeric
materials. There are two typical failure micromechanisms in soft materials: chain scission
and crosslink failure. If the cross-linking chemical bonds in an elastomeric network are
strong covalent bonds, then fracture is expected to occur by scission of the chains between
the crosslinks, while if the chemical crosslinks are weak then fracture is expected to occur
because of the scission of the cross-linking bonds themselves; cf. Fig. 5-1.

The Lake-Thomas argument (Lake and Thomas, 1967) is the first molecular theory to
understand the fracture of elastomers by chain scission. They proposed that when any of the
main bonds in a polymer chain breaks, then the total energy of each bond of the stretched
chain is irreversibly lost. Therefore, the energy necessary to break a chain is proportional to
the length of that chain, i.e., proportional to the number of backbone bonds, n, comprising
the chain.1 In an important paper Akagi et. al. (Akagi et al., 2013) presented results
from their investigations on the fracture behavior of tetra(polyethylene glycol) (Tetra-PEG)
gels with precisely controlled network structures. These controlled network structures, with
greatly suppressed heterogeneity, enabled Akagi et al. (2013) to validate the predictions of
the Lake-Thomas model; also see Sakai (2013). From physics and modeling perspective, we
show in Chapter 3 that our idea on stretchability of Kuhn segments within polymer chains is
consistent with Lake-Thomas argument. This highlights that the theory that we developed
in Chapter 4 should be useful to modeling the progressive damage and rupture in elastomers,
if the failure mode in the specific elastomers is chain scission and the diffusion is suppressed.

'Actually proportional to v6; cf. Sakai (2013) and also the Remark on page 110.
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Figure 5-1: (a) Schematic of a crosslinked elastomeric network. (b) Schematic of failure by chain
scission. (c) Schematic of failure by crosslink scission.

We will show numerically in section 5.2 that indeed our theory can pickup the essence of the

fracture of elastomers by chain scission.

However, in many synthetic polymers the Kuhn segments are quite stiff and strong.
Instead, it is the weak crosslinks in the network which are stretched and eventually lead
to failure. 2 In this case, we need modify our theory to accounting for crosslink failure in
the polymer network. Much of the continuum-level theory developed in previous chapter is
unchanged, but what is changed is that here we introduce an effective crosslink stretch A,

rather than an effective bond stretch Ab - as an internal variable of the theory. Also

changed are the specialized constitutive equations for the internal energy and entropy of the

network because the micromechanism of damage and failure is fundamentally different from

what we had considered previously. The details of fracture of elastomers by crosslink failure

are displayed in Section 5.3.

Because of the fundamentally different between these two micromechanism of damage and
failure in elastomers, some important consequence will appear. For example, we show that for
elastomeric materials in which fracture occurs by crosslink stretching and scission, the Lake-
Thomas scaling Lake and Thomas (1967); Akagi et al. (2013); Sakai (2013); Creton (2017) -
that is the toughness G, is proportional to 1/ /U , with Go = Nkb?9 the ground-state shear
modulus of the material - does not hold. A new scaling is proposed, and some important
consequences of this scaling are remarked upon. More details of these consequences are
displayed in section 5.4.

2For example the 4-arm polyethylene glycol network with reversible metal-ligand crosslinks Grindy et al.
(2016).
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5.2 Fracture of elastomers by chain scission

5.2.1 Application of the model to study flaw-sensitivity in elas-
tomers

We demonstrate the behavior of the full nonlocal network
this end, we apply the model to the problem of plane-stress
notched specimen (see Fig. 5-2).

W

model through an example. To
Mode-I loading of a single-edge-

2H

Figure 5-2: Geometric parameters defining a single-edge-notched specimen (not
take W = 10a and H = 20a, and R is the root-radius of the notch.

to scale). We

The material properties used in our simulations are given in Table 6.1. The parameters
Go, n, and K approximate those of a well cross-linked engineering elastomer. The values of
the parameters Eb and E, are in line with the estimates made in Mao et al. (2017b), and the
length scale is set at f = 1pm. The kinetic modulus ( was chosen through trial-and-error so
that it has only a minor effect on the load-displacement curves in the simulations.

Table 5.1: Material properties for the single-edge-notch simulations.

Go = NkBV n Bb = NnEb K ef = Nnf f

0.25 MPa 4 500 MPa 625 MPa 25 MJ/m 3 1 pm 50 MPa-s

We consider a series of geometries of different size that are each pre-notched to 10% of
the specimen width. Referring to Fig. 5-2, each specimen is defined by the in-plane width
W, half-height H, notch-depth a, and notch-root-radius R. We examine the case of flaws
that are small enough to allow the material to stiffen significantly due to chain straightening
before rupture occurs. The notch lengths considered are,

a = {0.5pm, 1pm, 5pm, Opm}, (

a

R

(5.1)
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which when normalized by the length scale f = 1pm are,

a/C = {0.5, 1, 5, 10}.

We set the notch-root radius to be R = 1pm for all geoemetries. For each notch-length a,
we take W = 10a and 2H = 40a. The geometries thus range from 5 pm wide by 20pm
high (a/t = 0.5) to 100 pm by 400 pm (a/C = 10). Note that there is not perfect similarity
between the geometries, since the notch radius is kept fixed at 1um in all cases. Each
specimen is pulled in uniaxial tension at a nominal stretch rate of 1 x 10-2 S-1.

Fig. 6-1 shows the result from our simulation for a notch with a/C = 1. The nominal
stress, normalized by Go = NkB79, versus nominal stretch curve is shown in Fig. 6-1(i),
and Fig. 6-1(ii) shows the deformed geometry at points (a) through (g) on the stress-stretch
curve, together with contours of the damage variable d. The image (a) in Fig. 6-1(ii) is
the initial configuration. As the sample is streched to point (b) the sharp crack is blunted,
but no damage has initiated. Damage initiates when the sample is stretched further to a
stretch level of - 3.5 (a point just before (c)), but the force is still increasing, and it is
after additional macroscopic stretching that the force reaches a peak at point (d) in the
stress-stretch curve, and from the contour of damage shown in Fig. 6-1(ii) (d), the damage
zone ahead of the crack becomes clearly observable. Further stretching begins the rupture
process, and Figs. 6-1(ii) (e) through (g) show this progressive rupturing, with (g) showing
the final failed configuration.

Next, we examine the role of the bond stretching on the overall response. In Figs. 5-4
and 5-5, we plot contours of the bond stretch Ab during the deformation process. Highly
damaged elements (d > 0.95) are again hidden from view. The contours are plotted on the
reference configuration to highlight the extent of crack propagation, relative to the initial
specimen geometry.

Figure 5-4 shows the bond deformation for a small flaw, a/C = 1. The image in the

first frame is taken when extension of the notch has proceeded a small amount, while that

in the last frame is just before final rupture of the specimen. The contour levels of Ab
show that there is appreciable bond-stretch in the entire specimen. The overall response is

strongly influenced by the mechanics of bond-stretching, and the stress-bearing capacity of

the material is being used efficiently.

A contour plot for Ab for a specimen with a large flaw, a/C = 10, is shown in Figure

5-5; the crack has propagated halfway through the specimen. In this case bond-stretching

is limited to a small region in the vicinity of the crack tip; the majority of the specimen

displays negligible bond-stretching, and that part of the specimen is thus well described by
the Arruda-Boyce model without bond-stretching. This plot illustrates a case where the

damage process zone at the crack-tip is small compared with the other in-plane dimensions

of the specimen. For such circumstances a traditional top-down fracture mechanics approach

based on the critical energy release rate may be applied, but we do pursue such an approach

here.
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Figure 5-3: Progressive damage and rupture for the case a/e = 1. (i) Computed nominal stress,
normalized by Go = NkB?9, versus nominal stretch curve. (ii) Deformed configurations of the

specimen with contours of the damage variable d at points (a) through (g) in the stress-stretch

curve. To aid visualization of the damage, elements with an average value of d > 0.95 are removed

from the plots.
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Figure 5-4: Contours of bond stretch Ab during the fracture process for a notch with a/= 1.

Significant bond deformation occurs throughout the entire specimen. Snapshots are shown at three

different stages of crack propagation. Contours are plotted on the reference configuration. Elements

are removed from the figures when d > 0.95.
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Figure 5-5: Contours of bond stretch Ab during the fracture process for a notch with a/C = 10.

The bond stretch is appreciable only in a small process zone near the crack tip. Contours are

plotted on the reference configuration. Elements are removed from the figures when d > 0.95.
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The normalized nominal stress versus nominal stretch response for all the geometries
a/f = {0.5, 1, 5, 10} is shown in Figure 5-6. For comparison, the ideal behavior of the
material with no flaw is included on the plot as a dashed curve. 3 As the notch size decreases,
the body -approaches the strength of the local response. Note also that the gradual failure
that occurs in the local response becomes a sudden event in the boundary value problem.
This is indicative of the nonlocal behavior, with energy remote from the crack-tip being
released to extend the crack.

50

CT2
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0z4

40-

30

20
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0 '
I 2 3 4
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5 6

Figure 5-6: Nominal stress, normalized by Go = NkBT9, versus nominal

edge-notched geometries, with a/C = {0.5, 1, 5, 10} (solid lines). The dashed

behavior of the model, representative of a homogeneous deformation state.

stretch for all single-
curve shows the local

5.2.2 Double-edge-notched thin sheets in tension

In the previous section 5.2.1 we studied the capability of the model to describe flaw-size
sensitivity in single-edge-notched specimens which are sub-millimeter in size, with micron-
dimensioned cracks. In this section we show the capability of or theory and numerical
simulation capability to model the experimental results of Hocine et al. (2002) on fracture of
double-edge-notched specimens of a styrene-butadiene elastomer (SBR) - specimens which
are tens of millimeters in size, with millimeter-dimensioned cracks.

Remark. In our gradient-damage theory the free energy has a contribution (5.31) in which
ER represents the energy of crosslink scission per unit volume, and f is a length scale to

3 The ideal behavior is computed by applying a uniaxial, plane stress deformation to a single material
point, neglecting the nonlocal Vd term.

local behavior

A
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account for gradient effects in the damage field d. Theoretically, e is an intrinsic material
parameter of the theory. Actual values of f in elastomeric materials are expected to be

f : 1pm. For such a value of f, to numerically resolve regions of sharp gradients in the

damage variable d, the finite element size he must be much smaller than f - typically
he f/10 - so that he $ 100nm, which is exceedingly small. Use of such a small element

size in the damage zone is computationally tractable (on our computers) if the in-plane

dimensions of a single-edge-notched specimen are less than 1mm, and an edge crack is a few

microns is size. However, if one is interested in simulating the fracture of specimens which

have a macroscopic in-plane dimensions of say 10mm or larger, then use of such a small value
of f and therefore a small value of he, will result in prohibitively expensive simulations. Under

these circumstances, for pragmatic reasons, f may be considered a regularization parameter

for the gradient-damage theory. Corresponding to a small but computationally-tractable
mesh size he selected for macroscopic-dimensioned specimens, a suitably large value of f may

be chosen, and the value of e. suitable reduced so that e x f ~ Gc, where G, is the value of

experimentally-measured macroscopic critical energy release rate for a given material. We

take this pragmatic approach for the numerical simulations shown in this section.

(a) (b)
45

El'. (c)

35

30 
(d)

/R 200 25 - (b) *

a 220--

10 - (g

5 (a)

0 10 20 30 40 50 60 70

80 Displacement [mm]

Figure 5-7: Double-edge-notched specimen in tension. (a) Geometry of the specimen in mm,
with different initial notch lengths a = {12, 16, 20, 24, 28} mm. The root-radius of the notch is fixed

at R = I mm (b). Comparison of load-deflection curves from simulations (solid-lines) against the

experimental results of Hocine et al. (2002) (dashed-lines).

Fig. 5-7 (a) shows a schematic of the specimen geometry in the experiments of Hocine

et al. (2002). The overall size of a notched sheet sample is 80 mm x 200 mm in the plane, and
the sheet is 3 mm thick. We consider specimens with notch lengths a = 12, 16, 20, 24, and 28

mm; the initial root-radius of the notch is fixed at R = 1 mm. The displacement of the

bottom edge of the specimen is fixed, while the top-edge is prescribed a displacement at
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a nominal stretch rate of 1 x 10-3/s. The simulations are performed in plane-stress. The
material parameters used in this set of simulations for the SBR elastomer of Hocine et al.
(2002) are shown in Table 5.2. A large value of n = 1000 is chosen to represent the essentially
neo-Hookean response of the SBR elastomer. Also, the rather large value of f = 1mm is
chosen for the pragmatic reasons discussed in the Remark on page 83.4

Table 5.2: Material properties for the double-edge-notched specimens of Hocine et al. (2002).

Go = NkBO n Bb= NnEb K Ef = NnE[ f

0.268 MPa 1000 15 MPa 2.68 MPa 0.235 MJ/m 3  1 mm 10 kPa-s

Fig. 5-7(b) shows the calculated force-displacement curves as solid lines for notches with
initial lengths of

a = 12, 16, 20, 24, and 28 mm.

As expected, as the initial length of a notch increases, the overall force level becomes lower,
and the displacement at which final fracture occurs, becomes smaller. This figure also shows
a comparison of load-deflection curves from the simulations against the experimental results
of Hocine et al. (2002) (dashed-lines); there is an acceptable match between the simulations
and the experimentall-measured results.

Fig. 5-8 shows the deformed geometry at points (a) through (h) on the force-displacement
curve in Fig. 5-7(b) for a = 28mm, together with contours of the damage variable d, which
are barely visible. To aid visualization of the damage, elements with an average value of
d > 0.95 are not plotted. Fig. 5-8(a) is the initial configuration. As the sample is streched
to (b) the notch is blunted, but no damage has initiated. Damage initiates when the sample
is stretched further to a displacement level of ~ 60mm (a point just before (c)), but the
force is still increasing, and it is after another ~ 3 mm of extension that the force reaches
a peak at point (c) in force-displacement curve, and from the contour of damage shown in
Fig. 5-8(c), a small damage zone ahead of the notch becomes observable. Further stretching
begins the rupture process, and Figs. 5-8(d) through (h) show this progressive rupturing,
with (h) showing the final failed configuration.

5.3 Fracture of elastomers by crosslink failure

Next let us switch our focus to fracture of elastomers by crosslink failure. The plan of this
section is as follows. In Subsection 5.3.1 we summarize the essence of our continuum-level
model. Since the structure of the continuum-level model is essentially unchanged from our

4For large values of n, it is useful for numerical reasons to rewrite the implicit equation (5.36) for the
bond-stretch as,

(I - d) 2 E (A b - 1) - Go L-' o 0. (5.2)
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(a) (b) (c) (d)

(e) M(f) (g) (h)

damage

1.0

0.4

0.2

0.0

Figure 5-8: Images of the deformed geometry with contour plots of the damage variable d for
a double-edge-notched specimen with a = 28mm. To aid visualization, elements with an average
value of d > 0.95 have been removed from the plots.
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previous section and our paper (Talamini et al., 2018), we simply reproduce the constitutive
theory presented in Chapter 4 of Talamini et al. (2018) with the effective bond stretch
Ab replaced by an effective crosslink stretch A,. In Section 5.3.2 we give the specialized
constitutive equations which allow for failure due to damage of crosslinks in the network.

In Section 5.3.3 we study the capability of our theory and its numerical implementa-
tion in a finite elememnt program to model plane stress fracture of (i) single-edge-notched
specimens; (ii) an asymmetric double-edge-notched specimen; and (iii) fracture of a sheet
specimen with multiple circular and elliptical holes.

5.3.1 Summary of the constitutive theory, governing partial dif-
ferential equations, and boundary conditions

At the continuum-level our theory
lamini et al. (2018), but here we
an effective bond stretch Ab, as an
following basic fields:

x = X(X, t),
F = VX, J = detF > 0,
F = j-1/3 F,
C = FF,
01 = F'F J-2/3C,

TR, TRFT = FTT
TRR = F--TR,

ER,

A, > 0
d(X, t) c [0, 1],

is essentially that developed in our previous paper Ta-

allow for an effective crosslink stretch Ac, rather than

internal variable of the theory. Our theory relates the

motion;

deformation gradient;

distortional part of F;

right Cauchy-Green tensor;

distortional part of C;

Piola stress;

second Piola stress;

free energy density per unit reference volume;

internal energy density per unit reference volume;

effective crosslink stretch (an internal variable);

damage variable or phase-field;

scalar microstress conjugate to d;

vector microstress conjugate to Vd.

Note that we use standard notation of modern continuum mechanics Gurtin et al. (2010).
Specifically: V and Div denote the gradient and divergence with respect to the material point
X in the reference configuration, and A = DivV denotes the referential Laplace operator;
grad, div, and div grad denote these operators with respect to the point x = X(X, t) in
the deformed body; a superposed dot denotes the material time-derivative. Throughout, we
write F- 1 = (Fe)-', Fe-T = (Fe)-T, etc. We write trA, symA, skwA, A0 , and sym0A
respectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of
a tensor A. Also, the inner product of tensors A and B is denoted by A : B, and the
magnitude of A by |A = /A: A.
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Constitutive equations

1. Free energy

This is given by
bR = R(A),7 (5.3)

with A the list
A = {C, Ac, d, Vd}. (5.4)

2. Second Piola stress. Piola stress

The second Piola stress is given by

TRR= 2 ,tR$A) (5.5)
ac

and the Piola stress by
TR = FTRR. (5.6)

3. Implicit equation for the effective crosslink stretch

The thermodynamic requirement

RA) -0 (5.7)

reflects the fact that the actual value of the effective crosslink stretch A, adopted by
the material is the one that minimizes the free energy. This equation serves as an
implicit equation to determine A, in terms of the other constitutive variables.5

4. Microstresses r and

The scalar microstress r conjugate to the rate of change of the damage variable d is
given by,

&'?R(A)
u = +a + (d, (5.8)

Wdis
Wen

with a = &(A) and = C(A) positive-valued scalar functions. Here L. and udis

denote the energetic and dissipative parts of zu.

The vector microstresses conjugate to Vd is given by,

OlR (A) (5.9)
OVd

5 To limit the dynamics of failure by crosslink stretch, eq. (5.7) may be modified by introducing a

rate-dependent term of the form 09OR(A)/DAc = -r,(Ac)Ac, as we did in Mao and Anand (2018).
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and is taken to be purely energetic with no dissipative contribution.

Governing partial differential equations

The governing partial differential equations consist of:

1. Equation of motion:

DivT, + boR = PRX, (5.10)

where boR is a non-inertial body force, pR is the referential mass density, x the acceler-
ation, and the Piola stress T, is given by (5.6). In the numerical simulations presented
later in the paper we neglect all inertial effects.

2. Microforce balance:

The microforces z and obey the balance

Div - z = 0. (5.11)

This microforce balance, together with the thermodynamically consistent constitutive
equations (5.8) and (5.9) for z and gives the following evolution equation for the
damage variable d,6

+ Div ( O R(A)

8Vd )-
(5.12)

Since ( is positive-valued, the right hand side of (5.12) must be positive for d to be
positive and the damage to increase monotonically.

Boundary and initial conditions

We also need boundary and initial conditions to complete the theory.

1. Boundary conditions for the pde governing the evolution of the motion x:

Let S. and StR be complementary subsurfaces of the boundary
Then for a time interval t E [0, T] we consider a pair of boundary
the motion is specified on Sx and the surface traction on StR:

B of the body B.
conditions in which

x =X onS, x [0,T],

TRnR tR on StR x [0, T].
(5.13)

In the boundary conditions above X and tR are prescribed functions of X and t.
6We use the phrases "damage variable" and "phase-field" interchangeably to describe d.

OOR(A)((A)d = ad
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2. Boundary conditions for the pde governing the evolution of the damage
variable d:

The presence of microscopic stresses results in an expenditure of power

LB ( -nR)d daR

by the material in contact with the body, and this necessitates
boundary conditions on 9B involving the microscopic tractions (-
change of the damage variable d.

9 We restrict attention to boundary conditions that result in a
microscopic power in the sense that ( . nR)d = 0.

a consideration of
nR and the rate of

null expenditure of

A simple set of boundary conditions which satisfies this requirement is,

d=0 onSdx [0, T],

-nR= 0 on 9B\Sd x [0, T],
(5.14)

with the microforce given by (5.9).

The initial data is taken as

X(X, 0) = X, y(X, 0) = vo(X), and d(X, 0) = 0 in B. (5.15)

The coupled set of equations (5.10) and (5.12) together with (5.13), (5.14), and (5.15)
yield an initial/boundary-value problem for the motion X(X, t), and the damage variable
d(X, t).

5.3.2 Specialization of the constitutive equations

To build a predictive model we wish to characterize the process of rupture in elastomeric
materials with weak crosslinks in terms of the microscopic mechanics of molecular crosslink
deformation and failure. However, traditional hyperelasticity models for elastomers neglect
the energetics of crosslinks deformation. Accordingly we formulate a hyperelastic constitu-
tive model that accounts for the energetics of crosslink stretch, as well as the well-known
entropic effects of polymer elasticity. In what follows we begin by considering the process
of deformation of a single chain, and then extend the single chain considerations to bulk
polymer networks undergoing damage and eventual failure.

Deformation of a single chain

Consider a single chain with n unstretchable segments, each of initial length Lb. Let
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TO = ViiLb denote the unstretched chain length determined from random-walk statis-
tics, and

" let r denote the end-to-end distance of chain in a deformed configuration.

The classical freely jointed chain theory gives the free energy V) of a single chain as Kuhn
and Grin (1942); Doi (1996),

with C-3 nLb (5.16)

where kB is Boltzmann's constant, V is the absolute temperature, and L- 1 is the inverse of
the Langevin function L(x) = coth x - x-1 .

In order to arrive to an expression for the free energy which accounts for cross-link
deformation, we first consider the behavior of a single chain with a crosslink at each end,
each of length L, (see Figure 5-9).

(a) rest state

Lb

L c

(b) stretched state

P 1.4 r

Lb

r = Aro

Figure 5-9: Schematic of a single chain with weak crosslinks at each end: (a) rest state and (b)
stretched state. The Kuhn segments are assumed to be rigid while the crosslinks are assumed to
be deformable.

Generally, the overall deformation of the single polymer chain under load is due to three

sources:

(i) the alignment of the Kuhn segments;

(ii) stretching of the Kuhn segments; and

(iii) stretching of the molecular bonds associated with crosslinks at each end.

We make the constitutive assumption that

e the Kuhn segments in the chain are much stiffer than the molecular bonds associated

with the two crosslinks at each end, so that the stretchability and the internal energy

stored within the Kuhn segments is negligible.

4 = A~L.

nLb

F

+ I
nh(smh 1)
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To further simplify the physical picture we assume that the configurational entropy stored
within the molecular bonds associated with crosslinks are negligible, and that both the
crosslink bonds are aligned with and follow the direction of the stretching force (cf. Fig. 5-
9(b)).

The stretchable bonds associated with crosslinks may extend such that their deformed
length is

-e = Ac L, (5.17)

where A, is a dimensionless stretch which we refer to as the crosslink stretch. Then, with
9c(Ac) denoting the internal energy associated with the stretching of the crosslinks, we take
the free energy to be given by,

/(fIc)=2sc(A) +kn 3+In .i
S( n(5.18)

with 1 = L

and with
f = r - 2AcLc (5.19)

the net end-to-end distance of the part of the chain with rigid Kuhn segments. It is convenient
to rewrite the free energy (5.18) in terms of the overall chain stretch

A = ,(5.20)
ro

where ro, the unstretched chain length, which is now given by

ro = /Lb + 2Lc. (5.21)

Typically the statistical segment length Lb is approximately 5 to 10 times the length of
a backbone bond within the polymer chain (~ 0.15 nm), and the effective length Lc of a
crosslink is of the same order as the length of a backbone bond. This gives L, - 0.1 to 0.2Lb,
so that neglecting the term 2Lc relative to the first term fiLb in (A.21), we can simplify
the rest length of chain with the two crosslinks as

ro ~L. 
(522)
(5.22)
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Using (5.17), (5.19), (A.20), (A.21), and (5.22) in(5.18) yields the following expression for
the free energy,

=(A, Ac) = 2?c(Ac) + kB?9n A - 2LcAc + In .2
V nLb smnh 1

A 2LcAc)with L- = ,-1 .~

As it stands, the contribution from the change in entropy to the free energy in (5.23) does
not reduce to the classical expression (5.16) in the limit Ac -+ 1. To achieve this we require
that 9c(1) = 0 and modify (5.23) to read as,

= 2(A,) k~n [ A - 2Lc(A - 1) 3+In
V~__ nLb smnh

O (A,) -(5.24)

with L-1 A 2Lc(Ac - 1)

Here, the first term denotes the internal energy associated with the stretching of the crosslinks,
and the second term is for the configurational entropy associated with Kuhn segments.

At any fixed stretch A, increasing A, increases the internal energy contribution to the
free energy while decreasing the entropic part. This competition induces an optimal value of
AC which will minimize the free energy and will be the actual state adopted by the system.
Thus, setting aV/(Ac = 0 provides an implicit equation for Ac, which reads

dc(Ac) - Lc _L1 A i( 2Lc(Ac -1) 0. (5.25)
d AC Lb (A/ nLb

Deformation, damage, and failure of a crosslinked network of polymer chains

We employ the widely-used eight-chain network representation of Arruda and Boyce (1993)
to extend the single chain model to a continuum model for a polymer network.7 The entropy
and energy of the network can be obtained by summing the contributions from individual
chains as given by the single chain model. To this end, we follow Anand (1996) and define
the effective chain stretch

\ tr C/3, (5.26)

7 Note that in addition to the usual assumption of weak chain interactions, we must additionally assume
that the damage in each chain is independent in order apply the Arruda-Boyce network model.
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where tr (-) represents the trace of a second order tensor, C = FTF is the distortional right
Cauchy-Green tensor, and F = (det F)- 1 /3 F is the distortional part of the deformation
gradient. Then, with

o N representing the number of chains per unit volume of the reference configuration,

the entropy density of the network is given by

A 2Lc(Ac - 1)
TIR = R( Ac) = -NkBn +I

Vn- nLb smnh #
1( ( ) 1(5.27)

_1 X 2Lc(Ac - 1)

where

" Lb is the statistical segment length of a rigid-link of the chain, and

* L, is an effective length of a crosslink.

As mentioned previously, typically the statistical segment length Lb is about 5 to 10 times
the length of a backbone bond within the polymer chain (~ 0.15 nm), and the effective length
L, of a crosslink is of the same order as the length of a backbone bond.

Also, the internal energy density ER of the network is taken to depend on A, a damage
variable d and its gradient Vd, and we also allow for internal energy contribution due to
volume ratio J,

ER =R(C, J, d, Vd) = g(d)e(A, J)+ gR,flonloc(Vd). (5.28)

We consider the following specializations for the different terms in the expression (5.28) for
the internal energy per unit refrence volume:

(i) The term goR(A, J) represents an undamaged internal energy per unit reference volume
for which we choose a simple constitutive relation of the form,

1 1
c(A, J) = -Nc Ec(A - 1)2 + -K(J - 1)2, (5.29)2 2

eRvo1(J)

where,

" E, represents a stiffness of the crosslinks;

" Nc is the number of crosslinks per unit reference volume, with Nc & N; and

" K a bulk modulus for the network to account for intermolecular interactions and
a slight compressibility of the material.8

8 The particular form of the volumetric internal energy is not crucial for elastomers in which the volume
changes due to intermolecular interactions are typically quite small relative to distortional deformations. In
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(ii) The function g(d) is a monotonically decreasing degradation function with values,

g (0) = 1, g(l) = 0, and g'(1) = 0.

A widely-used degradation function is

g(d) = (1 - d)2; (5.30)

we adopt it here.

(iii) The term sa,nonloc(Vd) in the internal energy density is a nonlocal contribution

sR,nonloc(Vd) = 1 f2 Vd 2 ,
2R

(5.31)

where f represents an intrinsic length scale for the damage process, and

6l Nceg (5.32)

represents the energy of crosslink scission per unit volume when all crosslinks are
broken.9

With the constitutive relations (5.27)-(5.32) for ER and 1R in hand, the free energy V)R
ER 9R is given by

O = (1 - d) 2 (-Ec(Ac - 1)2
(2

+ Gn KiA 2Lc(A
+ G Vn nL'

1 f~
+ -ef f2Vd 1, wit

2 R

1
+ -K(J -2

1)2)

3 + ln -
o sinhbI

A 2L
h # L_1

our finite element simulations we encountered some convergence difficulties with the simple quadratic form
sRvo(J) = 1/2K(J - 1)2 of the volumetric internal energy at late stages of the damage. Accordingly, in
our computations we have used the alternate form sRvo(J) = K/8(J - J- 1 )2 which reduces to a simple
quadratic energy as J --+ 1,

eRvo(J) - K - J- 1 ) 2 
= K _1)2 1+ -)

8 8 J
1
K(J - 1)2.

2

If for some numerical reason J becomes large during the iteration process, then the alternate form leads to
a softer response (see Schrdder and Neff, 2003).

9 1n formulating a theory that accounts for the stretching and failure of the crosslinks we have assumed
that all crosslinks in a continuum material point are uniformly stretched and that they fail simultaneously.
This is clearly a major approximation since the actual failure process is expected to be stochastic in nature,
with the weakest link failing first.

(5.33)

(A - 1)
nLb
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where we have introduced the notations

Go de NkBd and e de Ne E, (5.34)

with Go representing the ground-state shear modulus for the polymer network, and E a
crosslink stiffness parameter for the network.

Using this free energy (9.7), equations (5.5) and (5.6) give the Piola stress TR as

TR = 0 (J- 2/ 3F - A2F- T ) + (1 - d) 2K(J - 1)JF- T, where

-def _o (V-- C- 2Lc(Ac - 1) (.5

3A \,n nLb

is a generalized shear modulus. Also, (5.7) gives that the effective crosslink stretch A, is
determined by solving the implicit equation

Lb (A 2L ( - 1)
(1 - d) 2 Ec (AC - 1) - 2Go -"fL-1 A ) = 0. (5.36)

Note that generalized shear modulus C is connected to the damage field d implicitly through
equation (5.36) for Ac.

To complete the specification of the constitutive relations, we specify the dissipative
microforce Zdis, that expends power through d.10 The dissipative microforce is partitioned
into a rate-independent part and a rate-dependent part through

Ldiss = a + (d . (5.37)
rate-independent rate-dependent

The rate-independent part of the dissipative microforce a is the sum of the contributions
from each crosslink and given by (5.32), thus

a = . (5.38)

The rate-dependent contribution to the dissipative microforce (d, is simply described by a
constant kinetic modulus ( > 0, with the rate-independent limit of damage evolution given
by ( - 0.

Using the specializations above, the microforce balance (5.12), which gives the evolution
of d, becomes

(d = 2(1 - d)eo (Ac, J) + Eff2 d - E. (5.39)

10 Cf. eq. (5.9).



97

The microforce balance (5.39) can be rewritten to enforce the constraint d C [0, 1] in a simple
way. Add and subtract the term Efd to get

(d 2(1 - d) (5o(Ac, J) - Ef/2) - Efd + eEff 2 Ad. (5.40)

The constraint d c [0, 1] is automatically satisfied if the equation above is modified to read
as,

= 2(1 - d) (si(Ac, J) - Ef/2) - Ef (d - 22Ad) . (5.41)

where (e) are Macauley brackets, i.e.,

Wx) 0, x < 0,
X, x > 0.

At this stage the irreversible nature of crosslink scission is not yet reflected in the model.
To this end, we replace the term (si(Ac, J) - Ef/2) in the microforce balance with the
monotonically increasing history field function (cf., Miehe et al., 2010):

N(t) delmax ((A(s), J(S)) - Ef/2) , (5.42)
sE[O,t] J

where at each s c [0, t],

so(Ac(s), J(s)) = c (Ac(s) - 1)2 + -K(J(s) - 1)2, (5.43)
2 2

and
Ef = Nc E, (5.44)

is a fracture energy. With these modifications the evolution equation (5.12) for the damage
variable d becomes,

= 2(1 - d)JI - Ef(d - f2 Ad), (5.45)

which is of a form similar to that in the paper by Miehe and Schinzel (2014) on phase field
modeling of fracture of rubbery polymers.

Material parameters in the theory: The theory involves the following material param-
eters:

Lb, n, N, Lc, Nc, Ec, K, Ef, f , and (. (5.46)

Here, Lb is the statistical length of a rigid segment in a chain; n is the number of rigid
segments in a chain; N is the number of chains per unit volume; L, is the length of a
crosslink; Nc is the number of crosslinks per unit volume; Ec represents the stiffness of the
crosslinks; K represents the bulk modulus of the material; E{, a crosslink dissociation energy
per unit volume; f is a characteristic length scale of the gradient theory under consideration;
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and ( is a kinetic modulus for the evolution of the damage. All parameters are required to
be positive.

In the numerical simulations to described in the next section, instead of the parameter
list (5.46), we use the parameter list,

0.2L, G0 = NkB'd, n, Ec = NE, K, Ef = NcEf, f, and C, (5.47)

where Go is the ground-state shear modulus for the polymer network, Ec is a crosslink-
stiffness parameter for the network, and ER represents the energy per unit volume for the
dissociation of the crosslinks in a network.

5.3.3 Application of the theory to study plane-stress fracture of
elastomers

We have numerically implemented our theory in the open-source finite element code MOOSE
Gaston et al. (2009) by writing our own application to solve 3D, plane strain, plane-stress,
axisymmetric problems. MOOSE uses a sophisticated nonlinear solver technology, and it
may be massively parallelized. Using this new numerical capability, in this section we report
on some representative simulations of deformation and fracture of an elastomeric material.
Specifically, we study the capability of the model to describe plane stress fracture of

(i) single-edge-notched specimens;

(ii) an asymmetric double-edge-notched specimen; and

(iii) fracture of a sheet specimen with multiple circular and elliptical holes.

All simulations were performed on a parallelized linux cluster. Visualization of the results
was performed by using the open-source code ParaView Ayachit (2015).

Single-edge-notch Mode-I loading under plane-stress conditions with different
notch lengths

We begin with a study of fracture in single-edge-notch specimens with different crack lengths,
under plane-stress Mode-I loading conditions. Fig. 6-1(a) shows a schematic of the specimen
geometry. The overall size of the notched sheet sample is 18 mm x 20 mm in the plane, and
the sheet is 1 mm thick. We consider specimens with notch lengths c = 3, 6, and 9 mm;
the initial root-radius of the notch is fixed at 0.1 mm. The material parameters used in our
simulations are shown in Table 6.1. In our simulation, we utilize the symmetry, and the
middle edge of the specimen is fixed, while the top edge is prescribed a displacement at a
nominal stretch rate of 1 x 10 3 /s.
Some remarks concerning the choice of material parameters:
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Table 5.3: Representative values of the material parameters used in the simulations.

Go = NkBd n Ec = NcEc K Ef = NcEf f

0.2 MPa 4 0.2 MPa 20 MPa 1 MPa 100pm 10 kPa-s

1. The kinetic modulus (, which has units of Pa-s, may be thought of as a viscous reg-
ularization parameter for an essentially rate-independent damage process, and (/Go
therefore represents a time constant in the theory. For a given macroscopic stretch-rate
A, our numerical experiments have shown that a value of ( which is commensurate with
((A/Go) < 10- is small enough to give an almost rate-independent damage evolution.
For the values of ( and Go listed in Table 6.1 and a nominal stretch rate I 1 x 10 3 /s,
we have ((A/Go) = 5 x 10- which well-approximates a rate-independent damage evo-
lution response.

2. We have used a value of the bulk modulus K which is 100 times larger than the
ground state shear modulus Go; this corresponds to a ground-state Poisson's ratio
of v = 0.495, which approximates an elastically incompressible material. We tried
using larger values of K relative to that of Go, but that slowed down our numerical
procedures considerably. So in all the calculations reported in this paper we have used
K/GO = 100.

3. We have intentionally chosen a small value n = 4 for the number of links in the chain
to illustrate the features of our theory, so that failure of the chains in our simulations
occurs at reasonable levels of macroscopic stretch.

Fig. 5-10(b) shows the calculated force-displacement curves for cracks with initial lengths
of c = 3, 6, 9 mm. As expected, as the initial length of the crack increases the overall force
level becomes lower, and the stretch at which final fracture occurs becomes smaller. Contour
plots for the damage variable d at points (a) through (h) on the load displacement curve for
a specimen with c = 9 mm are shown in Fig. 5-11.

Fig. 5-11 shows the deformed geometry at points (a) through (h) on the force-displacement
curve in Fig. 5-10(b), together with contours of the damage variable d. To aid visualization
of the damage, elements with an average value of d > 0.99 are not plotted. Since the length
scale f = 100 pm is very small when compared with the overall dimension of the specimen
(~ 20 mm), the damage zone is barely visibly in this sequence of plots. Fig. 5-11(a) is the
initial configuration. As the sample is stretched to (b) the notch is blunted, but no damage
has initiated. Damage initiates when the sample is stretched further to a displacement level
of - 5.5 mm (a point just before (c)), but the force is still increasing, and it is after another

~ 0.5 mm of extension that the force reaches a peak at point (c) in force-displacement curve,
and from the contour of damage shown in Fig. 5-11(c), a small damage zone ahead of the
crack becomes observable. Further stretching begins the rupture process, and Figs. 5-11(d)
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Figure 5-10: (a) Schematic of the single-edge-notch specimen geometry; all dimensions are in

mm. The thickness of the sample is 1 mm; the notch length is denoted by c; and p = 0.1 mm is
the notch-root radius. (b) Calculated force-displacement curves for c = 3, 6, 9 mm. Contour plots
for the damage variable d at points (a) through (h) on the load displacement curve for a specimen
with c = 9 mm are shown in Fig. 5-11.
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Figure 5-11: Images of the deformed geometry with contour plots of the damage variable d. To
aid visualization of the damage, elements with an average value of d > 0.99 are removed from the

plots. Since the length scale e = 100 pm is very small when compared with the overall dimension

of the specimen (- 20 mm), the damage zone is barely visibly in this this sequence of contour plots

for d.
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through (h) show this progressive rupturing, with (h) showing the final failed configuration.
Note from Fig. 5-10(b) that the force at stage (h) stage is essentially zero.

Figure 5-12 shows a contour plot of the crosslink stretch, Ac, at a particular stage of
the failure process for a specimen with an initial notch depth of c = 9 mm. The crack has
propagated almost halfway through the remaining ligament of the specimen. The contours
are plotted on the reference configuration in order to highlight the extent of crack propagation
relative to the initial specimen geometry. Also, the highly damaged elements (d > 0.99) are
again hidden from view. When failure occurs for a large sample, the deformation localizes
to a small region in the vicinity of the crack-tip. In this region, the effective stretch A can
be very large, and A, will increase to the level of A va, which is also very large. Therefore,
in order to visualize the contours of Ac, we have set the maximum value of the contour in A,
to 10. As is clear from Figures 5-12, the region of high crosslink stretch is limited to a small
region in the vicinity of the crack tip, on a scale comparable to the length scale f, while the
majority of the specimen displays negligible crosslink stretching.

A
>10.0

I9.0
8.0

6.0
5.0
4.0
3.0
2.0
1.0

Figure 5-12: Contours of crosslink stretch A, during the fracture process in a specimen with
c = 9 mm. The crosslink stretch is appreciable only in a small zone near the crack tip. The
contours are plotted on the reference configuration. Elements with d > 0.99 are removed from the
visualization.

Fracture in an asymmetric-double-edge-notched sheet of an elastomeric sample
under Mode-I plane-stress loading

In this section we study fracture of an asymmetric-double-notched sheet specimen of an
elastomeric sample under Mode-I plane-stress loading. This example shows the powerful
capability of our gradient-damage theory to model the merging of two growing cracks.

Fig. 5-13(a) shows a schematic of the specimen geometry. The overall size of the double-
edge-notched sheet sample is 18 mm x 20 mm in the plane, and the sheet is 1 mm thick. The
two offset notches each have a of length c = 3 mm; the initial root-radius of the notch is
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0.1 mm. We use the same values of the material parameters as in Section 5.3.3. The bottom
edge of the specimen is fixed, while the top-edge is prescribed a displacement at a nominal
stretch rate of 1 x 10-3/s. Fig. 5-13(b) shows the calculated force-displacement curve.

(a) (b) 3 Mc)

2.5
(d)

.. 2 .....
(b)

- 20 (e)

20 1.5
c

10.5
0.5

(a(_______ g)

--- 04 (a) (h)41
0 2 4 6 8

Displacement [mm]

Figure 5-13: (a) Schematic of the asymmetric-double-edge-notch specimen geometry; all dimen-
sions are in mm. The thickness of the sample is 1 mm; the notches are of length c = 3 mm; and
p = 0.1 mm is the notch-root radius. (b) Calculated force-displacement curve. The contour plots
for the damage variable d at points (a) through (j) on the load displacement curve are shown in
Fig. 5-14.

The contour plots for the damage variable, d at points (a) through (h) on the load
displacement curve in Fig. 6-6(b) are shown in in Fig. 6-7. To aid visualization of the
damage, elements with an average value of d > 0.99 are removed from the plots. Since the
length scale f = 100 pm is very small compared with the overall dimension of the specimen
(20 mm), the damage zone is barely visibly in this this sequence of plots. Fig. 6-7(a) is
the initial configuration. As the sample is stretched to (b) both the notches get blunted,
but no damage has initiated. Damage initiates when the sample is stretched further to a
displacement of - 6.4mm (just before state (c)), but the force is still increasing; it is only

after another - 1 mm of extension that the force reaches a peak at point (c) in the force-

displacement curve Fig. 6-6(b), and from the contour of damage d shown in Fig. 6-7 (c), a
small damaged zone ahead of the crack becomes observable. Figs. 6-7(d) through (h) shows
the subsequent rupturing process on two cracks merging, with Fig. 6-7(g) shows a pinching
off process, which leads to final fracture into two separate pieces, as shown in Fig. 6-7(h).

Fracture in a sample with several circular and elliptical holes under plane-stress
tension

In this section we study fracture of a sample with several circular and elliptical holes under
plane-stress tension. Sharp cracks are necessary for classical fracture mechanics analysis.
However, sharp cracks are not necessary in our gradient-damage theory of fracture. This
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Figure 5-14: The deformed geometry with contour plots of the damage variable d. To aid

visualization of the damage, elements with an average value of d > 0.99 are removed from the

plots. Since the length scale f = 100 pm is very small compared with the overall dimension of the

specimen (~ 20 mm), the damage zone is barely visibly in this sequence of plots.

example shows the powerful capability of our gradient-damage theory to simulate the com-

plicated fracture process of nucleation, propagation, branching and merging of cracks in

arbitrary geometries - propagating cracks are tracked automatically by the evolution of the

smooth damage-field d on a fixed mesh.

Fig. 5-15 shows a schematic of the specimen geometry. The overall size of the sample is

20 mm x 10 mm in the plane, and the sheet is 1 mm thick. We use the same values of the

material parameters as in Section 6.1. The bottom edge of the specimen is fixed, while the

top-edge is prescribed a displacement at a nominal stretch rate of 1 x 10-3/s.

Fig. 5-16(a) shows the calculated force-displacement curve. There are four different stages

in the force-displacement curve:

(i) The blue line indicates the first stage. In this stage, as the specimen is stretched the

force increases, and at the end of this stage the force reaches a peak and begins to

drop.

(ii) The dashed-black line indicates the second stage, and represents the initial phase of

the force drop.

(iii) The solid-yellow line indicates the third stage, and represents the next phase of the

force drop.

.1
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I& 20

Figure 5-15: Schematic of the geometry of specimen with several circular and elliptical holes; all

dimensions are in mm. The thickness of the sample is 1 mm.

(iv) And the dotted-pink line indicates the fourth stage, and represents the final phase of

the force-displacement curve.

Fig. 5-16(b) through (d) show zoom-ins of the force decreasing portions in stages two, three,
and four. Within each of these stages there are instances in which the force-displacement

curve resembles the shape of the number "7". For example, as shown in Fig. 5-16(b), there

are three "7"-shaped instances in the second stage. Each "7"-shaped instance corresponds

to the failure of a ligament in the sample. Labels (bl)-(b4) through (hl)-(h4) marked on the

force displacement curves in Fig. 5-16(b) through (d) are used to indicate important frames

for the failure of a specific ligament.

Contour plots for the damage variable d at points (a) through (h) on the load displacement

curve for a specimen are shown in Fig. 5-17 and Fig. 5-18. To aid visualization of the damage,
elements with an average value of d > 0.99 are not plotted. A red arrow is used to indicate

the ligament in which damage and rupture is occurring.

Fig. 5-17(al) shows the initial configuration. As the sample is stretched to (a2) and (a3)

the holes are deformed, but no damage has initiated. Damage initiates when the sample

is stretched further to a displacement level of ~ 9mm, a point just before (a4), but the

force is still increasing. It is after another ~ 0.85 mm of extension that the force reaches

a peak at point (a4) in force-displacement curve. From the contours of the damage shown

in Fig. 5-17(a4), a small damage zone indicated by a red arrow becomes observable. The

ligaments between the holes in the soft matrix become highly stretched by point (a4). Further

stretching begins the progressive rupture process of these ligaments.

The second stage in the force-displacement curve corresponds to failure of three ligaments,
as indicated in Fig. 5-16(b) and Fig. 5-17 (b) through (d). In these curves the marks (bi)-
(b4), (cl)-(c4), and (dl)-(d4) are used to indicate important frames for the failure of a
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Figure 5-16: (a) Calculated force-displacement curve. There are four different stages within the

curve: (i) The blue line indicates the first stage. (ii) The dashed-black line indicates the second

stage. (iii) The solid-yellow line indicates the third stage. And (iv) the dotted-pink line indicates

the fourth stage. (b) throuh (d) show zoom-in figures for the corresponding force drop stages. The

contour plots for the damage variable d at points (a) through (h) on the load displacement curve

are shown in Fig. 5-17 and Fig. 5-18.
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(a)

Figure 5-17: Images of

first and second stages.

the deformed geometry with contour plots of the damage variable d for

To aid visualization of the damage, elements with an average value of

d > 0.99 are removed from the plots. The red arrows indicate the ligaments in which damage and

rupture occurs.

specific ligament. For example, in Fig. 5-17(b) the damage within a ligament indicated by

the red arrow is initiated in (bl), and (b2) represents a state of progressive damage of the

ligament, (b3) shows a pinching-off process, and (b4) shows the total failure of the specific

ligament. As the three ligaments in Fig. 5-17 (b) through (d) fail progressively, the cavities

within the sample start to merge, and form a big cavity, cf. Fig. 5-17(d4).

After the rupture of the first three ligaments described in the paragraph above, the total

displacement of the top surface is 9.85 mm; cf. Fig. 5-16(b). At this point the energy stored in

the remaining ligaments is not sufficient to drive further damage. To initiate further damage

an additional macroscopic displacement of 1 mm needs to be imposed on the sample.

As this extra displacement is imposed, the remaining ligaments are further stretched and

the force increases again until the beginning of the third stage; cf. Fig. 5-16(a). Upon

application of this additional displacement the stored energy within two of the remaining

- . J
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(g)

Figure 5-18: Images of the deformed geometry with contour plots of the damage variable d for

third and forth stages. To aid visualization of the damage, elements with an average value of

d > 0.99 are removed from the plots. The red arrows indicate the ligaments in which damage and

rupture occurs.

ligaments attains and exceeds the critical value and damage and rupture restarts, as shown

in Fig. 5-16(c) and Figs. 5-18(e) and (f).

After the rupture of the first five ligaments, the total displacement of the top surface is

10.514 mm; cf. Fig. 5-16(c). Again, at this point the energy stored in the remaining two

ligaments is not sufficient to drive further damage. To initiate further damage an additional

macroscopic displacement of - 3.7mm needs to be imposed on the sample. As this extra

displacement is imposed, the remaining two ligaments become highly stretched and the

force again increases. The remaining ligaments accumulate energy during this additional

stretching and eventually they start to damage and fail rapidly, as shown in Fig. 5-16(d) and

Fig. 5-18(g) and (h). Fig. 5-18 (h4) shows the final failed configuration.

damage
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5.4 Remarks and Conclusion

5.4.1 Some Remarks

Remark. It is of interest to make a comparison between fracture resulting from the
chain scission mode and that resulting from crosslink failure mode, and to identify the
critical material parameters for these two competing mechanisms. To do this we suppress
the damage field d and any discussion of the final damage process. From the discussion on
fracture due to the chain scission mechanism (See section 5.2 or related papers Mao et al.
(2017b); Talamini et al. (2018)), and the discussion on fracture due to crosslink failure (See
section 5.3 or related paper Mao and Anand (submitted)), the free energy for a single chain
accounting for both bond stretch and crosslink stretch may be expressed as,11

0=ns4(Ab) -+ 29c(Ac)

+ kB9 A 2Lc Ac - I +I (5.48)

[(jAb) nL+ AnQ ) sinh(4

with

k=i)-1 A H (5.49)
V/nAb nLb Ab ')

and
1 1

Eb(Ab) = -E(Ab - 1)2, gc(Ac) = -Ec(Ac - 1)2. (5.50)
2 2

In equation (5.48), the first term represents the internal energy due to Kuhn segments stretch,
the second term for the internal energy due to crosslink stretch, and the third term is due

to the configurational entropy change.

The equations which determine the bond stretch Ab and the crosslink stretch Ac, are again

obtained by minimizing the free energy with respect to these two variables,

= 0 and = 0, (5.51)

which using the free energy expression (5.48) give the following two equations to determine

Ab and Ac,

-(A _2Le A -- i
Eb(Ab/--A 1)=k-~3b~~ nLb Ab) (5-and

-) k3 Lb) )

"Detailed derivations are displayed in Appendix A.
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Next let us consider fracture of a single chain for which the Kuhn segments and the
crosslinks are allowed to stretch. Physically, as the chain is stretched, the internal energy
due to bond-stretch b(Ab) and that due to crosslink stretch ec(Ac) will increase. The chain
will fail by the chain scission mode or the crosslink failure mode depending on whether
sb(Ab) or ec(Ac) first reach their respective dissociation energies E4 and Ef. To represent this
competition we introduce a positive-valued dimensionless factor,

d e ._____ fc (5.53)

Thus, if y > 1 then the energy stored in crosslink bonds will reach its critical value first,
and the chain will fail by the crosslink failure mode. On the other hand, if -Y < 1 then the
energy stored in Kuhn segments will reach its critical value first, and the chain will fail by
the chain scission mode.

By using (5.50), we may rewrite -y defined in (5.53) as,

c - 1)2 (f E2(Ac - 1)2 E (5E( = - c =Eb - - (5.54)
Eb(Ab - 1)2 CJ E (A 11)2 Ec EC

Next, using (5.52) we write -y alternativley as,

A 2Lc Ac - 1 -2 (Le 2 EbE b (555
/ b Ab b Lb Ec EC

Physically when failure occurs, by either failure mode, the quantity - in

(5.55) is very close to unity, and hence

(L ~ 2 -- b .E (5.56)Lb EC Jl

Thus, by using straightforward scaling relations in going from a single chain to a polymer
network (as we did in Section 5.2 and Section 5.3 )

NL2( Rc (5.57)

This expression for -y reveals the material parameters in a polymer network which control
the competition between the crosslink failure mechanism and the chain scission failure mech-
anism. If one knows the values of the material parameters in (5.57) for a specific material,
then one can determine the failure mode of the material:

* If -y > 1, then the network will fail by the crosslink failure mode.
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* If 'y < 1, then the network will fail by the chain scission failure mode.

Remark. The overall mechanical response of our model for fracture of polymers due
to crosslink failure is similar to our model for failure of polymers due to chain scission.
However, because of the intrinsic physical differences embedded in these two models, there
is an important difference in the consequences from these two models regarding the scaling
of G, with microstructural parameters. Specifically:

* The internal energy in our previous model for fracture by chain scission reads as

Ef = NnEr, (5.58)

where Ef is a bond dissociation energy. With p the mass density of the polymer and m
the molecular mass of a Kuhn segment, the number of chains per unit reference volume
is given by N = p/(mn), so that

Ni, = . (5.59)
m

Using
Gc x E, (5.60)

and an estimate for f in terms of the rest length ro = \fLb of a chain,

f oc /iLb, (5.61)

eq. (5.60) gives

G, oc eb Lb p f. (5.62)

In this scenario the Lake-Thomas scaling holds - the toughness G, is proportional to

As noted earlier, in their fracture experiments on Tetra-PEG gels, with precisely con-
trolled network structures, Akagi et al. (2013) showed that

G, oc Vn,

which confirmed the Lake-Thomas scaling for these materials (cf., Sakai, 2013, Fig.
8). 12

12 Since for swollen gels p = qpPR, where PR is the mass density in an unswollen reference configuration
and Op is the polymer volume fraction, they actually showed that

G, oc Op v.
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Further, from (5.59) and the expression Go = NkBO for the ground state shear modulus
we have that

p 1 - p kB't 1m- N I C' 1(5.63)

use of which in (5.62) gives that

G 1 oc (5.64)

Thus, for fixed crosslink elastomers which fail by chain scission there is a trade-off
between toughness (fracture energy G,) and stiffness (shear modulus Go): by increasing
the cross-linking density the initial stiffness Go = NkB19 increases proportionally to the
increase in the number N of chains (elastically effective strands) per unit volume, while
the toughness G, decreases owing to the decrease in the number n of monomers in a
chain. As reviewed recently by Creton (2017), such a trade-off between the stiffening
and toughening in conventional fixed-crosslink elastomers and gels has been observed
experimentally.

e However, the internal energy in the present model for fracture due to crosslink stretch
and failure is

Ef = NcE, (5.65)

where Ec is a crosslink dissociation energy. In this case from (5.60), with an estimate
(5.61) for f in terms of the rest length ro = V/iLb of a chain, and with the number of
crosslinks per unit reference volume N, proportional to the number of chains per unit
reference volume N,

NcocN- p (5.66)
mn

we obtain

Gc oc (. LbP 1 (5.67)

In the crosslink failure based micromechanism of fracture the Lake-Thomas scaling
does not hold - the toughness Gc is proportional to 1/jri and not V/ .

Further, using (5.63), (5.67) implies that

G, oc G. (5.68)

Thus, for stretchable crosslink elastomers the toughness (fracture energy G,) increases
as the stiffness (shear modulus GO) increases - a desirable outcome, indeed. However,
as far as we know such a scaling has not been experimentally verified in the literature
for any polymer, but would indeed be a means to experimentally determine whether
failure of a polymer occurs by chain scission or by crosslink failure.

That is, swollen gels with the same number of links per chain, n, have a lower toughness than the dry
elastomer.
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In any event, our study suggests that introducing stretchable crosslinks and a crosslink
failure mode in polymer networks is a potential solution to the problem of the trade-
off between stiffness and toughness observed in conventional fixed-crosslink elastomers
and gels.

D

5.4.2 Conclusions

We have formulated a theory for progressive damage and failure of elastomeric materials in
which fracture occurs by chain scission and crosslink failure. Specifically, we have extended
the freely jointed inverse-Langevin model for a single chain, and the corresponding 8-chain
Arruda-Boyce model for a network, to account for changes in internal energy due to stretching
of the crosslinks. Monomers within the backbone chain or crosslink damage and failure is
postulated to occur upon the attainment of a critical value of the internal energy due to
Kuhn segment stretching or crosslink stretching.

We have shown in this paper that the Lake-Thomas scaling (Lake and Thomas, 1967;
Akagi et al., 2013; Sakai, 2013; Creton, 2017) - that the toughness Gc of an elastomeric
material is proportional to 1/v'U, with Go = Nk79 the ground-state shear modulus of the
material - does not hold for elastomeric materials in which fracture occurs by crosslink
stretching and scission. According to our theory, for such materials the toughness is pro-
portional to V 0 . That is, for stretchable crosslink elastomers the toughness increases as
the stiffness increases - a desirable outcome, indeed. However, as far as we know such a
scaling has not been experimentally verified in the literature for any polymer, but would
indeed be a means to experimentally determine whether failure of a polymer occurs by chain
scission or by crosslink failure. In any case, our theory clearly suggests that introducing
stretchable crosslinks and the crosslink failure mode in polymer networks is a potential solu-
tion to the problem of the trade-off between stiffness and toughness observed in conventional
fixed-crosslink elastomers and gels.

At the continuum-level our theory is a gradient-damage or phase-field theory of fracture
of elastomeric materials. We have numerically implemented this theory in an open-source
finite element code MOOSE (Gaston et al., 2009) by writing our own application. Using this
simulation capability we have presented results from simulations of: (i) fracture of single-
edge-notched specimens; (ii) fracture of an asymmetric double-edge-notched specimen; and
(iii) fracture of a sheet specimen with multiple circular and elliptical holes, under our plane
stress conditions. These examples show the powerful capability of our gradient-damage
theory and its numerical implementation to simulate the complicated fracture process of nu-
cleation, propagation, branching and merging of cracks in elastomeric materials in arbitrary
geometries undergoing large deformations. We expect that our theory and numerical sim-
ulation capability will be useful in studying various interesting phenomena such as crazing
and cavitation in soft materials.
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In this chapter we have focused our attention on fracture of an "ideal" dry single-network
elastomeric material in which fracture occurs by crosslink failure. It would be useful to extend
these ideas to materials which exhibit additional microscopic dissipation mechanisms - e.g.,
viscoelasticity, Mullins effect, degradation of interpenetrating networks with sacrificial bonds,
fluid diffusion - that accompany the rupture process in elastomeric materials and their gels
(Zhao, 2014; Ducrot et al., 2014; Creton, 2017; Mao et al., 2017a; Mao and Anand, 2018).
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Chapter 6

Coupled
deformation-diffusion-fracture

simulations of gels

In this chapter we focus on coupled deformation-diffusion-damage simulations of gels. Some
interesting phenomena are numerically studied. Specifically,

* In section 6.1 the single-edge-notch Mode-I loading under plane-stress conditions with
different notch lengths is displayed;

" In section 6.2, we show the results on single-edge-notch Mode-I loading under plane-
stress conditions with different diffusivities;

" In section 6.3, fracture in an asymmetric-double-edge-notched sheet of a gel under
Mode-I plane-stress loading is studied; and

" In section 6.4, delayed fracture in gels and the interaction between diffusion and damage
is studied.

6.1 Single-edge-notch Mode-I loading under plane-stress
conditions with different notch lengths

We begin with a study of fracture in single-edge-notch specimens with different notch lengths,
under plane-stress Mode-I loading conditions. Fig. 6-1(a) shows a schematic of the specimen
geometry. The overall size of the notched sheet sample is 20 mm x 18 mm in the plane, and
the sheet is 1mm thick. We consider specimens with notch lengths c = 3, 6, and 9mm;
the initial root-radius of the notch is fixed at 0.1 mm. The temperature is kept constant at
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1 = 300K, and the initial volume fraction of polymer is set at <Oo = 0.5. The displacement
of the bottom edge of the specimen is fixed, while the top-edge is prescribed a displacement
at a nominal stretch rate of 1 x 10- 3/s. We use a zero-fluid-flux boundary condition on all

the boundaries of the specimen, so that no fluid goes into or out of the specimen - but the
fluid is allowed to diffuse within the specimen. 1

The material parameters used in our simulations are shown in Table 6.1. For simplicity,
the reference chemical potential is set to poR = 0. In order to study the effects of diffusion
on deformation and fracture,

* we have purposely chosen a rather high value of the diffusivity D,

in order to represent fast diffusion within the notched-specimen relative to the time-scale at
which it is being extended (a nominal stretch rate of 1 x 10- 3/s). For a systematic study of
the effect of the fluid diffusivity on fracture, see the next section 6.2.2

Table 6.1: Representative values of the material parameters used in the simulations.

Go = NkBO n Eb= NnEb K E = NnE andc

0.1 MPa 4 5 MPa 10 MPa 1 MPa 100Lpm 1 kPa-s

p x D
0 1 x10- 4 m3 /mol 0.1 1x10- 3m2 /s

Fig. 6-1(b) shows the calculated force-displacement curves for notches with initial lengths
of c = 3, 6, 9 mm. As expected, as the initial length of the notch increases the overall force
level becomes lower, and the stretch at which final fracture occurs becomes smaller. Contour
plots for the damage variable d and the polymer volume fraction q$ at points (a) through (h)
on the load displacement curve for a specimen with c = 9 mm are shown in in Figs. 6-2 and
6-3, respectively.

Fig. 6-2 shows the deformed geometry at points (a) through (h) on the force-displacement
curve in Fig. 6-1 (b), together with with contours of the damage variable d. To aid visu-
alization of the damage, elements with an average value of d > 0.99 are not plotted. Since
the length scale f = 100 pm is very small when compared with the overall dimension of the
specimen (~ 20 mm), the damage zone is barely visibly in this this sequence of plots. Fig.

1 Our theory and numerical procedures allow for boundary conditions that allow for fluid influx or efflux
on the boundary, but in this initial study we do not consider such boundary conditions as they complicate the
situation by introducing another time-scale in the problem. We will show an example "evaporation-induced
fracture" to highlight this type of boundary conditions.

2 Also, in our numerical calculations we have used a value of the bulk modulus K which is 100 times larger
than the ground state shear modulus Go; this corresponds to a ground-state Poisson's ratio of v = 0.495,
which approximates an elastically incompressible material. We tried using larger values of K relative to that
of Go, but that slowed down our numerical procedures considerably. So in all the calculations reported here
we have used K/Go = 100.
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Figure 6-1: (a) Schematic of the single-edge-notch specimen geometry; all dimensions are in mm.

The thickness of the sample is 1 mm; the notch length is denoted by c; and p = 0.1 mm is the

notch-root radius. (b) Calculated force-displacement curves for c = 3, 6, 9 mm. Contour plots for

the damage variable d and the polymer volume fraction q$ at points (a) through (h) on the load

displacement curve for a specimen with c = 9 mm are shown in Fig. 6-2 and Fig. 6-3.
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Figure 6-2: Images of the deformed geometry with contour plots of the damage variable d. To

aid visualization of the damage, elements with an average value of d > 0.99 are removed from the

plots. .Since the length scale f = 100 pm is very small when compared with the overall dimension

of the specimen (~ 20 mm), the damage zone is barely visibly in this this sequence of contour plots

for d.
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Figure 6-3: Images of the deformed geometry with contour plots of the volume fraction of polymer

#. To aid visualization of the damage, elements with an average value of d > 0.99 are removed

from the plots.

6-2(a) is the initial configuration. As the sample is stretched to (b) the notch is blunted,
but no damage has initiated. Damage initiates when the sample is stretched further to a
displacement level of - 7 mm (a point just before (c)), but the force is still increasing, and
it is after another ~ 0.5 mm of extension that the force reaches a peak at point (c) in the
force-displacement curve, and from the contour of damage shown in Fig. 6-2 (c), a small
damage zone ahead of the notch becomes observable. Further stretching begins the rupture
process, and Figs. 6-2(d) through (h) show this progressive rupturing, with (h) showing the
final failed configuration. Note from Fig. 6-1(b) that the force at stage (h) stage is essentially
zero.

Fig. 6-3 shows the deformed geometry with contour plots of the volume fraction of poly-
mer q corresponding to the points (a) through (h) in Fig. 6-1(b). Again, to aid visualization
of the damage, elements with an average value of d > 0.99 are removed from the plots. At
the initial stage (a) the volume fraction of polymer # has a constant value #o = 0.5. Fig. 6-3
shows that as the sample is stretched the volume fraction of polymer ahead of the notch-tip
decreases, with a zone of low volume fraction of polymer moving with notch-tip. The region
of lower polymer volume fraction - and therefore higher fluid concentration - increases
the propensity to damage and failure because of the lower number of polymer chains in such
regions which are also more highly stretched. After full rupture, the polymer concentra-
tion in the two halves of the specimen once again becomes almost uniform (except in the
fully-damaged and deleted portion).

.1
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6.2 Single-edge-notch Mode-I loading under plane-stress
conditions with different diffusivities

Next, we show results from simulations for a single-edge-notch specimen with a fixed notch

length of c = 9 mm, but with three different diffusivities,

D = 0, 1 x 10-6, and 1 m 2/s. (6.1)

The case D = 0 corresponds to the fracture of a gel in which the diffusion is completely
suppressed within the specimen, while D 1 corresponds to very fast diffusion. As in
the previous section, we prescribe no-flux boundary conditions on the boundaries of the
specimen. The displacement of the bottom edge of the specimen is fixed, while the top-edge
is prescribed a displacement at a nominal stretch rate of 1 x 10- 3/s.

Fig. 6-4(a) shows the resulting force-displacement curves for the three different diffusivi-
ties, and Fig. 6-4(b) shows a zoom in of the part of the force-displacement curves in the vicin-
ity of load-drop. Fig. 6-4(a) shows that there are very small differences between the macro-
scopic load-displacement curves for the different diffusivities while the force-displacement
curves are increasing, and Fig. 6-4(b) shows that the load-peak and its position differs for
the three different diffusivities.

1.2
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- D=lXltY 6  1.08 - D=1 x10 6

-D =1 -D =1

0.8 1.06
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Figure 6-4: (a) The effect of diffusivity D on the force-displacement curve of a single-edge-notch

specimen with notch length c = 9 mm. The nominal stretch rate of the specimen is 1 x 10- 3 /s for

all cases. (b) A zoom in of the region in the vicinity of load-drop.

Let
Wf - External work done to completely rupture the specimen. (6.2)

Values of WR are calculated by integrating the area under the load-displacement curves (such

as those shown in in Fig. 6-4(a)) for the different values of the diffusivity within a wide range

D = 0 to 1m2 /s. In Fig. 6-5 the value of W{ for the baseline case of D = 10-16 ~ 0 is
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plotted as the most left point, and the results for the other values of W1 for the different

diffusivities are shown as open blue circles.

As we have discussed earlier, diffusion of the fluid to the notch-tip region increases the

propensity of the material to fracture in that region because of the smaller number of highly
stretched polymer chains per unit volume, and this will cause a decrease in the value of W{.
However, migration of the solvent in the specimen is a dissipative process and this increases

the overall energy that is dissipated in the process of rupturing of the gel, and causes an

increase in Wf. It is these two competing mechanisms which cause the W{ versus D curve

in Fig. 6-5 to first decrease and then to increase, as the diffusivity D increases.

4.23 -

diffusion suppressed
4.22 -

4.2
10-15 10 ~ 10 1o5 100

Diffusivity [m 2/s]

Figure 6-5: The effect of diffusivity, D, on the external work needed to rupture a sample, W{, for
a specimen with notch length c = 9 mm. The macroscopic stretch rate is 1 x 10-3/s for all cases.

6.3 Fracture in an asymmetric-double-edge-notched sheet
of a gel under Mode-I plane-stress loading

In this section we study fracture of an asymmetric-double-notched sheet specimen of a gel un-

der Mode-I plane-stress loading. This example shows the powerful capability of our gradient-

damage theory to model the merging of two growing notches.

Fig. 6-6(a) shows a schematic of the specimen geometry. The overall size of the double-

edge-notched sheet sample is 20 mm x 20 mm in the plane, and the sheet is 1 mm thick. The

two offset notches each have a of length c = 2.5 mm; the initial root-radius of the notch

is 0.1 mm. As in our single-edge notch simulations in Section 6.1, the temperature is kept

constant at d = 300K, the initial volume fraction of polymer is set to be 0 = 0.5, and

we use the same values of the material parameters as in Section 6.1. The bottom edge of
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the specimen is fixed, while the top-edge is prescribed a displacement at a nominal stretch

rate of 1 x 10- 3 /s. We use a zero-fluid-flux boundary condition on all the boundaries of the
specimen, so that no fluid goes into or out of the body, but the fluid is allowed to diffuse

within the specimen. Fig. 6-6(b) shows the calculated force-displacement curve.
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0 2 4 6 8 10 12
20 Displacement [mm]

Figure 6-6: (a) Schematic of the asymmetric-double-edge-notch specimen geometry; all dimen-

sions are in mm. The thickness of the sample is 1 mm; the notches are of length c = 2.5 mm; and

p = 0.1 mm is the notch-root radius. (b) Calculated force-displacement curve. The contour plots

for the damage variable d at points (a) through (j) on the load displacement curve are shown in

Fig. 6-7.

The contour plots for the damage variable, d, and the polymer volume fraction q at

points (a) through (j) on the load displacement curve in Fig. 6-6(b) are shown in in Fig. 6-7.
To aid visualization of the damage, elements with an average value of d > 0.99 are removed

from the plots. Since the length scale f = 100 pm is very small compared with the overall

dimension of the specimen (20 mm), the damage zone is barely visibly in this this sequence

of plots.
Fig. 6-7(a) is the initial configuration. As the sample is stretched to (b) both the notches

get blunted, but no damage has initiated. Damage initiates when the sample is stretched

further to a displacement of ~ 11mm (just before state (c)), but the force is still increasing;

it is only after another - 1 mm of extension that the force reaches a peak at point (c) in the

force-displacement curve Fig. 6-6(b), and from the contour of damage d shown in Fig. 6-7

(c), a small damaged zone ahead of the notch becomes observable. Figs. 6-7(d) through (j)
shows the subsequent rupturing process, with (j) the final failed configuration.

Fig. 6-8 shows contours of the volume fraction of polymer, q, corresponding to the points

(a) through (j) in Fig. 6-6(b). Again, to aid visualization of the damage, elements with an

average value of d > 0.99 are removed from the plots. At the initial stage (a) the volume

fraction of polymer # has a constant value 0 = 0.5. As the sample is stretched, cf. (b)
and (c), the volume fraction of polymer ahead of both notch-tips decreases. Upon further

stretching the zones of low polymer volume fraction move with the notch-tips, and since
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Figure 6-7: The deformed geometry with contour plots of the damage variable d. To aid visual-

ization of the damage, elements with an average value of d > 0.99 are removed from the plots. Since

the length scale = 100 pim is very small compared with the overall dimension of the specimen

(~ 20 mm), the damage zone is barely visibly in this sequence of plots.
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the size of these zone grows, the distance between the two zones decreases. The two zones
eventually interact and merge with each other, as shown in (e) through (h). Figure (i) shows
a pinching off process, which leads to final fracture into two separate pieces, as shown in (j).
After final fracture the polymer volume fraction once again becomes almost uniform in the
two halves of specimen (except in the fully-damaged and deleted portion).

6.4 Delayed fracture in gels: interaction between dif-
fusion and damage

In the previous section we have shown that by changing the diffusivity but keeping the
stretch-rate constant, that our model can capture the effect of diffusion on the deformation
and damage processes of gels in a single-edge-notch specimen. However, for actual gels the
diffusivity cannot be substantially changed, it is always about D ~ 1 x 10-9 to 1 x 10-8
m2/s; but what one can be controlled is the macroscopic stretch rate of a notched specimen.
The competition between the time-scale for the stretching and the time-scale for diffusion
is vividly displayed in an experiment in which a notched-sample is first rapidly stretched to
a level below which damage is initiated at the notch-tip, and the macroscopic displacement
is thereafter held constant. Fracture is observed to occur after a substantial period of time,
as the fluid migrates in the specimen to highly-stressed region near the notch-tip. We study
this interesting phenomenon of "delayed-fracture" next.

We set D = 1 x 10-8 m2/s, and with all other material parameters as before, a single-
edge-notch specimen with initial notch length c = 9mm (cf. Fig.6-1(a)) is loaded in two
steps, as shown in Fig. 6-9(a): the applied stretch rate is 0.02/s in the first step (blue),
and 0 in the second step (red). Examining Fig. 6-4 (b) we see that the case with different
diffusivity, failure starts at a displacement of ~ 7.38 mm. Guided by these results, in our
simulation we choose the total displacement imposed to sample at the end of the first step
to be 7.30 mm, and thereafter hold the displacement fixed at this value. Fig. 6-9(b) shows
the resulting force versus time curve from our simulation. Three periods are identified from
this force-time curve: loading, incubation, and quick rupture. Since the initial loading rate
is relatively fast, the diffusion within this loading period is limited. To understand what is
happening during the incubation period, we mark the start and the end of incubation by
"S" and "E" in Fig. 6-9(b), and compare the contours of the polymer volume fraction and
damage fields for these two configurations in Fig. 6-10.

Fig. 6-10(a) and Fig. 6-10(b) show contours of the volume fraction of polymer and
damage at the start and end of the incubation time, respectively; to aid visualization, the
contours of the damage and the volume fraction of polymer are displayed on the undeformed
configuration. At the start of the incubation period a limited amount of damage appears
at the notch-tip. While Fig. 6-9(b) shows the force versus time curve is essentially flat
between the stages "S" and "E", Fig. 6-10 shows that that even though the change in
the macroscopic force-time response of the sample is negligible, substantial changes in the
fields # and d occur during the incubation time, as the solvent diffuses to the highly-stressed
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Figure 6-9: Delayed-fracture in a gel due to diffusion of the fluid. (a) The macroscopic applied
stretch rate is 0.02/s in the first step (blue), and 0 in the second step (red). (b). The force-time
curve obtained from simulation. The incubation period is ~70 seconds.
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Figure 6-10: (a) Contours of polymer volume fraction # at the start and end of incubation time,
respectively. (b) Contours of damage d at the start and end of incubation time, respectively. To
aid visualization, the contours of the damage and the volume fraction of polymer are displayed on
the undeformed configuration.
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notch-tip region from the rest of the specimen. As we have discussed earlier, diffusion of
the fluid to the notch-tip region increases the propensity of the material to fracture in that
region because of the smaller number of highly stretched polymer chains per unit volume,
and this drives the damage process in the notch-tip zone. At the end of the incubation time
enough damage has accumulated, and thereafter it starts to grow rapidly, the force starts to
drop dramatically, and rupture occurs.
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Chapter 7

Concluding remarks

In this part of the thesis, we first discuss several important theoretical aspects related with
elastomeric materials.

e We first generally discuss the physics of fracture in elastomeric materials. As we repeat-
edly state in this thesis, the deformation and fracture aspects in elastomeric materials
are not consistent in previous literature. One of the distinguishing features of elas-
tomeric materials, which consist of a network of flexible polymeric chains, is that the
deformation response is dominated by changes in entropy. Accordingly, most classical
theories of rubber-like elasticity consider only the entropy and neglect any changes in
internal energy. On the other hand, the fracture of strongly cross-linked elastomers
is essentially energy dominated, as argued in the well-known Lake-Thomas model for
the toughness of elastomers. The newly-introduced bond stretch field Ab is the exactly
the missing piece to resolve the inconsistency of deformation and fracture responses of
elastomeric soft materials. We also show that both classical Arruda-Boyce model and
the Lake-Thomas arguments can be recovered from our theory with the newly intro-
duced Kuhn segment stretch field Ab. Finally, we highlight that for the other important
failure mode, i.e. crosslink failure mode, in elastomeric materials, we need introduce
a new field called crosslink stretch field A, instead of bond stretch field Ab. Many
different scaling laws emerge from the fundamental different micromechanisms. For
example, we show that for elastomeric materials in which fracture occurs by crosslink
stretching and scission the Lake-Thomas Lake and Thomas (1967) scaling - that the
toughness G, of an elastomeric material is proportional to 1/ G0 , with Go = Nkl)
the ground-state shear modulus of the material - does not hold. A new scaling is
proposed, and some important consequences of this scaling are remarked upon.

* Based on these new understandings of the fracture in elastomeric materials, we have
formulated a theory for fracture of polymeric gels - a theory which accounts for the
coupled effects of fluid diffusion, large deformations, damage, and also the gradient
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effects of damage. The particular constitutive equations for fracture of a gel proposed
in this thesis contain two essential new ingredients:

(i) Our constitutive equation for the change in free energy of a polymer network
accounts for not only changes in the entropy, but also changes in the internal
energy due the stretching of the Kuhn segments of the polymer chains in the
network.

(ii) The damage and failure of the polymer network is taken to occur by chain-scission,
a process which is driven by the changes in the internal energy of the stretched
polymer chains in the network, and not directly by changes in the configurational
entropy of the polymer chains.

With this coupled deformation-diffusion-damage theory for polymeric gels, we have nu-
merically implemented it in an open-source finite element code MOOSE (Gaston et al., 2009)
by writing our own application. Using this simulation capability we have presented several
important results.

" In Chapter 5 we present results for our simulations of fracture of elastomers by sup-
pressing the diffusion within the body. We also discuss the case when the elastomers
failed by crosslink failure instead of Kuhn segments scission. For both cases, we study
several interesting cases such as

- Flaw sensitivity in soft materials;

- Mode-I fracture in single-edge-notch under plane-stress conditions;

- Asymmetric-double-edge-notch geometries under plane-stress conditions;

- Fracture of a sheet specimen with multiple circular and elliptical holes.

" In Chapter 6 we present results of fracture of gels from our simulations. The cases that
we studied are:

- Single-edge-notch Mode-I loading under plane-stress conditions with different
notch lengths;

- Single-edge-notch Mode-I loading under plane-stress conditions with different dif-
fusivities;

- Fracture in an asymmetric-double-edge-notched sheet of a gel under Mode-I plane-
stress loading;

- Delayed fracture in gels and the interaction between diffusion and damage;

These examples show the powerful capability of our gradient-damage theory to simulate
the complicated fracture process of nucleation, propagation, branching and merging of cracks
in arbitrary geometries -propagating cracks are tracked automatically by the evolution of
the smooth damage field.
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In this part we have focused our attention on fracture of an "ideal" single-network poly-
meric gel with strong chemical crosslinks. It would be useful in the future to extend the
theory presented in this paper to interpenetrating-multiple-network gels which incorporate
additional non-trivial dissipation mechanisms to toughen polymeric gels (cf., e.g., Gong et al.,
2003; Zhao, 2014; Mao et al., 2017a).



Part II

Fracture of steels due to hydrogen
embrittlement
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Chapter 8

Introduction

Atomic hydrogen readily dissolves in and permeates through most metals. The deleterious
effects of hydrogen on the mechanical response of structural materials are well-known, and
this in turn affects the integrity of many structural components used in industry; cf. Robert-
son et al. (2015) and Dadfarnia et al. (2015) for recent reviews of the vast literature on the
subject.

The purpose of the second part of the thesis is to develop a continuum theory for modeling
hydrogen embrittlement in metals. While our considerations are quite general, we shall focus
on hydrogen embrittlement of ferritic line pipe steels, which is one of the main problems in
hydrogen distribution through pipeline networks (Srinivasan and Neeraj, 2014). This topic
is also receiving increasing attention because of its potential application to the development
of the emerging technology of large-scale production, storage, and distribution of hydrogen
in the "hydrogen economy" (cf., e.g., San Marchi et al., 2007; Dadfarnia et al., 2009, 2010).

Modeling hydrogen embrittlement is a challenging problem. There is a significant existing
literature on the topic, with many claims on the dominant mechanism, but no wide-agreement
on any one of the proposed mechanisms even for a given class of materials. The recent
experimental study by Neeraj et al. (2012) on ferritic line pipe steels show the presence of
nanoscale voids on fracture surfaces in the presence of hydrogen. A hydrogen embrittlement
mechanism proposed by Li et al. (2015), in connection with these experiments, is that plastic
deformation leads to production of vacancies due to dislocation multiplication interactions,
which in the presence of hydrogen are stabilized as hydrogen-vacancy complexes which can
agglomerate and grow in size to nucleate nanovoids, which in turn serve as precursors to
final fracture. In addition to the nanoscale voids observed by Neeraj et al. (2012), the
experimental studies of Martin et al. (2011b,a) show that the fracture surfaces in steels
also show quasi-cleavage features. Such features are commonly found on hydrogen-induced
fracture surfaces, they are cleavage-like but not along any known cleavage plane, or grain
boundaries.
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Based on these experimental observations, and guided by the hydrogen embrittlement
mechanism proposed by Li et al. (2015), the purpose of this part of the thesis is to formulate
a continuum theory for the diffusion of hydrogen coupled with the elastic-plastic response of
metals, together with an accounting for microscopic effects due to the generation of hydrogen-
vacancy complexes. We postulate that when such hydrogen-vacancy complexes reach a
critical concentration there is a change in mechanism of plastic deformation from plastic
flow by dislocation glide to plastic flow by quasi-cleavage - a change in mechanism which is
reminiscent of a transition between "shear-yielding" and "crazing" in amorphous polymers.
We have formulated a criterion for this change in mechanism together with an attendant
dilatant craze-plasticity flow rule, and a corresponding gradient damage theory to model
hydrogen embrittlement of ferritic line-pipe steels.

The plan of this part is follows. We begin in Section 8.1 by summarizing some experi-
mental observations on hydrogen embrittlement in

(i) an ASME SA-106 medium strength carbon steel by Xu and Rana (2009);

(ii) an API X60 HIC grade line pipe steel summarized recently by Dadfarnia et al. (2015);
and

(iii) in an X65 line pipe steel by Neeraj et al. (2012).

In Section 8.2 we argue that the process of hydrogen induced failure in ferritic steels in
the presence of hydrogen is qualitativley similar to the process of craze-failure in amorphous
polymers.

Based on our review of the recent experimental literature on hydrogen embrittlement of
ferritic steels (Martin et al., 2011b,a; Robertson et al., 2015; Dadfarnia et al., 2015), the
study by Neeraj et al. (2012) and Li et al. (2015), and our own previous work on hydrogen in
metals (Anand, 2011; Di Leo and Anand, 2013), in Chapter 9 we summarize our theory for
the diffusion of hydrogen coupled with the elastic-plastic response of metals, together with
an accounting for microscopic effects due to the generation of hydrogen-vacancy complexes.
Further, based on our previous study of crazing in amorphous polymers (Gearing and Anand,
2004), we also formulate a continuum-level craze-intiation criterion, a craze-flow rule, a
corresponding gradient damage theory to model hydrogen embrittlement of ferritic line-pipe
steels.

Our theory introduces an equivalent craze strain c' as a measure of the history of crazing
in the material. An increase in the craze strain will result in the formation of localized
dilational craze bands. Eventually when a chemoelastic free energy per unit reference volume
V exceeds a critical value, Vg"it, the process of "break-down" of the crazed material will start.
In order to model the final fracturing process we introduce an order-parameter d(X, t) E
[0, 1], which evolves (d > 0) when 4b exceeds ?/". When d = 1 at some material point, then
that point is fractured; values of d between zero and one correspond to partially-fractured
material. With the aim of "regularizing" the strain-softening behavior during craze break-
down, and to avoid mesh-dependency related issues during finite element simulations we
follow recent phase-field theories of fracture in ductile materials (cf., e.g., Miehe et al., 2015,
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2016; Borden et al., 2016) and develop a fracture theory which depends not only on d but
also its gradient Vd, which is considered to be a measure of the spatial inhomogeneity of the
damage during the craze break-down fracture process.

We have numerically implemented a our theory in the commercial finite element program
Dassault Systemes (v. 6.14) by writing a user-element subroutine (UEL). Representative
numerical examples which demonstrate the ability of the theory and its implementation to
model failure due to hydrogen embrittlement is some technically relevant geometries are
given in Chapter 10. We close in Chapter 11 with some final remarks.

8.1 A brief review some experimental observations

8.1.1 Experimental observations by Xu and Rana

Fig. 8-1, taken from Xu and Rana (2009), shows the effects of hydrogen embrittlement for a
medium strength carbon steel (ASME SA-106). For different hydrogen pressures, Fig. 8-1(a)
shows engineering stress-strain curves in tension; (b) shows ductility curves, both elongation
and reduction of area; and (c) shows macrographs of the specimens, and micrographs of
fracture surfaces obtained in a scanning electron microscope. The tension experiments were
performed in an autoclave mounted in a servohydraulic testing machine at a low strain rate
of 1.3 x 10 4 /s at room temperature; this low strain rate was chosen to allow for sufficient
time for hydrogen to diffuse into the specimen, and hence to enhance the embrittlement
effect.

The experiments of Xu and Rana (2009) show that:

e There is a negligible affect of hydrogen on the stress-strain curves prior to the sudden
drop in the stress carrying capacity of their steel specimens at room temperature.

e The tensile ductility markedly decreases as the hydrogen pressure is increased to
6.9 MPa, but thereafter the rate of decrease in the ductility with an increase in hydro-
gen pressure is not very large.

* Hydrogen has a significant effect on the fracture mode of the specimens:

(i) The base-line specimen tested in air exhibited significant necking and an eventual
cup-and-cone fracture, with a typical dimpled ductile fracture surface.

(ii) At 3.5 MPa H2 , a macroscopic manifestation of the effect of hydrogen is the pres-
ence of numerous fissures on the surface of the specimen, which appear perpendic-
ular to the direction of extension. The specimen still exhibited some necking and
considerable ductility. Also, the fracture surface was still dominated by ductile
dimples, albeit with the presence of some quasi-cleavage features.

(iii) At 6.9 MPa H2 there were fissures on the surface, there was no visible necking, and
the ductility was significantly reduced. Presumably one of the fissures developed
into a mature crack which propagated across the cross-section of the specimen
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Figure 8-1: ASME SA-106 Steel: (a) Tensile stress-strain curves at different hydrogen pressures.

(b) Dependence of tensile ductility, both elongation and reduction of area, as a function of hydrogen

pressure. (c) Specimen surfaces and fracture surfaces of tensile specimens at four different hydrogen

pressures. From Xu and Rana (2009).

perpendicular to the tension axis. The fracture surface was very flat and ductile

dimples were not observed. The fracture mode was transgranular quasi-cleavage,
with some tear-ridges.

(iv) At 24.2 MPa H2 there were numerous fissure cracks on the surface of the specimen

and there was no visible necking. The fracture surface was very similar to the one

at 6.9 MPa H 2.

The fissures that are visible on the surface of the steel specimens when it is embrittled

by the hydrogen, form predominantly in a direction perpendicular to the maximum principal

stress direction. At high hydrogen pressures (greater than 6.9 MPa for this material) one of

the fissures eventually develops into a mature crack which propagates across the cross-section

to cause final fracture.
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8.1.2 Experimental observations by Martin et al. (2011b,a)

Martin et al. (2011b,a) have reported on their studies of hydrogen embrittlement in a line-

pipe steel (API X60 HIC grade). Their observations have been summarized by Robertson
et al. (2015) and Dadfarnia et al. (2015) in their recent review papers. The results of Martin

et al. (2011b,a) for the fracture toughness tests on compact tension tests in a high-pressure
hydrogen gas environment showed that hydrogen causes a decrease in the fracture tough-

ness. Fractographic studies on compact tension specimens tested at hydrogen gas pressure

of 21MPa showed that hydrogen-induced fracture surface of line-pipe steels had distinct
morphologies including microvoid coalescence, secondary cracks, as well as two distinct mor-

phologies which they called (i) "quasi-cleavage", and (ii) "flat" or featureless. We summarize

below the remarks of Martin et al. (2011b,a), Robertson et al. (2015), and Dadfarnia et al.

(2015) regarding these features.

"Quasi-cleavage" features on fracture surface:

The characteristic features of a "quasi-cleavage" fracture surface are shown in Fig. 8-2a and
b. The low-magnification image (Fig. 8-2a) shows striations running approximately parallel

to the crack propagation direction. The higher-magnification image (Fig. 8-2b) shows that
these markings are in fact ridges, with thin electron transparent sawteeth at the tip of most
ridges. Comparing these saw-teeth features with ligaments formed in TEM foils strained to

failure, they concluded that the saw-teeth form due to extensive plasticity during the final
separation process of ridges. A schematic, taken from Martin et al. (2011b), showing the
relationship between the ridges on either side of the fracture surface and the formation of

the saw-teeth ligaments is shown in Fig. 8-3.

Figure 8-2: Hydrogen-induced "quasi-cleavage" of an API X60 line pipe steel. (a) SEM micro-
graph of the fracture surface; (b) higher magnification image; (c) TEM micrograph normal to the
"quasi-cleavage" fracture surface showing the microstructure underneath the surface. The fracture
surface is shown by the dashed lines. From Martin et al. (2011b), as shown in Dadfarnia et al.
(2015).

'The term "quasi-cleavage" is a commonly used to describe of regions of hydrogen induced fracture
surfaces, and refers to failure on non-cleavage planes with fine lines that run approximately parallel to the
direction of crack advance.
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Figure 8-3: Schematic showing the relationship between the ridges on either side of the fracture

surface and the formation of the saw-teeth ligaments. From Martin et al. (2011b).

Further, using a focused-ion-beam lift-out technique, Martin et al. (2011b) extracted
TEM samples under the "quasi-cleavage" regions. Fig. 8-2c shows such a micrograph from
a region normal to two closely spaced ridges on the fracture surface. There is enhanced
dislocation activity under the fracture surface. Also, no carbides were observed to be asso-
ciated with the ridges, which indicates that such second phase particle, which are invariably
present in these steels, do not play a role in the formation of these "quasi-cleavage" fracture
surfaces.

By studying the features on the "quasi-cleavage" surface and microstructure below such
surfaces, Martin et al. (2011b) hypothesized that the fracture process involves the nucleation
of nanoscale voids at slip band intersections. Then each void is expanded by dislocation
processes until encountering another void, and that final failure took place along tops of
ridges forming saw-teeth. They concluded that the "quasi-cleavage" fracture surfaces are
formed by a hydrogen enhanced plasticity processes, and not by a cleavage-like decohesion
mechanism. The role of hydrogen was concluded to be the creation of conditions for the
development of dislocation structures which facilitate the initiation of nanovoids and their
subsequent growth through dislocation-based processes.

"Flat" features on fracture surface:

A characteristic "flat" region on the fracture surface is shown in Fig. 8-4a and b. While these
features were flat in plan-view at low magnification, an examination using high resolution
SEM showed that what one sees as a flat surface at lower magnifications is actually covered
with undulations and rounded mounds as shown in Fig. 8-4b. The roughness of the "flat"
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Figure 8-4: "Flat" features (or featureless region) in hydrogen-induced fracture of a line pipe
steel. a) SEM micrograph of the fracture surface; b) high resolution SEM micrograph; c) TEM
micrograph showing the microstructure immediately under the flat surface illustrated by the dashed
line. From Martin et al. (2011a), as shown in Dadfarnia et al. (2015).

region was measured by atomic force microscopy, which revealed that the diameters of the

mounds were about 50nm and their height differences were about 5 nm. Fig. 8-4c, which

shows the microstructure beneath a "flat" feature, it exhibits a high density of dislocations

which persisted over several microns beneath the fracture surface. As for the case of "quasi-

cleavage" features, no carbide particles appear to have affected the crack path.

Martin et al. (2011a) proposed that the plasticity and underlying dislocation structure

plays a major role in establishing the conditions for the formation of the flat surface morphol-

ogy. They suggested that the difference between the conditions which produce the "quasi-

cleavage" features discussed above, and the flat features is the orientation and constraints

on the grains leading to the development of different dislocation structures.

8.1.3 Experimental observations by Neeraj et al.

Neeraj et al. (2012) reported on their studies of hydrogen embrittlement in several line pipe

steels. Here, we briefly summarize their experimental observations and interpretation of

fracture surface features and deformation microstructures underneath the fracture surface

for their API X65 steel.
Fig. 8-5a shows an SEM micrograph of the fracture surface of a single-edge-notch-bend

(SENB) specimen tested after hydrogen charging, quasi-brittle fracture features are ob-

served.2 At higher magnifications, Fig. 8-5b shows that the quasi-brittle fracture surfaces

were covered with nanoscale dimples 5-20 nm wide and 1-5 nm deep. Based on analyses of

conjugate fracture surfaces, (i) and (ii) in (b), they found that most of the nanodimples ap-

pear to be "valley-on-valley" type, rather than "mound-on-valley" type, indicating nanovoid

nucleation and growth in the plastically flowing medium prior to ultimate failure. 3

2 The quasi-brittle fracture surface features observed by Neeraj et al. (2012) in the X65 steel are similar
to the "flat" features observed by Martin et al. (2011a) in their X60 steel. Neeraj et al. (2012) do not report
any "quasi-cleavage" features with "ridges" on their fracture surface similar to that reported by Martin et al.
(2011b), Fig. 8-2a,b.

3 Martin et al. (2011a) called similar features "mounds", cf. Fig. 8-4b.
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(I) (ii)
(a) (b)

Figure 8-5: (a) SEM micrograph of the fracture surface shows quasi-brittle fracture features in

X65 SENB specimens tested after hydrogen charging. (b) High resolution SEM images of conjugate

surfaces, (i) and (ii), showing presence of 5-20 nm sized nanoscale "dimples," consistent with a

"valley-on-valley" phenomenon; like-colored circles/ovals indicate mating features on conjugate

surfaces. From Srinivasan and Neeraj (2014).

Neeraj et al. (2012) also studied the microstructure just beneath the fracture surfaces

using transmission electron microscopy, Fig. 8-6. Significant dislocation plasticity was ob-

served just beneath the fracture surfaces. The dislocation density just beneath the fracture

surface observed in Fig. 8-6b was much greater than that observed in sample tested without

hydrogen, Fig. 8-6a.

The experimental study by Neeraj et al. (2012), and a recent companion atomistic sim-

ulation study by Li et al. (2015) indicates that plastic deformation leads to production of

vacancies due to dislocation multiplication interactions. In the absence of hydrogen such va-

cancies are usually quickly swept away by the moving dislocations. However in the presence

of hydrogen the vacancies are stabilized as hydrogen-vacancy complexes which cannot be

easily swept away by the moving dislocations. Hydrogen stabilizes vacancies in Fe by both

lowering the vacancy formation energy and by reducing the mobility of vacancies. Based

on their experimental and modeling studies Neeraj et al. (2012) and Li et al. (2015) have

proposed that hydrogen-vacancy complexes can grow in size to nucleate nanovoids which in

turn serve as precursors to fracture.

In his recent review paper, Robertson et al. (2015) has questioned the efficacy of such

a vacancy-induced nanovoid nucleation and growth mechanism for fracture initiation, by

raising the following points:

e While the production of vacancies or small vacancy clusters can occur during defor-

mation, and the presence of hydrogen can decrease the formation energy of defects, it

is necessary to consider how the agglomeration of the vacancies occurs to generate the

fracture surface, why defects with similar dimensions to the surface features are not

found elsewhere beneath the surface and how the vacancy agglomeration mechanism

explains the "quasi-cleavage" regions that exist on the same fracture surface.
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. ljgm from surface I> 3gm from surface

Figure 8-6: (a) Deformation substructure in uncharged, and (b) hydrogen-charged X65 steel.
Greater subgrain refinement is observed in the hydrogen-charged X65, along with gradation in
subgrain size. (c) Extremely fine subgrains are observed immediately near the fracture surface,
while (d) slightly larger subgrains are observed a few micrometers beneath the fracture surface.
From Neeraj et al. (2012) as reported in Srinivasan and Neeraj (2014).

* Assuming the surface features are representative of the failure mechanism, it is per-
tinent to consider if vacancy clusters along the fracture plane serve as the nucleation
sites for the formation of the surface void features. If the nucleation sites are the
vacancy clusters, they should persist throughout the lattice which would mean they
should influence the deformation processes prior to failure. Having such a dense field
of obstacles would influence the mobility of dislocations much in the same way that
vacancy clusters produced by irradiation influence the behavior here they result in
a strengthening of the matrix and the deformation is restricted to channels in which
the defect density is reduced by the passage of dislocations.

* Lastly, there is no experimental evidence which demonstrates how a nano-sized vacancy-
produced "void" can grow to become micron-sized and coalescence with another void
to produce fracture. Stresses needed to grow nano-sized voids are in the GPa range,
whereas in mild steels embrittlement can occur in the MPa range.

Robertson et al. offer a possible alternative explanation for the formation of the nanodimple
features on "flat" surfaces, they consider that the nanodimples could be generated in a
manner similar to the saw-teeth observed atop the ridges, river markings, on the "quasi-
cleavage" surface. These were attributed to the very final stages of separation and even if

they were influenced by hydrogen, they are inconsequential in establishing the conditions
that promote failure initiation.

In addition to the critique of Robertson et al. (2015), Tehranchi et al. (2016) have re-
cently reported on their own atomistic simulations of the interactions between dislocations,
hydrogen atoms, and vacancies to assess the viability of the mechanism proposed by Li et al.

(2015) for the formation of nanoscale voids in steels in the presence of hydrogen. They
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conclude that, "that neither dislocations nor hydrogen play any clearly positive role in the
formation of vacancy clusters and, thus, that nanovoid formation by the processes envisioned
in recent work is not operative."

In closing our brief review of the recent literature on hydrogen embrittlement of ferritic
steels, it is fair to say that the microstructural level processes that eventually lead to the
formation of the "nanodimple" features and "quasi-cleavage" features on fracture surfaces,
still remain murky. But what is clear is that such features are present on hydrogen-generated
fracture surfaces and that they are the result of underlying plasticity processes. We argue
in the next section that the presence of these features suggests a change in mechanism of
inelastic deformation from dislocation glide based plastic flow to a dilatant quasi-cleavage like
mechanism, which leads to eventual fracture.

8.2 Failure process in ferritic steels in the presence of
hydrogen is qualitativley similar to the process of
craze-failure in amorphous polymers

The

e vacancy-induced "nanovoid nucleation and growth mechanism" proposed by Neeraj
et al. (2012);

e the "quasi-cleavage" features observed on the fracture surfaces in the presence of hy-
drogen in the experiments of Martin et al. (2011b); and

e the macroscopic "fissures" perpendicular to the maximum principal stress direction
which form as precursors to final fracture in the presence of hydrogen in smooth spec-
imens, as in the experiments of Xu and Rana (2009),

all suggest that the process of hydrogen embrittlement in ferritic steels bears a certain sim-
ilarity to the "crazing" process which eventually leads to fracture in certain amorphous
polymeric materials. Fig. 8-7 shows a micrograph of distributed crazing in polymethyl-
methacrylate (PMMA), and a micrograph of the structure of a single craze in polystyrene.

In amorphous polymers which exhibit crazing, the crazes are

* localized bands of plastic dilational deformation with nano-scale cavities and polymer
fibrils which bridge the boundaries of the bands.

Argon (2011), in his recent review paper on crazing states that "molecular level processes
that govern craze initiation still remains murky." And as we have seen they are also still
murky in hydrogen embrittlement of steels. Nevertheless,



141

(a) (b)

Figure 8-7: (a) Distributed crazing in PMMA prior to fracture, observed at low magnification;

from Ishiyama et al. (2001). (b) Structure of a single craze in polystyrene showing polymer fibrils

bridging the boundaries of a craze band, oberved at high magnification; from Argon and Hannoosh

(1977).

e by analogy to crazes that are precursors to brittle fracture in amorphous polymers, we

herefater call the surface fissures that appear due to the effects of hydrogen in steels,
cf. Fig 8-2(a) and (b), crazes.

For the crazes observed due to the hydrogen embrittlement effects in steels, there are of course

no fibrils bridging the boundaries of the crazes. However, the ridges and sawtooth caps on the

"quasi-cleavage" features on fracture surfaces of the line pipe steel studied by Martin et al.

(2011b) show that there is some similarity between the effects of hydrogen on the failure of

ferritic steels and crazing of amorphous polymers.

Based on our review of the recent experimental literature on hydrogen embrittlement of

ferritic steels (Martin et al., 2011b,a; Robertson et al., 2015; Dadfarnia et al., 2015), the

study by Neeraj et al. (2012) and Li et al. (2015), and our own previous work on hydrogen

in metals (Anand, 2011; Di Leo and Anand, 2013), in the next section we summarize our

continuum-level theory for the diffusion of hydrogen coupled with the elastic-plastic response

of metals. Further, based on the previous model of Gearing and Anand (2004) of crazing in

amorphous polymers, we propose that there is a change in mechanism of inelastic deformation

form standard dislocation glide based plasticity to a craze-type plasticity, and formulate

a continuum-level craze-intiation criterion, a craze-flow rule, and a phase-field theory of

fracture to model hydrogen embrittlement of steels.
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Chapter 9

A phase field damage theory for
hydrogen diffusion in steels coupled

with large elastic-plastic deformations

9.1 Kinematics

Consider a macroscopically-homogeneous body B with the region of space it occupies in a
fixed reference configuration, and denote by X an arbitrary material point of B. A motion
of B is then a smooth one-to-one mapping x = X(X, t) with deformation gradient, velocity,
and velocity gradient given by

F = VX, v =, L = gradv = FF-1 . (9.1)

We base our theory on the Kr6ner (1959)-Lee (1969) multiplicative decomposition of the
deformation gradient,

F = FeFi. (9.2)

As is standard, we assume that

J = detF > 0, (9.3)

and hence, using (9.2),

J =Jej Ja, where J= N det Fe > 0 and JV g det F > 0, (9.4)

so that F6 and F are invertible. Here, suppressing the argument t:

(i) F (X) represents the local deformation in an infinitesimal neighborhood of material at
X due to two major micromechanisms for inelastic deformation under consideration:

143
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plastic deformation due to motion of dislocations, or due to "craze"-type plasticity
which results in quasi-cleavage failure.

(ii) F (X) represents the subsequent local deformation of material in an due to stretch and
rotation of the microscopic structure.

We refer to P and F' as the inelastic and elastic distortions, and we refer to the local space
at X represented by the range of F'(X), as a local intermediate space at X.

The right polar decomposition of F' is given by

Fe = ReUe

where Re is a rotation, while Ue is a symmetric, positive-definite tensor with

U= /Fe TFe.

As is standard, we define

By (9.1)3 and (9.2),

with

C e = Ue 2 = FeTFe.

L = Le + Fe LFe-

L e - eFe-l

(9.6)

(9.7)

(9.8)

(9.9)L' = #iF2-1

As is standard, we define the elastic and inelastic stretching and spin tensors through

De = sym Le,

Di = sym L',

We = skw Le,

WV = skw L,
(9.10)

so that Le = DI + We and V = Di + Wi.
We make the following additional kinematical assumptions concerning inelastic flow:

(i) First, from the outset we constrain the theory by assuming that the inelastic flow is
irrotational, in the sense that'

Wi = 0.

Then, trivially, L' = D' and
P' = DF.

(ii) Next, we assume that the inelastic stretching D' is given by

(9.11)

(9.12)

D'= DP+ Dc, with trDP = 0,

where

'This assumption is adopted here solely on pragmatic grounds: when discussing finite deformations the
theory without plastic spin is far simpler than one with plastic spin.

(9.13)

(9.5)
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" DP represents an inelastic stretching due to dislocation plasticity; and

" D' represents an inelastic stretching resulting from a crazing mechanism.

Remark. For ease of presentation, at this stage in the development of the theory we
conceptually allow both DP and DC to simultaneously be non-zero. However, later when
we specialize the theory, we will consider a transition from dislocation-based non-dilatant
plasticity to craze-type dilatant plasticity when certain conditions for a change in mechanism
are satisfied.

D

On account of (9.13) and (9.11), the relation (9.8) reduces to

L = Le + FeDPFe-l + FeDcFe-1. (9.14)

For later use we introduce some new notation. Whenever IDPI # 0,

NP = , with trNP = 0 (9.15)
IDP l

defines the deviatoric plastic flow direction. Further, letting

P = v2DPI > , (9.16)

denote an equivalent plastic shear strain rate, we may write the plastic stretching as

DP = NP. (9.17)

We call

=P (s) ds. (9.18)

the equivalent plastic shear strain.
Next, we assume that D' has the form (Gearing and Anand, 2004)

DC = ecNc, with NC= m o m, (9.19)

where m is a unit vector (yet to be specified),

e = D > 0 (9.20)

represents a craze extension rate in the direction m. We call

eC = e"(s) ds (9.21)
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the craze-strain. Thus, using (9.1), (9.2), (9.17) and (9.19) we may write (9.14), for future
use, as

(Vk)F- 1 = ]NeFe-l + 1/2P Fe NP Fe-1 + ecFe Nc Fe-1. (9.22)

9.2 Phase-field

To describe fracture we introduce a order-parameter or phase-field,

d(X, t) E [0, 1]. (9.23)

If d = 0 at a point then that point is intact, while if d = 1 at some point, then that point is
fractured. Values of d between zero and one correspond to partially-fractured material. We
assume that d grows montonically so that

d(X, t) > 0, (9.24)

which is a constraint that represents the usual assumption that microstructural changes
leading to fracture are irreversible.

9.3 Development of the theory based on the principle
of virtual power

Next, following the virtual-power method of Gurtin (2002) and Gurtin and Anand (2005,
2009), we assume that

* the power expended by each independent "rate-like" kinematical descriptor - i, Fe,

yP, ec, d, and Vd - be expressible in terms of an associated force systems consistent
with their own balances,

and determine these balances using the principle of virtual power. In exploiting the principle
of virtual power we note that the rates (i, Fe, AP, e' ) are not independent - they are
constrained by,

(Vk)F- 1 = eF e-1 + 1/2PFe NP Fe-1 + ec Fe N Fe-1. (9.25)

We denote by P an arbitrary part (subregion) of the reference body B with nR the

outward unit normal on the boundary OP of P. With each evolution of the body we associate

macroscopic and microscopic force systems. The macroscopic system is defined by:

(i) A traction tR(nR), for each unit vector nR, that expends power over the velocity *,
an external generalized body force bR presumed to account for inertia - that also

expends power over j. That is,

bR= bOR -PR, (9.26)
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where boR represents the conventional body force per unit volume of the reference body,
and (-pRk) represents the inertial body force; pR is the mass density of the referential
body.

(ii) An elastic stress Se that expends power over the elastic distortion rate Fe.

The microscopic system, which is nonstandard, is defined by:

(a) a positive-valued scalar microscopic stress 7r that expends power over the equivalent
plastic shear strain rate AP;

(b) a positive-valued scalar microscopic stress w that expends power over the craze strain
rate eC;

(c) a scalar microscopic stress z that expends power over the rate d of the microvariable
d;

(d) a vector microscopic stress that expends power over the gradient Vd;

(e) a scalar microscopic traction (nR) that expends power over d on the boundary of the
part.

We characterize the force systems through the manner in which these forces expend power;
that is, given any part P, through the specification of Wext(P), the power expended on
P by material external to P, and Wint(P), a concomitant expenditure of power within P.
Specifically, 2

)WVext(P)= JtR(nR) -(daR JbR dvR R ,

8P P(9.27)

Wint(P) J(Se:e A+P + w Cd+ -Vd) dvR,
P

where, Se, wr, W, Z, and ( are defined over the body for all time.

Principle of virtual power

Assume that, at some arbitrarily chosen but fixed time, the fields X, F' (and hence F and
F'), NP, and N' are known, and consider the fields i, F', Ay, and C as virtual velocities to be
specified independently in a manner consistent with (9.25); that is, denoting the virtual fields
by j, Fe, 1P, and U to differentiate them from fields associated with the actual evolution of
the body, we require that

(Vj)F- 1 = NeFe- 1 + 1/2 ~PFe NP Fe-1 + EcFe Nc Fe-1. (9.28)
2In (9.27), daR and dvR denote elemental area and volume, respectively, and the symbol d in these

quantities is not to be confused with the damage variable.
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Further, also considering d to be a virtual velocity, and denoting
d, we define a generalized virtual velocity to be a list

V Pe I FeP, c,

consistent with (9.28).
We refer to a macroscopic virtual field V as rigid if it satisfies

(Vj) = P = QF,

with Q a spatially constant skew tensor, together with

Fe QFe

its virtual counterpart by

(9.29)

~P = = 0 , d= 0. (9.30)

Writing

WVext (P, V) =

Wint(P,V) =

jtR(nR) jdaR + IPR - dR +ja(nR) ddaR,

(9.31)

j (Se: Pe + 7 + EC ++ & v7) dvR,

respectively, for the external and internal expenditures of virtual power, the principle of
virtual power consists of two basic requirements:

(V1) Given any part P,

for all generalized virtual velocities V. (9.32)

(V2) Given any part P and a rigid virtual velocity V,

Wint (P, V) = 0 whenever V is a rigid macroscopic virtual velocity.

To deduce the consequences of the principle of virtual power, assume that (9.32) and
are satisfied. Note that in applying the virtual balance we are at liberty to choose

(9.33)

(9.33)
any V

consistent with the constraint (9.28).

9.3.1 Macroscopic force and moment balances

Consider a generalized virtual velocity with ~yP - 0 , El0 , 0 so that (Vi)F--' = Fe
For this choice of V, (9.32) yields

I/ tR(fR) - jdaR , + I R R dv= JP
S: P dvR =

JP
(S'F-) ): V j dvR, (9.34)

W'ext (Pi V) = I/int (Pi V)
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which, by defining

TR = SeF2 -T (9.35)

may be rewritten as

j tR(nR) - jda, j (TR: Vi- bR dvR, (9.36)

and using the divergence theorem we may conclude that

j (t(nR) - TpnR) . Rda, + (Div TR + bR) R dvR = 0.

Since this relation must hold for all P and all j, standard variational arguments yield the
traction condition

tR (R) = TRnR, (9-37)

and the local macroscopic force balance

Div TR + boR = PRX, (9.38)

respectively, where in writing (9.38) we have used (9.26).
Next, we deduce the consequences of requirement (V2) of the principle of virtual power.

Using (9.30) and (9.31)2, requirement (V2) of the principle of virtual power leads to the
requirement that

j (SeFeT): A dvR = 0. (9.39)

Since P is arbitrary, we obtain that (SeFeT ) Q = 0 for all skew tensors Q, which implies
that S'FT is symmetric:

SeFe T = FeSeT . (9.40)

Moreover, (9.40) and (9.35) imply that

TRFT  FTT (9.41)

* In view of (9.38) and (9.41) the stress T, represents the classical Piola stress, with
(9.38) and (9.41) representing the local macroscopic force and moment balances in the
reference body.

As is standard, the Piola stress TR is related to the symmetric Cauchy stress T in the
deformed body by

TR = JTF-T, (9.42)

so that

T = J-TRFT . (9.43)

It is convenient to introduce two new stress measures:
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* The elastic second Piola stress,

Te df JeFe-'TF e-T, (9.44)

which is symmetric on account of the symmetry of the Cauchy stress T.

" The Mandel stress,

me df Ce Te - JeFeT TFe- T . (9.45)

which in general is not symmetric.

Using (9.35) and (9.42) we find that

se= JTF T . (9.46)

Thus, using the definitions (9.44) and (9.45) we find that

Fe-ISe - T e and F T Se = Me. (9.47)

9.3.2 Microscopic force balances

First microforce balance:

To discuss the microscopic counterparts of macroscopic force balance, consider first a

generalized virtual velocity with x 0, U 0, and d = 0, choose the virtual field 'i"
arbitrarily, and let

Pe -, 12 P FeNP,

so that

- - -- ( (,2 (F T S'): NP). (9.48)

Next, using (9.47)2 we introduce an equivalent shear stress - by the relation

def
VTI'/1/ e M: NP , (9.49)

where in writing the last relation we have used the fact that NP is deviatoric. Then the

power balance (9.32) yields the microscopic virtual-power relation

0 = (7r - -)(dvR (9.50)

P

to be satisfied for all 'P and all P. This yields the first microscopic force balance,

T = r. (9.51)

Second microforce balance:
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Next, consider a generalized virtual velocity with j 0, P =_ 0, and d 0, choose the
virtual field U arbitrarily, and let

~e -- Ec FeNc,

so that
Se: .Pe = - c (F eT Se): Nc.

Next, using (9.47)2 and introduce an resolved tensile stress o by the relation

def M': N .

(9.52)

(9.53)

Then the power balance (9.32) yields the microscopic virtual-power relation

0 = J(w - or) cdvR

P

(9.54)

to be satisfied for all c and all P. This yields the second microscopic force balance,

a = W. (9.55)

Third microforce balance: Next, consider a generalized virtual velocity with j = 0,

P =_ 0, and U = 0. Choose the virtual field d arbitrarily, the power balance (9.32) yields
the second microscopic virtual-power relation

I (nR)ddaR
9P

J ('0 j +. vd) dvR

P

to be satisfied for all d and all P. Equivalently, using the divergence theorem,

I/((nR) - -nR)ddaR +
aP

I(Div - ')JdvR = 0,
P

and a standard argument yields the microscopic traction condition

S((R) = nR,

and the third microscopic force balance

Div - ru= 0.

(9.56)

(9.57)

(9.58)
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9.3.3 Actual external and internal expenditures of power

Finally, using the traction conditions (9.37), and (9.57) the actual external expenditure of
power (9.27) may be written as

Wext(P) = J(TRnR) - dan, + JbR x Rdv +

ap P
I S R n)dda (9.59)

Also, using (9.47), and (9.7), the stress power S': F' may be alternatively written as

1
Se: F: = Te: (FeT e) = -Te: Ce.

2
(9.60)

Thus, the corresponding actual internal expenditure of power (9.27)1 may be written as

(9.61)Wint (P) =J (Te :O+ iP+wic+ci -Vc)dvR.

P

9.3.4 Summary of consequences of the virtual power principle

To summarize, the consequences of the virtual power principle are:

(a) The stress TR df SeFi -T satisfies TRFT = FT-R and represents the classical Piola stress
which is consistent with the macroscopic force balance

Div TR+ bOR = PRY, (9.62)

and the macroscopic traction condition,

tR(fR) = TRnR- (9-63)

(b) With Me de FeT S' defining a Mandel stress, and

def
T:= 1/2 Me :NP, (9.64)

defining a resolved shear stress, with NP a symmetric deviatoric tensor defining the
"direction" of plastic flow (cf. eq.(9.15)), the microstress 7 satisfies the microforce
balance

t = 7F. (9.65)

(9.66)
(c) With

d-f Me: N ,
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defining a resolved tensile stress, with NC a symmetric tensor defining the "direction"
of craze flow (cf. eq.(9.19)), the microstress w satisfies the microforce balance

a = W. (9.67)

(d) The microscopic stresses z and are consistent with the microscopic force balance

Dive - 0, (9.68)

and the microtraction condition

((nR R-(9-69)

These macro- and microforce balances, when supplenented with a set of thermodynamically
consistent constitutive equations, provide the governing mechanical equations for the theory.

9.4 Balance law for the diffusion of hydrogen

Let C(X,t) denote the total number of moles of hydrogen atoms per unit reference volume.
Hydrogen is absorbed into the metal into normal interstitial lattice sites (NILS), and into
trapping sites associated with internal microstructural defects such as vacancies and dislo-
cation cores. We allow for m different sorts of traps, and accordingly assume that

C(X, t) = CL(X, t) + 1 Clk(X, t). (9.70)
k

where we have used the shorthand
m

k k=1

Next, we introduce some definitions:

(i) Number of moles of lattice sites per unit reference volume, NL: This is a
property of the host metal given by

NL (1 PM (mol/m 3 ), (9.71)
.MM

with d the number of interstitial lattice sites per metal atom, pm the mass density of
the host metal (kg/m3) and Mm the molar mass of the host metal (kg/mol). In bcc
and fcc metals, hydrogen can occupy either tetrahedral or octahedral sites. For a-iron,
indirect evidence indicates tetrahedral site occupancy of hydrogen at room temperature
293 K, in which case SC = 6. The mass density of iron is pm = 7.87 x 103 kg/M 3; the
molar mass is Mm = 55.8 x 10-3 kg/mol. In this case NL = 8.46 x 105 mol/m 3 (Krom
and Bakker, 2000).
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(ii) Number of moles of trap sites per unit reference volume, Nk (k = 1,... m):
For each different trap-type k, denote by N,, the number of moles of trap sites per
unit reference volume,

NTk (mol/m3 ) k = 1, ... , m. (9.72)

Each number of trap sites NTk is not a characteristic of the matrix and is very difficult to
estimate. However, various experimental investigations indicate that the trap density
depends on the history of the prior plastic deformation. Accordingly, it is commonly
assumed that

NTk = NTk(Y) (mol/m3 ) k = 1,... , m. (9.73)

(iii) Occupancy fraction 0L and OT: Let

def C
L OL 1, (9.74)

denote the occupancy fraction of the lattice sites, and

0e Tk _Ok<
OTk C , 0 s s1, (9.75)

denote the occupancy fraction of the trap sites.

Finally, changes in CL in a part P are brought about by diffusion of CL across the boundary
(P of P, and by the transformation rate between lattice and trapped hydrogen. That is, the
rates of change of lattice a hydrogen in P is given by

CL = -DiviL - ZCTk, (9.76)
k

where jL(X, t) is the flux of lattice hydrogen measured as the number of moles of hydrogen
atoms per unit area per unit time, and CTk is the transformation rate from lattice to trapped
hydrogen measured as the number of moles of hydrogen atoms per unit volume per unit time.
A specification of COTk is deferred to a later section.

9.5 Balance of energy. Entropy imbalance. Free-energy
imbalance

Our discussion of thermodynamics follows Gurtin et al. (2010, Section 64), and involves the
following fields
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ER the internal energy density per unit reference volume,

77R the entropy density per unit reference volume,

qR the heat flux per unit reference area,

9R the external heat supply per unit reference volume,

t > 0 the absolute temperature,

PL the chemical potential for the lattice hydrogen.

The balance of energy is given by

P ERdVR Vext(P) - I lR RdR + qR dv, -JP
ILJL - nRdaR,

where the last term in (9.77) represent the energy contribution into P by the lattice hydrogen.
Applying the divergence theorem to the terms in (9.77) involving integrals over the boundary
aP of P, and since /ext(P) = Wiit(P), using (9.61) we obtain

- Te: & + 7rAP + wc + - +- Vd + /LDivjL jL VALL + DivqR - R ) dvR = 0,

(9.78)

which upon use of the concentration balance law (9.76), and using the fact that (9.78) must
hold for all parts P, gives the local form of the energy balance as

+AL (L +Z Tk) L

k

VpL -Divqa+9R -

(9.79)

Also, the second law takes the form of an entropy imbalance

f7 dvR -
qR nR 

qR R,d9 a P

and the local entropy imbalance has the form of

RR -Div qR (9.81)

Henceforth we restrict our attention to isothermal conditions at a fixed tempearture 79.
In this case (9.81) reduces to

J( R

(9.77)

(9.80)

R = T'.. ,"+ 7 P + w ' + zud +- Vd

(9.82)TMR 2! -DivgR+ qR,
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and this with the local energy balance (9.79) implies that

( R R 9 1T rp+ ~

-L L+ EO+Tk) L *V[L < 0

k

Introducing the Helmholtz free energy

/bR = ER - R

(9.83) yields the following local free-energy imbalance under isothermal conditions,

1
b- Te: c- - - d- .Vd

2

-/1L L +ZOTk) L ' VAL 0.
k

(9.83)

(9.84)

(9.85)

Remark. For brevity we have not discussed invariance properties of the various fields
appearing in our theory. However, such considerations are straight-forward and extensively
elaborated upon in the context of a similar diffusion-deformation theory by Anand (2011)
and Di Leo and Anand (2013). Here, we simply note that all quantities in the free energy
imbalance (9.85) are invariant under a change in frame. D

9.6 Constitutive theory

By (9.16) the equivalent tensile plastic strain satisfies

(P(X, t) > 0,(

and by (9.20) the craze plastic strain satisfies

ec(X, 0) = 0, c(X, t) 0,

and hence both -yP and EC increase with time in any "inelastic process". We view 'yP and 6'
as measures of the past history of inelastic strain in the material. Recall that we have also
introduced an additional phase-field variable d. Here we consider a theory which allows for

o an energetic and dissipative effects associated with temporal changes in d, and the
gradient

g d dfVd. (9.88)

(9.87)

(9.86)-YP(X, 0) = 0,1
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We consider the gradients gd as a measure of the inhomogeneity of the microscale damage.

Let A denote the list
A = (Ce, CL, CTk, c, d, gd) (9.89)

Guided by the free-energy imbalance (9.85), we first consider the following set of consti-
tutive equations for the free energy R, the stress T', the chemical potential YL of the lattice
hydrogen, and NTk the chemical potentials of the trapped hydrogen:

R = R = Te (A), /-L = AL (A), (9.90)

Substituting the constitutive equations (9.90) into the free-energy imbalance (9.85), we
find that it may be written as

aVR(A)

ace
I Te

2
+ a A)

aCL
- I LL)

& R(A)
ace

OaO(A)

- d

7 -PL

aOR

agd

aR (A)

aCTk

L) gd

) CTk +L 'LVPL 0

We assume that the free energy function iR(A) delivers the stress Te and the
potentials PL and Tk through the state relations

T _2 ace SLR(A)JL acL
_ aR(A)

I-Tk - acTk

Further, introducing energetic microstresses (WenXen, en) through the relations

Wen aR(A)
Len= a~c

and dissipative microstresses (xdiS, dis) through the relations

Wdis W - Wen, adis = -- 0en) (9.94)dis - ten,

respectively, we are left with the following reduced dissipation inequality

D = 7ry + Wdisjc+ Zdisd + dis d L (
aTkR(A) L

acTk ) CTk -jL 'VPL >_0.

(9.91)

hemicalc

(9.92)

= )R (A) _ aV)R(A)

d 'agd
(9.93)

/Tk = TkA -

(9.95)
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To the constitutive equation (9.90), we append a Fick-type relation for the flux of the
diffusing species,

(9.96)jR = -M(A) VI,

where M is a mobility tensor, and A is the list

A= (C', CL).

Using (9.96), the dissipation inequality (9.95) may be written as

D =7ri" + Wdise' + adsd + dis -1'

(9.97)

(9.98)aOR(A) .
&CTk JTk+LM

We assume that the terms in (9.98) individually satisfy the dissipation inequalities

7r1 AP > 0, Wdise > 0, ZZsd'S > 0,
(9.99)

dis . g> > 0, (AL - ITk)OTk > 0 VAL ' M VA 0.

Thus, note that the mobility tensor M is positive-semidefinite.
The theory presented thus far is still quite general. In the following sections we introduce

special constitutive equations which should be useful in applications.

9.7 Free energy

Henceforth we restrict our attention to materials for which the response function OP(A) is
taken to depend on Ce ony through its principal invariants

Ice = (II(C') I2(C'), 13(C')) (9.100)

so that the free energy function (9.90)1 becomes

S R Ce L Tk, (9.101)

Thus, from (9.92), it follows that the constitutive equation for T', [L, and AT are,

Te =2 /R(Ie, CL, Tk, c d
aCe

aOR (Ce, CL, CTk, c d

OCL

(9.102)

(9.103)

+ N L

k



&aVR(Ice, CL, CTk, ~,C d gd)

aCTk

and that the constitutive equation for T' is an isotropic function of Ce.
Mandel stress is defined by (cf. (9.45))

Then since the

M e = Ce",

we find that Te and C' commute,

CeTe - TeCe,

and hence that the Mandel stress is symmetric.

Now, the spectral representation of Ce is

3

Ce = e 2 re 0 re,

where (ri, r', re) are the orthonormal eigenvectors of Ce and

positive eigenvalues of Ue. Instead of using the invariants Ice,
alternatively expressed in terms of the principal stretches as,

R OR (Ae, A I AI CL, CTk, d

Ue, and (A', A', A')
the free energy (1)

Let
3

E' = ln U = Elri 0 re,

denote the logarithmic elastic strain with principal values

Ee In Aj,

and consider a free energy function of the form

?)R(A ~ CL, CTk d,g) R(Ei, Ei, E , CL, CTk, C

Then, the Mandel stress is given by

e R(E, E 2 ,E, CL, CTk, c, d,

M = OEe ri O r.

I-tTk =

159

(9.104)

(9.105)

(9.106)

(9.107)

are the

may be

(9.108)

(9.109)

(9.110)

(9.111)

(9.112)
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With the logarithmic strain defined by (9.109), and bearing in mind (9.111) and (9.112),
we henceforth consider a free energy of the form

R =RE-LI (Tk 9.113)

with IEe a list of principal invariants of E', or equivalently a list of principal values of E'.

The Mandel stress is then given by

Me - a/R (Ee, CL i CTk, Ec d, g (9.114)
OEe

and the corresponding Cauchy stress is

T = Je-ReMeRe T . (9.115)

Further, the chemical potentials UL and JT are given by

4R (IEe , L CTk, C , d
-UL CL116)

and

JTk = CL, CTk, c d, g (9.117)
DCTk

respectively.

As a further specialization we consider

OR/R(IEe, CL i CTk, cdgd) -gR(d)/(TEe, CL, CTk) + 4rix(CL, CTk)

+ g(d) c(cc) + "j2 Vd|2

Here:

(i) ' is a chemo-elastic energy given by

'(IEE CL C, Tk) =GEe|2 + K - G) (tr Ee) 2

(KH) (CL - CLO)(tr Ee) - Z(KTk)(CTk - C k)(tr Ee)
k

(9.119)

which is a simple generalization of the classical strain energy function of infinitesimal

isotropic elasticity combined with a thermal entropic contribution, and contributions

due to the presence of lattice and trapped hydrogen in the material. Here G is the shear

modulus, K the bulk modulus, CL and C k are reference lattice and trapped hydrogen
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concentrations, and QH and Qk are molar volumes of hydrogen in lattice and trapped
sites, respectively. There is insufficient information from either physical experiments or
detailed micromechanical models to distinguish between QH and QTk. For simplicity, we
assume henceforth that that the amount of chemical expansion caused by the trapped
hydrogen is the same as that caused by the lattice hydrogen, so that

H QTk. (9.120)

(ii) 0'ix is a chemical free energy related to the mixing of hydrogen in the host metal,
given by

Rn"ix(CL, CTk) = Rnixa ) nixaP (CTk) (9.121)

where g$ixatt and VmixtraP are chemical free energies related to the mixing of lattice
and trapped hydrogen in the host metal. As a simple continuum approximation to
mixing, we take these to be given by the entropic contributions in a regular solution
model (cf., e.g., DeHoff, 2006):

R nixa t
"(CL) =PLCL + R79NL(OL I OL + (1- OL) Ln( - OL)) (9.122)

rnxtaP(Ck) = E [IkCTk + RiNTk(OTkln OTk - (1 - OTk) ln(1 - OTk))] , (9.123)
k

where [to and po are reference chemical potentials, and R is the gas constant. a
reference chemical potential, R the gas constant, and V the constant temperature
under consideration.

(iii) The function g(d) is a monotonically decreasing degradation function of d, which sat-
isfies

g(0) = 1, g (1) = 0, g'(d) < 0, and g'(1) = 0. (9.124)

A widely-used degradation function is

g(d) = (1 - d) 2 ; (9.125)

we adopt it here. 3

(iv) We assume that the crazing process gives rise to local disordering which stores energy
according to,

V,(E') = (1 - x) SeeC, (9.127)

3 In numerical calculations g(d) is modified as

g(d) = (1 - d) 2 + k, (9.126)

where k 0 is a small positive-valued constant which is introduced to prevent ill-conditioning of the model
when d 1.
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with S' > 0 a constant modulus with units of stress representing the craze flow re-
sistance, and x is positive-valued fraction, such that xS' ' represents the dissipation
due to craze flow, and that the fraction (1 - x) SYe is stored in the material.

(v) In order to account for gradient effects for the damage we have included a quadratic
term dependent the gradient Vd,

"crit2 IVdl 2, (9.128)

where O4 it > 0 is coeficient with units of energy, and f > 0 is an internal length scale
for the width of zones across which the damage varies rapidly.

Thus, combining (9.118), (9.119) and (9.122), the free energy is given by

R = g(d) G Ee2 + I (K - 2G) (tr Ee) 2 - (KQH)(C - C) (tr Ee)

Re (IE ,C)

+ g(d) [(1 - x) Scc] Vb critf
2 2Vd12

I.- %V Of R(9.129)

+ L CL + Ri9NL (L lnOL + (1 - OL) ln(I - OL))

+ Z [PkCTk + RONTk(OTk ln OTk + (1 - OTk) In(1 - OTk))]

k

Then, by (9.92) the Mandel stress, and the chemical potentials are given by

= g(d) [2GEe + K(trEe)1 - KQH(C - 00)1]

L L + Rd ln ( L - g(d)KQH(trEe)' (9.130)

pITk = /krk + RV ln (I OTk) - g(d)KQH(tr Ee)
1 - 0

12

where we have used

SC CL CTk and C C k (9.131)

k k

Further, from (9.129) and (9.93)
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Wen = g(d) (1 - ;) S ,

Lue = g'(d) [ e (_Te , C) + RC(E ) ,(9.132)

en = 2Vritf2Vd.

9.8 Hydrogen trapping

Recall that in the species balance law for hydrogen,

OL = -DivjL - Tk, 9.133)
k

we need to get an estimate for the rate of change of hydrogen in trapped sites, OTk. Also recall
from the dissipation inequality (9.99)4 that each CTk must satisfy a dissipation inequality of
the form:

(PL - pTk) Tk > 0. (9.134)

The term

Fef (PL Tk) (9-135)

represents a thermodynamic force conjugate to the time rate of change of hydrogen trapping
at the kth trap type, From (9.130)3,4 the thermodynamic force Fk is given by

Ik= 0- Tk + R9 [n ( L In OTk (9.136)

Remark. Following (?), in the literature on trapping of hydrogen it is often assumed
that the chemical potentials of the lattice and trapped hydrogen species at each different
trap-type satisfy

pL = Tk -0 (9.137)

so that the mobile lattice hydrogen and the trapped hydrogen are always in local equilib-
rium. According to (9.137), (9.130)3,4 give

0 OL0 0
IL + R7 nPTkR9I Tk (918)

(I - OL) 1 - OTk

which can be simplified to read

1Tk L Tk, 9.139)
1 - Tk I1--OL
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where KTk is an equilibrium factor given by

KTk = exp (RB , with EBk = -(0 ) = constant. (9.140)

Here EBk < 0 represents a binding energy for the trap-type.

e Oriani's assumption of local equilibrium imples that once we know the lattice concen-
tration CL and the trap binding energy, we can calculate the occupancy fraction 0 Tk

for the trap sites. Indeed for 0L < 1, eq. (9.139) reduces to

Tk -KTk 6L- (9.141)

It is not always necessary to model hydrogen trapping through the assumption of equi-
librium between lattice and trapped hydrogen using (9.137). Guided by (9.134) one may
envision a constitutive equation for CT of the form

OTk = CTk(.Fk, plus other factors) with k /-L - PTk, (9.142)

where the time rate of change of trapped hydrogen is a function of the difference in the
chemical potentials and other factors affecting the trapping rate. E

In this paper we consider dislocation cores and vacancies as the major sites which trap
hydrogen, and take

CT = CTD + CTV, (9.143)

where CTD and CT are concentrations of hydrogen trapped at dislocation cores and vacancies,
respectively. We next provide estimates for CTv and CTD, and based on the dissipation
inequalities (9.134) require that

-DTD ;> 0 and FD = (PL - PTD)- (9.144)

and
FVCTv > 0 and FV = (puL - tTV). (9.145)

9.8.1 Hydrogen trapping by dislocation cores

For trapping at dislocation cores,

e we adopt the classical and widely-used Oriani's postulate of "local equilibrium" be-
tween lattice hydrogen and and hydrogen trapped at dislocation cores (

in which case (9.141) for OL < 1 gives

- OTD =KTDOL, (9.146)
1 - OTD



165

where KTD is an equilibrium factor given by

KTD = exp pBD (9.147)
(R79

with EBD < 0 a binding energy for the hydrogen and dislocation cores.
The time rate of change of trapped hydrogen OTD can now be determined through the

equilibrium equation (9.146). In what follows we essentially summarize the arguments of
Sofronis and McMeeking (1989) and Krom et al. (1999). Since NL and KTD are constant,
using (9.146) the trapped hydrogen concentration CTD may be expressed as a function of CL
and NTD,

CTD = CTD(CL, NTD) NTD (9.148)
NL

KTDCL

Thus the evolution of CT is given by

OTD -D TD. (9.149)
(9CL 8NTD

Next from (9.146)
&CTD _ CTD (-OTD) (9.150)
&CL CL

Let
NTD = NTD(-P) (9.151)

denote the number of moles per unit volume of dislocation-core trap sites, and

HTD cTDY > 0 (9.152)
HTD d-yP

denote the rate of change of NTD with plastic flow. Then

CTD OTDHTD P. (9.153)
ONT

Then, use of (9.150) and (9.153) in (9.149) gives the following important estimate for the
time rate of change of CT:

OTD CTD( OTD)OL T HTD (9.154)
CL

9.8.2 Hydrogen trapping by vacancies

As remarked earlier, it is not always necessary to model hydrogen trapping through the as-
sumption of equilibrium between lattice and trapped hydrogen. Here we propose constitutive
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equation for OTV of the form

TV AP > 0 if (9.155)

0 otherwise.

This evolution equation (9.155) for CTv is intended to hold during active plastic deformation
yP > 0, and not intended to allow for static recovery effects (CTV < 0) when there is no
plastic flow ( P = 0). In (9.155),

A= A (CLI) > 0 (9.156)

represents an accumulation modulus for the hydrogen-vacancy complexes during plastic flow,
which we take to depend on the current values of CL, and the Mandel stress M' through the

def am
stress triaxility

defined in terms of two of its invariants, 4

-def 1 defi
T= -IM and aM -trMe. (9.157)

2 3

We expect that the accumulation modulus will increase as CL increases, and it will also
increase as the level of stress triaxiality increases, a stress state which we expect to favor an
increase in the rate of hydrogen-vacancy complexes. The introduction of a dependence of the
accumulation modulus on the stress triaxiality is motivated by the use of such a dependence
in models for ductile fracture of steels.

To summarize an estimate of the rate of change of trapped hydrogen is given by

OT = OT + OTD, with

CTDz( OT TD,.~p 6 HTD dN 7P)OTD CL L TDHTD TD - NTD , HTD dlT , (9.158)

OTV = AP, A= A(CL )>0.

Remark. In the following chapter we show that the particular form,

a1
A = Aoexp (a- I2 (9.159)

1+Aexp -) )

4We neglect a dependence on the third invariant detMe.
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for the accumulation modulus A, with material parameters {a, Ao, A1, C } is of use in
modeling the trapping of hydrogen by vacancies. D

Remark. Modeling of hydrogen trapping is a difficult subject. We have not departed
from the literature in our model for the evolution for CTD. But evolution equation for CV
proposed above is a new suggestion which will need to be refined as more information from
atomistic modeling about trapping of hydrogen in the form of hydrogen-vacancy complex
becomes available. E

Remark. In writing (9.148) we have assumed
lattice chemical potential (9.130)3 reduces to

PL = /12 + R79 In

that OL < 1, under this approximation the

-g (d)KQH (tr E'). (9.160)

F

9.9 Hydrogen flux

We take the hydrogen mobility tensor to have the representation

M = mL 1 with mL =nL(CL) >0 (9.161)

the scalar species mobility. Using (9.161) we have that the hydrogen flux jL is given by

jL = MLVIL. (9.162)

We take the hydrogen mobilit mL to be and given by

DLCL
mL R7 (9.163)

9.10 Balance of chemical potential /pL

We may write the local balance equation for the concentration of lattice hydrogen as a local
balance equation for the lattice chemical potential. First, the local balance equation for the
concentration of hydrogen atoms, reiterated from (9.76), is

OL +T = -DivjL (9.164)



168

Further, with OT estimated in (9.158) and L = -mLVL, we obtain the following partial
differential equation for OL

1 + CTD(I OTD) OL = Div (mLVAL) - OTD HTD - A P. (9.165)

Taking the time rate of change of the constitutive equation for the lattice chemical potential
(9.160) yields

(9.166)
R9 -t

A tL =CCL - g (d) KQH tr E' - g'(d)dKQH tr Ee.

Finally, eliminating OL by combining (9.165) and (9.166) yields the following local balance
equation for the lattice chemical potential

Div (mLVL) - D* CL g(d)
RVg

KQH trE' - D*CL dg(d)dKQEe
RT dd

with

nd

CTD(I - OTD)
D* =1+ CL

DLCL
mL R7

and
DLCL

mL R79

9.11 Plastic flow rule

Next we consider a constitutive equation for the microforce 7r which is conjugate to P. To
model the resistance to plastic flow offered by the underlying microstructructural state of
the material we introduce a list

of m scalar internal variables, and presume that the microforce 7r is given by a constitutive
equation

7r = S'(, CL, CTk; (9.169)

and in order to satisfy the dissipation inequality (9.99)1, we require that

SP CL, CTk, -P; t9 ) > 0. (9.170)

Here V is the constant tempearture of the isothermal theory under consideration.

The microforce balance (9.65), viz.

(9.171)

CL
Ro

- OTD HTD-(P- AyP.

, CTD(I - OTD) a
CL

with

(9.167)

(9.168)
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and the thermodynamically consistent constitutive equation (9.177) give the strength re-
lation for plastic flow,

T = Sp( , CL ,Tk, 7; 7) when '' > 0. (9.172)

Recalling the definition (9.49) for the resolved shear stress, we find that (9.181) and (9.99)1
require that

( M8: NP) = S(,CL, CTk, x; 9) when 'P > 0. (9.173)

We assume that

the deviatoric plastic flow direction NP is parallel to and points in the same direction
as the direction of the deviatoric stress M:

me
NP= 0 whenever Me # 0. (9.174)

We call this the codirectionality hypothesis (cf., Gurtin et al., 2010). In this case the
resolved shear stress in given by

def 1
- M8. (9.175)

Using (9.188) and (9.189) the plastic stretching DP in (9.13) may be written as

DP = P M . (9.176)
2t

The strength relation (9.182) serves to determine P when it is non-zero.

9.11.1 Specialization of the strength relation for plastic flow

The rate-controlling process for plastic flow in crystalline metals is the thermally-activated
motion of dislocations past obstacles on the slip planes. Obstacles to dislocation glide can
be divided into two major types. In particular, one can distinguish between barriers that
can be overcome with the aid of thermal activation and those that cannot - thermally
activatable and athermal barriers, repectively (cf., e.g., Kocks et al., 1975). Accordingly, as
a specialzation for the list of internal variables , we introduce two parameters

S ;> 0 and Sa > 0,

and presume that they have dimensions of stress. The resistance S,, represents a resistance
due to short-range thermally-activatable barriers, and Sa represents a resistance due to
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long-range athermal barriers to plastic flow by dislocation glide. We call S,, the thermally-
activatable resistance and Sa the athermal resistance to plastic flow. 5

" Short-range thermally-activatable obstacles: Typical examples of short-range
thermally-activatable obstacles include the lattice (or Peierls) resistance, vacancies,
interstitials, solute atoms, and forest dislocations. Glide dislocations can overcome such
obstacles with the aid of thermal-fluctuations. In pure bcc materials, S, is primarily
controlled by the interactions of the glide dislocations with the lattice resistance.

" Long-range athermal barriers: Typical examples of long-range athermal barriers
include the elastic stress field due to dislocations clusters. Such barriers, whose resis-
tance is represented by Sa, cannot be overcome with the aid of thermal fluctuations.
The resistance Sa is usually taken to represent the strain-hardening characteristics due
to dislocation accumulation.

Next we consider a constitutive equation for the microforce 7r which is conjugate to yP,
of the form

= SP(Sa, S, AP; 1), (9.177)

and in order to satisfy the dissipation inequality (9.99)1, we require that

SP(Sa, S,i P; 9) > 0. (9.178)

Here i0 is the constant temperature of the isothermal theory under consideration. Adopting
the thermally-activated theory of plastic flow by dislocation glide (Kocks et al., 1975), as a
particular form for SP(Sa, S*, /P; d) we consider

SP(SaSiP;9)=Sa +S*R with R= - kB(9.179)
A F (P YO)

where the strain rate dependent function R has values R E [0, 1]. Here 'o is a reference shear
rate, AF is an activation energy, and p and q are "barrier shape parameters" that lie in the
ranges

0 < p < 1, and 1 < q < 2. (9.180)

The microforce balance (9.65), viz.

: = 7, (9.181)

and the thermodynamically consistent constitutive equations (9.177) and (9.179) give the
strength relation for plastic flow,

f = Sa +S*R when 'r P>0. (9.182)
5The thermally activatable resistance S, is often denoted by i(O) and called the mechanical threshold

stress in the literature (cf. e.g., Kocks et al., 1975).
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Equation (9.182) implies that a necessary condition for yT > 0 is that

(-r - Sa) > 0; (9.183)

we assume here that this condition is also sufficient for 'P > 0. This means that plastic flow

occurs only when (9.183) holds. Equivalently P = 0, and no plastic fow occurs when

(-r - Sa) < 0. (9.184)

Thus, introducing

r e -- (9.185)

as an overstress, the relation (9.182) may be inverted to give

0 if Teff < 0,

P j -o exp [_ (AF [~-(ff)P] qj if teff> 0. (9.186)

kB 9S

Recalling the definition (9.49) for the equivalent shear stress, we find that (9.182) requires

that

M : NP = Sa + S* R when P > 0. (9.187)

We assume that

* the deviatoric plastic flow direction NP is parallel to and points in the same direction
as the direction of the deviatoric stress Me:

me
NP= 0 whenever M8 P 0. (9.188)

We call this the codirectionality hypothesis (cf., Gurtin et al., 2010). In this case the
equivalent shear stress in given by

T d M8 . (9.189)

The thermally activatable resistance S, for bcc materials is primarily controlled by the
Peierls lattice resistance, and for such materials it is reasonable to assume that

S* ~ constant. (9.190)

The athermal resistance Sa, is taken to represent a resistance to dislocation motion offered
by the statistically stored dislocations. For the evolution equation for Sa we assume that

Sa = [Ho (I - S,) ri lip Saltz0o = SaO (9.191)
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where HO > 0 and Sas > SaO, and r are material parameters.

9.11.2 Initiation condition for crazing and craze flow rule

Craze initiation condition

The spectral decomposition of the Mandel stress Me is

3

Me z o6i & 6i (9.192)
i=1

where {oIi = 1, 2, 3} are the principal values and and {Ii = 1, 2, 3} are the principal
directions of Me. We take that the principal stresses to be strictly ordered such that

Oi 92 0 3 .

We postulate that crazing in a material neighborhood will occur when the following two
conditions are met:

(Cl) With CT, representing a concentration of hydrogen trapped as hydrogen-vacancy com-
plexes, and CTc, denoting a critical value of CV at which craze flow initiates, the first
condition requires that

CTV = CTV cr. (9.193)

(C2) This second condition requires that maximum principal stress and the mean normal
stress be positive,

1
or, > 0, Om =( l + U2 + 03 ) > 0. (9.194)

3

We will represent the transition from standard plastic-flow by dislocation glide to dilatant
craze-flow by a change in the flow rule by using a switching parameter x with values,

I if conditions C1 and C2 are met,
0 otherwise,

Craze flow rule

Not much is known about the details for craze flow. So on pragmatic grounds we assume
that the dissipative microforce Wdis is given by a simple constitutive equation

Wdis = g(d) xS when e > 0. (9.195)

We presume that
(9.196)S' > 0,
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is a constant modulus with units of stress representing the craze flow resistance, and O > 0
is positive-valued fraction, such that z S'ec represents the dissipation due to craze flow, and
so that the dissipation inequality (9.99)2 is satisfied.

Next, from the microforce balance (9.67) and the constitutive equations (9.132)1 and
(9.195) we obtain the following strength relation for craze flow,

-= g(d)S' when ec>O. (9.197)

Recalling the definition (9.53) for the resolved tensile stress, we find that (9.197) requires
that

Me: N' = g (d) Sc when ec > 0. (9.198)

Let t* denote the instant of time in a deformation history when crazing initiates. We
assume that the direction m for craze extension coincides with the maximum principle stress
direction ei at this time t*,

M = 61Wt), (9.199)

and thereafter remains fixed. That is, we assume that

* the craze flow direction Nc is parallel to and points in the same direction as the direction
of the eigen projection-tensor 61(t*) 9 61(t*) corresponding to the maximum principal
value o-1 of M' at time t*:

NC = ei(t*) ® e1(t*). (9.200)

In this case the resolved tensile stress o- = Me: NC is equal to the maximum principal value
of M,

- 1. (9.201)

Thus the strength relation (9.197) becomes,

al = g(d) Sc when e' > 0. (9.202)

Recall that we have required that -1 > 0 when e' > 0.

We may rewrite (9.202) as
f=0 when ec>0, (9.203)

where
d -ef (924f : -_ - g (d)SC, (9.204)

represents a yield function for craze flow. Equation (9.203) implies that a necessary condition
for c > 0 is that

f = 0; (9.205)
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we assume here that this condition is also sufficient for ' > 0. This means that craze flow
occurs only when (9.205) holds. Equivalently ' = 0, and no craze flow occurs when

f < 0. (9.206)

Thus, in our rate-independent theory for craze flow we have

C > 0, f < 0, ec f = 0, (9.207)

which are the Kuhn-Tucker conditions associated with rate-independent craze flow. It may
be shown that in the rate-independent limit, c > 0 if and only if the consistency condition

when f =0 (9.208)

is satisfied. The consistency condition may be used to determine the value of e' when it is
non-zero.

Using (9.200) and (9.19) the craze stretching Dc may be written as

DC = ec 81 g ei. (9.209)

The consistency condition (9.208) serves to determine eC when it is non-zero.

9.11.3 Switching condition for the inelastic flow rule

In our continuum model we will represent the transition from shear plastic-flow to dilatant
craze-flow by a change in the flow rule. To do this we introduce a switching parameter x,
which we specify as

if conditions C1 and C2 are met,
otherwise,

(9.210)

and take the evolution equation for P as

FP = D F1, with

f P Mno
D' = (2, f

{.;c( & 8

(9.211)if x = 0,

if x = 1.

Once the craze initiation conditions have been met, the craze-flow will be taken to continue
as long as the maximum principal stress is positive.

Remark.
Let a quantity (.)t with a superscript t denote the value of the quantity at the instant

that x =1 and plastic flow transitions from shear flow to craze flow. Then in order to ensure

1
X =0
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continuity of flow resistance the value of the craze resistance is taken as

SC t= v/5 St + S*
kB O

XF
(9.212)

The factor of v/5 is introduced because the resistances for plastic flow are in shear, while
that for craze flow is in tension.

9.12 Evolution equation for the phase-field/damage vari-
able d

Recall the reduced dissipation inequalities (9.99)3,4

dis d > 0, dis - Vd > 0. (9.213)

As special constitutive equations for djs and >cdis we assume that the vector microstress (
is purely energetic so that

dis 0, (9.214)

while 'Ls is taken to be given by

Zdi = a + ( d, with a>0, and (>0, (9.215)

so that the dissipation inequality (9.213) is satisfied, that is

D =(a+ ( d> 0 whenever d > 0. (9.216)

Next, as a specialization for a we take take it to be given by

a = 2 ,it (9.217)

where 44" > 0 is a material parameter. Note from (9.216) that in the rate-independent limit
0), the energy dissipated per unit volume as d increases from 0 to 1 is equal to

2cit. (9.218)

Thus 2 0c4 t represents an energy per unit volume dissipated during fracturing. There is of
course an additional "viscous" energy dissipation due to the contribution from the term
involving (.

) 
-1

I 7 q
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Next, recall from (9.94) the microstresses z and may be decomposed into energetic
and dissipative parts as

= en + dis, (9.219)= en + dis.

From (9.94), (9.132), (9.214), and (9.215) the scalar microstress x and the vector microstress
are given by the thermodynamically consistent constitutive equations

= 2(1 - d) [ (IEe, C) + / Ec) +

energetic dissipative

= 20c/itf2Vd.

energetic

These constitutive relations and the microforce balance (9.58), viz.

Dive - L= 0,

yield the following evolution equation for d,

(d = F,

def c 2 "t2
F=2(1 - d) V)O - 20[i + 2V[~ A~d,

,oo def 7 (I)4c )

(9.220)

(9.221)

(9.222)

(9.223)and ORI

represent an undamaged free energy, and a critical value of energy for damage, respectively.

Consider the rate independent limit (( = 0) in the absence of the gradient energy. Then
the microforce balance during the damaging process d > 0 requires that

F = 2(1 - d) 42 - 2V{[t = 0, (9.224)

which gives

writ

when d> 0. Next, using the fact that d lies in the range d G [0, 1], we must have that

if 100 < bcr",i R/ 1 (9.225)
possible if ' > 0 .

with

where

.0,1
d =

> 0
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To enforce this constraint in the rate-dependent evolution equation (9.221), in the expression
(9.222) for F, we add and subtract the term 2dV4r"l to obtain

def [p ~rt rt fF = 2(1 - d) R] - 2/[" [d - E2 Ad] (9.226)

Then the constraint (9.225) is satisfied if eq. (9.226) is modified to include a Macauley
bracket as follows,

F 2(1 - d) (0 - " ) - 20bit [d -- 2 Ad] . (9.227)

where (e) is the Macauley bracket, i.e.,

() 0, X < 0,
x X > 0.

We have not accounted for loading-and-unloading and only considered histories in which
the undamaged free energy 00 increases monotonically. To account for loading-and-unloading
we introduce a history field function N defined by (cf., Miehe et al., 2015, 2016)

def max[K
N = max [/(s) R - R")] (9.228)

sE[Ot]

Thus, if for some reason 00 is less than the maximum value attained in the past history,
then there is no increase in damage.

Summarizing, the evolution of d is governed by an Allen-Cahn type phase-field partial
differential equation,

2(1 - d) N - 2,o"rit(d - f2 Ad), with
=e mx-4crit\

max [()(s) - R)] , where
SE[O't] (9.229)

de LGIEe12 + (K- G) (tr Ee) 2 - (KQH)(C - CO)(tr Ee) + (1 - ;<) See".

9.13 Numerical Implementation of the theory

We have implemented our theory in the finite element software Abaqus/Standard, 2016 by
writing a user element subroutine (UEL) for four-noded isoparameteric quadrilateral plane-
strain (UPE4) and axisymmetric (UAX4) elements which couple mechanical deformation,
hydrogen diffusion, and damage. In our numerical implementation we neglect body forces.
For the implementation of hydrogen diffusion we have chosen the lattice chemical potential
as our solution variable.
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Chapter 10

Coupled
deformation-diffusion-fracture

simulations of hydrogen
embrittlement of a steel

In this chapter we focus on coupled deformation-diffusion-damage simulations of hydrogen
embrittlement of a steel. Some interesting phenomena are numerically studied. Specifically,

" In section 10.1 we estimate the material parameters for a ferritic steel;

" In section 10.2, we show the results on uniaxial tension of round bars;

* In section 10.3, fracture in plane strain bending of U-notched specimens is studied;
and

" Finally in section 10.4, Plane strain tension of an asymmetrically notched specimen is
studied.

10.1 Estimation of material parameters for a ferritic
steel

The several material parameters/functions that appear in the theory, need to be calibrated
from experimental data. Unfortunately there is no complete set of experiments for any one
given material in the literature, from which we may estimate all the material parameters in
our theory. In this section we estimate the material parameters for the SA 106 ferritic steel
studied experimentally by Xu and Rana (2009), and several other material parameters are
taken directly from the published literature.

179
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10.1.1 Material parameters which characterize the elastic-viscoplastic
response of the steel in the absence of hydrogen

For the SA 106 steel we take the Young's modulus E and the Poisson's ratio v to have values,
E = 204GPa and v = 0.254, which using standard relations of isotropic linear elasticity may
be converted a shear modulus G and a bulk modulus K, with values given in Table 10.1.

The data shown in Fig. 8-1 for the engineering stress-strain curve for the test done in
air was used to estimate the viscoplasticity stress-strain response of the SA 106 steel. First,
since we only have data at one strain rate, the flow parameters {y, AF, p, q} in (9.186) are
estimated based on data for other bcc materials including steels available in the literature
(cf., e.g., Kothari and Anand, 1998). These are given in Table 10.2.1

Next, the strain-hardening parameters {s,, So, Ho, S. , r} listed in (9.190) and (9.191)
were estimated by fitting the engineering stress-strain curve shown in Fig. 8-1 for the test
done in air. To obtain a fit beyond the onset of necking in such a test required a finite element
simulation of the tension test, and adjusting the material parameters shown in Table 10.2
to obtain the fit shown in Fig. 10-1. The red dotted curve is the experimental data, and the
solid black line is the fit to this data. The fit is quite good. Our theory does not include a
model for ductile fracture in air due to the classical mechanism of nucleation, growth, and
coalescence of cavities, so the final drop off in load is not captured by our model, but until
that point the engineering stress-strain curve for the SA 106 is well-captured by our model
and the material parameters listed in this section.

Table 10.1: Elasticity parameters

G, GPa K, GPa
81.34 138.21

Table 10.2: Viscoplastic flow parameters

0, s- 1 AF, J p q
1.73 x 106 1.38 x 10-19 1 1

Table 10.3: Strain-hardening parameters

S*, MPa So, MPa Ho, MPa S,, MPa r

291.98 80.96 1920 262.12 1.2

'We have succesfully used these values of the viscoplastic flow parameters to model the strain-rate sensitive
response of API X65 steel reported by El-Danaf et al. (2013). For brevity, we do not show the results for
that steel here.
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Figure 10-1: Fit of the engineering stress-strain curve for the SA 106 steel tested at a strain rate

of 1.3 x 10- 4 s- 1 in air by Xu and Rana (2009). The red dotted curve is the experimental data and

the solid black line is the fit to this data.

10.1.2 Material parameters which characterize the solubility of
hydrogen in the steel

In order to model the experimentally relevant boundary condition of a host metal exposed

to - and in equilibrium with - a hydrogen atmosphere at a given partial pressure PH2 and

temperature in, we must consider the equilibrium between the atomic hydrogen in the metal

and hydrogen molecules in the gas (cf. e.g. San Marchi et al., 2007 and Krom et al., 1997). At

equilibrium, the chemical potential of dissolved hydrogen in the solid must equal the chemical

potential of the gas, that is pH = I/IH 2 , where H denotes the atomic hydrogen dissolved in

the solid. For an ideal gas, a simple analysis shows that the hydrogen concentration CL

dissolved in the lattice is given by Sieverts' law (San Marchi et al., 2007; Di Leo and Anand,
2013),

CL=K pH;, with K = Koexp R , (10.1)

The solubility K in (10.1) is typically obtained from experiments under conditions in which

the lattice is unstrained. The experimental data is fit to an Arrhenius relation of the form

shown in (10.1)2, from where the pre-exponential coefficient KO and the energetic term AH

are determined. The solubility parameters used here, taken from San Marchi et al. (2007),
are listed in Table 10.4. For a constant temperature of V = 300K, substituting these values
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in Sievert's law (10.1) gives
CL 0.0086 VP.H2 .

Table 10.4: Solubility of hydrogen in the steel

Ko, mol/(m 3 /MPa) AH, kJ/mol
820 28.6

10.1.3 Material parameters which characterize the diffusion of hy-
drogen in the steel

Values for the number of moles of lattice sites per unit reference volume, NL (a property
of the host metal), the partial molar volume of hydrogen QH, and the the lattice diffusion
coefficient DL of hydrogen at room temperature of 300 K for iron are taken from the literature
(Krom et al., 1999) and listed in Table 10.5.

Table 10.5: Diffusion of hydrogen in the steel

NL, mol/m3  QH , mol/m 3  DL, m2 /s
8.46 x 105 2 x 10-6 DL = 1.27 x 108

10.1.4 Material parameters which characterize the trapping of hy-
drogen at dislocations

In accordance with Kumnick and Johnson (1980), Sofronis and McMeeking (1989), and Krom
et al. (1999), the number of trap sites NT is assumed to increase with an increase in the
equivalent plastic shear strain -yP. This relation, and the trap binding energy EBD are given
in Table 10.6.

Table 10.6: Trapping of hydrogen at dislocations

NTD, mol/m 3  EBD, kJ/mol

NTD - 1 0 (23.26-2.33exp(-3.1754-yP)) -60

10.1.5 Material parameters which characterize the trapping of hy-
drogen at vacancies, craze initiation, as well as damage ini-
tiation and evolution

Recall (9.158)3 which gives the the rate of change of hydrogen trapped by vacancies, viz.

A = (CL 0.

(10.2)

OTV = A- , (10.3)
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Here we specialize the expression for the accumulation modulus A, and estimate the
material parameters appearing in this special from. First, we assume that the accumulation
modulus may be expressed in the separable form

A = Aoexp a) f(CL
( ,)f(C)>0

(10.4)

where ca is a a stress-triaxiality parameter, and f(CL) is a positive-valued function of CL*

First, using Sievert's law (10.2), we convert the data for elongation to failure versus
hydrogen pressure data from Xu and Rana (2009) shown in Fig. 8-1(b), to elongation to
failure versus lattice concentration of hydrogen; this is shown in Fig. 10-2.

0.4

0.35

0.3

0.25

0.2

- - - I

* Xu and Rana data
-,- Fit

F0

0e

0.15
0 0.01 0.02 0.03 0.04 0.05

Hydrogen concentration [mol/nm 3

Figure 10-2: Elongation to failure Ef versus initial lattice hydrogen concentration CLO, for the

SA 106 steel tested at a strain rate of 1.3 x 10- 4 s- 1 in air by Xu and Rana (2009). The solid blue

dots are the experimental data and the black line is the fit to this data, discussed below.

In simple tension under monotonic straining, and in the absence of hydrogen diffusion

eq.(10.3)i may be integrated to give,

CV= AyP = A V3e0, (10.5)

where EP = -YP/V'3 is the equivalent tensile plastic strain. Recall from (9.193) that we require

CV to reach a critical value CTr for crazing to initiate. From (10.5) and (10.4) CTVc, is

given by,

CTV Cr = [v Ao exp (a am f L(C) EOcrit (10.6)
\ t/.

- - -



184

which upon rearranging and writing g(CL) = 1/f(CL) gives,

Ecrit = (! g)(CL) (10.7)
v'3Aoexp (--a

T/

For hydrogen concentrations in which crazing initiates before necking, but sufficiently after
the onset of yield so that the elastic strains are negligible relative to the plastic strains, we
assume that EOcrit e Cf, where c is the elongation to failure. Then (10.7) gives

CTVcr g(CL). (10.8)
v' Ao exp (a--)

Fig. 10-2 gives the experimentally-measured dependence of ef on the lattice hydrogen con-
centration CL. We have fit that data to estimate the function g(CL) in (10.8) dashed red
line in Fig. 10-2, and the result is

Ef C TV Cr1 + Alexp (- (C with
N 3 AO exp a _7 - C-

T _V (10.9)

=0. 168 g(CL)

A1  1.143, and Cef = 0.0192mol/m3

We emphasize that this is a curve-fit valid only for lattice hydrogen concentrations in the
range 0.005 < CL < 0.05.

Consider the term
C T /V c = 0.168 (10.10)

-\F Ao exp a-:F)

in eq. (10.9). Since we only have data from a simple tension test at a fixed triaxiality of
M/t = 1/v'_, we set a = 1, and for simple tension (10.10) reduces to CTVcr/AO = 0.5183.

Since, only the ratio CTvc,/Ao is known, and not the individual values CTVC, and A0 , here we
assume that CTVC, is a small plausible number, CTVC, = 0.001,2 in which case Ao = 0.00193.
Thus, the evolution equation for CV has the form

OTV = A-, A = Aoexp (a I) > 0, (10.11)

(1+ Aexp(.g- 2 )

and our first estimate of the material parameters appearing in this equation are listed in
Table 10.7.

2Note from Fig. 10-4 that when CL < 0.001 then the material does not embrittle due to the presence of
hydrogen.
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Table 10.7: Preliminary set of parameters for trapping of hydrogen at vacancies

Parameter Value

a 1.0
Ao 0.00193 mol/m3

A1  1.143
Cef 0.0192 mol/m 3

CTy cr 0.001 mol/m 3

Crazing initiates when CT, = CTv,, and subsequently the crazes grow rapidly, and
then damage initiates and also evolves quite rapidly towards final fracture. The material
parameters which control the evolution of damage in eq. (9.229) are { ,i t , f(, k}. The

parameter x is the fraction inelastic power dissipated during crazing (cf. eq. (9.196)); we
take its value to be x ~~ 0.8. The parameter VbK t is what controls the initiation of damage
evolution, and an estimate for which we take to be given by

= S' X c, + - (10.12)
R crit 2E

Here S' is the value of the resistance to craze flow (cf. eq. (9.196)), which is approximately
equal to the saturation value of the athermal resistance to plastic flow SS, the parameter E
is the Young's modulus of the material, and 6c ~ 10% is a critical value of the craze strain.
Physically (10.12) represents an estimate of the energy barrier that needs to be overcome for
damage to initiate. The parameter f is a damage regularization length scale which controls
the spread of the diffuse damage; its value is chosen to be larger the about five times the size
of the finite elements used to numerically model the diffuse damage zone. The parameter
( is viscous regularization parameter for the evolution of damage, and the parameter k is a
small number which we have introduced to prevent ill-conditioning of the numerical solution
as the damage d tends to unity. The values for {x, cit, f, (, k} that we have used in our

simulations are listed in Table 10.8.

Table 10.8: Material parameters for damage initiation and evolution

Parameter Value

;< 0.8
0 ~crit  21.14 MJ/m 3

200 pnm
10.0 MPa-s

k 1.0 x 10-4

Using the parameters for damage initiation and evolution in Table 10.8, and with the
parameters listed in Table 10.7 as guidelines, we conducted full finite element simulations of
tension tests at different initial lattice hydrogen pressures (concentrations) and adjusted the
parameters in Table 10.7 to those listed in Table 10.9 to obtain the fits to the stress-strain
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curves and the elongation to failure as a function of the hydrogen concentration shown in
Fig. 10-4. The adjusted parameters are list in Table 10.9.

Table 10.9: Refined set of parameters for trapping of hydrogen at vacancies

Parameter Value

a 1.0
Ao 0.00195 mol/m3

A1  3.369
Cef 0.0147 mol/m3

CTVCr 0.001 mol/m 3

In summary, the list of representative material parameters is shown in Table 10.10. All
simulations done in this chapter are using this set of parameters.

10.2 Uniaxial tension of round bars

We first focus on simple tension tests of round bars in air and hydrogen environment that
conducted by Xu and Rana (2009). To model these experiments we used an axisymmetric
idealization of the round-bar tension tests conducted by these authors. The mesh that we
used in our simulations is shown in Fig. 10-3; only one half of the axisymmetric specimen is
meshed, and symmetry boundary conditions about midplane radial direction are imposed.
We applied chemical potential boundary conditions on the exterior surface of the specimen
corresponding to the pressure of the hydrogen gas in the environment in the experiments of
Xu and Rana (2009). Thus, we allow for diffusion within the specimen, and also allow for
hydrogen to permeate into the specimen through its boundaries. Also, as in the experiments
of Xu and Rana the specimen was elongated at a rate of 1.3 x 10- 4 /s.

Fig. 10-4(a) shows the fit of tensile stress-strain curves at different hydrogen pressures
using the material parameters in Table 10.10. The experimental data for the stress-strain
curves is given as dotted lines, while the numerically-calculated curves are shown as dashed
lines. Fig. 10-4(b) shows the corresponding fit of the elongation to failure. The experimental
data for the elongation as function of hydrogen concentration is given as filled black circles,
while the numerically results are shown as open circles. The fit over a wide range of lattice
hydrogen concentrations is quite good.

To study the process of hydrogen embrittlement and failure in slightly greater detail, we
mark four instances (a) through (d) with red diamonds on the numerically calculated stress-
strain curve for a hydrogen pressure of 22.4 MPa in Fig. 10-4(a), and show the corresponding
contours of the equivalent tensile plastic strain E-P = P/v/5, equivalent tensile plastic strain
rate eP = - P/x/, concentration of hydrogen trapped in vacancies CV, and the craze strain
EC, in Fig. 10-5.

In Fig. 10-4(a), the marked point (a) is at the peak of the stress-strain curve, and we
can see from Fig. 10-5(a) that the accumulated plastic strain and plastic strain rate at this
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Table 10.10: Representative material parameters for a ferritic steel

Elasticity parameters G GPa 8134
K GPa 138.21

5O s-1 1.73 x 106

Viscoplasticity parameters AF J 1.38 x 10-19
p - 1
q - 1

S* MPa 291.8
So MPa 80.96

Strain-hardening parameters Ho MPa 1920

SS MPa 262.12
r - 1.2

Solubility parameters Ko mol(m 3 Mpa) 820
AH kJ/mol 28.6

NL mol/m 3  8.46 x 10 5

Diffusion parameters H m 3 /mol 2.0 x 10-6
1 L kJ/mol 28.6
DL m2 /sec 1.27 x 10- 8

Trapping at dislocations NTD mol/m3 NTD = 10 (23.26-2.33exp(-3.17547yP)

EBD kJ/mol -60

Trapping at vacancies a - 1
AO mol/m 3  0.00195
A 1  - 3.369

Cref mol/m 3  0.0147

CTVCr mol/m 3  0.001

x - 0.8

"crit MJ/m 3  21.14
Damage initiation and evolution f pm 200

MPa-s 10.0
k pm 1 x 10-4
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Figure 10-3: Axisymmetric finite element mesh corresponding to the tension specimens of Xu
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stage are almost uniform across the whole gage section - our specimen geometry was such
that it was initially slightly tapered towards its midplane, and hence the contours of the
equivalent plastic strain rate are slightly higher in that region. Further, at this stage Cv
has just reached its critical value of 0.001, and the craze straining c' is about to be triggered.

Fig. 10-5(b) shows that at stage (b) craze strain has accumulated at the middle plane,
and indeed a small crack has nucleated and propagated from the surface towards the interior
of the specimen. For brevity we do not show contour plots of the damage variable d, but to
show crack formation and propagation, elements with a value of the damage variable d > 0.95
are removed from the plots. Together with the evolution of the crack, the overall stress has
dropped to the point (b) point marked in Fig. 10-4(a). Even though the P contours are
almost the same with that in Fig. 10-5(a), the eP contours have changed dramatically from
those shown in Fig. 10-5(a). The plastic strain rate drops to almost zero, except for some
elements ahead of the crack tip (which are not really visible in the plots shown here). This
dramatic change in the contour of the equivalent tensile plastic strain rate indicates that
regular shear plasticity has ceased to be operative in the majority of the specimen, and that
the deformation has essentially localized in the form of a narrow band of dilational craze
plasticity in the midplane region of the specimen.

Further stretching accumulates more craze strain and damage in the midplane region
of the specimen, which causes the crack to propagate as shown in Fig. 10-5(c), and this
eventually leads to the fracture of the specimen as shown in Fig. 10-5(d). 3 Correspondingly,
the stress drops progressively, as indicated by point (c) and (d) in Fig. 10-4(a). At point (d)
the sample is fully fractured.4

As mentioned previously there is no complete set of experiments for any one given mate-
rial in the literature from which we may estimate all the material parameters in our theory.
What Fig. 10-4 shows is that we are able to obtain reasonable estimates for the the material
parameters for the SA106 steel studied experimentally by Xu and Rana (2009). Much exper-
imental work needs to be done to get more information to estimate the material parameters
of the theory. Of particular importance is the need for:

(i) Suitable experiments in which the stress-triaxiality is systematically varied so as to
determine the value of the stress-triaxiality parameter a in eq. (9.159).

(ii) Suitable experiments which may be used to test the predictive capability of the theory
and its numerical implementation.

As guidance of the type of experiments that one might conduct in the future to advance
the theory and its applications, in the next section we numerically simulate:

3As mentioned above, to show crack propagation elements with a value of the damage variable d > 0.95
have been removed from the plots. We will use this scheme in all other plots in the paper to show the
progression of failure.

4 The stress at point (d) in Fig. 10-4(a) is ~ 30 MPa and not zero because of the residual stiffness
k 1 x 104, cf. eq. (9.126), that we have chosen to prevent ill-conditioning of our numerical simulation as
d -+ 1, and final fracture occurs.
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(i) Plane strain bending of U-notched specimens with different root radii to study the
effects of stress-triaxiality on hydrogen embrittlement.

(ii) Plane strain tension of an asymmetrically notched specimen to validate the predictions
of the theory and its numerical implementation.

Of course several other validation experiments may be envisaged, but we content ourselves
in this paper with these two demonstrations of our numerical simulation capability.

10.3 Plane strain bending of U-notched specimens

The geometry of the plane strain of U-notched bend specimens is shown in Fig. 10-6. To
study the effects of stress-triaxiality on hydrogen embrittlement we conducted simulations
with notch-root radii of p = 0.4, 1.2, and 2.4, with the notch depth fixed at 2 mm. We used
the following boundary conditions:

" Mechanical boundary conditions: The top rollers are held fixed, while the the bottom
roller is moved upward at a constant rate 1 pm/s.

" Chemical boundary conditions: All external surfaces are subjected to a constant chem-
ical potential boundary condition corresponding to various values of CLO.

The resulting force versus displacement curves for three-point bending of a U-notched
specimen with root-radius of p = 0.4 mm, tested at different intial hydrogen concentration
CLO E [0.005,0.045], are shown in Fig. 10-7.5 In Fig. 10-7 we have also marked instances
(a), (b), (c), and (d) on the curve for CLO = 0.015mol/m 3, with point (a) corresponding to a
peak in the force-dispalcement curve. In Fig. 10-8 we show the corresponding contours of the
equivalent tensile plastic strain E-P = fyP/v"5, equivalent tensile plastic strain rate -' = P/03,
concentration of hydrogen trapped in vacancies CTV, and the craze strain E' at these selected
four instances. In these figures we have concentrated our attention on the middle portion
of the bend specimen with the notch. Fig. 10-8(a) shows that at the point (a) the craze
strain has accumulated to a sufficiently high level and that a crack is about to nucleate.
Fig. 10-8(b)-(d) show the progressive nucleation and propagation of the crack during the
bend test.

According to our model, the physical picture of crack initiation and propagation in ferritic
as follows. If there is a notch in the specimen, then plasticity is most severe at the notch
tip and the hydrogen trapped in vacancies will first reach its critical value at the notch tip,
as compared to other parts of the sample. When a critical value of hydrogen trapped by
the vacancies is reached, then the regular mechanism of shear plasticity gives way to craze
plasticity. As the craze strain accumulates the portion of the free energy stored due to

5Although not shown here, the force-displacement curves shown in Fig. 10-7 are mesh-objective, in the
sense that they are independent of the finite element mesh size, as long as the size of the finite elements is
less than about 20% of the parameter f = 200pIm in our gradient damage model.
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Figure 10-6: Geometry of the plane strain U-notched bend specimens. Simulations were con-

ducted with notch-root radii of p 0.4, 1.2, and 2.4, with the notch depth fixed at 2 mm.
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Figure 10-7: Force versus displacement curves for specimen with root-radius of p = 0.4 mm,
tested in air as well as different initial hydrogen concentration CLO E [0.005, 0.035].
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Figure 10-8: Contour plots of the equivalent tensile plastic strain ~P -yP/v/-3, equivalent tensile

plastic strain rate ~P = P/vl'3. concentration of hydrogen trapped in vacancies CT, and craze

strain c', at the instances (a), (b), (c), and (d) marked in Fig. 10-7.
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crazing, together with the attendant elastic energy, reaches a critical value to trigger the
evolution of the damage variable. Finally, as the damage accumulates and reaches unity, a
crack nucleates and propagates. That is,

* an inhomogeneous deformation process which leads to regions of concentrated plastic
strain also leads to a higher concentration of Cv in these regions, which in turn leads
to a field 6c of the craze strain, and

" as the craze strain accumulates the conditions leading to growth of damage d are met,
and when d = 1 the condition for fracture is met.

This physical picture is
notched sample. In Fig.
regions of high CTV, and
crack.'

clearly evidenced in our numerical simulations of
10-8, we can see that the contours of non-zero ec
the contours of c always lead the nucleation and

bending of a U-
are contained in
propagation of a
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Figure 10-9: Maximum force in bending of U-notched specimens tested
hydrogen concentrations in the range CLO E [0.005,0.045], for specimens
p = 0.4, 1.2, and 2.4 mm.

at different initial
with root-radii of

By conducting additional similar simulations we have collected the data for the maximum
force in bending of specimens tested at different intial hydrogen concentrations in the range
CLO E [0.005, 0.045], for specimens with root radii of p = 0.4,1.2, and 2.4. The results
are shown in Fig. 10-9. These simulation results are based on the material parameters in

6 Recall that to show crack propagation elements with a value of the damage variable d > 0.95 have been
removed from the plots.
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Table 10.10. Because of lack of available experimental data of the type shown in Fig. 10-9,
we had set the stress-triaxiality parameter a in (9.159) at a = 1.

We suggest that in addition to simple tension tests at different hydrogen pressures (con-
centrations), as conducted by Xu and Rana (2009), in the future experiments of the type
simulated in this section in which the stress triaxiality is varied systematically, should be
part of any experimental program which aims to determine the effects of hydrogen on the
embrittlement of steels. Data of the type shown in Fig. 10-7 and Fig. 10-9 would be very
helpful in constructing calibrated models which have a wider range of applicability. 7

10.4 Plane strain tension of an asymmetrically notched
specimen
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Figure 10-10: (a) Geometry and finite element mesh for an asymmetrical-notched tension speci-
men. Dimensions are in mm, with a plate thickness of 10mm. (b) Force versus displacement curve
for the asymmetrical- notched tension specimen.

In this section we report on a simulation of plane strain tension of an asymmetric double-

notched specimen, schematically shown in Fig. 10-10(a). We used the following boundary

conditions:

7The experiments need not be U-notched bend tests, they could also be round bar U-notched tension test
with different notch acuities.
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" Mechanical boundary conditions: The bottom edge AB of the specimen is held fixed,
while the top-edge CD is extended at a nominal strain rate of 1 x 10- 4/s.

" Chemical boundary conditions: Zero-flux boundary conditions are imposed on the
bottom and top edges AB and CD of the specimen, while the lateral edges AD and
BC are subjected to a constant chemical potential boundary condition corresponding
to CLo = 0.015mol/m3 .

The resulting force versus displacement curve form the simulation is shown in Fig. 10-10(b).
In Fig. 10-10(b) we have marked instances (a), (b), (c), and (d) on the force-displacement

curve, and in Fig. 10-11 we focus our attention on a portion of the specimen which contains
the two notches, and show contour plots of the equivalent tensile plastic strain EP = f//d,
equivalent tensile plastic strain rate cP = AP/V3, concentration of hydrogen trapped in
vacancies CTV, and craze strain c, at these selected instances. We see that at stage (a) the
two offset notches have accumulated some craze strain and that a crack is about to nucleate
in the vicinity of these notches. By stage (b) sufficient damage has accumulated and cracks
have formed which are beginning to turn and propagate towards each other. Stage (c) shows
that the two cracks are close to merging with each other, and final fracture into two separate
pieces is observed at stage (d). The results from this simulation also clearly exhibit the
physical picture embedded in the our model: an inhomogeneous deformation process which
leads to regions of concentrated plastic strain, also leads to a higher concentration of the field
C, in these regions, which in turn leads to a field c of the craze strain, and accumulation
of craze strain subsequently leads to evolution of damage d, and fracture occurs when d = 1.
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Figure 10-11: Contour plots of the equivalent tensile plastic strain EP = yP/Vlr3, equivalent tensile

plastic strain rate ~P = P/V3/, concentration of hydrogen trapped in vacancies CT,, and craze

strain c' at the instances (a), (b),, (c), and (d) marked in in Fig. 10-10.
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Chapter 11

Concluding remarks

Guided by the recent experimental observations on hydrogen embrittlement of medium yield
strength ferritic steels (Martin et al., 2011b,a; Neeraj et al., 2012; Robertson et al., 2015;
Dadfarnia et al., 2015), and guided by the hydrogen embrittlement mechanism proposed by
Li et al. (2015) for these materials, we have formulated a continuum theory for the diffusion
of hydrogen coupled with the elastic-viscoplastic response of metals, together with an ac-
counting for microscopic effects due to trapping of hydrogen in hydrogen-vacancy complexes.
We have proposed that when the hydrogen which is trapped in hydrogen-vacancy complexes
reach a critical concentration, then there is a change in mechanism of inelastic deforma-
tion from standard plastic flow by dislocation glide to plastic flow by a quasi-cleavage type
mechanism - a change in mechanism which is reminiscent of a transition between "shear-
yielding" and "crazing" in amorphous polymers. We have formulated a criterion for such a
change in mechanism together with an attendant dilatant craze-plasticity flow rule, and a
corresponding gradient damage theory to model fracture of ferritic steels due to hydrogen
embrittlement. All these ingredients for modeling fracture due to hydrogen embrittlement
are new.

We have numerically implemented our coupled diffusion-deformation-damage theory in
Dassault Systemes (v. 6.14) as a user-element (UEL) for plane strain, axisymmetric, and
three-dimensional elements.

Unfortunately there is no complete set of data from experiments for any one given ma-
terial from which we may estimate all the material parameters in our theory. However, we
have shown in Section 10.1 of Chapter 10 that we are able to obtain reasonable estimates for
the material parameters for the SA 106 steel studied experimentally by Xu and Rana (2009).
Much experimental work needs to be done to get data to estimate the material parameters
in our theory for a material of interest. As guidance of the type of experiments that one
might conduct in the future to advance the theory and its applications, in Section 10.3 of
Chapter 10 we have numerically simulated plane strain bending of U-notched specimens with
different root radii to study the effects of stress-triaxiality on hydrogen embrittlement. We
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suggest that in addition to simple tension tests at different hydrogen pressures (concentra-
tions), as conducted by Xu and Rana (2009), in the future experiments of the type simulated
in our paper in which the stress triaxiality is varied systematically, should also be part of any
experimental program which aims to determine the effects of hydrogen on the embrittlement
of steels. Experimental data of the type shown in Fig. 10-7, and Fig. 10-9 would be very
helpful in constructing calibrated models which have a wider range of applicability.

In Section 10.4 of Chapter 10 we have shown a simulation of plane strain tension of
an asymmetric double-notched specimen. This example shows the powerful capability of
our gradient-damage theory and its numerical implementation to model the nucleation and
merging of cracks emanating from two notches. Data from experiments of this type would be
of substantial use in validating the predictions from any theory of fracture due to hydrogen
embrittlement.



Part III

Conclusions and outlook
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Chapter 12

Conclusion

12.1 Summary

Solids with deformation-diffusion coupling are ubiquitous in engineering applications. Un-
derstanding and modeling the fracture in such solids is vitally important. In this thesis, we
have focus on studying the coupled deformation-diffusion-damage behaviors of two different
classes of materials: (i) elastomeric gels and (ii) hydrogen embrittled steels. To conclude, we
briefly summarize the main contributions of each part of this thesis:

" The first contribution of this thesis is introducing a new field related with stretch of
Kuhn segments, to bridging the deformation of polymers and the fracture of polymers
consistently. One of the distinguishing features of elastomeric materials, which consist
of a network of flexible polymeric chains, is that the deformation response is dominated
by changes in entropy. Accordingly, most classical theories of rubber-like elasticity
consider only the entropy and neglect any changes in internal energy. On the other
hand, the fracture of strongly cross-linked elastomers is essentially energy dominated,
as argued in the well-known Lake-Thomas model for the toughness of elastomers.
However, a single model unifying these two phenomena is still lacking. We provide a
rational yet simple model for deformation and fracture of cross-linked polymers, based
on two ingredients: (i) a non-Gaussian statistical mechanics model of polymer chains
that accounts for the increase in energy due to the deformation of molecular bonds;
(ii) a chain scission criterion based on the bond deformation energy attaining a critical
value. Using this model, we can estimate the rupture stretch of elastomeric materials
from fundamental quantities describing the polymer network. We use this model to
relate the flaw sensitivity of elastomers to an intrinsic material length scale related to
the network structure.

" The second contribution of this thesis is to build a thermodynamically-consistent theory
for fracture of polymeric gels. - a theory which accounts for the coupled effects of fluid
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diffusion, large deformations, damage, and also the gradient effects of damage. The
particular constitutive equations for fracture of a gel proposed in our paper, contain
two essential new ingredients: (i) Our constitutive equation for the change in free
energy of a polymer network accounts for not only changes in the entropy, but also
changes in the internal energy due the stretching of the Kuhn segments of the polymer
chains in the network. (ii) The damage and failure of the polymer network is taken
to occur by chain-scission, a process which is driven by the changes in the internal
energy of the stretched polymer chains in the network, and not directly by changes in
the configurational entropy of the polymer chains. The theory developed in this paper
is numerically implemented in an open-source finite element code MOOSE, by writing
our own application. Using this simulation capability we

- study the fracture of elastomers by crosslink failure and chain scission, and

- report on our study of the fracture of a polymeric gel, and some interesting phe-
nomena which show the importance of the diffusion of the fluid on fracture re-
sponse of the gel are highlighted.

9 The third contribution of the thesis is formulating a experimental-based continuum
theory for the diffusion of hydrogen coupled with the elastic-viscoplastic response of
metals, together with an accounting for microscopic effects due to trapping of hy-
drogen in hydrogen-vacancy complexes, culminating in eventual fracture. We have
numerically implemented our coupled diffusion-deformation-failure theory in a finite
element program Abaqus by writing a user element subroutines (UEL), and we present
representative numerical examples which show the ability of the simulation capability
to qualitatively replicate the failure due to hydrogen embrittlement in some technically
relevant geometries.

12.2 Outlook

While much has been accomplished, more remains to be done. Some outstanding issues are
discussed below.

* Fracture in elastomeric materials:

- In this thesis, we apply our idea on stretchable segment and crosslinks to modify
Kuhn-Grun model (at single chain level) and Arruda-Boyce model (at continuum
level). However, the idea itself can be applied to other models, like worm-like
chain model, to understand and modeling the deformation and the fracture of
soft materials described by these models.

- The theory and numerical development presented in this thesis are based on sound
physical and mathematical principles, however experimental characterization of
an actual gel is lacking. In order the flesh-out the theory substantial experimental
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work is required. In order to distinguish our theory and other phenomenological
theories, tests at very small samples (at order of 1 micro) are needed. Bulk sample
tests are not sufficient to verify the physical foundations of our theory.

- Our theory has been formulated for non-ionic elastomeric gels. An important
extension of this work will be to develop a constitutive theory for gels that in-
teract with external redox potential and thermal, chemical, optical, electric, and
magnetic fields.

- The theory presented here is for elastomeric gels. It would be useful in the future
to extend the theory presented in this thesis to interpenetrating-multiple-network
gels which incorporate additional non-trivial dissipation mechanisms to toughen
polymeric gels. Moreover, study on the failure mechanics of soft materials with
entanglements, viscoelasticity, reactive diffusive solvents, transient networks, and
self-healing are highly interesting.

- Apply the theory presented in this thesis to study other phenomena in soft ma-
terials, like the interplay between failure and various kinds of instability such as
fringe and fingering (Biggins et al., 2013; Lin et al., 2016, 2017, 2018), will be
a very fruitful direction. Moreover, using the theory developed in the thesis to
study the fracture in soft materials with other phase transitions, such as polymeric
multiferroics and liquid crystal elastomeric and gels, will be important.

e Fracture in hydrogen embrittled steels:

- Even though the theory and numerical development presented in this thesis are
based on sound physical and mathematical principles, completed experimental
characterization of an actual material is lacking. In order the flesh-out the theory
substantial experimental work is required. Of particular importance is the need
for:

(i) Suitable experiments in which the stress-triaxiality is systematically varied so
as to determine the value of the stress-triaxiality parameter a in eq. (9.159).

(ii) Suitable experiments which may be used to test the predictive capability of
the theory and its numerical implementation.

- To improve the theory and its predictive ability, more microscopic features in the
materials shall be considered and included in the model. Moreover, more tests
against the long-time atomistic simulations are also necessary.
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Appendix A

Detailed derivation of the model for
single polymer chain with stretchable

Kuhn segments and crosslinks

We make the kinematic assumption that the overall deformation of the polymer chain under
load is due to three sources,

(i) the alignment of the Kuhn segments in the chain under load,

(ii) stretching of the segments due to deformation of the constituent molecular bonds, and

(iii) stretching of the molecular bonds associated with ending crosslinks.

Figure A-i illustrate the idea.

F JAb 1, = LcAc
Fb F

r = Aro

Figure A-1: Schematic for single chain with two ending cross-links. Overall, the length of the
single chain is r and through the initial length ro we defined the stretch A = r/ro. The Kuhn
segments are assumed deformable due to deformation of the constituent bonds. The initial length
of Kuhn segment is Lb while the deformed length is Ib, and the stretch is defined as Ab lb/Lb.
Meanwhile, the two ending cross-links are assumed deformable. The initial length of cross-link
bond is L, while the deformed length is 1e, and the stretch is defined as A, 1,I/Lc.

217



218

Consider a single chain with n Kuhn segments, each of initial length Lb. The current
segment length lb is related to the rest length Lb through lb = LbAb, where Ab is a dimen-
sionless stretch which we refer to as the bond deformation stretch. At the end of the single
chain there are two ending crosslinks, with initial length L,. The current segment length l
is related to the rest length L, through l = LcA,, where A, is a dimensionless stretch which
we refer to as the deformation stretch of crosslinks.

For simplification, we adopt the idea of freely-jointed chain, and neglect

(i) any possible interaction between segments and cross-links such as bond angle rotation,
van der Waals interactions, etc., and

(ii) any kinetic effects such as the velocity dependent terms in Hamiltonian.

Using these simplifications, the Hamiltonian of the polymer chain with two ending cross-links
simplify reads

n 2

(A(') + E~)(A' (A. 1)
i=1 i=1

with

" n is the number of Kuhn segment.

* " (-) is the potential for ith Kuhn segment, and A) is the stretch of ith Kuhn segment.

E c (-) is the potential for ith cross-links, and A(') is the stretch of ith cross-links.

At a certain time the force acts on two ends of polymer chain is F, and the end-to-end
vector reads r. In the following derivation, we pick F as thermodynamics variable, and thus
the partition function of the polymer chain is given by

Z(F) = exp (-(W - F -r)/kBI) (A.2)
all states

with t9 is the absolute temperature. For simplicity and without lose the generality, we pick
F along z-direction, and thus F -r = Fr, with r, is the separation of end-to-end in polymer
chain in z-direction. Explicitly

n 2

rz= r ) -e + rg) - ez (A.3)
i=1 j =1

Here rb and re is the vector of Kuhn segment and cross-link bond, respectively. And ez

is the unit vector along z-direction. Since typically only one bond linked with one ending

cross-link for each polymer chain, we can reasonably assume the projected length of bond

linked with cross-link on z-direction is a constant, and marked it as L,. Then



2

R2 = r() I cos Oi + E Lfj)AP)
j=1

= L A(' cos i + Lj)AF)
j=1

with

0 Oi is the angle between r(') and z-direction.

* =L-CA is the length of ith

of ith Kuhn segment.

e j = L2jAj) is the length of Jth crosslinking
length of jth crosslinking bond.

In the real materials, the typical value of L is at
order of 1A.

Kuhn segment after stretch and Lb4 is the rest length

bond after stretch and Lj) is the rest

the order of ~ 10A and IL(j2 is at the

The summation for all states is the integration element fi 27 sin OidA) djdpi.
glecting the constant pre-factor Jl i(472) which only contributes a constant term
energy ( or partition function ), then we have

z = J dA(') E M (A M) FL(sin OjdOj exp b B -A(') cos Oi
kB19 kB 79

2 )
xH dA) exp - +111 CkBV

j=1

=nJ
/2

FL)
kB'd

) exp A sinh(FL(' A2 )/kBl)dA exp +ln [ 79)
b k, FL( A( |kB 1

)
1)

2

x JI dA) exp
j=1

+ FL j)A(i)
kB 7kB 9

In most of case, the expressions of EM (-) and &W (-) can be very complicated. Because of
the possible complexity of these expressions, obtaining the closed and fully-analytic expres-
sion of this partition function is very hard. To obtained an approximated and closed form,
we next construct the mean-field theory by considering the saddle point approximation. We
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(A.4)

By ne-
to free

(A.5)

i
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finally have

-) (A k i))
kg?9

2 27rkBxfl ( ) exp
j-1 j)

i sin h (F L ( ) /A () / Bk)In b bI

F L(' A()kB?9

( ) (/\i)) U)EC (C) FLC U)
kBI) kBg 79C

Here E'(Ab) = b and E"(A,)b = d\~ a bC = . Physically, terms 27rkBd
dA b b

and 27rkBO come

from the saddle point expansion. In expression (A.6) the A(' and A2) are stretches which
optimize the probability. Both of them are determined by saddle point approximation. The
equations to determine these stretches are

i)/'(A(a) -
(coth ( FL('),\(')

b b

kB79 ) _kBI) FL(2) - 0
b b /

(A.7)

and
(A(') - FLj) = 0 (A.8)

with E'(Ab) = dee, and E(Ac) = .b dAb C\C dA,

With this approximated partition function, the total Gibbs-type free energy of the poly-

mer chain with two ending cross-links reads

G(F) = -kB?9lnZ

+ FLB'A(nkBI9
+ kB9 In b b

sinh(FL( )A('/kBO

27rkB'd
-B 19n )/t I

eb(A )- b

E ) (AFi))

(A.9)

kB') ln+ 1

and the end-to-end distance is

aG
Ir = (rz) = __

- L
j=1

+i

(A.10)
L ' A()- (oh FL(') A(') 1B'

L b ib b__ _ _I[cot FL(') A(')
L k~ /b b

This physical explain for this expression of end-to-end distance is straightforward. The first
term represents for the total length of crosslink bonds, and the second is the total length

2wckBI
Z ~l exp

i n" b 1b) )
(A.6)

]
)

-- FLPj)A 3 -
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of the Kuhn segments within the polymer chain. The second term also accounts for the
contribution from rearrangeable configurations of Kuhn segments.

For most of cases, we can simplify the expression by assuming that

" Kuhn segments within the polymer chain are the same with each other (same rest
length Lb and same stretch Ab), and

" two crosslink bonds are the same with each other (same rest length L, and same stretch
Ac).

These assumptions lead to simple form of Gibbs free energy,

FLbAb/kBO 27rkB7G(F) nEb(Ab) + nkB n h- nkBTO n
Isinh( F Lb AbkB?9) -Eb A

(A.11)
2lrkBO

+ 2Ec(Ac) - 2FLAc - 2kB79 In (l )EC(Ac)

and end-to-end distance,

r = 2LcAc + nLbAb coth FLbAb kB(A. 12)
L \ kBO FLbAb]

We can translate this Gibbs free energy to the corresponding Helmholtz free energy by
changing the ensemble, and the Helmholtz free energy V/(r) reads,

O(r) = G(F) + F - r = G(F) + Fr, (A.13)

and by using (A.11) and (A.12), 1 we finally have

(r) = nEb(Ab) + 2EC(Ac) + nkB19 In . + #r-2Lck1
I snhB nLbAb

27rkB79 27kB) (A.14)
-2kB n - nkB79 n

'(Ac) E''( s '

with

= C-1 r - 2LAc) (A.15)
(nLb Ab

'We also need to use the reversed version of equation (A.12), which gives

FLbAb 1 
L '-- 2LcA _

kBO nLbAb
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and C(x) = coth(x) - 1/x is the Langevin function. Most of case, the final two terms from
saddle point expansion are not important. So we can simplify the Helmholtz free energy as

(r)=nEb(Ab) + 2Ec(Ac) + nkB'd [n ( +or - 2LcA] (A.16)
1 sinh #n Lb Ab

with # is in equation (A.15).

The stretches Ab and Ac can be determined by equations (A.7) and (A.8). With the
assumptions that all Kuhn segments are the same and the two crosslinks are the same
within the single chain, we can simplify them as

E'lAs r- 2LcAcb (Ab) ( r - L= 0 (A.17)
kB?9 nLbAb Ab

and
__(A)= () =0 (A.18)
kB'd Lb Ab

From definition, the force is given by

F = k9 (A.19)
LbAb

For a specific polymer chain (fixing n, Lc, Lb, Eb(Ab), and Ec(Ac)), at any given end-to-end
distance r, the Ab and Ac can be solved from (A.17) and (A.18), and thus the reaction force
at the end of the polymer chain F can be determined. However, it is convenient to rewrite

the free energy (A.16) in terms of the overall chain stretch A instead of r. The overall chain

stretch is defined as

A =- (A.20)
ro

where ro, the unstretched chain length, which is now given by

ro = \/ Lb - 2LC. (A.21)

From definition r = A(ifrLb + 2L,) where A is the overall stretch of the polymer chain

with the ending cross-links and JYL is the radius of gyration from random walk. For most

of the case that we are interested in FLb > 2L, then r ~ AxfLb. Then

(r) =nEb(Ab) + 2Ec(A) + nkBO [ln + A 2LcAc
+ I \~sinh/3 kS~Ah riLbAb

with -= --- A 2LcAA (A.22)
Ab nLbAb)
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and Ab and A, are determined by

E'(_) A 2LcAc 3 e'jAc) _ Lc 3= -( c -- -(--) (A. 23)
kB \/iiAb nLbAb ) Ab' kB79 Lb Ab

As it stands, the contribution from the change in entropy to the free energy in (A.22)
does not reduce to the classical freely joint chain expression in the limit Ac - 1. To achieve
this we require that sc(1) = 0 and modify (A.22) to read as, 2

(r) =nE6(Ab) + 2Ec(Ac) + nkBV In (.i ) + A 2(Ac -
I sin 0 V-n~b n~b- (A. 24)

with 3 = - A 2(Ac -I)Lc

and Ab and Ac are determined by

E'_(_ A 2(Ac - 1)L E'(Ac) (Lc)(Ab- - -. (A. 25)
kBd xrjiA b nLbAb Ab' kB 9  Lb Ab

The force is given as

F kBt) kBO -1 A 2 (AC - 1)L(.
F = _ = I .(A.26)

LbAb LbAb \ Ab ~ nLbAb /

Let's consider two extremes: purely Kuhn segment stretch and purely cross-link stretch.

1. Purely Kuhn segment stretch. In this case Ac = 1, and the second equation in (A.25)

does not exist. With these setup, all equations degenerate into the case that we dis-

cussed in Chapter 3.

2. Purely cross-link stretch. In this case Ab 1, and the first equation in (A.25) does not

exist. With these setup, all equations degenerate into the case that we discussed in

section 5.3, Chapter 5.

2This step can be physically understood as refine of n, or omiting all entropy part from crosslink bonds.
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Appendix B

Numerical implementation of the
theory for fracture of polymeric gels

We build our application "Parakeet" based on MOOSE(Gaston et al., 2009). For more details
on the MOOSE framework, please refer to its documentation. In this section, we display
how to implement our coupled deformation-diffusion-damage theory of fracture in polymeric
gels. In (C.1) we show how the solve cR and Ab from degrees of freedom. In (C.2)-(B.4) we
display the Residuals and the corresponding Jacobians for each DOFs.

For simplicity, in this section we define A, = n, r - A , and r = 1 Note that the
AL "b ALAb

parameters r and ro defined here are not related to the rest length and deformed length of
a single chain.

B.1 Solve b and Ab from DOFs

First of all in the class we need to calculate Ab and cR from the evolution equation of Ab, and
expression of chemical potential p. In our specific theory, these two equations are displayed
as follows,

g(d) -
2  + I AL - + o In J - b (B.1)

Go b A L Ab 2 3 A L ro ALAb Gon

p = Po + RiO [ln(I - #) + # + X# 2 ] - g(d)QJS-1 J (B.2)
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with s4 and eV for the constitutive expressions of bond stretch and the volumetric part,

respectively. 3 and fo are both function of r, which are

,3 = L--1(r), Oo = L-'(ro) (B.3)

with L(x) = coth(x) - 1/x is the Langevin function. g(d) = (1 - d)2 is the degradation

function.

Numerically, these two equations can be rewritten as

fi = g(d) E d 4b(Ab) -r + - (roo + r2 N lnJ) + A = 0, (B. 4)
Gon dAb 3 r0 ro) Gon

f2 = po + RV [ln(1 -) +q5+ x# 2] -g(d)Q-- [je Oi] -/1=0 (B.5)

with eb = sb/Eb is the normalized internal energy, and E = nNEb.

Let us first examine fi. fi can be treated as a function of Ab, A, J, and Ab. If we give a
history of Ab, within the incremental step, we can solve Ab from equation fi = 0 numerically.
Next let us focus on f2. From our theory, Je = J#/#o, with J = det F is the determinate

of deformation gradient F. Then f2 = f2 (, p, J, d). With the incremental step, # can be
solved from f2 = 0 numerically. This highlights these two equations are decoupled, which
simplifies our coding a lot.

However, Ab E [1, oc), which is not very suitable for numerical purpose. Instead of
treating fi as function of Ab, A, J, and ib, we can choose r as the unknown of fi. During
the numerical procedure, we need know ', which is

dr

df1 R diEj d 2s Eb Oo
=g(d)E (-: + Ab) +r

dr Gon d dA O ) r Or

+ +3ro +ro + - 3 Ab+Aob O .
3 Oro r-o Or Gon a Or

Recall that Ab = A = 1 then we have

OAb 21 Oro 1

Or ALr2 Or A
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Thus d can be written as,

E dib
- g(d)Go dAb

in J
+ -

d 2Ab A
dAb 2 ) ALr2

L0
Q80

+ 3ro 2 9200+ ro Dr

Simply, we have

df2 -1
d# 1 -5

+ 1 + 2X#)

B.2 Residuals and Jacobians on displacements DOFs

Neglecting body force and possible tractions, we have the residual for the displacements (OA

is the test function):

f = - J ^ADiv TRdvR Be (TR)im Vm AdvR (VmV)A I (TR)im)

The Jacobians are (0 with the superscript is the test function here)

KAB (Vm_ A I(Tim Vfl qB

K B _ Vmii)A I

KiAB ( 7nAl

(TR) im F,dB

a(TR)im

ad

By considering TR is a function of (F, cR(F, p, d), Ab (F, d), d) in our case, then by using
the chain rule, we then have

&(TR)im

DF> ,d

_ (TR)im

Fj CRAbd

+ (R im
+ CR F,Ab ,d

D(TR)im

OP IF,d

+ D(TRim F d
F,cR,d OFj

_ C(TR)im ,dCR

DCR F,Ab,d Opt F,d

dfi

dr Or

+ b

+ Gon (3Ab
- Ab __b A2Ab ) ALr

(B.8)

+2 dev.]
dUe _

(B.9)

(B.10)

(B.11)

FpB

OCR

OF) id
(B.12)

(B.13)

Je d 2sv e
-- g(d)Q- Je

#0 dJe2



O(TR)im

Od F,CR, Ab
+ OR 

F,b ,d

O(TRim OAb

OAb F,CR,d F

The four terms

. (TR)im

OCR F,Ab,d O-b F,CR,d

are all very easy to obtain. And the expressions are as follows:

O(TR)m 

aFj,3 cIR,Ab ,d
G06j6mo + G0 (F-1) 3i(F-1)mj - g(d)J? o (F-),3(F-')mj

+ g(d)Je + Je d J"
IdJe de

(F-1 )j(F-)mi +

O(TR) im

OCR F,Ab,d

O(TR)im

OAb F,CR,d

O(TR) im
Od F,CR,Ab

- g(d)QJed [
b0 dJe

-G Fim
O-\b

vol (F1)mi
- g/(dJe

00 -

- F
aFj3 3A

aAb

a60
aAb

and g'(d) = -2(1 - d).

In addition, we also need to know the following five terms.

OAb Ab acOR OcR

Fj)d' Od F ' F ,Id' 0 pF,d

228

O(TR) im

Od F,p

a(TR)im

aFj)3 CRA

(B.14)

O(TR)im

ad F,cR,Ab
(B.15)

aG

aFj3 im

+ je 2 g Vo] (F 1 )mi

(F1 )mi
OAb

with

(B.16)

= -oAb- 1 (1

rF _

SBr) '

ro O00
+ -

00 Or0 )

(B.17)

OCR

dF,p
(B.18)

1+ 9
aor_

( I +
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In order to obtain the first two terms,

aAb

0jOd
aAb

adF
(B.19)

we first take derivatives on the equation (B.4). Then we have,

roo +

g(d)

r na) a J dF

dAb 2 Ab + dfb

(B.20)
+ __ _ 

2 20 nJ b Ab - 0ar2 Gon -3 + Ab O dAb
aAb)

-g'(d) Abdd = 0
Gn dAb

which can be simply written as Aj,3dFj> + BdAb + Odd= 0. Then

aAb
OFj8 d

aAb
ad F

A = (+r 0

B= +r aAb

+ o 0 + 3ro (a +d

- (roo+

) )

-r0 a ln .

2000) aFnJ

Ab + d5:

J Ab ( -3Ab+ Ab ab
Gon aAb /

C = -g(d .r

The remaining three terms

0 a OaF

+ +r rar aAb

+

with

(B.21)

(B.22)

acR aCR

F d a' F,d

a9R
dF,p

(B.23)

+ 3ro 00

= -B-1C1
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can be obtained from taking derivatives on the equation (B.5), which reads as

dp = dcR + dd + 9 dF. (B.24)
OcR dF Od cR,F Fj3 ,,d

This equation gives us

OCR

9F1 pd OCR d,F OF CRd

OcR Oai (B.25)
OP Fd OCR dF)-

/ )-1OCR (Oft a
ad Fi OCR d,F J d cR,F

Within these expressions, we need know

__ OI Oai a(B.26)
OCR dF Od CR,F 'Fj 3 Cd

These terms can be easily read from equation (B.5) as

alt = -g(d)QaJs 2 [d 2  + &I OJ

FjR,d dJe2 dJe _ OF

Ot _ df2  o (B.27)
OCR d,F do OcR

Ott = -g'(d)QRSl- FOavolje

Od cR,F L je

B.3 Residuals and Jacobians on chemical potential DOFs

The mass conservation in the reference configuration and the Fickean type law read

CR = -DivjR; jR = -MVp (B.28)

with M is the mobility tensor which defined as the diffusivity multiple the concentration in
the simplest case.

For the diffusion equation, we have the residual

R - (A, CR) - ( , MQV7/I) - (Q$A, R f R) (B.29)
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For the case without surface flux,

EMa
&CR

aR ,dKAB AJ
R a 1

a ,d + O CRd_
VOBV' )

aMW a9CR

aCR alt .,d
#BV y+ MaYV#B)

KtiB = ()A
ft oB) [aM, aMd

a,,

ad [I UCRI

The approximation for terms related with CR depends on the time integration scheme.

For example, in backward Euler integration scheme,

time-step.

aCR I 1 CR
At aFjo I A,d

with At is the

For the surface flux term, we use a simple one jR 11 R = --K(p - yUQ), here p' is the
chemical potential of the solvent in the environment. For simplcity, set r a constant. Thus
the extra jacobian reads as

KAB = 0; KAB= -(,A IB);113 A (B.31)

B.4 Redsiduals and Jacobians on damage DOFs

For the damage evolution equation, we have the residual

OA = ( d, c) + (VbA, If2 Vd) + (~AJ Efd - 2(1 - d)t) (B.32)

Then the Jacobians of the equation are

KdAB _ (A I (VOA, f 2VOB) + (0A (Ef + 2W) OB)

with other two off-diagonal block are,

K =B - (VA 2(1 - d) MvB (B.34)

and

K^B _ _ A2(1 - B

KABAA'
= - A aCR

Otu, d
sB ) - (VaA,

(B.30)

(B.33)

_(7eAj

(B. 35)
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Within the expression aF) and 9 will evaluate numerically. As what we mentioned

before, -j depends on the time-integration scheme. In backward Euler Y a with At is
the time-step.




